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1. Introduction 

1.1. Scope and purposes 

This thesis work was developed in conjunction with the activities of the EC FP7 Adaptive 
Control of Manufacturing Processes for a New Generation of Jet Engine Components 
(ACCENT) Project (agreement n. 213855) as well as the EC FP7 Intelligent Fault Correction 
and self-Optimizing Manufacturing systems (IFaCOM) Project (agreement n. 285489).  

The goal of this thesis work can be summarized as follows: sensor monitoring of machining 
processes for the ultimate goal of optimizing the machining process under study, through 
processing and analyzing the detected sensor signals during the machining process and 
relating them to a chosen quality parameter  of the machined workpiece.  

First of all, several experimental campaigns were carried out in an industrial environment. A 
multi sensor monitoring system, endowed with diverse sensing units was employed during 
each of the experimental campaigns in order to acquire different sensor signals on an online 
basis. 

Mainly, three sensor-monitoring applications were studied in this thesis work resulting in 
different multi sensor monitoring system adapted to the three applications under study.  

Raw signals detected during the experiments were processed and analyzed using mainly 
conventional and advanced signal analysis methods in order to extract significant features 
useful for knowledge-based decision making on process conditions. 

The thesis work includes material characterization tests carried out to inspect the surface 
integrity of the workpiece, chip form classification, and surface roughness levels in polishing 
with the scope of correlating these conditions to the extracted sensor signals features. 

A decision-making support system, neural networks for pattern recognition, was employed the 
sensor signal features extracted by signal processing techniques for the identification of 
defects in the workpiece due to the machining process. 

The flow chart shown in Figure 1.1 summarizes the activities and steps followed in this thesis 
work.  
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Figure 1.1: Activities flow chart. 
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1.2. Review of the publications of the Ph.D. Candidate 

SEGRETO,T., KARAM, S., SIMEONE, A., TETI, R., 2013, RESIDUAL STRESS ASSESSMENT IN 

INCONEL 718 MACHINING THROUGH WAVELET SENSOR SIGNAL ANALYSIS AND SENSOR 

FUSION PATTERN RECOGNITION, 2ND CIRP GLOBAL WEB CONFERENCE (CIRPE2013), 
PROCEDIA CIRP, VOLUME 9, ISSN 2212-8271, PP. 103-108. 

On-line residual stress assessment in turning of Inconel 718 was carried out through multiple 
sensor monitoring based on cutting force, acoustic emission and vibration signals acquisition 
and analysis. The detected sensor signals were processed by the wavelet packet transform 
technique to extract statistical features from the packet coefficients for the construction of 
wavelet feature vectors. The latter were used for sensor fusion pattern recognition through 
neural network data processing grounded on X-ray diffraction residual stress measurements 
on the turned part surface. The scope of the sensory data fusion approach was to achieve a 
robust scheme for multi-sensor monitoring decision making on machined surface integrity in 
terms of residual stress level acceptability. [1] 

KARAM, S., TETI, R., 2012, WAVELET TRANSFORM FEATURE EXTRACTION FOR PATTERN 

RECOGNITION OF CHIP FORM IN C STEEL TURNING, 8TH CIRP INT. CONFERENCE ON 

INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING – CIRP ICME ‘12, 18-20 

JULY, ISCHIA, ITALY, PP. 97-102 

Cutting force sensor monitoring and wavelet decomposition signal processing were 
implemented for feature extraction and pattern recognition of chip form typology during 
turning of 1045 carbon steel. The wavelet packet transform was applied for the analysis of the 
detected cutting force signals by representing them in a time-frequency domain and providing 
for the extraction of wavelet packet statistical features. The latter were used to construct 
wavelet packet feature vectors, ranked according to the number of overlapping elements 
related to favourable or unfavourable chip forms that cause noise in the pattern recognition 
procedure (lower number, lower noise, higher rank). The eight highest ranked wavelet packet 
feature vectors were selected as inputs to a neural network decision-making system on chip 
form acceptability. Subsequently, a data refinement procedure was employed to improve the 
neural network performance in the chip form identification process. [2] 
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1.3. State of the Art 

In cognitive sciences, sensorial perception is the conscious recognition and interpretation of 
sensory stimuli that serve as a basis for understanding, learning, and knowing or for 
motivating a particular action or reaction. In the 1950s, it was predicted that building 
perceiving machines would take about a decade, a goal which is still very far from 
achievement being a task far more complex than was imagined. [3] 

1.3.1. Historical/philosophical background of sensorial perception 

Since the early times of ancient Greek philosophy, several interesting views and theories 
concerning the connection between Sensorial Perception (SP), knowledge achievement and 
truth identification have emerged. These diverse concepts, views and theories concerning SP 
and knowledge acquisition are grouped into different categories that, along with the 
predominant cultural tendency in the course of time, attribute to SP a certain level of 
importance. (Table 1.1) [3] 

Table 1.1: Concepts of sensorial perception (SP) and its role in knowledge acquisition and truth 
identification during the different epochs. 

SP role Authors of concepts/theories of SP in the course of epochs 
Trivial, minor or no 
value 

Heraclitus (535–475 B.C.); Parmenides (515–450 B.C.) and 
the Eleatics; Pyrrho (360–320 B.C.) and the Sceptics 

Initiates cognition 
Empedocles (490–430 B.C.); Democritus (460–370 B.C.) and 
the Atomists 

Supports cognition 
Plato (427–347 B.C.); Plotinus (205–270 A.D.); St. Augustine 
(354–430 A.D.); Hegel (1770–1831) and the Idealists 

Indispensible for 
cognition 

Aristotle (384–322 B.C.); St. Thomas Aquinas (1221–1274); 
Ockam (1280–1349); Spinoza (1632–1677); Leibniz (1646–
1716); Locke (1632–1704) and the Empyrists; Kant (1724–
1804); Peirce (1839–1914) and the Pragmatists 

Basis of all knowledge 
acquisition 

Epicurus (341–270 B.C.); Zeno (334–262 B.C.) and the 
Stoics; L. da Vinci (1452–1519); Telesio (1509–1588); Galilei 
(1564–1642); F. Bacon (1561–1626); Newton (1642–1727); 
Descartes (1596–1650) and the theory of passive perception; 
Condillac (1714–1780) and the Sensists; Stuart Mill (1806–
1873), Comte (1798–1857) and the Positivists 

Continuous adaptation of 
sensing to environment 

Darwin (1809–1882), Avenarius (1843–1900), Mach (1838–
1916) and the Empiriocriticists; Dewey (1859–1952) and the 
Instrumentalists; Bergson (1859–1941); Gregory [6–8] and 
the theory of active perception 
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1.3.2. Modern theories of sensorial perception 

R. Descartes initially conceived the passive perception theory. The following ‘‘static’’ 
sequence of events can summarize it: surrounding  input (senses)  processing (brain)  
output (reaction). Mainstream philosophers, psychologists, neurologists and scientists still 
support this theory. However, nowadays, it is largely losing momentum. Instead, the theory of 
active perception has emerged from extensive research of sensory misapprehensions, most 
notably the works of Gregory [4] [5]. This theory of active perception, which is increasingly 
gaining experimental support, can be defined as the ‘‘dynamic’’ relationship between 
description (in the brain) ↔ senses ↔ surrounding, all of which holds true to the linear 
concept of experience [6].  

1.3.3. Sensors and sensor systems for machining 

The measuring techniques for the monitoring of machining operations have traditionally been 
classified into two approaches: direct and indirect. In the direct approach, the actual quantity 
of the variable, e.g. tool wear, is measured. In this case, some examples of direct measurement 
are the use of cameras for visual inspection, radioactive isotopes, laser beams, and electrical 
resistance. Many direct methods can only be used as laboratory experimental techniques but 
not on site techniques. Mainly, this is due to the practical limitations caused by numerous 
problems during machining such as access problems, illumination, and the use of cutting 
fluid. However, direct measurement has a high degree of accuracy and has been extensively 
employed in research laboratories to support investigations of fundamental measurable 
phenomena during machining processes. Through indirect measurement approaches, auxiliary 
quantities such as the cutting force components can be measured. The actual 
measurement/value/quantity is subsequently deduced through empirically determined 
correlations. These indirect methods are less accurate than direct ones but are also less 
complex and more suitable for practical applications. In contrast to traditional detecting 
methods, the indirect approach provides continuous monitoring of the machining process 
through sensing devices to quantify the performance of the process and provide information 
aiming at process optimization using sensors. Sensors commonly used for online 
measurement are illustrated in Figure 1.2. [3] 



 

14 

 
Figure 1.2: Measurable phenomena for online sensor monitoring [7]. 

Force and torque measuring technology and sensors 

Any cutting operation requires a certain force to separate and remove the material from the 
workpiece. The monitoring of cutting forces in machining has been used extensively by 
researchers [8]. One of the aims of monitoring of cutting forces is the validation of analytical 
process models. Force sensors are highly sensitive and respond rapidly to changes during the 
cutting states. Torque sensors, like force sensors, also consist of a mechanical structure that 
responds to a deformation but, in this case, the applied load is torsional. Often, the underlying 
force measurement technology is identical. What is different is the application of torque 
sensors and the method of signal transmission from rotating tool holders. Both force and 
torque sensors generally employ sensing elements that convert the applied force or torsional 
load into deformation of an elastic element. The two main sensor types used are piezoelectric 
based and strain gage based sensors. 

A piezoelectric based sensor is a device that uses the piezoelectric effect to measure changes 
in pressure, acceleration, strain or force by converting them to an electrical charge [9]. The 
force transducer mounted in line with the force path allows the direct force measurement 
using piezoelectric sensors. For lab-based applications that require more measurement 

http://en.wikipedia.org/wiki/Piezoelectric_effect
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Acceleration
http://en.wikipedia.org/wiki/Strain_(materials_science)
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Electricity
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flexibility, multi-component force transducers have been developed and are extensively used. 
Rotating cutting force dynamometers are also available and contain force-sensing elements 
capable of measuring three components of force and torque. The data is transmitted from the 
rotating part of the sensor to a stator via telemetry. Rotating cutting force dynamometers can 
operate at speeds of up to 20,000 rpm and have been used for high speed milling of aerospace 
materials. Developments like the integration of force sensors into the machine structure have 
taken place over the last 10 years with concepts developed for drilling [10] and milling [11]. 
Figure 1.3 shows sensors integrated into the main force flux of the motor spindle.  

 
Figure 1.3 – Integrated force sensors in motor spindle [12]. 

Strain gage based sensors consist of a structure that deforms under a force. This type of 
transducers offer reasonably high frequency response and long-term stability.  The most 
common type of strain gage consists of an insulating flexible backing, which supports a 
metallic foil pattern. The gauge is attached to the object. As the object is deformed, the foil is 
deformed, causing its electrical resistance to change. This resistance change, usually measured 

http://en.wikipedia.org/wiki/Electrical_insulation
http://en.wikipedia.org/wiki/Electrical_resistance
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using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor 
[13]. Figure 1.4 shows a strain gage sensor integrated into a static Swiss tool holder. 

  
Figure 1.4: Strain gage sensor embedded in a static Swiss tool holder [14]. 

Acoustic emission measuring technology and sensors 

There are several sources of acoustic emissions in machining and theses causes are illustrated 
in Figure 1.5. Piezoelectric sensor technology is particularly suitable for measuring acoustic 
emission (AE) [11] [15] in machining process monitoring. With a very wide sensor dynamic 
bandwidth ranging between 100 kHz and 900 kHz, AE can detect most of the phenomena in 
machining. It is noted that significant data acquisition as well as signal processing is required 
[16]. Band pass filters usually provide great flexibility for AE detection by selecting the 
appropriate frequency ranges. The output signal from the AE sensor is fed through a pre-
amplifier that has a high input impedance and low output impedance. A root mean square 
(RMS) converter, gain selection unit, and filters are typically contained within the 
preamplifier housing. Another potential principle for AE detection is the capacitance 
principle. The capacitance of two parallel plates changes with the changing distance between 
plates. The accuracy of this AE detection method is higher than many other techniques and 
capacitance based AE sensors are used for calibrating other AE sensors. However, 
capacitance type displacement sensors for AE detection are very sensitive to the sensor 
position and surface mounting. Thus, they are not suitable for machining process monitoring 
where the operating environment is usually quite severe on the sensor [17].  

http://en.wikipedia.org/wiki/Wheatstone_bridge
http://en.wikipedia.org/wiki/Gauge_factor
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Figure 1.5: Sources of AE in machining [16]. 

Another sensing method for AE detection is the application of a piezoelectric thin film sensor 
deposited on a shim and located between the cutting insert and the tool holder. This type of 
AE sensor is reported to have advantages over commercially available AE sensors. It is 
located close to the cutting process zone and is characterized by a very large frequency 
bandwidth. Good signal quality has been reported, particularly in the high frequency range, 
with less interference and lower geometrical propagation loss and absorption rate [18]. An 
alternative approach using fiber optics was investigated [19] [20]. This sensing method has 
reported advantages over conventional AE sensors such as a broader bandwidth, flat 
frequency response and absolute calibration. More importantly, the fiber optic interferometer 
is a noncontact method of signal transmission from source to sensor. The latter two methods 
have largely been developed in the laboratory and have not been significantly used in 
industrial applications. 

Signal transmission via a coupling fluid is possible due to the high frequency and low 
amplitude nature of AE. Due to the fact that the AE sensor is located on the coolant supply 
nozzle, the coolant can be used as transmission path [21]. A nonintrusive coupling fluid was 
used to couple the AE sensor to the spindle drive shaft [22]. These signal transmission 
methods had a distinct advantage for rotating tools such as in milling and drilling. Various 
other methods of signal transmission from AE sensor to AE coupler/signal processor are 
common to other sensing applications, including slip rings, inductive coupling, and radio 
frequency transmission [21][22]. Aspects of AE signal processing in machining were 
investigated and it was proposed that in the machine tool environment the AE signal is 
repeatedly reflected from the inner surfaces of the structure where the sensor is mounted [23]. 
This resulted in prolonged duration of the signal recorded by the sensor. The further the 
sensor is placed from the AE source, the greater the signal attenuation. This has significant 
implications on measuring AE during machining. If the AE sensor is mounted on the 
workpiece side, the changing distance between the sensor and the source during machining is 
a factor that requires consideration [24].   
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Vibration sensor types 

A large variety of sensing principles are used for sensing vibrations. However, piezoelectric 
transduction is the most common type in vibration sensing in machining processes. Vibrations 
that occur during metal machining can be divided into two groups: (i) dependent and (ii) 
independent of the cutting process. These two groups are not mutually exclusive. Vibration 
independent of metal cutting include forced vibration caused by the environment of 
machining, i.e. other machines or machine components, e.g. vibration transmitted through 
foundations, unbalance of rotating parts, inertia forces of reciprocating parts and kinematic 
inaccuracies of drives. Furthermore, vibration dependent on metal cutting can demonstrate a 
number of characteristics as a function of the process, e.g. interrupted cutting. The varying 
cutting forces that occur during metal cutting may result from non-homogeneity and 
properties variations in the work material. Tool engagement conditions during machining play 
a notable role in the vibration produced. The self-excited vibration characteristic known as 
chatter is the most renowned type of vibration in machining and is detrimental to surface 
finish and tool life. Chatter mainly occurs due to the waviness regeneration caused by the 
interaction between material surface and tool at particular spindle rotational frequencies, and 
by mode coupling where relative vibration between workpiece and tool occurs concurrently in 
two directions in the cutting [3]. 

1.3.4. Advanced Signal Processing 

Advanced signal-processing aims at extracting significant features that relate to specific 
process conditions. Generally, it is acknowledged that reliable process condition monitoring 
based on a single signal feature (SF) is not feasible. Therefore, the calculation of a sufficient 
number of SFs related to the process conditions [25] [26] [27] is a key issue in machining 
monitoring systems. This is obtained through signal processing methods that are performed 
successively in stages as shown in Figure 1.6.  

First comes the pre-processing stage (filtering, amplification, A/D conversion, and 
segmentation) that occasionally includes signal transformation into frequency or time–
frequency domain (Fourier transform, wavelet transform, etc.). The next stage is the 
extraction of signal or signal transform features changing with specific process conditions. 
There are many diverse signal features coming from different sensor signals, but most cannot 
be easily related with the process being monitored. Thus, the selection of the nature of the 
signal feature is of critical importance. Identified relevant features are finally integrated into 
the process condition diagnosis system, the decision-making system. 
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Figure 1.6: Signal processing scheme [28]. 

Signal pre-processing 

Analog signals, directly out of the sensor, usually cannot be directly connected to the A/D 
converter. Before this stage, the analog signal needs to undergo pre-processing by a 
conditioner specific to the sensor (piezotron coupler, charge amplifier, etc.). A typical 
example is the procedure of analog AE signal pre-processing that follows the pattern 
schematically shown in Figure 1.7. 

Usually, the AE sensor of piezoelectric nature is placed as close as possible to the cutting 
zone, e.g. on the tool shank, the tool post, the headstock or the spindle. Because of its high 
impedance, the sensor must be directly connected to a buffer amplifier that converts the 
charged signal from the sensor into a proportional voltage signal. This is typical also of other 
piezoelectric sensors such as dynamometers or accelerometers. The analog signal should be 
filtered to keep it within the range of the frequency response of the sensor, suppress high 
frequency noise or continuous biases. The filtered signal is then subjected to further 
processing and/or recording. The frequency range of the raw AE reaches 1 MHz (typically 
80–700 kHz). Therefore, dealing with such signals requires a high sampling frequency (>1 
MHz) and large memory resources with high computing costs. Thus, in numerous cases, the 
AE signal is demodulated and the Root Mean Square (RMS) of the signals is calculated 
(AERMS) to obtain a low frequency variable, which can be further processed with cheaper 
signal processing devices [3]. 

 
Figure 1.7: Typical measuring chain for AE detection during machining [3]. 

The integration time constant of the RMS converter should be carefully selected. This 
selection depends on the subsequent SF extraction process. Signal averages can be calculated 
as well as other features such as burst rate, event counts, etc. In such cases, the integration 
time constant should be ten times shorter than the typical burst duration, which is 
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approximately 2 ms [23]. The AE energy from the cutting zone can be significant. Because of 
the pre-processing units characteristics, these high amplitude signals may cause overloading 
of the buffer amplifier and signal saturation. High-pass filtering of saturated signals results in 
temporal vanishing of the signal value [29]. This can often result in misleading data 
evaluation. It should be noted that this signal distortion cannot be detected in the AERMS signal 
and, in this particular case, such signals must be considered completely distorted and useless. 
To avoid these problems, the gain of the buffer amplifier should be as small as possible and 
any further necessary amplification should be done after signal filtering. This is critically 
important when AERMS is used instead of AEraw [29]. Just before conversion into the digital 
form, for the highest possible accuracy, the signal is usually amplified so that the signal’s 
maximum voltage range equals the maximum input range of the A/D converter. The digital 
signal is often subjected to further pre-processing. Digital filtering reduces frequency bands 
not correlated with the monitored process or extracts information necessary for specific 
pattern recognition stages. For example, while using a spindle-integrated force sensor system 
on a machining center, when the spindle speed harmonics coincide with the spindle natural 
modes, the cutting force signals are distorted. One type of filters, the Kalman filters, eliminate 
the influence of structural modes on force measurement and significantly increase the 
frequency bandwidth of the force measurement system [30]. In many applications, a digital 
signal is filtered to prevent high frequency noise and signal oscillations due to transient 
mechanical events [31][32]. 

Another sensor signal pre-processing method is segmentation. Signal information should be 
extracted when the tool is actually removing metal in a steady state, since only this signal 
portion contains information about the process conditions [33][34]. Sensor features (SF) were 
calculated from force samples in one spindle rotation, instead of one tooth period, to reduce 
the influence of run out [35]. Despite constant cutting conditions in single micro-milling cut, 
AE was not constant; thus, separate SFs were calculated for all the cut and for the 1st and the 
2nd third of the cut [36]. 

Features extraction in time domain 

From the detected sensor signals, SFs that can describe the signal adequately and maintain the 
relevant information about the process conditions need to be extracted.  

There are several SFs that can be extracted from time domain signals. The most common are:  
(i) arithmetic mean, average value, magnitude [31][35][37][38][39][40][41][42][43][44][45];  
(ii) effective value (root mean square – RMS) [31][35][37][39][40][41][43][45][46];   
(iii) variance (or standard deviation) [31][32][38][39][40][46][47];  
(iv) skewness [32][39][40][41][42][43][47];  
(v) kurtosis [32][39][40][41][42][43][47][48];  
(vi) signal power [33][43][47];  
(vii) peak-to-peak, range, or peak-to-valley amplitude [29][31][32][37][39][41]; 
(viii) crest factor [31][37][41][45][47];  
and (ix) ratios of the signals, signal increments[37][49];  
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Acoustic emission time domain features. 

Some features are applicable only to vibration and AE signals:  
(a) pulse rate: number of times AEraw signal crosses the threshold level [26][29][45][46][50];  
(b) pulse width: the percentage of time during which AEraw remains above the threshold level 
[29][50];  
(c) burst rate number of times AERMS signal exceeds preset thresholds per second 
[26][29][36];  
and (d) burst width – percentage of time AERMS signal remains above each threshold [29][50].  

1.3.5. Monitoring scopes 

In this section, a survey of applications related to the main goals of advanced monitoring of 
machining operations is presented.  

Chip condition classification  

Filtered AE spectrum components was used for chip form classification [51]. A method of 
chip disposal state monitoring in drilling was proposed based on spindle motor power features 
[38]. Wavelet packet decomposition and spectral estimation of cutting force signals was 
applied for chip form recognition [52][53][54]. A variety of sensors was used to obtain stable 
clusters of chip form under varying dry cutting conditions through geometric transformations 
of the control variables: they aimed at recognizing chip entanglements, chip size (including 
continuity), and chip shape [55]. A laboratory system for automatic chip breaking detection 
via frequency analysis of cutting forces was developed and tested [56]. 

Residual stress assessment 

The approach of sensor fusion during the turning of Inconel 718 nickel alloy was used [28]. 
The multiple sensor monitoring system, equipped with cutting force, acoustic emission, and 
vibration sensor units was employed in association with advanced procedures for signal 
analysis, sensor fusion and cognitive decision making for residual stress evaluation. Two 
signal processing and feature extraction methodologies, based respectively on sensory data 
statistical evaluation, Principal Component Analysis, and Wavelet Packet Transform [1] were 
applied to the sensor signals generated during experimental turning tests. The extracted 
features were combined into sensor fusion input feature vectors to be fed to neural network 
based pattern recognition paradigms for decision making on machined surface integrity in 
terms of residual stress conditions. The influence of the cutting process parameters on 
machining performance and surface integrity generated during the dry turning of Inconel 718 
and austenitic stainless steel AISI 316L with coated and uncoated tools was studied [57]. 
Also, the process was modelled for the prediction of the tensile residual stress using a three-
dimensional finite element model. The use of on-line monitoring systems with process-
integrated measurement of acoustic emission to evaluate hard turning and grinding processes 
is described [58]. The correlation between acoustic emission signals and subsurface integrity 
is determined to analyze the progression of the processes and the workpiece quality. 



 

22 

Surface integrity 

Cutting parameters and two cutting force components were applied for online estimation of 
surface finish and dimensional deviations [59]. A statistical approach was employed to 
correlate surface roughness and cutting force in end milling operations [44]. A method of 
surface roughness prediction was developed in turning based on cutting parameters and FFT 
analysis of tool vibrations [60]. Singular spectrum analysis is used to decompose the vibration 
signals for in-process prediction of surface roughness in turning [61]. Time series analysis of 
vibration acceleration signals measured during cutting operations for real-time prediction of 
surface roughness were investigated [62]. A trial to correlate the quality of the machined 
surface after broaching, in terms of geometrical accuracy, burr formation, chatter marks and 
surface anomalies, and the output signals from multiple sensors: AE, vibration, cutting force; 
the former proved efficient to detect small surface anomalies such as plucking, laps and 
smeared material was performed [63]. The sensitivity of a broad range of AE parameters to 
white layer, surface finish and tool wear in hard machining: AERMS, frequency and count rate 
have good correlation with white layer formation and may be used to monitor surface integrity 
factors was investigated [45]. AE signal analysis was applied to recognize grinding burns in 
cylindrical plunge grinding processes [46]. A method for in process surface roughness 
prediction based on the displacement signal of spindle motion was developed [64]. Using AE 
signals backed up by cutting force data, it was reported on process monitoring to detect 
surface anomalies when abusively broaching and milling difficult-to-machine aerospace 
materials [65][66]. It is reported the dynamics of broaching of complex part features: force 
and acceleration signal analysis revealed that damped coupled vibrations, resulting in tilted 
chatter surface marks, occur due to specific geometry of cutting edges that enable coupling of 
3D vibrations [67]. The detection of workpiece surface discontinuities, plucking, and 
smearing is attempted through an array of 3 AE sensors during multiple cutting edge 
machining [68][69]. The effect of cutting speed and feed rate on the quality features of drilled 
holes in carbon fiber composites (delamination, geometric errors, surface finish) by recording 
cutting forces with a dynamometer and inserting two K type thermocouples inside the drill is 
investigated [70]. 

1.3.6. Decision making support systems and paradigms 

The role of cognitive computing methods employed in the implementation of intelligent 
sensors and sensorial systems is fundamental in monitoring and control activities for modern 
untended manufacturing systems [71]. Decision-making were developed using a conspicuous 
number of schemes, techniques and paradigms to support functional systems to come to a 
conclusion on machining process conditions based on sensor signals data features.  

Neural Networks 

In computer science and other related fields,  artificial neural networks are 
computational models inspired by animals and humans central nervous systems (in particular 
the brain) that are capable of machine learning and pattern recognition. They are usually 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Central_nervous_system
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http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Pattern_recognition
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presented as systems of interconnected "neurons" that can compute values from inputs by 
feeding information through the network. It is distributed over several simple interconnected 
processing elements, called neurons or nodes, which operate in parallel [72]. A NN provides a 
mapping through which points in the input space are associated with corresponding points in 
an output space on the basis of designated attribute values, of which class membership can be 
one. Usually, a neural network is trained and adjusted so that a particular input gives a 
specific output. Comparison is done between the obtained output and the target. Based on this 
comparison, the neural network is adjusted. Several input/target pairs are required to train a 
neural network [73]. This method is known as supervised training. Other NN are trained in an 
unsupervised mode where only the input patterns are provided during training: the NN learns 
automatically to cluster them in groups with similar features. NN can capture domain 
knowledge from examples, do not archive knowledge in an explicit form such as rules or 
databases, can readily handle both continuous and discrete data, and have a good 
generalization capability [74][75].  

Supervised learning 

One of the supervised learning paradigms that has been very popular for their performance is 
the back propagation (BP) NN paradigm, which is a multiple-layered feed forward (FF) NN 
[72]. Conventional training of FF BP NN very soon leads to overtraining and deterioration of 
the NN response [50]. Furthermore, training of these NN depends very much on the initial 
weight values. A good way to obtain satisfactory results is to modify the weight system and to 
introduce random distortions to that weight system, which efficiently pushes the NN out of 
local minima of testing errors. An even more effective method is to apply temporary shifts in 
the weights, alternately negative and positive. 

This leads to a balance in the NN between training and testing errors and reduces notably the 
number of hidden nodes. Furthermore, different supervised NN approaches are also 
considered due to their use in decision making during monitoring of machining: probabilistic 
NN (PNN) [76] recurrent NN (RNN) [77][78][79], artificial cellular NN (ACNN) [80], fuzzy 
logic NN (FLNN) or neurofuzzy systems (NFS) combining NN and FL methods to integrate 
the benefits of both paradigms [81]. 

Unsupervised learning 

Opposingly, in unsupervised learning, only input stimuli are introduced to the NN which 
organizes itself internally so that each hidden processing element responds strongly to a 
different set or closely related group of stimuli. These sets of stimuli represent clusters in the 
input space which typically stand for distinct real concepts. Among unsupervised learning 
paradigms, the self-organising map (SOM) NN has been largely used for their performance 
[82]. The SOM NN creates a 2D feature map of input data so that order is preserved: if two 
input vectors are close, they will be mapped to processing elements that are close together in 
the 2D layer that represents the features or clusters of the input data. 

http://en.wikipedia.org/wiki/Artificial_neuron


 

24 

NN applications to sensor monitoring of machining 

NN have been used in several applications in sensor monitoring of machining processes. In 
[83], automated classification of broaching tool conditions utilizing cutting force data using 
PNN is described. A force sensor was used to monitor the cutting forces during the 
experiments. The experimental trials used short broaching tools to simulate the roughing stage 
of industrial broaching and were carried out in order to produce square profile slots while 
detecting cutting force signals. The used broaching tools had cutting teeth in different 
conditions: fresh, worn, chipped tooth, broken tooth in order to reproduce real industrial tool 
failures, where both tool wear and single tooth chipping or breakage may randomly occur. 
The push-off force Fy was selected as the most sensitive to tool conditions. Tool failure 
recognition was based on the extraction of a set of N characteristic points from the Fy plot by 
repetitive selection of local maxima to construct N-elements feature vectors (pattern vectors). 
Pattern vectors for different tool conditions were used as inputs to a PNN with 4 tool state 
classes: fresh, worn, chipped, broken. The success rate achieved was as high as 92%. A 
scheme of the tool failure recognition paradigm is shown in Figure 1.8.  

Several works, [84][85][86][87][88], use NN with simple architecture for the evaluation of 
tool wear in turning. Features from the wavelet representation of AE signals were related to 
flank wear [84]. Using RNN data processing, accurate flank wear estimations were obtained 
for the operating conditions adopted in the experimentation tests [85].  

Fractal dimensions were used as input features to a RNN for flank wear land estimation 
[86][87]. The development of this estimator is composed of four stages: (i) signal 
representation, (ii) signal separation, (iii) feature extraction, and (iv) state estimation (flank 
wear land). In stage (i), a compact Suboptimal Wavelet Packet Representation (SWPR) [85], 
superior to other wavelet-based signal representation schemes, was used. In stage (ii), a 
method for suppressing noise components from measured time series data, called Modified 
Wavelet Method (MWM) [88], was selected for signal separation due to its high performance.  
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Figure 1.8: Schematic of the process condition recognition system [3]. 

Combining cutting force and vibration signals, a 4D time series vector was formed composed 
of the extracted features, which are the capacity, correlation and information fractal 
dimensions.  A trained RNN was used to relate the extracted features to the flank wear land 
knowing that the trained RNN out-performed earlier tool wear estimators in terms of 
architecture simplicity and estimation accuracy. In able to be able to early detect undue tool 
wear and related machining process faults, this estimator may be used for real-time flank wear 
estimation at time epochs of few milliseconds, due to the high signal sampling rate [86]. 

Industrial needs were put under particular attention:  
(a) no reduction in machine stiffness;  
(b) compatibility with pallet and tool changers;  
(c) no restriction on tools, parts and cutting parameters;  
(d) robustness against sensing units failures;  
and (e) independence from cutting conditions and system dynamics.  

To evaluate the system capability for a broad application range, different test setups with 
diverse milling machines, toolings, sensor systems and work materials were used. A NN 
approach was used for decision making, comprising an ACNN [80], applied to acceleration 
signals and a fuzzy NN [81] for axial force signals. Good levels of NN accuracy were 
obtained with all single sensor signals.  

To realize the concept of multi-sensor chatter detection, the NN outputs for each single sensor 
signal were combined through:  
(i) linear combination of single sensor chatter indicators;  
(ii) a separate NN for multi-sensor classification;  
(iii) fuzzy logic classification (Sugeno fuzzy model);  
and (iv) statistical inference classification based on conditional probability, i.e. the probability 
that the system is unstable for a specific combination of single chatter indicators.  
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The accuracy of the first three approaches was very high: 95–96%. But residual accuracy in 
case of sensing unit malfunctions dropped notably: 50–75%. The behavior of the forth 
approach was quite different: accuracy was slightly lower, 94%, but insensitivity to 
malfunctions was extremely robust: 90–92%. Thus, the statistical inference multi-sensor 
chatter indicator  (example shown in Figure 1.9), combining NN data processing and 
statistical methods to achieve both high accuracy and high robustness, was assessed as the 
most suitable for industrial milling applications. A sensor monitoring method, based on 
spindle motor power sensing and NN processing, was evaluated for chip disposal state 
detection in drilling [89]. Spindle motor power measurements have the advantage of being 
easily realized during machining. From them, selected features such as variance/mean, mean 
absolute deviation, gradient, and event count were calculated to form input vectors to a FF BP 
NN for decision making on chip disposal state. The selected features were experimentally 
shown to be sensitive to changes in chip disposal state and relatively insensitive to changes in 
drilling conditions. So, the proposed monitoring system could effectively recognize chip 
disposal states over a wide range of drilling parameters, even if training was carried out under 
diverse process conditions. 

 

Figure 1.9: Outline of a multi-sensor chatter detection system [3]. 

Among the various sensing techniques, audible sound energy appears as one of the most 
practical ones since it can replace the traditional ability of the operator, based on his 
experience and senses (mainly vision and hearing), to determine the process state and react 
adequately to any machine performance decay [90]. This monitoring technology, however, 
has not been exhaustively investigated for process monitoring in machining, even though 
machine tool operators for real-time decision-making extensively use it. Audible sound 
energy generated by milling and band sawing of Al alloy and C steel under different process 
and tool conditions was analyzed in the frequency domain by a real-time spectrum analyzer to 
develop an automatic process monitoring system based on inexpensive sound sensors 
[91][92][93][94]. Signal analysis was carried out by suppressing the noise generated by the 
machine and the environment from the sound emitted during machining. Classification of 
audible sound SFs was performed by a NN approach that could successfully identify the 
process and tool conditions solely based on sound sensor monitoring. 
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1.3.7. Sensor fusion technology 

Sensor fusion concepts and paradigms 

When measuring a particular variable, a single sensory source for that variable may not be 
able to meet all the required performance specifications. A solution to this problem is sensor 
fusion that combines sensory data from disparate sources so that the resulting information is 
better than would be possible when these sources are used individually. The term ‘‘better’’ 
can mean more accurate, more complete, more dependable, more robust, or refer to the result 
of an emerging view, such as stereoscopic vision that calculates depth information by 
combining 2D images from two cameras at slightly different viewpoints. One can distinguish 
direct fusion, indirect fusion and fusion of the outputs of the former two. Direct fusion is the 
fusion of sensor data from a set of heterogeneous or homogeneous sensors, soft sensors, and 
history values of sensor data, while indirect fusion uses information sources like a priori 
knowledge about the environment and human input [95][96][97]. 

Reconfigurable monitoring system for sensor fusion research 

Sensor fusion for machining process monitoring has been extensively investigated  
[98][99][100][101][102] within a multi-annual project aiming at the implementation of a 
reconfigurable multisensory monitoring system (Figure 1.10), endowed with cutting force, 
vibration, AE, motor current, audible sound and optical sensors, for application to diverse 
machining processes (orthogonal cutting, turning, milling, drilling, and broaching), work 
materials (steels, composite materials, Ti alloys, Ni alloys, Ni–Ti alloys) and monitoring 
scopes (tool wear, chip form, process conditions, work material state, and machinability 
assessment). Sensor signal characterization is based on frequency domain analysis, 
accomplishing sensor signal spectral estimation through a parametric method that allows for 
feature extraction from the signal frequency content [103]. In this procedure, the signal 
spectrum is assumed to take on a specific functional form, the parameters of which are 
unknown. The spectral estimation problem, therefore, becomes one of estimating these 
unknown parameters of the spectrum model rather than the spectrum itself [104]. From each 
signal specimen (measurement vector), p features {a1, . . ., ap} (feature vector), characteristic 
of the spectrum model, are obtained through Linear Predictive Analysis (LPA) by applying 
Durbin’s algorithm [105][106]. 
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Figure 1.10: Reconfigurable multi-sensor monitoring system [3]. 

Feature vectors are used to construct input pattern vectors for pattern recognition paradigms 
[107]. If single signal specimens are utilized as inputs, the feature vector and pattern vector 
coincide. If signal specimens’ inputs come from two or more diverse sensor signals, input 
patterns are complex vectors integrating sensory data from diverse sources to realize the 
concept of sensor fusion. Three layers FF BP NN whose architecture is automatically 
configured as a function of the monitoring application carry out pattern recognition and 
decision making in the reconfigurable multi-sensor monitoring system. The constructed input 
pattern vectors are the input of the first NN layer that, accordingly, assumes a number of 
nodes equal to the number of input pattern vector elements. The hidden layer takes up a 
number of nodes as a function of the number of input nodes. The output layer contains one or 
more nodes, yielding coded values associated with the monitored process variables that need 
to be recognized. For NN learning, the leave-k-out method, particularly useful when dealing 
with relatively small training sets, is typically utilized [108]: one homogeneous group of k 
patterns, extracted from the training set, is held back in turn for testing and the rest of the 
patterns is used for training. The NN output is correct if the actual output, Oa, is equal to the 
desired output, Od, ±50% of the difference between the numerical codes for different process 
conditions.  

By setting error E = (Oa - Od), process conditions identification is correct if -0.5 ≤ E ≤ + 0.5; 
otherwise, a misclassification case occurs. The ratio of correct classifications over total 
training cases yields the NN success rate. 



 

29 

Sensor fusion application to machining process monitoring 

The NN pattern recognition paradigm of the reconfigurable multi-sensor monitoring system 
proved able to effectively realize the concept of sensor fusion for a broad range of machining 
process monitoring applications, yielding satisfactory results also under unfavorable situations 
by synergically combining the knowledge extracted from multiple sources of information. In 
[100][109][110] system was applied to process condition and machinability evaluation during 
cutting of difficult-to-machine materials such as Ti alloys and NiTi alloys, using cutting force 
and acceleration signals through both single signal and sensor fusion data analysis. 

Training sets with input pattern vectors of different size and nature were built:  

(a) signal specimen feature vectors of single cutting force or acceleration component: Fx, Fy, 
Fz, ax, ay, az;  
(b) integrated pattern vectors of the 3 cutting force or acceleration components: 
[F] = [Fx Fy Fz]; [A] = [ax ay az];  
(c) sensor fusion pattern vectors combining cutting force and acceleration pattern vectors: 
[S] = [F A] = [Fx Fy Fz ax ay az].  

The NN outputs were coded values to evaluate process condition and machinability. Results 
showed that the use of single component signal data as pattern inputs provided acceptable 
accuracy: 78–85%. If the integrated 3 acceleration or 3 cutting force components signal data 
are used as inputs, accuracy improves notably: 92–97%. By applying sensor fusion 
technology to fully combine information from cutting force and acceleration signal data, a 
very high accuracy is obtained: 99–100%. 

Sensor monitoring during cutting of plastic matrix fiber reinforce composites was performed 
for consistent and reliable identification of tool state [99]. AE and cutting force signals were 
subjected to the NN based sensor fusion paradigm. The superior classification results found 
by merging cutting force and AE data stressed sensor fusion aptitude for data analysis 
enhancement and decision making reinforcement [52][111]. 

It is worth noting that the above results were achieved via sensor fusion of multimodal data 
which is far less common than fusion of data from the same sensor type. This highlights the 
NN ability to efficiently realize the concept of sensor fusion as well as to deal with incomplete 
or noisy data sets, yielding satisfactory results also under adverse situations by synergically 
combining knowledge extracted from multiple sources of information. The combination of a 
direct sensor (vision) and an indirect sensor (force) is proposed to create an intelligent 
integrated TCM system for online monitoring of tool wear and breakage in milling, using the 
complementary strengths of the two types of sensors [112]. For tool flank wear, images of the 
tool are captured and processed in-cycle using successive moving-image analysis. Two 
features of the cutting force, which closely indicate flank wear, are extracted in-process and 
appropriately preprocessed. A SOM network is trained in a batch mode after each cutting 
pass, using the two features from the cutting force, and measured wear values obtained by 
interpolating the vision-based measurements. The trained SOM network is applied to the 
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succeeding machining pass to estimate the flank wear in-process. The in-cycle and in-process 
procedures are employed alternatively for the online monitoring of flank wear. To detect tool 
breakage, two time domain features from cutting force are used, and their thresholds are 
determined dynamically. Again, vision is used to verify any breakage identified in-process 
through cutting force monitoring. Experimental results show that this sensor fusion scheme is 
feasible and effective to implement online TCM in milling and is independent of cutting 
conditions [3]. 
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2. Conventional and advanced signal processing and feature extraction 
2.1. Conventional feature extraction 

The conventional features to be extracted from each dataset are statistical features [113], 
which are: 

- Mean: the arithmetical average which is the central value of a discrete set of numbers; 

- Variance: the measure of how far a set of numbers is spread out; 

- Skewness: the measure of the asymmetry of the probability distribution of a real-
valued random variable about its mean; 

- Kurtosis: measure of the "peakness" of the probability distribution of a real-
valued random variable; 

- Energy: logarithmic energy of the distribution of a discrete data set. 

From every acquired data signal, the mean, variance, skewness, kurtosis, and energy values 
are calculated.  

This conventional feature extraction procedure is done with the help of Matlab ®.  

clear workspace 
 
m=mean(detected_signal); 
v=var(detected_signal); 
s=skew(detected_signal); 
k=kurt(detected_signal); 
e=energy(detected_signal); 
 
save m, v, s, k, e; 
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2.2. Wavelet packet transform 

2.2.1 Generalities 

What are wavelets? 

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and then 
decreases back to zero. It can typically be visualized as a "brief oscillation" like one might see 
recorded by a seismograph or heart monitor. Generally, wavelets are purposefully crafted to 
have specific properties that make them useful for signal processing [114]. Wavelets can be 
combined, using a "reverse, shift, multiply and integrate" technique called convolution, with 
portions of a known signal to extract information from the unknown signal [115]. They are 
mathematical functions that cut up data into different frequency components, and then study 
each component with a resolution matched to its scale [116]. In wavelet analysis, a ‘mother 
wavelet’ is chosen from a set of standard wavelets, and then this ‘mother wavelet’ is shifted 
and scaled in order to look like the original signal. Coefficients are used to scale and shift the 
mother wavelet and are capable to relate the mother wavelet with the original signal. A useful 
reference explaining wavelets, the different types of wavelet transforms and their uses is the 
wavelet toolbox manual of MATLAB ® [116]. 

Scaling 

Scaling a wavelet simply means stretching or compressing it. The scale factor is often denoted 
by a. Taking sinusoids as an example, the effect of the scale factor is shown below in Figure 
2.1. 

 

Figure 2.1: Effect of the scale factor on sinusoids. 

The scale factor works exactly the same with wavelets as shown in Figure 2.2. The smaller the 
scale factor, the more “compressed” the wavelet. 

 

Figure 2.2: Effect of the scale factor on wavelets. 

http://en.wikipedia.org/wiki/Wave
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http://en.wikipedia.org/wiki/Heart_monitor
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Shifting 

Shifting a wavelet simply means delaying (or hastening) its onset. Mathematically, delaying a 
function ( )f t  by k is represented by ( )f t k− . Figure 2.3 illustrates a wavelet function as well 
as the same function delayed by a certain value k. 

 

Figure 2.3: Wavelet function and its corresponding shifted wavelet function. 

Scale and frequency 

The higher scales correspond to the most “stretched” wavelets. The more stretched the 
wavelet, the longer the portion of the signal with which it is being compared, and thus the 
coarser the signal features being measured by the wavelet coefficients as shown in Figure 2.4. 

 

Figure 2.4: Comparison between a low and high scale wavelet of the same signal. 

There is a correspondence between wavelet scales and frequency as revealed by wavelet 
analysis: 

• Low scale a → Compressed wavelet → Rapidly changing details → High frequency ω. 

• High scale a → Stretched wavelet → Slowly changing, coarse features → Low frequency ω. 

What is wavelet analysis? 

Wavelet analysis or wavelet transform represents a windowing technique with variable-sized 
regions. Wavelet transform allows the use of long time intervals where we want more precise 
low frequency information, and shorter regions where we want high frequency information. 
One major advantage of wavelets is the ability to perform local analysis, i.e., to analyze a 
localized area of a larger signal. 
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Below is an example. A sinusoidal signal with a very small, barely visible discontinuity is 
considered (Figure 2.5). Such a signal easily could be generated in the real world, perhaps by 
a power fluctuation or a noisy switch. 

 
Figure 2.5: Sinusoid with a small discontinuity. 

A plot of the Fourier coefficients of this signal shows nothing particularly interesting: a flat 
spectrum with two peaks representing a single frequency. However, a plot of wavelet 
coefficients clearly shows the exact location in time of the discontinuity (Figure 2.6). 

 
Figure 2.6: Comparison between the plot of the Fourier and Wavelet coefficients of a sinusoid with a small 

discontinuity.  

Wavelet analysis is capable of revealing aspects of data that other signal analysis techniques 
miss such as trends, breakdown points, discontinuities in higher derivatives, and self-
similarity. Furthermore, wavelet analysis can often compress or de-noise a signal without 
appreciable degradation. 

The Continuous Wavelet Transform 

The continuous wavelet transform (CWT) is defined as the sum over all time of the signal 
multiplied by scaled, shifted versions of the wavelet function, ψ: 

( , ) ( ) ( , , )C scale position f t scale position t dtψ
∞

−∞

= ∫  

The result of the CWT is a matrix of wavelet coefficients, C, which are a function of scale and 
position. An example is shown in Figure 2.7.  
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Figure 2.7: Wavelet transform of a given signal. 

The Discrete Wavelet Transform 

Calculating wavelet coefficients at every possible scale is a fair amount of work, and it 
generates an awful lot of data. Choosing only a subset of scales and positions at which to 
make our calculations is called the discrete wavelet transform (DWT).  

One-stage filtering 

This very practical filtering algorithm yields a fast wavelet transform — a box into which a 
signal passes, and out of which wavelet coefficients quickly emerge (Figure 2.8). 

 

Figure 2.8: One-stage discrete Wavelet transform. 

The original signal, S, passes through two complementary filters and emerges as two signals. 

Unfortunately, if this operation is performed on a real digital signal, the obtained data is twice 
as much as the original one. To solve this problem, the notion of downsampling is introduced. 
This simply means throwing away every second data point.  

Multiple-stage filtering 

The decomposition process can be iterated, with successive approximations being 
decomposed in turn, so that one signal is broken down into many lower-resolution 
components. This is called the wavelet decomposition tree (shown in Figure 2.9). 
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Figure 2.9: Wavelet decomposition tree. 

An Introduction to the Wavelet Families 

The wavelet analysis procedure is to adopt a wavelet prototype function, called an analyzing 
wavelet or mother wavelet [117]. Several families of wavelets have proven to be useful [116].  

Haar 

Any discussion of wavelets begins with Haar, t first and simplest. Haar is discontinuous, and 
resembles a step function (Figure 2.10). It represents the same wavelet as Daubechies db1. 

 
Figure 2.10: Haar wavelet. 

Daubechies 

The names of the Daubechies family wavelets are written dbN, where N is the order, and db 
the “surname” of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar. 
Figure 2.11 illustrates the next nine members of the Daubechies family. 

 
Figure 2.11: Daubechies wavelet family. 
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Coiflets 

The wavelet function has 2N moments equal to 0 and the scaling function has 2N-1 moments 
equal to 0. The two functions have a support of length 6N-1. The family of coiflets is shown 
in Figure 2.12. 

 
Figure 2.12: Coiflets wavelet family. 

Symlets 

The symlets, shown in Figure 2.13 are nearly symmetrical wavelets proposed by Daubechies 
as modifications to the db family. The properties of the two wavelet families are similar. 

 
Figure 2.13: Symlets wavelet family. 

Biorthogonal 

Figure 2.14 illustrates the biorthogonal family of wavelets. This family of wavelets exhibits 
the property of linear phase, which is needed for signal and image reconstruction. By using 
two wavelets, one for decomposition and the other for reconstruction instead of the same 
single one, interesting properties are derived. 
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Figure 2.14: Biorthogonal family of wavelets. 

Morlet 

This wavelet has no scaling function, but is explicit. It is shown in Figure 2.15.  

 
Figure 2.15: Morlet wavelet. 
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Mexican Hat 

This wavelet has no scaling function and is derived from a function that is proportional to the 
second derivative function of the Gaussian probability density function. It is shown in Figure 
2.16.  

 
Figure 2.16: Mexican hat wavelet . 

Meyer 

The Meyer wavelet and scaling function are defined in the frequency domain. This wavelet is 
illustrated in Figure 2.17.  

 
Figure 2.17: Meyer wavelet. 
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2.2.2 Wavelet packet decomposition 

The wavelet packet decomposition method is a generalization of wavelet decomposition that 
offers a richer range of possibilities for signal analysis [116]. The Wavelet packet 
decomposition extends the discrete wavelet transform in a way that each level i consists of 
boxes, generated by a tree of low pass and high pass operations [118]. The wavelet transform 
is applied to low pass results only which is not the case of wavelet packet decomposition, 
which is applied to both low pass and high pass filters. In other words, the only difference 
between wavelet packet decomposition and the discrete wavelet transform is that in addition 
to the decomposition of the wavelet approximation component at each level, the wavelet 
detail component is also decomposed to obtain its own approximation and detail components 
[119].  

The wavelet coefficients are obtained from the following equations [118]:  
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where:  
b: signal packet     i: decomposition level 
j: number of coefficients in given packet  n: decomposition depth 
G: low pass filter     H: high pass filter 
*: denotes a convolution operation 

In wavelet packet decomposition, a signal is split into an approximation (A) and a detail (D). 
The approximation is, then, itself split into a second-level approximation and detail, and the 
process is repeated. For an n-level decomposition, there are n+1 possible ways to decompose 
or encode the signal. This n-level decomposition is illustrated in the wavelet tree shown in 
Figure 2.18 below [116].  

 
Figure 2.18: 3rd level decomposition wavelet tree [116]. 
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The original signal can be represented as the summation of the wavelet packets. For instance, 
wavelet packet decomposition allows the signal S to be represented as A1 + AAD3 + DAD3 + 
DD2. This is an example of a representation that is not possible with ordinary wavelet analysis 
[116]. 

Compared to other types of wavelet transforms, wavelet packet decomposition gives more 
flexibility. Instead of zooming in on lower and lower frequencies, it allows focusing on any 
part of the time-frequency domain. The frequency increases going from left to right in the 
wavelet tree [115].  

Each component in this wavelet packet tree can be viewed as a filtered component with a 
bandwidth of a filter decreasing with increasing level of decomposition and the whole tree can 
be viewed as a filter bank. At the top of the tree, the time resolution of the wavelet packet 
components is good but at an expense of poor frequency resolution whereas at the bottom 
with the use of wavelet packet analysis, the frequency resolution of the decomposed 
component with high frequency content can be increased. As a result, the wavelet packet 
decomposition provides better control of frequency resolution for the decomposition of the 
signal [120].  

2.2.3 Wavelet packet transform feature extraction   

The objective behind the applying the wavelet packet decomposition is obtaining 
characteristic features that were later on used for decision-making. The procedure described in 
this section summarizes the passageway from the detected sensor signals to reach the 
characteristic features [2]. An example shown below using the detected signals of the cutting 
force in the x-direction, Fx.  

The starting point is setting up the Fx sensorial data table containing the n valid cutting test Fx 
signals (columns) composed of j samplings (rows) (Figure 2.19). In this case, the number of 
valid cutting tests, n, is 77 and the number of samplings, j, is 8192. 

 1 2 

… 

77 
Fx T0001353 T0001354 T0001304 
1 2.85 × 102 4.09 × 102 -6.11 
2 3.68 × 102 4.25 × 102 6.11 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
8192 3.78 × 102 4.43 ×102 6.04 × 102 

Figure 2.19: Fx sensorial data table. 

The wavelet packet decomposition A was performed on the Fx signals to obtain the A packets 
containing the corresponding 77 A packets (columns) composed of 4099 packet coefficients 
(rows) (Figure 2.20).  
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 1 2 

… 

77 
A packet of Fx T0001353 T0001354 T0001304 

1 488.52 600.94 24.57 
2 545.05 599.12 -3.24 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
4099 525.36 625.36 791.07 

Figure 2.20: A packet coefficients table. 

For each A packet, the standard deviation of the packet coefficients was calculated and 
reported as row vector under the A packets table (Figure 2.21).  

Std. Dev. (σ) 
Row Vector 

29.03 50.75 … 147.61 

Figure 2.21: Standard deviation (σ) row vector. 

This row vector was transposed into a column vector representing the 77-elements standard 
deviation wavelet feature vector σ[A]Fx (Figure 2.22). 

 σ[A] Fx 
1 29.03 
2 50.75 
. 
. 
. 

. 

. 

. 
77 147.61 

Figure 2.22: σ[A]Fx wavelet feature vector.  

2.2.4 Matlab procedure 

It is important to know how to perform a wavelet transform using the software Matlab ®. The 
procedure will go through: 

- Loading a signal 
- Performing the wavelet packet transform analysis 
- De-noising and compressing using the wavelet packet  
- Showing and exporting statistics, histograms, coefficients… for later use 

Loading signal 

The signal is usually stored in a text, excel … file. The first step is to import the signal and 
store in the workspace of Matlab® for later processing. The table shows the Matlab® 
functions that can be used in order to import and load the signals. 
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importdata Imports data from a file outside Matlab and stores in the workspace 

xlsread Reads and imports data from an excel file 

example: 

F1a1v1a=importdata('C:\...\Text file data\f0_08\F1a1v1a.txt'); 

The above statement imports the data from the text file F1a1v1a.txt and stores in the variable 
F1a1v1a in Matlab® workspace so it can be used later on. Note that, in many cases the matrix 
is not one-dimensional. In wavelet transformation, one dimension is studied at a time. So, it is 
necessary to make sure that only one dimension is analyzed and transformed at a time. The 
matrix can be separated into several one-dimensional matrices. 

Performing a wavelet packet analysis 

Now that signal is loaded to workspace, the wavelet packet analysis can be performed. Below 
is a table showing all the useful functions in wavelet packet analysis. 

wpdec Full decomposition of the signal 

wpcoef Extracts the coefficients of the wavelet packet at a specific decomposition 

example: 

wpt1 = wpdec(F1a1v1a',4,'db2'); 
cfs1 = wpcoef(wpt1,[1 0]); 

The above statement decomposes F1a1v1a using the db2 as a mother wavelet up to the fourth 
level. The wavelet decomposition is stored in wpt1. Then, the wavelet coefficients of the 
packet (1, 0) are calculated using the wpcoef function and are stored in cfs1 for later use. 

Showing and exporting statistics, histograms, coefficients… for later use 

This last stage can be summarized by plotting the needed information as well as exporting the 
required data into a file for later use. The functions usually used are listed in table below. 

plot Plots the required matrix 

xlswrite Writes the data, information… to a specific excel file 
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example: 

plot(cfs1); 
s1=std(cfs1); 
v1= var(cfs1); 

After this step, the coefficients or other data can be stored for later use or any other functions 
can be applied on the coefficient matrix as any other matrix. The standard deviation, variance, 
moment of 3rd and 4th degree, and energy can be calculated. It depends on the application and 
the study to be accomplished. 
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3. Knowledge based decision making 
3.1. Neural network based pattern recognition 

What are neural networks?  

Neural networks are a type of artificial intelligence that attempts to imitate the way the human 
brain functions [121]. They are computational models and are usually presented as systems of 
interconnected "neurons" that can compute values from inputs by feeding information through 
the network [122]. 

Examining closely the central nervous system, it has inspired artificial neural networks where 
simple artificial nodes, called neurons, are connected together in a form of a network and their 
function mimics how a biological neural network functions [123].  

The connection between the neurons is considered an adaptive weight that is adapted 
according to the function of each neuron. These weights can be defined as numerical 
parameters that are tuned by a learning algorithm [124]. Similar to biological neural networks, 
artificial neural networks perform functions collectively and act in parallel units [125].  

Neural networks have been used to solve a wide variety of problems that are difficult to solve 
using ordinary problem solving methods such as rule-based programming. Some of the fields 
where neural networks are used are: sales forecasting, industrial process control, data 
validation, risk management, customer research, and target marketing. 

Neural networks are composed of three layers containing nodes that are connected to each 
other. These three layers are: input layer, hidden layer, and the output layer. The input layer is 
made of a number of nodes equal to the number of elements in the input data matrix. The 
hidden layer is composed of a number of nodes equal to a multiple of the nodes of the input 
data matrix, i.e. if the input layer has 4 nodes, the hidden layer can have 8, 12, … nodes. The 
number of nodes in the output layer depends on the target output. 

There are three basic learning paradigms, each corresponding to a particular abstract learning 
task. 

Supervised learning 

Supervised learning is the machine-learning task of inferring a function from labeled training 
data, which is a set of training examples [126]. Each training example is a pair consisting of 
an input object and a desired output value. A supervised learning algorithm analyzes the 
training data and deduces a function, which can be used for mapping new examples. In 
optimal cases, the algorithm labels correctly unknown cases. This is done in a "reasonable" 
way. This is often referred as concept learning in human and animal psychology. 

Unsupervised learning 

Unsupervised learning is the machine-learning task of trying to find a function, the hidden 
structure of data without known output [127]. Having no output designated to the training 
data, there can be no error to evaluate a potential solution. This is what distinguishes 
supervised learning from unsupervised learning.  

http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Machine_learning
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Reinforcement learning  

Behaviorist psychology has inspired reinforcement learning, which concerned with 
how agents take action in an environment in such a way to maximize some notion of 
cumulative reward [128]. This type of problem is also studied in many other disciplines, such 
as game theory, control theory, operations research, and genetic algorithms.  

What is pattern recognition? 

In machine learning, pattern recognition is the process of labeling a given input value. An 
example of pattern recognition is classification, which attempts to assign each input value to 
one of a given set of classes [129].  

The general aim of pattern recognition is to provide a reasonable answer for all possible inputs 
and to match to the "most likely" inputs, taking into account their statistical variation [130]. 
This is not to be confused with pattern matching algorithms, which look for exact matches in 
the input with pre-existing patterns.  

Pattern recognition using neural networks 

3-Layers feedforward backpropagation neural networks were used for pattern recognition 
purposes. 

The term “feedforward” describes how the neural network works and recalls patterns. In this 
type of neural networks, the neurons are only connected foreword, i.e. each layer of the neural 
network is connected to the next layer and not the preceding layer.  An example to explain the 
concept are the nodes of the hidden layer, which are connected to the output layer but not to 
the input layer, which is in position before the hidden layer [131]. 

The term “backpropagation” describes the training procedure of the neural network. It is a 
form of supervised training of the network. It must be provided with an equal number of 
sample inputs and anticipated outputs. The predicted outputs are compared with the actual 
outputs for a given input. Through this comparison, an error is calculated. Using this 
calculated error, the weights of the various layers of the neural networks are adjusted 
backwards from the output layer to the input layer [131]. 

Often, the backpropagation and feedforward algorithms are used together. The feedforward 
neural network begins with the input layer, which may be connected to the hidden layer or 
directly to the output layer. If connected to a hidden layer, the hidden layer can then be 
connected to another hidden layer or directly to the output layer. There can be any number of 
hidden layers, as long as there is at least one hidden layer or output layer provided. In 
common use, most neural networks will have one hidden layer, and it is very rare for a neural 
network to have more than two hidden layers [131]. 

The input layer represents the conditions for which the neural network is trained. The input 
layer presents a pattern from the external environment to the neural network. Once a pattern is 
identified in the input layer, the output layer will yield another pattern. Every input neuron 

http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Classification_(machine_learning)
http://en.wikipedia.org/wiki/Pattern_matching
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should represent some independent variable that has an influence over the output of the neural 
network [131]. 

The output layer of the neural network is what actually presents a pattern to the external 
environment influenced by the input layer. The pattern presented by the output layer can be 
directly traced back to the input layer. The number of output neurons should be directly 
related to the type of decision-making that the neural network is to perform. 

To determine the number of neurons to use in the output layer, the intended use of the neural 
network should be considered. If the neural network is to be used to classify items into 
groups, then it is often preferable to have one output neuron for each group that input items 
are to be assigned into [131]. 

Figure 3.1 illustrates a typical feedforward neural network with a single hidden layer. 

 

Figure 3.1: A typical feedforward neural network (single hidden layer) [133]. 

3.2. Training algorithm: Levenberg-Marquardt (LM) 

The Levenberg-Marquardt (LM) algorithm is one of the most used algorithm in training 
neural networks. It is an iterative technique that locates the minimum of a multivariate 
function that is expressed as the sum of squares of non-linear real-valued functions [134, 135]. 
It has become a standard technique for non-linear least-squares problems [136], widely 
adopted in a broad spectrum of disciplines.  
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LM can be thought of as a combination of steepest descent and the Gauss-Newton method. 
When the current solution is far from the correct one, the algorithm behaves like a steepest 
descent method: slow, but guaranteed to converge. When the current solution is close to the 
correct solution, it becomes a Gauss-Newton method [137].  

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm 0 was designed to 
approach second-order training speed without having to compute the Hessian matrix. When 
the performance function has the form of a sum of squares (as is typical in training 
feedforward networks), then the Hessian matrix can be approximated as 

TH J J=  

and the gradient can be computed as 

Tg J e=  

Where J is the Jacobian matrix that contains first derivatives of the network errors with 
respect to the weights and biases, and e is a vector of network errors. The Jacobian matrix can 
be computed through a standard backpropagation technique that is much less complex than 
computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the 
following Newton-like update: 

1

1
T T

k kx x J J I J eµ
−

+  = − +   

When the scalar µ is zero, this is just Newton's method, using the approximate Hessian 
matrix. When µ is large, this becomes gradient descent with a small step size. Newton's 
method is faster and more accurate near an error minimum, so the aim is to shift toward 
Newton's method as quickly as possible. Thus, µ is decreased after each successful step 
(reduction in performance function) and is increased only when a tentative step would 
increase the performance function. In this way, the performance function is always reduced at 
each iteration of the algorithm [139]. 
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3.3. Matlab Procedure 

Input 

The input matrix dimension is n × m, where: 

- n rows, representing the number of samplings; 
- m columns, representing the number of extracted signal features; 

Target 

The target vector dimensions n × 1. The target elements are zeroes and ones in function of the 
purposes. 

Output  

Output represent the classification resulting from the neural network implementation, and it 
must be compared to the target in order to find out the success rate. 

Data division 

Validation and test data sets are each set to 15% of the original data. With these settings, the 
input vectors and target vectors will be randomly divided into three sets as follows: 

• Training set: 70% of the test cases are used for training. 
• Validation set: 15% of the tests cases are used to validate that the network is generalizing 

and to stop training before overfitting. 
• Testing set: the last 15% of the test cases are used as a completely independent test of 

network generalization. 

The process for inserting the input and target into the Neural Network and training it is shown 
in Figure 3.2. In 4th step of Figure 3.2, it is shown a table containing percentages. These 
percentages are the success rate obtained through training the neural network. The success 
rate (SR) is the percentage of correctly identified cases from the overall cases that the neural 
network achieved. There are 4 SRs, training SR, validation SR, testing SR, and the overall 
SR, which are respectively the SRs of the sample sets that constitute the whole dataset. 
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Figure 3.2: Neural network process using Matlab ®. 

The following MATLAB ® code is the built-in code of the function ‘NPRTool’ that 
MATLAB ® uses for training the neural network. It uses the Levenberg-Marquardt algorithm 
for training the neural network for pattern recognition.  

% Solve a Pattern Recognition Problem with a Neural Network 
% Script generated by NPRTOOL 
 
inputs = input'; %   input - input data 
targets = target'; %   target - target data 
 
% Create a Pattern Recognition Network 
hiddenLayerSize = 12; 
net = patternnet(hiddenLayerSize); 
  
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 
 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
% For help on training function 'trainlm' type: help trainlm 
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% For a list of all training functions type: help nntrain 
net.trainFcn = 'trainlm';  % Levenberg-Marquardt 
  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean squared error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = 
{'plotconfusion','plotperform','plottrainstate','ploterrhist', 
'plotregression', 'plotfit'}; 
 
% Train the Network 
[net,tr] = train(net,inputs,targets); 
  
% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs) 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = targets .* tr.trainMask{1}; 
valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,outputs) 
valPerformance = perform(net,valTargets,outputs) 
testPerformance = perform(net,testTargets,outputs) 
  
view(net) % View the Network 
 
%Plots 
figure, plotperform(tr) 
figure, plottrainstate(tr) 
figure, plotconfusion (targets,outputs) 
figure, ploterrhist (errors) 

The results of the neural networks computations are organized in confusion matrices.  

The confusion matrix shows the percentages of correct and incorrect classifications. Correct 
classifications are the green squares on the matrices diagonal. Incorrect classifications form 
the red squares [140]. 

In Figure 3.3 an example of confusion matrix is reported. The confusion matrix consists of a 
set of success rates (SR): the training SR, the validation SR, the testing SR, and the overall 
SR. 
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Figure 3.3: Confusion Matrix example. 
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4. Sensor monitoring applications 

Three applications of sensor monitoring of machining processes have been developed during 
the preparation of this PhD thesis work as summarized below. 

Chip form classification  

Chip form monitoring and recognition has been a major concern and of great interest for the 
industrial research community. The chip forms can be classified into two types: long and 
snarled chips which are the unfavorable form of chips and short chips which are the favorable 
forms of chips. A sensor monitoring approach has been developed for the identification of 
favorable and unfavorable chip forms during the turning of AISI 1045 carbon steel. The 
research activities were carried out in the framework of a bi-lateral joint project between the 
University of Naples Federico II, Naples, Italy, and the University of Kentucky, KY, USA.  

Residual stress assessment 

Residual stress is the stress present in a workpiece in the absence of any external loading and 
represent a datum stress over which the service load stresses are subsequently superimposed. 
This type of stress can have a very significant effect on the fatigue life of the final 
components. It would be highly desirable to create an online method that can automatically 
detect the level of residual stress in the machined component during the machining process. 
An experimental campaign was carried out for the assessment of residual stress in turning of 
Inconel 718 under the framework of the European project ACCENT. 

Surface roughness assessment 

In some manufactured components, the surface has actually functional properties such as 
bearing or sealing, or to have high fluid retention capabilities. Therefore, the requirements of 
the surface define topographic features of the component. The third application is based on the 
assessment of the surface roughness in polishing of AISI 52100 steel. The experimental tests 
were carried out under the framework of the European project IFaCOM.  
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4.1. Chip form classification in turning of AISI 1045 carbon steel 

One of the outputs of traditional machining processes is given by the chip, which is 
considered a waste material. Being so, formed chips seem to be useless and of no importance. 
However, as a matter of fact, the chip formed is an important product of the machining 
process and can greatly affect the machining process as well as the quality of the machined 
product [141]. 

Chip form monitoring and recognition has been a major concern and of great interest for the 
industrial research community [3]. Chips can be classified into two general categories: 
favorable and unfavorable chip forms. The unfavorable chips are described as long and 
snarled chips. These unfavorable forms of chips tend to clog around the tool edge as well as 
the tool holder causing deterioration of the machined surface, blocking the cooling fluid, and 
may be harmful to the machine operator. As for the favorable chip forms, they are described 
as short, can be easily discarded, and do not hamper the machining process. 

It would be highly desirable to develop methods capable of automatically detecting and 
classifying chips as favorable or unfavorable on an on-line basis during the machining process 
[3][142]. 

With the aim of implementing a sensor monitoring approach to chip form identification, 
experimental machining tests were conducted within a CIRP collaborative work [5] in order to 
detect cutting force signals from turning tests performed on 1045 carbon steel under variable 
cutting conditions. 

The obtained cutting force signals were subjected to diverse advanced signal processing 
methods [54][143], including one approach based on wavelet packet transform [53][144]. This 
signal processing technique has been used in several different fields such as data compression, 
fingerprint verification, finance, speech recognition, DNA analysis, etc. [145]. It has also been 
used for research studies on machining process and tool condition monitoring [146]. 

The wavelet packet transform provides for the representation of the original time domain 
signal in a time-frequency domain [147]. When the wavelet packet transform is applied to a 
signal, the output is a “tree” of decomposition packets where each packet is composed of a 
series of coefficients. These coefficients are statistically processed to obtain characteristic 
signal features (standard deviation, variance, energy, etc.) that can be used for pattern 
recognition procedures [145][147]. 
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4.1.1 Generalities: chip formation 

Chip formation is part of the process of cutting materials by mechanical means using tools 
such as saws, lathes, and milling cutters. An understanding of the theory and engineering of 
this formation is an important part of the development of such machines and their cutting 
tools. 

The formal study of chip formation was encouraged with the increase in the use of faster and 
more powerful cutting machines, particularly for metal cutting using the new high speed 
steel cutters.  

Theoretical chip formation: orthogonal cutting model 

Chip formation is usually described according to the orthogonal cutting model [148] shown in 
Figure 4.1. Although an actual machining process is three-dimensional, the orthogonal model 
has only two dimensions that play active roles in the analysis. The three-dimensional 
machining process is reduced into the a two-dimensional model for simplification purposes.  

 

Figure 4.1: Orthogonal cutting: (a) as a three-dimensional process, and (b) how it reduces to two 
dimensions in the side view [148]. 

By definition, orthogonal cutting uses a wedge-shaped tool whose cutting edge is 
perpendicular to the direction of cutting speed. As the tool is forced into the material, the chip 
is formed by shear deformation along the plane which is called shear plane, oriented at an 
angle f with the surface of the workpiece. Only at the sharp cutting edge of the tool failure of 
the material occurs, resulting in the separation of the chip from the parent material. Along the 
shear plane, where the bulk of the mechanical energy is consumed in machining, the material 
is plastically deformed. 

The tool in orthogonal cutting has only two elements of geometry: the rake and clearance 
angles. The rake angle, α, determines the direction in which the chip flows as it is being 
formed. The clearance angle provides a clearance between the tool flank and the newly 
generated work surface. During the cutting process, the cutting edge of the tool is positioned 
below the original work surface. This is the thickness of the chip prior to chip formation, 
denominated by to. As the chip is formed along the shear plane, its thickness increases to tc.  

 

http://en.wikipedia.org/wiki/Saw
http://en.wikipedia.org/wiki/Lathe
http://en.wikipedia.org/wiki/Milling_machine
http://en.wikipedia.org/wiki/High_speed_steel
http://en.wikipedia.org/wiki/High_speed_steel
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The ratio of to to tc is called the chip thickness r : 

o

c

tr
t

=  

Since the chip thickness after cutting is always greater than the corresponding thickness 
before cutting, the chip ratio will always be less than 1.  

In addition to to, the orthogonal cut has a width dimension w, as shown in Figure 4.1(a), even 
though that this dimension does not contribute much to the analysis in orthogonal cutting.  

The geometry of the orthogonal cutting model allows us to establish an important relationship 
between the chip thickness ratio, the rake angle, and the shear plane angle.  

Let ls be the length of the shear plane. We can make the substitutions: to=ls sinφ , and  
tc=ls cos(φ  - α). Thus, 

sin sin
cos( ) cos( )

s

s

lr
l

φ φ
φ α φ α

= =
− −

 

This can be rearranged to determine f as follows: 

costan
1 sin

r
r

αφ
α

=
−

 

The shear strain that occurs along the shear plane can be estimated by examining Figure 4.2(a) 
shows shear deformation approximated by a series of parallel plates sliding against one 
another to form the chip. Consistent with our definition of shear strain, each plate experiences 
the shear strain shown in Figure 4.2(b).  

 
Figure 4.2: Shear strain during chip formation: (a) chip formation depicted as a series of parallel plates 

sliding relative to each other; (b) one of the plates isolated to illustrate the definition of shear strain based 
on this parallel plate model; and (c) shear strain triangle [148]. 
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Referring to Figure 4.2(c), this can be expressed as: 

AC AD DC
BD BD

γ +
= =  

which can be reduced to the following definition of shear strain in metal cutting: 

tan( ) cotγ φ α φ= − +  

Actual chip formation 

There are differences between the orthogonal model and an actual machining model. First, the 
shear deformation process does not occur along a plane, but within a zone. If shearing were to 
take place across a plane of zero thickness, it would imply that the shearing action must occur 
instantaneously as it passes through the plane, rather than over some finite (although brief) 
time period. For the material to behave in a realistic way, the shear deformation must occur 
within a thin shear zone. This more realistic model of the shear deformation process in 
machining is illustrated in Figure 4.3. Metal-cutting experiments have indicated that the 
thickness of the shear zone is only a few thousandths of an inch. Since the shear zone is so 
thin, there is not a great loss of accuracy in most cases by referring to it as a plane. 

 
Figure 4.3: More realistic view of chip formation, showing shear zone rather than shear plane. Also shown 

is the secondary shear zone resulting from tool–chip friction [148]. 

Second, in addition to shear deformation that occurs in the shear zone, another shearing action 
occurs in the chip after it has been formed. This additional shear is referred to as secondary 
shear to distinguish it from primary shear. Secondary shear results from friction between the 
chip and the tool as the chip slides along the rake face of the tool. Its effect increases with 
increased friction between the tool and chip. The primary and secondary shear zones can be 
seen in Figure 4.3. Third, formation of the chip depends on the type of material being 
machined and the cutting conditions of the operation. Four basic types of chip can be 
distinguished, illustrated in Figure 4.4. 
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Figure 4.4: Four types of chip formation in metal cutting: (a) discontinuous, (b) continuous, (c) continuous 

with built-up edge, (d) serrated [148]. 

- Discontinuous chip (type a): When relatively brittle materials (e.g., cast irons) are 
machined at low cutting speeds, the chips often form into separate segments 
(sometimes the segments are loosely attached). This tends to impart an irregular 
texture to the machined surface. High tool–chip friction and large feed and depth of 
cut promote the formation of this chip type. 

- Continuous chip (type b): When ductile work materials are cut at high speeds and 
relatively small feeds and depths, long continuous chips are formed. A good surface 
finish typically results when this chip type is formed. A sharp cutting edge on the tool 
and low tool–chip friction encourage the formation of continuous chips. Long, 
continuous chips (as in turning) can cause problems with regard to chip disposal 
and/or tangling about the tool. To solve these problems, turning tools are often 
equipped with chip breakers. 

- Continuous chip with built-up edge (type c): When machining ductile materials at low-
to medium cutting speeds, friction between tool and chip tends to cause portions of the 
work material to adhere to the rake face of the tool near the cutting edge. This 
formation is called a built-up edge (BUE). The formation of a BUE is cyclical; it 
forms and grows, then becomes unstable and breaks off. Much of the detached BUE is 
carried away with the chip, sometimes taking portions of the tool rake face with it, 
which reduces the life of the cutting tool. Portions of the detached BUE that are not 
carried off with the chip become imbedded in the newly created work surface, causing 
the surface to become rough. 

- Serrated chips (or shear-localized) (type d): These chips are semi-continuous in the 
sense that they possess a saw-tooth appearance that is produced by a cyclical chip 
formation of alternating high shear strain followed by low shear strain. This fourth 
type of chip is most closely associated with certain difficult-to-machine metals such as 
titanium alloys, nickel-base superalloys, and austenitic stainless steels when they are 
machined at higher cutting speeds. However, the phenomenon is also found with more 
common work metals (e.g., steels) when they are cut at high speeds [149]. 

 



 

59 

4.1.2 Chip form classification: ISO 3685, Annex G [150] 

The chip formed during a cutting process has characteristics, which are related to the work 
material, tool material, tool geometry, condition of the cutting edges, cutting edge position 
and cutting data and conditions.  

For any given set of conditions, the chip formation will remain unchanged unless one of the 
above mentioned factors changes. Observations of chip formation can therefore be a useful 
indicator when attempting to reproduce test conditions used in a previous test, as an indicator 
of changing conditions during a given tool-life test, to indicate varying stability in the cutting 
conditions, as an indicator of changing machinability of the work pieces or as an indicator of 
unexpected edge failure. The standard ISO 3685 classifies the types of chips according to their 
form. 

It is therefore essential to be able to report characteristics of chips and their form in a 
consistent manner. Table 4.1 can be used, together with information on chip cross-section and 
length, to define chips produced. The table also includes a numeric coding system for the 
more commonly observed chip types. 

The basic coding system is composed of two digits that relate to the basic chip characteristics, 
i.e. 2.2 is the code to denote a short tubular chip.  

A third digit can be added to designate either the direction in which the chip flows or the 
mode of chip breaking, e.g. 1.3.4 denotes a “snarled ribbon chip” which flows away from the 
work piece in a direction opposite to the direction of feed motion. Code 6.1.5 denotes a 
“connected arc chip” which breaks against the transient surface of the workpiece.  

Table 4.1: Chip Forms. 

1. Ribbon 
chips 

2. Tubular 
chips 

3. Spiral 
chips 

4. Washer-type 
helical chips 

5. Conical 
helical 
chips 

6. Arc chips 7. Elemental 
chips 

8. Needle 
chips 

1.1 Long 

 

2.1 Long 

 

3.1 Flat 

 

4.1 Long 

 

5.1 Long 

 

6.1 Connected 

 
 

 

1.2 Short 

 

2.2 Short 

 

3.2 Conical 

 

4.2 Short 

 

5.2 Short 

 

6.2 Loose 

 

  

1.3 Snarled 

 

2.3 Snarled 

 

 
4.3 Snarled 

 

5.3 Snarled 
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4.1.3 Experimental setup and procedure 

Machine Tool 

The machine utilized for the experimental campaign was a Mazak CNC turning lathe (Figure 
4.5).  

 
Figure 4.5: Mazak CNC turning lathe. 

Work material 

Longitudinal turning tests with cutting force signal detection were carried out on 1045 carbon 
steel bars for sensor monitoring based chip form recognition [52]. 

AISI 1045 carbon steel is a medium tensile steel supplied in the black hot rolled or normalized 
condition. It is characterized by good weldability, good machinability, and high strength and 
impact properties in either the normalized or hot rolled condition. 

Table 4.2: Typical analysis in percent. 

C:  0.42-0.45 

Fe: 98.51-98.98 

Mn: 0.60-0.90 

P: ≤ 0.04 

S: ≤ 0.05 
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Table 4.3: AISI 1045 carbon steel physical properties. 

Density:  7.87 g/cm3 

Melting point range: 1150 – 1280 º C 

Specific heat: 486 J/kg·K 

Average Coefficient of Thermal 
Expansion: 

13.0 μm/m·K 

Thermal Conductivity: 51.9 W/m-K 

Electrical Resistivity: 1620 n.m 

Curie Temperature: 751 ˚C 

Table 4.4: AISI 1045 carbon steel mechanical properties. 

At room temperature 

Ultimate tensile strength: 565 MPa 

Yield strength: 310 MPa 

Elongation in 50 mm: 16 % 

Elastic modulus (Tension): 200 GPa 

Hardness: 163 HRC 

Workpiece 

The experimental campaign was carried out by turning AISI 1045 carbon steel cylindrical 
shaft. No data on the dimensions of the shafts is available.  

Cutting tool 

The cutting tool used was a Kennametal carbide insert mounted on a standard Sandvik tool 
holder (Figure 4.6).  

 

Figure 4.6: Kennametal tool insert (model TNMG322P KC 850) mounted on a standard SANDVIK tool 
holder (MTGNR/L). 
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Experimental tests program 

A Kistler dynamometer was used to provide sensor signals for the measurement, in N, of the 
three components of the cutting force: Fx – feed force, Fy – radial force, and Fz – cutting force. 
The cutting force component signals were digitized at 2000 Hz for 4.1 seconds, making up a 
data sequence of 8192 samplings (example shown in Figure 4.7). 

 
Figure 4.7: Example of sensor signals text file of a cutting test T0001353. 2nd column represents Fx, 3rd 

column Fy, and 4th column Fz.  

Throughout the experimental campaign, the cutting parameters were varied as follows: 

- Cutting speed, vc = 150, 200, 250 m/min 

- Feed rate, f = 0.1, 0.2, 0.3, 0.35, 0.4, 0.5 mm/rev 

- Depth-of-cut, DoC = 1.0, 1.2, 1.3, 1.4, 1.5 mm 

By combining 3 cutting speeds, 6 feed rates and 5 depth-of-cut values, a total of 90 cutting 
conditions were used for sensor monitoring turning tests with generation of diverse chip 
forms. However, not all experimental tests provided usable cutting force signals due to errors 
in signal data transmission and storage.  

Figure 4.8 summarizes the typology of the chip forms generated during the corresponding 
turning tests. The boxes barred with an X identify the cutting conditions cases for which no 
viable cutting force signals were acquired. 
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All in all, 77 valid cutting tests with variable cutting conditions and diverse chip forms were 
considered for the purpose of this work (Figure 4.8). The generated chip forms were grouped 
into two classes of favorable or unfavorable chips and classified according to Annex G of the 
ISO 3685 standard [150] as follows (Table 4.5).  
 

            f 
 DoC 0.1 0.2 0.3 0.35 0.4 0.5 

1.0 T0001353 
1.3 

T0001354 
2.1  T0001356 

4.1 
T0001357 

4.1 
T0001358 

4.1 

1.2 T0001347 
1.3  T0001349 

6.1 
T0001350 

6.1 
T0001351 

6.1 
T0001352 

6.1 

1.3 T0001341 
1.3  T0001343 

6.1 
T0001344 

6.1 
T0001345 

6.2 
T0001346 

6.2 

1.4 T0001335 
1.3  T0001337 

6.1 
T0001338 

6.1 
T0001339 

6.1 
T0001340 

6.2 

1.5 T0001329 
1.3  T0001331 

6.1 
T0001332 

6.1 
T0001333 

6.1 
T0001334 

6.1 
(a) 

             f 
 DoC 0.1 0.2 0.3 0.35 0.4 0.5 

1.0 T0001384 
1.3 

T0001385 
4.1 

T0001386 
4.1 

T0001387 
4.1 

T0001388 
4.1 

T0001389 
4.2 

1.2 T0001378 
1.3 

T0001379 
4.1     

1.3 T0001372 
1.3 

T0001377 
4.1 

T0001373 
6.2 

T0001374 
6.2 

T0001375 
6.2 

T0001376 
6.2 

1.4 T0001366 
1.3 

T0001367 
4.1 

T0001368 
6.2 

T0001369 
6.2 

T0001370 
6.2 

T0001371 
6.2 

1.5 T0001360 
1.3 

T0001361 
4.1 

T0001362 
6.2 

T0001363 
6.2 

T0001364 
6.2 

T0001365 
6.2 

(b) 

            f 
 DoC 0.1 0.2 0.3 0.35 0.4 0.5 

1.0 T0001323 
1.3 

T0001324 
4.1 

T0001325 
4.2 

T0001326 
4.2 

T0001327 
4.2 

T0001328 
4.2 

1.2 T0001317 
1.3 

T0001318 
4.2  T0001320 

6.2 
T0001321 

6.2 
T0001322 

6.2 

1.3 T0001311 
1.3 

T0001312 
4.1  T0001314 

6.2 
T0001315 

6.2 
T0001316 

6.2 

1.4 T0001335 
1.3 

T0001306 
4.1 

T0001307 
6.2 

T0001308 
6.2 

T0001309 
6.2 

T0001310 
6.2 

1.5   T0001301 
6.2 

T0001302 
6.2 

T0001303 
6.2 

T0001304 
6.2 

(c) 

Figure 4.8: Chip forms obtained from different combinations of feed rate and depth-of-cut values for the 
three cutting speeds: (a) vc = 150 m/min; (b) vc = 200 m/min; (c) vc = 250 m/min. 
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Table 4.5: Generated chip forms classified per IS0 3685 standard. 

Unfavourable chip form Favourable chip form 

1.3 – Snarled Ribbon  

 

4.2 – Short Washer Type   

 
2.1 – Long Tubular   

 

6.1 – Connected Arc   

 
4.1 – Long Washer Type   

 

6.2 – Loose Arc   

 
 
4.1.4 Sensor signal data analysis 

Wavelet Packet Transform Feature Extraction 

The wavelet packet transform was used to process each of the three cutting force component 
signals: Fx, Fy, and Fz. The mother wavelet used was a Daubechies 4 (db4); the decomposition 
was performed up to the 4th level, generating thirty packets for each cutting force component 
[52]. For every obtained decomposition packet, five statistical features were calculated: 
standard deviation (σ), variance (σ2), third (σ3) moment, and fourth (σ4) moment, and energy 
(E = Σlog(xi)2). 

Thus, for each cutting test, 3 cutting force component signals × 30 decomposition packets × 5 
statistical features = 450 wavelet packet statistical features were obtained. Then, 450 wavelet 
packet statistical feature vectors for pattern recognition were constructed, composed of 77 
elements given by the values of one statistical feature for one decomposition packet and one 
cutting force component signal obtained from the 77 valid cutting tests. These 77-element 
vectors are called shortly “wavelet feature vectors” and each of their elements was associated 
to the chip form generated by the corresponding turning test.  

The starting point is the set up of the Fx sensorial data table containing the 77 valid cutting test 
Fx signals (columns) composed of 8192 samplings (rows). The wavelet packet decomposition 
A was performed on the Fx signals to obtain the A packets table containing the corresponding 
77 A packets (columns) composed of 4099 packet coefficients (rows). For each A packet, the 
standard deviation of the packet coefficients was calculated and reported as row vector under 
the A packets table. This row vector was transposed into a column vector representing the 77-
elements standard deviation wavelet feature vector σ[A]Fx for decomposition packet A of 
cutting force component signal Fx. This procedure is clearly explained an illustrated in section 
2.2.3. 
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Wavelet Packet Feature Vector Selection for Sensor Fusion Pattern Recognition 

Examining the constructed wavelet feature vectors, it can be noted that in all cases the 
elements for favorable or unfavorable chip forms in the same wavelet feature vector display 
an overlap of values, responsible for uncertainty in the chip form classification. Thus, the 
wavelet feature vectors were ranked according to the number of elements with overlapping 
values: the lower this number, the less the uncertainty, the higher the wavelet feature vector 
ranking. 

Figure 4.9 (a) shows the values of the 77-elements of wavelet feature vector σ2[DAA]Fx 
constructed with the variance of decomposition packet DAA of cutting force component 
signal Fx. An overlap of element values for unfavorable (“0” binary code) or favorable (“1” 
binary code) chip forms is clearly visible in the graph, allowing for the identification of 7 
cutting tests that generate uncertainty in the classification of chip form when using 
σ2[DAA]Fx: T0001356, T0001357, T0001358, T0001386, T0001388, T0001373, T0001301. 

In Figure 4.9 (b), the element values of wavelet feature vector σ2[DDD]Fx  made of the 
variance of decomposition packet DDD of cutting force component signal Fx are shown. In 
this case, the overlap of favorable/unfavorable chip form cases is verified for 7 cutting tests: 
T0001356, T0001357, T0001358, T0001385, T0001386, T0001379, T0001382. 

Figure 4.9 (c) reports the element values of wavelet feature vector E[AAAA]Fx composed of 
the energy of decomposition packet AAAA of cutting force component signal Fy, showing an 
overlap of favorable/ unfavorable chip form cases for 5 cutting tests: T0001387, T0001388, 
T0001373, T0001361, T0001324. 
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(a)                                                                          (b) 

 
 
 
 

 

     

                                                 (c)                                                                           (d) 
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                                            (e)                                                                        (f)      

 
 

     

                                              (g)                                                                     (h) 

Figure 4.9: Wavelet feature vector element values corresponding to unfavorable (“0” binary code) or 
favorable (“1” binary code) chip forms for the following selected wavelet feature vectors: (a) σ2[DAA]Fx, 
(b) σ3 [DAD , Fx], (c) σ2 [DDD, Fx], (d) σ4 [DADD , Fx], (e) E [AAD, Fy] , (f) E [AAD, Fy] , (g) E [AADA, 

Fy], and (h) E[AADD , Fy]. 
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4.1.5 Decision making and results 

The wavelet feature vectors can be used as inputs in a NN based pattern recognition procedure 
for chip form classification [142]. However, not all the available wavelet feature vectors are 
suitable for this purpose. In many instances, they can introduce excessive noise into the 
pattern recognition system, particularly in the case of lower ranked wavelet feature vectors 
characterized by a high number of elements with overlapping values for favorable or 
unfavorable chip forms. 

To markedly reduce this source of noise, only the 8 higher ranked wavelet feature vectors, 
displaying a maximum of 7 cutting tests with overlapping element values, were selected and 
used to set up the training set for NN learning. These 8 wavelet feature vectors are: 
σ2[DAA]Fx, σ3[DAD]Fx, σ2[DDD]Fx, σ4[DADD]Fx, E[AAD]Fy, E[AAAA]Fy, E[AADA]Fy, 
E[AADD]Fy. 

Thus, the NN input matrix is a 77 × 8 matrix composed of the above 8 high ranked 77-
elements wavelet feature vectors. The NN output matrix is a 77 × 1 matrix composed of the 
binary values that identify the chip form generated by each of the 77 cutting tests (0 = 
unfavorable and 1 = favorable chip form). Therefore, the NN architecture has the following 
structure: input layer with 8 nodes, output layer with 1 node, and hidden layer with either 32 
or 64 nodes, heuristically set. 

The NN results consist of a set of success rates (SR): the training SR, the validation SR, the 
testing SR, and the overall SR. Table 4.6 reports all the obtained SR for the two NN 
configurations used for favorable/ unfavorable chip form classification: 8-32-1 and 8-64-1. 

Table 4.6: NN chip form identification success rate. 

NN Configuration 

Success Rate 
8-32-1 8-64-1 

Training SR 96.2 % 79.2 % 

Validation SR 83.3 % 100.0 % 

Testing SR 83.3 % 75.0 % 

Overall SR 92.2 % 81.8 % 

All obtained NN SR values are higher than 75%. By considering the overall SR, given by the 
ratio of correctly classified cases over the total number of cases, as the most significant to 
assess the NN results, the 8-32-1 NN configuration is seen to provide a performance in chip 
form classification as high as 92.2%. To further reduce the already limited number of 
misclassification cases, a data refinement approach was implemented [73][151][152]. 
Examining the cutting tests causing uncertainty due to overlapping element values in the 
wavelet feature vectors used for NN pattern recognition (Table 4.7), it can be noted that these 
tests are the same for several of the selected wavelet feature vectors. Data refinement was 
carried out by eliminating, from the total 77 valid cutting tests, the 6 cutting tests responsible 
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for uncertainty that are present in five or more wavelet feature vectors (grey shadowed cutting 
tests in Table 4.7). 

The 71 remaining cutting tests were used to re-construct the 8 selected feature vectors now 
composed of 71 elements (“refined wavelet feature vectors”). 

Figure 4.10 shows the element values of the refined wavelet feature vector made of the 
variance of decomposition packet DAA for cutting force component Fx. Comparing Figures 
4.9 (a) and 4.10, it can be seen that the number of overlapping element values is greatly 
reduced in the case of the refined wavelet feature vector (2 vs. 7). This decrease overlapping 
element values is expected to improve the NN SR for chip form classification. 

Table 4.7: Cutting tests responsible for uncertainty in the 8 selected wavelet feature vectors reported 
under the corresponding wavelet vector: the grey shadowed cutting tests are eliminated from the training 
set for data refinement. 

σ2 [DAA, Fx] σ3 [DAD, Fx] σ2 [DDD, Fx] σ4 [DADD, Fx] 

T0001301 T0001301 T0001356 T0001301 

T0001356 T0001356 T0001357 T0001356 

T0001357 T0001357 T0001358 T0001357 

T0001358 T0001358 T0001372 T0001358 

T0001373 T0001373 T0001373 T0001373 

T0001386 T0001377 T0001386 T0001376 

T0001388 T0001386 T0001387 T0001387 
  

 

 

 

 

E [AAD, Fy] 

 

E [AAAA, Fy] 

 

E [AADA, Fy] 

 

E [AADD, Fy] 

T0001301 T0001324 T0001301 T0001301 

T0001324 T0001361 T0001324 T0001324 

T0001357 T0001373 T0001358 T0001373 

T0001373 T0001387 T0001373 T0001387 

T0001377 T0001388 T0001379 T0001388 

T0001387  T0001387  

T0001388  T0001388  
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Figure 4.10: Refined wavelet feature vector element values given by the variance of decomposition packet 
DAA of cutting force component Fx  for unfavorable (“0” binary code) and favorable (“1” binary code) 

chip forms. 

After data refinement, the previously built 8-32-1 NN and 8-64-1 NN were trained and tested 
with the refined wavelet feature vectors and the NN SR for two configurations are 
summarized in Table 4.5. 

Table 4.8: NN success rates after data refinement. 

NN Configuration 

Success Rate 
8-32-1 8-64-1 

Training SR 98.0 % 95.9 % 

Validation SR 100.0 % 90.9 % 

Testing SR 90.9 % 100.0 % 

Overall SR 97.2 % 95.8 % 

By comparing Tables 4.5 and 4.8, in the case of the refined training set all obtained NN SR 
values are higher than 90%, i.e. much higher than the 75% lower limit verified before data 
refinement. By considering the overall SR as the most significant to assess the NN results, the 
8-32-1 NN configuration provides a performance equal to 97.2%, significantly improved in 
comparison with the already high 92.2% overall SR achieved before data refinement. 
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4.2. Residual stress assessment 

Industries aim to machine parts that satisfy both functional and quality requirements. There 
are several factors to take into consideration that may affect the functionality and quality of 
the machined part. These factors are directly related to the surface integrity (including 
topological factors parameters such as surface roughness), mechanical properties (residual 
stress, hardness, etc.), and metallurgical states of the work material during processing (phase 
transformation, microstructure, and related property variations) [153]. 

Residual stress is induced in the work material by the cutting process and is classified as 
unacceptable or acceptable based on a critical value defined by the work material 
characteristics and the service requirements. Creating an on-line residual stress assessment 
system is highly desirable due to the fact that unacceptable levels affect the fatigue life of the 
machined part [154]. 

For the purpose of investigating into residual stress level assessment, experimental turning 
tests were performed on Inconel 718 cylindrical shafts by varying the cutting conditions and 
using a multiple sensor monitoring system for the acquisition of sensor signals: 

- 3 components of cutting force: Fx, Fy, Fz 
- acoustic emission RMS: AERMS 
- 3 components of vibration acceleration: Ax, Ay, Az 

The detected signals were processed using the wavelet packet transform (WPT) to extract 
characteristic features obtained from the WPT coefficients [52] [144]. The extracted wavelet 
packet features were used, within a sensor fusion approach, as input to diverse neural network 
architectures for decision making on machined surface integrity in terms of residual stress 
level [52]. 

4.2.1 Generalities: residual stress in machining 

It is probably true to say that all engineering components contain stresses (of variable 
magnitude and direction) even before being subjected to service loading conditions. This is 
due to the history of the material prior to putting it in service. These stresses, produced as a 
result of mechanical working and machining of the material, heat treatment, chemical 
treatment, joining procedure, etc., are called residual stresses and they can have a very 
significant effect on the fatigue life of the final components. These residual stresses are 
“locked into” the component also in the absence of external loading and represent a datum 
stress over which the service load stresses are subsequently superimposed.  

If the resulting residual stresses are of opposite direction to the service stresses, then part of 
the service load goes to reduce the residual stress to zero before the combined stress can once 
again rise towards any likely failure value. Thus, such residual stresses are extremely 
beneficial to the strength of the component and significantly higher fatigue strengths can 
result. If, however, the residual stresses are of the same direction as the applied stress. Taking 
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an example where applied stress and residual stress are both tensile, a smaller service load is 
required to produce failure than would have been the case for a component with a zero stress 
level initially. The strength and fatigue life in this case is hence reduced. Thus, both the 
magnitude and direction of the residual stresses are important for fatigue life considerations, 
and methods for determining these quantities are introduced below [155]. 

4.2.2 X-ray diffraction technique 

[PAUL S. PREVÉY, LAMBDA RESEARCH, INC] 

In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, 
and the residual stress producing the strain is calculated, assuming a linear elastic distortion of 
the crystal lattice. Although the term stress measurement is commonly used, stress is an 
extrinsic property that is not directly measurable. All methods of stress determination require 
measurement of some intrinsic property, such as strain or force and area, and then, the 
calculation of the related stress. Mechanical methods, better known as dissection techniques, 
and nonlinear elastic method, usually ultrasonic and magnetic techniques, are limited 
techniques in their applicability to residual stress determination. Mechanical methods are 
limited by assumptions concerning the nature of the residual stress field and sample geometry. 
Mechanical methods, which are basically destructive, cannot be directly checked by repeated 
measurement. Spatial and depth resolution and all nonlinear elastic methods are subject to 
major error from preferred orientation, cold work, temperature, and grain size. All require 
stress-free reference samples, which are otherwise identical to the sample under investigation. 
Generally, near elastic methods are not suitable for routine residual stress determination at 
their current state of development. In addition, their spatial and depth resolutions are orders of 
magnitude less than those of x-ray diffraction. 

To determine the stress, the strain in the crystal lattice must be measured in at least two 
precisely known orientations relative to the sample surface. Therefore, x-ray diffraction 
residual stress measurement is applicable to materials that are crystalline, relatively fine 
grained, and produce diffraction for any orientation of the sample surface. Samples may be 
metallic or ceramic, provided a diffraction peak of suitable intensity and free of interference 
from neighboring peaks can be produced in the high back-reflection region with the radiations 
available. X-ray diffraction residual stress measurement is unique in that macroscopic and 
microscopic residual stresses can be determined nondestructively 0 

Macroscopic stresses, or macrostresses, which extend over distances that are large relative to 
the grain size of the material, are of general interest in design and failure analysis. 
Macrostresses are tensor quantities, with magnitudes varying with direction at a single point 
in a body. The macrostress for a given location and direction is determined by measuring the 
strain in that direction at a single point. When macrostresses are determined in at least three 
known directions, and a condition of plane stress is assumed, the three stresses can be 
combined using Mohr's circle for stress to determine the maximum and minimum residual 
stresses, the maximum shear stress, and their orientation relative to a reference direction. 
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Macrostresses strain many crystals uniformly in the surface. This uniform distortion of the 
crystal lattice shifts the angular position of the diffraction peak selected for residual stress 
measurement. 

Microscopic stresses, or microstresses, are scalar properties of the sample, such as percent of 
cold work or hardness, that are without direction and result from imperfections in the crystal 
lattice. Microstresses are associated with strains within the crystal lattice that traverse 
distances on the order of or less than the dimensions of the crystals. Microstresses vary from 
point to point within the crystal lattice, altering the lattice spacing and broadening the 
diffraction peak. Macrostresses and microstresses can be determined separately from the 
diffraction peak position and breadth. 

Figure 4.11 shows the diffraction of a monochromatic beam of x-rays at a high diffraction 
angle (2θ) from the surface of a stressed sample for two orientations of the sample relative to 
the x-ray beam. The angle ψ, defining the orientation of the sample surface, is the angle 
between the normal of the surface and the incident and diffracted beam bisector, which is also 
the angle between the normal to the diffracting lattice planes and the normal to sample surface 
[156]. 

 

(a)  

 

(b) 

Figure 4.12: (a)ψ = 0. (b) ψ = ψ (sample rotated through some known angle ψ).  
D, x-ray detector: S, x-ray source; N, normal to the surface. 
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Diffraction occurs at an angle 2θ, defined by Bragg's Law:  

2 sinn dλ θ=  

where:  
n: integer denoting the order of diffraction 
λ: x-ray wavelength 
d: lattice spacing of crystal planes 
θ: diffraction angle.  

For the monochromatic x-rays produced by the metallic target of an x-ray tube, the 
wavelength is known to 1 part in 105. Any change in the lattice spacing, d, results in a 
corresponding shift in the diffraction angle 2θ. 

Figure 4.12 (a) shows the sample in the ψ = 0 orientation. The presence of a tensile stress in 
the sample results in a Poisson's ratio contraction, reducing the lattice spacing and slightly 
increasing the diffraction angle, 2θ. If the sample is then rotated with a known angle ψ (Figure 
4.12(b)), the tensile stress present in the surface increases the lattice spacing over the stress-
free state and decreases 2θ. Measuring the change in the angular position of the diffraction 
peak for at least two orientations of the sample defined by the angle ψ enables the calculation 
of the stress present in the sample surface lying in the plane of diffraction. This plane which 
contains the incident and diffracted x-ray beams. To measure the stress at the same point but 
in different directions, the sample is rotated about its normal surface to coincide the direction 
of interest with the diffraction plane. 

Because only elastic strain alters the mean lattice spacing, only elastic strains are measured 
using x-ray diffraction for the determination of macrostresses. When the elastic limit is 
exceeded, further strain results in dislocation motion, disruption of the crystal lattice, and the 
formation of microstresses, but no additional increase in macroscopic stress. Although 
residual stresses result from non-uniform plastic deformation, all residual macrostresses 
remaining after deformation are necessarily elastic. 

The residual stress determined using x-ray diffraction is the arithmetic average stress in a 
volume of material defined by the irradiated area, which may vary from square centimeters to 
square millimeters, and the depth of penetration of the x-ray beam. The linear absorption 
coefficient of the material for the radiation used governs the depth of penetration, which can 
vary considerably. 

However, in iron, nickel, and aluminum-base alloys, 50% of the radiation is diffracted from a 
layer approximately 0.005 mm (0.0002 in.) deep for the radiations generally used for stress 
measurement. This shallow depth of penetration allows the determination of macro and 
microscopic residual stresses as function of depth, with a depth resolution approximately 10 to 
100 times the resolution possible using other methods. Although, in general, virtually any 
interplanar spacing may be used to measure strain in the crystal lattice, availability of the 
wavelengths produced by commercial x-ray tubes limits the choice to a few possible planes. 
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The choice of a diffraction peak selected for residual stress measurement impacts significantly 
on the precision of the method. The higher the diffraction angle, the greater the precision. 
Practical techniques generally require diffraction angles, 2θ, greater than 120°. 

Table 4.9 lists recommended diffraction techniques for Nickel base alloys. The relative 
sensitivity is shown by the value of K45, the magnitude of the stress necessary to cause an 
apparent shift in diffraction-peak position of 1° for a 45°ψ tilt. As K45 increases, sensitivity 
decreases. 

Table 4.9: Inconel 718 Diffraction technique. 

Alloy Radiation 
Lattice 
Plane 
(hkl) 

Angle 
(2θ), 

degrees 

Elastic 
constants(a) 
(E/I=ν) GPa 
(106 psi) 

Bulk 
Error 
(%) 

K45(b) 
Linear 

Absorption 
Coeff. (µ) 

(hkl) Bulk MPa ksi cm-1 

Nickel-base alloys 

Inconel 
718 Cu Kα (420) 145.0 

140.
0±2.
1 

156.
5 -8.9 772 112.0 1232 

(a) Constants determined from four-point bending tests. (b) K45 is the magnitude of the 
stress necessary to cause an apparent shift in diffraction-peak position of 1° for 45° angle 
tilt 

Plane-Stress Elastic Model 

X-ray diffraction stress measurement is confined to the surface of the sample. Electro 
polishing is used to expose new surfaces for subsurface measurement. In the exposed surface 
layer, a condition of plane stress is assumed to exist. That is, a stress distribution described by 
principal stresses σ1 and σ2 exists in the plane of the surface, and no stress is assumed 
perpendicular to the surface, σ3 = 0. However, a strain component perpendicular to the surface 
ε3 exists as a result of the Poisson's ratio contractions caused by the two principal stresses 
(Figure 4.13). 
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Figure 4.13: Plane stress elastic model. 

The strain, εφψ in the direction defined by the angles φ and ψ is: 

2 2
1 1 2 2 1 2

1 ( ) ( )
E Eφψ
υ υε σ σ σ σ σ σ+   = + − +      

  

where E is the modulus of elasticity, υ  is the Poisson's ratio, and α1 and α2 are the angle 
cosines of the strain vector: 

1

2

cos sin
sin sin

α φ ψ
α φ ψ

=
=

  

Substituting for the angle cosines and simplifying enables expressing the strain in terms of the 
orientation angles: 

( )2 2 2
1 2 1 2

1 cos sin sin ( )
E Eφψ
υ υε σ φ σ φ ψ σ σ+   = + − +      

  

If the angle ψ is taken to be 90°, the strain vector lies in the plane of the surface, and the 
surface stress component, σΦ is: 

( )2 2
1 2cos ( sin )φσ σ φ σ φ= +   

Substituting the equation of the surface stress into the strain equation yields the strain in the 
sample surface at an angle φ from the principal stress σ1: 
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( )2
1 2

1 ( )sin
E Eφψ φ
υ υε σ ψ σ σ+   = − +      

  

The above equation relates the surface stress σφ, in any direction defined by the angle ψ, to the 
strain, ε, in the direction (φ, ψ) and the principal stresses in the surface. 

If dφψ is the spacing between the lattice planes measured in the direction defined by φ and ψ, 
the strain can be expressed in terms of changes in the linear dimensions of the crystal lattice: 

0

0 0

d dd
d d

φψ
φψε

−∆
= =  

where d0 is the stress-free lattice spacing. Substitution into the strain equation yields: 

0 2
1 2

( ) ( )0

1 sin ( )
hkl hkl

d d
d E E

φψ
φ

υ υσ ψ σ σ
   − +   = − +      
         

  

where the elastic constants 
( )

1

hklE
υ+ 

 
 

 and 
( )hklE

υ 
 
 

are not the bulk values but the values for 

the crystallographic direction normal to the lattice planes in which the strain is measured as 
specified by the Miller indices (hkl). Because of elastic anisotropy, the elastic constants in the 
(hkl) direction commonly vary significantly from the bulk mechanical values, which are an 
average over all possible directions in the crystal lattice. 

The lattice spacing for any orientation, then, is: 

2
0 0 1 2 0

( ) ( )

1 d sin d ( ) d
hkl hkl

d
E Eφψ φ
υ υσ ψ σ σ

   +   = − + +      
         

  

The above equation describes the fundamental relationship between lattice spacing and the 
biaxial stresses in the surface of the sample. The lattice spacing dφψ, is a linear function of 
sin2ψ.  

Figure 4.14 shows the actual dependence of d(311) on ψ, ranging from 0 to 45° for shot 
peened 5056-O aluminum having a surface stress of -148 MPa (-21.5 ksi), to which a straight 
line has been fitted by least squares regression. 
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Figure 4.14: A d(311) versus sin2ψ plot for a shot peened 5056-O aluminum alloy having a surface stress of 
-148 MPa.  

The intercept of the plot at sin2ψ = 0 is: 

0 0 1 2 0 1 2
( ) ( )

d d ( ) d 1 ( )
hkl hkl

d
E Eφψ
υ υσ σ σ σ

    = − + = − +    
     

  

which equals the unstressed lattice spacing, d0, minus the Poisson's ratio  contraction caused 
by the sum of the principal stresses.  

The slope of the plot is: 

02
( )

1 d
sin hkl

d
E

φψ
φ

υ σ
ψ

∂ + =  ∂  
 

which can be solved for the stress σΦ: 

2
( ) 0

1
1 sinhkl

dE
d

φψ
φσ υ ψ

∂  =   + ∂   
 

The x-ray elastic constants can be determined empirically, but the unstressed lattice spacing, 
d0, is generally unknown. However, because E >> (σ1 + σ2), the value of dφ0 differs from d0 
by not more than ± 1%, and σφ may be approximated to this accuracy using: 
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2
( ) 0

1
1 sinhkl

dE
d

φψ
φ

φ

σ
υ ψ

∂  =   + ∂   
  

The method then becomes a differential technique, and no stress-free reference standards are 
required to determine d0 for the biaxial stress case. The three most common methods of x-ray 
diffraction residual stress measurement, the single-angle, two-angle, and sin2ψ techniques, 
assume plane stress at the sample surface and are based on the fundamental relationship 
between lattice spacing and stress. 

The sin2ψ technique 

The sin2ψ technique [157] is identical to the two-angle technique, except lattice spacing is 
determined for multiple ψ tilts, a straight line is fitted using the least square method, and the 
stress is calculated from the slope of the best fit line. The method, a standard procedure in 
Japan and Germany, provides no significant improvement in precision over the two-angle 
technique if the two data points are selected at the extreme ends of the sin2ψ range. 

The primary advantage of the sin2ψ technique, considering the additional time required for 
data collection, is in establishing the linearity of d as a function of sin2ψ to demonstrate that x-
ray diffraction residual stress measurement is possible on the sample of interest. 

4.2.3 Basic procedure 

Sample preparation 

If the geometry of the sample does not interfere with the incident or diffracted x-ray beams, is 
generally minimal. Preparation of the sample surface depends on the nature of the residual 
stresses to be determined. If the stresses of interest are produced by such surface treatments as 
machining, grinding, or shot peening, then the residual stress distribution is usually limited to 
less than 500 μm of the sample surface. Therefore, the sample surface must be carefully 
protected from secondary abrasion, corrosion, or etching. Samples should be oiled to prevent 
corrosion and packed to protect the surface during handling. Secondary abrasive treatment, 
such as wire brushing or sand blasting, radically alters the surface residual stresses, generally 
producing a shallow, highly compressive layer over the original residual stress distribution. 

If the stresses of interest are those produced by carburizing or heat treatment, it may be 
advisable to electropolish the surface of the sample, which may have undergone finish 
grinding or sand blasting after heat treatment. Electropolishing eliminates the shallow, highly 
stressed surface layer, exposing the subsurface stresses before measurement. 

To measure the inside surface of tubing, in bolt holes, between gear teeth, and other restrictive 
geometries, the sample must be sectioned to provide clearance for the incident and diffracted 
x-ray beams. Unless prior experience with the sample under investigation indicates that no 
significant stress relaxation occurs upon sectioning, electrical resistance strain-gage rosettes 
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should be applied to the measurement area to record the strain relaxation that occurs during 
sectioning. Unless the geometry of the sample clearly defines the minimum and maximum 
directions of stress relaxation, a full rectangular strain-gage rosette should be used to calculate 
the true stress relaxation in the direction of interest from the measured strain relaxation. 

Following x-ray diffraction residual stress measurements, the total stress before sectioning can 
be calculated by subtracting algebraically the sectioning stress relaxation from the x-ray 
diffraction results. If only near-surface layers are examined on a massive sample, a constant 
relaxation correction can be applied to all depths examined. If a significant volume of material 
is removed, as in determination of the stress distribution through the carburized case of a thin 
bearing race, a more accurate representation of sectioning relaxation can be achieved by 
applying strain-gage rosettes to the inner and outer surfaces and by assuming a linear 
relaxation of stress through the sample. 

Sample Positioning 

Because the diffraction angles must be determined with an accuracy of approximately ±0.01°, 
the sample must be positioned under the x-ray beam at the true center of rotation of both 
angles ψ and 2θ axes. In addition, the angle ψ must be constant throughout the irradiated area. 

Therefore, extremely precise positioning of the sample with accuracies of approximately 
0.025 mm (0.001 in.) is critical. Further, the size of the irradiated area must be limited to an 
essentially flat region on the sample surface. Samples with small diameters or complex 
sample geometries such as small-radius fillets, the roots of threads, and fine-pitched gears 
may contribute to major sources of error if the x-ray beam is not confined to an essentially flat 
region at a known ψ tilt on the curved surface. If the irradiated area is allowed to span a 
curved surface, ψ will not be constant during determination of lattice spacing. These 
restrictions imposed by the sample geometry may prohibit x-ray diffraction residual stress 
measurement in many areas of primary concern, such as the roots of notches. 

Irradiated Area and Measurement Time 

The residual stress determined by x-ray diffraction is the arithmetic average stress in the area 
defined by the dimensions of the x-ray beam. Considerations must be given to choose an 
appropriate beam size depending on the nature of the stress to be investigated. If average 
stresses over significant areas are of interest, the maximum beam size allowed by the 
geometry of the sample would be an appropriate choice. If local variations in residual stress, 
such as those produced by individual passes of a grinding wheel, are of interest, a smaller 
irradiated area with a geometry appropriate for the investigation should be selected. Practical 
dimensions of the irradiated area may range from circular zones 1.25 mm in diameter to a 
range of rectangular geometries from approximately 0.5 to 13 mm. The maximum irradiated 
area generally feasible is approximately 13 × 8 mm. 

As the irradiated area is increased, the data collection time necessary to achieve adequate 
precision for residual stress measurement diminishes. The precision with which the diffracted 
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intensity can be determined varies as the inverse of the square root of the number of x-rays 
collected. To determine the intensity to an accuracy of 1% at a single point on the diffraction 
peak, 104 x-rays must be counted, regardless of the time required. With diffracted intensities 
typically available on a fixed slit diffractometer system, this may require collection time of 
approximately 30 seconds for each point on the diffraction peak. If seven data points are 
collected on each diffraction peak for a two-angle technique, total measurement time may be 
10 to 15 min. Reducing the irradiated area sufficiently to decrease the diffracted intensity by 
an order of magnitude increases the data collection time proportionally for the same precision 
in measurement. If fluorescence is not a problem, position-sensitive detectors can be used to 
collect data simultaneously at numerous points across the diffraction peak, with some sacrifice 
in angular precision, reducing data collection time by an order of magnitude [156].  

Diffraction-Peak Location 

The transition metal target x-ray tubes used for stress measurement produce a continuous 
spectrum of white radiation and three monochromatic high-intensity lines. The three lines are 
the Kα1, Kα2, and Kβ characteristic radiations with wavelengths known to high precision. The 
Kα1 and Kα2 lines differ too little in wavelength to allow separation of the diffraction peaks 
produced. The Kα1 line, the highest intensity, is nominally twice that of the Kα2 line. The Kβ 
line is produced at a substantially shorter wavelength and can generally be separated from the 
Kα lines by filtration, the use of high-energy resolution detectors, or crystal monochromators. 
The Kβ line is typically one-fifth the intensity of the Kα1 line and is generally too weak for 
practical x-ray diffraction residual stress measurement on plastically deformed surfaces. 

Because the Kα doublet is generally used for residual stress measurement, the diffraction 
peaks produced consist of a superimposed pair of peaks, as shown in Figure 4.15 for four 
cases, indicating the various degrees of broadening that may be encountered. The variable 
blending of the Kα doublet typical of an annealed sample is indicated by curve A; a fully 
hardened or cold-worked sample, curve D. Because the accuracy of x-ray diffraction residual 
stress measurement depends on the precision with which the diffraction peak can be located, 
the method used to locate broadened doublet peaks is of primary importance. 

Precise determination of the position of the diffraction peak at each ψ tilt begins with 
collection of raw intensity data at several points on the peak. The diffracted intensity (x-rays 
counted per unit time) or inverse intensity (time for a fixed number of x-rays to be counted) is 
determined to a precision exceeding 1% at several fixed diffraction angles, 2θ, spanning the 
diffraction peak. Depending on the method to be used for peak location, 3 to 15 individual 
data points and 2 background points are measured using standard diffractometer techniques. If 
data are collected using a position-sensitive detector, the diffracted intensity can be 
determined at dozens of data points spanning the diffraction peak. Sharp diffraction peaks, 
such as those shown in curve A in Figure 4.15, may be located using intensity data of lower 
precision than that required for broad peaks, as shown in curve D. The number of x-rays to be 
collected, and therefore the time required for stress measurement to a fixed precision, 
increases as the diffraction peaks broaden. 
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Figure 4.15: Range of Kα doublet blending for a simulated steel (211) Cr Kα peak at 156.0°. A, fully 
annealed, B and C, intermediate hardness; D, fully hardened. 

Before determining a diffraction-peak position, the raw measured intensities must be 
corrected for Lorentz polarization and absorption. A sloping background intensity is then 
corrected by subtracting the background, assuming a linear variation beneath the diffraction 
peak. Various numerical methods are available to calculate the position of the diffraction 
peak. The simplest method, incorporated in early automated diffraction equipment, is to locate 
2θ positions on either side of the peak at which the intensity is equal and assume the peak 
position to be at the midpoint. A straight line can be fitted to the opposing sides of the 
diffraction peak and the point of intersection of the two lines taken as a peak position [158]. 
Early SAE literature recommends calculating the vertex of the parabola defined by three 
points confined to the top 15% of the peak [159]. A significant improvement in precision can 
be achieved, approaching the 0.01° resolution of most diffractometers, by collecting 5 to 15 
data points in the top 15% and fitting a parabola by least squares regression before calculation 
of the peak vertex. 

If the intensity is measured at many points ranging across the entire Kα doublet, the peak 
position can be calculated as the centroid of the area above the background or by 
autocorrelation. Both of these area-integration methods are independent of the peak shape, but 
are extremely sensitive to the precision with which the tails of the diffraction peak can be 
determined. 

All the above methods are effective, regression fit parabola being superior, if applied to a 
single symmetrical diffraction peak profile, such as the simple Kα1, peak shown in curve A in 
Figure 4.10 or the fully combined doublet shown in curve D. All can lead to significant error 
in the event of partial separation of the doublet, as shown in curve B (Figure 4.10). Partial 
separation commonly results from defocusing as the sample is tilted through a range of ψ 
angles. If residual stresses are measured as a function of depth, diffraction peaks can vary 
from breadths similar to curve D (Figure 4.10) at the cold-worked surface through a 
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continuous range of blending to complete separation beneath the cold-work layer, as shown in 
curve A. All the techniques of peak location discussed can lead to significant error in stress 
measurement as the degree of doublet separation varies. The Rachinger correction [160] can 
be applied to separate the Kα doublet before fitting parabolas, but the precision of the 
correction diminishes on the Kα2 side of the combined profile and is generally inadequate for 
precise residual stress measurement. Fitting Pearson VII distribution functions (Cauchy to 
Gaussian bell-shaped, as described in [161 and [162]) separately to the Kα1 and Kα2 diffraction 
peaks, assuming a doublet separation based on the difference in wavelength, provides a 
method of peak location that overcomes most of the problems outlined above. 

Figures 4.16 and 4.17 show the effect of the peak-location method on the results obtained. 
Figure 4.16 illustrates comparison of the same data reduced using Pearson VII distribution 
functions and a five-point least squares parabolic fit for ground Ti-6Al-4V using the (21.3) 
planes for residual stress measurement. Apparent nonlinearities in d versus sin2ψ for the 
parabola fit are due to inaccurate diffraction-peak location in the presence of partial blending 
of the Kα doublet. Figure 4.17 shows the errors in stress measurement by the two methods of 
peak location applied to the identical data for the entire stress profile. The errors for the 
distribution function fit are smaller than the plotting symbols at all depths. 

 

Figure 4.16: Comparison of d (21.3) versus sin2ψ data taken 0.176 mm  below the surface for a ground Ti-
6Al-4V sample using two diffraction peak location methods. 

 

 

 

 

 
 



 

84 

 

 

Figure 4.17: Comparison of residual stress patterns derived using Cauchy and parabolic peak location for 
a ground Ti-6Al-4V sample using a six-angle sin2ψ technique. Errors in stress measurement by two 

methods of diffraction-peak location are shown. 

Microstress Determination and line Broadening 

Diffraction peak broadening caused by microstresses in the crystal lattice can be separated 
into components due to strain in the crystal lattice and crystallite size. Separation of the 
broadening, which is of instrumental origin, from that due to lattice strain and crystallite size 
is performed using Fourier analysis of the diffraction-peak profile and data collection 
sufficient to define precisely the shape of the entire diffraction peak. Analysis of the Fourier 
series terms allows separation of the components of the broadening attributable to lattice 
strain from that caused by reduction in the crystallite size. However, this method requires 
extensive data collection and depends on the precision with which the tails of the diffraction 
peak can be separated from the background intensity. 

For most routine analyses of microstresses associated with cold working or heat treatment for 
which separation of the strain and size components is not necessary, much simpler 
determinations of diffraction-peak breadth are adequate. The diffraction-peak width can be 
quantified precisely as the integral breadth (total area under the peak divided by diffraction-
peak height) or the width at half the height of the diffraction peak. The width of the diffraction 
peak can be measured directly from strip-chart recordings or calculated from the width of the 
function fitted to the diffraction-peak profile during macrostress measurement. Microstresses 
and macrostresses can then be determined simultaneously from the peak breadth and position. 
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Figure 4.18: Diffraction-peak breadth at half height 
for the (211) peak for M50 high-speed tool steel as a 

function of Rockwell hardness. 

Figure 4.19: Diffraction-peak breadth at half height 
for the (420) peak for Rene 95 as a function of cold-

working percentage. 

Figures 4.18 and 4.19 show empirical relationships established between diffraction-peak 
breadth at half height for the (211) peak for M50 high-speed tool steel as a function of 
hardness and for the (420) peak breadth as a function of percent cold work for Rene 95, 
respectively. These empirical curves can be used to calculate the hardness or cold work in 
conjunction with macroscopic residual stress measurement. For the preparation of the 
hardness curve, a series of coupons are quenched and tempered to known hardness. The peak 
breadth is then measured using the same slit system and peak-location method used for 
macrostress measurement. For the percent cold work curve, samples are heat treated, then 
pulled in tension to produce a series of coupons with various known amounts of cold work. 
Because the initial heat treatment may alter significantly the initial peak breadth before cold 
work, the coupons must receive the same heat treatment as the samples to be measured before 
inducing known amounts of cold work [156]. 

Sample fluorescence 

Sample fluorescence complicates the selection of radiation to be used for residual stress 
measurement. The radiation necessary for the highest precision techniques may cause 
fluorescence of the elements present in the sample under investigation. The use of Cu Kα 
radiation for residual stress measurement in alloys containing iron, chromium, or titanium can 
result in fluorescent background intensities many times as intense as the diffracted radiation, 
greatly reducing the signal-to-noise ratio. Problems with fluorescence may be overcome in 
some cases by use of metal foil filters, but generally require use of a crystal monochromator 
or high energy resolution solid-state detector. Failure to eliminate fluorescence can degrade 
severely the precision with which the diffraction peak can be located accurately, increasing 
random experimental error significantly. Diffracted beam monochromators and solid-state 
detectors can be used only on standard laboratory diffractometers. The position-sensitive 
detectors available for residual stress measurement are the gas-filled proportional counter or 
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fluorescence screen type and have insufficient energy resolution to overcome fluorescence 
[156].  

4.2.4 X-ray stress analyzer 

The instrument used for the residual stress measurement is an “XSTRESS 3000” X-ray stress 
analyzer produced by Stresstech, as shown in Figure 4.20. 

The most important features are reported below [163]. 

 

Figure 4.20: Stresstech XSTRESS3000. 

Technical Specifications  

MAIN UNIT X3000 

• High voltage power supply (generator) for X-ray tube continuously variable within 5 to 30 
kV / 0 up to 10 mA. 

• Ultra-compact design. 
• Electrical 
• 90 to 260 VAC, 48 to 62 Hz, 600 VA 
• Cooling 
• Self-contained recirculating water cooling with heat exchanger for X-ray tube and 
• power supply. No external water supply needed. 

 



 

87 

GONIOMETER 

• Xstress 3000 goniometer type G2 mounted on a tripod with magnetic anchoring as a 
standard. 

• χ-inclination: Programmable –45° to +45° (standard) 
• χ-oscillation: Programmable 0° to ±6°. 
• Distance between goniometer and the measurement point automatically adjusted to ± 

0.003 mm accuracy. 

DETECTORS 

• Dual position sensitive MOS Linear Image Sensors in symmetrical modified χ (side 
inclination) geometry. 

• Angular resolution: 0.029°/pixel, 512 pixels/0.5 in. 
• 2θ-angle is instantly adjustable by sliding the detectors manually to the desired angular 

position along arc-shaped detector holder. 
• 2θ-range of the detectors is continuously adjustable within +100° to 165° 

X-RAY TUBE 

• Miniature, 30 kV, 10 mA, 300 W, Cr, Cu, Co, Fe, V, Ti, Mn. Cr-tube provided as a 
standard. Tube can be replaced in less than 10 minutes without special tools. 

CABLES 

• 5 meters standard. 

COLLIMATOR 

• Replaceable, to provide 1, 2, 3, 4, and 5 millimeter spot sizes. Special collimators 
available as an option. 
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4.2.5 Experimental setup and procedure 

Machine Tool 

The machine tool employed for experimental campaign is a VDF CNC horizontal lathe as 
reported in Figure 4.21.  

 

Figure 4.21: VDF CNC Horizontal Lathe machine tool. 

Work material 

The material used for the experimental activities is INCONEL 718. 

Inconel 718 is a precipitation-hardenable nickel-chromium alloy containing significant 
amounts of iron, niobium, and molybdenum along with lesser amounts of aluminum and 
titanium. It combines corrosion resistance and high strength with outstanding weldability, 
including resistance to post-weld cracking. The alloy has excellent creep-rupture strength at 
temperatures up to 700 °C. Used in gas turbines, rocket motors, spacecraft, nuclear reactors, 
pumps, and tooling [163].  
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Table 4.10: Typical analysis in percent. 

Ni(+Co):  50 - 55 Cr: 17 - 21 

Fe: bal Co: 1 

Mo: 2.3 – 3.3 Nb (+Ta) 4.75 – 5.5 

Ti 0.65 – 1.15 Al:  0.2 – 0.8 

C: 0.08 Mn 0.35 

Si:  0.35 B: 0.006 

Cu: 0.3   

Table 4.11: Inconel 718 physical properties. 

Density 8.19 g/cm3 

Melting point range:  1260 – 1336 °C 

Specific heat: 435 J/kg∙K 

Average Coefficient of Thermal 
Expansion: 

13.0 µm/m∙K 

Thermal Conductivity: 11.4 W/m∙K 

Electrical Resistivity: 1250 n∙m 

Curie Temperature: -112 °C 

Table 4.12: Inconel 718 mechanical properties. 

At room temperature 

Ultimate tensile 
strength 

1240 MPa 

Yield strength 1036 MPa 

Elongation in 50 mm 12 % 

Elastic modulus 
(Tension) 

211 GPa 

Hardness 36 HRC 
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Workpiece 

The experimental campaign was carried out by turning an Inconel 718 cylindrical shaft, as 
shown in Figure 4.22. 

 

Figure 4.22: Inconel 718 Cylindrical shaft utilized as work material. 

Cutting tools 

The cutting tools utilized for the experimental tests are Kennametal CNMG120408-K313 
rombic uncoated carbide tools as the one shown in Figure 4.23 below. 

 

Figure 4.23:  Kennametal cutting tool. 
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D L10 S Rε D1 

12.70 12.90 4.76 0.8 5.16 

dimensions in millimeters 

Figure 4.24: Cutting tool dimensions. 

 

The tool holder is a customized compatible holder as shown in Figure 4.24. 

 

Figure 4.24: Customized tool holder. 
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Experimental tests program 

On the basis of common cutting parameters adopted for turning of Inconel 718 workpieces, 
three cutting speed values were considered for the experimental program, respectively 45, 50 
and 55 m/min, this last value is close to the maximum acceptable cutting speed, fixed at 56 
m/min in case of cutting with carbide inserts. 

Three feed rates were considered: 0.10, 0.125 and 0.15 mm/rev according to the literature and 
the common shop floor values. 

Table 4.13: Standard Tests experimental program. 

Test ID V (m/min) f (mm/rev) 

#1 45 0.10 

#2 45 0.125 

#3 45 0.15 

#4 50 0.10 

#5 50 0.125 

#6 50 0.15 

#7 55 0.10 

#8 55 0.125 

#9 55 0.15 

The depth of cut (ap) is kept constant and is equal to 0.3 mm for every cutting test. 

An additional experimental program has been carried out in order to increase the probabilities 
in generating surface defects. 

For this purpose, severe cutting conditions were chosen, increasing both the cutting speed (up 
to 80 – 100 m/min) and the feed rate (up to 0.30 mm/rev). The turning tests were carried out 
both in cooled and in dry conditions as reported in the following table (Table 4.14). 
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Table 4.14: Severe cutting conditions tests experimental program. 

Test ID  V (m/min)  f (mm/rev)  Cutting Fluid  

#1H  80  0.15  On  

#2H  80  0.30  On  

#3H  100  0.15  On  

#4H  100  0.30  On  

#5H  80  0.15  Off  

#6H  80  0.30  Off  

#7H  100  0.15  Off  

#8H  100  0.30  Off  

Experimental tests procedure 

The experimental tests began with turning the external diameter for 120 seconds setting a 
depth of cut equal to 0.3 mm. In this way, the external diameter was reduced by 0.6 mm at 
every step. 

After every step, the tool wear measurement by a profile projector was carried out. If the tool 
wear has reached the 0.3 mm value, considered the maximum recommended acceptable value, 
then the test is completed otherwise there will be another 120 seconds turning step. 

For the severe cutting conditions tests, the single turning step lasts 30 seconds while the tool 
wear threshold value is 0.5 mm. The experimental procedures can be summarized by the 
following flow charts reported (Figures 4.25 and 4.26). 

 

Figure 4.25: Experimental procedure flow chart for standard tests. 
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Figure 4.26: Experimental procedure flow chart for Severe Cutting Conditions tests. 

In order to have 2 minutes step (or 30 seconds for Severe Cutting Conditions Tests) regardless 
the several cutting speeds, the cutting length Z (illustrated in Figure 4.27), was calculated as 
follows: 

 

Vc Cutting Speed m/min  

 T Cutting Time min 

D Diameter mm 

f Feed Rate mm/rev 

n Number of revolutions  

 

Figure 4.27: Cutting length. 

 

 

 



 

95 

.
ZT

n f
=  

. .Z T n f=  

.1000
.

CVn
Dπ

=  

.1000. .
.

CVZ T f
Dπ

=  

At every step, the workpiece diameter decreases by 0.6 mm (2∙ap), consequently the cutting 
length increases. Hence, after calculating Z for every step, an average value was considered 
and used in the CNC code. 

stepZ
Z

number of steps
= ∑  

4.2.6 Residual stress measurement results 

 

Figure 4.28: Residual stress measurement directions on a test sample. 

In Figure 4.28, a residual stress measurement scheme is reported. The grey cylinder represent 
the test workpiece, and the white square is representative of the test surface (1 mm × 1 mm). 
The two red arrows show the two measurement directions: the cutting speed direction and the 
feed direction respectively. 

In Table 4.15, the residual stress measurements are reported, for all the tests and for both the 
measurement directions. In red are the values that exceed the acceptable threshold value, set at 
850 MPa. 
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Table 4.15: Residual stress measurement results. 

 Test ID RS (MPa) 
direction 1 

RS (MPa) 
direction 2 

Lubrication 
St

an
da

rd
 T

es
ts

 

T_1 379 -176 Cooled 

T_2 182 -287 Cooled 

T_3 455 -65 Cooled 

T_4 309 -111 Cooled 

T_5 644 35 Cooled 

T_6 767 205 Cooled 

T_7 378 -9 Cooled 

T_8 662 252 Cooled 

T_9 1009 725 Cooled 

Se
ve

re
 C

ut
tin

g 
C

on
di

tio
n 

T
es

ts
 

T_1H 1228 635 Cooled 

T_2H 1515 1206 Cooled 

T_3H 1376 882 Cooled 

T_4H 1521 1172 Cooled 

T_5H 1387 934 Dry 

T_6H 1473 965 Dry 

T_7H 1277 689 Dry 

T_8H 1412 1187 Dry 
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4.2.7 Sensor signal data analysis 

Signal pre-processing 

The sensor signals obtained during the last step of every turning test of each of the 26 test 
cases were subjected to sensor signal processing. For each detected sensor   signal,   5   
segments   of   3000   samples   were extracted at regular intervals so that the obtained 5 signal 
specimens were uniformly distributed along the original signal. Thus, a total of 130 signal 
specimens (9 standard cutting conditions tests × 2 repetitions × 5 segments + 8 severe cutting 
conditions tests × 5 segments = 130 signal specimens) were obtained for each sensor signal 
type (Fx, Fy, Fz, AERMS, Ax, Ay, Az). 

To apply the WPT to the sensor signal specimens, a 3000 × 130 sensorial data table was 
constructed for each of the 7 sensor signal types (Fx, Fy, Fz, AERMS, Ax, Ay, Az), where the 
3000 rows represent the number of signal specimen samplings and the 130 columns contain 
the 130  signal  specimens  of  the  considered  sensor  signal type. 

Wavelet Packet Transform Feature Extraction 

In this sensor signal analysis process, the employed mother wavelet is a Daubechies 3 denoted 
by “db3” [13]. The decomposition was performed up to the 3rd  level, yielding 14 packets for 
each of the 7 sensor signal types, for a total of 98 packets. For each packet, 5 statistical 
features were calculated for each of the 130 signal specimens: Standard Deviation, Skewness, 
Kurtosis, Root Mean Square, and Energy (Table 4.16) [145]. 

Table 4.16: Five statistical features for the seven sensor signal types calculated from the coefficients of 
each wavelet packet. 

Statistical Features Sensor Signals 

Standard Deviation Fx, Fy, Fz, AE, Ax, Ay, Az 

Skewness Fx, Fy, Fz, AE, Ax, Ay, Az 

Kurtosis Fx, Fy, Fz, AE, Ax, Ay, Az 

Root Mean Square (RMS) Fx, Fy, Fz, AE, Ax, Ay, Az 

Energy Fx, Fy, Fz, AE, Ax, Ay, Az 

Starting from the 3000 × 130 sensorial data table force cutting force component Fy  (Figure 
4.29, (a) table), the WPT was applied to the 130 Fy signal specimens to obtain the 
corresponding 130 A1 packets, each composed of 1503 coefficients (Figure 4.29, (b) table). 
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Figure 4.29: WPT feature extraction to construct the Standard Deviation (σ) feature vector for packet A1 
and cutting force component Fy: σ[A1]Fy. 

The standard deviation values of the coefficients of each A1 packet were calculated (Figure 
4.29, row vector under the (b) table). The row vector containing the 130 standard deviation 
values was transposed to obtain the column vector representing the Standard Deviation feature  
vector  for  packet  A1   of  cutting  force component Fy, denoted by   σ[A1]Fy (Figure 4.29, (c) 
column vector). This type of 130-elements column vector is called shortly “wavelet feature 
vector”. 

For each packet, the same procedure was applied to each sensor signal type, extracting a total 
of 5 (statistical features) × 7 (sensor signal types) = 35 wavelet feature vectors per packet 
(Table 4.13). 

Overall, 14 packets × 35 wavelet feature vectors per packet = 490 total wavelet feature vectors 
were obtained. These wavelet feature vectors were utilized as inputs to a sensor fusion 
approach based on neural network data processing [96]. 

4.2.8 Decision making and results  

The 130-elements wavelet feature vectors extracted from the sensor signal specimens through 
WPT were combined  to  implement  a  sensor  fusion  decision making approach via neural 
network (NN) data processing [3][99][164][165][166][167]. For each of the 14 packets, the 
following sensor fusion wavelet feature vectors matrices were set up to be utilized in turn as 
training sets for NN learning (Table 4.17): 

- one 130 × 35 sensor fusion wavelet feature vectors matrix, where the rows refer to the 130 
signal specimens  and  the  columns  are  the  35  wavelet feature vectors for the concerned 
packet; 

- five 130 × 7 sensor fusion wavelet feature vectors matrices, where the rows refer to the 130 
signal specimens and the columns are, in turn, one of the five statistical column feature vectors 
(Standard Deviation, Skewness, Kurtosis, Root Mean Square, or Energy) of the 7 sensor signal 
types (Fx, Fy, Fz, AE, Ax, Ay, Az) for the concerned packet. 
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Table 4.17: NN input wavelet feature vector matrices and NN configurations. 

Statistical Feature Wavelet Feature Vector 
Matrix 

#Matrix 
Columns 

NN. 
Configs. 

All statistical features [Stdev of Fx, Fy, Fz, AE, Ax, 

Ay, Az; Skewness of Fx, Fy, Fz, 
AE, Ax, Ay, Az; Kurtosis 

of Fx, Fy, Fz, AE, Ax, Ay, Az; 

RMS of Fx, Fy, Fz, AE, Ax, 

Ay, Az; Energy of Fx, Fy, Fz, 
AE, Ax, Ay, Az;] 

35 35-105-1 

Standard deviation [Stdev of Fx, Fy, Fz, AE, Ax, 

Ay, Az] 

7 7-21-1 

Skewness [Skewness of Fx, Fy, Fz, AE, 
Ax, Ay, Az] 

7 7-21-1 

Kurtosis [Kurtosis of Fx, Fy, Fz, AE, Ax, 

Ay, Az] 

7 7-21-1 

Root Mean Square (RMS) [RMS of Fx, Fy, Fz, AE, Ax, 

Ay, Az] 

7 7-21-1 

Energy [Energy of Fx, Fy, Fz, AE, Ax, 

Ay, Az] 

7 7-21-1 

Two different three-layer feed forward back propagation neural network (FF BP NN) 
architectures were implemented (Table 4.14) by varying the number of input nodes (either 35 
or 7) and the number of hidden layer nodes (105 in the case of 35 input nodes and 21 in the 
case of 7 input nodes, i.e. triple the number of the input nodes). The output layer had only 1 
node, yielding a binary value associated with the residual stress condition: 0 = acceptable 
residual stress and 1 = unacceptable residual stress. 

For each of the 14 WPT packets, the NN learning procedures  were  carried  out  by  using,  in  
turn,  the training sets formed by the 130 × 35 and the five 130 × 7 sensor fusion wavelet 
feature vectors matrices as NN input and, as desired NN output, the corresponding 130  ×  1  
matrix  composed  of  the  binary  values identifying the residual stress level (0 = acceptable; 1 
= unacceptable) for each of the 130 signal specimens. 

In Table 4.18, the NN overall SR is reported for each wavelet packet of the first three WPT 
levels and each sensor fusion wavelet feature vectors matrix (i.e. each training data set). 

As regards the behavior of the 35-elements and 7-elements sensor fusion wavelet feature 
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vectors, the highest average SR is achieved for the Energy 7-elements wavelet feature vector 
(SRave = 99.67%), the second best performance is verified for the 35-elements wavelet feature 
vector (SRave = 98.26%), and the Standard Deviation and RMS 7-elements wavelet feature 
vectors both provide average SR values higher than 94% (SRave = 95.06% and 94.27%, 
respectively). On the contrary, the Skewness and Kurtosis 7-elements wavelet feature vectors 
display an unsatisfactory performance both in terms of SRave (66.88% and 71.76%, 
respectively) and single packet SR values that are never higher than 88% and can fall off as 
low as 58%. 

Thus, although three 7-elements wavelet feature vectors (Energy, Standard Deviations, RMS) 
provide high NN performance degrees in the sensor fusion based identification of residual 
stress acceptability, the other two (Skewness, Kurtosis) evidence rather low performance 
values. This calls for the necessity to examine the behavior of all five 7-elements wavelet 
feature vectors in order to determine the best performing one (Energy, in the present case). 

Finally, by examining the overall NN SR values obtained for the three wavelet packet levels, 
it can be noticed that the 3rd level packets for each wavelet feature vector type never provide 
higher SR values than the corresponding 1st and 2nd levels packets, indicating it is unnecessary 
to proceed to the 3rd level of packet decomposition for the identification of the highest 
performing packet, thus shortening the WPT feature   extraction   procedure   and   related   
wavelet feature vector selection. 

Table 4.18: Overall NN SR for all sensor fusion wavelet feature vectors matrices and wavelet packets: 
Stdev = Standard Deviation, Sk = Skewness, Ku = Kurtosis, RMS = Root Mean Square, En = Energy.  

 130 × 35 130 × 7 matrices Packet 
average 

(%)  
matrix 

(%) 
Stdev 
(%) 

Sk 
(%) 

Ku 
(%) 

RMS 
(%) 

En 
(%) 

A 99.21 98.75 88.17 84.61 99.29 99.84 94.98 
D 88.92 92.60 66.38 73.17 94.83 99.60 85.92 
AA 99.69 97.92 83.29 78.38 95.78 99.76 92.47 
DA 99.28 97.68 67.84 79.77 97.29 99.76 90.27 
AD 99.46 94.31 64.70 71.62 92.22 99.53 86.97 
DD 99.76 93.92 61.99 74.31 97.52 99.30 87.80 
AAA 99.60 95.37 76.38 69.23 96.52 99.82 89.50 
DAA 99.15 93.92 61.99 74.31 97.52 99.30 87.70 
ADA 99.46 98.99 59.05 64.54 96.83 99.68 86.43 
DDA 99.52 99.29 58.06 67.90 97.82 99.53 87.02 
AAD 99.07 92.01 58.38 59.69 90.95 99.76 83.31 
DAD 99.46 89.24 63.93 70.93 91.45 99.76 85.80 
ADD 99.39 94.37 60.47 68.04 80.24 99.84 83.73 
DDD 93.61 92.45 65.63 68.13 91.53 99.84 85.20 

Feature 
average (%) 98.26 95.06 66.88 71.76 94.27 99.67  
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4.3. Surface roughness assessment  

Many engineering surfaces are manufactured to have functional properties such as bearing and 
sealing, or to have high fluid retention capabilities. According to the requirements of the 
engineering application, a functional surface has to have some specific topographic features 
that are beneficial to the application. Structural properties in particular are strongly related to 
functional requirements, and the measurement of such surfaces is very important, not only for 
the functionality of the products, but also as a feedback for the manufacturing units. 

The development of surface metrology is traditionally based on tactile methods, which gather 
data by physical contact with the surface. Although this type of analysis is adequate for most 
applications, tactile methods are generally time-consuming and can damage the workpiece. 
Furthermore, the shape and the size of the stylus can limit its capacity to penetrate into surface 
structures and show their properties. 

4.3.1  Generalities 

Surface metrology is the measurement of miniature-scale features of the surface of a work 
piece.  These measured features are used to study the deviations of the work piece surface 
from its desired shape. These features include deviations from roundness, straightness, 
flatness, cylindrical … [168].  

The output of measuring a work piece surface is a set of geometrical details and are considered 
to be the topography of the surface. The topography characterization process is composed of 
three stages: measurement, visualization, and quantification.  

After measuring the surface, the surface topography analysis starts with visualization, in order 
to have a realistic representation of the surface. Following that is the quantitative assessment 
of surface texture. This stage can be very useful for process control, tolerance verification, and 
functional analysis.  

Surface topography is composed of the basic components obtained from the breakdown of the 
surface geometry. Three types of deviations can be identified [168] as follows and are shown 
in Figure 4.30: 

- Roughness: irregularities resulting from manufacturing process.  

- Waviness: irregularities resulting from improper manufacture.  

- Very long waves: irregularities resulting from errors in sideways or thermal distortion  
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Figure 4.30: Geometric deviations on the workpiece surface [168]. 

There are several techniques for surface measurements. The principal methods are stylus 
profilometry, optical scanning techniques as well as other techniques, i.e. atomic force 
microscopy. Furthermore, the surface measurements instruments can be classified ad contact 
and non-contact surface measurement instruments. Stylus instruments are contact measuring 
instruments and, instead, optical instruments are non-contact measuring instruments. Using 
these instruments, it is possible to get 2D as well as 3D measurements. 

Roughness parameters 

Roughness is the deviation caused by the action of the cutting tool or the machining and 
results as process marks. The resulting surface roughness is the outcome of the process 
parameters such as the used cutting parameters and the chosen tool geometry. 

There are several parameters of surface roughness are described in the standards ISO 4287 and 
ISO 4288. The most common parameters in the manufacturing industry are the following 
[169] and are illustrated in Figure 4.31 [170]. 

Ra: the arithmetical mean deviation of the assessed profile. 

1

1 n

a i
i

R y
n =

= ∑  
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Rq: root mean square of the measured profile heights. 

2

1

1 n

q i
i

R y
n =

= ∑  

Rv: Maximum depth of the profile below the mean line with the sampling length. 

minv ii
R y=  

Rp: Maximum height of the profile above the mean line within the sampling length. 

maxp ii
R y=  

Rt: maximum height of the profile. 

t p vR R R= −  

 

Figure 4.31: A scheme illustrating the surface roughness parameters [170]. 

Filters are needed to separate roughness from waviness and form. Such  filter is called a phase 
correct filter or better known as the so-called Gaussian filter [171]. 

The Gaussian filter takes into consideration the following assumptions: 

- The measured profile is cut at the boundaries from both sides to remove the effect of 
boundary distortion. 

- The form has been removed before filtering. 

- The surface texture is assumed to be almost symmetric [172]. 
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The  weighing  function  s(x)  of  the  filter  is  symmetrical  and  has  the 
characteristics of the Gaussian distribution: 

2
1( ) .exp

c c

xs x π
α λ α λ

  
 = −  
   

 

where λc is the cut – off wavelength and is constant equal to 0.4697 [173]. 

Modern filters operate with digital Gaussian cut-off filters based on a cut-off length and 
express the transmission properties in nominal wavelengths, which are: 

- λs “s” refers to sampling and defines the intersection between the roughness and the 
even shorter wave components present in a surface; 

- λc “c” refers to cut-off and defines the intersection between the roughness and 
waviness components; 

-λf “f” refers to form and defines the intersection between the waviness and the even 
longer wave components present in a surface (Figure 4.32) [173]. 

 

Figure 4.32: Transmission characteristic for roughness, waviness and primary profile [173]. 

The filtering proves is illustrated in Figure 4.33 and summarized below:  

- A form fit is applied to the data to remove the form. 

- The ultrashort wave component is then removed using the λs filter. 

- The  Primary profile  is  then  passed  through  a  λc  filter,  which separates the 
waviness form from the roughness [174]. 
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Figure 4.33: Filtering process [174]. 

 

4.3.2 Surface roughness measurement techniques 

The techniques used for roughness measurements can be divided into two types of 
techniques:  profiling and area averaging.   

Profiling t e c h n i q u e s  measure surface heights point by point with a high-resolution probe. 
Some examples of high-resolution probes are a stylus or a focused optical beam. These 
techniques are accurate and quantitative. The measured surface profiles can be used to 
generate statistical parameters and find surface functions that characterize the average peak 
to height or peak spacing [175]. 

Part 6 of the standard ISO 25178 [171] defines three classes of methods for surface 
texture measuring instruments (Figure 4.34): 

- Line profiling method produces a 2Dprofile of the surface irregularities represented 
as a height function. 

- Areal Topography method produces a topographical image of the surface 
represented mathematically as a height function. 

- Area   –   integrating   method measures a representative area of a surface and 
produce numerical results that depend on area-integrated properties of the surface 
texture [175]. 
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Figure 4.34: A classification of surface texture measurement methods with example [175]. 
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Stylus profilometer 

The stylus profilometer, shown in Figure 4.35, is an instrument used for conventional two-
dimensional roughness measurement. In a typical surface tester, the pick-up draws the 
stylus along the surface at a constant speed. The transducer, which can be piezoelectric, 
inductive or laser interferometric produces an electric signal. The signal is amplified and 
digitized for subsequent data processing such as filtering and parameter calculation [168]. 

 

Figure 4.35:  Operational scheme for a stylus profilometer. 

A key component of the profilometer is the stylus. The s tandard ISO 3274 specifies the 
choice of t h e  stylus. It should be a conispheric stylus and should be used with a tip radius 
of 2,5 or 10 µm and having a cone angle of either 60 or 90 degrees [176]. 

Most importantly, the tracking force should be taken into consideration. For surface finish 
styli, the tracking force should be controlled to ensure that the surface under test is not 
damaged and also to limit any effects due to compression of the surface that might influence 
the results. ISO 3274 specifies the nominal value of the stylus force which should be 750  
µN [177]. 

The stylus is of finite dimensions. For this reason, the stylus may fail in detecting and 
following peaks and valleys. Hence, the stylus produces a somewhat distorted record of the 
surface. 
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The so-called “traced profile” [178] recorded by the stylus instrument is the locus of the 
center of the stylus (Figure 4.36). If the contacting portion of the stylus is assumed 
spherical, the effective profile will correspond to the contacting envelope. The stylus tip is 
unable to follow the surface  when  the  radius  of  curvature  is  exaggerated  and  a  
valley  is represented as a cusp (Figure 4.36). 

 

Figure 4.36: Influence of tip radius and angles [178]. 

Optical techniques 

Optical  profilers  are  not  contact methods  and  avoid  the  potential  of surface damage 
associated with the stylus that comes into contact with the surface. The following 
summarize the important issues in all optical methods: 

- Material response: optical probing is only possible when a signal above the 
threshold of the detector is received. Therefore, the material’s reflectivity is 
extremely important. 

- Lateral resolution:  this is limited by light diffraction.  Given  a numerical 
aperture NA and a light wavelength λ, the limit d is given by: 

1.22d
NA

λ
=  

- Maximum detectable slope: this depends on the kind of reflection (specular  or   
diffused),  which  in  turn  depends  on   the  surface topography and material, as 
well as on the objective working distance and numerical aperture. 

- Wavelength of full amplitude modulation: This quantity is intended as the maximum 
aspect ratio of a measurable surface structure. 
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One of the more commonly known and used instrument is the optical stylus profilometer 
[179]. 

An Optical Stylus Profilometer (Figure 4.36) is based on the idea of an auto-focusing signal 
of a laser beam detector. This laser beam with a spot diameter of about 1 μm a nd  is 
focused into a point on the surface through a lens which collects the scattered light on a 
focus detector. The detector operates a control system, modifying the distance of the lens 
from the surface so as to keep the beam focused. Consequently, the movement of the lens 
follows the surface at a constant distance and its trajectory describes the surface profile. 

The measurements obtained with the auto/focusing method do not always correlate very well 
with those obtained with stylus method. In fact, this method tends to overestimate the peak 
heights; whereas the stylus method underestimates the valley heights of the surface. 

The maximum detectable slope using an autofocusing stylus instrument is approximately 15° 
[179]. 

 

Figure 4.36: Operating principle of the auto-focusing method [179]. 

Comparison between stylus profilometer and optical stylus 

Table 4.19 shows the significant differences between stylus profilometer and optical stylus. 

Table 4.19: Comparison of two techniques. 

Stylus Profilometer 

 

Optical Stylus 

 

  
Contact Non-contact 

Not suitable for fine surface Suitable for fine surface 

Not suitable for soft surface Suitable for soft surface 

Not depends from material’s reflectivity Not suitable for material with low 
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Recent Optical technique 

Focus variation instruments represent another technique, which has been recently introduced 
in the field of surface metrology. In focus variation instruments, white light is emitted from a 
source and transmitted through the semi – transparent mirror and the objective lens to the 
specimen. Depending on the topography of the specimen, the light is reflected in different 
direction. The reflected light is partly collected by the objective in different direction. Due to 
the small depth of field of the optics, only small regions of the object are sharply imaged; 
therefore, in order to completely detect surface information, the optical arrangement is moved 
along the vertical direction while continuously capturing data. One example of the optical 
instruments is Alicona Infinite Focus shown in Figure 4.37 [179]. 

 

Figure 4.37: Focus variation instrument (Alicona Infinite Focus) [175]. 

Recent techniques 

For high resolution surface investigations, two commonly used techniques are Atomic Force 
Microscopy (AFM) and Scanning Electron Microscopy (SEM). Each of these techniques 
detects surface features at a nanometer scale. 

Scanning Electron Microscope (SEM) 

The working principle of the SEM (Figure 4.38) consists of applying a voltage between a 
conductive sample and filament, resulting in electron emission from the filament to the 
sample. This occurs in a vacuum environment ranging from to Torr (1torr = 133.3Pa). 
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The resolution and depth of field of the image are determined by the beam current  and  the  
final  spot  size,  which  are  adjusted  with  one  or  more condenser lenses and the final, probe 
forming objective lenses. The lenses are also used to shape the beam to minimize the effects 
of spherical aberration, chromatic aberration or diffraction [180]. 

 

Figure 4.38: Scanning Electron Microscope [180]. 

Atomic Force Microscopy (AFM) 

The working principle of the AFM (Figure 4.39) consists in a scanning sharp tip at the end of 
a flexible cantilever across a sample surface while maintaining a small force constant. 

The scanning motion is conducted by a piezoelectric tube scanner, which scans the tip in a 
raster pattern with respect to the sample. The tip-sample interaction is monitored by reflecting 
a laser off the back of the cantilever into a split photodiode detector. By detecting the 
difference in the photodiode detector output voltage, changes in the cantilever deflection or 
oscillation are determined [180]. 

Comparison of two techniques: Atomic Force Microscope and Scanning Electron Microscope 

In the SEM, image changes in slope can result in an increase in electron emission from the 
sample surface, producing a higher intensity in the image. However, it can sometimes be 
difficult to determine whether a feature is sloping up or down. 
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Figure 4.39: Atomic Force Microscope [180]. 

In  Figure  4.40, in the left figure,  it  is  difficult  to  determine whether  the  small  round 
structures are bumps or pits. The AFM (Figure 4.40 on the right) data contains instead height 
information. 

One of the key advantages of the SEM with respect to other types of microscopy is its large 
depth fields (Figure 4.40). This ability makes it possible   to   image   very   rough   surfaces   
with   millimeters of   vertical information within a single image. This ability also makes it 
possible to measure very rough surfaces over larger lateral areas as well. 

 

Figure 4.40: on the left: SEM Image, on the right: AFM image [180]. 
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Figure 4.41: SEM image [180]. 

Both SEM and AFM are associated with techniques which can provide compositional 
information through analyzing materials and physical properties of the sample [180]. 

Consideration when choosing a Method 

There are many factors that need to be considered when choosing a method for measuring 
surface texture. The list below illustrates these factors. 

- What type of surfaces is needed to be measured. It may be needed a specific instrument 
to measure a single type of surface in production, or a generic instrument to measure a whole 
range of surfaces. 

- What surface geometries are needed to be measured. For spatial wavelengths less 
around 500 nm only SEM can be used, but such methods will only have limited height 
ranges. 

- What surface materials are measured. This includes the material hardness, optical 
characteristic, electrical and chemical characteristic. For example, if the surface is soft, then 
this may prohibit the use of a stylus instrument. 

- The overall size of an object. Some instruments have a limited size of object that can be 
placed on the measurement table for example some optical instrument will have limited 
object height due to the finite stand-off of the objective lenses 

- Haw fast must be the measurement. Optical methods tend to have shorter measurement 
times than stylus instrument, especially where areal measurements are required. The time 
to prepare the sample may also be important, for example, when using an SEM, it is 
necessary to apply a conducting coating to a dielectric sample and allow time to pump the 
instrument down to the required level of vacuum. 

- The  financial  budget.  Surface  texture  measuring instruments can range from a few 
thousand euros for a simple hand/held stylus instrument to a several hundred thousand euros 
for optical instruments with product support and characterization software [175]. 
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4.3.3  Experimental setup and procedure 

The desired surface roughness is usually obtained by polishing the product work piece. 
Polishing experiments were conducted at Strecon A/S under the FP7 European project 
IFaCOM (FoF NMP – 285489), Intelligent Fault Correction and self-Optimizing 
Manufacturing systems. 

Machine tool 

The machine tool employed for the polishing experiment is the ABB Robot Assisted 
Polishing Machine, RAP, shown in Figure 4.45 below.  

 
Figure 4.42: Strecon’s RAP machine. 

Work Material 

The work material is AISI 52100 alloy steel, also called high performance bearing steel.   

Table 4.20: Typical analysis in percent. 

Fe:  96.5-97.32 

Cr:  1.3-1.6 

C: 0.98-1.1 

Mn: 0.25-0.45 

Si: 0.15-0.3 

S: ≤ 0.025 

P: ≤ 0.025 
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Table 4.21: 52100 Alloy Steels physical properties. 

Density 7.81 g/cm3 

Melting point:  1424°C 

Specific heat: 475 J/kg∙K 

Average Coefficient of Thermal 
Expansion: 

11.9 µm/m∙K 

Thermal Conductivity: 46.6 W/m∙K 

Electrical Resistivity: 2190 n∙m 

Table 4.22: 52100 Alloy Steels mechanical properties. 

At room temperature 

Ultimate tensile 
strength 

1748 MPa 

Yield strength 1394 MPa 

Elongation in 50 mm 11 % 

Elastic modulus 
(Tension) 

200 GPa 

Hardness 60-67 HRC 

Workpiece 

The workpiece, called Unimax roll 1, is made of AISI 52100 alloy steel. It is a 75 mm long 
cylinder that was turned and is ready for polishing. Figure 4.43 shows several samples of 
unimax rolls including unimax roll 1 used in this experiment. 

   

Figure 4.43: Test rolls. 
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Polishing stone  

The stone used for polishing is a Gesswein #800 polishing stone (MP800) (Figure 4.44). 

 

Figure 4.44: Set of polishing stones. 

Sensor Monitoring System 

The sensors are mounted on the machine as shown in the Figure 4.45 below: 

 

Figure 4.45: Sensors mounted on the RAP machine. 

The current sensor is in the electrical cabinet so it is not seen here. The drop system is 
controlling the amount of lubrication on the surface, it is controlled by the RAP software. The 
sensors are listed in the table below. 
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Table 4.23: Sensor list. 

 Sensor type 

Acoustic 
Emission 

Fuji Ceramics Corporation R-CAST M304A sensor + A1200 pre-
amplifier 

Strain strain gauge sensor 

Voltage Voltage sensor is in the electrical cabinet 

The sensor data obtained during the experiment were exported into .txt files and are listed in 
Table 4.24 below. 

Table 4.24: Sensor signal file titles. 

SensorData.AE Raw AE cDAQ9184-
18968C9Mod2. ai0 

AE signal +-10v, 1 
msps, 16bit 

SensorData.Strain_Rms RMS of strain 
signal 

cDAQ9184-
18968C9Mod1.ai0 

Strain raw value 50 
ksps, 24bit 

SensorData.Voltage_Avg Avg of the voltage 
flowing into the 
pulse motor 

cDAQ9191Mod1.ai0 Current (scale vars) 
50 ksps +-10v 

Polishing sessions 

Cutting parameters: Main spindle = 300 rpm, Feed = 5mm/s, Polishing force = 1800 or 1000g, 
Oscillation = 500 pulses pr. min, Stroke = 1mm 

The full length of Unimax roll U1 was polished over and over using: 

• 1800 grams 1 × 60passes 
• 1000 grams 3 × 60 passes 
• 1800 grams 1 (2) × 60 passes 

Six polishing sessions of 60 passes were carried out; the duration of each polishing session 
was about 15 minutes and 50 seconds. For each polishing session the AE, Strain and Current 
sensor signals were detected and stored as txt file. Each txt file contains a number of 
samplings per file variable according to the sensor signal type (Table 4.25). 
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Table 4.25: Number of samplings for each sensor signal data type. 

Sensor data Number of samplings per file 

AE 131.072 

Current 100 

Strain 16.384 

Roughness Measurements 

The roughness values (Ra, Rz, Rt) were measured at the end of each set of 60 polishing passes 
(except the last one) and their medium values are reported (Table 4.23) and are plotted in 
Figure 4.46. 

Table 4.26: Roughness measurements. 

Polishing Force Roughness Values 

 Ra Rz Rt 

1800g 0.111 1.131 1.684 

1000g 0.081 0.984 1.582 

1000g 0.083 0.908 1.065 

1000g 0.053 0.603 0.742 

1800g 0.107 1.076 1.643 
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Figure 4.46: Roughness measurements plotted.  
 

4.3.4 Sensor signal data analysis 

The sensor signal processing procedure was carried out in Matlab ®. 

The following was applied only to AE sensor signal because the received AE sensor signals 
showed an offset that needed to be removed. The procedure shown in Figure 4.47 consisted 
in: 

• Plotting of AE raw signal 

• Shifting of AE raw signals: for each AE raw signal a mean value was calculated and 
this value was subtracted from the entire signal in order to obtain the typical AE signal 
oscillating around zero (the AE raw signal presented an offset) 

• Calculating the AE RMS signals 
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(a) 

 

(b) 

 

(c) 

Figure 4.47: (a) Acoustic Emission Raw Signal; (b) Acoustic Emission Level Shifted Raw Signal; 
(c) Acoustic Emission RMS signal. 
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Sensor Signal Features Extraction 

For each sensor signal (AE, Strain, Current) two signal features extraction procedures were 
applied. 

• Statistical features 

• Wavelet features 

Statistical Features Extraction 

The statistical features extracted for each sensor signals were: 

• Mean 

• Variance 

• Skewness 

• Kurtosis 

• Energy 

Wavelet Features Extraction 

A wavelet packet transform (WPT) was used for feature extraction. The WPT of a sensor 
signal generates packets of coefficients calculated by scaling and shifting a chosen mother 
wavelet, which is a prototype function. In this way, at the 1st level of WPT the original sensor 
signal S is split into two frequency band packets, called approximation A1 and detail D1.. At 
the 2nd level, each approximation and detail packet are again split into further approximations, 
AA2 and AD2, and details, DA2 and DD2, and the process is repeated generating other 
decomposition packets of the same tree.  

The employed mother wavelet is a Daubechies 3 denoted by “db3”. The decomposition was 
performed up to the 3rd level, yielding 14 packets. For each packet, 5 packet features. 

Sensor Features Pattern Vector 

In all, 20 statistical features were extracted from them. These features were used to construct 
sensor fusion pattern vectors which are vectors used for decision making combining features 
from different sensor signal types. In the construction of sensor fusion pattern vectors, 
however, only one type of AE signals was used at a time to avoid sensorial data redundancy: 
either AEraw or AErms. Thus, two kinds of sensor fusion pattern vectors were constructed 
including conventional features from either (a) strain, voltage and AEraw; or (b) strain, voltage 
and AErms. Figures 4.48 and 4.49 illustrate the two kinds of constructed sensor fusion pattern 
vectors. 
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Figure 4.48: Sensor fusion pattern vector construction using AEraw. 

 

 

Figure 4.49: Sensor fusion pattern vector construction using AErms. 

An overall of 20 wavelet packet transform feature vectors is obtained. Using a sensor fusion 
approach, the 20 wavelet packet transform feature vectors are used for the construction of 2 
different sensor fusion patterns. The figures (Figure 4.50 and 4.51) below illustrates the 2 
types of sensor fusion patterns obtained from packet A. 
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Figure 4.50: Sensor fusion pattern construction using the AEraw and packet A. 

 

 

Figure 4.51: Sensor fusion pattern construction using the AERMS and packet A. 

In table 4.27, sensor fusion pattern vectors resulting from the statistical features are listed.  

Table 4.27: Sensor fusion pattern vectors using statistical features. 

 AE Strain Voltage 
AEraw Mean, Variance, Skewness, 

Kurtosis, and Energy. 
Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, 
Skewness, 
Kurtosis, and 
Energy. 

AERMS Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, 
Skewness, 
Kurtosis, and 
Energy. 
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In table 4.28, all possible combinations of the sensor fusion pattern vectors resulting from the 
wavelet packet transform (WPT) analysis are listed. 

All in all, 30 sensor fusion pattern vectors were constructed and were used for knowledge 
based decision making. 

Table 4.28: WPT sensor fusion pattern vectors. 

 AEraw/AERMS Strain Voltage 
A Mean, Variance, Skewness, 

Kurtosis, and Energy. 
Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

D Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

AA Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

AD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

DA Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

DD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

AAA Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

DAA Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

ADA Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

ADD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

AAD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

DAD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

ADD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

DDD Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 

Mean, Variance, Skewness, 
Kurtosis, and Energy. 
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4.3.5 Decision making and results 

The surface roughness measurements were correlated to the extracted feature vector. The aim 
is to be able to predict when the required surface roughness has reached. A similar trend 
between the surface roughness and the extracted feature vector has been noted. In figure 4.52, 
some examples illustrating the extracted feature vector with the associated surface roughness 
measurements are shown. The green lines divide the sensor signals into the 6 sets of passes. 
The red dots represent the surface roughness measured after a given set of passes is over. 

 
(a) 

 

(b) 
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(c)

 

(d) 
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(e) 

Figure 4.52: (a) Energy of strain signals; (b) Mean of current signals; (c) Energy of the AEraw signals; (d) 
Energy of the AErms signals; (e) Mean of the wavelet packet A of strain signals. 

 

Drawing a straight line between the subsequent surface roughness, the notice the trend that is 
shown below in Figure 4.53. The yellow lines are used to divide the signals into the sets of 60 
passes.  

 

Figure 4.53: Surface Roughness, Ra, trend along the detected sensor signals with a threshold  of 0.06. 
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A surface roughness was obtained for each sensor signal file through interpolation as shown 
in Figure 4.53. No information is available concerning the initial surface roughness as well as 
the final surface roughness measurement. In order to be able to correlate the surface with the 
features obtained, the first and last set of passes have been eliminated. It was assumed that the 
desired surface roughness to be less than 0.06. The red line is the threshold line. All sensor 
signals that have an surface roughness value that falls below the red line were considered to 
have an acceptable surface roughness. Those falling above the red line were considered to 
have an unacceptable value of surface roughness. So, in correspondence with the graph in 
Figure 4.53, every sensor signal file was associated with a surface roughness value. In its turn, 
this surface roughness value was given a “binary” value either 0 or 1, 0 for an unacceptable 
value of surface roughness and 1 for an acceptable value of surface roughness. 

One three-layer feed forward back propagation neural network (FF BP NN) architecture was 
implemented, 15 input nodes, 45 hidden ones, and 1 output node, i.e. a 15-45-1 architecture. 
The output layer had only 1 node, yielding a binary value associated with the residual stress 
condition: 0 = acceptable residual stress and 1 = unacceptable residual stress. 

For each of the 30 sensor fusion feature vectors, the NN learning procedures  were  carried  
out  by  using,  in  turn,  the training sets that were formed by the 15 types of sensor fusion 
pattern vectors as NN input and, as desired NN output, the corresponding one-dimensional 
vector composed  of  the  binary  values identifying the surface roughness value (0 = 
acceptable; 1 = unacceptable). 

In Table 4.29, the NN overall success rate (SR) is reported for each sensor fusion pattern 
vectors (i.e. each training data set). 

By examining the overall NN SR values obtained for all sensor fusion pattern vector, it can be 
noticed that all SR obtained are high (> 90%) indicating that the assessment process of the 
surface roughness of a workpiece during the polishing process through the extraction of 
conventional and WPT features is a reliable method.  
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Table 4.29: Overall NN SR for all 30 sensor fusion pattern vectors, threshold= 0.06. 

 SR (%) 

AEraw sensor fusion pattern vectors 
Stat. features 93.56 
A 92.85 
D 91.58 
AA 91.23 
DA 92.56 
AD 93.85 
DD 92.58 
AAA 93.12 
DAA 91.47 
ADA 90.57 
DDA 91.56 
AAD 91.23 
DAD 92.91 
ADD 91.19 
DDD 93.61 
AERMS sensor fusion pattern vectors 
Stat. features 91.18 
A 90.63 
D 91.52 
AA 92.45 
DA 91.56 
AD 90.75 
DD 91.23 
AAA 90.32 
DAA 91.23 
ADA 92.65 
DDA 93.44 
AAD 91.81 
DAD 90.88 
ADD 92.26 
DDD 92.85 
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Another approach was to increase the value of the threshold surface roughness to 0.07 instead 
of 0.06 (Figure 4.54), thus increasing the number of sensor signal files with an acceptable 
value of surface roughness. In addition, the first set and the last of polishing passes were also 
considered for decision making. These sets were considered to have an acceptable value of 
surface, i.e. the sensor signal files corresponding to these sets were associated with a binary 
output of “0”.  

 

Figure 4.54: Surface Roughness, Ra, trend along the detected sensor signals with a threshold  of 0.07. 

The NN was trained again using the adjusted sensor fusion pattern vectors and the adjusted 
binary output vector that now include all the sensor files. Also, for these training datasets, the 
NN configuration used was 15-45-1. The new resulting SRs are listed in Table 4.30. 

The SRs obtained from training the dataset at a threshold of surface roughness of 0.07 are 
lower than the SRs obtained for the training the dataset at a threshold of surface roughness of 
0.06. This is due to the fact that increasing the threshold increases the number of cases, i.e. 
sensor signals that have an acceptable, ‘1’, corresponding value of surface roughness, which 
means there is an increase in the probability of error. However, the SRs, in the second training 
session, are relatively high ranging between 80% and 85%. 
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Table 4.30: Overall NN SR for all 30 sensor fusion pattern vectors, threshold=0.07. 

 SR (%) 

AEraw sensor fusion pattern vectors 

Stat. features 82.12 

A 81.71 

D 80.62 

AA 82.52 

DA 83.32 

AD 81.40 

DD 82.21 

AAA 83.32 

DAA 82.46 

ADA 82.59 

DDA 80.11 

AAD 82.65 

DAD 83.56 

ADD 82.32 

DDD 81.12 

AERMS sensor fusion pattern vectors 

Stat. features 82.82 

A 83.82 

D 82.53 

AA 81.91 

DA 80.41 

AD 84.46 

DD 82.36 

AAA 80.12 

DAA 81.46 

ADA 82.37 

DDA 80.34 

AAD 82.14 

DAD 81.12 

ADD 80.12 

DDD 81.53 
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5. Conclusion 

The future enhancement of machining systems and their operation performance will vitally 
depend upon the development and implementation of innovative sensor monitoring systems. 
These novel systems will need to be robust, reconfigurable, reliable, intelligent and 
inexpensive in order to meet the demands of advanced manufacturing technology. These 
demands include increasingly small, precision and complex products for applications in 
biomedicine, transportation, MEMs devices, etc., as well as ubiquitous sensor systems for 
machine and system monitoring to reduce resource requirements and insure that 
manufacturing systems operate efficiently with minimal energy consumption and 
environmental impact. Luckily, today’s sensor systems are becoming increasingly dependable 
and low-priced and the signal processing capabilities of advanced algorithms and decision 
making strategies are also rapidly progressing. 

There are numerous techniques and methods of signal processing (feature extraction, selection 
and refinement) and feature integration (decision making) developed in laboratories 
worldwide, most of them really effective for sensor monitoring of machining operations: the 
main achievements were reported in sections 3 and 5. Despite industrial data availability or 
industrial conditions adoption in many studies, very few of these achievements found actual 
application in the shop floor or in commercially available tool and process conditions 
monitoring systems. The main reason seems to be the difficult, sophisticated usage of these 
techniques and methods. Usually, author’s tuning of “handmade” configuration is inevitable, 
making the procedure hardly applicable in industry. Accordingly, one of the main challenges 
in future machining process monitoring systems is the development of algorithms and 
paradigms really autonomous from machine tool operators, who are not required to know 
about methods like wavelet transform, neural networks, etc., with signal feature extraction 
and decision making performed without intervention of the operator, who should provide only 
very simple (the lesser, the better) input and information. 

Case 1 

Cutting force sensor signals were detected during experimental turning tests carried on 1045 
carbon steel with variable cutting conditions, generating different chip forms, in a machining 
sensor monitoring implementation for chip form identification. 

The three cutting force component signals, Fx, Fy, and Fz, underwent wavelet packet transform 
up to the 4th level decomposition using Daubechies 4 as mother wavelet. The output of this 
decomposition was represented by thirty wavelet packets for each cutting force component 
signal. From each wavelet packet, five statistical features were calculated to construct wavelet 
packet statistical feature vectors. A ranking criterion based on the number of overlapping 
favourable/ unfavourable chip form cases was used to select the 8 highest ranked wavelet 
feature vectors to input to feed-forward back-propagation neural networks (NN) for 
unfavourable/favourable chip form pattern recognition. 

The overall NN success rate in chip form classification was always greater than 80%, 
constituting a significant high performance. Nevertheless, a data refinement approach was 
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carried out to sort out and reject the turning tests conveying high noise into the system. NN 
training and testing was performed again using the refined data set and the corresponding 
overall NN success rate in chip form identification attained values higher than 95%. 

The very high NN performance achieved confirm that signal analysis and feature extraction 
based on wavelet packet transform is an effective and powerful method for the 
implementation of pattern recognition procedures in practical machining sensor monitoring 
applications such as chip form identification. 

Case 2 

Experimental turning tests were performed on Inconel 718 cylindrical shafts by varying the 
cutting conditions and using a multiple sensor monitoring system for the on-line assessment 
of machined surface integrity in terms of allowable residual stress value. 

The cutting force, acoustic emission and vibration sensor  signals  were  processed  using  the  
wavelet packet transform technique for the extraction of statistical features from the packet 
coefficients and the construction of sensor fusion wavelet feature vectors. The latter were 
selected for feeding into diverse neural network architectures for sensor fusion based decision 
making on machined surface integrity grounded on X-ray diffraction residual stress 
measurements. 

To facilitate the wavelet feature vector selection, it was suggested to limit the wavelet 
decomposition process to the 2nd level of wavelet packet transform. The most suitable wavelet 
feature vector was considered  to  be  the  35-elements  wavelet  feature vector capable to take 
into account the contributions from all the extracted features while yielding at the same time a 
very high, though not the highest, neural network performance in the sensor fusion based 
classification of residual stress level acceptability. 

Case  3 

Several sensors have been mounted on the RAP machine at Strecon. The signals detected 
during the polishing experiments are: acoustic emission, strain, voltage, and current. 
Furthermore, the surface roughness was measured after a number of passes defined during the 
performance of the experiment.  

The aim was to extract relevant features from the detected signals and relate them relevant to 
the surface roughness of the polished part. Through the online analysis of the sensor signals, 
the polishing process should be stopped when the required surface roughness is reached, i.e. 
the features extracted from the sensor signals will be used to make a decision on when to stop 
the polishing process. Extracting features through the conventional feature method and 
wavelet packet transform method proved to reliable in assessing the surface roughness of the 
workpiece being polished.   
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