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Introduction

There are two main approaches so far in the human history to understand the nature:

reductionism and holism. In a reductionist view, the universe is understood in terms of

its pieces, while in the holistic picture, the pieces are understood in terms of the universe

itself.

Physics has been using the two approaches in every part of any research. However, one

could roughly consider that the physics is actually divided into these points of view in

terms of the theories so far, namely the Standard Model of Particle Physics, describing

the universe by reducing everything to particles, and the Standard Model of Cosmology,

considering the effects of the whole universe on a body of interest.

The physicists have failed to find a theory that describes both the particle physics and

the cosmology so far. However, as the experiments and theoretical tools get advanced,

the two descriptions would meet at a point where as well as the two approaches start to

combine.

This work is presenting a study for the search of the single top-quark production in the

CMS Experiment at CERN focusing on the s-channel process and muon decay mode as

the final state topology, using a multivariate technique based on the Boosted Decision

Trees (BDT) algorithm. The multivariate technique is utilized with an optimization

procedure for understanding what are the appropriate variables to use for separation of

the signal and background events.

The particle in interest for this analysis, known as top quark, is the heaviest elementary

particle predicted by the Standard Model and discovered so far, even heavier than the

Higgs boson, discovered in 2012, which itself gives mass to the top quark. It has been

discovered after a long survey beginning from the prediction in 1974 by Christenson et

al. to the discovery announcement by CDF and DØ in 1994.
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2 Introduction

Top quark was first postulated in order to dismiss the complications in the established

theoretical model of hadrons due to the observation of CP-Violations in kaon decay,

followed by Kobayashi and Maskawa who suggested a third generation of quarks to

rectify theory and experiment. The additional doublet was called “top” and “bottom”

in the spirit of “up” and “down” quarks by Harari who echoed the prediction of a new

generation of quarks.

Top quark gives the unique opportunity to perform a direct measurement of the element

of the quark-mixing matrix involving the b quark, which is one of the Standard Model

parameters. The prompt decay of top quark due to its heavy mass reveals the possibility

to investigate the properties of a bare quark before forming any bound state, unlike other

quarks known so far.

Beside its importance to the Standard Model, top quark also provides a window for a

possible new physics beyond the Standard Model, such as an extra intermediate charged

boson W ′, fourth generation quarks, charged Higgs boson.

This work is structured in three main chapters:

Chapter I The Theory. The first chapter is presenting the theoretical framework

of the top quark physics starting from the Standard Model of particle physics. Af-

ter introducing Quantum Electrodynamics, the electroweak and strong interactions are

constructed as an extension of it in a gauge-theoretical manner. Then in the following

section, the top quark is detailed considering its decay and its two production mecha-

nisms, together with the windows it opens for the feature physics beyond the Standard

Model.

Chapter II The Experiment. The second chapter is illustrating the experimental

setup detailing the accelerator complex and the detector together with some phenomeno-

logical concepts on collider physics. The first section of the second chapter introduces

the accelerator complex, the Large Hadron Collider (LHC), while the second section

gives a detailed description of the Compact Muon Selenoid (CMS) detector where the

data is taken. The third section is about the concepts and physical aspects that the

physicists deal with, in the collider phenomenology.
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Chapter III The Analysis. The analysis reported in the third chapter is on the

collision data collected at 8 TeV in the CMS detector with a luminosity of 19.3 fb−1,

focused on muonic decay of the top quark in the s-channel topology. The first section of

this chapter is about the event selection used in the analysis while in the second section,

the control samples and backgrounds are explained. The third section is about the

systematic uncertainties. The fourth section gives a detailed explaination of the analysis

using a multivariate technique called the Boosted Decision Trees (BDT) by choosing the

most discriminating variables via a feedback loop. The results of the analysis are given

in the last section.





Chapter I

The Theory: Standard Model and

Top Quark

Theories in particle physics are formulated as relativistic field theories where the fun-

damental entities are fields as a function of space-time, and particles are described as

oscillations of these fields. In a subset of field theories the interactions are modeled in

terms of an exchange of force carrying fields imposing some symmetries in the theory,

called gauge symmetries.

A field theory is described in terms of actions which are functionals of a Lagrangian

and can be variated to derive the equations of motions for various fields of the model in

subject.

S [φi(x)] =

∫
d4xL (φi(x))

where L is the Lagrangian density as a function of the fields φi(x) and their space-time

derivatives.

A gauge symmetry corresponds to that the laws of physics do not change under some

phase change of the fields, requiring an invariance of the form of the Lagrangian under a

group of transformations. These transformations form a set that has some basic algebraic

properties, i.e., associativity, inversability and having a unit element. The groups having

commutativity are called Abelian which physically corresponds to self-interacting gauge

fields.
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6 The Theory: Standard Model and Top Quark

Throughout this chapter, it is used the natural units, namely the convension ~ ≡ c ≡ 1

where ~ = 6.6 × 10−25GeV-s is the reduced Planck constant, c = 3.0 × 108m/s is the

speed of light and GeV is giga electron volts1. Therefore, the fundamental units can be

read as follows, in terms of proton mass which is approximately 1 GeV:

1m = 1.5× 1016GeV−1 , 1s = 4.5× 1024GeV−1 , 1kg = 0.5× 1027GeV

This chapter gives a brief introduction to the Standard Model of Particle Physics in

terms of fundamental interactions, followed by a detailed section dedicated for the top-

quark part of the Standard Model in a phenomenological point of view. Experimental

evidence of the Standard Model is given very shortly while recent researches aboout the

top quark is listed in the end of the chapter.

I.1 The Standard Model

The Standard Model of Particle Physics is a parametrization of the Quantum Field The-

ory where the particles are quantizations of fields interacting according to an algebraic

group. More precisely, Standard Model consists of three types of interactions of nature,

namely electromagnetic, weak and strong interactions, which are unifiable in the base

of the parameters subject to the experiments [2–6].

Each interaction in this picture is described by a symmetry that give rise to a conserva-

tion of a quantity in and out of that interaction. These symmetries are well understood

by some transformations that form an algebraic group, called the gauge group, while the

conserved quantity, namely the physical charge, is simply the generator of that group

[7, 8]. So, the Standard Model is a product of three gauge groups, each corresponds to

an interaction, as follows:

U(1)Y︸ ︷︷ ︸
hypercharge

⊗ SU(2)L︸ ︷︷ ︸
isospin

⊗ SU(3)C︸ ︷︷ ︸
color charge

where ⊗ is group product, U(1)Y is the Unitary Group of the hypercharge Y , SU(2)L is

the Special Unitary Group of the isospin ~T , and SU(3)C is the Special Unitary Group

of color charge λ. Each group has a fundamental representation which corresponds to

11 electron volt is the energy needed for an electron to travel 1 meter under an electrical potential of
1 volt [1].
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the particles of the matter like electron or neutrino, and an adjoint representation which

corresponds to the force-carrying particles like photon or nuclear force.

The first two symmetries break down simultaneously via the Higgs mechanism [9–12]

into a unitary symmetry of the electric charge, Q which is related to the z component

of the isospin charge and the hypercharge by the Gell-Mann–Nishijima formula:

U(1)Y ⊗ SU(2)L  U(1)Q + massive bosons

1

2
Y + T 3 = Q

After the breakdown, the three gauge bosons of the former groups are eliminated via

field redefinitions by the three states of the Higgs field to form massive gauge bosons

responsible for the weak nuclear forces, namely the W bosons and the Z boson, so that a

massless photon responsible for the electromagnetic force remains and a chargeless Higgs

boson becomes observable. The isospin and hypercharge symmetries are indeed broken

due to the precence of the masses of the W and Z bosons while the new symmetry of

the electrical charge is not since the photon remains completely massless.

The Standard Model predicts three generation of fermions which consist of two main

categories called quarks and leptons (Table I.1). There does not exist a fundamental

interaction between quarks and leptons since the color symmetry of SU(3)C is not broken

and leptons are color-singlets while quarks have three types of color charge, so-called

“red”, “green” and “blue” 2.

Each fermion has a left-hand and a right-hand helicity, which is defined simply by the

contrast between the directions of its spin and the velocity vectors, each having different

quantum numbers. Both quarks and leptons form one isospin doublet and two singlet

states for each generation. Each isospin doublet has T = +1 and Q = −1 in total so that

it can interact with W± and Z bosons while singlets can not. Especially, the right-hand

neutrino singlets, νiR, are completely isolated (or do not even exist) according to the

Standard Model, so they do not have any kind of charge. This means that the weak

interaction simply breaks the left-right symmetry.

The photon and Z boson are a combination of two parts, each stemming from the isospin

group and the hypercharge group, with a mixture angle called the weak angle, θw, which

is just in the exact value that makes the mass of the photon exactly zero, i.e., Mγ = 0.

2The color charge has nothing to do with physical colors. The names are given so just because there
exist three types of conserved quantity for the group SU(3).
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Fields Generations Color T3 Q

Quarks
QiL

(
uL
dL

) (
cL
sL

) (
tL
bL

)
3

+1/2
−1/2

+2/3
−1/3

uiR uR cR tR 3 0 +2/3
diR dR sR bR 3 0 −1/3

Leptons
LiL

(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
1

+1/2
−1/2

0
−1

eiR eR µR τR 1 0 −1
νiR νeR νµR ντR 1 0 0

Higgs H

(
φ+

φ0

)
1

+1/2
−1/2

+1
0

Vectors

W W+ 1 +1 +1
Z Z 1 0 0
γ A 1 0 0
G G 8 0 0

Table I.1: The periodic table of Standard Model. The anti-particles are not included.

Therefore, this parameter of the Standard Model importantly gives the ratio between

the mass of the W and Z boson, as follows:

cos θw =
MW

MZ
(I.1)

where it corresponds to sin2 θw ≈ 1/4.

The gluons, G, have eight colors which are a combination of a color and an “anti-color”,

so that quarks could interact with the gluons to change their color but not their flavours,

isospins or electric charges. The gluons are presumed to be massless since it is not a

broken symmetry.

I.1.1 Quantum Electrodynamics

Quantum Electrodynamics (QED), the theory describing the interactions between light

and matter, is the first true and successful quantum field theory that was developed

[13–17]. All further theories are an extention of the theory to a more general gauge

group. Namely, it is the most simple case of a gauge group: the Abelian case, which

means that it has no self-interacting terms for the photon as what is observed indeed.

QED is the first theory which describes the force as a particle exchange, by explaining

the four-fermion interaction of the Fermi theory as a virtual photon exchange between
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electrons or positrons. The photons are called virtual because they are observed indi-

rectly as a momentum transfer.

The strength of the interaction is precisely given by taking into account high order

interactions which is the case in the real world, namely as fine structure constant αe ≡

e2/4π ≈ 1/137 is measured to be

αe = 7.297 352 5698(24)× 10−3 (I.2)

The Lagrangian of a free massive Dirac field, namely the electron, is written as follows:

L0 = iΨ̄eγ
µ∂µΨe −meΨ̄eΨe (I.3)

where γµ are the 4× 4 Dirac Gamma matrices satisfying the anti-commutation relation,

{γµ, γν} = 2gµν 1 , (I.4)

and Ψ̄e ≡ γ0Ψ† is the anti-Dirac spinor, i.e. pozitron, and 1 denotes the 4×4 unit matrix

in the spinor space. Therefore, the Dirac field Ψe(x) is a 4-component complex column

living in the spin space which means that it has “left” and “right” spin components

coupled to each other respectively for electron and its anti-particle pozitron. Thus, a

projection operator could be defined in order to seperate the left and right components

of the spinor as follows:

PL ≡ 1− γ5 , PR ≡ 1 + γ5

where γ5 ≡ iγ0γ1γ2γ3. Therefore, the left and right components would be defined as

follows, respectively:

eL ≡ PLΨe , eR ≡ PRΨe . (I.5)

The left electron has the direction of its spin vector and the momentum vector the

same while the right electron corresponds to an opposite case. The mass term of the

Dirac Lagrangian would be as the following, after the decomposition to left and right

components:

Lm = me (ēLeR + ēReL) (I.6)
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Please note that a mass term for a fermion explicitly breaks the global left-right sym-

metry. The Lagrangian for the free photon field, the so-called Maxwell term, is written

as follows:

LM
0 = −1

4
FµνFµν (I.7)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor of the electromagnetic field Aµ.

The total Lagrangian of the Quantum Electrodynamics would be as the following:

LQED = LD
0 + LM

0 + Lint (I.8)

where the last part is the interaction terms of electron and photon defined as follows

Lint = −iqΨ̄eΨeγ
µAµ . (I.9)

Here, q is the interaction coupling constant to be determined by the experiments. This

is the only possible interaction of a Driac field and a photon since higher order terms

would make the theory non-renormalizable, i.e., some integral over momenta of a closed

loop in the inetraction woul become divergent in perturbative calculations [18].

Now, one may consider a phase transformation by a arbitrary parameter θ(x) as a

function of space-time, as follows:

eL,R 7→ eiqθ(x)eL,R , ēL,R 7→ e−iqθ(x)ēL,R (I.10)

where q is a real number corresponding to the physical electric charge of the fermion,

extensively written as q = eQ with e the electrical constant and Q = −1 for electron.

The variance of the free Dirac Lagrangian after this phase transformation would be of

the following:

δLD
0 = iqΨ̄eΨeγ

µ∂µθ(x) (I.11)

If one imposes that the total Lagrangian, LQED, should be invariant under the phase

transformations, then this implies that the following quantities transform as well:

Aµ 7→ Aµ − ∂µθ(x) , (I.12)
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However, this violates the covariance of the Lagrangian in Eq. (I.8). Therefore, one may

redefine a covariant derivative in the Dirac term, as follows:

Dµ ≡ ∂µ − iqAµ (I.13)

This leads the total Lagrangian to be written expicitly as follows:

LQED = iēLγ
µDµeL +meēLeR + h.c.− 1

4
FµνFµν (I.14)

which is now covariant under an arbitrary phase transformation Eq. (I.10) and Eq.

(I.12). This Lagrangian could be extended to any charged fermion like muons, taus,

protons, neutrons, etc. instead of only electrons.

I.1.2 Electroweak Inteactions and the Higgs Mechanism

The electromagnetic interaction which describes the dynamics between light and mat-

ter, and the weak nuclear interaction which governs the stability of the nucleus are

found to be actually originating from a unified interaction in the early universe. This is

called Glashow-Weinberg-Salam theory [3–6] of electroweak interactions which includes

a mechanism [9–12] that gives masses to the particles, especially to the gauge bosons,

via a spinless boson field called the Higgs boson and breaks the symmetry down to QED

together with some additional massive bosons responsible for the nuclear forces.

As described in the previous section, QED was an Abelian gauge theory meaning that

the gauge boson, i.e. photon, could not interact by itself. On the other hand, the force-

carrying bosons of the weak nuclear interaction have a self-inteaction feature, so the

gauge group should be non-Abelian.

Considering that the Standard Model includes an SU(2) and an SU(3) gauge groups, first

of all it is better to generalize QED discussed in the previous section to a non-Abelian

case SU(N). So, one introduces boson fields, Wi, where i runs from 1 to the number of

generators N2 − 1, and the fermions Ψ, which has N components in the group space.

LD = iΨ̄6DΨ (I.15)
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where 6D ≡ γµDµ and

Dµ = ∂µ + igTiWiµ (I.16)

is the covariant derivative associated with the generators, Ti. Here Ti are the traceless

unitary generators, which corresponds to the physical charge, of the non-Abelian group

with i running from 1 to N2 − 1, so that the following gauge transformations leaves the

Lagrangian covariant:

Ψ 7→ eigTiθi(x)Ψ (I.17)

Wiµ 7→ Wiµ + ∂µθi(x) (I.18)

for a transformation parameter θi(x) as an extension of Eq. (I.10) and Eq. (I.12).

On the other hand, the kinetic term of the bosons is as follows:

LW = −1

4
WiµνW

µν
i (I.19)

where

Wiµν = ∂µWiν − ∂νWiµ + gfijkW
j
µW

k
ν (I.20)

and fijk are the structure constants that satisfies the commutation relation of the gen-

erators of SU(N), namely, [Ti, Tj ] = fijkTk. Note that the self-interaction terms with

three and four bosons are embedded in this Lagrangian.

In the case of Glashow-Weinberg-Salam theory, the gauge group would be U(1)⊗SU(2).

So, there would be two types of gauge bosons, namely, Bµ from U(1) with a single

generator called the hypercharge Y and three Wµ
i from SU(2) with three generators

called the isospin Ti for i = 1, 2, 3.

The masses of the gauge bosons are explained with the Higgs mechanism which describes

a spontaneous symmetry breaking because of a spinless self-interacting boson with a non-

zero expectation value in the vacuum. Therefore, the so-called Higgs doublet, is defined

as follows:

H(x) =

 φ+(x)

φ0(x)

 (I.21)
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where the neutral component is decomposed into φ0(x) ≡ ν + h(x) and

〈
0|φ0|0

〉
= ν (I.22)

is the vacuum expectation value of the Higgs field, with a value of ν ≈ 246 GeV.

The reason that the Higgs is a SU(2) doublet is because the Higgs would break the

symmetry of SU(2) gauge bosons of which it interacts. So, the non-zero expectation

value is stemming from the nature of self-interaction of this field, given in the following

Lagrangian:

Lint
H = λ

(
H†H − 1

2
ν2

)2

(I.23)

where, when expanded explicitly, the term −1
4λν

4 would contribute to the equations of

motion as a constant, while the other terms would consist of a negative squared mass

term, −λν2|H|2, and a self-interaction four-vertex, λ|H|4, for λ > 0.

The Yukawa interactions, which describes the interaction between a spinless particle and

two fermions, reads as follows for the Higgs doublet:

LY = −yijΨ̄iHψj + h.c. (I.24)

where yij is the Yukawa coupling of the fermions, Ψi and ψj which denote a doublet

and a singlet of SU(2), respectively. The Yukawa coupling could be written in terms of

the fermion’s mass as
mψ
ν so that it would remain a mass term of the fermion for the

vacuum expectation value of the Higgs boson, Eq. (I.22).

Therefore, the full Lagrangian of the Glashow-Weinberg-Salam Model before the sym-

metry breaking reads as follows:

Lsymmetric
EW = iQ̄iL 6DQiL + iūiR 6DuiR + id̄iR 6DdiR + iL̄iL 6DLiL + iēiR 6DeiR

−yiju Q̄iLεH∗ujR − y
ij
d Q̄iLHdjR − y

ij
e L̄iLHejR + h.c. (I.25)

−1

4
Wµν
i W i

µν −
1

4
BµνBµν +

1

2
(DµH)†DµH − λ

(
|H|2 − ν2/2

)2
where ε is a 2 × 2 anti-symmetric matrix assuring the correct component of the Higgs

doublet is contributing, and Dµ = ∂µ − gTiW i
µ − 1

2g
′Y Bµ is the covariant derivative.

The generators of SU(2)L are traceless and unitary but only T 3 is diagonal. Therefore,
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the W interaction terms of the kinetic term of the Higgs boson would be diagonalized

via changing the fields as follows:

W± ≡ 1√
2

(W1 ∓ iW2) (I.26)

while the generators would become T± ≡ 1√
2

(
T 1 ± iT 2

)
. The new fields W± are called

W bosons and they have opposite weak isospin, i.e. T 3 = ±1 respectively. The corre-

sponding charged currents are the following:

J±µ = QiLγ
µV ijQjL + eiLγ

µeiL (I.27)

= uiγ
µPLV

ijdj + νiγ
µPLei (I.28)

where Vij is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [19, 20].

So, the Lagrangian term embedded in the kinetic energy of the fermions would be as

− g√
2
J±µW

µ
±.

Here, the quark mixing is an important aspect for the CP violation observed in nature

(e.g. Kaon decays). The CKM mixing is a global U(3) phase rotation in the flavour

basis of the quarks interacting with the W boson. This phase transformation leaves the

mass of the quarks real-valued and positive while reveals a mixture in the W coupling.

So, the CKM matrix is written as follows:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (I.29)

The parametrization of the matrix has a unremovable complex phase factor which is the

only source of the CP violation in the Standard Model.

On the other hand, the remaining W3 and B bosons would mix by an angle of θw, called

the weak angle, as follows:

Z ≡ cos θwW3 − sin θwB (I.30)

A ≡ sin θwW3 + cos θwB (I.31)

where e ≡ g cos θw = g′ sin θw is the new coupling constant after the mixing, called

the electric coupling constant since it would appear in the following neutral current
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interaction:

LNCint = eJemµ Aµ +
g

cos θw

(
J3
µ − sin2 θwJ

em
µ

)
Zµ (I.32)

where the electromagnetic current and the neutral weak current is defined as

Jemµ ≡
∑
ψ

qψψ̄γµψ (I.33)

J3
µ ≡

∑
ψ

T 3
ψψ̄γµψ (I.34)

denoting the weak isospin and the electric charge of the fermion ψ by T 3
ψ and qψ ≡

T 3 + 1
2Y , respectively, as a result of the redefinitions, Eq. (I.30) and Eq. (I.33). See

Table I.1 for the values of these charges.

After the symmetry breaking via the Higgs mechanism, the Lagrangian in Eq. (I.25)

becomes as follows:

Lbroken
EW = iQ̄iL 6DQiL + iūiR 6DuiR + id̄iR 6DdiR + iL̄iL 6DLiL + iēiR 6DeiR

−yiju ūiLhujR − y
ij
d d̄iLhdjR − y

ij
e ēiLhejR + h.c.

−mi
uūiLuiR −mi

dd̄iLdiR −mi
eēiLeiR + h.c.

−1

2
W+µν
i W−µν −

1

4
AµνAµν −

1

4
ZµνZµν (I.35)

+
1

2
∂µh∂µh+m2

Hh
2 − gm2

H
4mW

h3 − g2m2
H

32m2
W
h4

+

(
gmWh+

g2

4
h2

)(
W−µ W

+µ + 1
2 cos2 θw

ZµZ
µ
)

−ig
[
(W+

µνW
−µ −W+µW−µν)(Aν sin θw − Zν cos θw)

+W−ν W
+
µ (Aµν sin θw − Zµν cos θw)

]
−g

2

4

{[
2W+

µ W
−µ + (Aµ sin θW − Zµ cos θW )2

]2
−
[
W+
µ W

−
ν +W+

ν W
−
µ

+(Aµ sin θW − Zµ cos θW )(Aν sin θW − Zν cos θW )
]2
}

where the first line is the kinetic terms with gauge couplings, the second line is the

Higgs-fermion couplings, the third line is fermion mass terms, the fourth line is the gauge

kinetic terms, the fifth line is the Higgs kinetic energy, mass and self-couplings, the sixth

line is the boson-Higgs couplings, the rest of the lines are gauge-gauge couplings.
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I.1.3 Strong Interactions

Quantum Chromodynamics (QCD) is the field theory of the strong interactions in an

elementary level, i.e. the interaction between quarks (QiL, uiR, diR), and gluons (Gaµ).

Since it is a SU(3) gauge theory, the Lagrangian for QCD-only inetractions could be

expressed as follows:

LQCD = gsQ̄iLλaG
a
µQiL + gsūiRλaG

a
µuiR + gsd̄iRλaG

a
µdiR −

1

4
Gµνa Gaµν (I.36)

where only the contribution to the covariant derivative for gluon interaction (i.e., −igsλaGaµ,

see Eq. (I.16)) is written, and the field strength tensor of the gluons, Gaµν , is in the same

form with Eq. (I.20) with the corresponding generators, λa, and the strong coupling

constant, gs.

The gluons have 8 different colors. These are generated by the 3 × 3 matrices, called

Gell-mann matrices, λa as a color and an anti-color combined in each gluon. In a group

theoretical expression,

3⊗ 3̄ = 8⊕ 1 (I.37)

where 3 and 3̄ stand for color and anti-color triplet, 1 means a color singlet and 8 means

color octet. The color singlet state, sometimes called the ninth gluon, is not present in

the group SU(3), and therefore in the Standard Model, since it is a unit matrix and

physically insignificant.

Each (anti)quark is component of a (anti)color triplet labeled as “red”, “green” or “blue”

as in the following example:

ured
iL =


ψiL

0

0

 ugreen
iL =


0

ψiL

0

 ublue
iL =


0

0

ψiL

 (I.38)

On the other hand, gluons are spanned by 3× 3 Gell-mann matrices, so that the quarks

having the appropriate color charges would interact with that gluon. So, each component
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of the octet, Gµ ≡ λaGaµ, reads explicitly as follows:

Grg
µ =


0 G1

µ 0

G1
µ 0 0

0 0 0

 Ggr
µ =


0 −iG2

µ 0

iG2
µ 0 0

0 0 0



Grr
µ =


G3
µ 0 0

0 −G3
µ 0

0 0 0

 Grb
µ =


0 0 G4

µ

0 0 0

G4
µ 0 0

 (I.39)

Gbr
µ =


0 0 −iG5

µ

0 0 0

iG5
µ 0 0

 Gbg
µ =


0 0 0

0 0 G6
µ

0 G6
µ 0



Ggb
µ =


0 0 0

0 0 −iG7
µ

0 iG7
µ 0

 Grgb
µ =


1√
3
G8
µ 0 0

0 1√
3
G8
µ 0

0 0 − 2√
3
G8
µ



Note that the QCD Lagrangian, Eq. (I.36), and the EW Lagrangian, Eq. (I.25) or Eq.

(I.35), are indeed discrete since in each definition the covariant derivatives were given

accordingly, so that the SM Lagrangian could be written as a sum of the two, as follows:

LSM = LQCD + LEW (I.40)

I.2 Top Quark

The top quark, together with the bottom quark, theoretically predicted in 1973 by

T. Maskawa and M. Kobayashi to explain the Charge-Parity (CP) violation in Kaon

decay, extending the Cabbibo quark-mixing matrix to a three-generation quark-mixing

matrix, now called the Cabbibo-Kobayashi-Maskawa (CKM) matrix. Then, the top

quark discovered in 1995 by the DØ and CDF experiments at FermiLab.

The top quark is the heaviest particle that is known so far, and as well as among other

Standard Model particles, with a mass of 173 GeV. The electrical charge is Qt = +2/3,

having an hypercharge of Y = 4/3 (or 1/3) and a weak isospin of T 3 = 0 (or 1/2) for

the right (or left) component. The Higgs coupling of top quark is around 0.7 which is

the largest among other fermions.
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The top quark has a special place in the Standard Model of particle physics and plays

a promising role to extend the current boundaries to the new physics. The following

considerations of the top quark reveals the search for new physics:

• The top quark is the heaviest particle, which also means that it has the strongest

Yukawa coupling among the fermions of the Standard Model. This is promising

for seeking new strong dynamics since it is directly related to the breaking of the

electroweak symmetry.

• The loop corrections to the Higgs boson mass includes a top quark loop which

opens a window to the tera-scale physics, e.g. SUSY, Little Higgs models.

• The rapid decay of the top quark gives a unique route to investigate the nature of

a “bare quark” related to its mass, charge and spin.

• The decays of top quark to the heavy states like W, Z or Higgs boson plus a quark

have a very large phase space due the high top mass.

• The coupling of the top quark with the W boson offers an opportunity to explore

the models beyond the three-generation quarks by directly measuring the CKM

mixing matrix element.

The top-quark part of the Standard Model Lagrangian, Eq. (I.40), reads explicitly as

follows:

LSM,top = it̄γµ∂µt Propagation

− mtt̄t mass term

− mt
v t̄Ht Higgs coupling

+ gst̄γ
µλaGaµt gluon coupling

+ et̄γµQAµt photon coupling

+ g
cos θw

t̄γµ
(
gV + gAγ

5
)
Zµt Z-boson coupling

+ g√
2

d,s,b∑
q

Vtq t̄γ
µPLW

−
µ q + h.c. CKM-mixed W-boson coupling

(I.41)

where gV = 1
2T

3 − Q sin2 θw and gA = −1
2T

3 are the vectoral and axial couplings to Z

boson, respectively.
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Considering the radiative one-loop corrections to the W boson mass, the top mass con-

tributes significantly together with the Higgs boson mass:

m2
W =

πα√
2GF sin2 θw (1−∆r)

(I.42)

where GF is the Fermi constant and the correction is calculated as follows:

∆r = − 3GFm
2
t

8
√

2π2 tan2 θw
+

3GFM
2
W

8
√

2π2

(
ln
M2
H

M2
Z

− 5

6

)
(I.43)

Therefore, one could reveal a relation between the top mass and the Higgs mass for the

given W and Z masses.

I.2.1 Decays

In the Standard Model, top quark decays only via weak interaction to a W boson and

a down-type quark, dominantly a b quark. The full decay rate for the top quark is

calculated as follows:

Γ
(
t→W+q

)
=
|Vtq|2m3

t

16πν2

(
1 + 2

M2
W

m2
t

)(
1− M2

W

m2
t

)2 (
1− αs(4π2−15)

9π

)
(I.44)

where αs is the fine structure constant of the strong interactions. The branching ratio

for the Wb decay is directly related to the CKM mixing parameter as follows:

B(t→Wb)

B(t→Wq)
=

|Vtb|2

|Vtb|2 + |Vts|2 + |Vtd|2
(I.45)

which is measured to be 0.91±0.04, means that approximately the 90% of the top quarks

decays into a b quark. Since the Standart Model predicts 3 generation of quarks, the

constraint |Vtb|2 + |Vts|2 + |Vtd|2 = 1 might be considered for precise measurements of

the CKM matrix element |Vtb|. On the other hand, without the assumption of three-

generation quarks, the ratio opens a window for extra-generation quarks directly.

An important aspect of the decay rate given above is that the top quark decays so

promptly even before hadronization because the value of the decay rate is greater than

the QCD threshold:

Γ
(
t→W+q

)
= 2.0+0.7

−0.6 GeV > ΛQCD (I.46)
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where ΛQCD ≈ 250 MeV. This also implies that the lifetime of the top quark is 0.5 ×

10−24s which is long before the colorless boundstates can form or even before moving

away from the interaction vertex into the detector. So, the top quark, as the only known

particle to decay before hadronization, gives the unique opportunity to understand the

properties of a “bare quark”.

The top quark events are categorized according to the decay modes of the W boson

stemming from the top quark because the W boson has a short lifetime, approximately

3× 10−25s, and this means it can not be directly measured in the detectors. Instead the

decay products of the W boson should be studied to understand the top quark events.

W boson decays mostly into two quarks which are hadronized to produce jets which

is a shower of variety of hadrons might be stopped in the calorimeters of the detector.

This decay mode is called “hadronic top decay” and it is hard to separate since there

would be a large number of background events with very similar jet topologies. Another

decay mode is “leptonic top decay” which means the W boson produces a charged lepton

and its associated neutrino. It is called “electron (muon) channel” when the lepton in

subject is electron (muon).

I.2.2 Top Quark Production

There are two ways to produce top quark in proton-proton collisions, one via charged-

current electroweak interactions as a single, and another via strong interactions as a

pair. For this reason, the single top-quark production allows to probe the electroweak

sector of the Standard Model with top-quark physics.

Pair production

The top-pair production is either a quark-antiquark anhillation, qq̄ → tt̄, or a gluon

fusion, gg → tt̄. An event where the both W bosons decay into quarks is called “fully

hadronic” while one or two of the W bosons decay into leptons are called “semi-leptonic”

or “di-leptonic”, respectively.

Since hadronic collisions have the hard process via the interaction of the constitutent

quarks and gluons which are called partons, the total cross-section of the pair production

at a center of mass energy
√
s could be expressed as a convolution of two contributions.
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One contribution is the short-distance interaction between the participating partons at

the center of mass energy
√
ŝ, while the other contribution comes from the long-distance

factors that specify the probability density of observing these partons with a certain

fraction in the momenta of the incoming hadrons, as follows:

σpp→tt̄ =

q,q̄,g∑
i,j

∫
dxidxj fi

(
xi, µ

2
F

)
f j
(
xj , µ

2
F

)︸ ︷︷ ︸
long-distance

σij→tt̄ (xi, xj)︸ ︷︷ ︸
short-distance

(I.47)

where xi is the hadron longitudinal momentum fraction carried by the parton i running

for all quarks, anti-quarks and gluons, µ2
F is the factorization scale, fi(xi, µ

2) are the

Parton Distribution Functions (PDFs) of the proton, which is simply the probability

density to observe a parton i with the momenta fraction xi such that ŝ = xixjs, and

σij→tt̄ is the cross-section of the hard process of the partons producing the top pair.

The hard process, which involves only high momentum transfer and almost insensitive

to low momentum scale, is calculable with perturbative QCD. The factorization is valid

to all orders of the perturbative theory, getting weaker dependence on the arbitrary

scale µ2
F as more perturbative terms are added in the expansion. On the other hand,

the PDFs characterizing the long-distance process can not be calculated in perturbative

QCD, instead are extracted by global fits from deep-inelastic scattering and other data.

The minimum ŝ = xixjs in the process is 4m2
t and therefore xixj ≥ 4m2

t /s which will

typically be near the threshold for the tt̄ production since the probability of finding a

parton with fraction x decrease with increasing x. This means that 〈x〉 ≈ √xixj ≈

2mt/
√
s would be 0.18 at TeVatron and 0.25 at the LHC, and explains why we observe

a dominance of the quark-antiquark annhilation with 85% at TeVatron, but on the other

hand, the gluon fusion with 90% at LHC.

The cross-sections calculated for 7, 8, 13 and 14 TeV collision energies are presented in

Table I.2.

Cross-Section (pb) 7 TeV 8 TeV 13 TeV 14 TeV

σpp→tt̄ 174+11
−12 248+14

−15 810+38
−36 957+44

−41

Table I.2: Table of the Standard Model predictions for the top-pair production cross-
sections at NNLO with NNNLL self-gluon corrections [21].
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Single Production

Three different mechanisms for single top-quark production are predicted in the SM in

hadron-hadron collisions according to the virtuality of the W boson (Figure I.1):

• s-channel production as q2 > 0.

• W -associated, or tW production as q2 = m2
W .

• t-channel production as q2 < 0.

Figure I.1: The single top-quark production in s-channel (left), W -associated t-
channel (middle) and t-channel (right).

All three channels are directly related to the CKM matrix element |Vtb|, providing the

chance for a direct measurement of this SM quantity. There is a special interest in LHC

for s-channel single-top production since it is very sensitive to several models of new

physics involving fourth-generation quarks, a non-SM mediator, like W′ or a charged

Higgs boson.

Cross-Sections (pb) 7 TeV 8 TeV 13 TeV 14 TeV

t-channel 65.9+2.6
−1.8 87.2+3.44

−2.42 219.1+6.7
−3.9 243+8

−6

tW -channel 15.6±1.17 22.2±1.52 58.5+2.4
−3.1 83.6+3.6

−5.2

s-channel 4.56+0.19
−0.18 5.55±0.22 10.22+0.22

−0.21 11.92+0.49
−0.53

Table I.3: Table of the Standard Model predictions for the single top production
cross-sections for all three production channels at NNLO [22–26].

According to the cross-section calculations of the single-top production as shown in

Table I.3, the t-channel searches will benefit mostly in the LHC Run II which will have

13 and 14 TeV collision energies.
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I.2.3 Experimental Results

All the measurements done so far are in an agreement with the Standard Model pre-

dictions listed in Table I.3. The finalized experiments CDF and D0 Collaborations

at Tevatron with 1.96 TeV center-of-mass energy and the current experiments ATLAS

and CMS Collaborations at CERN with 7 TeV and 8 TeV center-of-mass energies have

reported several results given below.

Observation of single top-quark production was published by the CDF [27–29] and D0

[30, 31] collaborations in the sum of the s- and the t-channels. Subsequently, The CDF

collaboration reported a measurement of single top-quark production cross-section for

the sum of s-, t-, and Wt-channels as 3.04+0.57
−0.53 pb using data corresponding to 7.5 fb−1 of

integrated luminosity [32] and for the sum of the s- and t- channels as 3.02+0.49
−0.48 pb using

up to 9.5 fb−1 of integrated luminosity [33]. The D0 collaboration obtained a cross-

section of 4.11+0.60
−0.55 pb using data corresponding to 9.7 fb−1 of integrated luminosity

[34].

The cross sections for each production mode were also measured separately. The D0

collaboration measured the cross-section of the t-channel process to be 3.07+0.54
−0.49 pb

using data corresponding to 9.7 fb−1 of integrated luminosity [34, 35]. On the other

hand, the CDF collaboration measured t- and tW -channels as 1.66+0.53
−0.47 pb using data

corresponding to 7.5 fb−1 of integrated luminosity [32] and t-channel as 1.65+0.38
−0.36 pb

using up to 9.5 fb−1 [33] of integrated luminosity. Furthermore, CDF and D0 combined

their results [36–38] to observe the s-channel process with 1.29+0.26
−0.24 pb [38].

At the LHC proton-proton collider, t-channel production at 7 TeV center-of-mass energy

was observed to be 84+20
−19 pb by the ATLAS collaboration [39, 40] and 83.6 ± 30.0 pb

by the CMS collaboration [41]. The 8 TeV measurements in t-channel was reported as

95 ± 18 pb by ATLAS [42] and 80.1+12.3
−7.0 pb by CMS collaborations [43]. Furthermore,

ATLAS has found evidence for Wt-channel production [44], followed recently by an

observation at the CMS experiment[45, 46]. The s-channel at
√
s = 8 TeV in ATLAS

has been measured to be 5.0± 4.3 pb [47] and in the CMS to be 6.2+8.0
−5.1 pb which is also

presented in this work [48]. The CKM matrix element |Vtb| is extracted as 0.998± 0.041

at
√
s = 7 TeV [49].





Chapter II

The Experiment: LHC and CMS

The Lagrangian describes the interactions of a field theory as discussed in Sec. I.1.

On the other hand the experiments attempt to measure the rate at which a specified

interaction occurs. The bridge between a field theory and experiment is the cross-section

for the interaction in subject, which gives the expected number of the events, N , that

will result from the collision of a large number of particles.

The cross-section, σ, may be calculated from the Lagrangian using the method of the

field theory to produce a prediction that might be tested at a collider experiment such

as LHC. The number of events, N , for a specified interaction, namely the “signal”, is

given by the following:

Nsignal = σsignal ε

∫
dtL (II.1)

where ε is the efficiency of the detector, L is the luminosity, which is defined as the

number of particles per unit area per second in the colliding beams, and σsig is the

cross-section. Here the luminosity is integrated over time so that it gives the total

number of interactions occured. The cross-section is in units of area, namely “barn”,

which is defined as 1b = 10−28m2, tipically measured in femtobarns (fb) or picobarns

(pb) in high energy physics. Therefore the integrated luminosity is in the units of inverse

area, tipically given in pb−1 or fb−1 for LHC experiments.

25
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II.1 The Large Hadron Collider

The Large Hadron Collider (LHC) at the European Centre for Nuclear Research (CERN)

is a two-ring superconducting proton-proton collider situated in the 27 km tunnel pre-

viously constructed for the Large Electron-Positron collider (LEP) [50, 51]. The first

beam operation was launched in 2008 with a design to provide proton-proton collisions

with a luminosity of 1034cm−2s−1 and a unprecedented centre-of-mass energy of 14 TeV

for the study of rare events, such as the production of the Higgs particle which was

observed recently in 2012.

The LHC has two general purpose experiments ATLAS and CMS, aiming to collect data

with high luminosity, and two experiments, LHCb for B-physics and TOTEM for the

detection of protons from elastic scattering at small angles, working at lower luminosities

of 1032cm−2s−1 and 1029cm−2s−1, respectively. In addition to proton-proton operation,

the LHC is able to collide heavy nuclei, Pb-Pb, with a total centre-of-mass energy of

1150 TeV which corresponds to 2.76 TeV per nucleon, and for this it has one dedicated

ion experiment, ALICE, aiming at a peak luminosity of 1027cm−2s−1.

The LHC is decided to be operated at the reduced beam energy of 3.5 TeV for the

first two years after an accident occured in 19 September 2008, just 9 days after the

very first beam, which caused substantial damage to the magnets and to the beam pipe

imposed an intervention of repairs and improvements. Following the pilot runs at 0.9

and 2.36 TeV collision energies, LHC performed the first collision at 7 TeV on 30 March

2010, initially at a low luminosity of about 1 × 1027cm−2s−1 to reach immediately to

a luminosity of 3.6 × 1033cm−2s−1 in October 2010. The integrated luminosity was

recorded by experiments as 44pb−1 in 2010, 6fb−1 in 2011, and 23fb−1 in 2012, as shown

in Figure II.1.

The LHC simultaneously accelerates two proton (or lead) beams circulating in opposite

directions, so the magnets use a twin bore design to bend particles in both beams

simultaneously. There are eight crossing points around the ring where beams can be

crossed together to produce collisions, although only four of these are currently in use

by LHC experiments.

Protons are initially produced in a duoplasmatron source where electrons that are emit-

ted from a cathode filament hit gaseous hydrogen atoms. Then the protons pass through

a chain of accelerators starting from the injection into the linear accelerator Linac2 to
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Figure II.1: The total integrated luminosity recorded by the CMS experiment in
2010, 2011 and 2012.

Figure II.2: The LHC injection complex.

reach a preliminary energy of 50 MeV. Then the Proton Synchrotron Booster takes the

protons to 1.4 GeV and passes them to the Proton Synchrotron where they are accele-

rated to 25 GeV. Before they enter into the LHC in the final stage, the Super Proton

Synchrotron, the protons reach 450 GeV.
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On the other side, lead ions are formed in an Electron Cyclotron Resonance and later

accelerated in Linac3. After they are accelerated in the Low Energy Ion Ring, they are

passed to Proton Synchrotron Booster where the protons accelerated as well. So, the

remaining stages follow the same as the proton beam as shown schematically in Figure

II.2.

After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV

over about 28 min. In order to reach this energy, the dipole field must reach the level

for accelerator magnets of 8.3 T. This high field can only be achieved using the super-

conducting material NbTi, by cooling the magnets in superfluid helium at a tempreture

lower than 2K.

II.1.1 Design and Layout

The basic layout of the LHC follows the LEP tunnel geometry and is shown in Figure

II.3. The machine has eight arcs and straight sections, the last being approximately

528m long. Four of the straight sections house the LHC detectors while the other four

are used for machine utilities, radio frequency and collimation systems, and beam dump

insertions. The two high luminosity detectors are located at diametrically opposite

straight sections. The ATLAS detector is located at point 1 and CMS at point 5, which

also incorporates the small angle scattering experiment TOTEM. Two more detectors

are located at point 2 (ALICE ) and at point 8 (LHCb), which also contain the injection

systems for the two rings. The beams only cross from one ring to the other at these four

locations.

The number of events taking place per second at the LHC interaction point is given by

N = σL (II.2)

where σ is the cross-section of the process in subject and L is the luminosity which is

expressed as the following:

L =
nbn1n2frev

2πΣxΣy
Fγr

where γr is the relativistic gamma factor, F is the geometric luminosity reduction factor

due to the crossing angle at the interaction point, nb is the number of bunches per

beam, n1 and n2 are the number of particles per bunch, frev is the revolution frequency,
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Figure II.3: The LHC layout.

and the factors Σx,y represent the horizontal and the vertical convolved beam widths,

respectively. When the machine reaches the desinged peak luminosity of 1034cm−2s−1

for the detectors CMS and ATLAS, the number of particles per bunch would reach

n1,2 = 1.15×1011 while the number of bunches per beam would be 2808 with a revolution

frequency of 11245 Hz.

II.1.2 Magnets

The LHC contains more than 7000 superconducting magnets ranging from the 15m long

main dipoles to the 10 cm octupole/decapole correctors inside the dipole cold masses

as well as more than 100 conventional warm magnets and the about 500 conventional
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magnets in the two 2.6 km long transfer lines between the SPS and the LHC . The LHC

magnet system, while still making use of the well-proven technology based on NbTi

Rutherford cables, cools the magnets to a temperature of 1.8 K, using superfluid helium,

and operates at fields above 8 T. This so low temperature with respect, for example, to

the other large superconducting accelerators, Tevatron, HERA and RHIC which cools

the magnets down to 4.5 K, brings a decrease of the heat capacity of the superconductor

by an order of magnitude, making the magnets more sensitive to quenches.

Figure II.4: The LHC dipole cross-section [52].

II.1.3 Vacuum System

The design of the beam vacuum system takes into account the requirements of 1.9 K

operation and the need to shield the cryogenic system from heat sources, as well as the

usual constraints set by chamber impedances. The main heat sources are the synchrotron

light radiated by the beam, the image currents, the development of electron clouds and

the energy loss by nuclear scattering. Intercepting these heat sources at a temperature

above 1.9 K has necessitated the introduction of a beam screen cooled to between 5 and

20 K. This beam screen is perforated in about 4% of the surface area to allow the cold

bore of the magnets at 1.9K to act as a distributed cryopump. The slots in the beam
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screen are displaced in a pseudorandom pattern to avoid periodic perturbations which

can induce resonant beam modes.

II.1.4 RF Acceleration System

The RF system is located at point 4. Two independent sets of cavities operating at

400 MHz (twice the frequency of the SPS injector) allow independent control of the

two beams. The superconducting cavities are made from copper whose internal surface

is sputtered with a thin film of a few microns of niobium. In order to combat the

intrabeam scattering (see below), each RF system must provide 16 MV during coast

while at injection 8 MV is needed. Although the RF hardware required is much smaller

than LEP due to the very small synchrotron radiation power loss, the real challenges

are in controlling beam loading and RF noise.

II.1.5 Accelerator Physics

Here, some effects of the issues in the accelerator physics on the machine is presented

briefly.

Coherent instabilities

The interaction of the beam with its environment generates electromagnetic fields which

can react back on the beam and drive it unstable. The first step is to design the vacuum

chamber to reduce this coupling as much as possible, for instance reducing the resistivity

of the copper in the beam screen by cooling it to between 5 and 20 K, or making the

chamber smooth without discontinuities.

Nevertheless reducing the resistivity of the environment can reduce but not definitely

avoid the growth of the instabilities. The two main instabilities to be kept under control

are the transverse coupled bunch instability and the single bunch head-tail instability.

Without giving too much detail, the former is due to image currents in the beam screen

and its main unstable modes are damped through the action of a pair of electrostatic

deflectors. The latter, head-tail effect, is an instability due to the short range wakefields

acting between the tail and the head of the bunch. It is taken under control by the

action of sextupoles integrated into the short straight sections.
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Finally, the Landau damping, which acts on very high frequency oscillation modes,

is provided with two families of strong octupoles without need for feedback and, for

this reason, it is particularly important when the transverse feedback system has noise

problems.

Dynamic aperture

In superconducting magnets of the type used in the LHC, the field quality is determined

by the precision of the positioning of the superconductor. It has been shown that

the aperture inside which particles orbits are stable, is much smaller than the physical

aperture of the beam pipe. It is called dynamic aperture and is limited mainly by the

unwanted higher field harmonics due to magnet imperfections. Although sophisticated

computer simulations take into account these effects, it is not possible to perform the

full scale simulation over 4× 107 turns, which correspond to 1 h of storage time. So, in

order to insure a dynamic aperture of 6 sigmas, it has been decided to use the tracked

dynamic aperture evaluated over 106 turns multiplied by a factor of 2.

The beam-beam interaction

The maximum particle density per bunch is limited by the nonlinear beam-beam inter-

action that each particle experiences when the bunches of both beams collide with each

other. It reveals a variation of the tune with amplitude, and the excitation of nonlinear

resonances due to the periodic nature of the force. The linear tune shift can be expressed

by:

ζ =
nbrp
4πεn

(II.3)

where nb is the number of bunches per beam, εn is the normalized transverse beam

emittance, rp is the classical proton radius given by rp = e2/4πε0mpc
2 in which e is the

electron charge, ε0 is the electric permeability and mp is the proton mass. Experience

with hadron colliders indicates that the total linear tune shift summed over all interaction

points should not exceed 0.015, and in the LHC case, the tune shift must be ζ < 0.005.

The long range beam-beam interactions between successive bunches are also reduced by

colliding the beams with a small crossing angle of about 400 µrad.
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II.2 The Compact Muon Selenoid

The Compact Muon Solenoid (CMS ) detector is a multi-purpose apparatus operating

at the Large Hadron Collider at CERN [53]. The total proton-proton cross-section at
√
s = 14 TeV is expected to be roughly 100 mb. At design luminosity the general-purpose

detectors will therefore observe an event rate of approximately 109 inelastic events / s,

leading to a number of formidable experimental challenges. The online event selection

(trigger) must reduce the huge rate to about 100 events / s for storage and analysis.

Furthermore, at design luminosity we expect a mean of about 20 inelastic collisions per

bunch crossing and so around 1000 charged particles will emerge from the interaction

region every 25 ns (time between two successive bunch crossing). The superimposition

of other events on the event of interest, the so called pile-up effect, can be reduced by

using high granularity detectors with good time resolution and low occupancy. This

would inevitably require the use of millions of detector electronic channels which need

very good synchronization.

II.2.1 Detector Design

The detector design and layout 2.7 is mainly driven by the choice of the magnetic field

configuration, needing for large bending power to precisely measure high energy particles

momentum. The heart of CMS detector is the big 4 T superconducting solenoid which

accommodates the inner tracker and calorimetry inside and is situated immediately

before the muon detectors.

II.2.2 Superconducting Magnets

The CMS superconducting solenoid 2.10 has been designed to reach a 4 T field in a

free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ at full

current. The flux is returned through a 10000-t yoke containing 5 wheels and 2 endcaps.

The distinctive feature of the 1.8 K, 220-t cold mass is the 4-layer winding made from

a stabilized reinforced NbTi conductor, needed to be able to reach the desired 4 T

magnetic field. The ratio between stored energy and cold mass is high as 11.6 KJ/kg,

causing a large mechanical deformation of 0.15% during energizing.
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Figure II.5: The design of the Compact Muon Selenoid.

II.2.3 Tracking System

The inner tracking system of CMS is designed to provide a precise and efficient mea-

surement of the trajectories of charged particles coming from the LHC collisions, as well

as a precise reconstruction of secondary vertices [54]. The tracker which is fully covered

by the solenoid magnetic field surrounds the interaction region and has a length of 5.8

m and a diameter of 2.5 m. The high rate of interactions requires high granularity and

fast response as well as efficient cooling system and radiation hardness, aspects which

led to the silicon technology choice.

The pixel detector in the inner part contains three barrel layers at radii of 4.4, 7.3, and

10.2 cm, respectively, with a length of 53 cm each. The two endcaps for each side are

located at |z| = 34.5 cm and |z| = 46.5 cm and extend in r from 6 to 15 cm. The pixel

size is 100 × 150µm2. The strip detector is divided into an inner part and outer part,

both divided further into the barrel part and discs that cover the forward region which

are called Tracker Inner Barrel (TIB), Tracker Inner Disks (TID), Tracker Outer Barrel

(TOB), and Tracker Endcaps (TEC), as shown in Figure II.6.
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Figure II.6: The tracker system.

II.2.4 Electromagnetic Calorimeter

The electromagnetic calorimeter of CMS (ECAL) is a hermetic homogeneous calorimeter

made of 61200 lead tungstate crystals, PbWO4, mounted in the central barrel part, 7324

crystals in each of the two endcaps and a preshower detector placed in front of the endcap

crystals, mainly for π0 identification [55]. Avalanche photodiodes (APDs) are used as

photodetectors in the barrel and vacuum phototriodes (VPTs) in the endcaps. The

high density of crystals give the calorimeter the characteristics of fast response, fine

granularity and radiation resistance, as well as a good capability to detect the decay to

two photons of the postulated Higgs boson.

Figure II.7: The hadron calorimeter (HCAL). ECAL and trackers also appear at the
innermost part.

The inner radius of the barrel 129 cm and covers the pseudorapidity up to |η| = 1.479.
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It consists of 36 supermodules spanning half of the barrel in z direction and 20◦ in

azimuthal direction. The crystals almost point to the nominal interaction point at the

center of the detector only by 3◦ in order to avoid particle trajectories coinciding with

the boundary between two crystals, as shown in Figure II.7.

II.2.5 Hadron Calorimeter

The hadron calorimeters (HCAL) are particular for the measurement of hadron jets

and neutrinos or exotic particles resulting in apparent missing transverse energy [56].

The absorber material is brass which has a reasonably short radiation length, is easy to

process and non-magnetic. The active material consists of plastic scintillators read out

with wavelength-shifting fibers.

Figure II.8: The hadronic calorimeter (HCAL).

The Hadron Barrel (HB) comprises the pseudo-rapidity range up to ±1.4, extending

radially from 1.806 m to 2.95 m. On the other hand, the Hadron Endcaps (HE) includes

14 pseudo-rapidity segments each, covering the region 1.3 ¡ |η| ¡ 3.0. The Hadron Outer

(HO) is placed outside of the solenoid, covering the pseudo-rapidity region ±1.26. The

Hadron Forward (HF) calorimeter measures hadrons in the forward region and covers a

substantial pseudorapidity range of |η| between 3.0 and 5.0, which is important for the

measurement of missing transverse energy.
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II.2.6 Forward Detectors

The CASTOR (Centauro And STrange Object Research) detector is a quartz-tungsten

sampling calorimeter, with characteristics of radiation hardness, fast response and com-

pact dimensions, designed for the very forward rapidity region in heavy ion and proton-

proton collisions at the LHC. Its physics motivation is to complement the nucleus-nucleus

physics program and also to study the diffractive and low-x physics in pp collisions.

II.2.7 Muon System

Muon detection is a very important tool to recognize signatures of interesting pro-

cesses over the very high background rate expected at the LHC with full luminosity.

An example can be the Standard Model Higgs boson decay in the full leptonic channel

H → ZZ (or ZZ?) → 4`, which, in case the leptons are muons, is called “gold plated”

channel; or the large variety of Beyond Standard Model theories which predict the

presence of muons among the final states. So, precise and robust muon measurement

has been a central theme since from CMS earliest design stages.

Figure II.9: The muon system of the CMS detector.

Three types of gas detectors are used: Drift Tubes (DT), Resistive Plate Chambers

(RPC), and Cathode Strip Chambers (CSC), as shown in Figure II.9. Drift tubes are
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used in the barrel region, roughly covering |η| < 1.3, where the particle flux is relatively

low. The drift tubes are arranged in chambers MB1 to MB4 at radii of about 4.0, 4.9, 5.9

and 7.0 m, respectively, separated by the iron flux return yoke. The three inner chambers

consist of 12 layers of drift tubes, the first and last four measure r and φ, while the inner

four provide measurements for r and z. The outermost station comprises 14 tube r− φ

measuring layers. The single-point resolution for each tube is about 250 µm, leading to

a resolution of 100 µm per chamber and a time resolution of a few nanoseconds. One or

two resistive plate chambers are coupled to each DT chamber, which provide additional

timing information and allow muon track building at the trigger level.

II.2.8 Trigger

The main challenge for the data taking is the large bunch crossing rate of 40 MHz. To

keep the event rate at a manageable level in terms of both storage and computing power

requirements, a trigger is used, which selects a subset of events for further storage and

processing.

The trigger at CMS consists of two levels. The level-1 trigger reduces the data rate to

under 100 kHz. This trigger is implemented using custom hardware and has to reach

a trigger decision within 3.2 µs of the bunch crossing. The trigger decision is based

on primitive trigger objects, provided by the calorimeter and muon trigger subsystems.

Only if the level-1 trigger fires, the event data is read out from the detector.

The event data is zero-suppressed, meaning that only channels with non-vanishing signal

are kept, and the remaining data of about 1 MB per event is sent to the surface, where the

second level of the trigger decision, the high-level trigger (HLT), is performed. The HLT

is implemented in a computing farm running a special version of the CMS reconstruction

software. It has around 20 ms CPU time to reach a trigger decision and reduces the

trigger rate to under 400 Hz.

Events accepted by the HLT are divided into around 20 primary datasets based on

the trigger decision and sent to the Tier-0 computing center at CERN, where a prompt

reconstruction is performed within hours of data taking. The recorded data is distributed

from the Tier-0 to Tier-1 and further to the smaller Tier-2 computing centers. The

main function of the seven Tier-1 centers is the storage, reconstruction, and further

distribution of data.



The Experiment: LHC and CMS 39

II.3 Reconstruction

In this section it is outlined the reconstruction algorithms applied to the low-level de-

tector response of simulated and recorded events in order to obtain high-level physics

objects, such as muons, electrons, jets, and missing transverse energy, which are used to

study the underlying interaction.

II.3.1 Particle Flow Algorithm

First approach used at CMS for the reconstruction of jets and missing transverse energy

was based simply on the energy deposits measured in the electromagnetic and hadron

calorimeters. The energy resolution of these algorithms is limited due to various effects.

One of them is that the calorimeter response depends on the particle type and is not

perfectly linear in the energy of the particle. Another limitation is that it is assumed

that the direction of energy flow associated with a calorimeter tower is given linearly

simply extending from the primary vertex towards the position of the measured energy

deposit, which is not the case for the charged particles since their trajectories are bent

in the magnetic field.

The particle flow (PF) algorithm [57] overcomes some of these limitations by combining

track information with calorimeter information, which allows a much better direction

resolution and a better energy calibration.

The particle flow algorithm provides particles of five classes, i.e., muons, electrons, pho-

tons, charged hadrons, and neutral hadrons. The reconstruction of these particle can-

didates is based on tracks and calorimeter clusters that are matched using a linking

algorithm resulting in blocks. Each of these blocks is classified into one of the five

particle categories and an energy correction is applied for each particle candidate.

To convert these blocks into particle flow candidates of one of the five classes, first all

muon and electron candidates and the corresponding tracks and clusters are removed.

Each of the remaining blocks with a track is classified as charged hadron. The calorimeter

energy expected for a charged pion with the momentum given by the track is subtracted

from the cluster. Remaining clusters without a linked track are classified as photons, or

as neutral hadrons if there is significant contribution of HCAL energy.



40 The Experiment: LHC and CMS

The linking algorithm extrapolates tracks to the expected maximum of the energy

deposit in the electromagnetic and hadron calorimeter. For electron reconstruction,

bremsstrahlung is collected by constructing tangents to the track at tracker layers that

are extrapolated to the ECAL. If clusters are found, they are linked to the track. ECAL

and HCAL clusters are linked if the ECAL cluster position is within the HCAL cluster

envelope. For the muon reconstruction, tracks reconstructed in the inner tracker are

matched to track segments reconstructed in the muon system and linked if the global

track fit has an acceptable χ2 value.

II.3.2 Tracking Charged Particles

The tracking reconstruction algorithm [58] combines hits stemming from charged par-

ticles traversing the inner tracking system of CMS. The obtained track parameters are

used to estimate the momentum of the charged particle at the point of the hard inter-

action, and the impact parameter1.

The algorithm begins with the local reconstruction, which matches clusters of the raw

detector signals from the pixel detector and the silicon strip detector into hits. For each

hit, its position and uncertainty are estimated.

For seeding, two or three hits are combined into pairs and triplets. Each seed provides an

initial estimate for the track parameters that are used in the track building step where

the current track parameters are used to estimate the position and the uncertainty of the

hit position in the next layer, going from the inside to the outside of the CMS tracker.

This track propagation accounts for energy loss of the particle in the tracker layers as

well. At the next layer, compatible hits are included and the track parameter estimates

are updated, iteratively.

Ambiguities may arise if a given track is found by more than one seed or if one seed

gives rise to multiple tracks. Therefore, tracks with few hits and large χ2, which share

more than half of the hits with a track with small χ2, are removed. Finally, the track

parameters are re-estimated by a global fit to the track using all assigned hits. This

final fit removes any potential bias introduced in the seeding stage.

1The impact parameter is the minimum distance from the interaction vertex to the tangent of the
track at the point which has the minimum distance from the jet [59].
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This track finding algorithm is applied multiple times. This iterative approach allows

track finding with reasonable computing time at a high efficiency.

The reconstructed tracks are used to find primary vertices by clustering tracks based

on their z coordinate at the closest point to the beam-line. A track can be assigned to

multiple clusters with weights based on the compatibility of the track with the z position

of the cluster. Then, the vertex positions and uncertainties are estimated from the track

clusters.

Primary vertices coming from pile-up interactions usually have few and low-pT tracks.

Therefore, the primary vertices are sorted by the decreasing sum of the associated

squared track transverse momenta. The first primary vertex after sorting is used as

the position of the primary interaction in subject, all other vertices are considered to

correspond to pile-up interactions.

II.3.3 Electrons

Electrons traversing the inner tracker can lose a considerable part of their energy by

photon radiation at the tracker layers before reaching the electromagnetic calorimeter.

These photons are emitted approximately in the current flight direction. This energy

loss in the inner tracker is larger for electrons than for other charged particles and the

energy in the electromagnetic calorimeter has a large spread in φ.

The electron reconstruction algorithm used at CMS starts by searching for clusters in

the electromagnetic calorimeter, considering their η − φ asymmetry. Compatible tracks

in the inner tracker are searched for these clusters. However, instead of using the track

reconstruction algorithm discussed above, a dedicated tracking algorithm is used that

accounts for the increased energy loss caused by the photon emissions. The track building

uses a Gaussian sum filter to account for the increased energy loss at each tracker layer.

II.3.4 Muons

For the reconstruction of muons, two types of tracks are used. Standalone-muon tracks

reconstructed from hits in the muon systems by first searching for short track segments

in each muon system and, on the other hand, tracks reconstructed in the inner tracker

as described in the charged particle tracking, which are then combined in a track fit.



42 The Experiment: LHC and CMS

Two algorithms are used to reconstruct the muon candidates: the global muon recon-

struction and the tracker muon reconstruction.

The Global Muon reconstruction propagates the track position both from standalone-

muon tracks and the tracks from the inner tracker to a common surface. If they are

compatible, a global track is found by fitting a track to all hits used in either one of the

tracks.

On the other hand, the Tracker Muon reconstruction begins with tracks reconstructed

in the inner tracking system and then extrapolates their position to the muon system,

allowing for energy loss as the muon traverses the detector. In the muon system, a

compatible track segment is sought.

A muon originating directly from the hard interaction, is successfully reconstructed by

both algorithms. In order to supress the rate of such muons from cosmic rays or from

the decay of mesons containing c and b quarks, and decay-in-flight muons from decays

K/π → µν where the track from the kaon is combined with the hits of the muon in

the muon chamber, additional identification requirements on the muon candidates are

imposed.

One of these requirements is that the global track fit has to fulfill χ2/ndf < 10, where

ndf is the number of degrees of freedom in the track fit. A minimum number of hits

in the inner tracker is imposed as well. These two requirements reject decay-in-flight

muons.

Another type of requirement reduces cosmic muon background and muons form heavy

flavor decays, that is, the z distance of the muon track extrapolated to the closest

approach of the primary vertex has to be smaller than 1 cm and the transverse impact

parameter has to be 6 200 µm.

For another requirement, the number of muon chambers with hits used for the track

reconstruction has to be at least 2, to be compatible with the requirement of the muon

trigger.
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II.3.5 Jet Algorithm

The property of QCD known as color confinement implies that quarks and gluons pro-

duced in partonic interactions do not remain in a free state, but promptly produce color-

less bound states called hadrons. As these hadrons propagate away from the interaction

point, they may interact within the detector material, producing additional doughter

hadrons. All these processes result as a collimated shower of hadrons known as a jet.

In addition to the hard interaction, hadronic activity can result from the underlying

event, additional initial and final state radiation, and pile-up interactions. Hadrons are

detected as energy depositions in the calorimeter while jets are reconstructed by com-

bining these energy deposits according to a jet definition called anti-kT jet algorithm

[60].

Using output from the calorimeter cells, a massless four-momentum k is assigned to each

deposition object as follows:

k = (E, ~p) (II.4)

= (pT cosh η, pT cosφ, pT sinφ, pT sinh η) (II.5)

where φ is the azimuthal angle and η = − ln tan(θ/2) is the pseudo-rapidity with θ being

the angle of a particle relative to the beam axis. Combining two objects is simply adding

the two four-momenta as (Ei + Ej , ~pi + ~pj).

The anti-kT algorithm needs two distance parameters for some seed object, denoted by

an index, that is, dij is the distance between two seed objects and di is the distance

between a seed object i and the beam, which are defined respectively as follows:

dij = min
(
k−2

T,i, k
−2
T,j

) ∆R2
ij

R2
(II.6)

di = k−2
T,i (II.7)

where R ≡
√
η2 + φ2 is the cone radius parameter, ∆Rij ≡

√
(ηi − ηj)2 + (φi − φj)2

denotes the angular separation between two objects i and j, and kT,i is the transverse

momentum of the object i.

The algorithm starts with some seed object and then calculates the distance parameters

between the seed and other objects to be combined. If the shortest distance is a two-

obejct distance, dij , objects i and j are combined and the algorithm proceeds with the



44 The Experiment: LHC and CMS

newly combined object as a seed. If a beam distance, di, is the shortest distance, the

object is called a jet and removed from the list of entities to be combined. A new seed

is then selected and the process proceeds until no object remains.

II.3.6 Missing Energy

Some particles such as neutrinos in the Standard Model, or certain hypothetical particles

in theories beyond the Standard Model, escape the detector without leaving any signal

that could be used for a direct detection. However, such particles can be detected

indirectly as they show an imbalance in the total momentum of the final state compared

to the initial state.

This principle can only be applied to the transverse momentum, as the proton remnants

leave the detector in the beam line. Therefore, the missing transverse energy is the

momentum vector in the x-y plane that restores the momentum balance, given by the

following:

6 ~ET = −
∑
i

~pT,i (II.8)

where i runs over all final state objects, i.e., particle flow candidates. The magnitude

of the vector 6 ~ET is denoted with 6ET which is a useful quantity to distinguish between

processes with and without neutrinos in the final state.



Chapter III

The Analysis: Single Top-Quark

Cross-Section Measurement using

Multivariate Techniques

This chapter presents a multivariate analysis of the measurement of the cross-section

of the single-top quark in s-channel produced from the proton-proton collisions where

the collision data are provided by the LHC and recorded by CMS in 2012, with the

luminosity of 19.3 fb−1 having an uncertainty of 2.5%, at a centre-of-mass energy of
√
s = 8 TeV.

The aim of the work is to optimize the choice of the input variables used in the multivari-

ate technique for the cross-section measurement of the single top-quark production and

understand the correlations between physical entities for the event topology in subject,

i.e. s-channel. For the optimization process, an iterative feedback mechanism is intro-

duced and the data from the Monte Carlo simulations are used to test the discrimination

of each iteration.

The strategy of the analysis is to extract a distribution of a multivariate discriminator

to seperate single-top quark events from its main background contributions. The multi-

variate technique used in this analysis is based on Boosted Decision Trees (BDT) which

is a method to combine a sort of variables into a single variable by assigning weights

to each event and evaluating the correlations among these variables for the given data.

The use of BDT method in this study is discussed in Section III.4 in details.

45
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As discussed in Section I.2.2, the s-channel topology consists of the interaction of a

quark and an anti-quark with distinct flavour producing a W -boson which decays into a

top quark and an anti-bottom quark as predicted by the Standard Model. Since the top

quark decays into bottom quark quickly before it could interact with the calorimeters of

the detector, the final state of the collision expected to give two bottom or anti-bottom

quark signature, one from top quark and one, of opposite flavour, directly from the W -

boson decay. The signature of a (anti-)bottom quark is actually not a bare quark, but

rather a shower of particles emerged from the interaction of the quark and the detector

rising to several mesons and hadrons, and called a jet (see Section II.3.5), or specifically

a b-jet if it comes from a bottom or anti-bottom quark, respectively.

In order to perform such an analysis, one expectingly starts with the reconstruction of

the particles as explained in Section II.3 and the selection of the events as elaborated in

the first section of this chapter. The following section is about the control samples and

background processes. Then in the Section III.4, the method of Boosted Decision Trees

is discussed with how the variables are determined, followed by a section for the Testing

and Training of the output.

The topology of the s-channel and its small production cross section with respect to the

huge background processes (as tt̄) lead to fulfil the analysis with choosing a multiple

set of variables and extract one combination of those which has the best discriminating

power regarding to the tests and trainings of the Monte Carlo samples, as it is discussed

in full details in Section III.4.1.

As a consequence of the statistical model followed in this thesis, the extraction of the

cross-section measurements are our final results.

In Section III.4.3, it is presented the statistical model adopted for the cross-section

measurement. In the end of the study, single top-quark production is measured and the

results are manifested in the last section of the chapter.

III.1 Event Selection and Reconstruction

The final-state topology for the single-top production in the the s-channel is given by

exactly one isolated muon or electron, and two b-quarks, one from the top-quark decay
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and one recoiling against the top quark. Therefore the event selection have been op-

timised as in the published analysis [48] by requiring pT and |η| cuts with High-Level

Trigger and online track-based isolation, as explained below.

III.1.1 Primary Vertex, Noise Cleaning and Triggers

It is required at least one primary vertex to be reconstructed from at least four tracks,

constaining the track fit to have 5 numbers of degrees of freedom, with |zPV| < 24 cm and

ρPV < 2 cm, where |zPV| and ρPV are the vertex distance with respect to the nominal

interaction point along the z-axis, and in the transverse plane respectively.

For noise cleaning, events with very high energy noise in the HCAL barrel or endcaps

are rejected, using pulse shape, hit multiplicity, and timing criteria.

Muon events are selected using the the High Level Trigger requirement which selects

muon candidates with pT > 24 GeV/c and |η| < 2.1 during the online reconstruction.

Electron events are selected using the High Level Trigger requirement where the efficiency

for prompt electrons with ET > 27 GeV have a nominal value of 80%.

III.1.2 Electrons and Muons

As discussed in Section II.3.3, an electron is detected as a track ending with a cone of

energy deposits in the electromagnetic calorimeter, which consist of charged or neutral

hadrons and photons, since the lepton yields these particles to be created when it inter-

acts with the media of the calorimeter. On the other hand, a muon is detected among

the four layers of muon stations consist of chambers which sit outside the magnet coil,

as explained in Section II.3.4.

A lepton signature should be seperated from any other particle shower activity like jets

defined in the next subsection. Therefore, in order to isolate a lepton in the terms of

these particles, one needs to define such a variable called “relative isolation”, as detailed

below.

The relative isolation of a lepton is defined by the ratio between the sum of the transverse

energies of the photons, charged hadrons and neutral hadrons in a cone of the size

∆R =
√

(∆η)2 + (∆φ)2 around the lepton direction, and the transverse momentum of
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the lepton. Explicitly,

Irel ≡
EPF,C.Had.

T + max
(
EPF,γ

T + EPF,N.Had.
T −∆β, 0

)
pT c

(III.1)

where pT is the transverse momentum of the lepton and EPF
T is the sum of the energy

bins deposited in the transverse plane associated by the particle-flow algorithm to the

photons, charged hadrons and neutral hadrons, respectively. Here the abbriviation ∆β

is a correction term defined according to which the lepton is a muon or electron, as

follows.

In the case of an electron ∆β ≡ ρA where ρ is the avarage energy of the particles not

used to reconstruct jets, and A is the effective area of the jet cone in the η−φ plane. On

the other hand, for muons ∆β ≡ 0.5
∑
pPU

T where pPU
T is the tranverse momentum of the

tracks associated to non-leading vertices, used to estimate the contribution of neutral

particles from pileup events. The factor 0.5 is to take into account the neutral-to-charged

particles ratio expected from isospin invariance.

Therefore, electrons are isolated inside a cone of the size ∆R = 0.4 with Irel < 0.1

and selected by the cut of pT > 27 GeV/c and |η| < 2.5. The ECAL barrel-endcap

transition region with |η| of the supercluster between 1.4442 and 1.5660 is excluded

from the selection for electrons.

On the other hand, muons are isolated inside a cone of the size ∆R = 0.3 with Irel < 0.12

and selected by requiring pT > 24 GeV/c and |η| < 2.1.

For a further veto of the leptons, it is also defined a loose criteria which loosens the

requirement to ET > 20 GeV/c for electrons, and Irel < 0.2 with pT > 10 GeV/c and

|η| < 2.5 for muons, respectively.

III.1.3 Jets

A jet is an object consisting a narrow cone, or namely shower, of hadrons stemming from

a gluon or a quark clumping to form groups such as mesons or hadrons, since particles

carrying a colour charge can not be isolated singularly because of the QCD confinement.

This phenomenon which is called hadronization prevents one to observe a quark or a

gluon in the detectors, but instead leads to the detection of a plenty of particles which

could be associated to each other wihin a cone in the η − φ plane.
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Jets are reconstructed using the anti-kT algorithm, introduced in Section II.3.5, with a

cone size of R = 0.5, taking the particles identified by the Particle Flow (PF) algorithm

(see Section II.3.1) as input. The jet energy is scaled by a factor which describes the

detector response depending on the transverse energy and the pseudorapidity of the jet.

Charged particle candidates not associated to the main primary vertex are subtracted

from the event in order to reduce contamination from the pile-up events. The energy of

the jet is then corrected by the amount of energy deposited by neutral pile-up hadrons

in the jet area. The analysis considers jets within |η| < 4.5. The transverse momentum

for the two most energetic jets is required to be greater than 40 GeV/c, while other jets

in the events are considered in the analysis if they have at least 30 GeV/c.

III.1.4 Missing transverse energy and W -boson transverse mass

Missing transverse energy is defined the opposite of the vectorial sum of the transverse

momenta of the identified Particle Flow (PF) particles. The transverse mass is defined

as follows:

mT =

√
(pT,` + pT,ν)2 − (px,` + px,ν)2 − (py,` + py,ν)2 (III.2)

where the transverse momentum components of the neutrino are approximated by the

components of the missing transverse energy vector, ~6ET .

In order to estimate the contribution of processes where the lepton does not come from

a leptonically decaying W boson, a fit is performed to the distributions of the transverse

W -boson mass mT in the muon channel and a fit to the 6ET in the electron channel, as

it is detailed in Sec. III.2.

We assume that the x and y components of the missing energy are entirely due to the

escaping neutrino, and apply the W -mass constraint in order to extract the z component.

m2
W =

(
E` +

√
6E2
T + p2

z,`

)2

−
(
~pT,` + ~6E

2

T

)2
− (pz,` + pz,ν)2 (III.3)

This equation has two solutions for pz,ν as follows:

p±z,ν =
Λ pz,`
p2
T,`

±

√√√√Λ2 p2
z,`

p4
T,`

−
E2
` 6E2

T − Λ2

p2
T,`

(III.4)
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where Λ ≡ 1
2m

2
W + ~pT,` · ~6ET .

Due to a finite 6ET resolution, in the 36% of the cases, the discriminant in Eq. (III.4)

becomes negative, which is equavalent to mT > mW , making the solutions imaginary.

Several schemes have been used to deal with this situation. In this analysis, the imag-

inary component is eliminated by modifying 6ET such to give mT = mW and thus the

discriminant to be null, still respecting the constraing in Eq. (III.3). This condition

implies a quadratic relation between the transverse components of the momenta of the

neutrino, with two solutions amoung which the one with minimal distance pT,ν and 6ET
is choosen. In the case of two real solutions for pz,ν , the one with the smallest absolute

value is choosen in this analysis.

III.1.5 b-tagging and mistagging

In order to identify the jet springing from b-quark, the “track counting” in the “high

purity” version (TCHP) is used, among several b-tagging algorithms available in CMS.

This algorithm calculates the signed 3D impact parameter significance (IP/σIP) of all

the tracks associated to the jet that passes tight quality criteria, then orders them by

decreasing values of this observable, and finally outputs as jet discriminator the value

of IP/σIP for the third (DTCHP ) track. Jets which pass the tight threshold of this

discriminator are considered as originated from b-quarks.

The data/simulation scale factors and corresponding uncertainties on efficiencies and

mistagging rates have been evaluated within the CMS collaboration. These scale fac-

tors have been applied to the analysis, and their uncertainty is taken into account as

contribution to the systematic uncertainty.

The signature of single-top production in the s channel includes two partons in the final

state, that is, first b quark recoiling against the top, and second b quark comes from the

top-quark decay. From now on, it will be used the notation “n-jets m-tags” to refer to

a sample that has n reconstructed jets, m of which pass the b-tag threshold. Notable

samples which are studied and used in this analysis are the 2-jets 0-tags sample (W+jets

enriched), the 2-jets 2-tags (s-channel enriched) and the 3-jets 2-tags (enriched with tt̄

events).
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III.1.6 Top quark

Since the top quark decays into a lepton, a b-jet and a neutrino, it could be recognized

by the peak in the spectrum of the invariant mass of these objects.

All top-quark decay products are reconstructed in the detector, except for the neutrino

which remains invisible. While the transverse momentum of the neutrino can be deduced

from the missing energy, the longitudinal momentum can be determined from an extra

assumption, namely the W -mass constraint explained in Sec. (III.1.4).

Due to presence of two b-tagged jets in final state of s channel, there is a possibility

to associate a wrong b-jet to the lepton when performing the top-quark reconstruction.

In order to decrease the fraction of events with wrong assignment, an approach which

compares the top masses reconstructed for each b-jet with the nominal top mass is used

to choose the b-jet for top reconstruction.

First of all, it is reconstructed two top masses with each b-jet, and then the one which has

minimal distance with respect to nominal top mass used in the Monte Carlo generator

(172.5 GeV/c2) is chosen. Henceforth, this will be refered as ”best-mass-top” method.

The efficiency of association of true b-jet quark to the top is 76% (74%) in s channel

anti-top, 73% (73%) in s channel top and 70% (70%) for tt̄, in the electron (muon)

channel. The dependency of the correct b-jet association on the top mass has been

evaluated in s-channel events by varying the top mass by 1.5 GeV/c2, and resulting in

an efficiency variation of less than 1%.

The performances of a different top reconstruction method based on a likelihood ratio

is tested as well. The method is set up making use of three variables discriminating the

b-jet coming from top-quark and b-jet recoiling against the top: pT,b, M`b and ηb, where

pT,b is the b-jet transverse momentum, M`b is the invariant mass of the lepton and b-jet

system, and ηb is the pseudo-rapidity of the b-jet.

The b-jet which has larger likelihood ratio is taken as the b-jet from top decay. At the

end the efficiency of b-jet to top association is 73.4%, 73.5% for s-channel top production

and 73.1% for s channel anti-top, in the muon channel. The top-quark reconstructed in

the way explained above is refered as “LR-top”.
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The angular distribution of the lepton is yet another useful feature that could benefit

from the reconstruction of the top-quark, since it is related with the top-quark polar-

ization which presents a specific feature of the electroweak single-top production mode

in the s channel. We define cos θ? and cos θ`j as the cosine of the angles between the

lepton and the beam axis and the direction of the jet which recoiled against top-quark,

respectively, in the top-quark reconstructed rest frame.

III.2 Control Samples and Data-driven Background Esti-

mations

To seperate the single top-quark signal from its main backgrounds, the samples are

modeled in several categories according to how many of the jets are b-tagged as explained

in Sec. (III.1.5). So, the modeling of the most important background processes has been

studied in control samples orthogonal to the signal-enriched sample, namely, 2-jets 2-

tags. The W+jets is validated in the 2-jets 0-tags sample, while the 3-jets 2-tags sample

is studied to validate the tt̄ model for the signal region.

Due to the low statistics and to their negligible contribution as backgrounds, diboson

backgrounds (WW and ZZ) were not taken into account in the analysis. The remaining

categories such as 3-jets 0-tags or 4-jets m-tags are not included in the analysis since

they lack any significant signal/background seperation.

III.2.1 Vector Bosons + jets

Since the 2-jets 0-tags sample is enriched in W + light flavoured jets, while in the 2-jets

2-tags signal sample the W + heavy flavours component is dominant, this sample has

not been used to constrain the W+jets background in the signal cross-section extraction,

but only to provide an additional check of overall data/MC agreement.

III.2.2 Top-antitop

To obtain a data sample enriched in tt̄ events we require the presence of 3 jets, two of

which must satisfy the b-tagging requirements (3-jets 2-tags). This category is particu-

larly important since tt̄ production is the main background to the single-top s-channel
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process in the signal enriched sample. The top-quark reconstruction is performed as

described at the end of Sec. (III.1.6), with “best-mass-top” hypothesis for electrons

and muons. This sample is used in the final signal extraction procedure together with

the signal-enriched 2-jets 2-tags sample, and allows to put a constrain on the tt̄ overall

contribution.

III.2.3 QCD Background Estimation

The event yield of multijet QCD events in signal and control samples is estimated per-

forming a fit to the distributions of the transverse W -boson mass mTW in the muon

channel as shown in Figure III.1, and a fit to the 6ET in the electron channel.
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Figure III.1: Transverse mass of the W boson in 2J2T category for the muon channel.

III.3 Systematic Uncertainties

This section describes the sources of systematic uncertainty which can affect the measure-

ment of the single-top cross section in the s channel in the 2-jets 2-tags event category.

We consider three families of such uncertainties: those affecting the background rates,

instrumental and theoretical ones.
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III.3.1 Background Normalisation

It has been assigned 10% and 30% to tt̄ and W+jets the uncertainties coming from

the CMS measurments, respectively. The QCD uncertainty is taken from the extrac-

tion procedure described in Sec. (III.2.3) and corresponds to 30% (25%) for muons in

the 2-jets (3-jets) 2-tags category and 21% (10%) for electrons in 2-jets (3-jets) 2-tags

category (respectively). For the remaining backgrounds, motivated by theoretical and

experimental uncertainties, we use ±30% for dibosons, ±15% and ±20% for single top

t-channel and tW -associated production, and 20% for Z+jets.

III.3.2 Instrumental Uncertainties

• Jet Energy Scale. The uncertainty on the jet energy scale (JES) is taken from

the official CMS jet energy corrections (JEC), available in the conditions database,

with the global tag GR R 53 V27. For each variation the 6ET is recalculated accord-

ingly.

• Unclustered 6ET. A shift of ±10% on the “unclustered energy” component of the

6ET is taken into account. The unclustered energy is defined by subtracting the

uncorrected four-momenta of all jets from the event and the four-momenta of all

leptons not clustered in jets. Then the 6ET is recalculated and the corresponding

shift is propagated to the measurement.

• Jet Energy Resolution. A smearing is applied to account for the known differ-

ence in jet energy resolution with respect to data, increasing and decreasing the

extra resolution contribution by its uncertainty.

• Lepton trigger and reconstruction. The uncertainty on the lepton reconstruc-

tion and trigger efficiencies scale factors are measured from Drell-Yan events. An

additional uncertainty of 3% in the muon channel is considered to account for the

uncertainty due to the Irel cut.

• b-tagging and mis-tagging. The scale factors used to correct for the differ-

ent efficiencies in data and Monte Carlo are varied independently according to

measured uncertainties and applied according to the prescriptions quoted in [61].

• Pile-up. The number of pile-up events depends on the total inelastic pp cross-

section at LHC. The uncertainty on this cross section, 5%, is used to obtain ±1σ
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variated distributions of number of true pile-up events in data. The simulated

pile-up events are reweighted according to these modified distributions and the

impact on the measurement is evaluated.

• Luminosity. The luminosity is known within 2.6% uncertainty.

III.3.3 Theoretical Uncertainties

• Factorization and renormalization scales, Q2. Dedicated simulated samples

with renormalization and factorization scales µR and µF varied from half to twice

their nominal value are used for tt̄, W+jets, and single-top t-channel and s-channel.

• Matrix element and Parton shower matching thresholds. dedicated sim-

ulated samples with matching threshold doubled and halved are used for tt̄ and

W+jets samples.

• Parton Distribution Functions. The uncertainty due to the choice of the set

of parton distribution functions (PDF) is estimated using pseudo-experiments,

reweighting the simulated events with each of the 52 eigenvectors of the CT10,

and repeating the nominal signal extraction procedure. For the reweighting of the

simulated events, the LHAPDF [62] package is used.

• Top pT reweighting. The differences between the top quark pT observed in data

and generated in simulation are taken into account as a systematic uncertainty.

• Simulation Uncertainties The effect of the limited amount of statistics in the

simulated samples has been considered as well as additional systematic uncertainty.

III.4 BDT Discriminant

The Standard Model prediction for single top-quark production via the s channel at

the LHC is very small with respect to its main backgrounds like tt̄ or t channel. The

s channel is not suitable for analyses with one single variables but rahter one needs to

exploit a combination of several variables.

For this reason, it has been chosen to profit from as much discriminating power as

possible through a multivariate classification approach. The “Toolkit for Multivariate

Analysis” (TMVA) [63] is used for evaluation, test and application of classification.
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Option Value

NTrees 400 Number of trees in the forest
BoostType AdaBoost Boost type
PruneMethod CostComplexity Method of pruning
SeparationType GiniIndex Separation criterion for node

splitting
MaxDepth 2 Maximum depth of the deci-

sion tree allowed
PruningValFraction 0.25 Fraction of events to use for

optimizing automatic pruning
PruneStrength -1 Pruning strength is set to be

determined by TMVA

Table III.1: The options used for the BDT method in this analysis.

The method of Boosted Decision Trees is a machine learning algorithm that builds up

a classification tree where leaves represent class labels and branches represent logical

conjunctions of features that lead to those class labels. The goal of this method is

to create a model that predicts the value of a target variable based on several input

variables.

Decision tree are sensitive to statistical fluctuations of the training sample. In order to

make it more robust, boosting methods are recommended. Boosting is a general method

of creating a collection of classifiers instead of one, which can be combined to make a new

classifier more stable and with smaller misclassification probability. Adaptive boosting

algorithm calculates the boost weight that will be used in the next tree, depending on

the number of misclassified training events in the previously growned tree. It gives a

higher weight to an event if it was classified incorrectly in the past. Generating new

trees will continue until a certain number of NTrees set by the user is reached.

BDTs are in general sensitive to overtraining, in the sense that when classifiers are

too much adapted to a specific training sample, similar samples can have a completely

different response from the trained classifier. It means one can not rely on the BDT

output for real data, which will be classified different from the training sample. Different

methods called ”pruning” have been adopted to deal with this problem. Pruning is just

cutting down the leaf-nodes which are statistically insignificant. For BDTs, it’s available

for AdaBoost with two methods: CostComplexity and ExpectedError. The strength

of the pruning is controlled in TMVA with the parameter PruneStrength, which can

either be optimized by TMVA or determined by user.
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III.4.1 Determining Variables

In this section, the variables are introduced briefly. In order to determine which variables

are chosen to be used in the multivariate analysis, a feedback method seeking for the

most discriminant ones is explained in details. The distributions of each variable for the

muonic final state is given both for 2-jets 2-tags and for 3-jets 2-tags categories, with

signal being blue and background being red.

• mT, Transverse W boson mass. This variable keeps track of the lepton and neu-

trino momenta as well as their angular correlation, presenting a clear Jacobian

peak for lepton-neutrino pairs stemming from a W -boson decay. This variable

proves to have a significant discriminating power between events where a single

W -boson is produced, like for instance in s-channel events, and events where there

are two or no W -bosons at all. The tt̄ events where both tops decay through the

leptonc decay chain ascribe to the first category, while multijet QCD events are of

the second type.
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Figure III.2: Transverse mass of the W boson for the muon channel.

• ∆Φtop,bJetRecoil, difference in azimuthal angle between top quark and recoiled

b-tagged jet. The top and recoil b-quark are produced almost back-to-back in the

CMS reference frame for signal events, while such is not the case in tt̄ events for one

of the top quarks and the b-quark from the decay of the other. Albeit this effect is

mitigated by the b-jet to reconstructed top association efficiency, it results in the

discriminating power of the the angular separation variables between reconstructed

tops and the recoiled b-jet. The use of this variable reduces the dependency on

the assumption made to derive the longitudinal component on the neutrino for the

top reconstruction.
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Figure III.3: The difference in azimuthal angle between top quark and recoiled b-
tagged jet for the muon channel.

• p`T, transverse momentum of the lepton.
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Figure III.4: Transverse momentum of the muon channel.

• 6ET, missing transverse energy. The pT spectrum of the lepton and the neutrino

from the W -boson decay are different for signal and the main backgrounds in

particular being softer for the signal and harder for tt̄ where additionally the 6ET

is increased by the presence of an extra neutrino in the case of dileptonic events.

• M`b1, invariant mass of the lepton and the leading b-tagged jet.

• M`b2, invariant mass of the lepton and the second-to-leading b-tagged jet. This

constraints the distribution of their invariant mass, while in case of wrong b-jet

association, or if a top-quark is not present in the event, such distribution is

broader. In general, for the s channel the spectator b has higher momentum,

while for tt̄ events the spectra of the b-quarks are identical and for the t-channel
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Figure III.5: Missing transverse energy for the muon channel.
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Figure III.6: Invariant mass of the lepton and the second-to-leading b-tagged jet.

the spectator b is softer instead. Thus the invariant mass between the second-to-

leading b-jet and the lepton presents a sharper peak for the signal, and a broader

distribution for the backgrounds.

Mlb2
50 100 150 200 250 300 350 400

10
.4

/
(1

/N
) d

N

0

0.002

0.004

0.006

0.008

0.01

0.012

U
/O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.1
)%

Input variable: Mlb2

(a) 2J 2T category

Mlb2
50 100 150 200 250 300 350 400 450

11
.1

/
(1

/N
) d

N

0

0.002

0.004

0.006

0.008

0.01

0.012

U
/O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.1
)%

Input variable: Mlb2

(b) 3J 2T category

Figure III.7: Invariant mass of the lepton and the second-to-leading b-tagged jet.

• cos θ`j , cosine of the angle between the lepton and the beam axis in top-quark

rest frame, and cos θ?, cosine of the angle between the lepton and the b-tagged jet
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recoiling against the top quark, in the top-quark rest frame. The distribution of the

latter variable in s-channel signal events stems from the left(right) polarisation of

the single-top-quark(anti-quark), which is itself a consequence of the V-A nature

of the electroweak interaction. By converse, top quarks from tt̄ processes are

produced unpolarised and W+jets events, having a completely different topology,

inherit the shape of those variables from the angular correlations between the W

and jets.
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Figure III.8: Cosine of the angle between the lepton and the b-tagged jet recoiling
against the top quark.

• pbbT , vector sum of pT of the two b-tagged jets. The two b-jets stemming from the

tt̄ pair decays or W+jets associated production show to have a harder spectrum

with respect to the signal events, as the bb pair in signal events carries a larger

fraction of the original transverse momentum of the system, peaking around zero.
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Figure III.9: Vector sum of pT of the two b-tagged jets.

• M`bν , invariant mass of lepton, neutrino and one of the b-tagged jets reconstructed

with the best-mass top method.
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• ∆Rb′` and ∆Rbb: The angular separation between the b-tagged jet recoiling against

the top quark and the lepton, and the angular separation between the two b-tagged

jets. As for the angular separation between the top-quark and the recoil b-jet, also

the angular separation of the top decay products, the lepton and the b-quark,

yields a good discriminating power between the s-channel and its backgrounds.

Since there’s no ambiguity in the definition of the lepton and b-jet η, as it is

instead the case for the reconstructed top-quark, one can exploit this information

to use as discriminating variable the distance in the η−φ plane as opposed to the

simple difference in φ as for the top-quark.
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Figure III.10: The angular separation between the b-tagged jet recoiling against the
top quark and the lepton.

• HT, scalar sum of pT of all jets.Signal events produce a relatively jet-clean envi-

ronment, involving the production of only two b partons in the hard scattering,

while for instance tt̄ semileptonic events foresee the presence of at least two extra

partons. Also, in general tt̄ events are produced with higher jet multiplicity due

to the presence of two hard gluons in the final state. Thus the total scalar sum

of the jets energy provides a good discriminating power between signal and tt̄ in

particular.

• η, pseudorapidity of the high pT jet.

• Mb1b2, invariant mass of the leading and the second-to-leading b-tagged jet.

• ploose
T , transverse momentum of the loosely selected jet.

• mt-best, mass of the top quark obtained with best-top method.Reconstructed top

mass is a powerful discriminant with respect to W+jets and backgrounds that do

not contain a top quark, presenting a clear peak structure for signal events.
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Figure III.11: Scalar sum of pT of all jets.
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Figure III.12: The pseudorapidity.
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Figure III.13: Invariant mass of the leading and the second-to-leading b-tagged jet.

As some of the above variables describe the same physical quantities for related parts of

the event topology, it is expected that some discriminating variables will be correlated.

The method of Boosted Decision Trees is indeed sensitive to highly correlated variables

and it may not be necessary to know the correlations when choosing the discriminant

variables. However, it can be advantageous to reduce the variable list in order to simplify

the trees by removing one of a set of highly correlated variables without a significant
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Figure III.14: The reconstructed mass of the top quark.
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Figure III.15: Distribution of some important variables for the 2J2T category includ-
ing the systematic uncertainties.

loss in performance. This clearly advances the training time and reduces the number

of variables one has to understand when dealing with systematic uncertainties and, of
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course, the physical meaning of the output classifier. Therefore, a feedback mechanism

was used to define a list of safe variables as described below.
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Figure III.16: Linear correlation coefficients.

In order to choose the most discriminating variables, it is used a mechanism that can

compare iteratively the set of variables with each other with respect to their significance

and correlation matrices. Starting with a set that is pursued to discriminate the signal

would not always be the perfect case since some of the variables could discontribute to

the BDT output by abbriviating the contributions of others.

The feedback loop used to end up with a safe list of variables simply compares the over-

training, the signal/background seperation and the Receiver Operating Characteristic
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(ROC) curve1 integral for each variable list, iteratively, by removing the most correlated

variable among the list. The loop is terminated when the significance of the signal-

over-backround starts to decrease or the remaining variables have similar correlation

coefficients.

Figure III.17: The feedback loop

For each loop, a candidate variable is choosen according to its overall correlation with

respect to the other variables in the correlation matrix. Explicitly, a variable is a removal

candidate when the related row in the correlation matrix has the highest sum-of-squares

value. The linear correlation coefficients are shown in Figure III.16 for the 2-jet 2-tagged

and 3-jet 2-tagged categories. Therefore, if removing the candidate variable does not

give a significant loss in the signal-background seperation, then it procedes to the next

iteration by removing the candidate from the list until there are not any high overall

correlation or the significance has decreased. This algorithm is described schematically

in the Fig. III.17.

The feedback loops use only the correlations between the variables to choose a removal

candidate. However, this work could be extended to be sensitive to as well as the

1Receiver Operating Characteristic curve illustrates the performance of a binary classifier system as
its discrimination threshold is varied.
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Variable lists for 3J2T Overtraining ROC Int.

1 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T , mt, 6ET, p`T, M`b2, M`b1,

HT

0.17 (0.31) 0.72

2 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T , mt, 6ET, p`T, M`b2, M`b1

0.13 (0.71) 0.72

3 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T , mt, 6ET, p`T, M`b2

0.03 (0.89) 0.71

4 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T , mt, 6ET, p`T

0.01 (0.75) 0.70

5 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T , mt, 6ET

0.07 (0.85) 0.70

6 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T , mt

0.01 (0.32) 0.70

7 ∆Φtb′ , ∆Rbb, η, cos θ`j , Mbb, pbbT ,

mT, ploose
T

0.02 (0.88) 0.70

Table III.2: The variable lists for the 3J 2T category, which are iterated via the
feedback loop. The overtrainings are given as Kolmogorov-Smirnov tests between the
test and the training samples for signal (background). Here, S and B denote signal and
background events of the simulated data without systematic uncertainties, respectively.

systematic uncertainties since the deviation for each variable is large enough to change

the behavior of the decision trees even if the correlation coefficients are exactly the same.

III.4.2 Training and Testing

The training of two independent Boosted Decision Trees is performed in the 2-jets 2-tags

category to discriminate signal from the various background processes, and in the 3-jets

2-tags sample to separate tt̄ from the rest. The goodness of the signal and background

consistency is determined by the Kolmogorov-Smirnov test performed between the test-

ing and the training parts of the samples, which are seperated randomly event by event

from the simulated Monte Carlo data. It is expected that the control samples show very

similar p-values after the iterations of the feedback machanism, at least above 0.01.

The significance, S/
√
S +B where S is the number of signal events and B is the number

of background events, is calculated according to the simulated data without taking into

account the systematic uncertainties (See Table III.4).

The 2-jets 2-tags category had ten iterations, each shown in Table III.3 with its over-

training, ROC curve integral and significance, and their BDT output plotted in Figure
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Variable lists for 2J2T Overtraining ROC Int. S/
√
S +B

1 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2, mT, pbbT , pb1T , M`b1,
Mbb, HT

0.31 (0.96) 0.80 2.2

2 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2, mT, pbbT , pb1T , M`b1,
Mbb

0.47 (0.99) 0.79 2.2

3 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2, mT, pbbT , pb1T , M`b1

0.64 (0.95) 0.79 2.2

4 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2, mT, pbbT , pb1T

0.72 (0.99) 0.79 2.2

5 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2, mT, pbbT

0.50 (0.99) 0.79 2.2

6 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2, mT

0.60 (0.99) 0.78 2.2

7 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j , M`b2

0.40 (0.98) 0.77 2.1

8 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt, cos θ`j

0.68 (0.90) 0.76 2.1

9 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET,
mt

0.88 (0.91) 0.76 2.1

10 ∆Φtb′ , ∆Rbb, p
b2
T , p`T, η, ploose

T , 6ET 0.81 (0.89) 0.76 2.0

Table III.3: The variable lists for the 2J 2T category, which are iterated via the
feedback loop. The overtrainings are given as Kolmogorov-Smirnov tests between the
test and the training samples for signal (background). Here, S and B denote signal and
background events of the simulated data without systematic uncertainties, respectively.

III.19. It turned out that the removed variable contributes insignificantly to the BDT

output since the signal-over-background value has remained almost unchanged after ten

iterations as well as the signal consistency stayed completely above the value of 1%.

It can be seen that the seperation in the distribution has also been slightly improved

comparing the first and the tenth iterations directly.

On the other hand, the 3-jets 2-tags category had seven iterations, as shown in Table

III.2 with the overtraining and ROC curve integral. The BDT output of each iteration

is plotted in Figure III.18. It could be seen that the seperation does not change while

the most correlated variables were removed for each feedback loop.

The ROC curve, i.e., signal efficiency vs. background rejection remained without a

significant change in both categories, 2-jets 2-tags and 3-jets 2-tags sample for each

iteration.
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Figure III.18: The overtraining of the BDT output of each iteration in the feedback
loop for the 3J2T category.
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(d) Fourth iteration.
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(e) Fifth iteration.
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(f) sixth iteration.

Figure III.19: The overtraining of the BDT output of the first six iterations in the
feedback loop for the 2J2T category.

The next natural step to be done in the future analyses is to perform a fit for the

detector data with the BDT discriminant evaluated after the application of the feedback

mechanism. In the next section, a previous measurement without the optimization of

the feedback mechanism is presented.

III.4.3 Fit Procedure and the Measurement

The signal extraction is performed using the toolkit Theta [64]. It has been performed

a binned maximum-likelihood fit to the BDT distributions on data in the 2-jets 2-tags
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(g) Seventh iteration.

BDT response
-0.6 -0.4 -0.2 0 0.2

dx/
(1

/N
) d

N

0

0.5

1

1.5

2

2.5

3

3.5

4
Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.681 (0.902)

U
/O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

TMVA overtraining check for classifier: BDT

(h) Eighth iteration.
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(i) Ninth iteration.
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(j) Tenth iteration.

Figure III.19: The overtraining of the BDT output of last four iterations in the
feedback loop for the 2J2T category.

(a) 2J 2T category (b) 3J 2T category

Figure III.20: The overtraining of the BDT output from the analysis in [48].

and 3-jets 2-tags categories simultaneously. The expected total yield λi in each bin i of

the BDT distribution is given by the sum of all the background contributions, plus the

signal yield scaled by the signal strength modifier βsignal which is defined as the ratio

between the measured signal cross section and the SM prediction, as follows:

λi(βsignal, θu) = βsignal · Si(θu) +
∑
p

cp(θu)Bp,i(θu) (III.5)
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where S and Bp are the models of BDT distributions, or shortly ’templates’, for the

s-channel and for each background process p, all scaled to the SM cross sections and

to the dataset luminosity, cp denotes the coefficient for the process template p, and θu

is the nuisance parameter introduced to take into account the effect of each systematic

uncertainty u on the measurement.

Systematic uncertainties affect the yield λi. The prior probability distribution for each

nuisance parameter depends on the type of uncertainty. Background normalization

uncertainties are modeled with a coefficient for the template Bp with a log-normal prior.

Shape uncertainties are modeled by choosing a Gaussian prior for the nuisance parameter

and performing an interpolation between the nominal template (which is not affected by

θu) and the shifted templates obtained by applying ±1σ systematic shift to the nominal

one. The interpolation uses a smooth function which is cubic within 1σ range and uses

a linear extrapolation beyond 1σ.

The 68% confidence interval for the parameter βsignal is evaluated from the excursion of

the negative logarithm of the likelihood function around its minimum.

The likelihood model used for the signal extraction includes the background rates, lumi-

nosity and lepton efficiency nuisance parameters. The impact of individual systematic

uncertainty on the s-channel cross-section measurement is evaluated removing one un-

certainty at a time from the likelihood model and measuring the corresponding variation

in the profile likelihood.

The other instrumental and theoretical uncertainties, whose inclusion in the likelihood

model leads to fit instabilities, are evaluated with the following procedure. Two pseu-

dodatasets are generatd in which the nuisance parameter in interest is set to ±1σ with

respect to its nominal value and the other are fixed to zero. Two maximum-likelihood

fits are performed for the +1σ and −1σ variations separately and the differences between

the fitted βsignal and one (nominal value used in pseudodatasets generation) are taken

as the corresponding uncertainties.

The sensivity to the s-channel single-top signal has been evaluated using the derivative

of the likelihood test statistics. It is defined as in the following:

q0 =
∂

∂βsignal
logL

∣∣∣∣
βsignal=0

(III.6)
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which is evaluated at the maximum likelihood estimate of the background-only hypoth-

esis. Pseudoexperiments are diced and the distribution of the test statistics is obtained

for the background-only and the signal-plus-background hypotheses. The median of the

distribution in the signal-plus-background hypothesis represents the expected signifi-

cance of the measurement. The observed significance is measured from the tail of the

q0 distribution in the background-only hypothesis after evaluating the test statistics on

data.

Uncertainty source (%) Muons

stat. uncertainty ±33

W/Z+jets, diboson rate ±20
QCD rate ±19

JER+JES ±83
unclustered 6ET ±49
Q2 ±64
matching thresholds ±41

rest ±31

total uncertainty ±145

Table III.4: Summary of the relative impact of each systematic uncertainty on the
cross-section measurement. The item, “rest”, includes the following sources: PDF, top

mass, mis-tag, pile-up, b-tagging, lepton SF, luminosity, tt̄ rate and single-top rate.

The single-top s-channel inclusive production cross section has been measured without

using the feedback mechanism, in [48], as a 68% confidence level (CL) interval using the

Feldman-Cousins unified approach, to be as the following:

σs-ch. = 5.9+8.6
−5.1 pb muon channel

and it has become σs-ch. = 6.2+8.0
−5.1 pb when combined with the electron channel. The

impact of the systematic uncertainties on the measurement is summarized in Table III.4.

The observed and expected upper limits, the latter denoted as “(SM signal, background-

only)”, on the s-channel cross section using the CLs method are evaluated, as well. The

upper limit at 95% CL is 2.2 (3.3, 1.9) times the SM cross section, which corresponds

to 12.4 (18.4, 10.5) pb, in the muon channel. In the electron channel, the upper limit

at 95% CL is 2.6 (4.2, 2.8) times the SM cross section, which corresponds to 14.7 (23.2,

15.4) pb. Combining the two channels we obtain an upper limit of 2.1 (3.1, 1.6) times

the SM cross section corresponding to 11.5 (17.0, 9.0) pb.
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Figure III.21: The BDT output of the fitted data.

It is expected that using the iterative optimization of the variables for the signal and

control samples would also improve the measurement of the cross-section. In a future

study, the sensivity of the variables to the systematic uncertainties could be taken into

account in the feedback loop, as well.

III.5 Results

The analysis is performed using a multivariate technique called Boosted Decision Trees

which takes a list of variables as input and a discriminant variable, which is obtained

by testing and training of a learning algorithm, as output. The output variable is used

to discriminate the signal, which is the events of single top-quark production in the s-

channel, from the background which consist of various processes dominated by tt̄ events.

The choice of the input variables is optimized using a feedback loop over each iteration

removing a single variable that has the most overall correlation among other variables for

the signal. The loop ends when there is a significant decrease in the signal-background

separation.

The optimization procedure manifests that it can be used less variables to discriminate

the signal from the background. The feedback loop provides a statistical procedure that

is manifesting a global and holistic approach to the BDT analysis, instead of considering

a variable of the process individually. This gives a possibility to understand the physics

behind the correlations of the variables with respect to their discrimination power for

the topology in subject.





Conclusion

A multivariate study based on Boosted Decision Trees has been performed for the search

of single top-quark production with muonic final state topology in s-channel with a

center-of-mass energy of 8 TeV in the CMS experiment at CERN. The BDT output is

obtained by optimizing the choice of the input variables by iterating in a feedback loop

globally sensitive to the correlation coefficients of the variables. Then, the optimized

BDT discriminant is compared with the analysis which was performed without any

optimization on the choice of inputs.

It has been investigated that the BDT output does not reveal any significant change in

the separating power as the most globally correlated variables are removed, iteratively.

Therefore, reducing the variable list in this way can be advantageous since it advances

our understanding for the physical meaning of the output classifier. In the study, it

is also stressed that the systematic uncertainties are not included in the optimization

however the feedback mechanism can be naturally extended to a such feature.

As a result, the feedback mechanism clearly provides different optimizations for diffe-

rent event topologies in the fact that the variables are taken into account in a holistic

approach, by looking at the overall correlations among the variables, instead of a choice

made on the individual properties of the variables. This study is a first consideration

for the optimization of the BDT analyses in the single top-quark production.

As a next step, this results will be used to fit the data accounting the systematic uncer-

tainties and extract the cross-section for the BDT discriminant obtained by this study.
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