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Introduzione

La struttura dei gruppi in cui ogni sottogruppo è normale, detti gruppi di

Dedekind è ben nota. Un classico risultato di Baer-Dedekind [2], mostra

che i gruppi non abeliani con tale proprietà sono esattamente i gruppi che si

decompongono nel prodotto diretto di Q8 (gruppo dei quaternioni di ordine

8) e di un gruppo abeliano periodico privo di elementi di ordine 4.

È rilevante richiedere che un gruppo G abbia tutti i sottogruppi normali,

cos̀i come può essere richiedere che l’insieme dei sottogruppi non-normali sia

“piccolo”. Nella seconda metà del secolo scorso, gruppi per i quali l’insieme

dei sottogrupi non-normali è in qualche senso piccolo, sono stati studiati

in molte situazioni differenti. In particolare alcuni autori hanno studiato

gruppi in cui ogni sottogruppo non-normale soddisfa una certa proprietà X ,

per diverse scelte di X .

Romalis e Sesekin presero in considerazione i gruppi in cui tutti i sottogruppi

non-normali sono abeliani, detti gruppi metahamiltoniani ([23], [25]); mentre

3



Bruno e Phillips in [5], descrivono i gruppi in cui ogni sottogruppo è normale

oppure localmente nilpotente. In seguito, Franciosi, de Giovanni e Newell

considerano gruppi i cui sottogruppi non-normali soddisfano certe restrizioni

sul rango [16].

Altrettanto forte, è l’imposizione ai sottogruppi di un gruppo G, di condizioni

di normalità generalizzata, infatti tale imposizione ha una forte influenza

sulla struttura del gruppo stesso.

Nel primo capitolo di questa tesi, si riportano alcune definizioni e risultati

di teoria dei gruppi con lo scopo di rendere più agevole la comprensione dei

risultati successivi. Il secondo capitolo è dedicato allo studio dei gruppi in

cui ogni sottogruppo non-normale è supersolubile. Un gruppo G, si dice

supersolubile se possiede una serie normale finita a fattori ciclici contenente

i sottogruppi banali {1} e G stesso. Si fornisce una completa descrizione di

tali gruppi.

Un sottogruppo H di un gruppo G si dice nearly normale in G se ha indice

finito nella sua chiusura normale HG in G; mentre diremo che H è normale-

per-finito se H/HG è finito, dove HG è il nocciolo di H in G. Se H è un

sottogruppo normale di un gruppo G, allora H = HG = HG segue allora che

H è nearly normale in G e normale-per-finito. Pertanto tali sottogruppi sono

sottogruppi normali generalizzati.

B.H. Neumann [19], ha descritto i gruppi in cui tutti i sottogruppi sono
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nearly normali, mentre Buckley, Lennox, Newmann, Smith e Wiegold, hanno

studiato i gruppi localmente finiti in cui ogni sottogruppo è normale-per-

finito [6]. Nel terzo capitolo si studiano i gruppi in cui ogni sottogruppo

è nearly normale oppure normale-per-finito. Notazioni e terminologia sono

quelle usuali in Teoria dei Gruppi; in particolare si fa riferimento a [20].

Desidero ringraziare il Prof. Francesco de Giovanni, la Prof.ssa C. Musella e

la Dott.ssa M. De Falco, che in questi anni mi hanno costantemente guidato

nel lavoro di ricerca e nella stesura di questa tesi.
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Capitolo 1

Condizioni di catena in Teoria

dei Gruppi

In questo capitolo verranno esposti alcuni concetti di teoria dei gruppi, in

particolare ricordiamo una delle più importanti classi di gruppi risolubili

infiniti, i gruppi policiclici. Una sezione è dedicata ai gruppi supersolubili ed

una ai gruppi minimax.

1.1 Gruppi Policiclici

Per descrivere i gruppi policiclici, premettiamo alcune nozioni fondamentali.

Lemma 1.1.1. Sia (S,≤) un insieme ordinato. Allora sono equivalenti:

(i) Ogni parte non vuota di S è dotata di qualche elemento massimale.
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(ii) Per ogni successione crescente (xn)n∈N di elementi di S esiste un nu-

mero intero positivo m tale che xn = xm per ogni n ≥ m.

Definizione 1. Un gruppo G verifica la condizione massimale sui sottogruppi

se l’insieme ordinato (L(G),≤) verifica una delle condizioni equivalenti del

lemma 1.1.1.

Osserviamo che se un gruppo G verifica la condizione massimale sui sot-

togruppi, anche i sottogruppi e i quozienti di G godono della stessa proprietà.

Inoltre si ha:

Lemma 1.1.2. Sia G un gruppo, e sia N un sottogruppo normale di G. Se

Ne G/N verificano la condizione massimale sui sottogruppi, anche G verifica

la condizione massimale sui sottogruppi.

Lemma 1.1.3. Un gruppo G verifica la condizione massimale sui sottogruppi

se e soltanto se ogni suo sottogruppo è finitamente generato.

É chiaro che se G verifica la condizione massimale sui sottogruppi, allora

G è finitamente generato, ma il viceversa non è vero in generale. Tuttavia,

aggiungendo l’ipotesi di abelianità al gruppo G si ha:

Lemma 1.1.4. Sia G un gruppo abeliano, allora G verifica la condizione

massimale sui sottogruppi se e solo se è finitamente generato.
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Definizione 2. Un gruppo G si dice policiclico se è dotato di una serie

finita a fattori ciclici contenenti i sottogruppi banali {1} e G.

Il prossimo teorema caratterizza i gruppi policiclici.

Teorema 1.1.1. Un gruppo G è policiclico se e soltanto se è risolubile e

verifica la condizone massimale sui sottogruppi.

Dal teorema precedente segue in particolare che ogni gruppo risolubi-

le finito è policiclico, mentre risulta ovvio dalla definizione che un gruppo

policiclico periodico è finito. La classe dei gruppi policiclici è chiusa per

sottogruppi e per quozienti, cioè sottogruppi e quozienti di gruppi policiclici

sono policiclici. Inoltre se un gruppo G contiene un sottogruppo N normale

policiclico tale che il gruppo quoziente G/N è policiclico allora G è policiclico.

Si osservi infine che ogni gruppo abeliano finitamente generato è prodotto

diretto di un numero finito di sottogruppi ciclici e quindi è policiclico. Più

in generale si ha:

Lemma 1.1.5. Sia G un gruppo nilpotente e finitamente generato. Allora

G è policiclico.

Lemma 1.1.6. Sia G un gruppo abeliano finitamente generato e sia H un

sottogruppo di G. Allora H è intersezione di sottogruppi di indice finito di

G.
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Più in generale, per i gruppi policiclici si ha il seguente teorema dovuto

a A.I. Mal’cev:

Teorema 1.1.2. (A.I. Mal’cev) Sia G un gruppo policiclico. Allora ogni

sottogruppo di G è intersezione di sottogruppi di indice finito.

Teorema 1.1.3. (K.A. Hirsch) Sia G un gruppo policiclico. Se ogni quo-

ziente finito di G è nilpotente, allora anche G è nilpotente.

Il teorema precedente è stato migliorato da D.J.S. Robinson, il quale

ha provato che un gruppo risolubile finitamente generato che abbia tutti i

quozienti finiti nilpotenti è anch’esso nilpotente.

1.2 Gruppi supersolubili

Oggetto di questa sezione è la classe dei gruppi supersolubili con le relative

proprietà.

Definizione 3. Un gruppo G si dice supersolubile se è dotato di una serie

normale finita a fattori ciclici contenente i sottogruppi banali {1} e G.

Ovviamente, sottogruppi e quozienti di un gruppo supersolubile sono an-

cora supersolubili; invece se M è un sottogruppo normale e supersolubile di

un gruppo G e tale che G/M è un gruppo supersolubile, allora non è detto

che G sia supersolubile. Pertanto si ha la seguente definizione:
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Definizione 4. Un sottogruppo M di un gruppo G è detto supersolubil-

mente immerso in G se possiede una serie finita G-invariante a fattori

ciclici contenente i sottogruppi banali.

Esistono gruppi risolubili finiti che non sono supersolubili, basti pensare

al gruppo alterno A4, mentre S3 è un esempio di gruppo supersolubile non

nilpotente. Inoltre ogni gruppo supersolubile è policiclico ed ogni gruppo

abeliano finitamente generato è supersolubile. Più in generale si ha:

Lemma 1.2.1. Sia G un gruppo nilpotente finitamente generato. Allora G

è supersolubile.

Prima di enunciare il prossimo risultato premettiamo le seguenti defini-

zioni:

Definizione 5. Un sottogruppo L di un gruppo G, è detto normale mini-

male in G, se è un sottogruppo normale di G, non identico ed è privo di

sottogruppi propri, normali e non banali di G.

Definizione 6. Sia G un gruppo. Siano H e K sottogruppi normali di G

tali che K ≤ H. Il fattore H/K è detto fattore principale di G se H/K è

normale minimale in G/K.

Teorema 1.2.1. Sia G un gruppo supersolubile. Allora ogni fattore princi-

pale di G ha ordine primo.
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Dim. Sia H/K un fattore principale di G. Allora H/K è un sottogruppo

normale minimale del gruppo supersolubile G/K, sicchè senza ledere le ge-

neralitá si può supporre che K = {1}. Dunque

H è un sottogruppo normale minimale di G. Sia

{1} = G0 EG1 EG2 EG3 E . . .EGt = G

una serie normale finita di G a fattori ciclici contenente i sottogruppi banali

{1} e G. Poichè H ∩Gn = H ∩G = H 6= {1}, è lecito considerare il minimo

numero intero positivo i ≤ t tale che H ∩ Gi 6= 1. Consideriamo il termine

Gi−1; per la minimalitá di i si ha che H ∩Gi−1 = {1}.

D’altra parte H ∩ Gi = H, e quindi H è contenuto in Gi. Dunque H =

H/H ∩ Gi−1 ' HGi−1/Gi−1. Sicchè H è isomorfo ad un sottogruppo di

Gi/Gi−1, e quindi è ciclico. Poichè ogni sottogruppo di un gruppo ciclico è

caratteristico, si ha che H ha ordine primo. Pertanto l’asserto è provato.

Definizione 7. Sia X una classe di gruppi e sia G un gruppo. L’X -residuale,

di G è l’intersezione di tutti i sottogruppi normali di G tale che i rispettivi

gruppi quozienti in G sono X -gruppi; tale sottogruppo si denota con %∗X (G).

L’X -residuale di G è un sottogruppo caratteristico di G. Per esempio,

se X = F , la classe dei gruppi finiti, %∗F(G) è il residuale finito di G, cioè

l’intersezione dei sottogruppi normali di G di indice finito in G.
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Definizione 8. Un gruppo G è detto residualmente finito se il suo resi-

duale finito è identico.

Osserviamo che G/%∗F(G) non è detto che sia finito. Infatti, in generale

il gruppo quoziente G/%∗X (G) non appartiene alla classe X .

Il caso di maggior interesse si verifica quando G/%∗X (G) è un X -gruppo, e in

tal caso G possiede un unico sottogruppo minimo tale che il corrispondente

gruppo quoziente appartiene alla classe X . Consideriamo X la classe dei

gruppi supersolubili. Si ha:

Definizione 9. Sia G un gruppo. Si definisce residuale supersolubile di

G, M , l’intersezione di tutti i sottogruppi normali L di G tali che G/L è un

gruppo supersolubile.

Consideriamo un gruppo finito G e sia M il residuale supersolubile di G.

Allora il gruppo quoziente G/M è un gruppo supersolubile finito e questo è

il più grande quoziente supersolubile finito di G.

Definizione 10. Sia X una classe di gruppi. Un sottogruppo E di un gruppo

G è chiamato X -massimale in G se :

(a) E ∈ X ;

(b) se E ≤ V ≤ G e V ∈ X , allora E = V
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Definizione 11. Sia X una classe di gruppi. Un sottogruppo E di un gruppo

finito G, è detto X -proiettore di G se:

EN/N è un sottogruppo X−massimale di G/N, per ogni sottogruppo N/G

Sia X la classe dei gruppi supersolubili. Allora si ha:

Definizione 12. Un sottogruppo E di un gruppo finito G è detto proiettore

supersolubile di G se:

EN/N è un sottogruppo supersolubile massimale di G/N, per ogni sottogruppo N/G

Il prossimo risultato mostra il comportamento del sottogruppo di Fitting

di un gruppo supersolubile. Pertanto ricordiamo la seguente definizione:

Definizione 13. Sia G un gruppo. Il sottogruppo di Fitting di G è il sotto-

gruppo generato da tutti i sottogruppi normali e nilpotenti di G.

Teorema 1.2.2. Sia G un gruppo supersolubile. Allora il sottogruppo di

Fitting F di G è nilpotente, e G/F è un gruppo abeliano finito.

Dim. Il gruppo G è supersolubile e quindi policiclico e pertanto verifica la

condizione massimale sui sottogruppi. Dal lemma 1.1.3 il sottogruppo di

Fitting F di G è finitamente generato, e quindi è il prodotto di un numero

finito di sottogruppi normali e nilpotenti. Per il teorema di Fitting segue che

F è nilpotente.
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Sia

{1} = G0 EG1 EG2 EG3 E . . .EGt = G

una serie normale e finita di G a fattori ciclici contenente i sottogruppi banali

{1} e G. Qualunque sia il numero i ≤ t, sia Ci/Gi−1 il centralizzante di

Gi/Gi−1 in G/Gi−1. Allora Ci è un sottogruppo normale di G e G/Ci è

isomorfo ad un sottogruppo del gruppo di automorfismi del gruppo ciclico

Gi/Gi−1, dunque G/Ci è un gruppo abeliano finito.

Pertanto l’intersezione

C =
t⋂
i=1

(Ci)

è un sottogruppo normale di G e G/C èun gruppo abeliano finito. D’altra

parte risulta:

[C ∩Gi, C] ≤ C ∩Gi−1

per ogni numero intero positivo i ≤ t. Segue dunque che la serie:

{1} = C ∩G0 < C ∩G1 < C ∩G2 < C ∩G3 < . . . < C ∩Gt = C

è una serie centrale di C. Pertanto C è un sottogruppo normale nilpotente

di G, cosicchè C ≤ F e G/F è un gruppo abeliano finito.

Il teorema 1.1.3 afferma che un gruppo policiclico è nilpotente se ha i

quozienti finiti nilpotenti. Il corrispondente risultato per la supersolubilità è

stato ottenuto da R.Baer come mostra il seguente teorema:
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Teorema 1.2.3. (R. Baer) Un gruppo policiclico è supersolubile se ha tutti

i quozienti finiti supersolubili.

A differenza del teorema 1.1.3, il teorema di Baer non si estende ai gruppi

risolubili e finitamente generati. Infatti l’esempio seguente mostra quanto

appena detto.

Esempio 1. Sia A il sottogruppo abeliano del gruppo additivo dei razionali,

costituito da tutte le frazioni con denominatore potenza di 2:

A =
{m

2n
,m ∈ Z, n ≥ 0

}
.

Consideriamo il gruppo quoziente A/Z =
{m

2n
+ Z,m ∈ Z, n ≥ 0

}
, tale grup-

po non verifica la condizione massimale sui sottogruppi e pertanto A non può

verificare la condizione massimale. Poichè A è abeliano, allora per il lemma

1.1.4 A è un gruppo non finitamente generato.

Consideriamo la seguente applicazione

x : a ∈ A 7−→ 2a ∈ A,

x è un automorfismo di A. Sia G = An 〈x〉, il prodotto semidiretto di A con

il sottogruppo 〈x〉 generato da x. Allora G è un gruppo risolubile finitamente

generato a quozienti finiti supersolubili ma non è supersolubile.
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1.3 Gruppi minimax

Diamo ora la definizione di condizione minimale sui sottogruppi e dei cenni

sui gruppi che la verificano.

Lemma 1.3.1. Sia (S,≤) un insieme ordinato. Allora sono equivalenti:

(i) Ogni parte non vuota di S è dotata di qualche elemento minimale.

(ii) Per ogni successione decrescente (xn)n∈N di elementi di S esiste un

numero intero positivo m tale che xn = xm per ogni n ≥ m.

Definizione 14. Un gruppo G verifica la condizione minimale sui sotto-

gruppi se l’insieme ordinato (L(G),≤) dei sottogruppi di G verifica una delle

condizioni equivalenti del lemma 1.3.1.

Osserviamo che se un gruppo G verifica la condizione minimale sui sotto-

gruppi, anche i sottogruppi e i quozienti di G godono della stessa proprietà.

Inoltre si ha:

Lemma 1.3.2. Sia G un gruppo, e sia N un sottogruppo normale di G. Se

Ne G/N verificano la condizione minimale sui sottogruppi, anche G verifica

la condizione minimale sui sottogruppi.

Definizione 15. Un gruppo G è detto di Černikov se verifica la condizione

minimale sui sottogruppi, e inoltre contiene un sottogruppo abeliano di indice

finito.

16



Un gruppo finito è un gruppo di Černikov e il p-gruppo di Prüfer Z(p∞)

è un gruppo di Černikov infinito. Il seguente teorema descrive la struttura

dei gruppi di Černikov.

Teorema 1.3.1. Un gruppo G è di Černikov se esoltanto se possiede un

sottogruppo normale abeliano di indice finito che sia prodotto diretto di un

numero finito di gruppi di Prüfer.

Teorema 1.3.2. (S.N. Černikov) Se G è un gruppo risolubile verificante la

condizione minimale sui sottogruppi, allora G è di Černikov.

Un gruppo G è chiamato gruppo minimax se possiede una serie mini-

max, cioè una serie di lunghezza finita i cui fattori soddisfano la condizione

massimale oppure la condizione minimale sui sottogruppi. L’essere mini-

max esprime una condizione finitaria che generalizza sia quella massimale

che quella minimale. La classe dei gruppi minimax è chiusa per sottogruppi,

per quozienti e per estensione.

Un esempio di gruppo abeliano minimax è il gruppo Qπ dei numeri razionali

i cui denominatori sono π-numeri, dove π è un insieme finito di primi; infatti

Z soddisfa la condizione massimale e il fattore Qπ/Z soddisfa la condizione

minimale. È chiaro che un gruppo abeliano minimax ha rango finito. I grup-

pi risolubili minimax furono studiati da Baer, Robinson e Začev. Poichè ogni

gruppo policiclico e ogni gruppo di Černikov ha rango finito, segue che ogni
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gruppo risolubile minimax ha rango finito([20], Parte 1 lemma 1.44).

La stuttura dei gruppi risolubili-per-finito minimax è stata descritta da Ro-

binson [[20], Parte 2, capitolo 10]; infatti si ha:

Teorema 1.3.3. Sia G un gruppo risolubile-per-finito minimax. Sia J il

residuale finito di G e F/J il sottogruppo di Fitting di G/J .allora:

a) J è il massimo sottogruppo divisibile di G ed è prodotto diretto di un

numero finito di gruppi di Prüfer;

b) F/J è nilpotente;

c) G/F è un gruppo finitamente generato e abeliano-per-finito.

Ovviamente, ogni gruppo periodico minimax soddisfa la condizione mi-

nimale sui sottogruppi, e pertanto ogni gruppo di Černikov è un gruppo

periodico risolubile-per-finito minimax e viceversa.
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Capitolo 2

Gruppi con tutti i sottogruppi

non-normali supersolubili

Questo capitolo è dedicato a descrivere i gruppi in cui ogni sottogruppo

non-normale è supersolubile. I risultati riportati di seguito sono presenti

in “Groups with non-normal subgroups are supersoluble” [10] . Lo scopo è

fornire una caratterizzazione di tali gruppi nel caso localmente graduato. Ri-

cordiamo che un gruppo G si dice localmente graduato se ogni sottogruppo

non-banale finitamente generato di G possiede un sottogruppo proprio di in-

dice finito. In particolare, ogni gruppo (risolubile-per-finito) è localmente

graduato. A tal scopo, si considerano gruppi finiti e gruppi policiclici in cui

ogni sottogruppo non-normale è supersolubile. Come conseguenza della de-

scrizione dei gruppi in cui ogni sottogruppo non-normle è supersolubile, si
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hanno alcune informazioni sui gruppi con un numero finito di normalizzanti

di sottogruppi non-supersolubili.

2.1 Gruppi Finiti

Nello studio dei gruppi i cui sottogruppi non-normali sono supersolubili, gio-

ca un ruolo importante la classe dei gruppi finiti in cui ogni sottogruppo è

subnormale oppure supersolubile. Chiameremo tali gruppi SS-gruppi. Ri-

cordiamo che un sottogruppo H di un gruppo G si dice subnormale in G se

esiste una serie finita di G contenente H e G. La struttura degli SS-gruppi

è stata descritta completamente da Ballester-Bolinches e Cossey ([4], teore-

ma 1). Riportiamo nel lemma seguente una delle condizioni necessarie del

teorema 1 citato sopra.

Lemma 2.1.1. Sia G un SS-gruppo non-supersolubile. Allora il residuale

supersolubile M di G è un p-gruppo per qualche primo p;
M

M ′ è un fattore

principale di G, e M è abeliano oppure un p-gruppo speciale.

Inoltre, se E è il proiettore supersolubile di G, allora G = ME, E∩M = M ′

e il centralizzante di
M

M ′ in E,CE

(
M

M ′

)
, è privo di fattori principali

complementati non centrali di G.

Ricordiamo che se H e K sono sottogruppi normali di un gruppo G e
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H ≤ K, allora G agisce per coniugio su H/K e il nucleo di tale azione è:

CG(H/K) = {x ∈ G|[H, x] ≤ K},

cosicchè il gruppo quoziente G/CG(H/K) è isomorfo ad un gruppo di auto-

morfismi indotto da G in H/K.

Definizione 16. Sia A un gruppo di automorfismi di un gruppo abeliano G.

Diremo che A agisce irriducibilmente su G se G è privo di sottogruppi

propri non banali A-invarianti.

Iniziamo lo studio dei gruppi in cui ogni sottogruppo è normale oppu-

re supersolubile. Il teorema seguente fornisce una caratterizzazione di tali

gruppi nel caso finito.

Teorema 2.1.1. Sia G un gruppo finito non-supersolubile e sia M il residuale

supersolubile di G. Allora ogni sottogruppo non-normale di G è supersolubile

se e solo se sono verificate le seguenti condizioni:

(i) G è un SS-gruppo;

(ii) Se E è il proiettore supersolubile di G, allora ogni sottogruppo H di E

contenente il sottogruppo derivato ,M ′, di M e tale che H/CH(M/M ′)

agisce irriducibilmente su M/M ′ è normale in E.
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Dim. Supponiamo che ogni sottogruppo di G non-supersolubile è normale,

allora chiaramente ogni sottogruppo non-supersolubile di G è subnormale e

dunque vale la condizione (i), cioè G è un SS-gruppo.

Sia E il proiettore supersolubile di G e sia H un sottogruppo di G tale che

M ′ ≤ H ≤ E e H agisce irriducibilmente su M/M ′. Per il lemma 2.1.1, M

è abeliano oppure un p-gruppo speciale e quindi M è nilpotente. Allora il

quoziente M/M ′ non può essere ciclico, infatti se M/M ′ fosse ciclico, essendo

G/M supersolubile risulterebbe G/M ′ supersolubile. Dato che M è il più

piccolo sottogruppo di G tale che G/M è supersolubile, l’unica possibilità

sarebbe M uguale ad M ′, ma ciò contraddice la nilpotenza di M. Poichè H

agisce irriducibilmente su M/M ′, M/M ′ è normale minimale in HM/M ′ e

dunque HM non può essere supersolubile altrimenti M/M ′ avrebbe ordine

primo per il teorema 1.2.1 e dunque sarebbe ciclico. Pertanto HM è un

sottogruppo normale di G e quindi il sottogruppo HM ∩ E è normale in E.

Per la legge di Dedekind si ha che HM ∩ E = H(M ∩ E), ma M ∩ E =

M ′ e dunque HM ∩ E = HM ′ e poichè M ′ ≤ H segue che HM ∩ E =

H. Pertanto H è normale in E. Viceversa, supponiamo che G verifichi le

condizioni dell’asserto e proviamo che ogni sottogruppo non-supersolubile di

G è normale in G.

A tal scopo, sia K un sottogruppo di G non-supersolubile. Sia J il residuale

supersolubile di K. Allora J è contenuto nel residuale supersolubile, M, di
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G; infatti sia L un sottogruppo normale di G tale che G/L è supersolubile.

Allora l’intersezione K∩L é un sottogruppo normale di K tale che K/K∩L '

KL/L é un sottogruppo di G/L e come tale è supersolubile. Dunque J è

contenuto in K ∩ L e quindi in L. Per l’arbitrarietà di L, segue che J

è contenuto in ogni sottogruppo normale di G a quoziente supersolubile,

cosicchè J ≤M.

Poichè G verifica la condizione (i), M/M ′ è normale minimale in G/M ′ per

il lemma 2.1.1. Osserviamo che M/M ′ è irriducibile come K-modulo oppure

i fattori di composizione di M/M ′ come K-modulo sono unidimensionali

(si veda [2], la proprietà (*) nella dimostrazione del Teorema 1). Poichè M ′

ècontenuto nel C = CE

(
M

M ′

)
e C è l’ipercentro supersolubile diG, i fattori di

composizione di M/M ′ come K-modulo non possono essere unidimensionali.

Pertanto M/M ′ è irriducibile come K-modulo.

Il sottogruppo JM
′
è un sottogruppo di M contenente M ′, K-invariante e

poichè K agisce irriducibilmente su M/M ′, si ha che JM ′ = M ′ oppure

JM ′ = M. Nel primo caso si ottiene J ciclico e dunque K supersolubile.

Quindi necessariamente JM ′ = M. Dato che M è un gruppo nilpotente

finito, M ′ è contenuto nel sottogruppo di Frattini di M e pertanto J = M.

Dunque K contiene M cosicchè K = K ∩G = K ∩ME = M(K ∩ E).

Per provare che K è normale in G, è sufficiente mostrare che K∩E é normale

in E. Poichè M ′ = M ∩E ≤ K ∩E ≤ E, per la condizione (ii), è sufficiente
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provare che (K ∩ E)/CH(M/M ′) agisce irriducibilmente su M/M ′. Ma ciò

è vero perchè M/M ′ è irriducibile come K -modulo. Segue che K ∩ E è

normale in E, e quindi K è normale in G. Pertanto G ha tutti i sottogruppi

non-normali supersolubili.

2.2 Gruppi policiclici

In questa sezione verrà data una caratterizzazione dei gruppi policiclici in

cui ogni sottogruppo non-normale è supersolubile. Inoltre, se G è un gruppo

poiciclico,molte proprietà gruppali possono essere dedotte per G dal compor-

tamento delle sue immagini omomorfe finite (si veda il teorema 1.1.3, capitolo

1).

La proposizione seguente mostra che nei gruppi policiclici la proprietà i pos-

sedere sottogruppi non-normali supersolubili può essere dedotta dal compor-

tamento delle sue immagini omomorfe finite.

Lemma 2.2.1. Sia G un gruppo policiclico. Allora le seguenti condizioni

sono equivalenti:

(i) Ogni sottogruppo non-normale di G è supersolubile;

(ii) Ogni sottogruppo di indice finito in G è normale oppure supersolubile;
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(iii) In ogni immagine omomorfa finita di G, ogni sottogruppo non-normale

è supersolubile.

Dim. (i) ⇒ (ii) Se ogni sottogruppo non-normale di G è supersolubile, ov-

viamente lo è anche ogni sottogruppo non-normale di indice finito di G.

(ii) ⇒ (iii) Sia N un sottogruppo normale di G e G/N un’immagine omo-

morfa finita di G.

Sia H/N un sottogruppo non-normale di G/N . Ci proponiamo di mostrare

che H/N è supersolubile. H è un sottogruppo non-normale di indice finito

di G e quindi per la (ii) H è supersolubile. Poichè la classe dei gruppi su-

persolubili è chiusa per quozienti si ha l’asserto.

(ii) ⇒ (i) Sia H un sottogruppo non-normale di G. Poichè G è policiclico,

per il teorema 1.1.2,

H =
⋂
∀i

Ki,

con |G : Ki| finito. Poichè H è non-normale in G, esiste un indice i tale che

Ki è non-normale in G.

Pertanto Ki è un sottogruppo non-normale di indice finito di G, e quindi per

ipotesi Ki è supersolubile. Segue H supersolubile e quindi vale la (i).

(iii)⇒ (ii) Sia H un sottogruppo non-normale di indice finito di G.

Consideriamo un’immagine omomorfa finita di H che denotiamo con H/L.

Sia N = LG il nocciolo di L in G. Chiaramente il quoziente H/N è un
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sottgoruppo non-normale di G/N e per la (iii) è supersolubile. Segue che

H/L è supersolubile. Pertanto si è provato che ogni immagine omomorfa

finita di H è supersolubile. Allora per il teorema di Baer (1.2.3, capitolo 1)

si ha che H è supersolubile ottenendo cos̀i la condizione (ii).

Lemma 2.2.2. Sia G un gruppo policiclico non-supersolubile in cui ogni

sottogruppo non-supersolubile è normale. Allora G possiede un sottogruppo

T normale, nilpotente, senza torsione e tale che il gruppo quoziente G/T è

un gruppo finito non-supersolubile.

Dim. Poichè i gruppi di Dedekind sono localmente supersolubili, G possiede

necessariamente un sottogruppo non normale. Inoltre dato che G è policiclico

per il teorema 1.1.2 esiste un sottogruppoK non-normale di G di indice finito.

Dunque G è supersolubile-per-finito, infatti il nocciolo di K in G,KG è un

sottogruppo normale di G supersolubile e tale che G/KG è finito.

Per il teorema 1.2.2 il sottogruppo di Fitting, L, di KG è nilpotente e ha

indice finito in KG. Allora L è un sottogruppo normale, nilpotente di indice

finito di G.

Poichè G è policiclico e non-supersolubile, per il teorema di Baer (1.2.3)

esiste un’immagine omomorfa finita di G non supersolubile che denotiamo

con G/N . Consideriamo il sottogruppo L ∩ N ; tale sottogruppo è normale

in G, nilpotente e poichè è intersezione di sottogruppi di indice finito in G,
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ha indice finito in G. Inoltre G in quanto policiclico verifica la condizione

massimale sui sottogruppi e pertanto L ∩ N è finitamente generato (lemma

1.1.4, capitolo 1) e dunque senza torsione. In particolare il gruppo quoziente

G/L ∩ N è non supersolubile. Segue allora che il sottogruppo T = L ∩ N

soddisfa la condizione richiesta, e il lemma è provato.

Combinando i due lemmi precedenti, possiamo concludere il caso polici-

clico che costituisce un passo fondamentale per descrivere i gruppi localmente

graduati in cui ogni sottogruppo non-normale è supersolubile.

Teorema 2.2.1. Sia G un gruppo policiclico non-supersolubile. Allora ogni

sottogruppo non-normale di G è supersolubile se e solo se valgono le seguenti

condizioni:

(i) Il residuale supersolubile M di G è un p-gruppo per qualche primo p;

(ii) Esiste un sottogruppo supersolubile E di G tale che

G = ME e E ∩M = M ′;

(iii) M/M ′ è un fattore principale di G e M è abeliano oppure un p-gruppo

speciale;

(iv) Se C = CE(M/M ′) allora C è supersolubilmente immerso in G ed è

privo di fattori principali complementati non-centrali di G;
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(v) G/C èun SS-gruppo;

(vi) Se H è un sottogruppo tale che M ′ ≤ H ≤ E e H/CH(M/M ′) agisce

irriducibilmente su M/M ′, allora H è normale in E.

Dim. Supponiamo che ogni sottogruppo di G non-normale è supersolubile.

Dal lemma 2.2.2 segue che G possiede un sottogruppo T normale, nilpotente

e senza torsione e tale che G/T è un gruppo finito non-supersolubile. D’altra

parte per il lemma 2.2.1 G/T ha tutti i sottogruppi normali o supersolubili

e dunque è un SS-gruppo.

Per il lemma 2.1.1 si ha:

G

T
=

(
M

T

)(
E

T

)
,

dove
M

T
e
E

T
sono rispettivamente il residuale e il proiettore supersolubile di

G

T
.

Inoltre
M

T
è un p-gruppo per qualche primo p.

Sia q un primo tale che non divide l’ordine di G/T . Per ogni intero po-

sitivo n, consideriamo il gruppo finito G/T q
n

dove T q
n
è un sottogruppo

caratteristico di T e dunque normale in G. Poichè G/T q
n
è estensione dei

gruppi finiti T/T q
n

e G/T , risulta anch’esso finito. D’altra parte poichè G/T

è un quoziente non-supersolubile di G/T q
n

segue che G/T q
n
è un gruppo

non-supersolubile ed inoltre ha tutti i sottogruppi normali o supersolubi-

li. Pertanto G/T q
n
è un SS-gruppo e riapplicando il lemma 2.1.1, per ogni
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intero positivo n si ha:

G

T qn
=

(
Mn

T qn

)(
En
T qn

)
,

con
Mn

T qn
e
En
T qn

rispettivamente il residuale e il proiettore supersolubile di

G/T q
n
. In particolare

Mn

T qn
è un gruppo primario. Per ogni n il quoziente

Mn/T
qn è contenuto in M/T q

n

; infatti M/T q
n

è un sottogruppo normale di

G/T q
n

tale che
G/T q

n

M/T qn
' G/M è supersolubile. Dunque poichè Mn/T

qn è il

residuale supersolubile di G/T q
n

segue che Mn/T
qn è contenuto in M/T q

n

e

pertanto Mn ≤M cosicchè Mn/ (Mn ∩ T ) è un p-gruppo non banale e quindi

Mn/T
qn è anch’esso un p-gruppo; segue che Mn ∩ T = T q

n
.

Sia M il residuale supersolubile di G. Poichè Mn è un sottogruppo normale

di G tale che
G

Mn

' G/T q
n

Mn/T q
n è supersolubile si ha che per ogni n intero

positivo, M è contenuto in Mn.

Segue che M ≤
⋂
n≥1

Mn da cui si ottiene:

M ∩ T ≤
⋂
n≥1

Mn ∩ T =
⋂
n≥1

(Mn ∩ T ) =
⋂
n≥1

T q
n

= 11

Pertanto si ha che M =
M

M ∩ T
' MT

T
≤ M

T
e quindi M è un p-gruppo

finito, e dunque vala la condizione (i).

Proviamo la condizione (ii). Poichè M è privo di sottogruppi propri G-

invarianti con gruppo quoziente ciclico, esiste un sottogruppo E di G tale

1Il sottogruppo T é un q-gruppo residualmente finito.
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che G = ME e E ∩M = M ′ (si veda [21], teorema 4.1). Il sottogruppo E

di G è supersolubile perchè altrimenti sarebbe normale in G, cos̀i come ogni

sottogruppo di G contenente E e dunque il gruppo quoziente G/E sarebbe

un gruppo di Dedekind. In particolare
G

E
=
ME

E
' M

M ∩ E
e dunque esso

è un gruppo di Dedekind finito e quindi supersolubile, segue allora che M è

contenuto in E e che quindi M = M ′ contro la nilpotenza di M . Dunque E

deve essere necessariamente supersolubile e quindi vale la condizione (ii).

Proviamo che il quoziente M/M ′ è un fattore principale di G e che M è

abeliano oppure un p-gruppo speciale.

A tal scopo sia N un sottgruppo normale di indice finito di G tale che G/N

è un gruppo non-supersolubile e M ∩N = 1.

Il quoziente G/N è un SS-gruppo e per il lemma 2.1.1 il suo residuale su-

persolubile MN/N è un p-gruppo speciale oppure un gruppo abeliano, con

MN/N

M ′N/N
' MN

M ′N
fattore principale di G/N . Segue che M/M ′ è un fattore

principale di G e M è p-gruppo speciale oppure un gruppo abeliano e per-

tanto vale la condizione (iii).

Proviamo che il centralizzante C = CE(M/M ′) è supersolubilmente immerso

in G ed è privo di fattori principali complementati non centrali.

Sia x un elemento di C, allora il laterale xN è un elemento del centraliz-

zante CEN
N

(MN/M ′N). Per ([14], [8, IV 6.14]), si ha che , ZU(G/N) =
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CEN
N

(MN/N), dove ZU(G/N) è l’ipercentro supersolubile di G/N . Inoltre

da ([14], [8,V 2.4 e 4.2]) e dal fatto che MN/N è nilpotente si ottiene che

CEN
N

(MN/M ′N) = ZU(G/N) e dunque CEN
N

(MN/M ′N) = CEN
N

(MN/N).

Pertanto l’interderivato [x,M ] ≤M ∩N = 1, quindi l’elemento x appartiene

al centralizzante in E di M . Segue che C = CE(M/M ′) = CE(M). In parti-

colare C è supersolubilmente immerso in G.

Supponiamo per assurdo che C possiede un fattore principale complementato

non-centrale di G. Denotiamo quest’ultimo con U/V con U ≤ C e sia Y/V

il suo complemento in G/V .

Osserviamo che il gruppo quoziente G/C è non-supersolubile perchè altri-

menti essendo C supersolubilmente immerso in G, si avrebbe G supersolubi-

le. Da ciè segue che Y/V è non-supersolubile e dunque è normale in G/V .

Pertanto G/V = Y/V × U/V e quindi il sottogruppo U/V é contenuto nel

centro di G/V . Tale contraddizione prova la condizione (iv).

La condizione (v) è ovvia; infatti se H/C è un sottogruppo non-subnormale

di G/C, allora H è un sottogruppo non-normale di G e quindi è supersolubile

e poichè la classe dei gruppi supersolubili è chiusa per quozienti si ottiene

H/C supersolubile. Dunque G/C è un SS-gruppo.

Mostriamo la condizione (vi). Sia H un sottogruppo di G tale M ′ ≤ H ≤ E

e H/CH(M/M ′) agisce irriducibilmente su M/M ′. Allora il sottogruppo

K = MH non può essere supersolubile e dunque è normale in G. Osservando
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che

H = H ∩G = H ∩ME = MH ∩ E = K ∩ E

segue che H è normale in E. Dunque vale la condizione (vi).

Viceversa supponiamo che valgono le condizioni (i)−(vi). Per il lemma 2.2.1,

è sufficiente provare che in ogni immagine omomorfa finita di G i sottogruppi

non supersolubili sono normali. Sia G/N un’immagine omomorfa finita non-

supersolubile di G. Poichè M/M ′ è un fattore principale di G, il sottogruppo

M ′(M ∩N) è uguale ad M ′ oppure ad M .

Se M ′(M ∩ N) = M allora essendo M ′(M ∩ N) = M ∩ M ′N si ha che

M è contenuto in M ′N e dunque una contraddizione in quanto poichè M ′

è supersolubilmente immerso in G, il quoziente G/M ′N non può essere su-

persolubile. Pertanto necessariamente M ′(M ∩ N) = M ′ da cui segue che

M ′ ∩ N = M ∩ N . Poichè il sottogruppo M ∩ (EN) è normale in G e

M ′ ≤M ∩ (EN) < M , si ottiene che M ∩ (EN) = M ′.

D’altra parte MN ∩ EN = N(M ∩ EN). Dunque si ha:

MN/N ∩ EN/N = (MN ∩ EN)/N = (M ∩ EN)N/N = M ′N/N .

Consideriamo il laterale xN appartenente al gruppo CEN
N

(MN/M ′N), allora

per definizione di centralizzante [xN,M ] ≤M ′N ; da cui segue che

[x,M ] ≤ M ′N ∩ M , ma M ′N ∩ M = M ′(N ∩ M) = M ′(N ∩ M ′) = M ′

e dunque [x,M ] ≤ M ′ cioè x ∈ C e quindi xN ∈ (CN)/N . Pertanto
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(CN)/N = CEN
N

(MN/M ′N) è privo di fattori principali complementati non-

centrali. Per quanto detto il gruppo G/N = (MN/N)(EN/N) soddisfa la

condizione (i) di ([4] Teorema 1).

Il gruppo G/CN è un quoziente di G/C e quindi il gruppo G/N verifica una

delle condizioni (ii)− (iv) di ([4] Teorema 1) , sicchè è un SS-gruppo.

Posto G/N = G, mostriamo che per ogni K tale che M
′ ≤ K ≤ E e

K/CK(M/M
′
) agisce irriducibilmente su M/M

′
, allora K è normale in E.

Posto H = K ∩ E, proviamo che H/CH(M/M ′) agisce irriducibilmente su

M/M ′. A tale scopo, sia X un sottogruppo di G H-invariante e tale che

M ′ ≤ X ≤ M , allora M ′N ≤ XN ≤ MN e poichè X è K ∩ E-invariante,

XN risulta (K ∩E)N -invariante e dunque K-invariante. Pertanto si ha che

XN = M ′N oppure XN = MN . Nel primo caso si ha:

X = X ∩M ′N = M ′(X ∩N) = M ′. Nell’altro caso si ha:

X = X(M ′ ∩ N) = X(M ∩ N) = M ∩ (XN) = M ∩ (MN) = M . Segue

quindi che il sottogruppo H = K ∩ E è normale in E per la condizione

(vi) del teorema. Si ottiene cos̀i che K = N(K ∩ E) è normale in EN cioè

K è normale in E. Per il teorema 2.1.1,G/N = G ha tutti i sottogruppi

non-normali supersolubili e pertanto il teorema è provato.
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2.3 Gruppi localmente graduati

Lemma 2.3.1. Sia G un gruppo localmente graduato in cui ogni sottogruppo

non-normale è supersolubile. Allora G è risolubile.

Dim. Osserviamo che se G è supersolubile oppure non è supersolubile ma

ha tutti i sottogruppi propri supersolubili, allora G è risolubile ([15] teorema

3.1).

Pertanto supponiamo che esiste un sottogruppo H di G che non sia superso-

lubile, allora H è necessariamente normale in G.

Dato che H non è supersolubile, ogni sottogruppo che lo contiene è normale in

G. Dunque il gruppo quoziente G/H ha tutti i sottogruppi normali e pertanto

è un gruppo di Dedekind. Poichè i gruppi di Dedekind sono metabeliani, il

derivato secondo di G, G′′, è contenuto in H. Dunque otteniamo che ogni

sottogruppo proprio di G′′ è supersolubile 2

DunqueG′′ è risolubile (si veda [15], teorema 3.1]), cosicchè G è risolubile.

Osserviamo che se G è un gruppo in cui ogni sottogruppo è normale op-

pure supersolubile, allora G ha tutti i sottogruppi normali oppure policiclici.

Pertanto risulta importante conoscere la struttura di questi gruppi.

I gruppi in cui ogni sottogruppo non-normale è policiclico sono stati studiati

da Franciosi, de Giovanni e Newell, i quali in “Groups with polycyclic non-

2tutti i sottogruppi che non sono supersolubili contengono G′′.
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normal subgroups” ([16]) danno una completa classificazione di tali gruppi

che riportiamo di seguito.

Chiaramente, un gruppo periodico in cui ogni sottogruppo non-normale è

policiclico, ha tutti i sottogruppi infiniti normali e tali gruppi sono stati

caratterizzati da Černikov ([8]).

Teorema 2.3.1. (S. Franciosi, F. de Giovanni, M. Newell [16]) Sia G un

gruppo localmente graduato. Allora ogni sottogruppo non-normale di G è

policiclico se e solo se G soddisfa una delle seguenti condizioni:

(i) G è un gruppo di Dedekind;

(ii) G è policiclico;

(iii) G è estensione di un gruppo di Prüfer per un gruppo finito di Dedekind;

(iv) G è un gruppo risolubile minimax il cui residuale finito J è un gruppo

di tipo p∞ per qualche primo p e contiene G′. Inoltre ogni sottogruppo

abeliano di G è in Min-per-Max;

(v) G = M ×E, con M ' Q2 (il gruppo additivo dei numeri razionali i cui

denominatori sono potenza di due) ed E gruppo Hamiltoniano finito;

(vi) G è policiclico-per-finito e contiene un sottogruppo normale minimale

non risolubile N tale che G/N è un gruppo di Dedekind. In particolare,

il sottogruppo derivato G′ di G è finito.
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Dimostrazione. Sia G un gruppo localmente graduato non-Dedekendiano, in

cui ogni sottoruppo non-normale è policiclico. Se G è periodico, allora tutti i

suoi sottogruppi infiniti sono normali e dunque G è estensione di un gruppo

di Prüfer per un gruppo finito di Dedekind e pertanto G soddisfa la condi-

zione (iii).

Supponiamo che G sia policiclico-per-finito. Poichè ogni sottogruppo non-

normale di G è policiclico, segue che G ha tutti i sottogruppi non-normali

risolubili con rango sezionale finito abeliano. Dunque applicando il teore-

ma 2.7 di [16], si ha che G é risolubile con rango sezionale finito abeliano

e dunque policiclico, oppure G ha rango sezionale finito abeliano e possiede

un sottogruppo finito, normale minimale, non risolubile e tale che il gruppo

quoziente G/N sia un gruppo di Dedekind. Pertanto G soddisfa la condizio-

ne (ii) o la (vi) dell’asserto.

Dunque possiamo supporre che G sia non periodico e non policiclico-per-

finito; segue dal lemma 2.11 di [16] che G è metabeliano. Chiaramente pos-

siamo supporre che G sia non dedekendiano e quindi per il corollario 2.10

di [16] si ottiene G è un gruppo minimax. In particolare tutti i sottogruppi

periodici di G sono gruppi di Černikov.

Supponiamo che G′ sia non finitamente generato e sia H un sottogruppo di

indice finito di G′. Allora H è non finitamente generato e quindi è normale

in G; infatti se H non fosse normale, allora sarebbe policiclico, quindi a con-
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dizione massimale e dunque finitamente generato contrariamente a quanto

detto sopra. Pertanto ogni sottogruppo di G contenente H è normale in G

e quindi il gruppo quoziente G/H è di Dedekind. Segue che G′/H ha ordine

al più 2, cosicchè, denotato con R il residuale finito di G′, quest’ultimo ha

indice al più 2 in G′. Pertanto R è privo di sottogruppi propri di indice finito

e dunque è divisibile. Inoltre ogni sottogruppo proprio di R è finitamente

generato cosicchè R è un gruppo di Prüfer per qualche primo p.

Se R 6= G′, allora il gruppo quoziente G/R è un gruppo non abeliano con

tutti i sottogruppi normali e quindi è Hamiltoniano; cosicchè G è periodico.

Pertanto R = G′.

Sia J il residuale finito di G, poichè G è un gruppo minimax segue che J

è prodotto diretto di un numero finito di gruppi di Prüfer ed è il massimo

sottogruppo divisibile di G. Pertanto J è un gruppo abeliano, periodico e

divisibile e J = G′×J1, con J1 sottogruppo divisibile. Se J1 6= {1}, allora J1

è normale in G, infatti se J1 non fosse normale in G, allora J1 sarebbe polici-

clico e quindi finito essendo periodico, ma ciò è una contraddizione in quanto

J1 è divisibile. Dunque G/J1 è un gruppo di Dedekind e quindi G′J1/J1 è

finito, ma G′J1/J1 ' G′/J1∩G′ = G′, si ottiene una contraddizione in quan-

to G′ è infinito. Allora necessariamente J1 = {1} ottenendo cos̀i G′ = J e

quindi il residuale finito di G, J , è un gruppo di tipo p∞ per qualche primo

p.
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Proviamo che ogni sottogruppo abeliano di G è Min-per-Max. A tale scopo,

sia A un sottogruppo abeliano di G. Allora A = A1 × A2, con A1 grup-

po di Černikov e A2 un gruppo senza torsione. Se il sottogruppo A2 non

è finitamente generato, allora è normale in G e il gruppo quoziente G/A2

è di Dedekind. Allora G′ ≤ A2, ma A2 è senza torsione e G′ è un gruppo

periodico dunque A2 deve essere finitamente generato. Pertanto A2 verifica

la condizione massimale sui sottogruppi ed inoltre essendo A1 un gruppo di

Černikov, segue che A è Min-per-Max. Dunque vale la condizione (iv) del-

l’asserto.

Supponiamo che G′ sia finitamente generato. Il quoziente G/G′ non è finita-

mente generato ed essendo G′ residualmente finito, esiste una collezione

{Ki}i∈I

di sottogruppi G-invarianti di indice finito in G′ tale che

⋂
i∈I

Ki = {1}.

Per ogni i ∈ I, il gruppo quoziente Gi = G/Ki è un gruppo minimax con

il sottogruppo derivato G
′

finito. Allora Gi/Z(Gi) è finito da cui segue che

Z(Gi) è non finitamente generato. Inoltre poichè Z(Gi) è non policiclico, il

gruppo quoziente Gi/Z(Gi) è un gruppo di Dedekind finito e dunque nilpo-

tente. Allora per ogni i ∈ I, Gi è nilpotente di classe al più tre, cosicchè G

è nilpotente.
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Sia T il sottogruppo di torsione di G. Sia G′ infinito, allora anche il gruppo

quoziente G/T ha il derivato infinito. Dunque G/T non è un gruppo di De-

dekind e pertanto esiste un sottogruppo H con T ≤ H ≤ G e non normale

in G; segue che H è policiclico e dunque T èun gruppo policiclico periodico e

dunque finito. Allora G è residualmente finito. Inoltre ogni immagine omo-

morfa finita di G è un gruppo di Dedekind e cos̀i G′ ha esponente due. Tale

contraddizione prova che il derivato di G è finito e pertanto G/Z(G) è finito.

Poichè G è un gruppo minimax, esiste un sottogruppo U periodico e un

sottogruppo V senza torsione tale che

Z(G) = U × V

. Supponiamo che V sia non finitamente generato, allora G/V ha tutti i

sottogruppi normali e non è abeliano. Pertanto G/V è Hamiltoniano e G′ ha

ordine due.

Se V 2 6= V , allora per ogni n ∈ N V 2n+1 6= V 2n, cosicchè G/V 8 non è

Hamiltoniano, allora è abeliano, ma tale contraddizione prova che V = V 2.

Dunque V contiene un sottogruppo W tale che V/W è isomorfo al duo-

gruppo Z(2∞).

Chiaramente G/W non è un gruppo di Dedekind, esiste un sottogruppo H/W

non normale in G/W ; dunque H è non normale in G e quindi policiclico.

Allora il sottogruppo W è policiclico e dunque finitamente generato. Segue
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dal lemma 2.12 di ([16]) che V è isomorfo a Q2.

Assumiamo che U è infinito e sia U0 il residuale finito di U . Poichè G/V è

hamiltoniano, segue che U non può possedere sottogruppi di tipo 2∞; cosicchè

U0 ∩ G′ = {1} e il gruppo non periodico G/U0 risulta essere hamiltoniano,

ma ciò è una contraddizione e pertanto U è finito. Allora T è anch’esso finito

e

G/G′ = L/G′ × T/G′,

con L/G′ senza torsione. Poichè G è estensione finita di un duo-gruppo

divisibile, segue che L/G′ è anch’esso un duo-gruppo divisibile, cosi L è

abeliano e L = M × G′, per qualche sottogruppo M duo-divisibile e senza

torsione.

Dunque G = LT = MG′T = MT e M ∩ T = {1}; inoltre M è normale in

G, in quanto non può essere policiclico e dunque G = M × T con T finito e

hamiltoniano.

Lo stesso argomento mostra che il gruppo abeliano M è isomorfo a Q2 e

pertanto G soddisfa la condizione (v).

Infine , supponiamo che V è finitamente generato e cosicchè T è un gruppo

di Černikov infinito e G è Min-per-Max.

Sia P un sottogruppo di Prüfer di G. Allora P è normale in G e il gruppo

non periodico G/P è abeliano e dunque G′ è contenuto in P . Segue che il
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residuale finito di G è un gruppo di Prüfer e pertanto G soddisfa la condizione

(iv).

Viceversa, è sufficiente provare che, se G soddisfa una delle condizioni (iv) e

(v), allora ogni sottogruppo non normale di G è policiclico.

Sia X un sottogruppo di G che non è policiclico. Supponiamo che G soddisfa

la condizione (iv). Se G′ non è contenuto in X, l’intersezione X ∩G′ è finito

cosicchè X ′ è finito e dunque X/Z(X) è finito. Allora Z(X) è Min-per-Max

e non è finitamente generato; il residuale finito J di G è un sottogruppo

del centro di G, ma poichè G′ è contenuto in J , ciò è una contraddizione.

Pertanto G′ ≤ X e X è normale in G.

Supponiamo che G soddisfa la condizione (v). Allora X∩M è un gruppo non

finitamente generato, e quindi il quoziente M/(M ∩X) è un gruppo abeliano

finito di ordine dispari.

Segue che il quoziente G/(X ∩M) è hamiltoniano e pertanto X è normale

in G.
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Proviamo il risultato principale, che fornisce una descrizione dei gruppi

localmente graduati in cui ogni sottogruppo non-normale è supersolubile.

Teorema 2.3.2. Sia G un gruppo localmente graduato. Allora ogni sotto-

gruppo non-normale di G è supersolubile se e solo se G verifica una delle

seguenti condizioni:

(i) G è un gruppo di Dedekind;

(ii) G è un gruppo policiclico in cui ogni sottogruppo non-supersolubile è

normale;

(iii) G possiede un sottogruppo di Prufer,J , tale che il gruppo quoziente G/J

è un gruppo di Dedekind finito;

(iv) G è un gruppo risolubile minimax il cui residuale finito J , è di tipo p∞

contiene G′; in particolare ogni sottogruppo abeliano di G è in Min-per-

Max;

(v) G = M × E, con M ' Q2(il gruppo additivo dei numeri razionali i

cui denominatori sono potenza di due) ed E un gruppo Hamiltoniano

finito.

Dim. Supponiamo che ogni sottogruppo non-supersolubile di G è normale.

Allora G ha tutti i sottogruppi normali o policiclici, sicchè verifica le condizio-

ni del teorema 2.3.1. Poichè G è risolubile per il lemma 2.3.1, G sicuramente
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non verifica la condizione (vi) del teorema 2.3.1 e pertanto verifica una delle

condizioni (i)− (v) dell’asserto.

Viceversa, mostriamo che se G verifica una delle condizioni (iii)− (v), allora

ogni sottogruppo non-normale di G è supersolubile. A tale scopo sia X un

sottogruppo di G non-normale.

Supponiamo che G verifichi la condizione (iii). Allora esiste un sottogruppo

J normale di G tale che J ' Zp∞ e G/J ' D con D gruppo di Dedekind

finito. Per il teorema 2.3.1 il sottogruppo X è policiclico e quindi verifica

la condizione massimale sui sottogruppi per il teorema 1.1.1. Consideriamo

il sottogruppo X ∩ J ; poichè X verifica la condizione massimale sui sotto-

gruppi, X ∩ J è finitamente generato per il lemma 1.1.3. Inoltre X ∩ J è

un sottogruppo finitamente generato di J ed essendo J localmente ciclico,

segue che X ∩ J è ciclico. D’altra parte il gruppo G/J essendo un gruppo

finito di Dedekind è supersolubile e quindi il quoziente X/X ∩ J ' XJ/J è

supersolubile. Segue allora che X è supersolubile.

Supponiamo che G verifichi la condizione (iv). Per il teorema 2.3.1 il sot-

togruppo X è policiclico. Poichè G′ è contenuto nel residuale finito J di G,

segue che il gruppo G/J è abeliano. Da ciò segue che X/X∩J ' XJ/J è su-

persolubile ed essendo X∩J ciclico segue X supersolubile. Infine supponiamo

che G verifica la condizione (v).Per il teorema 2.3.1 il sottogruppo X è polici-

clico. Il gruppo G/M è supersolubile. Da ciò segue che X/X ∩M ' XM/M
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è supersolubile ed essendo X ∩M ciclico segue X supersolubile.

Romalis e Sesekin, ([23], [25]) hanno provato che i gruppi localmente gra-

duati metahamiltoniani hanno il sottogruppo derivato finito.

Questo risultato è stato recentemente esteso al caso dei gruppi con un nume-

ro finito di normalizzanti di sottogruppi non-abeliani (si veda [11]).

Sono stati studiati gruppi con un numero finito di normalizzanti di sotto-

gruppi con una data proprietà X per diverse scelte di X . In particolare,

M. De Falco, F. de Giovanni. e C. Musella considerano gruppi localmente

graduati con un numero finito di normalizzanti di sottogruppi non-policiclici

provando il seguente risultato che per la dimostrazione si rimanda a [9].

Teorema 2.3.3. Sia G un gruppo localmente graduato non-policiclico con

un numero finito di normalizzanti di sottogruppi non-policiclici. Allora il

sottogruppo derivato G′ di G è un gruppo di Cernikov e la sua parte divisibile

è un gruppo primario.

Di seguito, studiamo il problema corrispondente per la supersolubilità.

Corollario 1. Sia G un gruppo localmente graduato con un numero finito

di normalizzanti di sottogruppi non-supersolubili. Allora si verifica una delle

seguenti condizioni:

(i) G è policiclico e il suo residuale supersolubile è finito;
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(ii) Il sottogruppo derivato di G è un gruppo di Cernikov e la sua parte

divisibile è un gruppo primario.

Dim. Poichè G ha un numero finito di normalizzanti di sottogruppi non-

policiclici, per il teorema 2.3.3 G è policiclico oppure soddisfa la condizione

(ii). Pertanto supponiamo che G sia policiclico. Al fine di provare che

il residuale supersolubile M di G è finito e che quindi vale la condizione

(i), sia per assurdo M infinito. Consideriamo un controesempio G con un

numero minimo k di normalizzanti propri di sottogruppi non-supersolubili

e procediamo per induzione su k. Se k = 0, l’asserto è ovvio. Dunque sia

k > 0 e siano NG(X1), . . . , NG(Xk) i normalizzanti propri di sottogruppi non-

supersolubili. Possiamo supporre, senza ledere le generalità, che G sia privo

di sottogruppi normali periodici non banali.

Per ogni i = 1. . . . , k, il sottogruppoNG(Xi) possiede meno di k normalizzanti

propri di sottogruppi non-policiclici e quindi per ipotesi induttiva, il residuale

supersolubile Mi di NG(Xi) è finito. D’altra parte il sottogruppo NG(Xi) ha

un numero finito di coniugati in G, sicchè la classe di coniugio di Mi è finita e

quindi la chiusura normale di Mi in G è finita. Segue che Mi = {1} e quindi

NG(Xi) è supersolubile. Tale contraddizione prova il corollario.
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Capitolo 3

Gruppi localmente finiti i cui

sottogruppi hanno

un’oscillazione normale finita

Un famoso risultato di Neumann ([19]), assicura che tutti i sottogruppi di un

gruppo G sono nearly normale in G se e solo se il sottogruppo derivato G′ di

G è finito.

Buckley, Lennox, Newmann, Smith e Wiegold, provano che un gruppo G lo-

calmente finito in cui ogni sottogruppo è normale-per-finito, è abeliano-per-

finito ([6]). Osserviamo che l’esistenza dei gruppi extraspeciali mostra che

un gruppo con il derivato finito non necessariamente è abeliano-per-finito.
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D’altra parte, poichè un gruppo G finito-per-abeliano é nilpotente-per-finito,

segue da entrambi i teoremi citati sopra che G possiede un sottogruppo nil-

potente di indice finito.

Lo scopo di questo capitolo è provare un risultato analogo per i gruppi lo-

calmente finiti in cui ogni sottogruppo è nearly normale oppure normale-

per-finito. Ricordiamo che un sottogruppo X di un gruppo G è detto nearly

normale in G se ha indice finito nella sua chiusura normale, HG, in G; mentre

X si dice normale-per-finito se ha indice finito sul suo nocciolo, HG, in G.

Sia X un sottogruppo di un gruppo G. Definiamo oscillazione normale

di X in G il numero cardinale

min
{
|X : XG|, |XG : X|

}
.

Chiaramente X è normale in G se e solo se ha oscillazione normale uguale ad

1. Inoltre, X ha oscillazione normale finita in G se e solo se X ha indice fini-

to nella sua chiusura normale XG oppure se è finito sul suo nocciolo XG; in

particolare, sottogruppi finiti e sottogruppi di indice finito hanno oscillazione

normale finita. Nella prima sezione di questo capitolo verrà esaminato il caso

dei p-gruppi locamente finiti in cui ogni sottogruppo ha oscillazione normale

finita; nella seconda sezione verranno presi in considerazione i gruppi con-

tabili e vedremo che sarà sufficiente provare l’asserto del teorema principale

per questa classe di gruppi.
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I risultati riportati in questo capitolo sono presenti in ”Locally finite groups

whose subgroups have finite normal oscillation” [17]
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3.1 p-gruppi localmente finiti

In questa sezione mostremo il risultato principale nel caso di un p-gruppo

localmente finito:

Teorema 3.1.1. Sia G un p-gruppo localmente finito i cui sottogruppi hanno

oscillazione normale finita. Allora G contiene un sottogruppo nilpotente di

indice finito.

Prima di procedere con la dimostrazione di tale risultato, è necessario

premettere i prossimi risultati.

Ricordiamo che il radicale di Baer di un gruppo G è il sottogruppo

generato da tutti i sottogruppi subnormali abeliani di G, e G è detto gruppo

di Baer se coincide con il suo radicale di Baer, o in maniera equivalente se

tutti i suoi sottogruppi finitamente generati sono subnormali. Osserviamo

che ogni gruppo di Baer è localmente nilpotente.

Lemma 3.1.1. Sia G un gruppo e sia X un sottogruppo subnormale, nil-

potente e nearly normale di G. Allora la chiusura normale di X in G è

nilpotente.

Dim. La chiusura normale di X in G, XG, è un gruppo di Baer ed in par-

ticolare tutti i suoi sottogruppi finitamente generati sono subnormali. Sia

Y = XXG , allora essendo X nearly normale in G, l’indice |XG : Y | è fini-

to. Pertanto esiste un sottogruppo finitamente generato E di XGtale che
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XG = Y E. Poichè XG è un gruppo di Baer segue che il sottogruppo E è nil-

potente e subnormale. Dunque XG è prodotto di due sottogruppi nilpotenti,

di cui uno è subnormale e l’altro normale, e pertanto dal teorema di Fitting,

XG è nilpotente.

Come conseguenza del precedente lemma, si ha il seguente:

Corollario 2. Sia G un gruppo infinito e localmente finito i cui sottogruppi

hanno oscillazione normale finita. Allora G contiene un sottogruppo normale,

nilpotente e infinito.

Dim. Per il Teorema di Hall-Kulatilaka e Kargapolov ([20], teorema 3.43), G

contiene un sottogruppo abeliano infinito A. Chiaramente, si può supporre

che il nocciolo AG di A in G sia finito, perchè altrimenti AG sarebbe il sotto-

gruppo cercato. Segue quindi che l’indice |AG : A| è finito. Sia B il nocciolo

di A in AG, allora l’indice |AG : B| è ancora finito; in particolare, B è un

sottogruppo abeliano e subnormale di G.

Chiaramente possiamo supporre che il nocciolo BG sia finito, e quindi anche

l’indice |BG : B| è necessariamente finito. Dunque il sottogruppo B è sub-

normale, nilpotente e nearly normale in G e pertanto per il lemma 3.1.1, la

chiusura normale BG di B in G è nilpotente e l’asserto è provato.

Lemma 3.1.2. Sia G un gruppo di Baer i cui sottogruppi hanno oscillazione

normale finita. Allora G è risolubile.
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Dim. Sia X un sottogruppo di G. Se X è normale-per-finito, poichè il quo-

ziente G/XG è un gruppo di Baer, allora il sottogruppo X/XG è subnormale

in G/XG, e quindi X è subnormale in G.

Se, invece, |XG : X| è finito, allora denotato con Y il nocciolo di X in XG,

il sottogruppo X/Y è subnormale in XG/Y ; in particolare X è subnormale

in G.

Pertanto tutti i sottogruppi di G sono subnormali, e quindi per un rilevante

risultato di W. Möhres,[18], G è risolubile.

Nello studio dei gruppi in cui ogni sottogruppo ha oscillazione normale

finita, gioca un ruolo importante la classe degli FC-gruppi, gruppi con classi

di coniugio finite. Pertanto è necessario ricordare alcuni aspetti di tale classe

di gruppi.

3.1.1 FC-gruppi

Definizione 17. Un elemento x di un gruppo G si dice FC-elemento se:

|G : CG (x) | <∞,

o equivalentemente se la classe di coniugio di x, [x]CG
, è finita.

Proposizione 1. Sia G un gruppo, l’insieme

F = F (G) = {x ∈ G | x possiede un numero finito di coniugati in G}
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è un sottogruppo caratteristico di G.

Dim. L’elemento 1 ∈ F. Siano x, y ∈ F allora si ha:

|G : CG (x) ∩ CG (y) | <∞.

Sicuramente vale la seguente relazione: CG (x) ∩ CG (y) ≤ CG (x−1y) , allora

l’indice in G del CG (x−1y) è finito, allora x−1y ∈ F, e pertanto F ≤ G.

Proviamo che FchG.

Sia α ∈ Aut(G), e g ∈ G, allora verifichiamo che:

CG (gα) = CG (g)α .

Proviamo la doppia inclusione;

Sia x ∈ CG (gα) allora xgα = gαx.

Sia y ∈ G tale che x = yα, si ha:

xgα = yαgα = (yg)α ,

e

gαx = gαyα = (gy)α ,

ma xgα = gαx, e poichè α è iniettivo si ha:

yg = gy,

pertanto y ∈ CG (g) , quindi x = yα ∈ CG (g)α , allora

CG (gα) ⊆ CG (g)α .
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Viceversa:

Sia y ∈ CG (g)α , allora esiste un elemento x ∈ CG (g) tale che y = xα e

ygα = xαgα = (xg)α = (gx)α = gαxα = gαxα = gαy

allora y ∈ CG (gα) , quindi vale anche l’altra inclusione CG (g)α ⊆ CG (gα) .

Dunque si ottiene l’uguaglianza e quindi l’asserto.

Definizione 18. Il sottogruppo F è detto FC-centro di G .

Definizione 19. Sia G un gruppo. La serie FC-centrale superiore di G è la

serie normale ascendente {Fα(G)}α definita ponendo F0(G) = {1},

Fα+1(G)/Fα(G) = F (G/Fα(G))

per ogni ordinale α e

Fλ(G) =
⋃
β<λ

Fβ(G)

se λ è un ordinale limite.

Definizione 20. Un gruppo G si dice FC-gruppo se coincide con il suo FC-

centro, cioè se ogni elemento di G ha soltanto un numero finito di coniugati.

Osservazione 1. Il centro di un gruppo G, Z (G) , è contenuto nell’FC-

centro, F, di G. Infatti, se x ∈ G e x è un elemento centrale, allora G =

CG (x) , quindi |G : CG (x) | = |G : G| = 1 e pertanto è finito. In conclusione

un elemento centrale è un FC-elemento.
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Gli FC-gruppi sono stati introdotti da R. Baer, e studiati da numerosi

autori tra i quali ricordiamo, P. Hall, B.H Neumann e più recentemente L.A

Kurdachenko e M.J. Tomkinson.

La classe degli FC-gruppi è chiusa per sottogruppi e per quozienti invece non

è chiusa rispetto alle estensioni. I gruppi abeliani e i gruppi finiti sono FC-

gruppi, e la teoria degli FC-gruppi si è sviluppata nel tentativo di cercare

proprietà comuni a tali classi di gruppi.

Appartengono alla classe degli FC-gruppi, i gruppi il cui centro ha indice

finito e i gruppi con il sottogruppo derivato finito. Infatti:

Proposizione 2. Se G/Z (G) è finito, allora G è un FC-gruppo.

Proposizione 3. Se G è un gruppo con il suo sottogruppo derivato finito,

allora G è un FC-gruppo.

Osserviamo che se G è un FC-gruppo, non è detto che abbia il centro

di indice finito; infatti basti pensare ai p-gruppi extraspeciali, gruppi infiniti

in cui il centro e il sottogruppo derivato coincidono ed hanno ordine p. La

considerazione di tali gruppi ci fa capire che non tutti i gruppi che sono FC-

gruppi hanno il centro di indice finito.

Tuttavia, se consideriamo i gruppi finitamente generati si ha il seguente

risultato.
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Proposizione 4. Se G è un FC-gruppo finitamente generato, allora G/Z (G)

è finito.

Come osservato sopra, la classe dei gruppi con il centro di indice finito e

la classe dei gruppi con il derivato finito sono due sottoclassi naturali e non

banali della classe degli FC-gruppi. Un famoso risultato ottenuto da I. Schur

nel 1902 prova che queste due classi sono confrontabili.

Lemma 3.1.3. Sia G un FC-gruppo finitamente generato, allora G contiene

un sottogruppo A senza torsione, centrale e di indice finito. Inoltre il derivato

G′ di G è finito.

Teorema 3.1.2. (Schur) Dato un gruppo G, se G/Z (G) è finito, allora il

derivato G′ è finito .

Dimostrazione. Per ipotesi esiste un sottogruppo finitamente generato N di

G tale che G = Z (G)N.

Poicè N è normalizzato da se stesso e dal Z (G) segue che N è normale in G.

Inoltre G è un FC-gruppo per la proposizione 2; di conseguenza anche N è

un FC-gruppo e per il lemma 3.1.3 N ′ è finito.

Allora G′ = (NZ (G))′ = [NZ (G) , NZ (G)] = N ′, ma N ′ è finito quindi G′

è finito.

Il prossimo risultato occupa un ruolo fondamentale nella teoria degli FC-

gruppi ed è noto come lemma di A.P. Dietzmann:
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Lemma 3.1.4. (Dietzmann) Sia G un gruppo, X un sottoinsieme finito di

G, costituito da elementi periodici, ciascuno dei quali ha un numero finito di

coniugati in G, allora:

〈xg|x ∈ X, g ∈ G〉 = XG

è finito.

Dimostrazione. Sia X = {x1, · · · , xt} un sottoinsieme finito di G, i cui ele-

menti rispettano le ipotesi del lemma. Sia

C =

(
t⋂
i=1

CG (xi)

)
G

.

Ovviamente C ≤ CG(xi), ∀i ≤ t, per cui per ogni elemento g appartenente

G,

C = Cg ≤ CG(xi)
g = CG(xgi ),

dunque C centralizza i coniugati di ciascun xi. Allora C ∩XG ≤ Z(XG) è un

sottogruppo centrale di XG.

Inoltre per ogni i, il CG(xi) ha indice finito in G, allora l’intersezione
t⋂
i=1

CG(xi)

ha indice finto in G, e di conseguenza anche C.

Otteniamo cos̀ı:

XG

Z(XG)
∼=

XG/C ∩XG

Z(XG)/C ∩XG

ma
XG

C ∩XG
∼=
XGC

C
≤ G

C
,
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dove l’ultimo quoziente è finito, per cui XG/Z(XG) è finito.

Per il teorema di Schur (teorema 3.1.2) (XG)′ è finito.

Inoltre XG/(XG)′ è abeliano e finitamente generato, in quanto XG è finita-

mente generato.

Indichiamo la torsione di XG/(XG)′ con la notazione T/(XG)′; essa è finita

in quanto torsione di un gruppo abeliano finitamente generato. Quindi T è

finito.

Osserviamo adesso che

XG/(XG)′

T/(XG)′
∼=
XG

T

è senza torsione, e poichè per ipotesi ogni xgi è periodico, allora XG/T = {1},

dunque XG = T e XG è finito, come volevasi dimostrare.

Il comportamento della serie FC-centrale superiore (definizione 19), di

un gruppo in cui ogni sottogruppo ha oscillazione normale finita occupa un

ruolo centrale in questo contesto, come mostrano i tre prossimi risultati.

Lemma 3.1.5. Sia G un gruppo i cui sottogruppi hanno oscillazione normale

finita e sia F l’FC-centro di G. Allora ogni sottogruppo di F è nearly normale

in G; in particolare il sottogruppo derivato F ′ di F è finito.

Dim. Sia X un sottogruppo di F . Se l’indice |X : XG| è finito, allora segue

dal Lemma di Dietzmann 3.1.4 che il gruppo XG/XG è finito, e quindi X è

nearly normale in G. In particolare, ogni sottogruppo di F ha indice finito
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nella propria chiusura normale XF in F , e dunque F ′ è finito per il Teorema

di Neumann [19].

Lemma 3.1.6. Sia G un p-gruppo localmente finito in cui tutti i sottogruppi

hanno oscillazione normale finita e sia A un sottogruppo normale e abeliano

di G. Se A è prodotto diretto di una famiglia di sottogruppi ciclici allora il

gruppo quoziente A/A ∩ F è finito, dove F è l’FC-centro di G.

Dim. Supponiamo per assurdo che A/A ∩ F sia infinito.

Se A/A∩F ha rango finito, allora è un gruppo di Černikov, pertanto possiede

un sottogruppo B/A ∩ F normale, abeliano e isomorfo al gruppo Zp∞ . Se B

è nearly normale in G, allora, essendo per ogni g ∈ G

|Bg : B ∩Bg| = |BBg : B| ≤ |BG : B|

, risulta

Bg = B ∩Bg

per ogni g ∈ G, e quindi B è normale in G. Sostituendo A/A ∩ F con il

gruppo B/A ∩ F , si può supporre senza ledere le generalità che A/A ∩ F sia

isomorfo al gruppo Zp∞ .

Se il rango di A/A ∩ F è infinito, allora lo zoccolo di A/A ∩ F è infinito e

normale in G/A ∩ F . Sostituendo, eventualmente, A/A ∩ F col suo zoccolo,

si può supporre senza ledere le generalità che A/A ∩ F ha esponente p.
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In entrambi i casi considerati sopra, esistono due successioni {an}n∈N e {bn}n∈N

di elementi di A tali che

AF

F
= 〈a1F 〉 × 〈b1F 〉 × 〈a2F 〉 × . . .× 〈anF 〉 × 〈bnF 〉 × . . . ,

〈a1, b1, a2, b2, . . . , an, bn, . . .〉 = 〈a1〉×〈b1〉×〈a2〉×〈b2〉× . . .×〈an〉×〈bn〉× . . .

e

F < 〈F, a1〉 < 〈F, a1, b1〉 < 〈F, a1, b1, a2〉 < . . . < 〈F, a1, b1, . . . , an, bn〉 < . . . .

Consideriamo una partizione

{In| n ∈ N}

dell’insieme dei numeri naturali costituita da infiniti sottoinsiemi infiniti. Per

ogni k, n interi positivi, poniamo

Uk,n = (Drh∈Ik〈ah〉)× 〈bn〉.

Infatti, Se per qualche intero positivo n esistessero r, s ∈ N con r 6= s tali

che Ur,n e Us,n sono entrambi nearly normale in G, allora tale sarebbe anche

〈bn〉 = Us,n ∩ Ur,n,

ma ciò non può verificarsi poichè, per ogni intero positivo n, bn ha infiniti

coniugati in G. Allora esiste al più un intero positivo m tale che Um,n è nearly

normale in G.
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Per ogni intero positivo n, sia quindi k(n) un intero positivo tale che Vn =

(Uk(n),n)G di ha indice finito in Uk(n),n e k(m) 6= k(n) se m 6= n.

Allora

U = 〈Uk(n),n| n ∈ N〉 = Drn∈NUk(n),n.

Ovviamente, il gruppo

Uk(n),nF/F

è infinito, pertanto per ogni n il sottogruppo Vn non è contenuto in C.

Per ogni intero positivo n, sia yn un elemento di Vn dotato di infiniti coniugati

e poniamo V = Drn∈N〈yn〉. Allora V ∩ Vn = 〈yn〉. Dal momento che Vn

è normale in G e che yn ha ordine finito, esistono infiniti coniugati di yn

mediante elementi di G che non appartengono a V ; in particolare, l’indice

|V G : V | è infinito. Per ipotesi, dunque, V è normale-per-finito. Tuttavia,

essendo il prodotto diretto di sottogruppi normali e finiti di G, il nocciolo VG

di V in G è contenuto in F , dunque anche l’indice |V : V ∩F | è finito, ma si

è giunti ad una contraddizione in quanto V F/F = AF/F.

Corollario 3. Sia G un p-gruppo localmente finito in cui ogni sottogruppo

ha oscillazione normale finita e sia A un sottogruppo normale e abeliano di

G. Allora A è contenuto nel secondo FC-centro F2(G) di G.

Dim. Sia a un elemento di A, allora la chiusura normale 〈a〉G è un gruppo

abeliano di esponente finito e, dunque è prodotto diretto di sottogruppi ciclici.
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Denotato con F l’FC-centro di G, per il lemma 3.1.6 si ha che il gruppo

quoziente

〈a〉GF
F

∼=
〈a〉G

〈a〉G ∩ F

è finito. Essendo anche normale in G/F , 〈a〉GF/F ≤ FC(G/F ), ma l’FC-

centro di G/F è F2(G)/F . Per l’arbitrarietà di a, segue che AF/F ≤

F2(G)/F e pertanto l’asserto è provato.

Ricordiamo che

Definizione 21. Dato un gruppo G, si definisce automorfismo potenza di

G, un automorfismo α che fissa tutti i sottogruppi di G, ossia tale che

Hα = H ,∀H ≤ G

Si osservi che se α è un automorfismo potenza di G, ∀x ∈ G, l’immagine di

x mediante l’automorfismo è un elemento di 〈x〉.

Eppure non sempre un automorfismo che mandi ogni elemento in una sua

potenza,è un automorfismo potenza, basti pensare ad un gruppo G isomorfo

al gruppo additivo dei razionali, in tal caso l’applicazione α che manda ogni

elemento di G nel suo quadrato,è un automorfismo, ma non un automorfismo

potenza, infatti nessun sottogruppo ciclico,non identico di G,è fissato da α.

Sia G un gruppo e Γ un gruppo di operatori su G.

Consideriamo un sottogruppo H di G; poniamo HΓ = 〈Hα;α ∈ Γ〉 e HΓ =
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⋂
α∈Γ

Hα. Osserviamo che se Γ = G, allora HG e HG sono, rispettivamente,

la chiusura normale e il nocciolo di H in G.

Definizione 22. Definiamo

PautΓ(G) = {α ∈ Γ;Hα = H; per ogni H ≤ G}

Indichiamo l’insieme degli automorfismi potenza di un gruppo G, con la

terminologia PAutG, dunque

Paut(G) = {α ∈ Aut(G);Hα = H; per ogni H ≤ G}.

PAutG è un sottogruppo normale e abeliano di Aut(G) e se G è abeliano

Paut(G) ≤ Z(Aut(G)). In [7], C. Casolo, considera un gruppo di auto-

morfismi Γ di un gruppo abeliano A, tale che |HΓ : H| è finito per ogni H

sottogruppo di A e fornisce una descrizione generale a partire da alcuni casi

particolari. Ricordiamo nel seguente lemma, che verrà utilizzato in segui-

to, il caso in cui A è un p-gruppo abeliano ridotto. Per la dimostrazione si

rimanda a [7].

Lemma 3.1.7. Sia A un p-gruppo abeliano ridotto, e Γ ≤ Aut(A) tale che

|HΓ : H| è finito per ogni H sottogruppo di A. Allora esiste un sottogruppo

finito N di A, Γ-invariante tale che Γ = PautΓ(A/N).

Lemma 3.1.8. Sia G un p-gruppo e sia A un sottogruppo normale abeliano

di G tale che l’indice |XG : X| è finito per ogni sottogruppo X di A. Allora
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A possiede un sottogruppo finito G-invariante B tale che il centralizzante

CG(A/B) ha indice finito in G.

Dim. Sia A = D ×R con, D ed R, rispettivamente, il massimo sottogruppo

divisibile di A e il gruppo ridotto.

Sia P un sottogruppo di A isomorfo al gruppo Zp∞ . Per ipotesi, P è nearly

normale in G, allora l’indice |P g : P ∩ P g| è finito e poichè P g è privo di

sottogruppi propri di indice finito, si ha che per ogni g ∈ G,

P g = P ∩ P g,

e quindi P è normale in G.

Segue che tutti i sottogruppi di D sono normali in G, in particolare, il quo-

ziente G/CG(D) è isomorfo ad un sottogruppo del gruppo degli automorfismi

potenza di D, e quindi è finito.

Inoltre essendo R un sottogruppo di A, l’indice |RG : R| è finito, quindi RG

è ridotto in quanto estensione finita di un gruppo ridotto. RG contiene un

sottogruppo finito B G-invariante tale che tutti i sottogruppi di RG/B sono

normali in G/B per il lemma 3.1.7.

In particolare, il quoziente G/CG(RG/B) è finito. Dunque l’intersezione

CG(D) ∩ CG(RG/B)

ha indice finito in G e poichè è contenuta nel centralizzante CG(A/B), si ha

che |G : CG(A/B)| è finito e pertanto il lemma è provato.
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Lemma 3.1.9. Sia G un p-gruppo risolubile i cui sottogruppi hanno oscilla-

zione normale finita. Allora G contiene un sottogruppo nilpotente di indice

finito.

Dim. Assumiamo l’asserto falso e scegliamo un controesempio G con lun-

ghezza derivata minima k. Sia F l’FC-centro di G.

Per il Lemma 3.1.5, il sottogruppo derivato F ′ di F è finito. Rimpiazzan-

do G con G/F ′, possiamo supporre che F ′ è identico e quindi F abeliano.

Per il Lemma 3.1.8, esiste un sottogruppo E di G finito e G-invariante tale

che F ′ è contenuto in E e il centralizzante CG(F/E) ha indice finito in G.

poichè ogni p-gruppo finito-per-nilpotente è nilpotente, segue che il gruppo

quoziente G/E è un controesempio minimale e il suo FC-centro è il gruppo

F/E. Infatti se G/E contenesse un sottogruppo nilpotente di indice finito,

allora G sarebbe nilpotente-per-finito. Pertanto, sostituendo G con G/E, si

può supporre che l’indice |G : CG(F )| sia finito.

Consideriamo A = G(k−1) l’ultimo termine non identico della serie derivata di

G. Per la minimalità di k, il gruppo quoziente G/A contiene un sottogruppo

N/A nilpotente e di indice finito. Poichè G è un gruppo periodico e risolubile,

G è localmente finito, quindi A è contenuto nel secondo FC-centro F2(G) di

G per il Corollario 3. Dal Lemma 3.1.5, ogni sottogruppo di AF/F ha indice

finito nella propria chiusura normale in G/F . Inoltre, per il Lemma 3.1.8,
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esiste un sottogruppo G-invariante B di AF contenente F tale che B/F è

finito e il centralizzante CG(AF/B) ha indice finito in G.

Poichè B/F è finito e contenuto in F2(G)/F , anche l’indice del centralizzante

CG(B/F ) in G è finito. Quindi l’intersezione

M = N ∩ CG(F ) ∩ CG(B/F ) ∩ CG(AF/B)

è un sottogruppo nilpotente di G di indice finito.

Da questa contraddizione segue l’asserto.

Dimostriamo il teorema 3.1.1:

Dim. Per il Lemma 3.1.9, è sufficiente provare che il gruppo G è risolubile.

Sia F il sottogruppo di Fitting di G. Allora F è un gruppo di Baer, quindi è

risolubile per il Lemma 3.1.2. Supponiamo per assurdo, che l’indice |G : F |

di F in G è infinito. Dal Corollario 2, G/F contiene un sottogruppo N/F

normale, nilpotente e infinito.

Poichè N/F è nilpotente e F è risolubile segue che N è risolubile, e dunque

per il Lemma 3.1.9 è anche nilpotente-per-finito. Pertanto il sottogruppo di

Fitting M di N è normale in G, è nilpotente e ha indice finito in N .

Questa contraddizione prova che F ha indice finito inG, dunqueG è risolubile

e pertanto il lemma è provato.
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3.2 Gruppi contabili

In questa sezione proveremo il risultato principale restringendo la nostra at-

tenzione ai gruppi contabili in cui ogni sottogruppo ha oscillazione normale

finita.

Definizione 23. Una classe gruppale X è detta riconoscibile contabilmente

se contiene tutti i gruppi i cui sottogruppi contabili appartengono ad X .

È noto che molte classi di gruppi sono riconoscibili contabilmente, ad

esempio R. Baer prova che la classe dei gruppi nilpotenti è riconoscibile con-

tabilmente. come conseguenza del risultato di M.R. Dixon, M.J. Evans e H.

Smith [12], proveremo che la classe dei gruppi che contengono un sottogrup-

po normale, nilpotente e di indice finito è riconoscibile contabilmente. Tale

risultato verrà usato nella dimostrazione del teorema principale, al fine di

restringere l’attenzione alla classe dei gruppi contabili.

Lemma 3.2.1. Sia G un gruppo in cui ogni sottogruppo contabile è nilpotente-

per-finito. Allora G è nilpotente-per-finito.

Dim. Sia G un gruppo i cui sottogruppi contabili sono nilpotenti-per-finito.

Proviamo che G è nilpotente-per-finito. Sia F il sottogruppo di Fitting di G.

Tutti i sottogruppi contabili di F sono nilpotenti e poichè la classe dei gruppi

nilpotenti è riconoscibile contabilmente, segue che il Fitting di G è nilpotente.
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Supponiamo per assurdo che il gruppo quoziente G/F sia infinito. Sia H/F

un sottogruppo infinito contabile di G/F . Allora G contiene un sottogruppo

contabile X tale che

H ≤ XF e (X \ F ) ∩ V = ∅,

dove V è il sottgoruppo di Fitting di X (si veda [6] corollario 2.3).

Siano h e k elementi di H. Poichè H ≤ XF , h = ax e k = yb con x, y

elementi di X e a, b elementi di F .

In particolare, se hF è diverso da kF , allora xF è diverso da yF per cui

x−1y /∈ F . Segue che x−1y /∈ V . Infatti se x−1y ∈ V allora

x−1y ∈ (V ∩(X\F )), ma tale intersezione è vuota. Pertanto i laterali xV e yV

sono diversi e quindi il gruppo quoziente X/V è infinito. Tale contraddizione

prova che G/F è finito, sicchè G è nilpotente-per-finito.

Sia G un gruppo periodico. Denotiamo con π(G) l’insieme di tutti i nu-

meri primi p tale che G possiede elementi di ordine p. Sia π(G) = ω1 ∪ ω2

dove ω1 ∪ ω2 sono sottoinsieme disgiunti di π(G)

Definizione 24. Sia U un ω1-sottogruppo di G e V è un ω2-sottogruppo di G

tali che G = UV , diremo allora che G = UV è una (ω1, ω2)-decomposizione

di G.

Per ogni insieme ω di numeri primi, denotiamo con ω
′

il complemento di

ω in P , ciò l’insieme dei numeri primi che non appartengono a ω.
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Un famoso teorema di P.Hall, afferma che ogni gruppo finito risolubile pos-

siede una (ω, ω
′
)-decomposizione per ogni insieme ω di numeri primi.

In un lavoro non pubblicato, questo risultato f esteso da Schenkman al caso

dei gruppi localmente finiti contabili. Di seguito presentiamo una dimostra-

zione di tale risultato.

Lemma 3.2.2. Sia G un gruppo localmente risolubile, periodico e contabile.

Sia ω un sottoinsieme di π(G). Allora G = UV , dove U è un ω-sottgruppo

e V è un ω
′
-sottogruppo di G.

Dim. G è un gruppo contabile e localmente finito e dunque è lecito conside-

rare una catena ascendente di sottogruppi finiti di G:

1 = G0 < G1 < G2 < G3 . . . < Gn < . . .

tali che ⋃
n∈N0

(Gn) = G.

Poniamo U0 = V0 = 1 e per qualche n ≤ 0, una (ω, ω
′
)-decomposizione di Gn

Gn = UnVn,

la quale esiste in quanto Gn è finito e risolubile.

Consideriamo una (ω, ω
′
)-decomposizione di Gn+1

Gn+1 = An+1Bn+1.
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Per il teorema di Hall esiste un x ed un y appartenenti a Gn+1 tali che:

Un ≤ Axn+1 e Vn ≤ By
n+1. Inoltre Gn+1 = Un+1Vn+1, con Un+1 = Axn+1 e

Vn+1 = By
n+1 (si veda lemma 1.3.1 di [1]). In questo modo abbiamo definito

induttivamente due catene ascendenti rispettivamente di ω-sottogruppi e ω
′
-

sottogruppi finiti di G:

1 = U0 < U1 < U2 < U3 . . . < Un < . . .

1 = V0 < V1 < V2 < V3 . . . < Vn < . . . .

Siano

U =
⋃
n∈N0

Un

e

V =
⋃
n∈N0

Vn

rispettivamente un ω-sottogruppo e un ω
′
-sottogruppo di G. Pertanto

G = UV

é una (ω, ω
′
)-decomposizione di G e dunque il lemma é provato.

Lemma 3.2.3. Sia G un gruppo contabile localmente finito in cui ogni sot-

togruppo ha oscillazione normale finita. Allora G ha un unico p-sottogruppo

di Sylow per tutti tranne al più un numero finito di primi p.
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Dim. Per il corollario 2, G possiede un sottogruppo normale, nilpotente e

infinito.

Sia L = {H E G | H é G-iperabeliano}, allora L è non vuoto e l’insieme

(L,⊂) è induttivo. Pertanto esiste in L un elemento massimale che denotia-

mo con K.

Se G/K è finito, allora G è iperabeliano-per-finito. Invece se G/K = G è infi-

nito, allora per il corollario 2, G contiene un sottogruppo A = A/K normale,

nilpotente e infinito. Allora A è G-iperabeliano e dunque appartiene ad L,

ma ciò contraddice la massimalità di L. Dunque G è iperabeliano-per-finito

e pertanto sia H un sottogruppo iperabeliano di indice finito.

È sufficiente provare l’asserto per H e quindi possiamo supporre che G sia

iperabeliano.

Sia ω l’insieme dei numeri primi p tale che G contiene un p-sottogruppo di

Sylow Gp non-normale. Proviamo che ω è finito. Assumiamo per contraddi-

zione che ω sia infinito.

Per ogni coppia di numeri primi {p, q} appartenente ad ω, definiamo la

seguente relazione d’equivalenza:

p ∼ q ⇔ tutti i p-elementi di G permutano con tutti i q-elementi di G.

Consideriamo un sottoinsieme infinito ω1 di ω, tale che ω \ ω1 sia infinito e

poniamo ω2 = π(G) \ ω1. Osserviamo che G è localmente risolubile ([20]).
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Per il lemma 3.2.2, esistono un ω1-sottgruppo U e un ω2-sottogruppo V G

tale che G = UV .

Il gruppo quoziente U/UG ha esponente finito; infatti se U/UG è normale-

per-finito allora U/UG è finito e quindi ha ovviamente esponente finito.

Invece se U/UG è nearly normale in G, detto n l’indice di U nella sua chiusura

normale UG in G, allora il nocciolo di U in UG, che denotiamo con Y , ha

indice finito in UG ed inoltre divide n!. Dunque il sottogruppo (UG)n! è

contenuto in U ed essendo un sottogruppo normale di G, (UG)n! è contenuto

nel nocciolo UG. Pertanto U/UG ha esponente finito. Analogamente anche il

gruppo V/VG ha esponente finito. Pertanto esistono dei primi distinti p e q

appartenenti rispettivamente a ω1 e a ω\ω1 tali che p ∼ q, o equivalentemente

tali che l’interderivato [Gp, Gq] = 1.

Applicando il teorema di Ramsey, si ottiene che ω contiene un sottoinsieme

infinito ω∗ tale che [Gp, Gq] = 1 per tutti i primi distinti p e q appartenenti

ad ω∗.

Sia

K = 〈Gp|p ∈ ω∗〉 = Drp∈ω∗Gp.

Poichè il gruppo quoziente K/KG ha esponente finito, esiste un numero primo

q appartenente a ω∗ tale che Gq è contenuto in KG. Segue che Gq è un

sottogruppo normale di G. Tale contraddizione prova l’asserto.
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Corollario 4. Sia G un gruppo localmente finito i cui sottogruppi hanno

oscillazione normale finita. Sia P un p-sottogruppo di Sylow di G. Allora G

possiede un sottogruppo normale nilpotente N tale che il quoziente PN/N è

finito.

Dimostrazione. Il sottogruppo P è un p-gruppo localmente finito in cui tutti

i sottogruppi hanno oscillazione normale finita e dunque per il lemma 3.1.1,P

è nilpotente-per-finito. Il nocciolo di P in G è anch’esso nipotente-per-finito

e sia N = Fit(PG). Allora N è un gruppo di Baer nilpotente-per-finito e

dunque risulta nilpotente. Poichè NchPG E G, segue che N E G. Pertanto

N è un sottogruppo nilpotente, normale in G e di indice finito in PG.

Se P è normale-per-finito, allora N ha indice finito in P e dunque segue

l’asserto; altrimenti se P è nearly normale in G, essendo P nilpotente-per-

finito, segue che è tale anche la sua chiusura normale in G. Il sottogruppo di

Fitting di PG è un sottogruppo normale in G, nilpotente e tale che PN/N è

finito. Pertanto l’asserto è vero anche in questo caso.

Siamo, ora, in grado di provare il risultato principale:

Teorema 3.2.1. Sia G un gruppo localmente finito in cui ogni sottogruppo

ha oscillazione normale finita. Allora G contiene un sottogruppo normale,

nilpotente di indice finito.
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Dim. Dal 3.2.1 è sufficiente provare l’asserto nel caso in cui G sia un gruppo

contabile.

Sia ω l’insieme di tutti i numeri primi p tali che G possiede un p-sottogruppo

di Sylow non normale Gp. Allora ω è finito per il lemma 3.2.3.

Sia π = π(G) \ ω e per ogni q ∈ π, sia Gq l’unico q-sottogruppo di Sylow di

G.

Consideriamo il seguente sottogruppo normale di G

K = Drq∈πGq.

Poichè G è contabile e π(K) ∩ π(G/K) = ∅, K possiede un complemento in

G; pertanto esiste un sottogruppo H di G tale che G = HK e H ∩K = 1.

Sia π∗ un sottoinsieme di π, costituito da tutti i numeri primi q tali che Gq

contiene un sottogruppo non-normale Xq. Poniamo

X = Drq∈π∗Xq.

Il gruppo quoziente X/XG ha esponente finito per il lemma 2.1.1, cosicchè π∗

deve essere finito. Per ogni q ∈ π \π∗, Gq ha tutti i sottogruppi normali. Per

il teorema di Baer-Dedekind [22], Gq è abeliano oppure è prodotto diretto di

Q8 e di un gruppo abeliano periodico privo di elementi di ordine 4.

Se q appartiene a π \ π∗ e q 6= 2, allora Gq è abeliano e quindi è abeliano

per tutti tranne al più un numero finito di primi q ∈ π. D’altra parte, dal
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teorema 3.1.1, segue che ogni sottogruppo di Sylow di G è nilpotente-per-

finito, quindi K è nilpotente-per-finito e dunque il Fit(K) = L è nilpotente

e ha indice finito in K.

Poichè H ' G/K, si ha che l’insieme dei primi π(H) = π(G/K) ≤ π(G) \

π(K), ma π(K) = π(G) \ ω e dunque π(H) è finito.

Dal corollario 4, esiste un sottogruppo N normale, nilpotente di G tale che

tutti i sottogruppi di Sylow di HN/N sono finiti. Segue che HN/N è finito

e dato che |K : L| è finito, si ha che il sottogruppo LN ha indice finito in G.

Pertanto LN è un sottogruppo normale, nilpotente e di indice finito in G e

dunque il teorema è provato.
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[2] R. Baer: “Abzählbar gruppentheoretische Eigenschaften, Math. Z. 79

(1962), 344–363.
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