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Introduction 

Power systems have been undergoing radical changes in recent years, and their planning and 

operation will be surely undertaken according to the Smart Grid (SG) vision in the near future. 

The SG initiatives aim at introducing new technologies and services in power systems, to make 

the electrical networks more reliable, efficient, secure and environmentally-friendly. In 

particular, it is expected that communication technologies, computational intelligence and 

distributed energy sources will be widely used for the whole power system in an integrated 

fashion. In particular, nowadays, unprecedented challenges like as stringent regulations, 

environmental concerns, growing demand for high quality, reliable electricity and rising 

customer expectations are forcing utilities to rethink about electricity generation and delivery 

from the bottom up. Moreover, the availability of low cost computing and telecommunications 

technologies, new generation options, and scalable, modular automation systems push utilities 

to be dynamic, innovative and ambitious enough to take advantage of them. Driven by the 

dynamics of the new energy environment, leading utilities, technology vendors and 

government organizations have created a vision of the next generation of energy delivery 

systems: the Smart Grid. 

Operational changes of the grid, caused by restructuring of the electric utility industry and 

electricity storage technology advancements, have created an opportunity for storage systems 

to provide unique services to the evolving grid. Especially Battery Energy Storage Systems 

(BESSs), thanks to the large number and variety of services they can provide, are powerful 

tools for the solution of some challenges that future grids will face. This consideration makes 

BESSs critical components of the future grids. The BESS can be applied for different services 

into the different levels of power system chain to satisfy technical challenges and provide 

financial benefits.  

In the context of the application of BESSs in SGs, there are two main problems that need to 

be addressed in a way that exploits the BESS potential, that are linked to their operation and 

sizing. This thesis focuses on both these aspects, proposing new strategies that allow 

optimizing the BESS adoption. When dealing with BESSs, sizing and operation are strictly 

linked. The correct sizing of a BESS, in fact, needs to take into account its operation which in 

turn will be effected with the aim of optimizing the whole system where it is included.  

In the first part of this research study, advanced optimal operating strategies were proposed 

for BESSs by considering both the distribution system operator perspective and the end user. 

Thus, the proposed operating strategies were performed with the aim of (i) leveling the active 

power requested by the loads connected to a distribution system (distribution system operator 

service), (ii) reducing the electricity costs sustained by an end-use costumer that provides 

demand response (DR) (end user service) and (iii) scheduling a microgrid (µG) with DR 

resources such as Plug-in Electric Vehicles (PEVs) and Data Centers (DCs) (both the two 

section service). The proposed strategies also satisfied technical constraints of BESSs and 

other components of the µG. 

The second part of the thesis presented the optimal sizing of BESSs aimed at maximizing the 

benefits related to their use. In the thesis, the sizing, which is performed by considering the 

end user point of view with reference to both the industrial and residential customers, is 

effected by adopting both deterministic and probabilistic approaches. With reference to the 

deterministic approach, a simple and quick closed form procedure for the sizing of BESSs in 
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residential and industrial applications was proposed. In case of probabilistic approach, the 

case of a BESS installed in an industrial facility was considered and the sizing was performed 

based on the decision theory. 

Technical improvements and economic benefits of optimal operation and optimal sizing of 

BESSs in SG are demonstrated by the obtained results which are reported in the numerical 

applications. More specifically, it was clearly determined that BESSs can offer technical 

supports into the distribution operator section of the grid in terms of load management and 

security challenges. Moreover optimal integration of BESSs into the grid was also appealing 

for end users thanks to valuable amounts of electricity bill cost reduction.  

Regarding the original contribution of the thesis, the following considerations can be done.  

With reference to the load leveling service, an innovative two-step procedure (day-ahead 

scheduling and very short time predictive control) was proposed which optimally controls a 

BESS connected to a distribution substation in order to perform load leveling.  

In case of DR, a proper control of the BESS was proposed in order to perform DR under 

different price schemes, such as Real Time Pricing (RTP) and Time of Use (TOU) without 

modifying the daily work cycle of the industrial loads. The control procedure allows 

achieving contemporaneously two important goals that are the reduction of the bill costs and 

the prolonging the battery’s lifetime so further reducing the costs sustained by the customer. 

With reference to the scheduling of microgrids, the original contribution of the thesis is 

focused on the proposal of optimization strategies aimed at managing and coordinating, 

simultaneously, batteries on board of vehicles or equipping data centers’ Uninterruptable 

Power Supply (UPS) and Distributed Generation (DG) units. Also comparisons among 

different single-objective based strategies are made in order to highlight the most convenient. 

With reference to the sizing based on deterministic approach, unlike the other relating 

literature, the innovative contribution is that the closed form procedure takes into account both 

the technical constraints of the battery and contractual agreements between the customer and 

the utility. Moreover, in the economical analysis performed for the sizing, which is applied 

with reference to both residential and small industrial customers and is based on actual TOU 

tariffs, a wide sensitivity analysis to consider different perspectives in terms of life span and 

future costs was performed. 

Some aspects that affect the profitability of the battery, such as technological limitations (e.g. 

the battery and converter efficiency), economic barriers (e.g. capital cost and the rate of change 

of the cost) and variation of the load profile along the years were deeply analyzed. 

In case of sizing based on probabilistic approach, the original contributions of the thesis are 

mainly referred to the proposal of a new method that uses a decision theory-based process to 

obtain the best sizing alternative considering the various uncertainties affecting the sizing 

procedure.  

The thesis is organized in three chapters which are dealing with integration of BESSs in SGs. 

The first chapter reports basic concepts and characteristics of BESSs, fundamental 

components and features of SGs and different services that BESSs can provide. The optimal 

operation strategies of BESS are considered in second chapter which includes their problem 

formulation, solving procedures and results. The third chapter deals with the optimal sizing 

problem of BESSs for which the problem formulation, solving procedures and results are 

reported. Finally, the conclusions are presented in the last part of thesis. 
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Chapter 1: Battery Energy Storage Systems and Smart Grids 

This chapter presents basic concepts and characteristics of Battery Energy Storage Systems 

(BESSs), Smart Grids (SGs) and applications of BESSs in SGs including an overview on 

features of dynamic pricing schemes for electrical energy. It is organized in four sections as 

follows: 

 Battery energy storage system 

 Smart grid 

 Applications of battery energy storage system in smart grid 

 References 

1.1. Battery energy storage system 

The initial idea of using electrical energy storage (EES) dates back to the turn of the 20
th

 

century, when power generating stations were often shut down overnight, with lead-acid 

accumulators supplying the residual loads on the direct current (DC) networks. Then 

progresses of the ESS were developed at large central generating stations, transmission and 

distribution networks [1-3]. In the recent years, electrical power systems are forced to move 

away from major and traditional energy sources to renewable energy sources (RESs) which 

are more environmentally friendly and sustainable [2]. This is due to several factors such as 

increasing demand for electric power, the need to reduce greenhouse gas emission, take care 

about climate changes, lacking the resources to build the power plants and distribution 

networks. 

RESs like solar, wind and tidal wave with considerable potential to generate electrical power 

will play an important role in the future power generation systems. These are only available 

when there is adequate sun, wind and tide. Then, integration of RESs into the grid due to their 

variable and intermittent nature will be problematic. This is where EES becomes an enabling 

technology and a proper solution to integrate RESs into the grid and make the non-

dispatchable resources into a dispatchable energy source by introducing new applications of 

EES [2, 4].  

EES refers to a process of converting electrical energy from a power network into a form that 

can be stored for converting back to electrical energy when needed. Then, this type of process 

in EES can offer an opportunity for electricity to be stored at times of either low demand, low 

generation cost or from intermittent energy sources and to be used at times of high demand, 

high generation cost or when no other generation means is available [1, 2].  

There are different technologies for EES; the most common form is battery. Battery is 

modular, quiet and non-polluting. It can be located almost anywhere and can be installed 

relatively quickly. Battery in the larger size is called Battery Energy Storage System (BESS) 

[4]. BESS is a potential solution for some challenges that face today’s power grid due to the 

large number and variety of services that they can furnish like as manufacturing industrial 

services, renewables energy facilities, portable electronic devices and electric vehicles. This 

consideration makes a BESS as a critical component of future SGs [2, 4, 5]. As such, deep 

and proper research works are needed to study progress of BESSs in different aspects in more 
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details. Historical, technological, characteristically and economic aspects of BESSs are 

considered in the following sections.  

1.1.1. History 

The expression ‘battery’ was originally used for assemblies of cannons in artillery units, but 

Benjamin Franklin used this expression to describe the connection of Leyden jar capacitors 

around 1750 [6]. Fifty years later in 1800, Alessandro Volta invented the first true battery, 

which came to be known as the voltaic pile. The voltaic pile consisted of pairs 

of copper and zinc discs piled on top of each other and separated by a layer of cloth or 

cardboard soaked in brine (i.e., the electrolyte). Comparing by Leyden jar, the voltaic pile 

generated a continuous and stable current, but it lost little charge over time when not in use. 

There were some technical faults in Volta's original pile models, like as the electrolyte leaking 

and causing short-circuits due to the weight of the discs compressing the brine-soaked cloth 

[7]. Later in 1808, an Englishman named William Cruickshank solved this problem by laying 

the elements in a box instead of piling them in a stack. Then, it evolved into the Daniel cell in 

1836 which included two electrolytes [8]. Golding Bird invented the first single-cell version 

of the Daniel cell in 1837 by using a plaster of Paris barrier to keep the solutions separate and 

also the porous pot version of the Daniel cell was found by John Dancer in 1838 [9,5]. Later 

during the 1860s, Callaud invented a variant of the Daniel cell called the gravity cell. All of 

these are called as primary cells, which are single-use galvanic cells that store electricity for 

convenient usage, usually showing a good shelf life; however, they are not usually 

rechargeable. According to the mentioned history, the expression ‘battery’ should be used 

only for an assembly of cells in series or parallel arrangements; but, the word battery became 

a technical and commercial common practice to use even for single cells [6]. Unlike primary 

battery, a secondary battery is rechargeable and it can be reused many times; therefore, it was 

called a storage or rechargeable battery. The rechargeable or secondary battery was born in 

1803 when a German physicist, Johann Wilhelm Ritter, combined layered disks of copper and 

cardboard soaked in a brine of table salt. The ‘Ritter pile’ could be charged by a current and 

delivered energy when discharged but the secondary current was very transitory. That’s why 

it was only known charging equipment at that time. Later in 1859, Gaston Plante invented the 

first practical rechargeable battery which was based on lead-acid chemistry. Use of lead-acid 

batteries in automobiles for starting, lighting, and ignition purposes was and is one of the 

most common applications of lead-acid battery [10]. 

Over the time, other types of rechargeable batteries were introduced into the market. In 1899 

Ernst Waldemar Jungner developed the nickel-cadmium accumulator. Also nickel-metal 

hydride (Ni-MH) batteries, different from sealed nickel-cadmium batteries in that hydrogen is 

used as the active mass instead of cadmium, were introduced in 1985[10].  

Another type of rechargeable battery which was known as alkaline battery was realized for 

the first time by the French chemists, Felix de Lalande and Georges Chaperon, in 1882 and it 

evolved to the rechargeable alkaline manganese battery by Karl Kordesch (Austria) in 1992. 

In continuous of the pioneer work of Lewis (1912) and Wright (1975), the first rechargeable 

lithium batteries born earlier than 1980, then Sony Corporation in Japan was able to 

commercialize lithium secondary cells in 1990. In 1999, the commercialization of lithium-ion 

polymer batteries was accomplished [6]. Figure 1.1 illustrates the development of some of the 

main secondary batteries over the time [10]. 

http://en.wikipedia.org/wiki/Alessandro_Volta
http://en.wikipedia.org/wiki/Voltaic_pile
http://en.wikipedia.org/wiki/Voltaic_pile
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Zinc
http://en.wikipedia.org/wiki/Brine
http://en.wikipedia.org/wiki/Electrolyte
http://en.wikipedia.org/wiki/Leyden_jar
http://en.wikipedia.org/wiki/Electrolyte
http://en.wikipedia.org/wiki/William_Cruickshank_(chemist)
http://en.wikipedia.org/wiki/Golding_Bird
http://en.wikipedia.org/wiki/Plaster_of_Paris
http://en.wikipedia.org/wiki/John_Dancer
http://en.wikipedia.org/wiki/Gravity_cell
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Figure 1.1: Development of the secondary batteries over the time [10]. 

1.1.2. Technologies 

Based on use of different chemicals to produce electrical energy, different kinds of batteries 

have been developed. A battery comprised of one or more electrochemical cells and each cell 

consist of a liquid, paste, or solid electrolyte together with a positive electrode (anode) and a 

negative electrode (cathode) [1, 11]. Today, there is a wide range of battery technologies in 

the market where each one has its advantages and disadvantages. Among the various battery 

technologies, some of them seem to be more suitable for power system applications due to 

approved technical and economic benefits [11]. They are discussed below in more detail. 

Lead-acid batteries  

The oldest known type of rechargeable battery is the lead-acid battery which was invented in 

1859 by the French physicist Gaston Plante [11]. It has been commercially deployed around 

1890. It is used in both mobile and stationary applications. Some of popular applications of 

lead-acid battery are; emergency power supply systems, stand-alone systems with 

photovoltaic (PV), battery systems for mitigation of output fluctuations from wind power and 

as starter batteries in vehicles [12].  In the charged state, this type of battery consists of 

electrodes of lead metal and lead oxide in an electrolyte of 37% sulphuric acid whereas in the 

discharging state both electrodes turn into lead sulphate and the electrolyte loses its dissolved 

sulphuric acid and becomes primarily water [1]. Lead-acid battery has a typical service life 

from 5 to 15 years with high reliability and efficiency (70-90%) [1, 12]. Several types of lead 

acid batteries are available. Lead-acid batteries are popular storage choice for power quality, 
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uninterruptable power supply (UPS) and some spinning reserve applications but in case of 

energy management applications they are very limited due to their short cycle life (500-1000 

cycles) and low energy density (30-50 Wh/kg) [1].  

Lithium-ion batteries  

Lithium is the lightest metal with the highest potential due to its very reactive behavior which, 

in theory, makes it very fitting as a compound for batteries. The first lithium-ion battery is 

proposed in the 1960s and then, the first commercial lithium-ion batteries came into the 

market by Sony in 1990. Later in 2000, Lithium ion batteries have become the most important 

storage technology in the areas of portable and mobile applications like laptop, cell phone, 

electric bicycle and electric car. These progresses are still increasing according to the 

improvements of used materials in this type of batteries and of characteristics of battery like 

energy density, life cycle and the battery efficiency. For example, the energy density 

increased from 75 to 200 Wh/kg and life cycle increased to as high as 10,000 cycles [1, 12]. 

In this kind of battery the cathode is a lithiated metal oxide and the anode is made of graphitic 

carbon with a layering structure. The construction looks somehow similar to a capacitor, when 

it uses three different layers curled up in order to minimize space. The first layer acts as the 

anode and is made of a lithium compound; the second layer is the cathode and it is usually 

made of graphite. The third layer which is located between anode and cathode is the separator 

that separates them while allowing lithium-ions to pass through. The separator can be made of 

various compounds allowing different characteristics and, accordingly, different benefits and 

flaws. In addition, the three layers are submerged in an organic solvent. Electrolyte is 

allowing the ions to move between the anode and the cathode. In the charging process, the 

lithium ions pass through the micro porous separator into spaces between the graphite (though 

not compounded), receiving an electron from the external power source. 

Li-ion batteries are used in more than 50% of the small portable devices and since 2000 have 

successfully begun to enter industrial markets. But there are some important challenges to 

provide large scale Li-ion batteries. Also the cost of this type of batteries due to using special 

packing and internal overcharge protection circuit are still high (more than 600 $/kWh) [1]. 

The implementation of Li-ion batteries in the stationary field has significantly increased since 

2010 and has benefited from the extensive experience gained in the development of batteries 

for electric and hybrid vehicles. About 100 MW of stationary Li-ion batteries are operating 

worldwide in grid connected installations. Systems in association with distributed renewable 

generators from a few kW to several MW, as well as for grid support with voltages up to 

6000V have been designed and successfully tested [13].  

Nickel-cadmium batteries 

Along with lead-acid batteries, a Nickel-cadmium battery (Ni-Cd) is also ranked in terms of 

maturity and popularity. Ni-Cd batteries include a nickel hydroxide positive electrode plate, a 

cadmium hydroxide negative electrode plate, a separator, and an alkaline electrolyte. Ni-Cd 

batteries usually have a metal case with a sealing plate equipped with a self-sealing safety 

valve. The positive and negative electrode plates, isolated from each other by the separator, 

are rolled in a spiral shape inside the case. 

In case of battery energy density, Ni-Cd batteries have a high energy density (50-75 Wh/kg) 

and they can provide robust reliability with very low maintenance requirements. Their 



Battery Energy Storage Systems and Smart Grids 

5 

relatively cycle life is in the range of 2000 to 2500. These mentioned advantages of Ni-Cd 

make them favored over lead acid batteries for power tools, portable devices, emergency 

lighting, UPS, telecoms and generator starting. However, portable devices such as mobile 

telephones and laptops have effectively been displaced from these markets by other electro 

chemistries over the past decade. 

An important disadvantage of Ni-Cd batteries is their relatively high cost (800-1500 $/kWh) 

due to the expensive manufacturing process. Cadmium is a toxic heavy metal hence posing 

issues associated with the disposal of Ni-Cd batteries. Ni-Cd batteries also suffer from 

‘‘memory effect”, where the batteries will only take full charge after a series of full 

discharges. Proper battery management procedures can help to mitigate this effect [1]. 

They serve special markets where energy must be stored in extreme climate or cycling or fast 

charging conditions. 

Sodium sulphur batteries 

A sodium sulphur (NaS) battery consists of liquid (molten) sulphur at the positive electrode 

and liquid (molten) sodium at the negative electrode as active materials separated by a solid 

beta alumina ceramic electrolyte [1, 14]. NaS batteries have a typical cycle life of 2500 

cycles. Also, typical energy and power density of them are in the range of 150-240 Wh/kg and 

150-230 W/kg, respectively. Efficiency of NaS battery cells is in the range of 75% to 90% and 

they have a pulse power capability over six times their continuous rating (for 30s). This 

attribute enables NaS batteries to be economically used in combined power quality and peak 

shaving applications. The first demonstration of the NaS system in America is launched by 

American Electric Powers in Ohio with a capacity up to 1.2 MW. The major disadvantage is 

that a heat source is required which uses own stored energy of the battery, partially reducing 

the battery performance, as the NaS battery needs to operate at a high temperature (300-

350°C). Another disadvantage is initial capital cost (300-500 $/kWh), but it is expected to fall 

as the manufacturing capacity is expanding [1].  

Sodium nickel chloride 

Sodium nickel chloride battery is better known as the ZEBRA battery [1, 15, 16]. This type of 

batteries are high temperature (300°C) systems which use nickel chloride as positive electrode 

and have the ability to operate across a broad temperature range from -40 to +70°C without 

cooling. ZEBRA batteries can withstand limited overcharge and discharge and have 

potentially better safety characteristics and a high cell voltage in comparing with NaS 

batteries (2.58V).  

The drawbacks with respect to NaS batteries are their low energy density (100-120 Wh/kg) 

and power density (150-200 W/kg), although the former still represents a considerable 

improvement over the lead acid battery technology. Another disadvantage is that only one 

company, the Beta R&D (UK), in the world produces this kind of battery and the technology 

was acquired by MES (Swiss) in 1999. At present Beta R&D is developing a high power 

version of the ZEBRA battery for hybrid electric vehicles, a high energy version for storing 

renewable energy and a load-levelling battery for industrial applications [15, 16]. The 

application of the ZEBRA batteries in the new NATO Submarine Rescue System (NSRS) has 

also been announced recently. Table 1.1 compares the characteristics of above mentioned 

technologies of batteries [1].  
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Technology 

Power 

rating 

(MW) 

Self-

discharge 

(% per day) 

Energy 

density 

(Wh/kg) 

Power 

density 

(W/kg) 

Life 

time 

(year) 

Cycle 

life 

(cycle) 

Capital 

cost 

($/kWh) 

Lead-acid 0 - 20 0.1 - 0.3 30 - 50 75 - 300 5 - 15 500 - 1000 200 - 400 

Li-ion 0 - 0.1 0.1 - 0.3 75 - 200 150 - 315 5 - 15 1000 - 10000 600 - 2500 

Ni-Cd 0 - 40 0.2 - 0.6 50 - 75 150 - 300 10 - 20 2000 - 2500 800 -1500 

NaS 0.05 - 80 20 150 - 240 150 - 230 10 - 15 2500 300 - 500 

ZEBRA 0 – 0.3 15 100 - 200 150 - 200 10 - 14 2500 100 – 200 

Table 1.1: Characteristics of different battery technologies. 

1.1.3. Characteristics 

Various types of BESSs with different technical and economical characteristics relied on their 

manufacturing technology are available in the market. To select the best technology of BESSs 

for the specific application, it is necessary to analyze the following fundamental 

characteristics of BESSs [2, 17, 18].  

Storage capacity 

Storage capacity is the available energy in the BESS after charging. Discharge is often 

incomplete. It is defined on the basis of total energy stored, Wst (Wh), which is superior to that 

actually retrieved (operational), Wut (Wh). The usable energy which is limited by the DOD 

represents the limit of discharge depth (minimum-charge state). In conditions of quick charge 

or discharge, the efficiency deteriorates and the retrievable energy can be much lower than 

storage capacity. On the other hand, self-discharge is the attenuating factor under very slow 

regime [2, 17, 18]. 

Depth of discharge 

Energy storage is a slow process that subsequently must quickly release energy on demand. 

The power output, or discharge, can be a limiting factor called the power transmission rate. 

This delivery rate determines the time needed to extract the stored energy [17- 18]. In many 

types of batteries, the full energy stored in the battery cannot be fully discharged without 

causing serious and often irreparable damage to the battery. The Depth of Discharge (DOD) 

of a battery determines the fraction of power that can be withdrawn from the battery. For 

example, if the DOD of a battery is given by the manufacturer as 25%, then only 25% of the 

battery capacity can be used by the load. 

Almost all batteries, particularly for renewable energy applications, are rated in terms of their 

capacity. However, the actual energy that can be extracted from the battery is often 
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significantly less than the rated capacity. This occurs since, extracting the full battery capacity 

from the battery dramatically reduced battery lifetime. For example, a lead-acid battery 

operated with a DOD of 20% has a lifetime of 2800 charging/discharging cycles, while with a 

DOD of 80% the lifetime is about 500 cycles (figure 1.2) [19,20]. 

Figure 1.2: Depth of discharge for lead-acid battery [20]. 

Discharge time 

It is the maximum power discharge duration of battery, τ=Wst /Pmax, which depends on the 

DOD and operational conditions of the system, constant power or not. It is a characteristic of 

system adequacy for certain applications [17]. The discharge time is usually referred as C-rate 

or E-rate. A C-rate is a measure of the rate at which a battery is discharged relative to its 

maximum capacity. A 1C rate means that the discharge current will discharge the entire 

battery in 1 hour. For a battery with a capacity of 100 Ah, this equates to a discharge current 

of 100 A. A 5C rate for this battery would be 500 A, and a C/2 rate would be 50 A. Similarly, 

E-rate describes the discharge power. A 1E rate is the discharge power to discharge the entire 

battery in 1 hour [21]. 

Efficiency 

All energy transfer and conversion processes have losses. Storage system round-trip 

efficiency (efficiency) reflects the amount of energy that comes out of storage relative to the 

amount put into the storage [22]. The efficiency for BESS is the ratio between released energy 

(Wut) and stored energy (Wst), η= Wut /Wst. This definition is often oversimplified because it is 

based on a single operation point [23]. Yet, systems have charging, no-load, and self-

discharge losses. The definition of efficiency must therefore be based on one or more realistic 

cycles for a specific application. Instantaneous power is a defining factor of efficiency. In 

more details, the efficiency can be discussed with the reference of rectifier efficiency (ηrec), 

inverter efficiency (ηinv), storage efficiency (ηst) and storage self-discharge (ηselfdch). For 

example, st  for lead-acid battery is 85% while it is 95% for Li-ion and 75% for Ni-Cd. With 

reference to other efficiencies, rectifier, inverter and self-discharge efficiency for the best case 

of lead acid battery are 95%, 98% and 0%, respectively [24]. Self-discharge efficiency can be 

neglected for the technology scenarios due to short time periods between charge and 

discharge cycles. 
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Mass and volume densities of energy 

These represent the maximum amounts of energy accumulated per unit of mass or volume of 

the storage unit, and demonstrate the importance of mass and volume for certain applications 

(especially for mass density of energy in portable applications, but less so for permanent 

applications). 

Reliability 

Reliability of BESS is always an important factor because it is a guarantee of on demand 

service [17]. 

Operational constraints 

This characteristic of BESS is specially related to the safety or other operational conditions 

like temperature, pressure, etc. They can influence the choice of a BESS’s technology as a 

function of energy needs [17].  

Environmental aspects 

While this parameter is not a criterion of storage system capacity, the environmental aspect of 

the product (recyclable materials) is a strong sales pitch. For example, in Nordic countries 

(Sweden, Norway), a definite margin of the population prefers to pay more for energy than to 

continue polluting the country [25]. This is a dimension that must not, therefore, be 

overlooked. 

Other characteristics 

The ease of maintenance, simple design, operational flexibility (this is an important 

characteristic for the utility) and fast response time for the release of stored energy are other 

considerable characteristics of BESS. Finally, it is important to note that these characteristics 

apply to the overall storage system: storage units and power converters. 

1.1.4. Costs 

Economic analysis of BESSs considers all the costs related to the inclusion of the BESS into 

the grid. To evaluate the total costs related to the BESS adoption, capital, maintenance, 

replacement, disposal and energy costs have to be taken into account [26]: 

endisprepmt0LCC CCCCCC      (1.1) 

Where CLCC is the life cycle cost (or total customer cost), C0 is the capital cost of the BESS, 

Cmt  is the BESS maintenance costs, Crep is the cost related to the replacement of the batteries, 

Cdisp is the BESS disposal cost and Cen is the energy cost. The maintenance, replacement and 

energy costs refer to their sum over the specified time period in which the economic analysis 

is performed. The net present value of the maintenance, replacement and energy costs have to 

be calculated as: 

1

1
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where Ck (n) is the cost (energy, maintenance and replacement cost) related to year n, Ck(n)npv 

is its net present value, β is the assumed discount rate and α is the effective rate of change 

assumed for the cost in the years. 

Capital cost 

It includes equipment purchase cost and installation cost. Both the cost of the battery system 

Cbatt and the converter Cconv are considered: 

convbatt0 CCC        (1.3) 

C0 is calculated by adding the cost of the storage unit (Cbatt) and the power conditioning 

system (Cconv). These subsystems are treated separately because they provide different 

functions and are priced by different ratings. Power components are priced in $/kW and 

energy storage units are priced in $/kWh. For this reason, the individual subsystem costs are 

needed, although they are often difficult to separate from vendor system prices. Table 1.2 

compares these costs for different BESS technologies [27]. The actual costs of any storage 

system depend on many factors and the assumptions and the means of calculating some of the 

values used are subjective and continue to be debated, even among experts in the field. The 

cost of the power conversion equipment is proportional to the power rating of the system. 

Technology 
Efficiency 

(%) 

Power subsystem 

cost ($/kW) 

Energy storage 

cost ($/kWh) 

Lead-acid 80 400 300 

Li-ion 85 400 600 

NaS 75 350 350 

Table 1.2: Capital cost components for different BESS technologies [27]. 

Maintenance cost  

BESS maintenance cost includes corrective maintenance and preventive maintenance costs 

[28]. They can also be included as percentage of capital costs [29]. For example, the annual 

maintenance cost as percentage of the initial investment for the lead acid battery is 2% [24]. 

Replacement cost  

Replacement costs have to be sustained for purchasing a new battery if the battery lifetime is 

lower than the time period considered in the economic analysis. The life time of the battery, 

expressed in years, depends on the number of charging/discharging stages per day: 

υ365

N
lifetimeBattery 

cycles


      (1.4) 

where Ncycles is the total number of charging/discharging cycles declared by the battery 

manufacturer and υ is the number of daily charging/discharging cycles. 
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Disposal cost 

With reference to the BESS disposal cost, it is assumed that they can take into account also 

the benefit derived from the recycling of the battery. This cost/benefit may vary depending on 

the country where the disposal is performed. Based on the expected development of recycling 

technology, disposal activity could also be assumed to represent a benefit rather than a cost 

[30]. 

Energy cost 

The energy cost (Cen) can be evaluated as follows: 

dchchen CCC        (1.5) 

where Cch is the electricity cost sustained for charging the battery and Cdch is that avoided by 

the customer as loads are supplied by the BESS. Both Cch and Cdch depend on the energy tariff 

applied to the customer and on the battery operation strategy, as it will be shown in the next 

Chapter. Utilities usually propose different tariffs depending on the periods (season) of the 

year [31]. In the evaluation of the energy costs in (1.5) the variations of the price of energy 

due to the inflation can be taken into account by imposing a percentage variation per year. 

Eventually, by substituting (1.5) in (1.1) the total customer cost will be: 

dchchdisprepmt0LCC CCCCCCC     (1.6) 

1.2. Smart grid 

Power systems have been undergoing radical changes in recent years, and their planning and 

operation will be surely undertaken according to the SG vision in the near future. The SG 

initiatives aim at introducing new technologies and services in power systems, to make the 

electrical networks more reliable, efficient, secure and environmentally-friendly. In particular, 

it is expected that communication technologies, computational intelligence and distributed 

energy sources will be widely used for the whole power system in an integrated fashion [32]. 

In particular, nowadays, unprecedented challenges like as stringent regulations, environmental 

concerns, growing demand for high quality, reliable electricity and rising customer 

expectations are forcing utilities to rethink about electricity generation and delivery from the 

bottom up [33]. Moreover, the availability of low cost computing and telecommunications 

technologies, new generation options, and scalable, modular automation systems push utilities 

to be dynamic, innovative and ambitious enough to take advantage of them. Driven by the 

dynamics of the new energy environment, leading utilities, technology vendors and 

government organizations have created a vision of the next generation of energy delivery 

systems: the Smart Grid. 

1.2.1. Structure 

In the 21
st
 century’s energy equation, environmental and economic sustainability are essential 

variables. But existing infrastructure and systems lack the flexibility to evolve to meet higher 

demands for efficiency and reliability. Then, SGs will return balance to this “cost-benefit” 

paradigm by introducing intelligent response into the interaction between supply availability 

and demand [33]. 
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Similar to the internet (a dynamic network), the SG will be interactive for both power 

generation sources and power consumption sinks (loads). Utilities will enable end-users to 

produce their own electricity and participate in demand-side management (DSM) programs. 

The gateway for access to the grid of the future is supported by a high-speed, two-way 

communication infrastructure, intelligent metering and electronic control technologies. In this 

context, utilities are investing an enormous amount of money in smart meters and advanced 

metering infrastructure in the first step towards implementing the SG. At the utility level, 

Information and Communication Technology (ICT) and business process integration will be 

valuable tools in the real-time management of the value chain across suppliers, active 

networks, meters, customers and corporate systems. In case of transmission and distribution 

infrastructure, the SG will be a web-like network of interconnected nodes with no “beginning” 

or “end”. Consumers and generators of all sizes will be tied together with new grid 

components, such as energy storage units and intermittent renewable supplies. Like a living 

organism, the grid will control energy flow to dynamically balance changes in supply and 

demand. IT and automation systems will act as the central nervous system by collecting and 

processing the massive amounts of sensory data coming in from the extremities and control 

system elements. Refer to figure 1.3 for a visual representation of the smart grid structure [32, 

33]. 

1.2.2. Components 

At the physical level, SG is comprised of the following five fundamental components [32]. 

New grid components  

Distributed energy components, such as residential-scale Combined Cycle Heat and Power 

(CCHP) units, Plug-in Hybrid Electric Vehicles (PHEV), micro-turbines, solar photovoltaic 

cells, wind turbines and grid energy storage units enable increased bi-directional power flow 

between power distributors and end-users. 

Sensing and control devices  

Sensing and control devices evaluate congestion and grid stability, monitor equipment health, 

prevent energy theft and support control strategies. Technologies include: advanced 

microprocessor meters (smart meter) and meter reading equipment, wide-area monitoring 

systems, dynamic line rating systems, electromagnetic signature measurement/analysis, time-

of-use and real time pricing tools, advanced switches and cables, backscatter radio technology 

and digital protective relays.  

In particular, a SG replaces analog mechanical meters with digital meters used in real time. 

Smart meters are similar to advanced metering infrastructure meters and provide a 

communication path extended from generation plants to electrical outlets (smart socket) and 

other SG enabled devices. By customer option, such devices can shut down during times of 

peak demand. 

Communications infrastructure 

Transferring massive amounts of data in the SG by communication networks are based on 

fiber-optics, microwave, infrared, power line carrier (PLC), and/or wireless radio networks. 

Some communications are up to date, but are not uniform because they have been developed in 

an incremental fashion and not fully integrated. 
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Figure 1.3: Smart grid structure [33]. 

In most cases, data is being collected via modem rather than direct network connection. In 

order to improve this part of grid, there are different areas for improvement which are 

substation automation, demand response, distribution automation, supervisory control and data 

acquisition (SCADA), energy management systems, wireless mesh networks and other 

technologies, power-line carrier communications, and fiber-optics. Integrated communications 

will allow for real-time control, information and data exchange to optimize system reliability, 

asset utilization, and security. 

Automation and IT backend technologies 

In case of specific grid disruptions or outages, automation can provide rapid diagnosis of 

precise solutions. These technologies rely on and contribute to each of the other four key areas. 

Three technology categories for advanced control methods are as follows:  

 Distributed intelligent agents (control systems) 

 Analytical tools (software algorithms and high-speed computers) 

 Operational applications (SCADA, substation automation, DR, etc.)  

Technologies for advanced analysis 

Grid operators, project managers and business executives can analyze and extract useful 

information from the grid based on the advanced applications with increased functionality and 

versatility. When information systems reduce complexity then operators and managers have 

tools to effectively and efficiently operate a grid with an increasing number of variables. 

Technologies include visualization techniques that reduce large quantities of data into easily 

understood visual formats, software systems that provide multiple options when systems 

operator actions are required, and simulators for operational training and “what-if” analysis. 

1.2.3. Challenges 

Based on adding new components to the grid, the new operating strategies challenge the 

security, reliability and quality of the electric power supply. For example, implementation of 

intermittent energy resources, such as wind, will greatly stress transmission grid operations. 

The distribution grid will be stressed by solar generation as well as plug-in electric vehicles 
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(PEVs). PEVs could significantly increase the circuit loading. These intermittent renewable 

resources pose many challenges for the grid and grid operators and pushes for the adoption of 

ESSs. Also, there are challenges with the implementation of a SG information technology 

system where most utility companies have limited interoperability across the different systems 

for operations and business management.   But, economics aspects of these resources are fast 

improving, reaching a close parity with fossil generation. Some of these challenges are 

presented as follows [32, 33]. 

Challenges in transmission system  

One of the important challenges for DG sources is the distance from transmission lines because 

good sites for wind or large-scale solar plants (greater than 100 MW) may be located in areas 

distant from any existing transmission lines or areas with limited available transmission 

capacity. These capacity limits are also the most fundamental constraint facing wind power 

project developers, since it can take many years to plan and build new transmission 

infrastructure. Planning for transmission expansion to support increasing levels of wind 

generation in dispersed areas is essential to the growth of the wind sector.  

Planning and system stability studies also are needed to determine seasonal requirements for 

up regulation, down regulation (seconds) and ramping (minutes) capacities. It is significant 

that higher levels of regulation and ramping capacity might not be readily available in regions 

with a thermal and nuclear generation base. Long-term resource adequacy issues also need to 

be addressed. 

Challenges in distribution system 

Residential and municipal solar generation as well as PEVs can impose challenges for the 

existing distribution infrastructure and the system operator. New flow patterns may require 

changes to the protection and control strategies, enhanced distribution automation and micro-

grid capabilities, voltage and var management, and overall enforcement of distribution grid 

infrastructure. 

End-use customer challenges 

By moving from traditional load managements to the new load management strategies, such as 

peak shaving and peak shifting in the framework of SG, then end use consumers will face 

some challenges. For example, in additional to the traditional load management, advanced 

metering infrastructures to develop the dynamic pricing programs and using end use devices 

such as intelligent applications and smart chargers are needed. Challenges are involved also 

from the application of BESSs that can have a significant role for an end-use, because they 

provide the possibility of absorbing energy from the grid in the charging condition (i.e., load 

mode) and of supplying the loads in discharging operating conditions (i.e., generator mode) 

and have the ability to change their operating condition very quickly. In addition, BESSs are 

ideal candidates for performing peak shaving, which is an important service for some high-

consumption customers (e.g., industrial customers). 

Operational challenges 

The grid will face the operational challenges in the transmission, distribution and end-use 

levels due to the presence of renewable resources and new components, when intermittent 

nature of the wind and solar generation can cause certain operational challenges in 
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transmission grid, including additional ramping and regulation requirements and impacts on 

system stability. Also, the distribution grid will be stressed with the introduction and rapid 

adaption of solar generation as well as PEVs. For example, PEVs can increase the distribution 

network load if charging and discharging time and schedules are not properly managed and 

controlled. In case of wind generation resources, due to the steepness of the wind turbine 

power curve, a wind farm creates significant ramping needs as wind speed changes, with the 

wind farm typically operating at either low output or high output at any given time. At high 

wind speeds, the turbine controls cut-off the power generation to prevent damage to the blades 

and the turbine-generator assembly due to over speed and possible tensional oscillation. This 

power cut-off poses additional operational challenges due to a very steep reduction in 

generation levels. These new operating strategies when combined with the available 

transmission and distribution infrastructure challenge the security, reliability and quality of the 

electric power supply. 

Forecasting and scheduling challenges 

The grid operators need forecasting and scheduling to supply the additional ancillary services 

when there are limited dispatch ability and intermittent nature of wind and solar generation. 

For example, according to the California Independent System Operator, an additional 350 MW 

of regulation and 800 MW of ramping capacity will be needed to support the planned 9,000 

MW of new wind generation capacity. The large penetration of renewable generation sources 

may also lead to over generation conditions. 

Accurate day-ahead, hourly and sub hourly wind and solar generation forecasting is needed to 

allow for other unit commitment and ancillary service provision as well as the scheduling and 

dispatch of the required hourly ramping and load following. 

Regional scheduling practices for intermittent resources need to be further enhanced to address 

banking and shaping in addition to energy balancing needs. Energy storage, DR, distributed 

resource management, and the dispatch of wind and solar resources could partially alleviate 

some of these challenges. 

Interconnection standards challenges  

To mitigate any transient stability issues the interconnection standards may have to be further 

unified and broadened to address greater levels of power factor control and low-voltage ride 

through needed. 

Other challenges associated with smart grid projects 

 No clearly defined end state. Function of many external factors like as economy, oil 

prices, political and regulatory mandates are the driving forces for the SG. Then, the 

requirements and the timing of the end state are not established well enough to allow 

the development of detailed technical and business specifications. 

 The incremental and evolving nature of the applications. Many of the changing 

requirements are incremental with respect to the existing capabilities.  

 The many legacy business functions and systems they touch. SG functions touch many 

existing operational systems and business processes. As such, an implementation plan 

endorsed by all stakeholders will be required. 
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 A rollout with minimum impact on existing operations. The reliable supply of electric 

power cannot be disrupted, and incremental additions should not have any negative 

impact on the existing and unaffected operations. 

 The required data interfaces with external and third party systems. Cybersecurity and 

integration issues need to be addressed where the SG requires interfaces with external 

users and systems, including smart devices, customers, service providers, and energy 

markets.  

 The high cost of implementation. The business cases for SG initiatives should be 

made based on operational and societal benefits. The regulatory framework for rate 

based SG projects needs to be further strengthened. 

 

1.2.4. Advantages 

Based on all improvements by adding new components and control features to the grid the 

following characteristics and advantages can be considerable for the grid [32, 33]. 

Grid integration 

One of the greatest engineering projects of this century will be the national integration of all 

levels of the transmission and distribution networks. Once geographically dislocated, electric 

power grids are now being expanded and transformed into millions of interconnected nodes. 

Grid integration enables utilities to deliver a highly secure and efficient electricity supply with 

reduced environmental impact by allowing for interregional power transactions, added 

capacity, and network redundancy. 

Self-healing and adaptive 

The SG will perform continuous self-assessments to monitor and analyze its operational status. 

For problems that are too large and too fast for human intervention, it will automatically 

restore grid components or network sections after abnormal events via “self-healing” 

mechanisms. The SG will also be capable of predicting potential failures and future outages by 

mining data from past events.  

Interaction with consumers 

SG concept is based on the high technology communication lines and smart components, then 

based on this concept SG will motivate end-users to actively manage their energy 

consumption. For example, price signals and DR programs will encourage consumers to 

modify consumption based the electric system’s capacity to meet their demands. Some factors 

like as new cost saving and energy efficiency products will plug consumers back into the 

network and make them active participants in the grid. 

Enhanced cyber security 

Nowadays, enhanced security is an important characteristic of the SG when society is 

increasingly aware of the criticality of energy delivery infrastructure and the need for defense 

against malicious attack and disruption. The SG’s integrated security systems will reduce 

physical and cyber vulnerabilities and improve the speed of recovery from disruptions and 

security breaches. SG security protocols will contain elements of deterrence, prevention, 

detection, response and mitigation, and a mature SG will be capable of thwarting multiple, 
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coordinated attacks over a span of time. Enhanced security will reduce the impact of abnormal 

events on grid stability and integrity, ensuring the safety of society and the economy. 

Improved quality of power 

Designed and constructed over a half a century ago, existing grid infrastructure cannot meet 

the demands of today’s digital economy for reliable, high quality electric power. As part of the 

SG, new power quality standards will enable utilities to balance load sensitivity with power 

quality, and consumers will have the option of purchasing varying grades of power quality at 

different prices. Additionally, power quality events that originate at the transmission and 

distribution level of the grid will be minimized, and irregularities caused by certain consumer 

loads will be buffered to prevent propagation. 

Integration of a wide variety of generation options 

Wide variety of generation options will available in the SG at all voltage levels. Residential 

and commercial users will increasingly adopt distributed energy resources such as roof-top 

solar panels and advanced batteries as economically viable options for meeting on-site energy 

needs, and reducing their carbon footprint as good stewards of the environment. Improved 

grid-tie standards will enable interconnection at all voltage levels. And improved 

communications protocols and grid intelligence will allow distributed generation resources to 

seamlessly integrate with the grid in a “plug-and-play” fashion, where users can sell excess 

power back to the grid at peak-hours based on real-time market pricing. At the same time, 

large central power plants, including environmentally-friendly sources such as wind farms and 

advanced nuclear plants will continue to play a major role in the grid of the future. 

Interaction with energy markets 

The SG will enable energy markets to flourish, exposing and mitigating resource allocation 

inefficiencies. For instance, parameters such as total energy, capacity, congestion, and 

environmental impact may be most efficiently managed through the supply and demand 

interactions of markets. Market participation will be encouraged through increased 

transmission paths, aggregated DR initiatives and the rise of distributed energy resources as 

discussed above. Moreover, by reducing congestion, the SG also expands markets by bringing 

more buyers and sellers together. Real-time pricing will allow consumers to respond 

dynamically to price increases, spurring lower-cost solutions and technology development. For 

consumers wishing to reduce their carbon footprint, they will have the option to purchase new, 

clean energy products from a mix of renewable sources. 

Increased grid visibility 

The SG’s ubiquitous sensing infrastructure and backbone communications network will enable 

network operators to have greater grid observability into the grid’s operational status, 

particularly with respect to the historically “blind” spots of the distribution networks. Aided by 

advanced visualization tools, operators will be able to quickly and accurately identify critical 

information, allowing them to provide essential human oversight to automated processes. 

Optimized asset and resource management 

Increased asset life and optimized operations are a major objective for the SG. Advanced 

information technologies will provide a vast amount of data and information to be integrated 
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with existing enterprise-wide systems, giving utilities the power to significantly enhance their 

operations and maintenance processes. This same information will allow engineers to improve 

equipment design, and give network planners the data they need to improve their processes. 

1.3. Applications of battery energy storage system in smart  grid 

Operational changes of the grid, caused by restructuring of the electric utility industry and 

electricity storage technology advancements, have created an opportunity for storage systems 

to provide unique services to the evolving grid. Especially BESSs, due to the large number 

and variety of services they can provide, are powerful tools for the solution of some 

challenges that future grids will face. This consideration makes a BESS as a critical 

component of the future grids. The BESS can be applied for different services into the 

different level of power system chain to satisfy technical challenges and provide financial 

benefits. Some of these services are listed in the table 1.3 and discussed in the following 

sections [22, 34]. 

 

 

 

 

 

 

 

 

 

 

 

Table1.3: BESS services in the different levels of the grid [22]. 

1.3.1. Generation unit services  

Services which are applicable to the generation level of the grid are considered as bulk energy 

and ancillary services. 

Electric energy time-shift (Arbitrage)  

One of bulk energy services is electric energy time-shift which involves purchasing 

inexpensive electric energy, available during periods when prices or system marginal costs are 

low, to charge the BESS so that the stored energy can be used or sold at a later time when the 

price or costs are high. Alternatively, in the generation level from renewable sources such as 

wind or PV, storage can provide similar time-shift duty by storing excess energy production.  

In this service, both BESS variable operating cost (non-energy-related) and BESS efficiency 

are especially important. Electric energy time-shift involves many possible transactions with 

economic merit based on the difference between the cost to purchase, store, and discharge 

energy (discharge cost) and the benefit derived when the energy is discharged.  

 

Generation unit services 

 

Bulk energy services 

Electric energy time shift (Arbitrage) 

Ancillary services 

Regulation 

Spinning, non-spinning and supplemental reserves  

Frequency response 

Transmission unit services 
Transmission upgrade deferral 

Transmission congestion relief 

Distribution unit services 

Load levelling 

Distribution upgrade deferral  

Voltage support  

Customer unit services 

Power quality 

Power reliability 

Peak shaving 

Demand response 
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Regulation  

Regulation is one of the ancillary services of BESS that involves managing interchange flows 

with other control areas to match closely the scheduled interchange flows and momentary 

variations in demand within the control area. Regulation is used to reconcile momentary 

differences caused by fluctuations in generation and loads. It is used for damping that 

difference. Figure 1.4 shows an example that compares a load demand profile with and 

without regulation. The load demand is faced many variations without regulation (yellow line) 

while theses variations are controlled by regulation service (gray line) [22].  

Regulation service is applicable for generating units which are online and ready to increase or 

decrease power as needed and their output is increased when there is a momentary shortfall of 

generation to provide up regulation. Conversely, regulation resources’ output is reduced to 

provide down regulation when there is a momentary excess of generation.  

An important consideration in this case is that large thermal base-load generation units in 

regulation incur significant wear and tear when they provide variable power needed for 

regulation duty.  

 

 

Figure 1.4: Load demand with and without regulation [22]. 

Spinning, non-spinning and supplemental reserves  

When some portions of the normal electric supply resources become unavailable 

unexpectedly, then a reserve capacity is requested to provide continuous operation in the 

electric grid. Generally, reserves are at least as large as the single largest resource (e.g., the 

single largest generation unit) serving the system and reserve capacity is equivalent to 15% to 

20% of the normal electric supply capacity [22].  

 Spinning reserve (Synchronized): generation capacity that is online but unloaded and 

that can respond within about 10 minutes to compensate for generation or 

transmission outages.  

 Non-spinning reserve (Non-synchronized): generation capacity that may be offline or 

that comprises a block of curtailable and/or interruptible loads and that can be 

available within about 10 minutes.  
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 Supplemental reserve: generation that can pick up load within one hour. Its role is, 

essentially, a backup for spinning and non-spinning reserves. Backup supply may 

also be used as backup for commercial energy sales. Unlike spinning reserve 

capacity, supplemental reserve capacity is not synchronized with grid frequency. 

Supplemental reserves are used after all spinning reserves are online. Importantly for 

storage, generation resources used as reserve capacity must be online and operational 

(i.e., at part load). Unlike generation, in almost all circumstances, storage used for 

reserve capacity does not discharge at all; it just has to be ready and available to 

discharge when needed.  

Frequency response  

Another applicable service of BESS is frequency response that is very similar to regulation, 

described above, except it reacts to more general system needs in even shorter time periods of 

seconds to less than a minute when there is a sudden loss of a generation unit or a 

transmission line. The size of storage systems to be used in frequency response mode is 

proportional to the grid or balancing area in which they are needed. Generally, storage 

systems up to 20 MW and greater size can provide effective frequency response due to their 

fast action. However, location of the storage system within the grid with respect to other 

generation, transmission corridors and loads plays a crucial role in the effectiveness as a 

frequency response resource. 

1.3.2. Transmission unit services  

In case of transmission unit services, transmission upgrade deferral and transmission 

congestion relief are popular services which are explained in the following lines: 

Transmission upgrade deferral  

This service involves delaying, in some cases avoiding entirely, utility investments in 

transmission system upgrades by using relatively small amounts of storage. Let us consider a 

transmission system with peak electric loading that is approaching the system’s load-carrying 

capacity (design rating). In some cases, installing a small amount of energy storage 

downstream from the nearly overloaded transmission node could defer the need for the 

upgrade for a few years [22].  

The key consideration is that a small amount of storage can be used to provide enough 

incremental capacity to defer the need for a large lump investment in transmission equipment. 

Doing so reduces overall cost to ratepayers, improves utility asset utilization, allows use of 

the capital for other projects, and reduces the financial risk associated with lump investments.  

Notably, for most nodes within a transmission system, the highest loads occur on just a few 

days per year, for just a few hours per year. Often, the highest annual load occurs on one 

specific day with a peak somewhat higher than any other day. One important implication is 

that storage used for this application can provide significant benefits with limited or no need 

to discharge. Given that most modular storage has a high variable operating cost, this may be 

especially attractive in such instances.  

Although the emphasis for this application is on transmission upgrade deferral, a similar 

rationale applies to transmission equipment life extension. That is, if storage use reduces 

loading on existing equipment that is nearing its expected life, the result could be to extend 
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the life of the existing equipment. This may be especially compelling for transmission 

equipment that includes aging transformers and underground power cables.  

Transmission congestion relief 

Transmission congestion occurs when available, least-cost energy cannot be delivered to all or 

some loads because transmission facilities are not adequate to deliver that energy. When 

transmission capacity additions do not keep pace with the growth in peak electric demand, the 

transmission systems become congested. Thus during periods of peak demand, the need and 

cost for more transmission capacity increases along with transmission access charges. 

Transmission congestion may also lead to increased congestion costs or locational marginal 

pricing (LMP) for wholesale electricity at certain transmission nodes.  

Electricity storage can be used to avoid congestion-related costs and charges, especially if the 

costs become onerous due to significant transmission system congestion. In this service, 

storage systems would be installed at locations that are electrically downstream from the 

congested portion of the transmission system. Energy would be stored when there is no 

transmission congestion, and it would be discharged (during peak demand periods) to reduce 

peak transmission capacity requirements.  

1.3.3. Distribution unit services 

Among several services of BESS for different parts of the power system, load leveling, 

voltage support and distribution upgrade deferral are applied into the distribution level of the 

grid. These services and their technical and economic benefits are presented in the following. 

Load leveling 

Load leveling is a service addressed to the distribution utility for reducing the fluctuations of 

the load demand along the day. Load leveling can be achieved by using ‘demand side’ 

measures which reduce the peak demand or by using storage systems able to store energy 

during light load hours and discharge it during peak load hours. In this case, the installation of 

a BESS at the secondary side of the transformer of a distribution substation allows for a 

minimization of the difference between the mean and peak power requests. One of the main 

advantages for the distribution system operator based on using BESS is related to avoid new 

investments in transmission and distribution facilities [35]. 

Distribution upgrade deferral and voltage support 

Distribution upgrade deferral involves using storage to delay or avoid investments that would 

otherwise be necessary to maintain adequate distribution capacity to serve all load 

requirements. The upgrade deferral could be a replacement of an aging or over-stressed 

existing distribution transformer at a substation or reconductoring distribution lines with 

heavier wire. A storage system allows not only deferring the upgrade decision point, but also 

allows time to evaluate the certainty that planned load growth will materialize, which could be 

a two-year to three-year window. Notably, for most nodes within a distribution system, the 

highest loads occur on just a few days per year, for just a few hours per day. Often, the 

highest annual load occurs on one specific day with a peak somewhat higher than any other 

day. One important implication is that storage used for this application can provide significant 

benefits with limited or no need to discharge.  



Battery Energy Storage Systems and Smart Grids 

21 

A storage system that is used for upgrade deferral could simultaneously provide voltage 

support on the distribution lines. Utilities regulate voltage within specified limits by tap 

changing regulators at the distribution substation and by switching capacitors to follow load 

changes. This is especially important on long, radial lines where a large load such as an arc 

welder or a residential PV system may be causing unacceptable voltage excursions on 

neighboring customers. These voltage fluctuations can be effectively damped with minimal 

draw of real power from the storage system [22].  

1.3.4. End-use customer unit services 

With reference to the end-use costumers, various services of BESS, including power quality, 

power reliability, peak shaving and cost management, can provide advantages in terms of 

power quality and reliability improvement as well as reduction of electricity bill costs for the 

end-use costumers. Some of these services and their advantages are reported as follows [22, 

36]. 

Power quality 

The electric power quality service involves using storage to protect customer on-site loads 

downstream (from storage) against short-duration events that affect the quality of power 

delivered to the customer’s loads. The use of BESSs can enhance solutions also to 

compensate harmonic disturbances. 

Power reliability  

A storage system can effectively support customer loads when there is a total loss of power 

from the source utility. This support requires the storage system and customer loads to island 

during the utility outage and resynchronize with the utility when power is restored. The 

storage system can be owned by the customer and is under customer control at all times. An 

alternate ownership scenario could be that the storage system is owned by the utility and is 

treated as a demand-side, dispatchable resource that serves the customer needs as well as 

being available to the utility as a demand reduction resource. 

Peak shaving 

End-user peak shaving as an application of BESS refers to industrial customers that can install 

a BESS to discharge power during peak power periods and charge during low demand periods 

[36-38]. In particular, BESS can provide advantages in terms of reduction of electricity bill 

costs.  In fact, it has to be evidenced that power companies charge some high-consumption 

customers (e.g. industrial customers) not just for the amount of energy used, that is the Time 

of Use (TOU) energy charge expressed in monetary units (m.u.) per kWh, but also for the 

maximum amount requested overtime (typically the billing period is one month), that is the 

peak demand charge expressed in m.u. per kW. This last  term can assume significant values 

as its per-unit cost may be on the order of 100 times the per-unit cost for total usage (e.g. in 

USA, companies quote rates of about 6.40 $cents/kWh as “energy  charge” and 6.50 $/kW as 

“demand charge” [39, 40]). Recently, efforts have been made for providing pricing schemes 

that should optimize the economic benefits of both consumers and producers [31, 41]. The 

more general problem of the reduction of bill cost due to the BESS presence will be analyzed 

in more details in the next subsection when we dealt with the DR. 



Battery Energy Storage Systems and Smart Grids 

22 

Demand response  

The resulting mismatches in supply and demand have impacts on both the grid’s operators 

and the end-use customers. Two important consequences are the risk of a threat to the 

integrity of the grid over very large areas and the increase of energy prices in electricity 

markets during peak demand periods [42, 43].  Demand response (DR) is an interesting 

solution that has been used to face these challenges. In fact, the grid’s operators can benefit 

from DR in order to guarantee the integrity of the grid, while end consumers are interested in 

applying DR in order to reduce their costs for electricity.  

With reference to the grid’s operators, benefits are related to the capability of DR to lower the 

likelihood and consequences of forced outages. This is mainly related to the great flexibility 

that can be obtained by applying DR, which has the capability of providing additional 

capacity more quickly and efficiently than a new supply could [39]. Regarding end 

consumers, financial benefits can be achieved through cost savings and incentive payments 

earned by adjusting their electricity demand in response to time-varying electricity rates or 

incentive-based programs. Price-based demand response refers to changes in usage by 

customers in response to changes in the electricity prices [31, 42]. Time varying energy prices 

can be classified in two broad categories: static and dynamic time-varying prices [44]. 

Dynamic pricing is interesting for regulators and utilities when it has the good potential for 

lowering energy costs for the society [45, 46]. The most natural or the most extreme approach 

to price-responsive demand is Real-Time Pricing of electricity (RTP) which charges different 

retail electricity prices for different hours of the day and for different days. While RTP has not 

been widely accepted or implemented, TOU pricing has been used extensively. Under TOU, 

the retail price varies in a preset way within certain blocks of time. A recent innovation in 

time-varying pricing is Critical Peak Pricing (CPP), which has some attributes of RTP and 

some of interruptible programs. CPP programs usually start with a TOU rate structure, but then 

they add one more rate that applies to “critical” peak hours, which the utility can call on short 

notice. Another pricing approach is Energy/Demand Charge (EDC) tariffs which involves a 

structure directly linked to both the consumed energy and the peak load [31, 47]. Eventually, 

dynamic pricing tariff that reflect the day-ahead power market pricing can be also considered. 

This type of tariff varies on the hourly base and is usually referred to Market Price (MP) [48]. 

All of above mentioned approaches for dynamic pricing and their comparisons are explained in 

more details in the following sections. 

Real time pricing: defines a system that charges different retail electricity prices for different 

hours of the day and for different days. RTP introduces economic incentives by allowing the 

retail price to change at fixed time intervals, usually hourly. The RTP for each hour can be 

announced at the beginning of (or minutes before) the hour or it can be announced in advance 

[31]. An example of RTP is provided in figure 1.5 [49]. 

RTP programs currently in effect typically announce the prices for all hours of a day on the 

previous day. Obviously, a longer lag time between the price announcement and the price 

implementation will result in prices that less accurately reflect the actual real time 

supply/demand situation in the market. Additionally, the longer lag time means that the prices 

will be less volatile than, for instance, the real time wholesale electricity price. 
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Time of use pricing: under TOU, the retail price varies in a preset way within certain blocks of 

time (figure 1.6). As an example, Table 1.4 reports the certain blocks of time for a typical TOU 

pricing scheme where the blocks of time are different for the summer and winter. For the 

summer three certain blocks of time are introduced which are on peak, part peak and off peak- 

 
Figure 1.5: Real-time pricing. 

while the number of blocks are decreased to two blocks, part peak and off peak, for the winter. 

Tariffs for different time periods in the different seasons are presented in the table 1.5 [26]. For 

example in the summer tariff, the price for on peak time which starts from 12.00 noon to 6.00 

p.m. is 542.04 ($/MWh) where in the winter the maximum price rate is 161.96 ($/MWh). The 

rates for each time block are adjusted infrequently, typically only two or three times per year. 

Yet, RTP with a long lag time between price and implementation is approximately time-of-use 

pricing. TOU programs set prices months in advance and therefore logically cannot capture 

any of the shorter-term variation in supply/demand balance. 

 

Figure1.6: Time of use pricing (summer tariff). 

Critical peak pricing: one of popular variant of dynamic pricing is critical peak pricing (CPP), 

in which prices during the top 40-150 hours of the year rise to previously specified levels 

designed to recover the full capacity and energy cost of power plants that run primarily during 

those hours. Prices are lower than existing rates during the other hours of the year [46]. CPP 

has some attributes of RTP and some of interruptible programs. CPP programs usually start 
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with a TOU rate structure, but then they add one more rate that applies to “critical” peak hours, 

which the utility can call on short notice. CPP is a clear improvement on TOU with demand 

charges, because the additional charges are based on consumption when the system is actually 

constrained, rather than when the particular customer’s demand peaks. The demand charge can 

be assumed equal to 100 times greater than the energy charge (i.e. 100 m.u.) [39]. 

Summer tariff 

On peak 12:00 noon to 6:00 p.m. 

Part peak 8:30 a.m. to 12:00 noon and 6:00 p.m. to 9:30 p.m. 

Off peak 9:30 p.m. to 8:30 a.m. 

Winter tariff 

Part Peak 8:30 a.m. to 9:30 p.m. 

Off Peak 9:30 p.m. to 8:30 a.m. 

Table 1.4: Time of use tariff periods. 

 

TOU periods 

 

Summer tariff ($/MWh) 

 

Winter tariff ($/MWh) 

On peak 542.04 

161.96 

Part peak 252.90 

Off peak 142.54 132.54 

Table 1.5: Time of use tariff prices. 

Energy demand charge: Because TOU rates don’t capture the price variation within a price 

block, TOU pricing is often combined with a separate charge for peak usage. These “demand 

charges” are a price per kilowatt for the customer’s highest usage during the billing period 

(usually a month). Demand charges are based on the customer’s maximum usage (during a 15 

minute interval) regardless of whether that usage occurs at a time when the system as a whole 

has a tight supply/demand balance or not. In addition, along with all of mentioned price 

schemes, another possible scheme is energy/demand charge (EDC) tariff. EDC tariff has a 

structure which is directly linked to both the consumed energy and the peak load [47]. This 

tariff can involve also energy prices varying hourly taking into account the peak value of the 

power [50]. 
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Chapter 2: Optimal Operation Strategies of Battery Energy 

Storage Systems 

As it is discussed in the first chapter, BESSs can provide several benefits based on different 

services that can be furnished in different levels of the SG. Generation systems, transmission 

systems, distribution systems and end-use customers are all involved in the entire value chain 

of the power system where the BESSs benefits can be identified.  

In this chapter, optimal operation strategies of BESS with the aim of furnishing different 

services to the distribution systems and end-use customers are proposed. 

Among different services of BESS, a load leveling service in order to avoid new investments 

in transmission and distribution facilities is firstly considered. Then, DR service with the aim 

of savings on the electricity bill cost under the two different dynamic pricing approaches is 

practically performed. Finally, in a general case study, an optimal scheduling of a µG is 

presented. 

Different advanced optimal operation strategies of BESS to furnish the above mentioned 

services are formulated, solved and applied by relying on specific objective functions and 

technical constraints in the frame single objective optimization model. In particular, on the 

basis of single objective optimization model, advanced optimal operation strategies for load 

leveling, demand response and microgrid scheduling are investigated.  

Generally, a single objective optimization problem involves an objective function to be 

minimized and a number of equality/inequality constraints to be satisfied. It can be 

mathematically formulated as follows [1]:  

)(fmin obj x            (2.1) 

subject to: 

icj

eck

n,...,j,)(h

n,...,k,)(g

10

10





x

x
     (2.2) 

where x is the vector of the optimization variables of the problem, fobj is the objective 

function, gk and hj are the constraints and nec (nic) is the number of equality (inequality) 

constraints. 

With reference to optimization problem model, important classes of optimization problems 

are linear and non-linear problems. In linear optimization problems the objective and all 

constraints are linear. Non-linear optimization is the term used to describe an optimization 

problem when the objective and/or the constraints are not linear [1]. 

Proposed single objective optimal operation strategies of BESS to furnish specific services in 

the grid including problem formulations, solving algorithms and numerical applications are 

separately reported in the following sections. 

Obtained results of proposed strategies in numerical applications demonstrate technical and 

economic benefits that can be derived from the installation of BESS. 
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2.1.  An advanced optimal operation strategy for load leveling 

Load leveling is a service addressed to the distribution utility for reducing the fluctuations of 

the load demand along the day. This can be achieved by using demand side measures which 

reduce the peak demand or by using storage systems able to store energy during light load 

hours and discharge it during peak load hours. In this case, the installation of a BESS at the 

secondary side of the transformer of a distribution substation allows for a minimization of the 

difference between the mean and peak power requests. One of the main advantages for the 

distribution system operator is related to avoid new investments in transmission and 

distribution facilities [2-6].  

2.1.1.  State of the art 

In the relevant literature several proposals have appeared dealing with BESS application for 

load leveling [7-13]. In [7] a BESS scheduling procedure was proposed, which provides a 

daily pattern that optimizes the load factor (i.e. the ratio of the mean and peak values of the 

load demand) with the aim of determining the optimal installation site and capacity of the 

BESS. In [8] an economic dispatch procedure is applied to BESSs for maximizing the fuel-

cost savings of thermal plants and performing load leveling. In [9] an optimal BESS 

charge/discharge strategy is proposed to reduce the penalties paid to the transmission network 

for unforeseen demand beyond a maximum value at a metering point of a distribution 

substation. In [10] a load leveling control procedure is proposed to furnish both an active and 

a reactive power reference signals to the BESS during the discharging stage. Reference [11] 

proposed a simple, fast, and effective algorithm for finding optimal charge/discharge intervals 

of BESS and their associated rates without the need of processor intensive techniques often 

required by most optimization techniques. The core of the method is based on reshaping the 

aggregated load profile seen from the main distribution substation such that it gets close to the 

average load profile during a utilization period. In [12] load leveling for reducing 

transmission and distribution (T&D) losses based on shifting a fraction of the load from peak 

hours to off-peak hours through BESS in order to decrease the net resistive losses is proposed. 

In [13], an optimal operating strategy of BESS based on dynamic programming is proposed 

which provides the use of BESS in conjunction with photovoltaic (PV) generation units in 

order to level the load.  

2.1.2.  Proposed strategy 

In this thesis, an innovative two-step procedure (day-ahead scheduling and very short time 

predictive control) is proposed which optimally controls a BESS connected to a distribution 

substation in order to perform load leveling (figure 2.1). Proposed BESS control strategy 

operates to provide energy during peak load hours and store energy during low demand hours. 

In the first step of the proposed strategy (day-ahead scheduling), starting from the day-ahead 

forecast of the active power at the distribution substation, an optimal profile of the power 

imported from the transmission network is obtained performing a day-ahead scheduling of the 

BESS power aimed at leveling the above profile. 

In the second step (very short time predictive control), starting from a new forecast  of the 

active power at the distribution substation, an optimal control of the BESS power is effected 

with the aim of approaching the actual power profile to the forecasted profile obtained in the 

first step.  
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Figure 2.1: Grid architecture. 

Adequate constraints are considered in both steps of the procedure in order to optimize the 

charge/discharge cycles and maximize the battery lifetime. In particular, the charge/discharge 

efficiency, DOD, the ramp rate and the number of charge/discharge daily cycles of the BESS 

are properly considered [14-16]. The load forecast is resulted by using a Feed Forward Neural 

Network (FFNN) which was considered particularly suitable for both day-ahead and real-time 

forecasts [17, 18]. 

It should be noted that two-step procedures based on day-ahead scheduling and very short 

time predictive control were traditionally used for solving important problems in power 

systems [19]. A proper coordination between the steps seems to be also a promising approach 

in the SG context where the need to integrate among distributed generation, loads, storage 

systems and market operation makes grid management a complex issue [20]. Moreover, two-

step procedures referring to the optimal control of a BESS were proposed in [14, 21] but they 

did not refer to the problem of load leveling. In this thesis, according to the following 

considerable reasons, the two-step procedure control strategy in order to furnish a load 

leveling service is proposed: 

 Day-ahead scheduling (i) allows a more detailed formulation of the optimization 

model thanks to the absence of computational efforts constraints; (ii) makes available 

the expected profile of the substation power that should be imported during the next 

day from the transmission network, whose knowledge is of great importance in 

helping the transmission system operator to optimally operate the system [22].  

 Very short time predictive control (i) is particularly needed when dealing with 

variable loads and RESs (such as photovoltaic and wind sources) whose values can 

be highly variable and hard to predict with high accuracy in the day-ahead; and (ii) 

requires models whose solution involves low computational effort, because the 

optimization problem has to be rapidly solved several times a day. 

It is also worth noting that the two steps of the procedure can be used separately for solving 

problems related to scheduling (e.g. unit commitment) or real-time operations (e.g. on-line 
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power dispatch or real time balancing market). Moreover, by shifting into the industrial 

customer’s point of view, the proposed procedure can be easily applied for performing the DR 

services which are also presented in subsections 2.1.2 and 2.1.3. 

2.1.3.  Problem formulation and solving procedure 

Let us consider the system shown in figure 2.1, where a distribution substation with HV/MV 

transformers connects the HV transmission grid to some MV feeders (for the sake of 

conciseness, in figure 2.1 only one feeder is shown); the feeders supply MV loads, MV/LV 

distribution transformers and distributed generation units. A BESS is connected to the MV 

bus of the HV/MV transformers. 

The control center performs an optimal strategy consisting of BESS charging/discharging 

power control in order to level the power exchanged with the HV grid
1
. We propose to 

perform the optimal strategy on the basis of following two multi-period optimization steps: 

 Day-ahead scheduling: that identifies an optimal profile of the substation power 

whose peak value has been minimized; this profile is obtained thanks to an optimal 

day-ahead scheduling of the BESS charging/discharging powers. 

 Very short time predictive control: that predicts a few minutes ahead BESS 

charging/discharging power with the aim of approaching the substation power to the 

optimal profile obtained in the day-ahead scheduling. 

The figure 2.2 provides a flowchart of the two-step procedure. The multi-period optimization 

problems are discussed in the next subsections. In both steps, a single-objective constrained 

minimization problem is formulated as (2.1). 

 

Figure 2.2: Flowchart of the two-step procedure. 

The day is split in time intervals of length ∆t. During each time interval, the feeder power is 

assumed constant and equal to its mean value. The choice of the time interval length depends 

on a compromise between accuracy and computational efforts. In order to maximize the 

BESS lifetime, a control on the number of charge/discharge cycles is imposed. Here, without 

loss of generality, this number is limited to one cycle/day and divide the day into two 

contiguous time periods: the discharging period and the charging period. Moreover, for the 

sake of clarity it is assumed that the first time interval is the beginning of the discharging 

                                  
1 Hereinafter the difference between the load demand and DG production will be referred to as “feeder power.” The total power of the 

substation that takes into account both feeder power and BESS power will be referred to as “substation power.” 
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period and the last time interval is the end of the charging period. Thus, the time intervals of 

the day refer to the indices  tch

fin

ch

in

dis

fin

dis

in nn,...,n,n,...,ni  1 , where dis

inn  and dis

finn   ( ch

inn and ch

finn ) 

are the indices associated to the first and last time intervals, respectively, in which the BESS 

is allowed to discharge (charge). 

Day-ahead scheduling 

As previously evidenced, the day-ahead scheduling is performed once a day for the next day, 

with the aim of identifying an optimized profile of the substation power imported from the 

transmission network in the next day. 

Input data of the scheduling are the BESS state of charge at the beginning of the day and the 

forecasted daily profile of the feeder power. The BESS state of charge at the beginning of the 

day is the output of the procedure applied in the preceding day while the forecasted daily 

profile of the feeder power is obtained through a FFNN trained by historical data. 

Output of the scheduling is the profile of the substation power in the next day, which is the 

input of the very short time predictive control algorithm (figure 2.2). Hereinafter, this quantity 

will be referred to as day-ahead forecasted substation power. 

The day-ahead scheduling is based on the solution of a linear multi-period optimization 

problem. The linear optimization problem aims to minimize the upper value of the substation 

power. This is obtained by considering a theoretical leveling value (Plev) (figure 2.3) and 

assuming that when the requested power is greater than Plev the BESS can discharge the stored 

energy, and when the requested power is lower than Plev the BESS can charge. In this way, the 

expected daily profile of the substation power is leveled.  

 

Figure 2.3: Load leveling schematic view. 

Then, the objective function (2.1) to be minimized is: 

lev

da

obj Pf         (2.3) 

Equality constraints refer to the BESS state of charge at the beginning of the day and at the 

end of the charging stage. In more detail, the BESS state of charge at the end of the charging 

stage has to reach a specified value: 
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where da

i,b
P  is the day-ahead BESS power at time interval i, ch  ( dis ) is the BESS efficiency 

during the charge (discharge) mode, sp

finC is the specified value of the BESS charge when the 

charge ends and sp

inC  is the BESS state of charge at the beginning of the day. In a typical day 

the two states of charge ( sp

inC and sp

finC ) should have the same value. However, due to particular 

events, the expected load demand can be very different from the forecasted one and, 

consequently, different values for the states of charge could be suitable. Obviously, sp

inC and 

sp

finC  cannot exceed the battery size.  

The value of 
ch

inn can be either fixed or dynamically evaluated. In the first case an opportune 

time of the day can be chosen on the basis of specific needs of the application. In the second 

case, the multi-period optimization is repeatedly performed until the value of 
ch

inn , 

corresponding to the minimum value of Plev, is found. Also a genetic algorithm (GA) can be 

used for evaluating,
ch

inn , which is a discrete variable.  

The inequality constraints impose that the BESS can have only one charge/discharge 

cycle/day: 

 ch

fin

ch

in

da

i,b
max n,...,ni,PP  0     (2.5) 

 ch

fin

ch

inmax

da

i,b
n,...,ni,PP 0    (2.6) 

where Pmax is the BESS maximum charge/discharge power. By imposing Pmax equal to the 

BESS power rate, the ramp rate constraint could be also considered [15]. 

A further inequality constraint imposes that the state of charge cannot be lower than a 

minimum value (based on the admissible depth of discharge) during the discharge stage, that 

is
2
: 
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where minC  is the admissible minimum value of the state of charge.  

Finally, an inequality constraint is imposed on the day-ahead forecasted substation power (
da

i,sub
P ) which has to be bounded by the minimized leveling power ( levP ); this result in: 

 tlev

da

i,b

da

i,l

da

i,sub
n,...,i,PPPP 1       (2.8) 

where 
da

i,l
P is the day-ahead forecasted feeder power. 

With reference to the feeder power forecasting, a FFNN with delay lines and one hidden layer 

is used to implement the NARX model [17, 18]. To have proper forecasting, different network 

                                  
2 It should be noted that a further inequality constraint should be included to impose that the state of charge cannot exceed the size of the 

battery during the charging stage. However, this constraint is intrinsically satisfied if constraints (2.4) and (2.5) are considered [23]. 
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configurations were tried by varying the number of hidden neurons and the number of delays 

as well as various percentages of samples for training, validation and test. 

Very short time predictive control 

The very short time predictive control procedure is repeatedly performed at all the time 

intervals of the day. The main output of the procedure is the BESS charge/discharge power 

for each control interval  tn,...,i 1 . Aim of the procedure is to minimize the difference 

between the substation power calculated at this step and that evaluated in the previous step 

(i.e. the day-ahead forecasted substation power).  

Input data of the procedure performed at each time interval i-1 are the forecasts of the feeder 

power (output of a FFNN) from the i
th

 time interval to the last time interval of the day, the 

day-ahead forecasted substation power values obtained in the day-ahead scheduling, and the 

BESS state of charge at the beginning of the i
th

 time interval (output of the optimization 

performed in the previous time interval). 

Outputs of the procedure are the charge/discharge power and the state of charge at the end of 

the i
th

 interval (input for the next time interval). 

The very short time predictive procedure is based on the solution of a non-linear multi-period 

optimization problem. The objective function (2.1) of the multi-period optimization for the i
th

 

control interval is: 

 



tn

ij

da

j,sub

vst

j,sub

vst

i,obj PPf
2

     (2.9) 

where vst

j,subP  is the substation power calculated by the very short time predictive control 

procedure (hereinafter referred as very short time forecasted substation power). 

The first equality constraint to be satisfied refers to the power balance at each time interval: 

   t

vst

j,sub

vst

j,b

vst

j,l
n,...,ij,PPP     (2.10) 

where 
vst

j,b
P  is the very short time predictive BESS power and 

vst

j,l
P is very short time forecast 

of the feeder power, both at time interval j.  

Moreover, relationship (2.4) is modified according to the considered control interval: when 

the control interval falls into the discharging stage it is: 

 dis

fin

dis

in

sp

fin

n

nj

vst

ch

n

ij

vst

dis

i n,...,ni,CPtPtC
t

ch

in

j,b

dis
fin

j,b



 



1
  (2.11) 

where 
iC  is the BESS state of the charge at the beginning of the i

th
 time interval; when the 

control interval falls into the charging stage, it is: 

 ch

fin

ch

in

sp

fin

n

ij

vst

chi n,...,ni,CPtC
t

j,b
 



   (2.12) 
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The inequality constraints (2.5) and (2.6) are still considered, while constraint (2.7) is 

modified as follows: 

 dis

fin

dis

inmin

n

ij

vst

dis

i n,...,ni,CPtC

dis
fin

j,b



 



1
 (2.13) 

Regarding the feeder power forecasting, the same FFNN configuration of the day-ahead 

forecast can be used. 

2.1.4.  Numerical application 

In this section, the proposed two-step procedure is applied to a distribution substation 

supplying both commercial and domestic loads. A one-year period of substation power 

measurements was available in the form of mean values evaluated at time steps of ∆t =10 

min. In this application, to perform the load leveling service, a 6 MW-5 hours BESS is 

supposed to be connected to the secondary side of the transformer. The BESS efficiency is 

considered 90% in charging and 93% in discharging operations, and the admissible DOD is 

80% [24]. In order to maximize the BESS lifetime and to avoid capacity reduction, charge and 

discharge power cannot exceed the BESS rate [15]. 

In the most general case, the feeder power forecasting depends upon factors such as substation 

power values and weather conditions (temperature, humidity, pressure, etc.). However, in this 

application only the substation power historical data were available and were selected as input 

and target to train the FFNN. Eleven neurons and four delays were chosen for the FFNN 

configuration. In all the experiment days, a mean absolute percentage error (MAPE) resulted 

whose values were within 1.0-8.7%. 

The optimal two-step strategy shown in previous section was applied to several days. In the 

following subsections, for the sake of conciseness, only the results will be shown with 

reference to a single day of the year, in particular, December 1, 2010. Similar results were 

obtained when considering other days.  

Day-ahead scheduling results 

With the aim of evaluating the accuracy of the forecast, in figure 2.4 the day ahead forecasted 

feeder power profile and the values of the actual measurements are reported, with reference to 

a time interval of 10 minutes.  

 

Figure 2.4: Day-ahead forecasting (feeder power). 

6 10 14 18 22 2 6
0

2

4

6

8

10

12

Hour

F
ee

d
er

 p
o

w
er

 (
M

W
)

 

 

Day-ahead forecasting

Actual data



Optimal Operation Strategies of Battery Energy Storage Systems 

37 

MAPE resulted in 5.20% with a maximum percentage error of about 14%. In figure 2.5 the 

forecasted feeder power and the forecasted substation power are reported. Obviously, in cases 

of absence of BESS, these power profiles would assume the same values. The leveling value 

of the power requested to the transmission network resulted equal to 8.74 MW, whereas the 

maximum value of the forecasted feeder power was 11.52 MW.  

In order to verify the satisfaction of the BESS constraints, the charging/discharging pattern 

resulted from the day ahead procedure is shown in figure 2.6, whereas in figure 2.7 the energy 

stored during the day is reported. The start of the battery-charging period resulted at 9:40 p.m. 

 

Figure 2.5: Day-ahead scheduling (feeder and substation powers). 

 

 

Figure 2.6: Day-ahead scheduling (BESS power). 
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 Figure 2.7: Day-ahead scheduling (BESS energy). 

Very short time predictive control results 

Very short time predictive control procedure was applied to all the time intervals of the day. 

The MAPE between power forecasted and actual measured values is about 3%, while the 

maximum percentage error resulted 12%. In order to reduce the effect of the maximum 

forecasting error on the load leveling procedure, the BESS reference signals were calculated 

every 20 minutes instead of every 10 minutes. It is calculated based on average value of the 

two very short time optimized BESS powers at time intervals i and i+1. For example, when 

the forecasted powers for time intervals i and i+1 are 5 kW and 10 kW, respectively, then 

average forecasted power of the two sequential time intervals will be 7.5 kW. More accurate 

BESS reference signals were experimented in this way.  

Figure 2.8 shows the day-ahead forecasted (output of the day ahead scheduling) and the very 

short time predictive control forecasted substation power (output of the very short time 

predictive procedure). In order to verify the satisfaction of the constraints, the resulting 

charging/discharging patterns are shown in figure 2.9 whereas the energy stored during the 

day is reported in figure 2.10. To verify the effectiveness of the proposed procedure, in figure 

2.11 the very short term predictive forecasted substation power profile is compared with its 

actual profiles with and without BESS (the power without BESS is equal to the actual profile 

of the actual feeder power). 

 
 Figure 2.8: Very short term predictive control (substation power). 
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Figure 2.9: Very short term predictive control (BESS power). 

 

Figure 2.10: Very short term predictive control (BESS energy). 

 

Figure 2.11: Very short term predictive control (substation power). 

In table 2.1 the peak value and the load factor of the substation power without BESS and with 

BESS (day-ahead forecasting, real-time forecasting and actual values) are reported.  
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Case study Peak value (MW) Load factor 

Without BESS 11.52 0.730 

With BESS, Day-ahead 8.74 0.981 

With BESS, Very short time 9.07 0.941 

With BESS, Actual values 9.72 0.888 

Table 2.1: Peak value and load factor of the substation power with and without BESS. 

The analysis of the results reported in figure 2.11 and table 2.1 clearly reveals: (i) a decrement 

of the peak power of about 15%; (ii) an improvement of the load factor of about 20% (the 

ideal load factor is 1); (iii) a not negligible influence of the feeder power forecasting errors 

both in day-ahead and in real-time stages; and (iv) that the negative influence of the 

forecasting errors is concentrated at only a few points around the leveling power. Then, the 

proposed two-step procedure shows clear good performance and further improvements are 

expected in the presence of most performance forecasting of feeder power. 

2.2. An advanced optimal operation strategy for demand response under 

real time      pricing 

DR is defined as changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over time, or to 

incentive payments designed to induce lower electricity use at times of high wholesale market 

prices or when system reliability is under the risk [25]. It is offered by utilities and can be 

classified as: 

 Price-based: gives customers time varying rates that reflect the value and cost of 

electricity in different time periods such as RTP, TOU, CPP and EDC. With this 

information, customers tend to use less electricity at times when electricity prices are 

high. 

 Incentive-based: gives participating customers incentives to reduce load during the 

peak periods. The incentives may be in the form of explicit bill credits or payments 

for pre-contracted or measured load reductions. Customer enrollment and response 

are voluntary. 

In the frame of price-based DR program, several electricity bill schemes can be applied in 

practical cases. Possible schemes are TOU, RTP, CPP and EDC tariffs which are described in 

the first chapter of this thesis in more details [25]. 

This subsection focused on DR service under the RTP electricity bill scheme which gives 

customers time varying rates that reflect the value and cost of electricity in different time 

periods. It is worth noting that, while DR can be easily applied to residential and commercial 

users, this application can have some limitations for industrial facilities since industrial 

production cannot deal with time shifting or interruptions easily. Then, installation of storage 

systems can be an interesting solution to furnish DR service. BESSs can be ideal candidate to 

perform DR, specifically in case of industrial loads, when they can provide the possibility of 

absorbing energy from the grid in the charging condition (i.e., load mode) and of supplying the 
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loads in discharging operating conditions (i.e., generator mode) and have the ability to change 

their operating condition very quickly [26, 27].  

2.2.1.  State of the art 

The recent technical literature includes a wide range of work related to DR under different 

pricing tariffs, in particular DR under RTP. [28] develops a model for DR by utilizing 

consumer behavior modeling considering different scenarios and levels of consumer 

rationality. Consumer behavior modeling has been done by developing extensive demand-price 

elasticity matrices for different types of consumers. An optimal load scheduling strategy for 

participating industrial loads is formulated in [29] in a scenario in which DR is implemented 

through RTP scheme. The objective function is the minimization of energy cost (linear 

function of consumption over periods) with a set of linear constraints such as amount of 

electrical energy required to reach production target, bounds on energy consumption in an 

hour. More details about the RTP with the possible revenues for their implementation are 

discussed in [30, 31]. [30] describes how retail electricity demand can be made price-

responsive through either dynamic, time-based retail pricing or DR programs offered by 

utilities. [31] investigate the difference of the consumer response, depending on what particular 

type of RTP is used. DR service for residential applications is considered in [32-34]. Reference 

[32] proposed DR optimization for smart home scheduling under the RTP. Authors in [33] 

proposed a method of scheduling power usage by various appliances in a home in a scenario in 

which RTP signals are sent from the utility to the customers. [34] presented the real-time price-

based DR management for residential appliances via stochastic optimization and robust 

optimization approaches. 

2.2.2.  Proposed strategy 

A real time control strategy of BESSs in the frame of dynamically varying energy pricing is 

proposed in this subsection. The battery, which is supposed to operate in a large industrial 

facility, is managed in order to reduce the daily costs sustained by the industry owner for the 

energy consumption. Different configurations of the battery system (i.e., one and more battery 

banks in a multi-battery configuration) are taken into account and an optimization model is 

formulated and solved including technical constraints that guarantee the adequate storage-

system behavior. The RTP tariff scheme is considered. A numerical application based on real 

data of an industrial facility located in the South of Italy demonstrates the effectiveness and 

advantages of the proposed strategy. 

2.2.3.  Problem formulation and solving procedure 

With reference to the most general case, this subsection presents an optimal operation strategy 

for the very short time predictive control of the charging/discharging power of a multi-battery 

system to be installed in an industrial facility. The multi-battery system includes nb battery 

banks (nb=1 corresponds to the case of one battery system). Each battery bank can operate in 

charging and discharging modes independently of the operating mode of the other banks. The 

strategy objective is the minimization of the costs sustained by the industrial owner for the 

energy consumption and is tailored for the RTP tariff scheme; batteries technical constraints 

and maximization of their lifetime are taken into account. The proposed strategy is based on a 
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multi-period single-objective optimization that minimizes a linear cost function on the basis of 

a 24 hour forecasting of load demand and RTP.  

The 24 hours are split in nt time intervals of length ∆t. During each time interval, the load and 

battery powers are assumed constant. In order to maximize the battery lifetime, a control on the 

number of charge/discharge cycles is imposed to each battery bank and it is limited to one 

cycle/day. Further, in the procedure also the charge/discharge efficiency is taken into 

consideration. 

The real time procedure is repeated at each i
th

 time interval of all the time intervals of the 

optimization period (24 hours) and it furnishes the optimal profile for the battery 

charging/discharging powers of the next 24 hours that minimizes the objective function 

satisfying the constraints along all the optimization period. Obviously, only the output results 

(battery powers) obtained for the first next (i
th

 + 1) time interval are used as the reference 

signals for all converters interfacing the batteries.  

Main input data of the procedure are the batteries’ state of charge at the beginning of the i
th

+1 

time interval (output of the procedure at the previous step), the forecasted profile of the facility 

load power and the price of energy for the next 24 hours. The load power forecasts can be 

obtained through a neural network [18, 35]. For RTP, the price signal is assumed to be sent to 

the customers either an hour or a day-ahead [36]. Thus, in the first case, the forecast of price 

for 23 hours is needed (once again a neural network can be applied); while in the second case 

no forecast is needed for the price profile. Moreover, in order to better highlight the differences 

between the use of one or two-battery systems, two different RTP profiles are taken into 

account in the numerical applications. The first RTP profile is characterized by significant 

differences in the values of the prices of narrow time bands (one hour) while the second profile 

is a typical day-ahead price profile.  

For each bank of the multi-battery system, the day is split in sub-intervals in order to impose 

only one charge/discharge cycle per day. As an example related to a generic bank, in figure 

2.12 the first interval refers to the charging stage, the second interval to the discharging stage 

and the third interval still refers to a charging stage. It is interesting to observe that it is 

possible to interchange the charging/discharging stages of the battery banks. For example, in 

the two-battery case, the charging stage of the first battery can correspond to the discharging 

stage of the second battery and vice-versa.  

 

Figure 2.12: Time steps during 24 hours. 

Under the above assumptions, the objective function of the optimization problem to be solved 

at i
th

 time interval is: 
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where Pgrid,k and PrEn,k are the forecasted values of total power requested by the facility to the 

grid and RTP at the k
th

 time interval, respectively.  

The equality constraints refer to the power balance and to the battery state of charge at the 

beginning of the first time interval and at the end of each charging stage (figure 2.12). The 

power balance imposes that the expected total power requested by the facility to the grid 

(Pgrid,k) is equal to the sum of the battery powers and facility load power, at all the time 

intervals of the following 24 hours: 

 



bn

j

tj,k,bk,lk,grid ni,...,ik,PPP
1

1   (2.15) 

where nb is the number of battery banks, Pl,k and Pb,k,j are the facility load power forecasting 

and the j
th

 battery power at the k
th

 time interval, respectively.  

Another equality constraint imposes that state of charge of all the battery banks at the 

beginning of the discharging stage assumes a specified value. With reference to the battery 

stages sequence reported in figure 2.12 which refers to the j
th

 battery, this constraint can be 

expressed as follows: 

dis
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where Cj,i+1 is the state of charge of the j
th

 battery at the begin of  the i
th

+1 time interval, ηch,j  is 

its efficiency during the charge and 
dis

j,inC  is the state of charge of the j
th

 battery when its 

discharge starts. Further equality constraints are imposed with reference to the state of charge 

at the end of the 24 hours which has to reach a specified value. Always with reference to the 

battery stages sequence reported in figure 2.12, this constraint is: 
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where sp

i,jC  is the specified value of the j
th

 battery state of charge at the end of the 24 hours 

(i
th

+nt time interval) and ηdis,j is the discharge efficiency of the j
th

 battery during the discharge.   

In (2.17) the value of sp

i,jC can be chosen on the basis of specific requirements of the end-user, 

and, in case of no requirements,  sp

i,jC    can be assumed equal to 1i,jC . 

The inequality constraints impose that the battery banks have to furnish power during 

discharging stages and absorb power during the charging stages: 

 dis

i,j,fin

dis
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(2.18) 
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where Pmax,j is the maximum charge/discharge power of the j
th

 battery which is based on the 

battery power rate [15].  

The inequality constraints involve also the state of charge that cannot exceed the size of the 

battery banks during the charging stage and cannot be lower than the maximum DOD during 

the discharging stage, that is: 
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where Cmax,j is the capacity of the j
th

 battery. Eventually, the state of charge cannot be lower 

than the minimum value of DOD during the discharging stage, that is: 
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where Cmin,j is evaluated on the basis of  the maximum DOD of the j
th

 battery. 

Note that also the above inequality constraints have been reported with reference to the 

charging/discharging stages sequence of the j
th

 battery reported in figure 2.12. Of course, 

when referring to a different battery bank (with different charging/discharging stages), the 

above constraints will be modified accordingly. 

2.2.4.  Numerical application 

The proposed optimization strategy is applied at a GETRA facility which is located in the 

south Italy. GETRA’s scheme as an industrial facility is reported in figure 2.13. Its electrical 

distribution system includes four, low-voltage electrical lines (“tanks and boxes manufactory”, 

“tests”, “assembly” and “winding and coils” lines) fed by two MV/LV transformers. Each 

electrical line is dedicated to a different manufacturing process. Based on the actual measured 

data of the industrial loads, this procedure is applied for numerical simulations in this section 

where, for the sake of simplicity and without loss of generality, only the results obtained at the 

first control interval are reported. The 24 hours forecasted load power has been assumed; the 

time step is 10 minutes (i.e., nt =144). It is also assumed that the price of a specified hour of the 

day is sent 24 hours ahead. In order to better highlight the differences between the use of one 

or two-battery systems, two different RTP profiles are taken into account (figure 2.14): the first 

profile (case a) is characterized by significant differences in the values of the prices of narrow 

time bands (figure 2.14.a) while the second profile (case b) is a typical day-ahead price profile 

(figure 2.14.b). The multi-battery system consists of two Lithium-ion batteries, connected to - 
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Figure 2.13: Industrial Facility. 

the secondary side of the MV/LV transformer interfacing the facility with the distribution grid. 

A centralized control system performs the proposed optimization procedure and sends the 

charge/discharge control signals to the battery converters. The size of both battery banks is 

60kW with a discharging time of 2.5 hours. The batteries charging efficiency is 0.90 and the 

discharging efficiency is 0.93, both these values including the interfacing converter efficiency. 

A maximum DOD of 80% is assumed in order to maximize the battery life cycle [24]. 

 

Figure 2.14: Energy price profile. 
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interval and ends after 12 hours. It is also assumed that the energy charge level of the first 

battery bank, at the beginning of the first time interval, assumes the minimum value. The 

second battery bank is initially fully charged and, at the end of the charging stage (24
th

 hour), it 

is imposed that the battery bank is again fully charged. 

Moreover, the results of both cases are also compared with the case of a 120 kW-2.5 hours 

single battery system, where it is imposed a maximum number of cycles per day equal to one. 

Case a) 

The charge/discharge power profiles of the two battery banks are reported in figure 2.15. 

Figure 2.16 shows the battery banks energy profiles. The analysis of figure 2.15 shows that the 

constraints on upper and lower limits (size of the battery banks) are always satisfied. The 

power profiles of figure 2.15 are also compatible with the constraints imposed on the battery 

energy (figure 2.16). Since only the results obtained for the first next time interval (i
th

 + 1) are 

used as reference signals, then the reference signals for both the two battery banks are equal to 

zero kW. The total stored energy in the battery banks (i.e. the sum of the energy stored in the 

two banks) is also reported in figure 2.16. It can be observed that, for each battery bank, the 

constraint on the number of charge/discharge cycles per day is fully satisfied. Moreover, the 

analysis of the total stored energy profile clearly reveals that, if only one battery bank would be 

applied, more than one cycle per day would be required.  

 

Figure 2.15: Battery power profile (case a). 

 

Figure 2.16: Battery energy profile (case a). 
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In figure 2.17 the power that the industrial facility is expected to request to the grid (“grid 

power forecasting”) is reported and compared with the load power forecast.  Figure 2.17 shows 

that the optimization procedure doesn’t perform peak shaving. In fact, it allows decreasing the 

industrial power requests when the energy price is higher even if the load demand is low and 

increasing the power when the price is lower, even in high load demand periods. This is 

evidenced in figure 2.18 where the plot of the energy price is reported together with the plot of 

∆P (that represents the difference between the load and grid power forecasting, i.e. the total 

power of the batteries). As mentioned, the batteries charge when price is lower and discharge 

when price is higher. It is worth to note that, to shave the peak power request, an upper limit at 

the imported power should be included in the optimization problem (e.g., the MV/LV 

transformer size), as shown in [37].  

 

Figure 2.17: Load and grid powers (case a). 

 

Figure 2.18: Energy price and total power of the batteries (case a). 
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profiles are also compatible with the constraints imposed on the battery energy (figure 2.20). 

The constraint on the number of charge/discharge cycle per day is satisfied for each battery 

bank, even though the total stored energy profile (figure 2.20) clearly presents more than one 

cycle per day.  

 

Figure 2.19: Battery power profile (case b). 

 
Figure 2.20: Battery energy profile (case b). 

In figure 2.21 the power that the industrial facility is expected to request to the grid is reported 

and compared with the load power forecasting, showing the same features of figure 2.17. 

 

Figure 2.21: Load and grid powers (case b). 
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Figure 2.22 shows the plot of the energy price together with the plot of ∆P. Also in this case 

the batteries charge when price is lower and discharge when price is higher. 

 

Figure 2.22: Energy price and total power of the batteries (case b). 

Eventually, in order to show the feasibility of the proposed strategies, in table 2.2 the 

percentage reduction of the value assumed by the objective cost function (2.14) in cases a) and 

b), with respect to the case of no-battery installed, are reported.  The reductions obtained in 

both the two cases are also compared with the reductions obtained with a 120 kW-2.5 hours 

single battery system. 

Battery system 

configuration 

Objective function reduction (%) 

case a case b 

Two batteries 8.12 9.12 

One battery 7.53 12.82 

Table 2.2: Objective function reduction. 

The analysis of table 2.2 clearly demonstrates that the use of storage systems always allows 

reducing the energy cost sustained by the industrial owner. Moreover, the use of multi-battery 

system seems particularly advantageous in case of the energy price profiles of figure 2.14.a 

where more than one charging/discharging cycle per day are allowed by the procedure. In case 

of price profiles of 2.14.b, the use of a single battery seems to be the most adequate choice, 

even with the constraint of one charging/discharging cycle per day. 

2.3. An advanced optimal operation strategy for demand response under 

energy  demand charge  

This subsection is focused on DR service under the EDC tariff which involves a structure 

directly linked to both the consumed energy and the peak load.  

Customers can be expected to vary their usage in response to this price information and 

manage their energy costs by shifting their usage to a lower cost period [38, 39]. In addition 
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used. The demand charge is billed as a fixed rate that is calculated on a per kW basis. This 

charge is based on the premise that commercial customers and other large users should pay a 

share of the infrastructure costs associated with the maintenance of capacity [39, 40].  

2.3.1.  State of the art 

In the technical literature numerous works to apply DR under dynamic pricing, especially 

with reference to EDC tariff, are investigated. [41] presents an overview on DR in the 

electricity market. The definition and a classification of demand response, different potential 

benefits as well as cost components of demand response are considered. The use of storage 

facilities to apply price-based DR was analyzed in [32, 34, 42] with reference to residential 

applications. The application of price-based DR in industrial loads also has been considered in 

[23], where a BESS that was able to provide energy to the industrial loads during high-

price/peak-demand periods was considered. In [38] scaling distributed energy storage for grid 

peak reduction based on EDC tariff is proposed, where the tariff involves energy prices 

varying hourly taking also into account the peak value of the power. In [39] charge scheduling 

of an ESS under TOU pricing and EDC is considered. A real-coded genetic algorithm is used 

to schedule the charging of an energy storage system (ESS), operated in tandem with 

renewable power by an electricity consumer who is subject to time-of-use pricing and a 

demand charge. [43] formulated similar problem of [39] but [39] aims to optimize a daily, 

rather than a monthly, bill.  

2.3.2.  Proposed strategy  

In this subsection, with reference to an industrial customer, an advanced optimal control 

strategy to perform price-based DR by optimally controlling a BESS installed in the industrial 

facility’s substation is proposed. The control strategy minimizes the electricity bill acting on 

both consumed energy and peak load. It is based on a two-step procedure that minimizes the 

problem of forecasting errors. The first step is a day-ahead scheduling for evaluating the peak 

value of the power that the facility must request from the grid and for determining the periods 

when the battery is allowed to charge and discharge. The second step is a very short-time 

predictive procedure for the real time optimal control of the BESSs’ powers. The aim of the 

entire procedure is the reduction of the electricity costs related to the energy charge, by 

shifting the load times, and the reduction of the electricity costs associated with demand 

charge, by providing peak-shaving service. The procedure takes into account also the 

battery’s efficiency and lifecycle by imposing limits on the depth of discharge and the number 

of charging/discharging cycles.  

As it is presented in subsection 2.1.1, two-step procedures for BESS power optimal control 

were proposed to furnish load leveling service which allows reducing the difference between 

the mean power and the peak power, thereby avoiding or deferring new investments in 

transmission and distribution facilities.  

There are important reasons why also in case of DR the two-step optimal control approach can 

be used: 

 First, in order to identify the time intervals related to the charging and discharging of 

the battery, a discrete variable procedure is needed that typically involves the use of 

algorithms that require high computational effort (e.g., genetic algorithm, dynamic 
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programming); thus, the procedure should be performed off line (in this case, the day 

before).  

 Second, once the optimal charging/discharging intervals have been established, 

accurate power-forecast information is needed for performing a very short-time 

control of the BESS’s power, which can only be performed on line and at small time 

intervals (the very short-time predictive control).  

It is outlined that the forecast of the peak value of the power which the facility must request 

from the grid can be performed easily in the day-ahead scheduling and, then, also this quantity 

can be assumed to be assigned in the second step of the procedure. 

Summarizing the advantages of the two-step procedure are that: 

i. it minimizes the influence of the forecasting errors on the load demand taking into 

account that the forecast in the very short time predictive control is able to highly 

improve the day ahead forecast of the first step; 

ii. it avoids the problem of computational efforts of the very short time predictive 

control, by evaluating both the desired peak value of the facility power and the 

battery charging/discharging periods in the day ahead scheduling. 

More detailed discussion on the advantages obtained by applying the two-step procedure is 

reported in numerical application which is on an actual industrial application. 

2.3.3.  Problem formulation and solving procedure 

In this application, the generalization of the EDC tariff is considered, where the tariff involves 

energy prices varying hourly taking also into account the peak value of the power [38]. In this 

case, the generalized energy demand charge tariff (fGEDC) has the following structure:  

     t

n

i

da

i,gridi,En

da

i,grid
i

peakGEDC n,...,,tPPrPmaxPrf
t

1
1

 




 (2.23) 

where da

i,gridP  is the expected power requested by the facility to the grid at the i
th

 time interval, nt 

is the number of time intervals in which the day is divided,  PrEn,i and Prpeak are the energy 

charge at the i
th

 time interval and demand charge, respectively. 

The proposed optimal control strategy for minimizing the electricity costs of the industrial 

facility given by (2.23) is based on the solution of two different optimization problems: 

 Day-ahead scheduling: it evaluates the peak value of the power that the facility must 

request from the grid and the periods in which the battery is allowed to charge and 

discharge;   

 Very short time predictive control: it evaluates the BESS’s charging/discharging 

power for real-time operation.  

Day-ahead scheduling 

Day-ahead scheduling is performed once a day, for the next day. Input data of the scheduling 

are the BESS’s state of charge at the beginning of the day, the daily forecasted profile of the 

facility’s load, and the hourly energy-price profile for the next day. The outputs of day-ahead 
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scheduling are the time periods in which the BESS is allowed to charge/discharge and the 

maximum power that the industrial facility can extract from the grid.  

In order to maximize the battery’s lifetime, as mentioned in the subsection 2.1.2, a maximum 

number of charge/discharge cycles per day is imposed [44]. To do that, the day is divided into 

specific time periods, i.e., charging periods (when the battery only is allowed to charge) and 

discharging periods (when the battery only is allowed to discharge). Figure 2.23 shows a day 

on which the battery was allowed to charge in the early morning hours and the night hours. 

This figure is similar to the figure 2.12 where, the indices change at every time interval ( dis

i,j,inn ,

dis

i,j,finn ), since the optimization period dynamically varies during the day. But in this case, 

instead, the whole day is considered at the same time and these bounds ( dis

inn dis

finn ) are fixed 

(figure 2.23). 

If the tariff scheme has a limited number of price levels (e.g., “off-peak” and “on-peak”), it is 

easy to specify the charging and discharging periods; in fact, it is obvious that the more 

profitable result can be obtained by fixing the discharge period during the peak price hours and 

the charge period during the non-peak price hours. In case of numerous price levels during the 

day (e.g., the case in which the price varies hourly), determining the most profitable charging 

and discharging time periods is very difficult. This proposed optimization problem is focused 

on this last, more general case. 

 

Figure 2.23: Time intervals during the day (indices refer to the day ahead). 

In the proposed formulation, the day is divided into nt time intervals of length ∆t, e.g., in the 

numerical application, 10 minutes. During each time interval, the load and battery powers are 

assumed to be constant. The BESS’s charging/discharging periods during the day are defined 

uniquely when the initial and final time intervals of discharging ( dis

inn ,
dis

finn ) are specified (figure 

2.23). Thus, the scheduling is based on the solution of an optimization problem including both 

integer variables and real variables. The battery’s power and energy are real variables, whereas 

the initial/final time intervals of the discharging periods are integer variables.  

In case of mixed integer optimization problems for the BESS’s operation, some solving 

procedures have been proposed in the literature based on dynamic programming (DP) [14, 45, 

46]. However, DP handles discrete variables, thus requiring a discretization so that it also can 

deal with continuous variables (e.g., the battery’s charge level); obviously, the required 

computational time increases when the discretization is thinner. 

In this thesis, a hybrid solving procedure is proposed to solve the day-ahead scheduling 

problem. The procedure includes a genetic algorithm (GA) for handling the discrete variables 

(i.e., charging/discharging time intervals) and a linear optimization algorithm (LOA) for the 

real variables (i.e., the battery’s power). The proposed procedure does not require any 

discretization, so a more accurate minimization of the objective function is obtained. 
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In the following, the scheduling optimization model is presented with reference to the mixed 

GA and LOA implementation. Figure 2.24 depicts a flowchart of the proposed procedure. The 

GA is aimed at identifying the initial and final discharging time interval, while the inner LOA-  

 

Figure 2.24: Flowchart of the scheduling procedure. 

is aimed at determining the daily charge/discharge power profile of the battery that minimizes 

the electricity costs sustained by the facility. The GA is able to create the initial population, 

which includes Nga individuals (or chromosomes). The individuals consist of two elements (or 

genes); the first element is the initial step of the discharging period ( dis

inn ), and the second is the 

final step of the discharging period (
dis

finn ). According to these considerations, then Dh denotes 

the h
th

 (h=1,…, Nga) individual. For each individual, the following trivial inequality constraints 

are applied: 
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The inner LOA is performed for each individual according to the sequence of the flowchart 

shown in figure 2.24. Note that the value of each individual’s fitness function is equal to the 

optimal value of the objective function of the LOA that corresponds to that individual (
LOA

Dhf ). 

The best fitness function of the current population fGA is the one that corresponds to the 
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individual characterized by the minimum
LOA

Dhf . The GA converges when the value of the best 

fitness function remains constant over an assigned number of generations or when a 

maximum number of iterations is reached [47]. Otherwise, the GA generates a new population 

based on proper evolutionary operators (e.g., selection, recombination, mutation).   

The inner LOA solves a constrained, single-objective minimization problem aimed at 

determining the daily charge/discharge power profile of the battery that minimizes the 

electricity costs sustained by the industrial facility. The optimization variable is constituted by 

the BESS’s power at each time step of the day.  

The objective function is defined as
3
: 

  GEDCobj ff x  (2.25) 

with fGEDC given by (2.23). 

The equality constraints refer to the power balance and the BESS state of charge at the 

beginning of the day and at the end of the charging stage. 

Comparing with the power balance equation for the previous application (2.15) which is 

considered at each time interval for the following 24 hours, here, similar power balance 

equation imposes that the expected power value requested by the facility to the grid 

(hereinafter referred to as “day-ahead forecasted facility power”) is equal to the algebraic sum 

of the BESS power and facility load power, at all the time intervals of the day.  

A further equality constraint can be considered which imposes that the BESS state of charge at 

the beginning of the discharging stage has to reach a specified value:  

dis
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    (2.26) 

where sp

inC  is the BESS state of charge at the beginning of the day, da

i,bP  is the BESS power at 

time interval i, ηch is the BESS efficiency during the charge and 
dis

inC  is the state of charge of 

the BESS when the discharge of the battery starts. 

An equality constraint has to be imposed also with reference to the state of the charge at the 

end of the day: 
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   (2.27) 

where sp

finC  is the specified value of the state of the charge of the BESS at the end of the day 

and ηdis is the BESS efficiency during the discharge. 

Equation (2.27) is similar to (2.4) and (2.17). Equation (2.17) is formulated at each time 

interval for specific value of the state of charge at the end of the following 24 hours (i
th

+nt time 

interval). Equation (2.4) is formulated for a only one discharging and charging periods where 

                                  
3 Note that the objective function (2.25) does not have the form of a standard linear optimization problem, but it can be transformed readily to 

an equivalent, linear-program form [1].  
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(2.27) is for charging, discharging and charging periods, thus the first summation in (2.27) is 

not considered in (2.4). 

The inequality constraints impose that the BESS has to furnish power during discharging 

stages and absorb power during the charging stages: 

 dis

fin

dis

in

da

i,bmax n,...,ni,PP  0    (2.28) 

 dis

fin
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inmax

da

i,b n,...,ni,PP 0    (2.29) 

where Pmax is the maximum charge/discharge power of the BESS [14]. These constrains are 

according to inequalities which are formulated in (2.5-2.6) for load leveling application and 

(2.18-2.19) for demand response application. 

Similar to the inequalities in (2.20-2.22), which guarantee that in case of multi battery system 

the state of charge cannot exceed the size of the battery banks during the charging stage and 

cannot be lower than the maximum DOD during the discharging stage, here, the inequality 

constraints (2.30-2.32) are also considered. They are: 
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where Cmax is the capacity, Cmin is the minimum value of the energy that can be stored in the 

battery based on the allowable depth of discharge and ηdis is the BESS discharge efficiency.  

When the inner linear optimization problem converges, the value assumed by the objective 

function represents also the value of the fitness function related to each individual of the GA.  

Very short time predictive control 

Very short time predictive control is performed nt times per day, with reference to each 

interval i (i=1,…,nt) of the day. This procedure is aimed at providing the power that the 

battery has to absorb or furnish during the controlled time interval starting from more accurate 

forecasts. In more detail, the procedure that refers to the generic interval i is performed during 

the preceding interval. Obviously, for the first interval, the procedure is performed during the 

last interval of the day before, and the procedure performed during the last interval of the 

current day refers to the first interval of the following day. 

Input data for the procedure are the very short time forecasts of the load power from the 

controlled time interval i up to the last time interval of the day, the maximum value of the 

day-ahead forecasted power required by the facility, the charge/discharge time intervals of the 

BESS, with the last two being outputs of the day-ahead optimization, and the state of charge 

of the battery at the beginning of the i
th

 interval, that is the output of the optimization 
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performed in the previous time interval. 

Outputs of the procedure are the charge/discharge power and the final state of charge, both 

evaluated with reference to the i
th

 time interval. The final state of charge of the battery is an 

input for the next time interval. 

The optimization procedure of the very short time predictive control at the i
th

 time interval is 

based on the solution of the linear optimization problem (2.1) that is solved during the 

preceding interval. 

With reference to a generic controlled time interval i, the values of the BESS’s power at each 

time interval, starting from the controlled time interval i up to the last time interval of the day 

are optimization variables. In this subsection, the interval [i,…,nt] will be called the rest of the 

day.  

The objective function for the i
th

 time interval is:  

  tPPrf
tn

ij

vst

j,gridj,En

vst

LOA 


   (2.33) 

where vst

jgrid,P  is the power requested by the facility from the grid resulting from the very short 

time procedure at j
th

 time interval. 

The power balance imposes that the facility power vst

grid,jP  is equal to the algebraic sum of the 

BESS’s power and the forecasted load power of the facility at all of the time intervals of the 

rest of the day: 

t
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where vst

jl,P   is the forecast of the load power demand at the j
th

 time interval.  

An equality constraint is imposed on the battery’s state of charge, i.e., at the end of the day, 

the state of charge must be equal to a specified value. For the generic controlled interval, this 

constraint is:  
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where Ci is the BESS’s state of charge at the beginning of the controlled time interval, and 
sp

finC  is the final state of charge.  

Inequality constraints involve peak shaving, i.e., the facility’s power must be lower than a 

maximum value: 

t

da

grid,max

vst

jgrid, n,...,ijPP      (2.36) 

where da

grid,maxP  is the maximum value of facility’s power requirement that has been forecasted 

the day-ahead. Technical constraints also impose that the battery’s power cannot exceed the 

rate at which the battery can be discharged or charged. When i< dis

inn , these constraints are: 
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when dis

finni  , only the constraint for the charging is applied: 

t

ch

max

vst

b,j j=i,…,n,PP0      (2.41) 

Due to inaccurate forecasting, it could happen that constraints cannot be satisfied, so the 

optimization procedure does not converge. In this case, lower values of the battery’s state of 

charge at end of the last time interval, as well as higher values of the maximum peak power, 

are allowed, and the problem is solved iteratively until it converges. 

The battery’s technical constraints also impose that the level of the stored energy during the 

charging periods cannot exceed the battery’s capacity:  

  max

1n

1j

vst

b,jchi CΔtPηC

dis
in

 




     (2.42) 

The inequality constraints also involve the BESS’s state of charge, which cannot be lower 

than a specific minimum value during the discharging stage, i.e.: 

 
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 0if  P1/η

0if  Pη
kCΔtPkC

vst

b,jdis

vst

b,jch
jmin

n

ij

vst

b,jji

dis
fin

   (2.43) 

2.3.4.  Numerical application 

The results refer to the application of the procedures to the GETRA industrial facility located 

in South Italy, whose scheme is reported in figure 2.13. The BESS, which consists of a 

lithium-ion battery connected to the power grid through a pulse width modulation (PWM)-

controlled AC/DC converter, installed at the secondary side of the MV/LV transformer of the 

facility. A control system performs the optimization procedures and sends the 

charge/discharge control signals (i.e. the output of the very short time control procedure) to 

the BESS. The size of the battery was 60 kW with a discharging time of 5 h. The BESS’s 

charging efficiency was 0.90, and the discharging efficiency was 0.93. The admissible DOD 

was 80% [24]. The load forecasting profile of the load demand of the industrial facility, 

should be obtained through neural network approaches based on historical measurement data,. 

However, due to the lack of available historical data, in this application the load forecasting 

profile was obtained based on random variations into the measured available daily profile.  

Figure 2.25 shows the day-ahead forecast of the load power that was obtained and the actual, 
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measured profile. Regarding the energy prices, an hourly energy charge was assumed 

according to the profile of figure 2.26, where the prices are expressed in m.u./kWh. The 

energy charge profile refers to data of a typical Italian day-ahead market. The demand charge 

was assumed to be 100 times greater than the energy charge (i.e., 100 m.u./kwh) [48]. 

In the following sections, some of the results of the simulations that were performed are 

reported. In the simulations, it was assumed that the battery was charged to 80% of its full 

capacity at the beginning of the day and that the same charge level was imposed at the end of 

the day. 

 

Figure 2.25: Day-ahead forecasted values and actual values of load. 

 

Figure 2.26: Energy charge. 

Day-ahead scheduling results 

Figure 2.27 shows the facility’s load profile obtained with day-ahead scheduling. For 

comparative purposes, the same profile was reported for the case in which there was no BESS. 

Compared to the day-ahead forecast of the power requested from the grid in the absence of a 

BESS, the forecasted peak demand reduction was of about 54 kW, which corresponds to a 

reduction of 32%. Figure 2.28 shows the battery’s power during the day and that the BESS 

started discharging at 5:10 a.m. and stopped discharging at 6:10 p.m. The results shown in 

Figures 2.27 and 2.28 illustrate that the BESS was discharged at about 9:00 a.m., which was 

during the hours of peak demand. The figures also show that the BESS was discharged about 
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5:00 p.m., during the hours in which the energy charge was high (figure 2.26). Charging of the 

BESS occurred mainly during the initial and final hours of the day, when the energy cost was 

lower. Thus, the entire power demand of the industrial facility resulted in a more-leveled daily 

profile, as well as periods of increased power demand during the early morning and late night 

hours.  

The diagrams reported in figures 2.28 (battery power during the day) and 2.29 (battery energy 

during the day) also show that the technical constraints of the battery were satisfied completely 

in terms of the desired value of energy stored at the beginning and end of the day, maximum 

and minimum capacity, desired number of cycles per day (only one), and the BESS’s size 

limits. The reduction in terms of the objective function value between the cases with and 

without the BESS was about 13%. However, this is a theoretical value that cannot be attained 

due to forecasting error.  

 

Figure 2.27: Day-ahead power profile of the facility with and without the BESS. 

 

Figure 2.28: Day-ahead profile of the BESS’s power. 
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Figure 2.29: Day-ahead profile of the BESS’s energy. 

The results of day-ahead scheduling, which are inputs to the very short time procedure, are the 

discharge time interval of the BESS (5:10 a.m. and 6:10 p.m.) and the maximum peak demand 

(170 kW). 

Very short time predictive control results 

As evidenced before, the inputs of the very short time procedure are the discharge stage 

periods of the BESS (5:10 a.m. and 6:10 p.m.) and the desired peak value of the power 

requested from the grid (170 kW), both output of the day-ahead scheduling. At each control 

interval, other inputs of the very short time procedure are the power forecast of the load 

demand, starting from the control interval up to the last interval of the day.  

The very short time procedure was performed for all the time intervals of the day, and its 

outputs are the signal of the power that the BESS must furnish/absorb at each controlled 

interval. With reference to the entire day, the control signal for the BESS is reported in figure 

2.30, while, in figure 2.31, the corresponding actual state of the charge is shown.  

Figures 2.30 and 2.31 show that the battery’s technical constraints were satisfied in terms of 

minimum and maximum capacity of the battery, the desired number of cycles per day, and the 

limits of the battery’s power size. In order to satisfy these constraints, the final state of charge 

of the battery (236 kWh) did not perfectly match the desired value (240 kWh). 

 

Figure 2.30: BESS’s reference power signal. 
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Figure 2.31: Actual energy stored in the BESS. 

As discussed in [49] this happens due to forecasting errors and thus lower values of the 

battery’s state of charge at end of the last time interval, as well as higher values of the 

maximum peak power, were allowed. 

The power that the facility should request from the grid on the basis of very short time 

predictive control is reported in figure 2.32. In the figure the actual load demand (i.e., the 

power requested from the grid when a BESS was not installed) and the desired peak value are 

also reported. Figure 2.32 shows that the forecasting errors produce a difference between the 

expected reductions of peak power (i.e., the reduction corresponding to the desired peak value 

obtained in day-ahead scheduling) and the actual reduction of peak power. In fact, based on 

day-ahead scheduling, the desired peak power was 170 kW, while the actual peak value was 

185 kW. In terms of percentages, the actual peak power reduction ΔPact corresponded to about 

17% than that in the case without BESS.  

 

Figure 2.32: Actual power profile of the facility with and without a BESS. 
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without the very short time procedure (i.e., the reference signal for the BESS only was 
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profiles of day-ahead scheduling and very short time procedure. The gap between the 

maximum peak values in the two cases is apparent in the figure. As expected, the reduction of 
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peak power was lower than the reduction obtained in case of the BESS controlled by the very 

short time procedure. In fact, without the short time procedure, the peak power was 195 kW. 

Moreover, in the case without the very short time procedure, the reduction of the objective 

function with respect to the case without the BESS was 9%, while it was about 11.5% when 

the very short time procedure was used. 

 
Figure 2.33: Actual power profile of the facility with and without very short time predictive control. 

Impact of forecasting errors 

In order to verify the need for and usefulness of the second step, different simulations also 

were performed with different forecasting errors; the results are reported in table 2.3. In more 

detail, three different errors for very short time forecast (i.e., 1%, 2%, and 6%) were 

considered. The results reported in table 2.3 show that (i) the forecasting errors penalize the 

ability of the proposed method to reduce the peak power requests and (ii) the use of the two-

step procedure obtained better results. 

Interesting results also were observed with reference to the correspondence of the values of the 

objective function with the different values of the forecasting errors. In fact, while significant 

reduction of the objective function values occurred in the case of the low error of the very short 

time forecast, less significant results were obtained with high forecasting errors, approaching 

the results obtained by using only the day-ahead procedure. Moreover, for low short time 

forecast error (1%) and high day-ahead forecast error (6%), slightly better results were 

obtained than with low short time forecast error (1%) and low day-ahead forecast errors (3%). 

This was due to the strong influence of the very short time forecast on the final results. Once 

again, this confirms the need for the very short time step, which should be characterized by 

low forecasting errors. 

Day-ahead 

forecasting 

error (%) 

Very short time 

forecasting Error 

(%) 

Without very short time 

procedure 

With very short time 

procedure 

Δfobj (%) ΔPpeak (%) Δfobj (%) ΔPpeak (%) 

6 

6 

8.81 12.88 

8.84 8.60 

2 11.46 17.13 

1 11.95 19.36 

3 

3 

9.76 16.02 

10.04 14.25 

2 11.13 18.51 

1 11.73 20.28 

Table 2.3: Performance of the very short time procedure. 
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2.4. An advanced optimal operation strategy for microgrid scheduling 

μGs typically involve a cluster of loads, DG units and storage systems. These electrical 

components must be integrated and controlled to maximize the technical and economic 

benefits they provide.  

Study of optimal operation strategy for μGs in the presence of new type of loads such as plug-

in electrical vehicles (PEVs) and datacenters (DCs) and their impact on the correct and secure 

operation of power systems is one of the most crucial challenges for the researchers and 

employers in the electric power industries, since the number of these loads is expected to 

significantly increase in the next future [50, 51]. Moreover, it is generally accepted that the 

operation of these loads can have also beneficial effects in the context of SGs. The availability 

of storage on board of PEVs as well as storage used inside the UPS of DCs, in fact, can be 

suitable as distributed resources able to furnish several services to the grid, if they are 

optimally managed and integrated with other energy resources [52, 53, 54].  

Different strategies of energy management can be implemented in order to pursue a specific 

service while guaranteeing the correct operation of distribution systems as well as the primary 

goal of each storage device (i.e., to furnish energy for mobility, in case of PEVs, or to serve as 

back-up, in case of the UPS). These strategies can be related to the energy efficiency (e.g., to 

minimize the power losses), power quality (e.g., to improve the voltage profile), economical 

operation (e.g., peak shaving) and services to provide to upstream grids (e.g., load leveling). 

However, while a service is furnished in order to pursue a specific objective, the large amount 

of energy requested by PEVs or DCs can dramatically affect other grid performances. As an 

example, if the grid operation is performed by minimizing the operation costs, this strategy 

could result in a degradation of the power quality or energy efficiency. 

2.4.1.  State of the art 

In the relevant literature the optimal operation of μGs, including PEV fleet aggregators, has 

been analyzed in several research works [37, 55-60]. In [37], the scheduling of the active and 

reactive power of the aggregators and DG units in a μG was performed with the aim of 

minimizing the total daily cost of energy incurred by the μG while meeting the technical 

constraints on the grid’s currents and voltages. Peak-shaving service also was considered. A 

review of the available single-objective, optimization models for the optimal control of EVs’ 

charging in a μG is presented in [55, 56].  In [57, 58], peak-shaving service was performed by 

smart management of the charging of the vehicles connected to a distribution network while 

minimizing losses. In [59], charging/discharging strategies for EVs were proposed with the 

aim of managing congestion in the μGs. In [60], optimal scheduling of both active power and 

the combination of active and reactive power was proposed in order to pursue different 

objectives, such as minimizing the costs incurred by the aggregators for charging and 

improving the voltage profile.  

Recently, the relevant literature has indicated that there also is increasing interest in the 

optimal operation of data centers where the models proposed in the technical literature are 

related mainly to the control of only the data centre’s energy consumption in order to improve 

efficiency and to give them the potential for participating in a demand-response program [61-

65]. Reference [61] presented benefits of integrating data centers into demand response 

schemes. The data centers were assumed to be able to perform the mechanisms required to 

reshape power consumption during the day. In [62], a model was proposed for determining 
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the optimal, hourly and demand-response capability of individual data centers by optimally 

shifting cloud service tasks among distributed data centers. In [63], a model for evaluating the 

data centre’s energy cost was proposed in order to avoid the coincident peak and to reduce 

expenditures for energy by using workload shifting and local power generation. In [64], a 

load-control method for data centers was presented that was based on both the data network 

and the electrical network with the aim of controlling power usage associated with 

participation in the demand-response program. In [65], an approach was proposed to enable 

electrical energy buffering in batteries to predictably minimize data centers’ electricity costs 

in smart grids. In this approach, the batteries are charged when the price of electricity is low, 

and they are discharged to power servers when the price of electricity is high. Also, the 

problems of using different technologies for storage and of placing storage systems at 

different levels of the power hierarchy were analyzed extensively. [53] focused on the use of 

data centers and EV aggregators as demand response resources. A new model for the optimal 

operation of a μG that includes DG units, EV fleets and the data centre’s storage systems has 

been proposed. The procedure is based on a non-linear, constrained, optimization model with 

the aim of minimizing the total cost of energy and simultaneously shaving peak power. 

2.4.2.  Proposed strategy 

In this thesis, different single-objective strategies are presented which are able to manage the 

operation of a microgrid characterized by the presence of DCs, PEVs and DGs. The battery 

energy storage inside the UPS equipping a DC is used in order to absorb/supply power from/to 

the grid based on control signals received by the centralized control system (CCS) of the 

microgrid. The reference signals are evaluated according to the needs of the grid itself, the 

requirements devoted to prolong the lifetime of the battery and the features of the privileged 

loads serviced by the UPS [53]. The needs of the grid are related to the satisfaction of the 

operation limits (e.g., the currents have to be lower than line capacities) or to specific services 

that have to be supplied. In order to prolong the battery lifetime, a specific number of 

charging/discharging cycles per day has to be satisfied (typically one), as well as a maximum 

DOD cannot be exceeded, thus imposing a limit to the minimum value of the energy stored in 

the battery. The minimum value of the energy stored in the battery also depends on the energy 

needed to supply the privileged loads during the power grid outages until diesel generators can 

be brought on-line (from few seconds to two minutes) [54]. As a consequence, the minimum 

value of the energy stored is the maximum between the values due to the DOD and that to the 

back-up service.    

Here, it is supposed that a charging strategy is implemented by the CCS able to charge the 

vehicles according to the grid needs as well as the drivers’ needs [55, 56]. In order to do this, 

the grid interacts with a PEV fleet through an aggregator. Based on the forecasted requirements 

of the vehicles plugged-in, that is the initial energy stored in the batteries, and the hour, in 

which each battery has to be fully charged, the aggregator evaluates the total energy that has to 

absorb from the grid during the following day. Based on the data provided by each aggregator, 

the day is divided in a specific number of intervals characterized by specified value of 

contracted energy that the aggregator has to absorb from the grid [53, 56]. During these time 

intervals, the power supplied to the aggregator can vary according to the needs of the grid or 

services to be pursued. 
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Based on single-objective formulations, the proposed strategies allow operating these resources 

in order to gain some services such as cost minimization, power quality or energy savings. 

The following section is aimed at providing strategies for grid operation which are able to 

control the active powers of aggregators and battery of a DC’s UPS. Moreover, the strategies 

can control the reactive power of the converters used to connect PEV fleets, DCs and DG 

units to the grid. 

2.4.3.  Problem formulation and solving procedure 

The proposed strategies refer to a microgrid in the presence of DCs, DG units and fleets of 

PEVs connected to the grid by means of aggregators. A CCS controls and coordinates these 

resources by calculating and sending control signals. These signals refer to the reactive power 

of the resources connected to the grid by means of converters, the active power of PEV fleets 

and UPS’ battery. These powers are calculated by an optimization model whose inputs are the 

PEV fleets’ requirements, the forecast of the loads’ power and DG units’ generation; outputs 

are the active powers of PEV fleets, battery of DCs and the reactive power of the converters 

connected to the grid.  

The optimization model is formulated as a single-objective, multi-period, non-linear 

constrained minimization problem. The day is divided in nt time slots, each one of duration ∆t, 

and the optimization problem is solved for all the nt time slots, simultaneously. The objective 

function refers to the specific service that has to be pursued. This research study considered 

following functions with the corresponding objective functions to be minimized: 

 Squared voltage deviation 
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where Vi,t is the voltage at busbar i at time slot t, sp

t,iV is its desired value and n is the number of 

grid busbars; in this case, the performed service is aimed at increasing the power quality. 

 Power losses minimization  
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      (2.45) 

where Ploss,t is the power losses at time slot t; in this case, the performed service is aimed at 

improving the energy efficiency. 

 Security margin  

   











 


tn

t r

l

r

lt,l

l

t

,obj
I

II
min

n
f

13 1
1

1
    (2.46) 

where Il,t  is the current through the l
th

 line at time t, r

lI is its rating and Ω1 is the set of all the 

lines of the grid; in this case, the performed service is aimed at improving the secure  

operation, since it unable the system to better support unexpected loads and DG variations 

[66, 67].  
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 Energy cost  

tPPrf t,
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  114
      (2.47) 

where Pren,t is the energy price during the time slot t, P1,t is the active power imported from 

the upstream grid; in this case, the performed service is aimed at reducing the operation cost. 

 Load leveling  
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where P1,µ is the mean value of active power absorbed from the upstream grid during the day. 

In this case, the performed service is aimed at leveling the active power at the interconnection 

bus. 

The equality constraints to be satisfied are:  

- The load flow equations  
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tgrid n,...,,t,i 21  

where Pi,t (Qi,t) is the net active (reactive) power injected in the bus i at time t, Vi,t (δi,t) is the 

magnitude (argument) of the voltage, Gi,k (Bi,k) is the (i ,k)-term of the system’s conductance 

(susceptance) matrix and Ωgrid is the set of all buses. In case of load bus, both active and 

reactive powers are specified values (i.e., Pi,t=
sp

t,iP  and Qi,t=
sp

t,iQ   ); in case of DG bus, the 

active power is a specified value (i.e., Pi,t=
sp

t,iP ) and the reactive power is an optimization 

variable; in case of PEVs, both active and reactive powers are optimization variables; in case 

of DCs, the active power is given by the algebraic sum of two terms: the first refers to the 

load demand (that is a negative, and specified value), the second term refers to the power of 

battery (that is an optimization variable which will be positive, if it refers to the discharge, or 

negative, otherwise), while the reactive power is an optimization variable (obviously the 

efficiencies of both battery and converter have to be considered) [53].  

- The voltage (magnitude and angle) at the slack is specified. 

- The grid has to supply a specified value of energy to the PEV fleet aggregators (
sp

j,iE ) during 

specified time intervals of the day: 
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where ΩPEV is the set of buses where PEV fleet aggregators are installed, Nc is the number of 

time intervals, start

jn ( end

jn ) are the first (last) slot of each interval. 

- The energy stored in the UPS battery must be the same at the beginning and at the end of the 

day: 
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  (2.52) 

where b

t,iP  is the power supplied/absorbed by the battery, t,i refers to the efficiency of the 

battery in both charging and discharging modes and DC is the set of buses where data centers 

are installed. 

The inequality constraints to be satisfied are: 

- The current through the lines Il,t has to be lower than the rated value r

lI : 

lt

r

lt,l l,n,...,,tII  21     (2.53) 

- The voltage magnitude at the busbars of the grid has to fall into admissible ranges: 
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where V
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 (V
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) are the minimum (maximum) admissible magnitudes of the bus voltage. 

- The active power of the PEV fleet aggregators has to fall into admissible ranges: 
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where min

iP ( max

iP ) is the minimum (maximum) power allowable at the aggregator bus.   

- The active power of the UPS battery cannot exceed a specified value in both charging and 

discharging mode:  
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where max

ch,iP ( max

dch,iP ) is the maximum power that can be absorbed (supplied) by the battery, ΩCH 

and ΩDCH are the set of time slots in which the UPS storage system is allowed to charge and 

discharge, respectively. These last two intervals are consecutive, thus allowing the battery to 

have only one charging/discharging cycle per day. 

- The apparent power flowing through the power converters are bounded by the converters’ 

sizes: 



Optimal Operation Strategies of Battery Energy Storage Systems 

68 

CONVt

max

it,it,i i,n,...,,tS)Q()P(  2122   (2.57) 

where max

iS  is maximum apparent power of converters and ΩCONV is the set of buses equipped 

by converters. 

- The energy stored in the battery of the UPS has to be within an admissible range: 

DC
max

i

b

t,iCHt t,i

in

ch,i i,EtPE  
   (2.58) 

DC
min

i

b

t,iDCHt t,i

in

dch,i i,EtPE  
   (2.59) 

where in

ch,iE ( in

dch,iE ) is the initial stored energy at the beginning of the charging (discharging) 

periods, max

iE  is the size of the battery and min

iE  is the minimum value of the energy to be 

stored in the battery, evaluated as: 

  DCUPS,iDOD,i

min

i i,E,EmaxE      (2.60) 

where Ei,DOD is the minimum stored energy according to the allowable depth of discharge, and 

Ei,UPS is the value of energy needed for the UPS service (back-up). 

2.4.4.  Numerical application 

To verify and compare the proposed approaches, the MV test system of figure 2.34 is studied 

[68]. The test system is constituted by 17 busses and it is connected to a HV transmission 

network by means of an 18 MVA transformer. The data of the system are reported in tables 2.4 

and 2.5. The system includes three DG systems (a 500 kW- wind turbine and two 1 MW- 

photovoltaic systems), two PEV fleet aggregators (1 MW maximum power) and two DCs, 

having 1 MW-privileged loads. All these devices are connected to the grid by means of 

interfacing power converters. Each DC is equipped with a UPS system made by two Li-ion 

batteries of 500 kW, which are able to supply the privileged loads for 20 minutes. The batteries 

have a maximum DOD of 80%, can charge during the central hours of the day and discharge 

otherwise, thus allowing only one charging/discharging cycle per day; it is also assumed that 

the minimum allowable state of charge is large enough for the back-up service. Regarding to 

the PEV fleets, the energy requests by the aggregators are reported in table 2.6, and it is 

assumed that the grid supplies power to the aggregators (grid to vehicle mode), while the vice 

versa (vehicle to grid mode) is not allowed. 

 
Figure 2.34: MV test system. 
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Line R (p.u.) XL (p.u.) XC (p.u.) 

1 2 0.00312 0.06753 0 

2 3 0.00431 0.01204 0.000035 

3 4 0.00601 0.01677 0.000049 

4 5 0.00316 0.00882 0.000026 

5 6 0.00896 0.02502 0.000073 

6 7 0.00295 0.00824 0.000024 

7 8 0.01720 0.02120 0.000046 

8 9 0.04070 0.03053 0.000051 

3 10 0.01706 0.02209 0.000043 

2 11 0.02910 0.03768 0.000074 

11 12 0.02222 0.02877 0.000056 

12 13 0.04803 0.06218 0.000122 

12 14 0.03985 0.05160 0.000101 

14 15 0.02910 0.03768 0.000074 

14 16 0.03727 0.04593 0.000100 

16 17 0.02208 0.02720 0.000059 

Table 2.4: Test system data. 

 

Node Pc  (p.u.) Qc  (p.u.) cos 

1 0 0 - 

2 0 0 - 

3 0.02 0.012 0.86 

4 0.04 0.025 0.85 

5 0.15 0.093 0.85 

6 0.30 0.226 0.80 

7 0.08 0.05 0.85 

8 0.02 0.012 0.86 

9 0.10 0.062 0.85 

10 0.05 0.031 0.85 

11 0.10 0.062 0.85 

12 0.03 0.019 0.84 

13 0.02 0.012 0.86 

14 0.08 0.05 0.85 

15 0.05 0.031 0.85 

16 0.10 0.062 0.85 

17 0.02 0.012 0.86 

Table 2.5: Load base values (PBASE=10 MVA). 

Time period 

Aggregator at bus #5 Aggregator at bus #13 

Energy requested (MWh) Energy requested  (MWh) 

[00.00-08.00] 3.60 1.00 

[08.00-12.00] 0.80 2.50 

[12.00-14.00] 0.50 1.00 

[14.00-18.00] 1.00 0.80 

[18.00-24.00] 3.00 0.75 

Table 2.6: Energy requests by the aggregators. 
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For all the objective functions (2.44)-(2.48) the scheduling was performed by solving the 

corresponding optimization problem by dividing the day in 24 time slots of 1 hour. As an 

example of the inputs, the forecasted daily profiles of a load (bus #6) and DG (bus #15), 

privileged load demand of a DC (bus#7) and the energy price are reported in figure 2.35. 

 

 
 

 

Figure 2.35: Load demand at bus#6 (a). DG power production at bus#15 and DC provileged load demand at 

bus#7 (b). Energy price (c). 
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For the sake of brevity, some detailed results are reported only with reference to the load 

leveling case. In particular, the graphs in figure 2.36 refer to the power imported by the grid 

from the upstream HV grid (i.e. the power at the HV/MV substation), the active power of the 

aggregator connected at the bus #13 and the active power of the battery equipping the UPS of 

the DC connected at the bus #7.  

 

 

 

Figure 2.36: Active power imported from the HV grid (a). Active power of the aggregator at bus #13 (b). Active 

power of a battery of DC bus #7 (c). 
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For comparative purposes, in figure 2.36(a), also the power imported from the HV grid, when 

no-control actions are applied is reported. In this case, that is considered as no-strategy case, it 

is assumed that the PV units are operated with a unitary power factor, the PEV fleets are 

charged with a constant power during each interval and the batteries of UPSs are used only 

for back-up services. As it can be observed, a useful improvement in terms of leveling power 

is obtained. In fact, when the optimal strategy is applied, a peak reduction of about 6% is 

gained as well as the difference between the minimum and maximum value is reduced of 

about 22%.  

The graph in figure 2.36(b) shows that the significant power requested by the aggregator 

assumes a profile aimed at leveling the substation power: as an example, at 9.00, the power 

supplied to the PEV is slightly reduced, thus shaving the substation peak power (figure 

2.36(a)); during the interval [18.00-24.00], instead, the power requested for charging the PEVs 

is higher during the hours of light loads, thus filling the valley of substation power profile 

(2.36(a)). In the graph of figure 2.36(c), it is interesting to observe that the battery is mainly 

used in order to supply power to the grid in the periods in which the loads are increasing (i.e. at 

the 8.00); instead, the battery charges during the light load hours. Regarding the reactive power 

support, significant values of power are provided by all resources, in particular during the 

hours of peak power demand. The profiles of the reactive power, here not reported for the sake 

of conciseness, and of the active power met the constraints imposed by the size of each 

converter. 

The results of the five strategies (i.e., squared voltage deviation, power losses, security margin, 

energy cost and load leveling) are reported in table 2.7: in a specific row, the values of each 

objective function obtained by applying a specific strategy are reported, and in a specific 

column the values obtained for a specific objective function by applying different strategies are 

reported. For comparison purposes, the results obtained in the no strategy case are also 

reported. As expected, the results reported in table 2.7 shows that the minimum of each 

function is obtained when it is used as objective of the strategy. By analyzing table 2.7, it 

emerges that the functions of load leveling and energy cost are the most conflicting with the 

other functions, because, when minimized, almost always, negatively affects the other 

functions. This, with the exceptions of the strategy for losses, that gives the worst result in 

terms of energy cost, and the strategy for voltage deviation, that gives the worst result in terms 

of load leveling. Moreover, in terms of security margin, the strategy for both load leveling and 

energy cost are worse than the case of no-strategy. On the other hand, the strategy that always 

gives results inside the best and the worst, in terms of the other functions, is the strategy for 

security margin. 

Strategy 

Objective function values  

fobj,1 

(%) 

fobj,2 

(p.u.) 

fobj,3 

(p.u.) 

fobj,4 

(m.u.) 

fobj,5 

(p.u.) 

Voltage 0.0041 0.4357 0.4700 16.2243 0.0448 

Losses 0.0543 0.3681 0.4383 16.3138 0.0415 

Security margin 0.0101 0.4186 0.4319 16.2219 0.0430 

Cost 0.0774 0.5807 0.6176 16.0625 0.0416 

Load leveling 0.2455 0.5660 0.5473 16.1563 0.0372 

No strategy 0.6057 0.5834 0.5331 16.6526 0.0602 

Table 2.7: Objective function values for different strategies. 
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Chapter 3: Optimal Sizing of Battery Energy Storage Systems 

BESS is an indispensable component for µG due to the number and variety of services they 

can provide, as shown in the previous chapters. However, due to the high investment costs 

and, for some technologies, the short operational life of BESS, its large-scale application has 

been greatly restricted [1], so how to rational size BESS capacity while meeting the 

operational requirements of system has important practical significance. It is also known that 

small BESS may not provide significant economic benefits, desired flexibility or predefined 

reliability objectives in the µG and the large BESS impose higher investment and 

maintenance costs [2]. Then, optimal operation and sizing of BESSs can play considerable 

role in order to satisfy economic and technical benefits. Since optimal operation of BESS, 

which is discussed in the second chapter, cannot only satisfy proposed benefits then the sizing 

of BESSs must be also performed in an optimized way in order to maximize the benefits 

related to their use. Subsequently, this chapter of the thesis presents optimal sizing procedures 

of BESS.  

Optimal sizing methods are mainly divided into three categories: energy balance methods, 

fluctuations stabilize methods and the economic characteristics optimization methods [2]. An 

energy balance method can be proposed to determine optimal battery capacity to ensure 

continued supply and meet certain reliability indices where in fluctuations stabilize methods 

the goal is to smooth out the intermittent generation of wind and solar generators and obtain a 

dispatchable output. Economic characteristics optimization methods mainly focus on the 

sizing of BESS in order to reduce the electricity bill based on energy charge and demand 

charge [2]. This chapter deals with the latter methods. 

It should be noted, moreover, that in the sizing framework, the engineer who is sizing the 

BESS can perform the sizing problem based on deterministic approaches or probabilistic 

approaches. In this thesis, optimal sizing of BESS with reference to both the approaches are 

considered. In case of deterministic approach, the BESS sizing problem is proposed based on 

a quick closed form procedure, where in case of probabilistic approach, the BESS sizing 

problem is based on decision theory. Moreover, since both sizing approaches require a cost 

analysis then investment costs, maintenance costs and benefits associated with the installation 

of the BESS are taken into account. 

Obtained results of proposed optimal sizing approaches in numerical applications demonstrate 

technical and economic benefits that can be derived from the installation of optimized size of 

BESS.  

3.1. Deterministic optimal sizing of battery energy storage system based on 

TOU tariff 

Deterministic optimal sizing of BESS operates under the deterministic framework of the data 

associated with the problem. In this section, particularly, the optimal sizing of BESS under 

TOU tariff with the consideration of certain data from the end customer point of view to 

reduce electricity costs is presented.  

As clearly evidenced in the previous chapters of this thesis, minimizing the electricity costs is 

one of the greatest challenges related to the use of batteries in modern smart grids. Focusing on 

the end customer point of view, residential homes and small/medium-sized industrial facilities 
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are expected to actively modify their energy spending patterns by adopting battery systems and 

optimizing their consumption. The key barrier to the use of such devices remains their high 

cost as batteries are still quite expensive. However, looking at the longer-term, the 

technological development is expected to play an important role in both cost reduction and 

performance’s improvement, so making batteries increasingly competitive for these 

applications [3]. 

To evaluate the benefit of using batteries, several factors must be taken into account such as 

electricity rates, load profile, technical and economic constraints of the battery and grid 

connection policies. All the aforementioned factors are considered in experience, which 

discusses the economic analysis affected for sizing a battery system with the aim of reducing 

the cost sustained for the energy consumptions. In more detail, the users are expected to 

modify their energy spending patterns by adopting battery systems and optimizing their 

consumption in the frame of the applied energy tariff schemes. Obviously, only dynamic 

pricing programs can be considered at this purpose and, in particular, RTP and TOU. RTP 

reflects the actual wholesale energy market and can suffer of large price variations in narrow 

time bands; TOU tariffs are based on only two or three price levels. Even if RTP seems to have 

high potential in the highly automated grid of the next future, nowadays it has not been widely 

accepted or implemented, whereas TOU pricing has been used extensively [4,5]. 

In this thesis, a methodology is proposed to study the profitability of a battery system for a 

customer under TOU pricing. In particular, a simple closed form procedure is proposed to 

evaluate the size of the battery system which minimizes the total costs sustained by the 

customer. The proposed procedure is able to account for both the technical constraints of the 

battery and contractual agreements between the customer and the utility. In the numerical 

application, the methodology is applied with reference to both residential and small industrial 

customers and based on actual TOU tariffs. Some aspects that affect the profitability of the 

battery, such as technological limitations (e.g. the battery and converter efficiency) and 

economic barriers (e.g. capital cost and the rate of change of the cost) are also discussed [5]. 

3.1.1.  State of the art 

In literature, the evaluation of the benefits related to the use of batteries under TOU tariff 

schemes is usually referred to the problem of optimal sizing of the battery [6-8]. In [6], the 

sizing is based on the maximization of the economic benefit which is defined as the ratio 

between the annual electricity saved (i.e. the difference between the total annual electricity 

charge without and with battery system) and the capital cost of the battery system. In [7], 

different combinations of technologies and sizes of the battery system are analyzed. The 

comparative analysis is made by evaluating the return of investment function, which is defined 

as the ratio between the revenue of the battery system (i.e. the difference between the capital 

cost and the total profit) and its capital cost. In [8], the most beneficial battery combination (i.e. 

technology and size) was identified on the basis of a closed form inequality. In particular, to 

check the profitability of the battery systems, the costs with and without battery were 

compared. 

The sizing procedure proposed in this thesis allows a closed form optimal sizing procedure of 

BESS and, compared to that proposed in [6], introduces also important technical constraints on 

the use of the battery (e.g., the depth of discharge). The net present values of all the costs were 

also included in the economic analysis. 
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Compared to the proposal in [7], constraints related to the contractual agreements between the 

customer and utility are included which refer to both the periods in which the battery charges 

and those in which it discharges. These constraints are taken into account in [8] only with 

reference to the discharging stage. The importance of taking into account these constraints 

leads to the high influence they have on the amount of energy exchanged with the grid.  

Moreover, unlike this proposed sizing procedure, in [6-8] the trend variation of the load profile 

along the years is not taken into account. This application performs also a wide sensitivity 

analysis to consider different perspectives in terms of life span and future costs. 

3.1.2.  Problem formulation and solving procedure 

In this subsection, problem formulation and solving procedure of proposed closed form 

optimal sizing of BESS in a deterministic framework are considered. First, economic analysis 

of using BESS is presented then, based on this analysis, the BESS sizing problem is solved. 

i. Economic analysis  

A thorough economic analysis in order to evaluate the benefits achievable using BESSs in 

terms of reduction of costs related to the electricity consumption is considered. The economic 

analysis is performed by considering a specific time period whose choice can be related to the 

lifecycle of the system where the BESS is installed.  

The economic analysis considers all the costs related to the inclusion of the battery system in a 

residential area or in an industrial facility that hereinafter will be referred to as the customer. In 

both the cases it is assumed that it is not possible to sell energy to the grid. Then, the energy 

stored in the battery can be used only to supply the loads. In the case of industrial facility, it is 

also assumed that the inclusion of the BESS doesn’t introduce any modifications in the 

manufacturing process and in the facility’s infrastructures [5]. To evaluate the total customer 

costs related to the BESS adoption, capital, maintenance, replacement, disposal and energy 

costs are taken into account:  

endisprepmt0LCC CCCCCC      (3.1) 

where CLCC is the life cycle cost (or total customer cost), C0 is the capital cost of the BESS, 

Cmt  is the BESS maintenance costs, Crep is the cost related to the replacement of the batteries, 

Cdisp is the BESS disposal cost and Cen is the energy cost. The maintenance, replacement and 

energy costs refer to their sum over the specified time period in which the economic analysis 

is performed. The net present value of the maintenance, replacement and energy costs have to 

be calculated as: 
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where Ck (n) is the expected cost (energy, maintenance and replacement) to suffer in the year n, 

Ck(n)npv is its net present value, β is the assumed discount rate and α is the effective rate of 

change assumed for the cost in the years.  It is worth note that the expected cost (Ck (n)) takes 

into account the variation of the costs at year n that is not depended on the discount rate and 
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effective rate of change. As an example, in case of the energy cost, Ck (n) includes the 

increasing rate of the loads at n
th 

year. 

BESS capital costs (C0) in (3.1) include equipment purchase cost and installation cost. Both the 

cost of the battery system Cbatt and the converter Cconv are considered: 

convbatt0 CCC        (3.3) 

BESS maintenance costs (Cmt) in (3.1) include corrective maintenance and preventive 

maintenance costs [9]. They can also be included as percentage of capital costs [10].  

BESS replacement costs (Crep) have to be sustained for purchasing a new battery if the battery 

lifetime is lower than the time period considered in the economic analysis. The life time of the 

battery depends on the number of charging/discharging stages per day: 

υ365

N
lifetimeBattery 

cycles


      (3.4) 

where Ncycles is the total number of charging/discharging cycles declared by the battery 

manufacturer and υ is the number of daily charging/discharging cycles.  

With reference to the BESS disposal costs (Cdisp) in (3.1), it is assumed that they can take into 

account also the benefit derived from the recycling of the battery. This cost/benefit may vary 

depending on the country where the disposal is performed. Based on the expected development 

of recycling technology, disposal activity could also be assumed to represent a benefit rather 

than a cost [11]. 

Energy costs (Cen) in (3.1) are the costs sustained by the BESS’s owner (i.e. the customer) 

related to the energy consumption. They include both the purchase of the energy required to 

supply its loads and that required to charge the battery. The benefit in terms of reduction of 

these costs is related to the discharge of the battery to supply the loads during peak price 

periods. In the evaluation of the energy costs both the variations of the price of energy due to 

the inflation and load variations caused by economic growth can be taken into account by 

imposing a percentage variation per year. 

The Energy costs (Cen) can be evaluated as follows: 

dchchloaden CCCC         (3.5) 

where Cload is the total electricity cost required to supply the loads without considering the 

presence of the BESS, Cch is the electricity cost sustained for charging the battery, Cdch is that 

avoided by the customer as loads are supplied by the BESS. Both Cch and Cdch depend on the 

energy tariff applied to the customer. Utilities usually propose different tariffs depending on 

the periods (season) of the year [4]. In the most general case, the cost required for supplying 

the loads is given by: 
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where Pl,i,n(t) is the power requested by the loads at time t of a typical day of the i
th

 season of 

the n
th

 year, Tday is the duration of the day, Ni is the number of days of the i
th

 season, PrEn,i,n(t) 

is the price of energy (energy charge) at time t of the i
th

 season of the n
th

 year.  

In order to gain economic advantage, the battery is allowed to charge during low price hours 

and it is allowed to discharge during the high price hours. Thus, the costs sustained for 

charging the battery (Cch) and the cost avoided by the consumer as loads are supplied by the 

BESS (Cdch) can be evaluated as follows: 

dt)t(P)t(PrN)n(C n,i,bn,i,En
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where Pb,i,n(t) is the absolute value of the power of the battery at time t of the i
th 

season of the 

n
th

 year, Ωch,i,n  and Ωdch,i,n  are the set of all the time intervals of the day, in which the battery is 

allowed to charge and discharge, respectively. With reference to the figure (2.23), Ωdch,i,n refers 

to the set of time intervals within dis

inn , dis

finn . Eventually, by substituting (3.5) in (3.1) the total 

customer cost will be: 

dchchloaddisprepmt0LCC CCCCCCCC     (3.9) 

ii. BESS sizing procedure under TOU pricing 

The optimum value of the size of the battery is the one corresponding to the minimum total 

cost 

 )C(min LCC        (3.10) 

subject to the following constraints:  

1. the number of charging/discharging cycles per day has to be coherent with the 

specified tariff; 

2. a maximum depth of discharge is allowed; 

3. the energy discharged by the battery must be used only to supply the load (the 

customer is not allowed to sell energy to the grid);  

4. the power absorbed by the customer cannot exceed a maximum value imposed by the 

contractual agreement;  

5. the energy stored in the battery at the beginning and at the end of the day has to be 

the same. 

The minimization problem (3.10), subjected to the constraints 1-5, can be solved by means of 

a classical optimization algorithm [12-14]. However, in case of TOU tariff, a simplified 

closed form procedure can be used which makes the evaluation more simple and 

straightforward. The details of the proposed closed form approach are given in the following.  

In order to meet constraint 1 the number of daily charging/discharging cycles has to be 

evaluated. When the TOU tariff is made by two price periods, that is the on-peak hours (the 

hours of higher price) and the off-peak hours (the hours of lower price), it is trivial to allow 
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the charging of the battery during the off-peak hours, and the discharging during the on-peak 

hours. It follows also that, if this case is considered, the battery is subjected to only one 

charging/discharging cycle in 24 hours. This condition can be still valid in case of TOU tariff 

made by three price levels, which is the tariff that provide a specified price for the mid-peak 

hours. In fact, usually, mid-peak periods refer to few hours [4], thus a benefit can be achieved 

if the battery is idle during these hours.  

In the following, only for the sake of simplicity and without loss of generality, it is supposed 

that TOU tariff doesn’t vary along the years, hence the index n in PrEn,i,n(t) in (3.6)-(3.8), and 

in Ωch,i,n and Ωdch,i,n in (3.7)-(3.8), can be neglected. With reference to Cdch (n) relationship 

(3.7) reads:  

dchn,i,dchi,dch

n

i idch EPrN)n(C
s

 1
    (3.11) 

where Prdch,i is the energy charge (i.e. the price for energy) during the on-peak hours, that is in 

the time intervals included in Ωdch,i , Edch,i,n is the daily energy supplied by the battery in the 

same time intervals and ηdch  is the BESS discharge efficiency.  

With reference to Cch (n), relationship (3.8) reads: 
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where Prch,i is the energy charge during the off-peak hours, that is the time intervals included 

in Ωch,i  and Ech,i,n  is the daily energy requested by the battery in the same time intervals, both 

evaluated at the n
th

 year and ηch is the BESS charge efficiency. When the energy tariff is 

assumed to vary along the years, formulas (3.11) and (3.12) can be easily extended. In order to 

calculate Edch,i,n in (3.11) and Ech,i,n in (3.12), the following considerations have to be made.  

By taking into account the maximum allowable depth of discharge (constraint 2), the 

maximum amount of energy that can be theoretically charged/discharged from the battery is 

given by: 

100


 size

T EE       (3.13) 

where Esize is the size of the battery and δ is the percentage value of the maximum depth of 

discharge of the battery [15].  

Equation (3.13), however, cannot be directly included in  (3.11) and (3.12), because it gives 

only the theoretical value of the daily energy available for charging/discharging, since during 

the operation the practical value of the energy that can be discharged is limited by constraints 3 

and  the maximum energy that can be charged is limited by constraint 4.  

With reference to constraint 3, if initially the energy limit imposed by (3.13) is not considered, 

Ωdch,i (i.e. the interval in which the battery is allowed to discharge) includes two time periods:  

 the first, Ω1,i,n ,includes all the time intervals in which the maximum power that can 

be supplied by the battery is greater than the maximum power requested from the load 

(i.e.  ))t(PP:t( n,i,lmax,bn,i, 1 ; 
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 the second, Ω2,i,n, includes all the time intervals in which the power requested from 

the load is greater than or equal to the maximum power that can be supplied by the 

battery (i.e.  ))t(PP:t( n,i,lmax,bn,i, 2 ). 

where Pl,i,n(t) is the active power required by the load at time t of the i
th

 season, n
th

 year, and 

Pb,max is the maximum power that can be supplied by the battery. Since the customer is not 

allowed to sell energy to the utility, during Ω1,i,n, the maximum energy that can be discharged 

by the battery is 

  dt)t(PE
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whereas, during Ω2,i,n, the maximum energy that can be discharged by the battery is 

  dtPE
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The maximum energy that can be discharged during Ωdch,i is then given by: 

n,i,n,i,

dch

n,imax, EEE 21        (3.16) 

With reference to constraint 4, if initially the energy limit imposed by (3.13) is not considered, 

Ωch,i (i.e. the interval in which the battery is allowed to charge) includes two time periods: 

 the first, Ω3,i,n, includes all the time intervals in which the sum of the power requested 

by the load and the maximum power that can be used by the battery for charging is 

lower than the maximum value of the power that can be imported from the grid which 

is imposed by the contractual agreement (i.e.    ca

maxn,i,lmax,bn,i, P)t(PP:t 3 ). 

 the second, Ω4,i,n, includes all the time intervals in which the sum of the power 

requested by the load and the maximum power that can be used by the battery for 

charging is greater than or equal to the maximum value imposed by the contractual 

agreement (i.e.    ca

maxn,i,lmax,bn,i, P)t(PP:t 4 ). 

where ca

maxP  is the maximum value of the power that can be imported from the grid which is 

imposed by the contractual agreement. Since the customer is not allowed to absorb more than 
ca

maxP from the grid, the maximum energy that can be charged during Ω3,i,n is  

dtPE
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and the maximum energy that can be charged during Ω4,i,n, is  
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The maximum energy that can be charged during Ωch,i is then given by: 

n,i,n,i,

ch

n,imax, EEE 43        (3.19) 

Finally, based on the hypothesis that during the day the total energy charged and discharged is 

the same (constraint 5) and considering now the energy limit given by (3.13), it follows that 

Edch,i,n in (3.11) and Ech,i,n in (3.12) are given by: 

 ch

n,imax,

dch

n,imax,

T

n,i,chn,i,dch E,E,EminEE     (3.20) 

The proposed procedure for the calculation of Cch and Cdch (given by (3.11) and (3.12)) will be 

applied to different battery sizes; thus, for each of them, the total cost will be evaluated by 

means of (3.9). The optimum value of the size of the battery will be that corresponding to the 

minimum total costs. 

3.1.3.  Numerical application 

Two case studies are presented in which the proposed approach was performed with reference 

to two different load profiles that are reported in figure 3.1: residential customer (figure 3.1.a) 

and industrial customer (figure 3.1.b).  

 

Figure 3.1:  Residential load profile (a),  Industrial load profile (b) 

For both the residential and industrial loads, annual load variations of +1%, +3%, +5% were 

considered so including different possible trends of load growth versus years. Different 

combinations of the values assumed for the discount rate β and effective rate of change α were 

considered too, varying from 3% to 7% in order to evaluate different economic scenarios.  

The BESS considered in this application includes a Lithium-ion battery which is connected to 

the power grid by a PWM-controlled AC/DC converter. In order to take into consideration 

both the nowadays technological status and the future perspectives, a sensitivity analysis was 

performed by considering for the BESS different charging and discharging efficiencies as 

well as different installation costs. The charging and discharging efficiencies were supposed 

to vary from 0.93 to 0.98 and from 0.96 to 0.98, respectively, whereas the installation cost 

was supposed to vary from 200 $/kWh to 1000 $/kWh. These costs include maintenance (2%) 

whereas the benefit deriving from the disposal of battery has been disregarded. A maximum 
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DOD of 80% is assumed which corresponds to a life cycle of about 4500 cycles [3]. By 

imposing one charging/discharging cycle per day, a life cycle of 12 years can be assumed for 

the battery; replacement costs are not considered.  

Regarding the energy rates, TOU tariffs were considered with reference to the industrial and 

residential cases. For both the two cases the TOU tariff adopted by an actual utility was 

considered, whose values are reported in tables 3.1 and 3.2 [16]. The considered tariff is 

applicable to both small and medium industrial customers as well as for service in common 

areas in multifamily complexes.  

Summer tariff 

On peak 12:00 noon to 6:00 p.m. 

Part peak 8:30 a.m. to 12:00 noon and 6:00 p.m. to 9:30 p.m. 

Off peak 9:30 p.m. to 8:30 a.m. 

Winter tariff 

Part Peak 8:30 a.m. to 9:30 p.m. 

Off Peak 9:30 p.m. to 8:30 a.m. 

Table 3.1: Time of use tariff periods. 

TOU periods Summer tariff ($/MWh) Winter tariff ($/MWh) 

On peak 542.04 
          161.96 

  Part peak 252.90 

 Off peak 142.54 132.54 

Table 3.2: Time of use tariff prices. 

Case a) 

In this case study, the procedure was applied to a BESS of a residential load (figure 3.1.a). The 

total customer costs versus BESS sizes are reported in figure 3.2 with reference to different 

battery installation costs. The figure refers to the effective rate of change α=5% and discount 

rate β=5%, charge/discharge efficiencies of the BESS ηch= 95%, ηdch=98%, respectively. A 5% 

annual load variation was also supposed. In the figure the benefit obtained for each size can be 

deduced. For a specific battery size, in fact, the difference between the total cost and the cost 

corresponding to size zero (if negative) represents the economic advantage (i.e. the benefit) 

obtained with the use of that battery. If the difference is positive, no convenience exists to 

install the BESS. This consideration applies also for the following figures.  

In figure 3.2, each curve is characterized by a minimum value of the total customer costs 

which corresponds to the optimal size of the BESS. Figure 3.2 shows that when the 

installation cost increases, the total cost increases as well and, at the same time, the optimal 

BESS size (if it exists) decreases. In addition, it is possible to observe that no benefits exist 

when the BESS installation cost is higher than 700 $/kWh. In these cases, in fact, the total 

costs are always greater than the case of size zero. 

Focusing on the case of installation cost equal to 600 $/kWh, figure 3.3 reports the results of 

the analysis performed with reference to different annual load variations. Also in this case  = 

5%, β=5%, ηch= 95%, ηdch=98%. The figure shows that, as expected, the total cost increases 
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when the annual load variation increases. The benefit provided by the use of BESS increases 

with the load variation and the optimal size of BESS increases from 160 kWh (for 1% and 3% 

annual load variations) to 170 kWh (5% annual load variation).  

 

Figure 3.2: Total customer cost with α= 5%, β=5%, ηch= 95%, ηdch=98%, for 5% annual load variations and for 

different installation costs (residential load). 

 

Figure 3.3: Total customer cost with α= 5%, β=5%, ηch= 95%, ηdch=98%, BESS installation cost = 600 $/kWh, for 

different values of annual load variation (residential load). 

Figure 3.4 shows the total cost and optimal sizes of battery under different values of the 

effective rate of change α and discount rate β with the annual load variation of 5%, and ηch= 

95%, ηdch=98%. 

In figure 3.4, it is interesting to note that the total cost increases when β<α. On the other hand, 

when β>α the total cost decreases and, in the particular case reported in the figure (α=3%, 

β=7%), the installation of BESS never provides any benefit, since the total cost for size zero is 

always lower than those obtained for all the other battery sizes. In case of βα, instead, a 

benefit is evidenced. Also, it can be observed that the values of α and β strongly affect the 

optimal size, since their variation results in very different values of total cost (up to 18%). 
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In figure 3.5, different BESS efficiencies are considered when the installation cost is 600 

$/kWh, α= 5%, β=5% and the annual load variation is 5%. Obviously, the total cost decreases 

when efficiency increases, thus making the BESS even more profitable.  

 

Figure 3.4: Total customer cost with an annual load variation of 5%, ηch= 95%, ηdch=98%, BESS installation cost 

= 600 $/kWh, for different values of α and β (residential load). 

 

Figure 3.5: Total customer cost with α= 5%, β=5%, 5% annual load variation and different values of BESS 

efficiency (residential load). 

Case b) 

In this case study, the power profile of a small industrial facility was considered (figure 3.1.b). 

In figure 3.6 the results obtained for different installation costs are reported with α= 5%, β=5%, 

ηch= 95%, ηdch=98% and annual load variations of 5%. The total cost for different annual load 

variations is shown in figure 3.7 when α= 5%, β=5%, ηch= 95%, ηdch=98% and the installation 

cost is 600 $/kWh. 

Compared with those of case a, in both figures the values of the total cost and benefits are 

larger (because the load power request is larger). However, the same considerations reported 

with reference to the residential case are still valid. In particular, from the analysis of  figure 

3.6, it is very interesting to note that, even if the industrial load request is larger than the 
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residential, the maximum installation cost that makes the use of BESS profitable is about 700 

$/kWh, that is the same obtained in the residential case. As it can be observed in both figures 

(3.6 and 3.7), the optimal size of the battery increases with the load request. In the considered 

cases reported in figure 3.7, the optimal size of the battery is 1200 or 1250 kWh, thus 

highlighting a slight influence of the annual load variation on the battery sizing. 

 

Figure 3.6: Total customer cost with α= 5%, β=5%, ηch= 95%, ηdch=98%, for 5% annual load variations 

(industrial load). 

 

Figure 3.7: Total customer cost with α= 5%, β=5%, ηch= 95%, ηdch=98%, BESS installation cost = 600 $/kWh, for 

different values of annual load variation (industrial load). 

Figure 3.8 shows the total cost and optimal sizes of battery under different values of the 

effective rate of change α and discount rate β based on annual load variation of 5%, ηch= 95%, 

ηdch=98% and installation cost 600 $/kWh. Again, the same considerations reported with 

reference to the residential case (figure 3.4) are still valid. In particular, figure 3.8 shows that 

the total cost increases when β<α, or decreases when β>α and, in the case reported in the 

figure (α=3%, β=7%), the installation of BESS never provides any benefit. Benefits are 

evidenced when βα. Also, it can be observed that the values of α and β strongly affect the 

optimal size, since their variation results in very different values of the total cost (up to 16%). 
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Figure 3.8: Total customer cost with a annual load variation of 5%, ηch= 95%, ηdch=98%, BESS installation cost = 

600 $/kWh, and for different values of α and β (industrial load). 

Also in figure 3.9, where different BESS efficiencies are considered, based on installation 

cost of 600 $/kWh, α= 5%, β=5% and annual load variation of 5%, the same considerations on 

the profitability of BESS can be drawn. Figure 3.9, in fact, shows that the total cost decreases 

when efficiency increases. 

 

Figure 3.9: Total customer cost with α= 5%, β=5%, 5% annual load variation, BESS installation cost = 600 

$/kWh, and different values of BESS efficiency (industrial load). 

3.2. Probabilistic optimal sizing of battery energy storage system based on 

decision theory 

In defining the sizing framework, the engineer who is sizing the BESS (hereafter referred to 

as the “Decision Maker” or DM) can operate under the hypothesis of either a deterministic 

framework or under the uncertainty of the data associated with the problem. In the first case, 

which has been the more popular approach in the past and was analyzed in the previous 

section, certain conditions are assumed and used as input data. In the second case, 

uncertainties are introduced and modeled probabilistically. In this section, particularly, the 

optimal sizing of BESS under the decision theory is presented with the consideration of 
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unavoidable uncertainties which are introduced by the cost of electricity and the load demands 

of industrial facilities.  

As is well known, possible applications of BESSs that seem particularly useful are load 

leveling, reducing end-user’s electricity bills, improving end-user’s power quality, reliability, 

and spinning reserve [17, 18]. In the frame of these applications, in this section we focus on 

the optimal sizing of a BESS installed in an industrial facility to reduce the facility’s electricity 

bill. In the most general case, reducing the electricity bill can involve both energy (energy 

charge (EC)) and peak power charge (demand charge) [12, 19], as shown in chapter 2. This 

application refers only to the EC, so reducing the electricity bill means only the ability of the 

end-user to increase its energy required from the grid during the lower price hours and 

decrease the energy required from the grid when the price is higher. 

In the probabilistic framework too, when sizing a BESS, a cost analysis should be conducted 

that takes into account costs and benefits associated with the installation of the BESS. These 

benefits depend on the control strategy performed during the operation of the BESS. 

However, to apply any sizing procedure for reducing the electricity bill, we must have some 

input data (“sizing framework”). In particular, the load demand of the industrial facility and 

the relationships that quantify the electricity bill, i.e., the way in which the electricity bill is 

calculated and the way in which it depends on electricity use at each time of day, must be 

known. 

We contend that the problem of sizing storage systems to be installed to reduce the electricity 

bills of an industrial facility can be successfully solved assuming uncertain input data related 

to the problem. This position is based on the fact that in this way the DM can properly include 

both short-term and long-term factors in the sizing procedure. Of course, future systems will 

be subject to random perturbations that unavoidably result in uncertainties in the sizing 

calculations. Thus, traditional, deterministic paradigms, in some cases can lead to uneconomic 

or unreliable solutions.  

This section deals with the probabilistic optimal sizing of a BESS installed in an industrial 

facility to reduce electricity costs applying a four-step procedure, based on decision theory, 

with the aim to obtain a good solution for the sizing problem, even when facing uncertainties.  

The numerical applications performed on an actual industrial facility provided evidence of the 

effectiveness of the proposed procedure. 

3.2.1.  State of the art 

In the relevant literature some research works presented the probabilistic sizing of storage 

systems to reduce the uncertainties associated with wind power and photovoltaic power [20- 

27]. With reference to wind power, in [20], a stand-alone system was considered, and the 

storage was calculated for different levels of mean load. In [21], dynamic sizing based on 

probabilistic forecasts and a real market situation was proposed, considering the degree of risk 

that a power producer would find acceptable. In [22, 23], the possible smoothing effect of a 

BESS was simulated with an exponential moving average. In [24], a probabilistic reliability 

assessment method was proposed for determining the adequate size of an on-site energy 

storage system and determining the transmission upgrades required to connect wind generators’ 

output power with the power system. In [25], a probabilistic method for sizing energy storage 

systems was proposed based on wind power forecast uncertainty; the proposed sizing 

methodology permitted the estimation of the size as a function of unserved energy. 
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With reference to photovoltaic power, in [26], a probabilistic approach was used to size both 

the PV system and the battery storage system for three selected sites in Italy, characterized by 

different values of solar radiation. In [27], a probabilistic approach for the design of a stand-

alone hybrid generation system, including energy storage devices, was proposed, based on an 

index able to take into account the probability that loss of power supply occurs. 

3.2.2. Problem formulation and solving procedure 

An industrial facility’s electrical distribution system in which one or more transformers 

connect the distribution grid to the lines of the users’ power system is considered. A BESS is 

assumed to be connected at the secondary side of the transformers with the aim of reducing 

the electricity bill. The following four-step procedure to solve the problem of BESS sizing 

under uncertainty is proposed: 

1. A set of possible futures is specified, and each future is characterized by a probability 

assigned by the DM. Here, each future is associated with a different industrial 

facility’s load demand and the way in which the electricity bill is calculated, 

depending on electricity use at each time of the day. 

2. Several possible BESS design alternatives are specified. Each design alternative is 

based on the BESS energy ratings, with its associated installation and maintenance 

costs. 

3. The total BESS costs are calculated for each future specified in the first step and for 

each sizing alternative specified in the second step. The total costs take into account 

the installation cost, maintenance cost, and the benefits derived from the operation of 

the BESS. The benefits are obtained by solving an optimization problem in which the 

objective function to be minimized is the electricity bill and the constraints of which 

include the need to maximize the BESS’s lifetime. 

4. Decision theory is applied to choose, among the alternatives of the second step, the 

best BESS sizing solution by considering the futures with their probabilities, as specified 

in step 1. The applied decision theory approaches used the future probabilities 

assigned in step 1 and the total cost of the BESS calculated in step 3; they are the 

minimization of the expected cost, the min-max regret, and the stability areas’ criteria. 

These approaches have been used extensively and successfully for the solution of 

several important power system planning problems [28-31]. 

Figure 3.10 shows the flowchart of the proposed procedure. The DM, based on her or his 

understanding of the nature of the uncertainties relevant to the BESS sizing problem, selects 

possible futures and alternatives of steps 1 and 2 and assigns the future probabilities [28-31]. 

Three approaches usually are used to estimate the probabilities to be assigned when the future 

uncertainties are modeled probabilistically [28]: 

 the first approach is based completely on the observed information; 

 the second approach is based completely on the subjective judgment of the DM; 

 the third approach is a mix of the above two approaches, and it combines the DM’s 

judgmental information with the observed information. 
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Figure 3.10: Flowchart of the proposed procedure. 

In this thesis, we used the second approach (subjective judgment of the DM). In fact, even if it 

may seem unsound to assign values of probabilities with little or no empirical information, 

surprisingly positive results can be obtained when the DM has a good understanding of the 

nature of the uncertainties relevant to the problem and uses this understanding to assign 

probabilities in a subjective manner [28-32]. 

In the next subsections, the details of the optimization problem to be solved in step 3 and the 

decision theory criteria of step 4 are shown. 

i. Formulation of the optimization problem for calculating the total costs for the BESS 

The third step of the proposed procedure, as shown in figure 3.10, consists in calculating the 

total BESS costs for each future specified in the first step and for each sizing alternative 

specified in the second step. 

As shown in the previous section the total cost can be evaluated as (3.1). In this application, 

however, the total energy cost Cen in equation (3.1) can be calculated for 24 h (one day) [33], 

assuming as input data a typical daily profile of the industrial facility’s load power and the 

hourly electricity price coefficients for the day. Also, more typical days can be considered, 

i.e., to cover weekly, monthly, and seasonal variations [34]. Once the typical daily electricity 

costs are known, they can be extended to cover the costs during the lifetime of the BESS to 

which this case refers. 

However, the evaluation of the daily cost is not an easy task, since, while the BESS operation is 

aimed at reduction of the electricity bill, at the same time technical constraints able to 

DM defines a set of possible futures (load demand and the way in 

which the electricity bill is calculated) with their probabilities 

DM defines a set of possible alternatives (BESS ratings) 

For each alternative and future the total cost is evaluated 

Decision theory application: 

Starting from the knowledge of the total cost incurred in each future 

for each alternative, the following criteria are applied: 

• Expected cost minimization 

• Min-Max regret 

• Stability areas 

The best alternative for the size of the BESS is chosen 
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maximize the battery lifetime have to be met. In particular, constraints on the depth of 

discharge and the number of charging/discharging cycles per day have to be satisfied [15]. To 

do that, a control strategy based on a constrained optimization problem is needed. In this 

application, the procedure proposed in [12] is used. 

This procedure obtains the daily electricity bill with the BESS by solving an optimization 

problem whose general mathematical formulation is expressed by equations (2.1) and (2.2) of 

section 2.1. 

Before specifying the objective function and constraints, it is important to recall that, also in 

this case, the optimization model refers to a day split into nt time intervals of length ∆t and 

that, in order to limit one charging/discharging cycle, the day is separated into three intervals, 

as shown in figure 2.23, with the first interval being the charging stage, the second interval 

being the discharging stage, and the third interval also referring to the charging stage. In this 

way, the condition of one cycle per day is clearly satisfied, because the last charging stage of 

the day continues with the first charging stage of the following day. 

The time steps in which the discharging mode starts and ends ( dis

inn , dis

finn ) are optimization 

variables of the problem subjected to the constraint 
dis

fin

dis

in nn    (bounded by 1 and nt). Based on 

the daytime steps of figure 2.23, it is possible that the battery, at the beginning of the day, is 

either in charging mode (if 1ndis

in  ) or in discharging mode (if 1ndis

in  ); moreover, it is 

possible that, at the end of the day, the battery is either in charging mode (if t

dis

fin nn  ) or in 

discharging mode (if t

dis

fin nn  ). 

The objective function (2.1) to be minimized is obviously the daily electricity bill, given by: 
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      (3.21) 

where Pgrid,t is the power requested by the facility from the grid, PrEn,t is the energy price, both 

at the t-th time interval and ∆tt is the duration of the t-th time step. 

The first equality constraint in relationship (2.2) to be met refers to the power balance, and it 

requires that the total power value requested by the facility be equal to the algebraic sum of 

the BESS power and load demand power for all time intervals of the day. Comparing with the 

power balance equation in (2.15) which is considered at each time interval for the following 

24 hours, here, similar power balance equation imposes that the power value requested by the 

facility to the grid is equal to the algebraic sum of the BESS power and facility load power, at 

all the time intervals of the day.  

Further equality constraints require that the daily balance of charging and discharging energy  

is satisfied: 
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where ηch and ηdis are the BESS efficiency in charging and discharging mode, respectively; nt 

is the number of day time intervals and
dis

inn ,
dis

finn  are shown in figure 2.23. 

Moreover, according to inequality constraints in (2.5) and (2.6) the BESS can only charge 

during the charging period and only discharge otherwise. 

A further inequality constraint (2.7) imposes that the state of charge during the discharging 

stage cannot be less than a minimum value (which depends on the maximum depth of 

discharge of the BESS). 

Similar to the inequality constraint in (2.30), the state of charge during the charging stage 

cannot be greater than a maximum value (the size of the BESS). 

Finally, the BESS at the beginning of the day is bounded by the BESS capacity and minimum 

value of the energy that can be stored in the battery based on the allowable depth of discharge. 

It has to be highlighted that, during the lifetime of the battery, its features (e.g., efficiency, 

maximum storage capacity, and minimum storage capacity) vary with time based on the 

battery’s aging characteristics [35]. Generally speaking, it could be possible to consider the 

effects of aging by dividing the planning problem into different time intervals, each one 

characterized by a specific set of storage properties (e.g., the battery’s capacity or efficiency), 

depending on the aging effects versus time. However, to the best of our knowledge, this 

approach has never been used in the relevant literature in case of the BESS sizing; rather, the 

pertinent literature only takes into account the problem of the charging/discharging cycles, as 

was the case for [15, 19, 33]. 

The above optimization model was solved with a hybrid approach based on a GA and a linear 

optimization that operated inside the GA as an inner loop, as shown in details in chapter 2. 

The GA was used to obtain only the time intervals in which the BESS operates in the 

charging and discharging modes, while the linear optimization determined the state of charge 

of the BESS at the beginning of the day and the optimal charging/discharging powers of the 

BESS inside the above intervals to minimize the electricity bill cost function in equation 

(3.21). 

In more detail, the GA created populations in which the individuals referred to the times that 

the discharging mode started and ended. Once the GA has generated an individual and, 

hence, the charging and discharging intervals were unequivocally determined, the linear 

optimization algorithm solved the optimization problems in equations (2.1) and (2.2). 

When the inner linear optimization problem converges, the value assumed by the objective 

function in equation (3.21) also represents the value of the fitness function related to each 

individual of the GA. The procedure terminates when the GA converges, i.e., when the best 

value of the fitness function remains constant over an assigned number of generations or 

when a maximum number of iterations is reached. 

ii. Decision Theory criteria for the choice of the best size for the BESS 

As previously shown in steps 1 and 2 of the proposed BESS sizing procedure, several futures 

are specified, with each future characterized by an assigned probability, and several design 

alternatives for the BESS are specified in terms of the ratings of the installed BESS and, then, 

of the energy to be produced by the BESS. In addition, in step 3, for each future specified in 

the first step and for each alternative specified in the second step, the total cost of the BESS 

was calculated by optimizing the operation of the BESS. 
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Decision theory was used in step 4 to choose, among the alternatives of step 2, the best 

solution with respect to the size of the BESS by considering the futures with their 

probabilities as specified in step 1 and considering the total costs calculated in step 3. 

Let the uncertainties in the sizing of the BESS be represented by a set of NF futures, Fk (k = 

1,…, NF), with Pk being the future probability; each future is characterized by different values 

of the electricity cost coefficients PrEn,t in equation (3.24) and the profile of the load demand 

Pl,t.  

Let Na alternatives Ai (i = 1,…, Na) also be available, each corresponding to a different size of 

the BESS. Then, the problem of choosing the best solution must be solved. To solve the 

above problem, we apply three different decision theory approaches based on: 

a.  the minimization of the expected cost 

b.  the minimization of the maximum regret felt by the DM 

c.  a combination of (a) and (b). 

It should be noted that the application of decision theory requires knowledge of the total cost 

incurred in each future for each alternative, that is the value of the objective function (3.21) 

calculated as the solution of the optimization problem. 

Approach (a) may be applied as follows. The expected value of the cost of alternative Ai 

associated with all the NF futures can be calculated as: 

  ik

N

k

ki CP)A(CE
F





1

      (3.23) 

where symbol E [∙] means the expected value, Cik is the cost incurred in the k
th

 future Fk by 

the i
th

 alternative Ai. For each alternative Ai, the expected value of the cost associated with all 

the NF futures can be calculated. 

Among all the possible alternatives, i.e., Ai (i = 1,…, Na), the alternative to be chosen is the 

one associated with the minimum value of the expected value of the cost: 
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The solution of the optimization problem in equation (3.24) is Aopt, that is the alternative to be 

chosen. Basically, applying Approach (a) means that the DM selects the alternative that 

satisfies the mean of the futures that can occur. However, this choice does not avoid solutions 

that lead to bad performance in the future if an unfavorable future were to really occur. 

Basically, Approach (b) tries to avoid such situations. In fact, minimizing the maximum regret 

means that the DM chooses the best solution among the worst solutions in order to avoid 

solutions that lead to a bad performance in the future [28-31]. 

In more detail, Approach (b) indicates the best solution as the one that minimizes the 

maximum regret felt by the DM after verifying that the decision he or she made was not 

optimal with respect to the future that actually occurred. The criterion is based on the 

calculation of the regret felt for having chosen a certain alternative Ai when the k
th

 future 

occurred; the regret is calculated as follows: 
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min

kikik CCRG        (3.25) 

where min

kC is the minimum cost for the k
th

 future and RGik is the regret felt for having chosen 

a certain alternative Ai when the k
th

 future occurred. Once the regret given by equation 

(3.25) is known, it is possible to calculate the weighted regret with the probability of the 

associated future as: 

k,ikik RGPWRG        (3.26) 

where Pk is the probability of the k
th

 future and WRGik is the weighted regret; when all of the 

weighted regrets are given by equation (3.26), for each sizing alternative, Ai, the maximum 

weighted regret is determined as: 

 ik
k

WRGmax         (3.27) 

Finally, the sizing alternative, Aopt, to be chosen among the Na possible alternatives, is the one 

associated with the lowest value of equation (3.27), i.e., the minimum of the maximum 

weighted regrets: 
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It should be noted that a critical aspect of both the above criteria (based on the expected cost 

and the regret) is the assignment of the probabilities Pk (k = 1,…, NF) that quantify the 

randomness of the sizing of the BESS, provided that both the expected costs and the weighted 

regrets depend on the probabilities. Several approaches for estimating these probabilities have 

been proposed [28], but none may fully overcome the probability assignment problem, either 

in the case of a high randomness or when the DM does not have a good understanding of the 

nature of the uncertainties relevant to the problem. Also, it can be useful to introduce a 

criterion based on the results of both procedures based on the DM’s assessment. 

In order to overcome the above problems, it may be convenient to refer to the “stability areas” 

concept proposed in [29]. Based on this concept, each scenario probability is treated as a 

parameter that randomly varies in the range of [0, 1] while meeting the following constraint: 

1
1




FN

k

kP         (3.29) 

When the results of (a) and (b) criteria are superimposed, the “stability area” of each sizing 

alternative is the area that corresponds to the probability for which both the Approaches (a) 

and (b) give the same recommended solution for sizing the BESS. Based on the knowledge of 

all of the sizing alternatives characterized by a stability area different from zero (and of the 

corresponding area value), the DM can determine the sizing solution he or she considers to be 

the best. For example, the DM’s final choice (i.e., the best size) could be the sizing 
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alternative characterized by the greatest area, i.e., the one that appears most frequently as 

the best solution for both the criteria (a) and (b). 

It should be also noted that assigning alternatives and futures is an important aspect in the 

proposed approach. In the decision-making context, the DM identifies alternatives and futures 

on the basis of her/his understanding of the nature of the planning problem to be solved. In case 

of BESS sizing, these choices should be effected also considering that: 

 a maximum amount of investment cost can exist, imposed by the owner of the 

industrial facility;  

 there is a range of sizes within which the DM can forecast that the optimal solution 

will occur more frequently; 

 the use of a very small number of futures can generate final decisions that will lead to 

bad performance in the future. 

3.2.3. Numerical application 

The proposed optimal procedure was used to size a BESS to be connected to the secondary side 

of the transformers that connect an actual industrial facility to the medium voltage distribution 

grid. Among the batteries that are commercially available, either Li-ion or redox batteries 

can be used, both characterized by a long useful lifetime even with a significant depth of 

discharge [15, 36]. A total value of 1000 $/kWh for the investment and maintenance costs is 

considered [10, 15, 33, 37]; these costs include the controls and power conditioning system, 

and they take into account the forecasted decrease in the cost of the new generation electric 

battery [38]. A lifetime of about 4500 cycles was assumed and it takes into account the 

forecasted increase in the lifetime of the new generation electric battery [10, 38]. Then, having 

imposed one cycle per day, the period taken into consideration for the planning study is 12 

years. The BESS is connected to the secondary side of the transformers by a pulse-width 

modulation controlled static converter. As is well known, the efficiency of the battery system 

depends on both the charge/discharge rate and the state of charge [39]; in this application, the 

charging efficiency was assumed to be 0.90, and the discharging efficiency was assumed to be 

0.93 [15]. The maximum depth of discharge is 80%. 

In order to better show the proposed sizing procedure, two different case studies are presented 

[37]: 

 Case 1: only three futures are considered (NF = 3); in this very simple case, the 

stability area criteria have a very simple graphical representation and, then, the 

proposed sizing approach can be more easily illustrated. 

 Case 2: nine futures are considered (NF = 9). 

With reference to the sizing alternative, 16 sizes for the BESS were considered (A1 = 0, A2 = 

100, A3 = 200, A4 = 300, A5 = 400, A6 = 500, A7 = 600, A8 = 625, A9 = 650, A10 = 

675, A11 = 700, A12 = 725, A13 = 750, A14 = 775, A15 = 800, A16 = 900 kWh).  

The sizing alternatives are chosen considering that:  

 a maximum amount of investment cost exists, imposed by the owner of the industrial 

facility, constraining the maximum value of the size to 900 kWh; 
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 there is a range of sizes (between 600 kWh and 800 kWh) within which the DM 

forecasts that the optimal solution will occur more frequently, as will be shown 

later. Alternative A1 = 0 means that no BESS is installed. 

Case 1) 

The following three futures were considered: 

 Future 1: the hourly energy price (PrEn,t) profile reported in [33] for micro grids with 

storage system applications was assumed (figure 3.11). The profile of the industrial 

facility’s load demand was obtained by multiplying the profile in figure 3.12 by 0.85. 

 Future 2: same as future 1 except that the profile of the industrial facility’s load 

demand was taken from figure 3.12. 

 Future 3: same as future 1, except that the profile of the industrial facility’s load 

demand was obtained by multiplying the profile in figure 3.12 by 1.15. 

 

Figure 3.11: Hourly energy price. 

 

Figure 3.12: Load demand daily profile. 

Three possible demand profiles are considered, as suggested in [34]. The electricity costs 

were assumed to have a yearly rate of increase of 5%; a discount rate of 5% was assumed for 

the present value calculation. Then, the three decision theory approaches were taken into 

account [approaches a, b and c]. For the application of the first two criteria, initially the 

following probabilities were assigned to each future, i.e., P1 = 0.2, P2 = 0.3 and P3 = 0.5. 
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Table 3.3 presents the values of the total cost of the BESS (i.e., the sum of the energy bill and 

the investment/maintenance costs over the whole planning period) for each future and for 

each alternative as a decision matrix. For each future, the minimum total cost is clearly 

marked. 

From the analysis of the results in table 3.3, it clearly appears that a slight variation of the 

load demand profile can generate a change in the size of the BESS that has the minimum cost 

(i.e., a 15% increase in the load profile generates the change from A7 to A9 and to A13 

sizing alternatives, which are the optimal solutions for each future). Moreover, it is also 

interesting to observe that, for an assigned future, the total costs change slightly versus the 

size of the BESS, because the increasing values of the investment/maintenance costs for the 

BESS versus its size are compensated by the significant decreases in the electricity bill (i.e., 

by the increasing benefits derived from the installation of the BESS); as an example, in the 

case of the minimum cost sizing alternative when future 2 occurs, i.e., A9 = 650 kWh, the 

benefits derived from installing the BESS (i.e., the reduction of the electricity bill due to the 

availability of the BESS over the planning period) in the case of the load profile of figure 

3.12 (Future F2) are equal to $703,780 (18%). 

Alternative 
Future 

F1 F2 F3 

A1 = 0 3,247.81 3,820.96 4,394.10 

A2 = 100 3,239.27 3,812.41 4,385.55 

A3 = 200 3,230.72 3,803.86 4,377.01 

A4 = 300 3,222.17 3,795.32 4,368.46 

A5 = 400 3,213.63 3,786.77 4,359.91 

A6 = 500 3,205.08 3,778.22 4,351.37 

A7 = 600 3,202.88 3,769.68 4,342.82 

A8 = 625 3,203.66 3,767.93 4,340.69 

A9 = 650 3,204.90 3,767.17 4,338.55 

A10 = 675 3,206.63 3,767.43 4,336.41 

A11 = 700 3,208.87 3,767.91 4,334.38 

A12 = 725 3,211.12 3,768.69 4,332.86 

A13 = 750 3,213.36 3,769.67 4,332.25 

A14 = 775 3,215.61 3,771.10 4,332.53 

A15 = 800 3,217.85 3,773.04 4,332.95 

A16 = 900 3,226.82 3,782.01 4,337.29 

Table 3.3: Decision matrix: total cost (k$) for each size (kWh) - Case 1. 

Table 3.4 shows the decision matrix of the weighted regrets associated with each future 

scenario and for each alternative; for each alternative, the maximum weighted regret is 

clearly marked. From the analysis of the results in table 3.4, it clearly appears that the 

regret is equal to zero for the minimum total cost scenario, as expected. 

Table 3.5 shows the expected value of the costs associated with the 16 alternatives and the 

maximum weighted regret calculated using the results in table 3.4, and it should be noted that 

some slight numerical inaccuracies can arise in all tables’ results due to digit truncation. From 

the analysis of the results in table 3.5, it follows that the alternatives (BESS sizing) 
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recommended by Approaches (a) and (b) are slightly different, and they are given by A12 = 

725 kWh and A11 = 700 kWh, respectively. 

Alternative 
Future 

F1 F2 F3 

A1 = 0 8,986.37 16,136.42 30,925.44 

A2 = 100 7,277.12 13,572.58 26,652.42 

A3 = 200 5,567.90 11,008.74 22,379.36 

A4 = 300 3,858.67 8,444.89 18,106.28 

A5 = 400 2,149.46 5,881.05 13,833.20 

A6 = 500 440.23 3,317.21 9,560.14 

A7 = 600 0.00 753.37 5,287.08 

A8 = 625 156.69 229.75 4,218.80 

A9 = 650 404.63 0.00 3,150.52 

A10 = 675 750.22 79.57 2,082.28 

A11 = 700 1,198.92 222.81 1,064.98 

A12 = 725 1,647.61 457.85 307.48 

A13 = 750 2,096.30 751.09 0.00 

A14 = 775 2,545.00 1,179.10 139.41 

A15 = 800 2,993.69 1,760.41 348.65 

A16 = 900 4,788.46 4,452.57 2,522.22 

Table 3.4: Decision matrix of weighted regrets ($) for each size (kWh) - Case 1. 

Alternative E[C(Ai)] maxkPkRGik 

A1 = 0 3,992.90 30,925.44 

A2 = 100 3,984.35 26,652.42 

A3 = 200 3,975.81 22,379.36 

A4 = 300 3,967.26 18,106.28 

A5 = 400 3,958.71 13,833.20 

A6 = 500 3,950.17 9,560.14 

A7 = 600 3,942.89 5,287.08 

A8 = 625 3,941.46 4,218.80 

A9 = 650 3,940.41 3,150.52 

A10 = 675 3,939.76 2,082.28 

A11 = 700 3,939.34 1,198.92 

A12 = 725 3,939.26 1,647.61 

A13 = 750 3,939.70 2,096.30 

A14 = 775 3,940.71 2,545.00 

A15 = 800 3,941.95 2,993.69 

A16 = 900 3,948.61 4,788.46 

Table 3.5: Expected value of the costs (k$) and maximum weighted regret ($) of each size (kWh) - Case 1. 

The stability areas for approach (c) (figure 3.13.c) were derived by superimposing those of 

approaches (a) and (b) (figures 3.13.a, 3.13.b). To do that, many sets of three values of 

probabilities were generated randomly by varying P1, P2 and P3 while meeting equation 

(3.29). Approaches (a) and (b) were applied separately for each set of probabilities, and the 

sets were evaluated to identify and choose the optimal sizing alternative. 
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(a) 

 
(b) 

 
(c) 

Figure 3.13: Stability areas - (a) approach (a); (b) approach (b); and (c) approach (c). 

Since it is trivial that P3 = 1 − P1 − P2 and an x-y plot is enough, a marker for each couple of 

probabilities P1, P2, the color of which distinguishes the optimal size obtained, is  reported 

in figure 3.13.a [for approach (a)] and figure 3.13.b [for approach (b)]. 

Then, overlapping the results of approaches (a) and (b), the stability areas were identified, 

thus obtaining figure 3.13.c, in which, for each couple of probabilities P1, P2, only the optimal 

solutions that contemporaneously satisfy both approaches (a) and (b) are shown with a marker, 

the color of which distinguishes the optimal size obtained. The white area corresponds to 
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couples of probabilities that furnish different solutions when approaches (a) and (b) are 

applied. 

The analysis of the stability area in figure 3.13 provides the DM with a significant amount of 

information about the sizing process that can help her or him in the selection of the best 

size for the BESS. 

Figure 3.13.c shows that the alternative that occurs with the greatest frequency (area) is A9 = 

650 kWh (about 12%). It is interesting to observe that both approaches (a) and (b) furnish 

seven sizing alternatives with varying future probabilities (figures 3.13.a, 3.13.b). While the 

solution alternative suggested by approach (c), i.e., A9 = 650 kWh, was suggested most 

frequently, it is evident that other solutions were characterized by a significant stability area 

dimension; for example, about 9% of the trials gave the preferred solution as A11 = 700 kWh, 

and about 50% of trials presented different solutions with the same future probabilities (white 

area in figure 3.13). All of the optimal sizing solutions are included between solution A7 = 600 

kWh and solution A13 = 750 kWh, as forecasted by the DM. 

It also is interesting to observe that the solutions in figure 3.13 include the sizing alternatives 

when a deterministic future is assumed; for example, if the DM considers the future F1 to be 

the one that is actual occurring (i.e., the DM thinks Future 1 is a deterministic future), it 

follows that P1 = 1 and that P2 = P3 = 0. Then, from figure 3.13.a, the sizing alternative is A7 

= 600 kWh, as is also evident from the analysis of table 3.3 (first column). In order to verify 

the effectiveness of the constraint of one cycle per day, some further simulations were 

performed by allowing more than one cycle. However, the results were that one cycle per day 

is always the optimal solution. 

Case 2) 

The peak price and the gap between the minimum and maximum prices can have a strong 

influence on the benefits derived from the use of the BESS and, therefore, on the sizing of 

the BESS. Motivated by the above consideration, two price profiles were considered in 

addition to the profile in figure 3.12: the first decreases in the peak price and in the gap 

between the minimum and maximum prices, while the second increases in the peak price 

and the gap between the minimum and maximum prices. Then, nine futures were considered 

that consisted of the combinations of the three profiles of the industrial facility’s load 

requirements of case 1 with the three profiles of the hourly energy prices obtained by 

multiplying the values of case 1 by 0.85, 1.0 and 1.15, respectively. In other words, the load 

profile of the first (third) future is assumed to be 15% lesser (larger) than the load profile of 

the second future. 

As an example, the following probabilities Pi at each scenario i are assigned: P1 = 0.1, P2 

= 0.1, P3 = 0.1, P4 = 0.1, P5 = 0.1, P6 = 0.1, P7 = 0.2, P8 = 0.1 and P9 = 0.1 for the 

application of the first two criteria. 

Table 3.6 reports the decision matrix, where, for each scenario, the corresponding values of 

the total cost of the BESS are shown. From the analysis of the results in table 3.6, it is 

interesting to observe that, when the energy cost coefficients are low (futures 1, 3 and 7), the 

minimum cost solution is always A1 = 0 kWh (no BESS installation). In this case, the benefits 

due to the reduction of the electricity bill are not enough to justify the installation of the 

BESS; obviously, the same conclusion would arise if a reduction greater than 15% (i.e., 25% 

or 50%) was considered. On the contrary, when the energy cost coefficients are high 



Optimal Sizing of Battery Energy Storage Systems 

104 

 

(Futures 3, 6 and 9), the minimum cost solution is always A16 = 900 kWh (the maximum size 

of the BESS as constrained by the owner of the industrial facility). 

Alternative 
Future 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

A1 = 0 2,760.64 3,247.81 3,767.98 3,247.81 3,820.96 4,394.10 3,734.98 4,394.10 5,053.21 

A2 = 100 2,768.37 3,239.27 3,710.16 3,255.55 3,812.41 4,369.27 3,742.72 4,385.55 5,028.39 

A3 = 200 2,776.11 3,230.72 3,685.33 3,263.28 3,803.86 4,344.44 3,750.46 4,377.01 5,003.56 

A4 = 300 2,783.84 3,222.17 3,660.50 3,271.02 3,795.32 4,319.62 3,758.19 4,368.46 4,978.73 

A5 = 400 2,791.58 3,213.63 3,635.67 3,278.76 3,786.77 4,294.79 3,765.93 4,359.91 4,953.90 

A6 = 500 2,799.31 3,205.08 3,610.84 3,286.49 3,778.23 4,269.96 3,773.66 4,351.37 4,929.07 

A7 = 600 2,812.44 3,202.88 3,593.31 3,294.23 3,769.68 4,245.13 3,781.40 4,342.82 4,904.25 

A8 = 625 2,816.86 3,203.66 3,590.46 3,296.49 3,767.93 4,239.37 3,783.33 4,340.69 4,898.04 

A9 = 650 2,821.66 3,204.90 3,588.14 3,299.59 3,767.17 4,234.74 3,785.27 4,338.55 4,891.83 

A10 = 675 2,826.88 3,206.63 3,586.14 3,303.57 3,767.43 4,231.30 3,787.20 4,336.41 4,885.62 

A11 = 700 2,832.54 3,208.88 3,585.21 3,307.72 3,767.91 4,228.10 3,789.22 4,334.38 4,879.54 

A12 = 725 2,838.20 3,211.12 3,584.04 3,312.14 3,768.69 4,225.25 3,791.68 4,332.86 4,874.04 

A13 = 750 2,843.86 3,213.36 3,582.87 3,316.72 3,769.67 4,222.62 3,794.91 4,332.25 4,869.59 

A14 = 775 2,849.52 3,215.61 3,581.70 3,321.68 3,771.10 4,220.51 3,798.90 4,332.53 4,866.16 

A15 = 800 2,855.17 3,217.85 3,580.53 3,327.08 3,773.04 4,218.99 3,803.00 4,332.95 4,862.89 

A16 = 900 2,877.80 3,226.82 3,575.85 3,349.71 3,782.01 4,214.31 3,821.70 4,337.29 4,852.89 

Table 3.6: Decision matrix: total cost (k$) for each size (kWh) - Case 2. 

Table 3.7 shows the decision matrix of the weighted regrets, and table 3.8 shows the expected 

value of the costs associated with the 16 alternatives and the maximum weighted regret. The 

effect of unequal probabilities is evident in table 3.7, since Future F7 most heavily influences 

the weighted regrets, since P7 = 0.2 but all other probabilities are 0.1. 

Alternative 
Future 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

A1 = 0 0.00 4,493.19 19,213.80 0.00 5,378.81 17,978.80 0.00 6,185.09 20,032.75 

A2 = 100 773.58 3,638.56 13,431.00 773.58 4,524.19 15,495.92 1,547.14 5,330.48 17,549.94 

A3 = 200 1,547.16 2,783.95 10,948.19 1,547.17 3,669.58 13,013.20 3,094.31 4,475.87 15,067.13 

A4 = 300 2,320.73 1,929.34 8,465.32 2,320.74 2,814.97 10,530.39 4,641.48 3,621.26 12,584.34 

A5 = 400 3,094.31 1,074.73 5,982.58 3,094.32 1,960.35 8,047.52 6,188.63 2,766.64 10,101.42 

A6 = 500 3,867.89 220.12 3,499.77 3,867.90 1,105.74 5,564.78 7,735.77 1,912.03 7,618.72 

A7 = 600 5,180.79 0.00 1,746.64 4,641.48 251.13 3,081.98 9,282.94 1,057.42 5,135.92 

A8 = 625 5,622.38 78.35 1,461.74 4,868.12 76.58 2,506.24 9,669.74 843.76 4,515.22 

A9 = 650 6,102.76 202.32 1,229.30 5,178.03 0.00 2,043.18 10,056.53 630.10 3,894.52 

A10 = 675 6,624.64 375.11 1,053.02 5,575.57 26.53 1,698.69 10,443.31 416.46 3,273.81 

A11 = 700 7,190.33 599.46 935.96 5,991.15 74.27 1,378.59 10,847.43 213.00 2,664.84 

A12 = 725 7,756.02 823.81 819.01 6,432.75 152.62 1,093.69 11,339.90 61.50 2,115.62 

A13 = 750 8,321.72 1,048.15 702.02 6,890.75 250.36 831.10 11,985.35 0.00 1,669.90 

A14 = 775 8,887.42 1,272.50 585.01 7,387.11 393.03 620.18 12,782.72 27.88 1,326.96 

A15 = 800 9,453.11 1,496.85 468.01 7,926.81 586.80 468.00 13,603.88 69.73 1,000.08 

A16 = 900 11,715.9 2,394.23 0.00 10,189.6 1,484.19 0.00 17,342.89 504.44 0.00 

Table 3.7: Decision matrix of weighted regrets ($) for each size (kWh) - Case 2. 
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From the results in table 3.8, it follows that, once again, the alternatives recommended 

by approaches (a) and (b) are different, and they are given by A9 = 650 kWh and A6 = 500 

kWh, respectively. 

The stability areas for approach (c) were derived by superimposing those of approaches 

(a) and (b). In this case, the stability area criterion cannot be represented with simple graphs 

as was done in figure 3.13. The alternatives that resulted with a stability area different 

from zero were A6 = 500 kWh, A8 = 635 kWh, A9 = 650 kWh, A10 = 675 kWh, A12 = 725 

kWh, A13 = 750 kWh, A14 = 775 kWh, A15 = 800 kWh and A16 = 900 kWh. The sizing 

alternative with the greatest area was A13 = 750 kWh, followed by alternative A9 = 650 kWh. 

As a final consideration on the sizing procedure, it should be noted that, even if the DM 

chooses a very high number of futures (much greater than nine) and if each optimization problem 

shown in the previous section is solved using GA and linear optimization, this does not result 

in excessive computational effort because the computations occur in the planning stage and 

new computers and configurations (parallel distributed processing and environment) can easily 

handle massive computational requirements. 

Alternative E[C(Ai)] maxkPkRGik 

A1 = 0 3,815.65 20,032.75 

A2 = 100 3,805.44 17,549.94 

A3 = 200 3,798.52 15,067.13 

A4 = 300 3,791.60 12,584.34 

A5 = 400 3,784.68 10,101.42 

A6 = 500 3,777.76 7,735.77 

A7 = 600 3,772.75 9,282.94 

A8 = 625 3,772.01 9,669.74 

A9 = 650 3,771.71 10,056.53 

A10 = 675 3,771.86 10,443.31 

A11 = 700 3,772.27 10,847.43 

A12 = 725 3,772.97 11,339.90 

A13 = 750 3,774.07 11,985.35 

A14 = 775 3,775.65 12,782.72 

A15 = 800 3,777.44 13,603.88 

A16 = 900 3,786.00 17,342.89 

Table 3.8: Expected value of the costs (k$) and maximum weighted regret ($) of each size (kWh) - Case 2. 
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Conclusions 

In this thesis, the optimal integration of BESSs in the frame of different services at 

distribution system and end-use costumer levels has been proposed. The grid gained major 

technical improvements and economic benefits based on the optimal integration of storage 

devices which is strictly depending on optimal operation strategy and optimal sizing of BESS.  

With reference to optimal operation, advanced optimal BESS operating strategies were 

proposed with the aim of leveling the load active powers requested by the loads connected to 

a distribution system, reducing the electricity costs sustained by an end-use costumer that 

provides DR and scheduling a µG with DR resources PEVs and DCs.  

In case of load leveling service, the problem of leveling the power of a distribution substation 

with an electrical energy storage system was analyzed. A two-step strategy was proposed that 

involved day-ahead scheduling and real-time control to obtain an optimal leveling of the 

substation power. Two optimization models were formulated and solved. The day-ahead 

model was a linear constrained optimization model, while the real-time control involved non-

linearity.  

The main outcomes were the following: 

 the two step-procedure involving both day-ahead scheduling and real-time control is 

a powerful tool for performing an optimal leveling of the distribution substation 

power; 

 the proposed strategy showed good performance allowing a reduction of about 15% 

of the peak power and an improvement of about 20% of the load factor in the 

examined cases; 

 the improvement of the forecasting of feeder power would give further benefits. 

The results of the simulations demonstrated the robustness of the proposed method and also 

satisfied technical constraints of the BESS.  

The second application considered in the thesis was focused on the use of BESS to enhance 

DR solutions for the industrial sector under the RTP electricity bill scheme which gives 

customers time varying rates that reflect the value and cost of electricity in different time 

periods. This application proposed a strategy for the optimal operation of a multi-battery 

system of an industrial facility for the minimization of the costs sustained by the industry 

owner related to energy consumption. The numerical applications on an actual industrial 

facility showed that an optimal operation of battery systems can significantly reduce the costs 

and that the solution based on more than a single battery bank seems the most adequate choice 

under particular tariff schemes.    

The third application of the thesis performed the DR service under the EDC tariff which 

involves a structure directly linked to both the consumed energy and the peak load. DR for 

this sector is then achievable by means of storage based solutions which allow reducing loads 

without altering electricity consumption but, at the same time, prevent the full potential of 

demand side response solutions. In this thesis, aimed at exploiting the benefits obtainable by 

the use of such devices in industrial facilities, a proposal for the optimal operation of a BESS 

was presented. The proposed strategy, once again based on a two-step procedure, is aimed at: 

 reducing the electricity costs related to the time of use energy charge; 

 reducing the electricity costs related to the peak power demand charge;  
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 managing the forecasting errors deriving from uncertainties of load requirements; 

 operating the battery by guaranteeing its maximum efficiency and lifecycle. 

In particular, the numerical applications showed the efficacy of the two step procedure in terms 

of minimization of energy costs and satisfaction of technical constraints so demonstrating the 

potential advantages of adopting such devices in manufacturing facilities.  

Regarding the scheduling of µGs, different optimal strategies were presented in the thesis. The 

strategies, which are based on single-objective approaches, allow the scheduling of µGs for 

pursuing specific services (e.g., energy savings or load leveling), as well as for satisfying the 

operating constraints of network and those of other components (DCs, PEVS, loads and DG 

units). Several numerical applications were performed, whose results showed the effectiveness 

of each strategy.  

With reference to the optimal sizing, the case of a BESS to be installed in an industrial facility 

was considered, and the sizing was performed in order to reduce the facility’s electricity bill 

based on both deterministic and probabilistic approaches. 

Relating to deterministic approach, a simplified procedure was proposed. At this aim, a closed 

form procedure was presented under TOU tariff pricing schemes. A sensitivity analysis was 

performed on the basis of the variation of some parameters that affect the profitability of 

BESSs. By the analyses performed it emerged that the parameters that mainly determine the 

profitability of BESSs are the “on peak - off peak” price variations, the installation costs and 

financial parameters (i.e. effective rates of change and discount rates). BESS efficiency and 

annual load variation, slightly contribute to the increase or decrease of the benefit.  

The main outcome of the performed analysis is that the significance of the benefit achievable 

by using storage systems is mainly related to two aspects:  

 the need to reduce installation costs which are still quite high; 

 the energy tariff which should be characterized by a larger spread between on-peak 

and off peak prices.   

Finally, in case of  optimal sizing based on probabilistic approach, the sizing problem was 

conducted by using a decision theory that took into account the unavoidable uncertainties 

involved with the electricity bill cost coefficients and the profile of the industrial facility’s 

load demand. The choice of the optimal size for the BESS was made by using a stepwise 

procedure based on different decision theory-based approaches, and the results were 

compared. 

The main observations and outcomes of analyses were: 

 the probabilities of the futures can significantly influence the optimal BESS sizing; 

 the BESS optimal sizes obtained using the decision theory approaches involved 

various optimal sizing solutions with different stability areas, thus furnishing 

extensive and useful information for the DM’s use in identifying the best solution; 

 decision theory appears to be a powerful tool in that it was able to solve the BESS 

sizing problem for industrial applications even when there were significant 

uncertainties, just as it has been for several other important problems associated with 

planning power systems. 


