University of Naples Federico 11

School of Engineering
Department of Chemical Engineering, Materials and Industrial

Production

Ph.D in Engineering of Materials and Structures

XXVI Cycle

BROWNIAN MOTION IN MICROMETRIC COMPLEX CONFINEMENT

Ph.D Thesis

Francesco Gentile

TUTOR COORDINATOR

Prof. Dr Paolo A. Netti Prof. Dr Giuseppe Mensitieri

April 2014



Acknowledgements

A mio figlio Michele e mia moglie Anna.

Alla mia famiglia , a Mauro, Illaria e Giovanni.

ii



INDEX

1 CHAPTER: BROWNIAN DIFFUSION

1 INTRODUCTION
1.1 HISTORICAL BACKGROUND
1.2 FICK’S LAW
1.3 EINSTEIN RELATION
1.4 STATISTICAL APPROACH
1.5 RANDOM WALK
1.6 DIGITAL VIDEO MICROSCOPY AND PARTICLE TRACKING
2 EXPERIMENTAL SETTING
2.1 MATERIALS AND METHODS
2.1.1 Glycerol suspensions:
2.1.2 Microscope, fast camera and video sequences
2.1.3 Calibration data analysis
2.2 CALIBRATION RESULTS AND DISCUSSION
3 CONCLUSION

References

2CHAPTER:

N N

10

11

16
19
20
20
20
21
22
25
26

HINDERED BROWNIAN DIFFUSION IN SQUARE-SHAPED

GEOMETRIES: THE DIHEDRAL EDGE EFFECT.

ABSTRACT
2.1 INTRODUCTION

28
29

iii



2.2 HINDERED BROWNIAN MOTION OF ISOLATED SPHERES NEAR

A WALL 31
2.3. PROBLEM FORMULATION 33
2.4NUMERICAL SIMULATION 35
2.5 Materials 37
2.6 Methods 38

2.6.1 Confocal Scanning Laser Microscopy 38
2.6.2 Channel section partitioning 40
2.6.3 Image acquisition and processing 42
2.6.4 Calculation of diffusion coefficients 42
2.7 RESULTS AND DISCUSSION 47
2.8 CONCLUSION 50
References 52

CHAPTER 3: THE SHAPE EFFECT OF DIFFUSION COMPLEX FLUIDS

ABSTRACT 54
3.1 INTRODUCTION 54
3.2 Material and method 57
3.2.1 Polymer solution: 57
3.2.2. Ubbelohde Viscometer 58
3.2.3 Preparation of colloidal ellipsoids 60
3.2.4 Particle dispersion 60
3.2.5 Microscope, fast camera and video sequences: 61
3.2.6 Data analysis 61
3.3 RESULTS AND DISCUSSION 61
3.4 CONCLUSION 71

References 73

iv






1 CHAPTER: BROWNIAN DIFFUSION

1 INTRODUCTION

Diffusion of colloidal particles is a very suggestive topic for industrial
applications and biological understanding.

The fundamental aspects of diffusion have had interest in a wide time
window, more than a century and a half, and now continue to arouse
curiosity. From the scientific point of view several branches were
approached for this study: physics, chemistry, engineering, mathematic
and biology.

This remarkable interest is certainly due to the fact that the
phenomenon involves many aspects of the modern experiments and it is
present in a wide range of technologies used in contemporary life.

The introduction of increasingly sophisticated experimental
techniques has allowed the opportunity to validate theoretical
conjectures made in the past opening at the same time new areas of
research. Among these new frontiers, the diffusive behaviour of particles
in complex geometries or in complex fluids, together with the effect of

particle shape certainly remain to unravel.

1.1 HISTORICAL BACKGROUND

The phenomenon of diffusion is one of the most interesting aspects if

you want to study the evolution of any system. Migrations and



redistribution of atoms, molecules or any kind agglomerates, are the
mechanisms of structural evolutions and reorganization of matter.
Thermodynamic aspects often play a central role and establish the
conditions for which a given phenomenon takes place. Nonetheless
Thermodynamics don’t say much about velocity and the time evolution
and reaction of the system. It's obvious that a kinetic consideration is the
central core of the study of the diffusion.

The first experiments and theoretical approach of small particles
diffusing in fluid systems date back to Adolf Fick in the half of nineteenth
century; at that time he proposed the quantitative laws of diffusion.

A new approach of diffusion, supported by the introduction of a
statistical concept, was presented by Albert Einstein at the turn of the
nineteenth and early twentieth century in his PhD thesis; indeed he
began analysing the previous observations of Brown in 1828 about the
chaotic motion of diffusive micrometric particles of pollen which floated
above the surface of an aqueous suspension. Einstein gave a rigorous
mathematical treatment of this phenomenon.

The attention applied to the study of the diffusion of small particles
with dimensions in the range of a few nanometres up to the micron scale

is certainly worthy of note.

1.2 FICK’S LAW

Fick hypothesized that the diffusive behaviour could be described
with a law similar to those which are used for the transport phenomena

of current and heat conduction. He used the same mathematical



formalism of the Furier’s law for the conduction of heat and the Ohm’s
law regarding the electricity.[1]

An ensemble of small particles dispersed or dissolved in a generic
fluid is taken into account. The nature of this particle is not relevant, in
fact they could be molecules or colloidal spheres (e.g. polystyrene beads
of the order from 0.1 um diameter to few microns size). The number is
constant in time and any particle is a point located through an
orthonormal Euclidian system of coordinate. Since a point like depiction
of the particle is used, we are obliged to write their density, usually
denoted by the mass to volume ratio, through the density operator

n(x,t):

TL(X, t) = Za 5(36 - xa) (1)

In a classical system the variable x,, inside a Dirac delta function, is
the dynamical variable specifying the position of the particle a. Of course
n(x,t) can be interpreted as an operator[2]; indeed the ensemble

average of this operator is the average density in x position

(n(x)) (2)

In homogenous and isotropic fluids of course considering the density
mean value independent of position x, the operator corresponds to an
average densityn = N/V|[3].

In Fick diffusion the variation of the density in time is represented by

the following differential equation[4]:

on(x,t)
at

+V-jlx,t)=0 (3)



it obeys a conservation law, where j(x,t) is the particle current, in

analogous at current in electrodynamics[5]:
j(xr t) = Za Va 5(36 - xa) (4)

product of the particle velocity

=22 (5)

Va ot

and the density operator n(x, t).

In thermodynamic equilibrium is intuitive to assume that there are no
variations in density from one point to another of the system, and the
current j of the particles has a zero value. In this case the average value
of the operator density is independent of the position x, the system and
of the time t parameter. A generic perturbation acting on the system,(
e.g. a force applied for a finite time, or a spontaneous fluctuation) moves
the ensemble momentarily away from equilibrium state. The particles of
the system will move to restore the equilibrium state and therefore a
homogeneous density. It is logical to think that the only way to restore
the equilibrium of the system is achieved through the motion of the
particles; indeed a displacement will take place from their non-
equilibrium position towards a new reorganization. This phenomenon is
correlated with non uniform local density and produces a value of the
particle current different from zero. If the density variation between two
neighbouring points is small, the value of currentj will be quite small.
There is a strict proportionality between the density gradient and the

particle current. This proportionally is known as Fick Law’s[6]:

j=—DVn (6)



The minus sign in the second term of Fick’s equation explains that
particle current direction is opposite to the density gradient, in order to
restore a homogeneous density. The proportionality constant D is the
diffusion coefficient and it has unity of [length]2/[time].

The Fick's law (6) can be inserted into the conservation law (3),

obtaining the equation of diffusion[7]:

on _ 2
5 = DVn (7)
representing the temporal dependence of diffusion process. This is a

parabolic differential equation. The modes obtained by this equation are

achieved by making this assumption[8]:
n(x, t)~e @t (8)
Thus the resulting frequency is:
w = —iDg? (9

where the wave number g = 2r/Ais the modulation of the spatial
density (figure 1).

In the frequency w there’s an imaginary part that accounts for an
oscillating behaviour. Once substituted into equation (8) the imaginary
oscillatory contribution vanish and the response of n(x,t) to external
forces, the non equilibrium boundary condition, will exponentially decay
to zero in times of order D~'A2, without oscillating[9].

To evaluate how the system evolves after a perturbation the

diffusivity equation must be solved. This corresponds to understanding



the dynamic of the density operator. Taking two time instants t and t’
and the relative density at positions x and x’, an integral relationship

expressed by the next equation can be observed:
n(x, t) = [di%'G(x — x', t — t)n(x't") (10)

where the G(x,t) is the Diffusion Green function[10]. This function

satisfies the boundary condition
G, t=0)=6(x—x") (11)

which for t > 0 satisfies the Diffusion Equation (7):

aag’t"t) — —DV2G(x, t) (12)

The solution of this equation is obtained applying the Laplace and

Fourier transform in time and in space domain respectively[11]:

G(q,z) = (13)

—iz+Dq?

and

G(q,t) = f°°+"£ Ee—iztG(qlz) = e~Pa’ltl (14)

—oo+iE 27T

—|x|?

d , L
G(x,t) = f(d—qe‘“’xG(q, t)=—— e®id  (15)

2m)d (4mD|t])4/2

According to this equation a particle located in x, will spread in time

in a cloud diffused around the initial position. This cloud increases its



radius occupying a volume region proportional to the mean square

radius
(|x|?) = 2dD]|t| (16)

where d corresponds to the system dimensionality (d=1,2,3)[12].

The last equation is obtained by solving the differential equation and
will be used in the experimental section to connect the displacement
(easily measurable experimentally) to the diffusion of particles in
isotropic systems. Obviously in anisotropic systems some consideration
will be revisited. There is another way to obtain the same equation, using

a statistical approach of diffusion.
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Figure 1: Spatial modulation od the density

1.3 EINSTEIN RELATION

The diffusion predicted by Fick’s law fits very well in cases where
there is no external potential; otherwise it is necessary to introduce
some modifications. Take the case of a spherical particle ensemble,
dispersed in a fluid with particles quite distant between each other. In

this situation it is possible to assert that the particle-particle interactions



are negligible. The only potential derives from external forces which may
act on the system, and the internal force interaction due to the collision
with solvent molecules: the fluid motion is due to thermal agitation. In
this way the effect of the fluid is to introduce an internal force; indeed if
the particles have mass m and they move in the solvent, a viscous fluid,
then a single sphere will be subject to a force proportional to its velocity,

called friction force[13]:

fvis = —-av (17)

where a = 6mna is a friction constant given by the Stokes’s law, 17 is
the viscosity of the fluid and a the radius of the particle. The friction
constant « has the wunits of [mass]/[time], the viscosity n of
[energyetime]/[Volume] and the radius of [length].

Of course if we are in steady state the internal force of the system, the
force mentioned above, is in equilibrium with the external forces, and

the resultant drift velocity of the particle will be:
vD=§fextE—%VU (18)

where U is the external potential. This drift will originate a diffusion

current:
Jp = nvp (19)

that will be added to the diffusion current predicted by the Fick’s law.

The final diffusion current will be a sum of the above contributions:

Jios = —=DVn + j, = =DVn +n (—%VU) (20)



In condition of thermodynamic equilibrium the total particle current

is zero and the density value is governed by the Boltzmann relation[14]:

U

Ngg~€ T (21)

eq
The only way to satisfy this condition is that the diffusion coefficient is
directly proportional to the temperature T of the system and inversely to

a friction coefficient deriving by the Stokes’s law:

T T
D=- (22)

- 6mna

where:

. ([x(t—x(0))]?) . 1d
D = limg o 2 = lim, g, o= ([x(t = x(0))]?)  (23)

This equation creates a relationship between the mean square
displacement of the particle and the diffusion coefficient.

Another consequence of the pervious equation the diffusion
coefficient and the viscosity of the system is the stokes Einstein

relation[15]:

__ KpT

- 6mna

(24)

where K, = Boltzmann constant, n= viscosity of the system, and
a=hydrodynamic radius of the sphere disusing in the fluid. This relation

is the consequence of the



1.4 STATISTICAL APPROACH

Considering again a particle or a molecular system diffusing in a
viscous medium, there are two ways to determine the dynamics of this
problem. It could be possible in principle to write the equation of
motion, the correct Hamiltonian of the whole system, and solving it
exactly. Alternatively statistical approach could be used: all the possible
trajectories of the particle could be considered, calculating afterwards
the probability that a given displacement occurs for each of them. The
first is an exact method but unpractical for big and complex (the number
of the elements composing the system is bigger than 102°), and also for
small system it's computationally expensive. The second can produce an
excellent approximation[16].

Instead of predicting the evolution of all individual particles, the
probabilistic method is concerned only with the probability that a given
event occurs. In this case we deal with macroscopic systems from a
microscopic point of view. it is possible to observe how a system made
up of particles exhibits a behaviour governed by the laws of classical
mechanics. The achievement is to predict the macroscopic behaviour of
the system in terms of the system's microscopic dynamics. Statistical
mechanics moreover studies fluctuations from equilibrium values, an
aspect which is not contemplated in the thermodynamic approach. These
fluctuations go to zero when both the number of particles N and the
volume V tend to infinity while the ratio p=N/V remains finite, which is
called the thermodynamic limit. In such limit the statistical mechanics

reproduce exactly the laws of thermodynamics.
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1.5 RANDOM WALK

In this paragraph particles diffusing in a viscous medium are
considered. The concepts addressed will be developed in one dimension
(along the x direction) even if these arguments can be extended to the
three dimensional case. Both time and space are considered discrete. For
each path considered, the origin of the x-axis is fixed in the start position.
The particle starts at the origin and will do a leap a, to the right or to the
left for each time step t. The probability of it jumping to the right or to
the left are p and q respectively, with g =1 —p. For each step the
particle collides with solvent molecules and changes its direction: this is
a stochastic process and between the two successive events there is no
temporal relationship. Each jump is independent of the previous one and
each step could be considered as an independent path. If the problem is
symmetric there’s the same probability to jump to the right or to the left
and so p=q=1/2. Otherwise an overall drift due to the fact that p#q is
present. The problem is called a random walk, also well known as the
drunkard's walk[17].

In general after N total steps, the probability that a walker moves ni
steps to the right and nz = N-n; steps to the left is given by the binomial
distribution[16]:

Py(n,) = Cy(ny)p™q™ (25)

where

N=n,+n, (26)

11



and Cn(n1) is the degeneracy, the all independent ways to have n

steps on the right with N total steps[17]:

Cvn) = () ) = 27)

Tll n1!(N—n1)!

The total displacement will be a difference between the right step and

the left step[16].
m=n; —n, (28)
and, in this case, we calculate the mean value of displacement[16]:
(m) = (n,) — (nz) (29)

To get this value it's necessary evaluating (n,) before: a sum of
different independent paths to obtain n; right steps, each weighted by its
own probability[16]:

(n) = XnnPy(ny) =X, nCy(ny)p™q™ (30)
This sum could be evaluated through the method of “generating

function”[16]: considering a function Z(x)y), with x=p and y=q,

representing the series expansion of Newton’s binomial:
Z(x,y) = 35 Cy(npx™y™ = (x + y)V (31)

it's simple to demonstrate that[16]:

12



0Z(x, _
x ;’:CY) x=p — Y Cy(my)x™y"™2[x=p = (n,) (32)
Y:q Y=q
and so:
_ . 0Z(x,y) _
(ny) = x% x=p = Nx(x + y)¥ 1|9;=p = Np (33)
Y=q =q

same is for (n,):

0Z(x,y)

(np) =y == imp = Ny(x + )" Hx=p = N (34)
Y=q q

xX=
Y=
therefore, after N steps, the mean value of displacement will be[16]:

(m)=NQp—q) (35)

If the probability to jump on the right is the same on the left the mean
value will be zero, but in statistical mechanics the value of fluctuation

about the mean must be taken into account:

((Am)?) = ((m — (m))?) = (m?) — (m)* (36)
After substituting (26) in (28), it's obtained:

m+N

(37)

nq

and so:

13



((Am)?) = 4((n,?) — (ny)*) (38)

(n;%) and (n,?) can be evaluated reiterating the procedure of

“generating function” used before[16]:

2\ i 0Z(x,y)
<n1 ) - [x ox (X ox )]izfl (39)
_ d 0Z(x,y)
(n,?) = [)’ % (y T)]Fp (40)
Y=q
finding:
(n;?) = (np)® + Npq = (n,)* + Npq (41)

The mean square displacement is[16]:
((Am)?) = 4Npq (42)

Taking the square root of equation (42), if p=q=1/2, as done in the

previous case:

w = ./((Am)?) = \/[4Npq = VN (43)

representing the fluctuation: the width of the range over which m is
distributed after N steps.

If many particles diffusing in a viscous medium are considered, any
trajectory is comparable with a random walk. The average displacement

m covered by the ensemble of particle is zero. Taking into account only a

14



single particle the typical displacement m*, from the origin of the path

after N steps in one dimension, will be[16]:

my—wsm<(m)+w (44)

After N steps, separated by time windows 7 (the time interval between
two jumps, due to the collision of the particle with the chaotic motion of
the solvent), the overall time will be t = TN and the particle will diffuse
with a coefficient of D = a,?/7. The typical displacement of particle as

function of time will be[29]:

« VDt p=q=
m {Vt with p#q ad V:M (45)

V is the drift velocity. The results obtained are in agreement with the
observations made by Einstein and Fick: in fact the two equations give
the same conclusion starting from different approaches. For very large
values of N the binomial distribution can be approximated by a Gaussian
distribution centred around the maximum 7;, the mean value of the
ensemble average. For large N the discrete variable n; becomes
continuous and the sum is replaced by an integral, normalizing the

probability and using the condition An; = 1[16]:

Z%:o n Py(ny) = Z?{z:o ny Py (n,)An, (46)
for large N[16]:
—x?
SN _omiPy(n)An, = P WN [* emadx =1 (47)

15



with [16]:

1

P(R) = G (48)
The Gaussian distribution will be[16]:
— 1 2
Pu(m) = - el o] (49)
Centred around the mean m [16]:
— 0 ) p=q=1
m {N(p — 9 with piq (50)
and the standard deviation[16]:
((Am)?) = 4Npq (51)

1.6 DIGITAL VIDEO MICROSCOPY AND PARTICLE TRACKING.

Recent progress in analysis of optical microscope images is a new tool
to study colloidal systems. in the ‘90s these methods underwent a rapid
development, in particular in the quantitative studies of Brownian
motion [18], phase transition [19-27], to probe the effects of external
fields on the colloidal system[28] and pairs interactions between
microspheres [29-31]. In particular, video microscopy is a powerful
technique that allows to extract useful information in dynamic colloidal

studies. Analysing the video image sequences recorded by microscopy is

16



possible to evaluate the spatial and temporal evolution of the system.
Standard commercial cameras produce a video sequence at 30 frames
per second (fps). A Scientific camera, such as Hamamatsu Orca flash 4.0,
at full resolution of 2048 x 2048 pixel has a performance of 100 fps, but
reducing the sensor scanning area it is possible to get to 1000 fps frame
rate and more.

With a conventional optical microscope with a objective oil lens of
100x, the spatial xy resolution is of the order 65 nm per pixel.

Considering a colloidal suspension of latex particles with sub-
micrometric dimension diffusing in a generic medium, it is possible to
measure the trajectories evolution in time and evaluate several physical
quantities (e.g. mean square displacement) by video analysis. The time
evolution of the density operator distribution in the equation (1) can be

used to calculate for an ensemble of N non interacting particles:

p(rt) = T, 8(r = 1(®)) (52)

The evolution of the density operator is intrinsically linked to other
interesting physical quantities of interest and to analyse it requires
specific software.

The software structure is built on five logical steps: the correction of
image imperfections, locating of the particle positions, refining the
positions, discriminating the “false” particles and linking the positions to
obtain trajectories.

The first step consists in, subtracting off the background noise. The
non uniform illumination of the pixels and the different sensitivity of
each pixel generate a contrast gradient. If the particles are well
separated the background noise is well modelled by a boxcar average

function extended in a region of diameter 2w + 1, with w integer larger

17



than particle radius but smaller than a sphere separations between a

particle pair[32]:

Ay (6,y) ==——=3¥__, A(x+ i,y + 1) (53)

(2w+1)2

Digitization processes in the camera and in the frame grabber
originates a random noise with correlation length A, = 1 pixel. The
Gaussian surface of revolution is a good function to do a convolution and

suppressing this noise[32]:

i2+j2>

Aoy =25 ALy +pe ) (50

with:

5 =[ y;_we(%?_%)] (55)

The “ideal” image can be expressed by the difference by the noise-
reduced image and the background noise.

The second step in the analytical process consist in the particle
location. In this step the aim is defining the pixel coordinate of the mass
centroids of the particles. The criteria of the local brightest intensities is
used to define the centroid: in practice the pixel is chosen as possible
centroid if in the neighbourhood of it, there is not another pixel brighter.
Once found the brightest pixel in the images, the requisite to be
considered a centroid is that the intensity is located upper the 30t
percentile of the brightness for the entire image[32].

The third step is the refining of the position of the centroid estimates

in the second step[32] Moment distributions of the sphere brightness

18



images are calculated to distinguish noise from real spot. The objective is
reducing the uncertainty of the centroid and reducing the standard
deviation of the position in un a range of 1/10 pixel.

Afterward the position of the centroid are linked obtaining a set of
trajectories. For a particle centroid, in one frame, the algorithm takes
into account only the nearest particle in the subsequently frame to built
a unique trajectories. This is possible only in dilute system. Choosing a
value of max displacement between two subsequently frames, the more
probable trajectories, in Brownian motion, is reached evaluating the
probability (49). In this way is possible reducing the complexity of the
problem and the linking procedure is easier to compute.[32]

With tracked data is possible to do an accurate analysis, calculating

the MSD of the ensemble.

1.7 EXPERIMENTAL SETTING

The setting of the particle tracking technique was tested and
calibrated trough several experiments in standard solutions at viscosity
known and tabulated in the literature. As standards, pure water and
several glycerol solutions at different concentrations were used. The
colloids suspensions were obtained dispersing latex particles, labelled
with a fluorescent green dye, of known diameters: 100 nm and 500 nm.
From the analysis of the fitting of the mean square displacement,
obtained by the video sequence analysis, was calculated the viscosity n
through the Stock Einstein equation []. These data were compared with
results present in literature and with rheological measurements,

performed to find the 7 viscosities. The relation (24) is used to compare
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the viscosities probed trough the particle tracking technique and the

macroviscosity, found with rheological measurements.

1.8 MATERIALS AND METHODS

1.8.1 Glycerol suspensions:

Glycerol solutions in different concentrations were prepared. Glycerol
(Sigma-Aldrich) was diluted in ultra pure milli-Q water at weight
fractions: 10%, 30%, 50% w/w. The solutions were stirred for 1 hour. 10
uL of a stock of a green fluorescent latex suspension, 100 nm and 500 nm
diameter, were added to the 1 mL of the glycerol solutions and
dispersed, obtaining a final concentrations in volume <1%. The
suspensions were sonicated for a 1 hours, avoiding the formation of

aggregates.

1.8.2 Microscope, fast camera and video sequences:

The instrument used was a Olympus X81 inverted microscope with an
Olympus 100x Uplsapo 1.4 numeric aperture objective. The illumination
was a Hg lamp emitting a continuous spectra. A dichroic filter was used
to select a opportune wave length of 480 nm in excitation and 520 nm in
emission.

The samples, particle suspensions, in the chamber slides were loaded.

The image sequences were recorded with Hamamatsu Orca Flash 4.0.
This camera is a CMOS technology and allows to record a stack image of
a 512 x 2048 pixel at frame rate of 400 fps corresponding a time

windows acquisition of 0.0025 s. The pixel size of this camera is 6.5 um

20



and this value, coupled at 100x optics, allows to obtain a pixel resolution
of 0.065 micron/pixel.

For each concentrations were achieved 12 video sequences of 1000
frames length. All video sequences were sampled in different xy
positions of the camber slide. The focus position was fixed at least to 10
um up the bottom of the chamber, avoiding the hindrance effect of the
slide floor, and for every single acquisition was used a different z height
of focus.

With a k-thermocouple immersed in the chamber slides the

temperatures were read.

1.8.3 Calibration data analysis:

The software used for a particle tracking is “Eclipse”, a free licence IDL
compiler. The script package, and relative tutorial, is available at web
page of Harvard University[33].

In the tracking analysis a parameter of a minimum distance of
separation, about 4 um, between each particle couples was adopted:
indeed frame with particles closer than this distance are neglected. Only
a trajectories with at least 10 continuous jumps were selected, deleting
shorter paths. The mean square displacements were extract from
tracking and saved in a set of files for different concentrations of Glycerol
solutions. These data were exported in text files and successively fitted
with Origin 8.0 software. The mean square displacements were plotted
as function of time. The points of mean square displacement for each
time windows were fitted with a linear curves as reported in figures 1la

and 1b.
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1.9 CALIBRATION RESULTS AND DISCUSSION:

The time interval selected in the fitting data corresponds to a linear
behaviour region, where a unit slope represents a diffusive regime. The
deviation of the zero intercept in diffusive fitting is an estimate of error
[34], arising in part from short rapid diffusion and in part from
measurements errors which contribute 2dAZ.

The fitting plot are reported in figure 2 and figure 3. The diffusion
coefficients, calculated trough the MSD are reported in Table 1 and Table
2. In figure 4 the viscosity values are reported as function of the shear
rate, calculated with rheological measurements for three glycerol/water
concentrations. All measurements are performed at 25 °C. In this
condition, by knowing the viscosity values, is possible to compare the
diffusion coefficients calculated with particle tracking technique with the
diffusion coefficients obtained by theoretical values, applying the Stokes
Einstein relation. In this Newtonian fluid there is good agreement
between the two values, verifying that the viscosity probed by the
particles, in the particle tracking technique, and the macro viscosity

measured with the rheometer are very similar.

Glycerol D [um?s™1] D [um?s™1] Error
% theoretical particle tracking np Particle
500 nm tracking

0 0.98 0.96 0.01

10 0.73 0.77 0.01

30 0.38 0.37 0.02

50 0.16 0.17 0.004

Table 1 Theoretical and experimental diffusion coefficients for a
beads of 500 nm diameter
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Glycerol D [um?s™1] D [um?s~1] particle Error
% theoretical tracking np 100 nm Particle
tracking

0 490 4.86 0.01

10 3.64 3.75 0.01

30 1.90 1.94 0.02

50 0.79 0.82 0.004

Table 2 Theoretical and experimental diffusion coefficients for a

beads of 100 nm diameter

B water_500nm
® gly10_500nm
A gly30_500nm
¥ gly50_500nm

1E-3

time[s]

Figure 2: Fitting of the MSD for beads of 500 nm in different
water/glycerol mixtures
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Figure 3: Fitting of the MSD for beads of 500 nm in different
water/glycerol mixtures
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Figure 4: Rheological experiments for different Glycerol/water
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2.10 CONCLUSION

In this chapter theoretical aspects of diffusion are explored by the
classical and the statistical point of view.

Experiments analysing different standard solutions of Newtonian
fluids with particle tracking technique are performed. These results are
in agreement with rheological measurements and can be used to verify
the correct calibration of the all parameters in particle tracking

experiments.
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CHAPTER 2: HINDERED BROWNIAN DIFFUSION IN SQUARE-
SHAPED GEOMETRIES: THE DIHEDRAL EDGE EFFECT.

ABSTRACT

We studied the hindered diffusion generated by the edge effects due
to a dihedral angle in a squared microtube. We measured the
perpendicular D,, and parallel D,, components of the diffusion coefficient
of a fluorescent latex 1 um particle suspended in aqueous solution and
loaded in a borosilicate squared capillary of 50 um section side. Confocal
Particle Tracking was used to measure the spatial dependence of the
diffusion coefficient in a set of different planes, from the bottom of the
capillary to a wide range up. The understanding of the spatial
dependence of the diffusion coefficients in such a complex confined
geometry of double perpendicular walls was achieved analysing the
components of D,and Dyas a function n of the distance from both
channel walls, thus obtaining a set of curves parametrically dependent
on the quote. Near the edge, the diffusion is hindered to a value of
~0.4D, the unconfined diffusion, and the plateau regime is reached at a
distance from the wall of 3 and 6 times the length of the particle
diameter for D, and D, components respectively. The evidence of the
edge effect in hindered diffusion phenomena is also examined in depth

by simulation studies.
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2.1 INTRODUCTION

Diffusion in confined environments as cavities, tubes, porous systems
is relevant in several applications, e.g. biological processes where
nanovectors functionalized with specific molecules diffuse in complex
structures, entrapment of particles in microporous materials, controlled-
diffusion reaction mechanisms, coating processes or other applications
involving microfluidic chips [1-3] and surface-based biosensor [4].
Understanding the diffusion mechanism in three-dimensional confined
environments could improve the engineering of diffusion-limited
processes in relevant systems such as interfaces and near cell lipid
membranes, thus highlighting the relevance of confined diffusion also in
bioscience[5].

Several simplified models have been developed in simple geometries
useful to understand the diffusion in confined systems [6-10]

The problem of diffusion of colloidal spherical particles near a single
flat wall was mathematically solved by Lorentz[11] and Faxen[12][13]
through the numerical solution of Navier-Stokes equations. Later, the
solution was improved by Brenner[14] and extended to the double-wall
case by Goldman[15]. Oseen introduced the two parallel infinite walls
model, where the effect of the double confinement was considered
additive [16]. Analytical predictions in more complex geometries,
however, cannot be easily performed.

With the introduction of new experimental techniques as dynamic-
light-scattering [17], video microscopy [18-19], digital imaging[20], and
the controlled manipulation of colloidal spheres through optical
tweezers [21-22], new evidences of the wall effects on the diffusion

coefficients have been reported. Lin et al , by combining video
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microscopy and optical tweezers, analysed the effect of a single flat wall
on the diffusion of s spherical particle [18]. The influence of two parallel
plates was experimentally investigated by Dufresne et al. They found a
good agreement between the measured diffusion coefficients and those
calculated from the drag predictions for the two infinite parallel plates
case [19]

Recently, the effect of a closed cylinder cavity on the diffusivity was
studied. The axial, radial and azimuthal components of the diffusion
tensor were measured [23] and computed by hydrodynamic numerical
simulations [24]

In the fabrication of the microfluidic channels, through the milling
process, are almost obtained a square channel sections. These
fabrication are used in a wide field of applications and it's useful
understanding the diffusion properties of colloids in proximity of the
edges.

In this work, we investigate the diffusion behaviour of particles in a
square-shaped capillary. In particular, we focus on the effect on the
diffusion coefficients of two orthogonal walls (near the channel edge).
Digital video microscopy [25] combined with confocal microscopy
allowed the accurate measurement of diffusion coefficients from the
particle trajectories along two perpendicular directions of the channel
section. Finite element simulations are performed to support the

experimental results.
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2.2 HINDERED BROWNIAN MOTION OF ISOLATED SPHERES NEAR
A WALL

A hard latex sphere of radius a = d/2 immersed in a Newtonian fluid
of viscosity n and speed u, is subject to a drag resistance opposed to the
direction of motion. Under no slip boundary conditions and for low
Reynolds numbers of the fluid, the drag force can be expressed by the

Stokes Law

F, = —6mau (1)

While the Stokes Einstein relation gives the value of the coefficient of

diffusion

__ KpT
6mna

2)

0

at fixed temperature T and with K, equal to Boltzmann constant.

If the particle is close enough to the wall, the influence of the wall is
appreciable, hindering particle movements. Separating the two linear
components of the motion, parallel and perpendicular with respect to
the wall, a new expression can be written taking into account the
product of not hindered diffusion coefficient multiplied for a correction

factor 4

KpT -1
Dy = —6nnb,1"a =4 Do (2a)
_ KpT -1
L= =D (@)
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Usually an analytic closed solution for the diffusion coefficient
accounting for the wall effect in low Reynolds numbers is not available.
Most of the times an approximate solution is used. The A, coefficient, of
the perpendicular component, was calculated by Brenner , according the

following equation[18]:

n(n+1) 2sinh(n+1)a+(2n+1) sinh a ]}_1
=1 (2n-1)(2n+3) l4 sinh2(n+1/2)a—(2n+1)2 sinh2 2a

where a = cos™!(y,/a) and y; is the position of the beads with respect
to the wall.

Another method of calculating the A coefficients is the so called
“Reflection method”, in which a series expansion can help to explain the
effect of the wall on the diffusivity. This due to the variation of pressure
and velocity distributions induced by the sphere in the surrounding fluid
when the particle is near a wall. The expansion is usually truncated to

the first term, as equations 4a and 4b show:

Al = 2—231—1—2(%%0(%)3 (4a)
and
At = %E 1—3(%)+0(yii)3 (4b)

In the case of a sphere situated at an arbitrary point between two
parallel walls, the method of reflections doesn’t give an accurate
solution, except for the limit case of a particle situated in the middle

plane between two parallel walls.
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Alternatively the Oseen [25] solution is based on the idea that the
hindrance effect of double parallel walls could be additive, deriving the

following equation for the parallel component 18:

Dy o q_22(1 1
Dy 1 16 (yi + Ly—yi) (6a)

this equation can be also adopted for the perpendicular one:

Dy . 9a (1 1
0_021_?(_-'_ ) (6b)

Yi Ly—-y;

These equations are first order approximations, where the high order

of the sum are neglected.

2.3. PROBLEM FORMULATION:

Aim of this work is to investigate the hindered diffusion of a Brownian
particle inside a square cavity. In figure 1, a schematic representation of
the geometry is shown. A particle with radius a = d/2 is immersed in a
Newtonian fluid that fills a channel with a square cross-section. A
Cartesian reference frame is considered with origin at one corner of the
channel cross section, in the middle position between the two
extremities, with x the direction of the channel axis, and y and z the

directions parallel to the channel lateral walls (see figure 1). We denote
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with L,, Lyand L, the channel sizes along the x —, y —and z —direction.
The length L,, is selected much larger than the other two in order to
neglect any effect due to the two channel extremities. In this way, the
x —position of the particle x,, is irrelevant, provided that it is located in a
region sufficiently far from the channel extremities. The x — and
z —positions are denoted by y, and z,, respectively. Because of the
Brownian motion, the particle randomly moves in the fluid. The presence
of confining walls are expected to modify the diffusion with respect to
the bulk behaviour. We are interested in measuring the diffusion
coefficients along the x — and z — directions, denoted by D, and D,,
respectively. Both diffusion coefficients depend on the position of the
particle in the channel cross-section. It is convenient to express the
diffusion coefficients as a function of the distance from the closest walls
Dy(¥a,2q) and Dy, (yq,z4) (figure 1). Notice that the distances are
computed from the particle centre, i.e. y; = a or z; = a means that the
particle touches one of the walls. Finally, we remark that, because of the
symmetry, the diffusivities along y and z are related by the following
relation D}, (¥4, 2z4) = D,(24,Yq)- Furthermore, for the same reason the
translational diffusion tensor D is diagonal. Therefore, the knowledge of
D, and D, is sufficient to completely describe the translational diffusion

behaviour.
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Figure 1: Volume partitioning: 3D representation of square tubing
geometry with left handed coordinate system. In the inset the cross
section is represented. with Ay section of 1 um on the y axis at y;
distance from the xz lateral wall and Az confocal section of 1.2 ym on
the z axis at z; .distance. The red circle is the polystyrene particle of
d=1.1 ym.

2.4.1 NUMERICAL SIMULATIONS:

The prediction of the diffusion coefficients D, and D,, is carried out by
numerical simulations. A single, rigid, spherical particle immersed in a
Newtonian, inertialess fluid that fills a channel with a square cross-
section is considered. The equations governing the fluid motion are the

mass and momentum balance equations:

V-v=0 (7a)

V-6 =0 (7b)

35



where v is the fluid velocity and o is the stress tensor expressed as
o =-pl + 2nD, with p the pressure, I the identity tensor, n the fluid
viscosity and D = (Vu + Vu")/2 the rate-of-deformation tensor. On the
domain boundaries, no-slip conditions are imposed. On the spherical
surface, a velocity v, or v, is applied. After the solution, the force on the
sphere (F, or F,) can be calculated and the hydrodynamic drags along

the x — and y —directions are given by:

o= (8a)
g=% (8b)

By applying a generalized Stokes-Einstein relationship:

D, =2 (9a)
{x
_ KT

Dy = (9b)

the diffusion coefficients are calculated.

The governing equations are solved by the finite element method.
Concerning the computational domain, a parallelepiped with a square
cross-section is chosen. With reference to figure 1, the length of the
cross-section sides L,, and L,, and the particle radius are selected so as to
reproduce the experimental materials. The domain along x is chosen
sufficiently long to assure unperturbed conditions along such a direction,
i.e. an infinitely long channel is considered and the particle motion is

only affected by the four lateral walls.
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Simulations are performed by setting the sphere at different distances
from the lateral channel walls, selected over a regular grid. The
simulation data are, then, interpolated by using polynomial functions. In
this way, the diffusion coefficients D, (yp, zp) and D,, (yp, zp) are available

over the whole channel cross-section.

2.5 MATERIALS

Polystyrene particles with 1.1 + 0.1 ym diameter (Invitrogen),
carboxylated on the surface and containing a red fluorescent dye
(580/600 nm) were used. Stock dispersion 2% in weight of particles was
sonicated for a few minutes to prevent aggregation, than was dispersed
in 1:1 solution of MilliQ Ultrapure Water/Deuterium Oxide, obtaining a
final volume fraction lower than 1%. This concentration corresponds to
a ~3.5 - 10! particles/ml. Sodium Chloride NaCl (Baker Analysed Grade)
is added to the dispersion achieving a final concentration of 107* +
1073 mol/kg, corresponding to a Debye Screening Length about 10 + 30
nm; this value is enough to neglect the interparticle and particle-wall
electrostatic repulsion. A Water/Deuterium Oxide solution matching the
polystyrene microbeads density is suitable to prevent particle
sedimentation.

The suspension was injected inside a square-shaped borosilicate
capillary with an internal side of L,, = L, = 50 mm (Vitrocom) and length
Lyapproximately 7 cm by a pressure pump to avoid partial filling of the
internal volume and formation of air bubbles. Each extremity was sealed

by a Bunsen flame. The capillary was laid down with the bottom wall
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facing a coverslip glass of 0.17 mm thickness. The coverslip was
surrounded with immersion oil (n, = 1.518) to reduce the refractive
index mismatch with the capillary glass. All experiments were performed

at 295 K in thermostatic conditions.

2.6 METHODS

2.6.1 Confocal Scanning Laser Microscopy:

The analysis of the Brownian motion of particles within the channel
was performed by particle tracking technique. The observation direction
was from the bottom of the channel, i.e. from the z-axis (see figure 1).
Therefore, to identify the z —position of the tracked particles, a Leica
Sted SP5-CW confocal microscope with a wide set of different
wavelength lasers and a 100x plan-apo 1.4 oil objective was used to
acquire the image sequences. The height along the z —direction was
measured through a galvanometric stage which allows focusing in z at
10 nm resolution. The reference of the bottom wall of the capillary was
taken where the laser reflection intensity was maximum (figure 2a) In
this position the confocal section thickness, measuring about 1.2 um, is
contained for one-half inside the thickness of the capillary glass wall and
one-half in the sample. Particles were excited with a laser wavelength of
580 nm at 30% intensity, and the emission was collected between 600-
650 nm with a PMT gain factor of 700 Volts. The video sequences were
captured using the detector in resonant scanner mode in order to have a
faster reading of pixel rows (8000 Hz), with sampling interval of Dt =
0.049 s, corresponding to a frame rate of 20.4 fps. The resolution used

was 1024x660 pixel. The zoom factor was set to 2.70 X, obtaining a ratio
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of 11.22 pixel/um. The Figure 2b is an images of the particle moving in

confocal the confocal slab.

Figure 2a: Diffraction pattern generated from confocal laser
reflection by the bottom capillary.

Figure 2b: Fluorescent yellow-green 1.1 um polystyrene spheres in
the z, confocal slab 1.2 uym thick at distance 1 ym from the bottom of
capillary.
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2.6.2 Channel section partitioning:

In confined systems, an issue concerning the attribution of the
measured diffusivities to a specific point of the space arises. Indeed, as
the diffusion coefficients are space-dependent and they are calculated
from the particle trajectories, a criterion to assign the measured
diffusivities to a point of the space is required. In this work, we
partitioned the channel cross section in n, —slabs along the z —direction,
as shown in the inset of figure 1. The slabs corresponding to different
heights of the confocal section were numbered starting from the bottom
of the glass capillary. The width of each slab was Az = 1.2 um,
corresponding to the width of the confocal section (height of the Point
Spread Function of the optical system). The distance between the
midlines of two consecutive slabs was chosen as 1 um. A description of
the slabs is reported in Table 1. Every slab was, then, divided inn,
stripes along the y —direction, numbered starting from the left vertical
wall. The width of the stripes was Ay = 1 um and the distance between
the midlines of consecutive stripes was 1 um. Therefore, the channel
cross-section is partitioned in a grid consisting of n,, X n, elements. Each
element is the cross-section of a box with length L, (figure 3). The boxes
are identified by the y and z coordinates of the center of the cross-
section intervals. Each trajectory starting in a specific box contributes to
the measurement of the diffusion coefficient (through the Mean Square
Displacement (MSD), see below) assigned to that box. In this regard, we
mention that previous investigations [24] showed that the MSD
evaluation is essentially independent of the position attributed to the

path (at the initial point, midway or the ending point).
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Figure 3: The dihedral edge is represented by two green planes.
Particular of a box originated from the z,slab at y, stripe. This
discretization of the whole volume is operated for all y; stripes at
every z, plane.

Slab Thickness Bottom-Top Position
Z 1.2 ym 0.4-1.6 um 1um
Zy 1.2 ym 1.4-2.6 um 2 um
Z3 1.2 ym 2.4-3.6 um 3um
Zy 1.2 ym 3.4-4.6 um 4 um
Ze 1.2 um 4.4-5.6 um 5um
Zg 1.2 um 5.4-6-6 um 6 um
Zy 1.2 ym 6.4-7.6 um 10 um
Z10 1.2 ym 9.4-10.6 um 10 um

Table 1: the z, confocal slabs. In this table the centre positions and
the top and bottom extremes of the slabs are reported.

41



2.6.3 Image acquisition and processing:

For each slab along z, 30 video sequences were acquired up to n,= 10.
A single sequence is composed of 1500 frames, for about 40 minutes
recording in each slab. When the acquisition of each video sequence is
finished, the procedure of finding the bottom plane of the capillary is
repeated and a snapshot is acquired as a reference. This operation limits
the defocusing problem.

The video sequence was processed with Image] software to convert
the raw data in 8bit image files. The routines available on Harvard
University web site are used for particle tracking.[26] These routines
have been modified in order to improve the quality of tracking excluding
a too high spot intensity thus avoiding recording of aggregate particles.
The average number of particles recorded in each plane was around one-
hundred, which means that the free volume around a single particle is
~110 um?3, and the average separation distance between two particles is
larger than ~3.8 ym. A threshold distance is set in pre-tracking
algorithms to neglect particles having centroids closer than ~4.5 um.
Selected particles were restricted only to completely focused fluorescent
objects through software evaluation of brightness and eccentricity, in
order to further reduce the confocal section thickness. In each slab we
tracked, on the average, a total number of ~10° particle jumps that is

enough to obtain a good statistic.

2.6.4 Calculation of diffusion coefficients:
The matrices generated by the particle tracking software were
processed in Matlab. The Mean Square Displacement (MSD) along the x

and y axes has been evaluated as:

(Ax*(1)) = ([x(t + ) — x(O)]*) (10a)
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(Ay? (1)) = ([y(t + ) — y(D)]?) (10b)

The average (...) is taken over all the times t and all the tracked
particles. The MSDs are calculated for t = At, 2At, 3At and 4At, with
At the aforementioned sampling time interval. Finally, the MSDs data are

linearly fitted and the diffusion coefficients are calculated as:

D, = (Ax*(1))/2t (11a)

Dy = (Ay*(0))/2r (11b)

The diffusion coefficients were evaluated independently in each
stripe. We point out that, even for the largest T considered in this work,
the mean free path, estimated from unconfined conditions to be 200 nm,
is much lower than the stripe width. Therefore a particle essentially
tends to remain in the stripe it starts from. (figure 4).

The differences arising in the diffusion coefficients computed at
different time windows were investigated by comparing the fitting
slopes at times of 2At, 3At, 4At. As reported in Figure 5, slopes are
statistically similar, showing a linear behaviour with negligible
deviations from linearity.

The analysis performed concerns the whole capillary volume, as
evident observing the trajectories plot in figure 6; in particular the
trajectories density increases from the bottom slab z, to the top one z,.

Figure 7 reports representative jumps distributions recorded at 1, 2
and 3 um distances from the xz wall at three different heights of 1, 3, 6
um from the bottom wall. The distributions have all a symmetric

Gaussian shape, typical of Brownian motion, where the probability of
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making a jump in any direction is the same despite the wall presence. In
particular, small lateral tails characterized by jumps larger than Ay/2
appear in jump distributions measured at y,. This effect is more relevant
moving to distributions at higher z,, planes, where the friction coefficient
due to the effect of the bottom xy plane hindering particles
displacements is less detectable. Indeed, jumps are here hindered more
by the lateral xz wall presence. Though evidences of these rare events
are recorded in the distributions shown, the assignment of 1 ym width in
the lateral discretization procedure maintains the Gaussian shape of the
overall distributions measured.

As a side note, we mention that the same procedure has been used to
evaluate the mean mixed term displacement (AxAy). As expected, such a

term is very small compared to the MSDs in x and y (~10-5+104).

Figure 4: xy projection: observer view. Representative trajectory of
a particle that does not escape the y;discretized section in the time
window analysed.
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T = 4At. The linear fitting shows no dependence by the time window

length
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Figure 6: Beads trajectories. Trajectories densities are shown in
blue in each slab. Insets show portions of capillary with differently
colored bead trajectories. z, shows a density lower than the other

slabs.
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Figure 7: Different stripes centred at distance of 1, 2 and 3 uym with
respect to the xz wall (y,, y, and y; shown in black, red and blue
respectively. The Jump length statistical distribution in y direction
measured at 4t. Gaussian shapes confirm Brownian regime. Mean free
path length is shorter than the Ay width.

2.7 RESULTS AND DISCUSSION

The displacements of Brownian particles diffusing close to a dihedral
edge of a square section capillary were measured and their space
dependence was investigated along the x and y axes independently,

obtaining the two components D,, D,,.

Both diffusion coefficient respect to the lateral xz channel wall, D,, and

D, respectively, were computed. These data were grouped as a function

of the normalized distances A = %, thus obtaining a set of y; curves for

the z, slabs evaluated. The components of the diffusion coefficient D,.and

D,were normalized to the values D, calculated in the middle of the

microfluidic channel at zy in the central stripes y; with i= 20 + 30. The
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values of D, /D, and D,,/D, increase by increasing A and z,, that is
further from lateral and bottom confining walls. Both components,
D, /Dyand D, /D,, show higher variations in proximity of small values of
A. In particular, the variation of the D, /D, component is twice larger
than that of the D, /D, one, reaching is higher value as close as at 3A. In
Figure 8b trends for the D, /D, components show that it is hindered at
distances up to 6/, while reaching unity smoothly in the middle of the
channel.

These behaviours are similar for each curve computed in different z,
slabs. All z,, curves are distinguishable; in particular for higher z,, curves
attain higher values closer to the lateral wall than at lower slabs, which
is due to the reduction in residual hindrance exerted by the bottom wall.

A greater uncertainty is associated to the diffusion coefficients
computed close to the lateral wall at y,, due to lower particle occupancy
in its proximity.

The total amount of ~10¢ particle positions observed in each slab is
theoretically distributed in time among the y; stripes, thus, an average
mean density of the order 2-10* for each stripe is expected.
Interestingly, we measured the occurrence of the particle occupancy
with deviations from homogeneity of the order ~98% close to the walls,
at y; in the z; slab, and of 94% at y, in the z; slab, which characterizes a
depletion region that extends up to 3 um away from the lateral wall

(Figure 9).
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Dx /Dg

Figures 8a and 8b: Normalized Diffusion coefficients components as
a function of normalized lateral confinement A. a) Dxx/Do, b) Dyy/Do.
Each curve refers to a different z, position. Only at large A the bulk

value is asymptotically reached. Continuous lines are simulation

analyses.
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Figure 9: Statistical occupancy of each stripe for different zq slabs.
Each slab occupancy is normalized for the occupancy value in the
middle of the channel. A depletion region is observable close to the

wall..

2.8 CONCLUSION

The displacements of Brownian particles of 1 um diffusing in a square
cross section capillary of 50um side were measured by particle tracking
technique in confocal fluorescence microscopy and their space
dependence was investigated along the x and y axes independently,
obtaining the two components D,, D,,.

The values of the two componentsincrease by increasing the distance
z, from the bottom wall and from y, lateral wall. Both components

show higher variations in proximity of the wall region. In particular, the
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variation of the D,, component is twice larger than D,. These results are

in agreements with simulations. Interestingly, near the lateral wall a

depletion region is observed. This region is about 3 times the size of the

particle.
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ABSTRACT

The diffusion problem of polyelectrolytes in a wide range of
concentrations is here addressed The diffusive behaviour of particles in
the dilute, semidilute and entangled regime are explored in terms of
local properties related to the nanoviscosiy and macroscopic properties.
The diffusion behaviour of nano particles of spherical shape and
ellipsoid dispersed in different solutions of Hyaluronic acid is
characterized. The diffusion coefficients of ellipsoids, at different
stretching ratio are compared with the diffusivities of spherical particles.
The values of nanoviscosity obtained by the particle tracking technique
have been compared with the macroviscosity obtained from the
Ubbelohde viscometer, obtaining information about the local properties
and the caging effect of the mesh. The “shape” effect in particle diffusion

in complex fluids is then evaluated.

3.1 INTRODUCTION

Polyelectrolytes solutions are an interesting class of polymers which
are widely used in biomedical and industrial applications in different
new technologies: drug delivery, soft tissues intensification to
flocculation process[1]. Among the natural polyelectrolytes, hyaluronic
acid (HA) is one of the most widely characterized since it has a
fundamental role in human tissue, this is due to the relevant presence in

the vertebrates tissues.
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The knowledge of microscopic behaviour of this macromolecule
structure and the diffusion properties a nano particle inside the
interstitial environment generated by the polymer mesh, are very
suggestive topics.

Hyaluronic Acid is a linear glycosaminoglycan consisting of repeating
disaccharide units of N-acetyl-B-D-glucoronic acid alternately linked at

the 1,3 and 1,4 positions, respectively[2].
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Figure 1: the molecular structure of Hyluronic Acid.

[t is soluble in water and behaves as a weakly charged polyelectrolyte
due to the carboxylic function presents on both disaccharide units.

It's widely accepted that HA conformation and structure in water,
underlie most of its physical-chemical properties that allowing to control
both physiological and biomedical functions, useful in human and
veterinary surgery[3]. HA, indeed, has strong multiple interactions with
water and within its structure that are responsible for its elevated
excluded volume, enhanced viscoelastic properties, and probably also
influence the interaction with cells[3].

The conformation of HA is sensitive to its electrolyte environment.
Usually increasing quantities of the salt carries out a structure

contractions; its conformation, indeed, is sensitive to the salt
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concentration, and in excess of salt it behaves as a neutral polymer in a
good solvent [4].

In no salt conditions, i.e. neutral case, the behaviour of HA solutions at
different polymer concentrations, is leaded by interactions of its chains.
In fact increasing the value of HA concentration, the polymer chains
overlap each other, and exceeding a value of a critical overlap
concentrations, the network shows a marked viscoelasticity properties;
this results, indeed, are also function of the molecular weight of the
polymer.

Accurate studies of the HA solutions have been performed with
widespread techniques. About the wunderstanding of molecular
structures was executed measurements of Small Angle Neutron
Scattering (SANS)[6]

Investigations of transport phenomena with probes dispersed in HA
solutions and rheological measurements were performed: indeed both
have provided an helpful information about the dynamic response of
these material.[7]

De Smedt et al investigated the network structure of HA dispersing a
dextrans, labelled with a fluorescent probe, and measuring the mobility
through the Fluorescent Recovery After Photobleaching (FRAP)[7].
These measurements allows them to estimate the structural parameter
of the network, as the mesh size of the polymer, the average distance
between neighbouring strands of polymer [8]. This mesh is estimated in
a range varying from 10 and 100 nm, in agreement with values
calculated by other techniques[4].

In the FRAP information there are evidence of no chain-chain
association among the polymer chain such as hydrophobic interaction.

The flexibility and permeability properties of HA network can be
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accounted for in terms of inter-chain hydrodynamic interaction such as
entanglement.

Here, we investigate the diffusion properties of anisotropic particles
of ellipsoidal shape in HA solutions at several concentrations spanning
the whole transition among the dilute, semidilute and entangled regimes.

A comparison of the diffusion properties of polystyrene particles,
dispersed in these solutions, is carried out for several particles of
different shapes. Stretched particles were obtained from spherical
particles after deforming a polymeric film in which particles are
dispersed. The procedure leads to ellipsoids with different stretching
ratios. The diffusive comparison was studied in terms of the mean
square displacement analysis, calculated with the particle tracking

technique.

3.2 MATERIALS AND METHODS

3.2.1 Polymer solutions:

Hyaluronic acid solutions (HA) with average molecular weight of 155
KDa were prepared in different concentrations. HA powder (Fidia
Biopolymers) was dissolved in ultra pure milli-Q water at stock
concentration of 10 mg/ml. The stock solution was slowly stirred for
more than 24 hours. By successive dilution was prepared 10 solution at

this concentration: 0.1, 0.3, 0.6, 1.0, 1.3, 1.5, 3.0, 6.0, 9.0 mg/ml.
3.2.2. Ubbelohde Viscometer:

On the polymeric solution viscosity measurements are performed,

using a Ubbelohde Viscometer (Cannon Instruments). The solution are

57



loaded in viscometer and put in thermostatic conditions by a water
reservoir at standard ambient temperature condition (293 K, 1 atm).

The solution are charged in the reservoir of the viscometer. Then the
liquid is pumped through the capillary and loaded in measuring bulb,
using a supplementary pressure inflates by the hand pump.

After that releasing the supplementary pressure, at the polymer
solution is allowed to travel back through the measuring bulb and the
time it takes for the liquid to pass through two calibrated marks is a

measure for viscosity.

3.2.3 Preparation of colloidal ellipsoids:

Ellipsoid particles shape were prepared starting from spherical
particle of 88 nm diameter. The procedure to obtain this ellipsoid
consists in heating the spherical shape particles dispersed in polymer
film, at a temperature T>Tg, and successively stretching this film.

In first time a 10% (wt/vol) solution of Poly Vinyl Alcohol PVA
(Sigma-Aldirch) were prepared. This polymer were dissolved in 40 ml of
milli-Q water at 85 °C temperature. Then, 2% (wt/vol) glycerol (Sigma-
Aldrich) was added to a polymer solution to plasticize and reduce the Tg
of the films. Successively spherical green particle of 88 nm (Duke
Scientific), probed with a fluorescent dye, was suspended in this mixture
in a concentration of 0.7% (wt/vol). Then the polymer solution was laid
down in flat surface Teflon mold of 19 x 24.5 cm area with a thicknesses
of 70 um. After 24 hours and more the water component evaporates,
living a solid film less than a millimetre of thickness. The film was cut in
5 cm stripes and mounted in aluminium clamps of the stretcher
(Instron). Inside the stretcher chamber film was heated at temperatures

comprise between 120 and 150 °C and stretched at 0.3-05 mm/s rate.

58



Different stretching ratio was adopted (2.5, 3.8 and 4.5 times the
length of the relaxed film).

After stretching procedure the elongated particles from PVA film was
recovered; indeed it was dissolved in a mixture of 35% isopropanol and
65% water. After that, the solution was centrifuged and washed ten
times with same alcoholic mixture to eliminate the PVA traces.

A Scanning Electron Microscopy (SEM) analysis was performed to
check the ellipsoidal shape and the experiment success. SEM image is

reported in Figure 2

HV [spot| WD [ HFW [mag O det
20.00 kV| 4.0 |9.1 mm [3.73 um |80 000 x |[ETD 2

Figure 2: Scanning Electron Microscopy of nano particle stetched
from 88 nm radius nano bead. The stretching ratio is 4.8.

3.2.4 Particle dispersion:
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Latex colloidal particles, in spherical and in ellipsoidal shapes, were
dispersed in HA solution at different concentration. The particle polymer
ratio is about 0.05 % (volume/volume). Once the particle was added to
the HA solutions, the suspension was sonicated for a few minutes to

avoid particle aggregation.

3.2.5 Microscope, fast camera and video sequences:

The instrument used was the Olympus X81 inverted microscope with
an Olympus 100x Uplsapo 1.4 numeric aperture objective. The
illumination was given by a Hg lamp emitting a continuous spectra. A
dichroic filter was used to select an opportune wave length of 480 nm in
excitation and 520 nm in emission.

The sample, particle suspensions, in the chamber slide was loaded.

The image sequences were recorded with Hamamatsu Orca Flash 4.0.
This CMOS technology camera allows to record a stack of images of 512 x
2048 pixels at a frame rate of 400 fps corresponding to a time window of
0.0025 s acquisitions. The pixel size of this camera is 6.5 um and this
value, coupled to 100x optics, allows to obtain a pixel resolution of 0.065
micron/pixel.

For each concentration of HA 5 video sequence of 3000 frame were
performed. In each frame are present an average number of about 70
particles, collecting more than 10¢ Brownian jumps. All video sequences
were sampled in different xy positions of the camber slide. The focus
position was fixed at least to 10 um up the bottom of the chamber,

avoiding the hindrance effect of the slide floor.

3.2.6 Data analysis
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The software used for a particle was Eclipse, a free licence IDL
compiler. The script package, and relative tutorial, is available at web
page of Harvard University: [9]

In the tracking analysis a parameter of a minimum distance of
separation, about 4 um, between each particle couples was adopted:
indeed frame with particles closer than this distance are neglected. Only
trajectories with at least 10 continuous jumps were selected, deleting
shorter paths. The mean square displacement was extract from matrix
track and saved in a set of file for different concentration of HA. This data
was exported in text file and successively fitted. It was plotted the mean
square displacements as function of time. Data were fitted in the linear

range, from 0.01 s to 0.3 s.

3.3 RESULTS AND DISCUSSION

The polymer studied is HA of 155 kD. Viscosity and diffusion
measurements were performed at different concentrations of the
polymer. The knowledge of these parameters allows the understanding
of dynamic and structural properties of HA solutions. Moving form 0.1
mg/ml to the 9 mg/ml it has been possible exploring a wide range of
viscosities.

The increasing of the concentration corresponds to an increase of
viscosity. This evidence is represented in the plot of figure 3a, where the

relative viscosity in function of the concentrations is reported
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A HA relative viscosity

nm

HA [mg/ml]

Figure 3a: The relative viscosity at different concentration of HA

The dependence of viscosity upon the concentration can be
distributed in three different regions, corresponding to different regimes
of solution: dilute, semi-dilute and entangled regime. In all
concentrations the data obtained by the Ubbelohde viscometer are fitted

by the power low [4]:
n = Bc* (1)

In the low concentration (the dilute regime) the data can be fitted
with a curve having A~ 1. Afterward c* concentration (overlap
concentration) the semi-dilute regime is predicted. The polymer chains
interactions give rice to an increasing viscosity, and the power law
exponent in the power low changes, with A = 0.5. Increasing the
concentration the third regime is reached. At c® (entanglement
concentration) the viscosity increase and the value of the power law
exponent is A = 1.5. This data are obtained by the intersection of three

green lines in figure 3b. This plot represents the specific viscosity:

Nop =0 = @)
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The relative ratio of the ¢* and c® are = 0.1 mg/ml and = 1.0 mg/ml.

The c® = 10c¢” in according with Colby and Rubinstein theory[4].

T
1E-3 0,01 0,1 1 10
[mg/ml]

Figure3b: Ubbelohde measurements of viscosity at several HA
concentrations. Lines represent power low regressions.

The analyses of the mean square displacements are useful to
understand the diffusion processes of nano particles dispersed inside the
polymer mesh, as to understand local properties of the polymer and
reckon differences in nano-viscosities and macro-viscosities. We
conducted several measurements in salt free solutions. The probe size
chosen is comparable, as order of magnitude, with the polymer mesh
size; the spherical latex particles are indeed 88 nm in diameter and are
functionalized with fluorescein molecules.

We tracked the mobility of different particles having different
stretching ratios in HA solutions in dilute, semidilute and entangled
regimes. The SRs (stretching ratios) obtained are 2.5, 3.8, 4.8.

The time window t selected in the fitting data corresponds to a linear
behaviour region, where a unit slope represents a classical diffusive
regime. Short time values of the MSD are not taken into account: indeed,

these times might correspond to elastic behaviour of the polymer. In
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high viscosity solutions the mobility of the particle is reduced and each
particle can be tracked for a long time window while the same is not
possible for low viscosity solutions experiments.

The equation of the curve used to fit the data is:

A%(1) = 2dDt + A% (3)

The additive quantity A3 contains the error due to the short time
diffusion and to measurement errors (2dAZ%). The negligible linear
deviation of the fitting is due to the effect of the caging in the dense
suspension [9].

Fitted data at each stretching ratio are reported in the figure 4:

0.1 mg/ml
0.3 mg/ml
0.6 mg/ml|
1.0 mg/ml
1.5 mg/ml
3.0 mg/ml
6.0 mg/ml|
9.0 mg/ml
water

ox%00oA>ODO

o
=3
2
KOO0

1E-3 0,01

Figure 4a: Fitting of Mean Square Displacement of the nano particle
with stretching ratiol
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0.1 mg/ml
0.3 mg/ml
0.6 mg/ml
1.0 mg/ml
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SR. 25
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Figure 4b: Fitting of Mean Square Displacement of the nano particle

with stretching ratio 2.5

0.1 mg/ml
0.3 mg/mi
0.6 mg/ml
1.0 mg/ml
1.5 mg/ml
3.0 mg/mi
6.0 mg/ml
9.0 mg/ml
water

ODOVAL >OO

1E-3 0,01

Figure 4c: Fitting of Mean Square Displacement of the nano particle

with stretching ratio 3.8

65
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Figure 4c: Fitting of Mean Square Displacement of the nano particle
with stretching ratiol

The values of the Diffusion coefficients evaluated for the four
starching ratios at different HA concentrations are compared. For all four
SRs, the diffusion coefficients decay with exponential trends with

increasing HA concentration, as reported in the figure 5:
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Figure 5: diffusion coefficients of four different stretching ratio
nano particle in different hyaluronic acid concentrations
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In particular, the greater percentage of the diffusion coefficient
reduction takes place within the semi-dilute regime. In figure 6 is
reported the normalized diffusion coefficient respect to the diffusion

coefficient evaluated in the pure solvent:

m SR1.0
14 # ® SR25
A4 SR3.8
; v SR45
]
*2! "
o % = =
g 0,1 % B
o F
. %
0,01 r 1 ' 1.+ r 1t 11 1 - 1 1
0 1 2 3 4 5 6 7 8 9 10
HA [mg/ml]

Figure 6: The normalized diffusion coefficient respect to the
diffusion coefficient in the water

The value of D/Do deviates from unity of a factor of 80% at the c*. The
spare part of the decays takes place in the entangled regime.

In Figure 7 we report the comparison between the normalized values
of the Diffusion coefficients of each ellipsoids over the diffusion

coefficient of a sphere of equal size in water.
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Figure 7: The normalized diffusion coefficients over to the diffusion

coefficient in the water of the equal size spherical particle

The diffusion of the sphere is obviously greater than that of a
stretched particle. Interestingly, in the transition from the semi-dilute to
the entangled regime the high ratio ellipsoid (S.R. 4.8) recovers the
diffusion coefficient values of the sphere.

A theoretical equivalent hydrodynamic radius was calculated for the

ellipsoid.
The equivalent diameter of an ellipsoid can be calculated according

with the Heyt & Diaz formula[10]:
de = 1.55 A%625 / p025 4)
where
A = cross-sectional area of ellipsoid (nm?)

P = perimeter of ellipsoid (nm2)

These geometric parameters are represented in figure 8:
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Figure 8: geomoetric representation of ellipsoid parameter.

The cross-sectional area of an oval ellipsoid could be expressed as

_ mab

(5)

where:

a = major dimension of the flat ellipsoid [nm]
b = minor dimension of the flat ellipsoid [nm]

The perimeter of an ellipse can be approximated to

P2+ ) ©

2
ﬂ+ab—b2)

d, =1.55( :

(mb+2a—-2b)0-25

(7)

The equivalent hydrodynamic radius for each stretching ratio is

reported in table 1.
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Stretching X-Axis [nm] Y-Axes [nm] Rh [nm]
Ratio
1 88 88 44
2.5 246 53 50.8
3.8 334 45 52
4.8 414 40 52.7

Table 1: Major and minor dimension and hydrodynamic radius for

different stretched nano particle

At this point is interesting to compare the local nano viscosities
obtained from the particle tracking measurements with the macroscopic
viscosities measured with the Ubbelodhe viscometer.

Knowing the diffusion coefficient calculated by particle tracking
technique and the hydrodynamic radius of the spherical and elliptic
particles, the Stokes Einstein relation gives the viscosity. This value is
lower than the macroscopic viscosity, indeed the ratio between the two
values is lower than unity. In particular, in the dilute and semi dilute
regimes the nano-viscosity measured is far lower than the macroscopic
value for all particles. The value of nano viscosity evaluated is less than
50% of the macroscopic one (figure 9). This effect may be due to the
relative large mesh size of the polymer chain. Indeed probes may explore
an environment much similar to the solvent, since polymer chains are
quite far one from the other. Interestingly the ratio becomes almost
unity at the crossover with the entangled regime, while for ¢ >ce particles
again explore a diffusive media having lower viscosity than the
macroscopic value obtained. In particular, the viscosity ratio measured

with the SR 4.8 ellipsoid is lower respect to the others in the entangled
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regime. This could be attributed to a preferential disentanglement

orientation of the highly elongated particle.
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Figure 9: the ratio between the nano viscosity and micro viscosity

3.4 CONCLUSION

In this paper it has been addressed an introduction of the diffusion
problems in the polyelectrolyte solution of HA in water. The macroscopic
viscosity is analysed for a wide range of HA concentrations. All regimes
are explored: dilute, semidilute and entangled. The intersections of the
specific viscosity fittings correspond to the overlap and entangled
concentrations. These values are in good agreement with the theoretical
expectations for polyelectrolytes[4]. Measurements of the diffusion
coefficients for spheres and ellipsoids of various stretching ratios (SRs)

were obtained through particle tracking in HA solutions. By increasing
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the Ha concentration a lower diffusion coefficient is measured
independently of the particles shape. The greater percentage of the
diffusion coefficient reduction takes place before the entangled
concentration ce. The comparison of diffusion coefficients among
different SRs gives ideas of the “shape effect”. The diffusion of the sphere
is usually greater than that of a stretched particle. A theoretical
hydrodynamic radius for the ellipsoids is calculated and through the
Stokes Einstein equation, a value of nano viscosity was found. A
comparison between nano viscosities and macro viscosities for different
SRs ratios was performed at different concentrations with values of nano
viscosities slightly lower than micro viscosities. After the entangled
concentration, the elongated particles probe a lower value of viscosity

compared to other less elongated particles.
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