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Abstract 

Close to a half of the global population is currently deprived of clean and reliable energy 

for cooking. Majority of the energy poor live in developing countries where use of 

traditional biomass is prevalent and associated with several social, economic, 

environmental and technological challenges. Recently, United Nations General Assembly 

emphasised the importance of access to sustainable energy to all, most especially in 

developing countries. It noted that access to clean and reliable energy is critical to 

meeting the millennium development goals and ensuring sustainable development. This 

suggests the need for more efforts to incorporate sustainability concerns in planning 

energy systems in developing countries. This could lead to the identification of more 

sustainable technologies for cooking, and also provides benchmarks to help monitor 

progress towards sustainable development of energy systems. To achieve these 

objectives, availability of suitable tools to help policy and decision makers in selecting 

energy systems in developing countries would be very critical. However, planning for 

sustainability is a very intricate endeavour and presents a knowledge gap especially in 

developing countries where it is a relatively new concept. This study was therefore 

carried out with the aim of developing an appropriate sustainability assessment method 

for selecting bioenergy systems for cooking in developing countries. 

The proposed sustainability assessment framework is an integrated method that 

incorporates the social, economic, environmental and technological concerns of biomass 

energy systems to aid decision making. It is based on multi-criteria decision analysis as a 

tool to aid participatory ranking and selection of biomass energy systems to ensure 

sustainability. The framework provides for participatory appraisal of a finite set of energy 

alternatives at the beginning of the assessment so as to identify and eliminate options that 

are obviously unacceptable by stakeholders. Methods for selection, ranking and 

evaluation of sustainability criteria were proposed. A model based on Preference Ranking 

and Organisational Method for Enhanced Evaluation (PROMETHEE) and Graphical 

Analysis for Interactive Aid (GAIA), was proposed as a tool for final ranking of biomass 

cooking technologies on the basis of a set of sustainability criteria. The methodology was 

applied in Uganda to rank domestic biogas, briquette gasification and Jatropha plant oil 

cooking energy systems with charcoal system as the reference. 
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Participatory appraisal of the energy systems resulted in Jatropha oil system as the best 

cooking energy system according to Ugandan stakeholders. It was followed by biogas and 

briquette while charcoal, ranked last. A set of 21 criteria for assessing sustainability 

bioenergy systems was developed under Ugandan conditions and weights assigned to 

them by a multi-stakeholder panel using the analytic hierarchy process. Economic criteria 

were ranked as most important considerations influencing sustainability of bioenergy 

systems in the country, while technical criteria generally ranked lowest. Results of 

environmental assessment of the energy systems indicated that biogas is the most 

environmentally sustainable alternative, while charcoal was the worst option. The 

environmental performances of biogas and Jatropha systems were observed to 

significantly improve with recycling of waste products as fertilizer. Results of multi-

criteria sustainability assessment showed that under the business as usual scenario, 

charcoal and biogas were incomparable under PROMETHEE I partial ranking, but better 

than Jatropha and briquette gasification systems, which were also found to be 

incomparable. Biogas was ranked as the best alternative under PROMETHEE II complete 

ranking, while Jatropha and briquette systems performed worse than charcoal. Biogas 

systems was again ranked as the best alternative when by-products were recycled as 

fertilizer. It was followed by Jatropha and briquette systems, which performed worse than 

charcoal. The study further showed that the charcoal cooking is inefficient and pose high 

health risks to users compared to the other three energy alternatives. 

In summary, the study showed that economic factors play a predominant role in the 

decisions by households to adopt more sustainable bioenergy technologies for cooking in 

Uganda. Also, the environmental performance of biogas and Jatropha energy systems 

significantly improve with increase in recycling of by-products as fertilizers, and 

avoidance of open air burning of residues. Recycling of by-products significantly 

improves overall sustainability of biogas and Jatropha bioenergy systems. Biogas energy 

system seems to be the most sustainable energy system for cooking in Uganda. The study 

further showed that the proposed method for participatory appraisal of bioenergy systems, 

based on strengths, weaknesses, opportunities and threats; analytic hierarchy process, and 

desirability functions seem to be a very promising tool. In conclusion, the proposed multi-

criteria sustainability assessment framework showed a high potential to be used as a tool 

to aid decision-making when selecting cooking energy systems in developing countries. 
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Abstract – Italian version 

Circa metà della popolazione mondiale è attualmente priva di energia pulita e sicura da 

utilizzare per la cottura dei cibi. La maggior parte di questa risiede nei paesi in via di 

sviluppo, dove l'uso delle biomasse tradizionali è prevalente e pone problemi sociali, 

economici, ambientali e tecnologici. Recentemente, l'Assemblea Generale delle Nazioni 

Unite ha sottolineato la necessità, per questi paesi, di poter accedere all'energia 

sostenibile, in quanto tale accesso è fondamentale per raggiungere gli obiettivi futuri di 

crescita e di sviluppo sostenibile. Tutto ciò suggerisce la necessità di integrare nella 

progettazione dei sistemi energetici anche aspetti di sostenibilità volti a individuare 

tecnologie più sostenibili per la cottura degli alimenti e fornire anche dei punti di 

riferimento per monitorare i progressi verso lo sviluppo sostenibile dei sistemi energetici. 

A tal fine si rende necessaria l’individuazione e l’offerta di strumenti adeguati di supporto 

ai soggetti politici e decisionali, affinché sia possibile l’implementazione degli stessi 

sistemi energetici. La pianificazione degli interventi per la sostenibilità rappresenta, 

quindi, un grande sforzo che necessita il superamento di un notevole gap di conoscenza, 

soprattutto nei paesi in via di sviluppo in cui tale argomento è un concetto relativamente 

nuovo. Questo studio è stato quindi effettuato con l'obiettivo di sviluppare un metodo 

appropriato di valutazione della sostenibilità per la selezione dei sistemi bioenergetici nei 

paesi in via di sviluppo. 

Il framework di valutazione della sostenibilità proposto è un metodo integrato che 

incorpora i problemi sociali, economici, ambientali e tecnologici dei sistemi energetici a 

biomassa per facilitare il processo decisionale. Lo stesso si basa su analisi decisionali 

multi-criterio per consentire, attraverso un “metodo partecipatorio”, la selezione di 

sistemi energetici a biomassa che garantiscano la sostenibilità. Il quadro decisionale 

prevede la valutazione partecipativa di un insieme finito di alternative energetiche nelle 

fasi preliminari di implementazione, al fine di individuare ed eliminare quelle 

inaccettabili dalle parti interessate. Pertanto vengono proposti dei metodi dettagliati per la 

selezione, l’assegnazione di priorità e la valutazione dei criteri di sostenibilità. I metodi di 

analisi multicriterio proposti sono basati sul Preference Ranking and Organisational 

Method for Enhanced Evaluation (PROMETHEE) e sul Graphical Analysis for 

Interactive Aid (GAIA). Questi vengono adottati per l’assegnazione delle priorità di 

sostenibilità ad una serie di tecnologie di cottura degli alimenti con l’uso di biomassa. La 

metodologia è stata applicata in Uganda, dove sono stati comparati differenti sistemi di 
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cottura a biomasse con il sistema a carbone. I sistemi confrontati sono: il biogas 

domestico, le briquette per la gassificazione e i sistemi di cottura energetici ad olio 

vegetale di Jatropha. 

Gli stakeholders ugandesi, attraverso la valutazione partecipativa, hanno assegnato un 

punteggio più alto al sistema energetico di cottura alimentato ad olio di Jatropha, che è 

quindi stato classificato come il miglior sistema. Seguono nella classifica il biogas e le 

briquette, mentre il carbone si è posizionato all'ultimo posto. Allo scopo sono stati 

sviluppati una serie di criteri di sostenibilità per i sistemi bioenergetici: in riferimento alle 

condizioni ugandesi sono stati assegnati valori diversi da un pannello multi-stakeholder, 

utilizzando l’Analitic Hierarchy Process (AHP). I criteri economici sono stati classificati 

come i più importanti tra le considerazioni di cui tener conto nel confronto dei sistemi 

bioenergetici sostenibili nel paese. Invece, i criteri tecnici sono stati classificati come 

ultimi. I risultati della valutazione ambientale dei sistemi energetici hanno indicato il 

biogas come l'alternativa più sostenibile per l'ambiente, mentre il carbone è  risultato 

essere il peggiore. 

È stato inoltre osservato che le prestazioni ambientali del biogas e dei sistemi con olio di 

Jatropha migliorano in modo significativo quando accoppiati, con successivo riutilizzo 

dei prodotti di scarto come fertilizzante in agricoltura. I risultati della valutazione di 

sostenibilità multi-criterio hanno dimostrato che da un punto di vista del business, come 

scenario immutato, il carbone di legna e il biogas non sono confrontabili con il ranking 

parziale di PROMETHEE I. Anche l’olio di Jatropha e i sistemi di gassificazione con 

briquette si sono dimostrati altrettanto inconfrontabili. Il biogas è stato classificato come 

la migliore alternativa con il ranking totale di PROMETHEE II, mentre la Jatropha e le 

briquette hanno mostrato performance peggiori rispetto al sistema di riferimento. Quando 

si è ipotizzato di riciclare come fertilizzante i sottoprodotti, i sistemi a biogas si sono 

ancora una volta classificati come la migliore alternativa, seguiti da Jatropha e, in ultimo, 

dalle briquette, classificate come peggiori anche rispetto al carbone. Lo studio ha inoltre 

dimostrato che il carbone utilizzato per la cottura degli alimenti in Uganda è inefficiente e 

pone elevati rischi per la salute degli utenti rispetto alle tre alternative considerate. 

In generale lo studio ha mostrato che, in Uganda, i fattori economici giocano un ruolo 

preponderante nella decisione delle famiglie di adottare tecnologie bioenergetiche 

migliori per cucinare. Inoltre, è stato dimostrato che le prestazioni ambientali del biogas e 
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dei sistemi energetici con olio di Jatropha migliorano significativamente se si aumenta il 

riciclaggio dei prodotti di scarto, come fertilizzanti, e se si evita la combustione in 

ambiente aperto dei residui. Il riciclaggio dei sottoprodotti migliora in modo significativo 

la sostenibilità complessiva del biogas e dei sistemi bioenergetici con olio di Jatropha. Il 

sistema energetico con biogas sembra risultare quello più sostenibile per la cottura dei 

cibi in Uganda. Il metodo proposto per la valutazione partecipativa dei sistemi 

bioenergetici, basato sul confronto delle caratteristiche forza-debolezza e opportunità-

minaccia, sull’AHP e sulle funzioni di desiderabilità, sembra essere uno strumento molto 

promettente. In conclusione, il quadro di valutazione di sostenibilità proposto, basato su 

analisi multi-criterio, ha mostrato un alto potenziale come strumento di supporto alle 

decisioni per la selezione dei sistemi di cottura degli alimenti più sostenibili  per un paese 

in via di sviluppo.  
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Chapter 1 – Introduction 

Summary 

Currently, about 2.6 billion people use traditional biomass for cooking resulting in over 2 

million premature deaths annually due to indoor air pollution. Traditional biomass use is 

also associated with a variety of social, economic and environmental challenges. 

Provision of clean and reliable energy for cooking in developing countries is therefore 

recognised as critical to sustainable development and attainment of the millennium 

development goals. This Chapter provides important background information that 

motivated this study. It provides an overview of the challenges facing the global energy 

supplies with a particular focus on developing countries, leading to the objectives of the 

study. The chapter also provides detailed information on the scope and general 

organisation and presentation of the thesis. 

1.1 Background 

1.1.1 Global energy outlook 

Energy is an indispensable necessity of human kind. Basically, development of the world 

is largely dependent on the availability and access to clean, affordable and reliable 

energy. The growth and sustainability of all the major sectors of the modern economy 

such as industries, agriculture and services strongly depend on various forms of energy. 

The household sector requires energy for space heating to ensure comfort of occupants as 

well as for cooking and water heating. Currently, energy supplies are predominated by 

fossil fuels with an estimated share of 82% in the global energy mix (IEA, 2013). 

However, use of fossil fuels is faced by several challenges; for example, deposits are not 

uniformly distributed over the earth’s surface, resulting in concerns of energy security of 

countries without the resource. Moreover, they are non-renewable; thus, threatened by 

depletion (Shafiee and Topal, 2009). 

Fossil fuels are also the main source of greenhouse gases (GHG), which lead to global 

warming and ultimately climate change. Global climate change is one of the major 

development challenges of the modern era because of several risks it poses to the stability 

of our planet. Consequently, there are currently global commitments such as the United 

Nations Framework Convention on Climate Change (UNFCCC), which aims at 

stabilising anthropogenic GHG concentration in the atmosphere to levels that do not 
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interfere with the global climate systems. The Kyoto Protocol in particular sets binding 

GHG emissions reduction targets for industrialised countries, though developing 

countries do not have set targets. These global commitments, coupled with the need to 

ensure energy security of nations have led to renewed interest in renewable energy. 

A wide range of renewable energy sources are currently being explored as alternative to 

fossil fuels. Examples include solar, wind, biomass, hydropower, ocean and geothermal. 

Apart from being CO2 neutral, renewable energy contributes to reduction of pollutants 

emissions, and promotes energy security. Others include creation of local employment 

and savings of foreign currency that could have been spent on importation of fossil fuels. 

However, renewable energy have generally had less competitive prices than fossil fuels, 

though this trend is observed to be reversing in recent past (Caspary, 2009). The 

contribution of renewable energy to the world’s primary energy use in the year 2011 was 

estimated to be 13%, but was projected to reach 18% by 2035 (IEA, 2013). Biomass in 

woody form remains the world’s single most important renewable energy source, 

contributing 9% of total primary energy demand and 65% of primary renewable energy 

consumption in the year 2010 (Lauri et al., 2013). 

1.1.2 Overview of biomass and bioenergy 

By definition, biomass is organic material of plant or animal origin. Bioenergy is energy 

derived from biomass materials such as wood fuels, herbaceous energy crops, vegetable 

oils, plant and animal residues (Mohammed et al., 2013). Biomass is an important source 

of energy, contributing about 18% of the global heat energy use in the year 2011. The 

building sector is the main user of biomass accounting for 65% of bioenergy used 

globally and 75% in developing countries (IEA, 2013). Interest in bioenergy and other 

renewable energy increased since the oil crisis of the 1970s. Biomass energy, in 

particular, has attracted a lot of research and development interests because of its 

flexibility to be processed into a variety of solid, liquid and gaseous fuels (Demirbas et 

al., 2009). This makes it possible for biomass to substitute fossil fuels in both stationary 

and mobile applications such as transport. When well-managed, bioenergy has a potential 

to be carbon neutral since the carbon dioxide emitted during combustion is reabsorbed by 

plant during photosynthesis. However, as noted by Zanchi et al., (2012) when the rate of 

biomass extraction exceeds growth rate, bioenergy systems could result in net GHG 

emissions to the atmosphere. 



4 

 

Energy from biomass can be broadly classified as traditional and modern biomass 

(Goldemberg and Teixeira Coelho, 2004). Modern biomass involves conversion of 

biomass from agricultural, forest and municipal residues into heat, electricity or transport 

fuels (Goldemberg, 2007). Provision of modern biomass energy is generally done 

sustainably, and the products are traded as commercial fuels, and are mainly used in 

industrialised countries. It includes second generation biofuels, derived from 

lignocellulosic biomass, using less conventional conversion routes (Eisentraut, 2010). 

Second generation biofuels are believed to be more sustainable than first generation 

biofuels derived from sugars and oils from arable crops, which could result in competition 

with food production. Traditional biomass on the other hand involves inefficient use of 

biomass as fuelwood and is generally considered unsustainable. It is the predominant 

source of energy for cooking and heating in developing countries. According to IEA 

(2012), traditional biomass use accounts for 59% of the global bioenergy use in the year 

2011. 

1.1.3 Bioenergy in the context of industrialised economies 

It is estimated that biomass contributes 9 to 13% of the primary energy supplies of 

industrialised countries, and is the most widely used renewable energy source (Faaij, 

2006). The challenge of climate change, coupled with commitments such as the UNFCCC 

and the Kyoto Protocol have resulted in a tremendous increase in the share of bioenergy 

in the energy mix of developed countries. Bioenergy utilisation in these countries is 

mainly through modern biomass, and aims at supplying energy requirements for industry, 

power generation and transport. Bioenergy development in the European Union (EU) is 

closely linked to climate change mitigation efforts, which aims at reducing GHG 

emissions, by substituting fossil fuels with biomass and other renewable energy sources. 

The main driving policy is European Commission Renewable Energy Directive (EC-

RED), which sets targets for member states to achieve 20% reduction in GHG emissions 

by using 20% renewable energy by the year 2020 (European Commission, 2009). 

The United States of America (USA) so far remains the world’s leading producer of 

biofuels, mainly from corn and oil crops (Sorda et al., 2010). Like in the EU, bioenergy 

development efforts in USA aim at achieving significant increase of the share of biofuels 

in the transport sector. The US renewable fuel standards (USEPA, 2010) sets stringent 

targets aimed at increasing production of biofuels to 136 billion litres by the year 2022 
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(Goldemberg et al., 2014). The challenges with bioenergy development in developed 

industrial economies however hinges on the competitiveness of biofuels compared to 

fossil fuels. The challenge of competition with food production is being overcome by 

efforts to use second generation biofuels using cellulosic biomass. In most cases, 

developed countries have well developed policies aimed at promoting renewable energy 

use while minimised environmental and social impacts of development of the sector 

(Sorda et al., 2010). 

1.1.4 Bioenergy in the context of emerging and developing economies  

Energy profiles of developing countries is characterised by high levels of biomass energy 

use. Biomass contributes one-fifth to a third of primary energy use in developing 

countries. Considering developing countries as a whole, about 83% of the rural 

population use biomass for cooking, and this proportion is up to 90% in sub-Saharan 

Africa (SSA) (Kaygusuz, 2011). Unlike in industrialised countries that mainly use 

modern biomass, bioenergy use in developing countries is predominantly in traditional 

form.  

However, there are a few examples of emerging economies like Brazil, India, China and 

Thailand, which have registered considerable research and development in modern 

biomass use including second generation biofuels (Eisentraut, 2010). Brazil is probably 

one of the best success stories of bioenergy development due to the ethanol programme, 

which has resulted in a significant share of biofuel use in its transport sector. The success 

of the Brazilian biofuel programme is mainly due to production of bio-ethanol from 

sugarcane. Current policies in Brazil require that all gasoline sold on the market is 

blended with 20 to 25% bio-ethanol (Balat and Balat, 2009). China recently developed the 

Renewable Energy Promotion Law of 2005, with the aim of increasing national energy 

supply from renewable sources (Cherni and Kentish, 2007). This is also leading to 

increased use of modern biomass in the country. 

Generally, the bulk of biomass energy use in developing countries is predominantly in 

traditional form using inefficient technologies. Most of the biomass used in developing 

countries is solid fuels such as firewood, charcoal, crops residues and animal dung. Direct 

combustion of the biomass usually takes place in traditional stoves with very low 

efficiencies. Recent estimates by the IEA (2013), indicated that at least 2.6 billion people 

use traditional biomass for cooking and heating, most of them in Africa and Asia. This 
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number is currently still increasing due lack of policies to promote use of modern biomass 

energy. Pachauri et al., (2013) estimated that the number of people using traditional fuels 

and stoves will increase by 50 to 220 million between 2005 and 2030, if favourable 

policies are not implemented. This trend needs to be reversed due to the sustainability 

challenges of traditional biomass use discussed in the following section. 

1.2 Bioenergy and sustainability in developing countries 

Bioenergy use in developing countries is faced with a number of sustainability challenges 

including severe impacts on human health and the environment, as well as gender and 

socio-economic issues. Use of traditional biomass for cooking and heating in developing 

countries often times takes place in poorly ventilated indoor environment. This results in 

high levels of indoor air pollution (IAP) caused by gases such as carbon monoxide (CO), 

particulates matter, and non-methane volatile organic compounds (NMVOC). Indoor air 

pollution is one of the major causes of premature death amongst children and adults in 

developing countries (Foell et al., 2011; Kaygusuz, 2012). It is associated with illnesses 

such as pneumonia, chronic obstructive pulmonary disease and lung cancer. It is also 

believed to cause asthma, cataracts, low birth weight and still birth, tuberculosis and lung 

cancer (Lim et al., 2013; Norma, 2011). Recent estimates indicate that every year, up to 2 

million people die prematurely due to ailments caused by IAP (Martin et al., 2011; 

Norma, 2011). The most vulnerable population group are children and women who are 

the most exposed to the risk.  

Possibility of wood fuel crisis due to depletion as a result of excessive harvesting was a 

major concern in the 1970s. However, since the 1990s, the scientific community has 

generally accepted that fuelwood use may not necessarily lead to deforestation, and that 

fuelwood crisis may not necessarily become a reality (Matsika et al., 2013). Nevertheless, 

intensive use of charcoal majorly in urban areas of SSA is known to have potential to lead 

to deforestation and forest degradation local scale (Foell et al., 2011; Mwampamba, 

2007). This could result in reduction in soil fertility and lead to negative impacts on the 

general health of the ecosystem. Other impacts include reduction in soil infiltrations 

capacity and sedimentation of rivers (Butz, 2013). Therefore, energy supply from 

charcoal could result in negative impacts on the environment, with possible adverse 

consequences on the socio-economic status of the population of developing countries. 
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Traditional biomass use is also known to contribute significantly to the global climate 

change phenomenon due to emissions of GHGs such as nitrous oxides and methane. It is 

also known to contribute to about 18% of the global atmospheric black carbon 

concentration (Foell et al., 2011). Apart from contributing to global warming, black 

carbon is also known to increase melting of glaciers and impact regional rainfall and 

monsoons (Venkataraman et al., 2010).  

Another major sustainability challenge with traditional biomass fuel use in developing 

countries is associated with social and gender dimensions. Women and children lose time, 

which could have been spent on more productive activities on biomass collection and 

processing. The collection process in particular is associated with considerable amount of 

human drudgery and time loss (Foell et al., 2011). This could result in serious social and 

economic challenges by excluding women from participating in social and economic 

development.  

Though not specifically having a target in the millennium development goals (MDGs) 

access to clean and affordable energy has been identified as critical to achieving the 

MDGs. This is due to the benefits it renders, such as improved maternal health, reduction 

in premature death and environmental impacts, saving of time for fuelwood collection. 

Overall, improving access to clean energy for cooking is expected to contribute to 

achieving the MDGs, improve human welfare and contribute to sustainable development, 

most especially in developing countries (Haines et al., 2007). Consequently, there are a 

number of global and national efforts aimed at improving access to clean, reliable and 

efficient energy for cooling in developing countries. 

1.3 Initiatives to improve sustainability of traditional biomass 

The health and environmental challenges of traditional biomass use has attracted attention 

of the global community in the recent past. Concerns to reduce indoor air pollution and 

other environmental impacts of traditional biomass use have resulted in the formation of 

the Global Alliance for Clean Cookstoves (GACC), led by the United Nations Foundation 

(Smith, 2010). The GACC is a coalition of governmental, NGOs, private sector and civil 

society organisations with a common goal of scaling up use of improved cooking stoves 

in developing countries. The stoves promoted are affordable, acceptable, require less 

fuels, with reduced indoor air pollution, and require less time for cooking (GACC, 2014). 

The GACC has set a target to install 100 million improved cook stoves by the year 2020 
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(Bond and Templeton, 2011; Smith, 2010). This is expected to improve the health and 

financial status of households.  

Recognising that clean and affordable energy is important to the achievement of the 

MDGs, and sustainable development, United Nations General Assembly (UNGA) 

recently declared the year 2012 as the International Year of Sustainable Energy for All 

(UNGA, 2011). The resolution 65/151 recognises the need to reduce the proportion of 

people using traditional biomass for cooking in developing countries. Further, recognising 

the fact that 1.3 billion people do not have access to electricity, and that 2.6 billion people 

use traditional biomass for cooking, UNGA further declared the period from 2014 to 2024 

as the United Nations Decade of Sustainable Energy for All (UNGA, 2012). These 

resolutions are expected to bring renewed interest in sustainable energy and in particular 

lead to increased efforts to reduce traditional biomass use in developing countries. 

Several developing countries have taken the initiatives to promote modern biomass and 

other improved technologies for cooking. The Chinese and the Indian biogas programmes 

are very good examples of efforts aimed at improving access to clean cooking energy in 

developing countries. As of the year 1988, there were about 4.7 million domestic biogas 

plants in China; however, due to a strong support from the Chinese government, the 

number increased considerably to about 26.5 million units by the year 2007 (Bond and 

Templeton, 2011). Similar efforts have resulted in installation of about 4 million biogas 

plants in India (Surendra et al., 2014). There are also efforts to promote the domestic 

biogas technology in the SSA. A notable example is the Netherlands Development 

Organisation (SNV) biogas programme, which is actively promoting biogas energy use in 

both Asia and SSA (Ghimire, 2013). 

Several development countries have also made deliberate efforts to promote the use of 

improved biomass cook stoves, though the level of success remains low. Examples of 

notable success include the Chinese Cookstove (Smith et al., 1993) and  the Kenya 

Ceramic Jiko stove programmes (Vahlne and Ahlgren, 2014). 

1.4 Need for sustainability assessment of bioenergy systems 

Due to sustainability challenges facing traditional biomass use, several developing 

countries are currently running programmes aimed at promoting improved bioenergy 

technologies for cooking. Efforts include introduction of technologies such as domestic 

biogas systems (Landi et al., 2013), gasification based on short rotation forestry 
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(Buchholz et al., 2012), and use of oil from plants such as Jatropha (Jatropha curcas L.) 

(Van Eijck and Romijn, 2008). These technologies offer several advantages over 

traditional biomass systems, including improved indoor air quality, higher fuel efficiency, 

and opportunities for employment in the supply chains. However, they are also faced by 

several challenges including high initial investment costs, potential competition with food 

production, impact on the environment and low levels of social acceptance (Buchholz and 

Volk, 2012; Phalan, 2009).  

The multiplicity of challenges and benefits of bioenergy systems suggest the need to 

incorporate sustainability aspects during planning by holistically considering the social, 

economic, environmental and technological concerns. Sustainability assessment is a tool 

used guide policy and decision makers to select actions or policies that can enhance the 

sustainability of the society (Pope et al., 2004). It was derived from the concept of 

sustainable development, which is defined by the Brundtland Commission in 1987 as 

“development that meets the needs of the present generation without compromising the 

ability of future generations to meet their own needs” (World Commission on 

Environment, 1987). Sustainability assessment is an important tool for decision making in 

order to justify choice of technologies for development and promotion. To aid analysis, 

sustainability has concept traditionally been divided into three pillars or dimensions, 

popularly known as the triple bottom line, which are; “people, planet and profit”, also 

referred to as “people, planet and prosperity”. This means that sustainability assessment is 

usually carried to ensure that projects lead to the desired socio-economic benefits to the 

target population while ensuring protection of the environment (Hacking and Guthrie, 

2008). 

1.5 Problem and rationale for the research 

The background information given in this chapter suggests that access to clean and 

reliable energy for cooking is critical for the achievement of the MDGs and attainment of 

sustainable development. In addition, there is evidence of increasing commitments at 

global, regional and national levels to reduce adverse impacts of traditional biomass use 

in developing countries. Currently, there are a wide range of technologies that could play 

an important role in achieving the objective of improving access to modern biomass 

energy to households in these countries. Faaij (2006), gave a comprehensive review of 
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possible conversion routes through which biomass can be used in a more sustainable 

manner. 

However, the diversity of the technologies poses a serious challenge to decision makers in 

developing countries to objectively prioritise technologies to be promoted. Generally 

however, choice of technology should be determined by the principles of sustainability to 

ensure that they fulfil the energy needs of the current generation without compromising 

that of the future. The preferred choice should therefore ensure harmony with the social, 

economic, environmental and technological context of the target society.  

Achieving the goal of attaining sustainability is however a very intricate problem, since 

the social, economic, environmental and technological objectives are often conflicting. 

This therefore calls for suitable decision making tools to guide policy and decision 

makers on the most suitable bioenergy technology to promote. The current challenge is 

that there are generally limited proven decision making aids to guide sustainable choice of 

biomass energy technologies in developing countries. Most of the existing tools were 

developed in industrialised countries and would require some tailoring to suit application 

in developing countries. Also, there is general lack of knowledge about the sustainability 

performance of the various modern biomass energy systems being promoted in 

developing countries. This therefore poses serious challenges to decision and policy 

makers on how to effectively select the most sustainable choice of modern biomass 

energy technology to promote.  

1.5.1 Goal of the study 

The overall goal of this study was to contribute to increased use of sustainable cooking 

energy in developing countries by improving the decision making process when selecting 

bioenergy technologies. 

1.5.2 Specific objectives 

The objectives of the study were to: 

1. develop and implement a multi-criteria decision making methodology for assessing 

sustainability of bioenergy systems in developing countries; 

2. develop and implement a tool for participatory appraisal of bioenergy systems; 

3. evaluate the relative environmental performance of four bioenergy systems used in 

developing countries; and 
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4. investigate the configurations of biomass energy systems under study that could 

result in their improved sustainability. 

1.5.3 Research questions 

The study aimed at answering the following research questions: 

1. What are the perceptions of Ugandan stakeholders about biogas, briquette, Jatropha 

charcoal cooking technologies, and how can it be assessed? 

2. Can introduction of biogas, briquettes and Jatropha cooking technologies lead to 

improved environmental performance compared to use of charcoal?  

3. Does use of biogas, Jatropha and briquette lead to overall sustainability of biomass 

cooking in developing countries, and how can the relative sustainability be measured? 

1.5.4 The scope of the study 

Uganda was purposely selected as the geographical locality for the study. This choice was 

made basing on the fact that Uganda is one of the developing countries with very low 

level of access to modern energy services. According to Buchholz and Da Silva, (2010), 

only 5% of Uganda population have access to electricity. Traditional biomass energy 

provides more than 90% of the primary energy needs of the country. The country has 

developed the Renewable Energy policy that encourages sustainable utilisation of modern 

biomass energy. Also, there is several development efforts aimed at promoting a variety 

of modern biomass energy use in the country. Examples include biogas, Jatropha plant 

oil, and briquetting. Detailed analysis of the bioenergy situation in Uganda is given in 

Chapter 2 of this thesis and in Okello et al., (2013b). The cooking energy technologies 

included in the study were the biogas, briquette gasification, Jatropha plant oil cooking 

and charcoal was taken as the reference system. 

1.6 Outline of the thesis 

This thesis is divided into two parts. Part I comprise of Chapter 1 to Chapter 3, and 

provide a general introduction to the study including study goals and objectives. It also 

gives detailed information on the status of bioenergy technologies and results of an 

assessment of energy potential of biomass residues in Uganda. Part II, begins from 

Chapter 4 to Chapter 9 of the thesis. Chapters 4 to 8 are dedicated to the development and 

implementation of sustainability assessment methods. Chapter 9 gives general summary 

to the study and highlights the main conclusions. 
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Part I: Introduction and state of the art analysis 

This part of the thesis provides pertinent information that motivated the study. It is 

composed of three chapters. Chapter 1 gives the general introduction to the study, starting 

with a brief overview of the status of global energy supply. This is followed by an outlook 

of status of biomass energy use in developed and developing countries. Challenges of 

biomass sustainability in developing countries were discussed. Finally, the goal, 

objectives and scope of the study were articulated. The second chapter of the thesis 

provides overview of biomass energy technology in Uganda in particular. Detailed 

information about efforts made so far to promote improved bioenergy technologies and 

progress made by the government and other development partners is provided. The 

chapter also contains useful information on bioenergy stakeholders in Uganda. An 

evaluation of the bioenergy potential of biomass residues in Uganda was also carried out. 

Detailed description of the methods used and results of the study is given in Chapter 3 of 

the thesis. Results obtained in Chapter 2 and 3 were very important for formulating the 

conversion technology and choice biomass feedstock analysed in later chapters of the 

thesis.  

Part II: Methodological development and application 

The second part of the thesis provides results of the development and implementation of a 

sustainability framework of biomass energy systems. In Chapter 4, the concept of 

sustainability was introduced, followed by a succinct review of relevant literature on 

sustainability assessment methods. A justification of methods used in this study is given. 

This was followed by a presentation of sustainability assessment framework developed. 

Sustainable development of bioenergy systems requires participation of stakeholders. An 

innovative method for participatory appraisal of bioenergy technologies in an 

environment with limited data was developed and implemented. Description of the 

method and results of an appraisal study of four bioenergy technologies in Uganda in 

provided in Chapter 5. The sustainability decision framework developed in Chapter 4 

requires suitable set of criteria for its implementation. Twenty one criteria were selected 

to suit Ugandan environments by a panel of experts and multi-stakeholders and results 

given in Chapter 6. Chapter 7 provides an analysis of the environmental impacts of four 

energy systems under Ugandan conditions. The life cycle assessment method was used 
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for the analysis. Results of the study were also used as evaluations of the environmental 

criteria for energy sustainability.  

The aggregation of criteria to derive sustainability scores for the bioenergy technologies 

was carried out in Chapter 8. The chapter provides detailed description of the multi-

criteria methodology used for sustainability assessment of four energy systems in 

Uganda. Different scenarios were analysed to evaluate possible feasible energy system 

orientations that results in better sustainability. Lastly, in Chapter 9, an overview of the 

results of the study is given followed by general discussions. Relevant conclusions were 

also highlighted and proposals for future research mentioned. 
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Chapter 2 – State of the art of bioenergy technologies in Uganda 
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Chapter 2 – State of the art of bioenergy technologies in Uganda 

Summary 

Biomass is a renewable energy resource; however, its exploitation raises concerns about 

its ability to sustain the growing demand and its negative impacts on the environment, 

particularly in developing countries. These concerns are more prominent on the African 

continent where high population growth rates is leading to high rates of deforestation due 

to expansion of agricultural land and increased demand for bioenergy. Use of traditional 

and inefficient bioenergy technologies and appliances also exacerbate the problem. This 

chapter presents a review of the efforts and progress made by different organisations in 

promoting improved bioenergy technologies in Uganda. The study was based on an 

extensive review of available literature on modern bioenergy technologies introduced in 

the country. It was found that there is high level of wastage of biomass resources since an 

estimated 72.7% of the population use traditional cooking stoves with efficiency 

estimated to be less than 10%. Inefficient cooking stoves are also blamed for indoor air 

pollution and respiratory illness reported amongst its users. Modern bioenergy 

technologies such as biomass gasification, cogeneration, biogas generation, biomass 

densification, and energy-efficient cooking stoves have been introduced in the country but 

have certainly not been widely disseminated. The country should pursue policies that will 

accelerate proliferation of more efficient bioenergy technologies in order to reduce the 

negative environmental impacts of bioenergy utilisation and to ensure sustainability of 

biomass supplies. 

2.1. Introduction 

Adequate supply of energy is crucial for the development of any nation. Currently, fossil 

fuels are the dominant global source of energy (Goldemberg and Teixeira Coelho, 2004). 

However, use of fossil fuels is associated with greenhouse gas emissions (GHG), which is 

blamed for global warming, and consequently, climate change. Therefore, emphasis is 

currently focussed on promoting use of renewable energy sources such as biomass, solar, 

wind and tidal energy. Biomass, in particular, is seen as a possible substitute to fossil 

fuels, and many developed countries are striving to increase the proportion of their 

primary energy supply from it (Faaij, 2006).  

The situation in developing countries is however different because biomass has all along 

been the major source of energy (Akyüz and Balaban, 2011). In Africa for example, 
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biomass accounts for about 30% of the energy consumption. Its use is more prominent in 

sub-Saharan Africa where it account for up to 80% of energy supply (Kebede et al., 

2010). In Uganda, biomass contributes over 90% of energy requirements. However, 

despite the high contribution, the production and supply of biomass is still managed by 

the informal sector. Technologies employed from the production to consumption of 

biomass fuels are majorly traditional and inefficient and are associated with high levels of 

pollutants’ emission. Extensive use of inefficient bioenergy technologies implies that 

biomass resources are being wasted; thus, contributing to increased rates of deforestation 

and related environmental concerns such undesirable change in biodiversity, degradation 

of soil and water resources. Improving the efficiency of bioenergy technologies could 

therefore, play a major role in conserving energy; hence, reducing the rate of 

environmental degradation.  

In this perspective, the Government of Uganda, non-governmental organizations (NGOs), 

and several private agencies are currently promoting improved bioenergy technologies in 

the country. Examples of technologies promoted include improved (energy-saving) 

biomass cooking stoves, biogas, and biomass gasification technologies. Overtime, several 

independent reports of these programmes have been produced by the different actors in 

the sector. However, because they are made by different projects and individuals, it is 

very difficult to understand the overall impact of the bioenergy technology programmes 

in the country. Therefore, the aim of this study was to a conduct review of the progress 

made in the implementation of improved bioenergy technology programmes in Uganda. 

The objective is to present a succinct account of the level of proliferation of improved 

biomass technologies in the country. 

2.1.1 Geographical, demographic and economic information 

Uganda is a land locked country located in East Africa, between latitudes 01° 30′ S and 4° 

00′ N; and longitudes 29° 30′ E and 35° 00′ E (Otim, 2005). It is bordered by Kenya in 

the east, Tanzania and Rwanda in the south, Democratic Republic of Congo in the west 

and South Sudan in the north. Figure 2.1 shows the location of Uganda on the African 

continent. The area of the country is approximately 241,550 km2, out of which 41,743 

km2 is covered by open water bodies and swamps. The topography comprises plateaus in 

the central and northern parts of the country and mountains of Elgon and Rwenzori on the 
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eastern and western borders, respectively. Overall, the elevation ranges from 620 m to 

5110 m above mean sea level (UBOS, 2010a). 

 

Figure 2.1. Map showing the location of Uganda on the African continent 

According to UBOS (UBOS, 2002), by the year 2002, the country had a population of 

24.4 million, characterized by an annual population growth rate of 3.4%. At the time, 

about 88% of the population lived in rural areas. Recent estimates by UBOS (UBOS, 

2010a) indicate that the country‘s population by mid-year 2010 had grown to 31.8 

million. A summary of the demographic and economic information on Uganda is given in 

Table 2.1. 

2.1.2 Overview of the Ugandan energy sector 

The per capita energy consumption of Uganda is estimated to be 1.63 GJ, which is very 

low compared to that of Kenya at 3.35 GJ and Italy at 123.89 GJ (2013). Energy supply in 

the country is predominated by biomass in form of firewood, charcoal and agricultural 

residues. Electricity and petroleum fuels are also used, but contributes is less than 10% of 
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the total energy use. The contributions of the various forms of energy are illustrated in 

Figure 2.2.  

 

Figure 2.2. Energy use by category in Uganda 

Electricity and petroleum fuels are considered as commercial energy in the country; 

however, biomass is not included in this category, probably because trade in biomass is 

predominantly informal, and in some cases illegal. In Uganda, biomass energy is used for 

cooking and heating in households, commercial and public institutions such as hotels, 

schools and hospitals. It is also used in small scale industries such as brick production and 

in various industries to supply process heat (Naughton-Treves et al., 2007).  

Table 2.1. Demographic information and economic indices for Uganda 

Parameter Value Year 

Population mid-year (millions)  31.8 2010 

Population density (persons per square km) 131.3 2008 

Population growth rate (%) 3.3 2005 to 2010 

Urban population (%) 12.8 2007 

Gross domestic product (GDP)a (millions USD)b 15,829.00 2008 
GDP per capita (USD) 500 2008 

Forested area (%) 17.5 2007 

Energy production, primary (x106 GJ)c 5.7 2008 

Energy consumption per capita (GJ y-1) 1.6 2012 

CO2 emission estimates (x103 tonnes) 2704 2006 

CO2 emission per capita (tonnes) 0.1 2006 

Sources: UBOS, (2010a) and United Nations, (2013) 
aGDP - gross domestic product 
bUSD - United States Dollars 
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Table 2.2. Bioenergy consumption by sector in Uganda 

Sector Type of fuel (TOEa per year) 

 Wood Charcoal Residues 
Residential 5,957,976 406,756 488,106 
Commercial 1,242,267 195,855 0 
Industrial 999,213 0 0 
Total 8,199,456 602,611 488,106 

Source: MEMD (2008) 
a TOE – tonnes oil equivalent 

Urban households predominantly use biomass in form of charcoal, while firewood and 

agricultural residues are principally used by rural dwellers. Table 2.2 shows the 

distribution of biomass consumption by sector (MEMD, 2008), from which it can be 

observed that the residential sector is the biggest consumer of biomass energy in the 

country. However, bioenergy technologies used in Uganda are mainly traditional and 

inefficient. Therefore, several organisations are currently promoting improved bioenergy 

technologies in the country. Table 2.3 gives a list of the organisations that are currently 

promoting improved bioenergy technologies in Uganda. 

Table 2.3. List of organisations involved in improving bioenergy technology in Uganda 

Name of Organisation  Type of organisation Bioenergy technology promoted or 
used 

Ministry of Energy and Mineral 
Development 

Government agency Policy formulation and regulations, 
and project implementation 

Centre for Research in Energy and 
Energy Conservation 

Makerere University; 
institution of higher 
learning  

Research, development and 
dissemination of improved biomass 
technology 

Appropriate Technology and 
Agricultural Engineering Research 
Centre 

National Agricultural 
Research Organisation 

Biogas technology 

Nyabyeya Forestry College Institution of higher 
learning 

Training in biomass energy 
technology 

Promotion of Renewable Energy 
and Energy Efficiency Programme 

German Agency for 
International Cooperation 

Improved biomass stoves 

SNV Uganda Netherlands Development 
Organisation 

Biogas technology 

Joint Energy and Environment 
Project  

Non-Governmental 
Organization (NGO) 

Biogas technology, improved biomass 
stoves 

Heifer International NGO Biogas technology 

United Nations Development 
Programme  

United Nations agency  Multifunctional platform based on 
biodiesel 
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Table 2.3. Continued … 

Norwegian Refugee Council NGO Improved biomass stoves 

Agency for Cooperation and 
Research in Development 

NGO Improved biomass stoves 

CARITAS International NGO Improved biomass stoves 

African Medical Research 
Foundation 

NGO Biogas technology 

SEND A COW Uganda NGO Biogas technology 

Africa 2000 Network Uganda NGO Biogas technology 

KULIKA Community 
Development and Education in 
Uganda 

NGO Biogas technology 

Sustainable Sanitation Water 
Renewal Systems 

NGO Biogas technology 

East African Energy Technology 
Development Network 

NGO Bioenergy technology promotion, 
capacity building, networking 

Pamoja Inc. NGO Gasifier stoves for domestic 
applications 

Kakira Sugar Works (1985) 
Limited 

Sugar manufacturing 
company 

Combined heat and power generation 

Kinyara Sugar Works Limited Sugar manufacturing 
company 

Combined heat and power generation 

Sugar Corporation of Uganda 
Limited  

Sugar manufacturing 
company 

Combined heat and power generation, 
ethanol production 

Uganda Stove Manufacturer’s 
Limited  

Private company Production of improved biomass 
stoves 

Nexus Bio-diesel Limited Private company Biodiesel production from jatropha 

Royal Zan Zanten Private flower growing firm Biodiesel from jatropha 

Muzizi Tea Estate Private tea producing 
company 

Gasification for electricity generation 

Paramount Cheese Dairies Limited Private company Gasification for industrial heat 
production 

Green Heat (U) Limited Private company Biogas and briquetting technologies 

Kampala Jillotine Suppliers 
Limited 

Private company Biomass briquetting 

 

Petroleum fuels contribute about 7.4% of primary energy consumption in Uganda. The 

major forms of petroleum products used are: gasoline, diesel fuel, kerosene, fuel oil, 

aviation fuel and liquefied petroleum gas (LPG). Diesel fuel takes the biggest share of 

petroleum consumption and is mainly used to power heavy vehicles, and for electricity 

generation. Gasoline is used for powering light vehicles and small engines. Kerosene is 

mainly used by the rural households for lighting. Most petroleum products are imported 

into the country and their prices usually fluctuate with international rates. Recent 

development in the petroleum sector includes a discovery of an estimated 2.5 billion 
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barrels of petroleum reserves in the western part of the country (Veit et al., 2011). In the 

short term, the government plans to build a mini-refinery of 6,000 to 10,000 barrels per 

day to supply the country’s growing petroleum fuel needs (GTZ, 2009).  

Electricity, mainly from hydropower generation stations is also used in the country. 

However, the level of access to electricity in Uganda is estimated to be only 5%, making 

it one of the lowest in Africa. In rural areas where about 84% of the population leave, 

access to electricity is less than 2% (Buchholz and Da Silva, 2010; Kaijuka, 2007). Even 

in urban areas, with higher accessibility rates, majority of households still heavily rely on 

charcoal to meet their daily energy needs. The low level of access could be explained by 

the low generation capacity and the high capital and operating costs for developing the 

electricity sector, especially for less developed economies like Uganda (Kaijuka, 2007). 

Currently, the installed capacity of main hydroelectric power complex located in Jinja is 

380 MW. However, the effective generation capacity dropped considerably to about 100 

MW in 2005, before rising eventually to about 140 MW in the year 2010 (Muhoro, 2010). 

The drop in generation capacity was attributed to the drastic fall in Lake Victoria water 

levels as a result of prolonged drought in the East African region (UBOS, 2010a). As a 

result, the country faced a major electricity crisis since the year 2005. In order to 

overcome the shortfall, the government contracted independent power producers, which 

by the year 2010, were supplying about 150 MW of electricity mainly from diesel 

powered generation plants to the national grid (UBOS, 2010a). 

Meanwhile, to meet the shortfall, construction of a 250 MW Bujagali hydroelectric power 

station is currently on-going. Biomass, mainly bagasse from sugarcane processing, is also 

used in Uganda to produce about 22 MW of electricity through cogeneration (GTZ, 

2009).  Several stand-alone diesel and gasoline powered generators are also installed in 

the country by individual consumers. However, their contribution to the total electrical 

power consumption is not known. 

Nevertheless, Uganda has high potential to produce hydroelectricity. It is estimated that 

the hydroelectric power potential along the river Nile alone is about 2000 MW. 

Additional potential of about 200 MW is available from several other smaller waterfalls 

distributed all over the country (Muhoro, 2010). Uganda is also rich in other energy 

sources such as solar and geothermal resources. Currently, there is effort to promote solar 
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photovoltaic (PV) and thermal systems but their contributions still remain insignificant to 

the country’s energy supply. 

2.2 Bioenergy conversion technologies 

There are several routes through which biomass can be converted into different forms of 

liquid, solid or gaseous fuels. These processes are classified broadly as thermo-chemical, 

biochemical and mechanical extraction (McKendry, 2002a; Panwar et al., 2012). A 

detailed illustration of the processes is shown in Figure 2.3. In this study, we examined 

the level of penetration of each of these conversion routes in Uganda. In addition, we also 

discussed the combined heat and power generation (CHP) and biomass densification 

technologies. A brief explanation of the principles behind these processes is introduced in 

each section followed by a detailed review of the level of penetration of each technology 

in Uganda.   

 

Figure 2.3. Bioenergy conversion technologies. Modified from Faaij,  (2006), McKendry, 
(2002a) and Panwar et al., (2012). 

2.2.1 Traditional biomass combustion technologies 

It is estimated that about three billion people worldwide use solid fuels such as coal, 

wood and animal dung to meet their domestic energy needs (WHO, 2006). Such fuels are 

mainly used in developing countries, where an estimated 2.2 billion people burn them in 

traditional cooking stoves. Use of traditional stoves is more prominent in sub-Saharan 
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Africa, where it is estimated that 94% of the population use them for cooking and heating 

(Legros, 2009). For the case of Uganda, it is estimated that about 87.5% of households 

use traditional stoves for domestic energy conversion applications. The three-stone stoves 

and the traditional charcoal stoves are used by 72.7% and 14.8% of households, 

respectively (Byakola and Mukheibir, 2009). In three-stone stoves, firewood is burnt 

between three stones that act as the hearth as well as support to the cooking vessel. 

Firewood is pushed into the hearth through the open spaces between the stones as it burns 

(Jetter and Kariher, 2009). Traditional charcoal stoves, on the other hand, are locally 

made using scrap metal materials such as roofing sheets and oil drums, but do not have 

insulation lining; therefore, leading to excessive heat loss during operation. The efficiency 

of these stoves is reported to be less than 10% (Cuvilas et al., 2010; Faaij, 2006). 

The tradition stove technologies, are also known to be a source of indoor air pollutants 

such as particulate matter and carbon monoxide (Adkins et al., 2010). Exposure to indoor 

air pollutants emitted by these stoves causes eye irritation and respiratory related diseases 

that mainly affect women and children in developing countries (WHO, 2006). According 

to World Health Organisation (WHO), about 1.5 million people die annually due to 

illnesses caused by exposure to indoor air pollutants emitted by inefficient cooking stoves 

(WHO, 2006). In sub-Saharan Africa, the mortality burden is estimated at 400,000 people 

annually (Kebede et al., 2010; WHO, 2014). Another problem associated with 

combustion of biomass in traditional stoves is its contribution to global warming resulting 

from products of incomplete combustion (Legros, 2009).  

2.2.2 Improved biomass combustion technologies 

Improved biomass stoves are built to have higher efficiencies compared to the traditional 

counterpart. They have been in use for at least 100 years, but recent emphasis to their use 

arose due to the petroleum crisis of the 1970s. Increased petroleum prices coupled with 

anticipated fuel wood exhaustion led to renewed emphasis on promoting improved 

biomass cooking stoves (Barnes et al., 1994). Recently, environmental concerns, together 

with the need for improved health of rural households have given more legitimacy to the 

promotion of improved biomass stoves (García-Frapolli et al., 2010). Improved biomass 

stoves have several advantages over their traditional counterpart including increased fuel 

savings, reduced cooking time and costs for the health sector, increased forest 

conservation, and reduced emissions of air pollutants (Kees and Feldmann, 2011). There 
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are several designs of improved biomass stoves available on Ugandan market, examples 

can be found in Jetter et al., (2009). The principle considerations in the design of 

improved stoves include reducing heat loss by insulating the walls of the combustion 

chamber and controlling air flows during combustion. Figure 2.4 illustrates a comparison 

between traditional charcoal stoves (Fig. 4a) and improved ones (Fig. 4b), both of which 

are commonly used in Uganda. The principal difference in this case is that the walls of 

improved stoves are insulated while that of the traditional one is not.  

 

Figure 2.4. Charcoal stoves. (a): traditional charcoal stove, (b): improved charcoal stove 

The Government of Uganda underscores the importance of improved biomass stoves and 

has a set target of installing 4 million improved wood fuel stoves and 250,000 improved 

charcoal stoves by the year 2017 (Panwar et al., 2012). Energy-saving stoves, based on 

the rocket stove principle are being promoted by the government with support of German 

Agency for International Cooperation under the “promotion of renewable energy and 

energy efficiency programme”. Under this programme, at least 500,000 energy-saving 

biomass stoves have so far been installed since the year 2005 (Kees and Feldmann, 2011). 

Makerere University is currently spearheading research and development of energy 

saving stoves in the country and several NGOs are involved in dissemination programmes 

through training of artisans in stove production.  

The role of the private sector in the dissemination of improved biomass stoves in Uganda 

is also becoming important. An example of a private sector involvement is the 

“UGASTOVE” project that specialises in producing improved charcoal stoves for use in 

the domestic and commercial sectors such as restaurants, schools and hospitals. A 

detailed illustration of the design of UGASTOVE biomass cooking stoves is given by 

Adkins et al., (Adkins et al., 2010). The UGASTOVE company also produces improved 
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wood stoves for rural households and institutions. It was estimated that over a seven-year 

period, the company would sell 180,000 improved stove units resulting in a potential of 

saving approximately 600,000 tonnes of carbon dioxide equivalent (Simon et al., 2012). 

However, despite these efforts, the current level of adoption of improved biomass 

combustion technology is still low in the country. According to Byakola and Mukheibir 

(2009), only 8.7% of Ugandan households use improved biomass stoves. 

2.2.3 Biomass pyrolysis  

Pyrolysis is the thermo-chemical conversion of biomass under limited supply of oxygen 

at temperatures ranging from 350°C to 700°C, (Goyal et al., 2008). Products of pyrolysis 

include charcoal, bio-oil or fuel gas, the proportion of which varies depending on the 

temperature and residence time of the biomass material in the reactor (Panwar et al., 

2012). Explanations of the effects of temperature and residence time on the pyrolysis 

process and products are available in literature (Goyal et al., 2008; McKendry, 2002a; 

Panwar et al., 2012). The most common pyrolysis method is carbonisation, which is a 

slow pyrolysis of biomass at temperatures of about 400°C (Panwar et al., 2012). 

Carbonisation is widely used in developing countries for the production of charcoal 

(Adam, 2009). There are several technologies available for carbonisation including 

traditional methods such as earth pit, and earth-mound kilns. Examples of improved 

technologies include brick and metal kilns (Booth, 1983).  

Charcoal making is a major source of employment and income in Uganda and is mainly 

carried out by numerous small, economically weak and unorganised individuals 

(Sankhayan and Hofstad, 2000). However, these are not necessarily the poorest clusters of 

their communities (Khundi et al., 2011). The traditional earth-mound kiln (Adam, 2009) 

is the dominant type of carbonisation technologies in Uganda. It involves stacking wood 

lots in mounds of about 1.5 m high, followed by sealing with earth to limit air during 

carbonisation. An opening is provided for ignition of the wood, after which it is sealed off 

with soil. However, the sealing is not uniform and it is common for air to escape into the 

kilns leading to complete combustion of the biomass. Consequently, the efficiency of this 

method is very low, estimated to be between 10 to 15 % (Knöpfle, 2004). Significant loss 

of the product also occurs at the production site due to the difficulty in recovering the 

charcoal that has been mixed with soil during the carbonisation stage. The packaging 

technology used also contributed to material loss through crushing into powder during 
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transportation. Opportunities therefore exist for reducing charcoal losses both during 

production and transportation stages. 

2.2.4 Biomass gasification 

Gasification is the partial oxidation of carbonaceous feedstock such as coal and biomass 

materials, at elevated temperature, into a gaseous energy carrier (Bridgwater, 1995). 

Gasification takes place when biomass is heated in a gasification medium such as air, 

oxygen or steam (McKendry, 2002b). The product of biomass gasification is a mixture of 

several gases, collectively called producer gas, or synthesis gas. Constituents of the 

producer gas include carbon dioxide, carbon monoxide, hydrogen, methane, steam, 

together with traces of higher hydrocarbons. Others are inert gases that result from the 

gasification agent, and contaminants such as tars, char particles, ash and oils (Belgiorno et 

al., 2003). Gasification process takes place in a reactor called gasifier, which vary greatly 

in design, but are broadly classified as fixed bed, fluid bed and moving bed. Other design 

configurations are; rotary kilns, cyclonic and vertex reactors (Knöpfle, 2004). In general, 

fixed-bed gasifiers are known to be the most suitable for gasification of solid biomass. 

Producer gas can be used as fuel in internal combustion engines, burned to produce heat, 

or used in the synthesis of liquid transportation fuels, hydrogen and other chemicals 

(Balat et al., 2009).  

Gasification technology is not widely used in Uganda; nevertheless, a case of interest is 

reported at Muzizi tea estate, located in the western part of the country (Buchholz and 

Volk, 2007; Mangoyana and Smith, 2011; von Maltitz and Staffor, 2011). The company 

installed a GAS 250® system manufactured by Ankur Scientific in India. Biomass for the 

gasifier is from 99 ha of Eucalyptus (Eucalyptus grandis) plantation, part of which is used 

in a boiler to generate steam for drying black tea (Camellia sinensis). Though rated at 200 

kW electrical power, the average power output was reported to be only 87 kW (Buchholz 

and Volk, 2007). Available literature did not give an explanation for the low output 

reported. Nonetheless, the unit cost of electricity from the gasifier was estimated to be 

0.03 United States Dollars (USD) per kilowatt hour and was much lower than that of 

diesel generated electricity, which was approximately 0.3 USD kWh-1. The system was 

estimated to replace 120,000 litres of diesel per year, or an equivalent of 314 tonnes of 

carbon dioxide emission. The challenge of the system was that its capital cost of 2087 

USD kW-1 was very high, especially for developing countries like Uganda. Economic 



27 

 

analysis showed that the gasifier plant was only marginally viable with a payback period 

of about 9.5 years (Mangoyana and Smith, 2011).  

2.2.5 Biogas generation technology 

Biogas is a mixture of gases produced during anaerobic decomposition of organic matter 

and is mainly composed of methane and carbon dioxide and trace gases such as hydrogen 

sulphide, ammonia, water vapour and volatile organic compounds (Tsai, 2007). Slurry, 

the by-products of the digestion process is a bio-fertilizer and soil conditioner, which can 

be used to improve crop yields (Walekhwa et al., 2009). The main advantage of biogas 

technology is that it utilises wastes from the agricultural, industrial or municipal sectors 

and therefore, its use does not exhaust crop production resources. Other benefits include 

contributions in slowing down deforestation rates, and reducing over dependence on 

fossil fuels (Parawira, 2009). The technology also reduces drudgery associated with 

firewood collection and leads to time savings that could be used for other economic 

ventures (Mwakaje, 2008). Combustion of biogas produces less pollutants; therefore, its 

use leads to improved indoor air quality resulting in improved health of women and 

children, who are the most exposed group to the risk (Srinivasan, 2008). Use of biogas for 

energy purposes is also an effective means of limiting methane flows to the atmosphere 

from decaying organic matter, thus contributing to reduction in greenhouse gas emission.  

Biogas technology was introduced in Uganda in the 1950s by the Church Missionary 

Society. Currently, the technology is being promoted by government agencies such as 

National Agricultural Research Organization (NARO) and the Ministry of Energy and 

Mineral Development. Non-governmental organizations such as Heifer International 

Project, Adventist Development and Relief Agency, amongst others are also promoting 

the technology. The most commonly used type of bio-digester is the fixed-dome design 

that was modified from the Chinese design by the Centre for Agricultural Mechanisation 

and Rural Technology (CAMARTEC) in Tanzania  (Sasse et al., 1991). The 

CAMARTEC bio-digester design that is usually constructed below ground surface is 

illustrated in Figure 2.5.  

Volumes of these digesters range from 8 m3 to 16 m3. The floating-dome and the tubular 

bio-digester designs were introduced in the country but not commonly used (Walekhwa et 

al., 2009). The fixed-dome digester is preferred because it is more durable than the 

tubular design and cheaper to install than the floating dome counterpart. Costs of floating 
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dome digesters are higher because of the high costs of steel used in the fabrication of gas 

chamber. Designs of the floating dome and tubular digesters introduced in Uganda are 

similar to those illustrated by Nzila et al., (2012). 

 

Figure 2.5. The CAMARTEC biogas digester. 1: mixing tank, 2: gasholder, 3: digester, 
4: compensation tank. h1 : level of slurry before gas production, h2 : level of slurry when 
with gas is in the holder. Source: Parawira, (2009) 

The main material used for biogas generation in Uganda is cow dung and it is estimated 

that the dung generated could support installation of over 250,000 family-sized digesters. 

The government has a target of installing 100,000 family-sized digesters by the year 2017 

(MEMD, 2007). Overall, it is estimated that about 500 biogas digesters have so far been 

installed, however, less than 50 % are operational (Walekhwa et al., 2009). A good case 

study of bio-digester installed in the country is one with a 50 m3 capacity per day at Waga 

Waga School (Mangoyana and Smith, 2011). The low level of adoption of biogas 

technology has been attributed to limited technical skill, for installation, operation and 

maintenance and high capital costs (Kariko-Buhwezil et al., 2011; Sengendo et al., 2010). 

2.2.6 Fermentation 

Bioenergy conversion through fermentation involves production of ethanol from sugar or 

starch-rich biomass, and is the most widely used biofuel production method in the world 

(Faaij, 2006). The ethanol is purified through an energy-intensive distillation process 

(McKendry, 2002a). The technology is widely used in Brazil, the United States and 

Europe for the production of fuel ethanol.  

In Uganda, molasses from sugarcane processing has been identified as a possible raw 

material for production of ethanol with an estimated potential of 119 x 106 litres per year 

(Jumbe et al., 2009). Sugar Cooperation of Uganda Limited, a mill sugar production 
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company, has the only ethanol production plant in Uganda with annual production of 1.5 

million litres (Batumbya Nalukowe, 2006). The company is expanding is production 

capacity to 9 million litres. The ethanol produced is used as an industrial chemical, and 

not used widely as a bioenergy source. However, lack of appropriate policy to guide the 

development of this sector is reported to be a possible barrier to the development of bio-

fuel in the country (NEMA, 2010). 

2.2.7 Mechanical extraction 

Mechanical extraction is the separation oils from seeds of plants with high oil contents 

under pressure. Examples of seeds from which oils can be extracted include rapeseed, 

sunflower, soya bean (Demirbaş, 2001). The oils can then be converted into esters 

through a process called esterification. The esters, also called biodiesel, can be used to 

substitute diesel in engines (Faaij, 2006). The challenge with the technology is currently 

the high cost of the esters compared to fossil fuels. 

The use of biodiesel for motive power generation was initiated in Uganda through a pilot 

project supported by the United Nations Development Programme (UNDP) in 2007 

(Karlsson and Banda, 2009). The project was initiated on the basis of multifunctional 

platforms (MFP) that was successfully implemented in Mali (Brew-Hammond, 2010; 

Denton, 2004; Nygaard, 2010). Two MFPs, powered by oil extracted from Jatropha seeds, 

were installed in Masindi district (Karlsson and Banda, 2009). The engine provided 

motive power source to equipment such as grinding mills, oil presses and generators. 

There are also small scale biodiesel production activities in Mukono district, where a 

flower firm and local farmers are using Jatropha oil for biodiesel production 

(Kyamuhangire, 2008; Pillay and Da Silva, 2009). Another pilot project was also initiated 

through collaboration between GTZ and ministry of energy in Luwero district 

(Kyamuhangire, 2008). Nevertheless, biodiesel is a relatively new bioenergy conversion 

technology in Uganda and most trials are still on pilot scales.  

2.2.8 Cogeneration  

Cogeneration, also known as combined heat and power (CHP) generation, is the 

simultaneous production of mechanical or electrical and thermal energy from a single 

energy carrier such as oil, coal, natural or liquefied gas, biomass or solar (Biezma and 

Cristóbal, 2006; Onovwiona and Ugursal, 2006). The advantage of cogeneration is that it 
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is more energy efficient compared to when mechanical, thermal or electrical energy is 

produced independently (Mbohwa and Fukuda, 2003). 

Biomass materials which provide opportunity for cogeneration in Uganda include 

bagasse; a by-product of mill sugar processing, coffee and rice husks, and wood wastes 

such as wood shavings, saw dust and off-cuts. Bagasse in particular provides an excellent 

opportunity for CHP because they are produced in large quantities, mainly in three sugar 

factories: Kakira Sugar Works, Kinyara Sugar Works and Sugar Corporation of Uganda 

Limited. The three factories process a combined average of 130,000 tonnes of mill sugar 

annually (UNDP and UNEP, 2009). According to UNDP and UNEP (UNDP and UNEP, 

2009), the bagasse generated from the factories has potential to generate 46 MW of 

electricity, in addition to process heat. Currently, the combined electricity generation 

from bagasse from the three factories totals 22 MW out of which 12 MW is supplied to 

the national grid and the rest is used internally for sugar processing (Kaijuka, 2007). 

However, the installed CHP capacity cannot consume all the bagasse generated during 

sugar processing; consequently, it is common practice to burn the excess bagasse in open 

fire (Bingh, 2004). 

2.2.9 Biomass densification 

Biomass densification is the conversion of loose biomass into high density solid material 

through application of pressure (Okello et al., 2011). Normally, biomass materials such as 

agricultural and forest residues have high moisture content, irregular shapes and sizes, 

and low bulk density, making it very difficult to handle, transport, store and utilize. 

Combustion of loose biomass is associated with low thermal efficiency, high particulate 

matter emissions (Chen et al., 2009). Biomass densification provides the solution to these 

problems by increasing the initial bulk density of the loose biomass making it easier and 

cheaper to handle, transport, and store. Densified biomass, are also easily adopted for 

direct combustion, gasification and pyrolysis or co-firing with coal (Kaliyan and Vance 

Morey, 2009). Products of biomass densification have well defined shape and size and are 

broadly classified as pellets, briquettes and cubes with bulk density ranging from 450 to 

700 kg m-3 (Kaliyan and Morey, 2010). There are a number of technologies that have 

been developed for biomass densification including; the piston press, screw press, 

hydraulic press and the roller press (Chen et al., 2009). 
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Biomass densification could play an important role in improving the utility of the large 

quantity of loose biomass materials generated in Uganda. Biomass densification is 

currently being employed in Uganda but the level of adoption of the technology still 

remains very low. Briquetting technology has in particular been taken up by poor urban 

communities of Kampala as an adoption strategy to increasing cost of energy in the 

country, and as a measure for solid waste management. The technology used by the 

community is very crude. It involves mixing banana peelings with charcoal dust and 

anthill soil to make briquettes (Kareem and Lwasa, 2011; Lwasa, 2010). At industrial 

scale, briquetting is being used by a private company; Kampala Jellitone Suppliers, which 

produces 2000 tonnes of briquettes annually. The company uses biomass residues such as 

rice husks, coffee pulp, maize stalks and sawdust to make biomass briquettes, which is 

sold to various institutions such as hospitals, schools and universities as fuel for cooking 

(Ashden Awards, 2009). Apart from these examples, there are several informal small 

scale producers of briquettes. 

2.3. Discussions 

The present review has shown that biomass remains the predominant source of energy in 

Uganda. The level of adoption of improved bioenergy technologies in the country is still 

very low. It is predicted that the in the near future, the country‘s demand for biomass 

energy will increase in line with population growth. High rate of urbanisation in the 

country is likely to result in increased demand for charcoal fuel. Dissemination of 

improved bioenergy technology could play an important role in ensuring sustainability of 

biomass supply through efficiency improvement. However, despite the concerted efforts 

by various players in the bioenergy sector, use of modern and efficient bioenergy 

technologies in the country remains intangible.  

The level of dissemination of improved bioenergy technology in Uganda is similar to that 

of other sub-Saharan Africa countries, where majority of the population still rely on 

inefficient traditional cooking stove technologies. However, some countries on the 

African continent have had very successful programs in the bioenergy technology 

development. An example is Mauritius where co-generation of bagasse meets over 25% 

of the country’s electricity supply. Other countries that registered significant success in 

bioenergy programmes include Kenya, Malawi and Zimbabwe. The bioenergy 

programmes in these countries aimed at producing ethanol for blending with petroleum 
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for use in vehicles (Karekezi, 2002). However, the overall picture is that promotion of 

modern bioenergy technologies is very low on the African continent. This could probably 

be explained by the inadequate support to modern bioenergy technology in Africa as 

explained by Amigun et al., (2008). 

Elsewhere, it can be observed that countries that have had strong institutional support to 

bioenergy programmes have registered significant success in promoting improved 

bioenergy technologies. A good example is India, which registered significant success in 

modern bioenergy development through government programmes implemented by the 

Ministry of New and Renewable Energy. Between 1984 and 2003, an estimate of 35 

million improved cooking stoves had been disseminated. The biogas programme of India 

also had over 3.8 million bio-digesters installed. The success was attributed to investment 

in research and technology development and dissemination through policy measures and 

incentives (Ravindranath and Balachandra, 2009). Brazil is another example of a country 

with very successful bioenergy programme based on ethanol produced for molasses. 

Currently, over 80 % of vehicles in Brazil operate on a blend of ethanol and petroleum 

resulting in over 20 % substitution of petroleum use in the vehicle industry (Hira and De 

Oliveira, 2009). The Brazilian success is attributed to state intervention in the 

establishment and support to the ethanol programme, infrastructural development as well 

as research and development (Hira and De Oliveira, 2009). In the European Union (EU), 

development of bioenergy technologies is being promoted by various EU policies aimed 

at increasing the use of renewable energy sources.  Under the current EU directive, 

member states have targets for renewable energy use so that the overall EU renewable 

energy share is at least 20 % of the total primary energy consumption by the year 2020 

(European Commission, 2009). The EU policies is expected to almost double electricity 

generation from biomass from about 22.5 GW in 2010 to 43 GW in 2020 (Jäger-Waldau 

et al., 2011). 

In all examples of successful bioenergy development projects above, it is pointed out that 

favourable policies and incentives, research and development played an important role in 

the development of the technologies. However, there are several barriers that seem to 

hinder the development of bioenergy technologies. For example, Painuly (2001) 

identified barriers to renewable energy penetration which include market failure and 

distortions, economic and financial constraints, institutional and technical barriers, social 

and cultural behaviour, lack of infrastructures, government policies, and environmental 
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barriers. Barry et al., (2011), identified up to 13 factors that may influence the choice of 

renewable energy in Africa. Also, Walekhwa et al., (2009) found that socio-economic and 

demographic characteristics of households play important roles in the adoption of biogas 

technology in Uganda. However, it is generally not very clear which of these factors have 

predominant roles in Uganda. One question that remains to be answered is whether 

Ugandan policy framework is favourable for promoting the development of bioenergy 

technology. 

2.4. Conclusions 

From this study, it can be concluded that the rate of adoption of improved bioenergy 

technology remains very low in Uganda. The reasons for the slow technological adoption 

and diffusion have been attributed to high capital costs, and lack of technical expertise, 

amongst others. However, more effort is still required in developing clear understanding 

of the reasons for the low levels of dissemination of improved bioenergy technologies, 

and to developing suitable policy frameworks for bioenergy technology development. 
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Chapter 3 – Bioenergy potential of agricultural and forest residues in 
Uganda 

Summary 

Biomass is the major source of energy in most developing countries. However, there are 

concerns about the sustainability of biomass supplies and the environmental impacts 

resulting from their use. Use of residues could contribute to ensuring sustainable supply 

of biomass energy. This study presents findings of an evaluation of the energy potential of 

agricultural and forest residues in Uganda using census data of the year 2008/2009. 

Annual productions of crop and forest residues were estimated using residue-to-product 

ratio (RPR) method. Energy potential of each residue class was then determined basing 

on their respective lower heating values. The biogas generation potential of each animal 

category was used to evaluate the energy potential of animal manure. Results showed that 

the total energy potential of the residues amount to about 260 PJ y-1, which is about 70% 

of gross biomass energy requirement of Uganda for the year 2008. Crop residues had the 

highest contribution of about 150 PJ y-1, followed by animal residues with a potential of 

65 PJ y-1. Maize residue is the predominant crop residue with energy potential of 65 PJ y-1 

followed by beans and banana, each at 16 PJ y-1. This study indicates that agricultural and 

forest residues can be a major renewable energy source for Uganda. When sustainably 

utilised, biomass residues could contribute to reduction in environmental degradation in 

the country. 

3.1 Introduction 

Biomass is the major source of energy contributing over 90% of the energy requirements 

of Uganda (MEMD, 2008; Okello et al., 2013b). However, of recent, rapid population 

growth, urbanisation and industrialisation have increased the demand for biomass 

resources in the country. Annual demand for woody biomass and charcoal is reported to 

be increasing at about 3% and 6%, respectively (Kanabahita, 2001). The main source of 

biomass energy in the country is from wood harvested from unmanaged natural forests. 

Natural forests in Uganda are dominated by slow-growing species, thus high rates of 

harvesting may lead to deforestation and environmental degradation. A report on the 

global forest resource assessment of 2005 (FAO, 2006), indicates that between the year 

2000 and 2005, the annual deforestation rate in Uganda was 2.2%, and is one of the 

highest in the world. Moreover, the demand for biomass energy is expected to increase 
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with increasing population in most sub-Saharan African countries (Karekezi and 

Kithyoma, 2002; Kebede et al., 2010). One would therefore expect a similar trend in 

Uganda, where population growth rate is about 3.3% per year (Okello et al., 2013b). This 

leads to concerns about the sustainability of forest biomass to supply the increasing 

demand in the country (Kayanja and Byarugaba, 2001; Naughton-Treves et al., 2007).  

It is therefore important to source for alternative energy sources to meet the increasing 

demand for biomass energy. Several options are available, but among the most promising 

is the use of biomass residues. The potential of biomass residues to meet energy needs has 

attracted interest of several researchers in the recent past. For example, Fernandes and 

Costa (Fernandes and Costa, 2010) evaluated the potential of agricultural and forest 

residues in Marvão province of Spain and found an annual potential of 160 TJ. Also, 

Vasco and Costa (Vasco and Costa, 2009), evaluated the energy potential of forest 

residues in Maputo province of Mozambique, and reported that residues could substitute 

about 32% of the 2004 energy requirements of the province. Other examples of studies on 

energy potential of biomass residue were carried out at national levels in Zimbabwe 

(Shonhiwa, 2013) and Romania (Scarlat et al., 2011). Other studies have also been 

conducted at a global scale; for example, Gregg and Smith (Gregg and Smith, 2010) 

evaluated the global and regional potential of agricultural and forestry residues, and 

reported a global potential of 50 EJ y-1. The main advantage of national level studies is 

their ability to provide more detailed information required for decision making at local 

levels. 

This study therefore aims at evaluation the energy potential of agricultural and forest 

residues in Uganda. Being a predominantly agricultural-based economy, large quantities 

of biomass residues from the crop and animal production sectors are generated throughout 

the country. It is a common practice to burn the residues in cultivated areas as a means of 

agricultural land preparation. Residues generated from agricultural processing facilities 

are burdensome to processors because of costs incurred in their disposal. Forest residues 

are also generated during logging and wood processing operations. However, their use as 

an energy source is still very limited in the country. Use of biomass residues for energy is 

of advantage since it does not require major changes to the current combustion 

technologies in the country. Also, when well-managed, use of residues is not competitive 

with land and water resources required for food production. It also results in reduced 

deforestation and environmental degradation. 
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One of the most important steps in developing biomass energy supply from residue is to 

evaluate their spatial and temporal availability. Such an analysis would provide useful 

information for decision makers on the opportunities for using biomass residues for 

energy application in different parts of the country. However, the temporal and spatial 

distribution of the energy potential of biomass residues in Uganda is currently not known. 

The present study was therefore conducted with the objective of evaluating the energy 

potential of agricultural and forestry residues in Uganda.  

3.2 Materials and methods 

3.2.1 Estimating potential of crop residues 

To estimate the energy potential of crop residues, the procedure documented by Sigh et 

al., (Singh et al., 2008) was used with some minor modifications. The energy potential of 

agricultural residues was calculated using Equation 3.1;  

( )∑
=

××=
n

i
iiiAR LHVRPRCQ

1

      (3.1) 

where, QAR is the annual gross energy potential of agricultural residues at 100% 

efficiency, Ci is the annual production of crop i. Factor, n is the total number of residue 

categories. The variable RPRi is the residue-to-product ratio of crop i, and LHVi is the 

lower heating value of a given crop residue. Parameters such as moisture content, lower 

heating values and residue to product ratio were obtained from available literature 

(Amoo-Gottfried and Hall, 1999; Bhattacharya et al., 2005; Duku et al., 2011; Koopmans 

and Koppejan, 1997; Perera et al., 2005). Other literature from which data were obtained 

are (Clarke et al., 2008; Jingura and Matengaifa, 2008; Junfeng et al., 2005; Qingyu et al., 

1999; Tock et al., 2010) 

3.2.2 Animal manure 

To estimate the energy potential of animal residues, manure generated by cattle, sheep, 

goats, pigs, poultry and humans were considered. Properties of animal manures necessary 

for estimating their energy potential include daily volatile solid production per animal and 

biogas yield per kilogramme of volatile solid. These parameters were obtained from 

literature (Bhattacharya et al., 1997; Sajjakulnukit et al., 2005) and used to estimate the 

amount of biogas that can be produced by each livestock category. The energy potential 

of biogas was assumed to be 20 MJ m-3 as recommended by Perera et al, (2005).  
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3.2.3 Determining the potential of forest residues 

Forests residues are of two types, namely; the logging residues and wood processing 

residues. Logging residues are generated during the harvesting operations and include 

stumps, roots, branches, and saw-dust. Wood processing residues arise from saw-mill and 

plywood processing operations and include discarded logs, barks, saw-dust and off-cuts 

(FAO, 1990). Data of annual production of round and processed wood for the year 2010 

were obtained from the statistical abstract (UBOS, 2010a) and used to estimate the annual 

forest residue production. The procedure for estimating the energy potential of forest 

residues proposed by Smeets and Faaij (Smeets and Faaij, 2007) was used. The energy 

potential of logging residues was calculated using Equation 3.2,  

( ),
1
∑

=

××=
n

i
iHR LHVhWQ        (3.2) 

where, QHR is the energy potential of logging residues and Wi is the annual production of 

round wood of category i. Factor, h is logging residue generation ratio and was assumed 

to be 0.6 (Smeets and Faaij, 2007; UBOS, 2010a). The energy potential of wood 

processing residue generated was estimated using Equation 3.3. 

LHVpIRWQPR ××=        (3.3) 

where, QPR is the energy potential of wood processing residues and IRW annual 

consumption of industrial round wood. Factor, p is wood processing residue generation 

ratio. It is the fraction of logs that is converted into residues during the processing of 

wood and depends on the efficiency of sawmills. We used a p value for developing 

countries of 70 % (Howard and Stead, 2001). The LHV at 50% H2O mass fraction was 

assumed to be 8 MJ kg-1 (McKendry, 2002a). 

3.2.3 Sources of data 

Annual production of crops, woody biomass, livestock and human population data used 

for the study were obtained from various sources. Food crop production data were 

obtained from volume IV of the Uganda census of agriculture 2008/2009 (UBOS, 2010b).  

The report presents data that was collected from all the districts of Uganda through a 

nationwide census. Procedures used in the census followed generally standard scientific 

methods. The methodologies used for sample design, enumeration plan, data processing 



39 

 

and analysis are well explained in volume II of Uganda census on agriculture 2008/2009 

(UBOS, 2010c). Production data for coffee, cotton and sugarcane were obtained from 

reports in references (UBOS, 2009), (CDO, 2009) and (USCTA, 2009), respectively. 

Livestock data was obtained from the summary report of the national livestock census of 

the year 2008 (UBOS/MAAIF, 2009), which gives an estimate of livestock numbers in all 

the districts of Uganda. Human population data used in the study were obtained from the 

2009 statistical abstract (UBOS, 2009) and wood production data from the 2010 statistical 

abstract (UBOS, 2010a). To estimate the quantity of residues generated, the residue-to-

product ratio (RPR) method was used. The RPR values of different crops and their 

respective heating values were obtained from published literature. This also applied to 

heating values of biomass residues and biogas generated from animal manure. 

3.3 Results 

3.3.1 Potential of crop residues 

The energy potential of crop residues is given in Table 3.1. Crop residues represent a 

gross energy potential at 100% efficiency of about 150 PJ y-1. The results show that maize 

residues have the highest energy potential of about 65 PJ y-1 followed by banana and 

beans residues, each with 16 PJ y-1. Secondary residues in Table 3.1 include corn cobs, 

rice husks, coffee husks and bagasse. The total energy potential of the secondary residues 

is approximately 10 PJ y-1, representing about 7% of the total crop residue potential.  

 

Figure 3.1. Distribution of the theoretical energy potential of crop residues in Uganda 



40 

 

Table 3.1. Theoretical energy potential of crop residues in Uganda 

 

The energy potential of crop residues for Uganda was analysed and presented spatially 

using geographical information system (GIS) as illustrated in Figure 3.1. The map 

excludes the energy potential of residues of coffee; cotton and sugarcane because the 

available data did not provide production statistics for these crops in each district. The 

figure shows that there is regional variation in the energy potential of crop residues. 

Mubende district in the central region exhibited the highest crop residues energy potential 

of about 8 PJ y-1, followed by Iganga at about 7 PJ y-1, while Kampala had the lowest 

potential of 30 TJ y-1. Other districts with crop residue energy potential of more than 4 PJ 

y-1 include Tororo, Kabarole, Luuka, Serere and Ntungamo. 

3.3.2 Potential of animal manure 

The energy potential of animal residues in Uganda is given in Table 3.2, including the 

potential to produce biogas from human manure. The results show that the total energy 

potential of animal residues amounts to about 65 PJ y-1. In the year 2008, the country had 

about 11.7 million heads of cattle producing manure with an energy potential of 45 PJ y-1, 

followed by goats with a potential of 9 PJ y-1.  

Crop 
produced 

 

Annual crop 
production 

(kt) 

Type of 
residue 

 

H2O 
mass 

fraction 
(%) * 

 

Residue to 
product 

ratio (RPR) 
 

Quantity of 
residues 

(kt) 

Lower 
heating 

value (LHV) 
(MJ kg -1)a 

Energy 
potential 
(PJ y-1) 

 

Maize 2363.00 stalk 15.00 2.00 4726.00 16.30 65.50 

  

cobs 8.70 0.27 638.01 12.60   7.40 

Millet 263.59 straws 15.00 1.40 369.03 13.00   4.00 

Sorghum 373.34 stalk 15.00 1.40 522.68 13.00   6.25 

Rice 189.18 straws 10.00 0.45 85.13   8.83   0.97 

husks 13.30 0.23 0.00 12.90   0.58 

Beans 928.87 trash 4.50 1.40 1300.42 14.70 16.44 

Groundnuts 244.58 
trash and 
shells 8.20 2.10 513.62 11.20   5.33 

Banana 4297.07 
stalk and 
peels 85.40 2.00 8594.14 13.10 16.44 

Cassava 2893.74 
stems and 
peels 20.00 0.40 1157.5 13.10   7.58 

Sweet potato 1817.66 
vines and 
peels 20.00 0.40 727.06 16.00   9.31 

Pigeon peas 10.90 stems  20.00 1.40 15.26 12.80   0.20 

Soybean 23.12 trash 15.00 2.66 61.5 18.00   1.11 

Sesame 97.80 trash 5.50 2.00 195.6 15.50   3.03 

Sugar 197.37 bagasse 50.00 0.25 49.34 15.40   0.38 

  

tops 50.00 0.32 3.16 15.80   0.50 

Coffee 211.76 husks 15.00 1.00 211.76 15.90   2.86 

Cotton 23.18 stalks 9.30 2.10 48.68 15.90   0.75 

Total             148.67 
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Table 3.2. Theoretical energy potential of animal manure 

Animal 
category 

Population 
(millions) 

VS* (kg d-1) Bo
** (m3 kg-1) 

Potential 
(PJ y-1) 

Cattle 11.71 2.67 0.20 45.64 
Goats 12.29 0.33 0.31   9.18 
Sheep   3.58 0.30 0.31   2.43 
Pigs   3.18 0.59 0.30   4.25 
Chicken 37.58 0.02 0.18   0.99 
Ducks   1.47 0.02 0.22   0.05 
Human 30.66 0.06 0.20   2.69 
Total       65.23 

* Volatile solids per animal 
**  Biochemical methane potential 

 

Figure 3.2. Distribution of the theoretical energy potential of animal manure in Uganda 

The spatial distribution of the energy potential of animal manure in Uganda is given in 

Figure 3.2. The distribution is characterised high potential along a corridor from the 

south-west to the north-east of the country. The corridor is known to have a high density 

of cattle in Uganda and is generally referred to as the cattle corridor (Mulumba and 

Kakudidi, 2010). Kotido district reported the highest energy potential from manure of 3.5 

PJ y-1. Other districts with more than 2 PJ y-1 include Nakapiripirit, Kaabong, and 

Amodat. 
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3.3.3 Spatial distribution of crop and animal residues potential 

The spatial distribution of the combined energy potential of crop and animal was analysed 

using GIS and presented spatially, as shown in Figure 3.3. Mubende district reported the 

highest overall biomass residue energy potential of 9 PJ y-1, followed by Iganga and 

Ntungamu at 8 PJ y-1 and 7 PJ y-1, respectively. Other districts with residue energy 

potential of at least 5 PJ y-1 include Luuka, Serere, Kabarole and Tororo. 

 

Figure 3.3. Distribution of combined the theoretical energy potential of crop residues and 
animal manure 

The compositions of the residues in the different districts of the country were analysed 

using GIS and presented spatially as illustrated in Figures 3.4 to 3.7. Figure 3.4 shows 

biomass residue composition in northern region. It shows that the north-eastern part of the 

region is predominated by cattle manure while crop residue potential is very low. 

However most of the districts in the region do not have a single source of residue 

exceeding over 50 % of the energy potential, though maize and beans residues are more 

prominent. Figure 3.5 is an illustration of the composition of biomass residues in eastern 

region. It shows that maize residues are dominant in this region followed by banana 

residues. Central region, shown in Figure 3.6 has residues energy potential predominated 

by maize, cattle manure and banana. Cattle manure is more prominent in the northern part 

of the region while maize is predominant in mid central region. Finally, the western 
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region is majorly rich in banana residue, which is more prominent in the southern part of 

the region and maize residues in the northern part, as illustrated in Figure 3.7. 

 

Figure 3.4. Composition of biomass residue in Northern Uganda 

 

Figure 3.5. Composition of biomass residue in Eastern Uganda 
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Figure 3.6. Composition of biomass residue in Central Uganda 

 

Figure 3.7. Composition of biomass residue in Western Uganda 
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3.3.4 Potential of forest residues 

Results of energy potential of forest residues are presented in Table 3.3. In this study, 

forest residues were categorised as logging and processing residues. Results show that 

about 5.0 kt y-1 of forest residues are generated during logging operations. The processing 

residues are however much less corresponding to about 0.35 kt y-1. In terms of energy 

potential, residues from firewood production has the highest potential of about 20 PJ y-1, 

followed by charcoal production at about 17 PJ y-1. The total energy potential of forest 

residues in Uganda is estimated at about 44 PJ y-1. 

Table 3.3. Theoretical energy potential of forest residues 

Wood 
category  

Quantity 
(Mt y -1)* 

Logging 
residues 

Processing 
residues 

Total residues   
(Mt y -1) 

Energy 
potential   
(PJ y-1) 

Sawn timber 1027   308.10 359.45   667.55 5.34 
Poles   888   266.40 -   266.40 2.13 
Firewood fuel 5088 2526.40 - 2526.40 20.21 
Charcoal fuel 6963 2088.90 - 2088.90 16.71 
Total        44.39 

* Source: UBOS, (2010a) 

3.3.5 Total energy potential 

Table 3.4 gives a summary of the energy potential from the sources analysed in this study. 

The total energy potential from all the sources studied is about 260 PJ y-1. The overall 

result shows that crop residues exhibit the highest energy potential of about 150 PJ y-1. 

Therefore, crop residues alone contribute over 50% of the overall energy potential of 

biomass residues in Uganda. 

Table 3.4. Total energy potential of residues 

Source of energy Energy potential (PJ y-1) 

Crop residues            148.67 

Animal residues              65.23 

Forest residues              44.39 

Total            258.29 

3.4 Discussions 

In this study, we evaluated the energy potential of agricultural and forest residues in 

Uganda and the findings indicate that the total potential is about 260 PJ y-1. This is close 
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to  70% of the total biomass energy requirements for Uganda in the year 2008, which was 

estimated at about 385 PJ (MEMD, 2008). Crop residues exhibited the highest theoretical 

energy potential of about 150 PJ y-1. However, it is important to note that the accuracy of 

the estimated energy potential of biomass residues may be subject to errors that are 

inherent during the collection of census data (Elmore et al., 2008), and seasonal variation 

in production levels. According to volume IV of the Uganda census of agriculture 

(UBOS, 2010b), the estimates in crop production had a coefficient of variation of 20%. 

This suggests that the estimates in energy potential could be subject to similar levels of 

accuracy. The energy potential reported here are gross values at 100% efficiency. The 

actual implementation potential is determined by several factors including economic, 

social, environmental, and institutional and policy incentives. Logistical considerations, 

infrastructural and technological constraints as well as availability of skilled personnel are 

other factors that determine the implementable potential. 

3.4.1 Recoverability of potential of agricultural residue 

Recoverability of agricultural residues is determined by the type of residues; need to 

retain some residues to maintain the quality of agricultural soils amongst other factors. 

Generally, crop residues are classified as primary and secondary residues. Primary 

residues are generated during harvesting and primary processing of the crops in farms and 

crop plantations. The residues are normally scattered over a large geographical area, 

therefore presenting a major logistical challenge for their collection for energy 

application. Primary residues are usually in a loose form and may require bailing or 

densifying in order to improve their collection and utilisation efficiency. For developing 

countries like Uganda, provision of the necessary equipment and skilled personnel for 

collection of loose biomass may present a challenge. Another important consideration is 

that residues perform ecological functions like providing soil nutrients, control of soil 

erosion and some fraction should therefore be left in the fields (Govaerts et al., 2006). 

The amount of primary residues that can be realistically harnessed is estimated using 

recoverable fraction of biomass. The actual values of recoverable fraction of biomass 

residues for different crops have been estimated and reported in literature (Cornelissen et 

al., 2012; Haberl et al., 2010) and may vary from 19 % to 75 %.  

Secondary residues on the other hand are generated during secondary processing of 

agricultural produce in large quantities at specific locations. Common examples in 
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Uganda include coffee husks, rice husks and bagasse. These residues have other 

applications, for example, coffee husks are frequently used as bedding material in poultry 

housing. However, secondary residues are generally considered to be problematic to 

agricultural processing industries because of costs incurred in their disposal. As a result, 

many agricultural processing facilities in Uganda burn the secondary residues in open air 

near the agro-processing facility, therefore presenting serious environmental problems.  

3.4.2 Recoverability of animal residues 

Results show that annual energy potential of animal manure is about 65 PJ y-1 with cattle 

manure having the highest contribution of about 45 PJ y-1. The current government policy 

targets cattle manure for biogas production, with a target of installing 100,000 domestic 

biogas digesters based on cattle manure by the year 2017 (MEMD, 2007). The findings of 

this study seem to support this policy since cattle manure has the highest energy potential 

amongst the animal manure. However, it should be noted that there are several factors 

that influence the actual implementation potential of the animal residues. First, a large 

percentage of cattle in Uganda are reared in districts with highest potential are under 

pastoralism system, therefore posing constraints due to difficulty in collecting the manure. 

Normally, domestic biogas technology common in developing countries is best suited for 

zero-grazing systems because it reduces the constraints of manure collection. Also, the 

systems usually require large quantities of water, which is often a challenge to access in 

many cattle producing areas of Uganda. It should also be noted that human manure has a 

potential to produce 2.69 PJ y-1. Some of the energy potential could be harnessed in 

public institutions such as schools, hospitals, and universities. 

3.4.3 Recoverability of forest residue 

The study showed that the energy potential of forest residues is about 44 PJ y-1. Forest 

residues are generally classified as logging residues and processing residues. Logging 

residues are generated during logging operations, which usually take place in 

geographically sparse locations making it difficult to collect the residues for energy 

utilisation. There are also technical, ecological and environmental considerations that 

limit the quantities of forest residues that can be practically recoverable for energy. For 

example, it may be difficult to recover stumps and roots in many developing countries 

due to technological constraints. Environmental considerations also require that the 

stamps and roots are not harvested since they provide soil stabilisation function. The 
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amount of logging residues that can be practically harvested is estimated using logging 

residue recoverability fraction. This is the fraction of the generated logging residues that 

can be realistically harvested for energy application and is estimated to be about 25% in 

developing countries (Yamamoto et al., 1999). Residues are also generated during 

processing of wood and are estimated using wood processing residue recoverability 

fraction. Available literature indicates that up to 42 % of wood processing residues can be 

recovered from saw mill in developing countries for energy application (Yamamoto et al., 

1999).  

3.4.4 Economic, social and environmental considerations 

Sustainable utilisation of biomass residues for energy depends on a number of factors 

including economic, social and environmental considerations. The cost of the logistical 

operations for energy conversion of biomass residues has been identified as one of the 

major bottlenecks in their utilisation. This is because of the complex supply chains 

usually involved  (Iakovou et al., 2010). Economic aspects greatly depend on the cost 

associated with the collection, transportation, storage and processing of residues. These 

costs are influenced by specific site conditions, availability of biomass and supply chain 

design, investment and operational costs (Batidzirai et al., 2006). The logistics for 

biomass residue utilisation may be influenced by the biomass distribution density, 

operating scale and window, relative distance to supply destination, and the 

characteristics of the energy conversion technology employed. Usually, use of residues 

for energy entails gathering of residues from point of generation and transportation to 

processing facility. This is followed by pre-treatment processes such as size reduction, 

drying densification and transportation to market. Other considerations that may influence 

the economics of the system include availability of infrastructure, geographical location 

of the area, regulatory environment and competition with other fuels. However, despite 

these complexities, Skoulou and Zabaniotou (Skoulou and Zabaniotou, 2007) noted that 

use of biomass residues can be economically viable when the logistics is carefully 

planned in combination with well established energy technologies, more so in the error of 

increasing fossil fuel prices. 

The importance of social aspects in development of bioenergy systems is another 

consideration that is emphasised in the recent past. Development of suitable systems for 

biomass residue utilisation will therefore have to involve stakeholders such as potential 
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investors, end users, regulators and decision makers. Environmental aspects should also 

be taken into account when designing systems for utilising biomass residues for energy. 

One of the main environmental benefits of utilising biomass residues is the reduction in 

net CO2 emission to the atmosphere, therefore contributing to reduction of global 

warming. A detailed discussion social, economic and environmental consideration in 

renewable energy sector is given in Akella et al., (2009).  

3.4 Conclusions 

The energy potential of agricultural and forest residues in Uganda has been evaluated and 

the spatial distribution presented. The study showed that the country has a gross energy 

potential from biomass residues equivalent to 70% of the gross biomass energy 

requirements for the year 2008. However, use of biomass residues for energy application 

is still limited in the country. For successful utilisation of biomass residues in the country, 

a number of technical, environmental, social and economic constraints need to be 

overcome. It is therefore recommended that detailed studies involving sustainability 

analysis of biomass residue utilisation for energy is carried out by integrating technical, 

economic, environmental and social considerations in a decision framework. In 

conclusion, Uganda has enormous potential to generate energy from biomass residues. 

When exploited in a sustainable manner, biomass residues could contribute to reduction 

in deforestation and environmental degradation in the country. 
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PART II 

Development and application of sustainability assessment 

methodology in Uganda 
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Chapter 4 – Sustainability assessment framework 

Summary 

In this chapter, a sustainability assessment framework for bioenergy systems in 

developing countries was proposed. The chapter begins with an introduction to the 

concept of sustainability assessment, followed by a succinct review of relevant literature 

on sustainability assessment methods. Methods proposed for assessing sustainability of 

bioenergy systems in developing countries was selected and justification of choices given. 

This was followed by presentation of the proposed sustainability assessment framework. 

The proposed method incorporates social, economic, environmental and technological 

aspects of bioenergy systems using multi-criteria decision analysis. This chapter gives 

explanation of steps required to conduct a sustainability assessment of bioenergy systems 

following the proposed methodology.  

4.1 Introduction 

Sustainability assessment aims at helping policy and decision makers to select actions or 

policies that enhances the sustainability of the society (Pope et al., 2004). It was derived 

from the concept of sustainable development, which was defined by the Brundtland 

Commission as “development that meets the needs of the present generation without 

compromising the ability of future generations to meet their own needs” (World 

Commission on Environment, 1987). By this definition, it is very difficult to rationalise 

the concept of sustainability in quantifiable terms.  

To facilitate assessment, the sustainability concept has been broken down in to 

dimensions. The most commonly used dimensions for sustainability analysis are the 

social, economic and environmental aspects of the systems under analysis. These three 

dimensions are also called the triple bottom line (TBL). Other scholars however argue 

that there are more considerations than the TBL, for example Pawłowski, (2008) 

proposed a total of seven sustainability dimensions. To achieve sustainable development, 

decision makers should therefore aim at taking all the dimensions of sustainability into 

consideration while planning development projects. These results in conflicting objectives 

and therefore interests of multi-stakeholder groups have to be taken into account. This 

poses serious decision making challenge especially in developing countries where the 

concept of sustainability assessment is relatively new. 
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The cooking energy is one of the sectors with the highest sustainability challenges in 

developing countries. The aim of this chapter was therefore to propose a methodology to 

facilitate sustainable decision making in the selection of bioenergy systems for cooking in 

developing countries. 

4.2 Review of sustainability assessment methods 

Currently, there are a variety of tools for sustainability assessment. The tools can be 

broadly classified as monetary, indicators, biophysical and integrated (Gasparatos and 

Scolobig, 2012; Ness et al., 2007) as summarised in Figure 4.1. Choice of a given tool 

depends on the objectives of the assessment. 

  

Figure 4.1. Overview of sustainability assessment methods. Developed based on 
Gasparatos and Scolobig, (2012) and Ness et al., (2007). 

4.2.1 Indicator based methods 

Indicator-based sustainability assessment tools apply a set of criteria and indicators. The 

indicators are used as a measure of sustainability and can be integrated (also called 

composite indices) or non-integrated. They are intended for assessing the socio-economic 

and environmental sustainability at a national or regional level (Ness et al., 2007). The 

choice of indicators can include the social, economic and environmental dimensions of 

sustainability. Indicator-based methods are useful for assessing complex systems and 

results can be used for policy decisions and communicating about sustainability of 

projects to the public (Buytaert et al., 2011). 
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A number of bioenergy certification schemes use non-integrated indicator-based method 

for assessing sustainability. Examples include the Round Table on Sustainable Palm Oil, 

Renewable Transport Fuels Obligation and the Global Bioenergy Partnership. Other 

examples of indicator based tools are given in Labuschagne et al., (2005), Scarlat and 

Dallemand, (2011) and Singh et al., (2009).  

Integrated indices use composite indicators as a measure of sustainability at national or 

regional levels. Examples of composite indicators include human development indices 

such as the human development index and human poverty index developed by UNDP. In 

the field of bioenergy, Mainali et al., (2014) recently developed an integrated index for 

assessing progress toward sustainable development of energy at national level. Mata et 

al., (2013) also used composite indicators as a tool for assessing sustainability of fuel 

supply chains. 

4.2.2 Biophysical methods 

There are several biophysical methods, but the most commonly used are the life cycle 

assessment (LCA), material flow analysis (MFA) and energy analysis. The LCA method 

is a well-developed method and is widely used to evaluate environmental impacts of 

products or services from a life cycle perspective; that is, from cradle-to-grave. Currently 

there are International Standard Organisation (ISO) standards to guide LCA studies. The 

ISO 14040 standard (ISO, 2006a) provides the principles and framework, while ISO 

14044 standard (ISO, 2006b) gives requirements and guidelines for LCA studies. The 

LCA method is perhaps the most popular bioenergy sustainability assessment method, 

with several applications available in literature, examples include Jorquera et al., (2010) 

and Buonocore et al., (2012). 

Ecological footprint (EF) is another biophysical sustainability assessment method that can 

be used for analysis at national, regional or project scales. Wackernagel and Monfreda, 

(2004) defined EF as the amount of bio-capacity required by a population, organisation or 

process to produce its resources and absorb waste using prevailing technologies. The 

analysis mainly focuses on estimating direct and indirect land requirements for producing 

a given quantity of product or service (Finnveden and Moberg, 2005).  Examples of 

studies that used EF method for assessing sustainability of energy systems include Holden 

and Høyer, (2005), Stöglehner, (2003) and Stoeglehner and Narodoslawsky, (2009). 
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Material flow analysis is a biophysical sustainability assessment method used to analyse 

material flows at national levels (Bringezu et al., 2003). It aims at supporting 

dematerialisation and minimising losses of resources (Ness et al., 2007). The methods can 

be divided into analysis of total material requirement, material intensity per unit service 

and substance flow analysis. Emphasis is mainly placed on flows of input materials 

(Finnveden and Moberg, 2005).  

Energy analysis is based on the first law of thermodynamics and aims at analysing energy 

flows at the level of an economy. The analysis can entail different measures of energy 

such as available energy or exergy (Saidur et al., 2012) and embodied solar energy or 

emergy (Zhang and Long, 2010). It aims at evaluating areas where there are wastage of 

resources and thus helping in the design possible efficiency improvement strategies. Liao 

et al., (2011) is a example of sustainability assessment applying both emergy and exergy 

analyses on biofuel systems. 

The shortcoming of the biophysical methods is that they do not adequately address the 

social and economic dimensions of sustainability. Their main emphasis is on the 

biophysical environment. Therefore, biophysical tools do not adequately suit 

sustainability assessment of bioenergy systems since they do not address the social and 

economic aspects.  

4.2.3 Monetary methods 

There are a wide variety of monetary tools, most of which originate from the economic 

literature. Here, only the cost benefit analysis (CBA) and life cycle costing (LCC), which 

are commonly applied in analysis of sustainability of bioenergy systems are discussed.  

Cost benefit analysis is one of the monetary sustainability assessment tools originating 

from welfare economics. The tool is useful for appraising projects or policies on the basis 

of the comparison of total project costs and anticipated project benefits (Buytaert et al., 

2011). Anticipated benefits are usually estimated by the beneficiaries’ “willing-to-pay” 

for the benefits, while costs are assessed through losers’ “willingness-to-accept” them 

(Gasparatos et al., 2008). Examples of biomass energy studies using cost benefit analysis 

include studies by Wiskerke et al., (2010), Uellendahl et al., (2008) and Menegaki, 

(2008). Difficulty in estimating costs and benefits of the actions are the main challenges 

of the CBA method. 
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Life cycle costing (LCC) is an economic approach for estimating the total incremental 

cost of a product or service right from inception through to its end of life (Asiedu and Gu, 

1998). The traditional LCC is used for ranking projects for investment decision making 

(Ness et al., 2007). Currently, there are a large number of variants of LCC, including full 

cost accounting, full cost environmental accounting and life cycle cost assessment. Gluch 

and Baumann, (2004) gives a comprehensive review of the LCC methods. Examples of 

studies using the LCC method for analysing biomass energy systems include Silalertruksa 

et al., (2012) and Luo et al., (2009). 

4.2.4 Integrated assessment methods 

Integrated assessment methods holistically consider the TBL aspect of sustainability. 

Several integrated assessment method are available, and examples are given in Ness et al., 

(2007). In this study, environmental impact assessment and multi-criteria decision 

analysis are discussed since they are amongst the most popular.  

Environmental impact assessment (EIA) was developed to identify and predict the 

impacts of a project on the biophysical and human and environment (Noble, 2011). It 

aims at identifying the negative impacts prior to the implementation of a project therefore 

allowing for incorporating measures to avoid or mitigate them. The EIA is an integrated 

method that incorporates social, economic and environmental dimensions of sustainability 

(Ness et al., 2007). One important aspect of EIA is that it allows for public participation 

in the process, therefore allowing for democratic decision making. However, the EIA 

method is limited in its ability to consider alternatives, since it is applied to projects that 

are already well in advanced stages (Pope et al., 2004). 

Multi-criteria decision analysis (MCDA) is a branch of operational research models and is 

suitable for solving complex decision problems with multiple objectives and criteria. The 

MCDA methods are suitable for analysing problems characterised by conflicting criteria 

and incommensurable units. 

Multi-criteria decision methods have a number of advantages over other methods 

discussed in this section. The methods improves transparency and accountability in the 

decision making process and the decision process can be audited at a later stage. By 

allowing stakeholders to state their preferences during the decision making process, areas 

of contention can be identified and addressed, therefore helping in conflict resolution 
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(Hajkowicz and Collins, 2007; Mutikanga et al., 2011). It can incorporate both qualitative 

and quantitative data, making it possible to investigate and integrate interests of different 

actors in the decision making process (Mateo, 2012). These advantages make MCDA 

methods well suited for decision making in energy sector, which requires that the social, 

economic, environmental and technical dimensions are taken into consideration (Nzila et 

al., 2012; Wang et al., 2009). The MCDA method was therefore chosen for the 

development of the decision making framework for assessing the sustainability of 

bioenergy systems in developing countries. 

4.3 An overview of multi-criteria decision analysis 

4.3.1 Overview of the MCDA procedure 

The objective of a MCDA study is to identify the best compromise action out of a finite 

set of alternatives on the basis of a given set of evaluation criteria. Mathematically, a 

multi-criteria decision problem can be expressed using Equation 4.1 (Brans, 2002) as: 

( ) ( ) ( ) ( ){ }Aaafafafaf kj ∈,,,,,max 21 LL      (4.1) 

where, A is a set of n alternative actions to be ranked on the basis of k evaluation criteria: 

f1(·),  f2(·), …, fj(·), …, fk(·). Parameters fj(a) is the evaluation or score of alternative, a 

based on criterion fj(·). 

The main steps in MCDA include problem identification and structuring, development of 

evaluation matrix, preference assessment, assignment of weights to criteria, aggregation 

of result to rank alternatives and sensitivity analysis. The steps are illustrated 

diagrammatically in Figure 4.2. The problem structuring phase involves recognition of a 

need and developing objectives for their fulfilment. Then alternative actions are generated 

and suitable criteria for their evaluations are identified. Alternatives and criteria are 

entered in the two-way evaluation matrix as illustrated in Table 4.1. Each alternative is 

evaluated on the basis of all the criteria and the evaluations, fj(a) are included in the table. 

At this stage, the evaluations have different units and may be on ordinal or cardinal 

scales. In order to make them commensurable, value assessment using preference 

functions is carried out using appropriate functions. This transforms the evaluations into 

perceived value or preference of a decision maker on a scale, usually ranging from 0 to 1 

(or 1 to 100). 
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Table 4.1. Two-way multi-criteria evaluation matrix 

Alternatives 
Criteria 

f1(·) f2(·)  fj(·)  fk(·) 

a1 f1(a1) f2(a1) … fj(a1) … fk(a1) 

a2 f1(a2) f2(a2) … fj(a2) … fk(a2) 

… … … … … … … 

ai f1(ai) f2(ai) … fj(ai) … fk(ai) 

… … … … … … … 

an f1(an) f2(an) … fj(an) … fk(an) 

Meanwhile, the criteria are usually considered to have different influences on the final 

decision, therefore they should be assigned weights corresponding to their perceived 

relative importance. The transformed evaluations are then aggregated to derive the ranks 

of the alternative. The last step is sensitivity analysis, which helps to evaluate the 

robustness of the results to changes in weights of criteria. An explanation of the MCDA 

procedure is given by Geneletti, (2005). 

 

Figure 4.2. Work flow of the MCDA process, modified from Geneletti, (2005) 

 

Problem definition 

Objectives 

Generate alternatives Select criteria 

Develop evaluation matrix 

Aggregation to ranking 
alternatives 

Sensitivity analysis 

Recommendations 

Criteria weights 

Value assessment 
(standardisation) 



58 

 

4.3.2 Overview of MCDA methods 

Over the years, several MCDA have been developed. They can be broadly classified into 

value measurement models, goal aspiration and reference models, and outranking models 

(Cavallaro, 2010; Løken, 2007). 

Evaluation of a MCDA problem using value measurement models, also called the 

“American School” results in numerical scores assigned to each alternative. The scores 

determine the preference order of the alternatives; and the alternative highest score is 

preferred over others. These models are known to be simple and user friendly (Løken, 

2007). Examples of MCDA methods based on value measurement models include the 

analytical hierarchy process (AHP), simple multi-attribute rating technique, utilities 

additives, and the MACBETH methods (Cavallaro, 2010). 

Goal aspiration and reference models, also called goal programming models aims at 

finding alternatives which most closely fulfil a pre-determined set  of goals or aspiration 

levels (Løken, 2007; Mendoza and Martins, 2006). The models can be used as a filtering 

tool at an early stage of planning when there are many alternatives. Examples include the 

technique for order performance by similarity to ideal, the method of displaced ideals, and 

the step method (Løken, 2007). 

Outranking methods are also called the “French School” involves pairwise comparison of 

alternatives, to check which of them is preferred over the other on the basis of each 

criterion. Ranking is based on the degree of outranking of an alternative over others. An 

alternative, a is considered to outranks b when there are adequate arguments that “a is at 

least as good as b” when all criteria are taken into consideration. Methods that use 

outranking models include ELECTRE, PROMETHEE, ORESTE and REGIME 

(Cavallaro, 2010). 

4.4 Conceptual framework of the proposed methodology 

The conceptual framework of the proposed bioenergy sustainability assessment method is 

illustrated in Figure 4.3. The method assumes that sustainability of a given bioenergy 

technology is measured by the relative deviation from that of a reference system. A 

positive deviation means the new technology is more sustainable and therefore desirable. 

Negative deviations implies that the technology will lead to a decline in sustainability and 

therefore not desirable. The method was developed by incorporating the capacity of 
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different sustainability assessment methods into a decision framework. It incorporates 

biophysical and monetary methods of sustainability assessment, as well as social and 

technological aspects. The framework also allows for participation of stakeholders both 

from the inception and the decision making phase. 

Phase 1: Preliminary assessment and problem structuring 

This phase consists of situation analysis, resource assessment and structuring the 

sustainability assessment problem. During situation analysis, information on bioenergy 

technologies used in the target area should be analysed. This could be through a 

combination of literature review and field visits. Stakeholders in the bioenergy sector 

should be identified at this stage. Stakeholders should be carefully classified into 

categories to ensure that important groups are not omitted from representation in the 

decision making process. Legislative requirements and policy frameworks should also be 

reviewed at this stage. Information on the potential of biomass resources for energy use 

should be sourced. This will help in later stages when formulating bioenergy supply 

chains to be included in the sustainability analysis. Situation analysis and resource 

assessment for Uganda was conducted in this study and results given in Chapters 1 and 2, 

respectively. 

Next, the structure of the decision problem is developed. This involves formulation of 

objectives of the study and development of alternatives to include in the assessment. 

Alternatives are formulated by taking into consideration possible technologies identified 

during the preliminary assessment stage. At this stage, as many alternatives as possible 

should be formulated, and a detailed description of each alternative developed. The most 

commonly used technology for cooking should be included in the analysis as a reference 

system. Where possible, samples should be collected for demonstration to stakeholders. 

Alternatively visual aids such as photographs, video clips could be used to demonstrate 

the proposed systems to stakeholders. 

Phase 2. Pre-screening 

The objective of this phase is to identify and eliminated trivial alternatives so that only 

few more promising alternatives are included in the more detailed phases of sustainability 

assessment. A participatory methodology for pre-screening using strengths, weaknesses, 

opportunities and threats (SWOT) analysis, AHP and desirability functions was 
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developed. The SWOT analysis was selected because of its ease of use. The AHP method 

is also easy to use in a participatory setting and can convert results of SWOT analysis into 

quantifiable parameters. Detailed explanation on the proposed method, with an example is 

given in Chapter 5 and in Okello et al., (2014).  

 

Figure 4.3. Proposed sustainability assessment framework for bioenergy cooking systems 
in developing countries 
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Phase 3. Selection and weighting of criteria 

This stage aims at identifying suitable set of criteria for sustainability assessment and 

assigning weight to each of them basing on their relative importance. The proposed 

criteria selection method is a collaborative process between the decision analyst and a 

panel of multi-stakeholders of the bioenergy sector. The same composition of 

stakeholders developed in Phase 2 of the framework could be suitable. The analyst 

develops a comprehensive list of criteria based on available literature as well as 

consultation with stakeholders. This list then goes through a screening process based on a 

number of conditions. Weight can then be assigned to each of the selected criterion, using 

the AHP methodology. Detailed explanation on how this phase can be executed is 

explained in Chapter 6 of this thesis. 

Phase 4: Evaluation of alternatives 

During this phase, each alternative is evaluated on the basis of each criterion and assigned 

corresponding score fj(a) in multi-criteria evaluation matrix (Table 4.1). The evaluations 

could be in both ordinal and cardinal scales. Different methods of evaluation can be used, 

for example biophysical tools such as LCA could be used to evaluate the environmental 

criteria. Monetary tools such as LCC could also be used to evaluate economic aspects. 

There can be cases where it is not possible to quantify all the criteria; in such cases, 

expert judgement on ordinal scales, say from 1 to 5 as explained in Section 8.3.5 of this 

thesis could be employed. For this study, LCA was used to evaluate the environmental 

criteria of four energy systems. Detailed explanation of this method is given in Chapter 7 

and additional information is provided in Section 8.3. 

Phase 5: Aggregation and ranking of alternatives 

This phase results in the actual analysis of the relative sustainability ranking of the 

alternative bioenergy systems under study. As a starting point, a multi-criteria evaluation 

matrix illustrated in Table 4.1 is developed, using information generated in Phases 3 and 

4 above. Different MCDA models can then be used to carry out the ranking of the 

technologies. The outranking method, Preference Ranking and Organisation Method for 

Enhanced Evaluation (PROMETHEE) and Graphical Analysis for Interactive Aid 

(GAIA) methods were proposed. This is because the methods have a number of 

advantages over other MCDA methods. First, it has a simple analytical structure 
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compared to other MCDA methods. The methods also have ability to identify cases of 

indifferences and incomparability in the ranking of alternatives. The GAIA tool has 

ability to retain a lot of information about the relationships between criteria and 

alternatives, which would otherwise be lost in other MCDA methods. The 

PROMETHEE-GAIA methods therefore enhance rational selection of the alternatives 

after the ranking phase. During this phase, scenario can be developed and evaluated. 

Sensitivity of the results to changes in the weight of the alternatives and preference 

functions can also be carried in order to gain more insight into the ranking of the 

technologies. A detailed example of the steps involved in Phase 4 is given in Chapter 8 of 

this thesis. 

Phase 6: Decision making 

In many developing countries, the users of bioenergy technologies are also responsible for 

provision the energy. This therefore means that stakeholders should take the final 

responsibility of decision making with the aid of the analyst. Where there is no consensus 

on the most suitable alternative at the end of Phase 4, a review of the process could be 

carried out from the criteria identification Phase as illustrated in Figure 4.3. 

4.5 Conclusions 

In this chapter, an integrated framework for assessing sustainability of bioenergy cooking 

systems used in developing countries was proposed. The framework is quite generic and 

could be applied in a variety of settings. It is hoped that implementation of this 

framework in the selection of cooking energy systems would greatly enhance sustainable 

development of developing countries. 
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Chapter 5 – Participatory appraisal of bioenergy technologies in 

Uganda 
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Chapter 5 – Participatory appraisal of bioenergy technologies 

Summary 

Low levels of access to clean and reliable energy technologies is a major challenge to 

most developing countries. The decision to introduce new technologies is often faced by 

low adoption rates or even public opposition. Also, data required for effective decision 

making is inadequate or even lacking, thus constraining the planning process. In this 

study, a methodology for participatory appraisal of technologies, integrating desirability 

functions to the SWOT-AHP methodology was developed. Application of the 

methodology was illustrated with an example for participatory appraisal of four bioenergy 

technologies in Uganda. Results showed that the methodology is effective in evaluating 

stakeholder preferences for bioenergy technologies. It showed a high potential to be used 

to identify and rate factors that stakeholders take into consideration when selecting 

bioenergy systems. The method could be used as a tool for technology screening, or 

reaching consensus in a participatory setup in a transparent manner. 

5.1. Introduction 

Ensuring sustainable supply of energy is one of the major challenges of the 21st century. 

The need for a renewable energy supply is increasingly becoming more urgent as 

conventional sources are blamed for the increasing levels of atmospheric greenhouse 

gases, global warming, and climate change. Moreover, reserves of fossil fuels are finite, 

and threatened by depletion (Shafiee and Topal, 2009). Also, fossil fuels reserves are not 

uniformly distributed over the world, therefore compromising the energy security of 

countries without the resource. However, developing countries have more diverse 

concerns including lack of access to adequate clean energy, extensive deforestation due to 

fuelwood harvesting and expansion of agricultural land. The end results are impacts such 

as soil erosion, loss of biodiversity and reduced availability and access to fuelwood 

resources by the population. With reduced accessibility to fuelwood, household fall down 

the energy ladder; thus, resorting to low quality energy sources such as agricultural 

residues and dried cattle manure, which have adverse impacts on the health of users due 

to increased indoor air pollution (Holdren et al., 2000). 

Nevertheless, biomass combustion in inefficient devices remains the dominant household 

energy in most SSA countries. In Uganda, for example, over 90% of energy needs is 

provided by biomass, mainly in form of firewood, charcoal and agricultural residues 
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(Okello et al., 2013b). Despite the high potential of renewable energy resources in the 

country, it is estimated that only 5% of the population has access to electricity (Kaijuka, 

2007). Currently, the country is experiencing high increase in demand for biomass 

energy, estimated at 3% and 6% for firewood and charcoal per annum, respectively 

(Kanabahita, 2001). The increasing demand coupled with expansion of agricultural land is 

leading to deforestation and consequently fuelwood deficit in many parts of the country 

(Drigo, 2005). To ensure sustainability of energy supply, the country developed the 

Renewable Energy Policy (MEMD, 2007) with the aim of increasing use of modern 

energy technologies, that are cleaner and more sustainable than existing practices. Under 

the policy, the use of improved stoves with higher efficiency is being promoted.  The 

policy also aims at increasing the use of domestic biogas systems for household cooking 

and lighting. Consequently, several agencies are now promoting improved bioenergy 

technologies in the country. Examples of technologies promoted include improved 

biomass stoves, domestic biogas systems, biomass briquettes, and plant oil based systems. 

However the level of adoption of improved bioenergy technologies in Uganda remains 

low, with over 70% of the population using inefficient combustion devices (Okello et al., 

2013b). 

Generally, efforts to introduce improved renewable energy technologies in many 

communities are faced by multiple challenges including low adoption rates (Mobarak et 

al., 2012). In some cases, there are direct public opposition; a phenomenon commonly 

referred to as not in my backyard (NIMBY) effect (Ribeiro et al., 2011). This is probably 

due to public concerns such as competition with food production, change in land use and 

aesthetics. In some cases, renewable energy technologies are less economically 

competitive than fossil fuels or even against cultural norms and believe of the target 

population. For the case of Uganda, specific reasons for slow rates of adoption of 

improved bioenergy technologies are not clearly known. 

Involving stakeholders is critical in understanding barriers to dissemination of bioenergy 

technologies and is recognised as key to successful implementation of the projects. 

Suitable tools are required to ensure successful consultation of stakeholders in the 

bioenergy decision making process. So far, several tools are available for the purpose, but 

one of the most popular is the analysis of strength, weaknesses, opportunities and threats 

(SWOT). The method has been widely used for participatory decision making; for 

example, Liu et al., (2011) used it to evaluate the social, economic and environmental 
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impacts of bioenergy production on marginal land. Also, Lee et al., (2009) employed 

SWOT analysis to analyse and develop strategies for the development of Korean energy 

sector. A similar study using SWOT analysis was conducted in China for planning the 

strategic development of the Shale gas industry (Xingang et al., 2013). However, the main 

weakness of the SWOT analysis is that the results are not quantified and therefore 

difficult to attach levels of importance to individual SWOT factors identified. 

Consequently, Kurtilla et al., (2000) developed a method that incorporates results of 

SWOT analysis in the analytical hierarchy process (AHP). The method, commonly 

abbreviated as SWOT-AHP or A’WOT has been widely used in forest policy decision 

analyses, examples include studies by Stainback et al., (2012), Masozera et al., (2006), 

and Dwivedi and Alavalapati, (2009). Other examples of the application of the method 

include studies in the field of safety and environment (Eslamipoor and Sepehriar, 2013), 

agriculture (Shrestha et al., 2004), and water resource management (Gallego-Ayala and 

Juízo, 2011). Ramirez et al., (Ramirez et al., 2012) conducted one of the first studies 

applying SWOT-AHP method to bioenergy technologies in developing countries to assess 

stakeholders’ perception about non-traditional cook stoves in Honduras. However, all 

these studies are limited to the quantification of SWOT factors for a single scheme of 

intervention.  Use of SWOT-AHP method as a tool for comparative analysis of strategic 

alternatives is generally limited in literature; an example was proposed by Pesonen et al., 

(2001). 

Against this background, the objectives of the study were, to: 1) improve the capability of 

the SWOT-AHP methodology as a tool for participatory appraisal of alternative 

bioenergy technologies, and 2) illustrate the use of the proposed methodology with an 

application example. The present study gives a detailed description of the SWOT-AHP 

methodology and its proposed extension with desirability functions (Derringer G, 1980). 

An application example for participatory appraisal of four different bioenergy 

technologies in Uganda is also given. 

5.2. Methodology 

The proposed methodology incorporates desirability function (Karande et al., 2012) into 

the SWOT-AHP method, followed by synthesis of results using weighted summation 

method (Sudhakaran et al., 2013). In the SWOT analysis phase, strengths, weaknesses, 

opportunities and threats of the technology are analysed (Koo and Koo, 2007). The AHP 
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methodology, developed by Saaty in the 1970s, can then be used to convert SWOT 

factors into quantifiable indicators, (Kurttila et al., 2000). Desirability functions (Karande 

et al., 2012) are then used to transform the weights of the SWOT group factors into 

measures of suitability of each technology. In the last step, ranks of technologies can then 

be subjected to sensitivity analysis (Geneletti, 2005) so as to evaluate their robustness to 

changes in weights of criteria. The flow chart of proposed method illustrated in Figure 

5.1, and detailed explanation is given in the following sections. 

 

Figure 5.1. Flow chart of the proposed methodology. Note: doted lines show feedback 
between the stages). Alt 1, Alt 2, …, Alt N, represents the technologies under appraisal. 

5.2.1 Incorporating SWOT in hierarchical decision model 

The first step is to perform SWOT analysis of all the alternative bioenergy systems and 

incorporate the results in the hierarchical decision model (HDM) (van Blommestein and 

Daim, 2013), illustrated by Figure 5.2. At the top of the hierarchy is the decision goal. 

The criteria used in the decision model are the SWOT groups (Wang et al., 2009) of the 

respective energy systems. The more explicit SWOT factors are used as the sub-criteria in 
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the model. At the bottom of the hierarchy are the alternative bioenergy technologies to be 

prioritised. 

 

Figure 5.2. Hierarchical decision model. S1, S2, …, Sn; W1, W2, …, Wn; O1, O2, …, On 
and T1, T2, …, Tn represents strengths, weaknesses, opportunities and threats of each 
technology Alt1, Alt2, …, AltN, respectively. 

5.2.2 Quantifying SWOT factors using AHP 

In the second step, the SWOT factors (or sub-criteria) and SWOT groups (or criteria) are 

prioritised using pairwise comparison method (Wang et al., 2009). First, pairwise 

comparison of SWOT factors is done, followed by that of SWOT groups using a suitable 

scale, usually ranging from one to nine (Scott et al., 2012). Results of the pairwise 

comparison exercises are transformed into positive pairwise comparison matrices A, 

illustrated by Equation 5.1; 
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where, ci are the relative importance of SWOT factors or SWOT groups obtained from 
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than the other (Chang and Huang, 2006). Then, matrix A is normalised by dividing each 

element of a columns by the sum of the column elements, to generate Equation 5.2; 
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where, B is the normalised pairwise comparison matrix. The weighted matrix, W, is then 

generated from the mean of each row of matrix B, as illustrated by Equation 5.3. 
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where, wij are the overall weights or scores of SWOT groups or factors of a given 

alternative. The result is then checked through consistency test by evaluating the value of 

consistency ratio, calculated using Equation 5.4.  

RICICR =  (5.4) 

where, CR is consistency ratio, CI is consistency index given by Equation 5.5, RI is 

random index given in Table 5.1 (Scott et al., 2012). 

1
max

−
−=

n

n
CI

λ
,  (5.5) 

where, CI, is the consistency index, λmax is the largest Eigenvalue of matrix A, n is the 

number of SWOT groups or factors. It is a general rule that if the consistency ratio is 

greater than 0.1, then the results of the pairwise comparison is inconsistent, and therefore 

cannot be accepted (Benítez et al., 2011). Actions described in Sections 5.2.1 and 5.2.2 is 

repeated for each of the alternative under consideration. 
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Table 5.1. Values of random index (RI) (van Blommestein and Daim, 2013) 

Matrix dimension (n) Random index RI(n) 
3 0.58 

4 0.90 

5 1.12 
6 1.24 

7 1.32 

8 1.41 

9 1.45 

5.2.3 Ranking of technologies 

Ranking of the technologies is achieved by minimising the weaknesses and threats, and 

maximising strengths and opportunities. To achieve this, a decision matrix (Karande et 

al., 2012) is developed from the weights of SWOT groups, as illustrated in Table 5.2. 

Elements of the decision matrix are then transformed into a measure of suitability ranging 

from zero to one using desirability functions (Karande et al., 2012). A desirability value 

of one implies that the SWOT group factor is optimal, while a value of zero means the 

attribute is totally undesirable. Transformation of beneficial criteria, in this case strengths 

and opportunities, is done using Equation 5.6, while for non-beneficial criteria i.e., 

weaknesses and threats are using Equation 5.7. 
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In Equations 5.6 and 5.7, di are the individual desirability of SWOT group weights of a 

given alternative i; wminj and wmaxj are the maximum and minimum values of a given set 

of SWOT groups weights, respectively; derived using from Equation 5.3 and summarised 
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in Table 5.2, and wij are SWOT group weights between wminj and wmaxj. The parameter δ is 

a constant that determines the shape of the desirability function. When the value of δ is 

equal to 1, the function varies linearly between 0 and 1, in the case where δ is greater than 

1, the shape is concave, while values of δ less than 1 results in a convex function. 

Table 5.2. MCA decision matrix diagram 

Criteria 
Alternative technologies 

A1 A2 … An 

C1 w11 w12  w1n 

C2 w21 … … w2n 

… … … … … 

Cn wn1 wn2 … wnn 

Ci are criteria, in this case SWOT groups 
Ai are technologies to be ranked 
wij are weights assigned to each SWOT group (see Section 5.2) 

The overall desirability of a given alternative can then be calculated using the weighted 

summation method (Sudhakaran et al., 2013) according to Equation 5.8. 

∑
=

=
n

i
iii dD

1

ω ,  (5.8) 

where, Di is desirability of a given alternative bioenergy technology, ɷi are the weights 

assigned to SWOT groups i. The technologies can then be ranked basing on their overall 

desirability, and those with higher desirability values are the preferred options. 

5.2.4 Sensitivity analysis 

The last step is to carry out sensitivity analysis to determine the stability of the ranks of 

alternative bioenergy systems subject to changes in weights of SWOT group factors. 

During this process, point data is modified to observe their effects on the ranks of 

technologies, therefore enabling generation of scenarios (Geneletti, 2010). 

5.3. Application of the methodology 

5.3.1 Description of the study area 

The study was carried out in Gulu municipality, located about 330 km by road, to the 

north of Ugandan capital, Kampala (Figure 5.3). The municipality is the second largest 

urban settlement in Uganda with an estimated population of 150,000 inhabitants 

(Mukwaya et al., 2011). Majority of households rely on charcoal and firewood as the 
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main sources of domestic energy. However, the biomass resources  in the area is being 

extracted faster than the rate of replenishment (Zanchi et al., 2013). A study Drigo (Drigo, 

2005), indicated that the municipality is in net deficit of fuel wood resources. Recent 

efforts by the government and development partners led to increased use of energy saving 

stoves. Bioenergy technologies such as biomass briquetting, biogas and gasification are 

still new to the area and not widely. 

 

Figure 5.3. Map of Uganda showing the location of study area, in circle (Based on UN 
map, Source: UN Cartographic section (2014)) 

5.4 Technologies considered in the study 

Literature survey and field visits were carried out to identify possible bioenergy 

technologies that could be developed for use in the study area. Emphasis was placed on 

identifying technologies, which have been successfully employed in the country but not 

widely adopted. Where possible, samples of the technologies were acquired for 

demonstration during stakeholder workshop, otherwise, photographs were taken. The 

following is a brief description of technologies that were identified and considered for this 

study. More detailed explanation of these technologies is available in Okello et al., 

(Okello et al., 2013b).  
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5.4.1 Biogas system  

Biogas technology was introduced in Uganda in the 1950s, and is one of the priority 

bioenergy technologies for cooking being promoted in the country (Sengendo et al., 

2010). As per the renewable energy policy, Uganda has set a target of installing 100,000 

domestic biogas digester by the year 2017 (MEMD, 2007). Estimates by MEMD (2007) 

indicates that the Uganda has a potential of 250,000 units of domestic digesters. 

Currently, the several governments and development partners are promoting the 

technology in developing countries, for example the SNV programme (Ghimire, 2013).  

The model of the domestic biogas system is based on zero grazing cattle, which supplies 

manure used as substrate for biogas production. Digesters may be of fixed-dome, 

floating-dome or tubular designs (Nzila et al., 2012; Okello et al., 2013b). The fixed dome 

design is more popular in the country and was considered for this study. It is built of 

masonry and concrete and vary in volume from 8 m3 to 16 m3 (Walekhwa et al., 2009). 

Digestion chamber is airtight, therefore enabling anaerobic decomposition of the manure 

to produce biogas.  

The system modelled in this study involves grass cultivation to ensure reliable supply of 

feeds to cattle, which are kept under a zero-grazing system. An acre of pasture is provided 

for each cattle; normally a household requires two or three heads of cattle to generate 

sufficient manure for biogas production. The bio-digester is constructed, underground and 

substrate is mixed with water and fed in the digester on daily basis. Simple burners are 

provided for combustion of the biogas, which is conveyed through pipes from the digester 

to the house. 

Cooking with biogas provides advantages including improved efficiency and reduced 

indoor air pollution compared to traditional methods. Biogas production can also be 

integrated with food production and cattle products can improve food security and income 

of households. Slurry is known to be a very good organic fertilizer. However, the level of 

adoption is still low therefore requiring more understanding for the criteria of their 

sustainability. 

5.4.2 Briquetting system 

Biomass briquetting is the conversion of loose biomass material into a high density 

product by subjecting the material under pressure, with or without a binder (Mwampamba 
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et al., 2013). The briquetting process involves material collection, drying, commutation 

and densification, using various types of presses (Samson et al., 2005). The resulting 

product is called briquette and is easier to handle and has better combustion properties 

than the original biomass material. Agricultural and forest residues could be used as raw 

material for briquetting (Okello et al., 2013a; Raman et al., 2013). Being an agro-based 

economy, Uganda produces large quantities of agricultural and forest residues. Recent 

estimates by Okello et al., (2013a), indicates that the gross energy potential of agricultural 

residues in Uganda amounts to about 260 PJ per year. Usually, the residues are burnt in 

the crop plantation during land preparation for planting, thus posing undesirable 

environmental problems.  

The modelled briquetting system involves collection of maize residues, densifying it to 

briquettes, and using the briquettes in top-lit updraft (TLUD) gasifier stoves for cooking. 

Gasifier stoves were considered for the study because they are known to be more efficient 

than traditional stoves (Raman et al., 2013). The supply chained studied is based on maize 

residues, which is collected, sun dried, and commutated using a hammer mill to suitable 

size for briquetting. Briquetting is then carried out using piston press, powered by 

electrical energy.  

Briquettes are known to have better handling, storage, transportation and combustion 

properties than the original raw material (Samson et al., 2005). The combustion appliance 

is a natural convection gasifier stove, and was selected because it is known to have higher 

efficiency and reduced particulate matter emission of 90% compared to the three stone 

traditional stove (MacCarty et al., 2010). 

5.4.3 Charcoal systems  

Charcoal is the most widely used energy source by urban population in Uganda and many 

other countries in sub-Saharan Africa. Charcoal production in Uganda is majorly informal 

(Sankhayan and Hofstad, 2000), based on harvesting and carbonising wood lots from 

natural forests. Trees are harvested using simple tools, such as axe and chain saws and 

tacked and covered with soil to form the traditional earth-mound kilns (Knöpfle, 2004). 

Wood used for the production is from natural forest, mainly found on privately owned 

land. The efficiency of the carbonisation process is less than 15%, and combustion takes 

place in charcoal stoves with efficiencies of about 10% (Knöpfle, 2004; Okello et al., 

2013b). Charcoal production is a major employer and is blamed for the high deforestation 
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rates in Uganda. Due to diminishing forest reserves resulting from extensive 

deforestation, price of charcoal is currently increasing rapidly. 

Charcoal production takes place in the forest close to where the trees have been harvested. 

Processed charcoal is then transported to urban centres, mainly using bicycles for short 

distances or trucks for long distance delivery. There is a wide range of stoves designs that 

can be used for cooking with the charcoal, some of which are traditional and others 

improved with higher efficiencies. Charcoal fuel is popular in urban areas of developing 

countries because of reduced emissions and higher energy density compared to firewood. 

Charcoal value chain is known to be a major employer in Uganda (Sankhayan and 

Hofstad, 2000). However, presently, there are concerns about its impacts on the 

environments due to deforestation and loss of biodiversity. 

5.4.4 Jatropha system  

Under this system, a plantation of Jatropha (Jatropha curcas) is established by households. 

Jatropha fruits are harvested and manually de-hulled and sun-dried. Oil extraction is 

carried out using expellers, such as the “Sundhara” oil expellers, which are designed for a 

variety of oil seeds for use under rural conditions (Grimsby et al., 2012). Impurities in oil 

are allowed to settle before being decanted using gravitational method through a piece of 

cotton cloth. The oil is poisonous and thus not edible but can be filtered and used in crude 

form as cooking fuel in plant oil stove such as the Protos  (Gaul, 2013; Kratzeisen and 

Müller, 2009). The stoves have better thermal efficiency and lower specific fuel 

consumption compared to the traditional stoves (Huboyo et al., 2013). 

Jatropha is popular as a bioenergy crop because of its ability to reduce soil erosion and 

grow on marginal land with limited input of water and fertilizers. Jatropha plant has 

medicinal properties and is also known to be suitable for intercropping in agro-forestry 

system (Achten et al., 2008). The crude oil can also be used in Lister Petter® engines to 

produce mechanical power. This model is used in some parts of Africa to power 

multifunctional platform to provide mechanical and electrical power in rural areas 

(Nygaard, 2010). Alternatively the oil can be used for soap making soap, or upgraded to 

biodiesel through esterification and transesterification, therefore diversifying rural 

economy (Eckart and Henshaw, 2012). However, these advanced uses were excluded 

from the current scope of the study. 
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5.5 Data collection and analysis 

5.5.1 Selection and composition of stakeholder panel 

Data used in this study was collected during a one-day multi-stakeholder workshop held 

at Gulu University in February 2013. The workshop was attended by 28 participants from 

various interest groups. Participants were purposely selected (Stidham and Simon-Brown, 

2011) to represent a broad spectrum of stakeholders of the bioenergy sector in the 

municipality. To ensure representativeness of the various interest groups, stakeholders 

were categorised into government, non-governmental organisation (NGOs), academic and 

research institutions, and private individuals and businesses using biomass for cooking. 

At least two participants from each stakeholder group participated in the workshop. The 

NGOs that participated are involved in promoting improved biomass stoves and biogas 

technologies in Gulu district. The researchers that participated in the workshop were from 

different departments of Gulu University, also located in the municipality. 

5.5.2 Implementation of the workshop 

The workshop was organised in three main sessions. During the first session, participants 

were introduced to the topic of bioenergy technologies, and the need for improved 

bioenergy technologies was explained. Different bioenergy technologies currently being 

promoted in country were explained to participants including challenges facing their 

dissemination and use. This was followed by a detailed explanation of the four bioenergy 

technologies to be ranked in this study. The process was made as participatory as possible 

so that participants could freely share their knowledge and experiences with the 

technologies. During the third session, participants were divided into four groups, and 

each tasked with development of SWOT factors for one of the technologies. Results of 

SWOT analysis developed by individual groups were presented to the general 

stakeholder’s forum and discussed and a final list of SWOT factors agreed upon. Finally, 

the SWOT factors were typed in a specially designed spreadsheet format for pairwise 

comparison. These were printed and given to each participant to carry out pairwise 

comparison. 

5.5.3 Analysis of results 

Results of SWOT analysis were processed following the AHP procedure as described in 

Section 5.2. A spreadsheet programme was developed in Microsoft Excel® and used for 
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pairwise comparison of the factors. The spreadsheet was also used to test for consistency 

of the pairwise comparison. Results were aggregated using geometric mean as 

recommended by Forman and Peniwati (1998). Ranking of technologies and sensitivity 

analysis were carried out using the MCA software called DEFINITE (2013). It was 

assumed that the SWOT factors had equal weights of 0.25. The sensitivity analysis phase 

was used to evaluate the effect of varying the weights on the ranks of the technologies. A 

numerical example of calculation steps used for ranking the technologies is given in 

Appendix A. 

5.6. Results and discussions 

5.6.1 Results of SWOT-AHP phase 

Results of the SWOT-AHP phase is illustrated in Figure 5.4, and details of individual 

scores of the SWOT groups and factors are given in Appendix A, Table A3. The graphs 

show that biogas systems had opportunities ranked highest at 0.390, mainly due to 

increasing demand for the systems and its ability to provide decentralised energy services 

to individual households (Figure 5.4 (a)). Inadequacy of skilled personnel, lack of 

awareness about the technology and high investment costs were identified as the most 

detrimental factors to the adaption of biogas technology. Results of the briquette systems 

are given in Figure 5.4 (b), with its strengths scoring highest at 0.397. The most important 

strengths of briquettes identified were reduction in deforestation, cleanness and ease of 

handling. However, high investment costs and lack of skilled personnel were identified as 

most unfavourable factors to the technology. For charcoal systems, threats scored highest 

at 0.485 as shown in Figure 5.4 (c). This is mainly attributed to deforestation and land use 

change caused by charcoal production from natural forests. Meanwhile, opportunities of 

Jatropha system was greater than that of other SWOT group factors with a score of 0.481 

(Figure 5.4 (d)), mainly due to job creation, opportunities for research and development 

of products to diversity rural economy and the favourable climate and soils. The 

poisonous nature of Jatropha and competition with other fuels were the most detrimental 

factors identified. 
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(a) (b) 

  

(c) (d) 

Figure 5.4. Stakeholder rating of SWOT factors and groups; (a) biogas, (b) briquettes, (c) 
charcoal, and (d) jatropha. (Only data that fulfilled consistency threshold were included in 
the results) 

Results of the SWOT-AHP phase presented here demonstrates the ability of the 

methodology to identify issues that stakeholders consider as critical for selecting 

bioenergy technologies. Some of the issues identified by the stakeholders are in 

agreement with available literature, for example, Mwampamba et al., (2013) observed 

that briquetting has environmental benefits such as reduced deforestation, and offers 

opportunity for carbon credit. Threats of deforestation due to charcoal production 

(Chidumayo and Gumbo, 2013), and the environmental and health benefits of biogas 

(Bond and Templeton, 2011) are well documented in literature. High investment cost was 

identified as major challenges to the adoption of biogas (Bond and Templeton, 2011) and 

briquetting (Mwampamba et al., 2013) technologies in developing countries. Usually, 

success of biogas and briquette programmes in developing countries are attributed to 

substantial support from government and aid agencies (Chidumayo and Gumbo, 2013). 

On the other hand, the ability of Jatropha to grow on marginal land is seen as one of its 
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main advantages and stakeholders rated this highly. The views expressed by the 

stakeholders were therefore in agreement with pertinent issues concerning the bioenergy 

technologies studied. 

5.6.2 Ranks of technologies 

The ranks of the four bioenergy technologies studied are given in Figure 5.5. Jatropha 

was ranked as the best technology with an overall desirability value of 0.78, while 

charcoal ranked lowest a desirability of 0.13.  A numerical example illustrating how 

scores of energy systems presented in Figure 5.5 were calculated is given in Appendix A. 

 

Figure 5.5. Scores of bioenergy technologies studied - higher scores are preferable.  

Available literature indicates that Jatropha oil is a suitable fuel for small scale projects in 

sub-Saharan Africa, when used in multifunctional platforms (Eckart and Henshaw, 2012). 

It can be processed into biodiesel or used for making soap, therefore supporting 

diversification of rural enterprises (Dyer et al., 2012). However, there are debates about 

jatropha production; for example, it is reported to have a negative impact on carbon stock 

(Vang Rasmussen et al., 2012). Other challenges include low yield, limited know-how for 

feedstock conversion, high investment costs and inadequate private capacity to support 

the development of the sector (Ewing and Msangi, 2009). 

5.6.3 Sensitivity analysis 

The effect of varying factor weights on the ranking of the technologies was analysed 

through sensitivity analysis, and the results are shown in Figure 5.6. Biogas and briquettes 

were found to be highly sensitive to variation in the values of the weakness factors, with 

their scores dropping near to zero with high values of weaknesses. Charcoal is however 

more robust to variation of weakness values. Sensitivity analysis also indicates that rank 
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reversal occurs between Jatropha and biogas systems, with biogas ranking highest when 

values of strengths were increased beyond 0.6. Therefore, both biogas and briquettes 

technologies would be acceptable by the community depending on management policies 

and incentives. 

 

Figure 5.6. Sensitivity analysis plots (a) - Jatropha (b) - Briquettes (c) - Biogas (d) - 
Charcoal 

5.6.4. Discussions on the methodology 

In this study, we developed a method that incorporates desirability functions into the 

SWOT-AHP methodology for participatory appraisal of alternative bioenergy systems. 

The AHP methodology used is a very powerful multi-criteria analysis (MCA) tool with 

capabilities of allowing commensurability of both quantitative and qualitative variables. 

Use of pairwise comparison in AHP enhances the aptitude of the decision maker in the 

analysis of the alternatives therefore resulting in more rational decision. The method 

offers more flexibility over traditional approaches such as contingent evaluation, which 

requires that all variables are measured in dollar terms. The multi-criteria technique 

employed has capability of ranking multidimensional, conflicting and uncertain systems. 

Furthermore, participation of stakeholders in AHP studies is based on opinion leadership 

and representative democracy, therefore allowing for smaller number of samples than in 

statistical approaches (Masozera et al., 2006). The method is useful in environments 
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where data for decision making is not readily available. It could help in identification of 

hidden interests, cultural constraints and other social values of the target community.  

However, the methodology is based on some assumptions and has limitations that should 

be taken into consideration. First, during the SWOT analysis, there is likelihood that some 

factors proposed by participants may not be technically suitable for consideration. 

Therefore, the researcher has to ensure the appropriateness of the factors by ensuring 

legibility and avoiding redundancy (Munda, 2004). Secondly, the assumption of AHP 

methodology that the hierarchical factors are independent of each other may not 

necessarily be true, especially when complex systems are taken into consideration. This 

weakness could probably be reduced by integrating desirability functions in the SWOT-

ANP (analytical hierarchy process) as suggested by Catron et al. (2013). Also, the SWOT 

methodology does not take uncertainties related to future development into consideration. 

As proposed by Kurttila et al., (2000) scenario modelling using dynamic SWOT analysis 

could be a possible solution to this limitation. As a rule, the number of SWOT factors for 

pairwise comparisons should be limited to 10; otherwise human cognition may not be 

capable of objectively carrying out pairwise comparison. In cases where this rule cannot 

be obeyed, grouping the factors under different categories is proposed as a remedy. 

Much as the SWOT-AHP method is a very useful tool, it heavily relies on qualitative 

judgement of the SWOT factors. It does not incorporate measurable economic, social and 

environmental variables of sustainability. It is therefore recommended that it should be 

used to supplement other more rigorous methods such as financial cash flow or cost-

benefit analysis (CBA) (O’Mahoney et al., 2013), life-cycle analysis (LCA) (Fazio and 

Monti, 2011) and life cycle costing (LCC) (Silalertruksa et al., 2012) Usually, these 

methods require considerable amount of data and time to implement. So, the proposed 

method may help in pre-screening of technologies that will most likely be accepted by the 

target community prior to more rigorous methods such as LCA, CBA and LCC. This is 

particularly important in developing countries where required data and logistics for their 

collection are often lacking. Pre-screening of technologies is advantageous since it helps 

to eliminate trivial options therefore enabling directing resources to a few promising 

alternatives. The method could also be used to identify stakeholders concerns about 

bioenergy technologies; thus, developing appropriate strategies for addressing them. 

Alternatively, the method could be used as a tool for reaching consensus in cases where 

there are conflicting interests among stakeholders. Generally, it could be used as a tool for 
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soliciting stakeholder opinion during multi-criteria decision analysis of technologies, 

which considers social, economic and environmental aspects simultaneously (Nzila et al., 

2012). 

The application example presented is the first of its kind and could benefit from further 

trials. More rigorous data collection methods could be taken into consideration to evaluate 

the repeatability of the results.  One could also study if there would be differences in the 

ranking of the technologies amongst different stakeholder groups. Furthermore, the 

possibility of incorporating other participatory techniques such as Delphi techniques 

could be taken into consideration to improve the overall rigour of the participatory 

process. 

5.7. Conclusions 

In this study, we proposed a methodology for participatory appraisal of technologies, and 

applied it in a case study to rank four bioenergy systems in Uganda. The methodology is 

intended to identify bioenergy technologies with a higher chance of public acceptance at 

the early stages of project development. The case study implemented showed that the tool 

is quite effective for identifying stakeholder preference of bioenergy technologies 

including the underlying reasons for their choices. The results of the study suggest that 

Jatropha could be accepted as a fuel for household energy in Uganda. Further, 

stakeholders regard charcoal as not sustainable mainly because of the threats it poses to 

the environment. Results suggest that suitable policies aimed at increasing affordability of 

bioenergy technologies could help increase their adoption rates in Uganda. Also, 

improving the critical mass of skilled personnel could play an important role to ensure 

increased dissemination of improved bioenergy technologies. 
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Chapter 6 – Sustainability criteria for bioenergy systems: perspectives 
of Ugandan stakeholders 

Summary 

The need reduce greenhouse gas emissions, find replacement to fossil fuel resources, 

ensure energy autonomy and security has increased interest in biomass as a source of 

energy. Efforts are being made to ensure sustainability of bioenergy systems. This 

requires context specific criteria for assessing and monitoring progress towards 

sustainability. This study was therefore carried in Uganda with the objective to develop a 

shortlist of criteria for assessing sustainability of bioenergy systems used for domestic 

cooking and rank them according to their importance. Suitable indicators were identified 

and selected from available literature and ranked by a panel of multi-stakeholders. 

Pairwise comparison embedded in the analytical hierarchy process methodology was 

adopted for the purpose of ranking the criteria. In total, 21 criteria were selected on 

principles of relevance, practicality, independence and simplicity. Results show that the 

four most important criteria were of economic character, with investment and operational 

cost taking the first two positions, respectively. Next in importance were social criteria, 

which took the sixth to the tenth positions. Only one environmental criterion was among 

the top ten, that is, effects on human health, which took the fifth position. Further, results 

showed that environmental and technological criteria were ranked third and fourth in 

importance, respectively. This study suggests that critical attention should be given to 

social and economic aspects of the sustainability in order to achieve sustainable 

development of bioenergy for cooking in Uganda.  

6.1 Introduction 

Sustainability assessment requires that suitable criteria and indicators are selected for use 

as measures of sustainability. Criteria and indicator are useful tools for benchmarking, 

communication and decision making (Heijungs et al., 2010). Criteria are also used in 

assessment of certification schemes such as clean development mechanism and other 

biofuel sustainability standards. Progress towards achieving set of sustainability 

objectives are measured using indicators. Indicators measure the state of the environment, 

society and economy of a state or region, and can be integrated in some manner to an 

index, (Evans et al., 2009; Grimsby et al., 2013). They help to highlight concerns of 

experts and stakeholders in the bioenergy sector and are also useful for communicating 
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the sustainability of the project or progress towards sustainable development (Kurka and 

Blackwood, 2013). 

Consequently, there are currently several programmes initiated by national and 

international organisations that are developing policies and standards for sustainable 

biofuels and bioenergy along with associated sustainability criteria. For example, the 

European Commission developed the environmental criteria for biofuels and bio-liquids 

aimed at reducing greenhouse gas emission, conserving biodiversity and ensuring good 

environmental management practices in the Renewable Energy Directive (European 

Commission, 2009). Many individual EU member states are also developing national 

biofuel sustainability standards and criteria in line with the renewable energy directive, 

examples include the “Cramer Criteria” for sustainability of biomass and bioenergy 

developed in Netherlands (Cramer et al., 2006). Others are Renewable Transport Fuel 

Obligation in the UK, and Renewable Fuel Standards in the USA. Other initiatives 

include the Global Bioenergy Partnership, Roundtable on Sustainable Palm Oil 

production, Roundtable for Sustainable Soy Production and the Better Sugarcane 

Initiative (Scarlat and Dallemand, 2011; Van Dam and Junginger, 2011; van Dam et al., 

2010). Development of sustainability criteria has also attracted interest of researchers, 

with particular emphasis to  stakeholder opinion, examples include Buchholz et al., 

(2009), Kurka and Blackwood (2013), and van Dam and Junginger (2011). 

As noted by van Dam et al., (2010), majority of the programmes on development of 

sustainability criteria of biofuels and bioenergy are generally concentrated in Europe and 

north America. Developing countries are generally lagging in criteria development, most 

especially those in the sub-Saharan Africa (SSA). This is notwithstanding the growing 

interest and investment in bioenergy projects in the region (Buchholz and Volk, 2012; 

Florin et al., 2013). Only few countries in the SSA have identified and incorporated 

sustainability criteria in their energy policies, some of which include Mozambique and 

South Africa (van Dam et al., 2010).  

This study was therefore carried in Uganda with the objective to develop a shortlist of 

criteria for assessing sustainability of bioenergy systems used for cooking and rank them 

according to their importance. The ranking of criteria was carried out by a multi-

stakeholder panel under four dimensions of sustainability; social, economic, 

environmental and technical. 
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6.1.1 An overview of the energy sector in Uganda and the study area 

Uganda has one of the lowest access to electricity in Africa with only 5% of the 

households connected to the national (Kaijuka, 2007). The country has in recent past 

implemented reforms aimed at accelerating the development of the electricity sector. The 

reforms include the enactment of the Uganda Electricity Act in 1999, which provided for 

liberalisation of the sector, hence encouraging competition in electricity production, 

transmission and distribution. Also, Electricity Regulatory Authority was created to 

regulate the sector. However, even with these reforms, it is estimated that over 90% of the 

energy needs of Uganda is supplied by biomass fuels (Buchholz and Volk, 2012; Okello 

et al., 2013b). About 72% of Ugandan households use three-stone open fire and 

traditional biomass stoves for cooking. The stoves are with efficiencies in the range of 

only 10% (Kees and Feldmann, 2011; Okello et al., 2013b), and are associated with 

indoor air pollutants, with adverse impacts on the health of users.  

Consequently, under the renewable energy policy for Uganda (MEMD, 2007), the 

country aims to increase the use of modern renewable energy from 4% in 2007 to 61% in 

2017. Actions to achieve the goal include modernising bioenergy use by promoting 

production of commercial woodlots and energy crops. The policy set several targets to be 

achieved by 2017 including installing 100,000 units of domestic biogas systems, 

increasing use of energy efficient charcoal stoves from 20,000 to 2.5 million units, and 

wood stoves from 170,000 to 4 million units. Others targets include blending diesel fuel 

and gasoline with 20% biodiesel. Currently the government as well as non-governmental 

organisations are running several programmes aimed at achieving these targets (Ghimire, 

2013; Kees and Feldmann, 2011; Okello et al., 2013b). The policy emphasises sustainable 

development of biomass energy systems, but currently there is no national guidelines and 

methodology for assessing sustainable biomass production and use. 

This study was therefore carried out in Uganda to provide a benchmark for bioenergy 

sustainability assessment in the country. The present study was specifically carried out in 

the municipality of Gulu, in northern Uganda. The municipality, which is about 330 km 

north of Ugandan capital Kampala has a population of about 150,000 people, and is the 

second largest urban settlement in the country (Mukwaya et al., 2011). It was chosen for 

the study because according recent to studies by Drigo (2005), the municipality is in net 
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deficit of fuel wood resources. Therefore, there is need to develop sustainable bioenergy 

systems for cooking in the municipality. 

6.1.2 Technologies for which criteria were evaluated 

The criteria were selected to suit sustainability assessment of domestic biogas system, 

Jatropha plant oil, and gasification of densified residues. The charcoal systems were also 

considered as a baseline scenario. Apart of charcoal, which is widely used in the 

municipality, the other three technologies are relatively new in Uganda, and not widely 

disseminated. A detailed description of each technology supply chain is given in Section 

5.4 of this thesis.  

6.2 Methodology 

6.2.1 Overview 

An overview of the steps followed for the selection and ranking the criteria for assessing 

sustainability of the bioenergy technologies is illustrated in Figure 6.1. First, a literature 

review was carried out to develop a preliminary list of criteria, which was then subjected 

to a filtering process. Filtering was based on conditions that suitable criteria exhibit 

relevance, practicality, independency and simplicity as defined in Table 6.1. Criteria that 

fulfilled all the four conditions concurrently were selected for further analysis and ranking 

by a multi-stakeholder panel according to their importance. Ranking for importance was 

conducted using pairwise comparison process of the analytical hierarchy process (AHP) 

methodology.  

6.2.2 Identification of preliminary list of criteri a 

The preliminary list of criteria was developed through a review of relevant literature. 

Literature consulted include studies by Beccali et al., (2003), Buytaert et al., (2011), 

Kurka and Blackwood, (2013), van Blommestein and Daim, (2013), Wang et al., (2009), 

Perimenis et al., (2011), Nzila et al., (2012), and Phalan, (2009). The criteria were 

classified under social, economic, environmental and technical dimensions of 

sustainability. 
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Figure 6.1. Chart showing workflow and roles experts and stakeholders 

6.2.3 Filtering of criteria 

According to the Bellagio Principles, (Hardi and Zdan, 1997) criteria should be limited in 

number. Consequently, to select the most relevant criteria from the preliminary list, a 

process of filtering was carried out. This was based on a set of conditions (Kurka and 

Blackwood, 2013; Neves and Leal, 2010; Van de Kerk and Manuel, 2008; Zhen and 

Routray, 2003) listed in Table 6.1. Criteria that simultaneously fulfilled all the conditions 

qualified for the next stage of analysis. 

Table 6.1. Conditions for selecting sustainability criteria of bioenergy systems 

Selection criteria Brief description 
Relevance The criteria for sustainable bioenergy should be relevant to the alternatives 

under consideration. 
Practicality Data should be easily to obtain or measure in a resource effective manner. 
Independency Criteria should be independent enough, that is, they should not duplicate each 

other. 
Simplicity Criterion can be easily understood by all stakeholders. 

6.2.4 Structuring the multi-stakeholders panel 

In the selection of the multi-stakeholders panel, we adopted a broad definition of 

stakeholders by Gold (2011) as any identifiable individual or organisation that can affect 

the objectives or who may be affected by achievements of objectives of an entity. In this 

perspective, stakeholders were broadly classified as internal or external to the bioenergy 
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supply chain. Internal stakeholders are individuals or organisations directly involved in 

the production and use of bioenergy, while external are those who may have any 

influence on supply the chain. A summary of the different categories of stakeholders 

groups identified is given in Table 6.2. To ensure comprehensiveness in selecting the 

multi-stakeholders panel to participate in the study, the maximum variation sampling 

(Stidham and Simon-Brown, 2011) was adopted. This was by ensuring that each of the 

stakeholder group given in Table 6.2 was represented in the panel. In total, 28 

stakeholders from the different categories participated in the study. 

Table 6.2. Classification of stakeholders in Ugandan bioenergy sector  

Stakeholder Role in bioenergy sector 

Governmental organisations Renewable energy policy development,  approval of bioenergy 
projects, ensuring environmental and social sustainability of projects, 
provision of suitable investment climate, provision of incentives 

Nongovernmental organisations 
and civil society organisations 

Funding, research and development, social watchdogs – protects local 
communities and rights of marginalised, involves local communities, 
research and development, outreach 

Academic and research 
institutions 

Research and development, outreach and technology dissemination 

Private sector businesses and 
associations 

Production and market for feedstock, users of bioenergy technologies. 
Coordination of land holders and the private bioenergy sector, 
dissemination of ideas 

Local community Participation in plantation establishment and management, cultivation 
of feedstock, provision of land, production and market for feedstock, 
users of bioenergy technologies. 

6.2.5 Ranking of criteria 

The pairwise comparison method embedded in the analytical hierarchy process (AHP) 

methodology was employed to rank the sustainability criteria. The AHP (Saaty, 1980) 

methodology was developed by Saaty in the 1970s and has been widely used as a decision 

making tool for various applications (Tsita and Pilavachi, 2013; Uyan, 2013). The 

methodology is executed in four steps: first, the overall objective of the study is specified. 

Next, the problem is structured into a decision hierarchy consisting of the goal, criteria, 

sub-criteria and alternatives. In the third step weights are assigned to the criteria through 

pairwise comparison. This process starts with criteria at the lower level of the hierarchy, 

and progresses to those at the higher levels respect to the preceding steps. Lastly synthesis 

of the weights is carried out in order to rank the alternatives as described by Kablan 

(2004) and Saaty (2008). More details on the AHP methodology is given in Section 5.2.  



90 

 

The decision matrix for the problem was developed and given in Figure 6.2. Ranking of 

criteria was conducted by a panel of multi-stakeholders during a consultative workshop 

held at Gulu University in February 2013. The main objective of the workshop was to 

solicit the opinion of stakeholders on the importance of sustainability criteria for the 

bioenergy systems used for cooking in Uganda.  

The workshop was structured into three sessions; first general background information on 

sustainability of energy systems was introduced to participants. This was followed by an 

elucidation session where the list of selected criteria were introduced and explained to 

participants by experts on social, economic, environmental and technical issues. At this 

stage, further filtering of the criteria was performed to come up with the final list. Finally, 

stakeholders were provided with forms for pairwise comparison of individual criteria 

along with a summary of their definition. Stakeholders weighted the importance of the 

criteria using pairwise comparison, by indicating which of a given pair of criteria was 

more important than the other and my how much. For the purpose of this study, the AHP 

method was performed up to third step, since the goal of the study was to assign 

importance to the criteria. Data of the pairwise comparison was analysed and individual 

scores were aggregated using geometric mean (Forman and Peniwati, 1998) to determine 

the aggregated score of the multi-stakeholder panel. The alternatives given in  the 

hierarchical structure in Figure 6.2, were included in the hierarchy to ensure that the 

criteria were relevant to all of them (Kurka and Blackwood, 2013).  

 

Figure 6.2. Decision matrix for ranking importance of sustainability criteria. Sci, Eci, Eni 
and Tci are social, economic, environmental technical criteria, respectively. Subscript i = 
1, 2, …, n are criteria number 

 

Economic Environmental Technical Social 

Sc1, Sc2, … Scn Ec1, Ec2, …, Ecn En1, En2, …, Enn Tc1, Tc2, …, Tcn 

Sustainability measure 

Biogas system Jatropha system Residue gasificaton  Charcoal 
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6.3 Results 

6.3.1 Preliminary list of criteria 

The preliminary list of criteria identified from literature review is given in Table 6.3, 

totalling 65 in number. The criteria were classified under social, economic, environmental 

and technical dimensions of sustainability. The technical dimension of sustainability had 

the highest number of criteria, totalling 20, followed by economic at 16 and 

environmental and social dimensions at 15 and 14, respectively. Table 6.3 also shows the 

suitability of criteria based on their relevance, practicality, independence and simplicity. 

From the literature review, it was observed that some criteria were classified under more 

than one dimension of sustainability. For example, energy autonomy has featured as a 

social as well as an economic criteria, it was recorded as social criteria in this study.  

Table 6.3. List of Criteria identified from literature with results of selection criteria 

Dimension Criteria Relevance Practicality Independency Simplicity 

Social Social acceptability √ √ √ √ 
 Job creation √ √ √ √ 
 Legislative requirements √ √ √ √ 
 Social inclusion √ √ √ √ 
 Market maturity √ √ × √ 
 Energy autonomy √ × √ √ 
 Protection of property rights (land tenure conflict) × × √ √ 
 Protection of human safety and health √ √ × √ 
 Labour conditions and labour income √ √ × √ 
 Capacity building of local human resource √ √ × √ 
 Fair trade conditions × × √ × 
 Food security in context of bioenergy development √ √ × √ 
 Accessibility, affordability and disparity √ √ × √ 
 Social well-being √ √ √ √ 
Economic Investment cost √ √ √ √ 
 Operation and maintenance cost √ √ √ √ 
 Viability - Net present value (NPV) √ √ √ √ 
 Payback period √ √ × √ 
 Equivalent annual cost √ √ × √ 
 Labour cost √ √ × √ 
 Energy price to end user × √ √ √ 
 Macroeconomic sustainability √ × √ × 
 Risk minimisation √ × √ √ 
 Strength and diversification of local economy √ × √ √ 
 No blocking of other desirable developments √ × √ √ 
 Institutional capacity √ × √ × 
 Service life √ √ √ √ 
 Institutional well-being × × √ × 
 Utility incentives/rebate √ × √ √ 
 Savings per month √ × √ √ 
Environmental Reduction of climate change effects √ √ √ √ 
 Particles emission × × × × 
 Land use change √ √ √ √ 
 Loss of biodiversity √ √ √ √ 
 Noise pollution √ √ × √ 
 Primary energy demand √ × × √ 
 Soil degradation √ √ √ √ 
 Resource depletion √ √ × √ 
 GHG emissions √ √ × √ 
 Water depletion and pollution √ √ √ √ 
 Impact on human health √ √ √ √ 
 Air quality due to non GHG emissions √ √ × √ 
 Ecological justice √ × × × 
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Table 6.3 Continued … 

Dimension Criteria Relevance Practicality Independency Simplicity 

Technical Functionality √ √ √ √ 
 Reliability √ √ √ √ 
 Usability √ √ √ √ 
 Technical efficiency √ √ √ √ 
 Maintainability √ √ √ √ 
 Exergy efficiency √ √ × × 
 Portability √ √ √ √ 
 Installed capacity × √ √ √ 
 Energy breeding ratio √ √ × × 
 Energy payback √ √ √ × 
 Conversion ratio √ √ × × 
 Complexity √ √ × √ 
 Development status √ √ × √ 
 Technical maturity √ √ × √ 
 Continuity and predictability √ × × √ 
 Health and safety of energy system √ √ × √ 
 Energy balance √ √ × √ 
 Safety √ √ × √ 
 Effectiveness √ × × √ 
 Upgradability √ √ × √ 
 Waste generation and management √ × × √ 
 Natural resource efficiency √ √ × √ 

6.3.2 Summary and description of selected criteria 

The final list of criteria for sustainability of the bioenergy systems is summarised in Table 

6.4 along with a brief description of each. Six criteria were selected for the technical and 

environmental dimensions of sustainability, while social and economic dimensions had 

five and four criteria, respectively. 

6.3.3 Ranks of sustainability dimensions 

The social, economic, environmental and technical dimensions of sustainability were 

ranked by stakeholders using pairwise comparison according to the AHP methodology, 

and the result is given in Figure 6.3. The figure shows that the economic dimension of 

sustainability was ranked as most important with a score of 0.352. Since the total score of 

all the four dimensions add to one, the value 0.352 can be interpreted as economic criteria 

influence 35.2% of the sustainability considerations of bioenergy systems for cooking in 

the study area. More detailed presentation of the results of the importance of 

sustainability dimensions are given in second column of Table 6.5. It can be observed that 

the social dimension of sustainability was second in rank with an influence of 25.4%, 

while technical dimension had the lowest influence of 17.7%. Stakeholders therefore 

consider economic and social considerations as most important sustainability dimensions 

in their decision to select bioenergy systems for cooking. 
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Table 6.4. List of bioenergy sustainability criteria for Uganda and their description 

Sustainability 
dimension 

criteria Description of criteria 

Social Acceptability Harmony with cultural or traditional values and beliefs that may hinder the 
dissemination of the technology 

 Job creation Increase in direct or indirect employment due to the introduction of the 
technology 

 Legislative requirements Compatibility with the political, legislative and administrative requirements 

 Social well-being Impact on income, and food security, energy autonomy or any general 
welfare of the society 

 Social inclusion Possibility of use by a broad spectrum of the society irrespective of their 
social status such as gender, education level, disability etc. 

Economic Investment cost The cost of introducing the new technology, including all cost required to 
implement the project 

 Operation and maintenance cost Sum of all fixed and variable costs required for operating the bioenergy 
equipment 

 Financial viability Possibility of being profitable as measured by net present value and payback 
period 

 Service life Period of time in years when the systems is still economically useful 

Environmental  Reduction of climate change effects Contribution of the technology towards reduction of climate change, through 
reduction of greenhouse gas emissions 

 Loss of biodiversity Loss of plant or animal species as a result of operation of the bioenergy 
system 

 Soil degradation Loss in quality or quantity of soil due to erosion or pollution 

 Impact on water resource Reduced availability or quality of water resources 

 Land use change Conversion of existing use land resources to other activities undesirable 
activities of bioenergy production 

 Impacts on human health  Injury or negative impacts on health of users 

Technical Functionality The capability of bioenergy systems to provide functions, which meet stated 
and implied. 

 Reliability The capability of bioenergy systems to maintain its level of performance for a 
specified period of time 

 Usability The capability of bioenergy systems to be understood learned, used and 
attractive to the user. 

 Energy efficiency The capability of bioenergy systems to provide reasonable output, relative to 
the amount of resources input 

 Maintainability The capability of the systems to be modified. Modifications may include 
corrections, improvements or adaptations of the bioenergy systems to changes 
in the environment and in the requirements and functional specifications 

 Portability Easy flexibility to current conditions, easy to install, replicate and replace. 

 

 

Figure 6.3. Ranks of sustainability dimension 
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6.3.4 Local importance of sustainability criteria  

The importance of the social, economic, environmental and technical criteria of 

sustainability is given in Figure 6.4. Actual values of the local importance of each 

criterion are given in the fourth column of Table 6.5. Figure 6.4 (a) indicates that social 

well-being was most significant social criterion with local importance of 0.225. 

Meanwhile, Figure 6.4 (b) shows that capital and operating costs are the most important 

economic criteria for sustainability of bioenergy for cooking in this study. Capital cost 

was scored at 0.314, implying 31.4% of economic considerations for sustainability of the 

bioenergy systems is contributed by this criterion. This is followed by operation and 

maintenance cost with a contribution of 27.1%, while viability was the least important. 

For the case of environmental criteria, impact on human health had the highest 

importance with a local importance of 26.7%. Also, it can be observed from Figure 6.4(d) 

that efficiency was ranked as most significant amongst the technical criteria with a local 

importance of 21.3%. 

Table 6.5. Results of importance ranking of criteria and dimension energy sustainability 

Sustainability 
dimension Importance a Criteria Local 

importance b 
Global 
importance c 

Social 0.254 Acceptability 0.206 0.052 
Job creation 0.192 0.049 
Legislations 0.183 0.047 
Social well-being 0.225 0.057 
Social inclusion 0.194 0.049 

Economic 0.352 Capital cost 0.314 0.110 
Operating cost 0.271 0.095 
Service life 0.232 0.082 
Viability 0.183 0.064 

Environmental  0.218 Climate change 0.188 0.041 
Loss of biodiversity 0.121 0.026 
Soil degradation 0.115 0.025 
Water degradation 0.166 0.036 
Land use change 0.143 0.031 
Human health effects 0.263 0.057 

Technical 0.177 Functionality 0.158 0.028 
Reliability 0.192 0.034 
Usability 0.182 0.032 
Energy efficiency 0.213 0.038 
Maintainability 0.171 0.030 
Portability 0.084 0.015 

a Scores derived from pairwise comparison of social, economic environmental and technical criteria; 
b Scores derived from pairwise comparison of criteria under each dimension of sustainability,  
c The product of elements of second and fourth column, with respect to each sustainability dimension 
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Figure 6.4. Ranks of criteria under each sustainability dimension: (a) social criteria, (b) 
economic criteria, (c) environmental criteria, and (d) technical criteria. 

6.3.5 Global importance of criteria 

The global importance of the 21 criteria of bioenergy sustainability was calculated, and 

results of this analysis are shown in the last column of Table 6.5. To facilitate 

interpretation, the relative importance was plotted on a graph in descending order as 

shown in Figure 6.5. The figure shows that economic criteria were generally ranked to be 

more important in comparison to the other dimensions of sustainability. Actually, the first 

four most important criteria were of economic dimension, with the capital and operating 

costs being the ranked as most important, with global scores of 0.110 and 0.095, 

respectively. This implies that capital and operating cost influences almost 20% of the 

overall sustainability considerations of bioenergy systems for cooking in the study area.  

Figure 6.5 further shows that social criteria were ranked second in importance to the 

economic criteria, taking the seventh to the tenth positions. Apart from impact on human 

health, which took the sixth position, all the other environmental criteria were ranked 
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from the eleventh position and above. Also, none of the technical criteria featured 

amongst the top eleven criteria in the ranking. The most important technological criterion, 

that is efficiency, took the twelfth position in the ranking. Stakeholders ranked the 

portability of a technology as the least overall in global importance.  

 

Figure 6.5. Global priority ranks of all sustainability criteria under. 

6.4 Discussions 

This study aimed at identifying and ranking criteria for sustainability for bioenergy 

systems cooking in Uganda. A total of 21 criteria were selected and opinion of a multi-

stakeholder panel was solicited to determine the relative importance of criteria for 

assessing sustainability of four different bioenergy systems for cooking. In the study, 

criteria were categorised under economic, social environmental and technological 

dimensions of sustainability. The results showed that sustainability of the energy systems 

is depend on fulfilment of all the 21 sustainability criteria identified. Generally, economic 

and social criteria were given the highest importance in the ranking. This study is one of 

the first efforts aimed at identifying criteria for sustainable bioenergy systems for cooking 

in Uganda and provides useful information for future multi-criteria analysis (MCA) 

studies in the study area. 

6.4.1 Economic criteria 

The findings of this study indicate that economic dimension of bioenergy sustainability 

was given more weight than the social, environmental and technical. This finding is 

contradicts that by Buchholz et al., (2009), who reported that bioenergy experts from 

across the world raked environmental criteria as most important followed by social 

0.00

0.02

0.04

0.06

0.08

0.10

0.12



97 

 

criteria, while economic criteria generally ranked lower on the list (Buchholz et al., 2009; 

Markevičius et al., 2010). This disparity is probably explained by the fact that of the 66 

experts in the study by Buchholz et al., (2009), 46 of them were from Europe and 

America, where there is more knowledge and awareness about environmental issues. 

Better understanding and awareness of the experts on environmental concerns of 

bioenergy systems probably explains the high score reported by Buccholz et al., (2009). 

Generally however, developing countries are constrained by financial resources for 

investment in more sustainable bioenergy technologies, and this probably justifies the 

high importance allocated to the economic criteria. The finding of this study is also in 

agreement with available literature, that have frequently reported that economic 

constraints as a major barrier to dissemination of improved bioenergy systems in 

developing countries. Actually, it is reported that in most cases, adoption of improved 

bioenergy technologies in many developing countries have been because of subsidies 

from the government and other development agencies (Bond and Templeton, 2011; 

Chidumayo and Gumbo, 2012; Mwampamba et al., 2013). This suggests that strategies 

aimed at providing subsidies, such as tax exemptions, and grants for the development of 

bioenergy supply chains, would facilitate sustainable development of bioenergy systems 

as recommended by Mangoyana (2009). However, it should be noted that most 

governments of developing countries are also resource constrained and access to credit 

facilities from financial institutions is usually limited. Therefore, more innovative 

approaches aimed at reducing investment and operation costs of the technologies could 

probably be worthwhile. This could be achieved through research and development of 

innovative energy systems for cooking. 

6.4.2 Social criteria 

Results of this study indicate that stakeholders scored social dimension of bioenergy 

sustainability second in importance to the economic criteria. Social well-being was given 

the highest importance under this category. Generally, introduction of bioenergy systems, 

especially large scale projects, are known to have both positive and negative impacts on 

the well-being of a society (Dale et al., 2013). Positive impacts may include increase in 

household health due to reduced indoor pollution or even new employment in the supply 

chain of the technology. However, certain negative aspects of the technology could result 

in negative impacts on the society, for example introduction of energy crops on a large 
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scale may result in competition with food production, therefore negatively affecting the 

welfare and sustainability of the society. Concerns about food security is particularly 

important in developing countries where food production is still inadequate, and has been 

widely reported in literature (Dale et al., 2013; Phalan, 2009). These issues probably 

explain the high level of importance given to social well-being as criteria for 

sustainability. 

Next in importance was social acceptance of bioenergy technology. Acceptance of a 

technology may be influenced by a number of factors including awareness of the 

technology, relative advantages, complexity, as well as perception (Mallett, 2007).  As 

noted by Wüstenhagen et al., (2007), social acceptance can be conceptualised at three 

broad levels. First is socio-political level where technology acceptance should be aligned 

to existing policies, public and stakeholder interests. Next are the market and community 

acceptance which involve the actual adoption of the innovation. The last two categories 

are particularly critical in developing countries like Uganda, where it is usually the 

producer who is the final consumer of the bioenergy products and services. The high 

importance given to social acceptance suggests the need for transparency in the planning 

the bioenergy projects. This should aim at building trusts in the community about the 

information and overall intention of the project by giving opportunity to relevant 

stakeholders to participate throughout the decision making process. 

6.4.3 Environmental criteria 

Environmental dimension of bioenergy sustainability was rated third in importance in this 

study. Generally, bioenergy systems are credited for their ability to be carbon neutral 

when produced in a sustainable manner. Nevertheless, there several environmental 

problems that can arise from bioenergy projects, including emissions of greenhouse gases, 

direct impact on human health, land use change, loss of biodiversity and negative impacts 

on soil and water resources. Air pollution and acidification and other environmental 

challenges are also related to use of bioenergy. Of particular concern in this study was the 

impact on human health that was rated by stakeholders as the most important 

environmental criteria. Current bioenergy systems used in many developing countries are 

characterised by low efficiencies and excessive emissions of poisonous gases. The 

emissions of non greenhouse gasses such NOx, CO, SO2 and particulates results in 

decline in air quality and are a major cause of indoor air pollution resulting in acute 
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respiratory tract infection of users. Other health issues are related to workers safety in the 

supply chain of the bioenergy system. 

Next in importance to human health was the climate change criterion, which comes as a 

results global warming caused by increased levels of greenhouse gases such as CO2, CH4 

and S2O in the atmosphere. In most cases, production of bioenergy results in a negative 

greenhouse balance. However, in certain cases, such as when carbon-rich vegetation is 

replaced by energy crops can result in a positive greenhouse balance. Also, use of 

nitrogen-based fertilizers to improve yields of energy crops could result in emissions of 

N2O, which has 100 year global warming potential of 296 (Robertson and Grace, 2004). 

With this background, production of bioenergy crops on degraded land is could be 

advantageous as a means of reducing GHG emissions, and may result in negative GHG 

balance. The choice of the energy crop is also important, for example Jatropha curcas L. 

is known to grow well with minimum inputs of fertilizers and could therefore benefit 

from reduced N2O emissions. 

Impact on water resources was identified as the third most important environmental 

criteria of bioenergy sustainability. Bioenergy impacts on water resources may be in the 

form of reduced availability or quality of water. Care should therefore be taken especially 

when introducing crops such as of Eucalyptus, which are known to result in reduction in 

groundwater yields (Hanegraaf et al., 1998; Robinson et al., 2006). This is particularly 

important since most of the population in the study area depend on natural springs as 

source of domestic water. Water quality may also decline due to application of fertilizers 

to energy crops resulting in increased phosphorus and nitrogen concentration thus leading 

to eutrophication. Other concerns may include sedimentation due to increased runoff 

caused by land-use change to energy crops.  

6.4.4 Technical criteria 

Findings of this study indicate that the technical criteria were ranked lowest in importance 

amongst the four dimensions of sustainability. This is rather a surprise taking into 

consideration that many developing countries lack required skilled personnel to 

implement new bioenergy technologies. The efficiency of the bioenergy system was 

given the highest score as a criterion for sustainability of the bioenergy technologies 

under study. Generally, improvement of energy efficiency is expected to result in 

reduction in energy consumption and related benefit to the environment such as reduced 
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deforestation. Consequently, many developing countries, including Uganda are now 

promoting use of improved stoves with higher efficiencies than the traditional types. 

However, it has been observed that sometimes these benefits are not necessarily obtained 

since increased savings may result in an overall increase in consumption, a phenomenon 

popularly known as rebound-effect. For example, Zein-Elabdin (1997), found that up to 

41.7% of the designed fuel efficiency gains may be lost from improved stoves programme 

in Sudan. More detailed discussions on rebound effect and generally on Jevons Paradox 

can be found in Sorrell (2009). Therefore, it is important that the changes in bioenergy 

demand resulting from improved efficiency is critically assessed. Such information is 

generally lacking in many energy programmes in sub-Saharan Africa, and could be of 

interest in future studies. 

6.4.5 Considerations for future work  

Future work could involve developing and quantifying suitable indicators for all the 

criteria identified in this study. The environmental and economic indicators could be 

developed through the life cycle approaches such as life cycle costing and life cycle 

assessment in order to generate measurable indicators. However, it should be noted the 

analyses will most likely be faced with the challenge of lack of suitable data concerning 

bioenergy systems in the study area, as is the case in many developing countries. Further 

work could also involve developing appropriate methods for aggregation to derive 

sustainability indices that can be used to compare performance of alternative energy 

systems.  

6.5 Conclusions 

In present study, 21 criteria for assessing the sustainability of bioenergy systems for 

cooking were identified and ranked according to their importance by a multi-stakeholder 

panel in Uganda. The findings showed that economic and social dimensions are the major 

drivers of sustainability of bioenergy systems in the study area. The investment and 

operating costs were found to be the most important criteria for sustainability of 

bioenergy systems. The results of this study provides an important input to multi-criteria 

analysis (MCA) study for selecting bioenergy systems alternatives in order to achieve 

sustainability goals. As noted by Hajkowicz and Higgins (2008), problem structuring 

identification of decision options, criteria and criteria weights and is one of the most 

important step in MCA. Stakeholders panel are particularly important in the selection and 
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assigning weights to criteria to be included in the study according to their perceived 

values, as demonstrated in this study. This study therefore makes an important 

contribution towards understanding of criteria of bioenergy for cooking in Uganda. In 

conclusion, for sustainable development of bioenergy for domestic cooking in Uganda, 

critical attention should be given to social and economic aspects of the sustainability. 

However, considerations should also include environmental and technical aspects of 

bioenergy systems.  
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Chapter 7 – Assessing the environmental impacts of Ugandan 

bioenergy systems 
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Chapter 7 – Assessing the environmental impacts of Ugandan bioenergy 
systems 

Summary 

Use of bioenergy could result in a variety of environmental impacts. The level of impacts 

could be an important parameter for decision makers when selecting energy systems or 

for policy making. In this chapter, the life cycle assessment methodology was used to 

evaluate the comparative environmental impacts of biogas, briquettes, charcoal and 

Jatropha energy systems under Ugandan conditions. It was found that the domestic biogas 

system was the most promising technology with lowest overall environmental impacts. 

However, results were greatly influenced by the choice of values allocation and system 

boundary. Recycling of by-products of biogas and Jatropha systems as fertilizer was 

observed to significantly improve their environmental performances. Future studies could 

consider evaluating the sustainability of these technologies by exploring their social, 

economic, environmental and technological aspects simultaneously in a decision 

framework.  

7.1 Introduction 

Developing countries heavily rely on solid fuels for cooking and heating. Most common 

solid fuels include firewood, charcoal, coal and agricultural residues. When used in the 

indoor environment, they lead to pollution, which is a major health risk factor to women 

and children who are often the most exposed. Charcoal in particular is more popular 

among urban users in developing countries because of its higher energy density and lower 

emissions than firewood. However, its production, transportation and use results in 

environmental pressures ranging from deforestation, loss of biodiversity and emissions of 

greenhouse gases (GHG) and air pollutants. This could result in adverse impacts on 

human health, land use and depletion of natural resources. Consequently, other 

technologies are currently being explored to supplement or substitute extensive charcoal 

use in developing countries. Amongst these technologies are the domestic biogas energy 

system, briquetting of biomass residues and use of plant oil. 

Domestic biogas systems have of recent past attracted a lot of interest from policy makers 

in Uganda and other developing countries. Currently, there is deliberate effort by the 

government and development partners to promote the technology in Uganda. The 

technology provides opportunities for integration with crop production since slurry is a 
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very good organic fertilizer. This is of great advantage, due to savings of energy, 

resources and emission along the supply chain of mineral fertilizers. The potential to 

mitigate atmospheric methane emission from decaying biomass material is another 

important advantage of the technology. Utilisation of biogas for cooking converts 

methane that could have been released to the atmosphere into carbon dioxide, which has a 

global warming potential of about 22 times less than that of methane. Nevertheless, 

methane emissions still occur along the biogas supply chains due to leakages in the 

systems. Emissions of pollutants also occur during processes such as feedstock 

production, and the use phase of biogas. 

An alternative technology that is currently becoming of interest is briquetting of biomass 

residues to generate fuels for cooking. This may involve collection of agricultural 

residues over long distances to a central briquette production point. The collection, 

transportation and processing of residues into briquettes results in emissions of pollutants, 

which can lead to adverse environmental impacts. Material transportation phase leads to 

emissions of air pollutant and greenhouse gases (GHG). Depending on the distances 

involved, amount of emissions during transportation could be considerable, leading to 

adverse environmental impacts on human health and resource depletion. Like charcoal, 

combustion of briquettes in stoves results in emission of indoor air pollutants, such as 

particulate matter, and greenhouse gases. 

Recently, plant oil based systems have also generated a lot of interest as a potential 

bioenergy for use in developing countries. Plant oil stoves have been developed, making 

it possible to directly use vegetable oils for cooking. Jatropha is one of the crops seen as a 

potential biofuel with even a potential to substitute fossil fuels in the transport sector. 

Jatropha cultivation could lead to land use change, and if carried out in forested area, 

could result in loss of carbon stock. Cultivation and processing into oil also requires 

energy and resources and is accompanied by emissions that could result in environmental 

impacts. 

Since the processes involved in each of the four energy systems mentioned here vary in 

material and energy requirements, as well as emissions, one would expect each to have 

different levels of environment impacts. In order to combat the looming global warming 

and climate change, and ensure sustainability, the interest of a decision maker is; 

therefore, to minimise the environmental impact of a product or service. Products and 
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services with the lowest environmental impact would be the best option from the 

environmental point of view. However, at the moment, there is lack of knowledge of the 

relative environmental performance of these energy systems used in Uganda. 

The objective of this study was therefore to model and quantify the life cycle 

environmental impacts of biogas, briquettes, charcoal and Jatropha cooking energy 

systems using the life cycle assessment (LCA) methodology. A secondary objective was 

to generate key environmental performance indicators for each of the technology to be 

used as input to multi-criteria analysis study. The study used the attributional LCA 

approach (Rehl et al., 2012). 

7.2 Methodology 

The study followed the life cycle assessment (LCA) methodology. The LCA 

methodology was initially developed by the Society of Environmental Toxicology and 

Chemistry (SETAC) as an objective method for determining energy and material use, and 

release of wastes to the environment by a product, service or an activity (Klöpffer, 2006). 

Consequently, the International Organisation for Standardisation (ISO) developed a 

number of standards to guide LCA studies. Currently, the most authoritative LCA 

standards are the ISO 14040 and ISO 14044 (Finkbeiner et al., 2006). The LCA 

methodology is executed in four phases as follows: (1) goal and scope definition, (2) life 

cycle inventory (LCI) analysis, (3) life cycle impact assessment, and (4) life cycle 

interpretation. 

7.2.1 Goal and scope of the study 

The goal of this study was to carry out a comparative evaluation of the environmental 

impacts of four bioenergy technologies for domestic cooking in Uganda using the LCA 

methodology. Energy systems evaluated in the study were: (1) the domestic biogas 

system, (2) Jatropha plant oil using the Protos plant oil stove, (3) gasification of maize 

stalk briquettes in top-lit updraft (TLUD) gasifier stove, and (4) charcoal system 

involving combustion of charcoal produced from natural forests vegetation in the Kenya 

Ceramic Jiko (KCJ) stove. The charcoal system is the most widely used technology for 

domestic cooking in the study area and was therefore taken as the reference system. A 

functional unit of 1 MJ of heat effectively used for cooking was considered.  
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The scope of the study is from cradle-to-cradle, including impacts associated with 

material raw material production or extraction, material processing, transportation, use, 

management and recycling of by-products. The scope of the biogas system (Figure 7.1 

(a)) included production of grass and using it for feeding cattle, and using the manure 

produced as substrate for biogas production. Two scenarios were developed, in the first, 

slurry discarded without recycling or reuse, while in the second it is used as an organic 

fertilizer to enhance grass production. Use of feed supplements, acaricides, and veterinary 

drugs for cattle treatment and maintenance were excluded from the scope of the study. 

The scope of gasification system (Figure 7.1 (b)) included the collection of raw material, 

transportation, drying and commutation, briquetting, and combustion in TLUD stoves. 

Raw material for briquetting was maize stalks, and was assumed to be a waste material, 

since it is usually burnt in open field, without energy recovery during land preparation for 

planting crops (Okello et al., 2013a). Operations and resource requirement for the 

production of maize was therefore excluded from the scope of the study. Also, disposal of 

ashes generated from the TLUD gasifier stove during the use phase was excluded from 

the system boundary, since it was assumed not to have any adverse environmental 

impacts (Bailis, 2005). Two scenarios were developed, in the first, biochar produced from 

TLUD stove is used as carbon sink, while in the second it is used to substitute charcoal 

for cooking. 

Processes included in the boundary of charcoal systems were raw material extraction 

from natural forests, pyrolysis using traditional earth mound kilns, transportation to point 

of use and combustion in KCJ stoves (Figure 7.1 (c)). Like in the case of briquettes, 

disposal of ash was excluded from the system boundary. Being a reference system, only 

one scenario was evaluated. The Jatropha system boundary begins from Jatropha plant 

cultivation, harvesting of fruits, drying and threshing, oil extraction from seeds, and use 

of oil for cooking in the Protos plant oil stove (Figure 7.1 (d)). Two scenarios were 

developed and evaluated; the first assumed that seed cake is disposed without using as 

organic fertilizer, and husks generated during threshing is incinerated in open air. The 

second scenario assumed that seed cake is used as fertilizer and husks as substitute to 

maize residues for briquette production.  

The geographical scope of the study was Gulu municipality, located in northern Uganda 

and surrounding areas within a radius of 40 km. Raw material production, collection, 

transportation, processing, use, and disposal is carried out within this radius. 
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Allocation was necessary in the biogas systems, in which cattle rearing results in 

production of milk for sale or consumption by households and manure used for biogas 

production. Economic allocation was used to distribute environmental impacts to the milk 

and manure. It was assumed that 10% of environmental impacts resulting from grass 

production and cattle keeping are associated with energy production and dairy products 

account for the remaining 90%. 

7.2.2 Life cycle inventory 

Life cycle inventory data for this study were mainly from secondary sources. Foreground 

data were mainly obtained from available literature for each of the technology under 

similar environment. Background data were obtained from ecoinvent 3.0 database. Details 

of the LCI analysis for each of the technology is given in Section 7.3. 

7.2.3 Life cycle impact assessment 

Eco-indicator 99 (Frishknecht and Jungbluth, 2007), a damage oriented approach for 

impact assessment was used in this study. The analysis included 11 environmental 

impacts, categorised under three endpoint impact categories of human health 

(carcinogens, respiratory organics and inorganics, climate change, radiation, ozone layer, 

ecotoxicity and acidification/eutrophication), ecosystem quality (land use) and resources 

(minerals and fossil fuels). 

7.2.4 Life cycle interpretation 

Interpretation of LCA results was performed using three different methods. For each 

technology, contribution analysis was carried out to identify environmental hotspots of 

the bioenergy supply chains. Also comparative plots of single score of impacts for each 

technology were done in order to understand the relative environmental impacts of the 

technologies. Lastly scenarios were developed for three technologies studied, except the 

reference system, by varying the systems parameters to observe their effects on the 

environmental impacts of each technology. 
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Figure 7.1. System boundary for the study; (a) biogas (b) briquette, (c) charcoal, and (d) 
Jatropha 

7.3 Life cycle inventory analysis of the energy systems 

7.3.1 Inventory of biogas system 

Biogas technology is one of the priority bioenergy technologies being promoted for 

domestic cooking in the Uganda (Sengendo et al., 2010). In the renewable energy policy 

(2007), the country has set a target of installing 100,000 domestic biogas digester by the 

year 2017. Three different digester designs are available in Uganda, namely the fixed-

dome, floating-dome and bag digester designs. The fixed-dome also called Chinese 
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digester is the most commonly used. The digester is built underground of masonry, and 

usually range in volume from 8 to 16 m3 (Okello et al., 2013b; Walekhwa et al., 2009). 

Cattle manure is the most commonly used substrate for biogas production in Uganda. In 

this study, the biogas system was modelled from the stage of Napier grass (Pennisetum 

Purpureum) cultivation as a feedstock to cattle kept under zero-grazing. Manure 

generated by the cattle is mixed with water in a ratio of 1:1 by volume and a fixed amount 

fed into the bio-digester on a daily basis. Dilution of manure with water enhances 

gravitational flow of substrate through the system; therefore, avoiding need for 

mechanical pumping operations. Gas from the storage chamber of the digester is 

conveyed through pipes and used for cooking using biogas burners. 

Cultivation, weeding and harvesting of grass are typically manual operations in Uganda. 

Grass production was assumed to be under rainfed conditions without supplementary 

irrigation input. To maintain yield, mineral fertilizers are applied to grass. The annual 

requirement of fertilizer for grass production was taken as 200 kg ha-1 of calcium 

ammonium nitrate (CAN), triple superphosphate (TSP) or single superphosphate (SSP) at 

a rate of 300 kg ha-1 and Muriate Potash (KCL) at a rate of 80 kg ha-1 (Orodho, 2006). All 

operations were assumed to take place within the farm premises and therefore, vehicles 

were not used for transportation of materials. The grass yield was taken to be 8000 kg dry 

matter per hectare in accordance with Lukuyu et al., (2012). 

A typical head of cattle weighing 400 kg and requiring 12 kg dry matter feed per day was 

assumed. Rearing of cattle results in enteric methane emissions, which in accordance with 

Casey and Holden, (2005) was assumed to be 100 kg y-1 per cattle head. Dry matter (DM) 

content of manure was assumed to be 15%, and biogas yield from manure is assumed to 

be 0.281 kg kg-1 of DM. Since the digester is not fully airtight, some methane loss occurs 

during digestion through openings such as the substrate inlet pipe and slurry expansion 

chamber (Khoiyangbam et al., 2004). Estimated methane loss from fixed and floating 

dome digesters range from 5 to 15% of total methane yield (Griggs and Noguer, 2002; 

Pathak et al., 2009). Methane emission from the CARMATEC bio-digester was estimated 

using the mid value of 10% leakage.  

The use phase of the biogas system involves combustion of the gas in burners. Burners 

are of several designs, some of which are locally fabricated by Ugandan artisans and their 

emissions and efficiencies are expected to vary with design. For this study, it was 
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assumed that the efficiency of biogas burner is 55% (Sasse et al., 1991). Heating value of 

biogas was assumed 20 MJ kg-1 and density as 1 kg m-3(Perera et al., 2005). Combustion 

of biogas results in emissions such as CO2, CH4, NOx and particulate matter. Emission 

factors from biogas burners were adopted from Afrane and Ntiamoah (2012) and (Smith 

et al., 2000). 

Table 7.1. Input and emissions LCI data for the biogas system (per MJ heat effectively 
used for cooking) 

Process Inputs and outputs 
Quantity per  
MJ of heat Units 

Grass cultivation Input   
N as Calcium ammonium nitrate (CAN) 3.78E-02 kg 
P as Single/triple superphosphate (Mono-calcium phosphate) 5.66E-02 kg 

K as Muriate Potash (Potassium chloride KCL) 1.51E-02 kg 

Land occupation 1.888 m2 
Output   
Grass (dry matter) 1.51 kg 

Cattle Feeding Inputs   
Grass (dry matter) 1.51 kg 
Water 8.808 L 
Outputs   
Enteric methane emission 3.45E-02 kg 
Manure (dry matter) 3.59E-01 kg 

Biogas production Inputs   
Water 2.3933 L 
Manure (dry matter) 3.59E-01 kg 
Outputs   
Methane emissions 6.00E-03 kg 
CO2 emissions   kg 
Biogas 9.10E-02 kg 

Biogas combustion Inputs   
Biogas 9.10E-02 kg 
Output (emissions kg MJ-1)   
CO2 1.47E-01 kg 
CO 2.03E-04 kg 
NOx 9.15E-05 kg 
N2O   
SO2 1.02E-05 kg 
NMVOC 6.10E-05 kg 
CH4 1.02E-04 kg 
PM 4.82E-06 kg 

Effluent management Inputs   
Effluent (volume) 4.790 L 
Outputs   
NH3 5.500E-04 kg 
CH4 3.218E-03 kg 
N2O 7.467E-05 kg 

Slurry is the by-product of the digestion process and it flows by gravity from the 

expansion chamber into a storage tank. It is rich in essential plant nutrients, with the DM 

comprising of 1.4% nitrogen, 0.5% phosphorus, and 0.8% potassium (Pathak et al., 2009). 

In the second scenario of this study, was slurry modelled to substitute mineral fertilizers 

by applying it in the grass fields. Application of slurry was assumed to be manually done, 

so does not require machinery operations. However, the slurry emits gases such as NH3, 

CH4 and N2O during storage and application in crop fields (Boulamanti et al., 2013). 
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Total emissions of NH3, CH4 and N2O during storage and application were assumed to be 

229.9 g m-3, 1344.6 g m-3 and 31.2 g m-3, respectively (Amon et al., 2006). It was 

assumed that negligible loss in mass of the substrate occurs during digestion (Pathak et 

al., 2009). Therefore, the volume DM content of slurry was assumed to be equivalent to 

that of the initial substrate material fed into the digester. 

Based on these assumptions and secondary data presented here, the foreground inventory 

data of the biogas system were developed and presented in Table 7.1. Background data 

for the system was obtained from the ecoinvent LCA database. 

7.3.2 Inventory of the gasification system 

Biomass briquetting is the conversion of loose biomass material into a high density 

product by subjecting the material under pressure, with or without binder (Mwampamba 

et al., 2013). The briquetting process involves material collection, drying, commutation 

and densification using various types of presses (Samson et al., 2005). The resulting 

product is called briquette and is easier to handle and has better combustion properties 

than the original biomass material. Uganda generates large quantities of agricultural and 

forest residues that could be used as raw material for briquette production (Knöpfle, 2004; 

Okello et al., 2013a). According to studies by Okello et al., (2013a), the gross energy 

potential of maize stalk in Uganda amounts to 65.5 PJ y-1, and is the highest of all the 

crops residues evaluated in the study. Maize stalk was therefore chosen as the raw 

material for briquettes production in this study.  

Maize stalk used for briquettes production was assumed to be an agricultural waste with 

no value attached. Actually, the stalks are usually burnt in open field during land 

preparation for subsequent crop planting. Therefore, resources for production of maize, 

such as mechanical power and fertilizers were excluded from the boundary of the current 

study. However, maize is grown by individual farmers spread over a large geographical 

area surrounding Gulu municipality. This therefore requires that it is collected to a central 

point for processing into briquettes. Since most rural areas surrounding the municipality 

do not have access to electricity, it was assumed that all processing operations take place 

within Gulu municipality. It was assumed that collection of maize residues is done within 

an average distance of 40 km from the processing plant using a truck of 16 tonne 

capacity. Use of trucks results in emissions, which was estimated using ecoinvent 3.0 

databases. 
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Upon arrival at the processing plant, the maize stalk undergoes drying and commutation 

into suitable particle size for briquetting. The study area receives on average global solar 

radiation ranging from about 5 kWh m-2 d-1 in July, to about 6 kWh m-2 d-1 in January 

(Mubiru and Banda, 2012). Therefore, it was assumed that drying of the maize stalk was 

primarily done using solar energy, without additional energy inputs from the 

technosphere. Size reduction was assumed to be accomplished by a hammer mill, 

powered by electrical energy from the grid. Energy requirements for commutation of 

maize stalk was taken to be 18 kWh t-1, and for briquetting as 43 kW t-1 of briquettes 

produced (Hu et al., 2014). Upon production, the briquettes are distributed to users within 

the municipality at an average distance of 10 km using a 16 tonne truck. 

Upon manufacture, the briquettes are directly used for cooking using gasifier stoves. 

Gasification process was modelled using the TLUD gasifier stove. The TLUD stove was 

chosen for the study because it known to be more fuel efficient and emits less air 

pollutant than traditional charcoal and firewood stoves used in Uganda (Martin et al., 

2013). According to Ravindranath and Balachandra, (2009) efficiency of TLUD gasifier 

stove range from 25% to 35%; thus, for this study, a mid value of 30% was assumed. 

Combustion of briquettes in TLUD stoves results in emissions such as CO2, CO, CH4, and 

particulate matter. Emission factors for the stove where obtained from  (Sparrevik et al., 

2013). 

Gasification of briquettes in TLUD stoves results in charcoal and ash as by-products. The 

recovery rate of charcoal produced was estimated to be 28% of the input biomass 

(Sparrevik et al., 2013). The charcoal can be used as fuel for cooking in charcoal stoves. 

Alternatively, the charcoal can be used as soil amendment to improve crop yields. Use of 

charcoal as carbon sink, for long-term storage of carbon to mitigate atmospheric 

greenhouse gas emission is also gaining interest amongst scientific community (Sparrevik 

et al., 2013). Disposal of the ash generated was assumed not to cause any significant 

environmental impacts (Bailis, 2005). 

Using the assumptions and data available from literature cited in this section, the 

foreground inputs data for the LCA was calculated for a functional unit of 1 MJ heat and 

presented in Table 7.2. Secondary data used for the LCA was obtained from the ecoinvent 

database. 
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Table 7.2. Input and emission inventory data for briquetting system 

Process Inputs and outputs Quantity per MJ  
of heat 

Units 

Residue collection Input   
Transport 16 ton truck 9.68E-03 tkm 
Output   
Maize stalk 2.42E-01  

Drying and commutation Inputs   
Electricity (100% Hydro) 4.36E-03 kWh 
Outputs   
Maize stalk particles 2.42E-01 kg 

Briquetting Inputs   
Electricity 1.04E-02 kWh 
Outputs   
Briquettes 2.42E-01 kg 

Briquette distribution Input from techno-sphere   
Transport  kg 
16 t truck 2.42E-03 tkm 

Briquette combustion 
TLUD gasifier stove, 30% 
efficiency 

Inputs   
Briquettes (3.333MJ heat) 2.42E-01 kg 
Output    
Useful heat (product) 1.00 MJ 
Co-product (Biochar/kg briquettes) 3.600E-01 kg 
Combustion emissions per kg feedstock   
CO2 7.604E-01 kg 
CO 1.483E-02 kg 
NOx 4.840E-06 kg 
N2O 9.680E-06 kg 
SO2 0.000E-00 kg 
NMVOC 6.171E-03 kg 
CH4 2.977E-03 kg 
PM2.5 1.137E-03 kg 

7.3.3 Inventory of charcoal – the reference system 

The charcoal system was modelled based on the current system of charcoal production, 

which involves harvesting of wood from natural forest, followed by pyrolysis in the 

traditional earth-mound kilns. The charcoal is then transported using trucks to the urban 

areas for cooking in charcoal stoves. All the harvesting and charcoal production 

operations are manually done using simple tools, such as axes, hoes and machetes. The 

wood harvesting stage involves extracting entirely above ground portion of the vegetation 

and therefore could result in variation in carbon stock. Carbon stock flux due to wood 

harvesting of -1.43 t C per tonne of charcoal produced from native vegetation on a 15 

year coppice was assumed for this study (Bailis, 2005). Not all the above ground biomass 

harvested is converted into charcoal. Small branches and leaves that is not suitable for 

charcoal production is burnt in open fire in the forest, or in some cases collected and used 

as firewood for cooking. In this study, it was assumed that unsuitable wood, estimated to 

be about 10% of the mass of the total harvested biomass is burnt in open air. This results 

in air emissions that was estimated to be equivalent to open fire burning under savannah 

conditions (Akagi et al., 2011). 
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Carbonisation was assumed to be in traditional earth-mound kilns. It is the most common 

technology for charcoal production in Uganda as well as other sub-Saharan African 

countries. It involves stacking the harvested wood in piles and covering with soil to limit 

the oxygen supply during pyrolysis. The efficiency of the process ranges from about 10 to 

15% (Knöpfle, 2004; Okello et al., 2013b). The worst-case scenario of 10 % efficiency of 

charcoal recovery was used for modelling charcoal production in this study. 

Carbonisation process results in emissions of gases such as CO2, CO, CH4, NMVOC and 

particulates. Emission factors for charcoal production in earth-mound kilns were obtained 

from Pennise et al., (2001).  

Charcoal is then packed in polythene bags and transported using trucks to the urban area 

where it is used for cooking. It was assumed that a 16 tonne truck is used for 

transportation of charcoal and the emission factors were obtained from the ecoinvent 

database. Transportation results in GHG and pollutant emissions. An average charcoal 

collection distance of 40km was assumed, with the truck travelling empty in the return 

trip. 

Use of charcoal is by combustion in charcoal stoves, resulting in emissions of pollutants 

and greenhouses gases such as emissions CO2, CO, CH4, NMVOC and particulates 

(Bhattacharya et al., 2002). Level of emissions depends on the design of the stove. Kenya 

Ceramic Jiko is a commonly used charcoal stove in Uganda and was therefore used in 

modelling the combustion process. Emission factors for cooking with charcoal in KCJ 

stove was obtained from Jetter et al., (2012). Stove thermal efficiency at cold start of 15% 

(Oketch, 2012) was assumed, and the calorific value of charcoal was assumed to be 30.8 

MJ kg-1 (Bhattacharya et al., 2002). 

With the assumptions presented in this section, foreground data for producing 1 MJ of 

heat energy effectively used for cooking was calculated and presented in Table 7.3. 

Secondary data such as emissions from trucks during transportation was obtained from 

ecoinvent database. 

7.3.4 Inventory of Jatropha system 

Under this system, a plantation of Jatropha (Jatropha curcas) is established for 

production of Jatropha oil. Jatropha can be planted on marginal land, or intercropped with 

food crops in an agro-forestry system (Contran et al., 2013). Cultivation of Jatropha 
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requires input of NPK fertilizer. However, as noted by Achten et al., (2008) the 

application rate has not yet been optimised. For this study we assumed an annual 

application rate of 81 kg ha-1 nitrogen as N, 31 kg phosphorus as P2O5, and 89 kg 

potassium as K2O (Eshton et al., 2013). Annual yield of 5000 kg of dry Jatropha seed per 

hectare was assumed. All the field operations were assumed to be manually done and 

being a tropical climate, irrigation is not required during Jatropha cultivation. Harvested 

fruits are transported using a 16 tonne truck to a central processing point at a mean 

distance of 40 km from the fields. 

Table 7.3. Input and emissions inventory data for the charcoal system 

Process Inputs and outputs 
Quantity per MJ  
of heat Unit 

Wood harvesting Input   
Natural forest vegetation (dry) 2.9630 kg 
Output   
Net CO2 flux due to direct land use change -5.83E-04 kg 
Dry wood for charcoal 2.66667 kg 
Wood waste (10%) of total 2.96E-01 kg 
Emissions from open air wood waste 
combustions  

  

CO2 5.00E-01 kg 
CO 1.87E-02 kg 
NOx 1.16E-03 kg 
NH3 1.54E-04 kg 
N2O 0.00E+00  
SO2 1.42E-04 kg 
NMVOC 1.40E-02 kg 
CH4 5.75E-04 kg 
PM2.5 2.12E-03 kg 

Charcoal production (pyrolysis) in 
earth mound kilns, 12.5% 
efficiency 

Inputs   
Dry wood 2.66667 kg 
Outputs   
Charcoal 0.33333 kg 
Emissions   
CO2 6.01E-01 kg 
CO 7.43E-02 kg 
NOx 2.10E-05 kg 
NO 1.87E-05 kg 
N2O 5.00E-06 kg 
SO2 0.00E+00  
NMVOC 3.09E-02 kg 
CH4 1.49E-02 kg 
PM (TSP) 1.01E-02 kg 

Transport Inputs   
16 t truck 1.00E-02  

Charcoal combustion, Ceramic Jiko 
stove, (10% efficiency), 15% 
efficiency 

Inputs   
Charcoal (equivalent to 5.56MJ heat) 3.33E-01 kg 
Output    
Heat (product) 1.00 MJ 
Emissions (Per MJ heat effective)   
CO2 6.96E-01 kg 
CO 6.57E-02 kg 
NOx 3.33E-05 kg 
N2O 0.00E+00  
SO2 0.00E+00  
NMVOC 3.40E-03 kg 
CH4 4.17E-03 kg 
PM2.5 1.32E-03 kg 



116 

 

Jatropha fruit then undergoes processing involving sun-drying and de-hulling, oil 

extraction and purification. Due to favourable levels of insolation in the study area, drying 

is carried out under natural conditions in the sun. Dry Jatropha fruit is composed of 35 to 

40% husks, and 60 to 65% seeds which has an estimated oil content of 34.4% (Achten et 

al., 2008). Oil extraction is carried out using expellers, such as “Sundhara” oil expellers, 

which are designed for a variety of oil seeds (Grimsby et al., 2012). The efficiency of oil 

extraction by hand press is about 60% (Brittaine and Lutaladio, 2010). In the last 

processing stage, impurities in the oil are then allowed to settle by gravitation before 

being filtered through a piece of cotton cloth. Filtered oil can be directly used in plant oil 

stoves for cooking. The oil can also be further processed through esterification to produce 

biodiesel, or saponification to produce soap. In this study, it was assumed that filtered oil 

is directly used for cooking using plant oil stoves. 

Jatropha fruit husks and seed cake are by-products generated during de-hulling and oil 

extraction processes, respectively. The husks have an energy content of 16.5 MJ kg-1 

(Eshton et al., 2013), and can be densified into briquette fuel for cooking. In the first 

scenario, it was assumed that the husks are disposed of by open burning, which is a 

common practice for disposing of agricultural wastes in Uganda. This results in 

emissions, which are estimated to be equivalent to those of other agricultural residues 

(Akagi et al., 2011; Estrellan and Iino, 2010). Seed cake is known to be a good quality 

fertilizer (Openshaw, 2000), with composition of 4.91% N, 0.90% P and 1.75% K 

(Pandey et al., 2012). Alternatively, the cake can be used as a substrate for biogas 

production, or as a raw material for synthetic fibre production. In this study, we assumed 

that all the cake is used as a substitute to inorganic fertilizer for Jatropha cultivation. 

Combustion was modelled to take place in a plant oil pressure stove called Protos (Gaul, 

2013; Kratzeisen and Müller, 2009). The density and heating value of Jatropha oil were 

assumed to be 932.92 kg m-3 and 38.2 MJ kg-1, respectively (Pramanik, 2003). 

Meanwhile, the thermal efficiency of the Jatropha stove was assumed to be 40% (Huboyo 

et al., 2013). It was assumed that emissions from Protos stove are equivalent to that of 

Rapeseed combustion in Protos stove. This is because the data for Jatropha oil 

combustion in plant oil stoves is currently not available. 

With the sets of assumptions presented in this section, the foreground inventory data for 

Jatropha system, required to generate 1 MJ cooking energy was calculated and presented 
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in Table 7.4. Background data for emissions due to fertilizer application and transport was 

obtained from the ecoinvent 3.0 database. 

Table 7.4. Input and emissions inventory data for Jatropha system for 1 MJ of heat 
energy 

Process Inputs and outputs 
Quantity per MJ 
of heat 

Units 

Jatropha cultivation Input   
Nitrogen fertilizer as N 5.13E-03 kg 
P as single/triple superphosphate 1.96E-03 kg 
K as Muriate Potash 5.64E-03 kg 
Pesticide, delta 2.5% Emulsion Concentrate 2.09E-02 ml 
Land occupation 6.34E-01 m2 
Output   
Jatropha fruits  5.28E-01 kg 

Drying and de-hulling Inputs   
Jatropha fruits 5.28E-01 kg 
Outputs   
Jatropha seeds 3.17E-01 kg 
Jatropha husks 2.11E-01 kg 

Oil extraction efficiency 
60% 

Inputs   
Dry Jatropha seed, 34.4% oil content 3.17E-01 kg 
Outputs   
Jatropha oil 6.54E-02 kg 
Jatropha seed cake, 12.30% oil content 2.51E-01 kg 

Jatropha oil combustion, 
Protos plant oil stove, 
efficiency 40% 

Inputs   
Jatropha oil (equivalent to 2.5MJ gross) 6.54E-02 kg 
Output (emissions kg kg-1 oil)   
CO2 2.47E-01 kg 
CO 1.85E-03 kg 
NOx 1.70E-04b kg 
N2O 1.85E-07a kg 
SO2 3.50E-04b kg 
NMVOC 3.75E-05b kg 
CH4 1.90E-04 kg 
PM2.5 3.93E-04 kg 

Seed cake and husks 
management 

Inputs   
Husks 2.11E-01 kg 

Cake 2.51E.01 kg 
Outputs (emissions from husks incineration)   
CO2 3.35E-01 kg 
CO 2.15E-02 kg 
NOx 6.57E-04 kg 
N2O 1.48E-05 kg 
SO2 4.22E-04 kg 
NMVOC 1.63E-02 kg 
CH4 2.53E-04 kg 
PM2.5 1.32E-03 kg 

a EPA database (http://www.epa.gov/climateleadership/documents/emission-factors.pdf),  
b Calculated from Air Pollutant Emission Factor Library, assuming energy production from small 
combustion equipment in Europe, using liquid fuels for residential application (equipment type – other). 
(http://www.apef-library.fi/). 

7.4 Results and discussions 

In this section, the results of the environmental impact assessment of the four energy 

systems are presented. The results are divided into two main sections: Section 7.4.1 

presents results of the baseline scenario, and in Section 7.4.2, results of alternative 
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scenarios involving resource by-product recycling modelled through system expansion 

are presented. 

7.4.1 Characterisation results 

Environmental impacts were characterised and results for each of the technology is 

presented in Table 7.5 and Figure 7.2. Characterisation results show that biogas system 

had the highest impact categories of radiation, acidification and eutrophication impacts 

compared to the other energy systems. Charcoal system on the other hand ranked highest 

in impact categories of carcinogens, respiratory organics and inorganics and climate 

change impacts. Jatropha system had highest impact categories of ozone layer, 

ecotoxicity, land use, minerals and fossil fuels.  

Table 7.5. Comparative characterised results of the environmental impacts of the four 
energy systems under baseline scenario using Eco-indicator 99 impact assessment method  

Impact category Unit Biogas 
cooking 

Briquette 
gasification 

Charcoal 
cooking 

Jatropha oil 
cooking 

Carcinogens DALY 8.59E-09 1.27E-08 3.39E-08 2.82E-08 

Respiratory organics DALY 2.29E-10 7.94E-09 6.21E-08 2.1E-08 

Respiratory inorganics DALY 8.18E-08 8.1E-07 2.66E-06 1.37E-06 

Climate change DALY 4.73E-08 1.19E-08 8.43E-08 1.45E-08 

Radiation DALY 1.02E-10 6.45E-12 6.85E-12 8.71E-11 

Ozone layer DALY 1.61E-12 4.44E-13 5.19E-13 4.13E-12 

Ecotoxicity PAF*m2yr 8.90E-03 2.64E-03 8.14E-04 1.57E-02 

Acidification/ Eutrophication PDF*m2yr 9.88E-03 1.45E-04 9.78E-03 7.06E-03 

Land use PDF*m2yr 1.09E-01 6.12E-05 5.82E-05 7.30E-01 

Minerals MJ surplus 1.48E-03 3.14E-04 4.10E-05 2.45E-03 

Fossil fuels MJ surplus 1.66E-02 3.28E-03 3.77E-03 3.82E-02 

Results presented in this section are indicators of each impact category over the entire 

supply chain of each technology; therefore they cannot explain the specific processes 

contributing to the impacts. Also, it can be observed that the results presented in Table 7.5 

have different units. These have been converted into percentage values, to illustrate the 

relative environmental impacts of the four technologies shown Figure 7.2. Each impact 

category has not been assigned relative importance of their impacts on the environment 

and therefore cannot be used as a basis for selection or ranking of the technologies. 

However, they provide insight to the impacts of each technology relative to each other, 

and therefore important to identification of impact hotspots per technology. 
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Figure 7.2. Relative environmental impacts of producing 1MJ of cooking energy from 
biogas, briquette gasification, charcoal and Jatropha systems 

7.4.2 Normalised results of the environmental impacts of the technologies 

Normalisation stage of LCIA expresses the impact and damage categories of a product 

LCA in a form that allows for comparison of their relative severity in comparison to a 

reference value. Unlike characterisation, the normalised results presented in Figure 7.3 (a) 

and (b) have the same units. This therefore allows for comparing the contribution of 

particular impact or damage category to global environmental burdens in comparison with 

a reference normal value. Figure 7.3 (a) shows that the environmental impacts of 

respiratory inorganics of the charcoal system has the highest environmental load, 

followed by that for Jatropha system and then briquette gasification. This could be 

explained by the high levels of emissions of particulates, SO2 and NOx during 

combustions process. The land use impact category for Jatropha system is relatively 

higher than those for charcoal, biogas and briquette gasification systems. This can be 

explained by the land requirements for Jatropha. However, radiation, ozone layer, 

ecotoxicity and minerals impact categories are all very close to reference levels. 

Figure 7.3 (b) gives the results of normalisation per damage categories human health, 

ecosystem quality and resources for each of the energy systems. It indicates that charcoal 

system has the highest damage to human health with a value of about 3.25E-04 

person*year per MJ of cooking energy. Damage to human health by Jatropha system is 

however lower than that of charcoal by about 50%. Jatropha on the other hand has the 

highest damage to the ecosystem quality followed by biogas systems. This is perhaps 

explained by land requirements for Jatropha plant cultivation, and for biogas is also 

probably due to land occupation for grass cultivation needed for cattle feeding. 
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Figure 7.3. Normalised results of the comparative environmental impact of producing 1 
MJ of cooking energy – (a) indicators of the 11 impacts categories, (b) indicators per 
damage categories  

7.4.3 Comparison of single scores of environmental impacts 

Results presented in Figure 7.4 shows the single score of the environmental impacts of the 

four cooking energy system. This is obtained by aggregation of the 11 impact categories 

using Eco-indicator 99 method to enhance the comparison of the total damage to the 

environment by each of the technology. Figure 7.4 (a) shows that Jatropha system has the 

highest potential damage to the environment, mainly due to land use and respiratory 

inorganics which together contribute over 90% of the total Eco-indicator points of the 

system. Respiratory inorganics have severe impacts on human health, resulting in very 

high damage to human health by the charcoal system as shown in Figure 7.4 (b). Severity 

of the environmental damage of the charcoal system is second to that of Jatropha system. 

However, the damage is primarily due to respiratory inorganics such as SO2 and NOx, 

which contribute over 90% to the total damage of the charcoal system. The results show 

that briquette gasification and biogas system have the less environmental damage 

compared to the charcoal and Jatropha systems. However, like charcoal system, 
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respiratory inorganics are the predominant contributing factor to the environmental 

damage by briquettes gasification. The lower impact levels are perhaps explained by the 

lower emission levels of the TLUD gasifier stoves. 

 

 

Figure 7.4. Comparison of environmental impacts, single scores: (a) results showing 
impact categories (b) results showing damage categories 

7.4.5 Contribution of systems processes to environmental impacts 

In this section, the contributions of individual processes to the total impacts of each 

system are presented. Results of process contribution for the technologies to their total 

environmental impacts are given in Figure 7.5. Grass cultivation had the highest 

contribution to the environmental impacts of the biogas energy system shown in Figure 

7.5 (a). The results of biogas presented assume a physical allocation of 5% of the 

environmental impacts of grass cultivation is attributed to manure production. The other 

95% is attributed to dairy products resulting from cattle kept for manure. However, if it is 

assumed that manure is a waste with no value, then impacts from grass cultivation will 

fall to zero. Increasing the allocation of environmental impacts of grass cultivation will on 

the other hand significantly increase the impact of grass cultivation stage. Major impacts 

of cultivation of grass are land use and emissions from fertilizer application. This 
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suggests that reducing mineral fertilizer use in grass cultivation phase would reduce 

environmental impacts of the process. Biogas production process also has a contribution 

of 3.5 mPt, which is quite high in comparison to cooking process with impact of less than 

1 mPt. This can be explained by emissions of methane due to leakage from parts of biogas 

digesters that are not fully sealed. Additional contribution is from emissions of NH3, CH4 

and N2O from slurry storage.  

 

 

 

 

Figure 7.5. Process contribution analysis; (a) biogas, 0.67% cut-off (b) gasification, 0.2% 
cut-off (c) charcoal, 0.2% cut-off (d) Jatropha at 0.2 % cut-off 
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Figure 7.5 (a) further shows that the cooking stage has a relatively low impact of less than 

1 mPt, which can be explained by the relatively low emissions from biogas combustion. 

This suggests that the cooking process using biogas would result in lower health impacts 

on users. 

Contributions of different processes to the total impacts for the briquette gasification 

system are shown in Figure 7.5 (b). The figure suggests that the largest environmental 

load for this system is during the use phase. This is due to emissions of gases during 

combustions of briquettes in the TLUD gasifier stove. Total impacts due to the use phase 

is about 30 mPt, which is much higher than cooking with biogas, which is less than 1 

mPt. Other processes such as transport, and electricity did not contribute significantly to 

the total environmental impacts of the system. It is important to note that residue 

collection could result in reduced soil organic matter content, therefore reducing its 

productive capacity. Agricultural residues also contribute to reducing soil erosion, 

increasing activity of soil organisms that help to ensure improved soil productivity. These 

impacts were not modelled in the present study, due to lack of suitable modelling data. 

The actual impact of the briquette system could therefore be much higher than that 

depicted in this study. 

Figure 7.5 (c) shows results of the process contribution analysis for the charcoal system. 

It indicates that wood harvesting process, with impact of about 55 mPt is the highest 

environmental impacts in the charcoal supply chain. This is mainly attributed to emissions 

resulting from open air burning of wood debris that remains in the forest after wood 

harvest. Next in level of environmental impact is the cooking process with an impact of 

about 35 mPt, which arise as a result of emissions from KCJ during cooking. This is a 

major concern since the emission takes place in the indoor environment leading to indoor 

air pollution, a major cause of ill health amongst solid fuel users in developing countries. 

The results further show that the charcoal making process contributes less environmental 

impacts compared to the wood harvesting and cooking processes. These results suggest 

the need to improve wood residue management during harvesting, reducing the emissions 

of cooking stoves and followed by the charcoal pyrolysis process. The latter two could be 

achieved by adopting better technologies, while the former by improving residue 

management practices. 
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For Jatropha system, the cultivation process had the highest environmental impact, of 

about 63 mPt as shown in Figure 7.5 (d). Like in the case of biogas system, factors 

responsible for this are land use and fertilizer application. Further improvement could be 

achieved by intercropping Jatropha plant with crops, under agro-forestry system. Also 

recycling of Jatropha seed cake as a fertilizer could probably reduce the environmental 

impacts due to mineral fertilizers. This is investigated in Section 7.3.2. Next in 

importance is the environmental impact due to Jatropha seed extraction. This is perhaps 

explained by emissions from open air burning of Jatropha seed husks. Better utilisation 

method of the seed husks, such as use for briquette production could most likely result in 

improved environmental performance of the Jatropha system. In Section 7.3.2, effect of 

using Jatropha seed husks to substitute maize stalk residues is investigated, through 

system expansion. 

Of interest to compare are environmental impacts resulting from the use phase of each of 

the technology. This is because the emissions that cause these impacts occur in the indoor 

environment, therefore pausing serious health risks to users. Cooking with biogas had the 

lowest impact of about 0.5 mPt followed by Jatropha oil, briquette gasification and 

charcoal with 10 mPt, 30 mPt, and 35 mPt, respectively. This suggests that cooking with 

biogas has lower health impacts due to indoor air pollution than the other three energy 

systems. 

7.5 Analysis of scenarios and suggestions for reducing environmental impacts 

In this section, alternative scenarios of biogas, briquette gasification, and Jatropha oil 

systems were developed and the results are presented. The aim was to investigate any 

possible improvement to the energy systems. Scenario B of the biogas system was based 

on the assumption that manure is waste material with no economic value attached to it. 

Therefore, grass cultivation process was assumed not to contribute to the impacts of 

biogas production. Also, all slurry produced from the digestion process is used as 

fertilizer to substitute mineral fertilizer. This was modelled through system expansion. 

Scenario B of the briquette system was developed by taking into consideration that 

charcoal generated from cooking with TLUD stove is used to substitute forest charcoal. 

System expansion was used to model the substitution process. For Jatropha system, 

scenario B assumed that seed husks generated during de-hulling substitutes maize stalk 

for briquette production, unlike in the previous case where they were burnt in open air. 
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Also, all the seed cake generated during Jatropha oil extraction is used as substitute to 

NPK mineral fertilizer, and was modelled through system expansion. The charcoal system 

was kept constant as a reference system. 

7.5.1 Characterisation results of comparative scenarios 

Characterisation results of the baseline scenario A and the alternative scenario B with 

recycling and system expansion is given in Figure 7.6. It indicates that scenario B of 

biogas, Jatropha oil and briquette gasification show reduction in characterisation values 

for majority of the impact categories. Both biogas and Jatropha oil systems registered 

negative values for carcinogens, radiation, ozone layer, ecotoxicity minerals and fossil 

fuels. These are perhaps explained by the substitution of mineral fertilizers by slurry for 

the case of biogas production, and by seed cake for Jatropha, which results in reduced 

environmental impacts of mineral fertilizers. Overall, scenario B showed reduction in 

environmental impact categories for all the three technologies. 

 

Figure 7.6. Relative environmental impacts of producing 1MJ of cooking energy from 
biogas, briquette gasification, and Jatropha systems under two scenarios compared to 
charcoal 

7.5.2 Comparison of the single scores of environmental impacts under the two 
scenarios 

Results of the single score environmental impacts per impact and damage categories are 

illustrated in Figure 7.7 (a) and (b), respectively. Significant reduction is observed in the 

land use impact category of scenario B of biogas system. This is probably explained by 

the reduction of allocation of impacts due to grass cultivation for biogas production. 

Briquette gasification system also showed a reduction in total environmental impact of 

about 50% compared to the first scenario.  This is perhaps explained by decrease in 

impacts of respiratory inorganics. The reduction in levels of respiratory inorganics in this 
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case is possibly attributed to avoided emissions during harvesting and pyrolysis of wood 

during charcoal production as a result of substitution with charcoal produced by the 

TLUD gasifier. Lastly, scenario B of the Jatropha oil system showed improved 

performance compared to scenario A. Most of the reduction is attributed to the respiratory 

inorganics impact category. This is most likely explained by avoided emission from open 

air burning of Jatropha seed husks. However, it can be observed from Figure 7.7 (b) that 

the most significant damage category of Jatropha system is on ecosystem quality, which 

is perhaps attributed to the land use impact category. 

 

Figure 7.7. Comparison of single scores environmental impacts under two scenarios: (a) 
results with impact categories (b) results with damage categories 

7.6 General discussions and limitations of the study 

Results of this study showed that biogas system had the lowest environmental damage of 

the four energy systems studied. One main advantage of the biogas system observed in 

this study is the low level of respiratory inorganics impacts. This could be explained by 

lower levels of emissions such as particulates, SO2 and NOx compared to the other three 

systems in this study. This therefore results in reduced damage to human health compared 

to charcoal, briquettes and Jatropha cooking. Similar findings were reported by other 

scholars (Afrane and Ntiamoah, 2011; Afrane and Ntiamoah, 2012). Damage to human 

health by indoor emissions due to use of solid fuels is one of the main causes of ill health 
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and mortality in developing countries. This study suggests that biogas systems are a 

promising technology to combat this problem. Depending on assumptions concerning the 

system boundary and allocation, the land use impacts of biogas system due to grass 

production could increase significantly. Figure 7.8 shows that the total impacts of biogas 

system could increase from less than 5 mPt to almost 45 mPt if allocation of impacts of 

grass production to the system is increased from 0% to 20%. The 0% scenario 

corresponds to a situation where all environmental impacts due to grass production are 

attributed to dairy products. This therefore suggests that for reduced impacts of the biogas 

system, the productivity of the dairy enterprise must be maximised so that relative 

economic value of manure is low. 

 

Figure 7.8. Effect of varying the allocation value to manure on the singe score of 
environmental damage by the biogas system 

From the results of this study, it can be observed that the briquette gasification system has 

less environmental impacts compared to charcoal and Jatropha oil systems under both 

scenarios considered. One advantage of this system is the reduced impacts from 

respiratory inorganics during the use phase compared to when cooking with charcoal. 

This is due to the lower levels of particulates, SO2 and NOx emissions from TLUD 

gasifier stoves compared to the latter systems. Generally, the total environmental damage 

by briquette gasification is less than both the charcoal and Jatropha systems. However, it 

is important to note that loss in soil quality due to collection of maize residues from fields 

was not considered in this study, since it was assumed to be waste. In reality, crop 

residues play important ecological functions such as reducing erosion and soil sealing, 

and ensures favourable biological activity of agricultural soils (Govaerts et al., 2008; 

Okello et al., 2013a). Collection of crop residues for energy application should therefore 
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fraction could provide suitable guidelines on the quantity of residues that can be left in the 

fields. Several factors affect the recoverable fraction and actual fraction may vary from 

19% to 75% (Cornelissen et al., 2012; Haberl et al., 2010). 

Charcoal system showed the highest levels of respiratory inorganics compared to the 

other three technologies studied. This is perhaps explained by high levels of particulates, 

SO2 and NOx emissions during all the unit processes of the charcoal system. Of concern 

is the emission in the indoor environment during cooking and charcoal so far has the 

highest indoor pollution impact compared to the other three technologies evaluated in this 

study. Efforts to improve the technology such as using better stove designs and charcoal 

making kilns could be beneficial to the environment.  

Results of Jatropha plant oil cooking system showed that the land use impact category is 

the single most important contribution to environmental damage. Efforts aimed at 

reducing the land use impact of Jatropha can therefore be very beneficial to its 

environmental competiveness. This could be by growing Jatropha on degraded land, since 

the plant is known to have capacity to improve quality of degraded soils, with low water 

requirements. It is also known to offer benefits such as reducing soil erosion and 

improvement in soil properties (Ogunwole et al., 2008). Conversely, clearing forested 

lands for Jatropha production could greatly increase its impacts on ecosystem quality.  

Alternatively, production of Jatropha in an agro-forestry system could be another 

plausible consideration, since the plant is known to intercrop well with a variety of 

agricultural, horticultural, silvicultural plants species (Iiyama et al.; Misra and Murthy, 

2011). Some scholars have reported improved yields of food crops that have been 

intercropped with Jatropha (Makkar and Becker, 2009). The use of Jatropha as a support 

for vanilla plants has so far been reported in Uganda (Ejigu, 2008). The tree can also be 

used for fencing and land demarcation, while producing seeds as well, therefore reducing 

land requirements. Currently, Jatropha is not a well-understood plant and its yields are 

known to vary greatly under field conditions (Iiyama et al.). Improving yields through 

proper selection of planting materials or genetic improvement could result in reduced land 

requirements. 

This study has also shown that proper handling and reuse of by-products of Jatropha 

processing like seed cake and husks can significantly reduce its environmental impacts. 

Use of seed cake as a fertilizer results in positive environmental impacts by reducing the 
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use of mineral fertilizers, therefore improving the environmental competitiveness of the 

Jatropha energy system. Utilisation of seed husks as raw material for briquette production 

is also another possibility of reducing environmental damage of Jatropha plant oil system. 

However, it should be noted that this study had some limitations. Firstly, there were 

limitations of data from the actual context of the study area. In most cases, the data used 

were from laboratory settings which might differ from the actual emissions under field 

conditions. However, effort was made to get representative data from other developing 

countries with similar technologies and socioeconomic settings to Uganda. The results of 

this study therefore present a fairly accurate perspective of the actual environmental 

impacts of the four technologies studied. Nevertheless, efforts to verify the findings of 

this study with data collected from the study area, preferably under field conditions could 

provide better insight into the environmental impacts of the technologies. The other 

important limitation is that social, economic and technical aspects of these technologies 

have not been considered in this study. It is important to holistically assess these aspects 

since they all have influence on the sustainability of bioenergy technologies. Future work 

could consider inclusion of these aspects to better assess the sustainability of each of the 

technology. 

7.7 Conclusions 

In this chapter, the environmental impacts of four energy systems for cooking were 

evaluated using the life cycle assessment methodology. Results show that biogas systems 

have the lowest environmental impact compared to Jatropha, briquettes and charcoal 

systems. However, with improved recycling, both briquette and Jatropha systems showed 

better environmental performance than charcoal. All the three technologies showed 

reduction in respiratory inorganics compared to charcoal. Their use could probably be an 

important means of reducing indoor air pollution, which is one of the major causes of ill 

health and premature death in many developing countries. Findings also showed the 

performance of Jatropha and biogas systems could be greatly improved through recycling 

of by-products to replace mineral fertilizers. In conclusion, use of Jatropha oil, biogas and 

briquette gasification in TLUD stoves as cooking fuels could result in improved 

environmental performance compared to charcoal. 
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Chapter 8 – Multi-criteria sustainability assessment of Ugandan 

bioenergy systems 
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Chapter 8 – Multi-criteria sustainability assessment of Ugandan 
bioenergy systems 

Summary 

Sustainable development aims at achieving social, economic, and environmental 

objectives simultaneously. These are conflicting objectives, for which multi-criteria 

analysis is well suited for their solution. In this chapter, sustainability of the biogas, 

briquettes, charcoal and Jatropha cooking energy systems were evaluated under Ugandan 

conditions. The study was based on multi-criteria decision analysis model using 

Preference Ranking and Organisational Method for Enrichment Evaluation 

(PROMETHEE) and Graphical Analysis for Interactive Aid (GAIA) methods. Under 

business as usual scenario, biogas and charcoal systems were found to be incomparable 

under the PROMETHEE I partial ranking scheme. Also, briquettes and Jatropha energy 

systems were incomparable. However, the PROMETHEE II complete ranking resulted in 

highest preference to biogas, followed by charcoal, while briquettes registered worst 

performance. In an alternative scenario with increased recycling of by-products as 

fertilizer, biogas system had the best sustainability ranking under PROMETHEE I partial 

ranking. This was followed by charcoal and Jatropha, which were incomparable and again 

the worst performer was the briquettes system. The PROMETHEE II complete ranking 

resulted in biogas as most sustainable, followed by Jatropha, charcoal and briquettes, 

respectively. The study therefore suggests that biogas is the most sustainable energy for 

household cooking in Uganda. 

8.1 Introduction 

One of the major challenges faced by developing countries today is provision cooking 

energy that is compatible to the socio-economic status of the population, technologically 

appropriate and environmentally friendly. Currently, majority of the urban population in 

sub-Saharan Africa (SSA) rely on charcoal as the dominant source of cooking energy 

(Kammen and Lew, 2005; Zulu and Richardson, 2013). The charcoal value chain is a 

major employer, with significant contribution to the rural economy of developing 

countries (Zulu and Richardson, 2013). The technology is simple, cheap, readily 

available, and easy to use as well as to replicate. However, its use is faced with challenges 

and uncertainties. For example, indoor air pollution from use of solid fuels is one of the 

major causes of health challenges in developing countries today. Use of charcoal is also 
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blamed for its contribution to deforestation and forest degradation (Chidumayo and 

Gumbo, 2013), and its long term sustainability to meet growing demands remain 

uncertain (Mwampamba, 2007). Moreover, devices used for charcoal production and use 

are inefficient leading to wastage of biomass resources (Okello et al., 2013b).  

Consequently, there are various efforts aimed at improving the efficiency of the charcoal 

production and combustion processes (Kshirsagar and Kalamkar, 2014). Other efforts aim 

at finding alternative technologies to replace or substitute charcoal. Domestic biogas 

system is one of the technologies being promoted for cooking in many developing 

countries. The model is based on cattle manure as substrate with the fixed dome bio-

digester design as the most popular technology in SSA (Ghimire, 2013). Biogas systems 

provide several benefits including, reduction in indoor air pollution and deforestation. It is 

also a means of sanitising wastes such as cattle manure, while the slurry is a very good 

organic fertilizer. However, the technology is faced with challenges that limit its large 

scale adoption in developing countries. High investment cost and inadequacy of skilled 

personnel to provide technical support are examples of challenges limiting adoption of the 

technology (Surendra et al., 2014).  

Briquetting of agricultural and forest residues is another technology that is also being 

promoted as an alternative to charcoal in Uganda (Mwampamba et al., 2013). Just like 

biogas, briquetting of biomass residues could play an important role in reducing 

deforestation rates in the country. However, technological barriers due to lack of skilled 

personnel and high investment costs, higher production costs of briquettes compared to 

wood and charcoal are some of the challenges to the technology (EEP, 2013). 

Combustion of briquettes could also lead to environmental challenges such as indoor air 

pollution and emissions of greenhouse gases. Low efficiencies of combustion appliances 

and emissions concerns are currently being addressed by the introduction of top-lit 

updraft (TLUD) gasifier stoves (Martin et al., 2013). The high initial investment and 

operating costs of briquetting system remains another major challenge to the 

dissemination of the technology in Uganda.  

Recently, Jatropha plant oil is also being introduced as a possible fuel for direct use in 

cooking stoves and some engines powering multifunctional platforms to provide 

mechanical and electrical power in rural areas in Africa (Avinash et al., 2014; Eckart and 

Henshaw, 2012). Advantages of Jatropha as a bioenergy crop includes its ability to grow 
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and even restore degraded land with minimum inputs of water and other crop production 

requirements. Jatropha is also known to have medicinal value and is one of the plants 

used in Uganda for indigenous livestock treatment (Nabukenya et al., 2014). However, it 

is a relatively new technology in Uganda and other developing countries. Its production 

might cause severe impact on crop production due to competition for resources for food 

production such as agricultural land and labour (Eckart and Henshaw, 2012). Being a new 

technology, it still faces challenges with limited acceptability, lack of skilled personnel 

and proven technologies for its use in Uganda (Okello et al., 2014). 

With this background, it becomes apparent that the decision to select a suitable 

technology for use in developing countries is a very complex problem, since each 

technology has a number of benefits and challenges. Moreover, the right choice should 

ensure sustainability of energy supply for the current generation without compromising 

the needs of the future generation. Therefore, it becomes critical that suitable tools to aid 

decision making to ensure sustainable energy systems in developing countries are 

developed, and tested under such conditions. Currently, this remains a major challenge 

since there are generally limited examples of proven tools and methodologies to aid 

selection of sustainable choice of energy systems in developing countries. 

The work presented in this chapter therefore aimed at developing a decision making 

methodology for selecting the most sustainable options amongst a finite set of bioenergy 

systems in developing countries. The method was developed based on Preference 

Ranking and Organisation Method for Enrichment Evaluation (PROMETHEE) and 

Graphical Analysis for Interactive Assistance (GAIA) and applied for ranking four 

bioenergy systems for cooking in Uganda. 

The methodology used for sustainability assessment of bioenergy systems is based on 

multi-criteria decision analysis (MCDA). Specifically, this study employed the 

PROMETHEE and GAIA methods. The PROMETHEE methods provided ranking 

schemes while the GAIA tool was used for descriptive analysis of the MCDA problem. 

Analysis was carried out with the aid of Visual PROMETHEE 1.4 software (VP 

Solutions, 2013). Choice of the method was based on its ease of use due to its rather less 

complex algorithms compared to other MCDA methods (Pohekar and Ramachandran, 

2004). The PROMETHEE methods belongs to the “French School” of MCDA methods 
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and uses outranking principle to prioritise a finite set of alternative actions on the basis a 

given set of evaluation criteria (Løken, 2007). 

8.2 The PROMETHEE methods 

8.2.1. Alternatives, criteria evaluation and weights 

Implementation of the PROMETHEE method requires that the set of actions to be ranked 

are well defined. A set of criteria suitable for evaluating all the alternatives is then 

defined. This is followed by an evaluation process where each alternative action is 

evaluated on the basis of the criteria. Since the criteria do not have equal importance, the 

decision maker is required to assign weights, wj to all the criteria on the basis of their 

perceived relative importance. 

8.2.2 Transformation of pairwise deviations using preference functions 

Mathematically, a multi-criteria decision problem to be solved using the PROMETHEE 

method can be expressed using Equation 8.1 (Brans, 2002).  

( ) ( ) ( ) ( ){ }Aaafafafaf kj ∈,,,,,max 21 LL     (8.1) 

where, A is a set of n alternative actions to be ranked on the basis of k evaluation criteria: 

f1(·),  f2(·), …, fj(·), …, fk(·). Parameters fj(a) is the evaluation or score of action, a based 

on criterion fj(·). 

For each criterion, a suitable preference function, which transforms the deviation between 

evaluations of paired actions into a degree of preference ranging in value from 0 to 1 

should be defined (Behzadian et al., 2010). For a particular alternative, a preference value 

of 0 means that it has no preference at all, while a value of 1 translates to full preference. 

Each criterion is therefore associated with a particular preference function, which 

measures the perception of the decision-maker about the criterion. There are six types of 

preference functions given in Appendix B, Table B1 (Brans and Mareschal, 2005; Mateo, 

2012), all of which are available in Visual PROMETHEE 1.4 software (VP Solutions, 

2013) used in this study. This step can be presented mathematically by supposing a pair 

of actions a1, a2∈A; the degree of preference for action a1 over a2 can be expressed using 

Equation 8.2. 

( ) ( ) ( ){ }2121, afafGaaP jjjj −=       (8.2) 
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where, Gj is a non-decreasing function of the deviation d, between fj(a1) and fj(a2). The 

degree of preference for action a1 over a2 increases with increasing values of the 

deviation [fj(a1) – fj(a2)]. Therefore, the degree of preference function can be expressed 

using Equation 8.3. 
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8.2.3 Calculation of the multi-criteria preference index 

The multi-criteria preference index is used to determine the degree of preference of action 

a1 over a2 when all the criteria a considered simultaneously. It represents the overall 

preference of one action over another. Suppose a given criteria fj(·), for j = 1, 2, …, k, is 

associated with weight wj, then the multi-criteria preference index of action a1 over a2 is 

calculated using the weighted average of the degree of preference π(a1,a2), given by 

Equation 8.4. 
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8.2.4 Calculation of outranking flow indices 

Preference flow indices are the basis for ranking the actions using PROMETHEE I partial 

ranking and PROMETHEE II complete ranking. They measure the degree of dominance 

of a given alternative over all other alternatives. Each alternative can be associated with, 

the leaving or positive flow ϕ+(a), the entering or negative flow ϕ-(a), and the net flow 

ϕ(a) given by Equations 8.5, 8.6 and 8.7, respectively. 
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The leaving flow is a measure of dominance or outranking character of alternative, a, 

over all the other alternatives in set A. High values of the leaving flow indicates high 

preference for an alternative. Meanwhile, the entering flow measures the outranked 

character, or how much a given action is dominated by all others alternatives in the set A. 

Lower values of entering flows indicates higher preference of a given action over all other 

alternatives in the set A. Lastly, the net flow indicates the preference of a given action, 

with higher values implying greater preference for the action. 

8.2.5 PROMETHEE I partial ranking of alternatives 

The PROMETHEE I partial ranking results in outcomes with some actions may not be 

prioritised due to incompatibilities and indifferences. It utilises the positive and negative 

ϕ
+(a) flows. In PROMETHEE I partial ranking, action a1 is preferred to a2 if and only if it 

is preferred to a2 for both preference flows. This can be expressed mathematically using 

Equation 8.8 (Sultana and Kumar, 2012). 
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where PI means is “preferred to” in the relationship between action a1 and a2. Using 

PROMETHEE I partial ranking can result in indifference in ranking of alternatives. 

Indifferences are situations where both actions a1 and a2 have the same leaving and 

entering flows. Indifference between two actions a1 and a2 is denoted as a1Ia2, and is 

given by Equation 8.9 

( ) ( ) ( ) ( )112121 : aaandaaifIaa −−++ == φφφφ     (8.9) 

Two actions are incomparable, a1Ra2, under the conditions given in Equation 8.10. 

Literally, an incomparable situation does not imply that two actions cannot be compared, 

but that it is difficult to perform the comparison and thus the decision maker has to be 

more critical in selecting the options. 
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8.2.6 PROMETHEE II complete ranking of alternatives 

To evaluate the complete ranking of alternatives, PROMETHEE II complete ranking is 

used. In this case, evaluation is based on the net flow, ϕ(a), according to Equation 8.11. 
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The disadvantage of PROMETHEE II is that information such as indifference and 

incomparability may be lost during the analysis process. Consequently, both 

PROMETHEE I partial ranking and PROMETHEE II complete ranking are used to 

evaluate alternatives actions. 

8.2.7 Geometric Analysis for Interactive Aid (GAIA) 

Geometric Analysis for Interactive Aid (GAIA) is a descriptive tool that facilitates 

graphical presentation of PROMETHEE analysis results. The GAIA analysis is based on 

the calculation of the single criterion net flow, ϕ(a), (Brans and Mareschal, 2005). The 

single criterion net flow for criteria fj(·) is obtained by formulating net flow given in 

Equation 8.7 into the form in Equation 8.12. 
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The single criterion net flow always range from the worst to the best possible values of -1 

and +1 , respectively. It is the net flow obtained when all the weight is allocated to only 

one criterion fj(·). It measures the degree by which alternative a, is outranking (if ϕ(a)>0) 

or outranked (if ϕ(a)<0), by all other alternatives on the basis of criterion fj(·). 

The single criterion net flow facilitates analysis of relative performance of an action on 

any criterion, and makes it possible to present the multi-criteria table in a k-dimensional 

space while considering criteria scales and preference functions used (VP Solutions, 

2013). Due to difficulty in visualising the k-dimensional space, dimensional reduction 

using principle compliment analysis (PCA) is used to present the results in a series of 
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1. Social well

2. Acceptability

3. Inclusion

4. Job creation

5. Legislative requirements

Economic criteria

1. Capital cost

2. Operating cost

3. Service life

4. Viability

Environmental criteria

1. Impact on human health

2. Climate change

3. Water quality

4. Land use change

5. Soil degradation

Technical criteria

1. Efficiency

2. Reliability

3. Usability

4. Maintainability

5. Functionality

6. Portablity
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8.3.3 Description of alternatives 

A brief description of each technology is given here; more detailed description is given in 

Section 5.4 of this thesis, and in Okello et al., (2014). Biogas system involves cultivation 

of grass for feeding cattle and using the manure generated for producing biogas in fixed-

dome bio-digester. The biogas is then conveyed in pipes to combustion devices and 

directly used for cooking. Briquette gasification system involves collection of maize 

residues and processing it into briquettes. Briquettes are used for cooking in TLUD 

gasifier stove, which is a micro-gasifier designed for cooking in developing countries. 

Charcoal is the traditional system, mainly produced from harvested natural forest 

vegetation in traditional earth-mound kilns. It is directly used in charcoal stoves; in this 

case Kenya ceramic jiko (KCJ) stove was considered. Lastly the Jatropha system involves 

cultivation of Jatropha plant, which produces Jatropha seeds from which oil is extracted, 

filtered and directly used for cooking. Background information on the status of these 

technologies in Uganda is available in Section 3.2 and Okello et al., (2013b). 

8.3.4 Selection and weighting of criteria 

The criteria were selected to ensure that they are suitable for the assessment of the 

sustainability of four energy systems. Selection of criteria was based on literature survey, 

followed by validation by a panel of multi-stakeholder. Weights were assigned to each 

criteria using analytical hierarchy process (AHP). Detailed description of the process of 

selecting and weighting criteria are given in Chapter 6 of this thesis. 

8.3.5 Evaluation of social criteria 

Social criteria were evaluated and results given in Table 8.1. Criterion job-creation was 

evaluated basing on the potential number jobs created along the supply chain of each 

technology. Only direct employment was considered in this study, since it was difficult to 

estimate number of indirect employment. Evaluation of the other four criteria were based 

on expert judgement and measured on a qualitative scale ranging from 1 to 5. In each 

case, 1, 2, 3, 4 and 5 means the evaluation of a given criterion on the scale was very bad, 

bad, average, good and very good, respectively. 
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Table 8.1. Evaluation results of social criteria 

Alternative 
Social criteria  

Well-being Acceptability Inclusion Job creation Legislations 

Biogas system 5 4 5 4 5 

Briquette gasification 4 3 4 5 3 

Charcoal 4 5 4 2 1 

Jatropha oil 4 3 3 5 3 

8.3.6 Evaluation of economic criteria 

Evaluation of economic criteria was based on prevailing capital and operating cost for 

each technology supply chain. Detailed cost based on present market rates and 

assumptions for calculation of the internal rate of return (IRR) are given in Appendix C. 

Service life was estimated on the basis of number of years required to replace the 

technology, when it is no longer of any economic value. Each technology was assumed to 

have zero salvage value at the end of its service life. For the case of biogas, allocation of 

grass production cost of 10% was assigned to biogas, while 90% was to dairy products. 

Viability was evaluated using the internal rate of return (IRR) over an investment period 

of 15 years. 

Table 8.2. Evaluation of economic criteria 

Alternative 
Economic criteria 

Capital costs 
(USD) 

Operating 
costs (USD) 

Service life 
(years) 

Viability (IRR) 
(%) 

Biogas system 1278  379 15   22 

Briquette gasification 6248 8505 10   15 

Charcoal  157 9641 10 520 

Jatropha oil 5641 1164 25     1 

8.3.7 Environmental criteria 

Environmental criteria were evaluated using life cycle assessment (LCA) methodology. 

Comparative LCA methodology was applied using ReCiPe endpoint and Eco-indicator 99 

life cycle impact assessment (LCIA) methods, with a functional unit of 1 MJ of cooking 

energy. Life cycle inventory data used for the LCA is presented in Section 7.3 of this 

thesis. Climate change and land use were evaluated using the Eco-indicator 99 impact 

assessment method, using SimaPro 7.3 LCA software. Impacts on human health, water 

quality and soil degradation were evaluated using human toxicity, freshwater ecotoxicity 

and terrestrial ecotoxicity, respectively. The ReCiPe endpoint impact assessment method 
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was used to evaluate the freshwater ecotoxicity and terrestrial ecotoxicity. Results of the 

evaluation, measured in eco-points are given in Table 8.3. Loss of biodiversity was 

excluded from the evaluation since there was no suitable method for assessing it in the 

LCIA methods employed in this study. 

Table 8.3. Evaluation of environmental criteria 

Alternative 

Environmental criteria 

Human 

health 

Climate 

change 

Water 

quality 

Land use 

change 

Soil 

degradation 

Biogas system 2.62 5.36 89.10 19.03   6.31 

Briquette gasification 0.47 1.34 10.90   0.01   4.79 

Charcoal 0.12 9.56   4.20   0.01   1.60 

Jatropha oil 3.63 1.34 11.30      127.56 13.40 

8.3.8 Technical criteria 

Six technical criteria presented in Table 8.4 were evaluated and included for the multi-

criteria sustainability analysis. Currently, there are no generally accepted set of technical 

criteria and evaluation method for sustainability assessment of bioenergy technologies. 

The choice of the criteria used here was based on available literature and validation by a 

multi-stakeholder panel. Detailed explanations of the technical criteria are given in Table 

6.4. Efficiency of the combustion appliance, given in Section 7.3, was used as the 

efficiency criteria. Criteria reliability and maintainability could be calculated using 

principles of reliability engineering as explained by Eti et al., (2007), and Sharma and 

Kumar (2008). However, due to lack of the relevant technical performance data of each of 

the bioenergy technology, they were evaluated by expert judgement on a five-point 

qualitative scale. 

Table 8.4. Evaluation of technical criteria 

Alternative 

system 

Technical criteria 

Efficiency Reliability  Usability Maintainability  Functionality  Portability  

Biogas  55 4 4 4 4 2 

Briquette  30 2 4 3 3 4 

Charcoal 15 5 5 5 5 5 

Jatropha oil 40 4 3 3 3 3 
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8.3.9 Choice of preference function and thresholds 

The visual PROMETHEE 1.4 software assistant was used to aid selection of preference 

functions. This was supplemented by guidance from Podvezko and Podviezko (2010). 

Generally, the V-shape and Linear preference functions are best suited for quantitative 

criteria, the only difference between them being the threshold values. Meanwhile the 

Usual and Level preference functions are mainly used for quantitative criteria, while the 

Gaussian type is rarely used due to difficulty in parameterisation (Sultana and Kumar, 

2012; VP Solutions, 2013). Similarly, the thresholds of preferences and indifferences 

were also selected by the author with the aid of the visual PROMETHEE software 

assistant. A complete list of preference functions, indifference and preference thresholds 

used in this study is given in Table 8.5. The table also provides the choice of objective 

functions, data type, and the weight of each criterion as assigned by a multi-stakeholder 

panel. However, it should be noted that since criterion loss of biodiversity was not 

included in this analysis, its weight was distributed to the other environmental criteria to 

ensure that their total equals to unity. 

Table 8.5. Parameters for preference modelling 

Parameters 
Social criteria 

Well-being Acceptability Inclusion Job creation Legislations 
Unit 5-point 5-point 5-point Number 5-point 

Objective function Maximise Maximise Maximise Maximise Maximise 

Data type Qualitative Qualitative Qualitative Quantitative Qualitative 

Weight (%) 5.7 5.2 4.9 4.7 4.7 

Preference function Level Level Level V-shape Level 

Indifference threshold (q) a 0.5 0.69 0.58 n/a 0.75 

Preference threshold (p)a 1.0 1.85 1.58 4 2.41 

Table 8.5 continued… 

Parameters 
Economic criteria 

Capital cost Operating cost Service life Viability 

Unit USD USD Years % 

Objective function Minimise Minimise Maximise Maximise 

Data type Quantitative Quantitative Quantitative Quantitative 

Weight 11.0 9.5 8.2 6.4 

Preference function V-shape V-shape V-shape Linear 

Preference threshold (p) a n/a n/a n/a 10 

Indifference threshold (q) a 5899.41 9362 14 507 
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Table 8.5 continued… 

Parameters 
Environmental criteria 

Human health Climate change 
Water 
quality 

Land use 
change Soil degradation 

Unit Eco-points Eco-points Eco-points Eco-points Eco-points 

Objective function Minimise Minimise Minimise Minimise Minimise 

Data type Quantitative Quantitative Quantitative Quantitative Quantitative 

Weight 6.6 4.7 4.1 3.6 2.9 

Preference function Linear V-shape Linear Linear Linear 

Preference threshold (p) a 1.12 n/a 39.92 54.89 3.44 

Indifference threshold (q) a 3.23 7.6 80.43 121.88 9.60 

Table 8.5 continued… 

Parameters 
Technical criteria 

Efficiency Reliability Usability Maintainability Functionality Portability 

Unit % 5-point 5-point 5-point 5-point 5-point 

Objective function Maximise Maximise Maximise Maximise Maximise Maximise 

Data type Quantitative Qualitative Qualitative Qualitative Qualitative Qualitative 

Weight 3.8 3.4 3.2 3.0 2.8 1.5 

Preference function V-shape Linear Linear Linear Linear Linear 

Preference threshold (p) a n/a 0.75 0.69 1.00 0.69 0.75 

Indifference threshold (q) a 31.53 2.41 1.85 2.00 1.85 2.41 
a Please refer to Table B1 for explanation 

8.4 Results and discussions 

8.4.1 PROMETHEE ranking 

The leaving ϕ+(a), entering ϕ-(a), and net ϕ(a) flows are the basis of PROMETHEE 

ranking schemes. These were evaluated using the Visual PROMETHEE version 1.4 

software and results are presented in Table 8.6.  

Table 8.6. PROMETHEE flow table for the energy systems 

Energy system Leaving flow ϕ+(a) Entering flow ϕ-(a) Net flow ϕ(a) 

Biogas (a1) 0.3739 0.1829 0.1910 

Briquettes (a2) 0.1398 0.3304 -0.1906 

Charcoal (a3) 0.3795 0.2715 0.1080 

Jatropha (a4) 0.2259 0.3344 -0.1084 

Evaluation of PROMETHEE II complete ranking can be directly obtained from the net 

flows ϕ(a) given in the Table 8.6. The higher the flow value, the better the rank of the 

technology, meaning that biogas had the best rank, followed by charcoal, Jatropha and 

briquettes, respectively. Also, the flow results given here provide information used for 

PROMETHEE I partial ranking. The visual PROMETHEE software tool provides a 
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variety of graphical schemes for visualisation of the results presented in the following 

sections.  

8.4.2 PROMETHEE I partial ranking 

PROMETHEE I partial is obtained by comparing the leaving flows, ϕ+(a), and the 

entering flows, ϕ-(a), given in Table 8.6. Results of the PROMETHEE I partial ranking 

for this study is given in Figure 8.2. The left axis of the figure gives the ranking of the 

energy systems based on the leaving flow ϕ+(a), while the right axis gives ranks on the 

basis of entering flows ϕ-(a).  

 

Figure 8.2. Graph showing results of PROMETHEE I partial ranking 

Figure 8.2 shows that charcoal and biogas alternatives are generally better than the 

briquette and Jatropha systems since they are on top of the chart. However, the lines 

joining the ranks of the biogas and charcoal on the left and right axes cross each other. 

This means that the two alternatives are incomparable. Similarly, it can be observed that 

briquettes and Jatropha systems are also incomparable. Incomparability does not 

necessarily mean that the two actions cannot be compared, but that the two choices are 

difficult for the decision maker to select. It is a situation corresponding to lack of 

consensus to declare that one action is clearly better than the other (Brans, 2002). The 

intersection of lines joining the alternatives and green-red line between the left and the 

right axes in Figure 8.2 corresponds to the net flow, ϕ(a) scores. 
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8.4.3 PROMETHEE II Complete ranking 

The net flows given in Table 8.6 are the basis for PROMETHEE II complete ranking. 

Results of the PROMETHEE II complete ranking was presented graphically by indicating 

the net flows along a vertical axis as shown in Figure 8.3. Location of the alternatives on 

the axis indicates their ranks under PROMETHEE II complete ranking scheme. Best 

alternatives are usually at the top while the worst are located at the bottom of the axis. 

Results shown in Figure 8.3 suggest that the biogas energy system ranked as the best 

alternative, followed by charcoal system. Briquette system on the other hand had the 

worst overall score, meaning that it is the least preferred option.  

 

Figure 8.3. Graph showing results of PROMETHEE II complete ranking 

Unlike PROMETHEE I ranking where incomparability and indifference can be detected, 

this information is lost under PROMETHHEE II complete ranking. The PROMETHEE 

diamond given in Figure 8.4 therefore provides a useful tool for visualising results of both 

ranking schemes. It has a 45° oriented square which provides information on the entering 

and leaving flows. The vertical axis along the diagonal of the square gives the net flows. 

Cones are drawn for each alternative from the left of the plane and used for visualising 

results of PROMETHEE I partial ranking. Cones that overlap others correspond to 
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preferred alternatives. Pairs of cones that intersect each other indicate conditions of 

incomparability. Results of this analysis further confirm that charcoal and biogas systems 

are incomparable alternatives, just like briquettes and Jatropha systems. The net flows 

further confirm the results of PROMETHEE II complete ranking, with biogas as the best 

and briquette as the worst alternatives. 

 

Figure 8.4. Graph showing result of PROMETHEE I and II ranking 

8.4.4 Results of GAIA Analysis 

The GAIA plane for the present study is given in Figure 8.5 (a) and (b). The purpose of 

GAIA analysis is to illustrate the global performance of actions in relation to the 

evaluation criteria as well as the relationships between criteria. Each criterion is presented 

on the plane using an axis, while actions are displayed as points. The GAIA plane in 

Figure 8.5 was obtained by converting the representation of the 20-dimensional planes of 

criteria into a two-dimensional plane using PCA, while maintaining the maximum 

possible amount of the original information. However, during PCA, some of the original 

information is lost (Dağdeviren, 2008). Quality value given in the GAIA plane is an 

indication of the amount of information retained during PCA transformation; in this case, 

86% of the original information of criteria is retained while 14% is lost.  
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The GAIA plane provides plenty of useful information for decision making while ranking 

alternative actions. For example, criteria of similar preferences are oriented in the same 

direction on the GAIA plane. In this study, it can be observed that efficiency, operations 

costs and social wellbeing, have similar preferences. Other examples of criteria with 

similar preferences are soil degradation, land use change, and capital costs. The GAIA 

plane also helps in identifying conflicting criteria, since they are oriented in opposite 

directions on the plane. The pairs portability and efficiency; social wellbeing and impact 

on water quality are typical examples of conflicting criteria in this study. 

  

Figure 8.5. GAIA plane for the bioenergy systems at 86% quality; (a) - plane at 100% 
zoom level; (b) - plane at 400% zoom 

Additional information such as performance of the alternatives in relation to each other 

can also be figured out from the GAIA plane. Similar alternatives are usually displayed 

close to each other on the plane; in this case, Jatropha and briquette systems are quite 

similar. On the other hand charcoal and biogas are quite different actions from each other, 

as well as from Jatropha and briquette systems.  

Another important feature on the GAIA plane is the decision axis, which is given by the 

thick red line, shown at higher magnification in Figure 8.5 (b) for better visualisation. The 

decision axis is the weighted average of the criteria axes. It represents the suggested 

direction of the action which the decision maker has to take (Albadvi et al., 2007; Wang 

and Yang, 2007); in this case, the biogas system, since it is the closest in direction to the 

axis. The axis is useful for identifying criteria which have high influence on 

PROMETHEE II ranking. In this case, it can be observed that social well-being, social 

(a) (b) 
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inclusion, capital costs and functionality criteria highly influence the final results since 

they are close to the axis. Criteria like impact on water quality and job creation are 

oriented in the opposite direction to the decision axis, meaning they are given lower 

weights. Changing the weights of criteria usually results in a shift in the position of the 

decision axis.  

The orientation of the criteria axis on the GAIA plane provides useful information about 

the relationship between criteria and alternatives. Criteria are usually oriented towards the 

direction of the alternative for which it is favourably evaluated. For example, the criterion 

maintainability is oriented to the right of the GAIA plane, where the charcoal alternative 

is located. This implies that charcoal system has a favourable maintainability attributes, 

unlike for example, Jatropha, which is in the opposite direction. Better visualisation can 

be obtained when the criteria axis is included in the GAIA plane as shown in Figure 8.6. 

Moving from the right to the left of the GAIA plane, charcoal ease of maintenance is 

followed by briquettes, biogas and worst performer is Jatropha system. Similar analysis 

can be performed for all the criteria. 

 

Figure 8.6. GAIA plane showing the axis of the maintainability criteria 
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8.4.5 Sensitivity analysis 

Sensitivity analysis was carried out to determine the effect of varying the weights of the 

criteria on the ranking of the alternatives. Stability intervals of weights of criteria were 

calculated and presented in Table 8.7. This represented the range within which the ranks 

of the alternatives do not change under the PROMETHEE II complete ranking schemes. 

The results showed that social wellbeing has a stability interval from 0% to 100%, 

meaning that the ranks of the alternatives are not sensitive to changes in weight of this 

criterion. However, criteria portability, maintainability, soil degradation, land use change, 

and impact on water resources showed relatively small stability interval. This implies that 

the ranks of the alternatives are highly sensitive to changes in weight of these criteria. 

Table 8.7. Stability interval for criteria weights 

Criteria Weight 
Weight stability interval (%) 
Minimum Maximum 

Social wellbeing 5.70 0.00 100.00 
Social acceptability 5.20 0.00 15.70 
Social inclusion 4.90 0.00 15.34 
Job creation 4.70 0.00 18.01 
Legislative requirements 4.70 0.00 24.35 
Capital costs 11.00 0.00 33.71 
Operating costs 9.50 3.43 23.27 
Service life 8.20 2.29 20.83 
Viability 6.40 0.00 11.98 
Human health impacts 6.60 0.00 12.88 
Climate change 4.70 0.00 17.79 
Impact on water 4.10 0.00 9.88 
Land use change 3.60 0.00 9.48 
Soil degradation 2.90 0.00 9.71 
Efficiency  3.80 0.00 21.39 
Reliability 3.40 0.00 17.16 
Usability 3.20 0.00 13.92 
Maintainability  3.00 0.00 8.69 
Functionality 2.80 0.00 13.57 
Portability 1.50 0.00 7.28 

The charts of visual stability interval given in Figure 8.7, perhaps give a more intuitive 

presentation of the variation of PROMETHEE II complete ranking with changes in 

weights of criteria. The horizontal axis of the chart gives the weight of the criterion under 

consideration. Net flows are given by the vertical axes of the chart. Lines representing 

variation in net flows for a given alternative are drawn joining the scores at 0% and 100% 

on the left and right axes, respectively. Preference flow corresponding to the left of the 

chart represents a situation in which weight of 0% is assigned to criterion. It corresponds 

to a situation where the criterion does not have any contribution to the overall ranking of 

the alternatives. The axis on the right-hand side of the chart represents a situation where 



150 

 

criterion under consideration is assigned a weight of 100%, implying that ranking is based 

only on the criterion. 

  

  

Figure 8.7. Visual stability interval (a) social well-being, WSI = 0 to 100%, (b) 
acceptability WSI = 0 to 15.7% (c) capital costs, WSI = 0 to 34% (d) efficiency, SI = 0 to 
21% 

The inclination of the line provides information on the evaluation of the criteria. For 

example, in Figure 8.7 (a), it can be noted that biogas performs very well on the social 

wellbeing criterion, since its net flow increases with increasing values of the weight of the 

criterion. However, briquettes, charcoal and Jatropha exhibit poor performance on the 

social wellbeing criterion due to the decreasing net flow with increase in the weight of the 

criterion. Following similar arguments, sub-figures 8.7 (b), (c) and (d) can be interpreted 

to provide more insight into the stability of the ranking of the alternatives with variation 

in weight of the criteria. Stability interval is plotted with dotted vertical lines on the chart. 

It can be observed that the ranks are more sensitive to the social acceptability criterion 

(a) (b) 

(c) 
(d) 
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(Figure 8.7 (b)), and not sensitive to the social wellbeing criterion (Figure 8.7 (a)). 

Analysis of stability interval illustrated here can be extended to all the remaining 16 

criteria used in this study. 

Quite often, it is of interest to the decision maker to evaluate the sensitivity to the ranking 

of the alternatives when the weights of criteria are all set to an equal value that is 5% for 

each of the 20 criteria in this study. Assumption of equal weight of criteria was evaluated 

and results presented in Figure 8.8 (b). When compared to the initial case when weight of 

criteria were assigned by a multi-stakeholder panel, it can be observed that results of 

PROMETHEE II complete ranking of biogas and charcoal, shown by the upper half of the 

chart, get inverted when weights of criteria are equal. Similarly, rank inversion is 

observed between Jatropha and briquette energy systems. However, overall, briquettes 

and Jatropha energy systems ranked lower than charcoal and biogas systems under both 

sets of criteria weights. 

  

Figure 8.8. Effect of changing criteria weight on ranking (a) weights at initial conditions, 
(b) all criteria set to have equal weights. 

8.5 Scenario analysis 

A scenario was developed assuming increased recycling of by-products of biogas and 

Jatropha energy systems as described in Section 7.5 of Chapter 7. Results of LCA using 

ReCiPe endpoint analyses were used to estimate impacts on human health, climate 

change, water quality and soil degradation. It was also hypothesised that through training, 

the social acceptability of Jatropha and briquettes can be improved from average to good 

on the five-point qualitative scale. These values were used to develop a new scenario and 

was analysed using the visual PROMETHEE software. Corresponding preference 

functions and threshold values were also adjusted to suit the new data set indicated in 

(a) (b) 
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Table 8.8. Other variables of the remaining criteria were kept the same as in the business 

as usual scenario. 

Table 8.8. Parameters and evaluations for the alternative scenario 

Parameters 
Environmental criteria 

Social 
acceptability 

Human health Climate 
change 

Water quality Soil degradation 

Unit 5-point Eco-points Eco-points Eco-points Eco-points 

Objective function Maximise Minimise Minimise Minimise Minimise 

Data type Qualitative Quantitative Quantitative Quantitative Quantitative 

Weight (%) 5.2 6.6 4.7 4.1 2.9 

Preference function Level Linear Linear Linear Linear 

Preference threshold (p) a 0.5 43.70 50.37 65.51 9.36 

Indifference threshold (q) a 1.0 121.07 127.07 184.82 26.88 

Evaluations      

Biogas 4 -109.10 8.41 -188.80 -19.21 

Briquettes 4 15.77 -10.57 14.25 9.58 

Charcoal 5 4.00 112.15 4.85 3.20 

Jatropha 4 -85.58 -28.92 -104.4 -15.54 

 

  

Figure 8.9. PROMETHEE ranking in scenario with improved recycling of wastes (a) 
PROMETHEE I partial ranking, (b) PROMETHEE II complete ranking. 

Results of this new scenario are given in Figure 8.9. The PROMETHEE I partial ranking 

given in Figure 8.9 (a) demonstrates that biogas energy system is the most sustainable 

overall, since it is above all the other energy systems. The Jatropha system showed a 

general upward shift on the chart, meaning there is an improvement in its sustainability. 

However, it can be observed that Jatropha and charcoal system are incomparable under 

(a) (b) 
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this scenario. Briquettes system generally ranked lowest under PROMETHEE I partial 

ranking scheme. Figure 8.9 (b) is an illustration of the PROMETHEE II complete 

ranking, from which it can be deduced that biogas system ranked the best followed by 

Jatropha system, and briquettes system ranked worst overall. 

8.6 General discussions proposal for future research 

In this chapter, the sustainability of four energy systems used for cooking in Uganda was 

assessed on the basis of 20 criteria using MCDA. The criteria were classified under the 

social, economic, environmental and technical themes of sustainability. Currently, there 

are no generally accepted lists of criteria for assessing bioenergy systems, and those used 

in this study were developed by a team of experts and multi-stakeholder panel. 

Environmental and economic criteria were evaluated using quantitative methods. The 

LCA methods and generally accepted for evaluating environmental impacts of products 

and services into quantifiable results. Also there are a number of financial methods that 

can be used to quantify the economic criteria. However, most of the social and economic 

criteria could not be quantified and their evaluations were based on a five-point 

qualitative scale. Evaluation of social and technical criteria used here was therefore quite 

subjective and therefore may not be accurate and repeatable depending on the judgement 

of the decision maker. This could have impacts on the overall results of the ranking. 

Future research could consider development of quantifiable set of technical and social 

criteria. 

In this study, evaluation of economic and environmental criteria was restricted to a radius 

of 40 km between the point of material collection and use. However, in practice, biomass 

material can be transported over much longer distances. This could result in increased 

operating costs and environmental load due to transportation. It is expected that results of 

this study could be affected by this. When analysing the environmental performance of 

charcoal, the impact on biodiversity were not taken into consideration due to limitations 

of appropriate methods. Wood harvested for charcoal in developing countries is mainly of 

indigenous species, that play important ecological, economic as well as having medicinal 

values. These were not evaluated in this study meaning that the results presented could 

have over-estimated the actual sustainability of the charcoal energy system. It is quite 

complex to model all the environmental impacts of a product, nevertheless, future effort 

could consider improving the accuracy of quantification of the criteria. Also possibility of 
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producing charcoal from dedicated short rotation forestry could be evaluated, since there 

are currently uncertainties about long term sustainability of natural vegetation to meet 

increasing demand. 

Briquette gasification system generally featured last in ranking under both scenarios 

considered in this study. Some of the contributing factors include high capital and 

operating costs. Possibility of utilising secondary residues to reduce collection costs is 

probably a useful strategy to improve the sustainability of the technology. These residues 

are produced in agro-processing plants such as maize and rice mills located in Gulu 

municipality. Quantification of the residues and evaluation of their sustainability in 

comparison with the other technologies could be a worthwhile effort. Other studies could 

aim at evaluating the impacts of intercropping on the sustainability of the Jatropha energy 

systems. 

8.7 Conclusions 

This study aimed at evaluating the sustainability of four bioenergy systems used in 

Uganda. The PROMETHEE and GAIA methods were used for ranking the technologies. 

Under business as usual scenario, biogas and charcoal were incomparable under 

PROMETHEE I partial ranking, while biogas was rated as the most sustainable option 

under complete ranking schemes. Recycling of by-products as fertilizer resulted in 

improved sustainability of biogas and jatropha systems. In conclusion, the study suggests 

that biogas is perhaps the most sustainable energy alternative for Uganda amongst the 

four systems considered in this study. Also, sustainability of both biogas and Jatropha 

significantly increase with recycling of by-products. The PROMETHEE and GAIA 

methods used in this study proved to be very promising tools to aid sustainable bioenergy 

decision making under developing country conditions. Future research could consider 

improving the accuracy of evaluation of social and technical criteria. Development of 

more detailed model simulating the actual situation as closely as possible could greatly 

improve the accuracy of the results. 
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Chapter 9 – Overview and conclusions 
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Chapter 9 – Overview and conclusions 

Summary 

This chapter aims at providing the main results of this study together with their 

implications. The chapter also provides a summary of the major limitations and 

challenges faced during the study along with proposal for future research. Conclusions 

drawn from the study are provided in the last part of the chapter. 

9.1 Overview of key results and discussions 

The advent of the concept of sustainability and need to attain sustainable development has 

created a major challenge to decision making in the recent past. Use of traditional 

biomass for cooking in developing countries is one of sectors facing urgent need for 

sustainable development. Therefore, this study was aimed at developing methodologies 

for improving the decision making process when selecting bioenergy technologies for 

cooking in developing countries. The proposed decision making framework integrates 

social, economic, environmental and technological concerns of sustainability using a 

MCDA methodology. Involvement of stakeholders during the decision making process 

was also taken into consideration. The conceptual framework of the methodology is 

presented in Chapter 4. This study provides a detailed application example of the 

methodology for analysing four alternative biomass energy systems under Ugandan 

conditions. The proposed method is quite generic and it is possibly applicable for 

assessing sustainability of cooking energy systems in developing countries with similar 

socio-economic and technological conditions as Uganda. 

9.1.1 State of the art of bioenergy technologies 

The proposed sustainability assessment methodology was designed and tested in Uganda 

as a representative developing country. Like in many other developing countries, there 

was very limited availability of background literature on the status of bioenergy 

technologies in the country. Chapter 2 of this thesis aimed at closing this gap and provide 

information on possible improved biomass technologies that can be promoted, as well as 

identify key stakeholders in the sector. It was found that Uganda has a policy to promote 

sustainable use of biomass technologies. There were a number of organizations promoting 

use of modern biomass energy including the government, non-governmental 

organizations and the private sector. However, levels of adoption remain low, and 
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majority of the households still rely on traditional biomass technologies for cooking. The 

technologies are known to be very inefficient and would result in high rates of biomass 

resource use. Indoor air emission from traditional biomass use is one of the main health 

challenges in Uganda. More than 85% of the population live in rural areas, which are 

sparsely populated. This suggests that small scale standalone energy systems would 

probably be more viable, since the cost of installation of national grid would be 

prohibitive. Detailed results of the state of the art review is provided in Chapter 2 of this 

thesis and in Okello at al., (2013b). 

9.1.2 Energy potential residue biomass  

An evaluation of the bioenergy potential of  agricultural and forest residues established 

that Uganda had gross potential of about 260 PJ in year 2008, which is equivalent to 

about 70% of the country’s biomass energy requirements. Methods and findings of this 

analysis is given in Chapter 3 of this thesis and in Okello et al., (2013a) However, 

utilisation of these residues poses serious organisational challenges, especially the 

logistical requirements for the supply chains. This is because the resources are scattered 

over large geographical areas. Cattle manure for example could be used for biogas 

production, but a large proportion of cattle farmers practice pastoralism or open grazing. 

Collection of the manure for biogas production would be a challenge. Also it was 

observed that there were variations in the composition of residues in different parts of the 

country, suggesting need for customising supply chains for the different agro-ecological 

regions. Considerations social, economic, environmental and technological aspects were 

discussed and found to be critical for successful utilisation of biomass residues. For 

example, residues play important ecological roles; therefore only fraction of it should be 

recovered for energy use. These issues were discussed in detail in Chapter 3.  

9.1.3 Overview of pre-screening results 

Often times, efforts to introduced modern energy services in developing countries have 

not resulted in desired levels of adoption. In some cases, new technologies are faced with 

rejection by the target population. It is known that increasing participation of stakeholders 

in decision making increases the chance of public acceptance of technologies. A novel 

method for participatory appraisal of bioenergy technologies was developed and used in a 

multi-stakeholder setting to rank four bioenergy technologies in Uganda. Detailed 

description of the method based on SWOT, AHP and desirability functions is given in 
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Chapter 5 of this thesis and in Okello et al., (2014). The supplication example in Uganda 

shows that Jatropha oil system, biogas and briquette energy systems ranked better than 

charcoal, the reference system. This suggests that stakeholders were willing to accept the 

relatively new technologies in place of the traditional charcoal technologies.  

The proposed participatory appraisal method showed potential of being used as a 

screening tool in the early phases of planning when there are a large number of 

alternatives. Those alternatives that perform very poorly based on stakeholder opinion can 

be identified and removed from further consideration. This would increase the time and 

resource efficiency during planning. Critical concerns of stakeholders about the energy 

supply chains can also be identified and possible remedies developed right from the 

beginning of the planning process. For example, stakeholders identified lack of skilled 

personnel as a threat to most bioenergy systems. This suggests the need to increase the 

number of bioenergy technicians. This is seems to be in agreement with findings in 

Chapter 2, since only one institution was found to be training bioenergy technicians in the 

country. 

9.1.4 Identification and weighting of criteria 

Criteria provide the basis on which to benchmark and communicate progress towards 

sustainability as well as being important inputs to decision making. A set of 21 

sustainability criteria for bioenergy systems in Uganda were developed. The criteria were 

selected on principles of relevance, practicality, independence and simplicity. Weights 

were assigned to each criterion by a multi-stakeholder panel with the aid of the AHP 

methodology. Economic and social dimensions of sustainability were ranked highest in 

importance, followed by environmental and technical dimensions, respectively. 

Investment and operating costs were the ranked as the most important criteria. This could 

perhaps be explained by the low level of per capita income of Ugandan households. It 

suggests that efforts to reduce costs of biomass technologies, such as provision of 

subsidies could enhance sustainability of the systems. Environmental dimension ranked 

third in importance, unlike in Europe where is ranked most important by other scholars 

(Buchholz et al., 2009). This is probably due to a lower level of environmental awareness 

amongst Ugandan stakeholders compared to their European counterparts. Detailed 

description of the methods used for criteria selection, ranking along with results obtained 

and discussions are given in Chapter 6 of this thesis. 
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9.1.5 Environmental impacts of energy systems 

Use of biomass for cooking could result in environmental impacts along the supply 

chains. This study evaluated the environmental performance of domestic biogas, briquette 

gasification, charcoal and Jatropha cooking energy systems. The aim was to identify 

hotspots along the supply chains, and to generate environmental criteria for the MCDA 

phase of this study. A comparative life cycle assessment (LCA) of the four model energy 

systems was carried out, with results showing that biogas is the most environmentally 

sustainable alternative, while charcoal had the worst environmental performance. 

Environmental performance of biogas and Jatropha systems were observed to 

significantly improve with recycling of by-products as fertilizer. Biogas exhibited the 

lowest level of reparatory inorganics followed by briquette gasification in TLUD stoves. 

This suggested that biogas could have the highest potential to reduce human health 

impacts due to indoor air pollution. Details of the methods used in the study of 

environmental performance of the four energy systems together with results and 

discussion are given in Chapter 7 of this thesis. 

9.1.6 Multi-criteria sustainability assessment 

Sustainability assessment of biomass energy systems requires that social, economic, 

environmental and technological concerns are integrated into the decision making 

process. These are conflicting objectives for which multi-criteria analysis is well suited. A 

multi-criteria methodology based on PROMETHEE and GAIA methods was developed 

and used under Ugandan conditions for assessing sustainability of biogas, briquette and 

Jatropha energy systems with charcoal as the reference system. Under the business as 

usual scenario, charcoal and biogas were found to be incomparable basing on the 

PROMETHEE I partial ranking but better than Jatropha and briquette gasification 

systems, which were also found to be incomparable. However, with improved recycling 

of by-products, biogas ranked first, followed by Jatropha and charcoal, while briquette 

ranked last. The GAIA analysis was used as a descriptive tool to help understand the 

relationship between criteria and alternatives. Detailed description of method used, results 

obtained and detailed discussions are presented in Chapter 8 of this thesis. 
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9.2 Limitations and proposal for suggestion for future research 

The main limitations of this study concerns the quality of data used in the analysing the 

alternatives and methodological constraints for quantifying social and technological 

criteria. The LCA phase of the study in particular had a major challenge with availability 

of both foreground and background data required for the analysis. Basically, primary data 

from Uganda that could be used for the LCA study were not readily available. Therefore, 

effort was made to obtain foreground emission data from studies carried out in other 

developing countries with similar technologies. Nevertheless, some of the emission data 

such as for the stoves were of similar technologies but obtained under laboratory 

conditions. In many cases, there can be a difference between laboratory and field 

performance of a technology. 

Also, it was not possible to find background emission data for transport and electricity 

under developing country conditions. Therefore emission data for transport and electricity 

under the European conditions were used for modelling the LCA study. This could affect 

the overall accuracy of the results presented in this study. This suggests the need for 

future studies aimed at improving data quality for sustainability studies on biomass 

energy systems in developing countries. Provision of field data would provide better 

insight to the actual performance of the technologies. 

The study also faced methodological challenges for evaluating the technical and social 

criteria. Currently there are well-developed methods for evaluating economic criteria, for 

example using LCC. Environmental criteria can also be evaluated using the LCA 

methodology. However, social criteria such as acceptability were generally evaluated 

based on subjective judgement. In this study, expert opinion was used to evaluate social 

criteria. Though it is generally acceptable to use expert judgement in such situations, the 

results are prone to flaws. Similar difficulties were faced during evaluation of 

technological criteria. This suggests the relevance of effort aimed at developing 

quantitative evaluation methods especially for the technological criteria. 

Generally, there are several scenarios that could be developed for each of the supply 

chains evaluated in this study. This provides an opportunity to explore possible 

improvement to each supply chain using the same methods used in this study. Due to 

limitations of the scope of this study, only a few scenarios were developed and evaluated. 



161 

 

Exploring different scenarios could provide more insight to the available opportunities to 

increase the sustainability of each of the supply chains.  

9.3 Conclusions 

The following are the main conclusions from this study: 

1. Bioenergy systems currently used for cooking in Uganda are inefficient and pose high 

health risks to users. The level of adoption of improved technologies generally 

remains low. Similar trends are reported in available literature concerning biomass 

energy use in developing countries, most especially in sub-Saharan Africa. 

2. Agricultural and forest residues could significantly contribute to reduction of forest 

biomass requirement in Uganda. However, social, economic, environmental and 

technological constraints could hinder their utilisation.  

3. Economic and social factors play a predominant role in the decision by Ugandan 

households to adopt sustainable bioenergy technologies for cooking. This suggests the 

need for development of low costs technologies and/or provision of incentives to 

ensure sustainable development of the bioenergy sector. 

4. The life cycle environmental performance of biogas and Jatropha energy systems 

significantly improves with increase in recycling of by-products as fertilizers, and 

avoidance of open air burning of residues. 

5. Recycling by-products as fertilizer significantly improves overall sustainability of 

biogas and Jatropha bioenergy systems. This observation suggests that integration of 

energy and food production could significantly increase their sustainability. 

6. Results of this study suggest that biogas energy system is more sustainable compared 

to Jatropha plant oil, briquette gasification and charcoal systems. Biogas showed high 

potential to reduce indoor air pollution; therefore, suggesting its use could result in 

positive health benefits. 

7. The method developed for participatory appraisal of bioenergy systems, based on 

strength weaknesses opportunities an threats (SWOT), analytic hierarchy process and 

desirability functions seem to be a very promising tool for decision making. 

8. The proposed multi-criteria sustainability methodology based on PROMETHEE and 

GAIA methods showed high potential for use as tools for assessing sustainability of 

bioenergy systems used for cooking in developing countries. 
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Appendix A – Numerical example for generating Figure 5.5 

First, the SWOT group priority values in third column of Table A3 are transformed into a 

multi-criteria decision matrix, as illustrated in Table A1. 

Table A1. Multi-criteria decision matrix of the current study 

Criteria 
Alternative technologies 

Biogas Charcoal Jatropha Briquettes 
Strengths (S) 0.182 0.156 0.217 0.397 

Weaknesses (W) 0.306 0.216 0.132 0.278 

Opportunities (O) 0.391 0.145 0.481 0.180 

Threats (T) 0.121 0.485 0.172 0.144 

Next, the values of SWOT factors given in Table A1 are transformed into desirability 

values ranging between 0 and 1. Desirable attributes, i.e., strengths and opportunities 

should be maximised and therefore transformed using Equation 5.6 In Equation 5.6, wminj 

is the lowest value of each criterion, given in Table A1, while wmaxj is the highest. For the 

case of strengths, wminj = 0.156, and according to Equation 5.6, it transforms to a 

desirability value of 0. Also, wmaxj = 0.397, which transforms to a desirability value of 1 

according to Equation 5.6.  

Intermediate values, wij are 0.182 and 0.217, can be transformed using Equation 5.6 as 

[(0.182 – 0.156)/(0.397 – 0.156)], and [(0.182 – 0.156)/(0.397-0.156)], which yield 0.108 

and 0.253, respectively. Values of opportunities can be similarly transformed using 

Equation (6). Following a similar argument, values of weaknesses and threats can be 

transformed into desirability values using Equation 5.7. The result of this process is given 

in Table A2. 

Table A2. Desirability values of the criteria of each technology 

Criteria* 
Desirability of alternative technologies 

Biogas Charcoal Jatropha Briquettes 

dS 0.108 0.000 0.253 1.000 

dW 0.000 0.517 1.000 0.161 

dO 0.172 0.000 1.000 0.104 

dT 1.000 0.000 0.860 0.937 

*dS, dW, dO and dT are desirability values of strengths, weaknesses, opportunities and 
threats, respectively.  
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Assuming equal weight of 0.25 for each of the criteria, the overall score of biogas 

technology can be calculated using Equation 5.8 as (0.108*0.25) + (0.000*0.25) + 

(0.172*0.25) + (1.000*0.25), which yields 0.320 as the overall score of the technology. 

The overall scores of charcoal (0.13), jatropha (0.78) and briquettes (0.55) technologies 

can be calculated in a similar manner and the results used to plot Figure 5.5. 

Table A3. SWOT factors and their rankings as identified by stakeholders 

Technology 
Energy 
technology 

Group 
priority 

SWOT Factors 
Local 
priority 

Global 
priority 

Brief description of SWOT factors 

Biogas Strengths 0.182 Saves time 0.149 0.027 Requires less time to operate compared to fuelwood 
collection  

  Energy security 0.342 0.062 Ensures households are secure of energy supplies  
  Health benefits 0.312 0.057 Reduced indoor pollution leads to better health of 

users 
  Hygienic 0.198 0.036 Anaerobic digestion sanitises livestock waste 
Weakness 0.306 High investment 

cost 
0.255 0.078 Capital cost is high for average Ugandan 

households 
  Lack of 

awareness 
0.263 0.081 Potential users do not know about benefits of biogas   

  Unskilled labour 0.347 0.106 Limited personnel to construct and maintain the 
technology 

  Labour intensive 0.135 0.041 High labour requirements for day-to-day system 
management 

Opportunities 0.391 Increasing 
demand 

0.354 0.138 Demand for the technology is  known to be rising 

  Source of income 0.189 0.074 Possible income from sale of gas and digestate as 
fertilizer 

  Job creation 0.166 0.065 Employment in the value chain, mainly masons 
  Decentralised 

power source 
0.291 0.114 The plants are family owned so have better control 

over their operational performance  
Threats 0.121 Low social 

acceptance 
0.207 0.025 Low acceptance is mainly due to lack of awareness 

  Competition from 
charcoal 

0.405 0.049 Charcoal is widely used and accepted therefore 
limiting adoption of the new technology 

  Health risks of 
manure handling 

0.112 0.013 Currently manure handling is done manually (by 
hand) and could pose risk to transmission of  cattle 
disease to users 

  Inadequate raw 
material 

0.277 0.033 Many households do not have cattle to supply 
manure  

Charcoal Strengths 0.156 Easy to use 0.212 0.033 Simplicity of the technology enables its ease of 
operation 

  Highly reliable 0.394 0.061 Less prone to shutdowns due to system failure 
  Widely available 0.394 0.061 Charcoal and stoves are readily available on the 

local market 
Weakness 0.216 Poor handling 

properties 
0.235 0.051 Easily crumbles into small particles during handling 

  High losses to 
low efficiency 

0.241 0.052 Wastage of charcoal occurs during use due to 
inefficient combustion appliances 

  Lead to indoor 
pollution 

0.271 0.058 Due to emissions of poisonous gases and particulate 
matter 

  Non uniform in 
quality 

0.255 0.055 Quality is not consistent due to varying source of 
wood used  

Opportunities 0.145 Job creation 0.101 0.015 Employment in the production and sale of charcoal 
and stoves 

  Income to rural 
economy 

0.344 0.050 Charcoal is a major source of income to rural 
households 

  Easily adaptable 
to local conditions 

0.392 0.057 Technology is simple and can easily offer 
opportunity to be easily adopted/improved to local 
conditions 

  Very cheap 0.164 0.024 Potential savings by households due to low capital 
an operating costs 

  



164 

 

Table A3 continued … 

Charcoal 

Threats 0.485 Deforestation 0.403 0.195 Currently there is rapid loss of vegetation in Uganda 
  Climate change 0.132 0.064 Emissions from charcoal could contribute to climate 

change 
  Indoor pollution 0.072 0.035 Indoor pollutants have negative health impacts on 

users 
  Land use change 0.394 0.191 Undesirable change in land use due to wood 

harvesting leading to loss of biodiversity 
Jatropha Strengths 0.217 It is renewable 0.360 0.078 It is a renewable energy source 

  Availability of 
carbon credit 

0.171 0.037 This is an incentive for using renewable energy 
under cleaner development mechanism (CDM) 

  Weather resistant 0.218 0.047 Jatropha plant is grows in adverse weather 
conditions 

  Easy propagation 0.251 0.054 Availability and ease of propagation from seeds and 
cuttings 

Weakness 0.132 New and not 
widely used 

0.329 0.043 Being new technology, it is not known by potential 
users, thus limiting its adoption 

  Limited market 0.177 0.023 Under developed market system for Jatropha 
technology 

  Long gestation 
period 

0.229 0.030 Plant time lag from planting to sustainable yield of 
3 to 5 years 

  Land competition 0.265 0.035 Competition for land for other productive activities 
Opportunities 0.481 Opportunity for 

research 
0.255 0.123 Opportunity to develop biodiesel, soap and 

medicines 
  Improves soil and 

climate 
0.249 0.119 Jatropha reduces soil erosion and microclimate in 

areas where it is grown 
  Job creation 0.311 0.149 Employment in the value chain of Jatropha energy 

system 
  Has medicinal 

value 
0.186 0.089 Jatropha products could be used for treatment of 

ailments 
Threats 0.172 Poisonous nature 

of oil 
0.296 0.051 The oil is poisonous and can be health and safety 

hazard 
  Competition with 

charcoal 
0.242 0.041 Charcoal is so far very popular could be a limiting 

factor to Jatropha use 
  Inadequate 

expertise 
0.207 0.036 Inadequate organisational capacity to develop the 

technology 
  Competition with 

crop production 
0.256 0.044 Diversion of resources to Jatropha production could 

lead to food insecurity 
Briquettes Strength 0.397 Multiple uses  0.166 0.066 Possibility to use in variety of locally available 

cooking devices 
  Waste 

management 
0.184 0.073 It is a suitable method for managing agricultural 

waste 
  Reduces 

deforestation 
0.364 0.144 Due to substitution of charcoal 

  Clean and easy to 
handle 

0.287 0.114 Has better handling properties than charcoal and do 
not crumble easily 

Weakness 0.278 Lack of 
awareness 

0.200 0.055 Potential users do not know about benefits of 
briquettes 

  High investment 
cost 

0.527 0.147 Briquetting machines are expensive for average 
household 

  Inadequate skill 0.274 0.076 Limited skilled personnel to maintain the 
technology 

Opportunities 0.180 Job creation 0.352 0.063 Employment in the value chain of briquetting 
  Increased demand 0.206 0.037 There is growing demand for briquettes 
  Improved living 

standard 
0.233 0.042 Use of briquettes lead to better living conditions due 

to reduced labour requirements for wood fuel 
collection 

  Favourable 
policies 

0.210 0.038 Government policies encourages use of renewable 
energy 

Threats 0.144 Unskilled labour 0.106 0.015 Lack of skilled artisans required for briquette 
production 

  Lack of support 
industry 

0.263 0.038 Electricity, roads and other infrastructure required 
from briquetting 

  Low social 
acceptance 

0.359 0.052 Low acceptance mainly due to lack of awareness 

  Inadequate 
expertise 

0.272 0.039 Inadequate organisational capacity for the 
development of briquetting industry 
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Appendix B – Common preference functions used in PROMETHEE 
method 
Table B1. Preference functions, p(x)* and parameters required for preference modelling 

Type 
Name of 
function Mathematical expression Illustration of preference function 

Required 
parameters 

I Usual criterion 
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* x = fj(a1) – fj(a2) 
a q is indifference threshold and represented the largest deviation considered to be negligible by the decision maker, 
b p is threshold of strict preference that is the smallest deviation considered sufficient to generate full preference 
c s the inflection of the Gaussian criterion and has a value between p and q  
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Appendix C – Financial assumptions 

Assumptions for calculating unit costs and IRR for the energy systems 

It was assumed that the biogas unit is supplied by manure generated by three heads of 

cattle. Each head of cattle produces 2.67 kg volatile matter (VM) per day, with a 

biochemical methane potential of 0.2 m3 kg-1 VM (Okello et al., 2013a). The plant is 

assumed to operate for 365 days a year, leading to production of 11,695 MJ of biogas, 

with a higher heating value (HHV) of 20 MJ kg-1. Biogas is assumed to be 80% of the 

unit cost of LPG. A 16 kg bottle of LPG cost Uganda Shillings 130,000. Assuming the 

HHV of LPG to be 48.9MJ kg-1 (Zamfirescu and Dincer, 2009) the unit cost of biogas 

would be Uganda Shillings 150 MJ-1 of biogas. Cattle manure was assumed to be a by-

product with an allocation of 10% of total cost of grass production, price of cattle and 

burn construction. The remaining 90% cost is allocated to production of dairy products. 

Briquette system assumed that material collection is done once a week, with each trip 

ferrying 400 kg of maize stalk. This results in an annual production of 20.8 t of briquettes 

per year. The total capital costs, which includes procurement, installation and 

commissioning of the briquetting plant was estimated to be Uganda Shillings 15,840,000. 

Annual operating costs amounted to Uganda Shillings 21,694,000. The cost of low energy 

briquette in Uganda for was taken to be USD 0.23 kg-1 (EEP, 2013). This results in a 

gross annual income of Uganda Shillings 24,254,880 and net profit before tax of Uganda 

Shillings 2,694,880. 

Charcoal system required a capital cost of Uganda Shilling 400,000. The annual operating 

costs, consisting of mainly labour and transport was evaluated to be Uganda Shillings 

23,900,000. The unit cost of a kilogramme of charcoal was assessed to be Uganda 

Shillings 500, basing on 2013 market price. Annual gross profit before tax was therefore 

calculated to be Uganda Shilling 2,080,000. 

Jatropha production assumed a plantation of 2 ha at a yield of 5000 kg ha-1 per year. 

Investment cost was evaluated to be Uganda Shillings 14,300,000, including procurement 

and installation of oil press. Annual operating cost was evaluated to be Uganda Shillings 

2,950,000. Production of oil begins in the fourth year, reaching a steady yield in the fifth 

year. The cost f Jatropha oil was assumed to be the same as that in Northern Tanzania at 

USD 0.93 per litre (Wahl et al.). Gross profit in the fourth year was estimated to be 
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Uganda Shillings 929,701. This increases to a steady level of Uganda Shillings 1,859,402 

in the fifth year. 

The above information was used to calculate the IRR of each technology and results 

given in Table A 8.2. The IRR is defined as the discounted rate at which the total net 

present value after tax is equal to zero (Hu et al., 2014). For calculation, it was assumed 

that energy from biomass is not taxed. 

Table C1. Cash flow for the energy systems and IRR results (Uganda Shillings*) 

Cash flow Biogas Briquette Charcoal Jatropha 

Capital investment -3,240,000 -15,840,000 -400,000 -14,300,000 

Net income Year 1 754,000 2,694,880 2,080,000 -1,859,402 

Net income Year 2 754,000 2,694,880 2,080,000 -1,859,402 

Net income Year 3 754,000 2,694,880 2,080,000 -1,859,402 

Net income Year 4 754,000 2,694,880 2,080,000 929,701 

Net income Year 5 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 6 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 7 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 8 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 9 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 10 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 11 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 12 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 13 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 14 754,000 2,694,880 2,080,000 1,859,402 

Net income Year 15 754,000 2,694,880 2,080,000 1,859,402 

IRR 22% 15% 520% 1% 

*1 USD is approximately 2530 Uganda Shillings in March 2014 
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