
Tesi di Dottorato in Ingegneria Informatica e Automatica

XXVII Ciclo

Methodologies for automated
synthesis of memory and

interconnect subsystems in
parallel architectures

Author:

Luca Gallo

Supervisor:

Prof. Alessandro Cilardo

Coordinator:

Prof. Franco Garofalo

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

SecLab Group

Dipartimento di Ingegneria Elettrica e delle Tecnologie

dell’Informazione

March 2015

”Vivi come se dovessi morire domani.

Impara come se dovessi vivere per sempre.”

Gandhi

UNIVERSITY OF NAPLES “FEDERICO II”

Abstract
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

Doctor of Philosophy

Methodologies for automated synthesis of memory and interconnect

subsystems in parallel architectures

by Luca Gallo

As frequency scaling for single-core computers has today reached practical lim-

its, the only effective source for improving computing performance is parallelism.

Consequently, automated design approaches leveraging on parallel programming

paradigms, such as OpenMP, appear a viable strategy for designing on-chip sys-

tems. At the same time, emerging architectures, such as reconfigurable hardware

platforms, can provide unparalleled performance and scalability; in fact they al-

low to customize memory and communication subsystems based on the application

needs. However, current high level synthesis tools often lack enough intelligence

to capture those opportunities consequently leaving room for research.

As a first contribution of this thesis, a novel technique based on integer lattices is

proposed for tailoring the memory architecture to the application accesses pattern.

Data are automatically partitioned across the available memory banks reducing

conflicts so as to improve performance. Compared to existing techniques, the

rigorous spatial regularity of lattices yields more compact circuits. As a second

aspect, in order to sustain the execution parallelism stemming from the presence of

multiple memory banks, an efficient interconnection subsystem must be designed.

To this aim, the thesis proposes a methodology capable of targeting the intercon-

nect to the traffic profile imposed by the distributed memory. In conclusion, all

the proposed techniques are merged together in a comprehensive OpenMP-based

design flow, resulting in an automated framework that well fits in the electronic

design automation panorama.

Ringraziamenti

Il primo ringraziamento non puo’ che essere per l’Ing. Alessandro Cilardo. Alessan-

dro e’ per me un insegnante, un collega, ma soprattutto un caro amico. Da lui

ho imparato moltissimo tecnicamente, molto di piu’ che da chiunque altro finora.

Credo che la sua trasparenza, il suo impegno genuino nella ricerca e la sua passione

per i dettagli possano essere un vero esempio.

Il secondo ringraziamento va al Dr. David Thomas ed al Prof. George Constan-

tinides, per avermi ospitato presso il gruppo di ricerca Circuits and Systems

dell’Imperial College di Londra. Ringrazio inoltre Brian Durwood, C.E.O. di Im-

pulse Accelerated Technologies, per aver fornito software ed hardware necessario

per i primi esperimenti.

Nulla di cio’ sarebbe stato possibile senza il supporto di tutta la mia famiglia;

in particolare Mamma, Alessandro ed Hilde... mi avete dato la serenita’ e la

tranquillita’ necessaria per spingere sempre al massimo. Questo e’ un traguardo

mio quanto vostro.

Marco e Raffaela, grazie per essere i miei amici piu’ cari e quelli che piu’ mi hanno

accompagnato in questi anni.

Ringrazio infine tutti i miei amici e colleghi che mi sono stati accanto e mi hanno

supportato; un ringraziamento particolare e’ per Edoardo, con cui ho condiviso

innumerevoli momenti divertenti e formativi.

iv

Preface

Some of the research described in this Ph.D. thesis has undergone peer review and

has been published in academic journals and conferences. In the following, I list

all the papers developed during my research work as Ph.D. student.

• Improving multibank memory access parallelism with lattice-based

partitioning

A. Cilardo, L. Gallo

ACM Transactions on Architecture and Code Optimization (TACO), 2015

• Exploiting Concurrency for the Automated Synthesis of MPSoC

Interconnects

A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo

ACM Transactions on Embedded Computing (TECS), 2015

• Efficient and scalable OpenMP-based system-level design

A. Cilardo, L. Gallo, A. Mazzeo, N. Mazzocca

Design, Automation Test in Europe Conference Exhibition (DATE), 2013

• Design space exploration for high-level synthesis of multi-threaded

applications

A. Cilardo, L. Gallo, N. Mazzocca

Journal of Systems Architecture (JSA), 2013

• Automated synthesis of FPGA-based heterogeneous interconnect

topologies

A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo

Field Programmable Logic and Applications International Conference (FPL),

2013

• Joint communication scheduling and interconnect synthesis for

FPGA-based many-core systems

v

A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo

Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014

• Automated design space exploration for FPGA-based heteroge-

neous interconnects

A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo, N. Mazzocca

Design Automation for Embedded Systems (DAES), 2014

• Area implications of memory partitioning for high-level synthesis

on FPGAs

L. Gallo, A. Cilardo, D. Thomas, S. Bayliss, GA. Constantinides

Field Programmable Logic and Applications International Conference (FPL),

2014

• Generating On-Chip Heterogeneous Systems from High-Level Par-

allel Code

A. Cilardo, L. Gallo

Digital System Design Euromicro Conference (DSD), 2014

• Interplay of loop unrolling and multidimensional memory parti-

tioning in HLS

A. Cilardo, L. Gallo

Design, Automation and Test in Europe Conference and Exhibition (DATE),

2015

• Improving Multi-Bank Memory Access Parallelism with Lattice-

based Partitioning

A. Cilardo, L. Gallo

European Network of Excellence on High Performance and Embedded Ar-

chitecture and Compilation conference (HiPEAC), 2015

Contents

Abstract iii

Ringraziamenti iv

Preface v

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Memory at the centre of thinking 1

1.2 Interconnection infrastructures . 2

1.3 Electronic system level design . 3

1.4 Research contributions . 6

2 Automatic memory partitioning 9

2.1 Introduction . 9

2.2 The opportunity of customizing the memory architecture 9

2.3 A motivational example . 11

2.4 Mathematical background and problem formulation 12

2.4.1 Problem formulation . 18

2.5 Lattice-based memory partitioning 20

2.5.1 Generation of the solution space 21

2.5.2 Evaluation of the solutions 22

2.5.3 Enumeration of the translates 23

2.5.4 Generation of the new polyhedral representation 23

2.5.5 Storage minimization . 26

2.6 A detailed case study . 28

vii

Contents viii

2.6.1 Polyhedral model of the kernel 29

2.6.2 Modeling data parallelism 30

2.6.3 Generation of the solution space 32

2.6.4 Enumeration of the translates 33

2.6.5 Evaluation of the solution space 33

2.6.6 Storage minimization . 35

2.6.7 Code generation . 36

2.6.8 Validation of the cost function 37

2.7 Related work . 38

2.7.1 Comparisons with the hyperplane-based approach 41

2.8 Remarks and future developments 44

3 Reducing the area impact of the memory subsystem 47

3.1 Introduction . 47

3.2 Impact of partitioning on area . 48

3.3 Mathematical formalization . 53

3.4 Experimental evaluation . 55

3.5 Remarks and conclusions . 59

4 Interconnecting memory banks and processing elements 61

4.1 Introduction . 61

4.2 The importance of interconnects and concurrency 62

4.3 Problem definition . 64

4.3.1 Definitions . 64

4.3.2 Objectives . 67

4.3.3 Assumptions . 69

4.4 Proposed methodology . 70

4.4.1 Overview of the proposed method 70

4.4.2 Communication elements clustering 71

4.4.2.1 Hierarchical slave clustering 72

4.4.2.2 Master assignment to slave clusters 73

4.4.3 Inter-cluster topology definition 74

4.4.4 Scheduling and intra-cluster topology definition 75

4.4.4.1 Relaxing the temporal bound 76

4.4.4.2 Scheduling algorithms 77

4.4.4.3 Genetic algorithm (GA) 77

4.4.4.4 Priority-based list scheduling 78

4.4.4.5 Randomized priority-based list scheduling 79

4.4.4.6 Random search, exhaustive exploration, and smart-
exhaustive exploration 80

4.4.4.7 Evaluation of scheduling solutions 80

4.5 Experiments and case studies . 82

Contents ix

4.5.1 Experimental setup . 82

4.5.2 Overview of the experiments 84

4.5.3 Exploring area/latency trade-offs 86

4.5.4 Comparisons with existing methods for various scheduling
algorithms . 88

4.6 Related work . 92

4.7 Conclusions . 95

5 Putting it all together: OpenMP-based System level design 97

5.1 Introduction . 97

5.2 General overview . 98

5.3 Optimized OpenMP-to-MPSoC translation 99

5.3.1 Design flow . 99

5.3.2 A model of computation for multi-threaded applications . . 102

5.3.3 ILP model for automated partitioning and mapping 108

5.4 OpenMP support . 113

5.4.1 private and shared variables 114

5.4.2 parallel directive . 114

5.4.3 for directive . 115

5.4.4 critical directive . 116

5.5 Functional simulation . 117

5.6 Early cost estimation . 118

5.7 System architecture . 120

5.8 A step by step example: parallel JPEG encoding 122

5.8.1 Parallel JPEG encoding . 122

5.8.2 Design steps . 123

5.8.3 Quantitative results for the JPEG encoder 126

5.9 Experimental results . 128

5.9.1 Comparisons with previous work 128

5.9.2 Overheads and comparisons with software approaches 129

5.10 Related works . 131

5.11 Conclusions . 133

6 Conclusions 135

Bibliography 139

List of Figures

1.1 An example of a ESL design flow 4

2.1 Motivation example. (a) Kernel code. (b) Lattice-based partition-
ing. Each dotted box embraces the locations accessed by a specific
iteration, i.e., a specific value of i and j, while the numbers associ-
ated to each location indicate the memory bank where the location
is mapped. (c) Hardware datapath inferred from the memory par-
titioning solution of part (b). 11

2.2 (a) A simple example of a parallel loop. (b) The schedule function of
the statement in the loop body. (c) A representation of the memory
space. The (i, j) pairs corresponding to the iteration domain of the
loop are emphasized by the gray backgroud. The blue rectangles
represent parallel sets of iterations. (d) The red parallelograms
represent the memory locations (data sets) accessed by the parallel
iterations in part (c). 14

2.3 Prototype toolchain implementing lattice-based partitioning. 28

2.4 2D Windowing kernel. (a) Original version. (b) 2x Stripmined and
parallelized version. 29

2.5 Example of data sets for the example kernel. For data setM (PS (t, 0, 0))
the figure also shows the images of the slice PS by two single access
functions. Overall, each data set is formed by nine such images. . . 32

2.6 Two different mapping solutions corresponding to the fundamental
lattices L (B8) and L (B3). For each of the two solutions, the figure
highlights one of the translates causing the highest conflict count. . 34

2.7 Hyperplane-based memory partitioning. (a) Memory bank map-
ping. (b) Hardware datapath inferred from memory bank mapping.
The symbol MBi in the figures denotes the ith bank. 41

2.8 (a) Code snippet and related data sets on a lattice-based partition-
ing solution. (b) Possible hyperplane-based solutions. 42

3.1 The original version of the generic bidimensional sliding window
filter. a) Code, b) Memory accesses to the input image for some
iterations, c) Synthesized datapath 50

xi

List of Figures xii

3.2 The unrolled version of the generic bidimensional sliding window
filter. a) Code, b) Memory accesses to the input image for some
iterations, c) Synthesized datapath 51

3.3 Area efficiency (normalized to the case of 1 bank) versus number of
banks. a) Image Resize algorithm, b) Gauss-Seidel kernel 57

3.4 a) Area efficiency (normalized to the case of 1 bank) versus number
of banks for the 2D-Jacobi. b) Area efficiency versus unrolling con-
figurations for all benchmarks and 8 memory banks. Each sample
is intended to be normalized to the case of a rolled version using 1
memory bank. The black circles are the solutions predicted by our
methodology for avoiding bank switching, unrolling beyond them
does not yield substantial advantages 57

3.5 Comparison of the three techniques. The area is reported by solid
bars, the latency by white filled bars. 59

4.1 An example of topology exhibiting three levels of parallelism (”M” :
master, ”S” : slave, ”B” : bridge.): Global parallelism (red), Intra-
domain parallelism (green), and Inter-domain parallelism (blue). . . 64

4.2 A few examples (”M” : master, ”S” : slave, ”B” : bridge.) (a) A
Task List (TL). (b) A Dependency Graph (DG). (c) A Communica-
tion Schedule (CS). (d) A Synthesizable Topology (ST). 64

4.3 Proposed interconnect synthesis flow 70

4.4 An example of slave clustering. Slave nodes are on the x-axis, while
the Euclidean Distance is on the y-axis. 73

4.5 The effect of considering multiple paths. (”M” : master, ”S” : slave,
”B” : bridge.) (a) Some communication requirements of an example
application. (b) Schedule with no multiple paths. (c) The commu-
nication architecture implementation. (d) Schedule with multiple
paths. 75

4.6 Example of temporal bound relaxing 77

4.7 Deriving a topology from a given schedule. (a) Compatibility graphs
for the schedule in figure 4.2. (b) An enhanced schedule, with less
concurrency, for the same application. (c) Its compatibility graphs.
(d) The derived topology. 81

4.8 Synthesized topologies and their schedule found for Bench-III with
the Randomized Priority-based List Scheduling and two different
Area constraints. (a) The Synthesizable Topology (ST) obtained
with an area constraint of 4000 LUTs. (b) The ST obtained with an
area constraint of 2700 LUTs. (c) The Communication Scheduling
(CS) obtained with an area constraint of 4000 LUTs. (d) The CS
obtained with an area constraint of 2700 LUTs. 87

4.9 Latency comparison. The proposed approach and [1] are used under
the same area constraints . 90

List of Figures xiii

4.10 Dynamic energy consumption comparison. 92

4.11 Area comparison of interconnects yielding the the same latency . . 92

5.1 The overall design flow. The pink area refers to memory and com-
munication infrastructure synthesis, the green area refers to DSE,
the red area refers to simulation, and the blue area refers to hard-
ware synthesis . 100

5.2 An example of SMPN . 105

5.3 SMPN derived from the simple OpenMP code snippet in the text . 106

5.4 SMPN derived from the OpenMP code with two consecutive parallel
constructs . 108

5.5 Architecture of a heterogeneous MPSoC derived from an OpenMP
program . 120

5.6 The block diagram of the case-study: JPEG encoding 123

5.7 PtolemyII simulation of the case-study 125

5.8 An example of execution of the case-study application 125

5.9 DSE results for the case-study . 127

5.10 Comparisons with [2] (denoted Leow et al.) for the implementation
of of the Sieve of Eratosthenes algorithm. (a) Speed-up vs. number
of threads. (b) System frequency (MHz) vs. number of threads. . . 129

5.11 Experimental results. (a) Normalized overhead vs. number of
threads. (b) Average overhead slopes for several OpenMP constructs.130

List of Tables

2.1 Synthesis results. (OSF: outer stripmining factor, ISF: inner strip-
mining factor) . 43

3.1 Example of area implications of bank switching 52

3.2 Unrolling factors returned by the application of the methodology . . 56

4.1 Scheduling Algorithms . 77

4.2 Benchmarks Characteristics . 85

4.3 Utilization of communication channels 90

4.4 The runtime (ms) of the proposed scheduling algorithms 91

5.1 Interpretation of the scheduling constraints 113

5.2 The most relevant software metrics identified by EASTER 119

5.3 Results of the hardware cost early estimation 126

5.4 Actual results in terms of hardware cost 126

xv

Dedicato a papa’

xvii

Chapter 1

Introduction

1.1 Memory at the centre of thinking

Systems designers, whether they use FPGA or ASIC technologies, strive to in-

crease memory bandwidth. Memory architecture has become a prevalent topic

to the extent that systems architects, at any level, must tune, tweak and plan

systems with the memory at the centre of their thinking. The reason behind has

been clear for many years already: GigaHertz clock frequencies and hundreds of

processing elements, also known as cores, flood the memory system with requests

of billions of bytes per second. Unfortunately, the evolution of electronic systems

has undermined the pillars of traditional memory design. Multi-threading and het-

erogeneity have changed the way memory is accessed, patterns are getting highly

unpredictable and general rules that have driven traditional caching strategies are

slowly losing their validity when coming to such complex systems. In fact, both of

those trends complicate the simple locality of references upon which DRAMs and

caches bandwidth depends. On the other hand, emerging computing technolo-

gies provide the unprecedented opportunity of tailoring the memory architecture

to the application access pattern because they are provided with high degree of

flexibility. This customization possibility appears, today, one of the most viable

possibilities for tackling the thick memory wall. Field Programmable Gate Arrays

(FPGAs), for example, can contain up to thousands of on-chip memory banks that

can be accessed simultaneously by parallel computing elements through complex

1

Chapter 1. Introduction 2

interconnects. While an off-chip memory is often still required due to capacity

requirements, on-chip memory is the highest throughput, lowest latency possible

memory in a FPGA-based system. Being made of several physically independent

banks, it offers a considerable access parallelism. As a direct consequence, the

problem of augmenting memory bandwidth is strictly related to partitioning data

wisely among the available banks reducing as much as possible the number of

conflicts.

Part of this thesis analyzes the problem of automatic memory partitioning target-

ing platforms provided with multiple independent memory banks. Specifically, a

high level specification of an application is statically analyzed in order to derive

the partitioning solution that most boosts bandwidth. In that respect, the thesis,

first proposes solutions and algorithms that extend the state of the art and then

analyzes the impact of those choices in terms of performance and area.

1.2 Interconnection infrastructures

No matter how perfectly the memory architecture is tailored to the application, a

bottleneck in the communication between two components might stall the entire

chip [3], even provoking a functional failure. Given the high data rate that the

communication subsystems must sustain, they have evolved considerably during

the last years. First-generation on-chip interconnects consist of conventional bus

and crossbar structures. Buses are mostly wires that interconnect IP cores by

means of a centralized arbiter. Examples are AMBA AHB/APB [4] and CoreCon-

nect from IBM (PLB/OPB) [5]. However, the growing demand for high-bandwidth

interconnects has led to an increasing interest in multi-layered structures, namely

crossbars, such as ARMAMBA AXI [6] and STBus [7]. A crossbar is a communica-

tion architecture with multiple buses operating in parallel. It can be full or partial

depending on the required connectivity between masters and slaves. Crossbars

provide lower latency and higher bandwidth, although this benefit usually comes

at non-negligible area costs compared to shared buses. Buses and crossbars are

tightly-coupled solutions, in that they require all IP cores to have exactly the

same interfaces, both logically and in physical design parameters [8]. Networks on

Chapter 1. Introduction 3

Chip (NoCs) [9] enable higher levels of scalability by supporting loosely coupled

solutions. NoCs are particularly well-suited when targeting reusability, maintain-

ability, and testability as the main design objectives, while bridged buses/crossbar

architectures ensure low-power, high-performance, and predictable interconnects.

As in the case of memory architectures, customizing the interconnect according

to the applications requirements is the most rewarding solution in terms of per-

formance, area and power/energy. Especially in presence of a partitioned memory

subsystem, designing the interconnect analyzing the traffic between processing

elements and memory slaves, i.e. banks, is particularly rewarding. In fact, al-

though this topic is of high interest for industrial and academic research, coupling

the memory architecture definition and the interconnect design so tightly is what

makes the proposed methodologies distinguish from the current literature. When

both problems are analyzed together and blended in a single design flow they

enable high levels of scalability, area and power efficiency.

1.3 Electronic system level design

The same technological platforms allowing a high degree of customization for mem-

ories and interconnects pose a key challenge for today’s semiconductor industry:

the so-called programmability wall. As they get more and more heterogeneous,

fine-tuning programs for performance becomes very complicated, or at least far

more difficult than it was when the Von Neumann abstraction was mainstream.

Heterogeneous computing refers to systems that use a variety of different com-

putational units: general-purpose processors, special-purpose units, i.e. digital

signal processors or the popular graphics processing units (GPUs), co-processors

or custom acceleration logic, i.e. application-specific circuits, often implemented

on field-programmable gate arrays (FPGAs). Unlike the general-purpose proces-

sor case, such computational units act as accelerators and need to be carefully

programmed on a per-application basis to yield real performance improvements.

To overcome all those programmability issues, Electronic System Level (ESL) de-

sign is an emerging design approach that is essentially focused on raising the design

Chapter 1. Introduction 4

abstraction levels [10]. It encompasses methodologies and tools for design automa-

tion and it is the big picture, the scientific context in which this thesis is placed.

ESL design is also defined as concurrent design of hardware and software describ-

ing the system at a behavioral level. The algorithmic nature of the system, must

be captured by the designer and then formalized into an appropriate specification.

The height of the abstraction level at which the specification is offered, creates

a big gap between the design phase and the effective synthesis phase primarily

because several design choices are possible.

To give a clearer idea of what ESL design is, an example of a C/OpenMP based

flow is depicted in figure 1.1.

Figure 1.1: An example of a ESL design flow

It starts with the description of the system’s behavior using an appropriate MoC

(Model Of Computation) that in this case is C with OpenMP extensions. The

choice of using a widespread programming language as MoC, gives the advantage

of a friendly learning curve but lacks any direct formal verification and analysis

method. Also, ussing a MoC where a coarse-grained parallelism is identified explic-

itly at task-level gives hints to the subsequent steps of the flow on how to perform

Chapter 1. Introduction 5

the Design Space Exploration (DSE), hence limiting the design space while achiev-

ing the specified parallelism. Furthermore, using a programming language as MoC

enables the designer to immediately have an executable specification of the system

ready to give a functional outcome of the specification. For example, in the case

of OpenMP, a fully compliant code could be executed on the same workstation

where the left steps of the flow are carried out. The hardware/software parti-

tioning, either performed manually or supported by automated tools, corresponds

to a bifurcation in the flow. It is during the hardware software partitioning that

the DSE procedure takes place. The output is to determine where and how to

map functional components (in this case OpenMP threads), as hardware units or

software subsystems. In fact, this example flow is highly general because it com-

bines a platform-based methodology (bottom-up) and a top-down path by means

of high-level synthesis. Typically, components with strict I/O requirements, are

included into the system using pre-synthesized soft-macros in the form of netlists

or VHDL code whereas OpenMP threads are subject to high level synthesis. Once

the whole system is assembled it can be synthesized using back-end tools and the

software can be compiled using appropriate compilers for the target processors.

One of the key enabler of ESL design approaches is High Level Synthesis (HLS).

Putting it simply, HLS is a technology transforming an high-level language into

a functionally equivalent circuit. HLS has the potential of hiding the implemen-

tation details underlying the high-level specification of the application semantics

and algorithms, including such low-level aspects as timing, data transfers, and

storage [11]. This can greatly reduce design times and verification efforts [12]. In

the example flow shown in figure 1.1, HLS in involved for translating the OpenMP

threads into hardware circuits.

Since ESL design flows and HLS have to fill a considerable semantic gap, typically

from C to gates, they leave open a number of design choices subject to discussion

and improvements. While some of them are widely discussed in the existing lit-

erature such as pipelining techniques, loop scheduling and tasks mapping, others

have been less subject to research even though being equally important for sys-

tems performance. One of those issues is, unsurprisingly, memory partitioning.

For example, it’s widely known that an FPGA has many independent banks and

trivial partitioning choices are already adopted by commercial HLS engines, but

Chapter 1. Introduction 6

targeting the memory architecture to the application profile is a much wider thing

as we will see in chapter 2 and 3. One more big issue concerns how the communi-

cation subsystem is realized and targeted to the specific application as explained

in chapter 4. Later in the thesis in chapter 5, a full ESL design flow is proposed

that addresses both those problems with methodologies that compare well against

the existing literature.

1.4 Research contributions

This thesis presents contributions enriching the existing literature in the three

areas of design automation outlined previously: memory partitioning, intercon-

nections design and ESL design flows. The design of memory and interconnection

subsystems are deeply related tasks and tailoring both of them to the application’s

specific needs enables very high levels of scalability. Using a bottom-up approach,

the thesis first examines those two issues and then integrates the results into a

comprehensive ESL design flow based on OpenMP.

In chapter 2, a novel memory partitioning strategy is presented that allows to

target the memory architecture to the specific application. The application mem-

ory accesses are modeled by means of mathematical tools, so as to derive a sat-

isfying partitioning solution formally. The proposed approach is based on the

Z-polyhedral mathematical framework as it recognizes in integer lattices a pow-

erful tool for partitioning the application’s memory among the existing banks.

Geometrically speaking, integer lattices are a superset of hyperplanes that are the

state of the art for automatic partitioning in the context of digital synthesis. Be-

yond naturally enlarging the available solutions space, lattices are provided with a

spatial regularity that is directly reflected into more compact datapaths avoiding

unpleasant steering logic to connect memory ports and processing elements. This

effect is thoroughly analyzed in chapter 3, in which we formalize, for the first time

in the literature, the interplay between memory partitioning and area consump-

tion. The adopted benchmarks have shown that the adoption of lattices instead of

hyperplanes, can save up to nearly 50% of the area of the synthesized circuit while

achieving the same latency. Moreover, in the same chapter, we propose a technique

Chapter 1. Introduction 7

to reduce the area impact of partitioning using loop unrolling, a well-known code

transformation. Recognizing loop unrolling as a way of improving the synthesis

in relation to memory partitioning has never been done before to the author’s

knowledge. Experiments have shown that unrolling, in presence of a partitioned

memory, might improve the latency-area product of the synthesized circuit con-

siderably; in fact, an average improvement of roughly 3x has been observed in the

analyzed benchmarks.

As briefly explained, chapters 2 and 3 present stand-alone methodologies that can

improve current HLS software, but they keep an important hypothesis: the in-

terconnection between processing elements and memory banks is always a partial

crossbar. Although this is exactly what happens in current HLS tools, the hypoth-

esis maybe unacceptable for a comprehensive ESL design flow. Sparse crossbars

are only a single point in a much wider solutions space. That is the main mo-

tivation behind chapter 4 in which we propose novel techniques for customizing

the interconnect design according to the application needs. Dependencies among

communications between processing elements and memory banks are considered

along with the degrees of freedom the application offers in terms of communica-

tion scheduling. This enables to perform the architecture design concurrently to

communication scheduling yielding efficient systems. The experimental data show

a considerable impact in terms of latency-area product and energy consumption.

In fact, according to the considered benchmarks, the approach can save up to

70% area if compared to a partial crossbar keeping the performance degradation

around 10%, whereas the energy consumption can be up to 40% less than existing

similar approaches.

Finally, in chapter 5 we put it all together. We merge the proposed techniques to-

gether into an OpenMP-based ESL design flow. The flow also embeds the support

for some OpenMP features usually dropped by existing approaches like dynamic

scheduling that is vital for heterogeneous systems where load balancing mecha-

nisms are unavoidable. Experiments have demonstrated a 3.25x speedup improve-

ment and a 4x improvement of the clock frequency against existing techniques.

In addition, the well-known EPCC benchmarks show that the overhead of our

OpenMP support is one order of magnitude less than common implementations

for desktop workstations.

Chapter 2

Automatic memory partitioning

2.1 Introduction

This chapter presents in detail one of the main contributions of the thesis, that

is a novel memory partitioning technique for high level synthesis. After having

introduced the basic theory behind the approach, which relies on integer lattices,

we formalize the partitioning problem and propose an algorithmic solution to solve

it. The advantages over previous existing techniques are clearly stated using some

concrete examples. A step-by-step case study, later in the chapter, clarifies the

technique thoroughly.

2.2 The opportunity of customizing the memory

architecture

During the last few years, a particularly important trend has clearly emerged in

parallel computing architectures, indicating that significant improvements in per-

formance can only be achieved by customizing the computing platform to some

extent. In particular, heterogeneous computing refers to systems made of a variety

of different general- and special-purpose computational units, such as graphics pro-

cessing units (GPUs) [13], digital signal co-processors [14], and custom accelerators

9

Chapter 2. Automatic memory partitioning 10

typically implemented on field-programmable gate arrays (FPGAs) [15]. Many of

such advanced computing platforms are provided with several independent mem-

ory banks that can be accessed simultaneously by parallel computing elements

through complex interconnects. This potentially provides an opportunity for im-

proving the memory bandwidth available to the application. However, in order to

take full advantage of the memory architecture, adopting suitable memory parti-

tioning strategies based on the actual application access patterns is of paramount

importance.

One of the contributions of this thesis is to propose a methodology for automated

memory partitioning in architectures provided with multiple independent mem-

ory banks, like FPGAs. The approach encompasses both the problem of bank

mapping and the minimization of the total amount of memory required across

the partitioned banks, referred to as storage minimization here. Most of the re-

sults presented apply to affine static control parts (SCoPs), i.e., code segments

in loops where loop bounds, conditionals, and subscripts are affine functions of

the surrounding loop iterators and of constant parameters possibly unknown at

compile-time. The methodology is based on the Z-polyhedral mathematical frame-

work [16] allowing a compact and comprehensive representation of the code and

the related transformations. Furthermore, it adopts a partitioning scheme based

on integer lattices, identifying memory banks with different full-rank lattices which

constitute a partition of the whole memory. The methodology relies on a method

for enumerating the solution space exhaustively and evaluating each solution based

on the time overhead caused by conflicting accesses. A technique for representing

the transformed program, suitable for existing tools that generate code from Z-

polyhedra, is proposed as well. For the storage minimization problem, an optimal

approach is adopted, yielding asymptotically zero memory waste or, as an alterna-

tive, an efficient approach ensuring arbitrarily small waste. The above techniques

are demonstrated through a prototype toolchain relying on a range of software li-

braries for polyhedral analysis, while the experimental data are collected through

high-level synthesis (HLS) of FPGA-based hardware accelerators. Adopting a

lattice-based approach to memory partitioning in the context of HLS, the pro-

posed technique improves on a few very recent results in the technical literature

that formalize the same problem by means of less powerful mathematical tools,

Chapter 2. Automatic memory partitioning 11

resulting in narrower solution spaces and thus missing potential solutions. After

having explained the technique, extensive comparisons with state-of-the-art pro-

posals concerned with memory partitioning in the context of HLS are presented,

showing that lattice-based partitioning can effectively identify a superset of the

solutions spanned by existing works.

2.3 A motivational example

The motivational example proposed here is a downsizing algorithm used for image

resizing relying on bilinear interpolation [17], where the image is shrunk by a factor

of 2 in both dimensions. For the sake of simplicity, we neglect boundary conditions

and the source image is supposed to be grayscale. Each pixel in the target image

is determined by averaging a 2× 2 block of the source image. The kernel consists

of a perfect loop nest and comprises only one statement. There are neither loop-

carried dependencies nor loop-independent dependencies [18]. The code is thus

fully parallel. According to the bilinear interpolation method, each instance of the

statement accesses simultaneously four locations of the source image. Figure 2.1.a

shows the kernel code while figure 2.1.b highlights the access patterns of a few it-

erations, where each dotted box corresponds to the locations accessed by the same

iteration (i.e., the same value of i and j). Clearly, if the number of memory ports

Figure 2.1: Motivation example. (a) Kernel code. (b) Lattice-based partition-
ing. Each dotted box embraces the locations accessed by a specific iteration,
i.e., a specific value of i and j, while the numbers associated to each location in-
dicate the memory bank where the location is mapped. (c) Hardware datapath

inferred from the memory partitioning solution of part (b).

Chapter 2. Automatic memory partitioning 12

equaled the number of pixels in the source image, all read operations could virtu-

ally be performed in parallel1. In contrast, if we have limited memory banks and

the array elements are not properly mapped to the available banks, memory con-

flicts may arise and the inherent parallelism is not fully exploited. A few examples

of partitioning approaches include cyclic and a block partitioning strategies [19].

Both first linearize the array. Then, cyclic partitioning assigns a memory location

m to memory bank m mod NB, where NB is the number of banks, whereas block

partitioning maps m to memory bank ⌊m/NB⌋. Assume for example we have

only four memory banks available. In fact, with neither of the two approaches,

four ports are sufficient to completely avoid conflicts. For instance, if we have a

480 × 640 image and adopt a cyclic partitioning strategy, iteration i = 0, j = 0

would simultaneously access both A[0 · 640 + 1] and A[1 · 640 + 1] in the flattened

array and a conflict would arise since 1 mod 4 = 641 mod 4. In essence, the tech-

nique proposed here seeks different approaches for partitioning the memory space

such that improved parallelism in memory accesses can be achieved. Figure 2.1.b

shows the mapping determined by the lattice-based partitioning technique, intro-

duced later. As highlighted by the figure, the memory accesses in the statement

can be completely executed in parallel. Figure 2.1.c contains the hardware data-

path implementing the example kernel based on the partitioning strategy. Access

parallelization can be achieved with the lowest overhead in terms of steering and

control circuitry. In fact, the mapping scheme follows a regular pattern and, con-

sequently, a direct connection between the memory banks and the functional units

is sufficient to access the required data across all iterations.

2.4 Mathematical background and problem for-

mulation

This section briefly reviews a few mathematical concepts and results that are

essential for the formulation of the lattice-based partitioning technique.

1The same would apply to write operations, although we ignore them in this example for the
sake of simplicity

Chapter 2. Automatic memory partitioning 13

Given n linearly independent vectors b⃗0 = (b0,0, . . . , b0,m−1) , . . . , b⃗n−1 =

(bn−1,0, . . . , bn−1,m−1) ∈ Rm, a lattice L is a subset of Rm defined by
{∑n−1

j=0 zj · b⃗j|zj ∈ Z
}
.

We refer to b⃗0, . . . , b⃗n−1 as a basis of the lattice [20]. The rank of the lattice is

n whereas its dimensionality is m. If n = m the lattice is a full-rank lattice. In

particular, if the basis is made of integer points, the lattice is an integer lattice.

This approach will only deal with integer lattices.

A basis can be also regarded as an m × n matrix B = {bij} having the vectors

b⃗j as columns. We will say that B spans a lattice by using the notation L (B).

Two different bases B = {bij}, C = {cij} span the same lattice L if and only if

there exists a unimodular matrix U (i.e., a square matrix with integer entries and

determinant equal to ±1) such that B = C ·U.

Given a basisB, a fundamental parallelepiped associated withB is a set of points in

Rm defined by FP (B) =
{∑n−1

j=0 rj b⃗j : 0 ≤ rj < 1
}
. The set FP (B) is clearly half-

open and the points in its translates FP (B)+ t⃗, with t⃗ ∈ L(B), form a partition of

Rn. The determinant of a lattice, denoted det (L(B)), is the n-dimensional volume

of its fundamental parallelepiped and may be regarded as the number of integer

points contained in it. For a full-rank lattice, det (L (B)) = | det (B) |.

An integer affine lattice Lt is obtained by translating an integer lattice L (B) by

a constant offset t⃗ = (t0, . . . , tm−1) ∈ Zm, i.e. Lt =
{
B · z⃗ + t⃗|z⃗ ∈ Zn

}
.

An integer polyhedron P is a subset of vectors in Zm satisfying a finite number of

affine (in)equalities with integer coefficients: P =
{
z⃗ ∈ Zm|Q · z⃗ + q⃗ ≥ 0⃗

}
, where

matrix Q and vector q⃗ specify the (in)equalities. An integer polytope is a bounded

integer polyhedron.

By combining multiple affine constraints on integer variables, either equalities or

inequalities, by means of logical operators (¬, ∧, and ∨) and quantifiers (∀ and ∃),
we can specify special sets known as Presburger sets, which are particularly relevant

to this context. Consider an integer polyhedron, P =
{
z⃗ ∈ Zm|Q · z⃗ + q⃗ ≥ 0⃗

}
,

and an affine function F (z⃗) = F · z⃗ + f⃗ , where F is an n×m matrix. The image

of P under F is in the form F (P) =
{
F · z⃗ + f⃗ |Q · z⃗ + q⃗ ≥ 0⃗, z⃗ ∈ Zm

}
. These

structures are linearly bound lattices (LBLs) [21] and can in fact be expressed as

Presburger sets.

Chapter 2. Automatic memory partitioning 14

A Z-polyhedron Z is the intersection of a polyhedron P c =
{
z⃗ ∈ Zm|Q · z⃗ + q⃗ ≥ 0⃗

}
and an integer full dimensional lattice L = {B · z⃗, z⃗ ∈ Zm}: Z = L ∩ P c. A Z-

polyhedron can in fact be regarded as an affine image of an integer polyhedron.

The hypotheses on the affine function ensure the compliance with LeVerge’s condi-

tions [22] for an LBL to be a Z-polyhedron. This representation has been showed

to be complete by [23]. We will rely on a number of previous results concerning

Z-polyhedra [16]:

• The intersection of two Z-polyhedra is still a Z-polyhedron;

• The union of Z-polyhedra, called a Z-Domain, is not a Z-polyhedron in

general;

• The difference between two Z-polyhedra is a Z-Domain;

• The preimage of a Z-polyhedron by an affine invertible function is a Z-

polyhedron;

• The image of a Z-polyhedron by an arbitrary affine function is an LBL;

• An LBL, and hence a Presburger set, can be expressed as a union of Z-

polyhedra [16]. A solution for deriving such union from a generic LBL is

given in [24].

Figure 2.2: (a) A simple example of a parallel loop. (b) The schedule function
of the statement in the loop body. (c) A representation of the memory space.
The (i, j) pairs corresponding to the iteration domain of the loop are emphasized
by the gray backgroud. The blue rectangles represent parallel sets of iterations.
(d) The red parallelograms represent the memory locations (data sets) accessed

by the parallel iterations in part (c).

Chapter 2. Automatic memory partitioning 15

Z-polyhedra can be used to represent execution information of program loop nests,

particularly the so-called affine Static Control Parts (SCoPs), having compile-

time predictable control flow as well as loop bounds, subscripts, and conditionals

expressed as affine functions of the loop iterators, which is common in a wide

range of HPC and scientific program kernels, such as image processing and linear

algebra operations. Representing SCoP code by means of parametric polyhedra

enables a precise and instance-wise representation of the execution information,

unlike abstract syntax trees (ASTs) normally used by compilers, as well as the

composition of well-known loop transformations in a single step [25]. In fact, some

compilers currently embody tools for code manipulation based on the polyhedral

abstraction, i.e., GCC Graphite, LLVM Polly, RStream [26]. Following are a few

mathematical concepts linking the Z-polyhedral model with the representation of

SCoP code.

The iteration vector v⃗ of a given loop nest is a vector having as elements the indices

of the surrounding loops along with the parameters and the constant term. As an

example, the iteration vector for the loop nest in figure 2.2.a is (i, j, N, 1)2. While

the iteration vector represents an execution instance of the loop nest, the iteration

domain DS of a statement S in a loop nest is the set of values v⃗ satisfying the loop-

bound constraints. Because an iteration domain is delimited by affine loop-bound

constraints, it can be expressed as DS =
{
v⃗ : DS · v⃗ ≥ 0⃗

}
for a suitable matrix

DS. Hence, it turns out to be a (parametric) integer polytope, or a Z-polytope in

case of non-unit strides.

Each reference to an array A in the loop nest is characterized by a memory access

function F (v⃗) : Zn −→ Zd, where d is the dimensionality of array A in memory.

The access function F associates each value of the iteration vector v⃗ with a unique

cell of array A. Since the subscripts in SCoP code are affine functions, F can

always be expressed as F = F · v⃗, where F is a d × |v⃗| matrix. As an example,

the first reference to array A in figure 2.2.a has the access function F (v⃗) = F · v⃗ =

(i− 1, j − 1). The set of integer points (memory locations) accessed by a certain

reference in a statement S can be regarded as the image of the Z-Polytope DS, i.e.,

the iteration domain, by the affine access function F of that memory reference.

2The notation (i, j, . . .) will always denote a column vector.

Chapter 2. Automatic memory partitioning 16

The result is in general an LBL, hence a union of Z-polyhedra, since we cannot

guarantee the invertibility of F .

Although not relevant to this context, polyhedra are also essential for representing

data dependencies between statements. In particular, given two statements Si and

Sj and their iteration vectors v⃗ and w⃗, respectively, we can build a dependence

polyhedron, having a dimensionality equal to |v⃗| + |w⃗|, that includes all pairs of

instances ⟨v⃗, w⃗⟩ such that v⃗ ∈ DSi
, w⃗ ∈ DSj

, and w⃗ has a dependency on v⃗.

Each instance v⃗ of a statement S in a loop nest can be associated to a point in

time based on a schedule function ΘS(v⃗), which in fact establishes an ordering of

the instances of S, possibly based on a parallelizing transformation. The schedule

function has the form ΘS(v⃗) = Θ · v⃗, where Θ is an n×|v⃗| matrix. The parallelism

in the code can be exposed by transforming the iteration domain and making the

schedule matrix Θ have a zero-column corresponding to each parallel for loop. In

figure 2.2.b the schedule has four columns: two for the loop iterators i and j, one

for parameter N , and one for the constant term. In this particular example, the

outer loop was kept serial, while the inner loop was parallelized. Consequently,

the schedule is one-dimensional, i.e., the matrix has one row. The parallelism can

be easily recognized by the fact that the schedule has a zero term in the position

corresponding to the parallel loop iterator: all instances with the same value of i

can be executed in parallel independent of the value taken by j.

To model data-level parallelism, we rely on the concept of parametric polyhedral

slice, defined for each statement S as follows:

PS

(
k⃗
)
=

v⃗ :

DS 0

−− −−
ΘS −I

(
v⃗

k⃗

) ≥
−−
=

0⃗

The horizontal line in the above notation separates the inequality constraints, here

DS ·v⃗ ≥ 0⃗, from the equality constraints, here Θ·v⃗ = k⃗. The slice PS

(
k⃗
)
identifies

all iteration instances in DS that correspond to the same schedule value k⃗. Notice

that, being an intersection of Z-polyhedra, PS

(
k⃗
)
is still a Z-polyhedron. Each

component kh of the parameter vector k⃗ varies within the projection of the domain

DS on the corresponding serial dimension. In the example of figure 2.2, the set

Chapter 2. Automatic memory partitioning 17

of parallel instances are the points along the planes having i as a constant value.

Two of these sets are represented by the blue rectangles in figure 2.2.c. Vector

k⃗ has only one component because we have only one outer sequential dimension

corresponding to the i iterator.

Given an array A and a statement S containing a number of memory references,

each with affine access function Fh, call M(v⃗) the set of memory cells of array A

accessed by the statement instance v⃗. Clearly, M(v⃗) =
∪

h Fh (v⃗). The definition

can be obviously extended to sets of instances. In particular, M
(
PS

(
k⃗
))

=∪
h ImageFh

(
PS

(
k⃗
))

is the set of the memory cells referenced by the parallel

iterations in the parametric slice PS

(
k⃗
)
. We call M

(
PS

(
k⃗
))

a data set. For a

certain statement S, the data set is a function of the parameter k⃗ and includes

all memory locations that can be potentially accessed simultaneously according to

the given schedule. Notice that, although PS

(
k⃗
)
is a Z-polyhedron, M

(
PS

(
k⃗
))

is not necessarily a Z-polyhedron for two different reasons. First, the union of a

finite number of Z-polyhedra is not generally a Z-polyhedron. Second, the image

of a Z-polyhedron is not necessarily a Z-polyhedron, since the access functions may

be non-invertible. In general, M
(
PS

(
k⃗
))

is an LBL, which is formally equivalent

to a union of Z-polyhedra, as remarked above. Figure 2.2.d depicts two data sets,

represented by two red parallelograms, corresponding to the parametric slices i = 1

and i = 2, shown in figure 2.2.c.

The presence of multiple statements affects the calculation of the data sets. In

particular, some of the statements may have the same schedule function and,

hence, be run in parallel. The above formulation could be extended by defining

multiple data sets, each being the union of the data sets of single statements,

having the same schedule. For the sake of simplicity, however, in the following we

will refer to the case of a single statement.

The parallel data sets defined above can be expressed as finite unions of Z-

polyhedra, allowing a closed formulation of the memory partitioning problem.

Furthermore, they can be easily manipulated by existing polyhedral tools, such

as [27], [24] and [28].

Chapter 2. Automatic memory partitioning 18

2.4.1 Problem formulation

Although all the statement instances in a parametric slice PS

(
k⃗
)
are scheduled

in parallel, they normally access the same data structure in memory. Accesses

that conflict on the same memory port may cause parallel instances to be serial-

ized, introducing a considerable performance bottleneck. Ideally, if the memory

locations accessed by the iterations within the same parametric slice (described

by the M
(
PS

(
k⃗
))

set) are mapped to independent physical banks, then full

parallelization can be achieved.

Consider again figure 2.2. Each point, i.e., each memory location of array A, is

labelled with the identifier of the bank where the location is mapped. For instance,

A[3][1] is mapped to memory bank 4. As shown in the figure, six different banks

are used and the mapping is such that there never are two equal labels in each red

parallelogram of figure 2.2.d, i.e., full access parallelization is achieved.

To generalize the above reasoning, we introduce the concept of conflict count,

denoted MC
(
k⃗
)
, identifying the maximum number of distinct memory locations

in M
(
PS

(
k⃗
))

mapped to the same bank, as a function of k⃗. In essence, MC
(
k⃗
)

represents the number of serialized distinct memory accesses in slice PS

(
k⃗
)
, which

is indicative of the time spent for handling memory references. Notice also that the

definition ofMC
(
k⃗
)
only refers to distinct memory accesses. In fact, concurrently

scheduled accesses might also include multiple references to the same location,

possibly due to more than one parallel statement being executed. Notice that, since

we assume that the code is correctly parallelized, concurrent conflicting accesses

cannot include more than one write operation, while the semantic of concurrent

write and read operations assumes that the read access gets the old value held

by the accessed location, which is consistent with the physical meaning of the

concurrent accesses (e.g., in an FPGA memory bank). On the other hand, multiple

read operations are simply handled by broadcasting the value to the different

operators requesting it (e.g., FPGA-implemented processing blocks).

Chapter 2. Automatic memory partitioning 19

Based on the definition of conflict count, we can introduce a cost function, simply

defined as the summation of values MC
(
k⃗
)
across all the values of k⃗:

Ctime =
∑
k⃗

MC
(
k⃗
)

(2.1)

The above function is representative of the overall time cost incurred for memory

operations across the execution of the entire kernel. As we will show in the follow-

ing section, it can be expressed in a closed mathematical form with lattice-based

memory partitioning. In particular, the Z-polyhedral theory provides useful re-

sults for counting the points in unions of parametric Z-polyhedra. Based on such

results, the conflict count turns out to be a piecewise quasi-polynomial function of

the parameter k⃗ [24]. In case of multiple statements, as explained above, the data

set is indeed a list of sets, each parameterized in k⃗. In this case, the cost functions

Ctime can still be calculated for every data set separately and then summed over

all the sets of the list in order to evaluate the overall cost, since any two accesses

of two different data sets are executed sequentially.

For a given number of physical memory banksNB, each of size SIZEi, the memory

partitioning problem can be formulated as follows. A memory partition of an

array A is a pair of scalar integer functions g (m⃗) , f (m⃗). Vector m⃗ has as many

components as the dimensionality of A. It represents a memory location and varies

in the integer parallelepiped defined by A. Function g (m⃗) identifies the bank to

which m⃗ is mapped, while f (m⃗) is the (linear) address in that bank. Clearly, we

must have 0 ≤ f (m⃗) < SIZEg(m⃗), while the total amount of memory taken by

the arrays across the physical banks is

Csize =
∑

0≤i<NB

max
g(m⃗)=i

{f (m⃗)} (2.2)

The memory partitioning problem can be decomposed into

• a bank mapping problem which consists in finding a suitable function g (m⃗)

that assigns all used locations to existing banks (i.e., 0 ≤ g (m⃗) < NB) and

minimizes Ctime;

Chapter 2. Automatic memory partitioning 20

• a storage minimization problem which consists in finding a suitable func-

tion f (m⃗) that avoids colliding assignments to the same bank (i.e., ∀m⃗ ̸=
n⃗, g (m⃗) = g (n⃗) =⇒ f (m⃗) ̸= f (n⃗)) and minimizes the total amount of

memory Csize.

In the ideal case, Csize coincides with the number of locations in array A, essen-

tially meaning that the partitioned arrays are perfectly exploited with no holes in

memory allocation.

The two problems above are tackled separately by two sequential steps. Since we

aim to maximize parallelism, we determine the bank mapping as a first step by

using the proposed lattice-based partitioning technique. Then, the other problem

is solved by an optimal storage minimization approach described later.

2.5 Lattice-based memory partitioning

The approach presented here aims to automatically define efficient partitioning

choices minimizing structural conflicts on the memory ports. The proposed method-

ology assumes that the code is already parallelized by properly rearranging the

loops [29–31], which corresponds to having zero columns in the schedule ma-

trix, through a preliminary code transformation step based on existing polyhedral

tools [24, 27, 28]

In essence, the lattice-based memory partitioning proposed technique

• regards a d-dimensional memory array as a polyhedron, precisely a hyper-

rectangle;

• partitions the hyper-rectangle into separate sets. The sets are Z-polyhedra

delimited by the same polyhedron, i.e. the memory array, but having dif-

ferent underlying affine lattices, obtained as translates [32] of a particular

lattice chosen by the methodology so as to minimize the conflict count;

• generates the new polyhedral representation of the code featuring optimized

memory accesses.

Chapter 2. Automatic memory partitioning 21

As an example, in figure 2.2 each set of locations assigned to the same bank forms

an integer lattice. Each lattice can be thought of as a translate of the lattice

marked with 0, that we denote L0. Mathematically, L0 is a full-rank bidimensional

lattice spanned by the basis B0 =

(
3 0

0 2

)
. The remaining lattices are affine

lattices. For instance, the set of integer points L1 can be obtained by translating L0

by one position along the j dimension: L1 = L0+(1, 0). Similarly, L3 = L0+(0, 1).

In general, we define the lattice containing the origin the fundamental lattice. As

implied by the results summarized in section 2.4, it forms a partition of Zd along

with its translates. The number of distinct translates, including the fundamental

lattice itself, is equal to the determinant of the lattice [32]. Since lattice-based

partitioning maps each memory bank to a different translate, the determinant of

the fundamental lattice must be equal to the number of actually used banks to fully

cover the d-dimensional memory. This establishes a fundamental link between a

physical characteristic, the number of memory banks, and the main mathematical

object handled by this technique, the lattices. The problem of bank mapping, i.e.,

determining the g (m⃗) function defined above, directly corresponds to finding the

best fundamental lattice.

2.5.1 Generation of the solution space

As implied by the previous remark, the total number of available memory banks

NB is an upper bound to the determinant of the fundamental lattice to choose.

We carry out an exhaustive search of all candidate lattices based on the ideas

presented in [33], considering all lattices having a determinant less than or equal

to NB. Among the solutions reaching the minimum conflict count, we then choose

the one requiring the least number of banks, i.e. the least determinant. Two

solutions ensuring the minimum conflict count and the same number of banks are

deemed equivalent, although they may have different second-order implications on

the implementation costs. In chapter 3, we will look at those implications.

Since d-dimensional lattices are spanned by full-rank d×d matrices, we can equiv-

alently generate all matrices corresponding to distinct lattices. In that respect,

given a matrix B of rank d in Zd×d, there exists a unique lower triangular matrix

Chapter 2. Automatic memory partitioning 22

H = {hij} and a unimodular matrix U such that H = B · U and 0 ≤ hij < hii

for all j < i. The matrix H is called the Hermite Normal Form (HNF) of B [34].

Consequently, we can generate all integer lattices of a given determinant δ by enu-

merating all distinct lower triangular matrices H = {hij} such that det (H) = δ

and 0 ≤ hij < hii. For a given rank d and determinant δ, the number of such

matrices, denoted Hd(δ), is equal to
∏d−1

j=1 (p
k+j − 1)/(pj − 1), when δ = pk for a

prime p, while Hd(δ) = Hd(p)Hd(q), if δ = p · q, where p and q are relatively prime

numbers [35]. For a maximum number of banks NB, thus, the search space con-

tains
∑NB

i=2 Hd(i) solutions. As an example, the fundamental lattice of figure 2.2

is one of 32 potential solutions, since we have a 2-dimensional array and 6 banks.

In case we had 8, 12, 16, 24, or 32 banks, the number of candidates would become

55, 116, 209, 480, 846, respectively.

2.5.2 Evaluation of the solutions

Lattice-based partitioning enables the conflict count MC
(
k⃗
)
to be expressed in

a closed mathematical form. Call Lt, the tth translate of a given fundamental

lattice L, with 0 ≤ t < det (L). Then, we simply have

MC
(
k⃗
)
= max

t

∣∣∣Lt ∩M
(
PS

(
k⃗
))∣∣∣

The intersection picks the points of the data set M that belongs to translate Lt.

For each value of k⃗, the lattice incurring the maximum conflict count determines

the worst-case serialization in the memory accesses. The set Lt ∩M
(
PS

(
k⃗
))

is

a union of parametric Z-polyhedra. We first use the technique proposed in [24] to

count the integer points in the set as a function of k⃗, obtaining different expressions

for determined intervals of k⃗. Then, by summing such expressions together, we

obtain the overall value of the cost function Ctime =
∑

k⃗ MC
(
k⃗
)
. As an example,

in figure 2.2 we have
∣∣∣Lt ∩M

(
PS

(
k⃗
))∣∣∣ = 1 for each of the six translates t, and

hence Ctime = N − 1.

Chapter 2. Automatic memory partitioning 23

2.5.3 Enumeration of the translates

The evaluation of the solutions requires the exhaustive enumeration of the trans-

lates of a given fundamental lattice. To this aim, we rely on the following property,

which can be easily proven.

Property 1. Let H = {hij} be the HNF basis of a lattice L and m⃗ be one of its

points. Then, there does not exist any point n⃗ ̸= m⃗ such that ∀i 0 ≤ ni −mi <

hii ∧ n⃗ ∈ L.

The property implies that if we take a point in L, we cannot find any different

point of L in the parallelepiped having m⃗ as the lower corner and the diagonal

elements hii as heights. In fact, notice that the parallelepiped has a volume equal to

the determinant of L because H is in HNF. As a direct consequence, considering

m⃗ = 0⃗, if we take all the elements in the parallelepiped having the diagonal

elements hii as heights, we pick exactly | det(H)| points that belong to different

translates. Since there are exactly | det(H)| translates, those points cover all the

possible translation vectors. As an example, the HNF of the fundamental lattice

L0 in figure 2.2 is

(
3 0

0 2

)
, so the remaining five translates are given by L0 + t⃗,

with t⃗ = (1, 0), (2, 0), (0, 1), (1, 1), (2, 1).

2.5.4 Generation of the new polyhedral representation

After picking the best partitioning solution, a new version of the code must be

generated so as to capture the allocation to memory banks. A possibility is to

use an additional dimension in the partitioned array and then apply block or

cyclic mapping. Notice however that we are mainly interested in the synthesis of

hardware accelerators from high-level C code. While existing high-level synthesis

tools [36] allow block or cyclic partitioning along a given dimension, they look

at statements, not instances of statements. In other words, they parallelize two

memory accesses, say M1 and M2, only if it can be proved that all the instances

of M1 and M2 in the iteration domain of the loop nest access different banks.

To address this problem, we decided to explicitly partition the array in the code

by declaring multiple distinct arrays. Consider the example in figure 2.2. The

Chapter 2. Automatic memory partitioning 24

statement in the loop body contains two memory references, or accesses, i.e.,

A[i][j] and A[i− 1][j − 1]. Different values of the iterators (j, i) lead to a different

bank accessed for each of the two references. For example, instance (1, 1) accesses

banks 4 and 0, while instance (2, 1) accesses 5 and 1. Indeed, since the dataset has

a constant shape and the banks in the example are periodic with period 3 along

the j dimension and 2 along the i dimension, there are exactly 6 different cases,

i.e., the number of banks NB, each corresponding to a different statement body:

Y[i][j] = A0[i-1][j-1] + A4[i][j]; when (j mod 3, i mod 2) = (1, 1)

Y[i][j] = A1[i-1][j-1] + A5[i][j]; when (j mod 3, i mod 2) = (2, 1)

Y[i][j] = A2[i-1][j-1] + A3[i][j]; when (j mod 3, i mod 2) = (0, 1)

Y[i][j] = A3[i-1][j-1] + A1[i][j]; when (j mod 3, i mod 2) = (1, 0)

Y[i][j] = A4[i-1][j-1] + A2[i][j]; when (j mod 3, i mod 2) = (2, 0)

Y[i][j] = A5[i-1][j-1] + A0[i][j]; when (j mod 3, i mod 2) = (0, 0)

In general, depending on the structure of the dataset, there may be up to NBh

different combinations of bank accesses, where h is the number of memory refer-

ences in the statement. The essential idea in the approach is to generate a different

statement for each combination of bank accesses, e.g. six statements in the above

example. In order to describe the new statements in terms of polyhedral represen-

tation, we start from the original iteration domain DS and generate NB smaller

integer sets, each corresponding to a different statement body, covering a specific

combination of bank accesses. To express this mathematically, further constraints

must be added to the algebraic form describing the original polyhedron. Call r the

number of distinct memory references in the statement and let d be the dimen-

sionality of the array, e.g., d = 2 for bidimensional arrays. For each combination

p of bank accesses, the iteration domain of the corresponding statement can be

expressed as follows:

DSp = v⃗ : ∃ (y⃗0 . . . y⃗r−1) ∈ Zr·d :

Chapter 2. Automatic memory partitioning 25

DS 0 0 . . . 0

−− −− −− −−
F0 −B 0 . . . 0

F1 0 −B . . . 0

.

Fr−1 0 0 . . . −B

v⃗

−−
y⃗0

. . .

y⃗r−1

≥
−−
=

0⃗

−−
T⃗ p
0

. . .

T⃗ p
r−1

The matrix has as many columns as the original polyhedron matrix DS plus the

number of accesses r times the lattice rank d. B is the d × d basis of the chosen

fundamental lattice. Fi are the d× |v⃗| access matrices in the original code. The r

vectors y⃗i contains each d integer parameters. T⃗ p
i is a d-element vector denoting

the translate, i.e., the bank, where the ith access is mapped in combination p. The

set of vectors T⃗ p
i identifies one of the possible combinations of bank accesses. Each

line in the bottom part of the above matrix multiplication results in a constraint

looking like Fi · v⃗−B · y⃗i = T⃗ p
i . For instance, concerning the example in figure 2.2,

the constraint ∃ (y1, y2) ∈ Z2 : (j, i)−

(
3 0

0 2

)
(y1, y2) = (1, 0) for access A[i][j]

picks the iterations (j, i) that access locations belonging to translate (1, 0) of the

fundamental lattice

(
3 0

0 2

)
. Notice that T⃗ p

i cannot be made parameters since

we need to pass separate algebraic structures to the code generator, one for each

version of the statement. The above structures can be handled by existing tools,

e.g., ISL, CLoog, for code generation from the polyhedral model which can identify

and efficiently prune out empty polyhedra. Notice also that, due to the potentially

non-invertible nature of the affine access functions, the sets DSp can be unions of

Z-polyhedra rather than single Z-polyhedra. However, in case the access functions

are invertible, DSp can be proved to be a single Z-polyhedron, delimited by the

same polyhedron as DS, yielding a representation that can be manipulated even

easier.

Chapter 2. Automatic memory partitioning 26

2.5.5 Storage minimization

The problem of storage minimization, i.e., the definition of the f (m⃗) function,

consists in assigning a new address within the new bank to each original mem-

ory location m⃗. This corresponds to determining new access functions for each

memory reference such that the proper location is accessed in each iteration. Call

F (v⃗) the access function corresponding to the iteration vector v⃗ for a certain ref-

erence and let m⃗ = (m0, . . . ,md−1) be the accessed location, i.e., m⃗ = F (v⃗). Let

m⃗′ =
(
m′

0, . . . ,m
′
d−1

)
= F ′ (v⃗) be the new access function. Lattice-based par-

titioning allows a straightforward solution to the storage minimization problem.

In fact, because of the cyclic repetitions along the axes of the memory space,

which occurs for any lattice chosen, the address in each bank can simply be ob-

tained by scaling the original addresses. Precisely, given H = {hij}, the HNF

basis of the fundamental lattice, the new address m⃗′ can simply be obtained as

m⃗′ =
(⌊

m0

h00

⌋
, . . . ,

⌊
md−1

hd−1 d−1

⌋)
. In other words, the new access can be written as

m⃗′ = ⌊S · F · v⃗⌋, where

S =

1

h00
0 0 . . . 0

0 1
h11

0 . . . 0

.

0 0 0 . . . 1
hd−1 d−1

The scalar function f (m⃗) is then given by the linearized address of m⃗′ in bank

g (m⃗). It can be easily shown that the above solution is consistent and asymptoti-

cally optimum. In fact, by Property 1, if m⃗ and n⃗ are two distinct locations belong-

ing to the same lattice, then there must be at least one i such that |mi−ni| ≥ hii.

Consequently, they are certainly mapped to different locations in the same bank,

since
∣∣∣⌊mi

hii

⌋
−
⌊

ni

hii

⌋∣∣∣ ≥ 1. Furthermore, calling Di the size of the original array

along dimension i, the size of each scaled array along the same dimension is no

larger than
⌈
Di

hii

⌉
. In other words, each array will require no more than

∏
i

⌈
Di

hii

⌉
locations. Since the number of banks is NB =

∏
i hii, then the total number

of locations across all banks, i.e., the Csize cost function defined earlier, is upper

bounded by
∏

i

⌈
Di

hii

⌉
· hii =

∏
i

(
Di

hii
+ δi

)
· hii =

∏
i (Di + δihii), with δi < 1. Un-

der the assumption that hii = o(Dj) ∀i, j, the above upper bound to Csize can be

written as
∏

iDi+ o (
∏

i Di) = D+ o(D), where D =
∏

iDi is the total amount of

Chapter 2. Automatic memory partitioning 27

memory taken by the original array. In other words, Csize is asymptotically equal

to the original amount of memory, i.e., the banks are densely populated with a

number of holes becoming negligible as the size of the array is increased.

The above optimal solution involves a zero amount of asymptotic memory waste.

Unfortunately, however, it requires an integer division by hii for each component

in m⃗ before starting a memory access. In case that hii is a power of 2, which

indeed is likely to happen in practice, division simply coincides with a right-shift.

For the cases where hii is not a power of 2, on the other hand, we propose an

efficient solution which involves an arbitrarily small amount of asymptotic waste

along each dimension of the memory. In essence, the solution is based on the idea

of replacing the integer division by hii with a more efficient multiplication by an

integer constant a, followed by a right-shift by b bits. In the following, we will

refer to a single component mi for the sake of simplicity. In essence, we replace

m′
i =

⌊
mi

hii

⌋
with m′

i =
⌊
mi·a
2b

⌋
, with 2b

a
≤ hii. The maximum value taken by the

m′
i will thus increase from

⌊
Di−1
hii

⌋
to
⌊
(Di−1)·a

2b

⌋
, stretching the memory used by

around hii·a
2b

along dimension i. We show that, in principle, it is possible to choose

a and b such that any arbitrarily small amount of waste can be obtained. Call ω

the fraction of memory waste to obtain (e.g., ω = 0.1 indicates a memory waste

of 10% along dimension i). Take b > log2
hii

ω
and a =

⌈
2b

hii

⌉
. First of all, based

on this choice we have that a
2b

≥ 1
hii
, still ensuring that

∣∣⌊mi·a
2b

⌋
−
⌊
ni·a
2b

⌋∣∣ ≥ 1 if

|mi−ni| ≥ hii. Furthermore, the stretching factor is hii·a
2b

=
hii·

⌈
2b

hii

⌉
2b

=
hii·

(
2b

hii
+δ

)
2b

=

1 + hii·δ
2b

, with δ < 1. The percentage waste, represented by the term hii·δ
2b

, is by

construction less than ω, as required, because b > log2
hii

ω
.

Depending on the values of hii and the actual cost of an integer division, one of the

two solutions above can be adopted to effectively address the problem of storage

minimization, As an example, assume that we have hii = 3 for dimension i, as in

the example of figure 2.2, and that we require a percentage waste upperbounded by

10%. We can choose b > log2
hii

ω
= log2 30, e.g., b = 5, and a =

⌈
2b

hii

⌉
=
⌈
32
3

⌉
= 11.

Then, in the transformed code, each array subscript corresponding to dimension i,

expressed as Fi · v⃗ (where Fi is the ith row of the access matrix F) will be replaced

with (11 · Fi · v⃗) >> 5.

Chapter 2. Automatic memory partitioning 28

Figure 2.3: Prototype toolchain implementing lattice-based partitioning.

2.6 A detailed case study

To demonstrate the lattice-based partitioning technique, we built a prototype

toolchain, depicted in figure 2.3. The implementation is based on a variety of open-

source tools for polyhedral analysis. The input is first analyzed by Clan3, used to

extract a polyhedral representation. Then, it is scheduled in order to extract as

much internal parallelism as possible. This step is optional since the mathemat-

ical framework does not deal with parallelism extraction but assumes an already

scheduled loop nest. Subsequently, the representation is manipulated by ad-hoc

tools applying the proposed methodology. The process relies on the OpenScop4

format to represent the information on the code being transformed, PolyLib [27]

to manipulate polyhedra, and ZPolyTrans [24] to handle images of Z-polyhedra

by non-invertible functions and parametric counting of points in unions of Z-

polyhedra. There are other tools that could serve the purpose, particularly [28],

while ISL supports relations and hence Z-polyhedra, but it does not provide spe-

cialized algorithms [37]. Last, after manipulation, C code is regenerated using

CLooG [38].

Based on the above toolchain, this section provides a step-by-step illustration of the

lattice-based partitioning technique to a real-world application, a bidimensional

window filtering kernel, where a waveform/sequence is multiplied by a window

function [39]. Applications of window functions include spectral analysis, filter

design, and beamforming. More specifically, in this section we target bidimensional

signals expressed as arrays (e.g., images) and 3×3 window functions expressed as 9

separate coefficients. Figure 2.4.a shows the bidimensional filter kernel consisting

3http://icps.u-strasbg.fr/∼bastoul/development/clan/index.html
4http://icps.u-strasbg.fr/∼bastoul/development/openscop/

Chapter 2. Automatic memory partitioning 29

Figure 2.4: 2D Windowing kernel. (a) Original version. (b) 2x Stripmined
and parallelized version.

of a perfect nest made of three loops. The inner loops iterate over space whereas

the outer loop iterates over time since the filter may be applied several times to

the same signal in order to amplify the effect or use different coefficients.

Some parallelism has been extracted by stripmining the innermost loop by a factor

SF . Figure 2.4.b shows the stripmined and parallelized code. While we can set

SF to any value less than N − 1, for the sake of simplicity we use here SF = 2.

The constant N is assumed to be even. All loops in the code are normalized, i.e.,

their iterators start from 0 and have unit stride. The innermost for construct is

marked as parallel. In fact, it is evident that it can be parallelized since there are

no true dependencies carried by the three innermost loops.

In the example, the memory architecture is assumed to provide up to 6 independent

memory banks. We apply the lattice-based partitioning technique to the input

array A; a similar procedure may be applied to the output array Y .

2.6.1 Polyhedral model of the kernel

The kernel contains four loops, hence the iteration vector v⃗ is v⃗ = (t, i, j, p, T,N, 1),

N and T being two constant parameters. The normalized iteration domain of

Chapter 2. Automatic memory partitioning 30

statement S is the following integer polyhedron:

DS =
{
v⃗ : DS · v⃗ ≥ 0⃗

}
, DS =

1 0 0 0 0 0 0

−1 0 0 0 1 0 −1

0 1 0 0 0 0 0

0 −1 0 0 0 1 −3

0 0 1 0 0 0 0

0 0 −2 0 0 1 −4

0 0 0 1 0 0 0

0 0 0 −1 0 0 1

A three-dimensional schedule can be derived for statement S directly from the

code in figure 2.4.b:

Θs(v⃗) = ΘS · v⃗ =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

 · v⃗

The fourth column, corresponding to p, contains all zero elements, meaning that

the loop iterations are scheduled concurrently.

2.6.2 Modeling data parallelism

The first step of the methodology consists in modelling the parallelism of the

memory accesses. First, we need to build the parallel parametric slice PS

(
k⃗
)
. In

this example, k⃗ is k⃗ = (k1, k2, k3) because we have three serial loops. Parameters

kh directly corresponds to the iterators of the three outermost loops, i.e., t, i,

and j, and vary within the same intervals. The parametric slice PS

(
k⃗
)

is the

Chapter 2. Automatic memory partitioning 31

polyhedron of iterations v⃗ satisfying:

1 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 −1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 −1 0 0 0 1 −3 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 −2 0 0 1 −4 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0

− − − − − − − − − −
1 0 0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 0 0 −1

t

i

j

p

T

N

1

k1

k2

k3

≥
−
=

0⃗

For each value of the parameter k⃗ = (k1, k2, k3), the slice turns out to contain two

iterations, those corresponding to p = 0 and p = 1.

The statement in the kernel of figure 2.4.b contains 9 bidimensional affine accesses

to array A, each having its own access function. As an example, A[i + 1][2j + p]

has F (v⃗) =

(
0 1 0 0 0 0 1

0 0 2 1 0 0 0

)
· v⃗ as its access function. The next step

thus concerns the identification of the data sets determined by these accesses,

i.e., the set M
(
PS

(
k⃗
))

containing the memory locations accessed in parallel by

concurrent iterations. As explained earlier, the data sets are the union of the

images of PS

(
k⃗
)
by the affine access functions. Each image represents a set of

locations accessed in parallel by a specific memory reference in the statement. In

this case, although the memory access functions are non-invertible, the images

are still Z-polyhedra (here indeed they are simply polyhedra). Furthermore, their

unions also turn out to be polyhedra. Figure 2.5 depicts a few examples of images

and data sets for a couple of values of the parameter k⃗ = (k1, k2, k3). Although

the data sets are a function of k⃗ and their cardinality may in general vary, here all

data sets always contain 12 memory points. In this example they can be formally

expressed as follows:

Chapter 2. Automatic memory partitioning 32

Figure 2.5: Example of data sets for the example kernel. For data set
M (PS (t, 0, 0)) the figure also shows the images of the slice PS by two single

access functions. Overall, each data set is formed by nine such images.

M
(
PS

(
k⃗
))

=

(j, i) ∈ Z2 :

1 0 0 −1 0 0

−1 0 0 1 0 2

0 1 0 0 −2 0

0 −1 0 0 2 3

i

j

k1

k2

k3

1

≥ 0⃗

2.6.3 Generation of the solution space

Since there are 6 memory banks available, the methodology looks for the best

bidimensional lattice-based partitioning solution having determinant less than or

equal to 6. Indeed, since each data set contains 12 distinct accesses, the best we

can do is to have two accesses per memory bank in each data set, which is only

possible with 6 banks. As a consequence, in this example we will only discuss

the case det (L) = 6. As explained in section 2.5.1, enumerating all distinct

bidimensional lattices is equivalent to generating all possible 2 × 2 matrices in

HNF with a determinant equal to 6. Relying on the quantitative formula given

in section 2.5.1, we know that there are H2(6) = H2(3)H2(2) = 3 × 4 = 12 such

matrices. Below we list all of them:

Chapter 2. Automatic memory partitioning 33

B1 =

(
6 0

0 1

)
; B2 =

(
1 0

0 6

)
; B3 =

(
1 0

1 6

)
; B4 =

(
1 0

2 6

)
;

B5 =

(
1 0

3 6

)
; B6 =

(
1 0

4 6

)
; B7 =

(
1 0

5 6

)
; B8 =

(
2 0

0 3

)
;

B9 =

(
2 0

1 3

)
; B10 =

(
2 0

2 3

)
; B11 =

(
3 0

0 2

)
; B12 =

(
3 0

1 2

)
.

Each enumerated solution is representative of an infinite number of bases all equal

up to a unimodular transformation. Figure 2.6 shows the lattices corresponding

to B8 and B3. Once the solution space is generated, we need to evaluate each

potential solution to identify the best fundamental lattice.

2.6.4 Enumeration of the translates

To proceed, we first need to enumerate the translates of each lattice previously

identified. Take B8 =

(
2 0

0 3

)
as an example. As pointed out in section 2.5.3, we

need to enumerate all the points in the parallelepiped identified by the diagonal

of B8, here a 2× 3 rectangle, with the lower corner in the origin. The points are:

t0 = (0, 0), t1 = (1, 0), t2 = (0, 1), t3 = (1, 1), t4 = (0, 2), t5 = (1, 2).

These vectors correspond to the six translates of the fundamental lattice needed

to cover Z2. By construction, their number is equal to the number of memory

banks.

2.6.5 Evaluation of the solution space

To evaluate a solution, we compute the maximum number of conflicting accesses

(i.e., accesses to the same memory bank) within all parallel data sets (see sec-

tion 2.5.2). For each parallel data set, the conflicts for a given translate Lt are

Chapter 2. Automatic memory partitioning 34

Figure 2.6: Two different mapping solutions corresponding to the fundamental
lattices L (B8) and L (B3). For each of the two solutions, the figure highlights

one of the translates causing the highest conflict count.

given by the intersection of the affine lattice Lt itself and the polyhedron de-

scribing the data set. The number of integer points, what we called MC
(
k⃗
)
,

contained in such Z-polyhedron represents, parametrically, the number of conflicts

corresponding to a particular translate Lt for a certain solution L. Figure 2.6

also shows graphically MC
(
k⃗
)
for k⃗ = (t, 0, 0) and the translates corresponding

to the vectors (0, 0) and (1, 0) for L (B8) and L (B3), respectively. The number

of points in the first Z-polyhedron is 2 whereas we count 3 points in the second

Z-polyhedron, resulting in worse performance. In both cases, they are indepen-

dent of k⃗. Following are the overall memory access times, computed by taking

into account the worst-case conflicts within the data sets (which are necessarily

serialized in time).

Ctime(B1) = (N − 2) · (N − 2) · T · 3 Ctime(B2) = (N − 2) · (N − 2) · T · 4

Ctime(B3) = (N − 2) · (N − 2) · T · 3 Ctime(B4) = (N − 2) · (N − 2) · T · 3

Ctime(B5) = (N − 2) · (N − 2) · T · 2 Ctime(B6) = (N − 2) · (N − 2) · T · 3

Ctime(B7) = (N − 2) · (N − 2) · T · 3 Ctime(B8) = (N − 2) · (N − 2) · T · 2

Chapter 2. Automatic memory partitioning 35

Ctime(B9) = (N − 2) · (N − 2) · T · 2 Ctime(B10) = (N − 2) · (N − 2) · T · 2

Ctime(B11) = (N − 2) · (N − 2) · T · 4 Ctime(B12) = (N − 2) · (N − 2) · T · 3

In section 2.5.2, the expression of Ctime contained a sum on k⃗. Here, because of

the fact that there is no dependence on k⃗, the sum is reduced to a multiplication

by the number of values spanned by k⃗ = (k1, k2, k3), i.e., (N − 2) · (N − 2) · T .
Notice that B5, B8, B9, and B10 all achieve the minimum number of conflicts.

Here, we choose L = B8.

2.6.6 Storage minimization

The chosen fundamental lattice is L (B8), withB8 =

(
2 0

0 3

)
. Based on the results

in section 2.5.5, we can simply replace each original access in the new arrays

by scaling the column subscript by 2 and the row subscript by 3, obtaining an

asymptotically zero memory waste. As an alternative, to avoid the integer division

by 3, we can adopt the approximate approach introduced in section 2.5.5, which

consists in replacing the division with a multiplication by an integer a followed by

a b-bit right-shift. As already exemplified in section 2.5.5 for the case hii = 3 and

a maximum waste of 10%, we can use b > log2
3
0.1

, e.g., b = 5, and consequently

a =
⌈
25

3

⌉
= 11. Formally, for each access function in the statement of figure 2.4,

the new access function can be obtained as F ′ (v⃗) =

⌊(
1/2 0

0 11/32

)
· F (v⃗)

⌋
.

As a practical example of memory waste, consider the case N = 100, requiring

N2 = 10000 memory locations. The highest modified subscripts are [11 ·(i+2) >>

5][(2·j+2+p) >> 1], and they take as their maximum value [34][48], corresponding

to the bounds i = N − 3 = 97, j = (N − 4)/2 = 48, p = 1. In other words, we

need 35 · 49 = 1715 locations for each of the 6 arrays, i.e., 10290 locations overall,

with an actual waste below 3%.

Chapter 2. Automatic memory partitioning 36

2.6.7 Code generation

Based on the technique presented in section 2.5.4, we can generate the new polyhe-

dral representation maximizing parallel memory bank accesses. The representation

leads to the following optimized code:

for(t=0; t<=T-1; t++) {

for(i=0; i<=N-3; i++) {

if(i%3==0) {

for(j=0; j<=(N-4)/2; j++) {

parfor(p=0; p<=1; p++) {

if((j+p)%2==0)

S1: Y[i+1][2*j+1+p] = W1*A0[(11*i)>>5][(2*j+p)>>1] +

W2*A1[(11*i)>>5][(2*j+1+p)>>1] + W3*A0[(11*i)>>5][(2*j+2+p)>>1] +

W4*A2[(11*i+11)>>5][(2*j+p)>>1] + W5*A3[(11*i+11)>>5][(2*j+1+p)>>1] +

W6*A2[(11*i+11)>>5][(2*j+2+p)>>1] + W7*A4[(11*i+22)>>5][(2*j+p)>>1] +

W8*A5[(11*i+22)>>5][(2*j+1+p)>>1] + W9*A4[(11*i+22)>>5][(2*j+2+p)>>1];

else

S2: Y[i+1][2*j+1+p] = W1*A1[(11*i)>>5][(2*j+p)>>1] +

W2*A0[(11*i)>>5][(2*j+1+p)>>1] + W3*A1[(11*i)>>5][(2*j+2+p)>>1] +

W4*A3[(11*i+11)>>5][(2*j+p)>>1] + W5*A2[(11*i+11)>>5][(2*j+1+p)>>1] +

W6*A3[(11*i+11)>>5][(2*j+2+p)>>1] + W7*A5[(11*i+22)>>5][(2*j+p)>>1] +

W8*A4[(11*i+22)>>5][(2*j+1+p)>>1] + W9*A5[(11*i+22)>>5][(2*j+2+p)>>1];

}

}

}else if(i%3==1){

for(j=1; j<=N - 2; j+=2) {

parfor(p=0; p<=1; p++) {

if((j+p)%2==0)

S3: Y[i+1][2*j+1+p] = W1*A2[(11*i)>>5][(2*j+p)>>1] +

W2*A3[(11*i)>>5][(2*j+1+p)>>1] + W3*A2[(11*i)>>5][(2*j+2+p)>>1] +

W4*A4[(11*i+11)>>5][(2*j+p)>>1] + W5*A5[(11*i+11)>>5][(2*j+1+p)>>1] +

W6*A4[(11*i+11)>>5][(2*j+2+p)>>1] + W7*A0[(11*i+22)>>5][(2*j+p)>>1] +

W8*A1[(11*i+22)>>5][(2*j+1+p)>>1] + W9*A0[(11*i+22)>>5][(2*j+2+p)>>1];

else

S4: Y[i+1][2*j+1+p] = W1*A3[(11*i)>>5][(2*j+p)>>1] +

W2*A2[(11*i)>>5][(2*j+1+p)>>1] + W3*A3[(11*i)>>5][(2*j+2+p)>>1] +

W4*A5[(11*i+11)>>5][(2*j+p)>>1] + W5*A4[(11*i+11)>>5][(2*j+1+p)>>1] +

W6*A5[(11*i+11)>>5][(2*j+2+p)>>1] + W7*A1[(11*i+22)>>5][(2*j+p)>>1] +

W8*A0[(11*i+22)>>5][(2*j+1+p)>>1] + W9*A1[(11*i+22)>>5][(2*j+2+p)>>1];

}

}

}else if(i%3==2){

for(j=1; j<=N - 2; j+=2) {

parfor(p=0; p<=1; p++) {

if((j+p)%2==0)

S5: Y[i+1][2*j+1+p] = W1*A4[(11*i)>>5][(2*j+p)>>1] +

W2*A5[(11*i)>>5][(2*j+1+p)>>1] + W3*A4[(11*i)>>5][(2*j+2+p)>>1] +

W4*A0[(11*i+11)>>5][(2*j+p)>>1] + W5*A1[(11*i+11)>>5][(2*j+1+p)>>1] +

Chapter 2. Automatic memory partitioning 37

W6*A0[(11*i+11)>>5][(2*j+2+p)>>1] + W7*A2[(11*i+22)>>5][(2*j+p)>>1] +

W8*A3[(11*i+22)>>5][(2*j+1+p)>>1] + W9*A2[(11*i+22)>>5][(2*j+2+p)>>1];

else

S6: Y[i+1][2*j+1+p] = W1*A5[(11*i)>>5][(2*j+p)>>1] +

W2*A4[(11*i)>>5][(2*j+1+p)>>1] + W3*A5[(11*i)>>5][(2*j+2+p)>>1] +

W4*A1[(11*i+11)>>5][(2*j+p)>>1] + W5*A0[(11*i+11)>>5][(2*j+1+p)>>1] +

W6*A1[(11*i+11)>>5][(2*j+2+p)>>1] + W7*A3[(11*i+22)>>5][(2*j+p)>>1] +

W8*A2[(11*i+22)>>5][(2*j+1+p)>>1] + W9*A3[(11*i+22)>>5][(2*j+2+p)>>1];

}

}

}

}

}

Complying with the mapping choice previously identified, no more than two con-

flicts per parallel set of iterations are incurred. Consider the first two parallel

statements S1 and S2 as an example. A0 appears 3 times, thus the iteration

seemingly contains three simultaneous accesses. The three accesses can how-

ever only involve two different values because of the mapping we enforced. In

fact, A0[(11 · i) >> 5][(2 · j + 1 + p) >> 1] in the else branch coincides with

A0[(11 · i) >> 5][(2 · j + 2 + p) >> 1] in the then branch if j is even (because if

j is even, p must be equal to 1 in the else branch and 0 in the then branch) or

with A0[(11 · i) >> 5][(2 · j + p) >> 1] in the then branch if j is odd (because if

j is odd p must be equal to 0 in the else branch and 1 in the then branch). The

same considerations apply to the other accesses.

2.6.8 Validation of the cost function

To conclude the case study, we show a few results collected from a practical imple-

mentation of the kernel targeted at an FPGA technology by means of a high-level

synthesis process. In particular, the above C code was synthesized to VHDL by the

Vivado HLS tool [36] and analyzed by cycle-accurate simulation. The actual exe-

cution times, denoted ET and expressed in terms of clock count, refer to the case

N = 20, T = 8. They were measured for each of the 12 lattice-based partitioning

solutions explored above:

ET (B1) = 3889, ET (B2) = 5187, ET (B3) = 3889, ET (B4) = 3889,

Chapter 2. Automatic memory partitioning 38

ET (B5) = 2595, ET (B6) = 3889, ET (B7) = 3889, ET (B8) = 2595,

ET (B9) = 2595, ET (B10) = 2595, ET (B11) = 5187, ET (B12) = 3889

The results provide a clear confirmation of the significance of the cost function

Ctime we used to drive the optimization process and confirm the impact that mem-

ory conflicts have on the actual execution time of the synthesized kernel.

2.7 Related work

The application of integer lattices to memory allocation problems is addressed

by [33], which proposes a methodology for reducing the memory needed for the

execution of an algorithm by analyzing variable liveness. The authors establish

a correspondence between an integer lattice and a modular mapping of the array

indices. As an example, the lattice spanned by the basis

(
2 0

0 3

)
may equivalently

be expressed by the two-dimensional mapping (b0, b1) = (j mod 2, i mod 3), where

the pair (b0, b1), with 0 ≤ b0 < 2 and 0 ≤ b1 < 3, is used as a bidimensional bank

index. Although the approach here described is based on a similar mathematical

framework and use some of their results, e.g., the enumeration of the solutions,

they solve a different problem, i.e., memory reuse. In particular, in this context

the determinant of the lattice corresponds to the number of memory banks and the

objective function is chosen to minimize the number of conflicts on memory ports.

On the other hand, in their work the number of memory locations required by an

optimum modular mapping is equal to the determinant of the underlying lattice.

Furthermore, they consider indices as conflicting when they are simultaneously live

under a given schedule, whereas, in this context, there is a conflict when there is

an access to the same memory bank by simultaneous executions of loop iterations.

The development of mathematical methodologies for the problem of partitioning

was also studied extensively for optimizing Locally Sequential Globally Parallel

(LSGP) computations. The authors of [40] aim to find valid boxes, i.e., paral-

lelepipeds of points, for systolic arrays. Their solution space consists of all the

left Hermite forms of the so called activity basis that identifies the computations

simultaneously active. In [40] integer points represent computations that may be

Chapter 2. Automatic memory partitioning 39

mapped or not onto the same processor and not memory locations to map onto

specific banks. A similar problem is analyzed in [41], providing a closed form for

enumerating all the schedules on a cluster of VLIW processors and constructing

a linear function that schedules precisely one iteration per cycle of a loop nest.

Memory partitioning for LSGP systems has been also studied by [42–44] in order

to reduce the communication among processors.

Recently, mathematical optimization techniques have targeted reconfigurable de-

vices provided with multiple independent fine-grained memory blocks. In this

scenario, minimizing the number of conflicts on the distributed memory banks is

of paramount importance for performance. A few recent contributions [19, 45–47]

are concerned with partitioning of on-chip memory. In [19] an automated memory

partitioning algorithm is proposed to support multiple simultaneous affine memory

references to the same array. In [45] memory accesses in different loop iterations

are partitioned across different memory banks and scheduled in the same cycle

minimizing the number of required banks. In the above works, a multidimen-

sional array is first flattened into a single-dimensional array before partitioning.

Since memory addresses after flattening are dependent on the array size, different

partitioning schemes are generated for different array sizes, many of which are sub-

optimal. An improved approach is proposed in [46]. They model memory ports as

n-dimensional hyperplanes. However, by limiting their solutions to a single fam-

ily of hyperplanes, they might ignore some potential solutions. While [46] uses a

single family of hyperplanes to express bank mapping, the presented technique es-

sentially exploits a number of hyperplanes equal to the dimensionality of the array

to be partitioned. Furthermore, [46] does not express parallel data sets formally.

Hence, the methodology is valid only for the specific problem of avoiding memory

conflicts when loop pipelining techniques are applied. The presented technique,

on the other hand, explicitly models parallel iterations by means of Z-polyhedral

techniques and generalizes the solution space by adopting lattices instead of hy-

perplanes, i.e., a strict superset of the solution space in [46]. The same authors

in [47] extend their previous work by introducing block-cyclic partitioning, but

still relying only on a single family of hyperplanes. The work in [48] introduces

a geometric programming framework combining data reuse with data level par-

allelism. Although the problem is still related to data-level parallelization, they

Chapter 2. Automatic memory partitioning 40

assume that each processing element is connected to a single memory and they

replicate data when needed. This assumption largely simplifies the problem but

neglects the possibility of avoiding the replication of data, possibly incurring mem-

ory waste and a potential loss of available memory ports. Similar to the approach

presented here, the authors of [49] use integer lattices in the context of memory

partitioning, in order to improve memory bandwidth by using different physical

storage blocks. The work explores different periodic partitioning strategies by

varying both the number of banks and the system clock frequency. Their main

contribution is related to address generation given a specific partitioning strategy.

Their solution space exploration, however, does not resort to any mathematical

technique to model the code and its memory access patterns. As a consequence,

the work is based on evaluating the schedule length and the system cost for each

possible solution by adopting scheduling algorithms, e.g., list scheduling.

There are other approaches concerned with optimizing on-chip memory usage, al-

though focused on orthogonal problems. The work in [50] develops a compile-time

framework for data locality optimization via data layout transformation targeting

NUCA chip multiprocessors. The authors of [51] use polyhedral abstractions to

reduce the occupied on-chip scratchpad memory. The approach is useful when

dealing with algorithms working with a great deal of data. Unlike the proposed

technique, it aims to improve data reuse instead of maximizing the available on-

chip memory bandwidth. Differently, [52] introduces a framework in the context

of HLS for transforming loop nests in order to maximize on-chip memory reuse

and minimize accesses to off-chip memory blocks. A different problem is tackled

in [53], which proposes a technique to embed some physical features related to

external SDRAMs in the iteration domains of code statements in order to mini-

mize row activations and maximize reuse. It addresses external memory modules

and, in that respect, it is complementary to this technique, which is focused on

on-chip memory. The work in [54] optimizes remote accesses for offloaded kernels

on reconfigurable platforms.

Chapter 2. Automatic memory partitioning 41

Figure 2.7: Hyperplane-based memory partitioning. (a) Memory bank map-
ping. (b) Hardware datapath inferred from memory bank mapping. The symbol

MBi in the figures denotes the ith bank.

2.7.1 Comparisons with the hyperplane-based approach

As summarized above, [46, 47] are the current state-of-the-art solutions for memory

partitioning in the context of high-level synthesis. They are limited to solutions

based on a single family of hyperplanes. In that respect, lattices represent an ex-

tension of previous approaches. In fact, partitioning solutions based on one single

family of hyperplane, e.g., (j + i) mod 2, can always be represented as lattices,

e.g.,

(
2 1

0 1

)
. In some cases, hyperplane-based partitioning may achieve the same

level of access parallelism as lattice-based partitioning, but yielding a more com-

plex steering circuitry. For instance, the memory in the example of figure 2.1.a can

be partitioned as shown in figure 2.7.a by using hyperplanes, fully exploiting the

available four memory banks. However, since the access patterns to the different

banks are not always the same in each data set, each input of each adder needs to

receive the operands from two different memory banks depending on the specific

value of the iterators, complicating the steering logic of the datapath, as well as

causing potential increases in area, clock period, and power consumption. Notice

that, because of the commutativity of addition, this logic overhead may be opti-

mized out in this specific case. However, this is not true in general. On the other

hand, covering a strict superset of hyperplane-based partitioning, lattice-based

partitioning allows us to identify the more efficient solution shown in figure 2.1.c,

where, in addition to the fully parallelizable read operations, the access patterns

to the banks are the same for each data set, inherently simplifying the steering

logic. To confirm the above considerations, Table 2.1 shows the area occupation

Chapter 2. Automatic memory partitioning 42

Figure 2.8: (a) Code snippet and related data sets on a lattice-based parti-
tioning solution. (b) Possible hyperplane-based solutions.

measured in Look-up Tables (LUTs) on a Xilinx Virtex-7 FPGA for three different

benchmarks. The considered benchmarks are typical HLS applications with loop

nests having a high degree of parallelism. In particular, the first benchmark is

an ordinary image resize kernel using bilinear interpolation. The remaining two

benchmarks perform different stencil computations, i.e., a 2D Jacobi kernel and a

2D Gauss-Seidel kernel. See for example [55] for the details of these algorithms.

The kernels were coded in plain C and synthesized by means of the Vivado HLS

tool [36]. For each benchmark we varied both the stripmining factors of the two in-

nermost loops and the number of memory banks, here coinciding with BlockRAM

components (BRAMs), normally available on Xilinx FPGAs. The table reports

the number of LUTs used by the two techniques for the respective optimal solu-

tions. Because of the spatial regularity of lattices, the proposed technique achieves

more compact datapaths having a simplified steering logic. These improvements

are also reflected in the code complexity. In fact, Table 2.1 also contains the over-

all number of statements present in the final code. As shown by the table, for the

chosen benchmarks the method also helps keep the code complexity reasonably

low.

In addition to a more complex steering logic, there may be situations where [46] re-

quires more memory banks than strictly necessary to achieve full parallelization,

particularly when the kernel has a complex control flow. As an example, consider

the code in figure 2.8. The kernel contains a normalized perfect loop nest with

Chapter 2. Automatic memory partitioning 43

Table 2.1: Synthesis results. (OSF: outer stripmining factor, ISF: inner strip-
mining factor)

Benchmark NB / Lattices Hyperplanes
BRAMs LUTs # Statements LUTs # Statements

Image Resize kernel 2 536 4 536 4
(OSF=2, ISF=2) 4 536 4 536 4

8 592 4 1024 8
16 526 4 1136 8

Image Resize kernel 2 2130 16 2130 16
(OSF=4, ISF=4) 4 2130 16 2130 16

8 2212 16 2212 16
16 2212 16 2580 32

2D-Seidel kernel 2 2745 4 2745 4
(OSF=2, ISF=2) 4 2526 4 2526 8

8 5584 8 7387 16
16 8178 16 11254 32

2D-Seidel kernel 2 10384 16 10348 16
(OSF=4, ISF=4) 4 10339 16 10339 16

8 10381 16 17516 32
16 10202 16 11290 32

2D-Jacobi kernel 2 1862 4 1862 4
(OSF=2, ISF=2) 4 2118 4 3409 8

8 4007 8 5753 16
16 6419 16 9129 16

2D-Jacobi kernel 2 4893 16 4893 16
(OSF=4, ISF=4) 4 5387 16 5387 16

8 5049 16 11369 32
16 4878 16 16978 32

three statements. There is a statically predictable branch, so the nest is still an

affine SCoP. Loop iterations access a variable shape 2× 2 window. In particular,

figure 2.8.a shows the parallel data sets for (i = 1, j = 1), (i = 1, j = 2), and

(i = 1, j = 3). Each of them contains four points. If four different memory banks

are considered, the only possible solution in order not to have conflicts is showed

in part (a) of the figure, corresponding to the fundamental lattice L

(
2 0

0 2

)
. This

solution cannot be expressed as a set of translate hyperplanes. Figure 2.8.b shows

all the possible hyperplane-based solutions. The green line represents the hyper-

plane causing the conflict. It can be easily recognized that four memory banks are

not sufficient here to avoid conflicts completely, and the optimal solution identified

by the lattice-based partitioning technique is missed.

Chapter 2. Automatic memory partitioning 44

2.8 Remarks and future developments

This chapter addressed the problem of automated memory partitioning for emerg-

ing architectures, such as reconfigurable hardware platforms, providing the oppor-

tunity of customizing the memory architecture based on the application accesses

pattern. Targeted at affine static control parts (SCoPs), the technique exploits

the Z-polyhedral model for program analysis, yielding a powerful and elegant for-

malism capturing both the problem of bank mapping and storage minimization.

In particular, the approach is based on integer lattices, enabling us to generate

a solution space for the bank mapping problem which includes previous results

as particular cases. The problem of storage minimization, on the other hand, is

tackled by an optimal approach ensuring asymptotically zero memory waste or, as

an alternative, an efficient approach ensuring arbitrarily small waste. The theoret-

ical results were also demonstrated through a prototype toolchain and a detailed

step-by-step case study, along with some comparisons with different approaches

found in the technical literature.

The approach also opens up a range of further investigation paths. First of all, as

pointed out by the detailed case-study, there may be different lattices all achieving

the minimum number of conflicts for a given number of banks. They might how-

ever be not equivalent in terms of the generated code, which may cause different

delays and possibly area results in those computing platforms where the code is

directly translated to hardware, such as FPGAs. Analyzing these effects systemat-

ically is, in fact, the main subject of chapter 3. Furthermore, although the search

space is likely to be limited for practical problems, we will also explore the adop-

tion of ad-hoc heuristics to explore it more efficiently. In particular, from a purely

mathematical point of view, there are situations where, given a certain determi-

nant, the solution space of the lattice-based partitioning technique collapses to one

single family of hyperplanes. Although this happens for low dimensionalities of

the array and very low numbers of memory banks, a precise formalization would

help reduce the solution space in such cases. A further possibility of improvement

concerns the storage minimization scheme. Although it is asymptotically opti-

mal in terms of memory waste, it does not include liveness analysis of memory

locations unlike [33]. The plan is thus to extend the methodology with per-bank

Chapter 2. Automatic memory partitioning 45

liveness analysis. Also, like most similar works, the presented approach is focused

on partitioning a single array in memory. When different arrays are concurrently

accessed in the same kernel, they may be processed separately or, alternatively,

they may be seen as parts of a single memory space. These choices might vari-

ously impact performance or result in additional opportunities for optimization,

leaving room for further developments in this direction. Lastly, instead of making

the partitioning explicit in the code, e.g., by using different array names, which

leads to a static assignment of banks, a different possibility would be to insert ad-

hoc hardware components which route the memory requests to the corresponding

banks by computing the mapping dynamically. This possibility was not explored

here, essentially because a static code-level solution can be easily automated and

does not interfere with the HLS process in itself. Its implementation, however,

would transfer the complexity of the approach from the software to the underlying

hardware architecture. Thus the automated generation of such hardware memory

access managers is a potential future development of this approach.

Chapter 3

Reducing the area impact of the

memory subsystem

3.1 Introduction

Chapter 2 has introduced the lattice-based memory partitioning technique and

has shown it is more general than other existing methods. Besides beneficially

impacting latency, it leads to very compact datapaths in terms of connections

between memory banks and processing elements. Intuitively, that can be explained

by the spatial regularity of integer lattices; throughout this chapter, we analyze and

formalize the reasons why of such area efficiency. First, we capture by examples

the existing relation between memory partitioning and area consumption. Then,

we formalize the relation mathematically and propose a technique to improve the

area efficiency by using a well-known code transformation, namely loop unrolling.

The related literature is quite scarce. To the author’s knowledge, this has been

the first work to formalize the interplay between memory partitioning and area

efficiency in the context of high level synthesis. The only other attempt has been

made in [47], in which the authors recognize the presence of an area overhead

due to address generation and data assignment. However, the two effects are not

modeled mathematically and, importantly, the overhead estimation does not take

into account the bank switching phenomenon which, as we will notice, may have

47

Chapter 3. Reducing the area impact of the memory subsystem 48

a considerable impact on area efficiency, even more than the number of memory

banks itself. Also, this is the first attempt ever to identify loop unrolling as key

transformation in presence of memory partitioning,.

3.2 Impact of partitioning on area

Normally, in a HLS tool flow, the statements in a loop body are synthesized to

a parallel physical datapath, which processes the memory locations embraced by

the statements as concurrently as possible. The input/output ports of the dat-

apath correspond to the read/write memory references in the loop body. When

the memory is partitioned across multiple banks, the memory locations can be

accessed in parallel, ideally in a single access cycle when a one-to-one correspon-

dence between accessed memory locations and memory banks is achieved [56] as

shown in the previous chapter. Furthermore, in case each specific memory refer-

ence always corresponds to the same bank, the connection between the respective

datapath port and the physical bank can be direct, otherwise accesses must be

multiplexed. Bank switching essentially refers to different instances of the same

memory reference accessing different banks. We say that a reference A[F (v⃗)] has

an amount of bank switching equal to bs, if it accesses bs different memory banks

over the whole execution.

To clarify the above definition, refer to the example in figure 3.1. The code con-

tains a two-level nested loop representing a rectangular window sliding over a

bidimensional array. Figure 3.1.a shows the code while figure 3.1.b illustrates the

array and the data sets accessed by a few iterations of the loop (coinciding with

the rectangular-shaped sliding window). At each iteration, the window picks nine

different memory locations and multiplies the values by nine different weights.

Figure 3.1.b also shows a possible partitioning solution using four memory banks:

the number associated with each memory location represents the memory bank to

which it is allocated. As explained in chapter 2, that is a lattice based solution

having as basis

(
2 0

0 2

)
. Notice that the algorithm’s weight associated with each

memory location depends on the position within the sliding window. For example,

the point located in the lower left corner of the window is always multiplied by w0,

Chapter 3. Reducing the area impact of the memory subsystem 49

whereas the central by w4. As the window slides through the array, each wi is mul-

tiplied by a value from a different memory bank, as figure 3.1.b also highlights,

causing the bank switching effect. Take weight w0 as an example. In iteration

(i = 1, j = 1), the bank containing the data to be multiplied by w0 is Bank 0,

whereas in the consecutive iteration (i = 1, j = 2) it is located in Bank 1.

Bank switching has a direct effect on the datapath synthesized from the high-level

code. Figure 3.1.c shows the datapath corresponding to the example. Notice the

additional steering logic required at the output data ports of the memory banks

and at the address input ports. In fact, over the different iterations of the loop,

each multiplier takes input values from all of the memory banks. As a second

effect, bank switching results in a more complicated logic for the generation of

the addresses to the memory banks, since each bank must be addressed by one of

nine different combinations of the (i, j) indices as the loop proceeds through the

iterations. In other words, we also need additional multiplexers driving different

addresses to each of the four memory banks, depending on the iteration. The

steering logic caused by bank switching may cause a significant area overhead,

which is not inherently required by the algorithm itself, but rather by the way it

is coded and the particular use of the available memory banks.

Clearly, the latter effect is not necessarily present. For example, consider the case

when there is only one memory reference and memory is partitioned across two

banks. Suppose that half of the statement instances access the first memory bank,

while the remaining half access the second bank. Since there is only one memory

reference, each memory bank stays idle half of the time and there is no need for

an additional multiplexer on the address ports. As we will see during the rest

of the discussion, a larger amount of bank switching corresponds to reduced area

efficiency.

One interesting aspect to notice is that loop unrolling can potentially reduce bank

switching, reducing the steering logic as immediate consequence. Loop unrolling

is a common technique in HLS and, although it usually results in replicated data-

paths, we show here that its interplay with bank switching may enable improved

efficiency in the use of the hardware resources. Consider figure 3.2.a, in which the

inner loop of the previous code has been unrolled by a factor of two. Like the

Chapter 3. Reducing the area impact of the memory subsystem 50

Figure 3.1: The original version of the generic bidimensional sliding window
filter. a) Code, b) Memory accesses to the input image for some iterations, c)

Synthesized datapath

previous example, figure 3.2.b and figure 3.2.c depict, respectively, the partitioned

memory and the synthesized datapath. Now, there is no bank switching affecting

the inner loop because of the unrolling transformation. In fact, when sliding the

window along the j axis, every location of the window always happen to touch

the same memory bank (on the other hand, when sliding the window along the

i axis, bank switching still occurs, with every location of the window touching

two different banks). This results in significantly smaller multiplexers at both the

address input port and the data output port of the memory banks. Of course,

Chapter 3. Reducing the area impact of the memory subsystem 51

more resources are going to be used for the replicated processing elements in the

datapath because of the unrolling, but they are purely used for computation rather

than being steering overhead, making the resulting design more area and power

efficient.

Figure 3.2: The unrolled version of the generic bidimensional sliding window
filter. a) Code, b) Memory accesses to the input image for some iterations, c)

Synthesized datapath

In order to assess the impact of bank switching quantitatively, we define the area

efficiency as the product of latency, i.e., the overall execution time of a synthesized

algorithm, and its area cost. Usually, the area cost of FPGA designs is quantified

in terms of elementary components such as Look-Up Tables (LUTs), Flip-Flops

Chapter 3. Reducing the area impact of the memory subsystem 52

(FFs), and, in some cases, Digital Signal Processing (DSP) blocks; we consider

here LUTs primarily because FPGA designs are often LUT-bounded.

Table 3.1: Example of area implications of bank switching

Partitioning solution Banks Bank switching Latency·Area
Lattice 4 0 1
Lattice 8 2* 2.02
Lattice 16 4* 3.43

Hyperplane 4 2** 2.44
Hyperplane 8 4** 4.33
Hyperplane 16 8** 8.37

As a preliminary experimental confirmation of bank switching hardware implica-

tions, consider table 3.1, concerning an image resizing kernel with bilinear interpo-

lation synthesized to an FPGA technology through a commercial HLS toolchain,

namely Vivado HLS by Xilinx [36]. For two different partitioning solutions, a lat-

tice based and an hyperplane based, the table lists the number of memory banks,

the amount of bank switching, and the latency-area product (normalized to the

case of minimum bank switching). Due to the regularity of the considered bench-

mark, the amount of bank switching is the same for all memory references, so they

are not considered separately. For the bank switching amount, two asterisks indi-

cate that we need multiplexers both on the address and data output ports, while

a single asterisk indicates that only data output multiplexers are present. The

benchmarks were not manipulated before synthesis, e.g. by unrolling the loop.

The results in the table clearly point out the impact of bank switching on area

efficiency. Solutions associated with lattices, are more regular than hyperplanes1.

This regularity is reflected directly by more efficient datapaths generally reducing

the steering logic needed. This is also one more confirmation of the enhanced effi-

ciency of the lattice-based partitioning technique presented in chapter 2 compared

to hyperplane-based techniques.

In the following sections, we model bank switching mathematically and also present

a formal model to determine the unrolling factors for a certain algorithm in order

to avoid bank switching completely.

1This happens in the sliding window filter example because of a rectangular window.

Chapter 3. Reducing the area impact of the memory subsystem 53

3.3 Mathematical formalization

Let the Zn set represent the whole n-dimensional memory space containing the

n-dimensional array A, and L = {B · z⃗, z⃗ ∈ Zn} be the integer lattice used for

partitioning. L is a subset (and a subgroup) of Zn. As seen in the previous

chapter, there are overall NB = det(B) different translate lattices, constituting

a partition of Zn, each corresponding to a physical memory bank. To associate

a different location to the corresponding bank, we rely on the following property,

proven in [57]. Let S = U1BU2 be the Smith Normal Form (SNF) of the lat-

tice basis B. S = {sij} is a diagonal matrix and its diagonal elements, denoted

s⃗ = (s00, s11 . . . sn−1,n−1), are such that sii divides si+1,i+1, while U1 and U2 are

unimodular matrices, and hence NB = det(B) = det(S) =
∏n−1

i=0 sii. Then, the

modular mapping defined by σ(z⃗) = U1 · z⃗ mod s⃗, z⃗ ∈ Zn has L as the kernel, i.e.,

z⃗ ∈ L ⇒ U1 · z⃗ mod s⃗ = 0⃗.

As a consequence, the quotient group Zn/L, containing the NB translates of

L, each corresponding to a memory bank, is in one-to-one correspondence with

the different values taken on by the modular mapping σ(z⃗) = U1 · z⃗ mod s⃗.

In other words, each bank can be denoted by an n-dimensional index b⃗F =

(b0, . . . , bn−1) with bi < sii ∀i and, given a particular memory reference of in-

dices z⃗ = (z0, . . . , zn−1) (e.g., A[3][5] in a bidimensional space), the corresponding

bank can be simply obtained as (b0, . . . , bn−1) = σ(z⃗) = U1 · z⃗ mod s⃗. Con-

sider now a memory access in the code, and the corresponding access function

z⃗ = F (v⃗) = F · v⃗+ t⃗0. The bank accessed by the memory reference in a given iter-

ation v⃗ is b⃗F (v⃗) = U1(F · v⃗ + t⃗0) mod s⃗. Quantifying bank switching is equivalent

to computing how many different values are taken by the modular mapping b⃗F (v⃗)

as v⃗ spans Zn (we assume that the memory array is large enough to take all the

different values of b⃗F , which is normally the case in practice). In the following, we

show how the previous formulation can drive the choice of the unrolling factors in

order to reduce, or even eliminate, the bank switching effect. Notice that, as dis-

cussed later, we assume that the choice of the unrolling factors is not constrained

here by possible data dependencies across iterations.

To formalize the impact of loop unrolling note that, in terms of memory accesses,

the essential effect of unrolling is to change the expressions of the memory access

Chapter 3. Reducing the area impact of the memory subsystem 54

functions. In general, let ei and ej be the unrolling factors of the two loops in the

nest. Each memory access function of the form F (j, i) =

(
f00 f01

f10 f11

)(
j

i

)
+ k⃗ is

transformed after unrolling into:

F ′(j, i) = F′ · v⃗ + k⃗′ =

(
ej · f00 ei · f01
ej · f10 ei · f11

)
·

(
j

i

)
+ k⃗′

with k⃗′ being a suitable constant vector (not affecting bank switching). The follow-

ing result connects the amount of bank switching with the transformation induced

by the unrolling factors. Let U1 =

(
u00 u01

u10 u11

)
and s⃗ refer to the SNF of the

lattice basis B used for partitioning. Then, the bank mapping function is

b⃗F (v⃗) = U1 ·
[
F′ · v⃗ + k⃗′

]
mod s⃗ =

[
T · v⃗ + k⃗′′

]
mod s⃗

where T = U1 · F′ =

(
t00 t01

t10 t11

)
=

(
q00 · ej q01 · ei
q10 · ej q11 · ei

)
=

(
(f00u00 + f10u01) · ej (f01u00 + f11u01) · ei
(f00u10 + f10u11) · ej (f01u10 + f11u11) · ei

)

and k⃗′′ = U1 · k⃗′ is a constant term.

Bank switching is thus given by the number of different values taken on by

[T · v⃗] mod s⃗. In case the two rows of T · v⃗ are a multiple of s00 and s11, re-

spectively, the above modular expression takes on always one value. A sufficient

condition is ensured by the following choice for the unrolling factors:

e∗j = lcm

(
s00

gcd(q00, s00)
,

s11
gcd(q10, s11)

)

e∗i = lcm

(
s00

gcd(q01, s00)
,

s11
gcd(q11, s11)

)
In fact, taking the first row as an example, we have that e∗j = α · s00

gcd(q00,s00)

and e∗i = β · s00
gcd(q01,s00)

by the above choices. Write q00 = q′00 gcd(q00, s00) and

Chapter 3. Reducing the area impact of the memory subsystem 55

q01 = q′01 gcd(q01, s00). Then, the first row of T · v⃗ is

q00e
∗
j · j + q01e

∗
i · i = q′00 gcd(q00, s00) · α

s00
gcd(q00, s00)

· j+

q′01 gcd(q01, s00) · β
s00

gcd(q01, s00)
· i = s00 [q

′
00α · j + q′01β · i]

Notice that, although we considered two nested loops for simplicity, the treatment

can be easily generalized to the case of an n-level loop nest. Furthermore, the tech-

nique was discussed for a single memory reference. When more memory accesses

to the same array are found in the loop body, the technique can still be applied to

each reference separately, then picking for each unrolling factor the least common

multiple of the different solutions determined.

3.4 Experimental evaluation

In order to validate the theoretical results, Xilinx VivadoHLS [36] has been used

as synthesis tool targeting a Xilinx Virtex-7 device [58]. The C code featuring

partitioned memory accesses for each case study has been written and given as

input to VivadoHLS. We have chosen three benchmarks, that are:

• An Image Resizing algorithm using bilinear interpolation

• A 2D Gauss-Seidel kernel

• A 2D-Jacobi algorithm

The benchmarks are representative of typical HLS applications and widely used in

many scientific applications. The Gauss-Seidel is often used for the resolution of

linear systems whereas Jacobi is a popular algorithm for solving Laplace differential

equations on a regularly discretized square domain. The partitioning solutions

were derived following the approach explained in chapter 2.

In table 3.2 there are the solutions, i.e. the unrolling factors, returned by the

application of the methodology for an increasing number of banks. The Gauss-

Seidel and Jacobi kernel exhibit the same behavior in terms of unrolling choices

Chapter 3. Reducing the area impact of the memory subsystem 56

for avoiding bank switching since they both process the input array sliding on it

with a unitary stride. In contrast, the Image Resizing kernel processes the input

data block-wise; in fact, it can be noticed that the unrolling factors tend to be

lower because the accesses pattern helps avoid bank switching by itself. According

to the methodology, the identified unrolling factors eliminate bank switching and,

hence, avoid degrading the area efficiency due to complex steering logic.

Image Resize NB e∗i , e
∗
j

1 1,1
2 1,1
4 1,1
8 1,2
16 2,2

2D Gauss-Seidel NB e∗i , e
∗
j

1 1,1
2 1,2
4 2,2
8 2,4
16 4,4

2D Jacobi NB e∗i , e
∗
j

1 1,1
2 1,2
4 2,2
8 2,4
16 4,4

Table 3.2: Unrolling factors returned by the application of the methodology

Figure 3.3.a depicts the area efficiency (latency-area product), for the Image Re-

size algorithm in function of the number of banks; each curve corresponds to a

different unrolling configuration. Figure 3.3.b and figure 3.4.a do the same for

the Gauss-Seidel and Jacobi kernels. The latency-area product, in each plot has

been normalized to the case of 1 memory bank, hence it shows the area efficiency

improvement/loss with respect to a non-partitioned solution. When the curve

decreases it means we are gaining efficiency.

For each of the unrolling configurations, first the area latency product is on the

decrease, i.e., the efficiency improves; then after a certain number of banks, it

starts increasing. The point in which the trend changes is exactly where bank

switching starts. For each curve, we can distinguish clearly two regions; one where

Chapter 3. Reducing the area impact of the memory subsystem 57

Number of banks

L
a

te
n

c
y
 *

 A
re

a

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

e = 1,1

e = 1,2

e = 2,2

e = 2,4

e = 4,4

Number of banks

L
a
te

n
c
y
 *

 A
re

a

0 2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

3

3.5

4

e = 1,1

e = 1,2

e = 2,2

e = 2,4

e = 4,4

a) b)
Image Resize Gauss-Seidel

Figure 3.3: Area efficiency (normalized to the case of 1 bank) versus number
of banks. a) Image Resize algorithm, b) Gauss-Seidel kernel

Number of Banks

L
a
te

n
c
y
 *

 A
re

a

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

e = 1,1

e = 1,2

e = 2,2

e = 2,4

e = 4,4

Unrolling Configuration (ei, ej)

L
a
te

n
c
y
 *

 A
re

a
 (

N
B

 =
 8

)

(1,1) (1, 2) (2, 2) (2, 4) (4, 4)

0

0.5

1

1.5

2

2.5

3

Image Resizing 8 Banks

Gauss-Seidel 8 Banks

Jacobi 8 Banks

2D-Jacobi All benchmarksa) b)

Figure 3.4: a) Area efficiency (normalized to the case of 1 bank) versus number
of banks for the 2D-Jacobi. b) Area efficiency versus unrolling configurations for
all benchmarks and 8 memory banks. Each sample is intended to be normalized
to the case of a rolled version using 1 memory bank. The black circles are the
solutions predicted by our methodology for avoiding bank switching, unrolling

beyond them does not yield substantial advantages

the curve decreases that is the region without switching and the other where it

increases because of increasing switching. For example, in figure 3.3.b (Gauss

Seidel), the unrolling configuration e=(2,2) is free of switching until 4 banks. The

unrolling configuration e=(2,4) can resist until 8 banks, whereas a completely

rolled version e=(1,1), is subject to switching immediately using only two memory

banks. Therefore, the more aggressive is the unrolling, the bigger is the number

of banks we can use without incurring switching.

Chapter 3. Reducing the area impact of the memory subsystem 58

Moreover, independently of the number of banks, loop unrolling can effectively im-

prove the efficiency of the synthesized circuit. This can be noticed in figure 3.4.b

that depicts the latency-area product versus unrolling configurations in case of 8

memory banks. The figure shows the area efficiency against unrolling configura-

tions for a fixed number of memory banks (NB = 8) for the three benchmarks. We

can notice that up to a certain point, unrolling benefits efficiency considerably due

to reduced amounts of bank switching. Beyond those points (marked in the plot

by black circles), there are diminishing or null returns. Those points are actually

the minimum unrolling factors needed to avoid bank switching completely and

are all correctly predicted by the mathematical model. The improvement of an

unrolled circuit with unrolling factors e=(4,4) over a rolled version is respectively

of 5.6x, 2.3x and 2x for the three benchmarks.

Experiments also give more confirmations of the validity of the mathematical

model described in section 3.3. For example, our mathematical model has pre-

dicted (see table 3.2) that an unrolling configuration of e=(2,2), is the minimum

amount of unrolling needed in order not to have switching with 4 memory banks

in case of Gauss-Seidel. As can be noticed in figure 3.3.b, that is exactly what

happens in the experiment; the red curve, corresponding to e=(2,2), is free of

switching up to 4 banks, after which the efficiency sharply decrease. In fact, a

more aggressive unrolling (light blue and purple curves) can guarantee no switch-

ing also with more banks, but lower unrolling factors (e = (1,1) and e = (1,2))

cannot avoid it; in fact, the curves with (e = (1,1) and e = (1,2)) are in their

switching regions with 4 banks.

The above conclusions refer to the lattice-based technique, but similar consider-

ations apply to cyclic [19] and hyperplane-based [46] partitioning. However, the

three techniques may perform very differently in terms of area and performance.

In particular, while there can be a significant advantage in terms of latency when

comparing the lattice-based approach with the cyclic approach, the hyperplane-

based solutions are general enough to achieve full parallelization in the memory

accesses for the very regular benchmarks considered. The most important advan-

tage of the lattice-based method over hyperplanes is related to the area overhead,

as the bank switching effect occurs more frequently when only hyperplanes are

used.

Chapter 3. Reducing the area impact of the memory subsystem 59

Figure 3.5 depicts latency and area obtained for the 2D-Image Resizing Kernel

using the three techniques. As can be noticed, lattices and hyperplanes are com-

parable in latency but the area advantage increases with the number of banks up

to more than 2 times.

1 2 4 8 16
0

200

400

600

800

1000

1200

Lattices

Hyperplanes

Cyclic

Memory Banks

R
e

s
o

u
rc

e
s
 (

L
U

T
s
)

--
-

L
a

te
n

c
y
/1

0
0

Figure 3.5: Comparison of the three techniques. The area is reported by solid
bars, the latency by white filled bars.

3.5 Remarks and conclusions

In this chapter we have recognized the main relationship existing between memory

partitioning and area overhead. Bank switching has been identified as the main

cause of efficiency decrease, and for this reason, we have proposed a mathematical

formalization and an approach for reducing it based on loop unrolling. In the

light of the experimental results two general and non-intuitive conclusions can be

drawn.

• In the presence of partitioning, a more aggressive unrolling does not directly

turn into larger area, but instead depends on how partitioning is done. The

reason is that the steering logic may outpace the area increase caused by

unrolling.

Chapter 3. Reducing the area impact of the memory subsystem 60

• A lattice-based partitioning leads to a more efficient synthesis compared to

the hyperplane-based one. This is due to fact that the former is more gen-

eral and includes the solutions proposed by the latter; an hyperplane based

approach may exclude the solutions having the highest spatial regularity

affecting area badly.

As a last point, regarding the usage of loop unrolling to improve the synthesis it is

important to notice that we have not taken into account loop carried and dataflow

dependencies, which may hurt the unrolling effectiveness. Those dependencies are

inherent in the algorithm implementation rather than its synthesis and, although

loop unrolling always decreases bank switching, it can hurt efficiency in presence

of data dependencies since some allocated resources might not be used in parallel.

However, notice that:

• If there are dependencies in an unrolled loop such that computation cannot

take place in parallel, current advanced HLS tools are generally able to detect

such situation and not allocate more resources than strictly necessary;

• Restricting the interest to loops with uniform dependencies, we can always

extract n − 1 level of parallelism in a loop hierarchy made of n loops [59].

In other words, transforming the loop nest (possibly automatically [29, 60])

we can unroll all the loops, apart from one (e.g. the outermost, in the case

we have parallelized the inner loops of the hierarchy) avoiding building an

underutilized datapath.

• Even if there are data flow dependencies among operators and HLS allocates

more resources than necessary, the loss in efficiency, if any, with respect to the

non-unrolled case is limited by the fact that HLS tools can still take advan-

tage of an unrolled code by exploiting the parallelism of accessory operations

(e.g. arithmetic operations for the generation of addresses). Therefore, over-

all, unrolling is likely to increase efficiency because of the benefit in terms of

avoided bank switching.

Although the above arguments, introducing loop carried dependencies in the for-

malization is an evident opportunity of improvement that is not going to be missed

in future developments.

Chapter 4

Interconnecting memory banks

and processing elements

4.1 Introduction

As seen previously, the memory architecture is of paramount importance for per-

formance and area of synthesized circuits. In chapter 3 the implications of the par-

titioning choices on area have been analyzed; different solutions lead to different

steering circuitry, in that they affect how computing elements are interconnected

to memories. However, there was an implicit assumption behind the approach: if

a computing resource eventually needs data from a memory bank it is directly con-

nected to it by means of multiplexers. As a consequence, this generates an actual

partial crossbar as communication infrastructure. In this chapter that assump-

tion is removed and a novel approach for targeting the interconnect architecture

to the application requirements is proposed. Partial crossbars are only a single

point in a much bigger design space that is constrained, as usual, by available

area, required performance and energy consumption. Differently from previous

chapters, the discussion is more system-level oriented; processing elements are not

limited to simple components anymore, such as adders or multipliers inferred by

an high-level synthesizer but can be of any type; for example, they can be gen-

eral purpose processors or specialized accelerators. However, the orientation of

the approach remains the same, it targets performance optimization and analyzes

61

Chapter 4. Interconnecting memory banks and processing elements 62

area impact as side effect trying to limit it. In the dedicated experimental section,

the advantages of the proposed methodology over trivial choices, such as crossbars

and shared buses, as well as other existing approaches, are shown using many

benchmarks having different traffic profiles.

4.2 The importance of interconnects and concur-

rency

The choice of the underlying topology, depending on specific application require-

ments, is critical because it affects the entire inter-component data traffic and im-

pacts the overall system performance and cost [61]. Not surprisingly, the industry

and the academia are continuously introducing new architectures and components

dictating the evolution of on-chip communication. First-generation on-chip inter-

connects consist of conventional bus and crossbar structures. Buses are mostly

wires that interconnect IP cores by means of a centralized arbiter. Examples are

AMBA AHB/APB [4] and CoreConnect from IBM (PLB/OPB) [5]. However, the

growing demand for high-bandwidth interconnects has led to an increasing inter-

est in multi-layered structures, namely crossbars, such as ARM AMBA AXI [6]

and STBus [7]. A crossbar is a communication architecture with multiple buses

operating in parallel. A crossbar can be full or partial depending on the required

connectivity between masters and slaves. Slaves are quite often memories, or mem-

ory banks as seen in previous chapters. Crossbars can provide lower latency and

higher bandwidth, although this benefit usually comes at non-negligible area costs

compared to shared buses. Buses and crossbars are tightly-coupled solutions, in

that they require all IP cores to have exactly the same interfaces, both logically

and in physical design parameters [8]. Networks on Chip (NoCs) [9] enable higher

levels of scalability by supporting loosely coupled solutions. NoCs are particularly

well-suited when targeting reusability, maintainability, and testability as the main

design objectives, while bridged buses/crossbar architectures ensure low-power,

high-performance, and predictable interconnects.

Chapter 4. Interconnecting memory banks and processing elements 63

Due to the large spectrum of choices for the definition of the on-chip interconnect,

including the selection of the appropriate components and topology, determin-

ing the solutions that best suit given applications requirements is a non-trivial

task [61], especially when targeting embedded many-core systems. The intercon-

nect topology should be designed so as to provide a high aggregate bandwidth by

allowing many separate communication tasks to operate concurrently. In order to

achieve this goal, taking advantage of spatial locality, i.e. placing the blocks that

communicate more frequently closer to each other, is critical [62]. In particular,

the communicating elements can be grouped in local domains that, depending on

their internal architecture, may allow different communication interactions to take

place concurrently.

In this scenario, we can recognize three different levels of parallelism:

• Global parallelism: communication in different local domains can take place

concurrently.

• Local parallelism or intra-domain parallelism: local domains may be imple-

mented by inherently concurrent architectures (i.e. crossbars).

• Inter-domain parallelism: multiple parallel paths among different local do-

mains are allowed.

Figure 4.1 exemplifies these three forms of communication parallelism. The three

levels of parallelism can potentially enable lower-cost, lower-latency concurrent

interconnects that scale well with the system size.

On the other hand, taking into account dependency constraints between com-

munication tasks is essential to understanding the actual communication timing

and properly dimensioning the interconnect [63]. Based on this observation, this

chapter proposes a complete methodology supporting joint interconnect synthesis

and communication scheduling based on communication task dependencies. The

resulting architecture improves the level of communication parallelism that can

be exploited, while keeping area requirements low, as proven by some case-studies

presented later.

Chapter 4. Interconnecting memory banks and processing elements 64

Figure 4.1: An example of topology exhibiting three levels of parallelism (”M”
: master, ”S” : slave, ”B” : bridge.): Global parallelism (red), Intra-domain

parallelism (green), and Inter-domain parallelism (blue).

4.3 Problem definition

4.3.1 Definitions

An application-specific on-chip network topology synthesis and communication

scheduling method is proposed. It takes as input the information on the commu-

nication tasks and their dependency relationships, and generates the specification

of an on-chip interconnect along with the communication task schedule. In the

following we give some useful definitions as well as a simple example.

Figure 4.2: A few examples (”M” : master, ”S” : slave, ”B” : bridge.) (a) A
Task List (TL). (b) A Dependency Graph (DG). (c) A Communication Schedule

(CS). (d) A Synthesizable Topology (ST).

Chapter 4. Interconnecting memory banks and processing elements 65

Definition 4.1. A Task List (TL) is a list, made up of ntask communication tasks,

indexed by a unique taskID where each entry ti contains the master and the slave

involved in the communication and a cost ci (i.e. the data traffic) in terms of

number of bytes to be transferred.

The communication traffic between a master and a slave is made up of communi-

cation tasks which are non-preemptive atomic entities with an arbitrary load, i.e.

the amount of transmitted bytes, transferred in a burst mode. Notice that two

different tasks can have the same master/slave pair. This allows modeling any

traffic pattern. Figure 4.2.a contains a TL with five tasks where, for each task,

the master/slave pair and the amount of traffic they exchange are specified.

Definition 4.2. A Dependency Graph (DG) is a Directed Acyclic Graph (DAG)

in which the vertex set V = {vi : i = 0, 1, ..., ntask − 1} is in one-to-one correspon-

dence with the set of communication tasks and the edge set E = {(vi, vj) : i, j =

0, 1, ..., ntask−1} represents dependency relationships between the above tasks. An

edge connects one vertex to another, such that there is no way to start at some

vertex vi and follow a sequence of edges that eventually loops back to vi again.

As a result, it gives rise to a partial order relationship ≤ on its vertices, where

the relationship vi ≤ vj occurs exactly when there exists a directed path from

vi to vj. It describes a set of parallel communication tasks (the vertices) having

some inter-task precedence relationships, i.e. dependency constraints. Unlike the

classical scheduling problems, the inputs and outputs of a node do not convey

data, but they only express communication dependency constraints. The com-

munication represented by a node can start as soon as all its parent nodes have

finished. A node with no parents is called source, while a node with no children is

called sink. The weight of a node is called the communication cost (i.e. the data

traffic of a node vi in terms of amount of bytes to be transferred) and is denoted

by c(vi), while the weight on an edge is called the computation cost of the edge

and is denoted by w(vi, vj). This cost represents the delay, due to computation,

that might take place between two consecutive communication tasks. Notice that

c(vi) = ci ∀i : vi ∈ V .

Chapter 4. Interconnecting memory banks and processing elements 66

As an example, consider the DG in figure 4.2.b. It expresses the existing depen-

dency relationships between the tasks present in the TL in figure 4.2.a. In this

case, there are dependency constraints between t0 and t1 and between t2 and t3.

Definition 4.3. A Communication Schedule (CS) is defined as a vector indexed

by a task identifier containing in each entry si the start time of communication

task ti in clock cycles. The latency of the CS is the number of cycles to execute

the entire schedule, or equivalently, the difference in start time of the sink and

source vertices. If two or more sources/sinks are available, the source/sink with

the smallest/biggest start time is used. Since a feasible solution must satisfy data

dependency constraints, the start time of a communication task is at least as large

as the start time of each of its predecessors plus their execution delay di. An

execution delay is an integer representing the amount of clock cycles required to

execute a communication task in a given architecture. Therefore a schedule must

satisfy the following relations:

si ≥ sj + dj ∀i, j : (vj, vi) ∈ E (4.1)

It is of course desirable to find the minimum latency schedule that can be run on

a physical topology under given area constraints.

In figure 4.2.c, a possible scheduling solution is depicted. It is the as-soon-as-

possible (ASAP) schedule for the given DG and TL. Notice that although t3 and

t4 do not have any data dependency, their execution is serialized due to a slave

incompatibility: two different tasks cannot simultaneously access the same slave.

Similarly, accessing simultaneously the same bridge in a multi-hop communication

would lead to a task incompatibility.

Definition 4.4. A Synthesizable Topology (ST) is made up of local domains inter-

connected by means of bridges. A local domain can be either a bus or a crossbar

where some masters and slaves are involved in communication tasks. Communi-

cation on a global scale between different local domains can be done via a proper

configuration of bridge address ranges. The number of bridges crossed by a com-

munication task ti is called hop count and is denoted by hi. Formally, a Synthe-

sizable Topology is defined as a triplet (C,O, I). C is the set of clusters that is in

one-to-one correspondence with the set of local domains. O is the set of directed

Chapter 4. Interconnecting memory banks and processing elements 67

edges between two clusters which physically correspond to a unidirectional bridge

decoupling the local domains, which makes the inter-cluster traffic possible. I is

the implementation function specifying the local domain architecture. Given an

element c ∈ C which contains n masters and m slaves, I(c) can be equal to either

an n×m bus or a l×k crossbar, with 2 ≤ l ≤ n and 2 ≤ k ≤ m where l and k are

the number of master and slave ports. In the crossbar case, the output will include

a connection matrix (call it Z) that fully specifies the connections between every

master port and every slave port, possibly defining sparse crossbars. Obviously,

the values of l and k directly impact the resulting area requirements. An ST must

meet the area constraints and must allow the concurrent executions identified in

the scheduling solution.

Figure 4.2.d depicts the synthesizable topology made of two clusters (C0 and C1)

and one bridge allowing task t1 to be performed. C0 is implemented as a shared bus

and C1 as a crossbar. This topology exhibits the required parallelism to run the

above schedule. This is obtained by taking advantage of both global parallelism,

because there are two clusters running concurrently, and local parallelism, because

cluster C1 is implemented as a 2× 2 crossbar.

It is important to emphasize that the two sets C, O and the implementation

function I of a ST are each responsible for a different level of parallelism. The C

set defines the number of clusters and the distribution of the masters and slaves

between them. Since the communication in each local domain is concurrent, the

global-parallelism depends on the definition of the C set. The O set contains

the number and the position of the bridges and consequently its configuration

affects the inter-domain parallelism. Last, function I returns the architectural

implementation, i.e. a bus or a crossbar, of each domain and hence the number of

local concurrent channels, i.e. the degree of local or intra-domain parallelism.

4.3.2 Objectives

The interconnect synthesis problem is stated as follows. Given

• a communication Task List (TL) containing, for each task, the master and

the slave involved and the amount of bytes to be transferred;

Chapter 4. Interconnecting memory banks and processing elements 68

• a Dependency Graph (DG) describing the possible inter-task precedence

relationships, i.e. data dependency constraints;

• area constraints;

find:

• a Synthesizable Topology (ST) specification based on a heterogeneous bus/cross-

bar architecture minimizing the target cost function;

• a minimum-latency communication task schedule (CS) compatible with the

identified architecture.

The problem of communication scheduling and synthesizable topology definition

are deeply interrelated. The schedule identifies the precise start time of each com-

munication task. The start times must satisfy the DG dependencies, which limits

the amount of parallelism of the communication, because any pair of communi-

cation tasks involved in a direct dependency, or a chain of dependencies, may

not execute concurrently. Determining the concurrency of the topology imple-

mentation, scheduling affects the resulting performance and cost. Similarly, the

maximum number of concurrent communication tasks at any step of the schedule

is bounded by the interconnection topology. The final architecture must be able

of handling the parallelism offered by a certain schedule.

The cost of the interconnect in terms of area can be upper bounded to satisfy

some design requirements. When resource constraints are imposed, the number

of concurrent communication tasks whose execution can overlap in time is limited

by the parallelism of the topology. Tight bounds on the interconnect area cause

serialized communication. As a limiting case, a scheduled sequencing graph may be

such that all communication tasks are executed in a linear sequence. This is indeed

the case when only a single bus is available to execute all communication tasks.

On the contrary, the unconstrained solution is a crossbar with a suitable number

of connections enabling the maximum number of concurrent communication tasks

according to DG dependencies. Area/latency trade-off points can be derived as the

solutions to different constrained scheduling problems. The methodology jointly

Chapter 4. Interconnecting memory banks and processing elements 69

considers them to derive a heterogeneous interconnection topology satisfying both

area and dependency constraints.

4.3.3 Assumptions

Following are the main assumptions we made for the interconnection design prob-

lem:

• First, we target a memory mapped communication scenario where the mem-

ory blocks and I/O devices are mapped to slave nodes while the initiators,

such as CPUs and DMAs, are mapped to master nodes sharing the same

address space in the system. IP cores that have both roles, i.e. initiator and

target, are mapped to both a master node and a slave node, handled like the

other nodes.

• All the interconnect channels use the same protocol and channel width.

• The routing is deterministic and defined by statically setting bridge ad-

dresses.

• We neglect the overhead due to bus contention when computing latencies.

• A pre-characterized library of crossbars and buses is ready for various config-

urations (e.g., different numbers of masters and slaves). We built an accurate

area cost model, obtained through interpolation of extensive area character-

izations using RTL synthesis. We will explain the proposed method and

show the experimental results for AXI-based interconnects. However, the

proposed method can also be applied to crossbar-based interconnects imple-

menting other protocols.

Chapter 4. Interconnecting memory banks and processing elements 70

Figure 4.3: Proposed interconnect synthesis flow

4.4 Proposed methodology

4.4.1 Overview of the proposed method

This section presents a novel approach to automatically build highly parallel inter-

connection structures, minimizing the communication overhead and maximizing

the degree of parallelism that can be achieved by concurrent communication inter-

actions. The approach also deals with dependency constraints expressed using the

DG. The proposed topology synthesis flow, shown in figure 4.3, consists of three

phases:

1. Communication elements clustering

2. Inter-cluster topology definition

3. Scheduling and intra-cluster topology definition

The global parallelism is made possible by defining local domains, i.e. subsets of

nodes in the interconnect that can directly communicate with each other, indepen-

dent of other domains where different communication interactions can take place

concurrently. Local domains are implemented as either crossbars or buses. Cross-

bars also enable local parallelism, i.e. concurrent communication among nodes

within the same domain.

The first step performed (Phase 1) is the clustering of communicating elements in

local domains. The capability of exploiting spatial locality in the communication

Chapter 4. Interconnecting memory banks and processing elements 71

patterns is here key, as we attempt to place the nodes that communicate more

frequently closer to each other, minimizing the traffic between communicating

elements and matching the localized traffic patterns induced by a given application.

In Phase 2 the clusters are connected in order to make all inter-cluster commu-

nications feasible by means of bridges. By properly setting the mapping of the

address spaces in each bridge, furthermore, multiple physical paths between dif-

ferent domains can be realized. Multiple paths introduce flexibility in the network

topology, as they create a further opportunity for balancing the load across the

interconnect, as well as concurrency in inter-cluster communication (inter-cluster

parallelism).

Finally, we need to figure out how single clusters will be implemented (Phase 3).

This step is performed jointly with the communication scheduling: an iterative

procedure finds an optimal communication tasks schedule (in terms of latency)

and a global topology containing enough resources to execute the found schedule.

The identification of the final implementation for the local domains is driven by

the area constraints. The chosen implementation must ensure a degree of intra-

cluster parallelism compatible with the identified schedule. The definition of an

effective method generating the intra-cluster architecture given a global scheduling

solution is essential.

Notice that these three steps are each responsible for the two sets C and O and for

the implementation function I, and, hence, for a different level of parallelism. No-

tice that the above approach targets a single application. In case different applica-

tions are anticipated to share the same interconnect architecture, the methodology

can still be adopted by identifying a clustering that averages the characteristics of

all applications, similar to cluster ensemble techniques [64]. The three main steps

covered by the methodology are explained in the following sections.

4.4.2 Communication elements clustering

As shown in figure 4.3, Phase 1, clustering is one of the main steps involved in

the interconnect architecture definition. In fact, the quality of clustering heavily

affects the degree of communication parallelism the final interconnect can exploit.

Chapter 4. Interconnecting memory banks and processing elements 72

Each cluster corresponds to a local domain made up of some masters and some

slaves connected by a local communication architecture. Clustering takes place in

two separate substeps. First, slaves are clustered in order to form local domains.

Then, masters are assigned to local domains according to the traffic profile. In the

following the two substeps are described.

4.4.2.1 Hierarchical slave clustering

This sub-step takes as input the TL and provides as output a part of the C

set of the Synthesizable Topology that will be taken as input by the following

sub-step in order to determine the remaining elements. Therefore, the clustering

determines how many local domains will be present and which slaves belong to

which domains. Notice that the clustering step fixes the number of clusters in C

and determines the partitioning of the slave nodes, while the allocation of master

nodes is not constrained at this step. Since an agglomerative hierarchical clustering

is performed, the number of merging steps is essential to the architecture definition

for both the area efficiency and the global communication overhead. The more

clustering steps are performed, the fewer clusters are created at the expense of

area occupation. This phase moves the degree of parallelism from global to local

parallelism. To cope with this problem, slaves are represented in an Euclidean n-

dimensional space. For each slave h, we build an array containing nmaster elements,

where each element m represents the fraction of the total traffic from/to the slave

h involving master m. Then, in order to decide which clusters should be combined,

the Euclidean distance is used as a measure of dissimilarity between slaves. It can

be simply proven that d(h, k) ≤ √
nmaster ∀h, k, where d(h, k) is the Euclidean

distance between slave h and k.

Hence, the clustering algorithm can proceed by merging clusters until we meet a

stop condition depending on the worst-case area occupation (computed assuming

all possible bridges between clusters and full matrices for intra-cluster communi-

cations). Without area constraints, the clustering iterations will lead to a single

crossbar, which is consistent with the goals because a single large crossbar guar-

antees the lowest possible communication overhead. With increasingly stringent

Chapter 4. Interconnecting memory banks and processing elements 73

area constraints, on the other hand, we will have a growing number of smaller

clusters.

Figure 4.4 shows an example of the clustering algorithm applied to benchmark

APPIV (see section 4.5 for the details) where, due to the imposed area constraints,

the maximum possible value of inter-cluster Euclidean distance is 0.75, giving an

outcome of four clusters.

Figure 4.4: An example of slave clustering. Slave nodes are on the x-axis,
while the Euclidean Distance is on the y-axis.

4.4.2.2 Master assignment to slave clusters

The aim of the second step is to fill the clusters in the C set of the Synthesizable

Topology by assigning each master to a unique cluster. We relied on a heuristic

improving the communication parallelism and reducing the area overhead enabled

by the interconnect topology. The heuristic simply assigns the masters to the clus-

ters with which they exchange most data in order to keep as much communication

as possible within single clusters (intra-cluster communication) and to minimize

the communication through bridges. In order to perform this assignment, we need

to consider the aggregate traffic that each master exchanges with the slaves inside

all clusters. At the end of this phase, all masters and slaves are divided in local

domains whose internal and external topologies are still to be defined.

Chapter 4. Interconnecting memory banks and processing elements 74

4.4.3 Inter-cluster topology definition

As already mentioned, both inter-cluster (i.e. the O set of the ST) and intra-

cluster topologies (i.e. the I function of the ST) need to be defined. The aim of

this phase is to determine the global inter-cluster architecture: the O set defines

the actual links between the clusters (from an implementation viewpoint, it deter-

mines the number and the positions of the bridges between crossbars and buses).

The intuition behind the proposed algorithm is that, in order to have low-latency

communication, we have to maximize intra-cluster communication while keeping

inter-cluster communication as low as possible satisfying given area constraints.

Hence, we resort to an approach that is biased towards optimizing the I function

more than the O set. As shown in figure 4.3, this is achieved in two steps.

1) Populate the O set, making all inter-cluster communications feasible.

2) Define bridge addresses by solving a path balancing problem.

For step 1), we solve an optimum branching problem taking as nodes the C set.

We rely on a well-known algorithm (i.e. Edmonds’ algorithm [65]). The important

clue is that we set the weights on the arcs to the inverse of the communication

requirements between clusters. In other words, we prioritize arcs having higher

communication requirements.

Concerning step 2), we resort to the approach in [66] that is capable of solving

a path balancing problem with a complexity of O(n log n). This approach al-

lows us to configure bridge addresses in a balanced way without overloading a

reduced number of links. Furthermore, this possibly enables the use of parallel

communication paths between masters and slaves in different clusters, enabling

the exploitation of inter-cluster parallelism. Figure 4.5 exemplifies the benefits of

inter-cluster parallelism. Figure 4.5.a shows some communication requirements of

an example application, while figure 4.5.c depicts the derived topology. Depending

on the bridge address ranges, two different paths can be used between clusters 0

and 2. For instance, the communication between M00 and S20 can go through

B02 and the communication between M01 and S21 can follow a multi-hop path

through B01 and B12. Figure 4.5.b and figure 4.5.d contain two possible schedules

Chapter 4. Interconnecting memory banks and processing elements 75

obtained, respectively, without and with exploiting multipaths. Bridge configu-

rations enabling parallel communication lead here to an improvement in terms of

communication overhead roughly equal to 33%.

Figure 4.5: The effect of considering multiple paths. (”M” : master, ”S”
: slave, ”B” : bridge.) (a) Some communication requirements of an example
application. (b) Schedule with no multiple paths. (c) The communication

architecture implementation. (d) Schedule with multiple paths.

4.4.4 Scheduling and intra-cluster topology definition

This section presents the approach to the concurrent definition of the intra-cluster

architecture and the scheduling solution. This is the most complex phase of the

methodology since it concurrently involves the design of the intra-cluster intercon-

nections and the communication scheduling. The whole procedure, consisting of

several steps, is depicted in figure 4.3, Phase 3.

At the beginning, the DG is fixed in order to take into account and preemptively

solve any potential structural conflict due to slave and bridge accesses. This is

because the original DG, taken as input by the methodology, only expresses de-

pendency relationships. The resulting DG will comply with the following rule:

all tasks using the same slave or bridge must be connected by a single path. This

means that there will be a partial order relation for slave and bridge accesses. This

is achieved by prioritizing tasks that, in an ASAP schedule, start first. This must

Chapter 4. Interconnecting memory banks and processing elements 76

be computed only once by the methodology and is represented by the first step.

In addition, in this step the execution delay di of each communication task ti is

derived in order to solve equations (4.1). Notice that di does not only depend on

the cost of the task but also on the interconnect topology: inter-cluster commu-

nications require additional clock cycles due to bridge crossing. These values are

strictly dependent on the technology and can be computed only after the definition

of the global topology.

After fixing the DG, the second step computes the ASAP and ALAP schedules

and the mobility values. Then, the iterative phase takes place. First, a temporal

bound, subsequently relaxed at each iteration of the outer loop, is fixed (third

step). Since we are optimizing the global execution time, we start with the mini-

mum temporal bound, i.e. the latency of the ASAP schedule. In fact, the ASAP

schedule finds the optimum execution time in an unconstrained problem [67]. At

each iteration of the inner loop we calculate the optimal schedule, in terms of

area occupied by an interconnection architecture able to run that communication

schedule, under that temporal bound (fourth, fifth, and sixth steps). The temporal

bound is relaxed until a solution, satisfying the area constraints, is found. A key

decision here is how much the temporal bound should be relaxed. These steps rely

on an algorithm to find the synthesizable architecture with the minimum degree

of parallelism allowing a certain schedule to be run (fifth step). Then, the cost of

the whole architecture is quantified by using a suitable area model. The last step

checks if the area of the architecture found meets the given constraints. If this

is not the case, we go back to the third step where, in addition to relaxing the

temporal bound, the mobility values are recomputed accordingly. In the following,

several essential aspects related to the above flow are described in more detail.

4.4.4.1 Relaxing the temporal bound

The granularity of the temporal bound, relaxed at each repetition of the third

step above, is critical to guaranteeing a comprehensive exploration of the available

design choices. Of course, relaxing the bound by a single clock cycle at each step

would be infeasible. We chose to relax the bound by the minimum time allowing

a task to eliminate at least one overlap in the schedule. The intuition behind this

Chapter 4. Interconnecting memory banks and processing elements 77

choice is that less overlapping leads to less concurrency, and hence the architecture

will take less area. As an example, in figure 4.6 the temporal bound is relaxed by

two time units. Had the temporal bound been shifted by only one time unit, task

t1 would have still overlapped with task t2.

Figure 4.6: Example of temporal bound relaxing

4.4.4.2 Scheduling algorithms

The scheduling algorithm is responsible for determining a schedule compatible

with the lowest-area synthesizable topology satisfying a given temporal bound and

all the constraints expressed by the modified DG (including slaves and bridges

conflicts). Table 4.1 summarizes the characteristics of the different scheduling

algorithms evaluated.

Table 4.1: Scheduling Algorithms

Name Abbreviation Solution Type

Genetic Algorithm GA Approx Evolutionary
Priority-based List Scheduling PBLS PBLS Approx Approx

Randomized Priority-based List Scheduling R-PBLS Approx Approx
Random search Rand Approx Random

Exhaustive Exploration EX Exact Exhaustive
Smart-Exhaustive Exploration Smart-EX Exact Exhaustive

4.4.4.3 Genetic algorithm (GA)

The scheduling problem can be solved by general iterative methods, like genetic

algorithms [68] that starts from a random initial population and then mutate and

Chapter 4. Interconnecting memory banks and processing elements 78

combine individuals in an iterative fashion. For implementing a scheduling al-

gorithm relying on a genetic approach, we used the Opt4J Java-based modular

framework [69]. In order to obtain only acceptable solutions at each step, we

created a new genotype to encode the solutions. The scheduling genotype is a

class containing a vector corresponding to the scheduling vector itself, indexed

by the task identifier and containing in each entry the starting clock cycle of

the corresponding task. The phenotype is simply the scheduling vector contained

in the corresponding genotype. The evaluator of the phenotype is described in

the subsequent paragraph and is the same for all other algorithms. The fitness

function returns the minimum area required by a communication architecture ex-

hibiting enough parallelism to run the identified scheduling. Due to the custom

implementation of a personalized genotype, phenotype, and evaluator, a custom

optimizator operator was also implemented to drive the generation of the new pop-

ulation. The initial population is generated starting with the ASAP solution by

moving a random number of tasks by a random quantity not larger than the mo-

bility. This guarantees a good diversity at the chromosome level with a relatively

small population size. During the movements, all data and structural dependency

relationships must be preserved. When generating the new population, we do

not perform crossover but we only rely on mutation. Specifically, we substitute

the worst L elements with L new individuals mutating the remaining ones with

probability p. Mutation takes place in the same way as random generation but

starting from the parent’s schedule and not from the ASAP schedule. After the

last iteration, the best individual is chosen. L, p, the initial population size, and

the number of iterations are configurable.

4.4.4.4 Priority-based list scheduling

Our implementation of the priority-based list approach (PBLS) tries, at each step,

to make the best move as possible within a list of admitted moves, i.e. the moves

satisfying the data-dependency constraints. The list is ordered according to the

area cost incurred by the topologies associated with any potential move. The

procedure to derive a topology, given a schedule, is explained in section 4.4.4.7.

Its behavior is radically different than the genetic approach. It does not admit

uphill moves (causing a temporary cost increase), hence the probability of sticking

Chapter 4. Interconnecting memory banks and processing elements 79

at a local minimum solution tends to be high. The starting point must be a

valid solution. At each step, the algorithm evaluates all neighboring solutions

by analyzing what happens by moving each task by the minimum quantity to

eliminate an overlap. The list is comprised of all neighboring solutions, then sorted

according to the benefits achieved by taking that move. Only the best solution is

chosen. When, at a certain step, there are no moves improving the solution, the

algorithm takes randomly one of the possible moves leading to an equivalent cost

solution and goes on. The number of consecutive random moves is bounded by

a value configurable by the user. This value must be accurately tuned, keeping

in mind that the solution space may be very smooth and have several equivalent

neighboring solutions. When this condition persists, the identified solution is likely

to be a local minimum. The search process exits when the maximum number of

iterations is reached or when there are only uphill moves available. The algorithm

does not perform well, in general, when the design space is irregular. Since it does

not admit uphill moves, this approach is likely to yield the optimal solution only

if we can take an initial scheduling that is already quite close to the optimum,

otherwise it gets stuck at a local minimum (a point not having better neighboring

solutions).

4.4.4.5 Randomized priority-based list scheduling

This is, essentially an optimized version of the previous algorithm that tries to

avoid getting stuck at a local minimum. This algorithm tries to explore a certain

number of regions of attraction according to how many iterations are performed.

The algorithm is very similar to its conventional counterpart, but when it arrives

to a local minimum (a point not having better neighboring solutions) it records

the solution and generates another random starting point in the hope of falling

in a different region of attraction. The procedure exits as soon as a maximum

number of iterations (or a maximum number of local minima) is found.

Chapter 4. Interconnecting memory banks and processing elements 80

4.4.4.6 Random search, exhaustive exploration, and smart-exhaustive

exploration

In order to extend the comparisons, some general problem-solving techniques were

implemented: a random search and two different exhaustive search approaches.

The Smart-Exhaustive exploration is an optimized version of the standard exhaus-

tive approach. The optimization consists in relying on an adaptive granularity

when moving tasks. Specifically, the quantity by which a task must be moved is

automatically computed in order to eliminate at least an overlapping in the current

schedule configuration. Obviously, whenever a task is moved, all tasks dependent

on it must be moved as well to preserve dependency and structural constraints.

Albeit this optimization largely reduces complexity, exhaustive approaches are still

too complex and can only be used for small-sized problems.

4.4.4.7 Evaluation of scheduling solutions

All the evaluated algorithms rely on a procedure to evaluate a communication task

schedule. In that respect, we need to find the lowest cost architecture that ex-

hibits enough parallelism to accommodate the identified scheduling. This process

is responsible for the quality of the local parallelism. Concerning the derivation of

valid intra-cluster topologies, we rely on compatibility graphs [67]. Compatibility

graphs are usually adopted in binding problems, to figure out whether two sched-

uled operations can share a hardware resource. In the methodology, compatibility

graphs are used to determine the number of master and slave ports needed by

local interconnects.

Definition 4.5. Given a Communication Scheduling, two tasks ti and tj are com-

patible if and only if they do not overlap in time.

Definition 4.6. Two masters (slaves), including bridge master (slave) ports, are

compatible if and only if all the tasks in which they are involved are compatible

and they belong to the same cluster.

From the definitions given above, the construction of compatibility graphs for

communication tasks and then for masters and slaves is straightforward. First,

Chapter 4. Interconnecting memory banks and processing elements 81

Figure 4.7: Deriving a topology from a given schedule. (a) Compatibility
graphs for the schedule in figure 4.2. (b) An enhanced schedule, with less
concurrency, for the same application. (c) Its compatibility graphs. (d) The

derived topology.

a communication task compatibility graph CGt(V,Et) is built. The vertex set

V = {vi : i = 0, 1, ..., ntask − 1} is in one-to-one correspondence with the set of

communication tasks, while the edge set Et = {(vi, vj) : i, j = 0, 1, ..., ntask − 1}
denotes compatibility between the above tasks: if two tasks do not overlap, then

an arc between their two vertices is placed. Then, a master CGm(Vm, Em) and a

slave CGs(Vs, Es) compatibility graph are built. The vertex sets Vm = {vi : i =
0, 1, ..., nmaster−1} and Vs = {vi : i = 0, 1, ..., nslave−1} are in one-to-one correspon-

dence with the set of masters and slaves, while the edge sets Emaster = {(vi, vj) :
i, j = 0, 1, ..., nmaster − 1} and Eslave = {(vi, vj) : i, j = 0, 1, ..., nslave − 1} denote

compatibility between the masters and slaves. In order to build the master (slave)

compatibility graph, we start from a completely connected graph and we delete

arcs progressively as follows. For each pair of non-compatible tasks, we delete

the arc between the corresponding master (slave) vertices. Starting from those

compatibility graphs, for each connected component we solve a clique-partitioning

problem [70] that identifies the minimum number of cliques1. Then, we assign a

master (slave) port to each clique in its cluster. If for a cluster a single clique

is identified, both in the master and the slave compatibility graphs, then a single

shared bus is enough because all tasks are compatible, hence sequential. Otherwise

1In graph theory, a clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge [71].

Chapter 4. Interconnecting memory banks and processing elements 82

a crossbar is necessary. If there are no clique in a cluster, then a full crossbar will

be used, otherwise the number of concurrent channels will be dependent on the

number of cliques. Figure 4.7 shows the differences between compatibility graphs

for two distinct schedules. Figure 4.7.a depicts the compatibility graphs for the

schedule in figure 4.2.c. Masters M1 and M2 and slaves S1 and S2 are incompatible

with each other. The derived topology, consisting of a crossbar for the cluster C1

and a shared bus for C0, is shown in figure 4.2.d. Notice that masters M2 and

B01 are compatible and, hence, they share the same crossbar port. Figure 4.7.b

shows a different schedule that removes the above incompatibility (figure 4.7.c).

The solution of the clique-partitioning problem is highlighted by the circles. This

leads to a less parallel and less expensive architecture, shown in figure 4.7.d.

4.5 Experiments and case studies

4.5.1 Experimental setup

For the experiments, we used a prototyping FPGA board, namely a ZedBoard

by Avnet Design Services for the Xilinx Zynq
TM

-7000 [72]. The communication

architecture synthesis flow uses the Xilinx AXI components compliant with the

AMBA R⃝ AXI version 4 specification from ARM. The components we used for

generating the system architecture include:

• Xilinx LogiCORE IP AXI Interconnect (v1.06.a)

• Custom AXI to AXI bridge

• Xilinx LogiCORE IP AXI to AXI Connector (v1.00.a)

The Xilinx AXI Interconnect may be configured as a bus or a crossbar. All data

channels have the same bus width of 32 bits. Albeit the number of total crossbars,

buses, and bridges provides an indication of the cost of the overall Synthesizable

Topology, in order to target physical devices, such as FPGAs, we need a measure

related to the technology. Synthesized FPGA designs are normally evaluated in

terms of Look-Up Tables (LUTs) and Flip-Flops (FFs). Interconnect components,

Chapter 4. Interconnecting memory banks and processing elements 83

in particular, are usually dominated by the number of LUTs. Hence, to explore

the design space efficiently, we need a technique to estimate how many LUTs are

taken by a topology (without resorting to an actual synthesis). This measure

clearly depends on the technology, because the internal architectures of FPGA

chips can vary considerably from one family to the other.

We built accurate analytical models for the evaluation of the area cost, the latency,

and the power consumption, obtained by interpolating extensive RTL synthesis

results. The area model of the AXI Interconnect was obtained by synthesizing

the AXI Interconnect IP core for a subset of all the possible configurations with

1 to 16 master ports and 1 to 16 slave ports with a step of 3, a data bus width

of 32 bits, and the two available address bus modes (shared bus or SAMD2) using

the Xilinx PlanAhead Design Tool. From the data collected, we extrapolated the

following equations, valid for the Zynq-7000 family [72], used to calculate the area

information of any interconnects with 1 to 16 master ports or 1 to 16 slave ports

(16 masters/slaves is the maximum value supported by AXI Interconnect IP core).

Acrossbar n×m = 101n+ 60nm+ 42m+ 874 (4.2)

Abus n×m = 80n+ 18.75m+ 95.5 (4.3)

We considered burst-based transactions with only the start address issued and the

payload transferred in a single burst that can comprise multiple beats3 Concerning

the bandwidth estimation, we considered the bandwidth of a channel as the max-

imum rate at which a master can receive/send (r/w) data from/to a slave. Due to

the burst-based communication, we considered that address arbitration does not

impact that rate4. To compute the execution delay di of each communication task

ti , we used the following equation:

di = (
52 + 10hi

64
) ∗ ci (4.4)

2Shared Address buses and Multiple Data buses: in most systems, the address channel band-
width requirement is significantly less than the data channel bandwidth requirement. Such
systems can achieve a good balance between system performance and interconnect complexity
by using a shared address bus with multiple data buses to enable parallel data transfer [6]

3A beat is an individual data transfer within an AXI burst [6].
4Arbitration latencies typically do not impact data throughput when transactions average at

least three data beats [73]

Chapter 4. Interconnecting memory banks and processing elements 84

where hi and ci are, respectively, the hop count and the computation cost, defined

in section 4.3.1. Intra-cluster communication tasks require 52 clock cycles every

64 bytes of data sent: 4 clock cycles for the initial access latency due to the

phases of arbitration and handshaking on the address channels, and 3 clock cycles

for each transfer of a single beat on the data channel. In case of inter-cluster

communication 10 additional clock cycles are required for each traversed bridge.

Obviously, these numbers are dependent both on the architecture and the used IP

cores. Concerning the static power consumption, we considered the power from

transistor leakage on all connected voltage rails and the circuits required for the

FPGA to operate normally. Obviously this power is independent of the user design

and, consequently, is affected only by voltage and temperature. Unlike static

power, dynamic power is the power of the user design, i.e. it depends on the input

data pattern and the design internal activity. We calculated this power by means

of simulation results based on the average switching rate of every signal in the

interconnect. Concerning the software framework, including the implementation

of all the above scheduling algorithms, the optimization tool is implemented in

Java 7. For the genetic algorithm we rely on the modular framework Opt4J [69].

4.5.2 Overview of the experiments

In order to validate the clustering choices and the cost of the corresponding com-

munication architecture, and to demonstrate the impact of scheduling on the re-

sulting topology, we tested the presented method for six synthetic benchmarks as

well as a real-world application. The benchmarks were obtained using the TGFF

package [74], removing possible concurrent tasks with the same master, while the

application is a Canny edge detection algorithm [75] whose TL and DG are taken

from [76]. Their characteristics are summarized in Table 4.2. The number of tasks

in the experiments ranges from 13 to 88, while the number of masters and slaves

ranges, respectively, from 5 to 16 and from 5 to 20. We chose benchmarks with a

various number of masters and slaves to evaluate the effectiveness and the scala-

bility of the proposed method for larger systems. Table 4.2 also gives the number

of clusters ncluster found after the Communication Element Clustering phase. In

addition, the table contains an index representing the completeness of the DG.

Chapter 4. Interconnecting memory banks and processing elements 85

It summarizes how much the design space exploration is constrained by data de-

pendencies. The index has been derived as the ratio between the number of arcs

in the DG and (n2
task + ntask)/2, the maximum possible number of arcs with no

cycles. The last column of the table contains the localization factor5. Notice that

the localization factor depends only on the mapping of communication elements

within local domains and hence is schedule-independent.

Table 4.2: Benchmarks Characteristics

ntask nmaster nslave ncluster DG Localization
completeness factor

App-I 36 9 6 3 0.0570 0.9460
Bench-I 13 5 5 2 0.2200 0.9697
Bench-II 25 7 8 3 0.1267 0.9178
Bench-III 31 8 10 4 0.1275 0.9267
Bench-IV 43 11 14 5 0.0731 0.8261
Bench-V 62 12 16 6 0.1100 0.7087
Bench-VI 88 16 20 8 0.1350 0.7935

We first carried out a set of experiments to evaluate the benefits of using the

exploration techniques presented here and to analyze the area/latency trade-off.

Area/latency trade-off points can be derived as the solutions to different con-

strained scheduling problems. The presented methodology was applied to each

benchmark and application with different area constraints. The results obtained

on Bench-III are discussed in subsection 4.5.3. Here we will also give some general

remarks.

In a second set of experiments, a stringent area constraint, ranging between 30%

and 70% of the area of a full crossbar implementation, was fixed. Then, we com-

pared the proposed approach to the most popular design choices and to [1], used

under the same area constraints, as well as to a Full Crossbar, a Hierarchical Bus,

a single Shared Bus and a Network-on-Chip. Furthermore, in order to appreci-

ate the overall impact of the scheduling algorithm on the whole methodology, we

also analyzed and compared the different scheduling algorithms and the resulting

solutions. In addition, we give some general remarks about power consumption.

5The localization factor is a metric introduced in [77], expressing the ratio between the local
traffic and the total traffic

Chapter 4. Interconnecting memory banks and processing elements 86

Finally, we focused on the area saving by applying the proposed methodology un-

der different area constraints able to obtain the same latency. Notice that [1] does

not perform the scheduling step but only relies on aggregated parameters (i.e. the

total amount of traffic exchanged between master/slave pairs) to automate the

interconnection design. These results are presented in subsection 4.5.4.

4.5.3 Exploring area/latency trade-offs

As shown by Table 4.2, the number of clusters generated depends on the com-

plexity of the application as well as on the area constraint. For the most complex

benchmark (Bench-VI), 8 clusters are derived by the procedure, while only two

are required for the most simple benchmark (Bench-I). Figure 4.4 shows an exam-

ple of clustering algorithm applied to Bench-III (of medium complexity) where,

due to the imposed area constraints, the maximum possible value of inter-cluster

Euclidean distance is 0.75, giving an outcome of 4 clusters. This result is obtained

with an area constraint of 4000 LUTs. Above this value, the number of clusters

starts decreasing. Furthermore, figure 4.8 shows the schedules and the correspond-

ing topologies obtained from the same benchmark with area constraints of 2700

LUTs and 4000 LUTs using the randomized priority-based list scheduling.

Communication tasks involving the same bridges or slaves, or exhibiting depen-

dency relationships, never overlap. Concerning unrelated tasks, if they do not

overlap, their communication interactions are serialized, so that they can share

the same resources and a single communication link can be synthesized. On the

other hand, when two tasks do overlap, multiple resources must be synthesized.

Four clusters are connected by means of bridges that allow the traffic to be ex-

changed according to the requirements expressed by the Task List. The location of

the bridges depends on the solution of the optimum branching problem that tries

to place the clusters that exchange more data as near as possible to each other

(determining less hops to go through). Notice that there are two parallel commu-

nication paths between masters inside cluster C1 and slaves inside cluster C0: the

first goes through bridge B10, while the second goes through the multi-hop path

consisting of bridges B13 and B30. The difference between the two architectures

Chapter 4. Interconnecting memory banks and processing elements 87

Figure 4.8: Synthesized topologies and their schedule found for Bench-III
with the Randomized Priority-based List Scheduling and two different Area
constraints. (a) The Synthesizable Topology (ST) obtained with an area con-
straint of 4000 LUTs. (b) The ST obtained with an area constraint of 2700
LUTs. (c) The Communication Scheduling (CS) obtained with an area con-
straint of 4000 LUTs. (d) The CS obtained with an area constraint of 2700

LUTs.

lies in the intra-cluster architectures. With 4000 LUTs we have a more paral-

lel intra-cluster architecture achieving a gain of roughly 32% in execution time

(around 11.75 Mega Clock-cycles against 8.10) due to the presence of the crossbar

in cluster C1. Instead, with an area constraint of 2700 LUT, all tasks involving

M2, M3 and M4 as well as S2, S3, S4 are executed in a linear sequence, leading to

a single bus executing all communication tasks in cluster C1. It is important to

highlight that, in this case, the two area constraints lead to a difference only on

the intra-cluster parallelism, while the global and the inter-cluster parallelism does

not change. For Bench-III we achieved a localization factor of approximately 0.92.

It indicates a highly localized traffic and hence improved opportunities for global

parallelism, resulting in a lower overall execution latency. Localization factors for

each benchmark and application are shown in the last column of Table 4.2.

Chapter 4. Interconnecting memory banks and processing elements 88

4.5.4 Comparisons with existing methods for various schedul-

ing algorithms

To illustrate the benefits of the approach, a comparison with all the common

design choices and the approach presented in [1] is presented. We evaluate the

improvement of area, latency and energy profiles of seven benchmarks against a

crossbar implementation, a single shared bus, a hierarchical bus composition and

a basic NoC implementation. Figure 4.9 summarizes the results obtained by ap-

plying the two methodologies to all the case-studies under a fixed area constraint.

Concerning the hierarchical bus, we implemented each local domain found after

the clustering step with a single shared bus and we keep the inter-cluster topol-

ogy unchanged. On the other hand, a NoC implementation is more customizable

than a bus-based interconnect. We considered a basic NoC implementation with

a 2-D mesh topology, an oblivious minimum-path routing, and a wormhole flow

control. The network channel width and flit size was set to 8 bits. Each packet

in the network contains 64 body flits and 1 header flit which carries the address

information. The FIFO buffers at the output ports of the router have a depth of

32 flits. The router takes 4 cycles to process the header flit [78]. After the virtual

channel is acquired by the header flit, the remaining flits follow the header flit in a

pipelined fashion. Furthermore, the network interface overhead due to packetiza-

tion/depacketization was set to 2 cycles [79]. Then, the mapping of cores to their

cross-points was done at a high level of abstraction (based on the traffic between

cores) exploiting the traffic locality such as to reduce the number of router in a

path. Refers to [80] for more details. Concerning the presented approach, all the

scheduling algorithms discussed in subsection 4.4.4.2 were used, except the too

slow exhaustive searches.

For each experiment, the full crossbar implementation is the unconstrained solu-

tion and, hence, it exhibits the minimum possible latency at the price of a highly

oversized area. For Bench-VII we were not able to synthesize a single Full Crossbar

and a single Shared Bus due to the size of the benchmark6. Obviously, the ap-

proach shows different behaviors according to the scheduling algorithm used. The

R-PBLS algorithm is able to obtain a latency that on average is only 11% larger

6The AXI IP Core can be configured to comprise maximum 16 Slave Interfaces (SI) and 16
Master Interfaces (MI) [73].

Chapter 4. Interconnecting memory banks and processing elements 89

compared to the latency obtained with a full crossbar implementation, while, due

to the imposed constraints, the area ranges between 30% and 70% of the area

of a full crossbar implementation. The communication architectures found with

the PBLS and GA show a similar trend with an average latency overhead of re-

spectively 16% and 15% compared with the full-crossbar implementation. This

happens mainly because of the adopted clustering technique. For the small frac-

tion of inter-cluster communication, the small degradations due to the extra clock

cycles taken by bridge crossing (10 cycles every 64 bytes for each bridge) are not

appreciable in the figure (scheduling involves millions of clock cycles). This means

that the proposed iterative method is capable of achieving roughly the same la-

tency as a full crossbar despite stricter area constraints. Using the approach in [1]

we have a performance degradation instead: our approach with R-PBLS schedul-

ing found solutions that on the average lead to a latency reduction of about 35%.

In fact, ignoring dependency relationships may result in a crossbar even when it

is not strictly necessary as well as buses in cases where some communication tasks

can be parallelized. In other words, it may cause the serialization of tasks on the

critical path, increasing the execution time. The solution points corresponding to

Shared Buses, as expected, are associated with the minimum area and the largest

latency (on the average 6.5× less area than a Full Crossbar with a latency degra-

dation of about 2.6×) followed by the Hierarchical buses (on the average 4.4× less

area than a Full Crossbar with a latency overhead of about 36%). The NoC im-

plementation exhibits a different behavior. In order to keep the router cost down,

the channel width was set to only 8 bits. This leads to a performance degradation.

In addition we considered a 4 cycle overhead to process the header flit and a 2 cy-

cle overhead to handle the Packetization/Depacketization. As a consequence, the

NoC solutions show on the average a latency that is about 14% bigger than this

approach solutions. Furthermore, there is a considerable gap between the areas of

the two approaches: the NoC implementations occupy about twice the area of the

proposed approach implementations for a quarter of the channel width (32 bits

against 8 bits). This is a well-known drawback of soft overlay NoCs compared to

the hard implementations [81]. As an example, a 4 × 4 Hermes [82] NoC imple-

mentation with 1, 2 and 4 virtual channels occupies respectively 11511, 22036 and

50962 LUTs on a Xilinx XC2V6000 FPGA device [83].

Chapter 4. Interconnecting memory banks and processing elements 90

Figure 4.9: Latency comparison. The proposed approach and [1] are used
under the same area constraints

To better explain these results, we provide Table 4.3. Element (i, j) in the table

represents the average percentage of time in which the communication links are

used by application i using the approach j. A low value means wasted area due

to low channel usage. A value equal to 1 means a communication architecture

always working as in a single shared bus. Notice that the approach in [1] (as well

as the use of a single crossbar architecture) may lead to an underutilized network

because it does not consider dependency relationships, which of course are very

likely to be found in any real application.

Table 4.3: Utilization of communication channels

Full Hier. Shar. [Jun Prop. Prop. Prop. Prop.
Crossbar Bus Bus 2008] (R-PBLS) (PBLS) (GA) (Rand)

App-I 0.207 0.389 1 0.273 0.341 0.341 0.336 0.336
Bench-I 0.550 0.865 1 0.577 0.787 0.774 0.771 0.715
Bench-II 0.438 0.728 1 0.448 0.554 0.524 0.532 0.475
Bench-III 0.505 0.645 1 0.476 0.549 0.492 0.511 0.421
Bench-IV 0.391 0.450 1 0.321 0.487 0.469 0.458 0.368
Bench-V 0.401 0.492 1 0.307 0.478 0.439 0.488 0.347
Bench-VI 0.450 0.595 1 0.412 0.521 0.506 0.506 0.444

In addition, Table 4.4 shows the runtime of the scheduling algorithms to reach the

above solutions. Obviously, the results show a dependence on the application size

in terms of number of tasks. The Smart-Ex is computationally infeasible while the

PBLS and hence the R-PBLS scale poorly due to their inherent complexity. On

the other hand, the GA scales more smoothly as the number of tasks increases.

We also evaluated the overall energy consumption for each case-study, taking into

account the power consumption (based on the Xilinx XPower power estimation

tool) and the overall execution time incurred by the communication tasks. Static

Chapter 4. Interconnecting memory banks and processing elements 91

Table 4.4: The runtime (ms) of the proposed scheduling algorithms

Proposed Proposed Proposed Proposed Proposed
(R-PBLS) (PBLS) (GA) (Rand) (Smart-Ex)

App-I 8550 250 2190 520
Bench-I 1500 80 1610 310 523200
Bench-II 8770 240 2020 450
Bench-III 22750 300 2110 680
Bench-IV 87149 720 2430 1030
Bench-V 300401 2000 3450 2060
Bench-VI 685030 2550 3760 2300

energy consumption, as expected, is directly proportional to the schedule latency

since the results provided by XPower in terms of static power refer to the whole

chip and, hence, are design-independent. The dynamic energy consumption, on

the other hand, does depend on the specific structure of the implemented design.

Figure 4.10 shows the main results in terms of dynamic energy, referring to a full

crossbar, a hierarchical bus and a single bus implementations, as well as a previous

literature solution [1], and the presented approach. The proposed method gener-

ates interconnect architectures consuming on average 28% less dynamic energy

than full crossbar implementations and 40% less dynamic energy than [1]. Com-

pared with a hierarchical bus and a single shared bus there is an higher energy

consumption of respectively 15% and 77%. To understand these results, recall

that dynamic power can be modeled as Pdynamic = VDD
2 ·

∑
n∈nets

(Cn × fn) where

VDD is the supply voltage, while Cn and fn are, respectively, the capacitance and

the average toggle rate (switching activity) of a net n. The number of nets, in

the case of crossbar solutions, grows quadratically with the number of ports. As

a consequence, a large crossbar tends to consume more dynamic power per port

than an interconnect made up of small crossbars. This explains the advantage

of the proposed approach over full crossbar implementations in terms of energy

consumption. The improvement over [1], on the other hand, is due to lower la-

tencies achieved by the communication scheduling step, as shown in figure 4.9.

In one specific case (Bench-V) [1] is worse than the full crossbar implementation,

whereas our approach still performs better because of reduced-size components

and improved latency.

Finally, we explored the design space by varying the area constraints in the two

Chapter 4. Interconnecting memory banks and processing elements 92

Figure 4.10: Dynamic energy consumption comparison.

methodologies until two architectures yielding the same latency were found. As

shown in Figure 4.11, our methodology obtains an average area reduction of 48%

compared to [1] under the same latency.

Figure 4.11: Area comparison of interconnects yielding the the same latency

4.6 Related work

Although dependency relationships between communication tasks are very im-

portant as they limit the communication parallelism actually available, poten-

tially making high-bandwidth interconnects underutilized, they have only partially

been considered in the context of automated interconnect synthesis. [84] describes

a methodology for exploring the interconnect design space based on the overall

amount of data traffic exchanged between communicating elements. They rely on

a combination of analytical methods and trace-driven simulation. The authors

only target an interconnect architecture based on bridged shared buses and do not

cover the use of crossbars for local domains, which is a common approach today for

overcoming the bandwidth limitations of shared buses. [85] proposes a framework

for mapping application requirements to a given communication architecture tem-

plate and optimizing design choices for the interconnect. The methodology takes

an architectural template as input and performs a mapping of all computation

Chapter 4. Interconnecting memory banks and processing elements 93

units on the given architecture. It does not consider inter-communication depen-

dencies.

In order to overcome the scalability issues of single-crossbar solutions, several

approaches based on cascaded crossbars have been proposed [1, 86–89], leading

to topologies similar to those generated by our methodology, although they only

target ASIC design flows.

An important trend emerged during the last decade is represented by Networks

on Chip (NoCs) [90, 91]. While NoCs can potentially provide improved scala-

bility for the interconnect architecture by separating transaction, transport, and

physical layers, they also introduce considerable complexity and, if not designed

carefully, they can even lead to performance degradation. Among the disadvan-

tages posed by NoCs are the higher power consumption and area requirements

compared to standard interconnect solutions and the lack of predictability of the

performance metrics [92]. Furthermore, although research in NoCs is no more in

its infancy, there are no well-established implementation solutions based on the

NoC approach [93]. Since NoCs are highly customizable, there is a need of CAD

tools supporting the automation of the design choices. Several such design flows

have been proposed by the research community. For instance, both [94] and [95]

present a method to synthesize power/performance-efficient NoC topologies. In

particular, the authors in [94] present a method to concurrently statically sched-

ule both communication transactions and computation tasks, mapping the IPs in

a certain topology and allocating the routing paths. Unlike the previous work,

[95] proposes a topology generation procedure using a general purpose min-cut

partitioner to cluster highly communicating cores on the same router and a path

allocation algorithm to connect the clusters together. Similarly, [96] addresses the

unified mapping/routing problem with the objective of mapping QoS-constrained

applications onto a NoC topology, statically routing the communication and allo-

cating the TDMA time-slots on the network channels. [97] presents a method to

partition the system into groups of cores using spectral clustering, a partitioning

algorithm based on eigenvalue decomposition. In order to make the inter-cluster

communication feasible, links between the individual routers are created using

delay-constrained minimum spanning trees. The methodology presented here has

some similarities with [94–97] in that it uses a custom algorithm to cluster highly

Chapter 4. Interconnecting memory banks and processing elements 94

communicating cores on the same local domain and relies on a concurrent commu-

nication scheduling/topology synthesis approach. However, unlike other works,

this approach targets heterogeneous interconnects made of buses and crossbars

instead of NoCs. As a result, while giving as output clusters of highly interacting

cores, the flow maps clusters to buses or crossbars and determines bridge allocation

between cluster pairs, instead of mapping clusters to routers and allocating links

between cluster pairs. For a survey on recent research contributions and problems

on NoCs we refer the reader to [93].

Because of the popularity it has been gaining during the last years, crossbar-

based interconnect design is addressed by several works. [98] and [99] focus on

the synthesis of a single optimized crossbar. While this approach could be useful

for small- or medium-sized designs, as the system size grows, a single bus matrix

interconnecting a large number of components may have a prohibitive cost and

incur high latencies. In order to overcome the scalability issues of single-crossbar

solutions, several approaches based on cascaded crossbars have been proposed [87–

89]. Constraining the interconnect architecture to using only crossbars, of course,

results in higher area costs, especially for FPGA-based implementations. In many

situations, in fact, there are parts of the interconnect that can be implemented as

shared buses without compromising the overall performance [100].[101] and [102]

address this observation by supporting the generation of heterogeneous intercon-

nects made of crossbars and shared buses.

None of the previous works, however, considers the introduction of dependency

constraints in the optimization problem in order to avoid oversized interconnec-

tion resources, i.e. wasted area on the chip. [103] and [104] address the concurrent

problem of scheduling and interconnection synthesis. They both express the cost

of a point in the design space as the total number of links, which however may

not correctly represent the hardware cost of a heterogeneous communication in-

frastructure, particularly for crossbars. Furthermore, they do not consider shared

buses because they are only oriented to point-to-point links. While simplifying

the problem, this assumption lacks generality.

Many of the above approaches define local interconnection domains, in most cases

represented by a single crossbar. The separation in local domains is only driven by

Chapter 4. Interconnecting memory banks and processing elements 95

timing closure objectives (e.g., resorting to pipelining) and, unlike the methodology

proposed here, it does not address directly the possibility of exploiting communica-

tion parallelism across domains. Additionally, all the cited proposals assume only

one physical path between any two communicating elements, directly determined

by the interconnect topology. This assumption, which limits the degree of commu-

nication parallelism that can be virtually exploited, is not inherently required when

targeting an interconnect architecture based on bridged crossbars/buses. Between

any two communicating domains, and even two single communicating elements, in

fact, there may exist in principle different paths through different physical bridges,

where each path corresponds to a different region of the addressing space. This

opportunity, however, has never been considered so far in the technical literature

for heterogeneous networks made of both shared buses and crossbars.

4.7 Conclusions

After chapter 2 and chapter 3 focused on memory architecture synthesis, this

chapter tackles the other frequent bottleneck of many-core systems, that is the

communication subsystem. An automated design methodology for the synthesis of

complex on-chip interconnects has been presented. The motivation behind is that,

once the application memory has been partitioned, it is necessary to identify the

best interconnect topology in order to make the communication between process-

ing elements and memory banks, id est interconnect slaves, as efficient as possible.

The approach is based on a heterogeneous topology made of crossbars, buses, and

bridges. The methodology can generate a synthesizable interconnection network

starting from the specification of the application requirements, including depen-

dency relationships. The approach is based on heuristic iterative optimization

algorithms. The algorithms aim to get low-cost concurrent communication archi-

tectures by maximizing both intra- and inter-cluster communication parallelism as

well as global parallelism, respectively by concentrating traffic within different lo-

cal domains and by creating parallel, multi-hop inter-cluster communication paths.

In particular, we have introduced a greedy algorithm for clustering processing el-

ements, capable of exploiting traffic spatial locality and creating several parallel

paths among clusters. In addition, we have defined a novel approach to combined

Chapter 4. Interconnecting memory banks and processing elements 96

communication scheduling and interconnect generation. Several scheduling algo-

rithms, required for the definition of intra-cluster topologies, have been analyzed

and compared. We have also introduced a framework for the experimental evalu-

ation of architectural solutions in terms of area/latency trade-offs. In conclusion,

we have shown the experimental setup and some case-studies demonstrating the

effectiveness of the approach as well as some comparisons against common design

choices and current approaches present in the related literature.

Chapter 5

Putting it all together:

OpenMP-based System level

design

5.1 Introduction

Previous chapters have dealt with two of the major aspects in the automated

synthesis of electronic systems, the memory subsystem and the interconnection

infrastructure. They are the main responsible for systems scalability and, as such,

providing techniques for improving their synthesis is of paramount importance,

especially if targeting systems containing a high-degree of parallelism. In this

chapter we adopt a system-level perspective and propose a design flow taking as

input a functional description of a parallel system and giving as output a digital cir-

cuit. Beyond serving for putting into action the results presented in chapters 2, 3

and 4, it also introduces a design space exploration stage for solving the hard-

ware/software partitioning problem. Moreover, several architectural optimization

are introduced in order to support the OpenMP directives and clauses. In that re-

spect, the support of dynamic loop scheduling is an important innovation because

it enables run-time load balancing that is key to heterogeneous systems.

97

Chapter 5. Putting it all together: OpenMP-based System level design 98

5.2 General overview

The mainstream of the electronic design automation research is to enable the

adoption of high-level formalisms and programming languages borrowed from the

software domain to describe complex embedded applications. In this chapter we

present an approach to electronic system-level (ESL) design allowing the appli-

cation semantics to be described by a familiar multi-threaded application model,

namely using the popular OpenMP C extensions [105]. The approach also pro-

vides a complete support for all the subsequent development phases by proposing

a comprehensive design flow which includes a design space exploration at its core.

OpenMP is a de-facto standard for parallel programming and is fundamentally

based on a set of compiler directives and library routines for describing shared

memory parallelism in C/C++ programs. Ideally suited for medium granularity,

loop-level parallelism, it was chosen as a design-entry formalism in the proposed

design flow since it naturally meets the characteristics of current multi-processors

systems-on-chip (MPSoCs) and provides enough semantics to express parallelism

explicitly, especially for data-intensive applications.

The methodology proposed here aims to create a direct path from OpenMP soft-

ware applications to automatically synthesized, heterogeneous hardware/software

systems implemented onto a FPGA device. It encompasses the techniques pre-

sented in the previous chapters yielding highly-scalable systems.

A first challenge we addressed in realizing this scenario, is the need for an in-

termediate, system-oriented Model of Computation (MoC) suitable for describing

applications specified through a parallel programming language. This is key to

enable an automated design space exploration process. To this aim, we introduce

a new MoC, called Shared Memory Process Networks (SMPNs), that can describe

parallel applications at a high-level of abstraction, capturing the essential aspects

involved in the optimization and translation process. A second aspect we dealt

with, relates to functional simulation. We developed an extension of a state-of-

the-art simulation engine, PtolemyII [106], to enable the support of the MoC.

As a third argument, we introduced an analytical optimization model to enable

a comprehensive design space exploration (DSE). Determined by the underlying

Chapter 5. Putting it all together: OpenMP-based System level design 99

SMPN application abstraction, the optimization model is based on an Integer Lin-

ear Programming (ILP) formulation and relies on an innovative approach to the

early estimation of cost functions for the population of the model. The outcome

of the DSE stage is a hardware/software partitioning solution determining which

tasks must be executed on processors and which ones on dedicated hardware accel-

erators. Finally, all the architectural techniques and optimizations used to enforce

the OpenMP constructs are explained.

The above contributions result in an overall design flow and environment extending

the spectrum of ESL design to high-level multi-threaded applications. Unlike

many existing approaches, the support and the full compliance with the OpenMP

standard enables the reuse of a large body of OpenMP code and kernels developed

by the parallel computing community.

5.3 Optimized OpenMP-to-MPSoC translation

5.3.1 Design flow

The essential aim is to support the translation from a multi-threaded high-level

application to an automatically optimized circuit implemented onto FPGA de-

vices. Figure 5.1 shows the fundamental steps of the overall design flow. The first

step covers the definition of the application in the C language with OpenMP ex-

tensions. Additionally, by means of specialized compiler directives, the user must

specify which arrays and variables must be held on-chip and which ones off-chip.

This information is propagated directly to the memory partitioning module be-

cause only the on-chip structures can be partitioned due to the presence of multiple

memory banks on the programmable logic. The OpenMP multithreaded applica-

tion is internally translated to a newly introduced model, called Shared Memory

Process Networks (SMPNs), enabling the formal description of the application

structure and the interactions between components. This task is accomplished

by SOPHIE (see section 5.4) that, in addition, generates all the modules needed

for the following steps, particularly for simulation, software code compilation, and

high-level synthesis of hardware components. SOPHIE also provides the memory

Chapter 5. Putting it all together: OpenMP-based System level design 100

Code transformations

Lattice-based memory

 partitioning

Bank switching

 processing

Number of
 banks

Interconnect synthesis

Figure 5.1: The overall design flow. The pink area refers to memory and
communication infrastructure synthesis, the green area refers to DSE, the red

area refers to simulation, and the blue area refers to hardware synthesis

partitioning module with the information about the arrays to be partitioned and

the interconnect synthesis stage with synthetic traffic information needed as ex-

plained in chapter 4. The traffic information depends on how the memory has been

partitioned because the slaves of the interconnection subsystem will be mainly the

memory banks, therefore SOPHIE requires a feedback from the memory partition-

ing module in order to instruct the interconnect synthesizer.

The semantics of the translated application can be conveniently verified in a pre-

synthesis stage by means of a suitable simulation infrastructure, relying on Ptole-

myII [107]. In particular, the methodology includes a techniques, described in

section 5.5, to seamlessly plug C/OpenMP components into the Java-based simu-

lation framework provided by Ptolemy.

Concurrently to the functional simulation but before the DSE stage, the on-chip

memory partitioning and the interconnect infrastructure are automatically derived

according to the procedures presented in the previous chapters. The inputs to the

memory partitioning stage, apart from the original code deprived of the OpenMP

directives, are the number of banks, the size of the shared variables that must

be retained on chip (the information is extracted by SOPHIE using the DST, see

Chapter 5. Putting it all together: OpenMP-based System level design 101

section 5.4.1) and the maximum bank size that is a device property. After the

on-chip memory for shared variables has been partitioned lattice-wise, the parti-

tioning solution is processed to avoid bank switching as much as possible. Clearly,

the unrolling factors for bank switching avoidance cannot be bigger than the num-

ber of iterations assigned to a single task and this functionality is not supported

together with dynamic scheduling (see section 5.4.3), because we cannot know

beforehand which iterations will be executed by which processing unit. Notice

that the interconnect synthesis step needs as input only the number of slaves, i.e.

memory banks, the number of masters, i.e. processing elements, and the traf-

fic characterization; therefore it is independent of the specific hardware/software

partitioning solution, that’s why a feedback from the DSE stage is not necessary.

On the other hand, the area information concerning the interconnect necessary to

implement the specific data partitioning solution must be taken into account by the

ILP-based DSE. Running the on-chip memory and interconnect design as separate

phases means prioritizing them over the other stages in terms of area occupation.

In other words, first we define the memory and interconnect architecture, and then

make the remaining design choices. The motivation behind is that memory and

communication are often the bottleneck for performance. However, in order to

avoid that all the available area is consumed by the interconnect, the user can

specify a percentage of area that must be reserved to the processing elements.

After the functional simulation, and the memory/interconnect design steps, a de-

sign space exploration process takes place relying on a mathematical ILP model

directly derived from the application SMPN model, described in section 5.3.3.

To allow a fast DSE, the ILP optimization model is populated with quantitative

parameters derived by means of an early estimation approach based on a linear

regression statistical technique, realized by an ad-hoc module called EASTER, de-

scribed in section 5.6. The module allows an approximate evaluation of the latency

and the hardware cost corresponding to a given hardware/software partitioning

choice without resorting to the time-consuming hardware synthesis step. The

ILP model takes as input the design constraints as well as the initially available

resources and the ones used by interconnect that cannot be used anymore.

Chapter 5. Putting it all together: OpenMP-based System level design 102

Following the functional simulation and the DSE process, the back-end synthesis

of all hardware components and the code compilation for on-chip processors take

place.

As soon as these steps are complete, the cost functions can be accurately measured

by separately executing software code on processors and reading the post-synthesis

results for hardware cores on the target technology. The actual values of the cost

functions are used to validate the solution previously identified by the DSE step

based on early estimation.

Lastly, a system composition step is executed, where the overall physical sys-

tem is built, usually by assembling library hardware/software components and

application-specific components generated by the previous steps along with third-

party components.

5.3.2 A model of computation for multi-threaded applica-

tions

The choice of a proper Model of Computation (MoC), i.e. a formal abstract de-

scription of the application independent of the actual implementation, is vital to

enable effective design space exploration and, subsequently, synthesis and verifi-

cation. A large range of Models of Computation have been proposed so far to

describe embedded systems. For example, the discrete-event (DE) domain sup-

ports time-oriented models of such systems as queueing systems, communication

networks, and digital hardware. In this domain, actors communicate by sending

events, made of a data value (a token) and a tag. The tag, in turn, contains a

timestamp and microstep, used to sort simultaneous events, i.e., events having

the same timestamp [107]. When simultaneous events occur, different techniques

can be applied, e.g. VHDL uses a delta-delay strategy which does not prevent

a zero behavior [107, 108], while Ptolemy schedules events according to model

topology [107]. Kahn Process Networks [109] (KPNs) are particularly suitable to

describe a fully concurrent data-flow computation. A KPN is made of a number

of processes communicating through infinite FIFOs via blocking reads and non

blocking writes. The control aspects are not explicitly specified by the model.

Chapter 5. Putting it all together: OpenMP-based System level design 103

Given the hypothesis of process monotonicity, KPNs can be proven to be deter-

minate and self-scheduled [109]. Synchronous Data Flow Graphs [110] (SDFGs)

are a restriction of KPNs where each process reads and writes a fixed number of

tokens on input and output channels for each iteration. The scheduling of the

system is determined so that it does not block and does not cause unbounded to-

kens to be accumulate on channels. Several attempts have been made to propose

heterogeneous MoCs in order to appropriately model both data-flow and control

aspects. In fact, some MoCs, like the familiar Finite-State Machines (FSMs), are

suitable to representing control-dominated algorithmic aspects unlike models such

as KPNs, that only express the flow of data. As an example, Metropolis [111]

allows the use of various MoCs for modeling the system at the highest level of

abstraction including both data-flow and control behaviors.

In this design flow, we propose a new Model of Computation, called Shared Mem-

ory Process Networks (SMPNs). The model is particularly focused on expressing

the interactions between the actors in order to formalize a system-level descrip-

tion deriving from a high-level parallel application written in C/OpenMP. We

addressed the shared memory computing paradigm since it is essential in many

different contexts where modeling communication by means of channels turns out

to be too restrictive, e.g. when the parallel processing of a large quantity of data

inherently requires a global vision of them. As an example of two contrasting situ-

ations having different modeling requirements, sharpening filtering only requires a

local vision of data around the current pixel, while a geometric transformation of

an image requires a global vision of the data, possibly made of millions of pixels.

Consequently, a sharpening filter application might be well-suited for a data-flow

architecture with distributed memory, a rotation transformation might not. An

SMPN is made of a network of processes that evolve concurrently and communi-

cate with shared memory synchronizing with dedicated channels. This leads to a

mixed local/global approach for communication. Operations on shared memory

are asynchronous, while communication with channels happens in the same way

as Kahn Process Networks with blocking reads and non-blocking writes. Further-

more, as in KPNs, testing a channel is not allowed. One of the main problems of

KPN synthesis is FIFO-dimensioning. A KPN is said to be strictly b-bounded if

all FIFOs are strictly b-bounded. In general, determining the boundedness of a

Chapter 5. Putting it all together: OpenMP-based System level design 104

KPN is an undecidable problem. SMPNs address this problem by simply impos-

ing a unitary length of FIFOs and limiting the use of channels to synchronization

purposes. As shown below, this provides enough expressiveness for describing

OpenMP applications.

Of course, enlarging the scope of KPNs, some formal properties guaranteed by

KPNs are dropped by SMPN, but this is not necessarily a limitation since such

properties are not inherently required by the targeted class of applications. In

particular, one major property of KPN, determinism, is lost in the shared memory

model. Luckily, the semantic of an OpenMP application does not require this

property. An SMPN, therefore, is deterministic if and only if the underlying

OpenMP application is such that the scheduling of the threads is deterministically

known a-priori.

Another important aspect is that the SMPNs model the shared memory as a

monolithic abstracted block. Hence, the model does not interfere with the memory

partitioning stage; it’s completely independent of it.

Formally an SMPN is a quintuple SMPN = (P, S,D,M,A), where

• P is a set of concurrent processes, the actors of the process networks, imple-

menting a distributed form of control. Denote its cardinality as |P |.

• S and D are the set of Start and Done channels, respectively. These are

unidirectional channels of a unitary size, needed for synchronization among

processes.

• M is a set of shared memory locations. The shared memory size is always

bounded and can be inferred by analyzing the shared clauses or by profiling

the executing of the OpenMP program during the functional simulation.

Denote it as |M | and assume locations be of one byte.

• A is a set of shared addresses implementing a read-only-after-write access

semantic. These are used to implement mutual exclusion primitives neces-

sary for mapping OpenMP applications. Denote its cardinality as |A| and
assume locations be of one byte.

Chapter 5. Putting it all together: OpenMP-based System level design 105

In order to make the SMPN a synthesizable model that can be translated into a

complete on chip system, a few hypotheses are necessary:

• Each process puts a token to the Done channel in an unpredictable but

bounded time starting from the consumption of a token on the Start channel.

• D and S channels are lossless. This assumption is fundamental as token

loss on Start or Done channels may unpredictably affect the evolution of the

whole system. Furthermore, token delivery must be ordered.

Following is an example of SMPN. Blue arrows are S channels, while red ones

Figure 5.2: An example of SMPN

are D channels. Communication with shared memory is totally asynchronous and

synchronization between processes can only take place by blocking reads on S

channels. Writes are not blocking in the sense that a process can continue its

execution after write. The SMPN model includes the following operations:

• SendStart(): non-blocking put of a token to a Start channel

• ReceiveStart(): blocking get of a token from a Start channel

• SendDone(): non-blocking put of a token to a Done channel

• ReceiveDone(): blocking get of a token from a Done channel

Chapter 5. Putting it all together: OpenMP-based System level design 106

• Write (Offset): writes to shared memory M at the specified address

• Read (Offset): reads from shared memory M at the specified address.

Obviously, the above operations are not part of the OpenMP specification and the

OpenMP program is completely independent from the SMPN MoC. Nevertheless,

modeling an OpenMP application with an SMPN is very straightforward. As an

example, consider the following simple OpenMP program.

int main(int argc, char* argv[]) {

int tid;

int a = 5;

int c;

int d[3];

omp_set_num_threads(3);

#pragma omp parallel private(tid,c)

{

tid = omp_get_thread_num();

c = a+tid;

d[tid] =c;

}

printf("%d, %d, %d\n",d[0],d[1],d[2]);

return 0;

}

The corresponding SMPN is given in figure 5.3. P1 is the master thread. The first

Figure 5.3: SMPN derived from the simple OpenMP code snippet in the text

operation of P2 and P3 is a blocking ReceiveStart(). After executing all operations

Chapter 5. Putting it all together: OpenMP-based System level design 107

before #pragma omp parallel, P1 makes a WriteStart(). Then, P1, P2, and

P3 execute all instructions specified in the parallel body. The d array is located

in the shared memory without any mutual exclusion mechanism, compliant with

the OpenMP specification. At the end of the #pragma omp parallel directive,

there is an implicit barrier causing each process to synchronize before proceed-

ing. This barrier is implemented with D channels. In particular, P1 executes a

ReceiveDone() while P2 and P3 execute a WriteDone(). The possibility of as-

sociating a value to the exchanged tokens is exploited for transmitting the thread

Id (tid in the code) on Start channels and a completion code on Done channels.

section 5.7 will show how the other OpenMP directives and clauses are translated

to the elements of an SMPN.

Furthermore, in order to allow the formalization of OpenMP applications with

multiple consecutive #pragma omp parallel constructs, which is often the case

in many applications including the case-study presented later in section 5.8.1,

several SMPNs can be composed. Consider for example the following code.

int main(int argc, char* argv[]) {

int tid;

int a=5;

int c;

int d[3];

omp_set_num_threads(3);

#pragma omp parallel private(tid,c)

{

tid= omp_get_thread_num();

c= a+tid;

d[tid]=c;

}

#pragma omp parallel private(tid,c)

{

tid= omp_get_thread_num();

c= a+tid;

d[tid]=c;

}

printf("%d, %d, %d\n",d[0],d[1],d[2]);

return 0;

Chapter 5. Putting it all together: OpenMP-based System level design 108

}

The code contains two consecutive parallel constructs performing the same actions.

The resulting SMPN looks like the graph in figure 5.4.

Figure 5.4: SMPN derived from the OpenMP code with two consecutive
parallel constructs

The evolution of the above SMPN is determined by the process P1 sending a Start

signal to P2’ and P3’ after receiving all Done signals from P2 and P3.

5.3.3 ILP model for automated partitioning and mapping

The SMPN directly defines the structure of design space for the OpenMP-to-

MPSoC translation process. The optimization, described in this section, relies

on an Integer Linear Programming (ILP) model determining the design choices

in terms of partitioning and mapping of the processing components onto a hard-

ware/software heterogeneous architecture, that will be subsequently implemented

on an FPGA device through software compilation and high-level synthesis.

Following are the main definitions and elements involved in the ILP model:

• PHi: a hardware implementation of process Pi (an element of the P set) as

a hardware accelerator;

Chapter 5. Putting it all together: OpenMP-based System level design 109

• PSin: an implementation of Pi on the nth on-chip processor;

• DHi: a hardware implementation of the Di channel (an element of the D

set);

• SHi: a hardware implementation of the Si channel (an element of the S set);

• MH: a hardware implementation of the memory M (either on-chip or off-

chip);

• AHi: a hardware implementation of an element of the A set.

• PI: the collection of all implementations of processes, i.e. the union of all

PHi and PSin for each i and each n;

• DI: the collection of all implementations of D channels, i.e. the union of all

Di for each i;

• SI: the collection of all implementations of S channels, i.e. the union of all

Si for each i;

• AI: the collection of all implementations of memory location contained in

the A set, i.e. the union of all Ai for each i.

The goal of the optimization process is defined as follows:

Given the quintuple SMPN = (P, S,D,M,A), determine the vectorial mapping

function Fm(Fmp, Fms, Fmd, Fmm,Fmh), where:

• Fmp : P → PI

• Fms : S → SI

• Fmd : D → DI

• Fmm : M → MH

• Fmh : A → AI

Chapter 5. Putting it all together: OpenMP-based System level design 110

In particular, Fmp(Pi) = PSin if Pi is implemented in software on the nth pro-

cessor. Fmp(Pi) = PHi if Pi is implemented in hardware as an accelerator.

We define the subsequent cost metrics:

• TISin: the software execution time needed by Pi on the nth processor;

• TIHi: the hardware execution time of Pi as a hardware accelerator;

• ALUTi: the hardware area required by Pi in Look-Up-Tables (LUTs) on the

FPGA chip if it were synthesized in hardware;

• AFFi: the hardware area required by Pi in FlipFlops (FFs) on the FPGA

chip if it were synthesized in hardware;

• ALUTPn: the hardware area required by the nth processor in LUTs on the

FPGA chip;

• AFFPn: the hardware area required by the nth processor in FFs on the

FPGA chip;

• ALUTDi: LUT hardware cost for Di;

• AFFDi: FF hardware cost for Di;

• ALUTSi: LUT hardware cost for Si;

• AFFSi: FF hardware cost for Si.

The following definitions are also introduced:

• TSi: a variable indicating the starting instant of Pi execution;

• TEi: a variable indicating the ending instant of Pi execution;

• TDi: a variable indicating the duration of Pi execution;

• ALUTchip: the maximum area available on chip in LUTs;

• AFFchip: the maximum area available on chip in FFs;

Chapter 5. Putting it all together: OpenMP-based System level design 111

• ALUTmax: a user-specified maximum area design constraint in LUTs;

• AFFmax: a user-specified maximum area design constraint in FFs;

• Tmax: a user-specified maximum execution time constraint;

• OnChipMemory: the amount of on-chip memory;

• OffChipMemory: the amount of off-chip memory;

• MemoryMax: a user-specified maximum memory design constraint.

We need to specify that the maximum number of processors (n-index) be equal to

|P |. This is to avoid the introduction of a useless limiting constraint, i.e. it should

be possible to synthesize all processes in software, each on a separate on-chip

processor.

We introduce the following decisional variables for the mapping problem:

• Xi = 1 if Pi is hardware-synthesized, 0 otherwise;

• Yin = 1 if Pi is software-synthesized on the nth processor, 0 otherwise;

• NYn = 1 if at least an element of P is mapped on the nth processor.

The general constraints are as follows:

• for each i, Xi ≤ 1, where Xi is a binary variable;

• for each i and for each n, Yin ≤ 1, where Yin is a binary variable;

• for each i, Xi +
∑

n Yin = 1, Pi has to be synthesized in software or in

hardware;

• for each n, NYn ≤ 1, where NYn is a binary variable;

• for each i and for each n, NYn ≥ Yin, by the definition of NYn.

The resource constraints are as follows:

Chapter 5. Putting it all together: OpenMP-based System level design 112

•
∑

i Xi·ALUTi+
∑

n NYn·ALUTPn+
∑

i ALUTDi+
∑

iALUTSi ≤ ALUTchip

•
∑

i Xi · AFFi +
∑

n NYn · AFFn +
∑

iAFFDi +
∑

i AFFSi ≤ AFFchip

• |M |+ |A| ≤ OnChipMemory +OffChipMemory

The design constraints are as follows:

•
∑

i Xi·ALUTi+
∑

n NYn·ALUTPn+
∑

i ALUTDi+
∑

iALUTSi ≤ ALUTmax

•
∑

i Xi · AFFi +
∑

n NYn · AFFn +
∑

iAFFDi +
∑

i AFFSi ≤ AFFmax

• for each i: TEi ≤ Tmax

• |M |+ |A| ≤ MemoryMax

The organization of the SMPN describing an OpenMP application, where the

master process is at the root of a tree connecting all the slave process, greatly

simplifies the design constraint on the overall latency of the system: TmasterE ≤
Tmax, expressing the fact that the master process is the last process receiving the

Done signal needed to complete the execution. The other timing constraints are

as follows:

• for each i: TEi = TDi + TSi

• for each i: TDi = Xi · TIHi +
∑

n Yin · TISin

• for each i: TSi ≥ ASAP (Pi)

where ASAP (Pi) is the instant of time at which the execution of Pi can start in

compliance with all data dependencies induced by the structure of the OpenMP

application. In the overall design flow, several actors can be mapped onto a single

on-chip processor. Hence, we need a few scheduling constraints preventing concur-

rent processes mapped on the same processor to overlap with each other in time.

The scheduling constraints are as follows. For each n and for each pair (Pi, Pj) of

concurrent processes:

• TEi ≤ TSj + (3− bij − Yin − Yjn) · C1

Chapter 5. Putting it all together: OpenMP-based System level design 113

• TEj ≤ TSi + (2 + bij − Yin − Yjn) · C2

with C1 and C2 chosen with an appropriate size [112]. Table 5.1 clarifies the

above scheduling constraints. bij is a binary variable and thus can take on only

Yin = Yjn = 1 bij Constraint 1 Constraint 2
YES 0 TEi ≤ TSj + C1 TEj ≤ TSi

YES 1 TEj ≤ TSi TEj ≤ TSi · C2

NO 0, 1 TEi ≤ TSj + n1 · C1 TEj ≤ TSi + n2 · C2

with n1 ≥ 1 with n2 ≥ 1

Table 5.1: Interpretation of the scheduling constraints

values in 0,1. bij = 0 expresses the fact that Pj is executed before Pi, while bij = 1

corresponds to Pi being executed before Pj. Depending on the actual value of bij,

only one of the two above constraints will have effect.

Finally, the objective function can be one of the following two, depending on

whether we want to optimize area or latency:

• minimize: f =
∑

iXi ·ALUTi+
∑

n NYn ·ALUTPn+
∑

i Xi ·AFFi+
∑

nNYn ·
AFFPn

• minimize: f = TmasterE

5.4 OpenMP support

The first component of the prototypical environment is an ad-hoc lightweight

compiler dealing with source-to-source transformation, called SOPHIE (Source-

to-source OpenMP to Portable code compiler for HIgh-Level-SynthEsis). The

compiler, built on top of a standard C grammar with OpenMP extensions, was

implemented in C/C++ and relied on the well-known Flex and Bison tools [113] for

the generation of the lexical scanner and the parser, respectively. It takes C source

code with OpenMP 2.0 #pragma statements [105] as input, generating source files

suitable for high-level synthesis, for the compilation on the target embedded mi-

croprocessors, and for functional simulation. In that respect, it substitutes the

OpenMP clauses with ad-hoc structures as explained later in this section.

Chapter 5. Putting it all together: OpenMP-based System level design 114

In the following, we provide the technical details of how the most relevant OpenMP

clauses and functions are implemented.

5.4.1 private and shared variables

The code is analyzed to build a Data Scope Table (DST) containing all information

related to variable scopes. The DST will be accessed each time we need to know

whether a variable is shared or private. The entry corresponding to each variable

is modified whenever a scope modifier is encountered (i.e. private, shared clauses)

and is initialized with the default value according to the OpenMP standard.

Private variables are not required to be located in an addressing space accessible

to all computing elements. This is particularly relevant for specialized hardware

accelerators where private memory is made of limited elements, such as flip-flops or

BRAMs, which should be used very carefully. When generating the source files for

processors or HLS, the compiler accesses the DST for each variable it encounters.

The compiler provides each processing unit with a pointer to the globally shared

address space and each access to a shared variable is replaced by a pointer derefer-

entiation and an offset. To this aim, the compiler keeps a map of the shared mem-

ory and builds the offsets accordingly. Notice that current HLS tools do support

pointers and pointer arithmetic as long as arrays are mapped to random-access

memory blocks, i.e. they do not involve wire, handshake, or FIFO interfaces, since

these do not allow out of order accesses [36].

5.4.2 parallel directive

The parallel directive is fundamentally a way of starting threads and synchro-

nizing them after they all have executed the piece of code marked by the directive.

The corresponding overhead involves broadcasting synchronization information to

the threads. The implementation of this directive thus greatly benefits from the

tree-based scheme and the synchronization signals presented above and inherent

to the SMPNs.

Chapter 5. Putting it all together: OpenMP-based System level design 115

An additional key point concerns the assignment of thread IDs. To this aim, we

exploit the capability of synchronization signals to convey integer values. The

start signal that goes to the left child carries the value tid · 2 + 1 while the other

one carries tid · 2+2, where tid is the thread ID assigned to the node. The master

thread is assigned a thread ID equal to 0. Propagating the thread IDs through

the tree is of fundamental importance, as it is the standard run-time technique

used to identify threads. This is another example of a scalable mechanism put in

place by the proposed flow. The assignment of thread IDs is in fact completely

distributed, and there is no additional delay incurred by their computation apart

from a shift, i.e. a multiplication by two, and an addition.

5.4.3 for directive

The #pragma omp for directive constitutes the most important work sharing con-

struct of OpenMP and is the most common construct together with the parallel

directive. Like the parallel directive, at the end of the work performed by each

thread there is an implicit barrier unless a nowait clause is used.

The most relevant clause supported by the for directive is the scheduling type.

In the case of static scheduling, iterations are trivially divided among processing

elements as specified by the OpenMP standard. Basically, at the source code level,

each processing element is provided with a code having modified indices in the loop

to be partitioned. The way the new indices are calculated is compliant with the

OpenMP specification and depends on the original bounds, the increment factor,

and the chunk size. In the case of dynamic scheduling, the iterations each thread

must perform are identified at run-time. This is of paramount importance for load

balancing in heterogeneous architectures. In fact, threads should be assigned a

number of iterations depending on the actual computational power of the unit

where they are executing as well as the different loads they happen to handle.

Again, the proposed implementation of the dynamic clause is fully distributed.

Each hardware unit implements a state machine that delivers iterations to the

computing resources synchronizing with the others. These state machines, also

implemented by means of HLS, are described by the following code.

index = 0;

Chapter 5. Putting it all together: OpenMP-based System level design 116

while (index < total_iterations_number){

temp = iter; // lock on ’iter’

if (temp != index){

index = temp;

}

if (temp != error_code && temp < total_iterations_number){

prev_iter = temp;

iter = prev_iter + chunk_size; // unlock on ’iter’

for (i=prev_iter; i<=prev_iter+chunk_size;prev_iter++){

original code of iterations

}

index = temp + chunk_size;

}

}

where iter is an atomic memory location (also known as atomic register, see

section 5.7) and prev iter, temp, and index are local variables. The use of an

atomic memory location allows the threads to synchronize for the update of the

number of assigned iterations. In fact, in case of contention, only one thread will

be able to read the number of already issued iterations (i.e. the error code will

not be returned), and consequently it will take the next available chunk size of

them. This code is compiled and executed by the software units as well.

5.4.4 critical directive

SOPHIE first counts the number of critical directives and then, for each output

file, it inserts a macro defining the memory-mapped address of a number of atomic

registers (see section 5.7) equal to the number of critical directives. The memory-

mapped addresses are chosen in order not to conflict with all other addresses

of physical memories and other peripherals. Then, the code contained into the

critical directive is wrapped by a lock/release pair implemented accessing the

atomic register corresponding to that critical directive. For example:

#pragma omp critical

{

//CODE

}

is translated into:

Chapter 5. Putting it all together: OpenMP-based System level design 117

#define atomic_register_offset_0 0xC00000

/* Lock operation */

while (mem[atomic_register_offset_0] == -1);

//CODE

/* Release operation */

mem[atomic_register_offset_0] = 1;

5.5 Functional simulation

As mentioned in section 5.3.1 and depicted in figure 5.1, the functional simulation

relies on the PtolemyII framework. PtolemyII is mainly composed of polymorphic

actors [107] that always exhibit the same behavior independent of the used MoC.

The presence of several “directors” ensures the scheduling of the model according

to the rules of a certain model of computation. Among the others, PtolemyII

supports processes networks, in which a thread is executed for each actor and

the channel operations obey KPN rules. To enable the functional simulation of

software components extracted from OpenMP descriptions:

• We defined a new “director” extending the “Shared Memory Process Net-

work Director”. Before executing all actors, this director creates a pool of

shared memory locations, whose starting address is passed to all actors in

the system. This required hacking some parts of the PtolemyII Java source

code.

• We devised a plug-and-play mechanism for the definition of the behavior of

each SMPN actor, based on the JNA library [114], not complying with the

PtolemyII actor class mechanisms for defining the functional behavior on the

actor firing. As an example, the actor number 1 of the model automatically

links the shared library actor1 found in the same directory searching for

a function with the following signature void processOnFire(int start,

char *sharedMemory, int *done). The parameter passing is embedded in

the new “SMPN director”, relying on the JNA library.

Chapter 5. Putting it all together: OpenMP-based System level design 118

5.6 Early cost estimation

A central tool supporting automated DSE in the design flow is provided by EASTER

(EArly coST EstimatoR), included in figure 5.1. In fact, early prediction of hard-

ware complexity is essential in driving hardware/software partitioning and the

automated generation of HDL descriptions from high-level code, as it helps es-

timate the “hardware cost” of a given high-level code segment before the actual

synthesis takes place, dramatically reducing the time required for an exhaustive

exploration of different design choices. An essential aspect of EASTER is that it

can infer early hardware estimates directly from the source C / OpenMP code by

applying a linear regression model to a set of metrics extracted from the high-level

code. EASTER is developed on top of the LLVM compiler infrastructure [115]

along with the R statistical package [116] used to perform regression analysis. It

can be pre-configured for specific HLS engines by collecting extensive experimen-

tal results on a large body of C benchmarks. Relying on the custom LLVM-based

compiler, the C source files are processed deriving a representation of the program

in static single assignment (SSA) form. This representation captures a number

of essential aspects of the program structure that can be used to perform quan-

titative evaluations on the application structure. As an example, the complexity

of the control flow graph is likely to influence the amount of resources needed to

implement the control logic of the hardware block. We thus consider, among the

others, a set of metrics that capture such aspects, such as the cyclomatic complex-

ity. Similar considerations can be done for the basic building blocks of the control

flow graph. These correspond to basic operations such as additions, comparisons,

multiplications, logic operations etc, which impact the amount of logic resources

required to implement the given program in hardware. A few relevant software

metrics are listed in Table 5.2.

During the pre-configuration of EASTER, performed only once for each different

HLS engine to be used, estimations are computed for all supported metrics on

the input high-level benchmarks, and are then collected in a database, along with

the actual data coming from the synthesis and place&route process. The data are

then examined by means of a linear regression analysis, yielding a linear model

Chapter 5. Putting it all together: OpenMP-based System level design 119

Name Meaning
ops div flt floating point divisions
ops mul flt floating point multiplication
ops add flt floating point sum and subtractions
ops div iN integer division (N bits wide) operations
ops mul iN integer multiplication (N bits wide)

operations
ops add iN integer sum (N bits wide) operations
ops bra cond conditional branches

cfg cyc cyclomatic complexity of the CFG
blk dep tot weighted sum of the nesting level of

all basic blocks
loops number of loops in the CFG

mem flt tot memory consumed by
floating point variables

mem int tot memory consumed by integer variables

Table 5.2: The most relevant software metrics identified by EASTER

describing the dependence between some of the metrics extracted and the real

synthesis data.

Once the pre-configuration is completed, EASTER can be used to process the

source files generated by SOPHIE, providing an efficient and convenient way to

populate the ILP model of section 5.3.3 with reliable performance parameters

(e.g. ALUTi, AFFi, etc). The computation of the estimates is as fast as a soft-

ware compilation of the high-level code, followed by the application of a linear

equation to the extracted metrics. The accuracy of the estimates is always within

an acceptable threshold, being less than 20% for LUTs and less than 10% for

flip-flops.

Notice that, in addition to hardware cost estimation, EASTER also provides a

tool to evaluate the latency of the single components instantiated in the system.

The tool relies on an Instruction Set Simulator (ISS) for each of the used general-

purpose core. To give the designer an early estimate of the global execution time,

the single latencies are combined by EASTER with the SMPN, describing how the

components interacts with each other, and the results provided by the ILP solver.

Chapter 5. Putting it all together: OpenMP-based System level design 120

5.7 System architecture

In the last steps of the design flow, the optimized design choices are translated

into a physical implementation, as shown in the bottom part of figure 5.1. For

the platform-based system composition we adopted the Embedded Development

Kit (EDK) [117] as currently the prototypical environment only supports Xilinx

FPGA devices and Microblaze processors for the implementation of the software

subsystems. Figure 5.5 shows the reference architectural model adopted for the

generation of the physical system from the initial OpenMP application.

bankbankbank Off-chip

memory

Figure 5.5: Architecture of a heterogeneous MPSoC derived from an OpenMP
program

The system is structured in hierarchical interconnection domains since it derives

directly from what seen in chapter 4. Each cluster containing a subset of the

application components communicating by means of shared memory mechanisms.

Software subsystems are processors for which a portable C code (derived from the

OpenMP application) can be compiled. Hardware subsystems are generated with

HLS in order to execute parts of the original parallel code, or they can be ordinary

peripherals such as a non-volatile memory block to boot the code or a timer.

Each subsystem represents an OpenMP thread, executing a certain portion of the

original OpenMP code. The figure also depicts the memory infrastructure. Every

part of the application memory can be implemented in a different technology and

indeed be mapped to on-chip banks or off-chip memory. As explained before, the

Chapter 5. Putting it all together: OpenMP-based System level design 121

choice is made by the designer explicitly. If a specific array must be mapped to on-

chip memories it is subject to the memory partitioning step. In fact, each on-chip

memory subsystem corresponds to a memory bank as explained in chapters 2 and 3.

Special emphasis was put on the support for the shared and private clauses,

which are essential in OpenMP because of its model inherently based on shared

memory. As explained previously, shared variables are detected during compilation

by tracking each access and replacing it with suitable memory operations accessing

the appropriate areas.

The atomic registers, accessible on a particular address by all subsystems, al-

low the implementation of read-only-after-write primitives: if a read is performed

without a previous write, an error value is always returned. This device acts as

the basic building block for implementing synchronization directives. The number

of instantiated atomic registers is equal to the number of barrier, atomic, and

critical constructs plus the numbers of calls to omp init locks() (that creates

a lock) found in the original OpenMP code.

Hardware subsystems generated by HLS are memory mapped, have each their own

thread id (tid), have DMA master access capabilities, and include a Start/Done

synchronization port, in compliance with the SMPN model. The connection of

synchronization ports must obey the SMPN model. This is a fully distributed

approach where the OpenMP threads involved in a fork-join structure form a tree.

Each node in the tree, i.e. a thread, forwards a Start signal to its subtrees before

starting its own computation, and forwards a Done signal to its parent node only

after receiving all the subtree Done signals and completing its own task. As a

consequence, the implicit barrier at the end of OpenMP work-sharing constructs

takes a time corresponding to the worst-case propagation delay through the tree,

which is logarithmic in the number of threads.

Chapter 5. Putting it all together: OpenMP-based System level design 122

5.8 A step by step example: parallel JPEG en-

coding

This section demonstrates the proposed methodology by presenting a case study

of moderate complexity and going through the overall design flow from the speci-

fication down to the FPGA synthesis. The memory partitioning and interconnect

synthesis stages are not discussed because many examples have been already pre-

sented in previous chapters.

5.8.1 Parallel JPEG encoding

We chose a parallel JPEG encoder [118], where the image is decomposed into

several parts in order to speed-up the compression operation by distributing it

among several threads. We selected this specific case-study because:

• it is a moderately complex system enabling us to emphasize all the main

aspects of the flow;

• it is a well-established and widely treated case-study in the literature;

• it is a data intensive application that may require a large amount of memory

concurrently accessed by different components, which makes it well suited

to an OpenMP-based implementation.

Figure 5.6 contains the block diagram of the system.

The application compresses a 320x240 pixel bitmap image encoded with 8 bits

per pixel and stored into an external file-system. The compression uses a variable

quality rate chosen by the user, compliant with the JPEG standard. The com-

pressed image is stored into the same external filesystem. In the case the image

is not grayscaled, it is converted by the RGB2Gray converter. The original image

is displayed on a DVI screen during processing. The block diagram includes the

typical components of a JPEG encoder. A key aspect is that some of them are

parallelized, e.g. the bi-dimensional DCT is distributed among several threads to

Chapter 5. Putting it all together: OpenMP-based System level design 123

Figure 5.6: The block diagram of the case-study: JPEG encoding

improve the processing rate. Other components, on the other hand, are not par-

allelized because of the difficulties of extracting task-level parallelism from them.

The implementation of a few blocks dependent on the specific platform, i.e. the

filesystem, the image loader, the encoded image writer, the image displayer, and

the module for user-interaction, relied on third-party IP cores.

5.8.2 Design steps

The first step in the flow is the C/OpenMP description of the application. This

is required for those parts of the system that need to be mapped to hardware as

accelerators or to software executed by on-chip processors. Third-party IP Cores

are of course not described in the high-level application. Below an example code

snippet is given:

unsigned char image[320*240]

omp_set_num_threads(4);

#pragma omp parallel private (all_the_other_variables) shared(image){

Chapter 5. Putting it all together: OpenMP-based System level design 124

RGB2Gray code

}

#pragma omp parallel {

NULL_MEAN code

}

#pragma omp parallel {

2D-DCT code

}

#pragma omp parallel {

Quantizer code

}

ZIG-ZAG SCANNING code

ENTROPY CODING code

Those components, where task-level parallelism can be extracted a-priori, are de-

scribed by means of OpenMP directives. They are processed by four concurrent

threads, as specified by the omp set num threads(4) directive. Other components

are described in plain C.

The next step resorts to the source-to-source compiler, SOPHIE, to analyze the C

OpenMP code and generate two sets of source files for software compilation and

for high-level synthesis, respectively. It was chosen because of its robustness and

its comprehensive hardware/software synchronization mechanisms.

The range of the for cycle is partitioned according to the overall number of threads

allocated for the RGB-to-Gray conversion. The generated hardware accelerator

stops on a blocking read on the input Start channel and performs a non-blocking

write on the Done channel as specified by the SMPN model. A similar source

module, not shown here, is generated by SOPHIE to support the functional sim-

ulation with PtolemyII and the software compilation for on-chip processors. Its

interface is void processOnFire(int start, unsigned char *sharedMemory,

int *done), while the code is very similar to example given above except for the

HLS-specific library function calls.

The generated source files are compiled as a shared library, so that the function

can be called by the simulator through the JNA library. Figure 5.7 shows the

PtolemyII depiction of the system derived from the SMPN specification of the

Chapter 5. Putting it all together: OpenMP-based System level design 125

system. The shared memory is not displayed but each actor has a pointer to it.

The barrier actors in the model are used to simulate the behavior of the master

Figure 5.7: PtolemyII simulation of the case-study

process. They can be used to build a SMPN whenever an OpenMP application has

multiple consecutive parallel regions. The representation is isomorphic with the

actual SMPN model of the application. Figure 5.8 shows the simulation results.

Figure 5.8: An example of execution of the case-study application

Following the source generation, the EASTER tool performs early cost function

estimation taking as input the same source files used for software compilation and

HLS. The design space exploration process is based on the LPSolve solver [119]

relying on a branch-and-bound algorithm to solve the ILP model described in

section 5.3.3. Constraining area and optimizing latency (or viceversa), yields the

typical Pareto-like curve. Finally, we proceed with system synthesis. The com-

ponents are separately synthesized and evaluated to verify the early cost function

estimations made by EASTER. Specifically, hardware accelerators are synthesized

by means of HLS, while software components are executed on Xilinx Microblaze

Chapter 5. Putting it all together: OpenMP-based System level design 126

soft-cores in order to evaluate their execution times relying on the xps-timer IP

Core for time measurement. The timer was also used for measuring hardware

latencies. Xilinx XPS is used for system composition and Xilinx SDK for software

compilation and linking. The supporting components not directly involved in the

bulk processing (image and quality selection, filesystem, image loader, encoded

image writer, and image displayer) rely on Xilinx IP cores and the related device

drivers. For the physical implementation, we used a development board equipped

with a Xilinx XUPV5-LX110T device, a solid-state memory device containing the

filesystem, a DVI connector, and a few switches exploited for user interaction.

5.8.3 Quantitative results for the JPEG encoder

Table 5.3 shows the results of the hardware cost early estimation performed by

EASTER, targeting a xcv5-lx110t Virtex-5 FPGA device. To evaluate the accu-

Component Estimated LUTs Estimated Flip-flops

RGB2Gray(single thread) 619 436

NullMean(single thread) 702 510

2D-DCT(single thread) 1175 622

Quantizer(single thread) 987 583

ZigZag Scanning 1078 557

Entropy Coding 1321 808

Table 5.3: Results of the hardware cost early estimation

racy of the estimates derived by the tool, Table 5.4 provides the actual results

of the synthesis process, which match very closely those obtained during the fast

early estimation step.

Component Placed LUTs Placed Flip-flops

RGB2Gray(single thread) 678 478

NullMean(single thread) 652 558

2D-DCT(single thread) 1345 701

Quantizer(single thread) 901 532

ZigZag Scanning 978 513

Entropy Coding 1525 938

Table 5.4: Actual results in terms of hardware cost

Chapter 5. Putting it all together: OpenMP-based System level design 127

The ILP model specified for this experiment counts 1507 constraints and 396

variables. Model solving took approximately 1 second or less, depending on the

chosen objective function.

The design space exploration performs a comprehensive evaluation of the area/-

time trade-off, indicating various choices for hardware/software partitioning based

on the given area/time constraints. Some solutions in the design-space are depicted

in figure 5.9, which shows both early estimated and actual results. These are the

solutions obtained by constraining LUT occupation and minimizing global execu-

tion latency, which yields a familiar Pareto-like curve, as shown in the figure. For

Figure 5.9: DSE results for the case-study

example, considering a constraint of 12000 LUTs, the solver allocates the four 2D-

DCT components to hardware accelerators and instantiates four processors. The

RGB2Grayi, NullMeani, and Quantizeri components are allocated to the ith pro-

cessor as software routines and scheduled sequentially. The Zig-Zag Scanning and

Entropy coding components are also synthesized as software routines and allocated

to the first processor. The pure area overhead related to both synchronization and

communication OpenMP constructs and clauses in this example is 350 LUT and

200 FF per accelerator that are respectively the 0.5% and the 0.2% of the available

chip area.

Chapter 5. Putting it all together: OpenMP-based System level design 128

5.9 Experimental results

This section demonstrates the improvements over a previous work enabled by some

architectural techniques (section 5.9.1) as well as the scalability of the approach

(section 5.9.2).

5.9.1 Comparisons with previous work

We compared the results with [2], that is the only OpenMP-to-hardware translator

presenting a working tool and some quantitative performance evaluation. However,

the work in [2] does not generate a heterogeneous system. Rather, it generates only

hardware components (basically a state machine for each OpenMP thread) which

communicate using a centralized controller. As a consequence, it is inherently

suitable only for small systems.

Figure 5.10.a and figure 5.10.b compare the results with [2] in terms of speedup

and system frequency as the number of threads increases. Figure 5.10.a has been

obtained by an OpenMP description of the Sieve of Eratosthenes algorithm, while

figure 5.10.b concerns a program running an infinite impulse response filter, as

in [2]. As can be noticed, the approach compares favourably in terms of scalability.

In fact, the approach in [2] suffers from frequency degradation due to the presence

of centralized components that become more and more complex as the number

of threads increases. Moreover, its speedup is limited by the presence of such

centralized components that act as performance bottlenecks. On the contrary,

being highly distributed, the approach yields a satisfactory trend concerning both

clock frequency and speedup.

In conclusion, the approach achieves up to a 3.25x improvement concerning speedup

and a 4x improvement of the clock frequency.

Chapter 5. Putting it all together: OpenMP-based System level design 129

Figure 5.10: Comparisons with [2] (denoted Leow et al.) for the implemen-
tation of of the Sieve of Eratosthenes algorithm. (a) Speed-up vs. number of

threads. (b) System frequency (MHz) vs. number of threads.

5.9.2 Overheads and comparisons with software approaches

We also measured the run-time overhead incurred by the implementation of OpenMP

directives. Precisely, we evaluated the normalized overhead, i.e. the overhead/ex-

ecution time ratio, so that we could figure out which portion of the execution time

was taken by the runtime mechanisms for supporting constructs. To this aim,

we resorted to the well-known EPCC benchmarks [120] that provides a way to

evaluate performance overheads and compare OpenMP implementations. For the

experiments, we relied on a Virtex5-LX110T FPGA device.

The EPCC suite is composed of three applications:

1) Array bench, related to the overhead of handling variables scopes;

2) Sched bench, evaluating scheduling strategies;

3) Sync bench, running several synchronization mechanisms e.g. barrier,

single, critical, lock.

We benchmarked the implementation against a purely software version running on

an Intel i7 processor. However, due to normalization, technological details were

abstracted away favouring a fair comparison of scalability and efficiency. The

Chapter 5. Putting it all together: OpenMP-based System level design 130

Figure 5.11: Experimental results. (a) Normalized overhead vs. number of
threads. (b) Average overhead slopes for several OpenMP constructs.

measures were conducted for many directives using 2 to 10 threads. 10 measures

per experiment were carried out and, then, averaged.

Figure 5.11.a presents the normalized overhead as the number of threads is in-

creased for the #pragma omp parallel directive. As suggested by the plot, the

normalized overhead (depicted by the solid line) is low in absolute values and tends

to be horizontal. This confirms the efficiency and the scalability of the presented

approach. Looking at the #pragma omp parallel private(var) construct, the

FPGA system synthesized with the proposed approach had an average of 0.096

on the average whereas the i7 implementation of 0.616. The overhead in the pre-

sented methodology was only related to the activation of the threads by the start

signals and the barrier at the end of the construct controlled by the done signals.

The #pragma omp parallel firstprivate (var) clause had an average over-

head of 0.701 versus 0.841 on the i7. The overhead was the same of the private

clause plus a constant value due to the variable being copied from the shared

memory of the master thread to the private memory locations of the accelera-

tors. The #pragma omp for schedule (static) clause corresponds to the de-

fault setting for the thread scheduling strategy. It is thus representative of the

#pragma omp for construct. The average overhead was 0.069 versus 0.725 on the

i7. The #pragma omp for schedule (dynamic) clause is supported by the pro-

posed environment in spite of its dynamic nature, unlike the existing solutions for

OpenMP-to-hardware translation. The average overhead was 0.283 versus 0.895

Chapter 5. Putting it all together: OpenMP-based System level design 131

on the i7. Some constructs like #pragma omp single and #pragma omp master

are supported with no overhead since are solved totally at run-time.

Figure 5.11.b shows the overhead trends, showing the slopes of the overhead ob-

tained in the experiments. As an example, the overhead of the proposed method-

ology concerning the #pragma omp parallel firstprivate (var) directive in-

creases by 0.006 per thread, while it increases by 0.147 per thread in the software

implementation.

5.10 Related works

A large body of research works addressed embedded systems co-design method-

ologies, also including design space exploration techniques. The Daeadalus frame-

work [121] synthesizes C applications onto a programmable platform by an au-

tomated parallelization step based on Kahn Process Networks (KPNs) and an

optimization step based on a Strength Pareto Evolutionary Algorithm. Daedalus

architectures are built from a library of predefined and preverified IP compo-

nents, including a variety of programmable processors, dedicated hardwired IP

cores, memories, and interconnects, allowing the implementation of a wide range

of heterogeneous MPSoC platforms. Although Daedalus is one of the most com-

plete academic approaches to ESL design, it does not provide standard forms for

specifying explicit parallelism, preventing the reuse of a large body of parallel

code, e.g. multicore applications, based on multithreading. Moreover, the de-

sign flow does not make use of high-level synthesis for hardware design, being a

purely platform-based approach. SystemCoDesigner [122] is another academic en-

vironment for ESL. The SystemCoDesigner design flow begins by describing the

application in form of a SystemC behavioral model to be written using the SYS-

TEMOC library [122]. Each SystemC module is defined by a finite state machine

specifying the communication behavior and methods controlled by the finite state

machine. These methods are executed atomically and data consumption and pro-

duction is only done after computing a method. Hence, SYSTEMOC realizes a

rule-based model of computation. The application domain in SystemCoDesigner

is restricted to multimedia and networking, i.e. streaming applications. Unlike

Chapter 5. Putting it all together: OpenMP-based System level design 132

Daedalus, SystemCoDesigner relies on high-level synthesis, allowing each actor in

the application to be implemented either as a hardware component on the FPGA

or a software routine. Furthermore, its design-entry formalism expresses explicit

task-level parallelism by incorporating a specific MoC. The design-entry language,

a subset of SystemC constrained by a particular MoC and incorporated into the

language by means of a library, limits the range of supported applications as it

does not support parallel multi-threaded code written for multicore applications

and high performance computing platforms, unlike the design flow presented here.

Other approaches include Metropolis [111], Koski [123], PeaCE [124]. All these

approaches rely on well defined MoCs: Koski uses KPNs, Metropolis allows the

use of various MoCs, and PeaCE uses a combination of two MoCs, one for con-

trol specification and another for data processing specification. None of them

takes into account the possibility of using a design-entry language with support

for explicit parallelism. Another example of an ESL design flow relying on a KPN

model is Compaan [125]. It requires input applications to be specified as parame-

terized static nested loop programs in the Matlab language. A KPN specification

is automatically derived and mapped onto a target platform composed of a micro-

processor and an FPGA.

As emphasized above, none of the previous ESL environments supports high-level

languages and formalisms borrowed from the parallel computing domain, partic-

ularly OpenMP [105], in spite of its popularity and its powerful model allowing

an easy description of parallel high-performance applications. The only aspect re-

cently explored by some works is related to the generation of hardware components

from OpenMP descriptions, along with the integration of hardware accelerators

in purely software OpenMP applications. The work in [2] created backends that

generate synthesizable VHDL or Handel-C [126] code from OpenMP C programs,

targeting an FPGA platform and presenting some quantitative results from their

tool. The approach is basically oriented to pure hardware synthesis where each

thread corresponds to a finite state machine. There is no explicit memory hierar-

chy, limiting the available memory to the resources available on chip and making it

difficult to support the shared memory in a scalable and efficient way. Few details

are provided concerning synchronization, while nested parallelism and dynamic

scheduling, a part of the OpenMP specification, are not supported. The authors

Chapter 5. Putting it all together: OpenMP-based System level design 133

of [127] presented the possibilities and limitations of the hardware synthesis of

OpenMP directives. The work concludes that OpenMP is relatively “hardware

friendly” due to the formalisms allowing an easy description of explicit paral-

lelism. However, it excludes the full support for the OpenMP standard, dropping

dynamic scheduling of threads, an essential aspect of OpenMP, and typically soft-

ware routines such as those related to time. The related work in [128] presented a

methodology for transforming an OpenMP program into a functionally equivalent

SystemC description. The emphasis is mainly on the source-to-source transfor-

mation process, as the output code is not necessarily guaranteed to be compliant

with the OSCI SystemC synthesizable Subset. The authors in [129] present some

extensions to OpenMP and a related runtime system implementation to spec-

ify the offloading of tasks to reconfigurable devices and the interoperability with

OpenMP. Their contribution essentially relies on a host-based model where one or

more FPGA boards act as accelerators providing functions to an OpenMP appli-

cation.

5.11 Conclusions

The research in the area of ESL design is increasingly targeting languages and

formalisms borrowed from the software domain for the specification of complex

embedded systems, including paradigms used for parallel computing. In line with

this trend, this chapter investigated an ESL design methodology based on the

widespread OpenMP parallel programming language for design entry and specifi-

cation. As memory and communication are known to be the real bottlenecks in

parallel embedded systems, taking advantage of the memory partitioning and in-

terconnect design techniques presented in the previous chapters ensures high levels

of scalability. Unlike a few previous attempts to using OpenMP as a pure hardware

specification language [2, 127, 128], the proposed toolchain takes a system-oriented

approach targeting the automated generation and optimization of complex, het-

erogeneous MPSoCs, fully supporting the complete OpenMP specification based

on a range of techniques for the automated generation of the hardware/software

system components. One of the biggest benefits using the proposed approach along

with its prototypical environment is the inherent support for dynamic scheduling,

Chapter 5. Putting it all together: OpenMP-based System level design 134

it is vital for heterogeneus architecture in which load balancing strongly affects

the overall performance; this is a unique feature that is not found in other re-

lated works. Furthermore, unlike other approaches, the final architecture is fully

distributed both in hardware and in software also in the memories distribution; a

partitioned memory architecture is key to scalability. While several research works

aim at defining design methodologies encompassing design space exploration and

behavioral application specification [111, 121–124], none of them supports high

level parallel programming paradigms, unlike the approach proposed here. In par-

ticular, to support the specification of high-level multi-threaded applications speci-

fied through OpenMP, this work explored a new model of computation that ideally

suits OpenMP, allowing a direct formalization of high-level multithreaded appli-

cations and underpinning an effective approach to design space exploration. The

architecture optimization relies on an ad-hoc ILP formulation of the hardware/-

software partitioning and mapping problems, supported by an original technique

for early cost estimation to dramatically reduce the time required by the solution

space exploration. As a conclusion, thus, the presented ESL methodology creates

a direct path form high-level multi-threaded OpenMP applications down to au-

tomatically synthesized, heterogeneous hardware/software systems implemented

onto FPGA devices, extending the spectrum of ESL design to high-level OpenMP

applications.

Chapter 6

Conclusions

The decades of frequency scaling as the highroad for improving performance has

definitely come to an end [130]. As the era of heterogeneous many-core comput-

ing approaches, the memory and interconnect subsystems are becoming the over-

whelming bottleneck in the evolution of performance. In that respect, two kinds

of innovations appear to have the potential to change the future of computing.

On the one hand, there are key innovative technologies, such as 3D integration

and optical interconnects. For example, 3D integration implies shorter on-chip

wires and optical interconnects provide a promising low-power alternative. On

the other hand, electronic system level approaches aim to improve designs quality

by raising the abstraction layer and filling semantic gaps with intelligent design

automation techniques. The work presented in this thesis can be ascribed to the

latter category and, in particular, deals with the issues of memories and intercon-

nects customization because the way they are designed impacts scalability more

than anything else. Throughout the thesis we have adopted a bottom-up approach

by which we have first explained our solutions for memory and interconnects and

then integrated them in a comprehensive design flow along with other architec-

tural optimizations. Although the presented techniques apply to both ASICs and

programmable logic, the experiments have been carried out by using FPGAs and

their accompanying programming tools. High-end FPGAs can be provided with

up to several thousands independent memory banks for an on-chip capacity up

135

Chapter 6. Conclusions 136

to around 10 Megabytes [58]. The presence of a fine-grained distributed mem-

ory, together with the ease of programmability, makes them an ideal platform for

experimenting customized solutions.

During chapter 2 we have seen how, in presence of many small and independent

memory blocks, memory partitioning constitutes the essence of memory design

and it is one of the most important factors for the actual parallelism achieved

by a synthesized circuit. Current high-level synthesis tools implement basic tech-

niques [36] by means of cyclic or block partitioning. Moreover, they partition

accesses at statements granularity instead of instances; this means that a certain

access in a certain statement is always made from the same memory bank. How-

ever, this limitation can be overcome by the adoption of polyhedral compilation

tools that look at instances, not just statements. As explained in the related work

section of chapter 2, the literature offers works already using polyhedral techniques

for memory partitioning, however they use a limiting mathematical abstraction for

representing partitioning solutions, namely hyperplanes. Hyperplanes are limit-

ing from two perspectives. First, they restrict the design space cutting off many

possibilities potentially good for performance; second, the excluded possibilities

are often the most area efficient. This second effect is the subject of chapter 3;

spatially irregular partitioning solutions lead to inefficient datapaths as they in-

cur the bank switching effect. In that respect, while chapter 2 has introduced

the partitioning methodology, chapter 3 has shown how to improve the circuit

starting from an imposed partitioning solution providing a technique for reducing

bank switching. The mathematical abstraction used throughout the treatment are

integer sparse lattices. As lattices geometrically include hyperplanes, they enlarge

the solution space. Furthermore, they are provided with a high degree of spatial

regularity that directly reflects into more compact datapaths. The adopted bench-

marks have shown that the adoption of lattices can save up to nearly half of the

area of the synthesized circuit while achieving the same latency. One more contri-

bution of the thesis, still concerning the memory subsystem, is having formalized

for the first time the interplay between memory partitioning, bank switching and

loop unrolling. Unrolling has been shown to potentially improve the latency-area

product of the synthesized circuit considerably in presence of partitioning, three

Chapter 6. Conclusions 137

times on average for the considered benchmarks in case of eight independent mem-

ory banks. As a future development for the partitioning methodology, liveness of

memory locations might be taken into account. If a certain memory location is not

meant to be accessed anymore it can be overwritten with a different one, leading

to a reduction of the overall footprint.

Throughout chapters 2 and 3 there was an implicit assumption: the interconnec-

tion between the processing elements and the memory banks was always a partial

crossbar. This limitation stemmed only from relying on HLS tools in order to

generate the circuit after having transformed the source code introducing several

array names one-to-one mapped to banks. In chapter 4 we have removed this lim-

itation presenting a methodology for automating the communication architecture

for complex systems as in the case of numerous independent memory banks. As

for the memory partitioning technique, the methodology aims to customize the in-

terconnect to the system’s requirements. As a consequence, the solutions depend

on how the application memory has been partitioned across the available banks;

different partitioning solutions imply different traffic profiles. The outcome of the

methodology is a heterogeneous interconnection infrastructure made of buses and

crossbars linked by means of ad-hoc configured bridges. The architecture is clus-

terized so that highly interacting subsystems can be placed close to each other.

In particular, three levels of parallelism have been identified: global-parallelism

across different independent clusters, intra-domain parallelism, relying on inher-

ently concurrent interconnect components such as crossbars, and inter-domain

parallelism, where multiple concurrent paths across different local domains are ex-

ploited. After the design space has been characterized, an automated methodology

to search it was presented, aimed at maximizing the exploitation of those forms

of parallelism. The approach differentiates from the current literature because it

performs communication scheduling and interconnect synthesis concurrently. This

leads to a better communication locality within the same cluster and to a more

natural exploitation of the inter-cluster parallelism inherent to the architecture.

For the considered benchmarks, the presented methodology allows an area reduc-

tion ranging between 30% and 70% compared to full crossbar implementations

while keeping the latency degradation negligible.

In the final chapter, the thesis has proposed an automated design flow that well

Chapter 6. Conclusions 138

fits in the current ESL panorama and tendencies. As the experimental results

confirm, it offers high levels of scalability and performance. This comes as the

result of having integrated automated techniques for memory partitioning and in-

terconnection design. The adoption of OpenMP as design entry enables the reuse

of a large body of OpenMP code and kernels developed by the parallel computing

community. However, adopting a very high-level language creates a big semantic

gap that must be filled in order to derive a synthesizable system. Throughout

chapter 5 several techniques are presented in order to fill this gap partly reusing

the techniques introduced in the previous parts of the thesis. However, besides

interconnection and memory structures, other issues have been tackled such as

hardware/software partitioning and the support of OpenMP constructs. In that

respect, the implementation of proper dynamic scheduling of loops constitutes a

key innovation because it enables load balancing, traditionally regarded as an es-

sential aspect for heterogeneous systems. Experimental data have highlighted a

speed-up improvement of roughly three times against similar approaches for the

considered case study. The design flow executes sequentially the several steps that

are memory partitioning, interconnect synthesis, hardware/software task parti-

tioning and system synthesis. Undoubtedly, the separation of those steps simpli-

fies the flow considerably, but on the other hand it represents an opportunity for

improvements and future developments. Ideally, all the design choices should be

carried out in one single design exploration stage that takes into account every

possible decision.

Bibliography

[1] Minje Jun, Sungjoo Yoo, and Eui-Young Chung. Mixed integer lin-

ear programming-based optimal topology synthesis of cascaded crossbar

switches. In Design Automation Conference, 2008. ASPDAC 2008. Asia

and South Pacific, pages 583–588. IEEE, 2008.

[2] Y.Y. Leow, C.Y. Ng, and W.F. Wong. Generating hardware from OpenMP

programs. In IEEE International Conference on Field Programmable Tech-

nology (FPT 2006), pages 73–80, December 2006.

[3] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures:

System on Chip Interconnect. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 2008. ISBN 012373892X, 9780123738929.

[4] AMBA Specification (Rev 2.0). ARM, 1999.

[5] IBM. Coreconnect interconnect standard, 2012.

[6] AMBA AXI and ACE Protocol Specification. ARM, 2011.

[7] STBus Communication System: Concepts And Definitions. STMicroelec-

tronics, 2007.

[8] Arteris. From bus and crossbar to network-on-chip. White Paper, 2009.

[9] Giovanni De Micheli and Luca Benini. Networks on chips: technology and

tools. Morgan Kaufmann, 2006.

[10] B. Bailey, G. Martin, and A. Piziali. ESL Design and Verification. A Pre-

scription for Electronic System-Level Methodology. Elsevier Inc, 2007. ISBN

978-0-12-373551-5.

139

Bibliography 140

[11] P. Coussy and A. Morawiec (Eds.). High-Level Synthesis from Algorithm to

Digital Circuit. Springer, 2008. ISBN 978-1-4020-8587-1.

[12] M. Fingeroff. High-Level Synthesis Blue Book. Xlibris, Corp., 2010. ISBN

978-1-4500-9724-6.

[13] Andr R. Brodtkorb, Trond R. Hagen, and Martin L. Stra. Graphics pro-

cessing unit (gpu) programming strategies and trends in GPU computing.

Journal of Parallel and Distributed Computing, 73(1):4 – 13, 2013. ISSN

0743-7315. Metaheuristics on GPUs.

[14] Jia-Jhe Li, Chi-Bang Kuan, Tung-Yu Wu, and Jenq Kuen Lee. Enabling an

opencl compiler for embedded multicore dsp systems. In Proceedings of the

ICPP’12 Workshops, pages 545–552. IEEE Computer Society, 2012. ISBN

978-1-4673-2509-7.

[15] Alessandro Cilardo, Luca Gallo, and Nicola Mazzocca. Design space ex-

ploration for high-level synthesis of multi-threaded applications. J. Syst.

Archit., 59(10):1171–1183, November 2013. ISSN 1383-7621.

[16] Gautam Gupta and Sanjay Rajopadhye. The Z-polyhedral model. In Pro-

ceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 237–248, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-602-8.

[17] Ethan E. Danahy, Sos S. Agaian, and Karen A. Panetta. Algorithms for the

resizing of binary and grayscale images using a logical transform. In Jaakko

Astola, Karen O. Egiazarian, and Edward R. Dougherty, editors, Proceedings

of SPIE 2010, volume 6497, page 64970, 2007.

[18] Ken Kennedy and John R. Allen. Optimizing compilers for modern archi-

tectures: a dependence-based approach. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2002. ISBN 1-55860-286-0.

[19] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. Automatic memory partition-

ing and scheduling for throughput and power optimization. ACM Trans.

Des. Autom. Electron. Syst., 16(2):15:1–15:25, April 2011. ISSN 1084-4309.

[20] Jonathan Kelner. Lecture 18, an algorithmists toolkit, 2009.

Bibliography 141

[21] Jürgen Teich and Lothar Thiele. Partitioning of processor arrays: A piece-

wise regular approach. Integr. VLSI J., 14(3):297–332, February 1993. ISSN

0167-9260.

[22] H. Le Verge. Recurrences on lattice polyhedra and their applications, 1995.

[23] Patrice Quinton, Sanjay Rajopadhye, and Tanguy Risset. On manipulating

z-polyhedra. Technical report, 1996.

[24] Rachid Seghir. Zpolytrans: A library for computing and enumerating integer

transformations of z-polyhedra. In Proceedings of the IMPACT 2012, Second

International Workshop on Polyhedral Compilation Techniques, 2012.

[25] Albert Cohen, Sylvain Girbal, and Olivier Temam. A polyhedral approach

to ease the composition of program transformations. In Euro-Par, volume

3149 of Lecture Notes in Computer Science, pages 292–303. Springer, 2004.

ISBN 3-540-22924-8.

[26] Benot Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan

Baskaran, Allen Leung, and Richard Lethin. R-stream compiler. In En-

cyclopedia of Parallel Computing, pages 1756–1765. Springer, 2011. ISBN

978-0-387-09765-7.

[27] V. Loechner. Polylib: A library for manipulating parameterized polyhedra,

1999.

[28] Sven Verdoolaege and Kevin M. Woods. Counting with rational generating

functions. J. Symb. Comput., 43(2):75–91, 2008.

[29] Martin Griebl and Christian Lengauer. The loop parallelizer loopo-

announcement. In David C. Sehr, Utpal Banerjee, David Gelernter, Alexan-

dru Nicolau, and David A. Padua, editors, LCPC, volume 1239 of Lecture

Notes in Computer Science, pages 603–604. Springer, 1996. ISBN 3-540-

63091-0.

[30] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. Pluto: A practical

and fully automatic polyhedral parallelizer and locality optimizer. Technical

Report OSU-CISRC-10/07-TR70, The Ohio State University, October 2007.

Bibliography 142

[31] Paul Feautrier. Some efficient solutions to the affine scheduling problem. part

ii. multidimensional time. International Journal of Parallel Programming,

21(6):389–420, 1992. ISSN 0885-7458.

[32] Alexander Barvinok. A Course in Convexity. American Mathemtical Society,

2002.

[33] Alain Darte, Robert Schreiber, and Gilles Villard. Lattice-based memory

allocation. IEEE Transactions on Computers, 54(10):1242–1257, 2005. ISSN

0018-9340.

[34] Alexander Schrijver. Theory of Linear and Integer Programming. JohnWiley

& Sons, Inc., New York, NY, USA, 1986. ISBN 0-471-90854-1.

[35] Morris Newman. Integral Matrices, volume 45 of Pure and Applied Mathe-

matics. Academic Press, 1972.

[36] Xilinx Inc. Vivado Design Suite User Guide High-Level Synthesis, 2012.

[37] Guillame Iooss and Sanjay Rajopadhye. A library to manipulate z-polyhedra

in image representation. In IMPACT 2012, 2012.

[38] Cédric Bastoul. Code generation in the polyhedral model is easier than

you think. In Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, pages 7–16, Washington, DC,

USA, 2004. IEEE Computer Society. ISBN 0-7695-2229-7.

[39] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press,

2003.

[40] Alain Darte. Regular partitioning for synthesizing fixed-size systolic arrays.

Integration, 12(3):293–304, 1991.

[41] Alain Darte, Robert Schreiber, B. Ramakrishna Rau, and Frederic Vivien.

Constructing and exploiting linear schedules with prescribed parallelism.

ACM Trans. Des. Autom. Electron. Syst., 7(1):159–172, January 2002. ISSN

1084-4309.

[42] Manish Gupta. Automatic data partitioning on distributed memory multi-

computers, 1992.

Bibliography 143

[43] Siddhartha Chatterjee, John R. Gilbert, Fred J. E. Long, Robert Schreiber,

Shang-Hua Teng, Dr. John, and R. Gilbert. Generating local addresses and

communication sets for data-parallel programs, 1995.

[44] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: A tool for improved deriva-

tion of process networks. EURASIP Journal on Embedded Systems, 2007(5):

1–13, 2007.

[45] Peng Li, Yuxin Wang, Peng Zhang, Guojie Luo, Tao Wang, and Jason Cong.

Memory partitioning and scheduling co-optimization in behavioral synthesis.

In Proceedings of the International Conference on Computer-Aided Design,

pages 488–495, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1573-9.

[46] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason Cong. Memory

partitioning for multidimensional arrays in high-level synthesis. In Proceed-

ings of the 50th Annual Design Automation Conference, pages 12:1–12:8,

New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2071-9.

[47] Yuxin Wang, Peng Li, and Jason Cong. Theory and algorithm for gener-

alized memory partitioning in high-level synthesis. In Proceedings of the

2014 ACM/SIGDA International Symposium on Field-programmable Gate

Arrays, pages 199–208, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-

2671-1.

[48] Qiang Liu, George A. Constantinides, Konstantinos Masselos, and Peter

Y. K. Cheung. Combining data reuse with data-level parallelization for

FPGA-targeted hardware compilation: a geometric programming frame-

work. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(3):305–315, 2009. ISSN

0278-0070.

[49] Song Chen and Adam Postula. Synthesis of custom interleaved memory

systems. IEEE Trans. VLSI Syst., 8(1):74–83, 2000.

[50] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy, J. Ra-

manujam, A Rountev, P. Sadayappan, Yongjian Chen, Haibo Lin, and Tin-

Fook Ngai. Data layout transformation for enhancing data locality on nuca

chip multiprocessors. In Parallel Architectures and Compilation Techniques,

Bibliography 144

2009. PACT ’09. 18th International Conference on, pages 348–357, Sept

2009.

[51] Qiang Liu, George A. Constantinides, Konstantinos Masselos, and Peter Y.

Cheung. Automatic On-chip Memory Minimization for Data Reuse. In

Proceedings of the 2007 Field-Programmable Custom Computing Machines.,

pages 251–260, 2007.

[52] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong.

Polyhedral-based data reuse optimization for configurable computing. In

Proceedings of the ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 29–38, New York, NY, USA, 2013. ACM.

ISBN 978-1-4503-1887-7.

[53] Samuel Bayliss and George A. Constantinides. Optimizing sdram bandwidth

for custom fpga loop accelerators. In Proceedings of the ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays, pages 195–204,

New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1155-7.

[54] Christophe Alias, Alain Darte, and Alexandru Plesco. Optimiz-

ing remote accesses for offloaded kernels: Application to high-level

synthesis for fpga. In Proceedings of the Conference on Design,

Automation and Test in Europe, pages 575–580, San Jose, CA,

USA, 2013. EDA Consortium. ISBN 978-1-4503-2153-2. URL

http://dl.acm.org/citation.cfm?id=2485288.2485430.

[55] Claudia Leopold. On optimal temporal locality of stencil codes. In Proceed-

ings of the 2002 ACM Symposium on Applied Computing, pages 948–952,

New York, NY, USA, 2002. ACM. ISBN 1-58113-445-2. doi: 10.1145/

508791.508975. URL http://doi.acm.org/10.1145/508791.508975.

[56] A. Cilardo and L. Gallo. Improving multi-bank memory access parallelism

with lattice-based partitioning. ACM Transactions on Architecture and Code

Optimization, 11(4), 2014. ISSN 1544-3566.

[57] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation.

Computers, IEEE Transactions on, 54(10):1242–1257, Oct 2005. ISSN 0018-

9340.

Bibliography 145

[58] Xilinx Inc. 7 series fpgas overview. Data sheet, 2014.

[59] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm

to maximize parallelism. IEEE Trans. Parallel Distrib. Syst., 2(4):452–471,

October 1991. ISSN 1045-9219.

[60] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iter-

ative optimization in the polyhedral model: Part II, multidimensional time.

In ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI’08), pages 90–100, Tucson, Arizona, June 2008. ACM

Press.

[61] Umit Y Ogras, Jingcao Hu, and Radu Marculescu. Key research problems in

noc design: a holistic perspective. In Proceedings of the 3rd IEEE/ACM/I-

FIP international conference on Hardware/software codesign and system

synthesis, pages 69–74. ACM, 2005.

[62] Partha Pratim Pande, Cristian Grecu, Michael Jones, Andre Ivanov, and

Resve Saleh. Performance evaluation and design trade-offs for network-on-

chip interconnect architectures. Computers, IEEE Transactions on, 54(8):

1025–1040, 2005.

[63] Alessandro Cilardo, Edoardo Fusella, Luca Gallo, and Antonino Mazzeo.

Joint communication scheduling and interconnect synthesis for fpga-based

many-core systems. In Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2014. IEEE, 2014.

[64] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse

framework for combining multiple partitions. The Journal of Machine Learn-

ing Research, 3:583–617, 2003.

[65] Jack Edmonds. Optimum branchings. National Bureau of standards, 1968.

[66] Nikhil R Devanur and Uriel Feige. An o (n log n) algorithm for a load

balancing problem on paths. In Algorithms and Data Structures, pages 326–

337. Springer, 2011.

[67] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits.

McGraw-Hill Higher Education, 1st edition, 1994. ISBN 0070163332.

Bibliography 146

[68] Keki M. Burjorjee. Explaining optimization in genetic algorithms with uni-

form crossover. In Proceedings of the twelfth workshop on Foundations of

genetic algorithms XII, FOGA XII ’13, pages 37–50, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-1990-4. doi: 10.1145/2460239.2460244. URL

http://doi.acm.org/10.1145/2460239.2460244.

[69] Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich.

Opt4j: a modular framework for meta-heuristic optimization. In Pro-

ceedings of the 13th annual conference on Genetic and evolutionary com-

putation, GECCO ’11, pages 1723–1730, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0557-0. doi: 10.1145/2001576.2001808. URL

http://doi.acm.org/10.1145/2001576.2001808.

[70] Egbert Mujuni and Frances Rosamond. Parameterized complex-

ity of the clique partition problem. In Proceedings of the four-

teenth symposium on Computing: the Australasian theory - Volume

77, CATS ’08, pages 75–78, Darlinghurst, Australia, Australia, 2008.

Australian Computer Society, Inc. ISBN 978-1-920682-58-3. URL

http://dl.acm.org/citation.cfm?id=1379361.1379375.

[71] R Duncan Luce and Albert D Perry. A method of matrix analysis of group

structure. Psychometrika, 14(2):95–116, 1949.

[72] Zynq-7000 All Programmable SoC Overview. Xilinx, 2012.

[73] LogiCORE IP AXI Interconnect (v1.06.a). Xilinx, 2012.

[74] Robert P Dick, David L Rhodes, and Wayne Wolf. Tgff: task graphs for

free. In Proceedings of the 6th international workshop on Hardware/software

codesign, pages 97–101. IEEE Computer Society, 1998.

[75] John Canny. A computational approach to edge detection. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, (6):679–698, 1986.

[76] Cuong Pham-Quoc, Zaid Al-Ars, and Koen Bertels. A heuristic-based

communication-aware hardware optimization approach in heterogeneous

multicore systems. In Reconfigurable Computing and FPGAs (ReConFig),

2012 International Conference on, pages 1–6. IEEE, 2012.

Bibliography 147

[77] Partha Pratim Pande, Cristian Grecu, Michael Jones, André Ivanov, and

Res Saleh. Effect of traffic localization on energy dissipation in noc-based

interconnect. In Circuits and Systems, 2005. ISCAS 2005. IEEE Interna-

tional Symposium on, pages 1774–1777. IEEE, 2005.

[78] Hyung Gyu Lee, Naehyuck Chang, Umit Y Ogras, and Radu Marculescu.

On-chip communication architecture exploration: A quantitative evaluation

of point-to-point, bus, and network-on-chip approaches. ACM Transactions

on Design Automation of Electronic Systems (TODAES), 12(3):23, 2007.

[79] Praveen Bhojwani and Rabi Mahapatra. Interfacing cores with on-chip

packet-switched networks. In VLSI Design, 2003. Proceedings. 16th Inter-

national Conference on, pages 382–387. IEEE, 2003.

[80] Srinivasan Murali and Giovanni De Micheli. Bandwidth-constrained map-

ping of cores onto noc architectures. In Proceedings of the conference on

Design, automation and test in Europe-Volume 2, page 20896. IEEE Com-

puter Society, 2004.

[81] Jae Young Hur. Customizing and hardwiring on-chip interconnects in FP-

GAs. PhD dissertation, TU Delft, 2011.

[82] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Luciano

Ost. Hermes: an infrastructure for low area overhead packet-switching net-

works on chip. INTEGRATION, the VLSI journal, 38(1):69–93, 2004.

[83] Aline Mello, Leonel Tedesco, Ney Calazans, and Fernando Moraes. Virtual

channels in networks on chip: implementation and evaluation on hermes

noc. In Proceedings of the 18th annual symposium on Integrated circuits and

system design, pages 178–183. ACM, 2005.

[84] Sungchan Kim and Soonhoi Ha. Efficient exploration of bus-based system-

on-chip architectures. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 14(7):681–692, 2006.

[85] Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. Design space explo-

ration for optimizing on-chip communication architectures. Computer-Aided

Bibliography 148

Design of Integrated Circuits and Systems, IEEE Transactions on, 23(6):

952–961, 2004.

[86] Junhee Yoo, Dongwook Lee, Sungjoo Yoo, and Kiyoung Choi. Communica-

tion architecture synthesis of cascaded bus matrix. In Design Automation

Conference, 2007. ASP-DAC’07. Asia and South Pacific, pages 171–177.

IEEE, 2007.

[87] Junhee Yoo, Sungjoo Yoo, and Kiyoung Choi. Topology/floorplan/pipeline

co-design of cascaded crossbar bus. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 17(8):1034–1047, 2009.

[88] Minje Jun, Sungjoo Yoo, and Eui-Young Chung. Topology synthesis of

cascaded crossbar switches. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 28(6):926–930, 2009.

[89] Minje Jun, Deumji Woo, and Eui-Young Chung. Partial connection-aware

topology synthesis for on-chip cascaded crossbar network. Computers, IEEE

Transactions on, 61(1):73–86, 2012.

[90] William J Dally and Brian Towles. Route packets, not wires: On-chip inter-

connection networks. In Design Automation Conference, 2001. Proceedings,

pages 684–689. IEEE, 2001.

[91] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc

paradigm. Computer, 35(1):70–78, 2002.

[92] John D Owens, William J Dally, Ron Ho, DN Jayasimha, Stephen W Keck-

ler, and Li-Shiuan Peh. Research challenges for on-chip interconnection

networks. IEEE micro, 27(5):96, 2007.

[93] Radu Marculescu, Umit Y Ogras, Li-Shiuan Peh, Natalie Enright Jerger,

and Yatin Hoskote. Outstanding research problems in noc design: system,

microarchitecture, and circuit perspectives. Computer-Aided Design of In-

tegrated Circuits and Systems, IEEE Transactions on, 28(1):3–21, 2009.

[94] Jingcao Hu and Radu Marculescu. Energy-aware communication and task

scheduling for network-on-chip architectures under real-time constraints. In

Bibliography 149

Design, Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings, volume 1, pages 234–239. IEEE, 2004.

[95] Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salva-

tore Carta, Luca Benini, Giovanni De Micheli, and Luigi Raffo. Designing

application-specific networks on chips with floorplan information. In Proceed-

ings of the 2006 IEEE/ACM international conference on Computer-aided

design, pages 355–362. ACM, 2006.

[96] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. A unified ap-

proach to mapping and routing on a network-on-chip for both best-effort

and guaranteed service traffic. VLSI design, 2007, 2007.

[97] Vladimir Todorov, Daniel Mueller-Gritschneder, Helmut Reinig, and Ulf

Schlichtmann. A spectral clustering approach to application-specific

network-on-chip synthesis. In Design, Automation & Test in Europe Con-

ference & Exhibition (DATE), 2013, pages 1783–1788. IEEE, 2013.

[98] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Constraint-

driven bus matrix synthesis for mpsoc. In Proceedings of the 2006 Asia

and South Pacific Design Automation Conference, pages 30–35. IEEE Press,

2006.

[99] Srinivasan Murali, Luca Benini, and Giovanni De Micheli. An application-

specific design methodology for on-chip crossbar generation. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

26(7):1283–1296, 2007.

[100] Vesa Lahtinen, Erno Salminen, Kimmo Kuusilinna, and T Hamalainen.

Comparison of synthesized bus and crossbar interconnection architectures.

In Circuits and Systems, 2003. ISCAS’03. Proceedings of the 2003 Interna-

tional Symposium on, volume 5, pages V–433. IEEE, 2003.

[101] Alessandro Cilardo, Edoardo Fusella, Luca Gallo, and Antonino Mazzeo.

Automated synthesis of fpga-based heterogeneous interconnect topologies. In

Field Programmable Logic and Applications (FPL), 2013 23rd International

Conference on, pages 1–8. IEEE, 2013.

Bibliography 150

[102] A Cilardo, E Fusella, L Gallo, A Mazzeo, and N Mazzocca. Automated

design space exploration for fpga-based heterogeneous interconnects. Design

Automation for Embedded Systems, pages 1–14, 2014.

[103] Neal K Bambha and Shuvra S Bhattacharyya. Interconnect synthesis for

systems on chip. In System-on-Chip for Real-Time Applications, 2004. Pro-

ceedings. 4th IEEE International Workshop on, pages 263–268. IEEE, 2004.

[104] Neal K. Bambha and Shuvra S. Bhattacharyya. Joint application map-

ping/interconnect synthesis techniques for embedded chip-scale multiproces-

sors. IEEE Transactions on Parallel and Distributed Systems, 16(2):99–112,

2005.

[105] OpenMP Architecture Review Board. OpenMP application program inter-

face, v3.1, 2011. URL www.openmp.org.

[106] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuen-

dorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy

approach. Proceedings of the IEEE, 91(1):127–144, January 2003. ISSN

0018-9219. doi: 10.1109/JPROC.2002.805829.

[107] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and

H. Zheng. Heterogeneous concurrent modeling and design in java

(volume 3: Ptolemy ii domains). Technical Report UCB/EECS-

2008-37, University of California at Berkeley, April 2008. URL

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html.

[108] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal models for

embedded system design. IEEE Design & Test archive, 17(2):14–27, April

2000.

[109] G. Kahn. The semantics of a simple language for parallel programming.

In Proceedings of the IFIP Congress 1974, pages 471–475. North-Holland

Publishing Co., 1974.

[110] Amir Hossein Ghamarian. Timing Analysis of Synchronous Data Flow

Graphs. PhD thesis, Technische Universiteit Eindhoven, July 2008.

Bibliography 151

[111] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and

A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic system

design environment. IEEE Computer, 36(4):45–52, April 2003.

[112] R. Niemann and P. Marwedel. An algorithm for hardware/software par-

titioning using mixed integer linear programming. Design Automation for

Embedded Systems, 2(2):165–193, 1997.

[113] V.V. Das. Compiler Design Using FLEX and YACC. Prentice-Hall of India

Pvt.Ltd, 2007. ISBN 8120332512.

[114] Java native access (jna) v. 3.5.1. Technical report, 2012. URL

https://github.com/twall/jna#readme.

[115] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong pro-

gram analysis and transformation. In Proceedings of the international sym-

posium on Code generation and optimization (CGO’04), page 75, 2004.

[116] R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

URL http://www.R-project.org. ISBN 3-900051-07-0.

[117] Xilinx. Platform studio and the embedded development kit (EDK), 2012.

URL http://www.xilinx.com/tools/platform.htm.

[118] Joint Photographic Experts Group. Recommendation t.81. Techni-

cal report, International Communication Union, September 1992. URL

http://www.itu.int/rec/T-REC-T.81-199209-I/en.

[119] Introduction to lp solve 5.5.2.0. Technical report, 2012. URL

http://lpsolve.sourceforge.net/5.5.

[120] EPCC. EPCC OpenMP benchmarks. 2012. URL

http://www.epcc.ed.ac.uk/software-products/epcc-openmp-benchmarks/.

[121] H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose,

C. Zissulescu, and E. F. Deprettere. Daedalus: Toward composable mul-

timedia MP-SoC design. In Proceedings of Design Automation Conference

(DAC), pages 574–579, June 2008.

Bibliography 152

[122] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,

J. Teich, and M. Meredith. SystemCoDesigner - an automatic ESL synthesis

approach by design space exploration and behavioral synthesis for streaming

applications. ACM Transactions Design Automation of Electronic Systems,

14(1):1–23, January 2009.

[123] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T.D.

Hämäläinen, J. Riihimäki, and K. Kuusilinna. UML-based multi-processor

SoC design framework. ACM Transactions on Embedded Computer Systems,

5(2):281–320, May 2006.

[124] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo. PeaCE: A hardware-

software codesign environment of multimedia embedded systems. ACM

Transactions Design Automation of Electronic Systems, 12(3), August 2007.

[125] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere.

System design using Kahn Process Networks: The Compaan/Laura ap-

proach. In Proceedings of Design Automation and Test in Europe Conference

(DATE) 2004, pages 340–345, 2004.

[126] Mentor Graphics. Handel-C synthesis methodology, August 2012. URL

http://www.mentor.com/products/fpga/handel-c/.

[127] P. Dziurzanski and V. Beletskyy. Defining synthesizable OpenMP directives

and clauses. In Proceedings of the 4th International Conference on Compu-

tational Science - ICCS 2004, volume 3038, pages 398–407. Springer, 2004.

[128] P. Dziurzanski, W. Bielecki, K. Trifunovic, and M. Kleszczonek. A system

for transforming an ANSI C code with OpenMP directives into a SystemC

description. In Design and Diagnostics of Electronic Circuits and Systems,

2006, pages 151–152. IEEE, apr 2006.

[129] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-

Gonzalez. OpenMP extensions for FPGA accelerators. In International

Symposium on Systems, Architectures, Modeling, and Simulation, 2009 -

SAMOS ’09, pages 17–24, July 2009.

Bibliography 153

[130] Yuan Xie. Future memory and interconnect technologies. In

Design, Automation and Test in Europe, DATE 13, Greno-

ble, France, March 18-22, 2013, pages 964–969, 2013. URL

http://dl.acm.org/citation.cfm?id=2485520.

