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Abstract

We propose a decentralized and non cooperative algorithm for estima-

tion and control in a multi-agent system of oscillators to achieve a bal-

anced circular formation. Each agent gathers an uncertain measurement

of its phase distance from other agents only when they are in its prox-

imity. Based on this uncertain and intermittent data and on the a priori

knowledge of the nominal (e.g. uncontrolled) agent’s velocities, we em-

ploy an estimation algorithm to reconstruct the relative angular positions.

The algorithm combines the information coming from the collected mea-

sures with the information on the agents’ dynamics, and its convergence

is proved by means of Interval Analysis. Interesting connection are high-

lighted with contractions and fractals. Then, we develop a bang-bang

controller to achieve a balanced circular formation. The novelty of the

approach is that the balanced formation is achieved by using proximity

sensors rather than distance transducers. Moreover, the bang-bang con-

trol strategy is designed so that the control goal is achieved even when

the range of the sensors is lower than the desired spacing distance. The

effectiveness of the approach is illustrated through extensive numerical

simulations.
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Chapter 1

Introduction and motivation

1.1 Proximity in coordination of multi-agent sys-

tems

Coordination of multi-agent systems is becoming research topic of increasing popular-

ity, and with a good reason: there exist numerous and relevant potential engineering

applications [37], ranging from terrestrial, space, and oceanic exploration [4] per-

formed by teams of coordinated mobile robots, to military surveillance and rescue

missions, or even automated highway systems [11], [1], to mention only a few.

From an engineering standpoint, the main purpose of using multi-agent systems,

is to collectively reach goals that are difficult or impossible to achieve by an individual

agent or a monolithic system, hence the question of how to prescribe them desired

global behaviors, through the application of only simple and local interactions’ rules,

is of significant and practical interest. The ultimate objective is that of synthesis,

i.e. is it possible to construct decentralized controllers, with severe constraints on

information available to each agent on the collective state of the system, that generate

a predictable and stable behavior if the multi-agent system as a whole?

As outlined, it is implicitly postulated that the properties of the system are,

in a some meaningful way, better or more desiderable that the sum of individuals’

ones. This important property of multi-agent systems is termed emergence. Usually,

global properties of the system, as motion coordination for example, is a property

that emerges through the local interactions between an agent and the ones that

are in its neighborhood. Unfortunately, it is difficult to study emergence from both

modeling and design perspectives. In other words, given a desired emergent property

or behavior, usually it is very difficult to deduce the local interaction rules that

will lead to that desired property or behavior. There has not been much work on
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modeling of emergence in the multi-agent dynamic systems literature and it remains

an important open problem.

The problem is made more difficult by the constraints imposed on the system:

each agent has limited sensing, computation, motion, and communication capabili-

ties, moreover the performance of the group should be insensitive to variation of the

number of agents. Because of the intrinsic complexity of the problem and the pres-

ence of the constraints, the global outcome of these behavior-based systems is often

difficult to predict analytically. Thus, corresponding mathematical results are rare,

as noted in [28] and [46]. Some researchers have argued that rigorous analysis of even

the most simple cases can be an impractical task [5].

Despite its complexity, there has been a lot of research interest in analyzing

nearest-neighbor or ”proximity” strategies, where simple coordination rules are em-

ployed locally to generate global behaviors. When the emergent property of the

system is expressed in terms of state of motion (position, velocity, acceleration, and

so on) of the agents, the problem is usually referred as formation control. In this

field of application, we can found the major examples of proximity strategies. For

example, Wang [51] proposed a strategy where agents are controlled to move based

on the motions of their nearest neighbors. Certain formation stability properties

were then analyzed for the case when one individual agent is provided a reference

trajectory and designated group leader. The cited work by [46] investigated a set of

heuristic algorithms for the generation of geometric patterns in the plane (e.g., lines,

circles, or polygons). Other works have stressed the need for rigorous proof of the

correctness of these types of algorithms [47]. Justh and Krishnaprasad [23], [22] have

developed steering laws for achieving both rectilinear and circular formations in the

plane. In their approach, each vehicles control input, which is based on the pose of

all other vehicles in the group, uses alignment and separation terms to determine the

formation. Jadbabaie et al. [19] proved convergence results for a nearest-neighbor

type problem, guaranteeing that all agents eventually move in an identical fashion,

despite the distributed nature of the coordination law.

The majority of local interactions’ rules and algorithms based on proximity of

agents are biologically inspired. Indeed, in networks of biological agents collective

phenomena such as synchronization and consensus ([37, 12, 35, 29]) are observed,

and global collective behavior is achieved on the basis of proximity rules. This is the

case, for instance, of migration phenomena, where the system moves towards a given

target or when toroidal behaviors around a common center are observed ([10, 49]).

Patterns of this sort seem to appear in nature. For example, Brucksteins curiosity
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Figure 1.1: Birds’ formation.

with regards to the evolution of ant trails led him to an interesting mathematical

discovery in [6]. Others have studied aggregate behavior in swarms of organisms

(e.g., birds, fish, mammals, and bacteria), where operational models are analyzed

for the purpose of potential engineering application (e.g., see [15] and the references

therein).

These biological phenomena constitute a source of inspiration to design the inter-

action rules for coordinating artificial multi-agent systems ([50, 14, 2, 53, 27]). On

this subject, perhaps the most widely recognized artificially created example is the

distributed behavioral model of Reynolds [39]. Reynolds bird-oids each obey a set

of local control rules, which together result in a natural and appealing steady-state

flocking behavior for the group.

In fact, much of the multi-agent robotics research has focused on the use of sim-

ilar proximity and behavior based techniques. For example, Balch and Arkin [3]

evaluated proximity control rules designed to implement multi-vehicle formations in

combination with rules for collision avoidance and other navigational goals.

Not unlike Reynolds boids, the behavior-based approach to coordinate a group

of agents is often to mimic biological systems, where emergent behaviors result from
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Figure 1.2: Local control law of Reynold’s boids.

agents that appear to act autonomously. For a more complete review, see [4], [7],

[28], and the references therein. Still, many of these distributed coordination ideas

have yet to be explored for agents subject to motion constraints.

The main elements of a multi-agents systems, relevant to the problem we tackle in

this thesis, are - obviously - the agents and the information (i.e. sensing, control, and

communication) links among these agents, assuming that the individual dynamics of

the agents are uncoupled or loosely coupled. A useful and thus increasingly common

approach to the analysis of algorithms similar to Reynolds distributed behavioral

model is to employ techniques from mathematical graph theory. Typically, a graph

is used to track the influence of neighboring agents on an individual. The vertices

of the graph usually represent agents, while the edges, which are possibly directed

and/or dynamic, represent the existence (or non-existence if no edge is present) of

explicit or implicit communication between agents. For example, Fax and Murray

(2004) investigated the effect of information flow topology between agents, modeled

using algebraic graph theory, on formation stability. Inspired by Reynolds approach,

Jadbabaie, Lin, and Morse [19] proved convergence results for a nearest-neighbour

type problem, guaranteeing that all n agents eventually move in an identical fashion,

despite the distributed nature of the coordination law. In the cooperative control

systems literature, this result has become commonly known as consensus or agreement

and is analogous to synchronization. Jadbabaie et al. employed a family of graphs

with n vertices to track the interactions between neighboring agents. Olfati-Saber

and Murray [40] developed a graph theoretic framework for generating similar flocking

behaviours in the presence of obstacles.

In fact, Reynolds model has spawned a flurry of papers, too numerous to list,

claiming rigorous analysis.
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Ih the following sections we illustrate the main difficulties we encountered in ap-

proaching the problem of balanced circular formations.

1.2 Noise and uncertainty

As stated, the problem is to have the vehicle formation evolve as much as possible

along a certain desired trajectory, and the question is to find control laws based

on proximity that achieve this goal. An excellent overview of the literature can be

found in [33]. As a general rule, it is very difficult to solve, because is not simple

at all to deduce local control laws from the global goal of the multi-agent system.

Even if the problem can be satisfactory solved, and reachability and stability of the

formation can be analytically proved, usually this is done under ideal assumption of

perfect knowledge of the dynamics and of the state of the neighbors, since the local

interactions’ rules usually are assumed to depend on these quantities.

Real-life multi-agent systems typically don’t conform to these hypotheses: their

dynamics is usually complex and affected by noise and uncertainty, moreover the state

of the neighbors can be measured through low cost and noisy sensors, that are not

able to measure some relevant quantities, as directional state difference, and can only

measure undirectional state distance.

Obviously, the formation control problem for a real multi-agent system, as opposed

to ideal, is even more complicated, rendering solution designed for ideal systems not

directly applicable.

The problem we tackle in this thesis is exactly that of formation control of low

cost multi-agent systems, with limited sensing capabilities, able to measure only noisy

relative distances, related in a non-linear fashion to relative positions of the agents.

To solve the formation control problem we adapt the classical approach of closed-

loop estimator-based regulator to our problem. Each agent, on the basis of intermit-

tent measures of relative distance from its neighbors, estimates the relative positions,

that are fed-in to generate a local control law, capable of rendering emergent the

desired formation.

In the literature, there are only a few results on the consensus of multi-agent

systems with measurement noises. In [38], Ren, Beard and Kingston make use of

a Kalman filter structure to design a time-varying consensus protocol, however, the

consensus is only proved to be achieved in the noise-free case. In [8], it is shown

that the consensus problem of discrete-time first-order integral multi-agent systems

with measurement noises cannot be solved in the average by the the conventional
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control laws used in the noise-free case. Several heuristic techniques were proposed

to deal with this problem. Furthermore, in [54], Sun and Ruan imposed several

constraints on the communication topology and the noise intensity of continuous-

time first-order integral multi-agent systems to ensure the average consensus with

probability one. It is noted that, to ensure the consensus of multi-agent systems in

the noisy framework, a great majority of methods proposed in the literature require

the communication topology to satisfy certain conditions. Therefore, it is necessary

to asses a methodology to study how to design a proper formation control strategy

that is independent from these topology constraints.

Furthermore papers that address the problem of consensus of multi-agent systems,

usually assume the implicit hypotheses of observability and controllability of the

system as a whole. But, in the case we study in this thesis, because of the low

cost nature of the multi-agent system, the individuals have few informations on the

neighbors, and the question of how this lack of information affects the observability

and controllability of the whole multi-agent system is an open question.

Ultimately, the problem we pose is that of robust formation control, with respect

to noisy and non-linear measures. For work on robustness in the context of consensus

with agents given scalar systems we refer to [44]. The paper [17] deals with robust

stability analysis of multi-agent systems.

In the literature of synchronization of complex network, that can be a source of

inspiration for control of multi-agent systems, the problem of achieving consensus

with uncertainty and noise on agents’ measurements and dynamics that provide ro-

bustness under perturbations of the coupling strengths in the network graph have

been studied for example in [48]. Robustness against communication delays in the

network was studied in [30]. The paper [55] deals with consensus protocols that re-

main to achieve consensus under quantization of the relative state information, thus

providing a robustness result under information quantization.

1.3 Limited and intermittent sensors

To make things more complex, inspired by common applications, we suppose that the

agents are equipped with low cost sensors of limited range. This circumstance means

that two agents can measure their relative distance only if that distance is below a

given threshold. So we have to cope not only with the problem of measurement noise,

but also with the absence of measurements in selected time instants.
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Some applications are so low cost, that only proximity sensors are viable. Nowa-

days, proximity sensors are common devices in aeronautical, automotive, and manu-

facturing industry but also in civil applications as in garage and elevator doors, gates,

vending machines, parking lots, ATMs. The widespread use of this kind of devices is

motivated by their compactness, high reliability, and their suitability for harsh envi-

ronments. Based on different technologies (e.g. eddy currents, Hall effect), they share

the same functioning mechanism: when the distance of the target from the sensor’s

head is lower than the so-called detecting distance, a trigger signal is produced and is

then passed through the output conditioning circuitry to give a high or low output,

depending on the sensor application.

In control technology, proximity sensors are mainly used as proximity switches,

in combination with position control loops which verify if the desired positions is

reached. In fact, their use in a feedback loop is limited as the data are gathered

by the sensors only when their distance from the target is less than the detecting

distance.

When the agents are equipped with proximity or limited range sensors, the in-

formation flow becomes intermittent and noisy, rendering the estimation and control

problem difficult to solve. The problem of controlling a system with intermittent

data flow has motivated several researchers to investigate the paradigmatic problem

of state estimation based on fleeting data, see ([25]) and references therein. Intermit-

tent data flow renders the information graph possibly disconnected making useless

the control strategies based on connectivity.

In the recent literature on the problem of coordinating a multi-agent system of

oscillators to achieve a balanced circular formation (see [9, 26] and references therein),

a discontinuous control law is proposed to solve the control problem when the relative

angular position between the agents is perfectly known. But to analytically guarantee

the achievement of a balanced circular formation, it is typically assumed that the

graph describing the information exchange among the agents is connected or jointly

connected. In this thesis, we rely neither on the measurement of the relative angular

position, nor on the agent’s connectivity, as we model the case in which proximity

sensors are used, whose range is lower than the desired distance.

Specifically, to overcome the limitation of absence of jointly connectedness and

keep the loop closed even when the measurements are intermittent, we propose a

model based estimator of the distance between the pursuer and his target, inspired

by the estimation algorithm proposed in [13]. When no data from proximity sensors

are available, the estimation is made only on the basis of the model, while the model
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predicted estimation is corrected when a measurement is available. Then, a control

action is exerted based on the estimated distance among the agents. Specifically, we

propose a bang-bang controller: based on the estimation algorithm, each agent tries

to identify its closest follower; then, the bang-bang controller is activated and the

distance from the follower adjusted to obtain the desired spacing. We emphasize that

the controller is designed to be effective also when the range of the sensors is lower

than the desired spacing, so no more measurements are collected.

1.4 Limited knowledge of the neighbors’ behavior

The estimation and control strategy is typically based on the fact that each agent

knows, with a certain degree of uncertainty, the nominal (i.e. the uncontrolled) angu-

lar velocity of the neighbors. But, as usual, the estimator is based on the knowledge

of the input, that is the total relative angular velocity. Since an agent can’t know

how the neighbors are exerting their control action, if a non-cooperative scheme is

assumed, the input is not totally known. Two approach are possible to overcome this

limitation. One is that of estimating also the input, resorting to an augmented state

estimator. The other is to treat the unknown velocity as uncertainty. We follow the

first one.

1.5 Thesis overview

In this thesis we tackle the problem of balancing a circular formation of agents in

motion along a circle. We suppose that each agent is equipped with a limited range

sensor, able of capturing the (undirectional) relative distance between the neighbors.

This work is principally motivated by the study of how the noise and uncertainty

affect applicability and performance of control law designed for nominal multi-agent

systems, moreover we analyze the problem of how to cope with intermittent and

limited range measures. We first state the problem in formal terms, and introduce

the framework in which it will be solved. Next we pose the estimation problem, and

we resort to set-theoretic techniques (Interval Analysis) for its solution. We observe

that the estimation problem is made complex by the non-linear equation that relates

measurements (angular distances) to state (relative phase). Nevertheless we are able

to prove the convergence of the estimator, with a mathematical technique that is

related to complex contraction properties of the whole system. Then we introduce

the bang-bang controller, and we show how it can simplify the estimator. At last
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but not at least, results of extensive numerical simulation are showed, that prove the

validity of our control strategy.
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Chapter 2

Problem Formulation

2.1 Biological inspiration for a circular pursuit prob-

lem

Inspired by the so-called bugs problem from mathematics and by potential interesting

applications, in this thesis we study the circular formations of multi-vehicle systems

under cyclic pursuit, equipped with low cost and noisy proximity sensors.

The bugs problem refers to what is also variously known as the dogs, mice, ants,

or beetles problem, and originally stems from the mathematics of pursuit curves, first

studied by French scientist Pierre Bouguer. In 1877, Edouard Lucas asked, what

trajectories would be generated if three dogs, initially placed at the vertices of an

equilateral triangle, were to run one after the other? Three years later, Henri Brocard

replied with the answer that each dogs pursuit curve would be that of a logarithmic

spiral and that the dogs would meet at a common point, known now as the Brocard

point of a triangle. Bernhart reports that Gordon Peterson extended this problem to

ordered bugs that start at the vertices of a regular-polygon, illustrating his results

for the square using four cannibalistic spiders. If each bug pursues the next modulo

(i.e., cyclic pursuit) at fixed speed, the bugs will trace out logarithmic spirals and

eventually meet at the polygons centre. In 1969, Watton and Kydon provided an

elegant solution to this regular -bugs problem, further noting that the constant-speed

assumption taken by previous investigators is not necessary.

What happens if our bugs do not start at the vertices of a regular -polygon?

In 1971, Klamkin and Newman showed that, for three bugs, so long as the initial

triangle formed by the bugs is not degenerate (i.e., the bugs are not collinear), they

will meet at a point and this meeting will be mutual. For bugs, this notion was later

examined by Behroozi and Gagnon, who proved that a bug cannot capture a bug
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which is not capturing another bug (i.e., mutual capture), except by head-on collision.

They used this result to show that, for the general four-bugs problem, the capture

is indeed mutual. Quite recently, Richardson resolved this issue for the general-bugs

problem, showing that it is possible for bugs to capture their prey without all bugs

simultaneously doing so, even for non-collinear initial positions. However, he proved

that for randomly chosen initial positions, the probability of a nonmutual capture is

exactly zero.

Variations on this traditional cyclic pursuit problem have also been studied. Some

researchers investigated both continuous and discrete pursuit problems, as well as

both constant and varying speed scenarios. Consider now a particular cyclic pursuit

scheme where each bug is additionally subject to a single non-holonomic constraint,

or equivalently, modeled as a kinematic unicycle. In this case, the unicycles will

not generally be able to head toward their designated prey at each instant. Instead,

depending on the allowed control energy, each vehicle will require some finite time to

steer itself toward its preassigned target.

From a practical viewpoint, cyclic pursuit may turn out to be a feasible strategy

for multi-vehicle systems since it is distributed and relatively simple in that each

agent is required to sense information from only one other agent, hence it is clear

that the graph representing agent interconnections is cyclic in nature.

In this thesis, we assume that the agents doesn’t know the identity of the neigh-

bors, and we study the problem of reaching anyway a balanced circular formation,

where balanced means that the agents are equispaced on the circle. See figure 2.1.

(a) Balanced formation (b) Unbalanced formation.

Figure 2.1: Balanced VS unbalanced circular formations.
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2.2 Model of the multiagent system

To state the problem in more formal terms, let us consider N agents moving on a circle

at different time varying angular velocities. At time k, each agent i is characterized by

its angular position θi(k) and its mean angular velocity ωi(k) in the sampling period.

Its motion is described by

θi(k + 1) = θi(k) + ωi(k), (2.1)

θi(0) = θi0. (2.2)

where θi0 is the unknown initial condition for the i-th agent, and, without loss of

generality, a unitary sampling period is selected.

We introduce the relative angular position matrix Θ(k) at time k, whose element

(i, j) is given by the relative angular position θij(k) = θi(k)− θj(k).

The time evolution of Θ(k) can be written as

Θ(k + 1) = Θ(k) + Ω(k), (2.3)

Θ(0) = Θ0, (2.4)

where Ω(k) := {ωij(k)}Ni,j=1 = {ωi(k) − ωj(k)}Ni,j=1, and Θ(k) := {θij(k)}Ni,j=1 =

{θi(k)− θj(k)}Ni,j=1.

Without loss of generality, and for the sake of clarity, we refer to the case in which

θij(0) belongs to the interval ]− π, π[.

We assume that each pair of agents, i and j,when they are in proximity can

measure their phase distance αij, defined as

αij(k) = d(θij(k)) := min{mod(θij(k)),mod(−θij(k))}
= |rem(θij(k))|, (2.5)

where mod(a) := b is the remainder of a modulo 2π, with b being the unique

solution of b = a − 2qπ, with 0 ≤ c < 2π, and q ∈ Z. It is easy to show that

0 ≤ mod(a) < 2π and mod(−a) = 2π − mod(a), for all a 6= 2kπ, k ∈ Z. Also, we

define rem(a) = mod(a−π)−π. To better illustrate the behavior of functions mod(·)
and rem(·) we report their graph in Fig. 2.2 and 2.3. The graph of function d(·),
instead, is reported in Fig. 2.4.
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2π0

2π

y = mod(x)

Figure 2.2: Graph of function mod(·).

π0

π

−π

−π

y = rem(x)

Figure 2.3: Graph of rem(·) function
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y = d(x)

0 2π

π

Figure 2.4: Graph of function d(·)
.

Moreover, we assume that, according to a proximity communication rule, the

measurement is performed only if their phase distance is lower than θmax, where

θmax ≤ π/2, and that it is affected by an uncertainty of amplitude lower than a scalar

ϕ.

Let us summarize the assumptions we made on the measurement capabilities of

the agents

(a) Each couple of agents can measure the phase distance αij(k) instead of θij(k).

(b) For each pair of agents, the measurement yij(k) of αij(k) is only available if αij(k)

is lower than the detecting distance θmax > 01.

(c) The measurement yij, when available, is affected by a bounded uncertainty νij(k).

These assumptions can be formalized introducing the measurement matrix Y (k),

whose element (i, j) is defined as

yij(k) =

{
αij(k) + νij(k) if αij(k) ∈ [0, θmax] := I,

no measure otherwise,
(2.6)

In simple words, as illustrated in Fig. 2.5, this means that any agent can only

perceive the proximity but not the relative orientation of its neighbors.

1Note that the phase distance is biunivocally related to the magnitude of the linear distance,
and to the absolute value of the relative orientation. Hence, different sensors can be employed in
different application areas.
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i

j?

j?

δ

Figure 2.5: When an agent i sense an agent j, since their distance is less than the
range of visibility δ, i doesn’t know if j is actually onward or backward.

The problem we face is the estimation of the true distance and relative orientation

of the agents on the circle, based on repeated intermittent phase distance measure-

ments. Then a local control law capable of equispacing the agents along the circular

trajectory should be synthesized.

In formal terms, we seek for a state estimator for system (2.3) that, based on the

measurement matrix Yij(k), is capable of asymptotically nullifying the effects of the

uncertainty on the mutual distance, and for a set of local control law ui, i = 1, .., N

that, based on the estimated state, asymptotically leads the multi-agent system (2.3)

towards a balanced circular formation, i.e. for all θij(0), i, j = 1, . . . , N, i 6= j,

lim
k→∞

θij(k) =
2π

N
:= ψ, (2.7)

for all (i, j) ∈ {(1, 2), . . . , (N − 1, N), (N, 1)}, and ψ is the desired phase spacing

distance.

We also assume that the detecting distance θmax is lower than the desired spacing

distance ψ.

2.3 The underneath complexity

This apparently simple problem is made complex by three factors. The first and most

obvious is the presence of measurement uncertainty. The second is the limited visual

range of each agent, that renders the information flow coming from measurements
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intermittent with a fleeting topology. The third and less obvious factor is the inherent

non-linear nature of the relation between αij(k) and θij(k). Indeed, αij and θij are

related through the function d(·) defined in (2.5), whose domain is the real line, and

whose range is the interval [0, π]: its inverse d−1(·) is a multi-valued function that

associates a countable infinite set of angles to the angle y, so the following lemmas

can be stated

Lemma 1. Given a scalar y and a closed interval Y , we have that (1) d−1(y) is the

set of degenerate intervals {(−y + z2π) ∪ (y + z2π), z ∈ Z}; (2) d−1(Y ) is the set of

infinite intervals {[Y, Y ] ∪ [−Y ,−Y ] + z2π, z ∈ Z} 2

Lemma 2. If Y is a closed interval such that Y = π, then A = d−1(Y ) = {[Y, 2π −
Y ] + z2π, z ∈ Z}, and its complement is B = {]− Y, Y [+z2π, z ∈ Z}.3

The particular structure of function d(·) implies, as already noticed, that agents

can only sense an undirectional distance from the neighbors, so when an agents sense

another agent it doesn’t know if its neighbor is onward or backward. That circum-

stance renders the problem very complex because not only we have to cope with

uncertainty due to measurement noise, but also with ambiguity, namely with the

possibility that an agent can be located in different disjoint regions of the state space.

Let’s discuss more deeply the problem of ambiguity. Assume that at a time instant

k a couple (i, j) of agents measure their relative phase. Agent i, on the base of that

measurement, can’t know uniquely where agent j is located. This is because the

measurement available is compatible with two different position of agent j: one is

backward agent i, the other is onward. As time passes through, agent i can update

its knowledge of position of agents j resorting to dynamics, that is assumed known.

Now suppose that the relative phase between i and j becomes again less that θmax,

so a new measurement can be gathered. On the base of this new measurement, what

agent i think about the position of agent j? Since agent i doesn’t know its position, it

thinks that two more positions of agent j are compatible with the new measurement.

The described phenomenon could lead, in principle, to a combinatorial explosion

of number of position that agent i assign to agent j. But, are all positions where i

think that j can be compatible with all measurement? And are all the supposed state

trajectory compatible with all output trajectory? These are the kind of questions we

aim to answer.

2If Y is open, then d−1(Y ) is a set of infinite open intervals {]Y, Y [∪]− Y ,−Y [+z2π, z ∈ Z.
3If Y is right-closed, but left-open, then the intervals composing A are open and the ones in B

are open.
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2.4 The information graph

As stated in the introduction, a multi-agent system can be characterized by its infor-

mation graph, e.g. the time varying graph that represents available measurements or

information exchange at time k. Under some hypotheses on the information graph,

a particular set of local control laws can be proved able to make the system reach

and maintain the desired formation. In the case of circular balanced formation, the

relevant property of the graph is the jointly connectedness.

In more formal terms, from the definition of αij, it is possible to give the following

definition of proximity graph.

Definition 1. Let

E(θmax, k) := {(i, j) : i, j ∈ V , αij(k) ≤ θmax} .

Then, the pair G(k) = {V , E(θmax, k)} is the proximity graph associated to multi-agent

system (2.3) at time k.

Notice that θmax > 0 in Definition 1 can be viewed as the detecting distance of

a proximity sensor. Notice that, as the multi-agent systems evolves, the proximity

graph changes over time.

Le us denote G(k, k+r), r ∈ N, the union of all proximity graph across a nonempty

finite time interval {k, k+ 1, . . . , k+ r}, whose edges are the union of the edges of the

proximity graphs at every discrete-time instants over this time interval, that is,

G(k, k + δk) :=
{
V ,∪τ∈{k,k+1,...,k+δk}E(θmax, τ)

}
.

Now, we can give the following definition.

Definition 2. The multi-agent system (2.3) is jointly connected over {k, k+1, . . . , k+

r} if G(k, k + r) is connected.

In a continuous time setting, and assuming that the multi-agent system was jointly

connected for any k and δk, [9] proved analytically that a balanced circular formation

is achieved through the following class of controllers:

ui(k) = ω0 +
∑

j∈Ni, j 6=i

β(αij(k))sgn+(sin(θij(k))), (2.8)

where β(·) belongs to the so called class S functions (see [9] for details) defined as
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S(x) =

{
f : [0,∞)→ [0, a] | f is Lispchitz continuous

and f(τ) =

{
0, τ ≥ x

> 0, τ < x

}
, (2.9)

the function sgn+(x) is defined as

sgn+(sin(x)) =

{
1 if x ≥ 0,

0 if x < 0,
(2.10)

and Ni is the set of neighbors of agent i.

The control law in (2.8) stabilizes the system towards the balanced formation (2.7)

moving at the reference speed ωr = ω + ω0.

Differently from [9], here we consider a discrete time setting. Furthermore, we

assume that only cheap proximity sensors with limited range are available. Since we

assumed that the detecting distance θmax is lower than the desired spacing distance

ψ, we can observe that when the desired spacing ψ is achieved, the proximity graph

is not connected. Therefore, in our estimation and control design we are not going to

rely on connectivity.

For the multi-agent system presented, we propose a decentralized estimation and

control strategy capable of achieving a balanced circular formation.

As distance measurements do not provide any information on the signs of the rela-

tive angular positions (d−1(·) is multi-valued and non-smooth), and the measurement

noise is bounded, we employ an estimation algorithm inspired to that proposed in

[13], which is based on a technique known as Interval State estimation ([36]). Such

strategy is then complemented with a bang-bang control law capable of equispacing

the agents on the circle.
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Chapter 3

Estimation Strategy

3.1 Set theoretic state estimator

The estimation strategy we employ in our problem is based on a deterministic treat-

ment of uncertainty, e.g. no hypotheses are made on the probabilistic distribution of

the measurement noise, that is assumed bounded. The goal of estimation strategy is

to recursively characterize the set of all possible state that are compatible at time k

with system dynamics and available measurements. If the model is assumed linear,

ellipsoids that are guaranteed to contain the present state can be used. For non-linear

models, as the one we study in this thesis, the problem is much more difficult, since

the set that contains the state in usually non convex, non connected, and relatively

few theoretical results exist. To illustrate the concept underneath the set theoretic

state estimator, consider a non-linear and possibly time-varying system defined by

xk+1 = fk(xk, uk) (3.1)

yk = gk(xk) + vk (3.2)

and assume that vk ∈ V and that Xk is some set guaranteed to contain the state

xk. In principle, we can define the projected set Xk+1|k as

Xk+1|k = fk(Xk, uk), (3.3)
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f(Xk, uk)

Xk

Xk+1|k

Xk+1|k

Figure 3.1: Projection step. Properties (e.g. connectedness, convexity and so on) are
not preserved.

namely the set of images through f(·, uk) of present set Xk. The projected set

is guaranteed to contain xk+1, and represents the information on the state we can

extract from the model. Now, let Yk be the set of all possible output, when the value

of the measured one is yk

Yk = {yk − v|v ∈ V } (3.4)

obviously the set of all values of the state at time k that could have led to an

observation y in Yk, e.g. the information on the state coming from a measure, is the

set h−1
k (Yk).

measured yk

account
for noise

Yk

g−1

g−1(Yk)

g−1(Yk)

Figure 3.2: Extracting info from measurement. A non convex nor connected set can
be obtained.

Then, to combine information coming from measurements and information coming

from model the following corrected set can be computed

Xk+1 = Xk+1|k ∩ h−1
k (Yk+1) (3.5)
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that is also guaranteed to contain xk+1.

Xk

Xk+1|k

g−1(Yk)

measured yk

Yk

account
for noise

Xk+1

f(·) g−1(·)

Figure 3.3: Correction step by intersection of sets representing informations coming
from model, and information coming from measurement.

The described procedure can be applied recursively, starting from a certain set X0,

assumed to be available a-priori. It can be shown that the corrected set is the smallest

one (at time k) that is guaranteed to contain xk, but except in very particular cases, it

cannot be evaluated exactly. An outer approximation can be computed using Interval

Analysis, as illustrated in [24]. In our problem, we impose a particular structure on

X0, and study how this structure propagates in time under particular hypotheses on

f(·) and g(·), to prove a convergence result of the whole multi-agent system to the

desired formation. In particular we assume that X0 is a closed box of RN , that f is

isometric, and that g is non injective, as can be easily deduced from the proposed

problem formulation. The box X0, since g−1(Yk) is a union of disjoint closed boxes,

because of intersections, splits over time, becoming a finite union of disjoint (smaller)

boxes. Given the structure of the set Xk, it can be observed that each box can be

projected on the orthonormal basis of RN , allowing to decouple the dynamics, in such

a way that Xk can be viewed, at each time instant, as the product of unions of disjoint

closed intervals of the coordinated axes. See Figure 3.4.
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X0

g−1(Y1) g−1(Y1)

g−1(Y1) g−1(Y1)

X1

x1

x2

Box Dynamics

Interval dynamics

Figure 3.4: Decoupling uncertainty boxes dynamics to uncertainty interval dynamics.

Estimation of the state of the whole system is thus equivalently reduced to esti-

mation of the state of each couple of agents, and uncertainty boxes are reduced to

uncertainty intervals, whose dynamics led to a convergent and very efficient estimator.

To study the dynamics of intervals we resort on techniques from Interval Analysis,

that we briefly introduce.

3.2 Interval Analysis

In this section we give some relevant operations and notation on intervals [31]:

• given an interval J ⊂ R, we denote its infimum J , its supremum J̄ , and w(J) ∈
R denotes its width, i.e. J̄ − J ; if J = {x} is a singleton, we call it degenerate,

and we identify the interval with x. In this case, J = J̄ = x;

• a generic binary operation � between intervals X and Y is defined as the set

{x� y ∈ R|x ∈ X, y ∈ Y }.

• given λ intervals X1, . . . , Xλ, the infimum and the supremum of the interval

hull H = hulll {Xl} are given by H = inf l{Xl} and H̄ = supl{X̄l}, respectively.

Note that, if both H and H̄ belong to ∪lXl, then the hull is a closed interval.
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• the algebraic sum of a closed interval X and a scalar z is X+z = [X+z, X̄+z].

Lemma 3. Given three intervals A1, A2, and J , if A2 > Ā1,J∩A1 6= ∅, and J∩A2 6=
∅, one of the following conditions is satisfied: (1) w(J) > A2−Ā1; (2) w(J) = A2−Ā1,

where J is closed, A1 is right-closed and A2 is left-closed.

Lemma 4. Given three intervals A1, A2, and J , if A2 > Ā1, J ≥ A1, J̄ ≤ Ā2, and J

has a non empty intersection with both A1 and A2, then the set J ∩ (A1 ∪ A2) is the

union of two intervals J1 and J2 such that w(J1) + w(J2) = w(J)− (A2 − Ā1).

3.3 Uncertainty intervals

As outlined, the dynamics of boxes in RN , can be equivalently reduced to dynamics

of uncertainty intervals in R. As the oscillators we consider have, in general, different

angular velocities, the proximity-based communications between the agents imply

alternate activations and deactivations of the measurement system, and therefore an

irregular and intermittent flow of positional data. However, we observe that, at every

time instant, we can compute an uncertainty interval for the relative agents position.

In fact, as illustrated in Figure 3.5, when a distance measure is available, we build

an uncertainty interval assuming a bounded measurement error. On the other hand,

when a pair of agents do not perform any measurement, we can still extract an

information from the absence of communications: each agent of the pair is outside

the visual cone of the other, and a (wider) uncertainty interval can be computed.

Is it possible to recursively estimate the relative angular position of all the agents

moving on the circle (i.e. the state of the system), on the basis of the sequence of

these uncertainty intervals? This is the problem we tackle in this chapter.

We emphasize that, even though oscillatory dynamics are widely studied in dif-

ferent fields of sciences and engineering [16, 34, 42, 45], the answer to this question

is non-trivial. This is mainly due to the limited visual cone of the agents, due to

proximity measurement rule, and the lack of orientation in the intermittent measure-

ments.

We point out that the problem is strongly related to the so called ”state bounding”

in the framework of Interval Analysis [21, 20, 25]. which has already been applied to

state estimation problems to cope with the problem of measurement uncertainty, see

[43] and references therein. Recently, Interval Analysis was also used in localization

problems, see [32].
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agent i

agent j1

agent j2

θi(k) + θmax

θi(k)− θmax

uncertainty on j2

uncertainty on j1

visual cone of i

θij(k)

Figure 3.5: Various uncertainty intervals that may arise during estimation.
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For instance, in [25], the authors deals with offline nonlinear state estimation where

measurements are available only when some given equality conditions are satisfied,

and its effectiveness is illustrated when directive measurements are available.

In what follows, we demonstrate some interesting properties of the uncertainty

intervals, whose computation is necessary to solve the state estimation we undertake.

Then, we propose a recursive algorithm for state estimation which exploits these prop-

erties and strongly limits the computational burden, by combining the information

coming from the measurement (or from the absence of the measurement) with that

coming from the knowledge of the agents’ dynamics, thus avoiding an exponential

increase of the number of bounding intervals.

In what follows, we show that the information available at each time instant can

be exploited to recursively reduce the measurement uncertainty. We establish a set

of theorems and corollaries on the properties of the uncertainty intervals that arise in

our estimation problem. These theorems are used to develop an estimation algorithm

which can be run in a completely decentralized fashion by each agent of the system.

Therefore, for the sake of clarity, we illustrate the estimation method with reference

to a single pair (i, j) of agents. Our approach can be easily adapted to scenarios

in which a wider set of information is available, e.g. in centralized or cooperative

scenarios.

3.4 Properties of uncertainty intervals

We start by observing that, if at time k two agents i and j perceive each other, as

the measurement noise is bounded, then αij(k) belongs to the interval

Υij(k) := [max{yij(k)− ϕ, 0},min{yij(k) + ϕ, θmax}] ⊆ I, (3.6)

where the max and min operators are used to take into account that a distance

cannot be negative and that, when αij(k) > θmax, the agents do not perceive each

other.

On the other hand, if, at time k, the agents do not sense each other, then αij(k)

belongs to Ic := (θmax, π]. In both cases θij(k) belongs to an unbounded set of intervals

JΥ(k) :=

{
d−1(Υij(k)) if αij(k) ∈ I,
d−1(Ic) otherwise.

(3.7)

Now, consider the time evolution of θij(k) given by the linear system (2.3). As its

eigenvalues are unitary and ωij(k) is known, by means of the operations on intervals,
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we can say that (2.3) maps uncertainty intervals at time k into uncertainty intervals

of identical width at time k + 1, (i.e. without adding further uncertainty). The

congruence between state and measurement equations enables us to conclude that,

at each time instant k, θij(k) belongs to the uncertainty set

J(k) = (J(k − 1) + ωij(k − 1)) ∩ JΥ(k), (3.8)

J(0) = JΥ(0)∩]− π,+π[. (3.9)

From now on, we define J(k|k − 1) := J(k − 1) + ωij(k − 1). Notice, that J(k) is

a multi-interval and we denote with Jl(k) its l-th element. Moreover, we emphasize

that a conservative measure of the uncertainty on θij(k) is given by w(hulll(Jl(k))).

Hence, in what follows, we characterize the uncertainty on θij(k) by illustrating some

properties of J(k) and of the width of its hull.

Theorem 1. For all k ∈ N, (1) there exists a finite lk such that J(k) = ∪lJl(k), l =

1, ..., lk; (2) w(Jl(k)) ≤ π − θmax,∀l; (3) w(hulll(Jl(k))) ≤ 2π.

Proof. (1) At time k = 0, the statement is a direct implication of (3.9). Moreover,

as J(k|k − 1) is finite and bounded, it may have a non-empty intersection with a

finite number of elements of JΥ(k). Hence, the first statement follows. (2) As the

maximum possible width of Υij(k) is min{2ϕ, θmax}, and from equation (3.9), we have

that maxl{w(Jl(0))} = w(Ic) = π − θmax. As all the eigenvalues of the dynamical

system defined in (2.3) are unitary, we conclude that w(Jl(k)) ≤ π − θmax, for all

k ∈ N; (3) From (3.9), we have that w(hulllJl(0)) ≤ 2π. Then, using the same

argument as above, we can state that w(hulllJl(k)) ≤ 2π, for all k ∈ N.

As we intersect the information coming from the intermittent and uncertain mea-

surements with that on the dynamics, the intervals of the uncertainty set may dynam-

ically shrink, split or disappear. Hence, we now discuss some remarkable properties

of these intersections.

Denote with k̃ij the first time instant in which two agents i and j perceive each

other, and with Jl(k + n|k) the projection of the interval Jl(k) through the dynamic

equation (2.3) n steps ahead. The following theorem and related corollaries hold:

Theorem 2. For all k, n such that k + n < k̃ij, the set Slij := Jl(k + n|k) ∩ d−1(Ic)

can be (1) the empty set; (2) an interval; (3) the union of two disjoint intervals, if

θmax < π/3.
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Proof. The first two points are trivially true. Hence, we focus on the third point and

show that Slij may also be the union of two disjoint intervals. From Lemmas 1 and 2,

we know that d−1(Ic) is the union of an infinite number of open intervals Az of width

2π−2θmax and separated by closed intervals of width 2θmax. From Lemma 3, we know

that if Jl(k + n|k) intersects both Az+1 and Az, then w(Jl(k + n|k)) > Az+1 − Āz =

2θmax. From Theorem 1, this is possible if θmax < π/3. Now, we show that the set

Slij may not be the union of three or more disjoint intervals. Indeed, from Lemma

3, if Jl(k + n|k) intersected Az, Az+1 and Az+2, then its width would be greater than

Az+2 − Āz = 2π + 2θmax. Hence, we would get a contradiction, as from Theorem 1

the maximum width of Jl(k + n|k) is π − θmax.

Corollary 1. For all k, n such that k+ n < k̃ij, if the set Slij is made of two disjoint

intervals, say Jl1 and Jl2, then w(Jl1) + w(Jl2) = w(Jl(k + n|k))− 2θmax.

Proof. As Slij is made of two disjoint intervals, we have Az+1(k + n) − Az(k + n) =

Āz+1(k+n)− Āz(k+n) = 2π ≥ max(w(J))1. Hence, the hypotheses of Lemma 4 are

fulfilled, and therefore the thesis follows.

Remark 1. Corollary 1 implies that, for all k < k̃ij, each of the Jl(k) are separated

by intervals whose width is greater or equal to 2θmax. Such statement is obviously true

at time k = 0. Corollary 1 proves that it is still true until the agents first perceive

each other. Indeed, when an intersection gives rise to two intervals Jl(k) and Jl+1(k),

we have Jl+1 − J̄l = 2θmax.

Corollary 2. For all k < k̃ij, the maximum number of intervals composing the un-

certainty set is 2 + 2m, where m = b(π − θmax)/2θmaxc.

Proof. If two agents do not perceive each other at time k = 0, the uncertainty set

is made of two intervals J1(0) and J2(0), such that w(J1(0)) = w(J2(0)) = π − θmax.

Moreover, from Corollary 1, every time a new interval is generated, the total widths

of the uncertainty intervals is reduced by 2θmax. Hence, the thesis follows.

Theorem 2 and the related corollaries encompass all the possible cases related

to the intersection between Jl(k + n|k) and d−1(Ic), thus completing the analysis

of the properties of the intersections when k < k̃ij. Now, let us consider the case

in which |rem(θij(k + n))| ≤ θmax, and a distance measurement is then available

at time k + n. According to Lemma 1, we know that θij(k + n) belongs to the

1We remind the reader that d−1(Ic) = ∪zAz(k + n)
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unbounded multi-interval set defined by d−1(Υij(k + n)). By intersecting it with the

a priori uncertainty set J(k + n|k), we obtain the a posteriori uncertainty set, which

is denoted by J(k + n). The following two theorems state two relevant properties of

the a posteriori uncertainty set:

Theorem 3. For all k, n such that k+n = k̃ij, S̃ij := ∪l (Jl(k + n|k) ∩ d−1(Υij(k + n)))

can be made of no more than three intervals.

Proof. Trivially, if k + n = 0, then the uncertainty set is given by J(0) = Υij(0) ∪
−Υij(0)2 and thus it is made of two intervals. Next, we consider the case k + n 6=
0. To prove our statement, we show that S̃ij can be made of no more than three

intervals. In fact, as the maximum possible width of Υij(k) is min{2ϕ, θmax}, from

Equation (3.6) and Lemma 1, we know that, for any l, d−1(Υij(k + n)) := ∪l(Bl),

and w(Bl) = w̃ ≤ min{2ϕ, θmax}. Moreover, again from Equation (3.6) and Lemma

1, we have that the minimum width of [B̄l, Bl+3] is 2π. Thus, from Theorem 1

and Lemma 3, hulll(Jl(k + n|k)), and the multi-interval set ∪l(Jl(k + n|k)) cannot

intersect all the four intervals Bl, ..., Bl+3. As the maximum possible width of Υij(k)

is min{2ϕ, θmax}, from Remark 1 and Lemma 3, we have that if Bl1∩Jl2(k+n|k) 6= ∅,
then Bl1 ∩ Jl(k + n|k) = ∅, ∀ l 6= l2. Hence, the thesis follows.

Remark 2. After the first measurement is gathered, that is, for all k > k̃ij, maxl{w(Jl(k))} ≤
min{2ϕ, θmax}.

Theorem 4. For all k, n such that k + n ≥ k̃ij, Jl(k + n|k) ∩ d−1(Υij(k + n)) can be

(1) the empty set; (2) an interval; (3) the union of two intervals.

Proof. The first two points are trivially true. Thus, we focus on point 3. As showed in

the proof of Theorem 3, Jl(k+n|k) can intersect Bl and Bl+1. Hence, we only need to

show that it cannot intersect Bl, Bl+1 and Bl+2. If it were possible, from Lemma 4, we

would have w(Jl(k+n|k)) ≥ Bl+2−B̄l ≥ 2π−θmax. As we know that 0 < θmax ≤ π/2,

from Theorem 1, we would get a contradiction, as w(Jl(k + n|k)) ≤ π − θmax < π,

and Bl+2 − B̄l ≥ 2π − θmax > π. Hence, the thesis follows.

Theorem 5. ∀k ≥ k̃ij, n ∈ N, Jl(k + n|k) ∩ d−1(Ic) is either the empty set or an

interval.

2−Υij(k) , [max{−Ῡij(k + n),−θmax},min{−Υij(k + n), 0}]
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Proof. Given the definition of Ic, and from Lemmas 1 and 2, we know that d−1(Ic) is

the union of an infinite number of open intervals Az of width 2π−2θmax separated by

closed intervals of width 2θmax. Moreover, as emphasized in Remark 2, for all k ≥ k̃ij,

Jl(k + n|k) is min{2ϕ, θmax}. Thus, none of the Jl(k + n|k) fulfils the requirements

given in Lemma 3 necessary to intersect any two Az and Az+1.

Algorithm 1 Estimation Algorithm based on Interval Analysis
k = 0

Require: k̃ij < 0
λ(0) = 2 . from Th. 1
if |rem(θij(0)) ≤ θmax| then

J(0) = −Υij(0) ∪Υij(0)

k̃ij = 0
else

J(0) = −Ic ∪ Ic
end if
k = 1
while w(H(k)) ≥ δ do . δ is the tolerance on the convergence

if yij(k) ∈ R then

if k̃ij < 0 then . i.e. a measure is available for the first time
Routine A . Th. 3 and 4 are leveraged

k̃ij = k
else . i.e. a measure is available but not for the first time

Routine B . Th. 4 is leveraged
end if

else . i.e. the agents do not perceive each other

if k̃ij < 0 then . the agents do not perceived each other yet
Routine C . Th. 2 is leveraged, see the Appendix

else . the agents have already perceived each other
Routine D . Th. 5 is leveraged

end if
end if
k = k + 1
w(H(k)) = max

l
{J̄l(k)} −min

l
{Jl(k)}

end while
return θij(k) = (max

l
{J̄l(k)}+ min

l
{Jl(k)})/2

Routine A
λ(k) = 0, l = 1
while l < λ(k − 1) and λ(k) ≤ 3 do . λ(k) ≤ 3, see Th. 3

Jl(k|k − 1) ∩ d−1(Υij(k)) . Three only alternatives, see Th. 4

if Jl(k|k − 1) ∩ d−1(Υij(k)) is an interval then
λ(k) = λ(k) + 1

else
if Jl(k|k − 1) ∩ d−1(Υij(k)) is the union of two intervals then

λ(k) = λ(k) + 2
end if

end if
l = l + 1

end while

Routine B
λ(k) = 0
for l = 1 : λ(k − 1) do

Jl(k|k − 1) ∩ d−1(Υij(k)) . Three alternatives, see Th. 4

if Jl(k|k − 1) ∩ d−1(Υij(k)) is an interval then
λ(k) = λ(k) + 1

else
if Jl(k|k − 1) ∩ d−1(Υij(k)) is the union of two intervals then

λ(k) = λ(k) + 2
end if

end if
end for
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Routine C
λ(k) = 0
for l = 1 : λ(k − 1) do

Jl(k|k − 1) ∩ d−1(Ic) . Three alternatives, see Th. 2

if Jl(k|k − 1) ∩ d−1(Ic) is an interval then
λ(k) = λ(k) + 1

else
if Jl(k|k − 1) ∩ d−1(Ic) is the union of two intervals then

λ(k) = λ(k) + 2 . only possible if θmax < π/3 from Th. 2
end if

end if
end for

Routine D
λ(k) = 0
for l = 1 : λ(k − 1) do

Jl(k|k − 1) ∩ d−1(Ic)

if Jl(k|k − 1) ∩ d−1(Ic) is an interval then . can be only the empty set or an interval thanks to Th. 5
λ(k) = λ(k) + 1

end if
end for

The theorems presented above are the foundations of our estimation technique,

illustrated in Algorithm 1. We remark that, when a wider set of information is

available, our estimation method may be easily adapted. This is the case, for instance,

of a centralized estimation, where every agent communicates with a central base

station, or of cooperative estimation, in which the agents can collaborate to improve

the accuracy of their estimates. In these scenarios, the additional information can be

exploited by considering that the elements of matrix Θ(k) must satisfy the following

concatenation property:

p−1∑
i=l

j=i+1

θij = θlp, l = 1, . . . , N − 1, p = l + 2, . . . , N. (3.10)

These constraints can be used to further restrict the uncertainty on the elements of

matrix Θ(k). To clarify this point, we refer to the simplest case of N = 3 agents,

where (3.10) becomes θ12(k) + θ23(k) = θ13(k). In this case, at each time instant,

it is possible to intersect the multi-interval J12(k) + J23(k) with the multi-interval

J13(k)3, thus possibly reducing the width of the uncertainty sets on θ12(k), θ13(k) and

θ23(k). The obvious advantage of considering a larger amount of information entails

an increase in the computational burden. We remark that all the results presented in

this section refer to the non-cooperative scenario.

3.5 Convergence by a density argument

Here, we show under which conditions the estimate provided by the proposed algo-

rithm converge to the true value θij(k). Let us denote withH(k) = [minl{Jl(k)},maxl{J̄l(k)}]
3J ij(k) = ∪

l
J ijl (k) is the uncertainty of the pair (i, j)
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the hull of all intervals Jl(k) of the uncertainty set J(k).

Definition 3. We say that Algorithm 1 converges if lim
k→∞

w(H(k)) = 0.

The following theorem establishes a sufficient condition for convergence.

Theorem 6. If

{mod (θij(k)− θij(0))}∞k=0 =

{
mod

(
k−1∑
h=0

ωij(h)

)}∞
k=0

(3.11)

is dense in [0, 2π], then Algorithm 1 converges.

Proof. To prove our statement, we must show that

∀ε > 0, ∃h : ∀k > h, w(H(k)) < ε.

As from Theorem 1 we know that max{w(H(k))} = 2π, and that in such case H(k)

is open, then

2π − (θij(k)−H(k)) = κ1 > 0,

2π − (H̄(k)− θij(k)) = κ2 > 0.

Moreover, if (3.11) holds, then

∀ε > 0, ∃ h1, h2 ∈ N :

{
0 < θmax −mod(θij(h1)) < ε/2,

0 < mod(θij(h2))− θmax < ε/2.
(3.12)

In Equation (3.12), the first condition implies that, for k ≥ h1, ]θij(k) − 2π +

ε/2, θij(k) − 2θmax[∩J(k) = ∅. Taking ε < 2κ1 we have that, for k ≥ h1, (θij(k) −
H(k)) ≤ 2θmax. Moreover, the second condition in (3.12) assures that ]θij(k) −
2π + 2θmax, θij(k) − ε/2[∩J(k) = ∅. Hence, we have that, for k ≥ max{h1, h2},
(θij(k) − H(k)) ≤ ε/2. Following the same line of arguments, we obtain that, for

k ≥ max{h1, h2}, H̄(k)− θij(k) ≤ ε/2 which proves our statement.

Obviously, the fulfillment of the hypothesis (3.11) depends on ωij(k), i, j = 1, . . . , N ,

k ∈ R. It is possible to prove that the range of sequence (3.11) is dense for a specific,

but relevant, class of angular velocities.

Corollary 3. If ωij(k) = ω̃ij for all k ∈ N, with
ω̃ij

2π
/∈ Q, then Algorithm 1 converges.
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Proof. From the hypothesis, the range of sequence (3.11) can be rewritten as {mod (k · ω̃ij)}∞k=0.

Thanks to the well known Kronecker’s theorem [18], such sequence is dense in [0, 2π].

From Theorem 6, the thesis follows.

We extend this result to periodic angular velocities.

Corollary 4. If ωij(k) is periodic with period d, and

1

2π

k+d∑
h=k

ωij(h) /∈ Q, (3.13)

then Algorithm 1 converges.

Proof. From the hypotheses, the range of the sequence (3.11) is dense in [0, 2π]. From

Theorem 6, the thesis follows.

Note, that all convergence results are derived without any assumption on the

probability distribution of the bounded measurement noise. This is a key feature of

the proposed strategy, in it paves the way for the extension of our results to any other

closed curve that may be described in polar coordinates. In fact, the circle is the only

curve that allows to unequivocally associate a phase distance to a Euclidean distance,

unless the absolute position of one of the agents is known. In any other scenario,

each Euclidean distance is mapped into an interval of phase distances, generating a

bounded deterministic uncertainty.

3.6 Convergence and contraction in a metric space

In this section our goal is to introduce a theoretical framework in which convergence

of the (set theoretic) estimator-based controller can be analyzed. This framework is

based on contraction properties of Lipschitz maps, when they are interpreted as maps

between metric spaces whose elements are particular sets.

The main point, here, is that the map f that characterize the dynamics of the

overall multi-agent system can be lifted in a particular metric space, where it asso-

ciates sets to sets. In that space, convergence results can be obtained by means of

fixed point theorems.

To do so, let us consider the set K of compact subsets of RN and suppose that

the system is regulated by a control function u(x) that renders the compound map

f(x, u(x)) = F (x) Lipschitz with Lipschitz coefficient k. Since F is Lipschitz, it

satisfies the following metric condition
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d(F (x2), F (x1) ≤ k · d(x2, x1),∀x2, x1 ∈ RN . (3.14)

If 0 < k < 1, F (x) is termed contraction. Contractions are very important func-

tions in non-linear analysis, because they satisfy the well known Banach’s Contraction

Principle, that states that contractions have unique fixed point.

In problems that involve deterministic treatment of noise and uncertainty, as the

one we study in this thesis, one wish to study how uncertainty set propagates in time.

We can observe that F (x) defines a transformation on the space set K of subsets of

RN

F (A) = {F (x)|x ∈ A} (3.15)

and since F (·) is continuous, it carries K into itself.

Now suppose that K is equipped with the Hausdorff metric dH(·), that can be

defined as

dH(A,B) = max{do(A,B), do(B,A)} (3.16)

where do(·) is the oriented distance between sets A and B, defined as

do(A,B) = max
x∈A

min
y∈B

d(x, y) (3.17)

where d(·) is a distance in RN . A very important property of the Hausdorff

distance to our scope is the following

dH(A ∩ C,B ∩ C) ≤ dH(A,B), A ∩ C 6= ∅, B ∩ C 6= ∅. (3.18)

Equipped with the Hausdorff distance, the set K becomes a complete metric space.

When F (·) is considered as a function from K to K one may ask if the contraction

property (that involves only the Hausdorff metric defined in K) is preserved. By

simple calculations, it is possible to prove that a contraction F (x) on RN induces a

contraction with the same Lipschitz constant k on the space K. Indeed results

do(F (A), F (B)) = max
a∈A

min
b∈B

d(F (a), F (b))

≤ max
a∈A

min
b∈B

k · d(a, b)

= k · d(A,B).
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Since F (·) is a contraction in the space K of compacts of RN it admits a fixed

point, hence the recurrent equation Xk+1 = F (Xk) converges to it. This result is one

of the key of the Hutchinson’s remarkable construction of fractals. We remark that

the fixed point is a compact set, non necessarily a singleton.

Let us now consider the set theoretic state estimator to analyze its convergence

properties.

Xk+1 = f(Xk, uk) ∩ h−1
k (Yk+1) = F (Xk) ∩ h−1

k (Yk+1). (3.19)

Property 3.18 implies that

dH(F (A) ∩ h−1
k (Yk+1), F (B) ∩ h−1

k (Yk+1)) ≤ dH(F (A), F (B)) (3.20)

≤ k · dH(A,B). (3.21)

We remark that the highlighted contraction properties of the set theoretic state

estimator allow to conclude that

• if the control system is designed to be contractive in absence of noise and un-

certainty, it remains contractive when the uncertainty is described by compact

sets;

• correction step in the set theoretic state estimator don’t make worse the con-

traction property of the control system.

These results require further investigations to assess whether exist particular class

of control inputs that, as done in Theorem 6 for our paradigmatic multi-agent system,

allow to render the convex hull of the fixed point of the set theoretic state estimator

contained in a set that represents the control goals.

3.7 Numerical simulation of estimation algorithm

In this section, we present extensive numerical simulations to complement the theoret-

ical analysis and to test the performance of the algorithm. To this aim, we considered

two scenarios for our simulations:

1. ωij(k) is randomly selected in [0, 2π], k = 1, ..., T ;

2. the relative angular velocity between each pair of agents is constant, that is,

ωij(k) = ω̃ij, k = 1, ..., T , with ω̃ij randomly selected in [0, 2π[.
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Scenario (1) Scenario (2)
p 100.00 99.85
〈kc〉 8.40 11.40

〈w(H(T ))〉 6.00× 10−3 5.90× 10−3

Table 1. Percentage of convergent estimates p, average convergence time 〈kc〉, and average final uncertainty
〈w(H(T ))〉.

For both scenarios, we perform 30000 simulations each involving a pair of agents,

and we select the simulation time T = 300, ϕ = θmax/5, and, for each simulation, we

take θmax randomly in [0.11π, 0.30π]. To test the performance of the algorithm, we

introduce the definition of practical convergence. Namely, we say that the algorithm

practically converges if there exists a time instant kc ≤ T such that w(H(kc)) ≤ 2ϕ,

and we say that kc is the convergence time. In Table 1, we report the percentage

of convergent estimates p, the average convergence time 〈kc〉, and the average final

uncertainty 〈w(H(T ))〉 for the two numerical scenarios. We observe that, in Scenario

(1), as ωij(k) is randomly selected from a uniform distribution, then (3.11) is verified

and, from Theorem 6, asymptotic convergence is guaranteed. Accordingly, we find

that the estimation practically converges in all simulations, see Table 1. In Scenario

(2), the hypothesis of Corollary 3 is fulfilled. In fact, the probability of randomly

picking an ω̃ij such that ω̃ij/2π ∈ Q is zero. However, from Table 1, we observe that

practical convergence is achieved in 99.85% of simulations. This is due to our con-

vergence criterion, which is defined on a finite time horizon. This implies that, when

ω̃ij/2π is sufficiently close to a rational number q, the algorithm may not practically

converge.
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Chapter 4

Control Strategy

The objective in this chapter is to select a control law that allows the estimation

algorithm to be executed and that is proved to converge in the nominal case (e.g.

without noise and uncertainty).

4.1 Adaptation of a control law designed for the

nominal case

In the application considered in this thesis, the estimation strategy would require

the knowledge of uij(k) to compute the a priori uncertainty set J ij(k + 1|k). In

what follows, we show that our selection of the control law facilitate the estimation

algorithm. In fact, in the assumption that all the agents share the same type of control

law, it is possible to define an interval in which uij(k) falls, allowing to perform an

interval prediction of θij(k).

Furthermore, as our control strategy only requires information on phase differences

ϑij(k) := rem(θij(k)) and not relative angular positions, we define the interval

H ij(k) :

{
infx{x ∈ rem(J ij(k))},
supx{x ∈ rem(J ij(k))}, (4.1)

which represents an overestimate of the uncertainty on ϑij(k).

Finally, as a scalar estimate is required by our control law, we define it as

ϑ̂ij(k) =
H̄ ij(k)−H ij(k)

2
. (4.2)

As in [9], we design our control strategy so that each agent is pushed by its

followers. Specifically, in our case, each agent i is only influenced by its nearest

follower i− 1, defined as
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i− 1 :

{
H i,i−1 > 0

H̄ i,i−1 < H ij
l ∀j, l|H ij

l > 0, j 6= i− 1
(4.3)

Furthermore, each agents is labeled, as is the case when, for instance, proximity

measurements are made by means of RFID technology ([52, 41]). The agent L, which

is randomly picked, which adopts the following control law:

uL(k) =ω0, (4.4)

while the control law of the remaining agents is described by

ui(k) =
(
ω0 +Ksgn+(ψ −mod(ϑ̂i,i−1(k)))

)
I(i), (4.5)

where I(i) is the following indicator function:

I(i) =

{
1 if i− 1 is univocally determined,

0 otherwise,
(4.6)

for all i = 1, . . . , N , i 6= L.

4.2 How the control law facilitates the estimator

Notice that the selected control strategy is totally decentralized and non-cooperative

as the action exerted by each agent depends only on the estimated distance from its

closest follower. The key point of the proposed control law is that the bang-bang

controller (4.5) is triggered only once the ambiguity on the identity of the follower

has been solved by the estimator. However, the selected control law facilitates the

estimator, as it implies that

uij(k) ∈ {−ω0 −K,−ω0,−K, 0, K, ω0, ω0 +K}, (4.7)

allowing to compute J ij(k + 1|k) from J ij(k) as

∪
λ
[J ijλ (k)− ω0 −K, J̄ ijλ (k) + ω0 +K]. (4.8)

Nevertheless, to improve the performance of the estimator, it is possible to further

restrict the set of allowed values for uij(k) for selected cases of interest. To clarify this

point, let us consider a generic agent i 6= L and its follower i− 1, as the control law

ui only requires information on the relative angular position of this pair of agents. In

this case, we know that, before that agent i identifies its follower,
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ui,i−1 ∈ {−ω0 −K,−ω0,−K, 0} (4.9)

Furthermore, we observe that agent i may identify its follower only at a time

instant k̄i in which a measurement is available, and therefore ui−1(k̄i) cannot be zero.

Given the previous considerations, as at time k̄i the two agents perceive each other,

and as θmax < ψ, we know that ui(k̄i) = ω0 +K. Furthermore, as we pointed out that

ui−1(k̄i) 6= 0, we know that the control law of agent i− 1 has already been triggered.

Hence, we have

ui,i−1 ∈ {0, K}, ∀k ≥ k̄i. (4.10)

Finally, if at time k̃i > k̄i agent i is able to push agent i − 1 outside of its visual

cone, then ui,i−1(k̃i) = K. This would imply that, at time k̃i, agent i− 1 has already

reached the desired spacing with agent i− 2, and its estimate ϑ̂i−1,i−2(k) of the angle

ϑi−1,i−2(k) is greater than or equal to ψ. Therefore, ui−1(k) = ω0 for all k ≥ k̃i.

Then, for all k ≥ k̃i, agent i can estimate ϑi,i−1(k + 1) on the basis of a scalar and

unambiguous ui,i−1(k).

4.3 Block diagram of the closed loop

Summing up, when the detecting distance is lower than the desired spacing distance,

and therefore, after the transient, the controller push the pairs of consecutive agents

outside their mutual detecting distance, and the estimate must rely only on the pre-

dictive component of our estimator. For that reason, we choose an extremely simple

control law, as the bang-bang action described in equation (4.5), so that the estima-

tion of ϑij(k) is complemented with a simple estimator of uij(k), see the estimation

and control scheme depicted in Figure 4.1.
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ui(k)

ui(k − 1)

Figure 4.1: Schematic of the estimation and control strategy: Pi is the i-th agent
and Pi−1 its follower; E1 is the estimator of the relative control input ui,i−1; E2 is the
estimator of the relative angular position θi,i−1; C is the bang-bang controller.
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Chapter 5

Numerical Results

5.1 Simulation conditions

To validate our estimation and control strategy, we performed extensive numerical

simulations. In all experimental conditions, we set

(a) the number of agents N = 6. Hence, the target spacing between consecutive

agents is ψ = 2π/N ;

(b) ω0 = 0.01;

(c) the simulation time T = 3000.

We test the effectiveness of our approach for different values of the detecting distance

θmax, the bound of the modulus of the measurement noise ϕ, and the control gain K.

Specifically,

(a) θmax is varied between 0.18ψ and 0.9ψ with step 0.18ψ;

(b) for each value of θmax, ϕ is varied between 0.04θmax and 0.20θmax with step

0.04θmax;

(c) for each combination of θmax the control gain K is varied between 0.002 and 0.010

with step 0.002.

The result of this scheme is a total of 125 parameter combinations. For each parameter

combination, we consider the same set of R = 100 randomly selected initial conditions

for the angular positions. We remark that, in the parameter selection, we take ψ <

θmax to remove the assumption of jointed connectivity. Moreover, we select ϕ as a

function of θmax as it is typically related to the sensor’s range. For the sake of clarity,

we restrict the analysis to the case where the agents cannot overtake each other.
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Accordingly, the initial conditions for θij, i, j = 1, . . . , N , are selected in the interval

[2ϕ, π]. As we took the same set of R initial conditions for each of the 125 simulated

scenarios, the previous condition must be fulfilled considering the maximum value of

ϕ, that is, 0.036ψ.

To test the performance of the algorithm, we introduce the definition of practical

convergence. Namely, we say that the algorithm practically converges if there exists a

time instant kc ≤ T such that (1/N)
∑

i |ϑi,i−1(k)−ψ| ≤ δ for all k ≥ kc
1, and we say

that kc is the convergence time. For our simulations, we set δ = 0.05ψ = 0.0524rad,

and we say that kc(Ki, ϕj, θmax,m, s) is the convergence time of the s-th repetition of

parameter combination corresponding to the i-th values of K, the j-th value of ϕ,

and the m-th value of θmax, for i, j,m = 1, . . . , 5, and s = 1, . . . , R.

5.2 Statistics and comments on simulation results

Let us now describe the numerical results. Firstly, we underline that only in two sim-

ulations the specified tolerance was not fulfilled, and practical convergence is achieved

in the 99.9984% of the runs. As for the convergence time kc, its average

〈kc〉 =
1

125R

5∑
i,j,m=1

R∑
s=1

kc(Ki, ϕj, θmax,m, s),

computed on the basis of all 12500 simulations, is 735 time instants. To have a fist

insight on the effect of K, ϕ, and θmax, we evaluated

〈kc(K)〉 =
1

25R

5∑
j,m=1

R∑
s=1

kc(K,ϕj, θmax,m, s),

〈kc(ϕ)〉 =
1

25R

5∑
i,m=1

R∑
s=1

kc(Ki, ϕ, θmax,m, s),

and

〈kc(θmax)〉 =
1

25R

5∑
i,j=1

R∑
s=1

kc(Ki, ϕj, θmax, s).

As expected, increasing the control gain K the convergence time decreases, see Fig.

5.1, while an increase of the measurement noise ϕ produces a slight increase in the

convergence time, see Fig. 5.2. Finally, increasing θmax, we experienced a steep

increase in 〈kc(θmax)〉, as depicted in Fig. 5.3.

1We remind the reader that the follower of agent i is labeled as i− 1. The follower of agent 1 is
obviously agent 6.

41



0.002 0.004 0.006 0.008 0.01

500

1000

1500

K

〈k
c
(θ

m
a
x
)〉

Figure 5.1: Plot of 〈kc(K)〉 as a function of K.

To delve into the statistical significance of the observed variations, we performed

a three-way ANOVA (analysis of variance), whose results are reported in Table 5.1.

Such analysis tests the null hypothesis that each factor has no influence on the

convergence time kc. Hence, a low p-value implies that the null hypothesis must be

rejected. The lowest p-value of 0 is obtained for the detecting distance θmax and

the control gain K, while the null hypothesis may not be rejected for the effect of

ϕ on kc, as the p-value is 0.62. To further discuss the lack of significance of the

variation of the convergence time as a function of ϕ, in Fig. 5.4 we display a box

plot for a representative simulation scenario: as a result, the variability induced by ϕ,

which is represented by the difference between the medians of the distributions (red

horizontal lines) is negligible if compared to the natural variability of kc (the width

of the blue boxes). Therefore, we can conclude that the inter-class sampled variance

is much smaller than the intra-class sampled variance. This means that the effect of

measurement noise ϕ on kc is too small to be statistically significant, if compared to

the effect of the other parameters, and to the natural variability of kc.

5.3 Simulation for agents with not negligible iner-

tia

Finally, to further test the effectiveness of our control strategy, we consider the case in

which the inertia is not negligible and the approximation of instantaneously switching

the angular velocities is not acceptable. To model this scenario, we modify equation
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Figure 5.2: Plot of 〈kc(ϕ)〉 as a function of ϕ.
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Figure 5.3: Plot of 〈kc(θmax)〉 as a function of θmax.
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Factor degrees of freedom p-value
K 4 0
ϕ 4 0.62
θmax 4 0

Table 5.1: Three-way ANOVA to test the influence on kc of the factors K, ϕ, and
θmax.

(2.3) and obtain the following expression for the dynamics of each agent:

θi(k + 1) = θi(k) + ωi(k) (5.1)

where ωi(k) is{
ω0 + min{ωi(k − 1) + α1, ui(k)} if ui(k) ≥ ωi(k − 1)

ω0 + max{ωi(k − 1)− α2, ui(k)} if ui(k) < ωi(k − 1),
(5.2)

and ωi(0) = ω. The parameters α1 and α2, possibly different, account for the inertias

of the multi-agent system. In our preliminary analysis, based on a set of 100 simu-

lations, with the same set of initial conditions considered above, and where we set

θmax = 0.5864 and K = 0.01, our approach successfully achieved practical convergence

in all the repetitions.
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Figure 5.4: Box plot of kc as a function of ϕ for θmax = 0.3770, K = 0.008. The central
mark are the medians, the edges of the boxes are the 25-th and 75-th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers
are plotted individually.
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Chapter 6

Conclusions

In this thesis, we tackled the problem of coordinating a multi-agent system of oscilla-

tors to achieve a balanced circular formation. Differently from the existing literature,

we did not rely on the exact knowledge of the relative angular positions between the

agents. This is motivated by the fact that, in many fields of application, the accuracy

of the measurements is limited due to physical or economical constraints. Hence, we

considered intermittent, uncertain and ambiguous measurements as those performed

by cheap proximity sensors. Furthermore, we assumed that the sensor have a limited

detecting distance, lower than the desired spacing among the agents. To cope with

this reduced level of information, we developed a decentralized strategy for estimation

and control. Inspired by the algorithm presented in [13], we proposed an estimator

capable of reconstructing the relative angular position from the intermittent distance

measurements. Implementing an appropriately designed bang-bang control law, each

agent is capable of univocally identifying its closest follower and achieves an appropri-

ate spacing from it. Extensive numerical simulations illustrated the effectiveness of

the approach: the desired equispaced configuration is achieved and the convergence

speed can be regulated with the control gain and is not significantly affected by the

measurement noise. Moreover, preliminary results show how the approach can be

successfully applied when the inertia is not negligible and the switches prescribed by

the bang-bang control law cannot be instantaneous. A formal proof of convergence

of the estimation and control strategy is subject of ongoing research. Here we remark

that the problem of convergence can’t be approached with a separation principle, but

that the most promising direction, at the best of our knowledge, seems to be the ex-

ploration of contraction properties of the set theoretic estimator, that has proved deep

connections with fractals’ theory. It is hoped that the work of this thesis will serve

as a basis for continuing research in this direction, and that the presented ideas and
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techniques will augment the set of tools available to scientists and engineers studying

interconnected systems and problems of coordinated agents.
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