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3.2 Gruppi contabili



Introduzione

La struttura dei gruppi in cui ogni sottogruppo e normale, detti gruppi di
Dedekind ¢ ben nota. Un classico risultato di Baer-Dedekind [2], mostra
che i gruppi non abeliani con tale proprieta sono esattamente i gruppi che si
decompongono nel prodotto diretto di Qg (gruppo dei quaternioni di ordine
8) e di un gruppo abeliano periodico privo di elementi di ordine 4.

E rilevante richiedere che un gruppo G abbia tutti i sottogruppi normali,
cost come puo essere richiedere che insieme dei sottogruppi non-normali sia
“piccolo”. Nella seconda meta del secolo scorso, gruppi per i quali I'insieme
dei sottogrupi non-normali ¢ in qualche senso piccolo, sono stati studiati
in molte situazioni differenti. In particolare alcuni autori hanno studiato
gruppi in cui ogni sottogruppo non-normale soddisfa una certa proprieta X,
per diverse scelte di X.

Romalis e Sesekin presero in considerazione i gruppi in cui tutti i sottogruppi

non-normali sono abeliani, detti gruppi metahamiltoniani ([23], [25]); mentre



Bruno e Phillips in [5], descrivono i gruppi in cui ogni sottogruppo é normale
oppure localmente nilpotente. In seguito, Franciosi, de Giovanni e Newell
considerano gruppi i cui sottogruppi non-normali soddisfano certe restrizioni
sul rango [16].

Altrettanto forte, e I'imposizione ai sottogruppi di un gruppo G, di condizioni
di normalita generalizzata, infatti tale imposizione ha una forte influenza
sulla struttura del gruppo stesso.

Nel primo capitolo di questa tesi, si riportano alcune definizioni e risultati
di teoria dei gruppi con lo scopo di rendere piu agevole la comprensione dei
risultati successivi. Il secondo capitolo ¢ dedicato allo studio dei gruppi in
cui ogni sottogruppo non-normale e supersolubile. Un gruppo G, si dice
supersolubile se possiede una serie normale finita a fattori ciclici contenente
i sottogruppi banali {1} e G stesso. Si fornisce una completa descrizione di
tali gruppi.

Un sottogruppo H di un gruppo G si dice nearly normale in G se ha indice
finito nella sua chiusura normale H¢ in G; mentre diremo che H ¢ normale-
per-finito se H/H¢ ¢é finito, dove Hg é il nocciolo di H in G. Se H é un
sottogruppo normale di un gruppo G, allora H = Hg = H® segue allora che
H ¢ nearly normale in G' e normale-per-finito. Pertanto tali sottogruppi sono
sottogruppi normali generalizzati.

B.H. Neumann [19], ha descritto i gruppi in cui tutti i sottogruppi sono
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nearly normali, mentre Buckley, Lennox, Newmann, Smith e Wiegold, hanno
studiato i gruppi localmente finiti in cui ogni sottogruppo é normale-per-
finito [6]. Nel terzo capitolo si studiano i gruppi in cui ogni sottogruppo
¢ nearly normale oppure normale-per-finito. Notazioni e terminologia sono
quelle usuali in Teoria dei Gruppi; in particolare si fa riferimento a [20].

Desidero ringraziare il Prof. Francesco de Giovanni, la Prof.ssa C. Musella e
la Dott.ssa M. De Falco, che in questi anni mi hanno costantemente guidato

nel lavoro di ricerca e nella stesura di questa tesi.



Capitolo 1

Condizioni di catena in Teoria

dei Gruppi

In questo capitolo verranno esposti alcuni concetti di teoria dei gruppi, in
particolare ricordiamo una delle piu importanti classi di gruppi risolubili
infiniti, i gruppi policiclici. Una sezione e dedicata ai gruppi supersolubili ed

una ai gruppi minimax.

1.1 Gruppi Policiclici

Per descrivere i gruppi policiclici, premettiamo alcune nozioni fondamentali.
Lemma 1.1.1. Sia (S, <) un insieme ordinato. Allora sono equivalenti:

(i) Ogni parte non vuota di S & dotata di qualche elemento massimale.
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(11) Per ogni successione crescente (xpn)nen di elementi di S esiste un nu-

mero intero positivo m tale che x, = x,, per ogni n > m.

Definizione 1. Un gruppo G verifica la condizione massimale sui sottogruppi
se linsieme ordinato (L(G), <) wverifica una delle condizioni equivalenti del

lemma 1.1.1.

Osserviamo che se un gruppo G verifica la condizione massimale sui sot-
togruppi, anche i sottogruppi e i quozienti di G godono della stessa proprieta.

Inoltre si ha:

Lemma 1.1.2. Sia G un gruppo, e sia N un sottogruppo normale di G. Se
Ne G/N wverificano la condizione massimale sui sottogruppi, anche G verifica

la condizione massimale sui sottogruppi.

Lemma 1.1.3. Un gruppo G verifica la condizione massimale sui sottogruppi

se e soltanto se ogni suo sottogruppo & finitamente generato.

E chiaro che se G verifica la condizione massimale sui sottogruppi, allora
G e finitamente generato, ma il viceversa non é vero in generale. Tuttavia,

aggiungendo 'ipotesi di abelianita al gruppo G si ha:

Lemma 1.1.4. Sia G un gruppo abeliano, allora G verifica la condizione

massimale sui sottogruppi se e solo se e finitamente generato.



Definizione 2. Un gruppo G si dice policiclico se e dotato di una serie

finita a fattori ciclici contenenti i sottogruppi banali {1} e G.

Il prossimo teorema caratterizza i gruppi policiclici.

Teorema 1.1.1. Un gruppo G e policiclico se e soltanto se é risolubile e

verifica la condizone massimale sui sottogrupps.

Dal teorema precedente segue in particolare che ogni gruppo risolubi-
le finito é policiclico, mentre risulta ovvio dalla definizione che un gruppo
policiclico periodico e finito. La classe dei gruppi policiclici é chiusa per
sottogruppi e per quozienti, cioeé sottogruppi e quozienti di gruppi policiclici
sono policiclici. Inoltre se un gruppo G contiene un sottogruppo N normale
policiclico tale che il gruppo quoziente G /N é policiclico allora G ¢ policiclico.
Si osservi infine che ogni gruppo abeliano finitamente generato é prodotto
diretto di un numero finito di sottogruppi ciclici e quindi e policiclico. Piu

in generale si ha:

Lemma 1.1.5. Sia G un gruppo nilpotente e finitamente generato. Allora

G ¢ policiclico.

Lemma 1.1.6. Sia G un gruppo abeliano finitamente generato e sia H un
sottogruppo di G. Allora H é intersezione di sottogruppi di indice finito di

G.



Piu in generale, per i gruppi policiclici si ha il seguente teorema dovuto

a A.l. Mal’cev:

Teorema 1.1.2. (A.I. Mal’'cev) Sia G un gruppo policiclico. Allora ogni

sottogruppo di G ¢ intersezione di sottogruppi di indice finito.

Teorema 1.1.3. (K.A. Hirsch) Sia G un gruppo policiclico. Se ogni quo-

ziente finito di G' e nilpotente, allora anche G e nilpotente.

Il teorema precedente e stato migliorato da D.J.S. Robinson, il quale
ha provato che un gruppo risolubile finitamente generato che abbia tutti i

quozienti finiti nilpotenti e anch’esso nilpotente.

1.2 Gruppi supersolubili

Oggetto di questa sezione e la classe dei gruppi supersolubili con le relative

proprieta.

Definizione 3. Un gruppo G si dice supersolubile se ¢ dotato di una serie

normale finita a fattori ciclici contenente i sottogruppi banali {1} e G.

Ovviamente, sottogruppi e quozienti di un gruppo supersolubile sono an-
cora supersolubili; invece se M e un sottogruppo normale e supersolubile di
un gruppo G e tale che G/M ¢é un gruppo supersolubile, allora non & detto

che (G sia supersolubile. Pertanto si ha la seguente definizione:



Definizione 4. Un sottogruppo M di un gruppo G & detto supersolubil-
mente immerso in G se possiede una serie finita G-invariante a fattori

ciclict contenente 1 sottogruppt banali.

Esistono gruppi risolubili finiti che non sono supersolubili, basti pensare
al gruppo alterno A4, mentre S3 e un esempio di gruppo supersolubile non
nilpotente. Inoltre ogni gruppo supersolubile é policiclico ed ogni gruppo

abeliano finitamente generato ¢ supersolubile. Piu in generale si ha:

Lemma 1.2.1. Sia G un gruppo nilpotente finitamente generato. Allora G

e supersolubile.

Prima di enunciare il prossimo risultato premettiamo le seguenti defini-

zioni:

Definizione 5. Un sottogruppo L di un gruppo G, e detto normale mini-
male in G, se & un sottogruppo normale di G, non identico ed e privo di

sottogruppi propri, normali e non banali di G.

Definizione 6. Sia G un gruppo. Siano H e K sottogruppi normali di G
tali che K < H. Il fattore H/K ¢ detto fattore principale di G se H/K ¢

normale minimale in G/K.

Teorema 1.2.1. Sia G un gruppo supersolubile. Allora ogni fattore princi-

pale di G ha ordine primo.
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Dim. Sia H/K un fattore principale di G. Allora H/K é un sottogruppo
normale minimale del gruppo supersolubile G/ K, sicché senza ledere le ge-
neralitd si puo supporre che K = {1}. Dunque

H ¢ un sottogruppo normale minimale di G. Sia

{1} =G <G, <G, 9G;1... 4Gy =G

una serie normale finita di G a fattori ciclici contenente i sottogruppi banali
{1} e G. Poiche HN G, = HNG = H # {1}, é lecito considerare il minimo
numero intero positivo ¢ < t tale che H N G; # 1. Consideriamo il termine
Gi_1; per la minimalitd di ¢ si ha che H N G;—; = {1}.

D’altra parte H N G; = H, e quindi H e contenuto in G;. Dunque H =
H/HNG;—y ~ HG;_1/G;_;. Sicche H ¢ isomorfo ad un sottogruppo di
G;/Gi_1, e quindi é ciclico. Poiché ogni sottogruppo di un gruppo ciclico é

caratteristico, si ha che H ha ordine primo. Pertanto I’asserto e provato. [

Definizione 7. Sia X una classe di gruppi e sia G un gruppo. L’X -residuale,
di G e l'intersezione di tutti © sottogruppi normali di G tale che i rispettivi

gruppi quozienti in G sono X -gruppi; tale sottogruppo si denota con 0% (G).

L’X-residuale di G e un sottogruppo caratteristico di G. Per esempio,
se X = F, la classe dei gruppi finiti, o%(G) ¢ il residuale finito di G, cioe

I'intersezione dei sottogruppi normali di G di indice finito in G.
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Definizione 8. Un gruppo G é detto residualmente finito se il suo resi-

duale finito e identico.

Osserviamo che G/o%(G) non ¢ detto che sia finito. Infatti, in generale
il gruppo quoziente G/ 0% (G) non appartiene alla classe X'
Il caso di maggior interesse si verifica quando G /% (G) é un X-gruppo, e in
tal caso G possiede un unico sottogruppo minimo tale che il corrispondente
gruppo quoziente appartiene alla classe X. Consideriamo X la classe dei

gruppi supersolubili. Si ha:

Definizione 9. Sia G un gruppo. Si definisce residuale supersolubile di
G, M, lintersezione di tutti i sottogruppi normali L di G tali che G/L é un

gruppo supersolubile.

Consideriamo un gruppo finito G e sia M il residuale supersolubile di G.
Allora il gruppo quoziente G/M é un gruppo supersolubile finito e questo e

il piu grande quoziente supersolubile finito di G.

Definizione 10. Sia X una classe di gruppi. Un sottogruppo E di un gruppo

G ¢ chiamato X -massimale in G se :

(a) E € X;

(b) se E<V <GeVeX, allora E=V
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Definizione 11. Sia X una classe di gruppi. Un sottogruppo E di un gruppo

finito G, e detto X -proiettore di G se:

EN/N e un sottogruppo X —massimale di G /N, per ogni sottogruppo N<G

Sia X la classe dei gruppi supersolubili. Allora si ha:

Definizione 12. Un sottogruppo E di un gruppo finito G e detto proiettore

supersolubile di G se:

EN/N & un sottogruppo supersolubile massimale di G /N, per ogni sottogruppo N<G

Il prossimo risultato mostra il comportamento del sottogruppo di Fitting

di un gruppo supersolubile. Pertanto ricordiamo la seguente definizione:

Definizione 13. Sia G un gruppo. Il sottogruppo di Fitting di G e il sotto-

gruppo generato da tutti © sottogruppi normali e nilpotenti di G.

Teorema 1.2.2. Sia G un gruppo supersolubile. Allora il sottogruppo di

Fitting F di G ¢ nilpotente, e G/F & un gruppo abeliano finito.

Dim. 11 gruppo G e supersolubile e quindi policiclico e pertanto verifica la
condizione massimale sui sottogruppi. Dal lemma 1.1.3 il sottogruppo di
Fitting F' di G ¢ finitamente generato, e quindi e il prodotto di un numero
finito di sottogruppi normali e nilpotenti. Per il teorema di Fitting segue che
F' ¢ nilpotente.
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Sia

{1} =Gy <G 9G,<G3 4. 4G, =G
una serie normale e finita di G a fattori ciclici contenente i sottogruppi banali
{1} e G. Qualunque sia il numero i < t, sia C;/G;_ il centralizzante di
G;/Gi—1 in G/G;_1. Allora C; ¢ un sottogruppo normale di G e G/C; ¢
isomorfo ad un sottogruppo del gruppo di automorfismi del gruppo ciclico
G;/G;_1, dunque G/C; & un gruppo abeliano finito.

Pertanto l'intersezione

¢ un sottogruppo normale di G e G/C' éun gruppo abeliano finito. D’altra

parte risulta:

(CNG,Cl<CNGi

per ogni numero intero positivo ¢ < t. Segue dunque che la serie:

(I1=CNGy<CNG <CNG,<CNG3<...<CNG,=C

¢ una serie centrale di C'. Pertanto C' e un sottogruppo normale nilpotente

di G, cosicche C' < F' e G/F & un gruppo abeliano finito. O

Il teorema 1.1.3 afferma che un gruppo policiclico é nilpotente se ha i
quozienti finiti nilpotenti. Il corrispondente risultato per la supersolubilita e

stato ottenuto da R.Baer come mostra il seguente teorema:
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Teorema 1.2.3. (R. Baer) Un gruppo policiclico e supersolubile se ha tutti

1 quozienti finiti supersolubili.

A differenza del teorema 1.1.3, il teorema di Baer non si estende ai gruppi
risolubili e finitamente generati. Infatti I’esempio seguente mostra quanto

appena detto.

Esempio 1. Sia A il sottogruppo abeliano del gruppo additivo dei razionali,

costituito da tutte le frazioni con denominatore potenza di 2:

A:{;,mez, nZO}.

m

on +Z,mel, n> O}, tale grup-

Consideriamo il gruppo quoziente A/Z = {
po non verifica la condizione massimale sui sottogruppi e pertanto A non puo
verificare la condizione massimale. Poiché A € abeliano, allora per il lemma

1.1.4 A é un gruppo non finitamente generato.

Consideriamo la sequente applicazione
r:a€A—2a€ A,

x & un automorfismo di A. Sia G = Ax (x), il prodotto semidiretto di A con
il sottogruppo (x) generato da x. Allora G & un gruppo risolubile finitamente

generato a quozienti finiti supersolubili ma non é supersolubile.
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1.3 Gruppi minimax

Diamo ora la definizione di condizione minimale sui sottogruppi e dei cenni

sui gruppi che la verificano.
Lemma 1.3.1. Sia (S, <) un insieme ordinato. Allora sono equivalenti:

(i) Ogni parte non vuota di S & dotata di qualche elemento minimale.

(11) Per ogni successione decrescente (xp)nen di elementi di S esiste un

numero intero positivo m tale che x, = x,, per ogni n > m.

Definizione 14. Un gruppo G werifica la condizione minimale sui sotto-
gruppi se linsieme ordinato (L(G), <) dei sottogruppi di G verifica una delle

condizioni equivalenti del lemma 1.5.1.

Osserviamo che se un gruppo G verifica la condizione minimale sui sotto-
gruppi, anche i sottogruppi e i quozienti di G godono della stessa proprieta.

Inoltre si ha:

Lemma 1.3.2. Sia G un gruppo, e sia N un sottogruppo normale di G. Se
Ne G/N wverificano la condizione minimale sui sottogruppi, anche G verifica

la condizione minimale sui sottogruppz.

Definizione 15. Un gruppo G ¢ detto di Cernikov se verifica la condizione
mainimale sui sottogruppi, e inoltre contiene un sottogruppo abeliano di indice
finito.
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Un gruppo finito & un gruppo di Cernikov e il p-gruppo di Priifer Z(p>)
& un gruppo di Cernikov infinito. Il seguente teorema descrive la struttura

dei gruppi di Cernikov.

Teorema 1.3.1. Un gruppo G ¢ di Cernikov se esoltanto se possiede un
sottogruppo normale abeliano di indice finito che sia prodotto diretto di un

numero finito di gruppi di Priifer.

Teorema 1.3.2. (S.N. C’emikov) Se G' ¢ un gruppo risolubile verificante la

condizione minimale sui sottogruppi, allora G e di Cernikov.

Un gruppo G e chiamato gruppo minimax se possiede una serie mini-
max, cioe una serie di lunghezza finita i cui fattori soddisfano la condizione
massimale oppure la condizione minimale sui sottogruppi. L’essere mini-
max esprime una condizione finitaria che generalizza sia quella massimale
che quella minimale. La classe dei gruppi minimax e chiusa per sottogruppi,
per quozienti e per estensione.

Un esempio di gruppo abeliano minimax e il gruppo Q, dei numeri razionali
i cui denominatori sono 7-numeri, dove 7 ¢ un insieme finito di primi; infatti
Z soddisfa la condizione massimale e il fattore Q,/Z soddisfa la condizione
minimale. E chiaro che un gruppo abeliano minimax ha rango finito. I grup-
pi risolubili minimax furono studiati da Baer, Robinson e Zacev. Poiche ogni
gruppo policiclico e ogni gruppo di Ceernikov ha rango finito, segue che ogni
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gruppo risolubile minimax ha rango finito([20], Parte 1 lemma 1.44).
La stuttura dei gruppi risolubili-per-finito minimax é stata descritta da Ro-

binson [[20], Parte 2, capitolo 10]; infatti si ha:

Teorema 1.3.3. Sia G un gruppo risolubile-per-finito minimazx. Sia J il

residuale finito di G e F/J il sottogruppo di Fitting di G/J.allora:

a) J e il massimo sottogruppo divisibile di G ed & prodotto diretto di un

numero finito di gruppi di Priifer;
b) F/J e nilpotente;
c) G/F & un gruppo finitamente generato e abeliano-per-finito.

Ovviamente, ogni gruppo periodico minimax soddisfa la condizione mi-
nimale sui sottogruppi, e pertanto ogni gruppo di Cernikov ¢ un gruppo

periodico risolubile-per-finito minimax e viceversa.
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Capitolo 2

Gruppi con tutti i sottogruppi

non-normali supersolubili

Questo capitolo é dedicato a descrivere i gruppi in cui ogni sottogruppo
non-normale e supersolubile. I risultati riportati di seguito sono presenti
in “Groups with non-normal subgroups are supersoluble” [10] . Lo scopo e
fornire una caratterizzazione di tali gruppi nel caso localmente graduato. Ri-
cordiamo che un gruppo G si dice localmente graduato se ogni sottogruppo
non-banale finitamente generato di GG possiede un sottogruppo proprio di in-
dice finito. In particolare, ogni gruppo (risolubile-per-finito) ¢ localmente
graduato. A tal scopo, si considerano gruppi finiti e gruppi policiclici in cui
ogni sottogruppo non-normale & supersolubile. Come conseguenza della de-
scrizione dei gruppi in cui ogni sottogruppo non-normle e supersolubile, si
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hanno alcune informazioni sui gruppi con un numero finito di normalizzanti

di sottogruppi non-supersolubili.

2.1 Gruppi Finiti

Nello studio dei gruppi i cui sottogruppi non-normali sono supersolubili, gio-
ca un ruolo importante la classe dei gruppi finiti in cui ogni sottogruppo é
subnormale oppure supersolubile. Chiameremo tali gruppi SS-gruppi. Ri-
cordiamo che un sottogruppo H di un gruppo G si dice subnormale in G se
esiste una serie finita di G contenente H e (G. La struttura degli SS-gruppi
¢ stata descritta completamente da Ballester-Bolinches e Cossey ([4], teore-
ma 1). Riportiamo nel lemma seguente una delle condizioni necessarie del

teorema 1 citato sopra.

Lemma 2.1.1. Sia G un SS-gruppo non-supersolubile. Allora il residuale

supersolubile M di G e un p-gruppo per qualche primo p; e un fattore

M
principale di G, e M & abeliano oppure un p-gruppo speciale.

Inoltre, se E ¢ il proiettore supersolubile di G, allora G = ME, ENM = M’

M M
e il centralizzante di W in FE,Cg <M) , € privo di fattor: principali

complementati non centrali di G.

Ricordiamo che se H e K sono sottogruppi normali di un gruppo G e
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H < K, allora G agisce per coniugio su H/K e il nucleo di tale azione é:

Co(H/K) = {z € G|[H,z] < K},

cosicche il gruppo quoziente G/Cq(H/K) ¢ isomorfo ad un gruppo di auto-

morfismi indotto da G in H/K.

Definizione 16. Sia A un gruppo di automorfismi di un gruppo abeliano G.
Diremo che A agisce irriducibilmente su G se G ¢ privo di sottogruppi

propri non banali A-invarianti.

Iniziamo lo studio dei gruppi in cui ogni sottogruppo é normale oppu-
re supersolubile. Il teorema seguente fornisce una caratterizzazione di tali

gruppi nel caso finito.

Teorema 2.1.1. Sia G un gruppo finito non-supersolubile e sia M il residuale
supersolubile di G. Allora ogni sottogruppo non-normale di G & supersolubile

se e solo se sono verificate le sequenti condizioni:

(i) G & un SS-gruppo;

(i1) Se E ¢ il proiettore supersolubile di G, allora ogni sottogruppo H di E
contenente il sottogruppo derivato , M', di M e tale che H/Cy(M/M')

agisce irriducibilmente su M /M’ e normale in E.
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Dim. Supponiamo che ogni sottogruppo di G non-supersolubile ¢ normale,
allora chiaramente ogni sottogruppo non-supersolubile di G' é subnormale e
dunque vale la condizione (i), cioe G & un SS-gruppo.

Sia F il proiettore supersolubile di G e sia H un sottogruppo di G tale che
M’ < H < E e H agisce irriducibilmente su M/M’. Per il lemma 2.1.1, M
¢ abeliano oppure un p-gruppo speciale e quindi M e nilpotente. Allora il
quoziente M /M’ non puo essere ciclico, infatti se M /M’ fosse ciclico, essendo
G /M supersolubile risulterebbe G/M' supersolubile. Dato che M é il piu
piccolo sottogruppo di G tale che G/M e supersolubile, I'unica possibilita
sarebbe M uguale ad M’, ma cio contraddice la nilpotenza di M. Poiche H
agisce irriducibilmente su M/M’, M/M’ é normale minimale in HM/M' e
dunque HM non puo essere supersolubile altrimenti M /M’ avrebbe ordine
primo per il teorema 1.2.1 e dunque sarebbe ciclico. Pertanto HM ¢é un
sottogruppo normale di G e quindi il sottogruppo HM N E é normale in F.
Per la legge di Dedekind si ha che HM NE = HM NE), ma MNE =
M e dunque HM N E = HM' e poiche M’ < H segue che HM N E =
H. Pertanto H e normale in E. Viceversa, supponiamo che G verifichi le
condizioni dell’asserto e proviamo che ogni sottogruppo non-supersolubile di
G e normale in G.

A tal scopo, sia K un sottogruppo di G non-supersolubile. Sia J il residuale
supersolubile di K. Allora J é contenuto nel residuale supersolubile, M, di
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G; infatti sia L un sottogruppo normale di G tale che G/L ¢é supersolubile.
Allora l'intersezione K NL é un sottogruppo normale di K tale che K/KNL =~
KL/L é un sottogruppo di G/L e come tale e supersolubile. Dunque J ¢
contenuto in K N L e quindi in L. Per l'arbitrarieta di L, segue che J
e contenuto in ogni sottogruppo normale di G a quoziente supersolubile,
cosicche J < M.

Poiche G verifica la condizione (i), M /M’ ¢ normale minimale in G/M’ per
il lemma 2.1.1. Osserviamo che M /M’ ¢ irriducibile come K-modulo oppure
i fattori di composizione di M /M’ come K-modulo sono unidimensionali
(si veda [2], la proprieta (*) nella dimostrazione del Teorema 1). Poiche M’
econtenuto nel C' = Cg (%) e C' e 'ipercentro supersolubile diG, i fattori di
composizione di M /M’ come K-modulo non possono essere unidimensionali.
Pertanto M /M’ ¢é irriducibile come K-modulo.

Il sottogruppo JM & un sottogruppo di M contenente M’, K-invariante e
poiche K agisce irriducibilmente su M/M’, si ha che JM' = M’ oppure
JM' = M. Nel primo caso si ottiene J ciclico e dunque K supersolubile.
Quindi necessariamente JM’ = M. Dato che M é un gruppo nilpotente
finito, M’ & contenuto nel sottogruppo di Frattini di M e pertanto J = M.
Dunque K contiene M cosicche K = KNG=KNME =M(KNE).

Per provare che K e normale in GG, e sufficiente mostrare che KN E é normale

in E. Poiche M' = MNE < KNE < E, per la condizione (i), ¢ sufficiente
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provare che (K N E)/Cy(M/M') agisce irriducibilmente su M/M’. Ma cio
¢ vero perche M/M' ¢ irriducibile come K -modulo. Segue che K N E ¢
normale in | e quindi K e normale in G. Pertanto G ha tutti i sottogruppi

non-normali supersolubili. O

2.2 Gruppi policiclici

In questa sezione verra data una caratterizzazione dei gruppi policiclici in
cui ogni sottogruppo non-normale e supersolubile. Inoltre, se G & un gruppo
poiciclico,molte proprieta gruppali possono essere dedotte per G dal compor-
tamento delle sue immagini omomorfe finite (si veda il teorema 1.1.3, capitolo
1).

La proposizione seguente mostra che nei gruppi policiclici la proprieta i pos-
sedere sottogruppi non-normali supersolubili puo essere dedotta dal compor-

tamento delle sue immagini omomorfe finite.

Lemma 2.2.1. Sia G un gruppo policiclico. Allora le sequenti condizioni

sono equivalenti:
(i) Ogni sottogruppo non-normale di G & supersolubile;

(11) Ogni sottogruppo di indice finito in G & normale oppure supersolubile;
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(111) In ogni immagine omomorfa finita di G, ogni sottogruppo non-normale

e supersolubile.

Dim. (i) = (i7) Se ogni sottogruppo non-normale di G ¢ supersolubile, ov-
viamente lo e anche ogni sottogruppo non-normale di indice finito di G.
(#7) = (uii) Sia N un sottogruppo normale di G e G/N un’immagine omo-
morfa finita di G.
Sia H/N un sottogruppo non-normale di G/N. Ci proponiamo di mostrare
che H/N é supersolubile. H é un sottogruppo non-normale di indice finito
di G e quindi per la (i) H ¢ supersolubile. Poiché la classe dei gruppi su-
persolubili e chiusa per quozienti si ha 1’asserto.
(74) = (i) Sia H un sottogruppo non-normale di G. Poiche G e policiclico,
per il teorema 1.1.2,

H =K,

Vi

con |G : K;| finito. Poiche H é non-normale in G, esiste un indice ¢ tale che
K; ¢ non-normale in G.
Pertanto K; é un sottogruppo non-normale di indice finito di G, e quindi per
ipotesi K; é supersolubile. Segue H supersolubile e quindi vale la (7).
(#4i) = (11) Sia H un sottogruppo non-normale di indice finito di G.
Consideriamo un’immagine omomorfa finita di H che denotiamo con H/L.

Sia N = L¢ il nocciolo di L in G. Chiaramente il quoziente H/N ¢ un
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sottgoruppo non-normale di G/N e per la (iii) é supersolubile. Segue che
H/L ¢ supersolubile. Pertanto si ¢ provato che ogni immagine omomorfa
finita di H é supersolubile. Allora per il teorema di Baer (1.2.3, capitolo 1)

si ha che H & supersolubile ottenendo cosi la condizione (i4). O

Lemma 2.2.2. Sia G un gruppo policiclico non-supersolubile in cui ogni
sottogruppo non-supersolubile & normale. Allora G possiede un sottogruppo
T normale, nilpotente, senza torsione e tale che il gruppo quoziente G/T e

un gruppo finito non-supersolubile.

Dim. Poiché i gruppi di Dedekind sono localmente supersolubili, G possiede
necessariamente un sottogruppo non normale. Inoltre dato che G ¢ policiclico
per il teorema 1.1.2 esiste un sottogruppo K non-normale di G di indice finito.
Dunque G e supersolubile-per-finito, infatti il nocciolo di K in G,Kg ¢ un
sottogruppo normale di G supersolubile e tale che G/ K¢ ¢ finito.

Per il teorema 1.2.2 il sottogruppo di Fitting, L, di Ks e nilpotente e ha
indice finito in K. Allora L e un sottogruppo normale, nilpotente di indice
finito di G.

Poiché G e policiclico e non-supersolubile, per il teorema di Baer (1.2.3)
esiste un’immagine omomorfa finita di G non supersolubile che denotiamo
con G/N. Consideriamo il sottogruppo L N N; tale sottogruppo é normale

in G, nilpotente e poiche ¢ intersezione di sottogruppi di indice finito in G,
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ha indice finito in G. Inoltre G in quanto policiclico verifica la condizione
massimale sui sottogruppi e pertanto L N N ¢ finitamente generato (lemma
1.1.4, capitolo 1) e dunque senza torsione. In particolare il gruppo quoziente
G/L N N é non supersolubile. Segue allora che il sottogruppo T'= LN N

soddisfa la condizione richiesta, e il lemma e provato. O

Combinando i due lemmi precedenti, possiamo concludere il caso polici-
clico che costituisce un passo fondamentale per descrivere i gruppi localmente

graduati in cui ogni sottogruppo non-normale e supersolubile.

Teorema 2.2.1. Sia G un gruppo policiclico non-supersolubile. Allora ogni
sottogruppo non-normale di G e supersolubile se e solo se valgono le sequenti

condizioni:

(i) Il residuale supersolubile M di G & un p-gruppo per qualche primo p;

(i1) FEsiste un sottogruppo supersolubile E di G tale che

G=MEeENM = M

(11i) M /M’ & un fattore principale di G e M ¢ abeliano oppure un p-gruppo

speciale;

(iv) Se C = Cg(M/M") allora C & supersolubilmente immerso in G ed é

privo di fattori principali complementati non-centrali di G;
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(v) G/C eun SS-gruppo;

(vi) Se H e un sottogruppo tale che M' < H < E e H/Cy(M/M') agisce

irriducibilmente su M /M, allora H é normale in E.

Dim. Supponiamo che ogni sottogruppo di G non-normale e supersolubile.
Dal lemma 2.2.2 segue che G possiede un sottogruppo 7' normale, nilpotente
e senza torsione e tale che G/T' & un gruppo finito non-supersolubile. D’altra
parte per il lemma 2.2.1 G/T ha tutti i sottogruppi normali o supersolubili
e dunque é un SS-gruppo.

Per il lemma 2.1.1 si ha:

(1) (7)

sono rispettivamente il residuale e il proiettore supersolubile di

~[E|
N &

dove

G

T

e
Inoltre g e un p-gruppo per qualche primo p.

Sia ¢ un primo tale che non divide l'ordine di G/T. Per ogni intero po-
sitivo n, consideriamo il gruppo finito G/T9" dove T9" ¢ un sottogruppo
caratteristico di T' e dunque normale in G. Poiche¢ G/T?" ¢& estensione dei
gruppi finiti 7/T9" e G /T, risulta anch’esso finito. D’altra parte poiche G /T
¢ un quoziente non-supersolubile di G/T?" segue che G/T?" ¢ un gruppo
non-supersolubile ed inoltre ha tutti i sottogruppi normali o supersolubi-
li. Pertanto G/T9" & un SS-gruppo e riapplicando il lemma 2.1.1, per ogni
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intero positivo n si ha:

G (M, (E,
T \Te" ) \Ta" )’

M,
Tq: e Tqrfz rispettivamente il residuale e il proiettore supersolubile di

G/T?". In particolare

con

n s . . . . .
—— ¢ un gruppo primario. Per ogni n il quoziente

q‘fL

M, /T & contenuto in M /T?"; infatti M /T?" & un sottogruppo normale di
n G/T7 - . : o oy
G/T? tale che T ~ (G/M é supersolubile. Dunque poiche M, /T ¢ il

residuale supersolubile di G/T9" segue che M, /T?" ¢ contenuto in M /T?" e

pertanto M,, < M cosicché M,,/ (M,, N'T) & un p-gruppo non banale e quindi
M, /T7" ¢ anch’esso un p-gruppo; segue che M, NT = T7"
Sia M il residuale supersolubile di GG. Poiche M,, é un sottogruppo normale

qn
di G tale che £ ~ %

M, S M e supersolubile si ha che per ogni n intero

positivo, M e contenuto in M,,.

Segue che M < ﬂ M, da cui si ottiene:

n>1

MAT < (\MuNT =()(M,NT)=(T" =1!
n>1 n>1 n>1

Pertanto si ha che M =

M MT < M ndi M e

~ — e - 0
VAT 7~ < 7 e quindi M ¢ un p-grupp
finito, e dunque vala la condizione (7).

Proviamo la condizione (ii). Poiche M ¢ privo di sottogruppi propri G-

invarianti con gruppo quoziente ciclico, esiste un sottogruppo F di G tale

1 sottogruppo T é un g-gruppo residualmente finito.
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che G = ME e ENM = M’ (si veda [21], teorema 4.1). Il sottogruppo E
di G ¢ supersolubile perché altrimenti sarebbe normale in G, cos: come ogni

sottogruppo di G contenente E e dunque il gruppo quoziente G/E sarebbe

ME M

~ e dunque esso
E  MNE d

un gruppo di Dedekind. In particolare % =
e un gruppo di Dedekind finito e quindi supersolubile, segue allora che M e
contenuto in F e che quindi M = M’ contro la nilpotenza di M. Dunque E
deve essere necessariamente supersolubile e quindi vale la condizione (ii).
Proviamo che il quoziente M /M’ é un fattore principale di G e che M ¢
abeliano oppure un p-gruppo speciale.

A tal scopo sia N un sottgruppo normale di indice finito di G tale che G/N
e un gruppo non-supersolubile e M N N = 1.

II quoziente G/N ¢ un SS-gruppo e per il lemma 2.1.1 il suo residuale su-

persolubile M N/N ¢ un p-gruppo speciale oppure un gruppo abeliano, con
MN/N _ MN
M'N/N — M'N

principale di G e M e p-gruppo speciale oppure un gruppo abeliano e per-

fattore principale di G/N. Segue che M/M' & un fattore

tanto vale la condizione (4i7).

Proviamo che il centralizzante C' = Cg(M/M') & supersolubilmente immerso
in GG ed e privo di fattori principali complementati non centrali.

Sia x un elemento di C, allora il laterale x/N e un elemento del centraliz-

zante C%(MN/M’N). Per ([14], [8, IV 6.14]), si ha che , Zy(G/N) =
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Cen (MN/N), dove Zy(G/N) e l'ipercentro supersolubile di G/N. Inoltre

<[

da ([14], [8,V 2.4 e 4.2]) e dal fatto che M N/N ¢ nilpotente si ottiene che
C%(MN/M’N) = Zy(G/N) e dunque C%(MN/M’N) = C%(MN/N).
Pertanto 'interderivato [z, M] < M NN = 1, quindi I’elemento x appartiene
al centralizzante in E di M. Segue che C' = Cg(M/M') = Cg(M). In parti-
colare C' e supersolubilmente immerso in G.

Supponiamo per assurdo che C' possiede un fattore principale complementato
non-centrale di G. Denotiamo quest’ultimo con U/V con U < C e sia Y/V
il suo complemento in G/V.

Osserviamo che il gruppo quoziente G/C' ¢ non-supersolubile perche altri-
menti essendo C' supersolubilmente immerso in G, si avrebbe G supersolubi-
le. Da cie segue che Y/V ¢ non-supersolubile e dunque ¢ normale in G/V.
Pertanto G/V = Y/V x U/V e quindi il sottogruppo U/V é contenuto nel
centro di G/V. Tale contraddizione prova la condizione (iv).

La condizione (v) ¢ ovvia; infatti se H/C' & un sottogruppo non-subnormale
di G/C, allora H ¢ un sottogruppo non-normale di G e quindi e supersolubile
e poiche la classe dei gruppi supersolubili ¢ chiusa per quozienti si ottiene
H/C supersolubile. Dunque G/C é un SS-gruppo.

Mostriamo la condizione (vi). Sia H un sottogruppo di G tale M' < H < E
e H/Cyg(M/M') agisce irriducibilmente su M/M'. Allora il sottogruppo

K = M H non puo essere supersolubile e dunque é normale in G. Osservando
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che

H=HNG=HNME=MHNE=KnNE

segue che H é normale in E. Dunque vale la condizione (vi).

Viceversa supponiamo che valgono le condizioni (i) — (vi). Per il lemma 2.2.1,
e sufficiente provare che in ogni immagine omomorfa finita di GG i sottogruppi
non supersolubili sono normali. Sia G/N un’immagine omomorfa finita non-
supersolubile di G. Poiche M /M’ é un fattore principale di G, il sottogruppo
M'(M N N) e uguale ad M oppure ad M.

Se M'(M N N) = M allora essendo M'(M N N) = M N M'N si ha che
M ¢ contenuto in M’'N e dunque una contraddizione in quanto poiche M’
¢ supersolubilmente immerso in G, il quoziente G/M’'N non puo essere su-
persolubile. Pertanto necessariamente M'(M N N) = M’ da cui segue che
M' NN = M N N. Poiche il sottogruppo M N (EN) ¢ normale in G e
M' < MN(EN) < M, si ottiene che M N (EN) = M’

D’altra parte MN N EN = N(M N EN). Dunque si ha:
MN/NNEN/N=(MNNEN)/N=(MNEN)N/N=M'N/N.
Consideriamo il laterale x N appartenente al gruppo C BN (MN/M'N), allora
per definizione di centralizzante [x N, M] < M'N; da cui segue che

[, M] < M'NN M, ma MMNNM=MNNM)=MNNOM)=M

e dunque [z, M] < M’ cioe x € C e quindi zN € (CN)/N. Pertanto

32



(CN)/N =C BN (MN/M'N) e privo di fattori principali complementati non-
centrali. Per quanto detto il gruppo G/N = (M N/N)(EN/N) soddisfa la
condizione (7) di ([4] Teorema 1).

I gruppo G/CN ¢é un quoziente di G/C' e quindi il gruppo G/N verifica una
delle condizioni (i7) — (iv) di ([4] Teorema 1) , sicché é un SS-gruppo.
Posto G/N = @, mostriamo che per ogni K tale che M < K < FEe
K/ C’?(M/M/) agisce irriducibilmente su M /M, allora K ¢ normale in E.
Posto H = K N E, proviamo che H/Cy(M/M') agisce irriducibilmente su
M/M'. A tale scopo, sia X un sottogruppo di G H-invariante e tale che
M < X < M, allora M'N < XN < MN e poiche X ¢ K N E-invariante,
XN risulta (K N E)N-invariante e dunque K-invariante. Pertanto si ha che
XN = M'N oppure XN = MN. Nel primo caso si ha:
X=XNMN=M((XNN)= M. Nell’altro caso si ha:

X =X(MNN)=XMNN)=Mn(XN)=Mn(MN) = M. Segue
quindi che il sottogruppo H = K N E ¢ normale in E per la condizione
(vi) del teorema. Si ottiene cosi che K = N(K N E) & normale in EN cioé

K ¢ normale in E. Per il teorema 2.1.1,G/N = G ha tutti i sottogruppi

non-normali supersolubili e pertanto il teorema ¢ provato. O
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2.3 Gruppi localmente graduati

Lemma 2.3.1. Sia G un gruppo localmente graduato in cui ogni sottogruppo

non-normale e supersolubile. Allora G é risolubile.

Dim. Osserviamo che se GG e supersolubile oppure non e supersolubile ma
ha tutti i sottogruppi propri supersolubili, allora G é risolubile ([15] teorema
3.1).

Pertanto supponiamo che esiste un sottogruppo H di GG che non sia superso-
lubile, allora H é necessariamente normale in G.

Dato che H non e supersolubile, ogni sottogruppo che lo contiene e normale in
G. Dunque il gruppo quoziente G/ H ha tutti i sottogruppi normali e pertanto
¢ un gruppo di Dedekind. Poiche i gruppi di Dedekind sono metabeliani, il
derivato secondo di G, G”, & contenuto in H. Dunque otteniamo che ogni
sottogruppo proprio di G” ¢ supersolubile 2

Dunque G” é risolubile (si veda [15], teorema 3.1]), cosicche G é risolubile. [

Osserviamo che se G ¢ un gruppo in cui ogni sottogruppo é normale op-
pure supersolubile, allora G ha tutti i sottogruppi normali oppure policiclici.
Pertanto risulta importante conoscere la struttura di questi gruppi.

I gruppi in cui ogni sottogruppo non-normale ¢ policiclico sono stati studiati

da Franciosi, de Giovanni e Newell, i quali in “Groups with polycyclic non-

2tutti i sottogruppi che non sono supersolubili contengono G”.
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normal subgroups” ([16]) danno una completa classificazione di tali gruppi
che riportiamo di seguito.

Chiaramente, un gruppo periodico in cui ogni sottogruppo non-normale e
policiclico, ha tutti i sottogruppi infiniti normali e tali gruppi sono stati

caratterizzati da Cernikov ([8]).

Teorema 2.3.1. (S. Franciosi, F. de Giovanni, M. Newell [16]) Sia G un
gruppo localmente graduato. Allora ogni sottogruppo non-normale di G e

policiclico se e solo se G soddisfa una delle sequenti condizioni:
(i) G & un gruppo di Dedekind;
(i) G ¢ policiclico;
(i1i) G ¢é estensione di un gruppo di Prifer per un gruppo finito di Dedekind;

(iv) G & un gruppo risolubile minimax il cui residuale finito J & un gruppo
di tipo p™ per qualche primo p e contiene G'. Inoltre ogni sottogruppo

abeliano di G & in Min-per-Max;

(v) G=MXE, con M ~ Qs (il gruppo additivo dei numeri razionali i cui

denominatori sono potenza di due) ed E gruppo Hamiltoniano finito;

(vi) G ¢é policiclico-per-finito e contiene un sottogruppo normale minimale
non risolubile N tale che G/N & un gruppo di Dedekind. In particolare,
il sottogruppo derivato G' di G ¢ finito.
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Dimostrazione. Sia G un gruppo localmente graduato non-Dedekendiano, in
cui ogni sottoruppo non-normale é policiclico. Se GG e periodico, allora tutti i
suoi sottogruppi infiniti sono normali e dunque G ¢é estensione di un gruppo
di Priifer per un gruppo finito di Dedekind e pertanto GG soddisfa la condi-
zione (iii).

Supponiamo che G sia policiclico-per-finito. Poiche ogni sottogruppo non-
normale di G e policiclico, segue che G ha tutti i sottogruppi non-normali
risolubili con rango sezionale finito abeliano. Dunque applicando il teore-
ma 2.7 di [16], si ha che G é risolubile con rango sezionale finito abeliano
e dunque policiclico, oppure G ha rango sezionale finito abeliano e possiede
un sottogruppo finito, normale minimale, non risolubile e tale che il gruppo
quoziente G/N sia un gruppo di Dedekind. Pertanto G soddisfa la condizio-
ne (ii) o la (vi) dell’asserto.

Dunque possiamo supporre che G sia non periodico e non policiclico-per-
finito; segue dal lemma 2.11 di [16] che G & metabeliano. Chiaramente pos-
siamo supporre che G sia non dedekendiano e quindi per il corollario 2.10
di [16] si ottiene G é un gruppo minimax. In particolare tutti i sottogruppi
periodici di G sono gruppi di Cernikov.

Supponiamo che G’ sia non finitamente generato e sia H un sottogruppo di
indice finito di G’. Allora H e non finitamente generato e quindi ¢ normale
in GG; infatti se H non fosse normale, allora sarebbe policiclico, quindi a con-
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dizione massimale e dunque finitamente generato contrariamente a quanto
detto sopra. Pertanto ogni sottogruppo di G contenente H e normale in G
e quindi il gruppo quoziente G/H ¢ di Dedekind. Segue che G’/H ha ordine
al pit 2, cosicche, denotato con R il residuale finito di G’, quest’ultimo ha
indice al piv 2 in G’. Pertanto R é privo di sottogruppi propri di indice finito
e dunque e divisibile. Inoltre ogni sottogruppo proprio di R e finitamente
generato cosicche R e un gruppo di Priifer per qualche primo p.

Se R # G, allora il gruppo quoziente G/R ¢ un gruppo non abeliano con
tutti i sottogruppi normali e quindi &€ Hamiltoniano; cosicche G é periodico.
Pertanto R = G'.

Sia J il residuale finito di G, poiche G e un gruppo minimax segue che J
¢ prodotto diretto di un numero finito di gruppi di Priifer ed e il massimo
sottogruppo divisibile di G. Pertanto J e un gruppo abeliano, periodico e
divisibile e J = G’ x Jy, con J; sottogruppo divisibile. Se J; # {1}, allora J;
e normale in G, infatti se J; non fosse normale in G, allora .J; sarebbe polici-
clico e quindi finito essendo periodico, ma cio & una contraddizione in quanto
Ji & divisibile. Dunque G/J; € un gruppo di Dedekind e quindi G'J;/J; ¢
finito, ma G'J;/J; ~ G'/J1NG" = G, si ottiene una contraddizione in quan-
to G’ ¢ infinito. Allora necessariamente J; = {1} ottenendo cost G’ = J e
quindi il residuale finito di G, J, e un gruppo di tipo p> per qualche primo
P.
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Proviamo che ogni sottogruppo abeliano di G ¢ Min-per-Max. A tale scopo,
sia A un sottogruppo abeliano di G. Allora A = A; x As, con A; grup-
po di Cernikov e Ay un gruppo senza torsione. Se il sottogruppo A, non
¢ finitamente generato, allora é normale in G e il gruppo quoziente G/A,
¢ di Dedekind. Allora G' < Ay, ma A, é senza torsione e G & un gruppo
periodico dunque A deve essere finitamente generato. Pertanto A, verifica
la condizione massimale sui sottogruppi ed inoltre essendo A; un gruppo di
Ceernikov, segue che A ¢ Min-per-Max. Dunque vale la condizione (1v) del-
I’asserto.

Supponiamo che G’ sia finitamente generato. Il quoziente G/G’ non é finita-

mente generato ed essendo G’ residualmente finito, esiste una collezione
{Kitier

di sottogruppi G-invarianti di indice finito in G’ tale che

(K = {1}.

1€T

Per ogni i € Z, il gruppo quoziente G; = G/K; & un gruppo minimax con
il sottogruppo derivato G finito. Allora G;/Z(G;) ¢ finito da cui segue che
Z(G;) & non finitamente generato. Inoltre poiché Z(G;) ¢ non policiclico, il
gruppo quoziente G;/Z(G;) & un gruppo di Dedekind finito e dunque nilpo-
tente. Allora per ogni i € Z, G, ¢ nilpotente di classe al pit tre, cosicche G
e nilpotente.
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Sia T il sottogruppo di torsione di GG. Sia G’ infinito, allora anche il gruppo
quoziente G/T ha il derivato infinito. Dunque G/T non é un gruppo di De-
dekind e pertanto esiste un sottogruppo H con T' < H < G e non normale
in GG; segue che H e policiclico e dunque T éun gruppo policiclico periodico e
dunque finito. Allora G ¢ residualmente finito. Inoltre ogni immagine omo-
morfa finita di G & un gruppo di Dedekind e cost ' ha esponente due. Tale
contraddizione prova che il derivato di G ¢ finito e pertanto G/Z(G) é finito.
Poiche G & un gruppo minimax, esiste un sottogruppo U periodico e un

sottogruppo V' senza torsione tale che
Z(G)=UxV

Supponiamo che V' sia non finitamente generato, allora G/V ha tutti i
sottogruppi normali e non & abeliano. Pertanto G/V e Hamiltoniano e G’ ha
ordine due.

Se V? # V, allora per ogni n € N V2"t £ V2" cosicche G/V?® non ¢
Hamiltoniano, allora & abeliano, ma tale contraddizione prova che V = V2.
Dunque V' contiene un sottogruppo W tale che V/W ¢ isomorfo al duo-
gruppo Z(2%).

Chiaramente G//TV non e un gruppo di Dedekind, esiste un sottogruppo H/W
non normale in G/W; dunque H ¢é non normale in G e quindi policiclico.

Allora il sottogruppo W é policiclico e dunque finitamente generato. Segue
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dal lemma 2.12 di ([16]) che V' ¢ isomorfo a Q.

Assumiamo che U é infinito e sia Uy il residuale finito di U. Poiche G/V e
hamiltoniano, segue che U non puo possedere sottogruppi di tipo 2°°; cosicche
Up NG’ = {1} e il gruppo non periodico G /U, risulta essere hamiltoniano,

ma cio e una contraddizione e pertanto U e finito. Allora T" e anch’esso finito

G/G' =L)G' xT/G,

con L/G" senza torsione. Poiché G ¢ estensione finita di un duo-gruppo
divisibile, segue che L/G’' e anch’esso un duo-gruppo divisibile, cosi L e
abeliano e L = M x @', per qualche sottogruppo M duo-divisibile e senza
torsione.

Dunque G = LT = MG'T = MT e M NT = {1}; inoltre M ¢ normale in
(G, in quanto non puo essere policiclico e dunque G = M x T con T finito e
hamiltoniano.

Lo stesso argomento mostra che il gruppo abeliano M ¢é isomorfo a ()s e
pertanto G soddisfa la condizione (v).

Infine , supponiamo che V' ¢é finitamente generato e cosicche T & un gruppo
di Cernikov infinito e G & Min-per-Max.

Sia P un sottogruppo di Priifer di G. Allora P é normale in G e il gruppo

non periodico G/P ¢ abeliano e dunque G’ & contenuto in P. Segue che il
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residuale finito di G € un gruppo di Priifer e pertanto G soddisfa la condizione
(1v).

Viceversa, ¢ sufficiente provare che, se G soddisfa una delle condizioni (iv) e
(v), allora ogni sottogruppo non normale di G é policiclico.

Sia X un sottogruppo di G che non é policiclico. Supponiamo che G soddisfa
la condizione (iv). Se G’ non e contenuto in X, I'intersezione X NG’ ¢é finito
cosicche X’ ¢ finito e dunque X/Z(X) é finito. Allora Z(X) é Min-per-Max
e non ¢ finitamente generato; il residuale finito J di G é un sottogruppo
del centro di GG, ma poiché G’ é contenuto in J, cio é una contraddizione.
Pertanto G’ < X e X ¢ normale in G.

Supponiamo che G soddisfa la condizione (v). Allora X "M e un gruppo non
finitamente generato, e quindi il quoziente M /(M N X)) & un gruppo abeliano
finito di ordine dispari.

Segue che il quoziente G/(X N M) e hamiltoniano e pertanto X é normale

in G.
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Proviamo il risultato principale, che fornisce una descrizione dei gruppi

localmente graduati in cui ogni sottogruppo non-normale é supersolubile.

Teorema 2.3.2. Sia G un gruppo localmente graduato. Allora ogni sotto-
gruppo non-normale di G é supersolubile se e solo se G verifica una delle

sequenti condizioni:
(i) G & un gruppo di Dedekind;

(1) G & un gruppo policiclico in cui ogni sottogruppo non-supersolubile é

normale;

(i1i) G possiede un sottogruppo di Prufer,J, tale che il gruppo quoziente G/J

e un gruppo di Dedekind finito;

(iv) G & un gruppo risolubile minimaz il cui residuale finito J, & di tipo p™
contiene G'; in particolare ogni sottogruppo abeliano di G & in Min-per-

Mazx;

(v) G = M x E, con M ~ Qs(il gruppo additivo dei numeri razionali i
cui denominatori sono potenza di due) ed E un gruppo Hamiltoniano

finito.

Dim. Supponiamo che ogni sottogruppo non-supersolubile di G e normale.
Allora G ha tutti i sottogruppi normali o policiclici, sicche verifica le condizio-
ni del teorema 2.3.1. Poiche G e risolubile per il lemma 2.3.1, G sicuramente
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non verifica la condizione (vi) del teorema 2.3.1 e pertanto verifica una delle
condizioni (i) — (v) dell’asserto.

Viceversa, mostriamo che se G verifica una delle condizioni (iii) — (v), allora
ogni sottogruppo non-normale di G' é supersolubile. A tale scopo sia X un
sottogruppo di G non-normale.

Supponiamo che G verifichi la condizione (7iz). Allora esiste un sottogruppo
J normale di G tale che J ~ Z,~ e G/J ~ D con D gruppo di Dedekind
finito. Per il teorema 2.3.1 il sottogruppo X e policiclico e quindi verifica
la condizione massimale sui sottogruppi per il teorema 1.1.1. Consideriamo
il sottogruppo X N J; poiché X verifica la condizione massimale sui sotto-
gruppi, X N J e finitamente generato per il lemma 1.1.3. Inoltre X N J e
un sottogruppo finitamente generato di J ed essendo J localmente ciclico,
segue che X N J ¢ ciclico. D’altra parte il gruppo G/J essendo un gruppo
finito di Dedekind e supersolubile e quindi il quoziente X/ X NJ ~ XJ/J e
supersolubile. Segue allora che X ¢é supersolubile.

Supponiamo che G verifichi la condizione (iv). Per il teorema 2.3.1 il sot-
togruppo X ¢ policiclico. Poiché G’ é contenuto nel residuale finito J di G,
segue che il gruppo G/J é abeliano. Da cio segue che X/ XNJ ~ XJ/J é su-
persolubile ed essendo X NJ ciclico segue X supersolubile. Infine supponiamo
che G verifica la condizione (v).Per il teorema 2.3.1 il sottogruppo X é polici-
clico. 1l gruppo G/M e supersolubile. Da cio segue che X/ XN M ~ XM /M
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e supersolubile ed essendo X N M ciclico segue X supersolubile.

]

Romalis e Sesekin, ([23], [25]) hanno provato che i gruppi localmente gra-
duati metahamiltoniani hanno il sottogruppo derivato finito.
Questo risultato e stato recentemente esteso al caso dei gruppi con un nume-
ro finito di normalizzanti di sottogruppi non-abeliani (si veda [11]).
Sono stati studiati gruppi con un numero finito di normalizzanti di sotto-
gruppi con una data proprieta X per diverse scelte di X. In particolare,
M. De Falco, F. de Giovanni. e C. Musella considerano gruppi localmente
graduati con un numero finito di normalizzanti di sottogruppi non-policiclici

provando il seguente risultato che per la dimostrazione si rimanda a [9)].

Teorema 2.3.3. Sia G un gruppo localmente graduato mon-policiclico con
un numero finito di normalizzanti di sottogruppi non-policiclici. Allora il
sottogruppo derivato G' di G & un gruppo di Cernikov e la sua parte divisibile

e UN gruppo primario.
Di seguito, studiamo il problema corrispondente per la supersolubilita.

Corollario 1. Sia G un gruppo localmente graduato con un numero finito
di normalizzanti di sottogruppi non-supersolubili. Allora si verifica una delle

sequenti condizioni:

(i) G ¢ policiclico e il suo residuale supersolubile ¢ finito;
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(11) 1l sottogruppo derivato di G & un gruppo di Cernikov e la sua parte

divisibile ¢ un gruppo primario.

Dim. Poiche G ha un numero finito di normalizzanti di sottogruppi non-
policiclici, per il teorema 2.3.3 G ¢ policiclico oppure soddisfa la condizione
(#7). Pertanto supponiamo che G sia policiclico. Al fine di provare che
il residuale supersolubile M di G ¢ finito e che quindi vale la condizione
(i), sia per assurdo M infinito. Consideriamo un controesempio G' con un
numero minimo k& di normalizzanti propri di sottogruppi non-supersolubili
e procediamo per induzione su k. Se k = 0, 'asserto & ovvio. Dunque sia
k > 0 esiano Ng(X1),. .., No(X}) i normalizzanti propri di sottogruppi non-
supersolubili. Possiamo supporre, senza ledere le generalita, che G sia privo
di sottogruppi normali periodici non banali.

Perognii = 1....,k, il sottogruppo N¢(X;) possiede meno di k normalizzanti
propri di sottogruppi non-policiclici e quindi per ipotesi induttiva, il residuale
supersolubile M; di Ng(X;) é finito. D’altra parte il sottogruppo Ng(X;) ha
un numero finito di coniugati in G, sicche la classe di coniugio di M; é finita e
quindi la chiusura normale di M; in G ¢ finita. Segue che M; = {1} e quindi

N¢(X;) e supersolubile. Tale contraddizione prova il corollario. O
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Capitolo 3

Gruppi localmente finiti i cui
sottogruppi hanno

un’oscillazione normale finita

Un famoso risultato di Neumann ([19]), assicura che tutti i sottogruppi di un
gruppo G sono nearly normale in G se e solo se il sottogruppo derivato G’ di
G ¢ finito.

Buckley, Lennox, Newmann, Smith e Wiegold, provano che un gruppo G lo-
calmente finito in cui ogni sottogruppo e normale-per-finito, ¢ abeliano-per-
finito ([6]). Osserviamo che 'esistenza dei gruppi extraspeciali mostra che

un gruppo con il derivato finito non necessariamente ¢ abeliano-per-finito.
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D’altra parte, poiché un gruppo G finito-per-abeliano é nilpotente-per-finito,
segue da entrambi i teoremi citati sopra che GG possiede un sottogruppo nil-
potente di indice finito.

Lo scopo di questo capitolo e provare un risultato analogo per i gruppi lo-
calmente finiti in cui ogni sottogruppo é nearly normale oppure normale-
per-finito. Ricordiamo che un sottogruppo X di un gruppo G e detto nearly
normale in G se ha indice finito nella sua chiusura normale, H®, in G; mentre
X si dice normale-per-finito se ha indice finito sul suo nocciolo, Hg, in G.
Sia X un sottogruppo di un gruppo G. Definiamo oscillazione normale

di X in G il numero cardinale
min {|X : X¢|, | X : X|}.

Chiaramente X e normale in G se e solo se ha oscillazione normale uguale ad
1. Inoltre, X ha oscillazione normale finita in GG se e solo se X ha indice fini-
to nella sua chiusura normale X oppure se ¢& finito sul suo nocciolo X¢; in
particolare, sottogruppi finiti e sottogruppi di indice finito hanno oscillazione
normale finita. Nella prima sezione di questo capitolo verra esaminato il caso
dei p-gruppi locamente finiti in cui ogni sottogruppo ha oscillazione normale
finita; nella seconda sezione verranno presi in considerazione i gruppi con-
tabili e vedremo che sara sufficiente provare ’asserto del teorema principale

per questa classe di gruppi.
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I risultati riportati in questo capitolo sono presenti in ” Locally finite groups

whose subgroups have finite normal oscillation” [17]
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3.1 p-gruppi localmente finiti

In questa sezione mostremo il risultato principale nel caso di un p-gruppo

localmente finito:

Teorema 3.1.1. Sia G un p-gruppo localmente finito i cui sottogruppt hanno
oscillazione normale finita. Allora G contiene un sottogruppo nilpotente di

indice finito.

Prima di procedere con la dimostrazione di tale risultato, € necessario
premettere 1 prossimi risultati.

Ricordiamo che il radicale di Baer di un gruppo G e il sottogruppo
generato da tutti i sottogruppi subnormali abeliani di G, e G ¢ detto gruppo
di Baer se coincide con il suo radicale di Baer, o in maniera equivalente se
tutti i suoi sottogruppi finitamente generati sono subnormali. Osserviamo

che ogni gruppo di Baer ¢ localmente nilpotente.

Lemma 3.1.1. Sia G un gruppo e sia X un sottogruppo subnormale, nil-
potente e nearly normale di G. Allora la chiusura normale di X in G é

nilpotente.

Dim. La chiusura normale di X in G, X%, & un gruppo di Baer ed in par-
ticolare tutti i suoi sottogruppi finitamente generati sono subnormali. Sia
Y = Xya, allora essendo X nearly normale in G, l'indice | X% : Y| & fini-
to. Pertanto esiste un sottogruppo finitamente generato E di X%tale che
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X% =YE. Poiche X¢ & un gruppo di Baer segue che il sottogruppo F & nil-
potente e subnormale. Dunque X ¢ & prodotto di due sottogruppi nilpotenti,
di cui uno e subnormale e I'altro normale, e pertanto dal teorema di Fitting,

X & nilpotente. O
Come consequenza del precedente lemma, si ha il sequente:

Corollario 2. Sia G un gruppo infinito e localmente finito i cui sottogruppi
hanno oscillazione normale finita. Allora G contiene un sottogruppo normale,

nilpotente e infinito.

Dim. Per il Teorema di Hall-Kulatilaka e Kargapolov ([20], teorema 3.43), G
contiene un sottogruppo abeliano infinito A. Chiaramente, si puo supporre
che il nocciolo A di A in G sia finito, perche altrimenti Ag sarebbe il sotto-
gruppo cercato. Segue quindi che I'indice |A® : A ¢ finito. Sia B il nocciolo
di A in A%, allora l'indice |AY : B| & ancora finito; in particolare, B ¢ un
sottogruppo abeliano e subnormale di G.

Chiaramente possiamo supporre che il nocciolo Bg sia finito, e quindi anche
indice |BY : B| & necessariamente finito. Dunque il sottogruppo B & sub-
normale, nilpotente e nearly normale in G e pertanto per il lemma 3.1.1, la

chiusura normale B di B in G & nilpotente e 1’asserto & provato. O

Lemma 3.1.2. Sia G un gruppo di Baer i cui sottogruppi hanno oscillazione
normale finita. Allora G ¢é risolubile.
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Dim. Sia X un sottogruppo di GG. Se X & normale-per-finito, poiche il quo-
ziente G/ X € un gruppo di Baer, allora il sottogruppo X/X¢ € subnormale
in G/X¢, e quindi X ¢ subnormale in G.

Se, invece, |X“ : X| & finito, allora denotato con Y il nocciolo di X in X¢
il sottogruppo X/Y & subnormale in X“/Y; in particolare X & subnormale
in G.

Pertanto tutti i sottogruppi di GG sono subnormali, e quindi per un rilevante

risultato di W. Mdhres,[18], G ¢ risolubile. O

Nello studio dei gruppi in cui ogni sottogruppo ha oscillazione normale
finita, gioca un ruolo importante la classe degli FC-gruppi, gruppi con classi
di coniugio finite. Pertanto é necessario ricordare alcuni aspetti di tale classe

di gruppr.

3.1.1 FC-gruppi

Definizione 17. Un elemento x di un gruppo G si dice FC-elemento se:
|G : Cq(x)] < o0,

o equivalentemente se la classe di coniugio di x, [x]CG , € finita.

Proposizione 1. Sia G un gruppo, linsieme

F = F(GQ) ={z € G | x possiede un numero finito di coniugati in G}
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e un sottogruppo caratteristico di G.

Dim. L’elemento 1 € F. Siano z,y € F allora si ha:
|G : Cq () N Cq (y) | < oo.

Sicuramente vale la seguente relazione: Cg (z) N Cq (y) < Cq (z7'y), allora
l'indice in G del Cg (z~'y) ¢ finito, allora 'y € F, e pertanto F < G.
Proviamo che F'chG.

Sia o € Aut(G), e g € G, allora verifichiamo che:

Ca(9%) = Ca (9)" .

Proviamo la doppia inclusione;

o

Sia z € Cg (¢g*) allora zg* = g%x.

Sia y € G tale che z =y, si ha:

ma zg® = g“x, e poiche « ¢ iniettivo si ha:
Y9 = g9y,
pertanto y € Cg (g), quindi z = y* € Cg (¢)°, allora

Ca (g*) C Cq ().
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Viceversa:

Sia y € Cg (9)*, allora esiste un elemento z € Cg (g) tale che y =z e

(67 - a0 (6o % «

yg* = a%g" = (z9)" = (gz)" = g%z = g%z = g%y

allora y € Cg (9%), quindi vale anche Daltra inclusione Cg (9)* C Cq (9%) .

Dunque si ottiene I'uguaglianza e quindi I’asserto. O]
Definizione 18. [l sottogruppo F ¢ detto FC-centro di G .

Definizione 19. Sia G un gruppo. La serie FC-centrale superiore di G ¢ la

serie normale ascendente {F,(G)}o definita ponendo Fy(G) = {1},
For(G)/Fo(G) = F(G/Fo(G))

per ogni ordinale o e

F\(G) = | Fs(@)

B<A
se X e un ordinale limite.
Definizione 20. Un gruppo G si dice FC-gruppo se coincide con il suo FC-

centro, cioé se ogni elemento di G ha soltanto un numero finito di coniugati.

Osservazione 1. Il centro di un gruppo G, Z (G), é contenuto nell’FC-
centro, F, di G. Infatti, se v € G e x € un elemento centrale, allora G =
Cq (2), quindi |G : Cq ()| = |G : G| =1 e pertanto ¢é finito. In conclusione
un elemento centrale ¢ un FC-elemento.
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Gli FC-gruppi sono stati introdotti da R. Baer, e studiati da numerosi
autori tra 1 quali ricordiamo, P. Hall, B.H Neumann e piu recentemente L.A
Kurdachenko e M.J. Tomkinson.

La classe degli FC-gruppi é chiusa per sottogruppi e per quozienti invece non
e chiusa rispetto alle estensioni. I gruppi abeliani e i gruppt finiti sono FC-
gruppi, e la teoria degli FC-gruppi si ¢ sviluppata nel tentativo di cercare
proprieta comuni a tali classi di gruppi.

Appartengono alla classe degli FC-gruppi, i gruppi il cui centro ha indice

finito e i gruppi con il sottogruppo derivato finito. Infatti:

Proposizione 2. Se G/Z (G) ¢ finito, allora G ¢ un FC-gruppo.

Proposizione 3. Se G € un gruppo con il suo sottogruppo derivato finito,

allora G € un FC-gruppo.

Osserviamo che se G ¢ un FC-gruppo, non é detto che abbia il centro
di indice finito; infatti basti pensare ai p-gruppi extraspeciali, gruppi infiniti
in cut il centro e il sottogruppo derivato coincidono ed hanno ordine p. La
considerazione di tali gruppi ci fa capire che non tutti © gruppi che sono FC-
gruppi hanno il centro di indice finito.
Tuttavia, se consideriamo i gruppi finitamente generati si ha il sequente

risultato.
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Proposizione 4. Se G ¢ un FC-gruppo finitamente generato, allora G/Z (G)
e finito.

Come osservato sopra, la classe dei gruppi con il centro di indice finito e
la classe dei gruppt con il derivato finito sono due sottoclassi naturali e non

banali della classe degli FC-gruppi. Un famoso risultato ottenuto da I. Schur

nel 1902 prova che queste due classi sono confrontabili.

Lemma 3.1.3. Sia G un FC-gruppo finitamente generato, allora G contiene
un sottogruppo A senza torsione, centrale e di indice finito. Inoltre il derivato
G' di G ¢ finito.

Teorema 3.1.2. (Schur) Dato un gruppo G, se G/Z (G) ¢ finito, allora il

derivato G’ ¢ finito .

Dimostrazione. Per ipotesi esiste un sottogruppo finitamente generato N di
G tale che G = Z (G) N.

Poice N & normalizzato da se stesso e dal Z (G) segue che N € normale in G.
Inoltre G ¢ un FC-gruppo per la proposizione 2; di conseguenza anche N e
un FC-gruppo e per il lemma 3.1.3 N’ & finito.

Allora G’ = (NZ(GQ)) = [NZ(G),NZ (G)] = N’, ma N’ ¢ finito quindi G’

e finito. O

1l prossimo risultato occupa un ruolo fondamentale nella teoria degli F'C-
gruppi ed ¢ noto come lemma di A.P. Dietzmann:
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Lemma 3.1.4. (Dietzmann) Sia G un gruppo, X un sottoinsieme finito di
G, costituito da elementi periodici, ciascuno dei quali ha un numero finito di

contugati i G, allora:
(292 € X,9€ G) = XC
e finito.

Dimostrazione. Sia X = {x1,--+,2;} un sottoinsieme finito di G, i cui ele-

menti rispettano le ipotesi del lemma. Sia

C = (ﬂ Ce (xi))

G

Ovviamente C' < Cg(x;), Vi < t, per cui per ogni elemento g appartenente
G,

C =9 <Cqx;)? = Cq(x)),

dunque C centralizza i coniugati di ciascun z;. Allora CN X% < Z(X%) & un

sottogruppo centrale di X¢.
t
Inoltre per ogni 4, il C(x;) ha indice finito in G, allora 'intersezione ﬂ Cal(z;)
i=1
ha indice finto in G, e di conseguenza anche C.

Otteniamo cosi:

xX¢ o X¢/0nX¢

Z(XC%) ~ Z(X%)]C N XC
X6 X% _¢

ma =

CNXe c -
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dove l'ultimo quoziente & finito, per cui X¢/Z(X%) ¢ finito.

Per il teorema di Schur (teorema 3.1.2) (X¢)' & finito.

Inoltre X¢/(X%)" & abeliano e finitamente generato, in quanto X% ¢ finita-
mente generato.

Indichiamo la torsione di X¢/(X%)’ con la notazione T/(X)'; essa ¢ finita
in quanto torsione di un gruppo abeliano finitamente generato. Quindi T e
finito.

Osserviamo adesso che
XG/(XG)/ N XG
T/(XE) T

¢ senza torsione, e poiche per ipotesi ogni 27 & periodico, allora X¢/T = {1},

dunque X% =T e X© & finito, come volevasi dimostrare. O

Il comportamento della serie FC-centrale superiore (definizione 19), di
un gruppo in cui ogni sottogruppo ha oscillazione normale finita occupa un

ruolo centrale in questo contesto, come mostrano i tre prossimi risultati.

Lemma 3.1.5. Sia G un gruppo i cui sottogruppi hanno oscillazione normale
finita e sia F' I’FC-centro di G. Allora ogni sottogruppo di F' ¢ nearly normale

in G; in particolare il sottogruppo derivato F' di F' ¢ finito.

Dim. Sia X un sottogruppo di F. Se l'indice | X : X/ e finito, allora segue
dal Lemma di Dietzmann 3.1.4 che il gruppo X¢/Xg ¢ finito, e quindi X &
nearly normale in G. In particolare, ogni sottogruppo di F' ha indice finito
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nella propria chiusura normale X in F, e dunque F’ & finito per il Teorema

di Neumann [19]. O

Lemma 3.1.6. Sia G un p-gruppo localmente finito in cui tutti © sottogruppi
hanno oscillazione normale finita e sia A un sottogruppo normale e abeliano
di G. Se A ¢ prodotto diretto di una famiglia di sottogruppi ciclici allora il

gruppo quoziente AJANF ¢ finito, dove F' ¢ I'FC-centro di G.

Dim. Supponiamo per assurdo che A/A N F sia infinito.
Se A/ANF ha rango finito, allora & un gruppo di Cernikov, pertanto possiede
un sottogruppo B/A N F normale, abeliano e isomorfo al gruppo Z,~. Se B

e nearly normale in G, allora, essendo per ogni g € G
|BY: BN BY = |BBY: B| <|BY: B

, risulta

BY=BnNBY

per ogni g € G, e quindi B ¢ normale in GG. Sostituendo A/A N F con il
gruppo B/AN F, si pud supporre senza ledere le generalita che A/AN F sia
isomorfo al gruppo Z,e.

Se il rango di A/A N F ¢ infinito, allora lo zoccolo di A/A N F' ¢ infinito e
normale in G/A N F. Sostituendo, eventualmente, A/A N F' col suo zoccolo,

si puo supporre senza ledere le generalita che A/A N F ha esponente p.

28



In entrambi i casi considerati sopra, esistono due successioni {a, }nen € {bn }nen

di elementi di A tali che

A?F = (1 F) X (W F) X {aaF) x ... X (a, F) X (b, F) X ...,

{a1,b1,a9,ba, ... Ay, by, ..y = (ag) X (by) X {ag) X (by) X ... %X (a,) x (by) X ...

F < <F7CL1> < <F,a1,b1> < <F,CL1,b1,CL2> < ... < <F,a1,b1,...,an,bn> < ....
Consideriamo una partizione
{I,| n € N}

dell’insieme dei numeri naturali costituita da infiniti sottoinsiemi infiniti. Per

ogni k,n interi positivi, poniamo
Uk = (Drier,(an)) X (bn).

Infatti, Se per qualche intero positivo n esistessero r,s € N con r # s tali

che U,,, e Uy, sono entrambi nearly normale in G, allora tale sarebbe anche
<bn> = Us,n N Ur,na

ma cio non puo verificarsi poiché, per ogni intero positivo n, b, ha infiniti
coniugati in G. Allora esiste al piu un intero positivo m tale che U, ,, € nearly
normale in G.
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Per ogni intero positivo n, sia quindi k(n) un intero positivo tale che V,, =
(Uk(ny;m)e di ha indice finito in Uy, € k(m) # k(n) se m # n.
Allora

U= <Uk(n),n| n e N> = DTnGNUk(n),n-

Ovviamente, il gruppo

UmynF'/ F

e infinito, pertanto per ogni n il sottogruppo V,, non e contenuto in C'.

Per ogni intero positivo n, sia y, un elemento di V,, dotato di infiniti coniugati
e poniamo V' = Druen(y,). Allora VNV, = (y,). Dal momento che V,
e normale in G e che y, ha ordine finito, esistono infiniti coniugati di y,
mediante elementi di G che non appartengono a V'; in particolare, I'indice
V& : V| ¢ infinito. Per ipotesi, dunque, V' & normale-per-finito. Tuttavia,
essendo il prodotto diretto di sottogruppi normali e finiti di G, il nocciolo Vg
di V' in G ¢ contenuto in F', dunque anche l'indice [V : V' N F| ¢ finito, ma si

¢ giunti ad una contraddizione in quanto VF/F = AF/F. O

Corollario 3. Sia G un p-gruppo localmente finito in cui ogni sottogruppo
ha oscillazione normale finita e sia A un sottogruppo normale e abeliano di

G. Allora A ¢é contenuto nel secondo FC-centro F5(G) di G.

Dim. Sia a un elemento di A, allora la chiusura normale (a)“ & un gruppo

abeliano di esponente finito e, dunque e prodotto diretto di sottogruppi ciclici.
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Denotato con F I'FC-centro di G, per il lemma 3.1.6 si ha che il gruppo

quoziente

@CF  (a)°
F (@¢NF

¢ finito. Essendo anche normale in G/F, (a)°F/F < FC(G/F), ma I'FC-
centro di G/F ¢ F»(G)/F. Per larbitrarieta di a, segue che AF/F <

F5(G)/F e pertanto l'asserto ¢ provato. O
Ricordiamo che

Definizione 21. Dato un gruppo G, si definisce automorfismo potenza di

G, un automorfismo « che fissa tutti i sottogruppi di G, ossia tale che
H*=H ,VH<G

Si osservi che se a € un automorfismo potenza di G, Vx € G, l"tmmagine di

x mediante l'automorfismo é un elemento di (x).

Eppure non sempre un automorfismo che mandi ogni elemento in una sua
potenza,e un automorfismo potenza, basti pensare ad un gruppo G isomorfo
al gruppo additivo dei razionali, in tal caso ['applicazione o che manda ogni
elemento di G nel suo quadrato,é un automorfismo, ma non un automorfismo
potenza, infatti nessun sottogruppo ciclico,non identico di G,é fissato da o.
Sia G un gruppo e I' un gruppo di operatori su G.

Consideriamo un sottogruppo H di G; poniamo H' = (H*; o € T') e Hp =
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ﬂ H®. Osserviamo che se I' = G, allora H® e Hg sono, rispettivamente,
ael
la chiusura normale e il nocciolo di H in G.

Definizione 22. Definiamo
Pautr(G) ={a € ' H* = H; per ogni H < G}

Indichiamo l’insieme degli automorfismi potenza di un gruppo G, con la

terminologia PAutG, dunque
Paut(G) = {a € Aut(G); H* = H; per ogni H < G}.

PAutG ¢ un sottogruppo normale e abeliano di Aut(G) e se G ¢é abeliano
Paut(G) < Z(Aut(G)). In [7], C. Casolo, considera un gruppo di auto-
morfismi I' di un gruppo abeliano A, tale che |HY : H| ¢ finito per ogni H
sottogruppo di A e fornisce una descrizione generale a partire da alcuni casi
particolari. Ricordiamo nel sequente lemma, che verra utilizzato in sequi-
to, il caso in cui A € un p-gruppo abeliano ridotto. Per la dimostrazione si

rimanda a [7].

Lemma 3.1.7. Sia A un p-gruppo abeliano ridotto, e I' < Aut(A) tale che
|HY : H| ¢ finito per ogni H sottogruppo di A. Allora esiste un sottogruppo

finito N di A, T'-invariante tale che I' = Pautr(A/N).

Lemma 3.1.8. Sia G un p-gruppo e sia A un sottogruppo normale abeliano
di G tale che Uindice | X% : X| ¢ finito per ogni sottogruppo X di A. Allora
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A possiede un sottogruppo finito G-invariante B tale che il centralizzante

Cs(A/B) ha indice finito in G.

Dim. Sia A= D x R con, D ed R, rispettivamente, il massimo sottogruppo
divisibile di A e il gruppo ridotto.

Sia P un sottogruppo di A isomorfo al gruppo Z,~. Per ipotesi, P ¢ nearly
normale in G, allora I'indice |P? : P N PY| & finito e poiche P9 & privo di

sottogruppi propri di indice finito, si ha che per ogni g € G,
PI=PnPI,

e quindi P e normale in G.

Segue che tutti i sottogruppi di D sono normali in G, in particolare, il quo-
ziente G /Cg(D) & isomorfo ad un sottogruppo del gruppo degli automorfismi
potenza di D, e quindi e finito.

Inoltre essendo R un sottogruppo di A, l'indice |R : R| ¢ finito, quindi RY
¢ ridotto in quanto estensione finita di un gruppo ridotto. R® contiene un
sottogruppo finito B G-invariante tale che tutti i sottogruppi di R“/B sono
normali in G/B per il lemma 3.1.7.

In particolare, il quoziente G/Cq(RC/B) @ finito. Dunque I'intersezione
Ca(D) N Cq(RY/B)
ha indice finito in G e poiche ¢ contenuta nel centralizzante C(A/B), si ha

che |G : Cs(A/B)| ¢ finito e pertanto il lemma & provato. O
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Lemma 3.1.9. Sia G un p-gruppo risolubile i cui sottogruppi hanno oscilla-
zione normale finita. Allora G contiene un sottogruppo nilpotente di indice

finito.

Dim. Assumiamo ’asserto falso e scegliamo un controesempio G con lun-
ghezza derivata minima k. Sia F' I’'FC-centro di G.

Per il Lemma 3.1.5, il sottogruppo derivato F’ di F' ¢ finito. Rimpiazzan-
do G con G/F', possiamo supporre che F’ ¢ identico e quindi F' abeliano.
Per il Lemma 3.1.8, esiste un sottogruppo F di G finito e G-invariante tale
che F’ ¢ contenuto in E e il centralizzante Cg(F/E) ha indice finito in G.
poiche ogni p-gruppo finito-per-nilpotente e nilpotente, segue che il gruppo
quoziente G/E ¢ un controesempio minimale e il suo FC-centro ¢ il gruppo
F/E. Infatti se G/FE contenesse un sottogruppo nilpotente di indice finito,
allora G sarebbe nilpotente-per-finito. Pertanto, sostituendo G con G/FE, si
puo supporre che 'indice |G : C(F)| sia finito.

Consideriamo A = G*~Y I'ultimo termine non identico della serie derivata di
G. Per la minimalita di k, il gruppo quoziente G /A contiene un sottogruppo
N/A nilpotente e di indice finito. Poiche G € un gruppo periodico e risolubile,
G ¢ localmente finito, quindi A ¢ contenuto nel secondo FC-centro F»(G) di
G per il Corollario 3. Dal Lemma 3.1.5, ogni sottogruppo di AF/F ha indice

finito nella propria chiusura normale in G/F. Inoltre, per il Lemma 3.1.8,
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esiste un sottogruppo G-invariante B di AF' contenente F' tale che B/F &
finito e il centralizzante C(AF/B) ha indice finito in G.
Poiche B/F ¢ finito e contenuto in Fy(G)/F, anche I'indice del centralizzante

Cq(B/F) in G é finito. Quindi I'intersezione

M = NN Cg(F)NCq(B/F)NCe(AF/B)

¢ un sottogruppo nilpotente di GG di indice finito.

Da questa contraddizione segue 1’asserto. O]

Dimostriamo il teorema 3.1.1:

Dim. Per il Lemma 3.1.9, e sufficiente provare che il gruppo G e risolubile.
Sia F il sottogruppo di Fitting di G. Allora F' e un gruppo di Baer, quindi ¢
risolubile per il Lemma 3.1.2. Supponiamo per assurdo, che 'indice |G : F|
di F in G ¢ infinito. Dal Corollario 2, G/F contiene un sottogruppo N/F
normale, nilpotente e infinito.

Poiche N/F' ¢ nilpotente e F' ¢ risolubile segue che N & risolubile, e dunque
per il Lemma 3.1.9 & anche nilpotente-per-finito. Pertanto il sottogruppo di
Fitting M di N e normale in G, e nilpotente e ha indice finito in N.
Questa contraddizione prova che F' ha indice finito in GG, dunque G ¢ risolubile

e pertanto il lemma e provato. O]
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3.2 Gruppi contabili

In questa sezione proveremo il risultato principale restringendo la nostra at-
tenzione ai gruppi contabili in cui ogni sottogruppo ha oscillazione normale

finita.

Definizione 23. Una classe gruppale X e detta riconoscibile contabilmente

se contiene tutti i gruppi v cui sottogruppi contabili appartengono ad X .

E noto che molte classi di gruppi sono riconoscibili contabilmente, ad
esempio R. Baer prova che la classe dei gruppi nilpotenti e riconoscibile con-
tabilmente. come consequenza del risultato di M.R. Dizon, M.J. Evans e H.
Smith [12], proveremo che la classe dei gruppi che contengono un sottogrup-
po normale, nilpotente e di indice finito e riconoscibile contabilmente. Tale
risultato verra usato nella dimostrazione del teorema principale, al fine di

restringere [’attenzione alla classe dei gruppt contabili.

Lemma 3.2.1. Sia G un gruppo in cui ogni sottogruppo contabile € nilpotente-

per-finito. Allora G & nilpotente-per-finito.

Dim. Sia G un gruppo i cui sottogruppi contabili sono nilpotenti-per-finito.
Proviamo che G ¢ nilpotente-per-finito. Sia F' il sottogruppo di Fitting di G.
Tutti i sottogruppi contabili di £’ sono nilpotenti e poiche la classe dei gruppi

nilpotenti e riconoscibile contabilmente, segue che il Fitting di G e nilpotente.
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Supponiamo per assurdo che il gruppo quoziente G/F' sia infinito. Sia H/F
un sottogruppo infinito contabile di G/F. Allora G contiene un sottogruppo

contabile X tale che
H<XF e (X\F)NV =40,

dove V' ¢ il sottgoruppo di Fitting di X (si veda [6] corollario 2.3).

Siano h e k elementi di H. Poiche H < XF, h=ax e k = yb con z,y
elementi di X e a,b elementi di F'.

In particolare, se hF' ¢ diverso da kF, allora xF ¢ diverso da yF' per cui
r7ly ¢ F. Segue che x7'y ¢ V. Infatti se 7'y € V allora

r~ly € (VN(X\F)), ma tale intersezione & vuota. Pertanto ilaterali zV e yV
sono diversi e quindi il gruppo quoziente X /V ¢ infinito. Tale contraddizione

prova che G/F é finito, sicche G é nilpotente-per-finito. n

Sia G un gruppo periodico. Denotiamo con w(G) linsieme di tutti i nu-
meri primi p tale che G possiede elementi di ordine p. Sia 7(G) = w; U ws

dove wy U wy sono sottoinsieme disgiunti di w(G)

Definizione 24. Sia U un wy-sottogruppo di G eV e un wy-sottogruppo di G
tali che G = UV, diremo allora che G = UV & una (wy,ws)-decomposizione
di G.

Per ogni insieme w di numeri primi, denotiamo con w' il complemento di

w i P, cio linsieme dei numert primi che non appartengono a w.
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Un famoso teorema di P.Hall, afferma che ogni gruppo finito risolubile pos-
siede una (w, w/)—decomposizione per ogni insieme w di numert primi.

In un lavoro non pubblicato, questo risultato f esteso da Schenkman al caso
dei gruppi localmente finiti contabili. Di sequito presentiamo una dimostra-

zione di tale risultato.

Lemma 3.2.2. Sia G un gruppo localmente risolubile, periodico e contabile.
Sia w un sottoinsieme di w(G). Allora G = UV, dove U é un w-sottgruppo

e V & un W -sottogruppo di G.

Dim. G é un gruppo contabile e localmente finito e dunque e lecito conside-

rare una catena ascendente di sottogruppi finiti di G:
1:G0<G1<G2<G3...<Gn<...

tali che

la quale esiste in quanto G, € finito e risolubile.
. . ’ o . .
Consideriamo una (w,w )-decomposizione di G,

Gn+1 = An+1Bn+1 .
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Per il teorema di Hall esiste un = ed un y appartenenti a G, tali che:

U, < Ar eV, < BY.,. Inoltre Goy1 = Upp1Vigr, con Uy = A2 e

n

Vi1 = Bl (si veda lemma 1.3.1 di [1]). In questo modo abbiamo definito
induttivamente due catene ascendenti rispettivamente di w-sottogruppi e w'-

sottogruppi finiti di G:
1=U< U1 <Uy<Us...<U,<...

1=Vo<Vi<VWVoa< V... <V, <....

Siano

V:UVn

neNy

rispettivamente un w-sottogruppo e un w'-sottogruppo di G. Pertanto
G=UV
é una (w,w’)-decomposizione di G' e dunque il lemma é provato. O

Lemma 3.2.3. Sia G un gruppo contabile localmente finito in cui ogni sot-
togruppo ha oscillazione normale finita. Allora G ha un unico p-sottogruppo

di Sylow per tutti tranne al piw un numero finito di primi p.
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Dim. Per il corollario 2, G possiede un sottogruppo normale, nilpotente e
infinito.

Sia L={H IG | H é G-iperabeliano}, allora £ ¢ non vuoto e I'insieme
(L, C) e induttivo. Pertanto esiste in £ un elemento massimale che denotia-
mo con K.

Se G/K ¢ finito, allora G & iperabeliano-per-finito. Invece se G/K = G ¢ infi-
nito, allora per il corollario 2, G contiene un sottogruppo A = A/K normale,
nilpotente e infinito. Allora A ¢ G-iperabeliano e dunque appartiene ad L,
ma cio contraddice la massimalita di £. Dunque G e iperabeliano-per-finito
e pertanto sia H un sottogruppo iperabeliano di indice finito.

E sufficiente provare ’asserto per H e quindi possiamo supporre che G sia
iperabeliano.

Sia w l'insieme dei numeri primi p tale che G contiene un p-sottogruppo di
Sylow G, non-normale. Proviamo che w é finito. Assumiamo per contraddi-
zione che w sia infinito.

Per ogni coppia di numeri primi {p, ¢} appartenente ad w, definiamo la

seguente relazione d’equivalenza:
p ~ q < tutti i p-elementi di G permutano con tutti i g-elementi di G.

Consideriamo un sottoinsieme infinito w; di w, tale che w \ w; sia infinito e

poniamo ws = 7(G) \ wy. Osserviamo che G ¢ localmente risolubile ([20]).
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Per il lemma 3.2.2, esistono un ws-sottgruppo U e un ws-sottogruppo V G
tale che G =UV.

I gruppo quoziente U/Ug ha esponente finito; infatti se U/Ug € normale-
per-finito allora U/Ug ¢ finito e quindi ha ovviamente esponente finito.
Invece se U/Ug é nearly normale in G, detto n I'indice di U nella sua chiusura
normale U% in G, allora il nocciolo di U in U%, che denotiamo con Y, ha
indice finito in U ed inoltre divide n!. Dunque il sottogruppo (U%)™ &
contenuto in U ed essendo un sottogruppo normale di G, (U%)™ & contenuto
nel nocciolo Ug. Pertanto U/Ug ha esponente finito. Analogamente anche il
gruppo V/Vi ha esponente finito. Pertanto esistono dei primi distinti pe ¢
appartenenti rispettivamente a w e a w\w tali che p ~ ¢, o equivalentemente
tali che l'interderivato [Gp, G4| = 1.

Applicando il teorema di Ramsey, si ottiene che w contiene un sottoinsieme
infinito w* tale che [G,, G,] = 1 per tutti i primi distinti p e ¢ appartenenti

ad w*.

Sia
K = (G,|p € w*) = Drpew+G,.
Poiche il gruppo quoziente K/ K¢ ha esponente finito, esiste un numero primo

q appartenente a w* tale che G, é contenuto in K. Segue che G, é un

sottogruppo normale di GG. Tale contraddizione prova I’asserto. O
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Corollario 4. Sia G un gruppo localmente finito i cui sottogruppi hanno
oscillazione normale finita. Sia P un p-sottogruppo di Sylow di G. Allora G
possiede un sottogruppo normale nilpotente N tale che il quoziente PN/N ¢é

finito.

Dimostrazione. 11 sottogruppo P € un p-gruppo localmente finito in cui tutti
i sottogruppi hanno oscillazione normale finita e dunque per il lemma 3.1.1,P
e nilpotente-per-finito. Il nocciolo di P in G & anch’esso nipotente-per-finito
e sia N = Fit(Pg). Allora N & un gruppo di Baer nilpotente-per-finito e
dunque risulta nilpotente. Poiche NchPg < G, segue che N < G. Pertanto
N & un sottogruppo nilpotente, normale in G e di indice finito in P%.

Se P e normale-per-finito, allora N ha indice finito in P e dunque segue
I’asserto; altrimenti se P & nearly normale in GG, essendo P nilpotente-per-
finito, segue che e tale anche la sua chiusura normale in G. Il sottogruppo di
Fitting di P & un sottogruppo normale in G, nilpotente e tale che PN/N &

finito. Pertanto I’asserto e vero anche in questo caso. O
Siamo, ora, in grado di provare il risultato principale:

Teorema 3.2.1. Sia G un gruppo localmente finito in cui ogni sottogruppo
ha oscillazione normale finita. Allora G contiene un sottogruppo normale,

nilpotente di indice finito.
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Dim. Dal 3.2.1 e sufficiente provare ’asserto nel caso in cui G sia un gruppo
contabile.

Sia w 'insieme di tutti i numeri primi p tali che G possiede un p-sottogruppo
di Sylow non normale G,. Allora w e finito per il lemma 3.2.3.

Sia m = m(G) \ w e per ogni ¢ € 7, sia G, I'unico ¢-sottogruppo di Sylow di
G.

Consideriamo il seguente sottogruppo normale di G

K - DquﬂGq.

Poiche G ¢ contabile e 7(K) N7w(G/K) =0, K possiede un complemento in
G; pertanto esiste un sottogruppo H di G taleche G = HK e HN K = 1.
Sia 7 un sottoinsieme di 7, costituito da tutti i numeri primi ¢ tali che G,

contiene un sottogruppo non-normale X,. Poniamo

X — quEﬂ'*X(I'

11 gruppo quoziente X /X ha esponente finito per il lemma 2.1.1, cosicche 7*
deve essere finito. Per ogni ¢ € 7\ 7*, G, ha tutti i sottogruppi normali. Per
il teorema di Baer-Dedekind [22], G, ¢ abeliano oppure e prodotto diretto di
Qs e di un gruppo abeliano periodico privo di elementi di ordine 4.

Se ¢ appartiene a m \ 7" e ¢ # 2, allora G, ¢ abeliano e quindi ¢ abeliano

per tutti tranne al piz un numero finito di primi ¢ € 7. D’altra parte, dal
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teorema 3.1.1, segue che ogni sottogruppo di Sylow di G' e nilpotente-per-
finito, quindi K ¢ nilpotente-per-finito e dunque il Fit(K) = L ¢ nilpotente
e ha indice finito in K.

Poiche H ~ G/K, si ha che l'insieme dei primi 7(H) = 7n(G/K) < n(G) \
m(K), ma m(K) = 7(G) \ w e dunque w(H) ¢ finito.

Dal corollario 4, esiste un sottogruppo N normale, nilpotente di G tale che
tutti i sottogruppi di Sylow di HN/N sono finiti. Segue che HN/N ¢ finito
e dato che |K : L] e finito, si ha che il sottogruppo LN ha indice finito in G.
Pertanto LN é un sottogruppo normale, nilpotente e di indice finito in G e

dunque il teorema e provato. O
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