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Introduction 
 

 

 

 

 

 

 

Facility location decisions represent a critical element in strategic planning in both private 

and public sectors, as they can have a strong and lasting impact on operational and logistic 

performance. For example, in the public sector, the position of a set of structures providing a 

service in a region may strongly affect the accessibility of users and, hence, the quality of the 

service itself; as in the case of hospitals, schools or any type of emergency service. On the 

other hand, in the private sector, the position of facilities in the study region may affect the 

profit gained by the firm; for example, in the case of a new retail outlet, the selected site may 

influence the market share captured from the competitors, while, in the context of a supply 

chain, the position of a new warehouse, and then its distances from producing plants, may 

strongly influence the distribution costs incurred by the decision maker.   

In order to determine suitable sites for new facilities, different approaches can be employed. 

In the OR literature, the two classes of problems mainly used to address these kind of 

decisions are  facility location and districting problems.  

A Facility Location Problem (FLP) is aimed at finding the best position for a set of facilities 

in order to optimize a specific objective function. In presence of more facilities to be located, 

also an allocation problem has to be solved, consisting in the assignment of customers to the 

patronized facility. In the context of FLPs several formulations have been proposed in 

literature in terms of objective functions, features of facilities to be located, demand to be 

served and location space, interaction rules between facilities and demand, and many 

applications have been analyzed.  

On the other hand, a Districting Problem (DP) consists of partitioning a given region, divided 

into elementary units, in a fixed number of areas, named districts in such a way some 

requirements (i.e. topology and dimension) are satisfied. In the service-oriented application, 
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given a set of facilities (already located or to be located) in a region, districting problems are 

aimed at designing the territories in which each facility has to provide its service(s).  

These class of models have represented and still represent a viable decision support tool for 

institutions and firms that plan to open new facilities or to expand their capacity in a given 

region and/or market.  

While the mentioned models are mainly oriented to locate new facilities, in a given supply 

system, some occurring circumstances could require strategies oriented to reduce costs and/or 

improve the system performance; therefore, actions related to the re-organization of the 

current facilities network may be undertaken. For example, in the private sector, many factors 

may quickly change during the facilities lifetime, such as market structure and conditions, 

distribution of demand (and its uncertainty), presence of new competitors and financial needs. 

On the other hand, in the public sector, economic conditions may impose constraints on 

public expenditure that could result in policies oriented to the rationalization of service supply 

systems in crucial areas, such as healthcare, education, public transport. These changes could 

make the existing supply system inefficient and/or unsustainable, and require reorganization 

processes, in order to cut costs and increase the efficiency of the offered services. 

In a general economic and political context characterized by growing cuts to public 

expenditure and a review process of the welfare state, public services have and are still 

undergoing significant transformations, generally oriented to reduce administrative, 

managerial and operational burden and costs. Therefore, central and local authorities are more 

interested in the rationalization of the current systems of facilities, through downsizing and 

merging processes, rather than to the expansion or opening issues. In this sense, it could be 

useful and interesting to develop appropriate tools to support this kind of decisions. 

In order to re-organize an existing supply system, composed by a set of facilities already sited 

in a given location space, each providing several types of services, different strategies could 

be adopted, such as the closure of some active facilities, their repositioning in different points 

of the location space, the downsizing of the capacities of the available services and so on. 

Each re-organization action perturb the interaction between the facilities and the demand, and 

could produce some side effects that should be carefully evaluated.   

In this context, decisions may depend on various factors such as the nature of services and the 

characteristics of the market (competitive or non-competitive), the objectives to be achieved 

and the constraints to be satisfied. Therefore, apart from the evident practical interest, the 

problem appear of interest also from a methodological point of view. 
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In this work, after a review of the existing body of literature, we present some mathematical 

models for exploring re-organization decisions about facilities in a non-competitive context.  

In particular, the thesis can be divided into three parts.  The first part, comprising Chapter 1 

and 2, is devoted to the analysis of the literature background.  

In Chapter 1 the two above classes of problems, i.e. facility location and districting problems, 

are separately introduced first and, then, the linkage between them is highlighted, showing 

how is it possible to formulate a districting problem in terms of location-allocation problem.  

In Chapter 2, the attention is focused on that contributions in literature that, through 

adaptations of traditional location models, have dealt more specifically with the re-

organization problem, i.e with those actions aimed at modifying an existing set of facilities. In 

most of the analyzed papers, the problem arises when some occurred (or forecasted) changes 

in the distribution of the demand have made (or could make) the system obsolete or 

inefficient. Therefore, the re-organization is mainly intended as a possibility to adapt the 

overall organization of the system to such changes.  

From the analysis of the literature, it is possible to notice that few attention has been paid to 

the situation in which the re-organization process is motivated by some budget constraints 

that make unsustainable the system and aims at reducing managerial and operational costs. In 

this case, the re-organization represents an opportunity for the planner to reduce costs but it 

may produce a perturbation of the previous demand allocation with a subsequent potential 

detriment of the service quality offered to the users. Therefore, to effectively solve these kinds 

of problems, decision support models should be able to find a trade-off solution between two 

inherently conflicting goals: the maximization of the benefit associated to the reorganization 

process (taking into account the planner perspective) and the minimization of the damage due 

to reallocation of the demand (taking into account the user perspective). 

In the second part some re-organization models have been proposed.  

In particular, in Chapter 3 a theoretical framework for the formulation of rationalization 

models has been defined, in which different strategies and models have been introduced and 

proposed. One specific version of the model, concerning the shrinking of an existing service, 

has been deeply analyzed. The model has been tested on a set of randomly generated 

instances in order to show that a good range of problems can be solved to optimality through 

the use of a commercially available solver (CPLEX).  

In Chapter 4, two applications related to different real-world problems are illustrated, in order 

to show how rationalization models can be effectively exploited. The first application 



6 
 

concerns the problem of the re-organization of a public university system on a regional scale, 

while the second deal with the re-organization of a school system.  

In the third part, consisting of Chapter 5, some strategies to address redistricting decisions 

have been defined and some mathematical models have been formulated. These models have 

been applied on a real-world problem related to the re-organization of administrative division 

of Italian local authorities; in particular, the re-order of the current partition of Italian regions 

into provinces (which correspond to the Level 3 of the classification of territorial 

administrative units provided by the NUTS Eurostat System). In order to build some instances 

for testing the performances of the models and their capability of solving realistic problems, 

some benchmark instances, built on the real data of five Italian regions, have been considered 

and results provided by the different models are analyzed and compared 

Finally, some conclusions and directions for further research are drawn. 
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Chapter 1 

Facility Location and Districting Problems  

 

 

 

 

 

 

 

1.1 Introduction 

Location decisions represent a critical element in the strategic planning of services, in both 

private and public sectors, as they can have a strong and lasting impact on their operational 

and logistic performance. In the OR literature, the two classes of problems mostly used to 

address decisions related to the spatial organization of services are: Facility Location and 

Districting Problems.  

A Facility Location Problem (FLP) is aimed at identifying the optimal position to assign to 

one or more structures (facilities), in a given space, in order to satisfy a demand (actual or 

potential) coming from a set of customers. Examples of facility location problems are: 

determining the most efficient position for a distribution center and/or a warehouse in the 

context of a supply chain, selecting the site of a public service among several candidate 

points, positioning infrastructures in order to improve the performance of a transportation 

network. In these problems, the solution is strongly influenced by the objective that should 

guide the decision making process (maximization of the service accessibility, minimization of 

the management costs) and by the set of constraints that should be satisfied (geographical, 

environmental, economic, logistic and/or technological). The use of mathematical models has 

been demonstrated particularly suitable to tackle them; therefore, investigators have focused 

on formulations and algorithms able to describe and answer to several different questions 

which usually arise in practical applications. Exhaustive reviews of models and methods have 

been provided by Drezner and Hamacher (2002) and Eiselt and Marianov (2011). 

On the other hand, a Districting Problem (DP) consists of partitioning a given region in a 

fixed number of areas, named districts. In this context, the region is currently divided into 

elementary units, each of them associated with a set of parameters (e.g., population, area), that 
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have to be then grouped in districts in such a way that constraints on topology and dimensions 

are respected. In the applications related to the public sector, given a set of facilities (already 

located or to be located) in a region, districting problems are aimed at designing the territories 

in which each facility has to provide its service(s).  

In this chapter we describe separately the two classes of problems; in particular we introduce 

their basic features, the fundamental mathematical models used to describe most of the 

problems of practical interest and their possible applications. Then, we focus on the linkage 

between the two class of problems, showing how it is possible to formulate a districting 

problem in terms of location-allocation problem.  

1.2 Elements of Facility Location Problems 

In general, a FLP aims at identifying the best position to assign to a set of facilities, in a 

given location space, in order to satisfy a demand (actual or potential), according to a certain 

objective to be optimized and a set of constraints to be satisfied. 

From this definition, it is clear that the fundamental elements of a FLP are (see also Eiselt 

and Laporte, 1995; ReVelle and Eiselt, 2005): 

• Location Space; 

• Facilities; 

• Demand; 

• Interaction; 

• Objectives, to optimize; 

• Constraints, to be satisfied. 

The location space generally corresponds to the space where customers are present and 

facilities are to be located. It can be a geographical area (e.g. a region or a city) or not; for 

example, this latter is the case of positioning a company in a market described as a space in a 

set of economic variables.  

It is possible to distinguish between continuous, network, and discrete problems. In the first 

case, facilities may be positioned everywhere in the location space; at most there could be 

some forbidden zones where locations are not allowed due to geographical obstacles or 

technical constraints. In the second case, the location of a facility is restricted to the nodes 

and/or the edges of a network; while in the last one, it has to be chosen within a set of 

candidate sites. 
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The characteristics of the location space and the considered application generally drive the 

adoption of the metric, i.e. the function used to measure distances between pairs of elements 

of the space (facilities and/or demand points). Distance may refer to a physical length, a 

period of time, or it can be estimated on the basis of other criteria.  

The facilities are the objects (to be located) that will provide services and/or goods in order to 

satisfy the demand. Classical examples are: industrial or commercial structures (e.g., retail 

outlets, plants, warehouses, bank branches), public services sites (e.g., schools, hospitals, fire 

stations), transportation and logistics infrastructures (e.g., bus-terminals, cross-dockings, 

metro stations). Facilities are usually characterized by attributes, such as the number and the 

types of provided services, their capacity, their attractiveness, the costs associated with their 

establishment and operation. 

In general, the size of the facilities is so small as compared to the space they are located in, 

that they can be considered dimensionless (puntual problems). Examples of these problems 

are: finding the location of an assembly plant within a country (continuous), or selecting the 

site of a school in one of several candidate points in a city (discrete) or identifying the 

position of a new bus stop on a road network (network).  

The problems in which the size of the facilities is significant in comparison to the space they 

are to be located in, are referred to as layout problems. Examples in this class include the 

siting of a drilling machine in a workshop. 

A fundamental characteristic of a FLP is the number of new facilities to be located, that can 

be either pre-specified or a decision variable. The simplest case is the single-facility problem, 

in which the position of only one facility has to be determined. When more facilities have to 

be located (multi-facility problem), it is necessary to face the additional issue of determining 

from which facility the demand of the customers has to be satisfied; this is usually referred to 

as the allocation problem. In this context it is possible that customers are free to patronize 

their own facilities (i.e. customers of supermarkets or trade centers) or they are obliged to 

follow predetermined criteria (i.e. students assigned to schools on the basis of their 

residences). 

The demand is represented by the actors (already located) in the location space that require 

the goods and/or services. Depending on the specific application, they can be defined as 

customers, users, residents, population centers and so on.  

As well as the facilities, also the demand can be continuously distributed in the location 

space or can be concentrated in a discrete set of points. When the demand is continuously 
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distributed in the location space, it is possible to discretize it through appropriate procedures 

that consist in partitioning, according to some criteria, the study region into a finite number of 

sub-areas. To each sub-area is then associated a value of demand, equal to the sum of the 

demands coming from all the points falling inside it, and a point, usually the centroid, in 

which it is considered concentrated. During these operations particular attention should be 

paid to approximations and errors introduced in the model.  

Depending on the application, demand can be deterministic or stochastic. In both these 

cases, it can be estimated either by combining current data and/or attributes or by using 

appropriate forecasting tools. 

Another important element of FLP is the interaction between the objects involved, the 

existing and the new ones to be located. In particular, two kinds of interactions have to be 

taken into account: customer-facility and facility-facility interactions.  

 Customer-facility interactions concern all the effects that the presence of new facilities in the 

location space produces on the customers. In this context, a particularly important issue is 

related to the assignment of customers to the facilities. Drezner and Eiselt (2002) 

differentiated between location-allocation and location-choice models. Within location-

allocation models the demand is allocated to the facilities compulsory (e.g. schools in the 

United States); while in location-choice models customers choose among the available 

facilities according to a utility function, which, in general, combines attributes of facilities and 

distances between customers-facilities (e.g., retail outlets).  

Facility-facility interactions take into account all the effects that the presence of single 

new facilities produce on each other (existing or to be located). In some cases there is 

competition in order to capture as much of the demand as possible (i.e. commercial stores of 

different companies); while in other applications facilities cooperate in order to assure a 

certain level of accessibility to the users (i.e. bank offices, public service sites, franchising 

stores).  

Location decisions can be made according to different criteria or objective functions, 

whose choice may depend on the nature of the service and the specific application. Being 

proximity (distance or travel time) one of the fundamental aspect of location analysis, many 

models seek to minimize a function of the distances or travel times between the customers 

and the facilities at which they receive the service.  

Finally, the problem can be characterized by many constraints. Typical examples are 

topological constraints (i.e. minimum and/or maximum distances between facilities, zoning 
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laws), capacity constraints (i.e. maximum demand that each facility can serve), technical 

and/or technological restrictions, economic and budget constraints. 

Depending on the combinations of the above elements, a wide range of mathematical 

models can be defined. This variety has suggested proposals of classification on the basis of 

different schemes, as discussed by Francis et al. (1983), Brandeau and Chiu (1989), Eiselt and 

Laporte (1995), Hamacher and Nickel (1998), ReVelle and Eiselt (2005) and ReVelle et al. 

(2008). 

1.3  Location Problems in the private and public sector 

There are several ways of classifying location models and problems; one of the most adopted 

is based on the dichotomy between public versus private sector.  

The private sector is the part of a country's economic system run by individuals or groups, 

usually by means of firms, with the aim of making profit. It is legally regulated by the state, in 

the sense that businesses within one country are required to comply with the laws in that 

country, but not controlled by it.  

The segment of the economy under control of the government is known as the public sector. 

The composition of the public sector varies by country, but in most cases it includes such 

services as: the police, military, public roads, public transit, education and healthcare. The 

organizations of the public sector (public ownership) can take several forms, ranging from 

direct administration to partial outsourcing, but in any case the government plays a key role in 

management terms as it is responsible of providing  the performances with reference to the 

users (accountability). 

The main difference between the location of public and private facilities lies in the nature of 

the criteria adopted in the decion-making process.  

In the private sector, the objective is mainly the profit maximization (or cost minimization) 

and the capture of largest market shares from competitors. Generally,  in such problems a 

trade-off solution between fixed location costs, incurred for establishing and operating new 

facilities at some points, and variable costs, incurred for production and transportation, is 

searched. High transportation costs and low facilities costs imply decentralization, the reverse 

implies a few large central facilities. Even if the location of a private facility may have some 

external effects on the environment and the population, only the private benefits of the 

decision maker are taken into account. In order to control such effects, central governments 

have two possibilities of influencing private location decisions and drive them towards more 

socially acceptable solutions: by additional constraints and by additional costs. In the first 
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case the alternatives open to the private firms are limited, for example by means of law; while 

in the second case an additional cost (a sorty of penalty) is introduced in the objective 

function, for example by means of taxes and subsidies. The latter method appears to be 

favored currently in the thinking of many governmental policymakers; a difficult and 

challenging areas of research in public policy concerns the methods to optimally determine 

the order of magnitude of such measures so as achieve desired goals.  

In the public sector, the objectives of the decision-making process tipically consist in the 

social cost minimization or in the universality, efficiency and equity of the services.  

The main issue in this class of problems is that objectives and constraints are no easily 

definable and/or quantifiable. In order to overcome this aspect, the most adopted methodology 

is to identify some proxy measures to quantify the utility of users and/or their accessibility to 

services. One of the most common proxy is the distance between users and their assigned 

facilities. As most of public services are desirable, the smaller this quantity more accessible 

the system is to the users; therefore, the decision maker will tend to position facilities as close 

as possible to them (pull objective). On the contrary, when facilities are considered 

undesirable, customers aim at avoiding their presence and try to stay far away from them 

(push objectives). 

According with this assumption, objectives are in most cases expressed as functions of 

distances between customers and facilities and they are optimized subject to constraints on 

investment, which can be in turn expressed as an explicit limitation on the budget available or 

on the maximum number of facilities to be located.  

The objective functions can be classified in two classes: 

• efficiency measures, in which the average accessibility of users to the service is taken into 

account, without any consideration about the fairness in the access to the facilities. 

According to this kind of measures, an efficient location pattern is presumably one in 

which the average distance of users from facilities is minimized within a given budget 

(mini-sum problems); or, alternatively, some predetermined level of service, in terms of 

maximum distance between each user and its assigned facility, is met at minimum total 

cost.  

• equity measures, in which the decision maker is interested in finding solutions that assure 

a certain fairness in the access to facilities. Models with such objectives attempt to locate 

facilities, so that the distances may be as similar to each other as possible. Various 

expressions have been proposed, based on the minimization of measures related to the 
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distribution of distances between customers and facilities; examples include the variance, 

the mean absolute deviation or the Gini coefficient. For more details, see Marsh and 

Schilling (1994) and Eiselt and Laporte (1995). 

Finally, it should be underlined that locational decision problems in practice can involve 

multiple, conflicting and incommensurate evaluation criteria and, in this sense, they are 

multiobjective in nature. In order to tackle FLPs formulated using multiple conflicting 

objectives, appropriate multiobjective techniques are needed, some of which are reviewed by 

Current et al. (1990) and Farahani et al. (2010). 

1.4 Discrete Location Problems in the Public Sector 

In this section, the attention has been focused on three classes of facility location models 

frequently used for the design of public services: 

• Median Models, in which the efficiency is measured in terms of average distance between 

customers and facilities (mini-sum objectives); 

• Covering Models, in which the quality of the solution is related to the ability of facilities 

to cover demand within a maximum prespecified value, named coverage radius; 

• Center Models, in which the maximum distance between customers and their patronized 

facilities is minimized, in order to protect the customers in the worst condition (minimax 

objectives).  

As we will focus on the discrete versions of the above problems, we will refer to a finite set of 

demand points and to a finite set of potential facility sites. In particular, we will adopt the 

common following notation: 

� set of demand nodes, indexed by � (|�| = �); 

� set of potential facility sites, indexed by � (|�| = �); 

	
� distance between nodes � ∈ � and � ∈ �; 



 population at the demand node �; 
�� binary variable equal to one if and only if a new facility is located in �; 

�
� allocation binary variable equal to 1 if and only if customer at node � is 

assigned to facility �. 

1.4.1 Median Models 

The p-median problem find the optimal location of exactly � facilities, so that the weighted 

sum of the distances between customers and their assigned facilities is minimized. Since the 
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number � of customers is known, by dividing the objective by �, the minimum average 

weighted distance between customers and facilities is obtained. 

The first explicit formulation of the �-median problem is attributed to Hakimi (1964). Even 

though his application was in the field of telecommunications, more precisely in the location 

of switching centers on a graph, the p-median model1 has been since then extensively used as 

a basis to build problems related to the location of public services. From the point of view of 

public decision-making, the �-median objective maximizes the accessibility, in terms of 

average proximity of customers to a facility. For example, if a region is represented by a 

network whose nodes are patient locations, and whose edges are roads, locating � hospitals 

according to the solution of a �-median will minimize the average travel distance for patients 

attending those hospitals.  

The formulation of p-median problem is now well known and used profusely, in the following 

form: 

��� � = � � 

	
��
�
�∈�
∈�

 (1.1) 

� �
� = 1
�∈�

 ∀� ∈ � (1.2) 

�
� ≤ �� ∀� ∈ �, ∀� ∈ � (1.3) 

� ��
�∈�

= �  (1.4) 

�
� , �� ∈ �0,1� ∀� ∈ �, ∀� ∈ � (1.5) 

Constraints (1.2) force each demand point to be assigned to only one facility. Constraints 

(1.3) allow demand point � to be assigned to a point � only if there is an open facility in that 

location. Finally, the last constraint (1.4) sets the number of facilities to be located. 

The set of constraints (1.3), also known as Balinski conditions, can be replaced by the 

following more condensed set: 

� �
� ≤ ���

∈�

 ∀� ∈ � (1.6) 

where � represents an arbitrary large quantity. Also in this case, any allocation to node � is 

avoided, unless there is a facility open in that node.  

                                                           
1 The name p-median derives from the concept of a median vertex, which is the vertex of a graph for which the 
sum of the lengths of the shortest paths to all other vertices is the smallest.  
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Since its first formulation, the p-median problem has been modified to be adapted to specific 

problems or to allow a better real world implementation in the public sector.  

One of the main rigidity of the � −median problem is that it presents a complete inelastic 

demand with respect to distance. People travel to the closest facility regardless of the distance 

they need to cover. In 1972, Holmes et al. presented a formulation that considered that people 

would not travel beyond a given threshold distance. In essence the �-median objective was 

replaced by the following one: 

�
�    � = � � 

( − 	
�)�
�
�∈�
∈�

 (1.7) 

and the group of constraints (2) was reformulated as follows:  

� �
� ≤ 1
�∈�

 ∀� ∈ � (1.8) 

Since it is not guaranteed that every node will be assigned to a facility (1.8), the model will 

tend to leave uncovered those demand nodes that are farther than   from any located facility 

( − 	
� ≤ 0), as their assignments would introduce negative addends in the objective 

function (1.7) to be maximized. The model was applied to locate public day care facilities in 

Columbus, Ohio. 

In the same work, Holmes et al. also introduced the so called capacitated p-median problem. 

In this model, facilities have a limited capacity and therefore the following constraint needs to 

be added: 

� �
� ≤ "���

∈�

 ∀� ∈ � (1.9) 

where "� is the maximum capacity level for facility sited in �.  

Sometimes it may be necessary not only to constrain the maximum demand to be allocated to 

each facility, but also a minimum threshold service level. In the �-median formulation, this is 

achieved by adding the following set of constraint: 

� �
� ≥ $���

∈�

 ∀� ∈ � (1.10) 

where $� is the minimum capacity level for facility sited in �. In the public sector, the central 

governments use to introduce this kind of minimum requirements or to avoid strong 

inefficiencies or to obtain a more balanced distribution of customers between facilities 

(balancing requirements). Carreras and Serra (1999) were the first to consider this aspect in 

the analysis of the effect of the deregulation of pharmacies in a region of Spain.  
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Another problem when implementing the p-median problem is related to the distance 

parameter. The model supposes that distances (or travel times), such as demands, are fixed 

and may not change. This assumption sometime may be too restrictive; if we want to locate 

fire stations in a city, for example, we know that travel times may change during a single day 

and therefore an optimal location during traffic peak hours may be inefficient in valley hours. 

On the other hand, the demand may also change during the day. Some areas may be crowded 

during daytime and empty during night time. Serra and Marianov (1998) introduced the 

concept of regret and minmax objectives when locating fire stations in Barcelona (Spain) 

taking into account what they called changing networks. Basically, uncertainty was treated 

using the classic scenario approach, in which different patterns of demand or travel times are 

represented in different scenarios. The formulation in both cases is straightforward, as it can 

be obtained from the classic one through the introduction of a third index %, associated to the 

single scenario. This way, 

& is the demand coming from node � in scenario % and  	
�&  the 

distance or travel time bertween nodes � and � in scenario %.  

In the min-max approach, over a range of possible demand scenarios, facilities are located in 

such a way to minimize the maximum average travel time when evaluated for all scenarios. 

Minmax � −median problem is then formulated as follows: 

��� � (1.11) 

� � 

&	
�&

'&�∈�
∈�
�
�& ≤ � ∀% ∈ ( (1.12) 

� �
�& = 1
�∈�

 ∀� ∈ �, ∀% ∈ ( (1.13) 

�
�& ≤ �� ∀� ∈ �, ∀� ∈ �, ∀% ∈ ( (1.14) 

� y�
�∈�

= �  (1.15) 

�
�& , �� ∈ �0,1� ∀� ∈ �, ∀� ∈ �, ∀% ∈ ( (1.16) 

Constraints (1.12) are directly related to the objective. Having � to be greater than the 

weighted average travel time evaluated for each scenario % (l.h.s.), it represents the maximum 

average travel time across scenarios, to be minimized (1.11). The interpretation of the other 

groups of constraints (1.13-1.16) is straightforward, as they are the same constraints 

introduced in the classical formulation of �-median problem (1.2-1.5), considered for each 

scenario %. 
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In the regret approach, facilities are positioned so as to minimize the maximum regret, i.e. the 

difference between (a) the optimal average travel time that would be obtained if the decision 

maker had planned its sites for the scenario that actually occurs; and (b) the value of average 

travel time that was actually obtained 

If the regret objective is used, constraints (1.12) have to be replaced by the following: 

� � 

&	
�&

'&�∈�
∈�
�
�& − *& ≤ � ∀% ∈ ( (1.17) 

where *& is the optimal value of the objective function, found by applying the original �-

median formulation to each scenario individually. The unknown variable � represents the 

largest regret evaluated over all scenarios. 

Although the �-median problem is of interest, its emphasis on the average accessibility to the 

services is not sufficient in the context of emergency services because it makes no provision 

for the extremes values and it is possible that a solution to this problem leaves some demand 

points too far from the nearest facility. In order to overcome this aspect, other classes of 

objectives need to be considered, as shown in the next sections. 

1.4.2 Covering Models 

Covering models are based on the concept of coverage radius, i.e. a maximum pre-specified 

value for either distance or travel time. A facility is said to cover a demand point if their 

mutual distance does not exceed this maximum value. An example is the case in which it is 

desired that the population in a given area have access to a health care center within a given 

distance, say 2 miles. It is said that a customer in this area is covered if he has a health care 

center within 2 miles of her/his home.  

In this case, the service is considered equally good if provided by facilities at different 

distances, as long as both distances are smaller than a maximum value, that represent an 

acceptable proximity. 

There are two basic formulations of covering models: 

• Set Covering Location Problem (SCLP), seeking to minimize the number of facilities 

needed for full coverage of the population in a given location space; 

• Maximum Covering Location Problem (MCLP), aiming at maximizing covered 

population, given a limited number of facilities or budget.  

The SCLP seeks to locate the minimum number of facilities needed to obtain mandatory 

coverage of all demands (Toregas et al., 1971; Toregas and ReVelle, 1973). In other words, 
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each demand point need to have at least one facility located within some distance or time 

standard  . The first application of this model was in the area of emergency services (ReVelle 

et al. 1976).  

Assuming the following notation: 

  target distance for coverage; 

+
 = ,� ∈ �: 	
� ≤  .  set of all those sites that are within distance   from the demand 

node �. 
the SCLP can be formulated as follows:  

��� � = � ��
�∈�

 (1.18) 

� �� ≥ 1
�∈01

 ∀� ∈ � (1.19) 

�� ∈ �0,1� ∀� ∈ � (1.20) 

The objective (1.18) minimizes the number of required facilities to cover all the demand. 

Constraints (1.19) state that the demand at each node � must be covered at least by one facility 

located within the distance  . 

Although public services should be available to everybody, as modeled by the LSCP, the 

MCLP recognizes that mandatory coverage of all people in all occasions and no matter how 

far they live, could require excessive resources. Thus, MCLP does not force coverage of all 

demand but, instead, seeks the location of a fixed number of facilities, most probably 

insufficient to cover all demand within the standards, in such a way that covered demand is 

maximized. The fixed number of facilities is a proxy for a limited budget.  

Church e ReVelle (1974) and White and Case (1974) formulated the MCLP as follows: 

��� � = � 

�


∈�

 (1.21) 

� �� ≥ �

�∈01

 ∀� ∈ � (1.22) 

� ��
�∈�

= �  (1.23) 

�
 , �� ∈ �0,1� ∀� ∈ �, ∀� ∈ � (1.24) 

where the binary variable �
 indicates if a demand node � is covered or not. 

The objective function (1.21) maximizes the weighted sum of covered demand nodes. 

Constraints (1.22) state that the demand at node � is covered (�
 = 1) whenever at least one 
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facility is located within the time or distance standard  . Constraints (1.23) give the total 

number of facilities that can be sited. 

It has to be noticed that, while the LSCP ignores the magnitude of the demand coming from 

each node, in the MCLP this aspect is strongly considered as it aims at covering as much 

demand as possible rather than as much nodes as possible. 

Application of these models in the public sector range from emergency services to location of 

bus stops (Gleason, 1975), health clinics (Eaton et al., 1981), hierarchical health services 

(Moore and ReVelle, 1982), and many other applications.  

An interesting generalization of the MCLP considers the simultaneous location of several 

types of facilities, each characterized from its own standard distance (Schilling et al., 1979). 

The model was formulated for the location of fire-fighting services in the city of Baltimore; in 

particular, depots for two types of servers (pump and ladder companies). The objective of the 

model was the coverage of the maximum number of people by both companies, each one sited 

within its own standard distance.  Marianov and ReVelle, (1991, 1992) extended the model to 

the case in which two or more servers of each type are needed, because the attendance of only 

one of each is not enough (as in police or fire emergencies). 

In most cases, a server cannot attend more than one call at a time; consequently, the system 

can become congested if one or more calls arrive when a server is busy. In this case, different 

approaches can be used. When congestion is not expected to be severe, the approach (Hogan 

and ReVelle, 1986) consists in allocating more than one server to each demand node within 

the standard distance (redundant coverage). On the contrary, when congestion is expected to 

be more severe, a probabilistic approach is more appropriate. Stochastic models consist of 

maximizing expected coverage of each demand node (Daskin, 1983; Daskin, 1995) or of 

constraining the probability, that at least one server (for each demand node) is available, to be 

greater than or equal to a specified value α. 
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1.4.3 Center Models 

This class of problems involves locating one or more facilities in such a way that every 

demand receives its service from the closest facility and the maximum distance between each 

demand node and its facility is as small as possible. While the mini-sum problems optimize an 

aggregated measures of access to the facilities, these problems focus on the customers in the 

worst condition and seek to minimize the distance that separates him from its assigned 

facility. 

Suppose that only one facility has to be located in a given location space where a set of 

demand node exists; using the Euclidean distance, the problem of minimizing the maximum 

distance is equivalent to finding the center of the smallest circle enclosing all points (Figure 

1.1,a). In the same way, the problem of locating a predetermined number 3 of facilities is 

equivalent to cover every point through 3 circles with the smallest possible radius (Figure 

1.1,b). For this reason this class of problems is also known as center problems.  

 
 

 (a) � = 1  (b) � = 2 

Fig.1.1- 3 −center solutions 

The problem was first introduced in the literature by Hakimi (1964) for the location of a 

single facility on a network (Absolute Center Problem); its formulation is now well known in 

the following form: 
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��� � = 5 (1.24) 

� �
� = 1
�∈�

 ∀� ∈ � (1.25) 

�
� ≤ �� ∀� ∈ �, ∀� ∈ � (1.26) 

� ��
�∈�

= �  (1.27) 

� 	
��
� ≤ 5
�∈�

 ∀� ∈ � (1.28) 

�
� , �� ∈ �0,1� ∀� ∈ �, ∀� ∈ � (1.29) 

Constraints (1.25-1.27) and (1.29) are identical to (1.2-1.5) of the � −median problem. 

Constraints (1.28) are directly related to the objective. Having 5 to be greater than the 

distance of each demand node from its assigned, it represents the maximum distance (1.28), to 

be minimized (1.24). 

In some cases, it could be required to assign different values of importance to the single 

demand nodes, based, for example, on population densities. A node representing a densely 

populated area may require an higher protection against emergency than a node representing a 

rather sparsely populated area. Such differences may be reflected into the model by assigning 

to each node a weight and minimizing the maximum weighted distance. In this case, 

constraints (28) should be modified as follows: 



 � 	
��
� ≤ 5
�∈�

 ∀� ∈ � (1.30) 

Another extension is related to the introduction of capacity restrictions on the facilities (Pinar, 

2006).   

Center location problems commonly arise in emergency service location, where the goal of 

quick response times is significantly more important than any efficiency consideration, related 

to the cost of delivering that service. In the case of a fire station, for example, when a fire 

breaks out, it is crucial to arrive at the fire as quickly as possible. Similarly, for ambulances 

the human loss is strictly related to the response time. Consequently, in all these 

circumstances it makes sense to adopt p-center objectives. 
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1.5 Districting Problems 

Districting Problems are aimed at grouping small geographic areas, called basic areas or 

territorial units (counties, zip code or company trading areas), generally associated with a set 

of attributes (i.e. demand, population), into a given number of larger geographic clusters, 

called territories or districts, in a way that the latter are acceptable according to some 

planning criteria. The most relevant adopted criteria are: 

• Integrity: each territorial unit cannot be split between two or more districts;  

• Population equality (or population balance): districts should have approximatively the 

same size, in terms of population; 

• Compactness: the shape of districts has to be almost compact, without elongated parts. 

Thus a round-shaped district is deemed to be acceptable, while an octopus- or an eel-like 

one is not; 

• Contiguity: in each district, it should be possible to walk from any point to any other point 

of the district, without ever leaving it; in other words, no holes or isolated  parts should be 

present; 

• Respect of existing boundaries (administrative or geographic): districts should be 

coherent with existing boundaries. In the case of geographic borders, this is desirable in 

order to avoid discontinuities in the solution. For example, it could be difficult to travel 

between two points sited in the opposite parts of a river; in this sense, they should not be 

included in the same district. In the same way, also mountains or lakes can represent 

obstacles for the districts' contiguity. In the case of administrative boundaries, the 

conformity to existing divisions is desirable in order to avoid to split already existing 

official or normative regions.  

This problem has been largely applied in the context of political districts, i.e. territories  

within elections have to be performed (Hess et al., 1965; Williams, 1995; Hojati, 1996; 

George et al., 1997; Mehrotra et al., 1998; Bozkaya et al., 2003). The design of political 

district is particularly important in democracies where each territory elects a single member to 

a parliamentary assembly (majority system). This is, for example, the case of  Canada, New 

Zealand, and most countries in the United States and Germany. As the territorial subdivision 

of an area in districts may significantly influence election results, in these problems the goal is 

to design fair districts, so as no political party should be able to take advantage from 

territorial subdivision in order to gain seats. With this aim, the main planning criteria to be 

taken into account are the size and shape of districts. As concern the first aspect, districts 
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Fig.1.2- Gerrymandering 
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1.6 Service- Oriented Districting Problems 

In the public sector, given a set of facilities (already located or to be located) in a region, 

districting problems are aimed at designing the territories in which each facility has to 

provide its service(s). Unlike political districting, in this kind of applications units have to be 

grouped with reference to the facilities and their characteristics (i.e. position, capacity). 

Therefore, the problem can be viewed as a location-allocation problem in which facilities 

have been located and units have to be assigned to them; units assigned to the same facility 

represent a territory.  

Palermo et at. (1977) and Fertand and Gudnette (1990) deal with the problem of school 

districting, i.e. the partition of all basic area in the region under consideration into a number 

territories, one for each school. In these problems territorial units can be represented by 

census tracks, streets or streets segments; while criteria generally taken into account in the 

planning process are capacity limitations and equal utilization of the schools, maximal or 

average travel distances for students, good accessibility and racial balance. 

Hanafi et al. (1999) address the districting problem for the organization of the solid waste 

disposal service. In a first step, the region under consideration is  partitioned into sectors, 

where each sectors consists of a set of streets or street segments in which waste has to be 

collected on a certain day. Afterwards, routes for the garbage trucks within the sectors are 

computed separately. According to Hanafi et al. (1999), the overall time for collecting 

garbage should be minimized (compactness), the time for collecting garbage should be 

approximately the same for all sectors (balance) and the sectors should be contiguous. 

Moreover, territories should allow the planning of good or efficient routes.  

D'Amico et al. (2002) report on a case study for police district design, where police 

departments have to partition their jurisdiction into so-called command districts. A closely 

related problem is described by Baker et al. (1989), which face the task of designing so-called 

primary response areas for county ambulances. As reported, the main design criteria for the 

territories are workload balance, geographical compactness and contiguity.  

Apart from the specific application, there are several elements shared by most of the models 

proposed in literature. In the following we illustrate the fundamental elements of typical 

districting problems. 
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are geographical objects 
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2) District Centers 

In general, districts are obtained by assigning basic units to a set � of centers, which often 

correspond to the points where facilities are located or are to be located (e.g. fire stations, 

hospitals, schools). Usually the location of the district centers is part of the planning process 

and their positions are selected among the centers of the basic units (� ⊂ �).  Another 

important aspect is related to the number � of districts to design; in most cases it is pre-

specified but it may be also a decision variable of the problem. 

3) Integrality constraints 

In most application, it is required that every basic unit is contained in exactly one district; 

hence, that districts define a partition of the set �.  

Let �& ⊂ � denote the %-th district, then: 

⋃ �& = �8
&9:  and �& ∩ �� = ∅   ∀% ≠ � 

This requirement is motivated by several factors. First of all, unique allocations result in 

transparent responsibilities among single facilities; moreover, they allow to define in a stable 

way the boundaries of territories. See Figure 1.5 for possible partitions for the problems 

shown in Figure 1.3. 

   

Fig.1.5- Examples of Territories (points, lines, areas/polygons) 

4) Balance  

Usually districts are required to be balanced, i.e of equal size, with reference to one or more 

attributes. Starting from the attribute values related to the the single units, it is possible to 

obtain the size of the whole districts. In general, the aggregation scheme is additive, then the 

attribute or the size of territory % is given by the sum of the values of the contained basic 

units. Formally: 
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>(�&) = � 



∈�?

 

Due to the discrete structure of the problem and the integrality constraints, perfectly balanced 

territories can generally not be accomplished. Different indicators can be defined in order to 

measure balance; a common way consists in the computation of the relative percentage 

deviation of the district size from their average size >̅ = ∑ B11∈C
8  . The larger this deviation is, 

the worse is the balance of the territory. 

5) Contiguity  

Districts are said to be contiguous when it is possible to travel from one point to any another 

point of the same district without leaving it; or, in other words, when it is constituted of a 

single part. 

Ensure as well as check the contiguity of a provided solution is a difficult task. When basic 

units are points, a district is said to be contiguous if the convex hull2 of the points incuded in 

the district does not intersect the convex hull of the basic units of any other district. If the 

basic units are non-punctual, i.e. lines or polygons, in order to check the contiguity of 

districts, it is required to collect some input information about the adjacency between pairs of 

units. Usually two units are said to be adjacent if their geographical representations have a 

non-empty intersection; in particular, polygons need to share a common border, segments 

have to meet in a crossroad. This information can be represented through a matrix, known as 

adiacency matrix, or a contiguity graph, in which vertices correspond to the units in � and two 

nodes are connected by an edge if and only if they are adjacent.  

6) Compactness  

A territory is said to be geographically compact if it is somewhat round-shaped and 

undistorted. Although being a very intuitive concept, a rigorous definition of compactness 

does not exist. Young (1988), Niemi et al. (1990) and Horn et al. (1993) propose several 

measures to asses the compactness of a district, none of which is comprehensive. Some 

measures fail to detect districts that are obviously noncompact, while others assign a low 

rating to visibly compact districts (Williams,1995). Spatial or visual compactness can be 

evaluated using relative or absolute measures. While the former determine compactness using 

shape only, the latter measure compactness taking into account shape as well as area. 

Absolute measures are, however, biased against large areas in the sense that a large circle is 

                                                           
2 Smallest convex polygon enclosing all points 
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less absolutely compact than a small circle. Common relative measures are the Roeck test and 

Schwartzberg test. The former calculates the ratio of the territory area to the area of the 

smallest enclosing circle, while the latter determines the ratio of the districts perimeter length 

to the circumference of a circle with equal area. Hess et al. (1965) propose an absolute 

measure, called the moment of inertia, which calculates the dispersion of the district area 

about its center. One way to measure the moment of inertia is to compute the sum of the 

squared Euclidean distances from the center of the district to the centers of the basic areas.  

The smaller the moment of inertia is, the more compact the district is. Note that, despite its 

deficiencies, this measure is often used in the literature since it can be calculated easily and, 

moreover, incorporated into linear programs without effort. Apart from geographical 

compactness, there also exists the concept of population or demographic compactness. Here, a 

district is said to be compact if its population is concentrated in a relatively small area. Hess et 

al. (1965), for example, propose the population weighted moment of inertia as a measure. 

� � 

	
&

∈�?

8

&9:
 

1.7 Combining Districting and Facility Location Problems 

The analogy between the two classes of above problems is first introduced in 1965 by Hess et 

al., that formulate a districting problem in terms of location-allocation problem, in which 

customers correspond to the single territorial units and the � facilities to be located to the 

district centers. The idea is to identify the location for the � centers and assign each territorial 

unit to exactly one of them; hence, all the basic units allocated to the same center constitute a 

district. Associating to each unit an attribute corresponding to its demand, balance of the 

territories is achieved by imposing capacity restrictions on the facilities. 

The model introduced by Hess et al. can be formulated as follows: 

��� � = � � �
	
�D �
�
�∈�
∈�

 (1.31) 

� �
� = 1
�∈�

 ∀� ∈ � (1.32) 

� ���
�∈�

= �  (1.33) 

(1 − E)FG��� ≤ � �
�
� ≤ (1 + E)FG���

∈�

 ∀� ∈ � (1.34) 

�
� ∈ �0,1� ∀�, � ∈ � (1.35) 
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The objective function (1.31) is a compactness measure, defined as the sum of the weighted 

distances between the single territorial units and the related district centers. Constraints (1.32) 

ensure that each territorial unit is assigned to exactly one district center (integrality). 

Constraints (1.33) impose that the number of district (centers) is equal to �. The two groups of 

constraints (1.34) represent the conditions on the maximum and minimum allowable 

population for each district (population balance); in particular, they define the maximum 

tolerance E from the ideal size FG IFG = ∑ 811∈C
J K. Finally constraints (1.35) define the nature of 

the decision variables. 

The parameter E strongly affect the solution provided by the model and the time for solving it. 

The smaller E is, the better will be the balance of the districts; but, on the other hand, if E is 

too small, i.e. the time for optimally solving the model generally increases and territories tend 

to be no longer compact and connected. 

As this mixed integer linear program is NP-hard, its practical use is fairly limited. To this end, 

Hess et al. used a location-allocation heuristic to solve the problem. In this heuristic, the 

simultaneous location-allocation decisions of the underlying facility location problem are 

decomposed into two independent phases, a location and an allocation phase, which are 

iteratively performed until a satisfactory result is obtained. 

1) Initialization: select (randomly) � units as district centers; 

2) Allocation Phase: assign the units to the selected centers so as to obtain perfectly balanced 

districts at the minimum cost. In this step, a transportation problem, in which the set of 

origins corresponds to the set of current centers, all with supplies equal to FG, and the set of 

destinations corresponds to the set of territorial units, each with demand equal to the 

related population �
, is solved. Given that the unit transportation cost from � to � is equal 

to 	
�D , the problem consists of determining the quantity to be supplied from each origin 

towards each destination so as to minimize the total transportation costs and satisfy the 

constraints on the total demands and supplies. In this problem the assignment variables are 

not binary L�
� ∈ M0,1NO; indeed, �
� represent the fraction of demand coming from unit � 
allocated to center �.  

3) Split Resolution: the solution of the transportation problem is perfectly balanced but 

usually violates the integrality property, as portions of the same territorial unit may be 

allocated to different districts. In this phase, the solution of the transportation problem is 

adjusted so that each territorial unit is assigned to exactly one district, i.e. so as each 



30 
 

fractional variables is rounded to one or zero. Since there are many possibilities for the 

rounding, it is necessary to find the one that results in as much as possible balanced 

territories (Split Resolution Problem - SRP). Hess and Samuels (1971) propose a simple 

rule, which exclusively assigns each split unit to the district (center) which owns the 

largest share.  

4) Location Phase: once the districts are obtained, it is necessary to update the set of district 

centers. There exist several approaches for determining a new configuration of district 

centers. A fairly simple and commonly used method is to solve in each district, resulting 

from the last phase, a single facility median problem and find the so-called centroids 

(Fleischmann and Paraschis, 1988; George et al., 1997).  

5) Stopping Criteria: Steps 2-4 are repeated until the procedure converges, i.e. the centers do 

not change in two successive iterations. 

Hess et al. (1965) provide an application related to the design of Delaware legislative districts 

in 1964, where � = 650 and � = 35. 

Starting from this contribution, other authors develop political districting methods based on a 

location approach. Hojati (1996) suggests a three-phases procedure, in which  instead of 

adopting an iterative strategy based on successive adjustments of the centers, they are located 

only once at the beginning of the procedure and this choice is permanent.  This method is 

applied to the territory of the city of Saskatoon (Canada) for the provincial elections in 1993, 

and the obtained district map is compared with the institutional one showing good results for 

compactness. 

The procedure proposed in George et al. (1997) follows the iterative location/allocation 

approach pioneered by Hess et al. (1965), but with the main difference that a new method for 

assigning territorial units to districts is adopted. For this step, the authors introduce a 

minimum cost network flow problem. The proposed iterative procedure alternates the location 

of the � centers with the assignment of territorial units according to the solution of the above 

minimum cost network flow problem. It stops when the difference between the value of two 

successive optimal solutions of this problem is sufficiently small.  

The authors apply their algorithm to the design of parliamentary districts in New Zeland in 

1993 and study the performance of four versions of their PD procedure; they also compare the 

results obtained with their automated algorithm with the New Zealand institutional districts 

obtained by a manual procedure. 
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Although the transportation problem and the split resolution can be done rather efficiently 

using specialized methods, computational experiments show that running times of location-

allocation algorithms are still too high for large scale problems with several thousand basic 

units and hundreds of districts (Kalcsics et al., 2005).  

1.8 Conclusions 

Facility location decisions represent a critical element in strategic planning in both private and 

public sectors, as they can have a strong and lasting impact on operational and logistic 

performance. 

A facility location problem is aimed at finding the best position for a set of facilities within a 

given region in order to optimise a specific objective function. Starting from this general 

framework, several formulations may be defined in terms of objective function, features of 

facilities to be located, demand to be served, and location space (ReVelle et al., 2007). In the 

last decades, there have been many applications concerning the location of both public 

facilities (i.e. schools or post offices, emergency services, fire stations, hospitals, ambulances) 

and private (i.e. plants, warehouses, industrial sites) facilities. These models represent a viable 

decision support tool for institutions and firms that are planning to open new facilities in a 

given region and/or market. In recent years, however, due to the general interest to reduce 

costs and to improve efficiencies, companies and institutions have been also interested in the 

re-configuration of existing supply systems. In the next chapter models addressing re-

organizational decisions are introduced and analyzed. 
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Chapter 2 

Re-organization Problems 

 

 

 

 

 

 

 

2.1 Introduction 

Historically, facility location models have been a viable decision support tool for institutions 

and firms that are planning to open new facilities in a given region (Drezner and Hamacher, 

2002). Indeed, most of the proposed methods address problems in which services have to be 

organized ex-novo.  

Sometimes it could be necessary to reorganize an existing facility system. Motivations for 

such decisions can be various; the most discussed in the literature is related to the variability 

of parameters during the facilities lifetime, such as demand, costs, market structure, 

competition. Due to this variability, decisions taken on the basis of certain conditions could 

reveal inefficient later and require some changing in the organization of the system. The 

territorial re-organization is here intended as a process aimed at modifying the set of 

facilities operating in a given region, in terms of their number, positions, capacities of the 

offered services, in order to optimize some objectives and satisfy a set of constraints. In the 

literature, several approaches have been proposed to describe and solve similar problems in a 

variety of situations.  

In this chapter we review the extant literature related to the problem of re-organization of an 

existing supply system. A classification of the main contributions is proposed and within each 

class the main models are analyzed in detail and described. Finally, the main gaps are 

highlighted and, with reference to the latters, the goal of this work is described. 
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2.2 Re-organization Problems 

Facility location decisions are often made at a strategic level as they require large 

investments. Accordingly, facilities are expected to operate for a considerable time span, 

during which several parameters and conditions may change; tipically, demand distribution in 

the location space, costs, competition. Therefore, decisions taken on the basis of the current 

situation could become inefficient in the future.  

Let us assume, for example, that we optimally located a set of facilities in a location space to 

serve a given demand (Figure 2.1) and that ten years later the demand has increased and its 

distribution has changed making some of the existing facilities closer to areas with low 

demand and away from some high demand areas. Therefore, existing facilities may no longer 

be able to provide adequate service, which yields to an intolerable increase in total weighted 

distance traveled by the customers (Figure 2.2). 

 
Fig. 2.1 - Current Situation 

  
Fig. 2.2 - New Demand Distribution 

In this situation the decision maker could decide to reorganize the service, by expanding the 

service, i.e. opening new facilities (Figure 2.3), or repositioning some facilities, i.e. closing 

Demand nodes Facilities Sites 

Demand nodes New Demand nodes Facilities Sites 
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some existing facilities and opening new ones in different point of the location space (Figure 

2.4).  

  

Fig. 2.3 - Expanded Service 

 

Fig. 2.4 - Repositioned Facilities 

Also other motivations for this kind of problems may arise. In the private, sector many factors 

may quickly change during the lifetime of the facilities, such as market structure and 

conditions, distribution of demand, presence of new competitors, and financial needs. In the 

public sector, economic conditions may impose constraints on public expenditure that could 

result in policies oriented to the rationalization of service supply systems in crucial areas, 

such as healthcare, education, public transport. These changes could make the existing supply 

system inefficient and/or unsustainable, and require decisions aimed at increasing the 

efficiency of the offered services.  

In literature there are many papers that address the problem of modifying the system of 

available facilities in a given location space. We classified them, according to the adopted 

approach, in: 

Demand nodes New Demand nodes Facilities Sites 

Demand nodes New Demand nodes Facilities Sites 



 

• Ex-ante Re-organization,

occured; not only on the basis

advance any predictable change

• Ex-post Re-organization,

occurred.  

In the first class, we may distinguish between two

• Multiperiod Models: decision

basis of future deterministic data (

• Stochastic Models: decisions are made in a single period (

of estimated probabilities about the

In the second class, there are models that, starting from a given configuration of the system of 

facilities, aim at modifying i

constraints. 

In Figure 2.5 we summarize the classification scheme introduced above and in the next 

sections we are going to analyze the main contributions in the single class

identified.  

  

Multi-Period Models

, in which the decisions are taken before the changes have 

not only on the basis of the current situation but also taking into account in 

advance any predictable change (forecasting tools);  

 in which the decisions are taken once changes have already 

the first class, we may distinguish between two classes of problems: 

decisions are made period per period, over a time horizon, on the 

data (estimated demand, costs); 

decisions are made in a single period (now and here

of estimated probabilities about the occurrence of future scenarios. 

In the second class, there are models that, starting from a given configuration of the system of 

facilities, aim at modifying it in order to optimize a given objective and satisfy a set o

In Figure 2.5 we summarize the classification scheme introduced above and in the next 

sections we are going to analyze the main contributions in the single class

Fig. 2.5 - Re-organization actions 

 

Re-organization

Ex-ante

Models Stochastic Models

Ex

Static
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are taken before the changes have 

of the current situation but also taking into account in 

decisions are taken once changes have already 

s are made period per period, over a time horizon, on the 

now and here), on the basis 

In the second class, there are models that, starting from a given configuration of the system of 

and satisfy a set of 

In Figure 2.5 we summarize the classification scheme introduced above and in the next 

sections we are going to analyze the main contributions in the single classes of problems 

 

Ex-Post

Static Models
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2.3 Multi-period Models 

In the literature, many models explore the possibility to change the current organization of the 

facilities in the location space, by closing some of them and opening others in different points. 

This approach has been mainly adopted in multi-period models. 

One of the first discrete facility location problem to be extended to a multi-period setting has 

been the � −median problem. 

Suppose we have a set � of � nodes that originate demand in every period � of a finite 

planning horizon (��	)  and assume that the set 
 of nodes for potential facilities location is 

included in � (
 ⊆ �). The problem aims at finding the best location of  � facilities in each 

time period. Introducing a third index �, related to the generic time period, the  formulation of 

the classic � −median problem can be easily adapted to the multi-period setting, as follows: 


�� � = � � � ��	���
�∈��∈�	∈�

���	 (2.1) 

� ���	
�∈�

= 1 ∀� ∈ �, ∀� ∈ � (2.2) 

� ���	
�∈�

≤ ���	 ∀� ∈ 
, ∀� ∈ � (2.3) 

� ��	 = �
�∈�

 ∀� ∈ � (2.4) 

���	 ≥ 0, ��	 ∈ "0,1# ∀� ∈ �, ∀� ∈ 
, ∀� ∈ � (2.5) 

where the variables ��	 indicate if a facility is sited (or not) in � ∈ 
 in period � ∈ � and ���	 if 

demand point � ∈ � is allocated (or not) to a facility � ∈ 
 in period � ∈ �. The optimal 

configuration of located facilities may change period per period according to the changes in 

the demand patterns. In this case, there is no limitation about the number of facility location 

changes or relocations between periods, therefore the optimal solution in each � ∈ � can be 

found by solving the related single period � −median problem. Obviously this assumption 

may be too restrictive in real-life applications; indeed, it is much more reasonable to include 

some constraints in order to reflect tolerable levels of disruption organization and to consider 

costs associated with the relocation of facilities.  

In order to overcome this problem, Wesolowsky and Truscott (1975) include opening and 

closing costs for the facilities.  
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The problem proposed can be formulated as follows: 


�� � = � � � ��	���
�∈��∈�	∈�

���	 + � � %�	
�∈�	∈�

��	& + � � ℎ�	
�∈�	∈�

��	&& (2.6) 

(2.2)- (2.5)   

� ��	& ≤ 
	
�∈�

 ∀� ∈ � (2.7) 

��	 − ��	() + ��	&& − ��	& = 0 ∀� ∈ 
, ∀� ∈ � (2.8) 

��	&&, ��	& ∈ "0,1# ∀� ∈ 
, ∀� ∈ � (2.9) 

where 
	 is the maximum number of facilities which can be opened in each period � ∈ �, 

whereas the binary variables ��	&  (��	&&) are equal to 1 if a facility is opened (closed) at � ∈ 
 in 

� ∈ � and 0 otherwise. The cost %�	 and ℎ�	 (� ∈ 
, ∀� ∈ �) are the opening and closing costs 

respectively. Given that in each time period the number of available facilities has to be equal 

to p (2.4) and the maximum number of new facilities that can be opened is equal to 
	 (2.7), 

the model aims at finding a trade-off solution between static distribution costs and 

expenditures for relocating facilities (2.6).  

Galvão and Santibañez-Gonzalez (1992) assumed that the number of operating facilities does 

not need to be equal in all periods; in each time period � ∈ �, a prespecified number of 

facilities �	 must be operating. 

Dias et al. (2007) point out that these models ignore the fact that reopening a facility has in 

general a smaller cost that opening it for the first time (for instance, land acquisition costs are 

incurred only once). Accordingly, they proposed a model which takes this aspect into account. 

Decisions variables are now required to distinguish wheter a facility is being opened for the 

first time or re-opened. A primal-dual heuristic is proposed for obtaining lower and upper 

bounds on the optimal value. The gap is closed using a branch-and-bound approach.  

Moreover, in the above multi-period facility location problems, facilities can be opened and 

closed more than once during the planning horizon. In many situations, it is not reasonable to 

instal a facility and remove it, for instance, in the following period. This may make sense for 

seasonal facilities such as wharehouses which can be rented for short time interval. However, 

this cannot be assumed in general. Early, researchers have noticed this important aspect and 

have considered structural constraints which limit the number of openings and closing in the 

same locations during the planning horizon. Such constraints often state that once established, 

a facility should be kept opened until the end of the planning horizon.  
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The above models extend, in different way, the classic � −median problem to a multi-period 

setting; therefore, the number of desired facilities in each time period is pre-specified and the 

positions are adjusted period per period in order to minimize the total cost, defined as sum of 

total afference costs and relocating costs.  

An interesting version of the multi-period � −median problem, is the one in which exactly � 

facilities have to be located over the planning horizon and the removal of facilities is not 

allowed once they are established. In this case, the number of facilities in each period is not 

given but, on the contrary, it is a decision variable and the model considers the speed at which 

the number of facilities increases in the location space over the planning horizon. The 

formulation of such problem is the following: 


�� � = � � � ��	
�∈��∈�	∈�

������	 (2.10) 

� ���	
�∈�

= 1 ∀� ∈ �, ∀� ∈ � (2.11) 

� ���	
�∈�

≤ ���	 ∀� ∈ 
, ∀� ∈ � (2.12) 

� ��	 = �	
�∈�

 ∀� ∈ � (2.13) 

��	 ≥ ��,	() ∀� ∈ 
, ∀� = 2 … � (2.14) ���	 , ��	 ∈ "0,1# ∀� ∈ �, ∀� ∈ 
, ∀� ∈ � (2.15) 

where 1 ≤ �) ≤ �- ≤ ⋯ ≤ �	 = �.  

Another class of interesting multi-period models are the ones that extend the uncapacitated 

facility location problems (UFLP) to a multi-period setting.  

Denoting with /�	 the fixed cost for operating a facility at � ∈ 
 in period � ∈ � and 0��	 the 

cost for satisfying all the demand of customer � ∈ � in period � ∈ � from facility � ∈ 
, the 

multi-period uncapacitated facility location problem can be formulated as follows: 


�� � = � � /�	
�∈�	∈�

��	 + � � � 0��	
�∈��∈�	∈�

���	 (2.16) 

(2.2)- (2.3), (2.5)   

Despite the � −median models, in this case the number of facilities is not pre-specified but it 

is determined in each time period so as to minimize total costs, given by costs incurred for 

establishment and operation of facilities over time at several possible sites1∑ ∑ /�	�∈�	∈� ��	3 

and variable costs, for serving demand in each time period � from the available facilities 

1∑ ∑ ∑ 0��	�∈��∈�	∈� ���	3. 
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Again, this problem has little multi-period flavor as it can be decomposed into |�| single-

period problems.  

A more relevant extension of the model was proposed by Warszawski (1973) who included 

opening costs for facilities. These costs are incurred whenever a facility is opened (even if the 

same facility has operated in some past period). Denoting by %�	 the cost for opening a 

facility at  � ∈ 
 in period � ∈ �, the model proposed by Warszawski (1973) differs from the 

basic version of multi-period UFLP by considering the following quadratic objective 

function: 


�� � = � � /�	�∈�	∈�
��	 + � � %�	�∈�	∈�

��	(1 − ��,	()) + � � � 0��	�∈��∈�	∈�
���	 (2.17) 

with ��7 = 0, ∀� ∈ 
.  

Another extension of the multi-period UFLP  was proposed by Canel and Khumawala (1997) 

who introduced a new group of variables ��	 explicitly indicating whether or not a facility is 

opened at � ∈ 
 in period � ∈ �. They propose a profit maximization problem as follows:  


��   � = � � � 8��	�∈��∈�	∈�
���	 − � � /�	�∈�	∈�

��	 − � � %�	�∈�	∈�
��	 (2.18) 

(2.2)- (2.3), (2.5)   

��	 ≥ ��	 − ��	() ∀� ∈ 
, ∀� ∈ � (2.19) 

��	 ∈ "0,1# ∀� ∈ 
, ∀� ∈ � (2.20) 

with ��7 = 0, ∀� ∈ 
.  In this model 8��	 represents the revenue for supplying all the demand of 

customer � ∈ � in period � ∈ � from a facility operating in � ∈ 
. Furthermore, � in 

constraints (2.3) is replaced by a pre-specified maximum number of customers that each 

facility � ∈ 
 can supply (Capacitated version).  

Roodman and Schwarz (1977) considered for the first time the situation in which a set of 

facilities was already operating before the beginning of the planning horizon and could be 

then removed. Accordingly, the set of locations 
 is partitioned into two sets: 
9, i.e. the set of 

facilities which are operating before the beginning of the planning horizon, and 
: , i.e. the set 

of potential locations for new facilities.  
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A more comprehensive model is then the following: 


�� � = � � /�	
�∈�	∈�

��	 + � � � 0��	
�∈��∈�	∈�

���	 (2.21) 

(2.2)- (2.3), (2.5)   

��	 ≤ ��,	() ∀� ∈ 
9 , � = 2, … , |�| (2.22) 

��	 ≥ ��,	() ∀� ∈ 
: , � = 2, … , |�| (2.23) 

Conditions (2.22) impose that once an existing facility j ∈ J= become not operating (y?@ = 0), 

it remains not operating until the end of the planning horizon; while conditions (2.22) impose 

that, once opened a facility in � ∈ 
: (��	 = 0), it remains open. Therefore, even if the 

meaning of variables ��	 does not change (they continue to indicate if a facility is operating or 

not at site � in period �), the different monotonicity conditions on the sets 
: and 
9 make 

possible only the closure action for the existing facilities and only the opening action at the 

new sites, in both cases one time during the planning horizon. 

Roodman and Schwarz (1977) consider a pre-specified maximum number of customers that 

can be served by each facility in each period. Furthermore, not all facilities can serve all 

customers. These aspects are accomodated by replacing (2.3) with: 

� ���	
�∈ABC

≤ ��	��	 ∀� ∈ 
, ∀� ∈ � (2.24) 

where D�	 and ��	 are respectively the set and maximum number of customers that can be 

served by a facility located in � ∈ 
 in period � ∈ �.  

A reformulation of this model was proposed by Van Roy and Erlenkotter (1982). The idea is 

to consider binary decision variables representing the status change of a location instead of 

the traditional location variables. Accordingly, for an existing facility � ∈ 
9, ��	 is equal to 1 

if the facility is removed at the end of period � (thus operating in periods 1. . . �) and 0 

otherwise. For an existing facility � ∈ 
:, ��	 is equal to 1 if the facility starts operating at the 

beginning of period � (thus, operating in periods �, … , |�|) and 0 otherwise.  
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Using the new decision variabes, the following model can be considered: 


�� � = � � F�	
�∈�	∈�

��	 + � � � 0��	
�∈��∈�	∈�

���	  (2.25) 

� ���	�∈�
= 1 ∀� ∈ �, ∀� ∈ � (2.26) 

� ��	 ≤ 1
	∈�

 ∀ � ∈ 
 (2.27) 

���	 ≤ � ��G
G∈�HBC

 ∀� ∈ �, ∀� ∈ 
, ∀� ∈ � (2.28) 

���	 ≥ 0; ��	 ∈ "0,1# ∀� ∈ �, ∀� ∈ 
, ∀� ∈ � (2.29) 

The objective function (2.25) is the traditional sum of fixed and variable costs. The only 

difference is in the parameters F�	. Being F�	 multiplied to the status change variable ��	, when 

this latter is equal to 1, it has to take into account the costs associated to all those periods in 

which facility has been operating. In particular: 

F�	 = J/�) + ⋯ + /�	            � ∈ 
9 , � ∈ �/�	 + ⋯ + /�|�|        � ∈ 
: , � ∈ �K  

Constraints (2.26) guarantee the assignment of the assignment of all the demand in each time 

period. Constraints (2.27) impose that each facility may change its status at most once during 

the whole planning horizon. In the conditions (2.28), it has been denoted with �H�G the set of 

possible periods for changing the status of a facility � ∈ 
  so that it can be operating in period 

�: 

�H�G = L"�, … , |�|#          � ∈ 
9 , M ∈ �"1, … , �#             � ∈ 
: , M ∈ �K  

Then, the demand coming from node � can be assigned to a facility � ∈ 
: in �, if it has been 

opened before � or in � 1∑ ��G	GN) = 13; while it can be assigned to a facility � ∈ 
9, if it will 

get close after � 1∑ ��G�GN	 = 13. In this sense an exisiting facility has to change formally its 

status one time during the planning horizon; this does not mean that it has necessarly to be 

closed; infact, ��� = 1 indicates that facility has been operating all over the planning horizon. 

Finally constraints (2.29) define the nature of decision variables. 

The applicability of the above formulation is restricted significantly by one shortcoming, the 

absence of capacity constraints. In the static UFLP, facility size decisions are determined 

simultaneously with location decisions and the capacities established are fully utilized. In 
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dynamic problems, capacities established in earlier periods become constraints for the 

subsequent periods: full capacity utilization in every period is unlikely. By ignoring these 

capacity decisions, the DUFLP assumes that capacity adjustment in each period is perfectly 

flexible.  

Denoting with O� the capacity for a  facility operating in � ∈ 
  and ��	 the demand coming 

from node � in period �, a capacitated version of the above problem can be obtained by 

introducing in the (2.25-2.29) the following group of constriants: 

� ��	���	 ≤ O�
�∈�

� ��G
G∈�HBC

 ∀� ∈ 
, ∀� ∈ � (2.30) 

The model (2.25-2.30) was addressed by Saldanha-da-Gama (2002). 

The capacity constraints (2.30) may be quite restrictive when it comes to practical 

applications. Indeed, by considering fixed values no adjustment of the capacities is possible 

during the planning horizon according to the needs. One attempt is to consider different 

values of capacities O�	 , one for each time period. Nevethless, this is still short from a practical 

point of view as no relation exist among these values. Taking into account these observations, 

Shulman (1991) introduced capacity constraints in the model formulation, allowing the 

expansion of existing facilities to cope with evolving demand conditions. Extending and 

adapting this idea to a broader supply chain scenario, Melo et al. (2006) introduced mixed 

integer programming models to minimise the cost for a multi-commodity, multi-echelon, 

dynamic network by means of step-wise reallocation of capacities under the assumptions that 

all existing facilities are operating at the start of the planning horizon; if an existing facility is 

closed, it cannot be reopened; and when a new facility is opened, it will remain in operation.  

Hinojosa et al. (2000) extend the models proposed by Roodman and Schwarz (1977) and Van 

Roy and Erlenkotter (1982) by considering more than one facility echelon and multiple 

commodities. This problem is later extended by Hinojosa et al. (2008) in order to include 

inventory decisions. 

Albareda-Sambola et al. (2009) extend the model proposed by Roodman and Schwarz (1977) 

to handle the so-called multi-period incremental service facility location problem. The 

problem is motivated by some practical problems which require a multi-period plan for 

progressively covering the demand in some area. Accordingly, the coverage level 

progressively increases over time until all customers/demand points are served.  
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Wilhelm et al. (2013) formulated the strategic dynamic supply chain reconfiguration problem, 

to prescribe the location and capacity of each facility in such a way to minimize total cost by 

allowing the dynamic reconfiguration of the network (i.e., by opening facilities, expanding, 

downsizing and/or contracting their capacities, and closing facilities) over time to 

accommodate changing trends in demand and/or costs 

2.4 Stochastic Models 

Another possible approach to tackle with the uncertainty related with the parameters  of the 

problem is to take decision at present time by considering ex-ante the probability associated to 

some uncertain future conditions (stochastic approach).   

Berman and Drezner (2008) develop a first formulation for the p-median problem under 

uncertainty. The proposed model aimed at locating � facilities at the present time given that, 

with known probabilities, up to P additional facilities in the future may be located.  

There are practical situations that should be modeled by the � −median model under 

uncertainty. For example, suppose that there is a limited budget that allows the location of � 

facilities and there may be additional budget available in the future for expansion. Another 

example is the location of a chain of stores, specialty restaurants, coffee houses, or others, 

planned for a market area. The planner is not sure about the success of the chain. If the chain 

is successful, more facilities will be built in the future. The model can also be used in a non-

probabilistic context. Suppose that we know that in five years an additional facility will be 

built and suppose that the planning horizon is for 20 years. The first � facilities contribute to 

the profit for 20 years and the additional facility contributes to it for only 15 years. Present 

value considerations can also be incorporated into the calculation. Instead of viewing Q as a 

probability, it can be viewed as a function of the additional facility’s relative contribution to 

the profit. A combination of these approaches can also be useful. There is a probability that in 

a few years demand will increase uniformly at all demand points. Such an increase will 

require the establishment of more facilities. Several scenarios for adding one, two, or more 

facilities can be incorporated into the model. The probability of each scenario can be 

multiplied by the extent of the increase in demand. The shorter service time for the extra 

facilities can also be incorporated into the calculations. 

Therefore, the initial locations of the facilities should be determined considering the 

probability of change in the number of facilities in the future as well 
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Consider a graph R(S, T) with a set S of � nodes, and a set T of 
 links. The shortest 

distance between node � and node � is ���. Demand at node � ∈ S is U�. When several 

facilities are available on the network, each customer selects the closest facility. The 

� −median model seeks the locations for � facilities such that the total weighted distance is 

minimized. Suppose now that in the future some new facilities will be added to the system. 

Suppose that up to P new facilities can be added, and the probability that 8 facilities are added 

(0 ≤ 8 ≤ P) is given and equal to QV. By definition ∑ QV = 1WVN7 ; for example, if the 

probability of adding a facility is Q and these events are independent, 

then QV follows a binomial distribution. The � −median model under uncertainty seeks the 

location for � facilities that minimize the expected weighted distance when additional 

facilities are added in the future.  

In the following, it is possible to prove that the � −median model under uncertainty satisfies 

the Hakimi property, i.e. an optimal solution exist with all the facilities located on nodes. 

Consequently, it suffices to consider only location on nodes of the network. 

Let D be the set of existing facilities,  XV(D) a set of 8 nodes in the set (S − D) and let FV(D) 

be the best value of the objective function when 8 facilities are added in the future to P. The 

value of FV(D) is: 

FV(D) = min\](A)∈(^(A) _� U� min�∈A∪\](A)a���b
�∈^

c  (2.31) 

The � −median model under uncertainty is: 

minA _F(D) = � QVFV(D)
W

VN7
c  (2.32) 

Note that when QV and all the other Q’s are equal to zero, the � −median model under 

uncertainty is equivalent to the � + 8 −median problem. 

Introducing the following groups of decision variables: 

 ��d  binary variable equal to 1 if and only if one of the � facilities is located at  �; 

��deV  binary decision variable equal to 1 if and only if a facility is located at node 

� when 8 new facilities should be located on the network; 

���deV  binary decision variable equal to 1 if and only if demand node � is assigned 

to a facility located at node � when  (� + 8) facilities are located on the 

network; 
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the problem can now be formulated as follows: 


�� � = � QV
W

VN7
� U� � ���

f

�N)

f

�N)
���deV (2.33) 

� ��d = �
f

�N)
  (2.34) 

� ��deV = 8
f

�N)
 8 = 1 … P (2.35) 

���d ≤ ��d �, � = 1 … � (2.36) 

���deV ≤ ��d + ��deV �, � = 1 … �;  8 = 1 … P (2.37) 

� ���deV = 1
f

�N)
 � = 1 … �;  8 = 0 … P (2.38) 

���deV ∈ "0,1# �, � = 1 … �;  8 = 0, 1 … P (2.39) 

��d ∈ "0,1# � = 1 … � (2.40) 

��deV ∈ "0,1# � = 1 … �;  8 = 1 … P (2.41) 

The objective function (2.33) is to minimize the expected cost of serving all the demand 

nodes, taking into account that 8 new facilities may be located in the future, 8 = 0, 1 … P. In 

Constraints (2.34) (constraints (2.35)) we make sure that � (8 new) facilities should be 

located. Constraints (2.36) (Constraints (2.37)) ensure that node � can be asigned to facility 

located at node � when � (� +  8) facilities are located. Constraints (2.38) guarantee that each 

demand node is assigned to a facility for all possible numbers of facilities to be located. 

Constraints (2.39), (2.40), (2.41) define the binary nature of decision variables. 

It has to be noticed that the proposed approach did not allow the closure of the facilities that 

have been located during the first round, neither the modification of their capacity. 

Sonmez and Lim (2012) proposed a solution approach that can determine the initial locations 

and the future relocations of facilities in the case that demand is subject to change and also the 

number of future facilities is uncertain. The aim was to minimise the initial and expected 

future weighted distances without exceeding the given budget for opening and closing 

facilities. Also in this case, however, there is no possibility of altering the capacity of the 

facilities. 
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2.5 Ex-post Reorganization Models 

In this class we introduce those models aimed at modifying the current spatial organization of 

a given service, in order to react to some occurred circumstances (i.e. changes in the 

distribution of the demand, financial need, etc.) and improve the efficiency of the system.  

Wang et al. (2003) introduce a model addressing the situation in which, due to some occurred 

changes in the distribution of users demand, the existing facility system no longer provides 

adequate service and the relocation of the existing facilities in the location space is required in 

order to improve the accessibility of users to the service. Indicating with J) the set of nodes 

where existing facilities are located and with J- the set of nodes at which new facilities may 

be located, the facility relocation model aims at finding the sites of the existing facilities 

� ∈ 
) to close and the sites for new facilities � ∈ 
- to open so that the total weighted travel 

distance is minimized. As, whenever a facility is opened or closed, the decision maker incurr 

a cost, indicated with c?, a constraint on the budget available for facility relocation is 

considered.  

 The model can be formulated as follows: 


�� � = � �� � ������
�∈��∈�

 (2.42) 

��� ≤ ��  ∀� ∈, �, ∀� ∈ 
 (2.43) 

� ��� = 1
�∈�

 ∀� ∈ � (2.44) 

� �� = �
�∈�

  (2.45) 

� 0�11 − ��3 + � 0���
�∈�h

≤ i       
�∈�j

  (2.46) 

�� ≥ 0, �� ∈ "0,1# ∀� ∈ �, � ∈ 
 (2.47) 

where a���b are the classical assignment variables while ay? b represent a new group of binary 

variables equal to 1 if and only if in � a facility is open (note that if j ∈ J), y? = 1 means that 

facility has been kept open or that it has not been closed; while if j ∈ J-, y? = 1 means that a 

new facility has been opened in �). 

The objective function (2.42) is expressed as total weighted distance between users and their 

assigned facilities. Constraints (2.43-2.44) guarantee the assignment of all the demand coming 

from each demand node � towards open facilities (�� = 1). Constraint (2.45) define the 

number of desired active facilities while contraint (2.46) express the budget limitation for the 
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relocation of facilities. In particular, the total cost incurred (l.h.s.), defined as sum of the 

closing costs 1∑ 0�11 − ��3�∈�j 3 and the opening costs 1∑ 0����∈�h 3, has to be smaller than the 

maximum budget i available (r.h.s). Finally, constraints (2.47) define the nature of the 

introduced decision variables. 

Wang et al. (2003) applied the model to tackle the real problem of locating/relocating bank 

branches in Amherst, New York.  

In 2007, ReVelle et al. address the re-organization problem from another perspective. In this 

case, the motivations for modifying the current facilities configuration don't lie in the change 

of the distribution of the demand and, therefore, in the worsening of the service accessibility, 

but in some occurred financial circumstances that impose to contain costs and, then, to reduce 

the number of operating facilities. Consequently, any action is not aimed at improving the 

accessibility of users to the service, but, on the contrary, the perturbation of the previous 

demand allocation generally causes the wosening of the service quality offered to the users.  

Suppose to have a set of facilities � ∈ 
 already located in a region (|
| = 
), that provide a 

given service to users � ∈ �. The decision-maker has to shrink the service by closing a pre-

specified number � of facilities (� < 
). These actions will produce some side effects on the 

users. In particular, assuming that in the current configuration each user is allocated to its 

closest facility, the closure of the single facility imposes the re-allocation of its assigned 

demand to a farthest faciliity, with a consequent increase of costs and the worsening of the 

quality of the offered service. In order to take into account such damage on the users, ReVelle 

et al. introduced two parameters: a tolerance level l, expressed as maximum percentage of 

increasing of the current distance �̅� of each user � from its assigned facility, over which user 

percieves the worsening of its condition and he can be considered damaged, and a standard 

distance n within which each user has necessarly to be covered.  

Therefore, given that in the final configuration each user has to be covered within a standard 

distance n, the model aims at identifying the � facilities to be closed in order to mnimize the 

number of damaged users, i.e. for which the distance from its closest facility increases more 

than l times from its current value �̅̅�. 
Indicating with: 

�� = a� ∈ 
: ��� ≤ (1 + l)�̅pq b 

 

the set of facilities � that are distant from � within l times 

the current distance �̅pq  to its closest facility; 
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S� = a� ∈ 
: ��� ≤ nb the set of facilities � that are able to cover user � within the 

standard distance n; 

�� binary variable equal to 1 if and only if user � is in worse 

condition after the closure of the facilities; 

�� binary variable equal to 1 if and only if facility � is kept 

opened; 

the Planned Shrinkage Model can be formulated as follows: 


�� � = � ����
�∈�

 (2.48) 

� �� ≥ 1
�∈^r

 ∀� ∈ � (2.49) 

�� ≥ 1 − � ��
�∈sr

 ∀� ∈ � (2.50) 

� �� = �
�∈�

  (2.51) 

�� , �� ∈ "0,1# ∀� ∈ �, � ∈ 
 (2.52) 

The objective (2.48) minimizes the population that will be uncovered within a threshold level 

after the closing of � facilities. Thus, the first group of constraints (2.49) guarantees that all 

the population will be covered within the distance standard n. The second group (2.50) 

accounts for population loss at node i if there is no facility within(1 + l)�̅�. The use of l 

allows for a range of nearest facilities to be modeled. If l = 0%, then the set �� will consist 

of the nearest facility � to node � or the nearest facilities if there is a tie. Alternatively, if 

l = 25%,, as an example, then the nearest set will consist of those facilities at most 25% 

farther than the closest facility. Finally, constraint (2.51) sets the number of facilities to be 

kept opened.  

Apart from the above formulation, suitable for services in the public sector, ReVelle et al. 

(2007) formulated another version of the Planned Shrinkage Model, for dealing with facilities 

closure problems in the private sector. In particular, the model consider firms under situations 

of pressing financial needs that need to cede market share to competitors.  

Recently models dealing with re-organization of existing facility systems have began to 

appear also in the field of districting problems. In this case, the problem consists of modifying 

the current partition of territorial units in districts, in order to satisfy some planning criteria 

(re-districting problem). In the final configuration the number of the districts, and hence the 

operating facilities, may be smaller, higher or equal to the current one. The extant literature 
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offers a good number of example of redistricting problems, most of which addressing 

electoral and political versions of the problem (for a complete survey, see Duque et al., 2007). 

In the context of service-oriented application, motivations for re-districting lie in the changes 

in the distribution of the units attributes (i.e. service demand, population) that may result in a 

non balanced district map. The expansion of cities, people migration and uneven changes of 

service demand in somea areas are examples of forces that pressure the redefinition of 

districts Therefore, they generally have the aim of improving the quality of solution with 

reference to some planning criteria. For instance, Eagleson et al. (2002) develop a method for 

school redistricting; D’Amico et al. (2002) suggest an approach for dealing with police 

districts redesign. 

Silva de Assis et al. (2014) were the first to propose a mathematical model to address the 

problem of reshaping districts for energy metering. 

Suppose to have a set � of territorial units already grouped in � districts, where the binary 

label v�w indicates if the unit � is currently assigned to district x (x = 1. . �). Each territorial 

unit is associated with a set of attributes y and U�z is the value of attribute � ∈ y associated to 

the generic unit � ∈ �. The target value for each district, with reference to the generic attribute 

� is equal to {z = ∑ |r}r∈~d .  Introducing the binary variables ��w, equal to 1 if and only if unit � 
is assigned to district x, and ���w, equal to 1 if and only if both units � and � are assigned to 

district x, the model has been formulated as follows: 


�� �) = � max�,� ∈�a������wb
d

wN)
 (2.53) 


�� �- = � � �|U�z��w − {z|
�∈�z∈�

d

wN)
  (2.54) 

���w ≤ ��w ∀�, � ∈ �, ∀x = 1. . � (2.55) 

���w ≤ ��w ∀�, � ∈ �, ∀x = 1. . � (2.56) 

���w ≥ ��w + ��w − 1 ∀�, � ∈ �, ∀x = 1. . � (2.57) 

� ��w = 1
d

wN)
 ∀� ∈ � (2.58) 

� � v�w(1 − ��w)
�∈�

≤ T
d

wN)
  (2.59) 

� ��w − � ��w
�∈�

≥ 1 − |�|
�∈⋃ ^�/��∈�

 ∀� ⊂ �, ∀x = 1. . � (2.60) 

��w, ���w ∈ "0,1# ∀�, � ∈ �, ∀x = 1. . � (2.61) 
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The first objective function (2.53) minimizes the sum of the greatest distances between pairs 

of units within the same district (compactness). The second objective function (2.54) 

minimizes the sum of deviations of district attributes values from the related target (balance). 

Constraints (2.55-2.57) ensure that, for each pair of unit (�, �) ∈ ��� and each x = 1. . �, 

variable ���w is equal to 1 if and only if both units are assigned to the same district x. 

Constraint (2.58) assure that each unit � is assigned to a single district. Constraint (2.59) limits 

to T the number of units that can change district. Constraints (2.60) guarantee that all the units 

assigned to a district are connectd to each other. Indicated with S� the set of territorial units 

adjacent to �, the contiguity property is verified as the constraints impose that any subset of 

units � ⊂ � can be entirely assigned to to the same district x (∑ ��w�∈� = |�|) if and only if in 

its neighborhood (⋃ S�/��∈� ) there is at least another unit belonging to district x 

(∑ ��w�∈⋃ ^�/��∈� ). Finally, constraints (2.61) define the nature of the above introduced 

decisions variables. 

In order to solve the model, Silva de Assis et al. (2014) proposed a solution framework based 

on a greedy randomized adaptive search procedure and multicriteria scalarization techniques 

to approximate the Pareto frontier. The computational experiments show the effectiveness of 

the method for a set of randomly generated networks and for a real-world network extracted 

from the city of São Paulo. 

2.6 Gaps in the extant literature 

The territorial re-organization of an existing supply system consists of modifying the set of 

facilities that currently provide the service(s) in the study region, or  in terms of their number 

and/or position, or in terms of capacities and/or offered services. For example, the action 

aimed at reducing (increasing) the number of available facilities is known as shrinking 

(expansion) action while the one aimed at changing the position of available facilities, without 

changing their number, is known as relocation action.  

Motivations for reorganization decisions can be various. The most discussed in the literature 

is related to the variability of parameters during the facilities lifetime, such as demand, costs, 

market structure, competition. Due to this variability, decisions taken on the basis of certain 

conditions could reveal inefficient later and require some changing in the organization. In 

literature, particular attention is paid to possible occuring changes in the demand distribution 

within the location space. 

In the above sections we classified the proposed approaches into two groups: 
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• Ex-ante Re-organization models, in which the decisions are taken before the changes have 

occured, on the basis of forecasting about the future conditions;  

• Ex-post Re-organization, in which the decisions are taken once changes have already 

occurred.  

Within the firs class, a distinction has been introduced between Deterministic Multi-Period 

Models and Stochastic Models. In the former the trend of parameters over time is known 

(deterministic) and on the basis of such conditions decisions are made period per period over 

an extended planning horizon; while in the last case, decisions are made in a single period on 

the basis of limited knowledge (probability) about the future trend of input parameters.  

In the class of ex-post re-organization decisions, models start from an existing configuration 

of the facilities and aim at modifying it according to some objectives to optimize and some 

constraints to be satisfied.  

The main gap is that most of analysed contributions deal with situations in which the re-

organization problem arises because of a changing in the distribution of the demand that has 

made obsolete the current organization (Wang et al., 2003; Silva de Assis et al. 2014). In the 

context of static re-organization decisions, only the contribution by ReVelle et al. (2007) 

analyses the problem from a diferent perspective. The authors analyze the situation in which 

the current organization is the best one in terms of accessibility of users (average distance, 

maximum distance) and the re-organization is motivated by economic conditions that make 

the current system unsustainable and impose to shrink the service. If we assume that the 

current configuration is the best one from the users perspective, any re-organization action 

will damage them as it perturbs the current optimal allocation.  

Therefore, in this case, the problem is completely different as, apart from potential efficiency 

gains for the decision maker, any re-organization action will produce some side effects, such 

as the increase of costs faced by users (in terms of accessibility to the service) and, 

potentially, the worsening of the quality of the offered service (measurable in terms of drop of 

coverage, worsening of users’ satisfaction and congestion of the remaining facilities). Hence, 

to effectively solve these kinds of problems, decision support models should be able to find a 

trade-off solution between two inherently conflicting goals: the maximization of the benefit 

from the planner perspective and the minimization of the damage from the users perspective.  

The model proposed by ReVelle et al. ams at identify a prespecified number � of facilities to 

close  in order to contain as much as possible the degradation of the service level provided to 

the users. It has to be highlighted that the benefits for the planner is modeled in a very simple 
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way, i.e. in terms of total number of facilities to be closed. Moreover, the demand re-

allocation does not consider constraints on the capacity of the remaining facilities; the damage 

on the users is measured as number of users that after the re-allocation have to cover a 

distance (travel time) higher than a given threshold. 

In order toaddress this kind of  probems from a more general perspective a theoretical 

framework should be defined in which different rationalization actions are defined and 

modeled, different objective for both the different actors involved are formalized, and 

different models are formulated.  

Another gap is that in most of the considered models, the re-organization actions implemented 

are the modification of the number of available facilities (service expansion vs service 

shrinking) and the relocation of existing faciliites in new points of the location space. Few 

contributions, only in multi period setting, deal with the possibility of expanding or reducing 

the capacity of single facilities. 

Furthermore, most of the surveyed models represent facilities that are able to provide only 

one type of service. In various applications this assumption is not adequate. For example, in 

the case of public facilities (e.g., hospitals), sites often host complex structures capable of 

providing multiple services to users (e.g., different wards). In these cases, it may not be 

necessary to close the whole facility but just downsizing it by reducing the range of offered 

services. This also applies to production sites within a supply chain, where plants may be both 

entirely closed down or downsized by dismantling some existing manufacturing lines.  

Finally, in the context of districting problems few contributions deal with the problem of the 

re-organization. Silva de Assis et al. (2014) address the problem of reshaping the boundaries 

of existing districts in a region  in order to achieve a better balance. New versions of the 

problem can be defined.  

2.7 Conclusions 

Historically, facility location models have been a viable decision support tool for institutions 

and firms that plan to open new facilities in a given region. In recent years, due to the general 

interest to reduce costs and improve efficiency, companies and institutions have been more 

interested in the re-organization of existing supply systems, by implementing various 

rationalization actions. In this context, decisions may depend on various factors, such as the 

nature of the service, the characteristics of the market (competitive or non-competitive) and so 

on. In this sense, it could be useful and interesting to develop appropriate tools to support this 

kind of decisions. 
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Chapter 3 

Mathematical Models  

for the territorial reorganization  

of a facility network in the public sector 

 

 

 

 

 

 

 

3.1 Introduction  

As introduced in the above chapters, in the field of location analysis, various models have 

been formulated to address decisions related to the territorial re-organization of existing 

services. In most cases, the decision maker is motivated by the obsolescence of the facility 

network with reference to a new distribution of the demand in the location space; therefore, 

any action is aimed at making it more efficient, i.e. as closer as possible to the new positions 

of users. The goal of such models generally consists of changing, within a given budget, the 

position and/or the number of located facilities in order to adapt the system to the occurred 

changes and better serve users. 

We want to analyze those situations in which the re-organization is motivated by some 

occurred financial needs that make the system unsustainable and require the reduction of 

costs. Unlike the above situation, the current demand allocation could be here optimal from 

the users perspective; in this sense, any modification may produce a worsening of the quality 

of the offered service. Therefore, the problem is inherently multi-objective; hence, the planner 

should aim at combining conflicting goals: the need for achieving economic efficiencies and 

the need to minimize the discomfort or the damage caused to the users. We will refer to such 

re-organizational problem as rationalization problem.  

In this chapter, we present a mathematical model to support shrinking decisions about 

facilities in a non-competitive context. The model considers a set of facilities already sited in 

a given location space, each providing different types of services, and aims at identifying the 
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set of services and/or facilities to be closed in order to optimize the benefit (from the planner 

perspective) and limit the damage deriving from the shrinking process (from the users 

perspective). In such model two different rules have been considered in order to re-allocate 

the demand after the re-organization of the system. The model has been tested on a set of 

randomly generated instances in order to show that a good range of problems can be solved to 

optimality through the use of a commercial solver (CPLEX). Finally, further rationalization 

strategies are introduced and, accordingly, a new version of the model is proposed.  

3.2 Rationalization problems in the public sector 

Historically, facility location models have been a viable decision support tool for institutions 

and firms that plan to open new facilities or expand their capacity in a region. However, in a 

given supply system, some occurring circumstances could require strategies oriented to 

reduce costs and/or improve the system performance; therefore, actions related to the 

rationalization of the current facilities network may be undertaken.  

In the private sector many factors may quickly change during the facilities lifetime, such as 

market structure, distribution of demand (and its uncertainty), presence of new competitors 

and financial needs. In the public sector, economic conditions may impose constraints on 

public expenditure that could result in policies oriented to the rationalization of services in 

crucial areas, such as healthcare, education, public transport. These changes could make the 

existing system inefficient and/or unsustainable, and require its re-organization, through 

shrinking and/or merging processes, in order to cut costs and increase the overall efficiency.  

The rationalization actions constitute strategic decisions that have to be planned by taking into 

account different perspectives. Indeed, while the planner would be interested in the 

improvement of the performance in terms of efficiency, by identifying the set of facilities that, 

if closed or relocated, would optimize a certain benefit index (including, for example, cost 

measures for facilities operations), users will be damaged by the loss of one or more facilities, 

as this will increase the accessibility cost. Indeed, apart from potential efficiency gains, such 

processes will produce some side effects, such as the increase of costs faced by users (in 

terms of accessibility to the service) and, potentially, the worsening of the quality of the 

offered service (measurable in terms of drop of coverage, worsening of users’ satisfaction and 

congestion of the remaining facilities). 

Therefore, to effectively solve rationalization problems, decision support models should be 

able to find a trade-off solution between two inherently conflicting goals: the maximization of 

the benefit produced by the re-organizational process (taking into account the planner 
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perspective) and the minimization of the damage deriving from it (taking into account the user 

perspective).  

In literature many models have been formulated to address similar problems; but, as 

underlined in Chapter 2, most of them deal with the re-organization of existing services in 

response to an occurred (or forecasted) change in the distribution of the demand; therefore the 

goal of the decision maker is to improve the quality of the service from users' perspective 

(single-objective problem). On the contrary, only few contributions analyze the situations in 

which the re-organization process is motivated by the unsustainability of the current 

configuration and aims at reducing costs, even by worsening the service provided to users. 

Hence, starting from the theoretical framework of the location analysis, this gap suggests the 

possibility to develop a new class of models to support decisions in these contexts, by 

experimenting different approaches to the problem and formulating different versions of the 

models, in terms of rationalization strategies to be implemented, objectives to be optimized 

and constraints to be satisfied. Moreover, such problems may inspire a huge number of 

practical applications with interesting characteristics, especially in the public sector. 

Among the contributions analyzed in the above chapter, the only one that could be classified 

as a rationalization problem, is the Planned Shrinkage Model, by ReVelle et al. (2007). It 

considers a firm operating in a non-competitive market that has to shrink its services for 

economic reasons. The objective is to identify the � facilities to be closed, among the existing 

ones, so as to contain as much as possible the degradation of the provided service level. One 

of the main limits of this model consists in the indicator defined for measuring the benefit for 

the planner; indeed, they assume that the closure of each facility provides the same benefit 

and, consequently, they simply impose a constraint on the total number of facilities to be 

closed. Moreover, the demand re-allocation does not consider constraints on the capacity of 

the remaining facilities and it is performed according the nearest-reallocation rule. Finally, the 

damage on the users is measured as amount of demand re-allocated to a facility farther than a 

given threshold distance, considered as maximum acceptable worsening level. 

In order to overcome these aspects, in the next section a new mathematical model for the 

shrinking of an existing service is introduced. The model considers a set of facilities that 

provide several services to users (multi-type facilities) and explores, together with the closure 

of whole facilities, also the possibility of closing single services. Moreover the services have 

limited capacities; therefore, in the re-allocation of the uncovered demand, this aspect is taken 

into account. 
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3.3 A new Mathematical Model to Shrink an existing service 

3.3.1 Problem description 

Suppose the presence of a given number of facilities in a location space, providing different 

types of services. As an example, in figure 3.1 a system in which three facilities (A,B,C), 

offer five type of services (1,2,3,4,5) is represented. Each facility is characterized by its own 

portfolio of offered services; for example, it is possible to notice that facility B offers all the 

services except the type 1, while facility A provides only services 1,2,5. This assumption is 

quite realistic; indeed, in the case of public facilities, sites often host complex structures 

capable of providing multiple services to users (i.e. wards of hospitals, degree programs of 

universities). Each service may be characterized by different capacities at the different 

facilities (i.e. number of beds associated to a ward of a specific hospital, maximum number of 

students that can enroll to a degree program of a given university). 

Moreover, it is assumed that each demand node in the location space requires all the provided 

services. In Figure 3.1, users are represented by nodes a,b,c,d.  

 

Fig. 3.1- Multi-type facility network 

Now, assume that, in order to reduce costs and improve the efficiency of the whole system, 

the planner aims at closing some of the existing facilities or shrinking the portfolio of services 

offered by each of them. This rationalization process is not trivial; indeed, the closure of a 

service involves users that were previously assigned to it and that could then decide either to 

patronize another available facility offering the same service or even to renounce to the 

service itself. Therefore, a crucial aspect is represented by the interaction between users and 

facilities. The rule that every user follows to select the facility to patronize strongly depend on 

the type of considered service. The most widely adopted assumes that users choose the closest 

facility; this assumption implicitly considers all facilities being equally attractive with 
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reference to the single service. In Figure 3.2 the case of closest assignment is shown; in 

particular, the distribution of users among facilities is represented for services 1 (a) and 3 (b). 

Note that users are assigned to the closest facility providing the required service; then, for 

each demand node, if the closest facility does not offer certain services, it will be assigned to 

a further facility to receive it. For example, in the case of demand node 'a', its closest facility 

'A' does not provide services 3 and 4; therefore it patronizes 'B' to receive them. 

 

(a)-Distribution of users requiring service 1 

 

(b)-Distribution of users requiring service 3 

Fig. 3.2- Closest allocation model 
 

This allocation model is particular suitable, for example, in the case of emergency services. In 

many other real applications, it can be reasonably supposed that facilities are characterized by 

different attractiveness and, hence, the distance is not the only factor to be considered in the 

choice, as empirically proved by Bucklin (1971), Hodgson (1981), McLafferty (1988), Lowe 

and Sen (1996), Bruno and Improta (2008). In these cases it is possible to define (on the basis 
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of a variety of factors and a given interaction model) the utility of a facility � for a user at 

node �, that can be also seen as the probability that � will select �. Coherently, the distribution 

of the demand among available facilities occurs according to these probabilities. This is 

typical, for instance, of gravity models, in which the probability is assumed proportional to 

the attractiveness of the facility and to a decreasing function of the distance from it (Joseph 

and Kuby, 2011). In Figure 3.3, an example in which users, requiring service 5, distribute 

among available facilities in a probabilistic fashion is shown. It is possible to notice, for 

example, that a significant percentage of users from node 'a' select facility B, even if it is 

farther than A. This probabilistic behavior characterizes, for example, the choice of students 

about the university to attend for a specific degree program; as proved by Bruno and 

Genovese (2012), they do not select only on the basis of the distance, but also on the basis of 

other factors, such as the prestige of the university site and the life quality of the city hosting 

the facility. 

 
Fig. 3.3- Probabilistic allocation model 

In a multi-type facility network, obviously there could be the coexistence of services with 

different allocation rules; in the case of hospitals, for example, the choice of patients for 

emergency services will be based only on the distance-factor (closest-allocation rule), while 

the choice for more specialized services will be also affected by other factors. 

For each single service, the afference matrices associated to the two above situations, i.e. the 

matrices of the fractions of demand coming from each node and assigned to each facility, will 

be very different; in the case of the nearest-allocation rule, it will be binary (all or nothing 

allocation rule), while in the second case, it will be composed by elements ranging in the 

interval �0,1	. 



59 
 

In the problem under consideration, the analysis of the current allocation matrix is particularly 

important, as it could provide, for each provided service, useful information about the 

interaction between users and facilities and, consequently, it could suggest the mechanism to 

be adopted for the re-allocation of the demand after the closure of some services. Indeed, it 

would be coherent to assume that users continue to choose among the remaining facilities 

according to the same current rules. 

In the proposed model, whenever a service gets closed, the assigned demand is re-allocated, 

on the basis of a mechanism which is coherent with the current behavior, among the facilities 

still providing the same service. As consequence, the planner could pay an extra-cost to 

expand the capacities related to the still active services, in order to satisfy the re-allocated 

demand after the shrinking process. Therefore, under the hypothesis that the planner wishes to 

achieve a certain level of benefit, a possible objective could be represented by the 

minimization of the total extra-capacity cost. 

3.3.2 The model 

With reference to a set of facilities already positioned in a location space, each providing a 

given set of capacitated services, the proposed model aims at identifying the set of services to 

be closed in order to achieve a minimum benefit for the planner and minimize the extra-

capacity cost due to the reallocation of the demand among the active facilities. 

In order to formulate such model, the following parameters have to be introduced: 


 the set of demand nodes, indexed by � (|
| = 
); 

� the set of existing facilities, indexed by � (| � |  = �); 

� the set of different types of services to be provided, indexed by � (|�|  = �); 

��� the binary label equal to 1 if and only if facility j currently provides service �; 

�� the portfolio of services provided by facility � ��� = �� ∈ �: ��� = 1��; 

�� the number of services provided by facility � ����� = ���; 

�� the set of facilities providing service � ��� = �� ∈ �: ��� = 1��; 

 �� the capacity of service � at facility �; 

!"� the total demand coming from node � for service �; #"� distance between the demand node � and the facility j;  

$�"� the fraction of demand !"� currently assigned to � (0 ≤ $�"� ≤ 1); 

'�� the unit cost to expand the capacity of service � at facility �; 
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(�� the benefit deriving from the closure of service � at facility �; 

(� the additional benefit deriving from the closure of the whole facility �; 

) the minimum benefit to be obtained; 

and the following groups of decision variables have to be defined: 

*�� the binary decision variable equal to 1 if and only if service �, currently 

provided by the facility �, gets closed;  

+� the binary decision variable equal to 1 if and only the whole facility � gets 

closed; 

,�"�  the non-negative decision variable representing the fraction of demand !"� 

assigned to facility � after the rationalization process; 

∆�� the non-negative decision variable denoting the extra-capacity needed for 

service � at facility � to satisfy the re-allocated demand;  

According to the above notation, the model can be formulated as follows: 

��
 . = / / '��  ∆���∈0�∈1
 (3.1) 

*�� ≤ ��� ∀� ∈ �, ∀� ∈ � (3.2) 

,�"� + *�� ≤ ��� ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.3) 

/ ,�"�
�∈0

=   1 ∀� ∈ 
, ∀� ∈ � (3.4) 

,�"� = (($�"�,#"� , *��) ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.5) 

/ !"�,�"�
"∈4

− ∆��≤  �� ∀� ∈ �, ∀� ∈ � (3.6) 

+� − 1�� / *�� ≤ 0
�∈1

 ∀� ∈ � (3.7) 

+� + 6�� − / *���∈1
7 ≥ 1 ∀� ∈ � (3.8) 

/ / (��*���∈9:
+ / (�+�;∈<

≥ )
�∈0

                              (3.9) 

*�� ∈ =0/1?, +� ∈ =0/1?, ,�"� ≥ 0, ∆��≥ 0            ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.10) 

The objective function (3.1) represents the minimization of the total extra-capacity cost to be 

incurred to satisfy demand.  
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Constraints (3.2) ensure that a service � at facility � may be closed (*�� = 1) if and only if it is 

currently offered by that facility (��� = 1). Constraints (3.3) impose that, for each node �, the 

demand for service � can be assigned only to facilities � that offered (��� = 1) and still offer it 

(*�� = 0). Conditions (3.4) guarantee that, for each node � and service �, all the demand is 

covered, thanks to the contribution of facilities still providing that service. It can be noticed 

that this set of constraints also assures that, for each service �, there will always exist at least 

one facility providing it. 

Conditions (3.5) rule the allocation of the demand after the closure of some existing services. 

The explicit expression of these conditions depends on the assumptions on the interaction 

model between users and facilities, which are related to the specific considered application. In 

the following section some formulations of this group of constraints will be proposed and 

described.  

Constraints (3.6) indicate that, for each service �, the total demand assigned to � have to not 

exceed the total capacity of facility �, including the extra-capacity ∆��.   

Constraints (3.7) and (3.8) define the relations between the variables *��, associated to the 

closure of the single services � at facilities �, and the variables +��, associated to the closure 

of the whole facilities. In particular, conditions (3.7) impose that, if the number of closed 

services at a given facility � �∑ *���∈1 � is lower than the total number of the provided services 

����, the facility is still open �+� = 0�; while conditions (3.8) assure that, if all the services 

provided by a given facility � have been closed �∑ *���∈1 = ���, facility � has to be closed 

itself �+� ≥ 1�. 

Constraint (3.9) expresses the need for the planner to obtain a minimum benefit value ). The 

total benefit is calculated as the sum of the benefits related to the closure of the single services 

B∑ ∑ (��*���∈9:�∈0 C and of an additional benefit achieved closing facilities as a whole 

�∑ (�+�;∈< �.  

Finally, constraints (3.10) define the nature of decision variables. 
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3.4 Rules for the Re-allocation of the demand 

A special discussion is required for constraints (3.5), which drive the re-allocation of the 

demand after the closure of some existing services. As introduced above, the re-allocation of 

the demand has to be performed according rules that depend on the underlying spatial 

interaction model, i.e. the process by means of which users select the facility to patronize.  

The current allocation matrix �$�"�� could provide very useful information about the choice 

model adopted by users. Therefore, starting from it, a coherent re-allocation mechanism has to 

be defined. In the following, we distinguish between two different situations: the first in 

which users select the closest facility and the second in which they distribute among available 

facilities according to probabilities, depending on a given utility function.  

Accordingly, the following re-allocation rules have been defined: 

• Closest re-assignment rule: if each user selects, for the generic service �, the closest 

facility providing it, he will continue to choose on the basis of the distance and he will be 

re-allocated to the closest facility still providing the required service; 

• Probabilistic re-assignment rule: if each user chooses among the available facilities in a 

probabilistic fashion, on the basis of a given measure of the relative perceived utility, he 

will continue to choose among the remaining facilities according to the same probabilities. 

3.4.1 Closest re-assignment 

In literature, many formulations of Closest Assignment Constraints (CAC) have been 

proposed. A good review is provided by Espejo et al (2012). The need for CAC arises when 

the assignment of users to closest facilities is not guaranteed by the objective function, as in 

the case of equitable location models (Marin, 2011) and interdiction models (Church et al., 

2004; Liberatore, 2011). 

Supposing that in the current configuration each user patronizes the closest facility offering 

the required service ($�"� = 0,1, ∀�, �, �), it is necessary to ensure that, after the closure of a 

service �, each uncovered user � is reallocated to the closest facility still offering �. It is 

possible to guarantee this mechanism by restricting the assignment variables to be integer in 

the group (3.10) (,�"� ∈ =0,1? instead of  ,�"� ≥ 0) and replacing in the model (3.1-3.10) 

constraints (3.5) with the following ones, obtained by reformulating the CAC proposed by 

Berman et al.(2009): 

/ #"D,D"�
D∈0

+ �E − #"��(��� − *��) ≤ E        ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.11) 
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where E is a very large positive number (for example, E =  �!,"=∑ #"�?�∈0 ).  

For each service �, constraints (3.11) are trivially satisfied for all those facilities � that didn’t 

offer � (��� = 0 ⇒ sI� = 0) or don't offer it anymore (��� = 1 ∧ *�� = 1). In all the other 

cases, i.e. for all those facilities still providing service � (��� = 1 ∧ *�� = 0), they impose: 

/ #"D,D"�
D∈0

≤ #"�         ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.12) 

Being the assignment variables binary, for each demand node � and service �, only one term 

of the sum at the l.h.s. of (3.12) will be greater than zero. The inequalities hold for each 

facility �, if and only if � is assigned, among all those facilities still providing �, to the facility 

K positioned at the minimum distance BK: #�K = ��
�∈0:���−*��=1�#"�� , ∀� ∈ 
, � ∈ �C. 

3.4.2 Probabilistic re-assignment 

If currently the demand is distributed among active services in a probabilistic fashion, it is 

reasonable that the re-allocation mechanism will be based on the same probabilities. 

In particular, it can be supposed that, for each service �, the current fraction of demand 

coming from � and being satisfied in � ($�"�), represents a good estimation of the probability 

that users from � select facility � to receive service �. After the closure of a given number of 

services, it would be coherent to assume that users continue to choose among the remaining 

facilities in a probabilistic fashion; but in this case, the initial probabilities values  $�"� should 

be updated by taking into account that closed services cannot be patronized anymore. 

According to this assumption, a first formulation of (3.5) may be represented by the not linear 

expression: 

,�"� = $�"��1 − *���∑ $D"�(1 − *�D)D∈0  ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.13) 

First of all, these constraints impose that, for each node �, the demand for service � can be 

assigned only to facilities � that offered (��� = 1) and still offer it (*�� = 0). Indeed, if a 

facility � did not offer service � (��� = 0) or it has been closed, no fraction of demand will be 

assigned to it, being respectively $�"� = 0 and *�� = 1. On the other hand, if facility � still 

offers service � (*�� = 0), the fraction of demand from � assigned to � �,�"�� is calculated by 

normalizing the current fraction $�"� over the sum of the fractions assigned to the other 

facilities still providing �. More precisely, if service � remains active at every facility � ∈ ��, 
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the allocation does not change �,�"� = $�"��, being the denominator equal to 1; on the contrary, 

if service � has been closed at some facilities, the denominator is lower than 1 �∑ $D"�(1 −D∈0*�D) < 1� and then the fraction allocated to each active facility is higher than the current 

value $D"�.   

It is possible to demonstrate that conditions (3.13) are equivalent to the following groups of 

constraints: 

,�"� + *�� ≤ ���                                  ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.3) 

/ ,�"�
�∈0

=   1 ∀� ∈ 
, ∀� ∈ � (3.4) 

,�"� ≤ $�"�
$�"� ,D"� + *�D      ∀� ∈ 
, ∀� ∈ �, ∀�, K ∈ ��: � ≠ K (3.14) 

This linearization has been obtained by adapting the procedure proposed by Aros-Vera et al. 

(2013) with reference to a Logit model (see Appendix A).  

Then, as constraints (3.3) and (3.4) are already included in the proposed formulation, the final 

form of the proposed model is given by (3.1-3.10) replacing (3.5) with (3.14). 

It must be highlighted that a necessary condition for the consistency of this linearization is 

that $�"� values have to be strictly positive ∀� ∈ 
, ∀� ∈ �, ∀� ∈ ��. This may be not 

considered as a restrictive assumption because it is reasonable to assume that, for each service �, the probability that users from � select a facility � ∈ �� is higher than zero. If the initial 

allocation does not satisfy this requirement, i.e. there exists at least a demand node � from 

which users do not select a facility � ∈ ��,  it will be sufficient to assign an arbitrary low 

value N to the corresponding $�"�  and to modify the other ones consequently.    

3.5 Computational results 

The above model, in the version with probabilistic re-allocation rule, was tested on randomly 

generated instances, that were obtained according to the following procedure. 

Step 1: The cardinality of sets 
, �, � has been assigned; in particular |
| = 100, 200; |�| = 8, 10, 12; |�| = 5, 10, 15. For each triplet (|
|, | �|, |�|), 5 different instances have been 

generated and solved. 

Step 2: |
| + | �| points have been randomly positioned in a 100x100 square, with a uniform 

distribution, and the Euclidean distances #"� between them are computed.  

Step 3: the matrices =!"�?, ����� and �$�"�� have been randomly generated. In particular: 
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• a population value �", generated from a Gamma distribution with parameters a=5 and 

b=80, has been associated to each point � ∈ 
. With this setting, the probability function 

provides values in the range [0,1000], with a shape that reproduces a typical distribution 

of the population in a given area. For each node � we assumed the demand for each service 

� to be proportional to the population value �", through a factor S� (!"� = S� �") 
uniformly distributed in the range �0.0, 0.2	. This mechanism allowed avoiding that 

demands coming from the same node for the different services are very unbalanced. 

• ��� values have been generated according to a Bernoulli probability distribution with 

parameter equal to 0.3; 

• In order to allocate the demand to the existing facilities, we considered a gravity model, as 

suggested by Joseph and Kuby (2011). In order to do this, we associated with each pair (�, �), such that ��� = 1, an attractiveness value U��, randomly generated in the range 

�1,20	. Then, on the basis of these values and of the Euclidean distances  #"�  between each 

demand node � and each facility �, we calculated the probabilities $�"�, according to the 

following formula: 

$�"� = V�"��U�� , #"��∑ V�"��U�� , #"���∈WX
 

where: 

 V�"��U��, #"�� = U��#"�Y.Z 

Step 4: On the basis of !"� and $�"� values, the total demand [�� for the specific service � at 

each facility � has been evaluated �[�� = ∑ $�"�!"�" �. Then, for each service �, the capacities 

of the facilities � ∈ �� have been calculated on the basis of the value [�∗ = max�∈WX�[���. In 

particular, for each facility � offering �, we fixed  �� = `�� [�∗ , assuming: 

`�� =

ab
bb
c
bbb
d0.25          0.00 < [��[�∗ ≤ 0.25

0.50          0.25 < [��[�∗ ≤ 0.50
0.75         0.50 < [��[�∗ ≤ 0.75
1.00         0.75 < [��[�∗ ≤ 1.00

f 
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Step 5: '�� and (�� values have been fixed equal to 1 for each pair (�, �), while (� values equal 

to 0 for each facility �. This way ) represents the minimum number of services to be closed 

and it is fixed as a percentage of 20% of the total number of active services �∑ ����,� �. 

The test problems have been solved using Cplex 12.2 on an Intel Core i7 with 1.86 GHz and 4 

GB of RAM. In Table 3.1 the running times (minimum, maximum, average, expressed in 

seconds) needed to obtain the optimal solutions are indicated. The corresponding average 

number of variables and constraints are also specified.  

Problem Parameters  Problem Size  CPU Time (Seconds) 

|<| |g| |h|  # Variables # Constraints  Minimum Average Maximum 
          
8 100 5  4081 7981  4.67 12.58 28.32 
  10  8161 17041  13.00 64.95 157.23 

  15  12241 23021  48.38 122.87 237.97 
          
8 200 5  8081 18201  21.71 51.64 93.96 

  10  16161 29681  27.39 90.27 179.00 
  15  24241 47081  94.33 627.61 1592.13 
          
          
10 100 5  5101 10841  11.37 23.26 37.40 
  10  10201 21241  18.08 597.97 2507.82 
  15  15301 31641  210.18 535.48 1052.71 
          
10 200 5  10101 22301  50.96 108.94 183.09 
  10  20201 38521  52.61 488.68 1254.12 
  15  30301 60101  495.44 1329.25 3251.64 
          
          
12 100 5  6121 13221  17.64 40.03 67.63 
  10  12241 28601  168.01 591.21 1515.92 
  15  18361 40611  273.19 2147.29 4124.01 
          
12 200 5  12121 33281  130.06 259.92 766.69 
  10  24241 49761  220.55 1604.62 4672.19 
  15  36361 69601  1517.38 3960.73 7399.34 
          

Table 3.1 – Computational Results 

Results show that the CPU time generally depends on the combination of the cardinality of 

the sets 
, �, �; however, the most critical parameter appears to be |�|. Problems with lower 

values of |�| (for example, 5 and 10) can be optimally solved within reasonable times while 

higher values of |�| (for instance, 15) determine significant increases. Even more critical 

running times occur for the combination (|�| = 12, |
| = 200, |�| = 15). Further tests 

performed on instances with |�| = 12, |
| = 200, |�| = 20 show that the solver is not 

always capable to obtain the optimal solution within the time limit of 3h. The dimension of 



67 
 

the problems optimally solved appears, however, compatible with many cases of real 

applications. 

3.6 The evolution of the proposed model: some preliminary results 

In the above model, we explored the possibility to shrink a system composed by a set of 

facilities providing different types of services in a given region, or by closing whole facilities 

or by downsizing them by the closure of single services.  

In the following, we analyze the possibility to transfer operating capacity among two services 

at the same facility. The service K that will cede part of its operating capacity will be referred 

as shrinking service, while the service � that will get adding capacity will be referred as 

expanding service. Obviously, a cost will be associated to this operation, depending on the 

pair of services between which the transfer occurs and on the facility that host them. It is 

assumed that the expansion of a service ex-novo is more expensive than any capacity transfer 

between services located at the same facility. This means that the unit extracapacity cost, i.e. 

the unit cost for expanding ex-novo the capacity of a service � at a facility � ('��), is higher 

than any unit capacity transfer cost, i.e. the cost for reallocating one unit of capacity from a 

service K provided by � toward  �. 

Considering this possibility, the re-allocated demand due to the shrinking process may be 

covered also by using the capacities available at the other services.  

With this aim we introduce the following further groups of decision variables: 

i��j the binary decision variable equal to 1 if and only if service � at facility � 

cedes part of its capacity to another service of the same facility (shrinking 

service);  

i��k the binary decision variable equal to 1 if and only if service � at facility � gets  

adding capacity, or ex-novo or from another service of the same facility 

(expanding service);  

�D ��
 the non-negative decision variable representing the amount of capacity 

transferred from service K to service � of facility �. For each service �, the 

capacity re-conversion variable of one service toward itself (K = �) is used as 

artificial variable for the formulation of some logical constraints. 

With this notation, the shrinking model can be modified as follows in order to take into 

account capacity re-allocation: 
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��
 . = ∑�∈0 ∑�∈1 '��l�� + ∑ D ∈1:Dm� nD�
�  �D �

�
 (3.15) 

*�� + i��k + i��j ≤ ��� ∀� ∈ �, ∀� ∈ � (3.16) 

���
� ≤ U*��        ∀ � ∈ �; ∀ � ∈ �                                                 (3.17) 

i��j ≤ ∑D∈1:Dm��� D 
� ≤   ��i��j     ∀ � ∈ � ;  ∀ � ∈ � (3.18) 

���
� + ∑D∈1:Dm��� D 

� =  ��*�� ∀ � ∈ � ;  ∀ � ∈ � (3.19) 

i��k ≤ ∆�� + ∑D∈1:Dm�� D� 
� ≤  i��kU ∀ � ∈ � ; ∀ �, K ∈ ��: � ≠ K (3.20) 

∑"∈4 ["� ,�
"� ≤   �� + �∑D ∈1  �D �

� +  l��� − ∑D∈1  �� D
�   ∀ � ∈ �, ∀ � ∈ � (3.21) 

(3.3-3.5)-(3.7-3-9)   

 ,�
"� ,  *��,  , i��k , i��j, +� ∈ =0,1?  ∀� ∈ 
, ∀� ∈ �, ∀� ∈ � (3.22) 

��D
� ≥ 0, l�� ≥ 0, ∀ � ∈ 
 ; ∀ � ∈ �;  ∀ �, K ∈ � (3.23) 

The objective function (3.15) represents the total cost incurred to cover the reallocated 

demand, given by the total extracapacity cost (∑�∈0 ∑�∈1 '��l��) and the total capacity 

transfer cost (∑ D ∈1:Dm� nD�
�  �D �

� ). 

Constraints (3.16) assure that if a facility � provides service �, it may be closed (*�� = 1), 

expanded (i��k = 1) or shrinked (i��j = 1).  

Constraints (3.17-3.19) define the possible origins for the capacities re-allocations. In 

particular, they differentiate between closing and shrinking services; indeed, while the 

shrinking is here a strategy exclusively aimed at transfering capacity, the closure is not. 

Therefore, a service may be closed without ceding any amount of capacity while it cannot be 

shrinked without ceding anything. In order to guarantee this, constraints (3.17) impose that 

artificial variables ���
�  may assume positive values only when services � gets closed (*�� =

1). This means that, after the closure of the service �, its capacity may be transferred towards 

any other service K �∑D∈1:Dm��� D 
� � provided by � or toward itself (���

� ); while in the case of 

shrinking service only re-allocations toward different services are possible (���
� = 0).  

Constraints (3.18) assure, on one hand, that if a service � at a facility � is selected as a 

shrinking service (i��j = 1), it has to cede at least one unit of capacity to any other service 

provided by �; moreover, the total ceding amount cannot exceed its available capacity  ��. 

Constraints (3.19) impose that when a service � gets closed, all its capacity has to be 

reallocated, or toward anyother service K provided by � �∑D∈1:Dm��� D 
� � or toward itself (���

� ). 

The self-re-allocation does not impose any cost; therefore, when the model will close a 

facility, it will tend to re-allocate all the related capacity toward itself, unless the transfer 

toward any service in the same facility is needed.  
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Constraints (3.20) assure that if a service � is an expanding facility (i��k = 1), it has to get at 

least one unit of additional capacity, either ex novo (∆��) or from the other services 

�∑D∈1:Dm�� D� 
� �. No limit on the maximum amount of capacity that it may accept is imposed, 

being U a very large number.  

Constraints (3.21) impose that the total demand allocated to a service � at a facility �  hasn't to 

exceed its total capacity  ��, including any additional capacity, either introduced ex novo 

(∆��) or deriving from the other services �∑D∈1:Dm�� D� 
� �, and excluding any amount of 

capacity ceded toward the other services of the facility �∑D∈1  �� D
� �.  Note that the total 

additional  (∆�� + ∑D∈1:Dm�� D� 
� ) and ceded capacity �∑D∈1  �� D

� � cannot be simultaneously 

positive quantities. 

Constraints (3.3-3.5, 3.7-3.9) are the same introduced in the first version of the model. In 

particular, groups (3.3-3.5) rule the reallocation of the demand, while groups (3.7-3.9) define 

the possibility of closing whole facilities and impose the achievement of a minimum benefit 

from the rationalization process. 

Finally, groups (3.22-3.23) define the nature of decision variables. 

In order to understand the behavior of the model, a simple example is discussed below. In 

Figure 3.4 it is represented a system, composed by 3 facilities (A,B,C), providing three types 

of services (1,2,3) to the users present in the location space (a,b,c,d,e,f,g,h,i,l). Currently 

facilities B and C offer all the services, while facility A only services 1 and 3. The size of the 

generic node, representing facility �, is proportional to the related total capacity  � � � =

∑  ��� ); while sectors inside it are associated to the services provided by � and the size of 

each single sector is proportional to the capacity of the related service � � ���. In the current 

configuration, users are assigned to the closest facility. It could be possible that the same user 

is allocated to different facilities for the various services; for example, node 'a' is allocated to 

facility A for services 1 and 3 and to C for service 2, as A does not offer this latter. In the 

figure, for each user �, next to the edge pointing to the patronized facility, an indication of the 

service that user recieves from that facility and the amount of the related demand is provided. 

According to this allocation, each service � at each facility � will be characterized by a total 

captured demand �["� = ∑ !"�$"�
�

" � represented in the figure as saturation level of the related 

sector.  
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Fig.3.4 Example 1-Current situation 

 
Fig.3.5 Example 1-Solution p=2 
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In this model, the planner has three alternatives to cover the demand re-allocated, after the 

closure process, toward a service � at a facility �: 

• use the residual capacity of service � at facility � � �� − ∑ ["�$"��" �; 

• re-allocate capacity not used from the other services K provided by the same facility  

�∑D∈1:Dm�� D� � �; 
• expand ex-novo the capacity of service � at facility � �∆���. 

With reference to the introduced example, by imposing the closure of two services (� = 2), 

the model provides the solution represented in Figure 3.5. It closes service 2 at B and service 

3 at C; accordingly, users =(, ℎ, �, �?, that were previously allocated to facility C for all the 

services, now are re-allocated toward facility A e B to receive service 3. Moreover, after the 

closure of service 2 at facility B, C remains the only facility offering service 2;  therefore all 

users are assigned to it to receive that service.  

The services that need to be expanded to cover the re-allocated demand are service 3 at A, to 

cover additional demand coming from 'i' and 'l', service 3 at B, to cover re-allocated demand 

coming from 'h' and 'f' and, finally, service 2 at C, to cover demand coming from all users in 

the location space. In Figure 3.4 it is possible to notice that, service 2 at C and service 3 at B 

use their own residual capacities and part of tha capacities coming from the closed service at 

their facility. While in the case of service 3 at facility A, no closure occur; therefore, in 

addition to its own residual capacity, the needed demand is partly coming from service 1 (that 

is shrinked) and partly added ex-novo (green arrow in the figure).  

In order to test this new version of the model, a new set of istances has been generated 

according with the procedure introduced in section 3.5. In particular, as the new set of 

variables and contraints introduced in the model depend on the number of services and 

facilities, we fixed the number of users (
 = 100). The number of facilities and services have 

varied in the set =8,10,12?; for each pair (| �|, |�|), 5 different instances have been generated 

and solved. The test problems have been solved for two different values of parameter �, equal 

to 10% and 20% the total number of available services. 

In Table 3.2 the computational times to optimally solve the model are reported. 
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    CPU Time (Seconds) 

    Minimum Maximum Average  Minimum Maximum Average 

|<| |g| |h|  q=10%*∑ rs;s,;  
 q=20%*∑ rs;s,;  

8 100 8  8.56 19.43 12.40  22.01 166.17 66.22 
  10  9.09 87.69 32.90  27.36 147.36 78.93 

  12  5.65 122.41 39.18  11.52 251.59 136.176 
           

10 100 8  6.36 37.19 20.46  24.53 205.68 122.00 

  10  6.83 55.47 21.98  23.78 457.43 337.58 

  12  35.25 179.38 92.15  240.20 3766.17 1470.39 
           

12 100 8  6.07 25.13 11.54  23.33 282.45 126.936 
  10  10.82 74.05 39.586  12.91 286.80 166.532 
  12  173.83 397.07 260.78  508.49 2762.67 1854.00 
           

Table 3.2 – Computational Results 

Results show that the CPU time generally depends on the combination of the cardinality of 

the sets � and �. In particular, the number of offered services seems to affect more than the 

number of facilities the computational times. Probably this is due to the fact that the capacity 

re-allocation options do not depend on the number of existing facilities but on the number of 

offered services at single facilities. Another parameter that may affect the number of re-

allocation options is the number � of closed services; as higher it is, more demand will be re-

allocated and more extracapacity at the remaining services will be needed.  Note that by 

fixing the cardinalities of sets � and �, CPU times increase a lot by varying the percentage of 

closed services from 10% to 20%.  This preliminary results suggests that the it is not possible 

to optimally solve by commercial solver great instances of the problem; therefore, it could be 

useful  to develop some algorithmic approaches to the problem in order to cope with larger 

instances. 

Finally, as concerns the model, new versions may be formulated by allowing the shrinking of 

the services without re-allocate any demand, the introduction of constraints about the 

maximum expansion allowed for existing facilities, equity constraints for the final distribution 

of the demand, and so on. 
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3.7 Conclusions 

In this chapter we have proposed a new mathematical model to support territorial re-

organization decisions in non-competitive contexts. The model assumes the presence of a set 

of facilities offering different types of services to users (multi-type facilities) and explores, 

together with the closure of whole facilities, also the possibility of closing single services. The 

re-allocation of the demand after the shrinking process may be performed according different 

rules (closest or probabilistic re-assignment), by taking into account that limited capacities are 

available at the remaining services. The objective function is represented by the extra-cost to 

be paid in order to satisfy the reallocated demand, while constraints expressing the need of 

obtaining a target benefit from the shrinkage process are included.  

The model is quite general and can be adapted to a wide range of real applications, especially 

in the public context. Computational results show that optimal solutions can be obtained using 

commercial solvers for instances whose characteristic and sizes can be also representative of 

real problems.  

Further rationalization strategies are introduced and, accordingly, a new version of the model 

has been proposed. With reference to this latter, some preliminary results are presented and  

directions for future research are drawn.  

In the next chapter, two applications related to different real-world problems are discussed. 
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Chapter 4 

Two real-world applications  

of territorial reorganization problems 

 

 

 

 

 

 

 

4.1 Introduction  

In a general economic and political context characterized by growing cuts to public 

expenditure and an overall review process of the welfare state, public services have and are 

still undergoing significant transformations, generally oriented to reduce administrative, 

managerial and operational burden and costs. In such processes, also the territorial re-

organization of existing service facilities may be required, through shrinking and/or merging 

actions. In Italy, for example, in the last years there has been a huge number of reform 

proposals aimed at regulating the re-organization of services in crucial sectors, such as 

healthcare, education, justice and so. In order to take such decisions, central and local 

authorities are interested in finding solutions which provide a good balance between 

efficiency purposes and “public interest” (service accessibility).  

The need to produce and compare solutions characterized by measurable indicators, along 

with the complexity of the problem, in terms of different objectives to be taken into account 

and constraints to be satisfied, suggest the need for developing appropriate methodologies for 

decision support.  

With this aim, in this chapter we want to show how rationalization models could provide 

useful information to support the decision making processes in these contexts..  

In particular, two applications related to different real-world problems are illustrated and 

solved. The first concerns the shrinking of a public university system on a regional scale and 

the second is related to the re-organization of a school system located in a given study region.  



 

In both cases, the models have been solved considering real case studies and 

shown and discussed. 

4.2 The rationalization of a University system on a regional scale

In the last decades a general growth of higher education demand occurred in industrialized 

countries (Craig 1981; Robinson and Ralph 1984; Garnier and Hage 1991)
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The rationalization of a University system on a regional scale 

In the last decades a general growth of higher education demand occurred in industrialized 

countries (Craig 1981; Robinson and Ralph 1984; Garnier and Hage 1991)

increase in perceived value of education (Ramirez and Boli 1987)

expansion of jobs requiring higher skills (Walters 1984). In this context, European authorities 

promoted a dynamic process which aimed at the definition of a certain number of policy 

decisions in order to establish a European Higher Education Area by 2010. The most 

important result of this process was the definition of a common framework for degree 

qualifications (Bachelor and Master Level), in order to make the different higher educational 

the main consequence of this reorganizational process was the strong increase in the 

number of academic sites and degree courses. From 1995 to 2009 the total number of 

ons rose from 60 to 86; in the same period, while the number of cities hosting main 

creased from 45 to 57, the number of cities hosting detached university sites

increasing from 93 to 185. In Figures 4.1, the old and the new 

within the country are shown. 

.4.1 – Cities with main campus and detached sites.  
A comparison between 1995 and 2009 

some recent analyses (performed by the Italian Ministry of University

instance, CNVSU, 2011) reveale that the growth of the supply have produced an inefficient 

system characterized by a high percentage of degree programs attracting demand level
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order to find solutions which provide a good balance between efficiency purposes and “public 

interest” (service accessibility).  

Therefore, the problem can be effectively described by the general shrinking model presented 

in chapter 3, which may be adapted as illustrated in the following. 

With reference to the current organization of the system, the following parameters are 

considered: 

� the set of the five nodes where the 5 faculties are located; 

� the set of different types of degree programs offered by the existing faculties; 

��� the binary label equal to 1 if and only if faculty j currently provides degree 

program �; 

�� the set of degree programs provided by faculty �; 

� the set of faculties providing degree program �; 
��� the maximum capacity of degree program � at faculty �; 

In Figure 4.3 the position of the five faculties in the location space is represented (NA, PT, 

SUN, BN, SA), while in Table 4.1 the 9 classes of provided degree programs are listed and  

the indication of the presence of the single program at each faculty is reported. Note that, 

reading the table by rows, it is possible to obtain, for each single service �, the set of faculties 

providing it 

��; while reading it by coloumns, it is possible to desume, for each single 

faculty �, the set of provided programs (��).  

 
 SUN 

 BN 

 SA 

 NA 

 PT 
  

Fig.4.3- Engineering Faculties within Campania Region 
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  NA SUN PT SA BN Total 
1 Civil 1 1 1 1 1 5 
2 Environmental 1 1 1 1 - 4 
3 IT 1 1 - 1 1 4 
4 Electronic 1 1 - 1 - 3 
5 Telecommunication 1 - 1 - 1 3 
6 Aerospace 1 1 - - - 2 
7 Mechanical 1 1 - 1 - 3 
8 Chemical 1 - - 1 - 2 
9 Management 1 - 1 1 - 3 
 Total 9 6 4 7 3 29 

Table 4.1- Degree Programs offered by Engineering Faculties 
within Campania Region 

The demands for the 9 different classes of services, i.e. students that require to enroll to the 

single degree programs, are considered according to their residence address. The distribution 

of the demand in the location space is continue, as theoretically students may come from any 

point of the region. In order to aggregate demand data in a manageable way, a discretization 

of the location space is adopted, as introduced by Bruno and Improta (2008). This way, 

Campania Region has been divided into 58 internal zone and a further zone (59), representing 

the rest of the world outside the region, is considered (Figure 4.4).  

Accordingly, in the following we will denote with: 

� the set of demand nodes coinciding with the 59 zones; 

��� the total number of enrollments coming from zone � for the degree program �; 

����
 the fraction of students (���) coming from zone � requiring the degree 

program � and enrolled at faculty � 
0 ≤ ���� ≤ 1). 

 
Fig. 4.4 – Zoning System of the Campania Region 
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As concern demand data, values for  ���  and  ���� were derived from official data about 

enrollments in the academic year 2008-2009; in Table 4.2, for each degree program � and 

each faculty �, the total number of enrollments ���� = ∑ �������� � and the related capacity 

����� (in terms of maximum number of students) are shown. In particular, capacities are 

defined in multiples of 150, according to the requirements of the Italian Ministry of 

University. There is also the possibility of considering this capacity by merging similar degree 

programs, as shown in Table 4.2.  

  NA SUN PT SA BN Total 

  Enr. Cap. Enr. Cap. Enr. Cap. Enr. Cap. Enr. Cap. Enr. Cap. 

1 Civil 156  300 147 200 89 1003 154 300 77 150 623 1050 

2 Environmental 49 150 32 100 20 503 62 150 - - 163 450 

3 IT 318 450 80 1001 - - 143 300 97 150 638 1000 

4 Electronic 107 300 35 501 - - 82 150 - - 224 500 

5 Telecommunication 77 150 - - 35 150 - - 16 150 128 450 

6 Aerospace 221 450 30 502 - - - - - - 251 500 

7 Mechanical 442 600 66 1002 - - 131 150 - - 639 850 

8 Chemical 135 300 - N/A - - 80 150 - - 215 450 

9 Management 401 450 - N/A 29 150 159 300 - - 589 900 
 Total 1906 3150 390 650 173 450 811 1500 190 450 3423 6150 

Table 4.2: Enrollments to Engineering Degree Programs offered by Campania Universities 

For each degree program �, the distribution of students, among the faculties providing it, is 

represented through five maps, one for each faculty. From the map associated to the generic 

faculty �, it is possible to desume the percentage of students attracted from each zone. In 

Figure 4.5, it is shown such representation for the specific degree program of 'Civil 

Engineering'. It is possible to notice that the distribution of students is not regulated by a 

closest assignment rule. Indeed, as proved by Bruno et al. (2012), who formulated a model to 

represent the spatial distribution of university students over the Italian territory, their choice is 

based not only on the basis of the distance but also of other attractiveness factors such as the 

prestige of the university sites and the socio-economic status of the city hosting it.  

Therefore, on the basis of this evidence, we decided to include in the model a group of 

constraints that impose a probabilistic re-assignment, i.e. proportional to the initial allocation 

probabilities. 
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NA PT 

  

SA BN 

  

SUN 

 

Fig. 4.5 – Students Distribution among Engineering Faculties (Civil  Engineering) 
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Finally, as concerns the cost parameter, i.e.: 

��� the unit cost to expand the capacity of degree program � at faculty �; 

��� the benefit deriving from the closure of degree program � at faculty �; 

�� the additional benefit deriving from the closure of the whole faculty �; 

� the minimum benefit to be obtained; 

we assumed ��� equal to 1 for any pair 
�, �� and �� = 0 for each faculty �, as a thorough 

estimation of these benefit parameters would require much deeper analysis and significant 

efforts. Then we also assumed ��� equal to 1 for any pair 
�, ��.  
With this adaptation, the model that has been applied to the problem under investigation has 

taken the following form: 

!�" # = $ $  ∆��
�∈'�∈(

 (4.1) 

)�� ≤ ��� ∀� ∈ �, ∀� ∈ � (4.2) 

+��� + )�� ≤ ��� ∀� ∈ �, ∀� ∈ �, ∀� ∈ � (4.3) 

$ +���
�∈'

=   1 ∀� ∈ �, ∀� ∈ � (4.4) 

+��� ≤ ����

���� +-�� + )�-      ∀� ∈ �, ∀� ∈ �, ∀�, . ∈ 
�: � ≠ . (4.5) 

$ ���+���
�∈1

− ∆��≤ ��� ∀� ∈ �, ∀� ∈ � (4.6) 

$ $ ���)��
�∈34

≥ �
�∈'

                              (4.7) 

)�� ∈ 60/18,  +��� ≥ 0, ∆��≥ 0            ∀� ∈ �, ∀� ∈ �, ∀� ∈ � (4.8) 

The main modifications concern: the objective function, that here indicates the total extra-

capacity units needed to satisfy the re-allocated demand; and the group of constraints (4.7) as, 

on the basis of the choice of benefit parameters, the l.h.s. of the inequalities here represent the 

total number of closed services, instead of the total benefit achieved by the planner. 

In order to evaluate the efficiency of the system over this number, we considered (4.7) as an 

equality constraint and we fixed the number of services to be closed 
�� in a range from 1 to 

the maximum feasible value, equal to 20. In particular, in order to satisfy the group of 

constraints (4.4) which ensure the availability of at least one service of each type, the 

maximum number of services that could be closed is given by the difference between the total 
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number of active services �∑ ��� = 29�,� � and the number of different service types provided 

to users 
|�| = 9�.  

Figure 4.6a illustrates the variation of the objective function, representing the required extra-

capacity, while Figure 4.6b shows the overall degree of saturation, over the value of B. This 

indicator has been calculated as the ratio between the total demand �∑ ����,� � and the total 

available capacity, i.e. the total capacity of active services plus the activated extra-capacities 

�∑ ������� − )��� + ∆���,� �. Comparing these figures, it emerges that the closure of a 

significant number of services (B ≤11) can be performed with no investment in terms of extra-

capacity. This aspect can be interpreted as a signal of the current inefficiency of the overall 

system, that seems to be presenting a significant level of redundancy in terms of the offered 

services. This fact is confirmed by the current low value of the capacity saturation level (equal 

to 3423/6150=0.54, Figure 4.6b). 

 

Fig. 4.6 (a) – Objective Function by varying < value 

 

Fig. 4.6 (b) – Overall degree of saturation by varying < value 

The reduction of the number of active services (with no activation of extra-capacity) allows 

the improvement of the efficiency of the system, obtaining a maximum degree of capacity 

saturation of about 0.70. In order to reach better efficiency levels it is necessary to invest in 
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extra-capacity for B≥12. However, with higher numbers of closed services, as the system gets 

more and more congested, even large increases in extra-capacity produce very limited 

improvements in the saturation degree (for instance, B ≥16). The maximum feasible value for 

B is 20 due to the fact that the model imposes that there must be active at least one service of 

each type.  

As an illustrative example, in Table 4.3 we show the results obtained for B = 11. In particular 

the table provides, for each degree program at each faculty, the degree of capacity saturation 

(i.e. the ratio between enrollments and capacity) before and after the closure of the 11 services 

(marked, in the table, with the N/A value for the degree of capacity saturation meaning that 

the value cannot be calculated as the service is now closed).  

  NA SUN PT SA BN 

  Before After Before After Before After Before After Before After 

1 Civil 0.77 0.88 089 0.97 0.61 N/A 0.42 0.45 0.34 0.35 

2 Environmental 0.64 0.77 0.52 0.57 0.57 N/A 0.35 0.37 - - 

3 IT 0.74 0.95 0.99 N/A - - 0.29 0.30 0.28 0.31 

4 Electronic 0.33 0.59 0.83 N/A - - 0.23 N/A - - 

5 Telecommunication 0.61 N/A - - 0.15 N/A - - 0.08 0.84 

6 Aerospace 0.43 0.53 0.93 N/A - - - - - - 

7 Mechanical 0.73 0.88 0.91 N/A - - 0.60 0.61 - - 

8 Chemical 0.66 0.82 - - - - 0.31 N/A - - 

9 Management 0.93 0.99 - - 0.21 N/A 0.25 0.25 - - 

 Total 0.67 0.77 0.85 0.42 0.32 N/A 0.34 0.30 0.23 0.50 

Table 4.3 – Degree of capacity saturation before and after the closure of B = 11 services 

It can be noticed that the model tends to close services with lower enrollment rates, as re-

allocating these demand portions is the least costly option. In particular this solution is 

characterized by the closure of all the degree programs offered by the Engineering Faculty at 

Parthenope University. 

The information provided by the model are very interesting as they allow to evaluate the 

performance of the system according to a set of possible choices, in terms of closed services, 

and compare all the produced scenarios in terms of measurable indicators. Therefore, this 

evidence suggests the adoption of such approaches to support decisions in similar contexts. 
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4.4 The problem of the reorganization of a school system 

In the current economic climate, characterized by growing cuts to public expenditure, public 

services (e.g., healthcare, education, policing) have undergone significant transformations 

(Sancton, 2000). In this context, Italy has been interested by a progressive merging process of 

educational institutions. Indeed, while the highly centralized system originally allowed the 

functioning of diversified institutions on the basis of the offered educational level (for 

instance, kindergartens, primary schools, junior secondary schools), recently a new regulation 

has been adopted, oriented at promoting a higher degree of autonomy of educational 

institutions. However, in order to benefit from autonomy, schools have to comply with a 

series of requirements. In particular they must have a students’ population between 500 and 

900 units that has to be demonstrated stable in this range for the last 5 years. If these 

requirements are not satisfied, schools must merge themselves with other institutions 

(belonging to any of the three categories) in order to form clusters that should have a 

minimum students’ population of 1000 units and include institutions from each educational 

level. This merging strategy allows schools rationalizing administrative and management 

offices, coherently to the cited policies of reduction of public expenditure. In practice, this 

process should be implemented by grouping schools in clusters, and letting each cluster being 

managed (in a centralized way) through the definition of a single cluster centre, providing 

shared administrative and managerial services. In this context, the availability of tools and 

models to assess and implement clustering (for grouping schools together) and locational 

choices (for locating clusters centers) could be useful for Local Authorities engaged in 

decision making activities that may provide cost savings and minimize, at the same time, the 

worsening of the service level for users.  

In the operational research literature, several authors studied problems related to the 

organization of school systems; a typical problem concerns the so-called school districting, 

i.e. the partitioning of the demand coming from a given region in groups of students attending 

each school. In this problems school and class capacity constraints must be satisfied, various 

social objectives have to be achieved (for instance, racial balance) and some territorial aspects 

related to the contiguity of districts have to be considered to allow students from the same 

neighborhood to be assigned to the same school. The problem also occurs when 

reorganization actions have to be planned, such as the opening or the closing of a school, the 

modifying of the capacities of existing schools. In these cases, a perturbation of the previous 

demand allocation occurs, therefore the districts have to be redesigned considering a potential 
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worsening of the accessibility of users to the service. In this context many models and 

methods have been defined and applied (see, for instance: Ploughman et al., 1968; Holloway 

et al., 1975; Brown, 1987; Lemberg and Church, 2000; Caro et al., 2004). 

However, compared to classical school districting cases, the reorganizational problem faced 

by Italian institutions can be considered a more strategic problem, as it involves the 

organizational structure of the school system. Indeed, while the first class of problems 

concerns the assignment of students to schools (existing or to be located) in order to minimize 

a certain cost or distance function, in the second problem existing schools, with the related 

students’ population, have to be grouped together under a shared management centre, in order 

to improve the efficiency in terms of operating costs. These problems can be addressed by 

using adaptation of Facility Location models. Linking to this body of literature, we present a 

location model aimed at describing and solving the school clustering problem as defined in 

the Italian case.  

The model is oriented to identify, within a given location space, the set of school facilities 

that, if merged together in a cluster (and, therefore, sharing management and administration 

service), could improve the efficiency of the system; moreover, the model should also identify 

the best location for the cluster centers. While the reorganization of the system represents an 

opportunity for the planner to reduce costs, it may generally produce a detriment of the 

service quality offered to the users. For this reason, through the imposition of appropriate 

constraints, the model must provide solutions that represent a good trade-off between the goal 

of the decision maker and the need of the users. The proposed model has been tested on a 

real-world case and the obtained results have been shown and commented. 

4.5 A Mathematical Model for the School Clustering problem 

As mentioned above, the reorganizational process of the school system (i.e. the grouping of 

schools in clusters) is aimed at reducing management costs, as each cluster will be managed 

in a centralized way through the definition of a single cluster centre. In this case, the current 

position of schools is assumed to be fixed and no demand re-allocation will occur. Therefore 

the reorganization will not have a direct effect on users’ accessibility to the service. However, 

if we consider only efficiency aspects, the solution provided by the model could be 

considered not desirable (or equitable) from users perspective (Marsh and Shilling, 1994; 

Eiselt and Laporte, 1995). For example, the dimension of clusters is an important factor to be 

taken into account, as over-dimensioned clusters could have some side effects on the 
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complexity of the managerial structure and, therefore, on the service level offered to users. 

For this reason, the planner should find a trade-off solution between the need to minimize 

costs and the need of keeping the discomfort caused to users below a given threshold. The 

problem is inherently multi-objective; however, it can be also modeled by means of a single-

objective mathematical programming formulation, in which one of the objectives is included 

in the model as constraint. In order to avoid mentioned organizational inefficiency, aspects 

related to the location, composition and dimension of each cluster have to be considered. In 

particular: 

• location, concerns the position of the cluster’s centre, to be chosen among schools 

assigned to the same cluster; 

• composition, concerns the type of schools to be included in each cluster; 

• dimension, is related to the students’ population of each cluster. In addition to the 

minimum threshold required by governmental regulations (1000 students), a limit on the 

maximum dimension could be taken into account, in order to obtain more balanced 

solutions.  

If we assume to define the number = of clusters to be created, the problem consists of 

identifying the best position to assign to the clusters’ centres and in the allocation of schools 

to each cluster.  

Denoting with: 

� the set of nodes corresponding to the positions of each school; 

� the set of potential locations for clusters’ centres ( � ⊆ �); 

�  the set of school types or levels (� = 61,2,38, with � = 1 identifying the pre-

primary level, � = 2 the primary level and � = 3 the lower secondary level); 

��� a binary label equal to 1 if and only if node � hosts schools of type �; 

��� the number of students of school type � at the school in �; 
@�� the distance between nodes � and �; 

A�          a binary variable equal to 1 if and only if node � is a cluster’s centre; 

+�� a binary variable equal to 1 if and only if node � is assigned to the cluster 

with centre in �; 
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we can formulate the following mathematical model (sizing model): 

!�"   # = $ $ @��+��
�∈'�∈1

 
(4.9) 

+�� ≤ A� ∀� ∈ �, ∀� ∈ � (4.10) 

$ +�� = 1
�∈'

                             ∀� ∈ � (4.11) 

$ A� = =
�∈'

  (4.12) 

$ ���+��
�∈1

≥ A�  ∀ � ∈ �, ∀� ∈ � (4.13) 

$ $ ���+�� ≥ BC�DA�
�∈(�∈1

 ∀� ∈ � (4.14) 

A� ∈ 60/18; +�� ∈ 60/18 ∀� ∈ �, ∀� ∈ � (4.15) 

The objective function (4.9) represents the average distance between schools and their 

assigned cluster’s centre, to be minimized. This objective represents one of the classical 

compactness measure used in the literature related to districting and clustering models. 

Constraints (4.10), (4.11), (4.12) are classical = −median constraints, ensuring that: (4.10) 

node � is assigned to � only if node  � is a cluster’s centre; (4.11) each node � is assigned to 

only one cluster; (4.12) the number of clusters is equal to =. Conditions (4.13) impose that in 

each cluster � there is at least one school of each level �. Conditions (4.14) ensure that each 

cluster � has a students’ population higher than BC�D. Constraints (4.15) define the nature of 

decision variables. 

It should be highlight that the presence of constraints (4.14) could lead to solutions 

characterized by a very skewed distribution of students’ population among the produced 

clusters. In order to take into account balancing objectives, an additional set of constraints on 

the maximum population for each cluster has to be considered as follows: 

$ $ ���+�� ≤ BCEF
�∈(�∈1

 ∀� ∈ � (4.16) 

The introduction of constraints (4.16) would limit the maximum dimension of a cluster and 

produce more balanced solutions with higher values of objective function. In order to support 

the decision maker in the choice of trade-off solutions between the objective function and 

balancing aspects, it could be possible to perform a sensitivity analysis in terms of  BCEF, by 

varying this parameter between a lower bound ��GHIJ and an upper bound  
�GHIJ . Indeed, 
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decreasing BCEF, it is possible to evaluate the trade-off between the objective function 

(expressing a rationalization need) and the balancing constraint.  

As regards the upper bound 
�GHIJ, it is represented, for each value =, by the maximum 

dimension of clusters obtained solving the model (4.9-4.15); while an ideal lower bound can 

be assumed equal to the average students population for each group (�K = L
M ∑ ∑ ����� ). 

However, this value does not take into account the integrity constraints imposing that the 

population of each school has to be entirely assigned to the same cluster and the constraints 

on the composition of the groups. In order to calculate a more reliable lower bound value, a 

partitioning model was devised. Using the notation introduced above, the model can be 

formulated as follows:  

!�"   # = BCEF (4.17) 

$ +�� = 1
M

�NL
                             ∀� ∈ � (4.18) 

$ ���+��
�∈1

≥ 1  ∀ � ∈ 61, … , =8, ∀� ∈ � (4.19) 

$ $ ���+�� ≤ BCEF
�∈(�∈1

 ∀ � ∈ 61, … , =8 (4.20) 

+�� ∈ 60/18 ∀� ∈ �, ∀ � ∈ 61, … , =8 (4.21) 

The objective (4.17) consists in the minimization of the maximum cluster size BCEF. 

Constraints (4.18) indicate that each school � can be assigned to exactly one of the = clusters. 

Constraints (4.19) assure that, for each cluster �, there is at least a school � of level �, while 

conditions (4.20) state that the dimension of each cluster cannot exceed the value BCEF.  

Constraints (4.21) concern the binary nature of the decision variables. 

For each value =, the solution provided by this model represents the most balanced partition 

of the set of the schools in = groups; for BCEF ≤ ��GHIJ, it is not possible to have feasible 

clusters.   

The proposed model (and its variant including constraints (4.16)) will be tested on a real-

world case study in the next section. This model can be solved by varying the parameter BCEF 

between a lower bound ��GHIJand an upper bound 
�GHIJ. In particular, ��GHIJ can be 

obtained solving the model (4.17-4.21); as regards the upper bound  
�GHIJ, it is represented, 

for each value =, by the maximum dimension of clusters obtained solving the model (4.17-

4.21). 
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4.6 The case study 

The case study is focused on the aggregation of school institutions related to an urban district 

in the Municipality of Naples (about 12 Kmq) with more than 100.000 inhabitants. In this 

area there are 29 schools of different levels with a total number of 9077 students. The 

distribution of students is characterized by significant differences across the schools (ranging 

from a minimum of 40 students to a maximum of 798). The current arrangement is based on 

11 clusters grouping all the schools. Figure 4.7 shows the position of each school and their 

aggregation in clusters. Table 4.4 indicates the composition of each cluster with the indication 

of students’ population of each school. It has to be highlighted that the current organization 

does not satisfy governmental requirements both on the minimum students’ population of 

clusters and on their composition, as most of the clusters do not include schools of each level 

(as prescribed).  

 

Fig.4.7- Location of schools and current organization in clusters 
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Clusters 
Schools 

i 
Levels k 

Total Population 
1 2 3 

I 

1 - 433 - 

968 
2 - 239 - 
3 88   
4 168   
5 40 - - 

II 
6 - 601 - 

1202 
7 277 324  

III 
8 - - 730 

880 
9 - - 150 

IV 
10 - - 770 

990 
11 - - 220 

V 

12 - 474 - 

1025 
13 100 66 - 
14 155 - - 
15 20 75 - 
16 - 96 39 

VI 17 76 80 100 256 

VII 
18 - 424 - 

749 19 55 138 - 
20 132 - - 

VIII 21 229 569 - 798 
IX 22 - - 700 700 

X 

23 - - 203 

647 
24 64 110 - 
25 - 79 - 
26 43 - - 
27 - 148 - 

XI 
28 - - 358 

862 
29 160 344 - 

Table 4.4.  Students’ population data  

The proposed model has been applied to the case study and optimally solved using CPLEX 

12.2 on an Intel Core i7 with 1.86 GigaHertz and 4.00 GigaBytes of RAM. Running times to 

obtain solutions are very limited (few seconds).  

In the following, results are illustrated and discussed. In particular, the basic version of the 

model (including constraints 4.10-4.15 and fixing BC�D = 1000 and � = �) was considered 

first; then, the balanced one was evaluated, with the addition of constraints (4.16). Table 4.5 

indicates the results obtained by varying the number = of clusters to be created from 2 to 7. 

For each solution, the number of students for each school (in decreasing order), the average 

and maximum distances between schools and the related cluster centers are reported.  

As expected, in the case of the sizing model, the objective function decreases over =. The 

range of the size of each cluster, in general, also tends to decrease, even if this condition is not 



91 
 

assured. For example, considering the passage from = = 5 to = = 6, even if the average 

distance decreases of 17.18% (from 0.75 to 0.64 km), the solution for = = 6 is less balanced 

as the minimum dimension decreases from 1371 to 1055.  

Number of clusters p 2 3 4 5 6 7 

Average distance 1.28 1.02 0.87 0.75 0.64 0.60 

Maximum distance 3.05 3.05 3.05 2.50 2.50 2.50 

Students for each cluster 5321 
3756 

3877 
3756 
1444 

 

3877 
2247 
1509 
1444 

 

2411 
2247 
1539 
1509 
1371 

 

2411 
1539 
1445 
1371 
1256 
1055 

1466 
1445 
1444 
1371 
1256 
1055 
1040 

Table 4.5-  Sizing model, Nmin = 1000 

As above mentioned,  the second version of the model has been implemented by varying the 
parameter BCEF between a lower bound ��GHIJand an upper bound 
�GHIJ. In the Table 4.6 

the bounds of the feasible range R��GHIJ , 
�GHIJS,  for each value of =, are reported.  

 p=2 p=3 p=4 p=5 p=6 p=7 

maxNLB
 

4539 3026 2270 1816 1513 1297 

maxNUB
 5321 3877 3877 2411 2411 1466 

Table 4.6- Feasible ranges for Nmax 

The model including constraints (4.17-4.21) has been implemented, for each value of =, by 

varying BCEF in the range R��GHIJ  , 
�GHIJS, with  the following discrete step: 

∆= 
�GHIJ − ��GHIJ
10   (4.22) 

such that: 

BCEF = ��GHIJ + �L ∗ ∆,  with �L = 0, … , 10  (4.23) 

The comparison of the solutions provided by the two models is summarized in Figure 4.8, 

where, for each =, the value of the average distance between schools and their respective 

cluster by varying the value of  BCEF is reported. In order to interpret the results, a single 

curve (for a given value of  = =  =̅) can be considered. It is possible to notice that for BCEF =
��GHIJ
=̅� we obtain a perfectly balanced solution with the maximum value of objective 

function. Increasing BCEF, so gradually relaxing the balancing condition, the model provides 

better results in terms of objective function. In particular the minimum value is obtained 

when BCEF = 
�GHIJ
=̅�. Of course for BCEF > 
�GHIJ
=̅�, this does not vary anymore, as 
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constraints (8) are not active. Coherently in Figure 4.8, for a given value of  = =  =̅ , the shape 

is monotonically decreasing until the value of the upper bound is reached. Of course this last 

conditions is obtained for lower values of BCEF as = increases.  

 
Fig. 4.9- Average distance in function of Nmax 

Furthermore, Figure 4.9 can have interesting managerial implications; in fact it can support 

the choice of the triplet (=, BCEF, #). In particular, the graph can be interpreted in two ways: 

by fixing a value of objective function or, alternatively, by fixing a specific maximum value 

of clusters.  

The first interpretation consists in drawing a horizontal straight line (# = �W) that allows the 

identification of: 

- the values of = that ensure the achievement of that value of objective function; 

- the corresponding values of maximum number of clusters. 

In this case, it could be possible to identify the most preferable combination (=, BCEF) for 

achieving the defined objective function value.  

The second interpretation consists in drawing a vertical straight line (B = BCEF) that allows 

identifying: 
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- the values of = that allow satisfying the constraint on BCEF; 

- the corresponding objective function values. 

In this case, it could be possible to compare the possible combinations 
=, #� for forming 

clusters of the given maximum size. For example, considering BCEF = 2400, it can be 

understood that at least 4 clusters have to be formed. From Table 4.7, it can be seen that the 

objective function value improves in a very significant way increasing = from 4 to 5.  

 p=4 p=5 p=6 p=7 

z 28.48 21.90 18.51 17.35 

Table 4.7- Objective function variation for Nmax = 2400 

It can be then derived that further improvements (obtainable by considering an increased 

number of clusters) follow a diminishing returns law; therefore, this would suggest that 

opening more than 5 school clusters might not produce improvements that can justify the 

increase in costs, as = = 6 and = = 7 return very small improvements in the objective 

function. 

4.7 Conclusions 

In this chapter, two applications related to two different real-world territorial re-organizational 

problems have been introduced and analyzed.  

The first application concerns the problem of the rationalization of a public university system 

on a regional scale. In a given system, in which existing Faculties may be interpreted as 

facilities offering a set of services (different degree programs) to users (students), the problem 

consists of shrinking the supply, in order to find solutions which provide a good balance 

between efficiency purposes (reduction of operating costs) and “public interest” (service 

accessibility). The model introduced in the Chapter 3 has been adapted to solve this problem 

with reference to the case of Engineering Faculties in the Campania Region.  

The second application concerns the reorganization of a school system located in a given 

region. In particular, with reference to the requirements indicated for the Italian case, the 

problem consists of merging pre-primary, primary and secondary schools in integrated 

institutions managed in a centralized way. In this case a location problem has been formulated 

to find the optimal merging option, according to a set of objectives related to the efficiency of 

the solution and the consequences of such process from users perspective.  
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In both cases, the models have been solved considering real case studies and the presentation 

of the results show how they can be effectively used to produce useful information to support 

the decision making process.  

Further development of the research may include the application to different cases and the 

extension of the model to address the reorganization of different categories of public services 

(for instance, healthcare and administrative systems).  
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Chapter 5 

Redistricting Decisions: Models and Applications 

 

 

 

 

 

 

 

5.1 Introduction 

In many cases the public services are organized in districts, i.e. in non-overlapping areas 

covering all the study region, within which each facility provides the considered service(s). 

This kind of organization is particularly suitable when the assignment of demand nodes to the 

available facilities is compulsory. It is the case, for example, of the school districts, the health 

districts, the territories for the organization of mobile services, such as the waste collection 

service. Also in these cases, due to some occurring circumstances, it could be necessary to re-

organize the service by closing some of the existing facilities and, hence, by modifying the 

current partition in districts. In order to do this, it is possible to adopt different strategies: for 

instance, merging existing districts or closing down some of them and reassigning their 

territorial units to active districts. In the final configuration, the active facilities will be 

responsible of wider areas, with some potential side effects that should be carefully assessed 

and evaluated.  

This practical situation determines a need for mathematical programming models aimed at 

providing decision support in these contexts, in order to plan evidence-based redistricting 

actions. 

In this chapter, we propose some novel mathematical programming formulations aimed at 

supporting redistricting decisions. Furthermore, the real-world specific problem that will be 

addressed is presented in details and then, with reference to some real instances, results 

provided by the different models are analyzed and compared. Finally, some conclusions are 

drawn.  
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5.2 Redistricting Problems for the reorganization of public services 

Suppose to have a certain number of territorial units within a region, already grouped in a 

given number of districts. In each district, a facility, generally located in correspondence of a 

specific unit, is responsible for providing some services to the population of the district itself 

and, for this reason, it will be named chief unit.  

Consider that the decision maker is interested to the shrinking of the service, and therefore, to 

the closure of some active facilities. In order to do this, he may adopt different strategies: for 

instance, merging existing districts or closing down some of them and reassigning their 

territorial units to active districts. This process will result in less facilities covering wider 

areas and serving higher amounts of demand; therefore it generally produces some side effects 

on the users that should be carefully evaluate.  

Such models should be defined in such a way that both planner and user perspectives are 

considered. Indeed, while the planner would be interested in performance improvements in 

terms of efficiency and cost-saving, by identifying the set of facilities that, if suppressed, 

maximize a certain benefit index (including, for example, cost saving measures related to 

facilities and services operations), users will be damaged by the loss of these centers that are 

responsible for providing many essential services. In order to limit the worsening of the 

service level provided to users, the re-assignment of single territorial units to the still active 

facilities could be performed by taking into account appropriate criteria; for example, the size 

of resulting districts, that should be more balanced as possible in order to avoid congestion 

situations, their extension, in order to avoid high distances between users and facility within 

single districts, and so on.  

Considering the huge number of feasible options and the multiple planning criteria that could 

be taken into account, the availability of appropriate decision support methodologies, in order 

to determine possible configurations, could be beneficial.  

It is clear that redistricting problems involve aspects from both the re-organizational and 

districting problems. Indeed, similarly to the re-organizational problems, they involve 

decisions about facilities to be closed or relocated; once this decision has been made, a new 

districting problem has to be solved. However, this districting problem has to take into 

account the preexisting territorial configuration (namely, districts that have not been closed). 

This kind of problems arises quite frequently, as, normally, local government reforms produce 

modifications in existing configurations rather than producing them ex-novo.  
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In the following, some mathematical models are introduced and tested on some real-world 

cases, showing their potential for providing insights and support to stakeholders and policy 

makers. 

 

5.3 Redistricting models  

Suppose to have a certain number of territorial units in a region, already grouped in districts; 

in each district, a specific unit, named chief unit, is devoted to provide a given set of services 

to the population. In order to reduce the total management costs, it could be required to 

reorganize the system by reducing the number of chief units and then the related districts. 

Generally, in this process the planner may define some efficiency requirements that all 

districts in the final configuration have to meet, for example in terms of minimum population 

or area. In the following, we indicate as feasible a district meeting the defined requirements, 

unfeasible otherwise. As result of the reorganization process, services will be concentrated in 

a subset of chief units that generally will need to cover wider areas, with some potential side 

effects that should be carefully assessed and evaluated.  

In such a process, the following decisions have to be performed:  

• Closure decision, i.e. the identification of the subset of chief units to be shut down; 

• Reallocation decision, i.e. the reassignment of territorial units to active chief units. 

Concerning closure decisions, defined requirements can drive the decision making process in 

different ways. In particular, we can distinguish between the following approaches: 

• prescriptive, if all districts not meeting the requirements in the current configuration get 

closed; 

• optimal, if it is possible to decide which facilities have to be closed, provided that in the 

final configuration all districts have to meet the given requirements. In this case, the 

choice is made on the basis of an objective function and a set of considered constraints.  

In practice, the number of districts in the solution provided by the prescriptive approach is 

given a priori, by how many feasible districts are in the current configuration and, then, by 

the definition of the requirements. On the other hand, the optimal approach, allowing a wider 

choice, may produce better solutions in terms of objective function and/or performance 

indicators.  

Considering the reallocation decision, it is possible to identify the following main strategies: 
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• Merging existing districts, i.e. reallocating closed districts as whole to one of the active 

chief units; 

• Reassigning territorial units, i.e. reallocating the single territorial units among active chief 

units. In this case, it could be decided to reassign only the territorial units related to the 

closed districts or, within certain limits, also the others. 

It is obvious that reallocating single territorial units generally provides better solutions; 

however it has to be highlighted that this may require significant reorganization efforts as, in 

this case, territorial units belonging to the same district can be generally reassigned to 

different chief units. 

On the basis of the combination of these two aspects (Closure and Reallocation decisions), we 

defined the four classes of redistricting models reported in Table 5.1. 

  Closure Decision 
  Prescriptive Optimal 

Reallocation 
Decision 

Single 
Territorial Units 

Prescriptive Reassigning  
Model 

Optimal Reassigning  
Model 

Entire Existing 
Districts 

Prescriptive Merging 
Model 

Optimal Merging    
Model 

Table 5.1 – Classes of redistricting problems 

In the following we illustrate the mathematical programming formulations of these problems. 

In particular, reassigning and merging models are separately described by comparing, for each 

of them, the prescriptive versions to the optimal ones. In the description of each formulation, 

the following elements can be distinguished: 

• objective function: as usual in districting models, a measure of compactness of the 

resulting districts has been assumed as objective function, also representing a proxy to 

take into account the accessibility of users to provided services in the new configuration; 

• physical requirements constraints: they take into account the conditions imposed by the 

decision maker (for instance, on minimum population, area, number of territorial units of 

districts);  

• reassignment constraints: they rule the reassignment of territorial units to active districts 

and chief units; 

• other constraints: they can be introduced to consider further aspects of the problem. 

Typical additional constraints could concern the contiguity of resulting districts, the 

respect of existing boundaries, the presence of special districts.   
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In order to formulate such models, the following common notation is introduced: 

� set of territorial unit (|�| = �); 

� ⊂ � set of chief units, i.e. units in which the facilities providing the considered 

services are located, also corresponding to the set of existing district 

(|�| = �); 

�∗ ⊂ �  set of special districts or chief units (|�∗| = �); 

	�̅ ∈ �  centroid of district j, corresponding to the 1 −median solution in the 

district j; 

��� binary label equal to 1 if unit � is initially allocated to district �, 0 

otherwise; 

��� distance between units � and �; 
Furthermore, the following sets of decision variables have to be defined: 

�� binary variable equal to 1 if and only if the chief unit of district � gets 

closed; 

��� binary variable equal to 1 if and only if unit i is assigned to the chief unit of 

district �. 

Formulations are presented assuming that requirements are defined in terms of minimum 

population and area per each district; therefore, the further notation below has to be 

considered: 

�� population of unit �; 
�� area of unit �; 
�� = � �����

�∈�
 total population of district �; 

�� = � �����
�∈�

 total area of district �; 

���� minimum required amount of population per district; 

���� minimum required extension per district. 

5.3.1 Reassigning Models (Prescriptive vs Optimal) 

The Prescriptive Reassigning Model (PRM) considers the shut-down of the chief units that 

do not meet the requirement and reassigns the related territorial units (previously part of its 

district) to the ones that have been kept active.  
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The PRM can be formulated as follows: 

min # = � � �����$ ���
�∈%�∈�

 (5.1) 

����(1 − ��) ≤  �� ∀� ∈ � − �∗ (5.2) 

����(1 − ��) ≤ �� ∀� ∈ � − �∗ (5.3) 

+1 − ��, ��� ≤ ��� ≤ 1 − �� ∀� ∈ �, ∀� ∈ � (5.4) 

� ��� = 1
�∈�

 ∀� ∈ � (5.5) 

�� = 0 ∀� ∈ �∗ (5.6) 

�� ∈ /0,10; ��� ∈ /0,10 ∀� ∈ �, � ∈ � (5.7) 

The objective function (5.1) is one of the classical measures of compactness, defined as sum 

of the weighted square distances among each unit � and the chief unit of its assigned district �. 

Constraints (5.2-5.3) represent the requirements constraints. In particular, they impose that 

only districts having an extension larger than ���� and a population larger than ���� can be 

kept open. Expressions (5.4-5.5) are the reassignment constraints, which rule the reallocation 

mechanism of territorial reference units to districts that have been kept active. In particular, 

constraints (5.4) impose that only units belonging to closed districts can be affected by 

reallocation decisions, being redistributed across active districts, while constraints (5.5) 

ensure the allocation of each territorial unit to one (and only one) district. Equations (5.6) 

represent examples of other constraints, indicating the presence of a set of special districts 

that cannot be closed. Finally, constraints (5.7) define the nature of the decision variables 

being introduced in the model.  

The Optimal Reassigning Model (ORM) differs from the Prescriptive one for the criterion 

used to select districts to be closed. In this case, every district, apart the special ones, 

represents a good candidate for the closure. Then, the model is aimed at determining how 

many and which chief units have to be closed, in such a way that the reassignment process 

will produce new feasible districts. Among all the solutions, the model selects the most 

efficient one in terms of objective function, minimizing the average distance between each 

territorial unit and its own chief unit (5.1). 

As concerns the formulation, it is sufficient to replace the groups of constraints (5.2-5.3) with 

the following ones: 
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� ����� ≥ ����(1 − ��)
�∈�

 ∀� ∈ � − �∗ (5.8) 

� ����� ≥ ����(1 − ��)
�∈�

 ∀� ∈ � − �∗ (5.9) 

Constraints (5.8) assure that the population of a district which is kept active +�� = 0, is at 

least equal to ����; while constraints (5.9) impose similar conditions on the area. 

The ORM identifies the minimum number 3∗ of chief towns to be closed in order to produce 

feasible districts. However, it is also possible to include in the model an additional constraint 

about the minimum total number 3 of chief-towns to be closed, as shown in the following 

equation (5.10):  

� �� = 3
�∈%

  (5.10) 

Of course, in order to find feasible solutions, 3 must be at least higher than 3∗. 

Both the versions of the model may also include an explicit formulation of the contiguity 

condition. 

5.3.2    Merging Models (Prescriptive vs Optimal) 

In this class of models, the strategy consists of aggregating entire existing districts. With this 

aim, each current district � can be considered as a single territorial unit (� = �), with the total 

population �� and extension �� concentrated in correspondence of its centroid 	�̅. Then, here, 

the terms territorial unit, existing district and centroid can be considered equivalent. In the 

current configuration, each centroid 	�̅ is assigned to the related chief town 	�; therefore, 

4���5 is an identity matrix of order �. When a certain chief unit 	� gets closed, the related 

district, as a whole, has to be assigned to another active chief unit and, hence, to be merged 

with another district.  

In particular, the Prescriptive Merging Model (PMM) closes the chief units that do not meet 

the requirements (5.2-5.3) and reassigns the related entire districts to the ones that have been 

kept active. 

On the other hand, the Optimal Merging Model (OMM) determines the chief units to be 

closed in such a way that the reassignment of the related districts will produce new feasible 

districts. 

Compared with the mathematical formulations of the PRM and ORM, the corresponding 

merging models require the following modifications: 
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• the objective function (1) has to be modified in order to consider the distance among the 

centroid of each district 6 ∈ � and its assigned chief unit, weighted for the total population 

of the district itself: 

# = � �7�89̅�$ �7�
7,�∈%

   (5.11) 

• the reassignment constraints (5.4-5.5) have to be adapted by considering that each district 

represents a single territorial unit (� = �): 

+1 − ��, �7� ≤ �7� ≤ 1 − �� ∀6, � ∈ � (5.12) 

� �7� = 1
�∈%

 ∀6 ∈ � (5.13) 

Also in this case, both the versions of the model may also include an explicit formulation of 

the contiguity condition, that should be here referred to entire districts and not to single 

territorial units. 

Table 5.2 summarizes the characteristics of the introduced formulations, in terms of elements 

of the model and represents a possible framework for the proposed redistricting models. 

Furthermore Table 5.3 reports, for each of the models introduced above, the number of 

variables and constraints, expressed as a function of the number of territorial units, n, the total 

number of existing districts, m, and the number of special ones, q. It is worth to notice that the 

structure of all the four models is very similar. However, it is has to be remarked that the 

Merging models, not involving any sort of considerations on the territorial units, present a 

much lower complexity in terms of number of variables and constraints, since, in this case, 

n=m. Therefore, the expressions for the number of variables and constraints can be obtained 

accordingly starting from the ones of the reassigning models.  
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   Closure Decision 
   Prescriptive Optimal 

Reallocation 

Decision 

Single 
Territorial 

Units 

 PRM ORM 

Objective Function (5.1) (5.1) 
Physical Requirements 
constraints (5.2 − 5.3) (5.8 − 5.9) 

Reassignment 
Constraints (5.4 − 5.5) (5.4 − 5.5) 

Other Constraints (5.6) (5.6 − 5.10) 

Entire  
Existing 
Districts 

 PMM OMM 

Objective Function (5.11) (5.11) 

Physical Requirements 
constraints (5.2 − 5.3) (5.8 − 5.9) 

Reassignment 
Constraints (5.12 − 5.13) (5.12 − 5.13) 

Other Constraints (5.6) (5.6 − 5.10) 

Table 5.2 – Characteristics of formulations of the described redistricting models 
 

Models # Variables # Constraints 

Prescriptive Reassigning (PRM) � ∗ (B + 1) (2� + 1) ∗ (B + 1) − (� + 1) 
Optimal Reassigning (ORM) 

Prescriptive Merging (PMM) � ∗ (� + 1) (2� + 1) ∗ (� + 1) − (� + 1) 
Optimal Merging (OMM) 

 Table 5.3 – Structural properties of introduced models  
 

5.4 The problem of the reorder of Italian provinces 

A recent trend observed in western economies has concerned the rationalization of the 

administrative structures of local authorities, including a reduction in the number of 

administrative levels and units and the consequent rearrangement of their boundaries (Warner, 

2010). For instance, in the last two decades, in the United Kingdom, several structural 

changes to local government were implemented, whereby a number of new unitary authorities 

were created in parts of the country which previously operated a two-tier system of counties 

and districts (Martin, 2002); furthermore, the number of districts was significantly reduced 

(Leach, 2009).  

At the same time, in Italy there has been a heated and ongoing debate considering the 

opportunity of merging and rearranging territorial administrative units of the same level, such 

as provinces. This is testified by a series of reform proposals aimed at regulating this aspect 

by modifying the current configuration (ANSA, 2013). However, these proposals have 

typically found huge difficulties in reaching a consensus both in political contexts and in the 
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public opinion, also due to the difficulty faced by governments in implementing solutions 

capable of combining the need for more efficient territorial configurations and the safeguard 

of the accessibility of public services in local communities (ANSA, 2013).   

The problem of  reorganizing  the administrative divisions of italian provinces is very similar 

to the general problem introduced above.  

Indeed, we have a set of regions in the country, each composed by a given number of 

municipalities and/or local communities (territorial units), already grouped in provinces 

(districts). One of the last governmental proposals (ANSA, 2013) imposed constraints about 

the minimum population (����=300.000 inhabitants) and the minimum extension 

(����=2.500 km2) that all provinces in the final configuration had to meet. Accordingly, the 

idea was to reorganize, within each region, the current partition of municipalities in provinces, 

so as to meet the fixed targets.  

In order to test the formulated models, they have been applied to this particular problem and 

the above values for the efficiency requirements have been assumed to drive the decision 

making process. 

In particular, five benchmark problems, built on the real data of five Italian regions, have been 

considered. In the following section, the characteristics of the considered instances are 

analyzed in detail. 

5.5 Five Real-world Instances 

Each Italian region is divided into n territorial units, corresponding to the single 

municipalities (territorial units), already grouped in m provinces (districts), each one 

associated with a specific unit, named chief unit, devoted to provide some services to the 

population of the district itself. Among these � chief units, there exists a particular one, 

named regional chief unit, that provides also other kind of services to the whole region and, 

for this reason, cannot be closed; therefore, the province related to this unit has been 

considered as special district (� = 1). 

In Figure 5.1 the geographic position of the selected regions within the country is 

highlighted; while in the Table 5.4 the indication of the number B of municipalities and the 

number � of provinces, for each region, are provided. It is possible to notice that the selected 

Regions are the most significant in terms of number of districts and municipalities, apart from 

Sicilia and Sardinia Regions, that have not been considered as, being islands, they are often 

subject to different regulations.  
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Region D E 

Lombardia 12 1544 
Toscana 10 287 
Piemonte 9 1206 
Sicilia 9 390 
Emilia Romagna 9 348 
Sardinia 8 377 
Veneto 7 581 
Puglia 6 258 
Campania 5 551 
Calabria 5 409 
Lazio 5 378 
Marche 5 239 
Abruzzo 4 305 
Liguria 4 235 
Friuli V. Giulia 4 218 
Trentino Alto Adige 2 333 
Molise 2 136 
Basilicata 2 131 
Umbria 2 92 
Valle d'Aosta 1 74 

 

Fig.5.1- Position of the Selected Regions Table 5.4-Number of municipalities (n) and 
provinces (m) per region 

For each considered region, population and extension attributes associated to each unit have 

been obtained by using the most recent figures provided by the National Office of Statistics 

data (ISTAT, 2011).  

The distances among municipalities have been calculated as shortest paths (in km) among 

them on the road network (considering motorways, national and regional roads). For the 

computation of such distances, each unit � has been approximated with a representative point, 

corresponding to the position of the related city hall, whose coordinates are provided by the 

National Office of Statistics data. This alternative has been preferred to the choice of the 

geometric centroids, as in this way it could have been possible to obtain points not linkable to 

the road network (within a given tolerance), for example in the middle of a river or of a lake, 

and, hence, not consistence for the calculation of the distances.   

We use the ArcGIS 10.2 environment as a platform for geographic data storage as well as for 

the analysis and visualization of solutions provided by the models. The geographic data 

related  to Italian  municipalities are provided in shapefile format by the National Office of 

Statistics data (ISTAT).    

 



106 
 

In the following we report, for each of the five considered regions, two maps; the former 

related to its subdivision in municipalities, with the indication of their centroids 

(Fig.5.2,5.4,5.6,5.8,5.10) and the latter representative of the current partition of these 

municipalities in provinces (Fig.5.3, 5.5, 5.7, 5.9, 5.11). Moreover, a table (Table 5.5, 5.6, 5.7, 

5.8, 5.9) provides a description of the current configuration reporting, for each province �, the 

number of territorial units, the total population ��, the area �� in km2 and the radius F��, i.e. 

the distance between the province chief town and the farthest municipality assigned to it. 

 

5.5.1 Lombardia Region 

Lombardia Region is the largest region in Italy in terms of number of inhabitants (almost 10 

million). Most of the population is concetrated in the provinces of Milano (almost 3 million), 

Brescia and Bergamo (almost 1 million, each). While these latter are feasible also in terms of 

extension, Milano is infeasible, having an area smaller than the minimum threshold of 2.500 

kmq; nevertheless, being Milano the regional chief town, the related district cannot be closed 

by the models. Among the other provinces, only Pavia satisfy both requirements. As concerns 

the provincial radius, apart the case of Brescia district, whose radius value is significantly 

high (114 Km), the other values are quite reasonable.  
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Fig.5.2-Municipalities of Lombardia Region Fig.5.3-provinces of Lombardia Region 

 
Districts 
(Provinces) 

Territorial units 
(Municipalities) 

Population 
Area 

(kmq) 
Rmj 

(km) 

 

Bergamo 244 1.086.277 2.745,94 65,63 

 

Brescia 206 1.238.044 4.785,62 114,68 

 

Como 160 586.735 1.279,04 63,12 

 

Cremona 115 357.623 1.770,46 65,13 

 

Lecco 90 336.310 814,58 41,84 

 

Lodi 61 223.755 782,99 43,33 

 

Mantova 70 408.336 2.341,44 59,64 

 

Milano* 134 3.038.420 1.575,65 59,23 

 

Monza 55 840.129 405,41 24,88 

 

Pavia 190 535.822 2.968,64 71,23 

 

Sondrio 78 180.814 3.195,76 79,62 

 

Varese 141 871.886 1.198,11 46,00 

 Total 1.544 9.704.151 23.864  

 Average 129 808.679 1.989,64 61,19 

Table 5.5 - Characteristics of the case study of Lombardia Region 
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5.5.2    Piemonte Region 

Piemonte Region is characterized by an area of 25,402 kmq and a population of about 4,6 

million. The district related to Torino, the regional chief town, is the widest, with an extension 

of 6.817,28 square kilometers, and the most populated, with a number of inhabitants of 2,2 

million. Among the others, only Alessandria and Cuneo provinces meet both the 

requirements. As concerns the provincial radius, the highest values correspond to the 

provinces of Cuneo (114,41 km) and Vercelli (105,53Km). The other values are quite 

reasonable.  

  

Fig.5.4-Municipalities of Piemonte Region Fig.5.5-Current provinces of Piemonte Region 

 
Districts 
(Provinces) 

Territorial units 
(Municipalities) 

Population 
Area 

(kmq) 
Rmj 
(km) 

 

Alessandria 190 427.229 3.558,83 70,65 

 

Asti 118 217.573 1.510,19 70,76 

 

Biella 82 182.192 913,28 36,77 

 

Cuneo 250 586.378 6.894,94 114,41 

 

Novara 88 365.559 1.340,28 67,81 

 

Torino* 315 2.240.768 6.817,28 99,61 

 

Verbania 77 160.264 2.260,91 81,46 

 

Vercelli 86 176.941 2.081,64 105,53 

 Total 1.206 4.356.904 25.377,35  

 Average 151 544.613 3.172,17 80,88 

Table 5.6 - Characteristics of the case study of Piemonte Region 
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5.5.3 Veneto Region 

Veneto, with its 4,8 million inhabitants, is the fifth most populated region in Italy. Five out of 

its seven provinces are characterized by population values around 900 thousands of 

inhabitants (Padova, Treviso, Venezia, Verona, Vicenza); but, among the latter, only two 

satisfy the requirement on the minimum extension. As concerns the other two provinces 

(Belluno and Rovigo), the population values are very low, around 200 thousand of 

inhabitants. A particular case is represented by the province of Belluno, characterized by the 

widest area in the region and the lowest number of inhabitants. The highest value of 

provincial radius correspond to Venezia (93,56 km) and it is due to the elongated shape of the 

district.  

  

Fig.5.6-Municipalities of Veneto Region Fig.5.7-Current provinces of Veneto Region 

 
Districts 
(Provinces) 

Territorial units 
(Municipalities) 

Population 
Area 

(kmq) 
Rmj 
(km) 

 

Belluno 69 210.001 3.672,26 76,03 

 

Padova 104 921.361 2.144,15 67,43 

 

Rovigo 50 242.349 1.819,35 64,63 

 

Treviso 95 876.790 2.479,83 53,07 

 

Venezia* 44 846.962 2.472,91 93,56 

 

Verona 98 900.542 3.096,39 65,44 

 

Vicenza 121 859.205 2.722,53 75,85 

 Total 581 4.857.210 18.407,42  

 Average 83 693.887 2.629,63 70,86 

Table 5.7 - Characteristics of the case study of Veneto Region 
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5.5.4 Emilia Romagna Region 

Emilia Romagna Region is characterized by an area of about 22.452 kmq and a population of 

about 4,3 million of inhabitants (Table 5.8). All the provinces, apart Piacenza and Rimini, 

satisfy the requirement on the minimum population; while only five out of nine (Bologna, 

Ferrara, Modena, Parma and Piacenza) meet the one on the extension. The higher values of 

provincial radius correspond to the provinces of Ferrara (81,58 km), Forlì (81,60 km) and 

Parma (90,11km), in which the chief towns are located in decentralized positions.  

 
Fig.5.8-Municipalities of Emilia Romagna Region 

 
Fig.5.9-Current provinces of Emilia Romagna Region 

 
Districts 
(Provinces) 

Territorial units 
(Municipalities) 

Population 
Area 

(kmq) 
Rmj 

(km) 

 

Bologna* 60 976.243 3.702,32 68,22 

 

Ferrara 26 353.481 2.635,12 81,58 

 

Forlì 30 390.738 2.378,40 81,65 

 

Modena 47 685.777 2.688,02 79,92 

 

Parma 47 427.434 3.447,48 90,11 

 

Piacenza 48 284.616 2.585,86 77,65 

 

Ravenna 18 384.761 1.859,44 66,57 

 

Reggio nell'Emilia 45 517.316 2.291,26 64,23 

 

Rimini 27 321.769 864,88 55,28 

 Total 348 4.342.135 22.452,78  

 Average 39 482.459 2.494,75 73,91 

Table 5.8 - Characteristics of the case study of Emilia Romagna Region 
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5.5.5 Toscana Region 

Toscana Region is characterized by an area of about 23.000 square kilometers and a 

population of about 3,7 million inhabitants (Table 5.5). Among the ten provinces in which it 

is subdivided, only the district of Firenze, satisfy both requirements.  Indeed, the wider 

provinces, like Arezzo, Siena, Grosseto, do not meet the requirement about the total 

population; while, the most populated provinces, like Pisa and Lecco, have an area below the 

minimum feasible value. As concern the provincial radius, notice that the highest values 

correspond to the provinces whose chief units are located in a very decentralized position, 

such as  Livorno, Siena and Pisa (Fig.5.3). 

  

Fig.5.10-Municipalities of Toscana Region Fig.5.11-Current provinces of Toscana Region 

 
Districts 
(Provinces) 

Territorial units 
(Municipalities) 

Population 
 

Area 
(kmq) 

Rmj 

(km) 

 

Arezzo 39 343.676 3.233,08 85,13 

 

Firenze* 44 973.145 3.513,69 74,17 

 

Grosseto 28 220.564 4.503,12 90,99 

 

Livorno 20 335.247 1.213,71 148,21 

 

Lucca 35 388.327 1.773,22 73,19 

 

Massa 17 199.650 1.154,68 72,54 

 

Pisa 39 411.190 2.444,72 112,38 

 

Pistoia 22 287.866 964,12 49,68 

 

Prato 7 245.916 365,72 29,90 

 

Siena 36 266.621 3.820,98 105,31 

 Total 287 3.672.202 22.987,04  

 Average 29 367.220 2.298,70 84,15 

Table 5.9 - Characteristics of the case study of Toscana Region 
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5.6   Model testing 

The test problems described above have been solved using Cplex 12.2 on an Intel Core i7 

with 1.86 GHz and 4 GB of RAM. Table 5.10 reports, for every instance (region), the size of 

each solved model, in terms of number of variable and constraints, and the computational 

times (in seconds) for running it. Even if Merging models, as we expected, require shorter 

computational times, also reassigning models can be solved with very limited running times 

in the case of larger instances (Piemonte and Lombardia), characterized by a significant 

number of districts and territorial units.  

 

Parameters 

Merging Models Reassigning Models 

 Istances’size 
Run Times 

(sec) 
Istances’size 

Run Times 

(sec) 

Region m n q #var #con PMM OMM #var #con PRM ORM 

Lombardia 12 1544 1 156 323 1.80 1.86 18540 38623 21.10 28.22 

Piemonte 8 1206 1 72 151 2.03 1.96 9656 20517 14.65 19.10 

Veneto 7 581 1 56 118 1.88 1.85 4074 8728 5.32 6.94 

Emilia Romagna 9 348 1 90 188 1.97 1.87 3141 6631 3.58 3.77 

Toscana 10 287 1 110 229 2.67 2.03 2880 6048 3.00 3.62 

Table 5.10 – Computational times for solving the considered instances 

The optimal models have been solved first assuming 3 as decision variable, so as to find the 

minimum number of districts (3���) to be closed in order to have feasible districts, and then 

by considering it as a parameter and varying it for values higher than 3���. Tha maximum 

value 3�GH that it may assume is equal to � − �, i.e. the current number of districts minus the 

number of special ones. As in each considered instance, the number of special districts is 

equal to one, the solution provided for 3 = 3�GH is trivial as it corresponds to only one 

district coincinding with the whole region and chief town located in the one of the special 

district.  

Obviously, by increasing the number of closed districts the constraints related with minimum 

requirements will tend to become redundant as the models will provide few larger districts. In 

any case it could be interesting to compare the solutions provided by the optimal models, by 

fixing 3 and varying the rationalization strategy (merging/reassigning) or by fixing the 

strategy and varying parameter 3.      

  



113 
 

In order to do that, we introduce the following key performance indicators: 

• the average, minimum and maximum values for area, population and Province Radius; 

• Population Variance Index (VARpop): the mean square deviation of the population of the 

new provinces from the average population value. This index can be assumed as a 

measure of the uniformity of the population distribution across the resulting provinces. 

• Area Variance Index (VARsup): the mean square deviation of the areas of the new 

provinces from the average area value. The index can be considered as a measure of the 

uniformity of the area distribution across the resulting provinces. 

• Hoover Index (IH), defined as half of the sum of the differences between the percentages 

of population and area of each province compared to the regional total values: 

IH = 
1
2

∙ � JPj

� - 
Sj

S
J

j∈J

* 100   (5.14) 

where � and � are the total population and area of the region. The index is utilised to 

measure the distribution of population across the resulting provinces (Long and Nucci, 

1997). According to the index, the population is fairly distributed if a province accounting 

for 10% of the regional population also accounts for the 10% of the area. This way, 

IH = 0 if each province accounts for the same share of area and population; IH gets closer 

to 100 as the unbalances in population distribution grow. With reference to this specific 

application, this index will keep track of potential improvements provided by the models 

in terms of population distribution (to be obtained, for example, by merging densely 

populated provinces to less crowded ones). 

For each region, the maps provided by the Prescriptive models and Optimal models, solved 

for each value of parameter 3��� ≤ 3 ≤ 3�GH − 1, are reported in the Appendix B. 

It has to be underlined that all the models have been applied not considering explicitly 

contiguity constraints. Contiguity conditions have been assessed a posteriori, heuristically 

modifying solutions to enforce them in presence of non-contiguities 



114 
 

5.6.1 Reorder of Lombardia Region 

In the case of Lombardia Region, prescriptive models close the eight infeasible districts 

(Como, Cremona, Lecco, Lodi, Mantova, Monza, Sondrio Varese)  and reassign the related 

territorial units to the remaining four (Milano, Bergamo, Brescia, Pavia). While in the PMM, 

each closed districts is entirely re-assigned to the same chief-town (Fig.5.13), in the PRM 

municipalities belonging to the same closed district may be split among different chief towns 

(Fig.5.12). The two solutions are characterized by a very limited number of provinces 

covering a much wider area. In particular, the resulting Bergamo and Brescia districts account 

for very large areas with a very high radius. 

Fig.5.12- Map of PRM Solution Fig.5.13- Map of PMM Solution 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Milano 482 5.389.647 4.371,51 119,7 

 Bergamo 463 1.703.223 6.187,80 127,7 

 Brescia 356 1.879.153 9.575,82 175,8 

 Pavia 243 732.128 3.728,52 76,4 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Milano 490 5.337.170 4.458,22 119,7 

 Bergamo 527 1.961.024 8.526,74 179,6 

 Brescia 276 1.646.380 7.127,07 137,2 

 Pavia 251 759.577 3.751,63 76,4 
 

Table 5.10- Characteristics of PRM Solution Table 5.11- Characteristics of PMM Solution 

In order to compare solutions with the same number of active provinces, we show in the 

following the maps provided by the optimal models for  3 = 6, even if the ORM is able to 

provide a feasible map also by closing a lower number of districts, equal to five (3 = 3��� =
5). It is possible to notice, from Figures 5.14 and 5.15, that the two models close different 

chief towns; but in both the solutions, Brescia, Bergamo and Milano remain active. Apart 

from Milan, that presents in the two solutions a huge number of inhabitants, the distribution 
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of the total population across the remaining provinces appears to be more balanced in the case 

of OMM than in the case of ORM, due to the presence of Sondrio, with a value almost equal 

to the minimum requirement, and Mantova, with almost 460 thousands of inhabitants. In 

terms of radius, on the contrary, the solution provided by the ORM appear to be better; 

indeed, in the OMM solution the provinces of Lecco and Cremona are characterized by an 

high value of provincial radius. 

Fig.5.14- Map of ORM solution (kmin<k=6) Fig.5.15- Map of OMM solution (k=kmin=6) 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Milano 402 3.981.914 5.490,05 109,6 

 Bergamo 319 1.349.125 3.424,24 65,9 

 Brescia 242 1.372.875 5.447,30 114,7 

 Varese 333 2.190.396 2.504,57 83,2 

 Sondrio 148 350.182 4.147,30 96,6 

 Mantova 100 459.659 2.850,18 64,5 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Milano 330 4.750.435 3.179,2 119,7 

 Bergamo 244 1.086.277 2.745,9 65,6 

 Brescia 206 1.238.044 4.785,6 114,7 

 Lecco 328 1.103.859 5.289,4 156,5 

 Pavia 251 759.577 3.751,6 76,4 

 Cremona 185 765.959 4.111,9 123,8 
 

Table 5.12- Characteristics of ORM solution 
(kmin<k=6) 

Table 5.13- Characteristics of OMM solution 
(k=kmin=6) 

In order to compare the solutions provided by the models, by varying the parameter 3, in 

the following the values of the above indicators for the single solutions are reported. The 

results are shown in Tables 5.14 (a,b) considering the decreasing number of districts in the 

optimal solution. By fixing 3, the average values of the number of territorial units, area and 

population per district, are the same for all the solutions, being obtainable by dividing the 

total regional values for the number of active districts. Therefore, it is more interesting 

compare the solutions by the values of variance, range (min-max) and Provincial Radius. The 

minimum number of districts to be closed in order to obtain a feasible configuration is equal 
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to five; only the ORM is able to provide a solution for this value of parameter 3. In particular, 

the solution appears more balanced in terms of distribution of population and area; indeed, 

even if the maximum values of two attributes increase of the +25% and +12% respectively, 

the minimum values increase much more, of the +154% and +428,00% respectively. It has to 

be noticed that the minimum extension related to this solution is lower than the minimum 

requirement of 2500 kmq; this is due to the fact that it corresponds to the special district of 

Milano. As concerns the provincial radius, the average value increases a lot passing from 61,2 

km to 104,9 km. With reference to this indicator, the solution provided for 3 = 6 results 

better, providing an average value of 89,1 km.  

 
m-k 

Population VARpop 
(105) 

Area 
(km2) VARsup 

(103)  Avg Min Max Avg Min Max 
Current 
Configuration 12 808.679 180.814 3.038.420 7,80 1.988,6 405,4 4.785,6 1,27 

ORM (k=5) 7 1.386.307 459.659 3.824.491 11,25 3.409,1 2.140,5 5.378,3 1,09 
ORM (k=6) 6 1.617.359 350.182 3.981.914 13,41 3.977,3 2.504,6 5.490,1 1,28 
OMM (k=6) 6 1.617.359 759.577 4.750.435 15,47 3.977,3 2.745,9 5.289,4 0,96 
ORM (k=7) 5 1.940.830 459.659 4.810.285 16,70 4.772,7 2.501,8 6.418,5 1,94 
OMM (k=7) 5 1.940.830 765.959 5.510.012 20,03 4.772,7 2.745,9 6.930,8 1,54 
ORM (k=8) 4 2.426.038 459.659 5.548.540 21,88 5.965,9 2.850,2 7.356,1 2,12 
OMM (k=8) 4 2.426.038 1.103.859 5.510.012 20,68 5.965,9 4.516,4 7.127,1 1,27 
PRM (k=8) 4 2.426.038 732.128 5.389.647 20,39 5.965,9 3.728,5 9.575,8 2,62 
PMM (k=8) 4 2.426.038 759.577 5.337.170 20,06 5.965,9 3.751,6 8.526,7 2,24 
ORM (k=9) 3 3.234.717 2.054.681 5.546.107 20,02 7.954,6 7.229,7 9.268,7 1,14 
OMM (k=9) 3 3.234.717 1.646.380 5.867.635 22,96 7.954,6 7.127,1 8.701,3 0,79 
ORM (k=10) 2 4.852.076 2.328.674 7.375.477 35,69 11.931,8 11.388,7 12.475,0 0,77 
OMM (k=10) 2 4.852.076 1.646.380 8.057.771 45,34 11.931,8 7.127,1 16.736,6 6,79 

 

 
m-k 

Number of territorial Units  
 

Radius 
(km) Hoover 

Index  Avg Min Max Avg Min Max 
Current 
Configuration 12 129 55 244  61,2 24,9 114,7 36,37 

ORM (k=5) 7 221 100 287  104,9 59,2 165,0 32,16 
ORM (k=6) 6 257 100 402  89,1 64,5 114,7 30,10 
OMM (k=6) 6 257 185 330  109,4 65,6 156,5 35,63 
ORM (k=7) 5 309 100 488  122,0 64,5 165,0 25,39 
OMM (k=7) 5 309 185 581  116,1 65,6 156,5 27,74 
ORM (k=8) 4 386 100 597  111,3 64,5 156,5 26,84 
OMM (k=8) 4 386 276 581  139,0 119,7 156,5 27,74 
PRM (k=8) 4 386 243 482  124,9 76,4 175,8 37,22 
PMM (k=8) 4 386 251 527  128,2 76,4 179,6 36,32 
ORM (k=9) 3 515 429 596  134,4 109,6 156,5 26,86 
OMM (k=9) 3 515 276 696  147,9 137,2 156,5 24,00 
ORM (k=10) 2 772 489 1.055  183,6 175,8 191,4 23,73 
OMM (k=10) 2 772 276 1.268  175,5 137,2 213,9 12,90 

Tables 5.14a (top) and 5.14b (bottom)–  
Comparison of the solutions provided by the models for the case of Lombardia Region 
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For values higher than five, both optimal models provide feasible solutions. In most cases 

ORM provides more balanced solutions in terms of population; however it has to be 

underlined that these benefits are counterbalanced by more organizational efforts due to the 

fact that, as it can be observed by the maps, the new districts are significantly different 

compared to the current ones. Prescriptive models produce solutions with the minimum 

number of provinces (4). This is due to the fact that they are obliged to close all the unfeasible 

districts in the current configuration. Even if the objective function of the PRM is, of course, 

better, the solutions are quite similar considering all the introduced indicators. The limited 

number of districts determines a significant worsening of all the indicators compared to the 

current configuration. In particular the average value of Province Radius almost doubles, 

passing from 61,2 km to over 120,0 km with the worst case of more than 170,14 km 

compared to the current 112 km.  

Looking at the Hoover index, that is considered to be the premier measure for keeping track 

of equitable districting configurations (Long and Nucci, 1997), it can be seen that solutions 

are characterized by comparable values, even improving the current situation. The best result 

is given by the OMM for 3 = 10. The relatively high value of this index for all the solutions, 

depends on the peculiar configuration of Lombardia region, in which metropolitan areas (very 

densely populated) and Alpine sub-regions (much less crowded) are very close to each other. 
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5.6.2 Reorder of Piemonte Region 

In the case of Piemonte Region, the prescriptive models close the five districts  that do not 

satisfy the requirements (Verbania, Novara, Vercelli, Biella, Asti). The two solutions are 

characterized by a very limited number of provinces, equal to three. From the maps (Figures 

5.16, 5.17), it is possible to notice that in both the solutions the boundaries of province of 

Cuneo do not change, as opposite to the other two. In particular, the province of Torino is 

partially modified, while the province of Alessandria changes a lot, covering a much wider 

area with a very high radius (206,3 Km).  

  

Fig.5.16- Map of PRM Solution Fig.5.17- Map of PMM Solution 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Torino 467 2.522.388 8.965,8 102,9 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 489 1.248.138 9.516,6 206,3 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Torino 397 2.422.960 7.730,6 101,4 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 559 1.347.566 10.751,8 206,3 
 

Table 5.14- Characteristics of PRM Solution Table 5.15- Characteristics of PMM Solution 

Both the optimal models are able to provide solutions by closing a minimum number of 

districts equal to three (3 = 3��� = 3). The ORM closes Biella, Novara and Asti provinces; 

while the OMM closes Asti, Vercelli and Verbania. In this case the solutions are quite similar 

(Figures 5.18, 5.19). The only thing that has to be noticed is that, even if the Vercelli and 

Biella provinces are in both cases merged, in the ORM also togheter with some other 
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municipalities belonging to Novara, the value of provincial radius is quite different, higher in 

the ORM (105,5 Km) than in the OMM (88,8 km). This is due to the fact that in the first case 

the chief town is Vercelli, that is in a decentralized  position with the reference to the new 

resulting province; while in the last case the chief town is Biella, that is better positioned. 

  

Fig.5.18- Map of ORM Solution (k=kmin=3) Fig.5.19- Map of OMM Solution (k=kmin=3) 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Verbania 141 355.109 3.085,0 154,8 

 Torino 347 2.275.353 7.167,4 99,6 

 Vercelli 197 534.011 3.577,7 105,5 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 271 606.053 4.652,4 70,7 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Novara 165 525.823 3.601,2 155,4 

 Torino 315 2.240.768 6.817,3 99,6 

 Biella 168 359.133 2.994,9 88,8 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 308 644.802 5.069,0 83,4 
 

Table 5.16- Characteristics of ORM Solution (k=kmin=3) Table 5.17- Characteristics of OMM Solution (k=kmin=3) 
 

In Tables 5.18 (a,b) the above indicators for the solutions provided by the models, by varying 

parameter 3, are reported. The results are shown considering the decreasing number of 

districts in the optimal solution. It is possible to notice that in most case the solutions 

provided by the optimal models are quite similar. For 3 < 6, the solutions of the OMM 

appear to be a little bit more balanced in terms of distribution of population and area across 

active provinces. Moreover for 3 = 5 the solution provided by the OMM is the best in terms 

of average provincial radius  
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m-k 

Population VARpop 
(105) 

Area 
(km2) VARsup 

(103)  Avg Min Max Avg Min Max 
Current 
Configuration 8 544.613 160.264 2.240.768 7,02 3.172,2 913,3 6.894,9 2,41 

ORM (k=3) 5 871.381 355.109 2.275.353 7,91 5.075,5 3.085,0 7.167,4 1,88 
OMM (k=3) 5 871.381 359.133 2.240.768 7,73 5.075,5 2.994,9 6.894,9 1,79 
ORM (k=4) 4 1.089.226 586.378 2.315.474 8,26 6.344,3 4.664,1 7.619,1 1,26 
OMM (k=4) 4 1.089.226 586.378 2.240.768 7,78 6.344,3 5.069,0 6.894,9 0,86 
ORM (k=5) 3 1.452.301 676.186 2.832.523 11,98 8.459,1 5.220,4 13.957,6 4,79 
OMM (k=5) 3 1.452.301 586.378 2.458.341 9,44 8.459,1 6.894,9 10.154,9 1,63 
PRM (k=5) 3 1.452.301 586.378 2.522.388 9,84 8.459,1 6.894,9 9.516,6 1,38 
PMM (k=5) 3 1.452.301 586.378 2.422.960 9,23 8.459,1 6.894,9 10.751,8 2,03 
ORM (k=6) 2 2.178.452 1.339.438 3.017.466 11,87 12.688,7 10.429,0 14.948,4 3,20 
OMM (k=6) 2 2.178.452 1.312.185 3.044.719 12,25 12.688,7 10.154,9 15.222,4 3,58 

 
 

m-k 
Number of territorial Units  

Radius 
(km) 

Hoover 
Index 

 Avg Min Max  Avg Min Max  

Current 
Configuration 8 151 77 315  80,9 36,8 114,4 28,26 

ORM (k=3) 5 241 141 347  109,0 70,7 154,8 23,98 
OMM (k=3) 5 241 165 315  108,3 83,4 155,4 24,57 
ORM (k=4) 4 302 250 368  110,0 70,7 155,4 23,12 
OMM (k=4) 4 302 250 333  114,0 83,4 158,5 24,57 
ORM (k=5) 3 402 316 574  140,0 107,7 157,0 10,01 
OMM (k=5) 3 402 250 523  133,2 114,4 158,5 23,61 
PRM (k=5) 3 402 250 489  141,2 102,9 206,3 22,56 
PMM (k=5) 3 402 250 559  140,7 101,4 206,3 25,15 
ORM (k=6) 2 603 552 654  157,7 157,0 158,5 10,35 
OMM (k=6) 2 603 523 683  157,7 157,0 158,5 9,90 

Tables 5.18a (top) and 5.20b (bottom)–  
Comparison of the solutions provided by the models for the case of Piemonte Region 

 

5.6.3 Reorder of Veneto Region 

In the case of Veneto Region, the solutions provided by the prescriptive models close the four 

infeasible districts (Treviso, Belluno, Padova, Rovigo) and reassign the related territorial units 

to the chief towns of feasible provinces (Verona, Vicenza, Venezia). In both solutions, the 

province of Verona is quite similar to the current configuration (in particular in the PMM, it 

remains unchanged), while resulting Venezia and Vicenza provinces result substantially 

modified, accounting for very large areas and population (Figures 5.20,5.21). Among them, 

the highest provincial radius corresponds to the province of Venezia that has a more elongated 

shape. 

With reference to the optimal models, both the versions provide feasible solutions by closing 

only 2 districts (3 = 3��� = 2). The corresponding maps are shown in Figures 5.22 and 5.23. 
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Fig.5.20- Map of PRM Solution Fig.5.21- Map of PMM Solution 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Verona 134 1.003.549 3.862,1 90,5 

 Vicenza 263 1.972.077 6.627,1 147,5 

 Venezia 184 1.881.584 7.918,3 165,1 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Verona 98 900.542 3.096,4 65,4 

 Vicenza 275 2.022.915 6.686,0 124,3 

 Venezia 208 1.933.753 8.625,0 165,1 
 

Table 5.19- Characteristics of PRM Solution Table 5.20- Characteristics of PRM Solution 

  
Fig.5.22- Map of ORM Solution (k=kmin=2) Fig.5.23- Map of OMM Solution (k=kmin=2) 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Verona 108 922.251 3.303,2 78,0 

 Vicenza 135 976.036 3.045,3 75,9 

 Belluno 107 475.074 4.621,7 76,0 

 Venezia 85 1.316.124 3.593,8 93,6 

 Padova 146 1.167.725 3.843,4 79,5 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Verona 98 900.542 3.096,4 65,4 

 Vicenza 121 859.205 2.722,5 75,9 

 Treviso 164 1.086.791 6.152,1 134,1 

 Venezia 44 846.962 2.472,9 93,6 

 Padova 154 1.163.710 3.963,5 100,9 
 

Table 5.21- Characteristics of ORM Solution 
(k=kmin=2) 

Table 5.22- Characteristics of OMM Solution 
(k=kmin=2) 
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In both the solutions Verona, Vicenza and Venezia provinces remain active with a very 

similar configuration to the current one (in particular, the OMM let them unchanged while the 

ORM assign them few adding municipalities). Padova province is merged with most of the 

municipalities of Rovigo, while Treviso is merged quite completely merged with Belluno 

(mergings are complete in the case of OMM). Despite the similarity of the two maps, the 

maximal provincial radius in the case of the OMM solution is much more higher, as within 

the province deriving from the merging of Belluno and Treviso, the chief town is kept open in 

Treviso that is located in a  very decentralized position.  In Tables 5.23 (a,b) the above 

indicators for the solutions provided by the models, by varying parameter 3, are reported. The 

results are shown considering the decreasing number of districts in the optimal solution.  

 
m-k 

Population VARpop 
(105) 

Area 
(km2) VARsup 

(103)  Avg Min Max Avg Min Max 
Current 
Configuration 7 693.887 210.001 921.361 3,21 2.629,6 1.819,4 3.672,3 0,61 

ORM (k=2) 5 971.442 475.074 1.316.124 3,19 3.681,5 3.045,3 4.621,7 0,61 
OMM (k=2) 5 971.442 846.962 1.163.710 1,44 3.681,5 2.472,9 6.152,1 1,49 
ORM (k=3) 4 1.214.303 475.074 1.819.893 5,99 4.601,9 3.862,1 4.984,6 0,52 
OMM (k=3) 4 1.214.303 846.962 2.022.915 5,49 4.601,9 2.472,9 6.686,0 2,12 
ORM (k=4) 3 1.619.070 1.003.549 1.972.077 5,35 6.135,8 3.862,1 7.918,3 2,07 
OMM (k=4) 3 1.619.070 846.962 2.923.457 11,36 6.135,8 2.472,9 9.782,4 3,65 
PRM (k=4) 3 406.335 1.003.549 1.972.077 5,35 6.135,8 3.862,1 7.918,3 2,07 
PMM (k=4) 3 1.619.070 900.542 2.022.915 6,24 6.135,8 3.096,4 8.625,0 2,81 
ORM (k=5) 2 2.428.605 1.881.584 2.975.626 7,74 9.203,7 7.918,3 10.489,2 1,82 
OMM (k=5) 2 2.428.605 1.933.753 2.923.457 7,00 9.203,7 8.625,0 9.782,4 0,82 

 

 
m-k 

Number of territorial Units  
Radius 
(km) Hoover 

Index  Avg Min Max  Avg Min Max 
Current 
Configuration 7 83 44 121  70,9 53,1 93,6 19,07 

ORM (k=2) 5 116 85 146  80,6 75,9 93,6 15,33 
OMM (k=2) 5 116 44 164  94,0 65,4 134,1 11,05 
ORM (k=3) 4 145 107 221  88,6 76,0 94,4 15,65 
OMM (k=3) 4 145 44 275  98,5 65,4 134,1 11,05 
ORM (k=4) 3 194 134 263  134,4 90,5 165,1 4,60 
OMM (k=4) 3 194 44 373  117,3 93,6 134,1 11,05 
PRM (k=4) 3 194 134 263  134,4 90,5 165,1 4,60 
PMM (k=4) 3 194 98 275  118,3 65,4 165,1 7,04 
ORM (k=5) 2 291 184 397  156,3 147,5 165,1 4,28 
OMM (k=5) 2 291 208 373  144,7 124,3 165,1 7,04 

Tables 5.23a (top) and 5.23b (bottom)–  
Comparison of the solutions provided by the models for the case of Veneto Region 
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5.6.4 Reorder of Emilia Romagna Region 

In the Emilia Romagna region, five districts out of nine (Forlì, Piacenza, Reggio Emilia, 

Ravenna, Rimini), do not satisfy the specified requirements; therefore prescriptive models 

gets closed such districts and mantain active the others. The maps corresponding to the 

solutions provided by the PRM and PMM are shown in Figure 5.24 and 5.25, respectively. It 

is possible to notice that they are quite similar; the only difference is that in the ORM the 

provinces of Reggio Emilia and Ravenna are split between two active provinces, while they 

are entirely assigned to only one province by the OMM.  

  
Fig.5.24- Map of PRM Solution Fig.5.25- Map of PMM Solution 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Parma 117 864.068 6.977,8 138,9 

 Modena 70 1.051.075 4.034,8 79,9 

 Bologna 131 2.011.108 8.496,4 148,4 

 Ferrara 30 415.884 2.943,7 81,6 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Parma 95 712.050 6.033,3 138,9 

 Modena 92 1.203.093 4.979,3 89,2 

 Bologna 135 2.073.511 8.805,0 148,4 

 Ferrara 26 353.481 2.635,1 81,6 
 

Table 5.24- Characteristics of PRM Solution Table 5.25- Characteristics of PMM Solution 

  
Fig.5.26- Map of ORM Solution (kmin <k=5) Fig.5.27- Map of OMM Solution (kmin <k=5) 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Piacenza 59 359.139 3.342,4 77,6 

 Reggio E. 107 1.348.923 6.538,2 117,1 

 Bologna 101 1.463.648 6.551,8 87,8 

 Forlì 81 1.170.425 6.020,4 95,4 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Parma 95 712.050 6.033,3 138,9 

 Modena 92 1.203.093 4.979,3 89,2 

 Bologna 86 1.329.724 6.337,4 122,1 

 Forlì 75 1.097.268 5.102,7 84,7 
 

Table 5.26- Characteristics of ORM Solution 
 (kmin <k=5) 

Table 5.27- Characteristics of OMM Solution 
(kmin <k=5) 
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In order to compare solutions with the same number of districts, also those provided by the 

optimal models for k = 5 are shown (Figure 5.26, 5.27). Optimal models are not constrained 

to close the infeasible districts; indeed, in the case of ORM, together with Ravenna and 

Rimini, also Ferrara, Modena and Parma provinces gets closed, even if they satisfy both the 

requirements. In the case of OMM, with reference to the prescriptive models, the only 

difference consists in the closure of Forlì instead of Ferrara province. Comparing the values 

of the values of the provincial indicators associated to the four solutions (Tables 

5.24,5.25,5.26,5.27), it is possible to notice that the ones provided by the optimal models are 

well homogeneus in terms of distribution of population and extension. In particular, the one 

provided by the ORM is the best in terms of provincial radius.  

 
m-k 

Population VARpop 
(105) 

Area 
(km2) VARsup 

(103)  Avg Min Max Avg Min Max 
Current 
Configuration 

9 482.459 284.616 976.243 2,20 2.494,8 864,9 3.702,3 0,83 

ORM (k=2) 7 620.305 353.481 976.243 2,39 3.207,5 2.543,1 4.982,2 0,90 
ORM (k=3) 6 723.689 359.139 1.194.264 2,87 3.742,1 2.559,7 4.982,2 0,97 
ORM (k=4) 5 868.427 359.139 1.419.964 4,85 4.490,6 2.559,7 6.538,2 1,69 
OMM (k=4) 5 868.427 353.481 1.203.093 3,41 4.490,6 2.635,1 6.033,3 1,33 
ORM (k=5) 4 1.085.534 359.139 1.463.648 4,99 5.613,2 3.342,4 6.551,8 1,53 
OMM (k=5) 4 1.085.534 712.050 1.329.724 2,67 5.613,2 4.979,3 6.337,4 0,67 
PRM (k=5) 4 1.085.534 415.884 2.011.108 6,72 5.613,2 2.943,7 8.496,4 2,57 
PMM (k=5) 4 1.085.534 353.481 2.073.511 7,45 5.613,2 2.635,1 8.805,0 2,56 
ORM (k=6) 3 1.447.378 1.170.425 1.945.870 4,33 7.484,3 6.020,4 8.489,0 1,30 
OMM (k=6) 3 1.447.378 1.097.268 2.015.501 4,96 7.484,3 5.102,7 9.025,5 2,09 
ORM (k=7) 2 2.171.068 1.225.840 3.116.295 13,37 11.226,4 8.489,0 13.963,8 3,87 
OMM (k=7) 2 2.171.068 1.229.366 3.112.769 13,32 11.226,4 8.324,6 14.128,2 4,10 

 
 

m-k 
Number of territorial Units  

Radius 
(km) Hoover 

Index  Avg Min Max  Avg Min Max 
Current 
Configuration 9 39 18 60  73,9 55,3 90,1 15,66 

ORM (k=2) 7 50 26 81  85,4 66,6 117,1 12,36 
ORM (k=3) 6 58 41 81  90,3 77,6 117,1 11,53 
ORM (k=4) 5 70 41 107  93,1 77,6 117,1 9,38 
OMM (k=4) 5 70 26 95  92,5 68,2 138,9 14,07 
ORM (k=5) 4 87 59 107  94,5 77,6 117,1 6,62 
OMM (k=5) 4 87 75 95  108,7 84,7 138,9 10,47 
PRM (k=5) 4 87 30 131  112,2 79,9 148,4 14,71 
PMM (k=5) 4 87 26 135  114,5 81,6 148,4 14,07 
ORM (k=6) 3 116 81 141  111,9 95,4 138,9 9,58 
OMM (k=6) 3 116 75 140  115,2 84,7 138,9 8,76 
ORM (k=7) 2 174 141 207  143,7 138,9 148,4 9,58 
OMM (k=7) 2 174 140 208  143,7 138,9 148,4 8,76 

Tables 5.28a (top) and 5.28b (bottom)–  
Comparison of the solutions provided by the models for the case of Emilia Romagna Region 
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The optimal models provide solutions also for lower values of parameter 3. The values of the 

above indicators associated to the all the solutions provided by the optimal models by varying 

parameter 3 are reported in the Tables 5.28 (a,b). 

5.6.5 Reorder of Toscana Region 

In the case of Toscana Region, only one of the current districts meet both the requirements; 

therefore, the Prescriptive models (PRM, PMM) provide the same trivial solution with only 

one district, corresponding to the whole region, having its center in Firenze. In this case the 

population and the extension of the district correspond obviously to the total poplation and 

area of the region, while the maximum Radius is equal to 214,92 km. 

As concerns the Optimal Models, the minimum number of districts to be closed in order to 

have feasible districts is equal to 6 for the OMM and to 5 for the ORM. In order to compare 

solutions with the same number of active districts, in Fig.5.12 and Fig.5.13 the solutions 

provided by the ORR and OMM for 3 = 6 are shown, with the indication, in Tables 5.11 and 

5.12 respectively, of attributes values per district.  

  
Fig.5.28- Map of ORM Solution (k=kmin=6) Fig.5.29- Map of OMM Solution (kmin <k=6) 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Arezzo 56 434.974 4.878,8 89,4 

 Firenze 76 1.588.247 5.552,2 88,9 

 Pisa 103 1.291.845 6.115,5 117,8 

 Grosseto 52 357.136 6.440,5 122,6 
 

 Districts TUs Pop. 
Area 
(km2) 

Rmj 

(km) 

 Lucca 74 875.843 3.892,0 113,9 

 Firenze 90 1.562.737 7.112,5 159,6 

 Pisa 59 746.437 3.658,4 155,1 

 Siena 64 487.185 8.324,1 137,9 
 

Table 5.29- Characteristics of ORM Solution  
(kmin <k=6) 

Table 5.30- Characteristics of OMM Solution  
(kmin <k=6) 
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The two models select different district to be closed. It is clear that the solution provided by 

the ORM is much better in terms of provincial radius. Indeed, while in the ORM solution the 

chief town are in a quite central position within the districts, in the OMM solution the chief 

towns are in all the cases quite decentralized. As concerns the distribution of the extension 

across provinces, it results more balanced in the case of  ORM; on the contrary, the 

distribution of population is more balanced in the OMM. 

In the following, the optimal solutions provided by the various models are compared on the 

basis of the above indicators (Table 5.31 a,b). The results are shown considering the 

decreasing number of districts in the optimal solution.  

 

m-k 

Population 
(103) VARpop 

(105) 

Area 
(km2) VARsup 

(103)  Avg Min Max Avg Min Max 
Current 
Configuration 10 378,4 199,7 973,1 2,24 2.130 365,7 4.503,1 1,41 

ORM (k=5) 5 734,4 357,1 1.586,0 5,31 4.597 2.585,7 6.440,5 1,52 
ORM (k=6) 4 918,1 357,1 1.588,2 6,16 4.879 4.878,8 6.440,5 0,69 
OMM (k=6) 4 918,1 487,2 1.562,7 4,59 5.746,8 3.658,4 8.324,1 2,33 
ORM (k=7) 3 1.224,1 398,6 1.981,8 7,94 7.662,3 6.115,5 9.392,1 1,65 
OMM (k=7) 3 1.224,1 487,2 1.850,6 6,88 7.662,3 6.586,3 8.324,1 0,94 
ORM (k=8) 2 1.836,1 1.422,4 2.249,8 5,85 11.493,5 7.243,7 15.743,4 6,01 
OMM (k=8) 2 1.836,1 1.334,4 2.337,8 7,09 11.493,5 6.586,3 16.400,7 6,94 
PMM=PRM (k=9) 1 3.672,2 3.672,2 3.672,2 - 22.987,0 22.987,0 22.987,0 - 

 
 

m-k 

Number of territorial 
Units  

Radius 
(km) Hoover 

Index 
 Avg Min Max Avg Min Max 
Current 
Configuration 10 29 7 44  81,8 29,9 148,2 27,65 

ORM (k=5) 5 57 49 74  102,4 75,2 122,6 57,77 
ORM (k=6) 4 72 52 103  104,7 88,9 122,6 55,34 
OMM (k=6) 4 72 59 90  141,6 113,9 159,6 22,95 
ORM (k=7) 3 96 62 122  133,3 117,8 159,6 43,37 
OMM (k=7) 3 96 64 112  150,8 137,9 159,6 22,95 
ORM (k=8) 2 144 120 167  185,0 155,1 214,9 14,45 
OMM (k=8) 2 144 111 176  185,0 155,1 214,9 7,69 
PMM=PRM (k=9) 1 287 287 287  214,9 214,9 214,9 1,00 

Tables 5.31a (top) and 5.31b (bottom)–  
Comparison of the solutions provided by the models for the case of Toscana Region 
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5.7 Conclusions 

In this chapter, we introduced different approaches that can be used to perform redistricting 

decisions and we proposed accordingly four class of mathematical models. In particular, the 

models have been used to address the real problem of the reorder of Italian provinces  and 

tested on some benchmark problems, build on real-world instances derived from Italian 

regions territorial configurations.  

The results obtained on the case study show how models provide solutions with different 

characteristics and performances, in dependence on the criteria used to tackle closure 

decisions and reassigning process. Computational results highlight that models can be solved 

in very limited running times, even for instances of significant size.  

Further researches will be addressed at enhancing the models formulations in order to take 

into account further practical operational aspects. In particular, the issue of the contiguity 

constraints will be explored, looking for ways of directly incorporating these into the models. 
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Conclusions and Outlooks 

 

 

 

 

 
 
 
In this work we analyzed the problem of the spatial re-organization of an existing service and 

formulated some mathematical models in order to support such decisions in the context of a 

public service. In the OR literature, the two classes of problems mainly used to address 

location decisions are facility location and districting problems. 

While the mentioned models are mainly oriented to locate new facilities, some occurring 

circumstances could require strategies oriented to reduce costs and/or improve the system 

performance; therefore, actions related to the re-organization of the current facilities network 

may be undertaken. For example, in the public sector, in a general economic and political 

context characterized by growing cuts to public expenditure and a review process of the 

welfare state, public services have and are still undergoing significant transformations, 

generally oriented to reduce administrative, managerial and operational burden and costs.  

In order to re-organize an existing supply system different strategies could be adopted, such 

as the closure of some active facilities, their repositioning in different points of the location 

space, the downsizing of the capacities of the available services and so on. Each re-

organization action perturb the interaction between the facilities and the demand, and could 

produce some effects that should be carefully evaluated.   

The contents have been sub-divided according to three Sections: the first Section was focused 

on the analysis of the context (Chapter 1) and of the state of the art (Chapter 2); the second 

Section was devoted to the illustration of new facility location models for the spatial re-

organization of a given service network (Chapter 3) and their application to real case studies 

(Chapter 4); then, in the last Section, we provided specific versions of districting models that 

can be used as support in decisions about spatial re-organization.  

Various contributions have been proposed concerning the problem of the spatial re-

organization of a facility system, i.e. the problem of modifying a set of pre-existing facilities, 

either in terms of their number (shrinking/expansion), or their position (relocation), or in 
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terms of the capacities of the single offered services (downsizing). The analysis of the 

literature (Chapter 2) revealed that the re-organization has been traditionally intended as an 

opportunity for the decision maker to adapt the system to some changed (or changing) 

conditions, such as demand distribution. Therefore, the aim of such problems is to re-organize 

the system so as to improve as more as possible its efficiency, usually looking for a trade-off 

solution between the cost due to the modification of the current configuration (opening, 

closing, downsizing, relocating facilities) and the saving associated to such process. However 

it emerged that little attention was paid to the fact that the spatial re-organization of an 

existing supply system may be motivated also by other circumstances. In the public sector, for 

example, reductions to public expenditure may impose strategies oriented to the 

rationalization of public services, such as education, health, administration. Therefore, in 

these cases, the problem is completely different as any re-organization action produces some 

side effects, such as the increase of costs faced by users (in terms of accessibility to the 

service) and, potentially, the worsening of the quality of the offered service (measurable in 

terms of drop of coverage, worsening of users’ satisfaction and congestion of the remaining 

facilities). Hence, to effectively solve these kinds of problems, decision support models 

should be able to find a trade-off solution between two inherently conflicting goals: the 

maximization of the benefit from the planner perspective and the minimization of the damage 

from the users perspective.  

In this context, decisions may depend on various factors such as the nature of the service and 

the characteristics of the market (competitive or non-competitive), the objectives to be 

achieved and the constraints to be satisfied. In this sense, it could be useful and interesting to 

develop appropriate tools to support this kind of decisions. 

In this context the objective of the second Session was the proposal of a general theoretical 

framework including facility location models for exploring re-organization decisions about 

facilities in a non-competitive context (Chapter 3). The models assumed the presence of a set 

of facilities offering different types of services and gave the possibility to implement different 

actions regarding the single service at a given facility (i.e. closure, reduction, expansion or 

transformation) or a whole facility (closure, merging). The implementation of any action 

produces some side effects on the users, that have to carefully evaluated; in particular, 

whenever a service is closed and/or downsized the interaction between users and facilities is 

perturbed as the demand needs to be re-allocated. For this reason different demand re-

allocation rules were considered either deterministic (re-allocation to the closest available 
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facility) or probabilistic (users are attracted by the remaining facilities according their 

preferences). The objective function was represented by the extra-cost to be paid in order to 

host the re-allocated demand while constraints expressing the need of obtaining a target 

benefit from the supply reduction were included. Within the various versions, a specific one 

was deeply analyzed and tested on a set of randomly generated instances. The obtained results 

show that it is possible to optimally solve a significant ranges of instances using  a 

commercial solver (CPLEX). The proposed models were then applied to analyze two real-

world problems. (Chapter 4). In particular they were applied to solve problems concerning the 

re-organization of a public university system and of a school system located in a given region, 

considering specific requirements indicated by the Italian government for the rationalization 

of these kinds of contexts.  

In the third Section, we explored the re-organization issues in the context of districting 

problems (Chapter 5). A re-districting problem aims at redefining the current partition of 

elementary units into districts in a given study region, according to a set of planning criteria. 

Such problems may arise when the current organization does not satisfy some efficiency 

requirements or when there is the exigency to modify the actual number of districts. With 

reference to such situations, we proposed a general framework of mathematical programming 

models based on different approaches. In particular, the models were applied to the real case 

of the reorder of Italian provinces and tested on some benchmark problems, build on real-

world instances derived from Italian regions territorial configurations. The obtained results on 

the case study show how models provide solutions with different characteristics and 

performances, in dependence on the criteria used to tackle closure decisions and reassigning 

process. Computational tests on the benchmark problems highlight that models can be solved 

in very limited running times, even for instances of significant size.  

The obtained results provided either by facility location and by districting based models show 

that the use of mathematical models can actually represent a suitable and reliable support for 

these kinds of problems.  

Further researches may be follow different research paths. First of all further efforts may be 

paid to enhance models' formulations in order to take into account other practical operational 

aspects or, in the case of districting models, some theoretical requirements (i.e. contiguity 

constraints).  
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Another interesting perspective may be represented by the analysis of further application 

fields in the public sector (health care, justice) in which these kinds of models can be 

fruitfully used. 

Furthermore, multi-period version of the problem can be explored in order to implement 

progressively the modifications to the existing system. Indeed, the main shortcoming of a 

static approach, in which decisions are taken in a single-period and implemented in the same 

moment, is the sudden change of the district map, that results in a non-stability from both 

planner and user perspectives. Actually, we are working on a multi-period version of re-

districting models in which decisions are made over time, so as to modify the current partition 

in an incremental way and make the changes gradual.  
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Appendix A 

 
 
 
 
 

 

 

In the following we prove that the combination of the three sets of constraints (3.3), (3.4), 

(3.14) guarantee that fractions of demand assume the same values defined by the not linear 

expressions (3.13).  

For each service �, consider the following subsets of �: �� subset of facilities that did not provide service �  ��� = �	 ∈ �: ��
 = 0��; �� subset of facilities at which service � has been closed��� = �	 ∈ �: ��
 = 1, ��
 = 1��; �� subset of facilities that still provide service �  ��� = �	 ∈ �: ��
 = 1, ��
 = 0��. 

Note that the above introduced subsets form a partition of �; indeed, �� and �� form a 

partition of the set of facilities providing � (�� ∪ �� = ��, �� ∩ �� = ∅) and �� is the 

complementary set of �� with reference to  � (�� =  � − ��).   

The equivalence between (3.3,3.4,3.14) and (3.13) is trivially proved for the facilities  	 ∈ �� ∪ ��.  Indeed, conditions (3.3) impose: 

�
�� = 0                                ∀ ∈ !, ∀� ∈ ", ∀	 ∈ �� ∪ �� 

equivalently to (3.12), being respectively in �� and ��  #
�� = 0 and ��
 = 1.  
Then, it has to be proved only for facilities 	 ∈ ��.  
Conditions (3.14), for each service �,  define a proportional relationship between the fractions 

of demand assigned to each pair of facilities 	 and $ belonging to �� = �� ∪ ��. 
For each pair %	, $& ∈ �� × ��, one of the following conditions can occur:  

a. 	 ∈ ��, $ ∈ ��: facility 	 provides service � (��
 = 0); while $ not anymore (��( = 1); 

b. 	 ∈ ��, $ ∈ ��:facility $ provides service � (��( = 0), but 	 not anymore (��
 = 1); 

c. 	, $ ∈ ��: service � has been closed at both facilities 	 and $ (��( = ��
 = 1&; 

d. 	, $ ∈ ��: :  service � is still provided by both the facilities 	 and $ (��( = ��
 = 1). 

It is possible to demonstrate that conditions (3.14) become active only in the last case.  
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With this aim, consider the paired conditions, associated to %	, $&: 

)�
�� ≤ +,-.
+/-. �(�� + ��(                                                 

�(�� ≤ +/-.+,-. �
�� + ��
                                                 1    ∀ ∈ ! 

From Table A.1, in which the expressions of the above conditions in the single cases are 

reported, it is easy to understand that in the first three cases the constraints are trivially 

satisfied ∀ ∈ !. 

a b c d 

)�
�� ≤ 1          
0 ≤ #(��#
�� �
��   1 ) 0 ≤ #
��#(�� �(��  

�(�� ≤ 1             1 20 ≤ 1      0 ≤ 1  1 345
46�
�� ≤ #
��#(�� �(��    

�(�� ≤ #(��#
�� �
��    1 
Table A.1 – Possible expressions of conditions  (2.13) for a generic pair %7, 8& ∈ �� × �� 

In the case d the two conditions become equivalent to the following one:  
�(�� = #(��#
�� �
��             ∀ ∈ ! 

Then, for a particular user   and service �, it is possible to express all the fractions of the 

demand assigned to the facilities in �� = 9$:, … , $<= as a function of the same fraction �
�� %	 ∈ ��&. Therefore, replacing in the (3.4), we have: 

> �
��

∈? =   > �
��


∈@.
+ > �
�� + > �
��


∈A.
∈B.
= > �
��


∈A.
= �(C�� + ⋯ + �(E��

= F#(C��#
�� + ⋯ + #(E��#
��G �
�� = 1   
hence: 

�
�� = #
��#(C�� + ⋯ + #(E�� = #
��∑ #(��(∈A.  (A.1) 

For a given service �, equation (A.1) holds for all the facilities in the set �� and each user  ; 
then we can generally write: 

�
�� = #
��∑ #(��(∈A.  

 

∀ ∈ !, ∀� ∈ ", ∀	 ∈ �� (A.2) 

which is equivalent to (3.13) ∀	 ∈ ��. 
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Appendix B 
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B.1 Lombardia Region 
 

  

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 490 5.337.170 4.458,22 119,7 

 Bergamo 527 1.961.024 8.526,74 179,6 

 Brescia 276 1.646.380 7.127,07 137,2 

 Pavia 251 759.577 3.751,63 76,4 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 482 5.389.647 4.371,51 119,67 

 Bergamo 463 1.703.223 6.187,80 127,70 

 Brescia 356 1.879.153 9.575,82 175,77 

 Pavia 243 732.128 3.728,52 76,39 
 

PMM PRM 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Varese 242 1.184.360 2.503,11 165,0 

 Milano 196 3.824.491 2.140,51 59,2 

 Bergamo 287 1.311.593 3.237,54 97,9 

 Brescia 238 1.366.144 5.378,33 114,7 

 Pavia 243 732.128 3.728,52 76,4 

 Mantova 100 459.659 2.850,18 64,5 

 Lecco 238 825.776 4.025,45 156,5 
 

 ORM- k=kmin=5 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 330 4.750.435 3.179,2 119,7 

 Bergamo 244 1.086.277 2.745,9 65,6 

 Brescia 206 1.238.044 4.785,6 114,7 

 Pavia 251 759.577 3.751,6 76,4 

 Cremona 185 765.959 4.111,9 123,8 

 Lecco 328 1.103.859 5.289,4 156,5 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Varese 333 2.190.396 2.504,57 83,2 

 Sondrio 148 350.182 4.147,30 96,6 

 Milano 402 3.981.914 5.490,05 109,6 

 Bergamo 319 1.349.125 3.424,24 65,9 

 Brescia 242 1.372.875 5.447,30 114,7 

 Mantova 100 459.659 2.850,18 64,5 
 

OMM-k=kmin=6 ORM-k =6 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 581 5.510.012 6.930,81 119,7 

 Bergamo 244 1.086.277 2.745,94 65,6 

 Brescia 206 1.238.044 4.785,62 114,7 

 Cremona 185 765.959 4.111,90 123,8 

 Lecco 328 1.103.859 5.289,38 156,5 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Varese 238 1.248.231 2.501,8 165,0 

 Milano 488 4.810.285 6.338,5 109,6 

 Brescia 329 1.643.704 6.418,5 114,7 

 Mantova 100 459.659 2.850,2 64,5 

 Lecco 389 1.542.272 5.754,7 156,5 
 

OMM-k =7 ORM-k =7 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 581 5.510.012 6.930,81 119,7 

 Bergamo 359 1.443.900 4.516,40 142,7 

 Brescia 276 1.646.380 7.127,07 137,2 

 Lecco 328 1.103.859 5.289,38 156,5 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 597 5.548.540 7.238,8 109,6 

 Brescia 329 1.643.704 6.418,5 114,7 

 Mantova 100 459.659 2.850,2 64,5 

 Lecco 518 2.052.248 7.356,1 156,5 
 

OMM-k =8 ORM-k =8 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 696 5.867.635 8.701,27 149,9 

 Brescia 276 1.646.380 7.127,07 137,2 

 Lecco 572 2.190.136 8.035,31 156,5 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 596 5.546.107 7.229,7 109,6 

 Brescia 429 2.103.363 9.268,7 137,2 

 Lecco 519 2.054.681 7.365,3 156,5 
 

OMM-k =9 ORM-k =9 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 1.268 8.057.771 16.736,59 213,9 

 Brescia 276 1.646.380 7.127,07 137,2 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Milano 1.055 7.375.477 12.475,0 191,4 

 Brescia 489 2.328.674 11.388,7 175,8 
 

OMM-k =10 ORM-k =10 
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B.2 Piemonte Region 

  

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 397 2.422.960 7.730,6 101,4 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 559 1.347.566 10.751,8 206,3 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 467 2.522.388 8.965,8 102,9 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 489 1.248.138 9.516,6 206,3 
 

PMM PRM 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 315 2.240.768 6.817,3 99,6 

 Novara 165 525.823 3.601,2 155,4 

 Biella 168 359.133 2.994,9 88,8 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 308 644.802 5.069,0 83,4 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verbania 141 355.109 3.085,0 154,8 

 Torino 347 2.275.353 7.167,4 99,6 

 Vercelli 197 534.011 3.577,7 105,5 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 271 606.053 4.652,4 70,7 
 

OMM- k=kmin=3 ORM- k=kmin=3 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 315 2.240.768 6.817,3 99,6 

 Vercelli 333 884.956 6.596,1 158,5 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 308 644.802 5.069,0 83,4 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 368 2.315.474 7.619,1 99,6 

 Novara 316 848.195 6.199,3 155,4 

 Cuneo 250 586.378 6.894,9 114,4 

 Alessandria 272 606.857 4.664,1 70,7 
 

OMM-k=4 ORM-k =4 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 433 2.458.341 8.327,5 126,7 

 Vercelli 523 1.312.185 10.154,9 158,5 

 Cuneo 250 586.378 6.894,9 114,4 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 574 2.832.523 13.957,6 157,0 

 Novara 316 848.195 6.199,3 155,4 

 Alessandria 316 676.186 5.220,4 107,7 
 

OMM-k =5 ORM-k =5 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 683 3.044.719 15.222,4 157,0 

 Vercelli 523 1.312.185 10.154,9 158,5 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Torino 654 3.017.466 14.948,4 157,0 

 Vercelli 552 1.339.438 10.429,0 158,5 
 

OMM-k =6 ORM-k =6 
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B.3 Veneto Region 

  

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 98 900.542 3.096,4 65,4 

 Vicenza 275 2.022.915 6.686,0 124,3 

 Venezia 208 1.933.753 8.625,0 165,1 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 134 1.003.549 3.862,1 90,5 

 Vicenza 263 1.972.077 6.627,1 147,5 

 Venezia 184 1.881.584 7.918,3 165,1 
 

PMM PRM 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 98 900.542 3.096,4 65,4 

 Vicenza 121 859.205 2.722,5 75,9 

 Treviso 164 1.086.791 6.152,1 134,1 

 Venezia 44 846.962 2.472,9 93,6 

 Padova 154 1.163.710 3.963,5 100,9 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 108 922.251 3.303,2 78,0 

 Vicenza 135 976.036 3.045,3 75,9 

 Belluno 107 475.074 4.621,7 76,0 

 Venezia 85 1.316.124 3.593,8 93,6 

 Padova 146 1.167.725 3.843,4 79,5 
 

OMM- k=kmin=2 ORM- k=kmin=2 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 98 900.542 3.096,4 65,4 

 Treviso 164 1.086.791 6.152,1 134,1 

 Padova 275 2.022.915 6.686,0 100,9 

 Venezia 44 846.962 2.472,9 93,6 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 134 1.003.549 3.862,1 90,5 

 Vicenza 221 1.819.893 4.984,6 94,4 

 Belluno 107 475.074 4.621,7 76,0 

 Venezia 119 1.558.694 4.939,0 93,6 
 

OMM-k=3 ORM-k =3 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Treviso 164 1.086.791 6.152,1 134,1 

 Vicenza 373 2.923.457 9.782,4 124,3 

 Venezia 44 846.962 2.472,9 93,6 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Verona 134 1.003.549 3.862,1 90,5 

 Vicenza 263 1.972.077 6.627,1 147,5 

 Venezia 184 1.881.584 7.918,3 165,1 
 

OMM-k =4 ORM-k =4 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Vicenza 373 2.923.457 9.782,4 124,3 

 Venezia 208 1.933.753 8.625,0 165,1 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Vicenza 397 2.975.626 10.489,2 147,5 

 Venezia 184 1.881.584 7.918,3 165,1 
 

OMM-k =5 ORM-k =5 
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B.4 Emilia Romagna Region 

  

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 95 712.050 6.033,3 138,9 

 Modena 92 1.203.093 4.979,3 89,2 

 Bologna 135 2.073.511 8.805,0 148,4 

 Ferrara 26 353.481 2.635,1 81,6 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 117 864.068 6.977,8 138,9 

 Modena 70 1.051.075 4.034,8 79,9 

 Bologna 131 2.011.108 8.496,4 148,4 

 Ferrara 30 415.884 2.943,7 81,6 
 

PMM PRM 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Piacenza 59 359.139 3.342,4 77,6 

 Reggio Emilia 81 870.227 4.982,2 117,1 

 Modena 47 685.777 2.688,0 79,9 

 Bologna 60 976.243 3.702,3 68,2 

 Ferrara 26 353.481 2.635,1 81,6 

 Ravenna 26 555.248 2.543,1 66,6 

 Rimini 49 542.020 2.559,7 106,5 
 

 ORM- k=kmin=2 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Piacenza 59 359.139 3.342,4 77,6 

 Reggio Emilia 81 870.227 4.982,2 117,1 

 Modena 49 704.396 2.879,0 79,9 

 Bologna 69 1.194.264 4.592,5 78,7 

 Ravenna 41 672.089 4.097,0 81,9 

 Rimini 49 542.020 2.559,7 106,5 
 

 ORM-k =3 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 95 712.050 6.033,3 138,9 

 Modena 92 1.203.093 4.979,3 89,2 

 Bologna 60 976.243 3.702,3 68,2 

 Ferrara 26 353.481 2.635,1 81,6 

 Forlì 75 1.097.268 5.102,7 84,7 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Piacenza 59 359.139 3.342,4 77,6 

 Reggio Emilia 107 1.348.923 6.538,2 117,1 

 Bologna 92 1.419.964 5.915,6 82,3 

 Ravenna 41 672.089 4.097,0 81,9 

 Rimini 49 542.020 2.559,7 106,5 
 

OMM-k =kmin=4 ORM-k =4 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 95 712.050 6.033,3 138,9 

 Modena 92 1.203.093 4.979,3 89,2 

 Bologna 86 1.329.724 6.337,4 122,1 

 Forlì 75 1.097.268 5.102,7 84,7 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Piacenza 59 359.139 3.342,4 77,6 

 Reggio Emilia 107 1.348.923 6.538,2 117,1 

 Bologna 101 1.463.648 6.551,8 87,8 

 Forlì 81 1.170.425 6.020,4 95,4 
 

OMM-k =5 ORM-k =5 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 140 1.229.366 8.324,6 138,9 

 Bologna 133 2.015.501 9.025,5 122,1 

 Forlì 75 1.097.268 5.102,7 84,7 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 141 1.225.840 8.489,0 138,9 

 Bologna 126 1.945.870 7.943,3 101,4 

 Forlì 81 1.170.425 6.020,4 95,4 
 

OMM-k =6 ORM-k =6 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 140 1.229.366 8.324,6 138,9 

 Bologna 208 3.112.769 14.128,2 148,4 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Parma 141 1.225.840 8.489,0 138,9 

 Bologna 207 3.116.295 13.963,8 148,4 
 

OMM-k =7 ORM-k =7 

 

 

  



160 
 

B.5 Toscana Region 
 

  

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 287 3.672.202 22.987,0 214,9 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 287 3.672.202 22.987,0 214,9 
 

PMM PRM 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Massa 49 368.534 2.585,7 112,4 

 Firenze 74 1.585.999 5.477,3 75,2 

 Pisa 56 925.559 3.604,8 112,4 

 Arezzo 56 434.974 4.878,8 89,4 

 Grosseto 52 357.136 6.440,5 122,6 
 

 ORM- k=kmin=5 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Lucca 74 875.843 3.892,0 113,9 

 Firenze 90 1.562.737 7.112,5 159,6 

 Pisa 59 746.437 3.658,4 155,1 

 Siena 64 487.185 8.324,1 137,9 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 76 1.588.247 5.552,2 88,9 

 Pisa 103 1.291.845 6.115,5 117,8 

 Arezzo 56 434.974 4.878,8 89,4 

 Grosseto 52 357.136 6.440,5 122,6 
 

OMM-k=kmin=6 ORM-k =6 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 112 1.850.603 8.076,6 159,6 

 Pisa 111 1.334.414 6.586,3 155,1 

 Siena 64 487.185 8.324,1 137,9 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 122 1.981.771 9.392,1 159,6 

 Pisa 103 1.291.845 6.115,5 117,8 

 Grosseto 62 398.586 7.479,5 122,6 
 

OMM-k =7 ORM-k =7 
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 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 176 2.337.788 16.400,7 214,9 

 Pisa 111 1.334.414 6.586,3 155,1 
 

 Districts TUs Pop. 
Area 

(kmq) 
Rmj 

(km) 

 Firenze 167 2.249.764 15.743,4 214,9 

 Pisa 120 1.422.438 7.243,7 155,1 
 

OMM-k =8 ORM-k =8 
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