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                                                   ABSTRACT 

 

 

Understanding the interactions of nanoparticles (NP) with the cell membrane 

and their trafficking through the cells is very relevant to fully explore the use 

of NP for efficient delivery of therapeutics and to reduce their cytotoxicity. 

Despite numerous efforts to establish a structure–function relationship 

between NP physico-chemical properties and their interactions with 

biological systems, the possibility to predict the fate of NP remains still far.  

In this thesis we assume that the way by which NP cross the cell membrane 

dictates their fate. To test this hypothesis, first, we studied the effect of NP 

delivery across cell membrane in controlling metal-containing NP (MNP) 

toxicity. In particular, we delivered MNP across the cell membrane directly 

inside the cytosol by using a pneumatic method -a gene gun - thus bypassing 

the formation of endocytic vesicles. We found that the cytotoxicity of MNP 

is strictly reliant upon the pathway of cellular membrane crossing and their 

localization. In particular, if otherwise toxic MNP are allow to enter the cell 

bypassing any form of active-dependent mechanism as endocytosis, no 

significant cytotoxic effect is showed.  

Starting from these results, we designed surface decorated NP by using a bio-

inspired approach in order to control NP entrance and to escape the 

lysosomal pathway. The results show that the decoration of polystyrene NP 

with Herpes simplex virus type one derived gH-625 peptide affected NP 

intracellular distribution by reducing NP accumulation within the lysosomes, 

increasing intracellular free “random walk” behavior, reducing NP toxicity 

and enhancing blood-brain barrier crossing.  
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1. INTRODUCTION 

 

1.1.  Nanotechnologies 

 

In the last decades, the progress in biochemistry, physical chemistry, 

microscopy and engineering have resulted in a significant interest in the 

properties of very small particles and their possible applications in a wide 

variety of fields from industrial to medical.1This growing interest, supported 

by the fast progress of technical methods based on the manipulation of the 

material at the atomic level, has allowed the development of a 

multidisciplinary science called nanotechnology2.  

Nanotechnology is considered a branch of science and technology. The 

National Nanotechnology Initiative of the National Science Foundation 

defines this science as “the understanding and control of matter at dimensions 

of roughly 1 to 100 nanometres (nm), where unique phenomena enable novel 

applications”.3 The concept based on the use of nanotechnology is  that 

material itself can change its optical, mechanical and chemical properties at 

various size scale. For example, carbon has different chemical properties if 

their atoms are assembled in nanotubes. From this innovative point of view, it 

is possible to create new functional materials, tools and products with special 

chemical and physical characteristics. Examples of applications of 

nanostructured materials include self-cleaning surfaces, cosmetics containing 

nanoparticles, improvements in construction materials and more.3 

Functionalized products made  through the use of nanotechnology find a 

wide variety of applications, in fact it has been estimated a rapid grow of the 

market 4. 

Furthermore, the scientific interest is supported by the possibility of applying 

nanomaterial in diagnostic and therapeutic fields. In diagnostic, the 

specificity and sensitivity of magnetic resonance imaging can be greatly 

improved by using nanoparticles (NP) as contrast enhancement material. 
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Concerning therapeutic field, NP used for drug delivery represent a valid 

alternative to traditional way of drug administration, in fact, by using NP it is 

possible obtain biologic effect of drugs on a specific type of cell5. 

 

1.2. Nanotechnologies to overcome blood brain barrier 

 

In order to develop more effective and efficient systems for the transport of 

drugs in specific tissues, many researchers are studying the possibility of 

using NP. In particular, a specific field of nanotechnology applied to the 

central nervous system (CNS) is now growing up6. In fact, the progressive 

increase of the number of individuals affect by CNS diseases, has allowed the 

development of new strategies for enhancing drug delivery to the brain. 

Despite many efforts, treatments to target CNS remain still limited due to the 

inability of therapeutic agents to effectively reach the brain7. To achieve 

efficient treatments of the CNS related pathology, it is necessary to transport 

therapeutic agents across the specialized cells forming the vascular system of 

the brain, the blood-brain barrier (BBB).8Brain endothelial cells are 

characterized by an high expression of junction proteins and selective 

pathways, in this way, BBB is able to protect the brain from toxic substances, 

on the other hand, this selectivity represents the main obstacle for penetration 

of most CNS drug candidates. Currently, the strategies in use to target drugs 

to the CNS involve invasive treatments as intracerebral implantation of 

controlled release implants, intaventricula infusion of drugs directly to the 

CNS and BBB disruption by osmotic agents. However these approaches 

cause several undesirable effects in humans9,including physiological stress 

and transient increase in intracranial pressure. Furthermore, destroying the 

BBB temporarily leaves the brain vulnerable to infection and damage from 

toxins, also, substances that circulate in the peripheral blood, as albumin, can 

have deleterious effects if they enter the brain. Most importantly a large part 
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of these treatments have low efficacy due to limited diffusion of drug to the 

surrounding tissue10. The diffusion of drugs from the blood into the brain 

depends mainly upon their ability to cross lipid membranes. Therefore, drugs 

of interests may not have the requisite physicochemical characteristics 

necessary to successfully overcome BBB. This is the reason why several 

strategies have been developed to overcome the BBB.11 

A promising strategy to improve delivery of drugs to the central nervous 

system (CNS), is represented by the use of NP. NP are defined as particulate 

dispersions or solid particles with a size in the range of 1-100 nm. Depending 

on the method of preparation of NP, it is possible to obtain "nanocapsules", 

where the drug is encapsulated within a cavity formed by a single polymer 

membrane, or "nanospheres", where the drug is linked physically to the 

surface.12
 

The growing interest in these new types of materials is due to the physical-

chemical properties, such as their size, electric charge and the possibility of 

being functionalized with multiple copies of drug molecule of interest, which 

play a fundamental role in the behavior of NP. Actually the major goals in 

designing NP as a delivery system are to control particle size, electric charge, 

surface functionalization and release of pharmacologically active agents in 

order to achieve the site-specific action of the drug at the therapeutically 

optimal rate and dose regimen12-13. These properties make nanoparticles an 

efficient drug delivery system that can be easily adapted to deliver drugs to 

various compartment of the body, including the brain, and then an attractive 

alternative to existing methods for transporting drugs across BBB. 

By the use of NP, minimizing undesirable side effects, the drug can be 

transported to the place of action, in addition, encapsulating drug, NP can act 

protecting it from rapid degradation or clearance and enhances drug 

concentration in target tissues, in this way, lower doses of drug are required14. 

This modern form of therapy is especially important when there is a 
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discrepancy between a dose and concentration of a drug and its therapeutic 

results or toxic effects.14  

Even if, it is well established the potential role of using NP in drug delivery 

applications, few are the NP in clinical trials. In fact, despite numerous 

efforts to establish a structure–function relation between the physical and 

chemical properties of NP and their interactions with biological systems, the 

way to predict their toxicological profile remains still far.  

 

1.3. Interaction at nanoparticle-cell interface in biological system and 

cytotoxicity 

 

Rapid growth in nanotechnology field is increasing the types of NP that are 

under development for therapeutic applications. NP interacting with serum 

proteins, cell membrane, DNA and organelles, establish a series of 

nanoparticles/biological interface that influence the way of interactions and 

crossing of cell membrane, the intracellular uptake, and the consequent 

intracellular reactions that could have biocompatible or cytotoxic 

outcomes1516. 

To be able to take advantages from the use of NP for drug delivery systems, 

it is essential to clarify how the interaction at nano-bio interface influence 

behaviour of NP14. 

The bio-nano interface comprises dynamically interacting components as the 

nanoparticle surface, that are the characteristics of which are determined by 

its physicochemical composition and the solid-liquid interface (Figure 1) 

changes that occur when the particles interact with proteins components of 

surrounding medium.  
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Figure.1 Representation of the interface between a nanoparticle and a lipid bilayer.  

Modification of the surface properties of those materials through interactions with proteins of the 
resuspending medium, and the dynamic interactions of the solid-liquid interface with biological 
molecules and cellular comprtments.(Verma et. Al, Nature materials 2008.) 

 

Once in biological fluid, NP are quickly covered by proteins of cell culture 

medium that form the so called “protein corona17.The composition of the 

protein corona depends upon NP physico-chemical properties and determines 

interactions with cell membrane18.Interactions between NP and cell 

membrane may trigger cell crossing and NP fate. It has been shown that 50 

nm silica NP have high energy of the bare surface and adsorb strongly to cell 

membranes because of unspecific interactions; this lead to strong damage to 

cells when exposed in the absence of serum. In the presence of serum 

proteins, however, the formation of a protein corona has already lowered the 

surface energy and unspecific interactionsbetween the NP-corona complex 

and the cell membrane are much reduced. In this way, in the presence of 

serum, the damage is mitigated; this effect can be related to the adhesion 

properties of the NP in the two conditions. 
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1.3.1.  Mechanisms of cytotoxicity 

 

The influence of multiple parameters on the cytotoxicity of NP leads to the 

identification of common principles of toxic action, these could be helpful in 

the identification of toxic NP and to predict toxicity effects. Generation of 

reactive oxygen species (ROS) and action by dissolved ions were identified 

as common mechanisms for metal containing NP (MNP)19-20.Moreover, 

interactions with proteins are involved in the cytotoxicity of NP, both by 

changing their physico-chemical parameters and as targets for cytotoxicity.  

 

2.1.1. Reactive oxygen species (ROS) generation  

 

Reactive oxygen species are defined as molecules containing one or more 

oxygen atoms, which are more reactive than molecular oxygen. The most 

common ROS are superoxide radical, hydroperoxyl radical, hydroxyl radical, 

nitric oxide, and hydrogen peroxide. ROS originate in the cell mainly from 

enzymatic activity of myeloperoxidase and cytochrome P450 enzymes, 

oxidases and flavoproteins in the peroxisomes, of NADPH oxidase at the 

plasma membrane, of cytoplasmic xanthine oxidase, from autooxidation of 

hemoglobin (Fenton reaction), riboflavin and catecholamines, transient 

metals, and from the electron transport chain of the mitochondria (Figure 

2.a.). External factors for ROS generation include photoactivation and 

particle dissolution. In physiological concentrations, ROS are important 

regulators of cellular processes, such as growth, survival, proliferation, cell 

cycle arrest, apoptosis, differentiation, migration of cells, inflammation, and 

changes of extracellular matrix. Pathologically increased ROS cause 

oxidative damage of lipid (lipid peroxidation), protein (modification of amino 

acids, fragmentation and aggregation of proteins) and DNA (mutations and 

altered gene transcription) (Figure 2.b.). When intracellular levels of ROS 

rise to pathological concentrations antioxidant enzymes such as heme 
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oxygenase 1, superoxide dismutase, catalase, and glutathione peroxidase are 

induced as the first line of defense. At higher ROS levels activation of pro-

inflammatory signaling pathways, such as the JNK and NF-κB cascades, 

occurs. Higher and more prolonged oxidative stress levels induce cellular 

perturbation and result in a decrease in mitochondrial membrane potential, 

leading to cell death22.  

 

 
Figure 2. Sources (a) and cellular effects (b) of reactive oxygen species (ROS). (Xia t, et al., Nano 

letters, 2006) 

 

NP may increase ROS levels by depletion of ROS scavengers (for instance 

by binding to these scavenger molecules), by reactivity at the NP surface, and 

by influencing intracellular production, e.g. by interaction of NP with 

lysosomes and mitochondria. Cu, TiO2, and iron oxide NP produce ROS in 

cellular systems22- 23. Metallic NP may generate ROS by two types of 

reactions inside the cells. The Fenton-type reaction describes the reaction of 

metal ions with hydrogen peroxide to produce an oxidized metal ion and a 

hydroxide radical. The Haber-Weiss-type reaction involves an oxidized metal 

ion, reduced by superoxide, and hydrogen peroxide to generate oxidized 

metal ions and hydroxyl radical24.  

Mitochondria as targets for NP can aggravate cytotoxicity by increasing 

intracellular ROS-levels. Morphological  and biochemical studies show that 

several types of NP can damage mitochondria by causing morphological 

alterations (swelling of mitochondria) or decrease of the mitochondrial 
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membrane potential25. Increased mitochondrial membrane permeability 

caused by mechanical disruption, through disturbance of the respiratory 

chain, and through changes in Bax and Bcl-2 expression, as a consequence of 

the greater mitochondrial membrane permeability cytochrome C as initiator 

of the intrinsic (mitochondrial) way of apoptosis is released. Impairment of 

mitochondrial function can also be caused by decreased production or down-

regulation of mitochondrial DNA-encoded proteins. Furthermore, 

mitochondria cross talk with the endoplasmic reticulum by Bcl-2 proteins and 

Ca2+-signalling. Endoplasmic reticulum stress has been shown to be involved 

in cytotoxicity caused by Ag NP and SiO2 NP26. 

 

2.1.2 Metal ions release 

 

Quantum dots, Ag, ZnO, and iron oxide NP, presumably act predominantly 

by free ions. When NP are dissolved, intracellular concentrations can rise. 

Cytosolic and mitochondrial Zn2+ concentrations, for instance, increase 

significantly27 at NP sizes of <50 nm. Increased Zn2+ concentrations inhibit 

cellular respiration28, and Ag+ ions act on the same sites as Ca2+ resulting in 

an increase of Ca2+ from sarcoplasmic reticulum29. Release of metal ions can 

also influence gene transcription. Iron response elements are present on 

transferrin receptor mRNA and on ferritin mRNA and allow binding of iron 

response element binding proteins. Iron blocks the binding in these proteins 

and leads to degradation of mRNA for the receptor30. Iron ions released from 

iron oxide particles by this mechanism can reduce translation of transferrin 

receptor mRNA. 
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2.1.3 Lysosome impairment 

 

Lysosomes are obvious targets for NP since many types of NP (iron oxide, 

polystyrene, Au, quantum dots) are taken up by endocytosis and stored in 

lysosomes31. In addition to accumulation, NP have been reported to cause 

destabilization of lysosomes and permeabilization of lysosomal membranes32-

33. Partial lysosomal membrane permeabilization results in ROS generation 

and apoptotic cell death, while massive permeabilization induces cytosolic 

acidification and necrosis. Interference of NP with lysosomes can result in 

oxidative cell damage by ROS, mitochondrial damage, and decreased 

elimination of macromolecules (lysosomal dysfunction) and of damaged 

organelles (reduced autophagy) from the cells. Storage of both MNP and PS 

NP in lysosomes was accompanied by morphological damage, such as 

swelling and also destruction. Furthermore, NP can interact with lysosomal 

membranes and increase lysosomal permeability 34. It has been well 

established that, once in contact with biological fluid such as culture medium, 

NP are quickly covered by a layer of biomolecules that form the protein 

corona, which confers a new identity to the NP35. In particular, Dawson at al. 

have demonstrated in human brain astrocytoma cell line, effects of loss of 

protein corona on the toxicity consequential response of cell to 50 nm 

aminated polystyrene NP (PS NP NH2 50 nm) uptake, in fact, upon their 

internalization, PS NP NH2 50 nm, accumulate in the lysosomes, like several 

other NP of different size and materials. Once in the lysosomes, NP’corona is 

degraded by the protolithic enzymes, and the exposition of the positive 

charge cause a strong lysosomal swelling, followed by membrane damage 

witch lead to the cytosolic release of lysosomal content, and finally apoptosis 

(Figure3). The same results have been also reported for silica and PLGA NP 

in human brain derived endotheilial cells 35. 
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Figure 3. Loss of protein corona and its effect on lysosome. The protein corona screens the 
positive charges of the PS-NH2 nanoparticles and delays their impact on cells. Schematic 
representation of the impact of PS-NH2 nanoparticles. In absence of serum proteins PS-NH2 
nanoparticles damages the cell membrane leading to quick cell membrane permeabilisation(A); in 
the presence of serum , PS-NH2 nanoparticles get covered by a protein corona which screens their 
positive charges, thus the corona is retained during nanoparticle uptake and until trafficked to the 
lysosomes. In the lysosomes the corona is degraded and the positive charge of the PS-NH2 
nanoparticle leads to lysosomal membrane permeabilization and ultimately cell death (B). (Fenjuan 
et al., Nanomedicine, 2013) 

 

 

The alteration of lysosomal function is associated to the proton sponge effect. 

In fact, the  positive charge on NP surface is able of sequestering protons, the 

proton pump on lysosome membrane lead to the retention of one anion Cl- 

and one water molecule for each proton that enter the lysosome with a 

consequence influx of water. This is the process that causes the membrane 

swelling and rupture (Figure 4).  
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Figure 4. Proton sponge effect.Cationic particles bind with high affinity to lipid groups on the 
surface membrane and are endocytosed in the tight-fitting vesicles. Once these cationic nanoparticles 
enter into an acidifying lysosomal compartment, the unsaturated amino groups are capable of 
sequestering protons that are supplied by the v-ATPase (proton pump). This process keeps the pump 
functioning and leads to the retention of one Cl- ion and one water molecule per proton. Subsequent 
lysosomal swelling and rupture leads to particle deposition in the cytoplasm and the spillage of the 
lysosomal content. 
 

 

2.1.4 Genotoxicity 

 

Action of toxicants in the nucleus is usually linked to genotoxicity. Direct 

action of NP on the sugar-phosphate backbone, for instance depurination, 

oxidation, methylation, formation of adducts of bases that can subsequently 

cause single strand breaks, can either be repaired or lead to apoptosis. Nearby 

single strand breaks (SSBs), SSB duplication, in-strand crosslink can lead to 

double strand breaks (DSBs) and chromosome breaks, which cannot be 

repaired. In addition, inhibition of repair enzymes may also cause an 

increased rate of genotoxic events, while protein lesions and abnormalities of 

the mitotic spindle are causes for chromosome loss37. 
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Many NP smaller than 50 nm can get into the nucleus, but localization in the 

nucleus is not a prerequisite for action on the DNA; intracellular NP can also 

gain access to the genetic material during mitosis when the nuclear 

membrane breaks down and genotoxic changes may also be caused by 

interference with the mitotic spindle. Furthermore, exposition to NP lead to 

epigenetic changes include modifications of DNA and histones and influence 

the transcription rate of genes. Histone acetylation and DNA methylation are 

key processes in cell differentiation and transformation. It has been reported 

that NP can cause epigenetic changes by modulation of DNA 

methyltransferase activity, decreased mRNA expression of methyl-CpG-

binding domain protein expression, decrease of histone deacetylase activity 

and histone 3 hyperacetylation38. ROS are involved in DNA hypomethylation 

and expression of methylation DNA-regulated genes. Epigenetic changes by 

direct effects of NP include formation of histone aggregates through 

interaction with quantum dots and binding of Au NP to SH-groups in histone 

deacetylase. Although not a direct consequence of DNA damage, NP may 

inhibit translation, either by hindering the export of mRNA through enlarged 

NP-loaded lysosomes, or by reduced expression of ribosome subunit S239. 

 

3.Nanoparticles cell membrane crossing 

 

Cell membrane helps organisms to maintain homeostasis by controlling what 

substances may enter or leave cell, it is composed of phospholipids, proteins 

and carbohydrates arranged in a fluid mosaic structure. Some substances as 

oxygen, carbon dioxide and water can cross the cell membrane without any 

input of energy by the cell, the movement of such substances across the 

membrane is known as passive transport. Conversely, for the passage of large 

and charged molecules, as proteins and sugar, energy use from ATP is 

required. 
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3.1. Passive transport 

 

The most simply way to cross the cell membrane is the passive diffusion. 

Diffusion includes the movement of molecules from an area of high 

concentration to one of low concentration (simple diffusion), this 

mechanisms can be supported for large molecule as glucose, by the presence 

of specific transportes on the cell membrane that allow the passage of 

substances (facilitate diffusion).  

Osmosis is the spontaneous movement of water across the cell membrane 

trough the aquaporins and it is important for cell homeostasis. 

 

3.2. Active transport 

 

Active transport is an energy dependent pathway that allows charge and large 

substances to overcome cell membrane, independently from their gradient 

concentration. 

Endocytosis is the process that occurs by the invagination of the plasmatic 

membrane in order to form vesicles which transport the material from outside 

to inside the cell. The endocytosis is divided into: endocytosis mediated by 

clathrin, endocytosis mediated by caveolin, macropynocytosis and 

phagocytosis (Figure 2.2). The endocytosis mediated by clathrin is the 

process by which the cells introduce nutrients and regulatory molecules. This 

process is highly selective and it starts with the recognition among the 

molecules to introduce with specific receptors which are present on the 

plasmatic membrane, followed by the accumulation of complex receptors-

ligands in specific points of the membrane, called clathrin coated vesicles. 

The formation of the endocytic vesicle coated by clathrin is mediated by 

cytoskeletal elements of actin. Once formed, vesicles lose the clathrin coat 

with the formation of an uncoated vesicle, which will blend later with an 

endosome in order to form early endosome. 
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The endocytosis mediated by caveolin is the process that involved the 

caveolae, invaginations of the plasmatic membrane, present in several 

cellular types but particularly abundant in endothelial cells40. Caveolae are 

involved in the internalization of components of the plasmatic membrane, of 

the extracellular ligand and bacterial toxins, are formed in correspondence 

with regions of the plasmatic membrane which are rich in cholesterol and 

sphingolipids and are specially coated by caveolin, a dimeric protein, which 

links the cholesterol by introducing itself in the plasmatic membrane. The 

endocytosis is mediated by dynamin and by microfilaments of actin. One 

formed, caveolae pour their own material in caveosomi, which are different 

from endosome both for the pH and for the enzymatic content. From 

caveosomi the endocytosed material is distributed through transporting 

vesicles, to the Golgi or to the RER, where it is modified by enzymes that it 

contains 40. Macropynocytosis occurs in several cellular types, as for instance 

the macrophages, it starts with the formations of extended protrusions of the 

plasmatic membrane, supported by cytoskeletal elements of actin. The 

protrusions blend with the same membrane to form big endocytic vesicles 

containing extracellular material40. Phagocytosis is the process by which 

microorganisms, cellular debris and apoptotic cells are destroyed and 

represents the mechanism with which protozoa are nourished. In more 

complex organism, phagocytosis is mainly a defensive mechanism and it is 

carried out by specialized cells such as macrophages, neutrophils and 

dendritic cells40. The transcytosis, instead, is a vesicular transport used by 

multicellular organism in order to transport in a selective way 

macromolecules between two compartments delimited by a polarized cell, for 

example the transport of the macromolecules made by endothelial cells from 

tissue to blood and vice versa . 

This process have the same step of the endocytosis mediated by clathrin, they 

blend with particular apical endosomes (or basolateral), that transfer material 

to recycling endosome basolateral (or apical). These blend with the 
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basolateral (or apical) membrane, and pour the macromolecules in the 

opposing basolateral (or apical) side40. 

 

3.3. Nanoparticles cellular uptake mechanisms 

 

Plasma membrane acts as a portal of entry to NP. Depending on NP physico-

chemical properties, this entry can take place by passive diffusion without 

persistent membrane damage, or by disruption of plasma membrane integrity. 

Holes in the plasma membrane smaller than 1 µm in diameter can be sealed, 

and, for this reason, NP can overcome the plasma membrane passively 

without causing cell damage. Membrane disruption with subsequent re-

sealing has, for instance, been reported for cellular entry of 14 nm SiO2 

particles41. Carboxylated polystyrene particles appear to generate plasma 

membrane discontinuities in a similar order of magnitude as 0.1% Triton 

×100 42. NP can be uptaken by cells also via energy-dependent mechanism by 

two major mechanisms: phagocytosis and pinocytosis43. Phagocytosis occurs 

for particles larger than 0.5 µ m in a limited number of mammalian cell types 

such as macrophages and monocytes. Pinocytosis is a far more general 

process that can be further classified into two subcategories: 

macropinocytosis and micropinocytosis. Macropinocytosis involves non-

selective uptake of solute macromolecules of more than 0.2 µ m diameter44, 

whereas micropinocytosis (clathrin-mediated, caveolae/lipid raft-mediated, 

and clathrin/caveolae-independent) occurs for smaller particles in all cell 

types45 (Figure 5). Given the size regime of NP commonly used for 

therapeutic purposes (10–200 nm), NP are expected to enter cells 

predominantly via micropinocytosis. 

Recent investigations have revealed that size, shape46, and surface charge47of 

NP govern entry and subsequent cytosolic access of NP into living cells. For 

example, cationic NP have better cell membrane penetration efficiency than 
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anionic NP and are shown to enter mammalian cells via a different pinocytic 

mechanism48. Likewise, particles with diameters of < 200 nm were uptaken 

via clathrin-coated pits, whereas caveolae-mediated internalization became 

predominant with increasing particle size. In addition to size and charge, NP 

surface functionality also plays an important role in terms of cellular uptake  

and eliciting cellular responses49.However, it is not clear how changes on the 

NP surface (e.g. hydrophobicity and aromaticity) affect cellular 

internalization process. 

 

4. Bioengineering nanoparticles to avoid endo-lysosomal pathway 

 

To avoid NP endocitosys and hence lysosomal accumulation, some strategies 

have been developed. The most of them consider the modification of NP 

surface by using chemical or biological moieties to allow cell membrane 

passive diffusion or lysosomal escape. 

However the modification of NP surface affects the nano-bio interface 

making much more complex the elucidation of the interactions between NP 

and biological systems. 

A way to avoid NP endo-lysosomal compartement is the surface 

functionalization with bioactive peptides, such as cell-penetrating peptide 

(CPPs). CPPs are a group of relatively short peptide (5–40 amino acids) 

deriving either from natural sources or from synthetically designed 

constructs, are able to penetrate cell membranes and transport a large variety 

of molecule inside cells [8]. Thanks to their features as  amphipathic nature, 

net positive charge, theoretical hydrophobicity and helical moment, CPPs are 

able to slip through the lipid cell membrane. CPPs enter cells presumably by 

means of their cationic groups initially interacting with negative charged 

residues of cell membrane, leaving their hydrophobic reagions free to access 

the membrane’s hydrophobic interior. 
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Recently, great attention has been devoted to the study of hydrophobic 

peptides that efficiently traverse biological membranes, promoting lipid 

membrane reorganizing processes, such as fusion or pore formation and thus 

involving temporary membrane destabilization and subsequent 

reorganization50. 

Moreover, there are controversies regarding the mechanism of action when 

CPPs are bound on NP surface, more studies are necessary to explain their 

crossing membrane mechanisms. 
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AIM OF THE THESIS 

 

The physico-chemical properties of nanoparticles (NP) such as, small size, 

possibility to being functionalized with ligands, ability to transport cargo and 

the potential capacity to access isolated parts of the body including brain, 

create a coherent interest to develop NP for therapeutic and diagnostic field. 

For these reasons, in order to explore their potential use, it is necessary to 

understand the interactions of NP with the cell membrane and their 

trafficking through the cells. In fact, despite numerous efforts to establish a 

structure–function relationship between NP physico-chemical properties and 

their interactions with biological systems, the possibility to predict their fate 

remains still far.  

The aim of this thesis was to elucidate the role of nano-bio interface in 

controlling NP-cell interaction and, hence, cell membrane crossing 

mechanisms and NP cytotoxic effect.  

To address this issue, we first studied the effect of NP delivery across cell 

membrane in controlling metal-containing NP (MNP) toxicity. In particular, 

we delivered MNP across the cell membrane directly inside the cytosol by 

using a pneumatic method -a gene gun - thus bypassing the formation of 

endocytic vesicles and comparing the cytotoxic effect related to different 

route of entry of NP.  

Furthermore, we designed surface decorated NP by using a bio-inspired 

approach in order to control NP entrance and to escape the lysosomal 

pathway. We investigated the effect of the decoration of polystyrene NP with 

Herpes simplex virus type one derived gH-625 peptide, on intracellular 

trafficking and on the ability to overcome a blood-brain barrier in vitro 

model.  
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2. CHAPTER I 

 

TRANSPORT ACROSS CELL-MEMBRANE DICTATES 

NANOPARTICLE FATE AND TOXICITY: A NEW PARADIGM 

IN NANOTOXICOLOGY 

 

2.1. ABSTRACT 

 

The toxicity of metallic nanoparticles (MNP) has been fully ascertained, but 

the mechanisms underlying their cytotoxicity remain still largely unclear. 

Here we demonstrate that the cytotoxicity of MNP is strictly reliant upon the 

pathway of cellular internalization. In particular, if otherwise toxic gold, 

silver, and iron oxide NP are forced through the cell membrane bypassing 

any form of active mechanism (e.g., endocytosis), no significant cytotoxic 

effect is registered. Pneumatically driven NP across the cell membrane show 

a different distribution within the cytosol compared to NP entering the cell by 

active endocytosis. Specifically, they exhibit free random Brownian motions 

within the cytosol and do not accumulate in lysosomes. Results suggest that 

intracellular accumulation of metallic nanoparticles into endo-lysosomal 

compartments is the leading cause of nanotoxicity, due to consequent 

nanoparticle degradation and in-situ release of metal ions. 

 

2.2. Introduction 

 

A growing body of evidence suggests that a wide variety of metal-containing 

nanoparticles are toxic both in vitro 1-4 and in vivo 2-3,5-8. Among others, gold, 

silver and iron oxide NP have been reported as toxic for several cell types, 

such as cancer cells 1, neuroendocrine cells 9, germline stem cells 10, 
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macrophages 11 and human umbilical vein endothelial cells 12. Furthermore, 

in vivo tests have evidenced that exposure to metallic nanoparticles (MNP) 

causes dysfunctions of the intestinal apparatus in embryonic Zebrafish 

models 13, defects in the embryonic development of Xenopus laevis 14, 

phenotypic modifications in the progeny of Drosophila melanogaster 6,15, as 

well as decrease in body weight, red blood cells, hematocrit and DNA 

damage in mice16-17.   These studies have shown that the production of 

reactive oxygen species (ROS), genotoxicity and apoptosis are a common 

consequence of exposure to MNP18-26. Nevertheless, little is known about the 

mechanisms underlying the interaction of MNP with biological systems and 

the actual cause of toxicity. It appears that amongst the various 

pathways/targets involved in MNP’ toxicity, mitochondrial damage and 

metallic ion production are relevant factors. However, it is not known 

whether the cellular damage is a consequence of metallic ion production, 

ROS production or a particle-related effect 5,26.  

In this framework, despite repeated attempts to establish a structure–function 

relationship between their physico-chemical properties and their interactions 

with biological systems, the possibility to predict the toxicological profile of 

nanoparticles is still far away.  

In order to better understand the mechanisms of MNP’ cytotoxicity, it is 

helpful to look at organelles, where accumulation is most likely. In most of 

the studies, MNP are allowed to enter the cell through the canonic endocytic 

pathways and appear to be stored in lysosomes upon incubation with cells 27-

31. Accumulation within the degradative lysosomal compartment might cause 

MNP’ cytotoxicity; however, no direct evidence of this effect has been 

reported yet, due to the difficulty to bypass the endo-lysosomal pathway. In 

this work, we postulated that the cell entrance pathway dictates NP’ 

intracellular localization and, as a consequence, their toxic potential. The idea 

is that the cytotoxicity of MNP does not depend on the physico-chemical 

features of the MNP per se, but rather on the microenvironmental conditions 
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they experience during their journey towards the intracellular space that, in 

turn, depend upon how they cross the cell membrane. To test this hypothesis, 

we delivered MNP across the cell membrane directly inside the cytosol by 

using a pneumatic method – a gene gun - thus bypassing the formation of 

endocytic vesicles. Gene guns are popular as a means of incorporating DNA 

or RNA into cells; they use micro- and nano-particles as bullets fired into 

cells and tissues using pressurized gas32-34. Here we used a gene gun to 

deliver different metal-containing NP, namely 40 nm Au NP, 20 nm Ag NP 

and 25 nm silica-coated Fe3O4 NP, known to be cytotoxic for several cell 

types and in vivo 1,9,12 35-36, to a mouse brain endothelial bEnd.3 and human 

cervical adenocarcinoma HeLa cell lines. To assess the effects of the 

internalization mechanism on nanoparticles’ cytotoxicity, the same 

nanoparticles were delivered by “classical” endocytosis upon incubation to 

the same cell lines. The physico-chemical characterization of the NP is 

reported in Table 1. Moreover, 44 and 100 nm fluorescent polystyrene (PS) 

NP (Table 1) were used, respectively, as a negative control in cytotoxicity 

studies 37 and for multiple particle tracking (MPT) and confocal laser 

scanning microscopy (CLSM) analyses. The intracellular behavior of the NP, 

the cell viability 

and the ROS generation were analyzed in order to find a correlation among 

the internalization pathways, the intracellular localization and the cell 

response.   

 

2.3. Results 

 

2.3.1. NP intracellular trafficking and localization 

 

To evaluate the effects of the internalization mechanism on NP’ localization 

and behavior within the cytosol, we analyzed in detail the mechanisms of 

intracellular motion at high frequencies of 100 nm fluorescent amine-
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modified PS NP by a multiple particle tracking (MPT) technique. We have 

previously demonstrated that, when exposed to the cell surfaces, 100 nm PS 

NP are uptaken by endothelial cells through endocytic mechanisms and tend 

to accumulate in lysosomes38-39. Similarly, in this work we observed that, 

incubating PS NP with cells, most of the NP are internalized by endocytosis 

and show a pearl-on-a-string behavior, characteristic of vesicular transport 

(Fig. 1 a and b). Only a small fraction of the NP followed a random walk 

movement within the cytosol (Fig. 1 a and c). On the other hand, the same 

NP forced through the cell membrane by pneumatic-shooting showed almost 

exclusively random walk trajectories, indicating that most of the NP were not 

encapsulated inside endocytic vesicles (Fig. 1 a and c). To further confirm the 

different intracellular localization of shot vs. endocytosed (endo) NP, we 

performed indirect inmmunofluorescence analysis against the lysosomal 

marker LAMP2. Endo NP clearly showed a significant co-localization with 

lysosomes (Fig. 1 d), while no co-localization was observed for shot NP (Fig. 

1 e). 

 
 

Figure 1. MPT analysis of endo and shot 100 nm PS NP in bEnd.3 cells. a) Percentage of “random 
walk” and “pearls on a string” trajectories as a function of internalization mechanism. Representative 
examples of (b) “pearls on a string” and (c) “random walk” trajectories. Confocal images showing 
the co-localization (yellow) of (d) endo and (e) shot 100 nm PS NP (green) with lysosomes (red). 
Magnification bar 20 µm. 
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Starting from MPT and confocal microscopy observations with fluorescent 

PS NP, the intracellular localization of endo and shot Au NP was also 

investigated by TEM analysis. Fig. 2 demonstrates the presence of Au NP 

inside the cells. In particular, endo Au NP were confined in vesicular 

structures (typically organized as aggregates), presumably multivesicular 

bodies (MVBs), and no free particles in the cytosol were observed (Fig. 2 a). 

These results confirmed the data reported in literature demonstrating the 

accumulation of endo Au NP within vesicular structures of the endo-

lysosomal pathway in different cell lines40-41. Conversely, most of shot NP 

were freely dispersed in the cytoplasm (Fig. 2 b), and only a few NP 

aggregates were observed.  

 
Figure 2. Intracellular localization of (a) endo and (b) shot Au NP in bEnd.3 cells by TEM analysis. 
Endo Au NP were confined in vesicular structures, presumably multivesicular bodies (MVBs), and 
no free particles in the cytosol were observed. Shot NP were observed to be free in the cytosol. 
 

TEM observations were in agreement with the co-localization analysis of 100 

nm PS NP with lysosomes. Altogether, these results demonstrated the main 

accumulation of endo Au NP in vesicular structures, as opposed to the 

homogeneous distribution of shot Au NP in the cytosol. The above validates 

the hypothesis that the way NP are transported through the membrane 

strongly affects their cytosolic distribution, and that the passive passage 
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across the cell membrane - pushing the NP by pneumatic forces - avoids their 

endo-lysosomal compartment localization.  

 

2.3.2. Cytotoxicity 

 

The different intracellular distribution of shot and endo MNP could lead to a 

different impact of NP on cell functions. To address this hypothesis, cell 

viability and ROS generation upon Au, Ag and Fe3O4 NP’ exposure were 

investigated. In these experiments, we compared the cytotoxic effects of 

endocytosed vs. shot NP, normalizing the effective dose of internalized NP 

obtained with the two procedures, through ICP measurements 

(Supplementary Fig. 1 and 3).  

The cytotoxicity of endo and shot NP on bEnd.3 and HeLa cells was first 

evaluated by Alamar blue assay. Experimental results show that MNP were 

significantly cytotoxic when endocytosed by bEnd.3 cells (Fig. 3). In 

particular, Ag NP were more cytotoxic than Au and Fe3O4 NP, already at 

lower concentrations. Moreover, a large decrease in cell viability was 

observed after 5 days of culture. Conversely, by comparing the same doses of 

shot NP per cell, no cytotoxic effects were detected for any MNP. 

Interestingly, at the highest concentrations, endo Ag NP led to a drastic 

decrease in cell viability (> 80%) already after 24 h incubation, unlike shot 

Ag NP. No cytotoxic effects were observed for both shot and endo 44 nm 

negatively charged PS NP used as a negative control (Supplementary Fig. 3). 

Similar results were obtained also for the HeLa cell line after exposure to Au 

and Fe3O4 NP (Fig. 4 and Supplementary Fig. 4), thus further validating our 

observations. 

As mentioned above, one of the main causes of MNP’ cytotoxicity is 

oxidative stress. Therefore, we investigated the effect of NP’ endocytosis and 

shooting on ROS generation levels in bEnd.3 cells through DCF assay. 
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Figure 5 shows that ROS generation increased for endo NP at the highest 

concentrations. Moreover, the effect of Ag and Fe3O4 NP on ROS generation 

was more evident than that of Au NP. Conversely, shot NP did not 

significantly augment intracellular ROS levels. Only a slight, non-statistically 

significant increment of ROS generation was observed for Ag and Fe3O4 NP.  

Taken altogether, the above results indicate that the endo MNP are 

significantly more toxic than shot MNP and that is more relevant considering 

that endo MNP are covered by protein corona which is known to reduce 

nanoparticles’ cytotoxicity37,42-43. 

 
Figure 3. In vitro cytotoxicity by Alamar blue assay of Au NP, Ag NP and Fe3O4 NP. Data were 
reported as percentage of cell viability normalized to cells treated with 44 nm negatively charged PS 
NP, used as negative control, at 4 × 105 NP/cell concentration. Error bars indicate the standard 
deviation. *p < 0.05 compared to control (n= 9). 
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Figure 4. In vitro cytotoxicity by Alamar blue assay of shot and endo Au and Fe3O4 NP incubated 24 
h with HeLa cells at the concentration of 5 × 105 NP/cell. Data were reported as percentage of cell 
viability normalized to control cells. Error bars indicate the standard deviation. *p < 0.05 compared 
to control (n= 9). 

 

 
Figure 5. Effects of MNP’ endocytosis and shooting on the level of ROS in bEnd.3 cell line, probed 
by the DCFH-DA assay. Cells were treated with the highest NP concentrations, corresponding to 1.3 
× 106 Au NP/cell, 2.5 × 105 Ag NP/cell and 4.0 × 106 Fe3O4 NP/cell, respectively. The ROS level of 
nanoparticle-treated cells was expressed with respect to non-treated control cells (Ctrl -). As a 
positive control (Ctrl +), cells were incubated with 100 µM H2O2. Error bars indicate the standard 
deviation. *p < 0.05 compared to negative control (n= 9). 
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2.4. Discussion 
 

Our data indicate that the different mechanism of internalization affects the 

interaction of NP with cells. A possible explanation of this effect could rely 

on intracellular release of metal ions. In fact, when in the lysosomal 

compartments, NP are subjected to lower pH levels and an overall 

degradative environment. Indeed, recent works reported on the effect of pH 

on MNP’ degradation and -consequently- ion release, not only in buffers but 

also in cells 36,44-46. Therefore, we hypothesized that NP’ degradation and 

consequent intracellular release of metallic ions, is the main cause of MNP’ 

toxicity upon endocytosis. We observed an increase in metallothionenis 

(MTs) expression in HeLa cells upon exposure to 0.6 nM endo Ag NP 

compared to shot NP and non-treated control cells (data not shown). MTs are 

major cytoplasmic metal ions binding proteins and thereby reduce cellular 

damage caused by toxic heavy metals, including Ag 47-49. Also, some recent 

works reported MTs’ up-regulation associated with MNP’ toxicity 50. 

Moreover, we observed that Ag NP toxicity can be significantly prevented by 

treatment with specific ion chelators. For instance, both cell viability and 

ROS levels in HeLa cells were found to be similar to the control levels 

following treatment with the chelating agent meso-2,3-Dimercaptosuccinic 

acid (DMSA). However, further investigation is needed to elucidate the 

detailed molecular mechanisms underlying MNP’ toxicological effects after 

cellular internalization. In summary, this study demonstrates the correlation 

between MNP’ intracellular localization, MNP’ fate and cytotoxicity. In 

particular, our data clearly indicate that - by changing MNP’ uptake 

mechanism and, therefore, MNP’ intracellular localization - it is possible to 

modify MNP’ behavior and their impact on cell functions. These findings are 

of particular interest for nanomedicine and nanotoxicology, and pave the way 

to new and appealing questions about mechanisms underlying MNP’ toxicity. 

Moreover, our results demonstrate the validity of the ballistic method to 
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circumvent endo-lysosomal pathways. Although such technique uses an un-

natural way to cross cell-membrane, this study offers the opportunity to 

investigate the interaction of MNP with cytosolic structures thus finding new 

targets for novel MNP’ biological effects and possible applications. 

Furthermore, it suggests some guidelines to consider for the rational design 

of safer MNP. In particular, the engineering of the MNP’ surface to avoid 

lysosomal degradation or its functionalization with specific molecules able to 

escape lysosomal fate30,38 could be valid strategies in order to obtain non-

toxic MNP.  

 

2.5. Materials and methods 

 

2.5.1. Materials 

 

Orange fluorescent amine-modified polystyrene, 100 nm, nanoparticles (100 

PS NP) were purchased by Sigma-Aldrich. Green fluorescent polystyrene, 44 

nm, nanoparticles (44 PS NP) were purchased by Duke Scientific 

Corporation. Au NP, Ag NP and silica-coated iron oxide (Fe3O4) NP were 

purchased from HiQ-Nano. 

 

2.5.2. Characterization of nanoparticles 

 

Measurements of size and ζ-potential of NP were made with a Zetasizer 

Nano-ZS (Malvern Instruments, Worcestershire, UK) and by a transmission 

electron microscope (TEM Tecnai G2, Fei).  
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2.5.3. Cell culture 

 

Immortalized mouse cerebral endothelial cells, bEnd.3 cells (American Type 

Culture Collection, Manassas, VA) were grown in DMEM with 4.5 g/L 

glucose, 10% Fetal Bovine Serum (FBS), 3.7 g/L sodium bicarbonate, and 4 

mM glutamine, 1% non-essential amino acids, 100 U/ml penicillin and 0.1 

mg/ml streptomycin in 100 mm diameter cell culture dish, in a humidified 

atmosphere at 37°C and 5% CO2. Cells used in all experiments were at 

passage 11–18. Human epithelioid cervix carcinoma, HeLa cells (American 

Type Culture Collection, Manassas, VA) were maintained with DMEM with 

4.5 g/L glucose, 10% Fetal Bovine Serum (FBS), 3.7 g/L sodium 

bicarbonate, and 4 mM glutamine, 1% non-essential amino acids, 100 U/ml 

penicillin and 0.1 mg/ml streptomycin at 37°C and 5% CO2. 

 

2.5.4. Endocytic NP uptake experiments 

 

To allow NP uptake through endocytosis process, about 3×104 cells were 

incubated with NP suspensions in cell culture medium at different 

concentrations, 0.05, 0.1, 0.5, 1 and 2 nM, for 24h at 37 °C. After incubation, 

cells were rinsed with PBS to remove non-internalized NP and fresh culture 

medium was added. 

 

2.5.5. NP intracellular shooting by ballistic system 

 

To have NP free in the cytoplasm, a ballistic system (gene gun, BioRad) was 

used according to the manufacturer’s procedure. Briefly, 30 µl of MNP 

suspension in absolute ethanol at different concentrations (2, 4, 6 and 8 nM) 

were deposited and left to dry on a rupture disk under a sterile hood. On the 

other hand, 44 and 100 nm PS NP were suspended in 30 µl of distilled water 
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at the final concentration of 4.2 × 1013 and 9.2 × 1012 NP/ml, respectively, 

deposited and left to dry on a rupture disk under a sterile hood. After solvent 

drying, a 900 psi pressure was used to shoot NP within cells. After shooting, 

cells were roughly rinsed with PBS to remove non-internalized NP and, the 

day after, the cells were recovered and 3×104 cells were seeded in each fresh 

35 mm culture dish. 

 

2.5.6. Multiple particle tracking 

 

Images of shot and endo 100 nm PS NP in End3 cells were collected in time-

lapse for about 100 s with a sampling time of 1 s by using a widefield 

fluorescence microscope (Olympus Cell-R, 60x oil immersion objective, NA 

= 1.35). Tracking algorithm has been described in details elsewhere 39. NP’ 

trajectories were built and then the mean square displacement (MSD) was 

calculated and correlated with the NP’ diffusion by the equation (1), 

MSD = 4Dtα 

where D is the diffusion coefficient and α represents the time dependence. By 

fitting the MSD curve of each tracked bead by using equation (1), 

information concerning the nature of particle motion into the cells was 

gained. Nanoparticles, exhibiting MSD curve that undergoes a power law 

with exponent minor or equal to unity, were classified as Brownian (α=1) or 

sub-diffusive (α<1). Particles presenting MSD, whose dependence on time 

was well described by the power law with α>1, were indicated as super-

diffusive. In particular, about the α coefficient we can distinguish three 

critical cases: α = 0, for immobile NP (displacement does not change with 

time); α = 1, for a randomly moving NP; α = 2 for NP moving in a straight 

line at a constant velocity. For 1<α < 2 an overlap between random and 

straight motion is found, reflecting the NP’ active motion along the filaments 

due to the action of molecular motors. The percentages of randomly moving 

NP (α ≤ 1) and transported NP (1<α < 2) were evaluated and compared for 
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shooting and endocytosis. The MSD of 216 and 226 distinct objects for endo 

and shot NP samples, respectively, was evaluated. For each experiment, at 

least, 5 cells were analyzed. 

 

2.5.7. Colocalization with lysosomes 

 

For co-localization experiments, after 100 nm PS NP’ incubation, cells were 

firstly rinsed twice with PBS to remove non-internalized nanoparticles and 

fixed with 4% paraformaldehyde for 20 min. Then, cells were incubated with 

Triton X100 0.1% in PBS for 10 min and with PBS-BSA 0.5% for 15 min at 

room temperature (RT). Lysosomes were localized with rabbit anti-LAMP 2 

polyclonal (Abcam) primary antibodies and with 568 goat anti-rabbit 

secondary antibodies (Molecular Probes, Invitrogen). All samples were then 

observed at confocal microscope (SP5 Leica) with a 63x oil immersion 

objective. 

 

2.5.8. Transmission electron microscopy (TEM) 

 

TEM was performed to precisely localize the intracellular nanoparticles. 

After gold NP’ exposure, cells were rinsed with PBS and fixed with 2.5% 

glutaraldehyde in 0.1 M sodium cacodylate buffer for 2h at room 

temperature. Afterwards, cells were post-fixed with 1% osmium tetroxide in 

0.1 M sodium cacodylate buffer for 1h at 4 °C, dehydrated in graded 

concentrations of ethanol (30%, 50%, 70%, 95% and 100%). Cell samples 

were then scraped, harvested and embedded in Epon (Electron Microscopy 

Science, EMS) and thin-sectioned with an ultramicrotome (UC7, Leica). 

Sections of 70 nm were collected on copper grids and stained with lead 

citrate and uranyl acetate. The grids were visualized by a TEM Tecnai G2 

(Fei). 
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2.5.9. Quantification of internalized nanoparticles 

 

To evaluate the number of endo and shot NP within cells, after NP’ 

incubation, cells were roughly rinsed with PBS, trypsinized and counted by 

Neubauer chamber. Afterward, cells were centrifuged and the pellets were 

lysed with lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris). 

Cell lysates were analyzed by a spectrofluorometer (Perkin–Elmer, USA) to 

measure the amount of internalized PS NP and through elemental analysis, 

carried out by inductively coupled plasma atomic emission spectroscopy 

(ICP-AES) with an Agilent 700 Series spectrometer, to evaluate the 

intracellular amount of Au, Ag and Fe-Si. Data were reported as NP number 

normalized to the number of cells. Samples that had the same number of NP 

per cell were used and compared each other for cytotoxicity and ROS 

generation analyses. 

 

2.5.10. In vitro cytotoxicity 

 

Cell viability was quantified by Alamar Blue Assay and compared to non-

treated cells, which were used as a control. Briefly, 3 × 104 cells were seeded 

on a 35 mm cell culture dish and incubated 24 h with NP suspensions to 

allow endocytosis. Conversely, for NP’ shooting, cells were shot with NP by 

gene gun, washed roughly with PBS and, then, allowed to recover for 24 h at 

37 °C. After recovery, cells were trypsinized, counted and seeded on fresh 35 

mm cell culture dishes. Alamar Blue Assay was performed according to the 

manufacturer’s procedure at 1, 3 and 5 days after NP exposure. Absorbance 

of Alamar Blue reagent solution was read at 570 nm and 600 nm by a plate 

reader (Perkinelmer). Data were reported as percentage of viable cells 

normalized to non-treated cells.  
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2.5.11. DCFH-DA assay 

 

bEnd.3 cells were treated with metallic NP at the highest concentrations, 

corresponding to 1.3 × 106 Au NP/cell, 2.5 × 105 Ag NP/cell and 4.0 × 106 

Fe-Si NP/cell, respectively, and then seeded in 24- well microplates. After 24 

h of culture, the DCFH-DA (20,70-dichlorofluorescein diacetate, Sigma) 

assay was performed. Briefly, the cells were washed with PBS buffer and 

then incubated with 1 mM DCFH-DA in the loading medium (DMEM 1% 

FBS) for 60 min at 37 °C. After the loading medium was removed, the 

DCFH-DA loaded cells were placed in a microplate reader (Perkin Elmer) 

and the fluorescence intensity was measure by setting the excitation filter at 

485 nm and the emission filter at 530 nm. As a negative control, we applied 

the same assay onto untreated cells. Results were normalized with respect to 

negative controls (expressed as 100%). As a positive control for cytotoxicity, 

cells were incubated with 100 µM H2O2.  

Statistical analyses. Quantitative data were reported as mean ± standard 

deviation (SD). Statistical analyses were performed using a one-way analysis 

of variance (ANOVA). Results repeats were compared by analysis of 

variance (ANOVA), and a p value < 0.05 was considered statistically 

significant 
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Supporting information 

 

 

Figure S1. Quantification of internalized endo and shot NP through ICP elemental analysis after 24 
h incubation in bEnd.3 cells. Au NP (a), Ag NP (b) and Fe3O4 NP (c). Data were expressed as NP 
number/cell. Error bars indicate the standard deviation. 
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Figure S2. In vitro cytotoxicity by Alamar blue assay of shot and endo 44 PS NP incubated 24 h 
with bEnd.3 cells at the concentration of 4 × 105 NP/cell. Data were reported as percentage of cell 
viability normalized to control cells. Error bars indicate the standard deviation. No statistically 
significant differences were found between NP’ treatments and controls. 

 

 

 

 

 

 

 

Figure S3. Quantification of internalized shot and endo 44 PS NP in HeLa cells through 
spectrofluorometer and ICP analysis. HeLa cells were exposed to 1.5 × 1013 PS NP/ml for shooting 
and 3.0 × 1011 PS NP/ml for endocytosis. Data were expressed as NP number per cell. Error bars 
indicate the standard deviation. 
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Figure S4. Quantification of internalized shot and endo Au, Ag and Fe3O4 NP in HeLa cells through spectrofluorometer and 
ICP analysis. For Au NP, HeLa cells were exposed to 6 nM for shooting and 0.5 nM for endocytosis. For Ag NP, HeLa cells 
were exposed to 4 nM for shooting and 0.6 nM for endocytosis. For Fe3O4 NP, HeLa cells were exposed to 6 nM for shooting 
and 0.1 nM for endocytosis. Data were expressed as NP number per cell. Error bars indicate the standard deviation. 
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Figure S5. In vitro cytotoxicity by Alamar blue assay of shot and endo 44 PS NP incubated 24 h 
with HeLa cells at the concentration of 4 × 105 NP/cell. Data were reported as percentage of cell 
viability normalized to control cells. Error bars indicate the standard deviation. *p < 0.05 compared 
to control (n= 9). 
 

 

 

Figure S7. Effects of NP shooting (a) and endocytosis (b) on the level of ROS in bEnd.3 cell line, 
probed by the DCFH-DA assay. Cells were treated with 4 × 105 44 PS NP/cell. For the experiment, 
red fluorescent 44 PS NP were used in order to avoid interferences with green fluorescent DCF. The 
ROS level of nanoparticle-treated cells was expressed relative to non-treated control cells (Ctrl -). As 
a positive control (Ctrl +), cells were incubated with 100 µM H2O2. Error bars indicate the standard 
deviation. No statistically significant differences were found between NP’ treatments and negative 
control. 

 

Table 1. Size by TEM and DLS and ζ-potential of metallic and polystyrene nanoparticles used for 

experiments. DLS measurements were made at 25 °C in aqueous solutions and were repeated 5 times. 
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*PDI < 0.1. The TEM size of the Fe3O4 refers to the silica coated NP, while the value of the Fe3O4 

core is reported in brackets (10 nm). 

 Au NP Ag NP Fe3O4 NP 44 PS NP 100 PS NP 

Size by TEM 

[nm ± SD] 

40.0 ± 2.3 20.0 ± 2.1 25 ± 1.2 

(10.1 ± 2.1) 

41.5 ± 3.4 96.0 ± 6.7 

Size by DLS  

[nm ± SD]* 

42.9 ± 6.2 21 ± 2.0 27.2 ± 3.5 43.67 ± 

0.01 

102.57 ± 

2.64 

ζ-potential  

[mV ± SD] 

-43.0 ± 5.0 -16 ± 2.0 -31.2 ± 5.4 -36.2 ± 6.9 +51.6 ± 

1.08 
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3.CHAPTER II 

 

SURFACE DECORATION AS A WAY TO ESCAPE ENDO-
LYSOSOMAL COMPARTMENT AND REDUCE NANOPARTICLE 
TOXICITY.  

 

3.1.ABSTRACT 

 

Nanoparticles (NP) have access to isolated part of the body including the 

brain, for these reasons create great interest for biomedical applications as 

imaging, diagnostic and therapeutic. It is well established that the most part 

of NP enter the cell by endocytic pathway even if the underlying in depth 

mechanisms used to overcome cell membrane is not well understood. 

Furthermore, the fate and toxic effect of non-biodegradable NP are related to 

the accumulation in lysosomes. In fact, once in the lysosomes, NP can affect 

cell viability leading to lysosomal swelling, rupture of lysosome-endosome 

membrane, reactive oxygen species production, apoptosis and cell cycle 

arrest. 

In this chapter, we provide a valid strategy to functionalize NP in order to 

escape endo-lysosomal pathway and, hence, avoiding NP toxic effects. 

To this aim, a viral fusion peptide (gH-625) derived from the glycoprotein 

gH of Herpes simplex type 1 is developed, which possesses several 

advantages including high cell translocation potency, absence of toxicity of 

the peptide itself, and the feasibility as an efficient carrier for delivering 

therapeutics. It is hypothesized that the endo-lysosomal escape of NP 

conjugated with gH-625 should be efficiently obtained. The surface of 

fluorescent aminated polystyrene nanoparticles (NP) is functionalized with 

gH-625 via a covalent binding procedure, and multiple particle tracking time 

resolved experiment, co-localization with lysosome markers and analysis of 

lysosome size were performed in mouse brain endothelial cell line (bEnd3). 
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Data show that gH-625-NP have prevalently a “random walk” behaviour that 

remains almost constant in the time. Furthermore, they do not form large 

aggregates compared to non-functionalized NP and there is no evidence of 

lysosome swelling. Furthermore gH-625-NP represent the same behaviour of 

non-decorated NP allowed to enter the cell by avoiding endo-lysosomal 

pathway (gene gun). Most importantly, once bound to the surface of 50 nm 

positively charged NP, known for their high cytotoxic potential, there are no 

toxic effects.  

In summary, these results suggest that surface functionalization with gH-625 

may change NP cellular fate by providing a good strategy for the design of 

nanoparticles to the safe delivery of drugs. However, further investigation are 

necessary to better elucidate the mechanism by which gH-625-NP is able to 

avoid lysosome accumulation and, hence, to limit NP toxic effects. 

 

3.2. Introduction 

 

In recent years, the development of nano-sized materials in diagnostic and 

therapeutic field has increased in order to improve the detection and 

treatment of human diseases. In this direction, it is becoming necessary to 

better elucidate the mechanisms underlying the interactions of nanomaterials, 

including nanoparticles (NP), with living tissues in order to evaluate 

biological consequences associated with these technologies and design more 

effective and safe nanomaterials1.   

Physicochemical properties of NP such as surface charge, size and 

functionalization, play a pivotal role in controlling NP-cell interaction and 

many works have evidenced how these NP features can influence NP cellular 

uptake2. For instance, the propensity of the most part of NP to enter the cell 

through classical endocytic pathways is widely reported. The conventional 

picture of this mechanism involve NP binding to the plasma membrane, 

transport from early to late endosome, and terminal delivery to 
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lysosome1,3(Figure 1). If made of not biodegradable materials, NP tend to 

accumulate and to remain into lysosomes, which represent their final 

destination.2-3 Bio-persistence of NP has been demonstrated for iron oxide, 

polystyrene, gold and quantum dots; they can accumulate in lysosomes where 

the degradation of inorganic NP is unlikely4. Even if lysosome accumulation 

of NP occurs useful for treatment of lysosomal defects5, it has been reported 

that this accumulation lead to the lysosomal impairment and swelling, 

reactive oxygen species (ROS) generation, cell cycle arrest and cytotoxicity6-

8. Dawson et al. have demonstrated that, once into lysosome, polystyrene 

(PS) aminated 50 nm NP lose their protein corona thus exposing their bare 

surface material. As a consequence, this causes the rupture of lysosome and, 

hence, the activation of apoptosis mechanisms. These findings suggest that 

physico-chemical properties of NP surface can affect the intracellular journey 

of NP and their impact on cell viability9.  

Starting from these observations, a way to control the fate of NP could be the 

modification/functionalization of NP surface with molecules that reduce their 

degradation within the lysosomes or, alternatively, that allow NP to escape 

the endo-lysosomal pathway. 

To address this issue, in this chapter, we report the effects of surface 

functionalization of 100 nm diameter amine-modified polystyrene NP with 

gH-625. 

gH-625 is a nineteen residues fusion peptide derived from herpes simplex 

virus type 1 envelope, belonging to the cell penetrating peptide class (CCPs) 

10. This amphipathic peptide is characterized by net positive charge, 

hydrophobicity and a helical moment. Thanks to these features, the peptide is 

per se able to interact with the membrane lipids. Delivery of gH-625 peptide 

across cellular membrane involves several mechanisms such as direct transfer 

through cell surface membrane by lipid membrane fusion or transient  

permeabilization of the cell membrane; or after endocytosis, transfer across 

vesicular membranes by lipid distruption, pore formation or fusion10-11. 
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However, little is known about gH-625 conjugated NP on membrane crossing 

mechanisms and how it affects the NP journey and their final localization 

inside the cells. 

The aim of this study has been to better elucidate the intracellular fate of gH-

625-NP and how this peptide could affect NP impact on cells by influencing 

endocytic pathway and intracellular trafficking. 

To this aim, the cellular uptake mechanisms and the intracellular behaviour 

of covalently conjugated gH-625 NP was evaluated and compared to non 

functionalized blank-NP. Furthermore, we tested also the capability of the 

functionalization with gH-625 peptide to reduce the cytotoxic effect of 50 nm 

amine-modified PS NP, known to be cytotoxic, inhibit cell proliferation and 

induce lysosome impairment. Our results indicate that gH-625 peptide is able 

to escape lysosomal accumulation of NP and, also, suggest that the surface 

functionalization with this peptide could be a good strategy to design safe and 

effective nanoparticles, thus improving their theranostic applications. 

 
Figure 1 schematic representation of endocytic pathway (Hans -Peter Geber, Natural product reports, 2012) 
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3.3. Results and discussion 

 

3.3.1.   Characterization of peptide conjugated nanoparticles 

 

To verify the secondary structure of the peptide bound to the nanoparticles 

we performed circular dichroism (CD) experiments. CD data confirmed that 

gH-625 retains its structure (helical) when bound to the nanoparticle surface 

as previously reported also for other peptides. The spectra obtained at 

different percentages of functionalization indicate a helical structure in all 

conditions (Figure 2 A and B).  

To further investigate the effect of the peptide functionalization (25, 35 and 

50%) on the size of nanoparticles, we performed dynamic light scattering 

(DLS) measurements. After functionalization, the hydrodynamic size of 

nanoparticles with 25, 35 and 50% of gH-625 in aqueous medium at pH 7 

was found to be respectively 96.68 ± 0.43 nm, 95.64 ± 0.19 nm and 96.76 ± 

0.07 nm, with polydispersity values of ca. 0.08, indicating a narrow 

distribution of the particle size at the pH used for all the experiments 

(Table1). To elucidate the colloidal stability of functionalized nanoparticles 

at different pH values, which is a crucial parameter correlated to their 

functionalization, measurements of the zeta potential and of the 

hydrodynamic radius (DH) were carried out (Table 1). For NP alone, the 

colloidal stability is strongly pH-dependent because it is mainly due to 

electrostatic repulsion between particles. It is widely accepted that at high 

values of z-potential (over 30 mV, positive or negative) the electrostatic 

interactions between particles are strong enough for electrostatic stability, 

while at intermediate values of z-potential, near their isoelectric point, 

particles can flocculate. Table 1 shows both z-potential and mean 

hydrodynamic diameter of blank NP and NP at different degrees of 

functionalization as a function of pH. In presence of peptide, the DH of the 

functionalized NP remained nearly constant over the entire pH range, with no 
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sign of aggregation in spite of the lower values of the zeta potential observed 

at pH 8. Such a behavior highlights that their stabilization is via steric 

hindrance rather than electrostatic repulsion. In particular, by increasing the 

percentage of functionalization NP zeta potential increases from about +30 

mV to +35 mV at pH7. At these zeta potential values, NP DH remains nearly 

about 100 nm. Only at pH 8, we observed a lower zeta potential for 25% 

functionalized NP, indicating that in this condition the functionalized 

nanoparticles are still partially aggregated and their behaviour is similar to 

non-functionalized NP.  

These data indicate that the peptide bound to the NP is able to retain its 

helical structure in all the conditions tested and is able to completely prevent 

NP aggregation at 35 and 50% of functionalization.  

 

 
Fig.2 Circular dichroism spectra of polystyrene NP at 25% (a) and 50% (b) degrees of functionalization with gH-625 

 

 

Table1. Zeta potential and size measurements of pure NP and NP at different degrees of functionalization as a function of pH 
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3.3.2. Effect of gH-625 peptide conjugation on NP intracellular 

trafficking.  

 

We previously demonstrated that the conjugation of the peptide gH-625 

enhances cellular uptake of quantum dots14a and liposomes14b in HeLa cells in 

vitro. However, no evidences of the effect of gH-625 on nanoparticle uptake 

in brain endothelial cells have been previously reported. Moreover, the exact 

mechanism used by gH-625 to facilitate cargos transport through cell 

membranes has not yet been understood in details. Therefore, in this work we 

studied the effect of gH-625 on polystyrene NP uptake mechanisms on 

mouse brain endothelial bEnd3 cells.  

We first tested the cytotoxicity of blank NP and gH-625-NP on bEnd3 cell 

line by Alamar Blue Assay and we verified that blank NP and gH-625-NP at 

50% functionalization did not affect cell viability in the experimental 

condition used for the assay compared to non-treated control cells (data not 

shown).  

Once internalized, NP can follow different fates: i.e. particle degradation 

inside lysosomal compartments, accumulation in other organelles, recycling 

to the plasma membrane or transcytosis to the basal surface of endothelium. 

Furthermore, the routes of NP intracellular trafficking might give some 

indications not only about the fate of NP, but also about the mechanisms 

driving cellular uptake.[16] To address this issue, multiple particle tracking 

(MPT) gives a strong contribution compared to traditional techniques 

(spectroscopy, microscopy, etc.)[17]. In particular, MPT technique can 

provide quantitative (diffusivity and velocity) and qualitative (transport mode 

and directionality) information of internalized NP, by evaluating the time-

resolved trajectories of tens of NP. Therefore, in order to study the effect of 

NP surface functionalization with gH-625 on NP internalization mechanism, 

we followed and analyzed their intracellular motion. Figure 2 shows a 

snapshot of the detected trajectories generated by MPT routines. By shape, 
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trajectories can already be split in two different types: i) Brownian-like 

trajectories, suggesting NP random movement between cytosolic structures, 

and ii) pearls-on-a-string trajectories, derived by a combination of random 

and linear walk, indicative of motor protein facilitated transport, mediated by 

endocytic vesicles and motor proteins [18]. Evaluating the time dependence 

of mean square displacement (MSD) of each tracked NP we classified the 

particles transport mechanisms into diffusive and super-diffusive motion. In 

particular, to perform NP diffusive mode classification we evaluated the 

exponent of each fitting MSD curve by the equation described in the Methods 

section.  

Particle trajectories revealed a substantial heterogeneity in particle 

intracellular dynamics, both for blank NP and gH-625-NP. However, for 

blank NP, most trajectories resulted in a combination of random and linear 

walk with a pearls-on-a-string trajectory, indicative of motor protein 

facilitated transport, mediated by endocytic vesicles (Figure 3). Whereas, 

only a lower percentage of blank NP appeared to follow a purely diffusive 

behavior (random walk), suggesting no particular interaction between NP and 

cytosolic structures (Figure 4).  

 
Figure 4. MPT analysis of blank and gH-625-NP. Examples of “random walk” (a) and “pearls on a string” (b) trajectories. c) 

Percentage of “random walk” and “pearls on a string” trajectories as a function of functionalization degree.  
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Conversely, in presence of peptide functionalization, we observed that most 

trajectories showed a random walk behaviour while a lower percentage 

resulted in a pearls-on-a-string trajectory. In particular, this behaviour is more 

evident at lower percentages of functionalization with an optimum at 35% 

peptide functionalization degree.  

These data suggest that the effect of the peptide could depend on its 

concentration/density on the NP surface. In fact, we theoretically estimated 

the surface density of peptide of about 3, 4 and 6 peptides/nm2 for 25%, 35% 

and 50% functionalized NP, respectively. We hypothesized that a lower 

peptide surface density (3 and 4 peptides/nm2) could promote the correct 

peptide orientation and interaction with membrane lipids. Conversely, a 

higher peptide surface density (6 peptides/nm2) hinders the correct 

orientation of peptide aminoacidic residues and their interaction with cell 

membrane. Indeed, recently, we structurally characterized gH-625−644 

peptide in a membrane-mimicking DPC micellar environment to gain insight 

into how gH fuses with the cell membrane[19]. We reported a model of gH-

625 peptide structure and orientation indicating that both electrostatic and 

hydrophobic interactions work in concert to mediate membrane penetration. 

In particular, the function of the aromatic residues is to cause the peptide 

insertion into the membrane interface while the basic residues stabilize this 

interaction by linking the negatively charged headgroups as shown in other 

systems using both NMR[20] and EPR[21].  

Since we observed that the 35% functionalized NP showed a good stability in 

aqueous suspension and the ability to penetrate cells using a random walk 

behavior, we performed all the other experiments at this percentage of 

functionalization.  

3.3.3 Uptake mechanisms of peptide conjugated NP 

 

Nanoparticles usually enter the cells using a cell-mediated mechanism, called 

endocytosis. After endocytosis, endosomes can fuse with lysosomes or can 
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deliver their cargo across the cell by transcytosis processes. Several works 

reported that caveolae are involved in the endocytosis and transcytosis 

processes in brain endothelial cells.Thus, in order to study if the nanoparticle 

functionalization with gH-625 could affect the mechanisms of NP 

internalization, we performed confocal microscope analyses to investigate the 

colocalization of NP with lysosomes and caveolae in absence of peptide and 

with 35% of peptide functionalization. Figure 5 shows that both blank and 

gH-625-NP partially colocalized with lysosomes. 

 
Figure 5. Colocalization of non-functionalized (a and b) and gH-625-functionalized (c and d) NP with caveolae (a and c) and 

lysosomes (b and d) after 24h incubation in bEnd3 cells. Green: NP; red: caveolin1 and lysotracker. Magnification bar: 20 

µm.  

However, the percentage of colocalization was about 4.68% for blank NP and 

0.62% for gH-625-NP. On the other hand, concerning caveolin1, a molecular 

marker for caveolar structures, no colocalization of gH-625-NP was 
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observed, while blank NP showed 0.74% of colocalization. These data 

indicate that the peptide could change the mechanism of nanoparticle uptake 

by inducing an alternative penetration pathway. To further investigate this 

issue, we treated cells with cytochalasin D that inhibits macropynocytosis by 

disrupting microfilaments. Results demonstrate that the uptake of blank NP 

was drastically reduced after cytochalasin D treatment (Figure 6 A - F).  

 
Figure 6. Cytochalasin D treated bEnd3 cells incubated with blank NP (d-f) and gH-625-NP (j-l) for 10 minutes at 37°C. 

Non-treated control cells incubated with blank NP (a-c) and gH-625-NP (g-i) for 10 minutes at 37°C. Nanoparticles (a, d, g 

and j); phalloidin stained microfilaments (b, e, h and k); merge (c, f, i and l). Magnification bar: 20 µm.  
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On the other hand, gH-625-NP uptake was not affected by microfilament 

depolymerization (Figure 5 G - L). Taken all together these data indicate that 

blank NP might enter the cells mainly by macropinocytosis. Conversely, gH-

625-NP could use a different mechanism to cross cell membrane.  

Previous works demonstrated that gH-625 peptide shows a particular tropism 

for lipidic membranes, which is strongly dependent on its amphipathic 

nature[13a;13d;13e]. Thus, we hypothesized that the presence of the peptide 

on the NP surface could enhance its interaction with the cell membrane and 

promote NP passage through cell membranes. To verify this hypothesis, 

scanning electron microscopy (SEM) analyses were performed. SEM 

micrographs showed that, after 5 minutes of incubation, a high number of 

gH-625-NP was visible on the cell surface (Figure 7 A and B). Furthermore, 

only some of them were laying on the cell membrane; actually, most of them 

seemed to be just below the plasma membrane (Figure 6 B). Conversely, very 

few blank NP were present on the cell surface and some of these formed 

small aggregates (Figure 7 C and D). Blank NP seemed not to be internalized 

but simply to lay on the outer cell membrane (Figure 7 D). 
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Figure 7. SEM micrographs of bEnd3 cells incubated with gH-625-NP (a and b) and blank NP (c and d) for 5 minutes at 

37°C. Dashed squares in figures a and c indicate the zoomed areas shown in figures b and d. Magnification bar: 10 µm (a and 

c) and 1 µm (b and d).  

 

 

 SEM results suggest a different interaction of gH-625-NP with cell 

membrane compared to blank-NP. Moreover, accordingly to cell uptake 

kinetics (Figure 3), these observations indicate a better and more rapid 

adsorption of gH-625-NP on cell membrane, compared to blank-NP after 10 

minutes incubation, probably due to the membrane tropism of the peptide, 

and, thus, an enhancement of gH-625-NP internalization.  

In order to understand if the different behavior of gH-625-NP implied a 

different intracellular fate of NP, we performed transmission electron 

microscopy (TEM) analyses. Figure 8 shows TEM micrographs of gH-625-

NP and blank NP after 24h incubation with bEnd3 cells. Inside the cells, gH-
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625-NP were organized in very small aggregates of 3-4 particles within the 

cytoplasm, mainly localized in vesicular structures, probably early 

endosomes (Figure 8A) and multi-vesicular bodies (MVBs) (Figure 8C). On 

the other hand, for blank-NP, many and larger aggregates associated to 

vesicular structures within the cytoplasm were observed (Figure 8 B-D). 

Furthermore, no gH-625- or blank-NP were localized in the nucleus. For 

obtaining deeper details on the intracellular distribution of gH-625-NP, we 

followed the formation and the growth of gH-625- or blank-NP aggregates 

with time by a confocal microscope image analysis. Figure 8 shows gH-625- 

and blank-NP aggregates within bEnd3 cell cytoplasm after 10 min and 24 h 

incubation. At early times, gH-625-NP formed a huge number of small 

aggregates (Figure 9 A and E). Moreover, by increasing the incubation time, 

the average size of the aggregates remained almost unchanged (Figure 9 B 

and E). Conversely, for blank NP, at early times, the average size of 

aggregates increased with time indicating that these NP tend to accumulate in 

the cell (Figure 9 C, D and F).  

Taken altogether, these observations demonstrate a different behavior 

between gH-625- and blank-NP. In particular, NP conjugation with gH-625 

peptide changes NP destination by reducing their accumulation and 

promoting NP escape/exit from the cell. However, further investigations 

needed to better understand in which intracellular compartments gH-625-NP 

are localized and what are the intracellular pathways followed by these 

functionalized NP that dictate their fate.  

 

 

 

 

 

 



68 

 

 

Figure 8. TEM micrographs of bEnd3 cells incubated 24h with gH-625-NP (a and c) and blank NP (b and d) at 37°C. 

Magnification bar: 1 µm.  

 

 

Figure 9. Confocal microscope images of bEnd3 cells incubated with gH-625-NP for 10 min (a) and 1440 min (b) and blank-

NP for 10 min (c) and 1440 min (d). Blue: nuclei; Green: NP; Magnification bar: 20 µm. gH-625- (e) and blank-NP (f) 

aggregates analysis. Charts show the size distribution of NP aggregates at different observation time (10, 30, 90, 300 and 1440 

min). NP aggregate sizes were split in four intervals: 0.01÷ 0.03 µm2; 0.04÷ 0.10 µm2; 0.11÷ 0.30 µm2; >0.31 µm2.  
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3.3.4. Intracellular fate of gH-625-NP  

 

Co-localization with lysosomes over time 

To further investigate the effects on intracellular localization of gH-625 conjugated NP, a 

kinetic of co-localization of NP with lysosomal markers were performed (Figure 10). The 

results show that both Blank and gH-625 NP co-localize with lysosomes. However, the 

percentage of co-localization of Blank-NP increases over time, reaching almost 80% after 

24 hours of incubation (Figure 10 a), while for gH-625-NP, the percentage of co-

localization is lower than Blank-NP and increases up to 6 h. A slight decrease after 24 h is 

observed. These results demonstrate the low tendency of gH-625 NP to accumulate within 

the lysosomes.  

 

 

Figure 10. Chart a) shows percentage of co-localization of Blank versus gH-625-NP at different observation time. 
Confocal microscope images of bEnd3 cell line incubate with Blank-NP (b-d), and with gH-625 (e-g) for 2, 6 and 24 hours. 
Magnification bar 20 µm 

 

Lysosome swelling 

The accumulation of blank NP within the lysosomes affects lysosome size, 

too. Indeed, an increment in lysosome size up to 1.5 µm2 is observed after 

24h incubation with Blank-NP (Figure 11 a)Conversely, in presence of gH-

625-NP, where a scarce co-localization is observed, lysosome size remains 

almost constant over time (Figure 11 b). These results are in agreement with 

the analyses of NP aggregate size over time (Figure 9), indicating that the 

presence of gH-625 peptide on NP surface elude the final lysosomal storage 

of NPby avoiding the formation of large intracellular aggregates and reducing 

the enlargement of lysosomes. These data support the thesis based on the 
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ability of gH-625 peptide to escape the endo-lysosomal compartment (Figure 

11). 

 

 

Figure 11. Charts show size distribution of lysosome of cells incubated with Blank-NP (a) and gH-625 (b) at different 
observation time (2, 6 and 24 hours). Lysosome sizes were split in four intervals: 0.05÷ 0.2:µ2; 0.5÷ 1.5 : µ2; >1.5 µ2.  
. 

 

Intracellular trafficking over time 

The motion of NP consists of active, ATP-dependent, transport along 

microtubules and periods of sub-diffusion or diffusion motion in cytosolic 

compartment. According to the shape drown by NP in cell, trajectories can be 

classified in two different types: diffusive and pearls-on-a-string. Starting 

from this concept, we classified as diffusive trajectories (random walk), NP 

that are able to move freely in cytosol. On the other hand, NP enclosed in 

vesicular compartment moving along microtubules are described by pearls-

on-a-string trajectories. Furthermore, performing MPT experiments up to 24 

hours, we discovered a new typology of trajectory that describes a random 

walk confined displacement. We called this trajectory “random caged”. 

Assuming that “random caged” trajectory represents NP enclosed in 

lysosomes,  the hypothesis is that this behaviour is typical of NP that reach 

the final lysosomal destination. In fact, once in lysosomes, NP are able to 

show a random walk-like movement but without leaving the storage 

compartment. For these reason the displacement is classified as “caged”. 

Time data analysis reveals that only a low percentage of Blank-NP show a 

diffusive behaviour (random walk), that remains unchanged during the time 
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of the experiments, suggesting that the most part of NP are not able to move 

freely in cytosolic compartment (Figure 12 left chart). Conversely, in the 

presence of peptide, the most part of trajectories are classified as diffusive 

(Figure 12 right chart). Most importantly, for Blank-NP, we observed a 

decrease of the percentage of “pearls-on-a-string” and an increase of “random 

caged” trajectories after 6 and 24 hours of incubation. On the contrary, for 

gH-625 functionalized NP, the percentage of trajectories has no significant 

differences during the time of incubation. To explain this result, we assume 

that after 6 and 24 hours from cellular internalization, Blank-NP reach their 

final destination in lysosomes, so that their trajectories represent their 

confinement in these subcellular compartments according to “random caged” 

behavior. On the contrary, gH-625 conjugated NP behaviour is quite 

different. The percentage of “random caged” NP remains almost constant 

during the time of the experimental procedure, suggesting that this percentage 

(about 20%) is due to the amount of pearls-on-a-string NP that reach final 

lysosome compartment (Figure 12). 

 

 
 Figure 12.  Multiple Particle tracking time resolved experiments.  

 

Intracellular trafficking of gH-625 NP upon gene gun-mediated delivery. 

In order to further confirm that the presence of gH-625 peptide allowing 

endo-lysosomal escape affect the intracellular behaviour of NP, we forced 

cell membrane crossing by shooting NP with gene gun method. 

to allow NP to bypass classical endocytic pathway. As reported in chapter II, 

we demonstrate that Blank NP, once internalized by cells, show a pearls-on-

a-string behaviour prevalently, with a little percentage of random walk 
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trajectories. On the contrary, if forced to enter the cell by using gene gun 

method, shot blank NP showed almost exclusively random walk trajectories, 

suggesting no NP confinement inside endo-lysosomal compartment. In the 

case of gH-625 NP  no significant changes in intracellular trajectories were 

observed upon delivery of NP by using gene gun method.These data strongly 

suggest that gH-625 peptide  allows NP to escape endo-lysosomal pathway. 

 

 

Figure 13. MPT analysis of Endo vs Shot gH-625-NP. Examples of “random walk” (a) and “pearls on a string” (b) 
trajectories. c) Chart show the percentages of trajectories following “random walk” or “pearl-on-a-string” behaviours. 

 

3.3.8.  Effect of gH-625 peptide on 50 nm amine-modified polystyrene NP 

uptake and cytotoxicity. 

 

The different cellular distribution of Blank and gH-625 conjugated 

nanoparticles could lead to different impact on cell viability. In order to 

demonstrate this hypothesis, we tested the effect of gH-625 on cytotoxicity of 

polystyrene nanoparticles. We chose to use 50 nm PS positively charged  NP, 

known for their higher cytotoxic potential than 100 nm NP on bEnd3 cells. 

Moreover, recent works reported the cytotoxic effects of 50 nm amine-

modified polystyrene NP as a consequence of their localization in lysosomes 

and interaction with lysosomal components. 

Data indicate a reduction of viability of cells treated with 50 ug/ml NP, as 

expected (Figure 14). On the other hand, after NP shooting, no cytotoxic 
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effect was observed (Figure 14). Interestingly, after incubation with 50 ug/ml 

gH-625-NP, only a slight reduction in cell viability was observed, indicating 

a decrease in NP cytotoxicity (Figure 14). These observations are in general 

agreement with co-localization results  

 

 
Figure 14 Comparison of cytotoxicityeffect of 50 nm NH2-NP as a function of different routes of entry. 

 

3.4. Conclusions 

 

The goal of this work was to elucidate the mechanisms that allow gH-625 

decorated nanoparticles to escape endo-lysosomal compartment and its 

impact on cell physiology. The effect on intracellular distribution of gH-625 

peptide was verified by performing co-localization with lysosomal markers, 

this experiment was supported by multiple particle tracking time data 

analysis. Furthermore, in order to elucidate the mechanism we compare gH-

625NP to shot NP, reporting no difference change in NP trajectories. 

Most importantly, the conjugation of gH-625 peptide on the surface of 50 nm 

positively charged polystyrene NP, known to be cytotoxic, allow NP to be 

safe for cell viability. 

Take altogether, these data suggest that the viral fusion virus-derived peptide 

gH-625 is able to escape endo-lysosomal fate and, hence, could represent a 

promising strategy for avoiding cytotoxic effects of nanoparticles. 
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Otherwise, we need further investigations to better elucidate the molecular 

mechanism used by decorated NP to cross the cell membrane and to identify 

the possible interactions established between gH-625 NP and cytosolic 

proteins.  

 

3.5. Materials and methods 

 

Protected Fmoc-amino acid derivatives, coupling reagents and Wang resin 

were purchased from Fluka, and the other chemicals were purchased from 

Sigma-Aldrich, Fluka (Buchs, Switzerland) or LabScan (Stillorgan, Dublin, 

Ireland) and were used as received, unless otherwise stated. Orange 

fluorescent amine-modified polystyrene, 100 nm, nanoparticles (100 PS NP) 

and blue fluorescent amine-modified polystyrene, 50 nm, nanoparticles (50 

PS NP) were purchased by Sigma-Aldrich. 

 

3.5.1 Peptide synthesis 

 

The peptide gH-625-644 (Ac-HGLASTLTRWAHYNALIRAFGGG-COOH) 

was synthesized using the standard solid-phase-9-fluorenylmethoxycarbonyl 

(Fmoc) method as previously reported. [13f] The peptide was obtained with 

good yields (30-40%).  

 

3.5.2 Peptides conjugation to nanoparticles 

 

A solution of the peptide, EDC (1-Ethyl-3(3-dimethylamino-propyl)-

carbodiimide, hydrochloride) and NHS (N-Hydroxysuccinimide) in molar 

ratio of 4:4:1 was prepared in PBS buffer at pH 7.4, at room temperature 

under stirring for 30 minutes. NP were conjugated with the preactivated-

peptide, in MES 0.1 M buffer at pH 5.5 for 3 hours at room temperature in 
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presence of Tween 20 and the yield of the reaction was higher than 90%. The 

peptide-NP were purified from the un-conjugated-NP by exclusion 

chromatography on a 1 × 18 cm Sephadex G-50 (Amersham Biosciences) 

column pre-equilibrated in PBS buffer at pH7.4. The fluorescence spectra of 

peptide-NP and un-conjugated NP were measured in a Cary Eclipse Varian 

fluorescence spectrophotometer in the same condition. Peptide-NP were 

prepared with several degrees of functionalization: 25%, 35% and 50%.  

 

3.5.3 Circular Dichroism 

 

CD spectra were recorded using a Jasco J-715 spectropolarimeter in a 1.0 or 

0.1 cm quartz cell at room temperature. The spectra are an average of 3 

consecutive scans from 260 to 195 nm, recorded with a band width of 3 nm, a 

time constant of 16 s, and a scan rate of 10 nm/min. Spectra were recorded 

and corrected for the blank sample.  

 

3.5.4 Size and Z-potential 

 

Measurements of zeta potential and size of gH-625 NP and blank-NP were 

made with a Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK). 

The measurements were conducted at 25°C using a 3.6 × 1010 NP/ml 

suspension at pH 4, 7, 8 and 9. All measurements were performed in 

triplicate for each sample.  

 

3.5.5. Cell culture 

 

Immortalized mouse cerebral endothelial cells, bEnd3 cells (American Type 

Culture Collection, Manassas, VA) were grown in DMEM with 4.5 g/L 

glucose, 10% Fetal Bovine Serum (FBS), 3.7 g/L sodium bicarbonate, and 4 
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mM glutamine, 100 U/ml penicillin and 0.1 mg/ml streptomycin in 100 mm 

diameter cell culture dish, in a humidified atmosphere at 37°C and 5% CO2. 

Cells used in all experiments were at passage 28–35.  

 

3.5.6. Co-localization with lysosomes and caveolae 

 

For indirect immunofluorescence, after NP incubation, cells were firstly 

rinsed twice with PBS to remove non internalised NP and fixed with 

paraformaldehyde 4% for 20 min. Then, cells were incubated with Triton 

X100 0.1% in PBS for 10 min and with PBS-BSA 0.5% for 15 min at room 

temperature (RT). Caveolae were localized by incubating samples first with 

rabbit anti-caveolin 1 (Abcam) primary antibodies. After primary antibodies 

incubation, Alexa-fluor 568 goat anti-rabbit secondary antibodies (Molecular 

Probes, Invitrogen) were used. Afterward, samples were rinsed three times 

with PBS. For lysosomes localization, LysoTracker Red DND-99 (Molecular 

Probes, Invitrogen) was used following manufacturer’s procedure on non-

fixed cells.  

Immunofluorescence analyses were performed by means of confocal laser 

scanning microscope (CLSM)(LSM510, Zeiss), equipped with an argon 

laser, at a wavelength of 488 nm, and a He–Ne laser, at a wavelength of 543 

nm, and 63x objective. Images were acquired with a resolution of 1024×1024 

pixels. Colocalization was estimated by an ImageJ software plugin.  

 

3.5.7. Cytochalasin D treatment 

 

To disassemble actin microfilaments, cells were treated with 30 µM 

cytochalasin D in cell culture medium for 30 min at 37 °C before NP 

incubation. After cytochalasin D treatment, cells were incubated with a NP 

suspension for 15 minutes. Then, cells were rinsed with PBS to remove non-
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internalized NP, fixed with paraformaldehyde 4% for 20 min and observed 

by CLSM.  

Scanning electron microscopy (SEM): After 10 min incubation with blank 

NP and gH-625-NP, cells were rinsed with PBS, fixed with 2.5% 

glutaraldehyde for 2h at 4°C and dehydrated in increasing ethanol series 

(70%, 80%, 95% and 100%) and by critical point. The samples were gold-

sputtered and analyzed by ESEM Quanta 200 (FEI Company) at 25kV and 

6.8 mm working distance.  

 

3.5.8. Transmission electron microscopy (TEM) 

 

TEM was performed to precisely localise the intracellular nanoparticles. 

After 24h incubation with blank NP and gH-625-NP, cells were rinsed with 

PBS and fixed with 2% paraformaldehyde+0.2% glutaraldehyde for 2h at 

room temperature. Afterwards, cells were scraped, harvested in centrifuge 

tubes, embedded in 12% gelatine solution in PBS and infused in 2.3 M 

sucrose at 4°C. Sections were cut with a Leica Cryo-ultramicrotome and 

examined with Leica EM FC7.  

 

3.5.9 Quantification of NP aggregates 

 

To measure the size of NP aggregates within cell cytoplasm, bEnd3 cells 

were incubated with NP suspension for 30, 90, 1440 minutes at 37°C. After 

incubation, cells were rinsed twice with PBS, fixed with paraformaldehyde 

4% for 20 min and observed by confocal microscope (Leica). Images were 

analyzed by an ImageJ software plugin. About 50 cells per each sample were 

analyzed. The size distribution of NP aggregates was split in four intervals 

(0.01÷ 0.03 µm2; 0.04÷ 0.10 µm2; 0.11÷ 0.30 µm2; >0.31 µm2) and data 

reported as percentage of NP aggregates respect to the total number of NP 

aggregates per cell.  
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Statistical analyses: Quantitative data were reported as mean ± standard 

deviation (SD). Statistical analyses were performed using a one-way analysis 

of variance (ANOVA). Results repeats were compared by analysis of 

variance (ANOVA), and a p value < 0.05 was considered statistically 

significant.  

 

3.5.10. Multiple particle tracking 

 

Images of shot and endo 100 nm PS NP in End3 cells were collected in time-

lapse for about 100 s with a sampling time of 1 second by using a widefield 

fluorescence microscope (Olympus Cell-R, 60x oil immersion objective, NA 

= 1.35). Tracking algorithm has been described in details elsewhere 

[Guarnieri et al., Journal of Nanoparticle Research 2011]. NP trajectories 

were built and then the mean square displacement (MSD) was calculated and 

correlated with the NP diffusion by the equation (1)   , 

MSD = 4Dtα 

where D is the diffusion coefficient and α represents the time dependence. By 

fitting the MSD curve of each tracked bead by using equation (1), 

informations concerning the nature of particle motion into the cells were 

gained. Nanoparticles, exhibiting MSD curve that undergoes a power law 

with exponent minor or equal to unity, were classified as Brownian (α=1) or 

sub-diffusive (α<1). Particles presenting MSD, whose dependence on time 

was well described by the power law with α>1, were indicated as super-

diffusive. In particular, about the α coefficient we can distinguish three 

critical cases: α = 0, for immobile NP (displacement does not change with 

time); α = 1, for a randomly moving NP; α = 2 for a NP moving in a 

straight line at a constant velocity. For 1<α < 2 an overlap between random 

and straight motion is found, reflecting the NP active motion along the 

filaments due to the action of molecular motors. The percentages of randomly 
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moving NP (α ≤ 1) and transported NP (1<α < 2) were evaluated and 

compared for shooting and endocytosis.  

 

3.5.11. Quantification of internalized nanoparticles 

 

To evaluate the number of endo and shot NP within cells, after NP 

incubation, cells were roughly rinsed with PBS, trypsinized and counted by 

Neubauer chamber. Afterward, cells were centrifuged and the pellets were 

lysed with lysis buffer. Cell lysates were analyzed by a spectrofluorometer 

(Perkin–Elmer, USA) to measure the amount of internalized PS-NP. Data 

were reported as NP number normalized to the number of cells. Samples that 

had the same number of NP per cell were used and compared each other for 

cytotoxicity Fig.S1 

 

 

Figure S1. Quantification of Blank NP: shot vs endo 

 

3.5.12. In vitro cytotoxicity 

 

bEnd3 cell viability was quantified by Alamar Blue Assay and compared to 

non-treated cells, which were used as a control. Briefly, 3 × 104 cells were 

seeded on a 35 mm cell culture dish and incubated 24 h with NP suspensions 

to allow endocytosis. Conversely, for NP shooting, cells were shot with NP 

by gene gun, washed roughly with PBS and, then, allowed to recover for 24 h 
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at 37°C. After recovery, cells were trypsinized, counted and seeded on fresh 

35 mm cell culture dishes. Alamar Blue Assay was performed according to 

the manufacturer’s procedure at 1 day after NP exposure. Absorbance of 

Alamar Blue reagent solution was read at 570 nm and 600 nm by a plate 

reader (Perkinelmer). Data were reported as percentage of viable cells 

normalized to non-treated cells.  
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4. CHAPTER III 

 

BIO-INSPIRED ENGINEERED NANOPARTICLES TO ENHANCE 

DELIVERY TO THE BLOOD BRAIN BARRIER 

 

3.1. ABSTRACT 

 

Due to the presence of specialized endothelial cells, the blood brain barrier 

(BBB) is a selective physiological barrier able to protect the brain from 

pathogens and unwanted substances. On the other hand, this selectivity 

represents the main obstacle for delivery drugs to the central nervous system 

(CNS). To overcome this limitation, the use of nanoparticles (NP) could be a 

promising strategy to deliver therapeutic agents across the BBB thus 

improving the efficacy of therapies for several CNS diseases. 

A method to further enhance NP delivery through the BBB is to modify their 

surface with bioactive peptides such as cell-penetrating peptide (CPPs). CPPs 

are a group of short peptides shared by common features as amphipathic 

nature, net positive charge, theoretical hydrophobicity and helical moment 

that allow them to interact with lipidic membranes. The ability of CPPs to 

penetrate cell membranes and transport a large variety of cargo 

molecules/material inside cells is widely reported, although there are 

controversies regarding the uptake mechanisms used by CPPs-functionalized 

carriers.  

In this work, first we optimized an in vitro model of BBB in order to 

investigate the effect of NP characteristics on the interaction with the BBB to 

rank them in order of efficiency, then, we studied the effect of NP surface 

decoration with a novel CPP sequence (gH-625), derived from the 

glycoprotein H of the Herpes Simplex virus type 1 envelope, on promoting 

NP uptake and crossing of the BBB.  

In particular, polystyrene nanoparticles with variable size and surface charge 

have been tested with bEnd.3 cell monolayer, grown on a Transwell system, 

in order to identify the parameters regulating the nanoparticles/BBB 

interaction and, thus, the nanoparticle capability to pass through the 

endothelial barrier. Cells were next exposed to fluorescent aminated 

polystyrene NP functionalized with gH-625 peptide sequence. Transcytosis 

and uptake kinetic of gH-625-NP were investigated. The results showed that 
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the presence of gH-625 peptide enhances BBB crossing compare to non-

functionalized NP. These data suggest that the decoration of nanoparticle 

surface with gH-625 peptide sequence enhances BBB overcoming. In this 

direction, this study could provide a useful strategy to design nanocarriers for 

the delivery of therapeutic agents to the CNS.  

 

3.2. Introduction 

 

Neurological disorders contribute significantly to the global burden of 

disease and are likely to increase in the coming years due to an aging 

population; thus, significant efforts have been devoted towards the 

development of improved therapies for central nervous system (CNS) 

diseases. However, despite these efforts, treatments remain limited due to the 

inability of therapeutic agents to effectively cross the blood-brain-barrier 

(BBB).1 The BBB is a dynamic barrier protecting the brain against invading 

organisms and unwanted substances; thus, the BBB is a formidable obstacle 

to the effective delivery of drugs to the CNS and poses a major challenge to 

drug development efforts (Figure 1).2 Therefore, the development of effective 

strategies to enhance drug delivery to the brain, that is, the availability of a 

drug at its site of action in the brain for sufficient time to exert its biological 

effect, is the ultimate aim of any CNS clinical and pharmaceutical program.  

Most strategies to transport pharmaceutical compounds inside the CNS 

causes disruption of the anatomical texture of the BBB therefore impairing its 

natural function. Effective delivery approaches should be cautiously assessed 

considering their impact on the overall protective function of the BBB. It is 

now well-known that there are several invasive or non-invasive transport 

routes by which brain drugs cross the BBB.2 The invasive approaches consist 

of a temporary disruption of the BBB allowing the entry of a drug into the 

CNS or the direct drug delivery by means of intraventricular or intracerebral 

administration3 while the non-invasive ones involve the systemic application 
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of colloidal drug carriers undergoing a receptor or adsorptive mediated 

transcytosis mechanism4 or the passing of the BBB via intranasal delivery.5  

Nanocarriers (linear and hyperbranched polymers, dendrimers, liposomes, 

micelles, niosomes and cyclodextrins)6 are an emerging class of drug delivery 

systems that can be easily tailored to deliver drugs to various compartments 

of the body, including the brain.  

Nanocarriers possess unique features due to their size and the possibility of 

being functionalized with multiple copies of the drug molecule of interest. In 

particular, they allow the transport of a range of drugs, therefore modification 

of nanocarrier surface properties ensues. These properties make nanocarriers 

an attractive alternative to existing methods for transporting drugs across the 

BBB. Despite a large variety of nanocarriers developed so far for cellular 

internalization, it is noteworthy that only amphiphilic molecule-formed 

liposomes and polymeric nanoparticles have been extensively exploited for 

brain drug delivery.7 Several of those systems are now in clinical trials 

mainly for anticancer drug delivery.  

An essential role for nanoparticles is to help drugs gaining increased water 

stability, better pharmacokinetics, reduced toxicity and improved therapeutic 

efficacy.8Because of nanoparticles versatility, diagnostic and therapeutic 

drugs can be either physically encapsulated or covalently conjugated to 

nanoparticles. In this context, the conjugation of therapeutic molecules to 

shuttles that can cross the BBB and thus carry drugs into the brain emerges as 

an attractive alternative. A key mechanism to further enhance nanoparticle 

delivery is to improve their transport by modification of their surface with 

bioactive peptides such as cell-penetrating peptides (CPPs). CPPs are a group 

of relatively short peptides (5-40 amino acids) deriving either from natural 

sources or from synthetically designed constructs, that are able to penetrate 

cell membranes and transport a large variety of cargo molecules/materials 

inside cells.9 While individual CPPs differ in length and sequence, they all 

share some common features, which include their amphipathic nature, net 
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positive charge, theoretical hydrophobicity and helical moment, the ability to 

interact with lipidic membranes, and to adopt a distinct secondary structure 

upon association with lipids.10The general application of CPPs in cellular 

delivery has been hampered by the controversy regarding the uptake 

mechanism used by these peptides. The major dogma has been that CPPs 

enter cells by a receptor and energy-independent process although the exact 

mechanism is not yet fully understood; but it is now evident that for most 

CPPs, endocytosis is an almost exclusive mechanism of internalization. By 

following this pathway, cargos transported by CPPs, such as therapeutic 

molecules or functionalized nanoparticles, may experience lysosomal pH 

(around 5), which can strongly accelerate drug degradation, and/or 

nanoparticle accumulation within late endosomes by making less effective 

the transport of nanoparticles through the BBB.  

Although several studies demonstrate the effectiveness of CPPs, such as 

TAT11, in promoting the transport of nanoparticles across the BBB, the 

compelling need of enhancing delivery to the brain makes it essential to 

exploit novel molecules which use different internalization mechanisms. 

Moreover, the controversy regarding the mechanism of action and the 

growing number of peptides with cell-penetrating properties has increased the 

challenge. Recently, great attention has been devoted to the study of 

hydrophobic peptides that efficiently traverse biological membranes, 

promoting lipid membrane-reorganizing processes, such as fusion or pore 

formation and thus involving temporary membrane destabilization and 

subsequent reorganization.12 

The nineteen residues peptide gH-625, was previously identified as a 

membrane-perturbing domain in the glycoprotein gH of Herpes simplex virus 

type I;13 gH-625 interacts with biological membranes, contributing to the 

merging of the viral envelope and the cellular membrane; it is able to traverse 

the membrane bilayer and to transport a cargo into the cytoplasm.14 We 

already reported the ability of the peptide gH-625 to transport quantum dots 
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inside the cytoplasm in an efficient way and only partially involving 

endocytic pathways.14a 

Here we report the effect of gH-625 on the penetration of 100 nm polystyrene 

nanoparticles (NP) through an in vitro BBB model based on bEnd3, an 

immortalized mouse cerebral endothelial cell line.  

First we optimized a BBB in vitro model in order to study the capability of 

NP to cross the brain endothelium as a function of feature (e.g. size, surface 

charge, and functionalization)(as deeply described in the Methods 

paragraph).Then we demonstrated that, by opportunely modifying surface 

properties, it is possible to change the fate of nanoparticles. In particular, we 

verified that gH-625 conjugation enhances nanoparticles transport across the 

BBB, thereby enhancing the CNS bioavailability of an eventual drug. This 

study holds importance for treatment of brain infections and tracking of 

nanoparticles in vivo, a step closer to the development of a clinically 

applicable nanocarrier for treatment as well as monitoring brain related 

disorders.  

 

 
Figure.1Schematic representation of blood-brain barrier. 
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3.3. The building blocks of the BBB 

 

3.3.1. Tight junctions 

 

Junction complex in the BBB comprises tight junction (TJ) and adherens 

junction (AJ). 

TJ constitute the most apical intercellular junctional complex in polarized 

endothelium, with three key biological functiones: a barrier to paracellular 

diffusion of blood-borne polar substances, a fence preventing the lateral 

diffusion of lipids and integral proteins, thus maintaining cellular polarization 

(Figure 2). 

TJ consists of three integral membrane proteins, namely, claudin, occludin, 

and junction adhesion molecules, and a number of cytoplasmic accessorize 

proteins as ZO-1, ZO-2, ZO-3, cingulin and others. Cytoplasmic proteins are 

able to link membrane proteins to actin, which is the primary cytoskeleton 

protein for retain structural and functional integrity of the endothelium. AJ 

are composed of a cadherin-catenin complex and its associated proteins17-18. 

  

3.3.2. Claudins  

 

At least 24 members have been identified in claudin family, both in mouse 

and human. 

Claudins are the main component of the TJ, are localized at TJ strands, are 

22KDa phosphoprotein and have four transmembrane domanins. Claudins 

bind homotypically to claudins on adjacent endothelial cell to form primary 

seal of the TJ Rif (furuse et al 1999). Claudins bind trought the carboxyl 

terminal, the cytoplasmatic protein ZO-1, ZO-2 and ZO-3.  It has has been 

reported that claudin 1 and 5 toghether with occludin are expressed TJ in 

brain, loss of claudin 1, but not 5 from cerebral vessels was demonstrated 
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under pathologic conditions such as tumor, stroke and inflammation as well 

as in vitro17-18.  

 

3.3.3. Occludin 

 

Occludin is a 65-KDa phosphoprotein, larger then claudin. Shows no 

aminoacid sequence similar to the claudins, and as the claudins, occludin has 

transmembrane domanins. 

Occludin is composed by four transmembrane domains, a long COOH-

terminal domain and a short NH2-terminal cytoplasmatic  domain. The two 

extracellular loops of claudin and occluding originating from neighboring 

cells form the paracellular barrier of TJ. The occludin trought the 

cytoplasmatic domain is directly associated with ZO proteins. 

Occludin expression is major in brain endothelial cells than in non neural 

tissues, furthermore seems to be a regulary protein that can alter paracellular 

permeability. 

Forming an heteroplymers, occludin and claudin, form intramembranous 

strands, these strands have been proposed to contain channels that allow to 

selective diffusion of ions and idrophilic molecules. Togheter, claudins and 

occludins form the extracellular component of TJs and are both required for 

the BBB formation18-19. 

 

 

3.3.4. Junctional adhesion molecules 

 

Junctional adhesion molecules (JAM) are approximately 40KDa single 

transmembrane domain proteins. 

JAM belong to the immunoglobulin superfamily, they extracellular portion 

has two immunoglobulin-like loops formed by disulphide bonds. 
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The expression of JAM in human BBB is yet to be explored. It is involved in 

cell-to cell adhesion and monocyte transmigration trough BBB19. 

However more have to be investigated to unfold its function in the BBB. 

 

3.3.5.  Cytoplasmatic accessory proteins  

 

The accessory proteins of TJ complex belong to the family of well known as 

membrane-associated guanylate kinase-like proteins (MAGUKs). They are 

charachterized by the presence of three PDZ domanis  (PDZ1, PDZ2 and 

PDZ3), one SH3 domain, and one guanyl kinaslike (GUK) domain. 

All these domains are useful to bind molecules and thus playing a central role 

in organizating proteins at the plasma membrane. 

Is reported that the PDZ1 domain of ZO-1, ZO-2 and ZO-3 bind directly the 

COOH-terminal of claudins. JAM  was also recently shown to bind directly 

ZO-1 and other PDZ-containings protein, most importantly, actin, wich is the 

main cytoskeleton protein, is bind to COOH-terminal of ZO-1 and ZO-2 and 

this complex cross link the transmembrane elements, thus providing support 

to the endothelial cells17-18. 

 

3.3.6.  Adherens junctions 

 

The formation of AJs is promoted by homophilc interactions between the 

extracellular domains of calcium-dependent cadherin on the surface of 

adjacent cells. In order to form adhesive contact between the cells, the 

membrane protein cadherin, associated with the intermediatery protein 

catenins, join the cytoskeleton actin. AJs components have been 

demonstrated in intact microvessels of the BBB in rat. 

TJ and AJ components are known to interact with ZO-1 and catenins, and 

influence TJ assembly20. 
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3.3.7.  Role of astrocytes 

 

Astrocytes are so called star cells. They perform many functions, including 

biochemical support of endothelial cells that form the blood–brain barrier, 

provision of nutrients to the nervous tissue, maintenance of extracellular ion 

balance, and a role in the repair and scarring process of the brain and spinal 

cord following traumatic injuries18.  

 

3.3.8. Pericytes 

 

Pericytes (PCs) are cells of microvessels including capillaries, venules and 

arterioles that wrap around endothelial cells. It has been widely demonstrated 

that PCs provide support and vasodynamic capacity to the microvasculature, 

thus playing a key role in the structural stability of the vessel wall. In vitro 

studies has been conducted in order to understand the role of PCs in 

angiogenesis and differentiation of BBB, the results support the thesis that 

PCs have pivoltal role in integrity and genesis of the BBB18. 

 

 

 

 

 

Figure.2 Schematic representation of tight junction complex. 
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3.4.  Results and Discussion 

 

3.4.1. Uptake kinetics and in vitro BBB crossing of peptide conjugated 

nanoparticles.  

 

To study the effect of surface functionalization with gH-625 on NP 

internalization, we performed NP uptake experiments. Figure 3A shows that 

after 10 minutes of incubation, both functionalized and blank NP were 

internalized by bEnd3 cells and the number of internalized nanoparticles 

increases as a function of incubation time. However, the amount of 

internalized gH-625-NP is higher than blank NP and this effect is more 

evident at early time of NP uptake kinetic. While after longer incubation time 

the amount of internalized NP is quite similar, probably due to the saturation 

of the uptake mechanism mediated by the gH-625 peptide.  

bEnd3 cells are able to form a confluent monolayer that mimics permeability 

properties of primary culture models of early passages. We tested the ability 

of gH-625 peptide to enhance NP crossing of a bEnd3 confluent monolayer. 

Data reported in Figure 3B show that gH-625-NP cross more efficiently the 

endothelial layer than blank NP. More precisely, the permeability (P) of the 

monolayer was (0.43 ± 0.02) × 10-6 cm/sec for gH-625-NP, almost two fold 

higher than P value reported for blank-NP ((0.24 ± 0.02) × 10-6 

cm/sec)(Table 2). These data are in agreement with cell uptake kinetic 

results. In fact, by focusing at early incubation time, also the uptake rate of 

peptide-conjugated NP was approximately double compared to blank NP (see 

the insert in Figure 3A). Moreover, no changes in BSA-TRITC permeability 

were observed after exposure to both blank and gH-625-NP, indicating that 

these NP did not perturb the integrity of the cell monolayer in the 

experimental conditions used for the assay (data not shown).  
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Figure 3. Uptake kinetics of blank and 35% functionalized gH-625-NP in bEnd3 cells (a). Effect of peptide functionalization 

in NP crossing of a confluent bEnd3 cell monolayer (b).  

 

 

3.5.  Conclusions  

 

The aim of the present work was to verify if synthetic peptides derived from 

viral membranotropic sequences can be used successfully to deliver 

biologically active substances inside the BBB in order to pose the basis for 

developing new effective strategies for drug delivery into the brain. The HSV 

gH-derived-peptide was covalently bonded with polystyrene nanoparticles 

and investigated for the ability to translocate through the BBB in an in vitro 

model. The functionalized nanoparticles were thoroughly characterized using 

a variety of complementary techniques to gain a better understanding of their 

properties and showed that gH-625-NP only slightly modified the particle 

sizes with a z-potential indicative of colloidal stability at pH 7. gH-625-NP 

translocated efficiently across cell membranes and cell internalization does 

not seem to exclusively involve classical endocytosis mechanisms. In fact, 

conjugation with the gH-625 facilitated the delivery of nanoparticles across 

the BBB, leading to significant higher cell uptake and crossing. To the best of 

our knowledge, the gH-625 represent a cell translocation motif never reported 

before in a BBB in vitro analysis and could be applied to the design of a drug 

delivery system homing to the brain and bypassing the endocytosis 

entrapment. Therefore, these novel nanocarriers could be regarded as a 
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promising strategy to design delivery systems for administration of 

therapeutical compounds to the brain, deserving further investigations to 

more precisely characterize the mechanism by which gH-625 crosses the 

BBB.  

 

3.6. Experimental Section 

  

3.6.1. Materials 

 

Protected Fmoc-amino acid derivatives, coupling reagents and Wang resin 

were purchased from Fluka, and the other chemicals were purchased from 

Sigma-Aldrich, Fluka (Buchs, Switzerland) or LabScan (Stillorgan, Dublin, 

Ireland) and were used as received, unless otherwise stated. Orange 

fluorescent amine-modified polystyrene, 100 nm, (NP-NH2) were purchased 

by Sigma-Aldrich. 

  

3.6.2. Peptide synthesis 

 

The peptide gH-625-644 (Ac-HGLASTLTRWAHYNALIRAFGGG-COOH) 

was synthesized using the standard solid-phase-9-fluorenylmethoxycarbonyl 

(Fmoc) method as previously reported. The peptide was obtained with good 

yields (30-40%).  Peptides conjugation to NP: A solution of the peptide, 

EDC (1-Ethyl-3(3-dimethylamino-propyl)-carbodiimide, hydrochloride) and 

NHS (N-Hydroxysuccinimide) in molar ratio of 4:4:1 was prepared in PBS 

buffer at pH 7.4, at room temperature under stirring for 30 minutes. NP were 

conjugated with the preactivated-peptide, in MES 0.1 M buffer at pH 5.5 for 

3 hours at room temperature in presence of Tween 20 and the yield of the 

reaction was higher than 90%. The peptide-NP were purified from the un-

conjugated-NP by exclusion chromatography on a 1 × 18 cm Sephadex G-50 

(Amersham Biosciences) column pre-equilibrated in PBS buffer at pH7.4. 
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The fluorescence spectra of peptide-NP and un-conjugated NP were 

measured in a Cary Eclipse Varian fluorescence spectrophotometer in the 

same condition. Peptide-NP were prepared with several degrees of 

functionalization: 25%, 35% and 50%.  

Quantification of nanoparticle uptake kinetic: To evaluate cell uptake of NP 

as a function of NP surface functionalization with gH-625 peptide, about 

5·104 cells were seeded in a 96-well. Blank-NP and gH-625-NP were 

dispersed in cell culture medium at the final concentration of 3.6 × 1010 

NP/ml. Cells were incubated with NP suspensions for 0, 10, 60, 180 and 300 

minutes. After incubation, cells were rinsed with PBS and lysed with 1% 

Triton X100 in PBS. Cell lysates were analyzed by a spectrofluorometer 

(Wallac 1420 Victor2™, Perkin–Elmer, USA) to measure the amount of 

internalized NP.  

 

3.6.3. Polystyrene nanoparticles 

 

Nanoparticles used in this work are the following: green and red fluorescent 

polystyrene nanoparticles with diameters respectively of 44 (NP44) and 100 

(NP100) nm (Duke Scientific Corporation). 

Yellow-green fluorescent carboxylate-modified polystyrene nanoparticles, 

100 nm, (NP-COOH) (Life Technologies, USA).  

Orange fluorescent amine-modified polystyrene nanoparticles, 100 nm, (NP-

NH2) (Sigma-Aldrich).  

Morphology of polystyrene nanoparticles is verified by transmission electron 

microscopy (TEM) (Figure 1).  

To elucidate the colloidal stability of nanoparticles, measurements of the zeta 

potential and of the hydrodynamic radius (DH) are carried out with a 

Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK) at 25 °C by 

using a nanoparticle concentration, corresponding to 0.9×1010 NP/ml. At least 
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3-5 measurements of all samples should be performed to have a statistical 

significance.  

 

3.6.4. Cell culture 

 

Immortalized mouse cerebral endothelial cells, bEnd.3 cells (American Type 

Culture Collection, Manassas, VA) are grown in Dulbecco's Modified Eagle's 

Medium (DMEM) with 4.5 g/l glucose, 10% Foetal Bovine Serum 

(FBS)(Gibco), 4 mM glutamine (Gibco), 100 U/ml penicillin and 0.1 mg/ml 

streptomycin (Gibco) in a 100 mm diameter cell culture dish (Corning 

Incorporated, Corning, NY), in a humidified atmosphere at 37 °C and 5% 

CO2. Cell culture medium is changed every 3-4 days and cells are split after 

reaching confluency. Phosphate buffered saline solution (PBS) and 

trypsin/EDTA solution are from Gibco. Cells used in all experiments are at 

passage 28–35. To evaluate nanoparticle cellular uptake, 5 × 104 cells are 

seeded in a 96-well. For permeability experiments cells were seeded on 

Transwell permeable inserts as described below. 

 

3.6.5. TEER measurements 

 

Tight junction formation and BBB functionality are assessed by 

transendothelial electrical resistance (TEER) across the filters using an 

electrical resistance system (ERS) with a current-passing and voltage-

measuring electrode (Millicell-ERS, Millipore Corporation, Bedford, MA). 

TEER (Ω•cm2) is calculated from the displayed electrical resistance on the 

readout screen by subtraction of the electrical resistance of a filter without 

cells and a correction for filter surface area (Table 2).  

 

 

 



96 

 

Permeability experiments 

1. Seed 3 × 104 cells in 150 µl of complete medium on Transwell 

permeable inserts (6.5 mm in diameter, 3 µm pores size) (Corning 

Incorporated, Corning, NY), add 400 µl of complete medium in the 

basal compartment of the Transwell system and allow them to grow up 

to 7 days. Change cell culture medium every 3-4 days. 

2. Dilute nanoparticles in complete cell culture medium w/o phenol red 

at the final concentration of 0.002% solids, corresponding to 4.2 × 

1011 for 44 nm NP and 3.6 × 1010 NP/ml for NP100, NP-COOH and 

NP-NH2, and sonicate NP suspension for 3 min prior to use. 

3. A schematic representation of the system used for permeability 

experiments is reported in Figure 2.  

 

3.6.6. Fluorescent probes 

 

1. Albumin from Bovine Serum (BSA), Alexa Fluor® 488 Conjugate 

(Life Technologies, USA) is used as a standard fluorescent probe for 

permeability measurements.  

2. Working solutions of fluorescent probes are prepared by dissolving the 

BSA in complete medium w/o phenol red at the final concentration of 

0.5 mg/ml. 

3. Solution is sonicated for 2-3 min to promote BSA dissolution. 

 

3.6.7. Indirect immunofluorescence 

 

1. 4% paraformaldehyde solution is prepared by dissolving 

paraformaldehyde powder in PBS at about 100 °C under stirring. 

When the solution becomes transparent, make aliquots of about 4-5 ml 

in 15 ml conic tubes and store them at -20 °C. 
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2. 0.1% Triton X100 solution is prepared by diluting Triton X100 

(Sigma) in PBS under stirring. Store the solution at room temperature. 

3. Prepare PBS-BSA solution by dissolving 0.5% (w/v) bovine serum 

albumin (BSA) (Sigma) in PBS at room temperature.  

4. Tight junctions are localized by incubating samples first with mouse 

anti-claudin 5 primary antibodies (Invitrogen, Life Technologies) 

diluted 1: 100 in PBS-BSA 0.5% and then with Alexa-fluor 488 anti-

mouse secondary antibodies diluted 1: 500 in  PBS-BSA 0.5% 

(Invitrogen, Life Technologies). 

5. Rabbit anti-EEA 1 primary antibodies (ABR) diluted 1: 200 in PBS-

BSA 0.5% are used with Alexa-fluor goat anti-rabbit secondary 

antibodies diluted 1: 500 in PBS-BSA 0.5% (Invitrogen, Life 

Technologies) to label early endosomes.  

6. The excitation wavelengths of secondary antibodies are 488 nm and 

568 nm for samples treated with red and green fluorescent 

nanoparticles, respectively.  

 

3.7. Methods 

 

3.7.1. Quantification of nanoparticle uptake 

 

1. To evaluate cellular uptake of nanoparticles, as a function of 

nanoparticle size and surface functionalization, cells are incubated at 

37 °C with nanoparticle suspensions at the final concentrations 

described above. 

2. After 24 hours incubation, cells are rinsed with  PBS and lysed with 

100 µl of 1% Triton X100 in PBS.  

3. Cell lysates are analyzed by a spectrofluorometer (Wallac 1420 

Victor2, Perkin–Elmer, USA) to measure the fluorescence intensity of 

internalized nanoparticles. 
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4. Nanoparticle concentration in the samples is determined by 

interpolating the fluorescence intensity data of the samples with the 

calibration curve and normalized to cell number. 

 

 

3.7.2. Nanoparticle transcytosis experiments 

 

The permeability experiments are performed on the monolayer 7 days after 

cell seeding, allowing sufficient time for the cells to develop the tight 

junctions (Figure 6). 

1. On the day of experiment, prepare the nanoparticle suspension by 

diluting nanoparticle stock in complete media w/o phenol red as 

described above. 

2. Remove the media and wash the Transwell insert filter where cells are 

seeded with PBS with Ca2+ and Mg2+ (Gibco) to eliminate traces of 

phenol red that could affect fluorescence measurements. 

3. Then, fill first the donor chamber with 0.15 ml complete medium w/o 

phenol red containing nanoparticles and second the acceptor chamber 

with 0.4 ml complete medium w/o phenol red (Figure 2). 

4. Collect the samples of 0.4 ml every 10 min for 90 min from the 

acceptor chamber and then replace them with the same amount of 

complete medium w/o phenol red.  

5. Measure the fluorescence intensity of the samples by 

spectrophotometer. The excitation and emission wavelengths are set to 

485 and 535 nm, respectively, for all fluorescence tracers in the 

present study.  

6. At the end of 90 min, wash the filter and fill first the donor chamber 

with 0.15 ml complete medium without phenol red containing 0.5 

mg/ml BSA and second the acceptor chamber with 0.4 ml complete 

medium w/o PR. 
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7. Repeat step 4 and 5. 

8. To have a statistical significance, the experiments should be 

performed in triplicate at least. 

 
Figure4. Schematic representation of a blood-brain barrier in vitro model on transwell 

 

3.8.3. Calculation of nanoparticle concentration in the acceptor chamber 

 

Nanoparticle concentration in the samples is determined by interpolating the 

fluorescence intensity data of the samples with the calibration curve. 

1. For the calibration curve, prepare a 1:2 dilution series of 

nanoparticle standards in the concentration range of 0 – 3.6 × 1010 

NP/ml by diluting the nanoparticle stocks in cell culture media w/o 

phenol red. 

2. Sonicate nanoparticle suspensions for 5 min at room temperature in 

ultrasonic bath. 

3. Transfer 100 µl of each nanoparticle standard to a 96-well plate 

suitable for fluorescence measurement.  

4. Read the fluorescence with a fluorescence plate reader at 488 nm 

excitation /530 nm emission for green and orange fluorescent 

nanoparticles and at 543 nm excitation /560 nm emission for red 

fluorescent nanoparticles. 
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5. Transport of nanoparticles across the BBB depends on nanoparticle 

size and surface charge. In particular, smaller (NP44) and 

positively charged (NP-NH2) nanoparticles are transported more 

efficiently through the endothelial layer than NP100 and NP-

COOH (Figure 5)  

 
Figure 5. Transport of nanoparticles across blood-brain barrier  

 

3.8.4. Calculation of permeability 

 

The solute permeability (P) of the monolayer is calculated from the 

relationship,  

SC

V
t

C

P
D

A
A

×

×
∆

∆

=

 

where ∆CA/∆t is the increase in fluorescence concentration in the accepter 

chamber during the time interval ∆t, CD is the fluorescence concentration in 

the donor chamber (assumed to be constant during the experiment), VA is the 

volume of the acceptor chamber, and S is the surface area of the filter. 
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3.8.5. Confocal microscopy analysis of Transwell filters after 

permeability experiments  

 

Confocal microscopy observations are carried out to verify the integrity of 

the endothelial layer and the presence of nanoparticles within the cells 

(Figure 4). 

1. After 90 minute incubation with nanoparticles, wash twice the filter 

with PBS to remove excess of nanoparticles. 

2. Fix the cells with 4% paraformaldeyhde in PBS for 20 min at room 

temperature. 

3. After fixation, wash the samples with PBS.  

4. Incubate the cells with fluorescent WGA solution in PBS for 10 min at 

room temperature to stain cell membranes. 

5. After incubation, wash twice the samples with PBS. 

6. Cut the filter from the Transwell support with a scalpel and wash it 

with Milli-Q water. 

7. Remove excess of water by gently drying the filter with paper. 

8. Mount the filter on a glass slide with PBS/glycerol (1:1) solution and 

cover it with a glass coverslip. 

9. Observe the samples by the confocal microscope. 

 

 

 

Figure 6. Claudin(Green) and Dapi (blue).bEnd3 cell line.  
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