
Logics for Multi-Agent
Systems Verification

Giuseppe Perelli
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Introduction

In system design, model checking is a well-established formal method that allows to automati-
cally check for global system correctness [CE81, QS81, CGP02]. In such a framework, in
order to check whether a system satisfies a required property, we describe its structure in a
mathematical model (such as Kripke structures [Kri63] or labeled transition systems [Kel76]),
specify the property with a formula of a temporal logic (such as LTL [Pnu77], CTL [CE81],
or CTL? [EH86]), and check formally that the model satisfies the formula. In the last decade,
interest has arisen in analyzing the behavior of individual components or sets of them in sys-
tems with several entities. This interest has started in reactive systems, which are systems that
interact continuously with their environments. In module checking [KVW01], the system is
modeled as a module that interacts with its environment and correctness means that a desired
property holds with respect to all such interactions (see also [FMP08] and [ALM+13, JM14]
for recent works in this field).

Starting from the study of module checking, researchers have looked for logics focusing
on the strategic behavior of agents in multi-agent systems [ÅGJ07, AHK02, Pau02, JvdH04,
WvdHW07, BJ14]. One of the most important developments in this field is Alternating-Time
Temporal Logic (ATL?, for short), introduced by Alur, Henzinger, and Kupferman [AHK02].
ATL? allows reasoning about strategies of agents with temporal goals. Formally, it is obtained
as a generalization of CTL? in which the path quantifiers, there exists “E” and for all “A”,
are replaced with strategic modalities of the form “〈〈A〉〉” and “[[A]]”, where A is a set of
agents (a.k.a. players). Strategic modalities over agent sets are used to express cooperation
and competition among them in order to achieve certain goals. In particular, these modalities
express selective quantifications over those paths that are the result of infinite games between
a coalition and its complement.

ATL? formulas are interpreted over concurrent game structures (CGS, for
short) [AHK02], which model interacting processes. Given a CGS G and a set A of agents,
the ATL? formula 〈〈A〉〉ψ is satisfied at a state s of G if there is a set of strategies for agents in
A such that, no matter which strategies are executed by agents not in A, the resulting outcome
of the interaction in G satisfies ψ at s. Thus, ATL? can express properties related to the
interaction among components, while CTL? can only express property of the global system.
As an example, consider the property “processes α and β cooperate to ensure that a system
(having more than two processes) never enters a failure state”. This can be expressed by the
ATL? formula 〈〈{α, β}〉〉G¬fail , where G is the classical LTL temporal operator “globally”.
CTL?, in contrast, cannot express this property [AHK02]. Indeed, it can only assert whether
the set of all agents may or may not prevent the system from entering a failure state. It turns
out that both the model-checking and the satisfiability problems are elementarily decidable
and, precisely, 2EXPTIME-COMPLETE [AHK02, Sch08].

Despite its powerful expressiveness, ATL? suffers from a strong limitation, due to the fact
that strategies are only treated implicitly, through modalities that refer to games between com-
peting coalitions. To overcome this problem, Chatterjee, Henzinger, and Piterman introduced
Strategy Logic (CHP-SL, for short) [CHP07], a logic that treats strategies in two-player
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turn-based games as explicit first-order objects. In CHP-SL, the ATL? formula 〈〈{α}〉〉ψ,
for a system modeled by a CGS with agents α and β, becomes ∃x.∀y.ψ(x, y), i.e., “there
exists a player-α strategy x such that for all player-β strategies y, the unique infinite path
resulting from the two players following the strategies x and y satisfies the property ψ”. The
explicit treatment of strategies in this logic allows to state many properties not expressible in
ATL?. In particular, it is shown in [CHP07] that ATL?, in the restricted case of two-agent
turn-based games, corresponds to a proper one-alternation fragment of CHP-SL. The authors
of that work have also shown that the model-checking problem for CHP-SL is decidable,
although only a non-elementary algorithm for it, both in the size of system and formula, has
been provided, leaving as an open question whether an algorithm with a better complexity
exists or not. The complementary question about the decidability of the satisfiability problem
for CHP-SL was also left open and it is not addressed in other papers apart the preliminary
work [MMV10a].

While the basic idea exploited in [CHP07] to quantify over strategies and then to commit
agents explicitly to certain of these strategies turns to be very powerful and useful [FKL10],
CHP-SL still presents severe limitations. Among the others, it needs to be extended to the
more general concurrent multi-agent setting. Also, the specific syntax considered there allows
only a weak kind of strategy commitment. For example, CHP-SL does not allow different
players to share the same strategy, suggesting that strategies have yet to become first-class
objects in this logic. Moreover, an agent cannot change his strategy during a play without
forcing the other to do the same.

These considerations, as well as all questions left open about decision problems, led us to
introduce and investigate a new Strategy Logic, denoted SL, as a more general framework
than CHP-SL, for explicit reasoning about strategies in multi-agent concurrent games. Syn-
tactically, SL extends LTL by means of two strategy quantifiers, the existential 〈〈x〉〉 and the
universal [[x]], as well as agent binding (a, x), where a is an agent and x a variable. Intuitively,
these elements can be respectively read as “there exists a strategy x”, “for all strategies x”,
and “bind agent a to the strategy associated with x”. For example, in a CGS with three agents
α, β, γ, the previous ATL? formula 〈〈{α, β}〉〉G¬fail can be translated in the SL formula
〈〈x〉〉〈〈y〉〉[[z]](α, x)(β, y)(γ, z)(G¬fail). The variables x and y are used to select two strategies
for the agents α and β, respectively, while z is used to select one for the agent γ such that
their composition, after the binding, results in a play where fail is never met. Note that we
can also require, by means of an appropriate choice of agent bindings, that agents α and β
share the same strategy, using the formula 〈〈x〉〉[[z]](α, x)(β, x)(γ, z)(G¬fail). Furthermore,
we may vary the structure of the game by changing the way the quantifiers alternate, as in the
formula 〈〈x〉〉[[z]]〈〈y〉〉(α, x)(β, y)(α, z)(G¬fail). In this case, x remains uniform w.r.t. z, but
y becomes dependent on it. Finally, we can change the strategy that one agent uses during
the play without changing those of the other agents, by simply using nested bindings, as in
the formula 〈〈x〉〉〈〈y〉〉[[z]]〈〈w〉〉(α, x)(β, y)(γ, z)(G(γ, w)G¬fail). The last examples intuitively
show that SL is an extension of both ATL? and CHP-SL. It is worth noting that the pat-
tern of modal quantifications over strategies and binding to agents can be extended to other
linear-time temporal logics than LTL, such as the linear µCALCULUS [Var88]. In fact, the
use of LTL here is only a matter of simplicity in presenting our framework, and changing the
embedded temporal logic only involves few side-changes in proofs and procedures.
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As one of the main results in this thesis, we show that the model-checking problem is
non-elementarily decidable. To gain this, we use an automata-theoretic approach [KVW00].
Precisely, we reduce the decision problem for our logic to the emptiness problem of a suitable
alternating parity tree automaton, which is an alternating tree automaton (see [GTW02],
for a survey) along with a parity acceptance condition [MS95]. Due to the operations of
projection required by the elimination of quantifications on strategies, which induce at any
step an exponential blow-up, the overall size of the required automaton is non-elementary
in the size of the formula, while it is only polynomial in the size of the model. Thus, to-
gether with the complexity of the automata-nonemptiness calculation, we obtain that the
model checking problem is in PTIME, w.r.t. the size of the model, and NONELEMENTARY,
w.r.t. the size of the specification. Hence, the algorithm we propose is computationally not
harder than the best one known for CHP-SL and, notably, a non-elementary data complexity
improvement, (i.e., with respect to the size of the model). The latter is remarkable as in
formal verification often the specification is very small (or even constant) with respect to the
system. Moreover, we prove that our problem has a non-elementary lower bound. Specifically,
it is k-EXPSPACE-HARD in the alternation number k of quantifications in the specification.
In addition to the model-checking problem for SL, we address the satisfiability problem,
showing its undecidability [MMV10a]. The proof is based on the reduction from the recurrent
domino problem proposed for the first time by Wang [Wan61]. A key role for this result is
played by the unbounded model property of SL, which is proved in [MMPV12] and reported
in this Thesis.

The contrast between the high complexity of the model-checking satisfiability problems
for our logic and the elementary ones for ATL? has spurred us to investigate syntactic
fragments of SL, strictly subsuming ATL?, with a better complexity. In particular, by means
of these sublogics, we want to understand why SL is computationally more difficult than
ATL?. To this aim, we introduce Nested-Goal, Boolean-Goal, and One-Goal Strategy Logic,
respectively denoted by SL[NG], SL[BG], and SL[1G]. These fragments encompass formulas
in a special prenex normal form having nested temporal goals, Boolean combinations of
goals, and a single goal at a time, respectively. For goal we mean an SL formula of the
type [ψ, where [ is a binding prefix of the form (α1, x), . . . , (αn, xn) containing all the
involved agents and ψ is an agent-full formula. With more detail, the idea behind SL[NG]

is that, when in ψ there is a quantification over a variable, then there are quantifications of
all free variables contained in the inner subformulas. So, a subgoal of ψ that has a variable
quantified in ψ itself cannot use other variables quantified out of this formula. Thus, goals
can be only nested or combined with Boolean and temporal operators. SL[BG] and SL[1G]

further restrict the use of goals. In particular, in SL[1G], each temporal formula ψ is prefixed
by a quantification-binding prefix ℘[ that quantifies over a tuple of strategies and binds them
to all agents.

As main results about these fragments, we prove that the model-checking problem for
SL[1G] is 2EXPTIME-COMPLETE, thus not harder than the one for ATL?. On the contrary, for
SL[NG], it is NONELEMENTARY-HARD and thus we enforce the corresponding result for SL.
Finally, by observing that SL[NG] includes SL[BG], we have that the model-checking problem
for the latter is decidable with a 2EXPTIME lower-bound, given by SL[1G] model-checking
complexity. The problem of determine its precise complexity is left open here.



Introduction

For what the satisfiability regards, we prove that the problem remains undecidable for
SL[BG], since the reduction provided for the entire SL already holds in this fragment. On the
contrary, the problem is 2EXPTIME-COMPLETE for the smallest fragment SL[1G], thus not
harder than ATL?.

To achieve all positive results about SL[1G], we introduce a fundamental property of the
semantics of this logic, called behavioral1, which allows us to strongly simplify the reasoning
about strategies by reducing it to a set of reasonings about agent’s choices (formally, agent’s
actions). This intrinsic characteristic of SL[1G], which unfortunately is not shared by the
other fragments, asserts that, in a determined history of the play, the value of an existential
quantified strategy depends only on the values of strategies, from which the first depends,
on the same history. This means that, to choose an existential strategy, we do not need to
know the entire structure of universal strategies, as for the whole SL, but only their values
on the histories of interest. In other words, by means of the behavioral property, a one-shot
second-order quantification over strategies can be eliminated in favor of a progressive first-
order quantification over agent’s choices. Technically, to describe the behavioral property, we
make use of the machinery of Skolem dependence function, which defines a Skolemization
procedure for SL, inspired by the one in first order logic (see [Hod01]).

By means of behavioral, we can modify the SL model-checking procedure via alternating
tree automata in such a way that we avoid the projection operations by using a dedicated
automaton that makes an action quantification for each node of the tree model. Consequently,
the resulting automaton is only exponential in the size of the formula, independently from
its alternation number. Thus, together with the complexity of the automata-nonemptiness
calculation, we get that the model-checking procedure for SL[1G] is 2EXPTIME. As it is
explained in Chapter 2, the behavioral property is fundamental to prove also the bounded-tree
model property. Clearly, the behavioral property also holds for ATL?, as it is included in
SL[1G]. In particular, although it has not been explicitly stated, this property is crucial for
most of the results achieved in literature about ATL? by means of automata (see [Sch08], as
an example). Moreover, we believe that our proof techniques are of independent interest and
applicable to other logics as well (see for example [MP14]).

The formal representation in SL can be exploited to address several problems. For
instance, we can investigate the problem of Rational Synthesis. Synthesis is the automated
construction of a system from its specification. The basic idea is simple and appealing:
instead of developing a system and verifying that it adheres to its specification, we would
like to have an automated procedure that, given a specification, constructs a system that is
correct by construction. The first formulation of synthesis goes back to Church [Chu63]; the
modern approach to synthesis was initiated by Pnueli and Rosner, who introduced LTL (linear
temporal logic) synthesis [PR89]. The LTL synthesis problem receives as input a specification
in LTL and outputs a reactive system modeled by a finite-state transducer satisfying the given
specification — if such exists. It is important to distinguish between input signals, assigned by
the environment, and output signals, assigned by the system. A system should be able to cope
with all values of the input signals, while setting the output signals to desired values [PR89].

1We use this term as it has a direct correspondence with the “behavioral” concept used in game theory
[Mye97, MMS13, MMS14].
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Therefore, the quantification structure on input and output signals is different. Input signals
are universally quantified while output signals are existentially quantified.

Modern systems often interact with other systems. For example, the clients interacting
with a server are by themselves distinct entities (which we call agents) and are many times
implemented by systems. In the traditional approach to synthesis, the way in which the
environment is composed of its underlying agents is abstracted. In particular, the agents can
be seen as if their only objective is to conspire to fail the system. Hence the term “hostile
environment” that is traditionally used in the context of synthesis. In real life, however, many
times agents have goals of their own, other than to fail the system. The approach taken in
the field of algorithmic game theory [NRTV07] is to assume that agents interacting with a
computational system are rational, i.e., agents act to achieve their own goals. Assuming
agents rationality is a restriction on the agents behavior and is therefore equivalent to softening
the universal quantification on the environment. 2 Thus, the following question arises: can
system synthesizers capitalize on the rationality and goals of agents interacting with the
system?

In [FKL10], Fisman et al. positively answered this question by introducing and studying
rational synthesis. The input to the rational-synthesis problem consists of LTL formulas
specifying the objectives of the system and the agents that constitute the environment, and
a solution concept, e.g., dominant strategies, Nash Equilibria, and the like. The atomic
propositions over which the objectives are defined are partitioned among the system and the
agents, so that each of them controls a subset of the propositions. The desired output is a
strategy profile such that the objective of the system is satisfied in the computation that is the
outcome of the profile, and the agents that constitute the environment have no incentive to
deviate from the strategies suggested to them (formally, the profile is an equilibrium with
respect to the solution concept). Fisman et al. showed that there are specifications that cannot
be realized in a hostile environment but are realizable in a rational environment. Moreover,
the rational-synthesis problem for LTL and common solution concepts used in game theory
can be solved in 2EXPTIME, thus it complexity coincides with that of usual synthesis.

In this thesis, we present the following three contributions on Rational Synthesis, as
they have been introduced in [KPV14]. First, we suggest an alternative definition to rational
synthesis, in which the agents are rational but not cooperative. Second, we study a richer
specification formalism, where the objectives of the system and the agents are not Boolean
but quantitative. Third, we show that all these variants of the rational synthesis problems
can be reduced to the model checking in fragments of Strategy Logic [MMPV14]. Before
we describe our contributions in more detail, let us highlight a different way to consider
rational synthesis and our contribution here. Mechanism design is a field in game theory
and economics studying the design of games whose outcome (assuming agents rationality)
achieves some goal [NR01, NRTV07]. The outcome of traditional games depends on the
final position of the game. In contrast, the systems we reason about maintain an on-going
interaction with their environment, and we reason about their behavior by referring not to
their final state (in fact, we consider non-terminating systems, with no final state) but rather

2Early work on synthesis has realized that the universal quantification on the behaviors of the environment is
often too restrictive. The way to address this point, however, has been by adding assumptions on the environment,
which can be part of the specification (cf., [CHJ08]).
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to the language of computations that they generate. Rational synthesis can be viewed as a
variant of mechanism design in which the game is induced by the objective of the system, and
the objectives of both the system and the agents refer to their on-going interaction and are
specified by temporal-logic formulas. Our contributions here correspond to the classic setting
assumed in mechanism design: the agents need not be cooperative, and the outcome is not
Boolean.

We argue that the definition of rational synthesis in [FKL10] is cooperative, in the sense
that the agents that constitute the environment are assumed to follow the strategy profile
suggested to them (as long as it is in an equilibrium). Here, we consider also a non-cooperative
setting, in which the agents that constitute the environment may follow any strategy profile that
is in an equilibrium, and not necessarily the one suggested to them by the synthesis algorithm.
In many scenarios, the cooperative setting is indeed too optimistic, as the system cannot
assume that the environment, even if it is rational, would follow a suggested strategy, rather
than a strategy that is as good for it. Moreover, sometimes there is no way to communicate
with the environment and suggest a strategy for it. From a technical point of view, we
show that the non-cooperative setting requires reasoning about all possible equilibria, yet,
despite this more sophisticated reasoning, it stays 2EXPTIME-COMPLETE. We achieve the
upper bound by reducing rational synthesis to the model-checking problem for SL. While
the model-checking problem for strategy logic is in general non-elementary, we show that
it is possible to express rational synthesis in SL[NG, 1-ALT] 3, which leads to the desired
complexity. It is important to observe the following difference between the cooperative and
the non-cooperative settings. In the cooperative one, we synthesize strategies for all agents,
with the assumption that the agent that corresponds to the system always follows his suggested
strategy and the agents that constitute the environment decide in a rational manner whether
to follow their strategies. On the other hand, in the non-cooperative setting, we synthesize
a strategy only for the agent that corresponds to the system, and we assume that the agents
that constitute the environment are rational, thus the suggested strategy has to win against all
rational behaviors of the environment.

Our second contribution addresses a weakness of the classical synthesis problem, a
weakness that is more apparent in the rational setting. In classical synthesis, the specification
is Boolean and describes the expected behavior of the system. In many applications, systems
can satisfy their specifications at different levels of quality. Thus, synthesis with respect to
Boolean specifications does not address designers needs. This latter problem is a real obstacle,
as designers would be willing to give up manual design only after being convinced that the
automatic procedure that replaces it generates systems of comparable quality. In the last years
we see a lot of effort on developing formalisms that would enable the specification of such
quality measures [BCHJ09, ABK13].

Classical applications of game theory consider games with quantitative payoffs. In the
Boolean setting, we assumed that the payoff of an agent is, say, 1, if its objective is satisfied,
and is 0 otherwise. In particular, this means that agents whose objectives are not satisfied
have no incentive to follow any strategy, even if the profile satisfies the solution concept. In
real-life, rational objectives are rarely Boolean. Thus, even beyond our goal of synthesizing

3By SL[k-ALT] we denote the fragment of SL in which only a k number of alternation is allowed.
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systems of high quality, the extension of the synthesis problem to the rational setting calls
also for an extension to a quantitative setting. Unfortunately, the full quantitative setting is
undecidable already in the context of model checking [Hen10]. In [FKL10], Fisman et al.
extended cooperative rational synthesis to objectives in the multi-valued logic LLTL, where
specifications take truth values from a finite lattice.

We introduce here a new quantitative specification formalism, termed Objective LTL ,
(OLTL, for short). We first define the logic, and then study its rational synthesis. Essentially,
an OLTLspecification is a pair θ = 〈Ψ, f〉, where Ψ = 〈ψ1, ψ2, . . . , ψm〉 is a tuple of LTL
formulas and f : {0, 1}m → Z is a reward function, mapping Boolean vectors of length m
to an integer. A computation π then maps θ to a reward in the expected way, according to
the subset of formulas that are satisfied in π. In the rational synthesis problem for OLTL,
the input consists of OLTLspecifications for the system and the other agents, and the goal of
the system is to maximize its reward with respect to environments that are in an equilibrium.
Again, we distinguish between a cooperative and a non-cooperative setting. Note that the
notion of an equilibrium in the quantitative setting is much more interesting, as it means
that all agents in the environment cannot expect to increase their payoffs. We show that
the quantitative setting is not more complex than the non-quantitative one, thus quantitative
rational synthesis is complete for 2EXPTIME in both the cooperative and non-cooperative
settings.

We conclude this thesis by presenting a result that aims to combine strategic specifica-
tions with pushdown systems. Starting from the works on module checking, two significant
directions have been taken in open-system verification. One concerns extending the frame-
work to more sophisticated systems while maintaining the dichotomy system-environment
states in modeling. In this context, worthy of mention is the work on pushdown module
checking [BMP10]. This has the merit of having handled the verification of infinite-state open
systems and, thanks to the fact that the infinite number of states is induced by a recursive struc-
ture of finite size, the problem turns out to be decidable and precisely 3EXPTIME-COMPLETE

for specifications in CTL?. Another direction has instead completely redesigned the module
checking approach in order to handle the more involved scenario of multi-agent (concur-
rent) systems. This is, for instance, the above mentioned case of ATL?. However, the two
approaches are incomparable as in module checking it is possible to use nondeterministic
strategies.

Despite the undoubted utility of considering, from one hand, infinite-state open-system
models induced by finite-size recursive structures and, from the other hand, multi-agent
specifications, to the best of our knowledge no work has been devoted to the combination of
the two.

In this thesis, we consider multi-agent pushdown systems and address the related model
checking problem for specifications expressed in ATL?. To this aim, we first introduce push-
down game structures to properly model the infinite-state multi-agent system and formalize
the model checking question. Then, by means of an automata-theoretic approach, we provide
a 3EXPTIME solution to the addressed problem. Precisely, we construct a doubly-exponential
size pushdown parity tree automaton that collects all execution trees satisfying the ATL?

formula. Then by using the fact that the emptiness of this automaton can be checked in expo-
nential time [KPV02], we get the desired result. We also provide a 2EXPSPACE lower-bound
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by showing a reduction from the model checking problem for one-counter systems against
quantitative ATL? specifications [Ves14].

Related works. We now discuss some work related to the results included in the thesis.

Logics for strategic reasoning representation Several works have focused on exten-
sions of ATL and ATL? to incorporate more powerful strategic constructs. Among them,
we recall Alternating-Time µCALCULUS (AµCALCULUS, for short) [AHK02], Game Logic
(GL, for short) [AHK02], Quantified Decision Modality µCALCULUS (QDµCALCULUS, for
short) [Pin07], Coordination Logic (CL, for short) [FS10], (ATL with plausibility (ATL+,
for short) [BJD08], (ATL with Irrevocable strategies (IATL, for short) [ÅGJ07], (Memo-
ryful ATL? (mATL?, for short) [MMV10b], Basic Strategy-Interaction Logic (BSIL, for
short) [WHY11] Temporal Cooperation Logic (TCL, for short) [HSW13], Alternating-time
Temporal Logic with Explicit Actions (ATLEA, for short) [HLW13] and some extensions
of ATL? considered in [BLLM09]. AµCALCULUS and QDµCALCULUS are intrinsically
different from SL (as well as from CHP-SL and ATL?) as they are obtained by extending the
propositional µ-calculus [Koz83] with strategic modalities. CL is similar to QDµCALCULUS

but with LTL temporal operators instead of explicit fixpoint constructors. GL is strictly
included in CHP-SL, in the case of two-player turn-based games, but it does not use any ex-
plicit treatment of strategies, neither it does the extensions of ATL? introduced in [BLLM09],
which consider restrictions on the memory for strategy quantifiers. ATL+ enables to express
rationality assumptions of intelligent agents in ATL. In IATL, the semantics of the logic
ATL is changed in a way that, in the evaluation of the goal, agents can be forced to keep the
strategy they have chosen in the past in order to reach the state where a goal is evaluated.
mATL? enriches ATL? by giving the ability to agents to “relent” and change their goals
and strategies depending on the history of the play. BSIL allows to specify behaviors of a
system that can cooperate with several strategies of the environment for different requirements.
TCL extends ATL by allowing successive definitions of agent strategies, with the aim of
using the collaborative power of groups of agents to enforce different temporal objectives.
ATLEA introduces explicit actions in the logic ATL to reason about abilities of agents under
commitments to play precise actions. Thus, all above logics are different from SL, which
we recall it aims to be a minimal but powerful logic to reason about strategic behavior in
multi-agent systems.

At roughly the same time we have conceived Strategy Logic, another generalization of
ATL?, named ATL? with Strategy Contexts, which results to be very expressive but a proper
sublogic of SL, has been considered in [DLM10] (see also [DLM12, LM13] for more recent
works). In this logic, a quantification over strategies does not reset the strategies previously
quantified but allows to maintain them in a particular context in order to be reused. This
makes the logic much more expressive than ATL?. On the other hand, as it does not allow
agents to share the same strategy, it is not comparable with the fragments we have considered
in this paper.

Recently, several extensions of SL have been also investigated. Updating Strategy Logic
(U-SL, for short) has been considered in [CBC13] where, in addition to SL, an agent can
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refine its own strategies by means of an ”unbinder” operator, which explicitly deletes the
binding of a strategy to an agent. In [Bel14], an epistemic extension of SL with modal
operators for individual knowledge has been considered, showing that the complexity of
model checking for this logic is not worse than the one for (non-epistemic) SL. Last but
not least, in [ČLMM14] a BDD-based model checker for the verification of systems against
specifications expressed in the epistemic extension of SL, named MCMAS-SLK, has been
introduced.

Synthesis The understanding that synthesis corresponds to a game in which the objective
of each player is to satisfy his specification calls for a mutual adoption of ideas between
formal methods and game theory. In rational synthesis, introduced in [FKL10], synthesis
is defined in a way that takes into an account the rationality of the agents that constitute
the environment and involves and assumption that an agent cooperates with a strategy in
which his objective is satisfied. Here, we extend the idea and consider also non-cooperative
rational synthesis, in which agents need not cooperate with suggested strategies and may
prefer different strategies that are at least as beneficial for them.

Many variants of the classical synthesis problem has been studied. It is interesting to
examine the combination of the rational setting with the different variants. To start, the
cooperative and non-cooperative settings can be combined into a framework in which one
team of agents is competing with another team of agents, where each team is internally
cooperative, but the two teams are non-cooperative. Furthermore, we plan to study rational
synthesis with incomplete information [KV99], where agents can view only a subset of the
signals that other agents output, and rational stochastic synthesis [CMJ04], which models
the unpredictability of nature and involves stochastic agents that assign values to their output
signals by means of a distribution function. Beyond a formulation of the richer settings, one
needs a corresponding extension of strategy logic and its decision problems.

As discussed above, classical applications of game theory consider games with quan-
titative payoffs. We added a quantitative layer to LTL by introducing Objective-LTL and
studying its rational synthesis. In recent years, researchers have developed more refined
quantitative temporal logics, which enable a formal reasoning about the quality of systems. In
particular, we plan to study rational synthesis for the multi-valued logics LTL[F] [ABK13],
which enables a prioritization of different satisfaction possibilities, and LTL[D] [ABK14], in
which discounting is used in order to reduce the satisfaction value of specifications whose
eventualities are delayed. The rational synthesis problem for these logics induce a game with
much richer, possibly infinitely many, profiles, making the search for a stable solution much
more challenging.

Pushdown systems In recent years, model checking of pushdown systems has received
a lot of attention, largely due to the ability of these systems to capture the flow of procedure of
calls and returns in programs [ABE+05]. The work in this area started with Muller and Schupp,
who showed that the monadic second-order theory of graphs induced by pushdown systems is
decidable [MS85]. Walukiewicz in [Wal96] showed that the model checking for pushdown
systems with respect to modal µ-calculus is EXPTIME-COMPLETE. The problem remains



EXPTIME-COMPLETE also for CTL and LTL, while it becomes 2EXPTIME-COMPLETE

for CTL? [Wal00, BEM97]. In [BMP10], open pushdown systems along with the module
checking paradigm have been considered. This setting has been investigated under several
restrictions including the imperfect-information case [ALM+13].



CHAPTER 1

Strategy Logic

This preliminary chapter is organized as follows. In Section 1.1 we introduce the syntax
and the semantics of Strategy Logic, together with the auxiliary definition of the underlying
framework, namely concurrent game structure. Then, we discuss its expressiveness by
showing examples, most of them borrowed by come classic problem in Game Theory. In
Section 1.2 we discuss the model-checking problem for this logic, by showing a reduction from
the satisfiability problem for QPTL, which is known to be NONELEMENTARY-COMPLETE.
Finally, in Section 1.3 we show that the satisfiability problem for SL is undecidable, by means
of a reduction from the recurrent domino problem, introduced in [Wan61].

1.1 Syntax and Semantics

Strategy Logic [MMV10a] (SL, for short) is an extension of the classic linear-time temporal
logic LTL [Pnu77] along with the concepts of strategy quantifications and agent binding,
which formalism allows to express strategic plans over temporal goals. The main distinctive
feature of this formalism w.r.t. other logics with the same aim resides in the decoupling
strategy instantiations, done through the quantifications, from their applications, by means
of bindings. Consequently, the logic is not simply propositional but predicative, since we
treat strategies as a first order concept via the use of agents and variables as explicit syntactic
elements. This fact let us to write Boolean combinations and nesting of complex predicates,
representing each one a different temporal goal, linked together by some common strategic
choices.

1.1.1 Underlying framework

As semantic framework for SL, we use the graph-based model for multi-player games named
concurrent game structure [AHK02], which is a generalization of Kripke structures [Kri63]
and labeled transition systems [Kel76]. It allows to model multi-agent systems viewed as
extensive form games, in which players perform concurrent actions to trigger different
transitions over the graph.

Definition 1.1.1 (Concurrent Game Structures) A concurrent game structure (CGS, for
short) is a tuple G , 〈AP,Ag,Ac, St, tr, ap, s〉, where AP and Ag are finite non-empty
sets of atomic propositions and agents, Ac and St are enumerable non-empty sets of actions
and states, s ∈ St is a designated initial state, and ap : St→ 2AP is a labeling function that
maps each state to the set of atomic propositions true in that state. Let Dc , AcAg be the
set of decisions, i.e., functions from Ag to Ac representing the choices of an action for each
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agent. 1 Then, tr : St × Dc → St is a transition function mapping a pair of a state and a
decision to a state.

To get familiar with the concept of CGS, we present here some running example of simple
concurrent games.

si

∅

sA
wA

sB
wB

DA DB

Di

∗∗ ∗∗

Figure 1.1: The CGS GPRS .

We start by modeling the paper, rock, and scissor
game.

Example 1.1.1 (Paper, Rock, and Scissor) Consider the
classic two-player concurrent game paper, rock, and scis-
sor (PRS, for short) as represented in Figure 1.1, where
a play continues until one of the participants catches the
move of the other. Vertexes are states of the game and
labels on edges represent decisions of agents or sets of
them, where the symbol ∗ is used in place of every possible
action. In this specific case, since there are only two agents, the pair of symbols ∗∗ indicates
the whole set Dc of decisions. The agents “Alice” and “Bob” in Ag , {A, B} have as possible
actions those in the set Ac , {P, R, S}, which stand for “paper”, “rock”, and “scissor”,
respectively. During the play, the game can stay in one of the three states in St , {si, sA, sB},
which represent, respectively, the waiting moment, named idle, and the two winner positions.
The latter ones are labeled accordingly with one of the atomic propositions in AP , {wA, wB},
in order to represent who is the winner between A and B. The catch of one action over another
is described by the relation C , {(P, R), (R, S), (S, P)} ⊆ Ac × Ac. We can now define
the CGS GPRS , 〈AP,Ag,Ac,St, tr, ap, si〉 for the PRS game. The labeling is given by
L(si) , ∅, L(sA) , {wA}, and L(sB) , {wB}. Moreover, the transition function is defined
as follows, where DA , {dc ∈ DcGPRS : (dc(A), dc(B)) ∈ C} and DB , {dc ∈ DcGPRS
: (dc(B), dc(A)) ∈ C} are the sets of winning decisions for the two agents: if s = si and
dc ∈ DA then tr(s, dc) , sA, else if s = si and dc ∈ DB then tr(s, dc) , sB, otherwise
tr(s, dc) , s. Note that, when none of the two agents catches the action of the other, i.e., the
used decision is in Di , DcGPRS \ (DA ∪ DB), the play remains in the idle state to allow
another try, otherwise it is stuck in a winning position forever.

si
fA , fA

sA
fA

sj

∅

sA
fA

DC

DD

CD

CC

∗∗

∗∗

∗∗

Figure 1.2: The CGS GPD.

We now describe a non-classic qualitative version of
the well-known prisoner’s dilemma.

Example 1.1.2 (Prisoner’s Dilemma) In the prisoner’s
dilemma (PD, for short), two accomplices are interro-
gated in separated rooms by the police, which offers them
the same agreement. If one defects, i.e., testifies for the
prosecution against the other, while the other cooperates,
i.e., remains silent, the defector goes free and the silent
accomplice goes to jail. If both cooperate, they remain free,
but will be surely interrogated in the next future waiting

1In the following, we use both X → Y and YX to denote the set of functions from the domain X to the
codomain Y.
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for a defection. On the other hand, if they both defect, both go to jail. Note that no one
of the two prisoners knows about the choice made by the other. This tricky situation can
be modeled by the CGS GPD , 〈AP,Ag,Ac,St, tr, ap, si〉 depicted in Figure 1.2 on the
preceding page, where the agents “Accomplice-1” and “Accomplice-2” in Ag , {A, A}
can chose an action in Ac , {C, D}, which stand for “cooperation” and “defection”, re-
spectively. There are four states in St , {si, sA , sA , sj}. In the idle state si the agents
are waiting for the interrogation, while sj represents the jail for both of them. Instead the
remaining states sA and sA indicate the situations in which only one of the agents becomes
definitely free. To characterize the different meaning of these states, we use the atomic
propositions in AP , {fA , fA}, which denote who is “free”, by defining the following la-
beling: L(si) , {fA , fA}, L(sA) , {fA}, L(sA) , {fA}, and L(sj) , ∅. The transition
function tr can be easily deduced by the figure.

s

∅

sA
fA

sAj

fA

sj

∅

sAA

fA , fA

sA
fA

sAj
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101
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00∗

∗ ∗ ∗

∗ ∗ 0

∗ ∗ 1

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ 0

∗ ∗ 1

Figure 1.3: The CGS GPPD.

We can analyze also an extended version of the
well-known prisoner’s dilemma [OR94] in which also
the actions of the police are taken into account.

Example 1.1.3 (Prisoners and Police’s Dilemma)
In the prisoner and police’s dilemma (PPD, for short),
apart from the classic agreement of the PD, the two
accomplices also know that they can try to gain a
better sentence by the judge if one spontaneously
defects without being interrogated by police, since
he is considered a “good willing man”. In this case,
indeed, if the other cooperates, the defector becomes
definitely free, while the other goes to jail with the
possibility to eventually be released. It is important,
however, that no both of them defect, otherwise
the police can subtle act as they were interrogated.
Moreover, differently from the PD, they are not free
during the time in which they can be interrogated.
This complex situation, can be modeled by the CGS
GPPD , 〈AP,Ag,Ac, St, tr, ap, s〉 depicted in Figure 1.3, where there are three agents
in Ag , {A, A, P}, with P being the police, and all of them can execute the two abstract
actions in Ac , {0, 1}. For the accomplices, 0 and 1 have the meaning of “cooperate”
and “defect”. For the police, on the contrary, they mean “wait” and “interrogate” in all
the states but those in which one of the accomplices can eventually be released, where the
meaning is “release” and “maintain”, instead. The set of states for the game is given by
{si, sA , sA , sj , sAj , sAj , sAA}. The idle state si the two prisoners are waiting to be
interrogated by police. They can even decide to defect before interrogation. The states sA
and sA denotes the situation in which only one prisoner becomes definitely free. Moreover,
the states sAj and sAj indicate when one of the prisoner is free while the other in the jail is
waiting for his release. Finally, sAA denotes the state in which both have gained definitely
the freedom. To represent the different meaning of these states, we use the atomic propositions
fAi to denote that the prisoner Ai is free. Both the labeling function ap and the transition
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function tr can be extracted from the figure.
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Figure 1.4: The CGS GPS .

In addition to PPD, we model a very simple preemptive
scheduling protocol for the access of processes to a shared
resource.

Example 1.1.4 (Preemptive Scheduling) Consider the
following preemptive scheduling protocol (PS, for short)
describing the access rules of two processes to a shared re-
source in a preemptive way. When the resource is free and
only one process asks for it, this process receives directly
the grant. Instead, if there is a competition of requests,
it is the scheduler that, in a nondeterministic way, deter-
mines who can access to the resource. Finally, in case one
process owns the resource while the other asks for it, the
scheduler can choose to make or not a preemption. These
rules are formalized in the CGS GPS ,〈AP,Ag,Ac,St,

tr, ap, s〉 of Figure 1.4, where the agents “Process-1”,
“Process-2” and “Scheduler” in Ag , {P, P, S} can choose between the two abstract actions
in Ac , {0, 1}. The processes use the actions 0 and 1 to send or not the request to the
scheduler, while this uses them in order to decide who can have the access to the resource in
a situation of competition. There are five states St , {si, s, s, s,, s′1, s′2} in which the
protocol can reside: the idle state si in which the resource is free; the three states s, s, and
s, in which P, P or both are requesting the resource; the two states s′1 and s′2 in which
the resource has been finally granted to P and P, respectively. To represent all information
associated, we use the atomic propositions in AP , {r, r, g, g}, where ri represents the
request of Pi, while gi the fact that the resource has been granted to Pi.

1
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2 3
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Balcony

Figure 1.5: Romeo and
Juliet game.

As last example in which it is possible to discuss about
the ability of an agent to be safe with respect to the behavior
of malicious agents, we consider a generalization of the well
known robber-vs-cops game (see [AF84] for a survey).

Example 1.1.5 (Romeo and Juliet Game) In the Romeo and
Juliet game, Romeo, being able to move inside Juliet’s house,
aims to reach her balcony, trying to avoid meeting both the
Montagues and Capulets families, who are able to move concur-
rently with him in the house. Graphically, the house is divided
in rooms and each room has doors on all internal walls. The
topology of the house depends on the status of these doors that can be closed or open.

Additionally, Romeo is helped by the accomplice Shakespeare that controls the doors of
the rooms. Specifically, at each step of the game, Shakespeare can switch the status of at
most two doors at a time (i.e., from open to closed or viceversa). Hence, he can modify the
shape of the house during a play. We consider Romeo meeting the families in two cases: if
they are in the same room in a certain phase of the play (Romeo is captured) or if they are
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in adjacent rooms with the connecting door open (Romeo is shot). In each step, the agents
Romeo, Montagues family, and Capulets family can independently decide to stay in the room
or, in the case a connection door to another room is open, move to this one. A sample game
given in Figure 1.5 on the facing page is made by nine rooms, with Room 9 being the balcony,
Romeo in Room 1, Montagues family in Room 3 and Capulets family in Room 7, respectively,
and all the doors open as initial state of the game. We denote with R = [1, 9] the set of rooms
and D = {d = (r, r) ∈ R× R : r is adjacent to r} the set of doors.

We can model this situation with a CGS GRJ = 〈AP,Ag,Ac, St, tr, ap, s〉 with AP ,
{c, r} standing for Captured or Shot (c) and Reached (r); Ag , {R, M, C, S}, standing
for Romeo (R), Montagues (M), Capulets (C), Shakespeare (S), respectively; Ac , M ∪ C

where M , {stay, up, down, left, right} is the set of moves for Romeo and Families and
C = {d ∈ 2D : |d| ≤ 2} be the set of possible switching of doors for Shakespeare, in which
the empty set stands for no switching; St , R×R2×{0, 1}D be the set of states in which the
first coordinate stands for the position of Romeo, the second and third coordinates stand for
the positions of Montagues and Capulets, respectively, and the fourth coordinate is a function
describing the status open or closed of each door in the house. The initial state is given by
(1, 3, 7, f) where f : D → {0, 1} is the function constant to 0, i.e., all the doors are open.
The labeling function is given as follows: for each state s = (n,m,m, f) ∈ St, r ∈ L(s)

iff n = 9,2 c ∈ L(s) iff there exists i ∈ {1, 2} such that either n = mi or (n,mi) ∈ D and
f((n,mi)) = 0.3 The transition function can be easily deduced by the figure. For the sake of
simplicity, all the states labeled with r only have a loop in the game. 4

1.1.2 Syntax

Strategy Logic (SL, for short) syntactically extends LTL by means of two strategy quantifiers,
the existential 〈〈x〉〉 and the universal [[x]], and the agent binding (a, x), where a is an agent
and x a variable. Intuitively, these new elements can be read as “there exists a strategy
x”, “for all strategies x”, and “bind agent a to the strategy associated with the variable x”,
respectively. The formal syntax of SL follows.

Definition 1.1.2 (SL Syntax) SL formulas are built inductively from the sets of atomic propo-
sitions AP, variables Vr, and agents Ag, by using the following grammar, where p ∈ AP,
x ∈ Vr, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

SL denotes the infinite set of formulas generated by the above rules.

Observe that, by construction, LTL is a proper syntactic fragment of SL, i.e., LTL ⊂ SL. In
order to abbreviate the writing of formulas, we use the boolean values true t and false f and

2Romeo has reached the balcony.
3Romeo is in the same room with a family or they are close with the door open.
4For the sake of simplicity, we assume that each agent, at each state of the game, has a specific subset of

possible choices of actions. For instance, if Romeo stays in the room 4 and the door (4, 5) is closed, than only
the actions up, down, and stay are available to him. It is easy to see that such assumption can be overcame in a
suitable, but even tricky, CGS that is somehow equivalent.
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the well-known temporal operators future Fϕ , t Uϕ and globally Gϕ , f Rϕ. Moreover,
we use the italic letters x, y, z, . . ., possibly with indexes, as meta-variables on the variables
x, y, z, . . . in Vr.

A first classic notion related to the syntax of SL is that of subformula, i.e., a syntactic
expression that is part of an a priori given formula. By sub(ϕ) we formally denote the set
of subformulas of an SL formula ϕ. For instance, consider ϕ = 〈〈x〉〉(α, x)(Fp). Then, it is
immediate to see that sub(ϕ) = {ϕ, (α, x)(Fp), (Fp), p, t}.

Usually, in predicative logics, we need the concepts of free and bounded placeholders, to
correctly define the meaning of a formula. In SL, we have two different kind of placeholders:
variables and agents. The former is used in the strategy quantifications, the latter to commit
an agent, by means of bindings, to adhere to a strategy. Consequently, we need to differentiate
the sets of free variables and free agents of an SL formula ϕ. The first contains the variables
that are not in a scope of a quantification. The second, instead, contains the agents for which
there is no related binding in the scope of a temporal operator. A formula without any free
variable (resp., agent) is named variable-closed (resp., agent-closed). A formula that is both
variable- and agent-closed, is named sentence. For a given SL formula ϕ, by free(ϕ) we
denote the set of both free variables and agents occurring in ϕ. The formal definition of free(·)
has been given in [MMPV11, MMPV14]. Just as an example, let ϕ = 〈〈x〉〉(α, x)(β, y)(Fp)

be a formula on the agents Ag = {α, β, γ}. Then, we have free(ϕ) = {γ, y}, since γ is
an agent without any binding after Fp and y has no quantification at all. Consider also the
formulas (α, z)ϕ and (γ, z)ϕ, where the subformula ϕ is the same as above. Then, we have
free((α, z)ϕ) = free(ϕ) and free((γ, z)ϕ) = {y, z}, since α is not free in ϕ but γ is, i.e.,
α /∈ free(ϕ) and γ ∈ free(ϕ). So, (γ, z)ϕ is agent-closed while (α, z)ϕ is not.

We now introduce other two general restrictions in which the numbers |Ag| of agents and
|Vr| of variables that are used to write a formula are fixed to the a priori values n,m ∈ [1, ω[,
respectively. Moreover, we can also forbid the sharing of variables, i.e., each variable is
binded to one agent only, so, we cannot force two agents to use the same strategy. We name
these three fragments SL[n-AG], SL[m-VAR], and SL[FVS], respectively.

To make practice with the syntax of SL, we now describe few examples of some game-
theoretic properties, which cannot be expressed neither in ATL? nor in CHP-SL. We clarify
this point later in the paper.

The first we introduce is the well-known concept of Nash Equilibrium in concurrent
infinite games with Boolean payoffs.

Example 1.1.6 (Nash Equilibrium) Consider the n agents α1, . . . , αn of a game, each of
them having, respectively, a possibly different temporal goal described by one of the LTL for-
mulas ψ1,. . ., ψn. Then, we can express the existence of a strategy profile (x, . . . , xn) that is
a Nash equilibrium (NE, for short) for α1, . . . , αn w.r.t. ψ1, . . . , ψn by using the SL sentence
ϕNE,〈〈x〉〉 · · · 〈〈xn〉〉(α1, x) · · · (αn, xn) ψNE , where ψNE,

∧n
i=1(〈〈y〉〉(αi, y)ψi)→ ψi is a

variable-closed formula. Informally, this asserts that every agent αi has xi as one of the best
strategy w.r.t. the goal ψi, once all the other strategies of the remaining agents αj , with j 6= i,
have been fixed to xj . Note that here we are only considering equilibria under deterministic
strategies.
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Note that the syntactic feature of SL that allows us to represent Nash Equilibria is the
binding construct. Indeed, by means of a suitable usage of it, we can compare, in a Boolean
way, the outcomes of two strategy profiles in which only one agent has changed his choice.
This cannot be done in ATL?, since the use of an agent modality necessarily re-quantify the
strategies associated with all the agents. Therefore, we cannot change in ATL? just a strategy
of a single selected agent.

In game theory, it is important to recall that an equilibrium is not always stable. Indeed,
there are games like the PD of Example 1.1.2 on page 2 having Nash equilibria that are
instable. One of the simplest concepts of stability that is possible to think is called stability
profile.

Example 1.1.7 (Stability Profile) Think about the same situation of the above example
on NE. Then, a stability profile (SP, for short) is a strategy profile (x, . . . , xn) for
α1, . . . , αn w.r.t. ψ1, . . . , ψn such that there is no agent αi that can choose a different
strategy from xi without changing its own payoff and penalizing the payoff of another
agent αj , with j 6= i. To represent the existence of such a profile, we can use the
SL sentence ϕSP , 〈〈x〉〉(α1, x) · · · 〈〈xn〉〉(αn, xn) ψSP , where ψSP ,

∧n
i,j=1,i 6=j ψj →

[[y]]((ψi ↔ (αi, y)ψi) → (αi, y)ψj). Informally, with the ψSP subformula, we assert
that, if αj is able to achieve his goal ψj , all strategies y of αi that left unchanged
the payoff related to ψi, also let αj to maintain his achieved goal. At this point, it is
very easy to ensure the existence of an NE that is also an SP, by using the SL sentence
ϕSNE , 〈〈x〉〉(α1, x) · · · 〈〈xn〉〉(αn, xn) ψSP ∧ ψNE .

In a game in which not all agents are peers, we can have one or more of them that may
vary the payoff of the others, without having a personal aim, i.e., without looking for the
maximization of their own payoffs. Such situations can usually arise when we have games
with arbiters or similar characters, like supervisors or government authorities, that have to be
fair, i.e., they have to lay down an equity governance.

Example 1.1.8 (Equity Governance) Let us think to a game similar to the one described in
the previous example, in which there is also a supervisor agent β, which does not have
a specific goal. By the way, the peers want him to be fair w.r.t. their own goals, i.e.,
the supervisor has to use a strategy that does not have to prefer one agent over another.
This concept is called equity governance (EG, for short). In order to formalize it, we
can use the SL sentence ϕEG , [[x]] · · · [[xn]](α1, x) · · · (αn, xn)〈〈y〉〉(β, y) ψEG, where
ψEG ,

∧n
i,j=1,i<j(〈〈z〉〉(β, z)ψi) ∧ (〈〈z〉〉(β, z)ψj) → (ψi ↔ ψj). Informally, the ψEG

subformula asserts that, if there are two strategies z and z for β that allow αi and αj to
achieve their own goals ψi and ψj , separately, then the unique strategy ypreviously chosen by
the supervisor has to ensures the achievement of either both the goals or none of them. Note
that the sentence ϕEG ensure the existence of an EG strategy y for β, in dependence of the
strategies x, . . . , xn chosen by the peers. To verify the existence of a uniform EG, we may use
the SL sentence ϕUEG , 〈〈y〉〉(β, y) ψ′EG, with ψ′EG , [[x]] · [[xn]](α1, x) · · · (αn, xn) ψEG,
whose difference w.r.t. ϕEG resides only in the alternation of quantifiers. Finally, to verify the
existence of a uniform EG that allows also the existence of an NE for the peers, we can use
the SL sentence ϕUEG+NE , 〈〈y〉〉(β, y)(ψ′EG ∧ ϕNE).
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Usually, the equity of a supervisor does not ensure that the whole game can advance,
i.e., that the peers can achieve their respective goals. Indeed, there are games like the zero-
sum ones in which the agents have opposite goals that cannot be achieved at the same time.
However, there are different kind of games, as the PPD or the PS of Examples 1.1.3 on page 3
and 1.1.4 on page 4, in which a supervisor can try to help all peers in their intent, by applying
an advancement governance.

Example 1.1.9 (Advancement Governance) Consider the game described in the previous
example of EG. Here, we want to consider an advancement governance (AG, for short)
for the supervisor, i.e., a strategy for β that allows the peers to achieve their own goals,
if they have the will and possibility to do so. Formally, this concept can be expressed
by using the SL sentence ϕAG , [[x]] · [[xn]](α1, x) · · · (αn, xn)〈〈y〉〉(β, y) ψAG, where
ψAG , (

∧n
i=1(〈〈z〉〉(β, z)ψi)→ ψi). Intuitively, the ψAG subformula expresses the fact that,

if β has a strategy z able to force a goal ψi, once the strategies of the peers α1, . . . , αn have
been fixed, then his a priori choice y w.r.t. the goals has to force ψi as well. As in the case of
EG, we can have an uniform version of AG, by using the SL sentence ϕUAG , 〈〈y〉〉(β, y) ψ′AG,
where ψ′AG , [[x]] · · · [[xn]](α1, x) · · · (αn, xn) ψAG.

Differently from the previous examples, one can consider the case in which the authority
agent has his own goal to be satisfied, given the other agents to be in a certain equilibrium.
In the context of system design [PR89], rational synthesis [FKL10] is a recent improvement
of the classical reactive one. In this setting, the adversarial environment is not a monolithic
block, but a set of agent components, each of them having their own goal. In the next example,
we show that the most typical instances of a rational synthesis problem can be represented in
SL.

Example 1.1.10 (Rational Synthesis) Consider a solution concept that is representable
in SL by means of a suitable formula ψSC , e.g., NE, and a temporal goal ψβ for the
system agent. Here, we look for a rational synthesis solution for the players, i.e., a
strategy profile (y, x, . . . , xn) such that, if β acts according to y, then ψβ is satisfied
and (x, . . . , xn) is in an equilibrium according to the solution concept considered, i.e.,
ψSC is satisfied. Formally, this concept can be expressed by using the SL sentence
ϕRS = 〈〈y〉〉〈〈x〉〉 . . . 〈〈xn〉〉(β, y)(a, x) . . . (an, xn)(ψ0 ∧ ψSC). As an example, ψSC can
be the formula ψNE of Example 1.1.6 on page 6. In this case, we obtain the rational synthesis
problem for NE.

1.1.3 Basic notions

Before continuing with the formal description of SL, we need to introduce some basic notions
related to CGSs, such as those of track, path, strategy, and the like. They are the natural
analogous of the ones for Kripke structures and, more generally, for game arenas. All these
notions have been already introduced in [MMV10b]. However, for the sake of completeness,
as well as for their importance in the definition of SL semantics, we fully report them in this
section.

We start with the notions of track and path. Intuitively, tracks and paths of a CGS are
legal sequences of reachable states that can be respectively seen as partial and complete
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descriptions of possible outcomes of the game modeled by the structure itself. Formally, a
track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states ρ ∈ St∗ (resp.,
π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[ (resp., i ∈ N), there exists a decision δ ∈ Dc

such that (ρ)i+1 = tr((ρ)i, δ) (resp., (π)i+1 = tr((π)i, δ)) 5. A track ρ is non-trivial if it has
non-zero length, i.e., |ρ| > 0 that is ρ 6= ε 6. The set Trk ⊆ St+ (resp., Pth ⊆ Stω) contains
all non-trivial tracks (resp., paths). Moreover, Trk(s) , {ρ ∈ Trk : fst(ρ) = s} (resp.,
Pth(s) , {π ∈ Pth : fst(π) = s}) indicates the subsets of tracks (resp., paths) starting at a
state s ∈ St 7.

As an example, consider the CGS GPS in Figure 1.4 on page 4. Then ρ = si ·s ·s′ ·s′ ·si
and π = (si · s, · s′ · si · s, · s′)ω are a track and a path, respectively. Moreover, we have
that TrkGPS = StGPS

∗ and PthGPS = StGPS
ω.

At this point, we can define the concept of strategy. Intuitively, a strategy is a scheme
for an agent that contains all choices of actions as in dependence of the history of the current
outcome. However, observe that here there is not an a priori connection between a strategy
and an agent, since the same strategy can be used by more than one agent at the same time.
Formally, a strategy in a CGS G is a partial function f : Trk ⇀ Ac that maps each non-
trivial track in its domain to an action. For a state s ∈ St, a strategy f is said s-total if it is
defined on all tracks starting in s, i.e., dom(f) = Trk(s). The set Str , Trk ⇀ Ac (resp.,
Str(s) , Trk(s)→ Ac) contains all (resp., s-total) strategies.

An example of strategy in the CGS GPS is given by the function f ∈ Str assigning the
action 0 to all the tracks in which the state si occurs an even number of times and the action
1, otherwise. Another example of strategy is the function f ∈ Str assigning the action 1 on
all possible tracks of the CGS.

We now introduce the notion of assignment. Intuitively, an assignment gives a valuation
of variables with strategies, where the latter are used to determine the behavior of agents in the
game. With more detail, as in the case of first order logic, we use this concept as a technical
tool to quantify over strategies associated with variables, independently of agents to which
they are related to. So, assignments are used precisely as a way to define a correspondence
between variables and agents via strategies.

Definition 1.1.3 (Assignments) An assignment in a CGS G is a partial function χ : Vr ∪
Ag ⇀ Str mapping variables and agents in its domain to a strategy. An assignment χ is
complete if it is defined on all agents, i.e., Ag ⊆ dom(χ). For a state s ∈ St, it is said that
χ is s-total if all strategies χ(l) are s-total, for l ∈ dom(χ). The set Asg , Vr ∪Ag ⇀ Str

(resp., Asg(s) , Vr ∪ Ag ⇀ Str(s)) contains all (resp., s-total) assignments. Moreover,
Asg(X) , X → Str (resp., Asg(X, s) , X → Str(s)) indicates the subset of X-defined
(resp., s-total) assignments, i.e., (resp., s-total) assignments defined on the set X ⊆ Vr ∪Ag.

As an example of assignment, consider the function χ ∈ Asg in the CGS GPS , with
dom(χ) = {P, x}, such that χ(P) = f and χ(x) = f. As another example, consider
the assignment χ ∈ Asg in the same CGS, with dom(χ) = Ag, such that χ(S) = f and
χ(P) = χ(P) = f. Note that χ is complete, while χ is not.

5The notation (w)i ∈ Σ indicates the element of index i ∈ [0, |w|[ of a non-empty sequence w ∈ Σ∞.
6The Greek letter ε stands for the empty sequence.
7By fst(w) , (w)0 it is denoted the first element of a non-empty sequence w ∈ Σ∞.
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Given an assignment χ ∈ Asg, an agent or variable l ∈ Vr ∩Ag, and a strategy f ∈ Str,
we need to describe the redefinition of χ, i.e., a new assignment equal to the first one on all
elements of its domain but l, on which it assumes the value f. Formally, with χ[l 7→ f] ∈ Asg

we denote the new assignment defined on dom(χ[l 7→ f]) , dom(χ) ∪ {l} that returns
f on l and is equal to χ on the remaining part of its domain, i.e., χ[l 7→ f](l) , f and
χ[l 7→ f](l′) , χ(l′), for all l′ ∈ dom(χ) \ {l}. Intuitively, if we have to add or update a
strategy that needs to be bound by an agent or variable, we can simply take the old assignment
and redefine it by using the above notation. It is worth observing that, if χ and f are s-total
then χ[l 7→ f] is s-total, as well.

Now, we can formalize the concept of play in a game. Intuitively, a play is the unique
outcome of the game determined by all agent strategies participating to it.

Definition 1.1.4 (Plays) A path π ∈ Pth(s) starting at a state s ∈ St is a play w.r.t. a
complete s-total assignment χ ∈ Asg(s) ((χ, s)-play, for short) if, for all i ∈ N, it holds that
(π)i+1 = tr((π)i, δ), where δ(a) , χ(a)((π)≤i), for each a ∈ Ag 8. The partial function
play : Asg×St ⇀ Pth, with dom(play) , {(χ, s) : Ag ⊆ dom(χ)∧χ ∈ Asg(s)∧ s ∈ St},
returns the (χ, s)-play play(χ, s) ∈ Pth(s), for all pairs (χ, s) in its domain.

As last example, consider again the CGS GPS and the complete s-total assignment χ
defined above. Then, we have that play(χ, s) = (si · s, · s′ · si · s, · s′)ω.

Finally, we give the definition of global translation of a complete assignment associated
with a state, which is used to capture, at a certain step of the play, what is the current state and
its updated assignment.

Definition 1.1.5 (Global Translation) For a given state s ∈ St and a complete s-total
assignment χ ∈ Asg(s), the i-th global translation of (χ, s), with i ∈ N, is the pair of
a complete assignment and a state (χ, s)i , ((χ)(π)≤i , (π)i), where π = play(χ, s) and
(χ)(π)≤i denotes the (π)i-total assignment, with dom((χ)(π)≤i) = dom(χ), such that, for
all l ∈ dom(χ), dom((χ)(π)≤i(l)) = {ρ ∈ Trk((π)i) : (π)≤i · ρ ∈ dom(χ(l))} and
(χ)(π)≤i(l)(ρ) = χ(l)((π)≤i · ρ), for all ρ ∈ dom((χ)(π)≤i(l)).

1.1.4 Semantics

As already reported at the beginning of this section, just like ATL? and differently from
CHP-SL, the semantics of SL is defined w.r.t. concurrent game structures. For an SL formula
ϕ, a CGS G, one of its states s, and an s-total assignment χ with free(ϕ) ⊆ dom(χ), we
write G, χ, s |= ϕ to indicate that the formula ϕ holds at s in G under χ. The semantics of
SL formulas involving the atomic propositions, the Boolean connectives ¬, ∧, and ∨, as well
as the temporal operators X, U, and R is defined as usual in LTL. The novel part resides in
the formalization of the meaning of strategy quantifications 〈〈x〉〉 and [[x]] and agent binding
(a, x).

Definition 1.1.6 (SL Semantics) Given a CGS G, for all SL formulas ϕ, states s ∈ St, and
s-total assignments χ ∈ Asg(s) with free(ϕ) ⊆ dom(χ), the modeling relation G, χ, s |= ϕ

is inductively defined as follows.
8The notation (w)≤i ∈ Σ∗ indicates the prefix up to index i ∈ [0, |w|] of a non-empty sequence w ∈ Σ∞.
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1. G, χ, s |= p if p ∈ ap(s), with p ∈ AP.

2. For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= ¬ϕ if not G, χ, s |= ϕ, that is G, χ, s 6|= ϕ;

(b) G, χ, s |= ϕ1 ∧ ϕ2 if G, χ, s |= ϕ1 and G, χ, s |= ϕ2;

(c) G, χ, s |= ϕ1 ∨ ϕ2 if G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

3. For a variable x ∈ Vr and a formula ϕ, it holds that:

(a) G, χ, s |= 〈〈x〉〉ϕ if there is an s-total strategy f ∈ Str(s) such that
G, χ[x 7→ f], s |=ϕ;

(b) G, χ, s |= [[x]]ϕ if, for all s-total strategies f ∈ Str(s), it holds that
G, χ[x 7→ f], s |= ϕ.

4. For an agent a ∈ Ag, a variable x ∈ Vr, and a formula ϕ, it holds that G, χ, s |=
(a, x)ϕ if G, χ[a 7→ χ(x)], s |= ϕ.

5. Finally, if the assignment χ is complete, for all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= Xϕ if G, (χ, s)1 |= ϕ;

(b) G, χ, s |= ϕ1Uϕ2 if there is an index i ∈ N with k ≤ i such that G, (χ, s)i |= ϕ2

and, for all indexes j ∈ N with k ≤ j < i, it holds that G, (χ, s)j |= ϕ1;

(c) G, χ, s |= ϕ1Rϕ2 if, for all indexes i ∈ N with k ≤ i, it holds that G, (χ, s)i |= ϕ2

or there is an index j ∈ N with k ≤ j < i such that G, (χ, s)j |= ϕ1.

Intuitively, at Items 3a and 3b, respectively, we evaluate the existential 〈〈x〉〉 and universal
[[x]] quantifiers over strategies, by associating them to the variable x. Moreover, at Item 4,
by means of an agent binding (a, x), we commit the agent a to a strategy associated with
the variable x. It is evident that, due to Items 5a, 5b, and 5c, the LTL semantics is simply
embedded into the SL one.

In order to complete the description of the semantics, we now give the classic notions of
model and satisfiability of an SL sentence. We say that a CGS G is a model of an SL sentence
ϕ, in symbols G |= ϕ, if G,∅, s |= ϕ. 9 In general, we also say that G is a model for ϕ on
s ∈ St, in symbols G, s |= ϕ, if G,∅, s |= ϕ. An SL sentence ϕ is satisfiable if there is a
model for it.

It remains to formalize the concepts of implication and equivalence between SL formulas,
which are useful to describe transformations preserving the meaning of a specification. Given
two SL formulas ϕ1 and ϕ2, with free(ϕ1) = free(ϕ2), we say that ϕ1 implies ϕ2, in symbols
ϕ1 ⇒ ϕ2, if, for all CGSs G, states s ∈ St, and free(ϕ1)-defined s-total assignments
χ ∈ Asg(free(ϕ1), s), it holds that if G, χ, s |= ϕ1 then G, χ, s |= ϕ2. Accordingly, we say
that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, if both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

In the rest of the paper, especially when we describe a decision procedure, we may consider
formulas in existential normal form (enf , for short) and positive normal form (pnf , for short),

9The symbol ∅ stands for the empty function.
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i.e., formulas in which only existential quantifiers appear or, respectively, the negation is
applied solely to atomic propositions. In fact, it is to this aim that we have considered in
the syntax of SL both the Boolean connectives ∧ and ∨, the temporal operators U, and R,
and the strategy quantifiers 〈〈 · 〉〉 and [[ · ]]. Indeed, all formulas can be linearly translated
in enf and pnf by using De Morgan’s laws together with the following equivalences, which
directly follow from the semantics of the logic: ¬Xϕ ≡ X¬ϕ, ¬(ϕ1Uϕ2) ≡ (¬ϕ1)R(¬ϕ2),
¬〈〈x〉〉ϕ ≡ [[x]]¬ϕ, and ¬(a, x)ϕ ≡ (a, x)¬ϕ.
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Figure 1.6: The CGS GSV .

At this point, in order to better understand the mean-
ing of the SL semantics, we discuss some examples of
formulas interpreted over the CGSs previously described.

We start by explaining how a strategy can be shared
by different agents.

Example 1.1.11 (Shared Variable) Consider the
SL sentence ϕ = 〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)(Xp) ∧
(α, y)(β, z)(Xq)). It is immediate to note that both agents
α and β use the strategy associated with y to achieve
simultaneously the LTL temporal goals Xp and Xq. A model for ϕ is given by the CGS
GSV , 〈{p, q}, {α, β}, {0, 1}, {s, s, s, s}, L, tr, s〉, where L(s) , ∅, L(s) , {p},
L(s) , {p, q}, L(s) , {q}, tr(s, (0, 0)) , s, tr(s, (0, 1)) , s, tr(s, (1, 0)) , s,
and all the remaining transitions (with any decision) go to s. In Figure 1.6, we report a
graphical representation of the structure. Clearly, GSV |= ϕ by letting, on s, the variables
x to chose action 0 (the goal (α, x)(β, y)(Xp) is satisfied for any choice of y, since we can
move from s to either s or s, both labeled with p) and z to choose action 1 when y has
action 0 and, vice versa, 0 when y has 1 (in both cases, the goal (α, y)(β, z)(Xq) is satisfied,
since one can move from s to either s or s, both labeled with q).

We now discuss an application of the concepts of Nash equilibrium and stability profile to
both the prisoner’s dilemma and the paper, rock, and scissor game.

Example 1.1.12 (Equilibrium Profiles) Let us first consider the CGS GPD of the prisoner’s
dilemma described in the Example 1.1.2 on page 2. Intuitively, each of the two accomplices A
and A want to avoid the prison. These goals can be represented by the LTL formulas ψA ,
GfA and ψA , GfA , respectively. The existence of a Nash equilibrium in GPD for the two
accomplices w.r.t. the above goals can be written as φNE , 〈〈x〉〉(A, x)〈〈x〉〉(A, x) ψNE ,
where ψNE , ((〈〈y〉〉(A, y)ψA) → ψA) ∧ ((〈〈y〉〉(A, y)ψA) → ψA), which results to be
an instantiation of the general sentence ϕNE of Example 1.1.6 on page 6. In the same way,
the existence of a stable Nash equilibrium can be represented with the sentence φSNE ,
〈〈x〉〉(A, x)〈〈x〉〉(A, x) ψNE ∧ ψSP , where ψSP , (ψ1 → [[y]]((ψ2 ↔ (A, y)ψ2) →
(A, y)ψ1)) ∧ (ψ2 → [[y]]((ψ1 ↔ (A, y)ψ1) → (A, y)ψ2)), which is a particular case of
the sentence ϕSNE of Example 1.1.7 on page 7. Now, it is easy to see that GPD |= φSNE
and, so, GPD |= φNE . Indeed, an assignment χ ∈ AsgGPD(Ag, si), for which χ(A)(si) =

χ(A)(si) = D, is a stable equilibrium profile, i.e., it is such that GPD, χ, si |= ψNE ∧ ψSP .
This is due to the fact that, if an agent Ak, for k ∈ {1, 2}, choses another strategy f ∈
StrGPD(si), he is still unable to achieve his goal ψk, i.e., GPD, χAk 7→f , si 6|= ψk, so, he
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cannot improve his payoff. Moreover, this equilibrium is stable, since the payoff of an agent
cannot be made worse by the changing of the strategy of the other agent. However, it is
interesting to note that there are instable equilibria too. One of these is represented by the
assignment χ′ ∈ AsgGPD(Ag, si), for which χ′(A)(sij) = χ′(A)(si

j) = C, for all j ∈ N.
Indeed, we have that GPD, χ′, si |= ψNE , since GPD, χ′, si |= ψ1 and GPD, χ′, si |= ψ2, but
GPD, χ′, si 6|= ψSP . The latter property holds because, if one of the agents Ak, for k ∈ {1, 2},
choses a different strategy f ′ ∈ StrGPD(si) for which there is a j ∈ N such that f ′(si

j) = D,
he cannot improve his payoff but makes surely worse the payoff of the other agent, i.e.,
GPD, χ′[Ak 7→ f ′], si |= ψk but GPD, χ′[Ak 7→ f ′], si 6|= ψ3−k. Finally, consider the CGS
GPRS of the paper, rock, and scissor game described in the Example 1.1.1 on page 2 together
with the associated formula for the Nash equilibrium φNE , 〈〈x〉〉(A, x)〈〈x〉〉(B, x) ψNE ,
where ψNE , ((〈〈y〉〉(A, y)ψA)→ ψA)∧((〈〈y〉〉(B, y)ψB)→ ψB) with ψA , FwA and ψB , FwB
representing the LTL temporal goals for Alice and Bob, respectively. Then, it is not hard to
see that GPRS 6|= φNE , i.e., there are no Nash equilibria in this game, since there is necessarily
an agent that can improve his/her payoff by changing his/her strategy.

Example 1.1.13 (Law and Order) Consider the CGS GPPD given in Example 1.1.3 on
page 3. It is easy to see that Police can ensure at least one prisoner to be definitely in
jail. Indeed the formula ϕ1 = 〈〈y〉〉[[x]][[x]](P, y)(A, x)(A, x)((FG¬fA) ∨ (FG¬fA)) is
satisfied over GPPD. A way to see this is to consider the strategy f for P given by f(ρ) = 0,
for all ρ ∈ Trk, which allows agent P to always avoid the state sA,A . On the other hand,
the formula ϕ2 = [[x]][[x]]〈〈y〉〉(P, y)(A, x)(A, x)(FG(¬fA ∧ ¬fA)) is not satisfied
over GPPD. Indeed, if agents A and A use strategies f and f, respectively, such that
f(si) = 1− f(si), we have that, whatever agent P does, at least one of them gains freedom.

Example 1.1.14 (Fair Scheduler) Consider the CGS GPS of Example 1.1.4 on page 4 and
suppose the Scheduler wants to ensure that, whatever process makes a request, the resource
is eventually granted to it. We can represent this specification by means of the formula
ϕ = 〈〈y〉〉[[x]][[x]](S, y)(P, x)(P, x)(G((r → Fg) ∧ (r → Fg))). It is easy to see
that GPS |= ϕ. Indeed, consider the strategy f for S defined as follows. For all tracks of the
form ρ · s′i, we set a possible preemption, i.e., f(ρ · s′i) = 1. For the tracks of the form ρ · s,
we set the action as prescribed in the sequel: (i) if there is no occurrence of s′1 and s′2 or
the last occurrence is s′1, then we release the resource to P, i.e., f(ρ · s,) = 0; (ii) if the
last occurrence in ρ between s′1 and s′2 is s′1, then then we release the resource to P, i.e.,
f(ρ · s,) = 1.
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Figure 1.7: Winning position.

In the next example, we show the expressive power of
alternation of quantifications in SL by pointing out an ex-
ample based on the “Romeo and Juliet” game, shown in
Example 1.1.5 on page 4.

Example 1.1.15 (Quantification modalities.) First con-
sider the CGS GRJ described in Example 1.1.5 on page 4.
Romeo R, helped by Shakespeare S, wants to reach the
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balcony of his loved Juliet while never meeting the Mon-
tagues family M nor the Capulets family C. According to
the CGS, this aim can be easily expressed with the LTL
formula ψ = Fr ∧ G¬c. The game can be played with several quantification modalities,
each of them having a different meaning. For example, we can consider the formula
ϕ1 = [[z]][[w]]〈〈x〉〉〈〈y〉〉[ψ, where [ = (R, x)(S, y)(M, z)(C, w). This means that both R and S

have full visibility about the moves of the families in the house. Conversely, we can consider
the formula ϕ2 = 〈〈x〉〉〈〈y〉〉[[z]][[w]][ψ, which means that both R and S have to play a strategy
that is winning no matter what the families do. Moreover, one can select a modality in
which the alternation of the quantification is greater than one. For instance, in the formula
ϕ3 = 〈〈x〉〉[[z]][[w]]〈〈y〉〉[ψ, Romeo has to play independently on the families while Shakespeare
can select a strategy according to what the families are doing in the house. In other word, a
team of agents has visibility on the adversary team that differs agent by agent, and depends
on the order in which their strategies are quantified in the formula. It is worth noting that,
while ϕ1 and ϕ2 can be represented also in ATL?, ϕ3 does not have an equivalent ATL?

formula, due to its alternation number of quantifications equal to 2.

It is easy to see that the position in Figure 1.7 on the previous page, with rooms 1 and
9 completely isolated and families standing in the remaining sector of the house composed
by rooms from 2 to 8, is winning for Romeo and Shakespeare. In fact, a trivial strategy for
them is given by Romeo remaining in the room 1 until Shakespeare closes the doors needed to
block the families in two rooms (possibly the same) of the house, then opening a path toward
the balcony for Romeo. Note that such a path always exists, since there are three different
non intersecting paths from room 1 to room 9 (i.e., 1− 2− 3− 6− 9, 1− 4− 7− 8− 9, and
1− 5− 9) and the families can occupy at most two of them.

Moreover, it is easy to see that the winning position in Figure 1.7 on the preceding page
cannot be reached if Shakespeare does not have full visibility on families’ moves. Indeed,
starting from the initial position, Shakespeare is forced to close doors (1, 2) and (1, 4), in
order to prevent Romeo to be shot at the second step, since Montagues and Capulets can
move in 2 and 4, respectively. But, by closing those doors, Montagues (resp., Capulets) can
move in 6 (resp., 8), being able to reach the balcony room in the next step of the game then
holding there indefinitely. This makes impossible to eventually satisfy r without satisfying c,
as well. Hence, we have that GRJ 6|= ϕ2.

On the other hand, if Shakespeare knows where the families are moving from the initial
state, then he can close the nearest doors and prevent them to reach the key rooms, i.e., 1

and 9, in the next steps. Indeed, if Montagues and Capulets are going to move in 2 and 4,
then Shakespeare closes the doors (1, 2) and (1, 4), otherwise, if Montagues and Capulets
are going to move in 6 and 8, then Shakespeare closes the doors (6, 9) and (7, 9). Again,
the “mixed” strategies of Montagues and Capulets given by moving in 2 and 8 or 4 and 6 can
be neutralized by a suitable choice for Shakespeare. Moreover, it is easy to see that, after a
well played initial step, the the winning position of Figure 1.7 on the previous page is easily
reachable by Romeo and Shakespeare, as the latter can close the doors (1, 5) and (5, 9) at
the second step and then close the remaining doors in order to isolate the rooms 1 and 9.

Thanks to this reasoning, we have that GRJ |= ϕ3.
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Finally, we discuss another examples that is useful to point out the power of forcing two
or more agents to share a strategy. Hex is a two-player game, red vs blue, in which each
player in turn places a stone of his color on a single empty hexagonal cell of the rhomboidal
playing board having opposite sides equally colored, either red or blue. The goal of each
player is to be the first to form a path connecting the opposing sides of the board marked by
his color. It is easy to prove that the stealing-strategy argument does not lead to a winning
strategy in Hex, i.e., if the player that moves second copies the moves of the opponent, he
surely loses the play. It is possible to formalize this fact in SL as in the following example.

Example 1.1.16 (Stealing-Strategy argument in Hex) First model Hex with a CGS GH
whose states represent every possible configuration reached during a play between Player “r”
red and “b” blue. Then, verify the negation of the stealing-strategy argument by checking
GH |= 〈〈x〉〉(r, x)(b, x)(Fcncr). Intuitively, this sentence says that agent r has a strategy that,
once it is copied (bound) by b it allows the former to win, i.e., to be the first to connect the
related red edges (Fcncr).

It should be noted that the syntax of SL does not allow to express manipulation of
strategies. For example, in the Hex game, we cannot express, for Player b, the effects of a
strategy obtained by a manipulation of the one chosen by Player r. As a further example,
consider a CGS having Ac = {0, 1}. Then, in SL it is not possible to describe a comparison
between the outcomes that a player may obtain by replacing one of his strategies f with the
associated flipping f ′, i.e., f ′(ρ) = 1− f(ρ), for all ρ ∈ dom(f).

1.2 Model-Checking Hardness

In this section, we show the non-elementary lower bound for the model-checking problem
of SL. Precisely, we prove that, for sentences having alternation number k, this problem is
k-EXPSPACE-HARD. To this aim, in Subsection 1.2.1, we first recall syntax and semantics
of Quantified propositional temporal logic [Sis83]. Then, in Subsection 1.2.2, we give a
reduction from the satisfiability problem for this logic to the model-checking problem for SL.

1.2.1 Quantified propositional temporal logic

Quantified Propositional Temporal Logic (QPTL , for short) syntactically extends the old-style
temporal logic with the future Fand global Goperators by means of two proposition quantifiers,
the existential ∃q. and the universal ∀q., where q is an atomic proposition. Intuitively, these
elements can be respectively read as “there exists an evaluation of q” and “for all evaluations
of q”. The formal syntax of QPTL follows.

Definition 1.2.1 (QPTL Syntax) QPTL formulas are built inductively from the sets of
atomic propositions AP, by using the following grammar, where p ∈ AP:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ∃p.ϕ | ∀p.ϕ.

QPTL denotes the infinite set of formulas generated by the above grammar.
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Similarly to SL, we use the concepts of subformula, free atomic proposition, sentence,
and alternation number, together with the QPTL syntactic fragment of bounded alternation
QPTL[k-ALT], with k ∈ N.

In order to define the semantics of QPTL, we have first to introduce the concepts of
truth evaluations used to interpret the meaning of atomic propositions at the passing of
time. A temporal truth evaluation is a function tte : N → {f, t} that maps each natural
number to a Boolean value. Moreover, a propositional truth evaluation is a partial function
pte : AP ⇀ TTE mapping every atomic proposition in its domain to a temporal truth
evaluation. The sets TTE , N→ {f, t} and PTE , AP ⇀ TTE contain, respectively, all
temporal and propositional truth evaluations.

At this point, we have the tool to define the interpretation of QPTL formulas. For
a propositional truth evaluation pte with free(ϕ) ⊆ dom(pte) and a number k, we write
pte, k |= ϕ to indicate that the formula ϕ holds at the k-th position of the pte.

Definition 1.2.2 (QPTL Semantics) For all QPTL formulas ϕ, propositional truth evalu-
ation pte ∈ PTE with free(ϕ) ⊆ dom(pte), and numbers k ∈ N, the modeling relation
pte, k |= ϕ is inductively defined as follows.

1. pte, k |= p iff pte(p)(k) = t, with p ∈ AP.

2. For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) pte, k |= ¬ϕ iff not pte, k |= ϕ, that is pte, k 6|= ϕ;

(b) pte, k |= ϕ1 ∧ ϕ2 iff pte, k |= ϕ1 and pte, k |= ϕ2;

(c) pte, k |= ϕ1 ∨ ϕ2 iff pte, k |= ϕ1 or pte, k |= ϕ2;

(d) pte, k |= Xϕ iff pte, k + 1 |= ϕ;

(e) pte, k |= Fϕ iff there is an index i ∈ N with k ≤ i such that pte, i |= ϕ;

(f) pte, k |= Gϕ iff, for all indexes i ∈ N with k ≤ i, it holds that pte, i |= ϕ.

3. For an atomic proposition q ∈ AP and a formula ϕ, it holds that:

(a) pte, k |= ∃q.ϕ iff there exists a temporal truth evaluation tte ∈ TTE such that
pteq 7→tte, k |= ϕ;

(b) pte, k |= ∀q.ϕ iff for all temporal truth evaluations tte ∈ TTE it holds that
pteq 7→tte, k |= ϕ.

Obviously, a QPTL sentence ϕ is satisfiable if ∅, 0 |= ϕ. Observe that the described
semantics is slightly different but completely equivalent to that proposed and used in [SVW87]
to prove the non-elementary hardness result for the satisfiability problem.

1.2.2 Non-elementary lower-bound
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Figure 1.8: The CGS GRdc.

We can show how the solution of QPTL satisfiability problem
can be reduced to that of the model-checking problem for SL,
over a constant size CGS with a unique atomic proposition.

In order to do this, we first prove the following auxiliary
lemma, which actually represents the main step of the above mentioned reduction.

Lemma 1.2.1 (QPTL Reduction) There is a one-agent CGS GRdc such that, for each
QPTL[k-ALT] sentence ϕ, with k ∈ N, there exists an SL variable-closed formula ϕ such
that ϕ is satisfiable iff GRdc, χ, s |= ϕ, for all complete assignments χ ∈ Asg(Ag, s).

Proof. Consider the one-agent CGS GRdc , 〈{p}, {α}, {f, t}, {s, s}, L, tr, s〉 depicted
in Figure 1.8, where the two actions are the Boolean values false and true and where the
labeling and transition functions L and tr are set as follows: L(s) , ∅, L(s) , {p},
and tr(s, dc) = s iff dc(α) = f, for all s ∈ St and dc ∈ Dc. Moreover, consider the
transformation function · : QPTL → SL inductively defined as follows:

• q , (α, xq)Xp, for q ∈ AP;

• ∃q.ϕ , 〈〈xq〉〉ϕ;

• ∀q.ϕ , [[xq]]ϕ;

• Opϕ , Opϕ, where Op ∈ {¬, X, F, G};

• ϕ1Opϕ2 , ϕ1Opϕ2, where Op ∈ {∧,∨}.

It is not hard to see that a QPTL formula ϕ is a sentence iff ϕ is variable-closed. Furthermore,
we have that alt(ϕ) = alt(ϕ).

At this point, it remains to prove that, a QPTL sentence ϕ is satisfiable iff GRdc, χ, s |= ϕ,
for all total assignments χ ∈ Asg({α}, s). To do this by induction on the structure of ϕ, we
actually show a stronger result asserting that, for all subformulas ψ ∈ sub(ϕ), propositional
truth evaluations pte ∈ PTE, and i ∈ N, it holds that pte, i |= ψ iff GRdc, (χ, s)i |=
ψ, for each total assignment χ ∈ Asg({α} ∪ {xq ∈ Vr : q ∈ free(ψ)}, s) such that
χ(xq)((π)≤n) = pte(q)(n), where π , play(χ, s), for all q ∈ free(ψ) and n ∈ [i, ω[.

Here, we only show the base case of atomic propositions and the two inductive cases
regarding the proposition quantifiers. The remaining cases of Boolean connectives and
temporal operators are straightforward and left to the reader as a simple exercise.

• ψ = q.

By Item 1 of Definition 1.2.2 on the preceding page of QPTL semantics, we have
that pte, i |= q iff pte(q)(i) = t. Thus, due to the above constraint on the assignment,
it follows that pte, i |= q iff χ(xq)((π)≤i) = t. Now, by applying Items 4 and 5a of
Definition 1.1.6 on page 10 of SL semantics, we have that GRdc, (χ, s)i |= (α, xq)Xp

iff GRdc, (χ′[α 7→ χ′(xq)], s
′)1 |= p, where (χ′, s′) = (χ, s)

i. At this point, due to the
particular structure of the CGS GRdc, we have that GRdc, (χ′[α 7→ χ′(xq)], s

′)1 |= p

iff (π′)1 = s, where π′ , play(χ′[α 7→ χ′(xq)], s
′), which in turn is equivalent to

χ′(xq)((π
′)≤0) = t. So, GRdc, (χ, s)i |= (α, xq)Xp iff χ′(xq)((π′)≤0) = t. Now,
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by observing that (π′)≤0 = (π)i and using the above definition of χ′, we obtain that
χ′(xq)((π

′)≤0) = χ(xq)((π)≤i). Hence, pte, i |= q iff pte(q)(i) = χ(xq)((π)≤i) =

t = χ′(xq)((π
′)≤0) iff GRdc, (χ, s)i |= (α, xq)Xp.

• ψ = ∃q.ψ′.
[Only if]. If pte, i |= ∃q.ψ′, by Item 3a of Definition 1.2.2 on page 16, there exists

a temporal truth evaluation tte ∈ TTE such that pteq 7→tte, i |= ψ′. Now, consider a
strategy f ∈ Str(s) such that f((π)≤n) = tte(n), for all n ∈ [i, ω[. Then, it is evident
that χxq 7→f(xq′)((π)≤n) = pteq 7→tte(q

′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[. So, by
the inductive hypothesis, it follows that GRdc, (χxq 7→f , s)

i |= ψ′. Thus, we have that
GRdc, (χ, s)i |= 〈〈xq〉〉ψ′.

[If]. If GRdc, (χ, s)i |= 〈〈xq〉〉ψ′, there exists a strategy f ∈ Str(s) such that
GRdc, (χxq 7→f , s)

i |= ψ′. Now, consider a temporal truth evaluation tte ∈ TTE such
that tte(n) = f((π)≤n), for all n ∈ [i, ω[. Then, it is evident that χxq 7→f(xq′)((π)≤n) =

pteq 7→tte(q
′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[. So, by the inductive hypothesis,

it follows that pteq 7→tte, i |= ψ′. Thus, by Item 3a of Definition 1.2.2 on page 16, we
have that pte, i |= ∃q.ψ′.

• ψ = ∀q.ψ′.
[Only if]. For each strategy f ∈ Str(s), consider a temporal truth evaluation

tte ∈ TTE such that tte(n) = f((π)≤n), for all n ∈ [i, ω[. It is evident that
χxq 7→f(xq′)((π)≤n) = pteq 7→tte(q

′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[. Now,
since pte, i |= ∀q.ψ′, by Item 3b of Definition 1.2.2 on page 16, it follows that
pteq 7→tte, i |= ψ′. So, by the inductive hypothesis, for each strategy f ∈ Str(s), it
holds that GRdc, (χxq 7→f , s)

i |= ψ′. Thus, we have that GRdc, (χ, s)i |= [[xq]]ψ′.

[If]. For each temporal truth evaluation tte ∈ TTE, consider a strategy f ∈ Str(s)

such that f((π)≤n) = tte(n), for all n ∈ [i, ω[. It is evident that χxq 7→f(xq′)((π)≤n) =

pteq 7→tte(q
′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[. Now, since GRdc, (χ, s)i |=

[[xq]]ψ′, it follows that GRdc, (χxq 7→f , s)
i |= ψ′. So, by the inductive hypothesis, for

each temporal truth evaluation tte ∈ TTE, it holds that pteq 7→tte, i |= ψ′. Thus, by
Item 3b of Definition 1.2.2 on page 16, we have that pte, i |= ∀q.ψ′.

Thus, we are done with the proof. �
Now, we can show the full reduction that allows us to state the existence of a non-

elementary lower-bound for the model-checking problem of SL.

Theorem 1.2.1 (SL Model-Checking Hardness) The model-checking problem for
SL[k-ALT] is k-EXPSPACE-HARD.

Proof. Let ϕ be a QPTL[k-ALT] sentence, ϕ the related SL[k-ALT] variable-closed formula,
and GRdc the CGS of Lemma 1.2.1 on the previous page of QPTL reduction. Then, by
applying the previous mentioned lemma, it is easy to see that ϕ is satisfiable iff GRdc |=
[[x]](α, x)ϕ iff GRdc |= 〈〈x〉〉(α, x)ϕ. Thus, the satisfiability problem for QPTL can be
reduced to the model-checking problem for SL. Now, since the satisfiability problem for
QPTL[k-ALT] is k-EXPSPACE-HARD [SVW87], we have that the model-checking problem
for SL[k-ALT] is k-EXPSPACE-HARD as well. �
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1.3 Satisfiability

In Section 1.2 it has been shown that the model-checking for SL is NONELEMENTARY-HARD.
Here, we prove that the satisfiability problem is even harder, i.e., undecidable. To do this,
we first introduce a sentence that is satisfiable only on unbounded models. Then, by using
this result, we prove the undecidability result through a reduction of the classic domino
problem [Wan61].

1.3.1 Unbounded models

We now show that SL does not enjoy the bounded-tree model property. Informally, a modal
logic satisfies the bounded-tree model property if, whenever a formula is satisfiable, it is so
on a model in which all states have the number of successors bounded by an a priori fixed
constant. Clearly, if a logic invariant under unwinding enjoys the finite model property, it
enjoys the bounded-tree model property as well. The other direction may not hold, instead.
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Figure 1.9: The CGS G? model
of ϕord.

To prove this result for SL, we introduce, in the fol-
lowing definition, the sentence ϕord to be used as a coun-
terexample.

Definition 1.3.1 (Ordering Sentence) Let x1 < x2 ,
〈〈y〉〉 ϕ(x1, x2, y) be an agent-closed formula, named
partial order, on the sets AP = {p} and Ag =

{α, β}, where ϕ(x1, x2, y) , ((α, x1)(β, y)(Xp)) ∧
((α, x2)(β, y)(X¬p)). Then, the ordering sentence ϕord ,
ϕunb ∧ ϕtrn is the conjunction of the following two sentences, called unboundedness and
transitivity strategy requirements:

1. ϕunb , [[x1]]〈〈x2〉〉 x1 < x2;

2. ϕtrn , [[x1]][[x2]][[x3]] (x1 < x2 ∧ x2 < x3)→ x1 < x3.

Intuitively, ϕunb asserts that, for each strategy in x1, there is a different strategy in x2 that
is in relation of < w.r.t. the first one, i.e., < has no upper bound, due to the fact that, by the
definition of ϕ(x1, x2, y), it is not reflexive. Moreover, ϕtrn ensures that the relation < is
transitive too. Consequently, ϕord induces a strict partial pre-order on the strategies.

Obviously, in order to be useful, the sentence ϕord needs to be satisfiable, as reported in
the following lemma.

Lemma 1.3.1 (Ordering Satisfiability) The sentence ϕord is satisfiable.

Proof. To prove that ϕord is satisfiable, consider the unbounded CGS G?, where (i) AP , {p},
(ii) Ag , {α, β}, (iii) AcG? , N, (iv) StG? , {s0, s1, s2}, (v) s0G? = s0, (vi) LG?(s0) =

LG?(s2) , ∅ and LG?(s1) , {p}, and (vii) trG? is such that if δ ∈ P , {δ ∈ DcG? :

δ(α) ≤ δ(β)} then trG?(s0, δ) = s1 else trG?(s0, δ) = s2, and trG?(s, δ) = s, for all
s ∈ {s1, s2} and δ ∈ DcG? (see Figure 1.9).
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Now, it is easy to see that G? |= ϕunb, since for every strategy fx for x1, consisting
of picking a natural number n = fx(s0) as an action at the initial state, we can reply
with a strategy fx for x2 having fx(s0) > n and a strategy fy for y having fy(s0) = n.
Formally, we have that G?, χ, s0 |= ϕ(x1, x2, y) iff χ(x1)(s0) ≤ χ(y)(s0) < χ(x2)(s0), for
all assignments χ ∈ AsgG?({x1, x2, y}, s0).

By a similar reasoning, we can see that G? |= ϕtrn. Indeed, consider three strategies fx ,
fx , and fx for the variables x1, x2, and x3, respectively, which correspond to picking three
natural numbers n1 = fx(s0), n2 = fx(s0), and n3 = fx(s0). Now, if G?, χ, s0 |= x1 < x2

and G?, χ, s0 |= x2 < x3, for an assignments χ∈AsgG?({x1, x2, x3}, s0) where χ(x1) = fx ,
χ(x2) = fx , and χ(x3) = fx , we have that n1 < n2 and n2 < n3. Consequently,
n1 < n3. Hence, by using a strategy fy for y with fy(s0) = fx(s0), we have G?, χy 7→fy , s0 |=
ϕ(x1, x3, y) and thus G?, χ, s0 |= x1 < x3. �

Next lemmas report two important properties of the sentence ϕord, for the negative
statements we want to show. Namely, they state that, in order to be satisfied, ϕord must
require the existence of strict partial order relations on strategies and actions that do not admit
any maximal element. From this, as stated in Theorem 1.3.1 on the next page, we directly
derive that ϕord needs an infinite chain of actions to be satisfied, i.e., it cannot have a bounded
model.

Lemma 1.3.2 (Strategy Order) Let G be a model of ϕord. Moreover, let r< ⊆ StrG(s0G)×
StrG(s0G) be a relation between s0G-total strategies of G such that r<(f1, f2) holds iff
G,∅[x1 7→ f1][x2 7→ f2], s0G |= x1 < x2, for all strategies f1, f2 ∈ StrG(s0G). Then, r<

is a strict partial order without maximal element.

Proof. The proof derives from the fact that r< satisfies the following properties:

1. Irreflexivity: ∀f ∈ StrG(s0G). ¬r<(f, f);

2. Unboundedness: ∀f1 ∈ StrG(s0G) ∃f2 ∈ StrG(s0G). r<(f1, f2);

3. Transitivity: ∀f1, f2, f ∈ StrG(s0G). (r<(f1, f2) ∧ r<(f2, f))→ r<(f1, f).

Indeed, Items (ii) and (iii) are directly derived from the strategy unboundedness and transitivity
requirements. The proof of Item (i) derives, instead, from the following reasoning. By
contradiction, suppose that r< is not a strict order, i.e., there is a strategy f ∈ StrG(s0G) for
which r<(f, f) holds. This means that, at the initial state s0G of G, there exists an assignment
χ ∈ AsgG({x1, x2, y}, s0G) for which G, χ, s0G |= ϕ(x1, x2, y), where χ(x1) = χ(x2) = f.
The last fact implies the existence of a successor of s0G in which both p and ¬p hold, which
is clearly impossible. �

Lemma 1.3.3 (Action Order) Let G be a model of ϕord. Moreover, let s< ⊆ AcG×AcG be a
relation between actions of G such that s<(c1, c2) holds iff, for all strategies f1, f2 ∈ StrG(s0G)

with c1 = f1(s0G) and c2 = f2(s0G), it holds that r<(f1, f2), where c1, c2 ∈ AcG . Then, s<

is a strict partial order without maximal element.
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Proof. The irreflexivity and transitivity of s< are directly derived from the fact that, by
Lemma 1.3.2 on the facing page, r< is irreflexive and transitive too. The proof of the
unboundedness property derives, instead, from the following reasoning. As first thing,
observe that, since the formula x1 < x2 relies on Xp and X¬p as the only temporal operators,
it holds that r<(f1, f2) implies r<(f ′1, f

′
2), for all strategies f1, f2, f

′
1, f
′
2 ∈ StrG(s0G) such that

f1(s0G) = f ′1(s0G) and f2(s0G) = f ′2(s0G). Now, suppose by contradiction that s< does not
satisfy the unboundedness property, i.e., there is an action c ∈ AcG such that, for all actions
c′ ∈ AcG , it results that s<(c, c′) does not hold. Then, by the definition of s< and the previous
observation, we derive the existence of a strategy f ∈ StrG(s0G) with f(s0G) = c such that
r<(f, f ′) does not hold, for any strategy f ′ ∈ StrG(s0G), which is clearly impossible. �

Now, we have all tools to prove that SL lacks of the bounded-tree model property, which
hold, instead, for several commonly used multi-agent logics, such as ATL?.

Theorem 1.3.1 (SL Unbounded Model Property) SL does not enjoy the bounded model
property.

Proof. To prove the statement, we show that the sentence ϕord of Definition 1.3.1 on
page 19 cannot be satisfied on a bounded CGS. Consider a CGS G such that G |= ϕord. The
existence of such a model is ensured by Lemma 1.3.1 on page 19. Now, consider the strict
partial order without maximal element between actions s< described in Lemma 1.3.3 on the
preceding page. By a classical result on first order logic model theory [EF95], the relation s<

cannot be defined on a finite set. Hence, |Ac| =∞.
�

1.3.2 Undecidable satisfiability

We finally show the undecidability of the satisfiability problem for SL through a reduction
from the recurrent domino problem.

The domino problem, proposed for the first time by Wang [Wan61], consists of placing a
given number of tile types on an infinite grid, satisfying a predetermined set of constraints on
adjacent tiles. One of its standard versions asks for a compatible tiling of the whole plane
N× N. The recurrent domino problem further requires the existence of a distinguished tile
type that occurs infinitely often in the first row of the grid. This problem was proved to be
highly undecidable by Harel, and in particular, Σ1

1-COMPLETE [Har84]. The formal definition
follows.

Definition 1.3.2 (Recurrent Domino System) An N×N recurrent domino system D =〈D,
H ,V , t0〉 consists of a finite non-empty set D of domino types, two horizontal and vertical
matching relations H ,V ⊆ D × D, and a distinguished tile type t0 ∈ D. The recurrent
domino problem asks for an admissible tiling of N × N, which is a solution mapping ∂ :

N × N → D such that, for all x, y ∈ N, it holds that (i) (∂(x, y), ∂(x + 1, y)) ∈ H , (ii)
(∂(x, y), ∂(x, y + 1)) ∈ V , and (iii) |{x ∈ N : ∂(x, 0) = t0}| = ω.
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Grid specification Consider the sentence ϕgrd ,
∧
a∈Ag ϕ

ord
a , where ϕorda = ϕunba ∧ ϕtrna

are the order sentences and ϕunba and ϕtrna are the unboundedness and transitivity strategy
requirements for agents α and β defined, similarly to Definition 1.3.1 on page 19, as follows:

1. ϕunba , [[z1]]〈〈z2〉〉 z1 <a z2;

2. ϕtrna , [[z1]][[z2]][[z3]] (z1 <a z2 ∧ z2 <a z3)→ z1 <a z3;

where x1 <α x2 , 〈〈y〉〉ϕα(x1, x2, y) and y1 <β y2 , 〈〈x〉〉ϕβ(y1, y2, x) are the two
partial order formulas on strategies of α and β, respectively, with ϕα(x1, x2, y) , (β, y)((α,

x1)(Xp)∧(α, x2)(X¬p)) and ϕβ(y1, y2, x) , (α, x)((β, y1)(X¬p)∧(β, y2)(Xp)). Intuitively,
<α and <β correspond to the horizontal and vertical ordering of the positions in the grid,
respectively.

It is easy to show that ϕgrd is satisfiable, by using the same candidate model G? (see
Figure 1.9 on page 19)and a proof argument similar to that proposed in Lemma 1.3.1 on
page 19 for the simpler order sentence.

Lemma 1.3.4 (Grid Ordering Satisfiability) The sentence ϕgrd is satisfiable.

Proof. Let G? be the model described in Lemma 1.3.1 on page 19. On one hand, by using the
same lemma, it is evident that G? |= ϕordα . On the other hand, in order to prove that G? |= ϕordβ ,
first observe that G?, χ, s0G? |= ϕβ(y1, y2, x) iff χ(y1)(s0G?) < χ(x)(s0G?) ≤ χ(y2)(s0G?),
for all assignments χ ∈ AsgG?({y1, y2, x}, s0G?). At this point, the thesis follows by a
reasoning similar to the one proposed in the lemma. �

Consider now a model G of ϕgrd and, for all agents a ∈ Ag, the relation r<a ⊆
StrG(s0G) × StrG(s0G) between s0G-total strategies defined as follows: r<a (f1, f2) holds
iff G,∅[z1 7→ f1][z2 7→ f2], s0G |= z1 <a z2, for all strategies f1, f2 ∈ StrG(s0G). By using a
proof similar to that of Lemma 1.3.2 on page 20, it is possible to see that r<a is a strict partial
order without maximal element on StrG(s0G).

Now, to apply the desired reduction, we need to transform r<a into a total order over
strategies, by using the following two lemmas.

Lemma 1.3.5 (Strategy Equivalence) Let r≡a ⊆ StrG(s0G) × StrG(s0G), with a ∈ Ag, be
the relation between strategies such that r≡a (f1, f2) holds iff neither r<a (f1, f2) nor r<a (f2, f1)

holds, for all f1, f2 ∈ StrG(s0G). Then r≡a is an equivalence relation.

Proof. It is immediate to see that the relation r≡a is reflexive, since r<a is not reflexive. More-
over, it is symmetric by definition. Finally, due to the definition of the partial order formula
<a, it is also transitive and, thus, r≡a is an equivalence relation. Indeed, if both r≡α (f1, f2)

and r≡α (f2, f3) hold, we have that either G, χ, s0G |= (β, y)((α, x1)(Xp) ∧ (α, x2)(Xp)) or
G, χ, s0G |= (β, y)((α, x1)(X¬p) ∧ (α, x2)(X¬p)) and either G, χ, s0G |= (β, y)((α, x2)

(Xp) ∧ (α, x3)(Xp)) or G, χ, s0G |= (β, y)((α, x2)(X¬p) ∧ (α, x3)(X¬p)), for all assign-
ments χ ∈ Asg(G, {x1, x2, x3, y}, s0G) such that χ(x1) = f1, χ(x2) = f2, and χ(x3) = f3.
Hence, we also have that either G, χ, s0G |= (β, y)((α, x1)(Xp)∧(α, x3)(Xp)) or G, χ, s0G |=
(β, y)((α, x1)(X¬p)∧(α, x3)(X¬p)). Thus, r≡α (f1, f3) holds, too. The same reasoning applies
to r≡β . �

Let Str≡a , (StrG(s0G)/r≡a ) be the quotient set of StrG(s0G) w.r.t. r≡a , for a ∈ Ag, i.e.,
the set of the related equivalence classes over s0G-total strategies. Then, the following holds.
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Lemma 1.3.6 (Strategy Total Order) Let s<a ⊆ Str≡a × Str≡a , with a ∈ Ag, be the relation
between classes of strategies such that s<a (F1,F2) holds iff r<a (f1, f2) holds, for all f1 ∈ F1,
f2 ∈ F2, and F1,F2 ∈ Str≡a . Then s<a is a strict total order with minimal element but no
maximal element.

Proof. The fact that s<a is a strict partial order without maximal element derives directly
from the same property of r<a . Indeed, due to the definition of the partial order formula <a,
if r≡a (f ′, f ′′) and r<a (f ′, f) (resp., r<a (f, f ′)) hold, we obtain that r<a (f ′′, f) (resp., r<a (f, f ′′))
holds too. Hence, if there are f1 ∈ F1 and f2 ∈ F2 such that r<a (f1, f2) holds, we directly
obtain that s<a (F1,F2) holds as well, for all F1,F2 ∈ Str≡a and a ∈ Ag.

Moreover, s<a is total, since r≡a is an equivalence relation that cluster together all strategies
of the agent a that are not in relation w.r.t. either r<a or its inverse (r<a )−1. Indeed, suppose by
contradiction that there are two different classes F1,F2 ∈ Str≡a such that neither s<a (F1,F2)

nor s<a (F2,F1) holds. This means that, for all f1 ∈ F1 and f2 ∈ F2, neither r<a (f1, f2) nor
r<a (f2, f1) holds and, so, r≡a (f1, f2). But, this contradicts the fact that F1 and F2 are different
equivalences classes.

Finally, it is important to note that in Str≡a there is also a minimal element w.r.t. s<a .
Indeed, for a strategy f ∈ StrG(s0G) for α (resp., for β) that forces the play to reach only
nodes labeled with p (resp., ¬p) as successor of s0G , independently from the strategy of β
(resp., α), the relation r<α (f ′, f) (resp., r<β (f ′, f)) cannot hold, for any f ′ ∈ StrG(s0G). �

By a classical result on first-order model theory [EF95], the relation s<a cannot be defined
on a finite set. Hence, |Str≡a | = ω, for all a ∈ Ag. Now, let s≺a ⊆ Str≡a × Str≡a be the
successor relation on Str≡a compatible with the strict total order s<a , i.e., such that s≺a (F1,F2)

holds iff (i) s<a (F1,F2) holds and (ii) there is no F3 ∈ Str≡a for which both s<a (F1,F3) and
s<a (F3,F2) hold, for all F1,F2 ∈ Str≡a . Then, we can represent the two sets of classes Str≡α
and Str≡β , respectively, as the infinite ordered lists {Fα0 ,Fα1 , . . .} and {Fβ0 ,F

β
1 , . . .} such that

s≺a (Fai ,F
a
i+1) holds, for all indexes i ∈ N. Note that Fa0 is the class of minimal strategies w.r.t

the relation s<a .
At this point, we have all the machinery to build an embedding of the plane N× N into a

model G of ϕgrd. Formally, we consider the bijective map ℵ : N× N→ Str≡α × Str≡β such
that ℵ(i, j) = (Fαi ,F

β
j ), for all i, j ∈ N.

Compatible tiling Given the grid structure built on the model G of ϕgrd through the
bijective map ℵ, we can express that a tiling of the grid is admissible by making use of the
formula z1 ≺a z2 , z1 <a z2 ∧ ¬〈〈z3〉〉 z1 <a z3 ∧ z3 <a z2 corresponding to the successor
relation s≺a , for all a ∈ Ag. Indeed, it is not hard to see that G, χ, s0G |= z1 ≺a z2 iff χ(z1) ∈
Fai and χ(z2) ∈ Fai+1, for all indexes i ∈ N and assignments χ ∈ AsgG({z1, z2}, s0G). The
idea here is to associate with each domino type t ∈ D a corresponding atomic proposition
t ∈ AP and to express the horizontal and vertical matching conditions via suitable object
labeling. In particular, we can express that the tiling is locally compatible, the horizontal
neighborhoods of a tile satisfy the H or V requirements, respectively. All these constraints
can be formulated through the following three agent-closed formulas:

1. ϕt,loc(x, y) , (α, x)(β, y)(X(t ∧
∧t′ 6=t
t′∈D ¬t

′));
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2. ϕt,hor(x, y) ,
∨

(t,t′)∈H [[x′]](x ≺α x′ → (α, x′)(β, y)(Xt′));

3. ϕt,ver(x, y) ,
∨

(t,t′)∈V [[y′]](y ≺β y′ → (α, x)(β, y′)(Xt′)).

Informally, we have the following: ϕt,loc(x, y) asserts that t is the only domino type labeling
the successors of the root of the model G that can be reached using the strategies related to
the variables x and y; ϕt,hor(x, y) asserts that the tile t′ labeling the successors of the root
reachable through the strategies x′ and y is compatible with t w.r.t. the horizontal requirement
H , for all strategies x′ that immediately follow that related to x w.r.t. the order r<α ; ϕt,ver(x, y)

asserts that the tile t′ labeling the successors of the root reachable through the strategies x and
y′ is compatible with t w.r.t. the vertical requirement V , for all strategies y′ that immediately
follow that related to y w.r.t. the order r<β .

Finally, to express that the whole grid has an admissible tiling, we use the sentence
ϕtil , [[x]][[y]]

∨
t∈D ϕ

t,loc(x, y) ∧ ϕt,hor(x, y) ∧ ϕt,ver(x, y) that asserts the existence of a
domino type t satisfying the three conditions mentioned above, for every point identified by
the strategies x and y.

Recurrent tile As last task, we impose that the grid embedded into G has the distinguished
domino type t0 occurring infinitely often in its first row. To do this, we describe two
formulas that determine if a row or a column is the first one w.r.t. the orders s<α and s<β ,
respectively. Formally, we use 0a(z) , ¬〈〈z′〉〉 z′ <a z, for a ∈ Ag. One can easily prove
that G, χ, s0G |= 0α(z) iff χ(z) ∈ Fa0, for all assignments χ ∈ AsgG({z}, s0G). Now,
the infinite occurrence requirement on t0 can be expressed with the following sentence:
ϕrec , [[x]][[y]](0β(y) ∧ (0α(x) ∨ (α, x)(β, y)(Xt0)))→ 〈〈x′〉〉 x <α x′ ∧ (α, x′)(β, y)(Xt0).
Informally, ϕrec asserts that, when we are on the first row identified by the variable y and at a
column pointed by x such that it is the first column or the node of the “intersection” between
x and y is labeled by t0, we have that there exists a greater column identified by x′ such that
its “intersection” with y is labeled by t0 as well.
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Figure 1.10: Part of the CGS G∂? model
ofϕdom, where ∂(0, 0) = t, ∂(0, 1) =

t, ∂(1, 0) = t, and ∂(1, 1) = t.

Construction correctness At this point, we have
all tools to formally prove the correctness of the un-
decidability reduction, by showing the equivalence
between the satisfiability of the sentence ϕdom and
finding a solution of the recurrent tiling problem.

Theorem 1.3.2 (Satisfiability) The satisfiability
problem for SL is highly undecidable. In partic-
ular, it is Σ1

1-HARD.

Proof. For the direct reduction, assume that there
exists a solution mapping ∂ : N × N → D for the
given recurrent domino system D. Then, we can
build a finite CGS G?∂ similar to the one used in
Lemma 1.3.1 on page 19, which satisfies the sentence ϕdom:



(i) AcG?∂ , N;

(ii) there are 2 · |D|+1 different states StG?∂ , {s0}∪ ({p,¬p}×D) such that LG?∂ (s0) , ∅,
LG?∂ ((p, t)) , {p, t}, and LG?∂ ((¬p, t)) , {t}, for all t ∈ D;

(iii) each state (z, t) ∈ {p,¬p}×D has only self loops trG?∂ ((z, t), δ) , (z, t) and the initial
state s0G?∂ , s0 is connected to (z, t) through the decision δ, i.e., trG?∂ (s0, δ) , (z, t),
iff

(a) t = ∂(δ(α), δ(β)) and

(b) z = p iff δ(α) ≤ δ(β), for all δ ∈ DcG?∂ .

By a simple case analysis on the subformulas of ϕdom, it is possible to see that G?∂ |= ϕdom.
Conversely, let G be a model of the sentence ϕdom and ℵ : N × N → Str≡α × Str≡β the

related bijective map built for the grid specification task. As first thing, we have to prove the
existence of a coloring function ð : Str≡α × Str≡β → D such that, for all pairs of classes of
strategies (Fα,Fβ) ∈ Str≡α ×Str≡β and assignments χ ∈ AsgG({α, β}, s0G) with χ(α) ∈ Fα

and χ(β) ∈ Fβ , it holds that G, χ, s0G |= Xð(Fα,Fβ). Then, it remains to note that the
solution mapping ∂ = ð ◦ ℵ built as a composition of the bijective map ℵ and the coloring
function ð is an admissible tiling of the plane N× N.

Due to the ϕt,loc formula in the sentence ϕtil, we have that, for all assignments χ ∈
AsgG({α, β}, s0G), there exists just one domino type t ∈ D satisfying the property G, χ,
s0G |= Xt. Let ð̂ :StrG(s0G)×StrG(s0G)→ D be the function that returns such a type, for all
pairs of strategies of α and β, i.e., such that G, χ, s0G |= Xð̂(χ(α), χ(β)), for all assignments
χ ∈ AsgG({α, β}, s0G). Now, it is not hard to see that, due to the formulas ϕt,hor and ϕt,ver

in the sentence ϕtil, it holds (i) (ð̂(fα, fβ), ð̂(f ′α, fβ)) ∈ H and (ii) (ð̂(fα, fβ), ð̂(fα, f
′
β)) ∈ V ,

for all fα ∈ Fαi , f ′α ∈ Fαi+1, fβ ∈ Fβj , f ′β ∈ Fj+
β , and i, j ∈ N. Moreover, the guess of

the tile type t′ adjacent to t is uniform w.r.t. the choice of the successor strategy. Indeed,
the disjunctions

∨
(t,t′)∈H and

∨
(t,t′)∈V precede the universal quantifications [[x′]] and [[y′]]

in the formulas ϕt,hor and ϕt,ver, respectively. Thus, we have that, for all f ′α, f
′′
α ∈ Fαi and

f ′β, f
′′
β ∈ Fβj with i, j ∈ N and i + j > 0, it holds that ð̂(f ′α, f

′
β) = ð̂(f ′′α, f

′′
β). Note that this

fact is not necessarily true for strategies belonging to the minimal classes Fα0 and Fβ0 , since
the sentence ϕdom does not contain a relative requirement. However, every domino type
ð̂(fα, fβ), with fα ∈ Fα0 and fβ ∈ Fβ0 , can be used to label the origin of the plane N × N in
order to obtain an admissible tiling. So, we can consider a function ð, defined as follows: (i)
ð(Fα0 ,F

β
0 ) ∈ {ð̂(fα, fβ) : fα ∈ Fα0 ∧ fβ ∈ Fβ0}; (ii) ð(Fαi ,F

β
j ) = ð̂(fα, fβ), for all fα ∈ Fαi ,

fβ ∈ Fβj , and i, j ∈ N with i+ j > 0.

Clearly, (i) (ð(Fαi ,F
β
j ),ð(Fαi+1,F

β
j )) ∈ H , (ii) (ð(Fαi ,F

β
j ),ð(Fαi ,Fj+

β)) ∈ V , and

(iii) |{i : ð(Fαi ,F
β
0 ) = t0}| = ω, for all i, j ∈ N. So, ∂ = ð ◦ ℵ is an admissible tiling. �



CHAPTER 2

Strategy Logic Fragments

Since model checking for SL is non-elementary hard and satisfiability is even undecidable,
while the same problems for ATL? are only 2EXPTIME-COMPLETE, a question that arises
naturally is whether there are proper fragments of SL of practical interest strictly subsuming
ATL? yet still having the same elementary complexities.

In this chapter, we answer positively to this question and go even further. More precisely,
we reveal a fundamental property that, if satisfied, allows to retain a 2EXPTIME-COMPLETE

model-checking problem. This is the property of behavioral quantification. Standard quan-
tification over strategies introduces a somewhat unintuitive interpretation in the semantics of
games, since it instantiates full strategies, which includes also future actions, whereas players
see only actions played in the past. In more details, quantification of the form ∀∃ means that
the existentially quantified strategy is chosen in response to the universally quantified strategy,
which prescribes actions in response to histories that may never arise in the actual game. On
the other hand, in classic games player reacts only to current and past actions of other players,
so the response of the existentially quantified strategy to a given history should depend only
on the response of the universally quantified strategy to this history. To formally introduce
the concept of behavioral quantification, we use the notion of Skolem dependence function
as a machinery (see also [Kol85] for more on this subject). Furthermore, we show how the
behavioral property can be used to apply a 2EXPTIME procedure to solve the model-checking
problem. Finally, we prove the bounded model property, which is fundamental to provide a
decidable procedure for the satisfiability problem.

The chapter is organized as follows. In Section 2.1, we describe three syntactic fragments
of SL, named SL[NG], SL[BG], and SL[1G], having the peculiarity to use strategy quantifi-
cations grouped in atomic blocks. Then, in Section 2.2, we define the notion of Skolem
dependence function, which is used, to introduce the concept of behavioral and then the prove
a fundamental result, which is at the base of our elementary model-checking procedure for
SL[1G]. In Section 2.3, we provide an automata-based 2EXPTIME procedure to solve the
model-checking problem for SL[1G]. Finally, in Section 2.4 we first prove the bounded-tree
model property for SL[1G] and then, by means of this, we provide a 2EXPTIME procedure
for the satisfiability problem of this fragment.

2.1 Syntax

In order to formalize the syntactic fragments of SL we want to investigate, we first need to
define the concepts of quantification and binding prefixes. A quantification prefix over a set
V ⊆ Vr of variables is a finite word ℘ ∈ {〈〈x〉〉, [[x]] : x ∈ V}|V| of length |V| such that each



variable x ∈ V occurs just once in ℘, i.e., there is exactly one index i ∈ [0, |V|[ such that
(℘)i ∈ {〈〈x〉〉, [[x]]}.

A binding prefix over a set of variables V ⊆ Vr is a finite word [ ∈ {(a, x) : a ∈ Ag∧x ∈
V}|Ag| of length |Ag| such that each agent a ∈ Ag occurs just once in [, i.e., there is exactly
one index i ∈ [0, |Ag|[ for which ([)i ∈ {(a, x) : x ∈ V}.

Finally, Qnt(V) ⊆ {〈〈x〉〉, [[x]] : x ∈ V}|V| and Bnd(V) ⊆ {(a, x) : a ∈ Ag ∧ x ∈
V}|Ag| denote, respectively, the sets of all quantification and binding prefixes over variables
in V.

We now have all tools to define the syntactic fragments we want to analyze, which
we name Nested-Goal, Boolean-Goal, and One-Goal Strategy Logic, respectively (SL[NG],
SL[BG], and SL[1G], for short). For a goal we mean an SL agent-closed formula of the kind
[ϕ, with Ag ⊆ free(ϕ), being [ ∈ Bn(Vr) a binding prefix. The idea behind SL[NG] is that,
when there is a quantification over a variable used in a goal, we are forced to quantify over
all free variables of the inner subformula containing the goal itself, by using a quantification
prefix. In this way, the subformula is build only by nesting and Boolean combinations of goals.
In addition, with SL[BG] we avoid nested goals sharing the variables of a same quantification
prefix, but allow their Boolean combinations. Finally, SL[1G] forces the use of a different
quantification prefix for each single goal in the formula. The formal syntax of SL[NG], SL[BG],
and SL[1G] follows.

Definition 2.1.1 (SL[NG], SL[BG], and SL[1G] Syntax) SL[NG] formulas are built induc-
tively from the sets of atomic propositions AP, quantification prefixes Qnt(V) for any
V ⊆ Vr, and binding prefixes Bnd(Vr), by using the following grammar, with p ∈ AP,
℘ ∈ ∪V⊆VrQnt(V), and [ ∈ Bnd(Vr):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | ℘ϕ | [ϕ,

where in the formation rule ℘ϕ it is ensured that ϕ is agent-closed and ℘ ∈ Qnt(free(ϕ)).
In addition, SL[BG] formulas are determined by splitting the above syntactic class in two
different parts, of which the second is dedicated to build the Boolean combinations of goals
avoiding their nesting:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | ℘ψ,
ψ ::= [ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where in the formation rule ℘ψ it is ensured that ℘ ∈ Qnt(free(ψ)).
Finally, the simpler SL[1G] formulas are obtained by forcing each goal to be coupled with a
quantification prefix:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | ℘[ϕ,

where in the formation rule ℘[ϕ it is ensured that ℘ ∈ Qnt(free([ϕ)).
SL ⊃ SL[NG] ⊃ SL[BG] ⊃ SL[1G] denotes the syntactic chain of infinite sets of formulas
generated by the respective grammars with the associated constraints on free variables of
goals.



Intuitively, in SL[NG], SL[BG], and SL[1G], we force the writing of formulas to use atomic
blocks of quantifications and bindings, where the related free variables are strictly coupled
with those that are effectively quantified in the prefix just before the binding. In a nutshell,
we can only write formulas by using sentences of the form ℘ψ belonging to a kind of prenex
normal form in which the quantifications contained into the matrix ψ only belong to the
prefixes ℘′ of some inner subsentence ℘′ψ′ ∈ snt(℘ψ).

We want to remark that the nesting of goals in SL formulas is much more expressive
than the nesting of quantification in ATL?. Indeed, in ATL?, we can make only a nesting
of quantifications that are in some sense complete w.r.t. players, which implies, at every
nesting, a total replacement of the strategy profile for all players. This is due to the fact that
the quantifier operator over a set of agents A in ATL? includes implicitly the quantification
of strategies for agents not in A, i.e., each quantifier ranges over the whole set of agents, and
the binding is immediately applied to the agents. Instead, in the case of SL, the quantification
is referred to a single strategy and the binding with an agent can be postponed. This power of
nesting allows to embed very expressive logics such as QPTL, as it is shown in Section 1.2.1

An SL[NG] sentence φ is principal if it is of the form φ = ℘ψ, where ψ is agent-closed
and ℘ ∈ Qnt(free(ψ)). By psnt(ϕ) ⊆ snt(ϕ) we denote the set of all principal subsentences
of the formula ϕ.

To start to practice with the above fragments, consider again the sentence ϕ of Exam-
ple 1.1.11 on page 12. It is easy to see that it actually belongs to SL[BG, 2-AG, 3-VAR, 2-ALT],
and so, to SL[NG], but not to SL[1G], since it is of the form ℘([Xp ∧ [Xq), where the
quantification prefix is ℘ = 〈〈x〉〉[[y]]〈〈z〉〉 and the binding prefixes of the two goals are
[ = (α, x)(β, y) and [ = (α, y)(β, z).

Along the paper, sometimes we assert that a given formula ϕ belongs to an SL syntactic
fragment also if its syntax does not precisely correspond to what is described by the relative
grammar. We do this in order to make easier the reading and interpretation of the formula ϕ
itself and only in the case that it is simple to translate it into an equivalent formula that effec-
tively belongs to the intended logic, by means of a simple generalization of classic rules used
to put a formula of first order logic in the prenex normal form. For example, consider the sen-
tence ϕNE of Example 1.1.6 on page 6 representing the existence of a Nash equilibrium. This
formula is considered to belong to SL[BG, n-AG, 2n-VAR, FVS, 1-ALT], since it can be easily
translated in the form φNE = ℘

∧n
i=1 [iψi → [ψi, where ℘ = 〈〈x〉〉 · · · 〈〈xn〉〉[[y]] · · · [[yn]],

[ = (α1, x) · · · (αn, xn), [i = (α1, x) · · · (αi−1, xi−)(αi, yi)(αi+1, xi+) · · · (αn, xn),
and free(ψi) = Ag. As another example, consider the sentence ϕSP of Example 1.1.7
on page 7 representing the existence of a stability profile. Also this formula is con-
sidered to belong to SL[BG, n-AG, 2n-VAR, FVS, 1-ALT], since it is equivalent to φSP =

℘
∧n
i,j=1,i 6=j [ψj → (([ψi ↔ [iψi) → [iψj). Furthermore, it is immediate to see that,

Example 1.1.15 on page 13, the formulas ϕ1 and ϕ2 are in SL[1G, 4-AG, 4-VAR, FVS, 1-ALT],
while ϕ3 is in SL[1G, 4-AG, 4-VAR, FVS, 2-ALT] Note that both φNE and φSP are principal
sentences.

Now, it is interesting to observe that CTL? and ATL? are exactly equivalent to
SL[1G, FVS, 0-ALT] and SL[1G, FVS, 1-ALT], respectively. Moreover, GL [AHK02] is the
very simple fragment of SL[BG, FVS, 1-ALT] that forces all goals in a formula to have a
common part containing all variables quantified before the unique possible alternation of



the quantification prefix. Finally, we have that CHP-SL is the SL[BG, 2-AG, FVS] fragment
interpreted over turn-based CGS.

From now on, we refer to CTL?, ATL?, and CHP-SL formulas by denoting them with
their translation in SL.

Remark 2.1.1 (SL[NG] Model-Checking Hardness) It is well-known that the non-
elementary hardness result for the satisfiability problem of QPTL [SVW87] already holds
for formulas in prenex normal form. Now, it is not hard to see that the transformation de-
scribed in Lemma 1.2.1 on page 17 of QPTL reduction puts QPTL[k-ALT] sentences ϕ in
prenex normal form into SL[NG, 1-AG, k-ALT] variable-closed formulas ϕ = ℘ψ. Moreover,
the derived SL[1-AG, k-ALT] sentence 〈〈x〉〉(α, x)℘ψ used in Theorem 1.2.1 on page 18 of
SL model-checking hardness is equivalent to the SL[NG, 1-AG, k-ALT] principal sentence
〈〈x〉〉℘(α, x)ψ, since x is not used in the quantification prefix ℘. Thus, the hardness result for
the model-checking problem holds for SL[NG, 1-AG, k-ALT] as well. However, it is important
to observe that, unfortunately, it is not know if such an hardness result holds for SL[BG] and,
in particular, for CHP-SL.

Remark 2.1.2 (SL[BG] Satisfiability) In Section 1.3.2 on page 21, we prove the undecidabil-
ity of the satisfiability problem for SL. Now, it is not hard to see that the formula ϕdom used to
reduce the domino problem in Theorem 1.3.2 on page 24 actually lies in the SL[BG] fragment.
Hence, the satisfiability for this logic is undecidable too. On the other hand, later in the thesis,
we prove that the same problem for SL[1G] is 2EXPTIME-COMPLETE, thus not harder than
the one for ATL?.

Differently from SL[1G], in fragments like SL[BG] we are able to associate different
strategies with the same agent. This feature allows to represent game properties such as
Nash Equilibria, Equilibrium Profiles, and the like. This syntactic flexibility, however, is not
the feature that forces these fragments to have non-elementary complexities for the model-
checking problem. Indeed, as it has been recently pointed out in [MMS13], the same problem
for some of the SL fragments preserving this feature is 2EXPTIME-COMPLETE. Thus, the
non-elementary hardness in the model-checking problem for SL[NG] is due to the ability to
nest the binding of strategies by means of temporal operators. A deeper study of these aspects
is out of the scope of this paper.

At this point, we prove that ATL? is strictly less expressive than SL[1G] and, consequently,
than SL[BG] and SL[NG]. To do this, we show the existence of two structures that result to be
equivalent only w.r.t. sentences having alternation number bounded by 1. It can be interesting
to note that, we use an ad-hoc technique based on a brute-force check to verify that all ATL?

formulas cannot distinguish between the two structures. A possible future line of research
is to study variants of the Ehrenfeucht-Fraı̈ssé game [EF95, Hod93] for SL, which would
allow to determine in a more direct way whether two structures are equivalent or not w.r.t. a
particular SL fragment.

Theorem 2.1.1 (SL[1G] vs ATL? Expressiveness) There exists an SL[1G] sentence having
no ATL? equivalent sentence.
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Figure 2.1: Alternation-2 non-equivalent CGS s.
Proof. Consider the two CGS s G , 〈{p}, {α, β, γ}, {0, 1}, {s, s, s}, L, tr, s〉 and
G ,〈{p}, {α, β, γ}, {0, 1, 2}, {s, s, s}, L, tr, s〉 depicted in Figure 2.1, where L(s) =

L(s) , ∅, L(s) , {p}, D , {00∗, 11∗}, and D , {00∗, 11∗, 12∗, 200, 202, 211}.
Moreover, consider the SL[1G] sentence ϕ∗ , ℘∗[∗Xp, where ℘∗ , [[x]]〈〈y〉〉[[z]] and
[∗ , (α, x)(β, y)(γ, z). Then, it is easy to see that G |= ϕ∗ but G 6|= ϕ∗. Indeed,
G, χ, s |= [∗Xp, for all χ ∈ AsgG({x, y, z}, s) such that χ(y)(s) = χ(x)(s),
and G, χ, s |= [∗X¬p, for all χ ∈ AsgG({x, y, z}, s) such that χ(x)(s) = 2 and
χ(z)(s) = (χ(y)(s) + 1) mod 3.

Now, due to the particular structure of the CGS s Gi under exam, with i ∈ {1, 2}, for each
path π ∈ PthGi(s), we have that either L((π)j) = {p} or L((π)j) = ∅, for all j ∈ [1, ω[,
i.e., apart from the initial state, the path is completely labeled either with {p} or with ∅. Thus,
it is easy to see that, for each ATL? formula ℘[ψ, there is a literal lψ ∈ {p,¬p} such that
Gi |= ℘[ψ iff Gi |= ℘[Xlψ, for all i ∈ {1, 2}. W.l.o.g., we can suppose that [ = [∗, since we
are always able to uniformly rename the variables of the quantification and binding prefixes
without changing the meaning of the sentence.

At this point, it is easy to see that there exists an index k ∈ {1, 2, 3} for which it holds that
either ℘k[∗Xlψ ⇒ ℘[∗Xlψ or ℘[∗Xlψ ⇒ ℘[∗Xlψ, where ℘ , [[x]][[z]]〈〈y〉〉, ℘ , 〈〈x〉〉〈〈y〉〉[[z]],
and ℘ , [[y]][[z]]〈〈x〉〉. Thus, to prove that every ATL? formula cannot distinguish between G
and G, we can simply show that the sentences ℘k[∗Xl, with k ∈ {1, 2, 3} and l ∈ {p,¬p}, do
the same. In fact, it holds that Gi |= ℘k[

∗Xl, for all i ∈ {1, 2}, k ∈ {1, 2, 3}, and l ∈ {p,¬p}.
Hence, the thesis holds. The check of the latter fact is trivial and left to the reader as an
exercise. �

2.2 Behavioral property

2.2.1 Skolem Dependence Functions

We now introduce the concept of Skolem dependence function (Sdf, for short) of a quantifica-
tion and show how any quantification prefix contained into an SL formula can be represented
by an adequate choice of a Skolem dependence function over strategies. The main idea
here is inspired by what Skolem proposed for the first order logic in order to eliminate all
existential quantifications over variables, by substituting them with second order existential
quantifications over functions, whose choice is uniform w.r.t. the universal variables.

First, we introduce some notation regarding quantification prefixes. Let ℘ ∈ Qnt(V)

be a quantification prefix over a set V(℘) , V ⊆ Vr of variables. By 〈〈℘〉〉 , {x ∈ V(℘)

: ∃i ∈ [0, |℘|[. (℘)i = 〈〈x〉〉} and [[℘]] , V(℘) \ 〈〈℘〉〉 we denote the sets of existential



and universal variables quantified in ℘, respectively. For two variables x, y ∈ V(℘), we
say that x precedes y in ℘, in symbols x<℘y, if x occurs before y in ℘, i.e., there are two
indexes i, j ∈ [0, |℘|[, with i < j, such that (℘)i ∈ {〈〈x〉〉, [[x]]} and (℘)j ∈ {〈〈y〉〉, [[y]]}.
Moreover, we say that y is functional dependent on x, in symbols x ℘y, if x ∈ [[℘]],
y ∈ 〈〈℘〉〉, and x<℘y, i.e., y is existentially quantified after that x is universally quan-
tified, so, there may be a dependence between a value chosen by x and that chosen by
y. This definition induces the set Dep(℘) , {(x, y) ∈ V(℘) × V(℘) : x ℘y} of de-
pendence pairs and its derived version Dep(℘, y) , {x ∈ V(℘) : x ℘y} containing
all variables from which y depends. Finally, we use ℘ ∈ Qnt(V(℘)) to indicate the
quantification derived from ℘ by dualizing each quantifier contained in it, i.e., for all in-
dexes i ∈ [0, |℘|[, it holds that (℘)i = 〈〈x〉〉 iff (℘)i = [[x]], with x ∈ V(℘). It is ev-
ident that 〈〈℘〉〉 = [[℘]] and [[℘]] = 〈〈℘〉〉. As an example, let ℘ = [[x]]〈〈y〉〉〈〈z〉〉[[w]]〈〈v〉〉.
Then, we have 〈〈℘〉〉 = {y, z, v}, [[℘]] = {x, w}, Dep(℘, x) = Dep(℘, w) = ∅,
Dep(℘, y) = Dep(℘, z) = {x}, Dep(℘, v) = {x, w}, and ℘ = 〈〈x〉〉[[y]][[z]]〈〈w〉〉[[v]].

Finally, we define the notion of valuation of variables over a generic set D, called domain,
i.e., a partial function v : Vr ⇀ D mapping every variable in its domain to an element in
D. By ValD(V) , V → D we denote the set of all valuation functions over D defined on
V ⊆ Vr.

At this point, we give a general high-level semantics for the quantification prefixes by
means of the following main definition of Skolem dependence function.

Definition 2.2.1 (Skolem Dependence Function) Let ℘ ∈ Qnt(V) be a quantification pre-
fix over a set V ⊆ Vr of variables, and D a set. Then, a Skolem dependence function for ℘
over D is a function θ : ValD([[℘]])→ ValD(V) satisfying the following properties:

1. θ(v)
�[[℘]] = v, for all v ∈ ValD([[℘]]); 1

2. θ(v)(x) = θ(v)(x), for all v, v ∈ ValD([[℘]]) and x ∈ 〈〈℘〉〉 such that v�Dep(℘,x) =

v�Dep(℘,x).

SDFD(℘) denotes the set of all Skolem dependence functions for ℘ over D.

Intuitively, Item 1 asserts that θ takes the same values of its argument w.r.t. the universal
variables in ℘ and Item 2 ensures that the value of θ w.r.t. an existential variable x in ℘
does not depend on variables not in Dep(℘, x). To get a better insight into this definition, a
Skolem dependence function θ for ℘ can be considered as a set of classical Skolem functions
that, given a value for each variable in V(℘) that is universally quantified in ℘, returns a
possible value for all the existential variables in ℘, in a way that is consistent w.r.t. the order
of quantifications. Observe that, each θ ∈ SDFD(℘) is injective, so, |rng(θ)| = |dom(θ)| =
|D||[[℘]]|. Moreover, |SDFD(℘)| =

∏
x∈〈〈℘〉〉 |D|

|D||Dep(℘,x)|
. As an example, let D = {0, 1}

and ℘ = [[x]]〈〈y〉〉[[z]] ∈ Qnt(V) be a quantification prefix over V = {x, y, z}. Then, we
have that |SDFD(℘)| = 4 and |SDFD(℘)| = 8. Moreover, the Skolem dependence functions
θi ∈ SDFD(℘) with i ∈ [0, 3] and θi ∈ SDFD(℘) with i ∈ [0, 7], for a particular fixed
order, are such that θ(v)(y) = 0, θ(v)(y) = v(x), θ(v)(y) = 1− v(x), and θ(v)(y) = 1,

1By g�Z : (X ∩ Z)→ Y we denote the restriction of a function g : X→ Y to the elements in the set Z.



for all v ∈ ValD([[℘]]), and θi(v)(x) = 0 with i ∈ [0, 3], θi(v)(x) = 1 with i ∈ [4, 7],
θ(v)(z) = θ(v)(z) = 0, θ(v)(z) = θ(v)(z) = v(y), θ(v)(z) = θ(v)(z) = 1 − v(y),
and θ(v)(z) = θ(v)(z) = 1, for all v ∈ ValD([[℘]]).

We now prove the following fundamental theorem that describes how to eliminate the
strategy quantifications of an SL formula via a choice of a suitable Skolem dependence
function over strategies. This procedure can be seen as the equivalent of Skolemization in first
order logic (see [Hod93], for more details).

Theorem 2.2.1 (SL Strategy Quantification) Let G be a CGS and ϕ = ℘ψ an SL formula,
being ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ free(ψ) ∩ Vr of variables. Then,
for all assignments χ ∈ Asg(free(ϕ), s), the following holds: G, χ, s |= ϕ iff there exists
a Skolem dependence function θ ∈ SDFStr(s)(℘) such that G, χ d θ(χ′), s |= ψ, for all
χ′ ∈ Asg([[℘]], s). 2

Proof. The proof proceeds by induction on the length of the quantification prefix ℘. For
the base case |℘| = 0, the thesis immediately follows, since [[℘]] = ∅ and, consequently,
both SDFStr(s)(℘) and Asg([[℘]], s) contain the empty function only (we are assuming, by
convention, that ∅(∅) , ∅).

We now prove, separately, the two directions of the inductive case.
[Only if]. Suppose that G, χ, s |= ϕ, where ℘ = Qn · ℘′. Then, two possible cases arise:

either Qn = 〈〈x〉〉 or Qn = [[x]].

• Qn = 〈〈x〉〉.
By Item 3a of Definition 1.1.6 on page 10 of SL semantics, there is a strategy f ∈
Str(s) such that G, χx7→f , s |= ℘′ψ. Note that [[℘]] = [[℘′]]. By the inductive
hypothesis, we have that there exists a Skolem dependence function θ ∈ SDFStr(s)(℘

′)

such that G, χx 7→f d θ(χ′), s |= ψ, for all χ′ ∈ Asg([[℘′]], s). Now, consider the
function θ′ : Asg([[℘]], s) → Asg(V, s) defined by θ′(χ′) , θ(χ′)[x 7→ f], for all
χ′ ∈ Asg([[℘]], s). It is easy to check that θ′ is a Skolem dependence function for
℘ over Str(s), i.e., θ′ ∈ SDFStr(s)(℘). Moreover, χx 7→f d θ(χ′) = χ d θ(χ′)[x 7→
f] = χ d θ′(χ′), for χ′ ∈ Asg([[℘]], s). Hence, G, χ d θ′(χ′), s |= ψ, for all
χ′ ∈ Asg([[℘]], s).

• Qn = [[x]].

By Item 3b of Definition 1.1.6 on page 10, we have that, for all strategies f ∈ Str(s), it
holds that G, χx7→f , s |= ℘′ψ. Note that [[℘]] = [[℘′]]∪{x}. By the inductive hypothesis,
we derive that, for each f ∈ Str(s), there exists a Skolem dependence function
θf ∈ SDFStr(s)(℘

′) such that G, χx 7→f d θf(χ′), s |= ψ, for all χ′ ∈ Asg([[℘′]], s).
Now, consider the function θ′ : Asg([[℘]], s) → Asg(V, s) defined by θ′(χ′) ,
θχ
′(x)(χ|′ �[[℘′]])[x 7→ χ′(x)], for all χ′ ∈ Asg([[℘]], s). It is evident that θ′ is a

Skolem dependence function for ℘ over Str(s), i.e., θ′ ∈ SDFStr(s)(℘). Moreover,
χx 7→f d θf(χ′) = χ d θf(χ′)[x 7→ f] = χ d θ′(χ′[x 7→ f]), for f ∈ Str(s) and
χ′ ∈ Asg([[℘′]], s). Hence, G, χ d θ′(χ′), s |= ψ, for all χ′ ∈ Asg([[℘]], s).

2By g d g : (X ∪ X)→ (Y ∪ Y) we denote the operation of union of two functions g : X → Y

and g : X → Y defined on disjoint domains, i.e., X ∩X = ∅.



[If]. Suppose that there exists a Skolem dependence function θ ∈ SDFStr(s)(℘) such
that G, χ d θ(χ′), s |= ψ, for all χ′ ∈ Asg([[℘]], s), where ℘ = Qn · ℘′. Then, two possible
cases arise: either Qn = 〈〈x〉〉 or Qn = [[x]].

• Qn = 〈〈x〉〉.
There is a strategy f ∈ Str(s) such that f = θ(χ′)(x), for all χ′ ∈ Asg([[℘]], s). Note
that [[℘]] = [[℘′]]. Consider the function θ′ : Asg([[℘′]], s)→ Asg(V\{x}, s) defined
by θ′(χ′) , θ(χ′)�(V\{x}), for all χ′ ∈ Asg([[℘′]], s). It is easy to check that θ′ is a
Skolem dependence function for ℘′ over Str(s), i.e., θ′ ∈ SDFStr(s)(℘

′). Moreover,
χ d θ(χ′) = χ d θ′(χ′)[x 7→ f] = χx 7→f d θ′(χ′), for χ′ ∈ Asg([[℘′]], s). Then, it is
evident that G, χx→f d θ′(χ′), s |= ψ, for all χ′ ∈ Asg([[℘′]], s). By the inductive
hypothesis, we derive that G, χx 7→f , s |= ℘′ψ, which means that G, χ, s |= ϕ, by
Item 3a of Definition 1.1.6 on page 10 of SL semantics.

• Qn = [[x]].

First note that [[℘]] = [[℘′]] ∪ {x}. Also, consider the functions θf|′ : Asg([[℘′]], s)→
Asg(V \ {x}, s) defined by θf|′(χ′) , θ(χ′[x 7→ f])�(V\{x}), for each f ∈ Str(s)

and χ′ ∈ Asg([[℘′]], s). It is easy to see that every θf|′ is a Skolem dependence
function for ℘′ over Str(s), i.e., θf|′ ∈ SDFStr(s)(℘

′). Moreover, χ d θ(χ′) =

χd θχ
′(x)|′(χ′

�[[℘′]]
)[x 7→ χ′(x)] = χx 7→χ

′(x) d θχ
′(x)|′(χ′

�[[℘′]]
), for χ′ ∈ Asg([[℘]], s).

Then, it is evident that G, χx→f d θf|′(χ′), s |= ψ, for all f ∈ Str(s) and χ′ ∈
Asg([[℘′]], s). By the inductive hypothesis, we derive that G, χx 7→f , s |= ℘′ψ, for all
f ∈ Str(s), which means that G, χ, s |= ϕ, by Item 3b of Definition 1.1.6 on page 10.

Thus, the thesis of the theorem holds. �
As an immediate consequence of the previous result, we derive the following corollary

that restricts to SL sentences.

Corollary 2.2.1 (SL Strategy Quantification) Let G be a CGS and ϕ = ℘ψ an SL sen-
tence, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then, G |= ϕ iff there exists a Skolem
dependence function θ ∈ SDFStr(s)(℘) such that G, θ(χ), s |= ψ, for all χ ∈ Asg([[℘]], s).

2.2.2 Behavioral quantifications

We now have all tools we need to introduce the property of behavioral for a particular class of
Skolem dependence functions. Intuitively, a Skolem dependence function over functions from
a set T to a set D is behavioral if it can be split into a set of Skolem dependence functions
over D, one for each element of T. This idea allows us to enormously simplify the reasoning
about strategy quantifications, since we can reduce them to a set of quantifications over
actions, one for each track in their domains. This means that, under certain conditions, we
can transform a Skolem dependence function θ ∈ SDFStr(s)(℘) over strategies in a function
θ̃ : Trk(s)→ SDFAc(℘) that associates with each track a Skolem dependence function over
actions.

To formally develop the above idea, we have first to introduce the generic concept of
adjoint function and state an auxiliary lemma.



Definition 2.2.2 (Adjoint Functions) Let D, T, U, and V be four sets, and m : (T →
D)U → (T→ D)V and m̃ : T→ (DU → DV) two functions. Then, m̃ is the adjoint of m if
m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all g ∈ (T→ D)U, x ∈ V, and t ∈ T 3

Intuitively, m̃ is the adjoint of m if the dependence from the set T in both domain and
codomain of the latter can be extracted and put as a common factor of the functor given by
the former. This means also that, for every pair of functions g, g ∈ (T → D)U such that
ĝ(t) = ĝ(t) for some t ∈ T, it holds that m(g)(x)(t) = m(g)(x)(t), for all x ∈ V. It
is immediate to observe that if a function has an adjoint then this adjoint is unique. At the
same way, if one has an adjoint function then it is possible to determine the original function
without any ambiguity. Thus, it is established a one-to-one correspondence between functions
admitting an adjoint and the adjoint itself.

Next lemma formally states the property briefly described above, i.e., that each Skolem
dependence function over a set T→ D, admitting an adjoint function, can be represented as a
function, with T as domain, which returns Skolem dependence functions over D as values.

Lemma 2.2.1 (Adjoint Skolem Dependence Functions) Let ℘ ∈ Qnt(V) be a quantifica-
tion prefix over a set V ⊆ Vr of variables, D and T two sets, and θ : ValT→D([[℘]]) →
ValT→D(V) and θ̃ : T→ (ValD([[℘]])→ ValD(V)) two functions such that θ̃ is the adjoint
of θ. Then, θ ∈ SDFT→D(℘) iff, for all t ∈ T, it holds that θ̃(t) ∈ SDFD(℘).

We now define the formal meaning of the behavioral of a Skolem dependence function
over functions.

Definition 2.2.3 (Behavioral Skolem Dependence Functions) Let ℘ ∈ Qnt(V) be a
quantification prefix over a set V ⊆ Vr of variables, D and T two sets,
and θ ∈ SDFT→D(℘) a Skolem dependence function for ℘ over T →
D. Then, θ is behavioral if it admits an adjoint function. BSDFT→D(℘)

denotes the set of all behavioral Skolem dependence functions for ℘ over T→ D.

It is important to observe that, unfortunately, there are Skolem dependence functions that are
not behavioral. To easily understand why this is actually the case, it is enough to count both
the number of Skolem dependence functions SDFT→D(℘) and those of adjoint functions
T→ SDFD(℘), where |D| > 1, |T| > 1, and ℘ is such that there is an x ∈ 〈〈℘〉〉 for which

Dep(℘, x) 6= ∅. Indeed, it holds that |SDFT→D(℘)| =
∏
x∈〈〈℘〉〉 |D|

|T|·|D||T|·|Dep(℘,x)|
>∏

x∈〈〈℘〉〉 |D|
|T|·|D||Dep(℘,x)|

= |T→ SDFD(℘)|. So, there are much more Skolem dependence
functions, a number double exponential in |T|, than possible adjoint functions, whose number
is only exponential in this value. Furthermore, observe that the simple set Qnt∃

∗∀∗(V) ,
{℘ ∈ Qnt(V) : ∃i ∈ [0, |℘|] . [[(℘)<i]] = ∅ ∧ 〈〈(℘)≥i〉〉 = ∅}, for V ⊆ Vr, is the maximal
class of quantification prefixes that admits only behavioral Skolem dependence functions over
T → D, i.e., it is such that each θ ∈ SDFT→D(℘) is behavioral, for all ℘ ∈ Qnt∃

∗∀∗(V).
This is due to the fact that there are no functional dependences between variables, i.e., for
each x ∈ 〈〈℘〉〉, it holds that Dep(℘, x) = ∅.

3By ĝ : Y → X→ Z we denote the operation of flipping of a function g : X→ Y → Z.



Finally, we introduce an important semantics for syntactic fragments of SL, which is
based on the concept of behavioral Skolem dependence function over strategies, and we refer
to the related satisfiability concept as behavioral satisfiability, in symbols |=B. Intuitively,
such a semantics has the peculiarity that a strategy used in an existential quantification, in
order to satisfy a formula, is only chosen between those that are behavioral w.r.t. the universal
quantifications. In this way, when we have to decide what is its value c on a given track ρ, we
do it only in dependence of the values on the same track of the strategies so far quantified, but
not on their whole structure, as it is the case for the classic semantics, instead. This means
that c does not depend on the values of the other strategies on tracks ρ′ that extend ρ, i.e., it
does not depend on future choices made on ρ′. In addition, we have that c does not depend on
values of parallel tracks ρ′ that only share a prefix with ρ, i.e., it is independent on choices
made on the possibly alternative futures ρ′. The behavioral semantics of SL[NG] formulas
involving atomic propositions, Boolean connectives, temporal operators, and agent bindings
is defined as for the classic one, where the modeling relation |= is substituted with |=B, and
we omit to report it here. In the following definition, we only describe the part concerning the
quantification prefixes.

Definition 2.2.4 (SL[NG] Behavioral Semantics) Let G be a CGS, s ∈ St one of its states,
and ℘ψ an SL[NG] formula, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then
G,∅, s |=B ℘ψ if there is a behavioral Skolem dependence function θ ∈ BSDFStr(s)(℘)

for ℘ over Str(s) such that G, θ(χ), s |=B ψ, for all χ ∈ Asg([[℘]], s).

It is immediate to see a strong similarity between the statement of Corollary 2.2.1 on page 33
of SL strategy quantification and the previous definition. The only crucial difference resides
in the choice of the kind of Skolem dependence function. Moreover, observe that, differently
from the classic semantics, the quantifications in the prefix are not treated individually but
as an atomic block. This is due to the necessity of having a strict correlation between the
point-wise structure of the quantified strategies.

Remark 2.2.1 (SL Behavioral Semantics) It can be interesting to know that we do not
define a behavioral semantics for the whole SL, since we are not able, at the moment, to
easily use the concept of behavioral Skolem dependence function, when the quantifications
are not necessarily grouped in prefixes, i.e., when the formula is not in prenex normal form.
In fact, this may represent a challenging problem, whose solution is left to future works.

Due to the new semantics of SL[NG], we have to redefine the related concepts of model
and satisfiability, in order to differentiate between the classic relation |= and the behavioral
one |=B. Indeed, as we show later, there are sentences that are satisfiable but not behavioral
satisfiable. We say that a CGS G is a behavioral model of an SL[NG] sentence ϕ, in symbols
G |=B ϕ, if G,∅, s |=B ϕ. In general, we also say that G is a behavioral model for ϕ on s ∈ St,
in symbols G, s |=B ϕ, if G,∅, s |=B ϕ. An SL[NG] sentence ϕ is behavioral satisfiable if
there is an behavioral model for it.

We have to modify the concepts of implication and equivalence, as well. Indeed, also
in this case we can have pairs of equivalent formulas that are not behavioral equivalent,
and vice versa. Thus, we have to be careful when we use natural transformation between



formulas, since it can be the case that they preserve the meaning only under the classic
semantics. An example of this problem can arise when one want to put a formula in pnf .
Given two SL[NG] formulas ϕ1 and ϕ2 with free(ϕ1) = free(ϕ2), we say that ϕ1 behaviorally
implies ϕ2, in symbols ϕ1 ⇒B ϕ2, if, for all CGS s G, states s ∈ St, and free(ϕ1)-defined
s-total assignments χ ∈ Asg(free(ϕ1), s), it holds that if G, χ, s |=B ϕ1 then G, χ, s |=B ϕ2.
Accordingly, we say that ϕ1 is behaviorally equivalent to ϕ2, in symbols ϕ1 ≡B ϕ2, if both
ϕ1 ⇒B ϕ2 and ϕ2 ⇒B ϕ1 hold.

2.2.3 Behavioral and non-behavioral semantics

Finally, we show that the introduced concept of behavioral satisfiability is relevant to the
context of our logic, as its applicability represents a demarcation line between “easy” and
“hard” fragments of SL. Moreover, we believe that it is because of this fundamental property
that several well-known temporal logics are so robustly decidable [Var96].

Remark 2.2.2 (SL[NG, 0-ALT] Behavioral) It is interesting to observe that, for every CGS
G and SL[NG, 0-ALT] sentence ϕ, it holds that G |= ϕ iff G |=B ϕ. This is an immediate
consequence of the fact that all quantification prefixes ℘ used in ϕ belong to Qnt∃

∗∀∗(V), for
a given set V ⊆ Vr of variables. Thus, as already mentioned, the related Skolem dependence
functions on strategies θ ∈ SDFStr(s)(℘) are necessarily behavioral.

By Corollary 2.2.1 on page 33 of SL strategy quantification, it is easy to see that the fol-
lowing coherence property about the behavioral of the SL[NG] satisfiability holds. Intuitively,
it asserts that every behaviorally satisfiable sentence in pnf is satisfiable too.

Theorem 2.2.2 (SL[NG] Behavioral Coherence) Let G be a CGS, s ∈ St one of its states,
ϕ an SL[NG] formula in pnf, and χ ∈ Asg(s) an s-total assignment with free(ϕ) ⊆ dom(χ).
Then, it holds that G, χ, s |=B ϕ implies G, χ, s |= ϕ.

Proof. The proof proceeds by induction on the structure of the formula. For the sake of
succinctness, we only show the crucial case of principal subsentences φ ∈ psnt(ϕ), i.e.,
when φ is of the form ℘ψ, where ℘ ∈ Qnt(free(ψ)) is a quantification prefix, and ψ is an
agent-closed formula.

Suppose that G,∅, s |=B ℘ψ. Then, by Definition 2.2.4 on the previous page of SL[NG]

behavioral semantics, there is a behavioral Skolem dependence function θ ∈ BSDFStr(s)(℘)

such that, for all assignments χ ∈ Asg([[℘]], s), it holds that G, θ(χ), s |=B ψ. Now, by the
inductive hypothesis, there is a Skolem dependence function θ ∈ SDFStr(s)(℘) such that, for
all assignments χ ∈ Asg([[℘]], s), it holds that G, θ(χ), s |= ψ. Hence, by Corollary 2.2.1 on
page 33 of SL strategy quantification, we have that G,∅, s |= ℘ψ. �

However, it is worth noting that the converse property may not hold, as we show in the
next theorem, i.e., there are sentences in pnf that are satisfiable but not behavioral satisfiable.
Note that the following results already holds for CHP-SL.

Theorem 2.2.3 (SL[BG] Non-Behavioral) There exists a satisfiable
SL[BG, 1-AG, 2-VAR, 1-ALT] sentence in pnf that is not behaviorally satisfiable.



Proof. Consider the SL[BG, 1-AG, 2-VAR, 1-ALT] sentence ϕ , ϕ1 ∧ ϕ2 in pnf where
ϕ1 , ℘(ψ1 ∧ ψ2), with ℘ , [[x]]〈〈y〉〉, ψ1 , (α, x)Xp↔ (α, y)X¬p, and ψ2 , (α, x)XXp↔
(α, y)XXp, and ϕ2 , [[x]](α, x)X((〈〈x〉〉(α, x)Xp) ∧ (〈〈x〉〉(α, x)X¬p)). Moreover, note that
the SL[1G, 1-AG, 1-VAR, 0-ALT] sentence ϕ2 is equivalent to the CTL formula AX((EXp) ∧
(EX¬p)). Then, it is easy to see that the turn-based CGS GRdc of Figure 1.8 on page 17
satisfies ϕ. Indeed, GRdc, θ(χ), s |= ψ1 ∧ ψ2, for all assignments χ ∈ Asg({x}, s),
where the non-behavioral Skolem dependence function θ ∈ SDFStr(s)(℘) is such that
θ(χ)(y)(s) = ¬χ(x)(s) and θ(χ)(y)(s · si) = χ(x)(s · s−i), for all i ∈ {0, 1}.

Now, let G be a generic CGS. If G 6|= ϕ, by Theorem 2.2.2 on the facing page of SL[NG]

behavioral coherence, it holds that G 6 |=B ϕ. Otherwise, we have that G |= ϕ and, in particular,
G |= ϕ1, which means that G |= ℘(ψ1 ∧ ψ2). At this point, to prove that G 6 |=B ϕ, we show
that, for all behavioral Skolem dependence functions θ ∈ BSDFStr(s)(℘), there exists an
assignment χ ∈ Asg({x}, s) such that G, θ(χ), s 6 |=B ψ1∧ψ2. To do this, let us fix a behav-
ioral Skolem dependence function θ and an assignment χ. Also, assume s , tr(s, ∅[α 7→
χ(x)(s)]) and s , tr(s, ∅[α 7→ θ(χ)(y)(s)]). Now, we distinguish between two cases.

• p ∈ L(s) iff p ∈ L(s). In this case, we can easily observe that G, θ(χ), s 6|= ψ1

and consequently, by Theorem 2.2.2 on the preceding page, it holds that G, θ(χ), s 6
|=B ψ1 ∧ ψ2. So, we are done.

• p ∈ L(s) iff p 6∈ L(s). If G, θ(χ), s 6|= ψ2 then, by Theorem 2.2.2 on the facing
page, it holds that G, θ(χ), s 6 |=B ψ1 ∧ ψ2. So, we are done. Otherwise, let s ,
tr(s, ∅[α 7→ χ(x)(s · s)]) and s , tr(s, ∅[α 7→ θ(χ)(y)(s · s)]). Then, it holds
that p ∈ L(s) iff p ∈ L(s). Now, consider a new assignment χ′ ∈ Asg({x}, s)
such that χ′(x)(s · s) = χ(x)(s · s) and p ∈ L(s

′) iff p 6∈ L(s), where s′ ,
tr(s, ∅[α 7→ χ′(x)(s · s)]). Observe that the existence of such an assignment, with
particular reference to the second condition, is ensured by the fact that G |= ϕ2. At
this point, due to the behavioral of the Skolem dependence function θ, we have that
θ(χ′)(y)(s · s) = θ(χ)(y)(s · s). Consequently, it holds that s = tr(s, ∅[α 7→
θ(χ′)(y)(s · s)]). Thus, G, θ(χ′), s 6|= ψ2, which implies, by Theorem 2.2.2 on the
preceding page, that G, θ(χ′), s 6 |=B ψ1 ∧ ψ2. So, we are done.

Thus, the thesis of the theorem holds. �
It is interesting to note that, at the moment, we do not know if such a result can be

extended to the simpler GL fragment.

Remark 2.2.3 (Kinds of Non-Behavioral) It is worth remarking that the kind of non-
behavioral of the sentence ϕ shown in the above theorem can be called essential, i.e., it
cannot be eliminated, due to the fact that ϕ is satisfiable but not behavioral satisfiable.
However, there are different sentences, such as the conjunct ϕ1 in ϕ, having both models
on which they are behaviorally satisfiable and models, like the CGS GRdc, on which they
are only non-behaviorally satisfiable. Such a kind of non-behavioral can be called non-
essential, since it can be eliminated by a suitable choice of the underlying model. Note that
a similar reasoning can be done for the dual concept of behavioral, which we call essential
if all models satisfying a given sentence behaviorally satisfy it as well.



Before continuing, we want to show the reason why we have redefined the concepts
of implication and equivalence in the context of behavioral semantics. Consider the
SL[BG, 1-AG, 2-VAR, 1-ALT] sentence ϕ1 used in Theorem 2.2.3 on page 36 of SL[BG] non-
behavioral result. It is not hard to see that it is equivalent to the SL[1G, 1-AG, 1-VAR, 0-ALT]

ϕ′ , (〈〈x〉〉(α, x)ψ1 ↔ 〈〈x〉〉(α, x)ψ2) ∧ (〈〈x〉〉(α, x)ψ3 ↔ 〈〈x〉〉(α, x)ψ4), where ψ1 ,
X(p ∧ Xp), ψ2 , X(¬p ∧ Xp), ψ3 , X(p ∧ X¬p), and ψ4 , X(¬p ∧ X¬p). Note that ϕ′ is in
turn equivalent to the CTL? formula (Eψ1 ↔ Eψ2) ∧ (Eψ3 ↔ Eψ4). However, ϕ1 and ϕ′ are
not behaviorally equivalent, since we have that GRdc 6 |=B ϕ1 but GRdc |=B ϕ

′, where GRdc is
the CGS of Figure 1.8 on page 17.

At this point, we can proceed with the proof of the behavioral satisfiability for SL[1G].
It is important to note that there is no gap, in our knowledge, between the logics that are
behaviorally satisfiable and those that are not, since the fragment SL[BG, 1-AG, 2-VAR, 1-ALT]

used in the previous theorem cannot be further reduced, due to the fact that otherwise it
collapses into SL[1G]. Before starting, we have to describe some notation regarding classic
two-player games on infinite words [PP04], which are used here as a technical tool. Note that
we introduce the names of scheme and match in place of the more usual strategy and play, in
order to avoid confusion between the concepts related to a CGS and those related to the tool.

A two-player arena (TPA, for short) is a tupleA ,〈Ne,No,Ed , n〉, where Ne and No are
non-empty non-intersecting sets of nodes for player even and odd, respectively, Ed , Ee∪Eo ,
with Ee ⊆ Ne ×No and Eo ⊆ No ×Ne, is the edge relation between nodes, and n ∈ No is
a designated initial node.

An even position in A is a finite non-empty sequence of nodes v ∈ Ne
+ such that

(v)0 = n and, for all i ∈ [0, |v| − 1[, there exists a node n ∈ No for which ((v)i, n) ∈ Ee

and (n, (v)i+1) ∈ Eo hold. In addition, an odd position inA is a finite non-empty sequence of
nodes v = v′·n ∈ Ne

+·No, with n ∈ No, such that v′ is an even position and (lst(v′), n) ∈ Ee .
By Pose and Poso we denote, respectively, the sets of even and odd positions.

An even (resp., odd) scheme in A is a function se : Pose → No (resp., so : Poso → Ne)
that maps each even (resp., odd) position to an odd (resp., even) node in a way that is
compatible with the edge relation Ee (resp., Eo), i.e., for all v ∈ Pose (resp., v ∈ Poso),
it holds that (lst(v), se(v)) ∈ Ee (resp., (lst(v), so(v)) ∈ Eo). By Sche (resp., Scho) we
indicate the sets of even (resp., odd) schemes.

A match in A is an infinite sequence of nodes $ ∈ Ne
ω such that ($)0 = n and, for all

i ∈ N, there exists a node n ∈ No such that (($)i, n) ∈ Ee and (n, ($)i+1) ∈ Eo . By Mtc

we denote the set of all matches. A match map mtc : Sche × Scho → Mtc is a function that,
given two schemes se ∈ Sche and so ∈ Scho, returns the unique match $ = mtc(se, so) such
that, for all i ∈ N, it holds that ($)i+1 = so(($)≤i · se(($)≤i)).

A two-player game (TPG, for short) is a tuple H , 〈A,Wn〉, where A is a TPA and
Wn ⊆ Mtc. On one hand, we say that player even wins H if there exists an even scheme
se ∈ Sche such that, for all odd schemes so ∈ Scho, it holds that mtc(se, so) ∈Wn. On the
other hand, we say that player odd winsH if there exists an odd scheme so ∈ Scho such that,
for all even schemes se ∈ Sche, it holds that mtc(se, so) 6∈Wn.

In the following, for a given binding prefix [ ∈ Bn(V) with V ⊆ Vr, we denote by
bnd[ : Ag→ V the function associating with each agent the related variable in [, i.e., for all
a ∈ Ag, there is i ∈ [0, |[|[ such that ([)i = (a, bnd[(a)).



As first step towards the proof of the behavioral of SL[1G], we have to give a construction
of a two-player game, based on an a priori chosen CGS, in which the players are explicitly
viewed one as a Skolem dependence function and the other as a valuation, both over actions.
This construction results to be a deep technical evolution of the proof method used for the
dualization of alternating automata on infinite objects [MS87].

Definition 2.2.5 (Dependence-vs-Valuation Game) Let G be a CGS, s ∈ St one of its
states, P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Vr

of variables, and [ ∈ Bn(V) a binding. Then, the dependence-vs-valuation game for G
in s over P w.r.t. ℘ and [ is the TPG H(G, s,P, ℘, [) , 〈A(G, s, ℘, [),P〉, where the TPA

A(G, s, ℘, [) ,〈St, St× SDFAc(℘),Ed , s〉 has the edge relations defined as follows:

• Ee , {(t, (t, θ)) : t ∈ St ∧ θ ∈ SDFAc(℘)};

• Eo , {((t, θ), tr(t, θ(v) ◦ bnd[)) : t ∈ St ∧ θ ∈ SDFAc(℘) ∧ v ∈ ValAc([[℘]])} 4.

In the next lemma we state a fundamental relationship between dependence-
vs-valuation games and their duals. Basically, we prove that if a player wins
the game then the opposite player can win the dual game, and vice versa.
This represents one of the two crucial steps in our behavioral proof.

Lemma 2.2.2 (Dependence-vs-Valuation Duality) Let G be a CGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Vr of variables,
and [ ∈ Bn(V) a binding. Then, player even wins the TPG H(G, s,P, ℘, [) iff player odd
wins the dual TPG H(G, s,Pth(s) \ P, ℘, [).

Now, we are going to give the definition of the important concept of encasement. Infor-
mally, an encasement is a particular subset of paths in a given CGS that “works to encase”
a behavioral Skolem dependence function on strategies, in the sense that it contains all
plays obtainable by complete assignments derived from the evaluation of the above men-
tioned Skolem dependence function. In our context, this concept is used to summarize all
relevant information needed to verify the behavioral satisfiability of a sentence.

Definition 2.2.6 (Encasement) Let G be a CGS, s ∈ St one of its states, P ⊆ Pth(s) a set
of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Vr of variables, and [ ∈ Bn(V)

a binding. Then, P is an encasement w.r.t. ℘ and [ if there exists a behavioral Skolem
dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it
holds that play(θ(χ) ◦ bnd[, s) ∈ P.

In the next lemma, we give the second of the two crucial steps in our behavioral proof.
In particular, we are able to show a one-to-one relationship between the winning in the
dependence-vs-valuation game of player even and the verification of the encasement property
of the associated winning set. Moreover, in the case that the latter is a Borelian set, by
using Martin’s Determinacy Theorem [Mar75], we obtain a complete characterization of the
winning concept by means of that of encasements.

4By g◦g : X→ Z we denote the operation of composition of two functions g : X→ Y and g : Y → Z

with Y ⊆ Y.



Lemma 2.2.3 (Encasement Characterization) Let G be a CGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Vr of variables,
and [ ∈ Bn(V) a binding. Then, the following hold:

(i) player even winsH(G, s,P, ℘, [) iff P is an encasement w.r.t. ℘ and [;

(ii) if player odd winsH(G, s,P, ℘, [) then P is not an encasement w.r.t. ℘ and [;

(iii) if P is a Borelian set and it is not an encasement w.r.t. ℘ and [ then player odd wins
H(G, s,P, ℘, [).

Finally, we have all technical tools useful to prove the behavioral of the satisfiability
for SL[1G]. Intuitively, we describe a bidirectional reduction of the problem of interest
to the verification of the winning in the dependence-vs-valuation game. The idea behind
this construction resides in the strong similarity between the statement of Corollary 2.2.1
on page 33 of SL strategy quantification and the definition of the winning condition in a
two-player game. Indeed, on one hand, we say that a sentence is satisfiable iff “there exists a
Skolem dependence function such that, for all all assignments, it holds that ...”. On the other
hand, we say that player even wins a game iff “there exists an even scheme such that, for all
odd schemes, it holds that ...”. In particular, for the SL[1G] fragment, we can resolve the gap
between these two formulations, by using the concept of behavioral quantification.

Theorem 2.2.4 (SL[1G] Behavioral) Let G be a CGS, ϕ an SL[1G] formula, s ∈ St a
state, and χ ∈ Asg(s) an s-total assignment with free(ϕ) ⊆ dom(χ). Then, it holds that
G, χ, s |= ϕ iff G, χ, s |=B ϕ.

Proof. The proof proceeds by induction on the structure of the formula. For the sake of
succinctness, we only show the most important inductive case of principal subsentences
φ ∈ psnt(ϕ), i.e., when φ is of the form ℘[ψ, where ℘ ∈ Qnt(V) and [ ∈ Bnd(V) are,
respectively, a quantification and binding prefix over a set V ⊆ Vr of variables, and ψ is a
variable-closed formula.

[If]. The proof of this direction is practically the same of the one used in Theorem 2.2.2
on page 36 of SL[NG] behavioral coherence. So, we omit to report it here.

[Only if]. Assume that G,∅, s |= ℘[ψ. Then, it is easy to see that, for all behavioral
Skolem dependence functions θ ∈ BSDFStr(s)(℘), there is an assignment χ ∈ Asg([[℘]], s)

such that G, θ(χ) ◦ bnd[, s |= ψ. Indeed, suppose by contradiction that there exists a
behavioral Skolem dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments
χ ∈ Asg([[℘]], s), it holds that G, θ(χ) ◦ bnd[, s 6|= ψ, i.e., G, θ(χ) ◦ bnd[, s |= ¬ψ, and so
G, θ(χ), s |= [¬ψ. Then, by Corollary 2.2.1 on page 33 of SL strategy quantification, we
have that G,∅, s |= ℘[¬ψ, i.e., G,∅, s |= ¬℘[ψ, and so G,∅, s 6|= ℘[ψ, which is impossible.

Now, let P , {play(χ, s) ∈ Pth(s) : χ ∈ Asg(Ag, s) ∧ G, χ, s 6|= ψ}. Then, it is
evident that, for all behavioral Skolem dependence functions θ ∈ BSDFStr(s)(℘), there is an
assignment χ ∈ Asg([[℘]], s) such that play(θ(χ) ◦ bnd[, s) 6∈ P.

At this point, by Definition 2.2.6 on the previous page of encasement, it is clear that P is not
an encasement w.r.t. ℘ and [. Moreover, since ψ describes a regular language, the derived set P

is Borelian [PP04]. Consequently, by Item iii of Lemma 2.2.3 of encasement characterization,



we have that player odd wins the TPG H(G, s,P, ℘, [). Thus, by Lemma 2.2.2 on page 39
of dependence-vs-valuation duality, player even wins the dual TPG H(G, s,Pth(s) \ P, ℘, [).
Hence, by Item i of Lemma 2.2.3 on the facing page, we have that Pth(s)\P is an encasement
w.r.t. ℘ and [. Finally, again by Definition 2.2.6 on page 39, there exists an behavioral Skolem
dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it
holds that play(θ(χ) ◦ bnd[, s) ∈ Pth(s) \ P.

Now, it is immediate to observe that Pth(s) \ P = {play(χ, s) ∈ Pth(s) : χ ∈
Asg(Ag, s) ∧ G, χ, s |= ψ}. So, by the inductive hypothesis, we have that Pth(s) \ P =

{play(χ, s) ∈ Pth(s) : χ ∈ Asg(Ag, s) ∧ G, χ, s |=B ψ}, from which we derive that there
exists a behavioral Skolem dependence function θ ∈ BSDFStr(s)(℘) such that, for all as-
signments χ ∈ Asg([[℘]], s), it holds that G, θ(χ) ◦ bnd[, s |=B ψ. Consequently, by Defini-
tion 2.2.4 on page 35 of SL[NG] behavioral semantics, we have that G,∅, s |=B ℘[ψ. �

As an immediate consequence of the previous theorem, we derive the following funda-
mental corollary, restricted to SL[1G] sentences.

Corollary 2.2.2 (SL[1G] Behavioral) Let G be a CGS and ϕ an SL[1G] sentence. Then,
G |= ϕ iff G |=B ϕ.

It is worth to observe that the behavioral property for SL[1G] is a crucial difference
w.r.t. SL[BG], which allows us to obtain a behavioral decision procedure for the related
model-checking problem, as described in the last part of the next section.

2.3 Model Checking

In this section, we study the model-checking problem for SL and show that, in general,
it is non-elementarily decidable, while, in the particular case of SL[1G] sentences, it is
just 2EXPTIME-COMPLETE, as for ATL?. For the algorithmic procedures, we follow an
automata-theoretic approach [KVW00], reducing the decision problem for the logics to the
emptiness problem of an automaton. In particular, we use a bottom-up technique through
which we recursively label each state of the CGS of interest by all principal subsentences
of the specification that are satisfied on it, starting from the innermost subsentences and
terminating with the sentence under exam. In this way, at a given step of the recursion, since
the satisfaction of all subsentences of the given principal sentence has already been determined,
we can assume that the matrix of the latter is only composed by Boolean combinations and
nesting of goals whose temporal part is simply LTL. The procedure we propose here extends
that used for ATL? in [AHK02] by means of a richer structure of the automata involved in.

The rest of this section is organized as follows. In Subsection 2.3.1, we recall the definition
of alternating parity tree automata. Then, in Subsection 2.3.2, we build an automaton accepting
a tree encoding of a CGS iff this satisfies the formula of interest, which is used to prove the
main result about SL and SL[NG] model checking. Finally, in Subsection 2.3.3, we refine the
previous result to obtain an elementary decision procedure for SL[1G].



2.3.1 Alternating tree automata

Nondeterministic tree automata are a generalization to infinite trees of the classical nondeter-
ministic word automata on infinite words (see [Tho90], for an introduction). Alternating tree
automata are a further generalization of nondeterministic tree automata [MS87]. Intuitively,
on visiting a node of the input tree, while the latter sends exactly one copy of itself to each of
the successors of the node, the former can send several own copies to the same successor. Here
we use, in particular, alternating parity tree automata, which are alternating tree automata
along with a parity acceptance condition (see [GTW02], for a survey).

We now give the formal definition of alternating tree automata.

Definition 2.3.1 (Alternating Tree Automata) An alternating tree automaton (ATA, for
short) is a tuple A , 〈Sm,∆,Q, δ, q0,ℵ〉, where Σ, Dir, and Q are, respectively, non-
empty finite sets of input symbols, directions, and states, q ∈ Q is an initial state, ℵ is an
acceptance condition to be defined later, and δ : Q × Σ → B+(Dir × Q) is an alternating
transition function that maps each pair of states and input symbols to a positive Boolean
combination on the set of propositions of the form (d, q) ∈ Dir×Q, a.k.a. moves.

On one side, a nondeterministic tree automaton (NTA, for short) is a special case of ATA

in which each conjunction in the transition function δ has exactly one move (d, q) associated
with each direction d. This means that, for all states q ∈ Q and symbols σ ∈ Σ, we have
that δ(q, σ) is equivalent to a Boolean formula of the form

∨
i

∧
d∈Dir(d, qi,d). On the other

side, a universal tree automaton (UTA, for short) is a special case of ATA in which all
the Boolean combinations that appear in δ are conjunctions of moves. Thus, we have that
δ(q, σ) =

∧
i(di, qi), for all states q ∈ Q and symbols σ ∈ Σ.

The semantics of the ATAs is given through the following concept of run.

Definition 2.3.2 (ATA Run) A run of an ATA A = 〈Sm,∆,Q, δ, q0,ℵ〉 on a Σ-labeled Dir-
tree T =〈T, v〉 is a (Dir×Q)-tree R such that, for all nodes x ∈ R, where x =

∏n
i=1(di, qi)

and y ,
∏n
i=1 di with n ∈ [0, ω[, it holds that (i) y ∈ T and (ii), there is a set of moves

S ⊆ Dir×Q with S |= δ(qn, v(y)) such that x · (d, q) ∈ R, for all (d, q) ∈ S.

In the following, we consider ATAs along with the parity acceptance condition (APT, for
short) ℵ , (F1, . . . ,Fk) ∈ (2Q)+ with F1 ⊆ . . . ⊆ Fk = Q (see [KVW00], for more). The
number k of sets in the tuple ℵ is called the index of the automaton. We also consider ATAs
with the co-Büchi acceptance condition (ACT, for short) that is the special parity condition
with index 2.

Let R be a run of an ATA A on a tree T and w one of its branches. Then, by inf(w) ,
{q ∈ Q : |{i ∈ N : ∃d ∈ Dir.(w)i = (d, q)}| = ω} we denote the set of states that occur
infinitely often as the second component of the letters along the branch w. Moreover, we say
that w satisfies the parity acceptance condition ℵ = (F1, . . . ,Fk) if the least index i ∈ [1, k]

for which inf(w) ∩ Fi 6= ∅ is even.
At this point, we can define the concept of language accepted by an ATA.

Definition 2.3.3 (ATA Acceptance) An ATA A = 〈Sm,∆,Q, δ, q0,ℵ〉 accepts a Σ-labeled
Dir-tree T iff is there exists a run R of A on T such that all its infinite branches satisfy the
acceptance condition ℵ.



By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by
A. Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide
whether L(A) = ∅.

We finally show a simple but useful result about the APT direction projection. To do
this, we first need to introduce an extra notation. Let f ∈ B(P) be a Boolean formula on a
set of propositions P. Then, by fp/q|p∈P′ we denote the formula in which all occurrences of
the propositions p ∈ P′ ⊆ P in f are replaced by the proposition q belonging to a possibly
different set.

Theorem 2.3.1 (APT Direction Projection) Let A ,〈Σ×Dir,Dir,Q, δ, q,ℵ〉 be an APT

over a set ofm directions with n states and index k. Moreover, let d ∈ Dir be a distinguished
direction. Then, there exists an NPT N d ,〈Σ,Dir,Q′, δ′, q

′
,ℵ′〉 with m · 2O(k·n·logn) states

and index O(k · n · log n) such that, for all Σ-labeled Dir-tree T , 〈T, v〉, it holds that
T ∈ L(N d) iff T ′ ∈ L(A), where T ′ is the (Σ × Dir)-labeled Dir-tree 〈T, v′〉 such that
v′(t) , (v(t), lst(d · t)), for all t ∈ T.

Proof. As first step, we use the well-known nondeterminization procedure for APTs [MS95]
in order to transform the APT A into an equivalent NPT N =〈Σ×Dir,Dir,Q′′, δ′′, q

′′
 ,ℵ′′〉

with 2O(k·n·logn) states and index k′ = O(k · n · log n). Then, we transform the latter into the
new NPT N d ,〈Σ,Dir,Q′, δ′, q

′
,ℵ′〉 with m · 2O(k·n·logn) states and same index k′, where

Q′ , Q′′×Dir, q
′
 , (q

′′
 , d), ℵ′ , (F×Dir, . . . ,Fk′×Dir) with ℵ′′ , (F, . . . ,Fk′), and

δ′((q, d), σ) , δ′′(q, (σ, d))[(d′, q′)/(d′, (q′, d′)) | (d′, q′) ∈ Dir × Q′′], for all (q, d) ∈ Q′

and σ ∈ Σ. Now, it easy to see that N d satisfies the declared statement. �

2.3.2 SL Model Checking

A first step towards our construction of an algorithmic procedure for the solution of
the SL model-checking problem is to define, for each possible formula ϕ, an alternat-
ing parity tree automaton AGϕ that recognizes a tree encoding T of a CGS G, contain-
ing the information on an assignment χ on the free variables/agents of ϕ, iff G is a
model of ϕ under χ. The high-level idea at the base of this construction is an evo-
lution and merging of those behind the translations of QPTL and LTL, respectively,
into nondeterministic [SVW87] and alternating [MSS88] Büchi automata.

To proceed with the formal description of the model-checking procedure, we have to
introduce a concept of encoding for the assignments of a CGS.

Definition 2.3.4 (Assignment-State Encoding) Let G be a CGS, s ∈ StG one of its states,
and χ ∈ AsgG(V, s) an assignment defined on the set V ⊆ Vr ∪Ag. Then, a (ValAcG (V)×
StG)-labeled StG-tree T ,〈T, u〉, where T , {ρ≥1 : ρ ∈ TrkG(s)}, is an assignment-state
encoding for χ if it holds that u(t) , (χ̂(s · t), lst(s · t)), for all t ∈ T.

Observe that there is a unique assignment-state encoding for each given assignment.
In the next lemma, we prove the existence of an APT for each CGS and SL formula that

is able to recognize all the assignment-state encodings of an a priori given assignment, made
the assumption that the formula is satisfied on the CGS under this assignment.



Lemma 2.3.1 (SL Formula Automaton) Let G be a CGS andϕ an SL formula. Then, there
exists an APT AGϕ , 〈ValAcG (free(ϕ))× StG ,StG ,Qϕ, δϕ, qϕ,ℵϕ〉 such that, for all states
s ∈ StG and assignments χ ∈ AsgG(free(ϕ), s), it holds that G, χ, s |= ϕ iff T ∈ L(AGϕ),
where T is the assignment-state encoding for χ.

Proof. The construction of the APT AGϕ is done recursively on the structure of the formula
ϕ, which w.l.o.g. is supposed to be in enf , by using a variation of the transformation, via
alternating tree automata, of the S1S and SkS logics into nondeterministic Büchi word and
tree automata recognizing all models of the formula of interest [Büc62, Rab69].

The detailed construction of AGϕ, by a case analysis on ϕ, follows.

• If ϕ ∈ AP, the automaton has to verify if the atomic proposition is locally satisfied
or not. To do this, we set AGϕ , 〈ValAcG (∅) × StG , StG , {ϕ}, δϕ, ϕ, ({ϕ})〉, where
δϕ(ϕ, (v, s)) , t, if ϕ ∈ LG(s), and δϕ(ϕ, (v, s)) , f, otherwise. Intuitively, AGϕ only
verifies that the state s in the labeling of the root of the assignment-state encoding of
the empty assignment ∅ satisfies ϕ.

• The boolean case ϕ = ¬ϕ′ is treated in the classical way, by simply dualizing the
automaton AGϕ′ =〈ValAcG (free(ϕ′))× StG ,StG ,Qϕ′ , δϕ′ , qϕ′ ,ℵϕ′〉 [MS87].

• The boolean casesϕ = ϕ1Opϕ2, with Op ∈ {∧,∨}, are treated in a way that is similar to
the classical one, by simply merging the two automataAGϕ =〈ValAcG (free(ϕ1))×StG ,

StG ,Qϕ , δϕ , qϕ ,ℵϕ1〉 and AGϕ = 〈ValAcG (free(ϕ2)) × StG ,StG ,Qϕ , δϕ , qϕ ,

ℵϕ2〉 into the automaton AGϕ ,〈ValAcG (free(ϕ))× StG , StG ,Qϕ, δϕ, qϕ,ℵϕ〉, where
the following hold:

– Qϕ , {qϕ} ∪Qϕ ∪Qϕ , with qϕ 6∈ Qϕ ∪Qϕ ;

– δϕ(qϕ, (v, s)) , δϕ(qϕ , (v�free(ϕ1), s)) Opδϕ(qϕ , (v�free(ϕ2), s)), for all
(v, s) ∈ ValAcG (free(ϕ))× StG ;

– δϕ(q, (v, s)) , δϕ(q, (v�free(ϕ1), s)), if q ∈ Qϕ , and δϕ(q, (v, s)) ,
δϕ(q, (v�free(ϕ2), s)), otherwise, for all q ∈ Qϕ ∪ Qϕ and (v, s) ∈
ValAcG (free(ϕ))× StG ;

– ℵϕ , (Fϕ, . . . ,Fkϕ), where (i) ℵϕ1 , (Fϕ , . . . ,Fkϕ) and ℵϕ2 ,
(Fϕ , . . . ,Fkϕ), (ii) h = min{k1, k2} and k = max{k1, k2}, (iii) Fiϕ ,
Fiϕ ∪ Fiϕ , for i ∈ [1, h], (iv) Fiϕ , Fiϕj , for i ∈ [h+ 1, k − 1] with kj = k,
and (v) Fkϕ , Qϕ.

• The case ϕ = Xϕ′ is solved by running the automatonAGϕ′ =〈ValAcG (free(ϕ′))×StG ,

StG ,Qϕ′ , δϕ′ , qϕ′ ,ℵϕ′〉 on the successor node of the root of the assignment-state
encoding in the direction individuated by the assignment itself. To do this, we use the
automaton AGϕ ,〈ValAcG (free(ϕ))× StG ,StG ,Qϕ, δϕ, qϕ,ℵϕ〉, where the following
hold:

– Qϕ , {qϕ} ∪Qϕ′ , with qϕ 6∈ Qϕ′ ;

– δϕ(qϕ, (v, s)) , (trG(s, v�Ag), qϕ′), for all (v, s) ∈ ValAcG (free(ϕ))× StG ;



– δϕ(q, (v, s)) , δϕ′(q, (v�free(ϕ′), s)), for all q ∈ Qϕ′ and (v, s) ∈
ValAcG (free(ϕ))× StG ;

– ℵϕ , (Fϕ′ , . . . ,Fkϕ′ ∪ {qϕ}), where ℵϕ′ , (Fϕ′ , . . . ,Fkϕ′).

• To handle the case ϕ = ϕ1Uϕ2, we use the automaton AGϕ ,〈ValAcG (free(ϕ))× StG ,

StG ,Qϕ, δϕ, qϕ,ℵϕ〉 that verifies the truth of the until operator using its one-step
unfolding equivalence ϕ1Uϕ2 ≡ ϕ2 ∨ ϕ1 ∧ Xϕ1Uϕ2, by appropriately running the
two automata AGϕ = 〈ValAcG (free(ϕ1))× StG ,StG ,Qϕ , δϕ , qϕ ,ℵϕ1〉 and AGϕ =

〈ValAcG (free(ϕ2))× StG ,StG ,Qϕ , δϕ , qϕ ,ℵϕ2〉 for the inner formulas ϕ1 and ϕ2.
The definitions of AGϕ components follows:

– Qϕ , {qϕ} ∪Qϕ ∪Qϕ , with qϕ 6∈ Qϕ ∪Qϕ ;

– δϕ(qϕ, (v, s)) , δϕ(qϕ , (v�free(ϕ2), s)) ∨ δϕ(qϕ , (v�free(ϕ1), s)) ∧
(trG(s, v�Ag), qϕ), for all (v, s) ∈ ValAcG (free(ϕ))× StG ;

– δϕ(q, (v, s)) , δϕ(q, (v�free(ϕ1), s)), if q ∈ Qϕ , and δϕ(q, (v, s)) ,
δϕ(q, (v�free(ϕ2), s)), otherwise, for all q ∈ Qϕ ∪ Qϕ and (v, s) ∈
ValAcG (free(ϕ))× StG ;

– ℵϕ , (Fϕ, . . . ,Fkϕ), where (i) ℵϕ1 , (Fϕ , . . . ,Fkϕ) and ℵϕ2 ,
(Fϕ , . . . ,Fkϕ), (ii) h = min{k1, k2} and k = max{k1, k2}, (iii) Fiϕ ,
{qϕ}∪Fiϕ∪Fiϕ , for i ∈ [1, h], (iv) Fiϕ , {qϕ}∪Fiϕj , for i ∈ [h+ 1, k − 1]

with kj = k, and (v) Fkϕ , Qϕ.

It is important to observe that the initial state qϕ is included in all sets of the parity
acceptance condition, in particular in Fϕ, in order to avoid its regeneration for an
infinite number of times.

• To handle the case ϕ = ϕ1Rϕ2, we use the automaton AGϕ ,〈ValAcG (free(ϕ))× StG ,

StG ,Qϕ, δϕ, qϕ,ℵϕ〉 that verifies the truth of the release operator using its one-step
unfolding equivalence ϕ1Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ Xϕ1Rϕ2), by appropriately running the
two automata AGϕ = 〈ValAcG (free(ϕ1))× StG ,StG ,Qϕ , δϕ , qϕ ,ℵϕ1〉 and AGϕ =

〈ValAcG (free(ϕ2))× StG ,StG ,Qϕ , δϕ , qϕ ,ℵϕ2〉 for the inner formulas ϕ1 and ϕ2.
The definitions of AGϕ components follows:

– Qϕ , {qϕ} ∪Qϕ ∪Qϕ , with qϕ 6∈ Qϕ ∪Qϕ ;

– δϕ(qϕ, (v, s)) , δϕ(qϕ , (v�free(ϕ2), s)) ∧ (δϕ(qϕ , (v�free(ϕ1), s)) ∨
(trG(s, v�Ag), qϕ)), for all (v, s) ∈ ValAcG (free(ϕ))× StG ;

– δϕ(q, (v, s)) , δϕ(q, (v�free(ϕ1), s)), if q ∈ Qϕ , and δϕ(q, (v, s)) ,
δϕ(q, (v�free(ϕ2), s)), otherwise, for all q ∈ Qϕ ∪ Qϕ and (v, s) ∈
ValAcG (free(ϕ))× StG ;

– ℵϕ , (Fϕ, . . . ,Fkϕ), where (i) ℵϕ1 , (Fϕ , . . . ,Fkϕ) and ℵϕ2 ,
(Fϕ , . . . ,Fkϕ), (ii) h = min{k1, k2} and k = max{k1, k2}, (iii) Fϕ ,
Fϕ ∪ Fϕ , (iv) Fiϕ , {qϕ} ∪ Fiϕ ∪ Fiϕ , for i ∈ [2, h], (iv) Fiϕ ,
{qϕ} ∪ Fiϕj , for i ∈ [h+ 1, k − 1] with kj = k, and (v) Fkϕ , Qϕ.



It is important to observe that, differently from the case of the until operator, the initial
state qϕ is included in all sets of the parity acceptance condition but Fϕ, in order to
allow its regeneration for an infinite number of time.

• The case ϕ = (a, x)ϕ′ is solved by simply transforming the transition function
of the automaton AGϕ′ = 〈ValAcG (free(ϕ′)) × StG ,StG ,Qϕ′ , δϕ′ , qϕ′ ,ℵϕ′〉, by set-
ting the value of the valuations in input w.r.t. the agent a to the value of the
same valuation w.r.t. the variable x. The definitions of the transition function
for AGϕ , 〈ValAcG (free(ϕ)) × StG ,StG ,Qϕ′ , δϕ, qϕ′ ,ℵϕ′〉 follows: δϕ(q, (v, s)) ,
δϕ′(q, (v′, s)), where v′ = va7→v(x)�free(ϕ′)

, if a ∈ free(ϕ′), and v′ = v, otherwise, for
all q ∈ Qϕ′ and (v, s) ∈ ValAcG (free(ϕ))× StG .

• To handle the case ϕ = 〈〈x〉〉ϕ′, assuming that x ∈ free(ϕ′), we use the operation of
existential projection for nondeterministic tree automata. To do this, we have first to
nondeterminize the APT AGϕ′ , by applying the classic transformation [MS95]. In this
way, we obtain an equivalent NPT N Gϕ′ =〈ValAcG (free(ϕ′))× StG ,StG ,Qϕ′ , δϕ′ , qϕ′ ,

ℵϕ′〉. Now, we make the projection, by defining the new NPTAGϕ ,〈ValAcG (free(ϕ))×
StG , StG ,Qϕ′ , δϕ, qϕ′ ,ℵϕ′〉 where δϕ(q, (v, s)) ,

∨
c∈AcG

δϕ′(q, (vx 7→c, s)), for all
q ∈ Qϕ′ and (v, s) ∈ ValAcG (free(ϕ))× StG .

At this point, it only remains to prove that, for all states s ∈ StG and assignments
χ ∈ AsgG(free(ϕ), s), it holds that G, χ, s |= ϕ iff T ∈ L(AGϕ), where T is the assignment-
state encoding for χ. The proof can be developed by a simple induction on the structure of
the formula ϕ and is left to the reader as a simple exercise. �

We now have the tools to describe the recursive model-checking procedure on nested
subsentences for SL and its fragments under the general semantics.

To proceed, we have first to prove the following theorem that represents the core of our
automata-theoretic approach.

Theorem 2.3.2 (SL Sentence Automaton) Let G be a CGS, s ∈ StG one of its states, and
ϕ an SL sentence. Then, there exists an NPT N G,sϕ such that G,∅, s |= ϕ iff L(N G,sϕ ) 6= ∅.

Proof. To construct the NPT N G,sϕ we apply Theorem 2.3.1 on page 43 of APT direction
projection with distinguished direction s to the APT AGϕ derived by Lemma 2.3.1 on page 44
of SL formula automaton. In this way, we can ensure that the state labeling of nodes of the
assignment-state encoding is coherent with the node itself. Observe that, since ϕ is a sentence,
we have that free(ϕ) = ∅, and so, the unique assignment-state encoding of interest is that
related to the empty assignment ∅.

[Only if]. Suppose that G,∅, s |= ϕ. Then, by Lemma 2.3.1 on page 44, we have that
T ∈ L(AGϕ), where T is the dependence-state encoding for ∅. Hence, by Theorem 2.3.1 on
page 43, it holds that L(N G,sϕ ) 6= ∅.

[If]. Suppose that L(N G,sϕ ) 6= ∅. Then, by Theorem 2.3.1 on page 43, there exists an
({∅} × StG)-labeled StG-tree T such that T ∈ L(AGϕ). Now, it is immediate to see that T
is the assignment-state encoding for ∅. Hence, by Lemma 2.3.1 on page 44, we have that
G,∅, s |= ϕ. �



Before continuing, we define the length lng(ϕ) of an SL formula ϕ as the number |sub(ϕ)|
of its subformulas. We also introduce a generalization of the Knuth’s double arrow notation
in order to represents a tower of exponentials: a ↑↑b 0 , b and a ↑↑b (c+ 1) , aa↑↑bc, for
all a, b, c ∈ N.

At this point, we prove the main theorem about the non-elementary complexity of SL
model-checking problem.

Theorem 2.3.3 (SL Model Checking) The model-checking problem for SL is PTIME-
COMPLETE w.r.t. the size of the model and NONELEMENTARY w.r.t. the size of the spec-
ification.

Proof. By Theorem 2.3.2 on the preceding page of SL sentence automaton, to verify that
G,∅, s |= ϕ, we simply calculate the emptiness of the NPT N G,sϕ having |StG | · (2 ↑↑m m)

states and index 2 ↑↑m m, where m = O(lng(ϕ) · log lng(ϕ)). It is well-known that the
emptiness problem for such a kind of automaton with n states and index h is solvable in time
O(nh) [KV98]. Thus, we get that the time complexity of checking whether G,∅, s |= ϕ

is |StG |2↑↑mm. Hence, the membership of the model-checking problem for SL in PTIME

w.r.t. the size of the model and NONELEMENTARY w.r.t. the size of the specification directly
follows. Finally, by getting the relative lower bound on the model from the same problem for
ATL? [AHK02], the claim is proved. �

Finally, we show a refinement of the previous result, when we consider sentences of the
SL[NG] fragment.

Theorem 2.3.4 (SL[NG] Model Checking) The model-checking problem for SL[NG] is
PTIME-COMPLETE w.r.t. the size of the model and (k + 1)-EXPTIME w.r.t. the maximum
alternation k of the specification.

Proof. By Theorem 2.3.2 on the facing page of SL sentence automaton, to verify that
G,∅, s |= ℘ψ, where ℘ψ is an SL[NG] principal sentence without proper subsentences, we
can simply calculate the emptiness of the NPT N G,s℘ψ having |StG | · (2 ↑↑m k) states and
index 2 ↑↑m k, where m = O(lng(ψ) · log lng(ψ)) and k = alt(℘ψ). Thus, we get that
the time complexity of checking whether G,∅, s |= ℘ψ is |StG |2↑↑mk. At this point, since
we have to do this verification for each possible state s ∈ StG and principal subsentence
℘ψ ∈ psnt(ϕ) of the whole SL[NG] specification ϕ, we derive that the bottom-up model-
checking procedure requires time |StG |2↑↑lng(ϕ)k, where k = max{alt(℘ψ) : ℘ψ ∈ psnt(ϕ)}.
Hence, the membership of the model-checking problem for SL in PTIME w.r.t. the size
of the model and (k + 1)-EXPTIME w.r.t. the maximum alternation k of the specification
directly follows. Finally, by getting the relative lower bound on the model from the same
problem for ATL? [AHK02], the thesis is proved. �

2.3.3 SL[1G] Model Checking

We now show how the concept of behavioral of Skolem dependence functions over strategies
can be used to enormously reduce the complexity of the model-checking procedure for the
SL[1G] fragment. The idea behind our approach is to avoid the use of projections used to



handle the strategy quantifications, by reducing them to action quantifications, which can be
managed locally on each state of the model without a tower of exponential blow-ups.

To start with the description of the ad-hoc procedure for SL[1G], we first
prove the existence of a UCT for each CGS and SL[1G] goal [ψ that rec-
ognizes all the assignment-state encodings of an a priori given assignment,
made the assumption that the goal is satisfied on the CGS under this assignment.

Lemma 2.3.2 (SL[1G] Goal Automaton) Let G be a CGS and [ψ an SL[1G] goal without
principal subsentences. Then, there exists an UCT UG[ψ , 〈ValAcG (free([ψ)) × StG ,StG ,

Q[ψ, δ[ψ, q[ψ,ℵ[ψ〉 such that, for all states s ∈ StG and assignments χ ∈ AsgG(free([ψ), s),
it holds that G, χ, s |= [ψ iff T ∈ L(UG[ψ), where T is the assignment-state encoding for χ.

Proof. A first step in the construction of the UCT UG[ψ is to consider the UCW Uψ , 〈2AP,

Qψ, δψ,Qψ,ℵψ〉 obtained by dualizing the NBW resulting from the application of the classic
Vardi-Wolper construction to the LTL formula ¬ψ [VW86]. Observe that L(Uψ) = L(ψ),
i.e., Uψ recognizes all infinite words on the alphabet 2AP that satisfy the LTL formula ψ.
Then, define the components of UG[ψ ,〈ValAcG (free([ψ))× StG ,StG ,Q[ψ, δ[ψ, q[ψ,ℵ[ψ〉 as
follows:

• Q[ψ , {q[ψ} ∪Qψ, with q[ψ 6∈ Qψ;

• δ[ψ(q[ψ, (v, s)) ,
∧
q∈Qψ

δ[ψ(q, (v, s)), for all (v, s) ∈ ValAcG (free([ψ))× StG ;

• δ[ψ(q, (v, s)) ,
∧
q′∈δψ(q,LG(s))(trG(s, v ◦ bnd[), q

′), for all q ∈ Qψ and (v, s) ∈
ValAcG (free([ψ))× StG ;

• ℵ[ψ , ℵψ.

Intuitively, the UCT UG[ψ simply runs the UCW Uψ on the branch of the encoding individuated
by the assignment in input. Thus, it is easy to see that, for all states s ∈ StG and assignments
χ ∈ AsgG(free([ψ), s), it holds that G, χ, s |= [ψ iff T ∈ L(UG[ψ), where T is the assignment-
state encoding for χ. �

Now, to describe our modified technique, we introduce a new concept of encoding
regarding the behavioral Skolem dependence functions over strategies.

Definition 2.3.5 (Behavioral Dependence-State Encoding) Let G be a CGS, s ∈ StG one
of its states, and θ ∈ BSDFStrG(s)(℘) a behavioral Skolem dependence function over strate-
gies for a quantification prefix ℘ ∈ Qnt(V) over the set V ⊆ Vr. Then, a (SDFAcG (℘)×StG)-
labeled StG-tree T ,〈T, u〉, where T , {ρ≥1 : ρ ∈ TrkG(s)}, is a behavioral dependence-
state encoding for θ if it holds that u(t) , (θ̃(s · t), lst(s · t)), for all t ∈ T.

Observe that there exists a unique behavioral dependence-state encoding for each behavioral
Skolem dependence function over strategies.

In the next lemma, we show how to handle locally the strategy quantifications on each
state of the model, by simply using a quantification over actions, which is modeled by the
choice of an action Skolem dependence function. Intuitively, we guess in the labeling what
is the right part of the Skolem dependence function over strategies for each node of the tree
and then verify that, for all assignments of universal variables, the corresponding complete
assignment satisfies the inner formula.



Lemma 2.3.3 (SL[1G] Sentence Automaton) Let G be a CGS and ℘[ψ an SL[1G] principal
sentence without principal subsentences. Then, there exists a UCT UG℘[ψ , 〈SDFAcG (℘)×
StG ,StG ,Q℘[ψ, δ℘[ψ, q℘[ψ,ℵ℘[ψ〉 such that, for all states s ∈ StG and behavioral Skolem
dependence functions over strategies θ ∈ BSDFStrG(s)(℘), it holds that G, θ(χ), s |=B [ψ,
for all χ ∈ AsgG([[℘]], s), iff T ∈ L(UG℘[ψ), where T is the behavioral dependence-state
encoding for θ.

Proof. By Lemma 2.3.2 on the preceding page of SL[1G] goal automaton, there is an UCT

UG[ψ = 〈ValAcG (free([ψ)) × StG , StG ,Q[ψ, δ[ψ, q[ψ,ℵ[ψ〉 such that, for all states s ∈ StG

and assignments χ ∈ AsgG(free([ψ), s), it holds that G, χ, s |= [ψ iff T ∈ L(UG[ψ), where T
is the assignment-state encoding for χ.

Now, transform UG[ψ into the new UCT UG℘[ψ , 〈SDFAcG (℘) × StG ,StG ,Q℘[ψ, δ℘[ψ,

q℘[ψ,ℵ℘[ψ〉, with Q℘[ψ , Q[ψ, q℘[ψ , q[ψ, and ℵ℘[ψ , ℵ[ψ, which is used to
handle the quantification prefix ℘ atomically, where the transition function is defined
as follows: δ℘[ψ(q, (θ, s)) ,

∧
v∈ValAcG ([[℘]]) δ[ψ(q, (θ(v), s)), for all q ∈ Q℘[ψ and

(θ, s) ∈ SDFAcG (℘) × StG . Intuitively, UG℘[ψ reads an action Skolem dependence func-
tion θ on each node of the input tree T labeled with a state s of G and simulates the execution
of the transition function δ[ψ(q, (v, s)) of UG[ψ, for each possible valuation v = θ(v′) on
free([ψ) obtained from θ by a universal valuation v′ ∈ ValAcG ([[℘]]). It is important to
observe that we cannot move the component set SDFAcG (℘) from the input alphabet to the
states of UG℘[ψ, by making a related guessing of the Skolem dependence function θ in the
transition function, since we have to ensure that all states in a given node of the tree T , i.e., in
each track of the original model G, make the same choice for θ.

Finally, it remains to prove that, for all states s ∈ StG and behavioral Skolem dependence
function over strategies θ ∈ BSDFStrG(s)(℘), it holds that G, θ(χ), s |=B [ψ, for all χ ∈
AsgG([[℘]], s), iff T ∈ L(UG℘[ψ), where T is the behavioral dependence-state encoding for θ.

[Only if]. Suppose that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s). Since ψ does not
contain principal subsentences, we have that G, θ(χ), s |= [ψ. So, due to the property of
UG[ψ, it follows that there exists an assignment-state encoding Tχ ∈ L(UG[ψ), which implies

the existence of an (StG ×Q[ψ)-tree Rχ that is an accepting run for UG[ψ on Tχ. At this point,

let R ,
⋃
χ∈AsgG([[℘]],s) Rχ be the union of all runs. Then, due to the particular definition of

the transition function of UG℘[ψ, it is not hard to see that R is an accepting run for UG℘[ψ on T .

Hence, T ∈ L(UG℘[ψ).

[If]. Suppose that T ∈ L(UG℘[ψ). Then, there exists an (StG × Q℘[ψ)-tree R that is an

accepting run for UG℘[ψ on T . Now, for each χ ∈ AsgG([[℘]], s), let Rχ be the run for UG[ψ on
the assignment-state encoding Tχ for θ(χ). Due to the particular definition of the transition
function of UG℘[ψ, it is easy to see that Rχ ⊆ R. Thus, since R is accepting, we have that Rχ

is accepting as well. So, Tχ ∈ L(UG[ψ). At this point, due to the property of UG[ψ, it follows
that G, θ(χ), s |= [ψ. Now, since ψ does not contain principal subsentences, we have that
G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s). �

At this point, we can prove the following theorem that is at the base of the elementary
model-checking procedure for SL[1G].



Theorem 2.3.5 (SL[1G] Sentence Automaton) Let G be a CGS, s ∈ StG one of its states,
and ℘[ψ an SL[1G] principal sentence without principal subsentences. Then, there exists an
NPT N G,s℘[ψ such that G,∅, s |= ℘[ψ iff L(N G,s℘[ψ) 6= ∅.

Proof. As in the general case of SL sentence automaton, we have to ensure that the state
labeling of nodes of the behavioral dependence-state encoding is coherent with the node itself.
To do this, we apply Theorem 2.3.1 on page 43 of APT direction projection with distinguished
direction s to the UPT UG℘[ψ derived by Lemma 2.3.3 on the previous page of the SL[1G]

sentence automaton, thus obtaining the required NPT N G,s℘[ψ.
[Only if]. Suppose that G,∅, s |= ℘[ψ. By Corollary 2.2.2 on page 41 of SL[1G] behav-

ioral, it means that G,∅, s |=B ℘[ψ. Then, by Definition 2.2.4 on page 35 of SL[NG] behavioral
semantics, there exists an behavioral Skolem dependence function θ ∈ BSDFStrG(s)(℘) such
that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s). Thus, by Lemma 2.3.3 on the preceding
page, we have that T ∈ L(UG℘[ψ), where T is the behavioral dependence-state encoding for θ.

Hence, by Theorem 2.3.1 on page 43, it holds that L(N G,s℘[ψ) 6= ∅.
[If]. Suppose that L(N G,s℘[ψ) 6= ∅. Then, by Theorem 2.3.1 on page 43, there exists an

(SDFAcG (℘)× StG)-labeled StG-tree T such that T ∈ L(UG℘[ψ). Now, it is immediate to see
that there is an behavioral Skolem dependence function θ ∈ BSDFStrG(s)(℘) for which T
is the behavioral dependence-state encoding. Thus, by Lemma 2.3.3 on the previous page,
we have that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s). By Definition 2.2.4 on page 35 of
SL[NG] behavioral semantics, it holds that G,∅, s |=B ℘[ψ. Hence, by Corollary 2.2.2 on
page 41 of SL[1G] behavioral, it means that G,∅, s |= ℘[ψ. �

Finally, we show in the next fundamental theorem the precise complexity of the model-
checking for SL[1G].

Theorem 2.3.6 (SL[1G] Model Checking) The model-checking problem for SL[1G] is
PTIME-COMPLETE w.r.t. the size of the model and 2EXPTIME-COMPLETE w.r.t. the size
of the specification.

Proof. By Theorem 2.3.5 of SL[1G] sentence automaton, to verify that G,∅, s |= ℘[ψ, we
simply calculate the emptiness of the NPT N G,s℘[ψ. This automaton is obtained by the operation

of direction projection on the UCT UG℘[ψ, which is in turn derived by the UCT UG[ψ. Now, it

is easy to see that the number of states of UG[ψ, and consequently of UG℘[ψ, is 2O(lng(ψ)). So,

N G,s℘[ψ has |StG | · 22O(lng(ψ))
states and index 2O(lng(ψ)).

The emptiness problem for such a kind of automaton with n states and index h is
solvable in time O(nh) [KV98]. Thus, we get that the time complexity of checking whether
G,∅, s |= ℘[ψ is |StG |2

O(lng(ψ))

. At this point, since we have to do this verification for
each possible state s ∈ StG and principal subsentence ℘[ψ ∈ psnt(ϕ) of the whole SL[1G]

specification ϕ, we derive that the whole bottom-up model-checking procedure requires time
|StG |2

O(lng(ϕ))

. Hence, the membership of the model-checking problem for SL[1G] in PTIME

w.r.t. the size of the model and 2EXPTIME w.r.t. the size of the specification directly follows.
Finally the thesis is proved, by getting the relative lower bounds from the same problem for
ATL? [AHK02]. �



2.4 Satisfiability

As shown in Section 1.3.2, SL does not have the bounded model property and, as a triv-
ial consequence, its satisfiability problem is undecidable. By means of Remark 2.1.2 on
page 29, we derive that also the fragment SL[BG] has an undecidable satisfiability problem.
On the contrary, it is well-known that the satisfiability problem for ATL? is 2EXPTIME-
COMPLETE [Sch08]. This gap in complexity between SL and ATL? gives naturally rise to
the question of which are the inherent properties of ATL? that make the problem decidable.
Here we answer such question by analyzing the syntactic fragment SL[1G] introduced in
Section 2.1. We show that this fragment retains all positive properties of ATL?, such as the
decision-tree model property and the bounded model property, which allows us to show that
its satisfiability problem is 2EXPTIME-COMPLETE. A fundamental feature used as a tool to
prove the announced properties is again the behavioral satisfiability.

2.4.1 Tree-model property

The satisfiability procedure we propose in this thesis is based on the use of alternating tree
automata. Consequently, we need to establish a kind of tree model property, which is based
on a special sub-class of CGSs, namely, the concurrent game-trees (CGT, for short), whose
structure of the underlying graph is a tree.

Definition 2.4.1 (Concurrent Game Trees) A concurrent game tree (CGT, for short) is a
CGS T ,〈AP,Ag,Ac, St, tr, ap, s〉, where (i) St ⊆ Dir∗ is a Dir-tree for a given set Dir

of directions and (ii) if t · e ∈ St then there is a decision δ ∈ Dc such that tr(t, δ) = t · e, for
all t ∈ St and e ∈ Dir. Furthermore, T is a decision tree (DT, for short) if (i) St = Dc∗ and
(ii) if t · δ ∈ St then tr(t, δ) = t · δ, for all t ∈ St and δ ∈ Dc.

Intuitively, CGTs are CGSs having a transition relation with a tree shape and DTs have,
in addition, the states that uniquely determine the history of the computation leading to them.
Observe that, for each non trivial track ρ (resp., path π), there exists a unique finite (resp.,
infinite) sequence of decisions δ · . . . · δ|ρ|− ∈ Dc∗ (resp., δ · δ · . . . ∈ Dcω) such that
ρ(i+) = tr(ρ(i), δi) (resp., π(i+) = tr(π(i), δi)), for all i ∈ [0, |ρ| − 1[ (resp., i ∈ N).
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Figure 2.2: A CGS.

We now define a generalization for CGSs of the classic
concept of unwinding of labeled transition systems, namely the
decision-unwinding (see Figure 2.2 and Figure 2.3 on the next
page, for an example), that allows to show that SL[1G] enjoys
the decision-tree model property.

Definition 2.4.2 (Decision-Unwinding) Let G = 〈AP,Ag,

Ac, St, tr, ap, s〉 be a CGS. Then, the decision-unwinding
of G is the DT GDU ,〈AP,Ag,Ac,Dc∗, ap′, tr′, ε〉 for which
there is a surjective function unw : Dc∗ → St such that (i)
unw(ε) = s, (ii) unw(tr′(t, δ)) = tr(unw(t), δ), and (iii)

ap′(t) = ap(unw(t)), for all t ∈ Dc∗ and δ ∈ Dc.



Observe that, due to its construction, each CGS G has a unique associated decision-
unwinding GDU .

We are now able to prove that SL[1G] satisfies the decision-tree model property.
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Figure 2.3: Part of the decision-unwinding of the CGS in Figure 2.2.

Theorem 2.4.1 (SL[1G] Decision-Tree Model Property) Let ϕ be a satisfiable SL[1G] sen-
tence. Then, there exists a DT T such that T |= ϕ.

Proof. The proof proceeds by structural induction on the sentence SL[1G]. For the
Boolean combination of principal sentences, the induction is trivial. For the case of a
principal sentence ϕ of the form ℘[ψ, by Theorem 2.2.4 on page 40, we derive that there
exists a behavioral Skolem map θ ∈ BSDFStrG(s)(℘) such that G |=θ ℘[ψ. Furthermore,
there exists the adjoint function to tracks θ̃ of θ. Now, consider the decision unwinding
T = GDU of G and the lifting Γ : TrkT → TrkG of the unwinding function unw such that
Γ(ρ) = unw(ρ) · . . . unw(ρ|ρ|−), for all ρ ∈ TrkT . At this point, consider the function
θ̃′ such that θ̃′(ρ′) , θ̃(Γ(ρ′)), for all ρ′ ∈ TrkT . Clearly, since θ̃ is a Skolem map over
actions, so θ̃′ is as well. Then, consider the Skolem map θ′ for which the function θ̃′ is its
adjoint. By induction on the nesting of principal subsentences in ϕ = ℘[ψ, we now prove
that T |=θ′ ℘[ψ. As base case, i.e., when ψ is an LTL formula, consider an assignment
χ′ ∈ AsgT ([[℘]], ε) and the induced play π′ = play(θ′(χ′) ◦ [, ε) over T . Moreover, consider
an assignment χ ∈ AsgG([[℘]], s) such that, for all placeholders l ∈ dom(χ) and tracks
ρ′ ∈ TrkT , it holds that χ(l)(Γ(ρ′)) = χ′(l)(ρ′). From the satisfiability of ϕ on G, we derive
that π |= ψ, where π = play(θ(χ)◦[, s). Indeed, assume for a while that (π)≤k = Γ((π)

′
≤k).

Then, from the definition of the labeling in the decision-tree unwinding, it easily follows that
ap((π)k) = ap′((π′)k), and, so we derive π′ |= ψ, from π |= ψ. Consequently, this holds for
all χ′ ∈ AsgStrT (ε)([[[]]) and, so, we have that T |=θ′ ℘[ψ. The inductive case, i.e., when ψ
contains some subsentence, easily follows by considering the principal subsentences as fresh
atomic propositions.

It remains to prove, by induction on k, that (π)≤k = Γ((π′)≤k), for all k ∈ N. As base
case, we have that (π)0 = s = Γ(ε) = (π′)0. As inductive case, assume that (π)≤k =

Γ((π
′
)≤k). Then, in particular, we have that (π)k = Γ((π

′
)k) = unw((π

′
)k). By definition

of play, it holds that (π)k+1 = tr((π)k, (θ̃((π)≤k))(χ̂))◦[), which is, by inductive hypothesis,
equal to tr(unw((π′)k), (θ̃(Γ((π)≤k)))(χ̂))◦ [). Now, by the definition of θ̃′ and χ, we obtain
tr(unw((π′)k), (θ̃(Γ((π)≤k)))(χ̂)) ◦ [) = tr(Γ((π′)k), (θ̃′((π

′)≤k))(χ̂′)) ◦ [). Finally, by the
definition of unw and Γ, we have that tr(Γ((π′)k), (θ̃′((π

′)≤k))(χ̂′)) ◦ [) = Γ(π′)k+1. �



2.4.2 Bounded model property

In order to prove the bounded-tree model property for SL[1G], we first need to introduce the
new concept of disjoint satisfiability, which regards the verification of different instances
of the same subsentence of the original specification. Intuitively, it asserts that either these
instances can be checked on disjoint subtrees of the tree model or, if two instances use part of
the same subtree, they are forced to use the same dependence map as well. This notion is a
reformulation of the notion of explicit model introduced for ATL? in [Sch08]. This intrinsic
characteristic of SL[1G] is fundamental for the building of a unique automaton that checks
the truth of all subsentences, by simply merging their respective automata, without using a
projection operation to eliminate their own alphabets, which otherwise may be in conflict. In
this way, we are also able to avoid an exponential blow-up. A deeper discussion on this point
is reported later in the paper.

Definition 2.4.3 (Disjoint Satisfiability) Let T be a DT andϕ = ℘[ψ be a SL[1G] principal
sentence. Moreover, let S , {s ∈ StT : T , s |= ϕ}. Then, T satisfies ϕ disjointly over S if
there exist two functions head : S → SMAc(℘) and body : Trk(ε) → SMAc(℘) such that,
for all s ∈ S and χ ∈ AsgStr(s)([[℘]]) it holds that T , θ(χ), s |= [ψ, where the behavioral
Sdf θ ∈ BSDFStr(s) is defined, by means of its adjoint, as follows:

(i) θ̃(s) , head(s);

(ii) θ̃(ρ) , body(ρ′ · ρ), for all ρ ∈ Trk(s) with |ρ| > 1, where ρ′ ∈ Trk(ε) is the unique
track such that ρ′ · ρ ∈ Trk(ε) 5.

The disjoint satisfiability holds for all SL[1G] formulas. To prove this fact, we first
introduce the preliminary definition of twin decision-tree. Intuitively, in such a kind of tree,
each action is flanked by a twin one having the same purpose of the original. This allows to
satisfy two sentences requiring the same actions in a given state in two different branches of
the tree itself, which is what the disjoint satisfiability precisely requires.

Definition 2.4.4 (Twin Decision Tree) Let T = 〈AP,Ag,Ac,St, tr, ap, ε〉 be a DT. Then,
the twin decision tree of T is the DT T ′ , 〈AP,Ag,Ac′,St′, tr′, ap′, ε′〉 with Ac′ = Ac ×
{new, cont} and ε′ = (ε, new). The labeling and the transition function are defined by
means of a set of projection functions introduced below:

• the function prjAc : Ac′ → Ac returns the first component of the action in Ac′, i.e.,
prj((c, ι)) = c, for all (c, ι) ∈ Ac′;

• the function prjDc : Dc′ → Dc projects out the flags on all the actions in the decision,
returning a corresponding decision in T , i.e., prjDc(δ

′)(a) = prjAc(δ
′(a)), for all

δ′ ∈ Dc′ and a ∈ Ag;

• the function prjSt : St′ → St returns the corresponding state in T , according to the
projection made on the decisions, i.e., prjSt(ε

′) = ε and prjSt(s
′ · δ′) = prjSt(s

′) ·
prjDc(δ

′), for all s′ ∈ St′ and δ′ ∈ Dc′;
5Existence and uniqueness of ρ′ is guaranteed by the fact that T is a DT.



• analogously, the function prjTrk : Trk′ → Trk, returns the concatenation of the
projected states, i.e., prjTrk(s′) = prjSt(s

′), for all s′ ∈ St′, and prjTrk(ρ′ · s′) =

prjTrk(ρ′) · prjSt(s
′), for all ρ′ ∈ Trk′ and s′ ∈ St′.

Then, ap′(s′) , ap(prjSt(s
′)).

Observe that prjSt(tr′(s′, δ′)) = tr(prjSt(s
′), prjDc(δ

′)), for all s′ ∈ St′ and δ′ ∈ Dc′. We
can now prove the disjoint satisfiability property for SL[1G].

Theorem 2.4.2 (Disjoint Satisfiability) Let ϕ = ℘[ψ be an SL[1G] principal sentence and
T = 〈AP,Ag,Ac, St, tr, ap, ε〉 a DT. Moreover, let S , {s ∈ St : T , s |= ϕ}. Then the
twin decision tree T ′ of T disjointly satisfies ϕ over S′ , {s′ ∈ St′ : prj(s′) ∈ S}.

Proof.[Proof idea] Starting from the fact that T , s |= ϕ, for all s ∈ S, by means of
Theorem 2.2.4 on page 40, we derive the existence of a behavioral Sdf θs. Such a θs is used
to define a behavioral Sdf θs′ in T ′ in which the existential agents suitably select either new
or cont as second component, in order to guarantee the satisfaction of different instances
over different branches of the twin decision tree. Indeed, it allows to properly define the two
functions head and body and, consequently, the behavioral Sdf θ′ for which we finally prove
that T ′, s′ |= ϕ, for all s′ ∈ S′. Since θ′ has been built from the head and body functions, the
disjoint satisfiability is immediately derived. �

Proof. Let s ∈ S be one of the states on which ϕ is satisfied. Since T , s |= ϕ,
by Theorem 2.2.4 on page 40, we have that there exists θs ∈ BSDFStr(s)(℘) such that
T , θs(χ), s |= [ψ, for all states s-total assignments χ ∈ AsgStrT (s)([[℘]]). Then, consider the

adjoint function θ̃s
′

: Trk′ ⇀ SMAc′(℘) defined, for all states s′ ∈ St′, decisions δ′ ∈ Dc′,
and tracks ρ′ ∈ Trk′ as follows:

• θ̃s
′
(s′)(δ′)(x) = (θ̃s(prjSt(s

′))(prjDc(δ
′))(x), new), if prjSt(s

′) = s;

• θ̃s
′
(ρ′)(δ′)(x) = (θ̃s(prjTrk(ρ′))(prjDc(δ

′))(x), cont), otherwise.

At this point, we assume the function head : St′ → SMAc′(℘) to be defined as follows:
head(s′) , θ̃s

′
(s′). Moreover, we set the function body : Trk′(ε) → SMAc′(℘) in such

a way that it agrees with θ̃s
′

on all tracks ρ′ = s
′ · . . . · sn′ for which there is an index

i ∈ {0, . . . , n} such that, for all agents a ∈ Ag with [(a) ∈ 〈〈℘〉〉, it holds that:

• lst((ρ′)i)(a) = (ca, new), for some ca ∈ Ac, and

• lst((ρ′)j)(a) = (ca, cont), for all j ∈ {i+ 1, . . . , n} and for some ca ∈ Ac.

Note that the tracks of this form are such that the players bound to an existentially
quantified variable have selected an action flagged by new on the i-th step of the game
and then keep playing with the cont flag. Intuitively, they are starting the verification of a
subsentence right in the i-th state of the track, by keeping it separated from the verification of
the other subsentences, which are addressed with the cont flag.

For all the other tracks ρ′, instead, the value of body(ρ′) may be arbitrary.



Now, consider the behavioral Sdf θ′ ∈ BSDFStr(℘) defined by means of the functions
head and body as prescribed by Definition 2.4.3 on page 53. It remains to prove that
T ′, s′ |=θ′ ℘[ψ, for all s′ ∈ S′. We proceed by induction on the nesting of the principal
subsentences of ϕ. As base case, assume that such nesting is 0. This means that ψ is an LTL
formula. Now, let χ′ ∈ AsgStr′(s′)([[℘]]). By construction, it is not hard to see that there exists
an assignment χ ∈ AsgStr(prj(s′))([[℘]]) for which the play π′ , play′(θ′(χ′) ◦ [, s′) satisfies
the equality prjPth(π′) = play(θ(χ) ◦ [, prj(s′)) = π 6. Thus, since T , s |=θ ℘[ψ, we have
that π |= ψ. Moreover, it holds that ap′((π′)i) = ap((π)i), for all i ∈ N, which implies that
π′ |= ψ. Consequently, we can conclude that T ′, s′ |=θ′ ℘[ψ. The inductive case, easily
follows by considering the inner principal subsentences as fresh atomic propositions. �

We now have all tools to prove the bounded model property of SL[1G].

Theorem 2.4.3 (Bounded Model Property of SL[1G]) Let ϕ be a SL[1G] sentence and T
be a DT such that T |= ϕ. Then, there exists a bounded DT T ′ such that T ′ |= ϕ.

The proof makes use of some instruments and formalisms for First-Order Logic (FOL,
for short) that are introduced in [MP14]. For the sake of completeness, here we give an
informal discussion of such object. A language signature is a tuple L = 〈Ar,Rl, ar〉 in
which Ar and Rl are two finite non-empty sets of arguments and relations, respectively, and
ar : Rl→ 2Ar\{∅} is a function mapping each relation in Rl to its non-empty set of arguments.
Language signatures are used to reformulate FOL syntax in terms of binding forms, which
are a way to associate variables to relations by means of bindings. The interpretation of FOL
formulas is given on relational structures, which are tuples R = 〈Dm, rl〉 with Dm being
a non-empty domain and where rl(r) ⊆ ar(r)→ Dm is a set of functions, representing the
tuples on which the relation r ∈ Rl is interpreted as true.

Proof.[Proof Idea] The key idea used to prove the theorem is based on the finite model
property of the One-Binding fragment of FOL (FOL[1B], for short), proved in [MP14], which
allows to define a bounded-tree model T ′, which preserves the satisfiability of ϕ. In particular,
for each state s∗ of a tree T satisfying ϕ, we build a first-order structure and a FOL[1B]

formula ηs∗ that characterizes the topology of the successors of s∗ in T . Then, since FOL[1B]

enjoys the finite model property, we are able to build a finite first-order structure for ηs∗ from
which we can build the bounded model T ′ of ϕ. Such a construction is based on both the
disjoint and behavioral satisfiability of SL[1G]. For each state s∗ in T , we consider a set given
by pairs of subsentences η of ϕ and states s, on which it holds that T , s |=θ η, where such
satisfaction is forced to pass through s∗ for at least one universal assignment fed to θ. This
means that at least one play used to satisfy η passes through s∗. By the disjoint satisfiability,
we have to cope with at most two Sdfs for each subsentence η, those given by headη and
bodyη, implying that the total number of Sdfs to take into account, for all s∗, is finite. From
that, we define a related FOL[1B] sentence ηs∗ , having a model derived from the topology of
the successors of s∗ whose elements are constituted by the actions of T . Now, by applying
the finite model property to ηs∗ , we derive the existence of a model for the formula ηs∗ with a
finite domain Ac′η,s∗ . Exploiting the finite model built for all states s∗, we are able to define
the labeling of T ′ and a behavioral Sdf θ′ in such a way that T ′, ε |=θ′ ϕ. �

6By prjPth we are denoting the natural lifting of the function prjTrk to paths.



Proof.[Proof of Theorem 2.4.3 on the preceding page] We give the proof for the case
of ϕ = ℘[ψ, since the Boolean combination of principal sentences easily follows from
this one. Given a tree-model T for ϕ, derived by the tree-model property of SL[1G] of
Theorem 2.4.1 on page 52, for each state s∗ ∈ St, consider the set Φs∗ ⊆ St × psnt(ϕ) of
states of T and principal subsentences of ϕ such that (s, η) ∈ Φs∗ iff (i) T , s |= η and (ii)
there exists an assignment χ ∈ AsgStr(s)([[℘η]]) such that s∗ = (play(θs

∗

(s,η)(χ)) ◦ [η, s)n, for
some n ∈ N, where the behavioral Sdf θs

∗

(s,η) is defined by means of its adjoint, which is
in its turn built from the functions headη and bodyη, given by Theorem 2.4.2 on page 54,
applied on η = ℘[ψη. Observe that, for a fixed η, if s, s ∈ St, with s 6= s∗ and s 6= s∗,

θ̃s
∗

(s,η)(ρs) = headη(ρ
′
s · ρs) = headη(ρ

′
s · ρs) = θ̃s

∗
(s,η)(ρs), where ρs and ρs are the

unique tracks ending in s∗ and starting in s and s, respectively, while ρ
′
s and ρ

′
s are

the unique tracks such that ρ
′
s · ρs and ρ

′
s · ρs start from ε. Now, for a given Sdf over

Actions θ̃ ∈ SMAc(℘) and a given state s ∈ St, define the set Succϑ,[(s) , {s′ ∈ St :

∃v ∈ Ac[[℘]].tr(s, ϑ(v) ◦ [) = s′}, where ϑ ∈ Ac[[℘]] → AcVr(℘) is a Sdf for ℘ over actions.
Intuitively, the set Succϑ,[(s) defines the set of states that can be reached in one step from s

by prescribing the agents that are bound by [ to an existential variable to move according to
the Sdf ϑ.

At this point, consider the language signature L = 〈Ar,Rl, ar〉 = 〈Ag,AP, ar〉 with
ar(p) = Ag, for all p ∈ AP, where each atomic proposition is viewed as a relation having
the agents as arguments and, so, the decisions as elements of its interpretation. Moreover,
for all sets P ⊆ AP, let maskP =

∧
p∈P p ∧

∧
q∈AP\P ¬q be the FOL[1B] formula asserting

that only the relations in P hold. Finally, for all (s, η) ∈ Φs∗ , consider the FOL[1B] sentence
η∗s = ℘η[η

∨
s∈Succ

θs
∗

(s,η))
(trk(s∗),[η

maskap(s) 7. Clearly, by definition, each η∗s is satisfied by

the relational structureRs∗ =〈Ac, rls∗〉 with rls∗(p) , {δ ∈ Dc : p ∈ ap(tr(s∗, δ)}, where a
relation p is interpreted as true on all decisions that allow s∗ to reach a state in which p holds.
Indeed, for each partial valuation v ∈ Ac[[℘η]], it holds that either s′ = tr(s, headη(s)(v)) ∈
Succheadη(s),[η(s) or s′′ = tr(s, bodyη(trk(s))(v)) ∈ Succbodyη(trk(s)),[η(s), which implies

that eitherRs∗ , headη(s)(v) |= maskap(s′) orRs∗ , bodyη(trk(s))(v) |= maskap(s′′). Hence,
we have that Rs∗ |= η∗s and, since this is true for all (s, η) ∈ Φs∗ , we derive that Rs∗ |=∧

(s,η)∈Φs∗
η∗s .

At this point, from the finite model property of FOL[1B], we derive that there exists a finite
relational structureR′s∗ =〈Dm

′
s∗ , rl

′
s∗〉 such thatR′s∗ |=

∧
(s,η)∈Φs∗

η∗s . Moreover, we define

θ̃
′s∗
(s,η) to be such thatR′s∗ |=

θ̃
′s∗
(s,η)

η∗s . Observe that, in the proof of finite model property for

FOL[1B] [MP14], the bound on Dm
′
s∗ only depends on the quantification and binding prefixes

given in the formulas η∗s , which all occur in ϕ. Thus, the size of Dm
′
s∗ does not depend on η

and, w.l.o.g., we can assume that Dm
′
s∗ = Ac′ for all s∗ ∈ St. Moreover, again from the finite

model property proof of FOL[1B], there exists a function Ms∗ : Dc′ → Dc, with Dc′ = Ac′Ag,

such that, for all (s, η) ∈ Φs∗ and δ′ ∈ rng(θ̃
′s∗
(s,η)), we have that Ms∗(δ

′) ∈ rng(θ̃s
∗

(s,η)), where

θ̃s
∗

(s,η) is the Sdf used to satisfy η∗s onR. At this point, we define a DT T ′ having Ac′ as set of

7By trk(s) we are denoting the unique track starting from ε and ending in s.



actions. In order to define the labeling function ap′, first consider the mapping Γ : St′ → St

recursively defined as follows:

• Γ(ε) = ε;

• Γ(s′ · δ′) = Γ(s′) ·MΓ(s′)(δ
′).

By means of Γ, define ap′(s′) , ap(Γ(s′)) for all s′ ∈ St′. It remains to prove that
T ′ |= ϕ. We do this by using a Sdf θ′ ∈ SMStr′(ε)(℘) defined from the adjoint θ̃′ introduced
in the following.

Let ρ′ be a track in T ′ and consider s′ = lst(ρ′). If (ε, ϕ) ∈ ΦΓ(s′), define θ̃′(ρ′) = θ′s
∗

(s,η).

For all other tracks, the value of θ̃′ may be arbitrary. We now show that T ,∅, ε |=θ′ ϕ,
by induction on the nesting of principal subsentences. As base case, suppose that ϕ has
nesting 0. This implies that it is of the form ℘[ψ with ψ being an LTL formula. Then,
consider a universal assignment χ′ ∈ AsgStr′(ε)([[℘]]) and then the total assignment θ′(χ′).
This determines a play π′ = play(θ′(χ′), ε). Now, consider a universal assignment χ ∈
AsgStr(ε)([[℘]]) such that, for all x ∈ [[℘]] and ρ′ ∈ Trk′(ε), it holds that χ′(x)(ρ′) =

χ(x)(Γ(ρ′)), where Γ is the lifting over tracks of the mapping over states defined above, i.e., by
Γ(ρ′) is the track in T obtained from ρ′ by mapping each state s′ in ρ′ into s = Γ(s′). It holds
that π = play(θ(χ) ◦ [, ε) is such that, for all i ∈ N, (π)≤i = Γ((π′)≤i). Indeed, by induction
on i, as base case, we have that (π)≤0 = ε = Γ(ε) = (π′)≤0. As inductive case, suppose that
(π)≤i = Γ((π′)≤i). Then, (π)i+1 = tr((π)i, θ̃((π)≤i)◦[) = tr(Γ((π′)i), θ̃(Γ((π′)≤i))◦[) =

Γ(tr′((π′)i, θ̃′((π
′)≤i) ◦ [)) = Γ((π′)i+1). Thus, according to the definition of ap′, we have

that ap′((π′)i) = ap((π)i), for all i ∈ N. Since π |= ψ, we derive that π′ |= ψ. This holds
for all possible universal assignments χ′ ∈ Asg

Str′(ε)([[℘]]). Hence, it holds that T ′ |=θ′ ℘[ψ.
The inductive case follows by considering the principal subsentences of ϕ as fresh atomic
propositions. �

2.4.3 Satisfiability procedure

We finally solve the satisfiability problem for SL[1G] and show that it is 2EXPTIME-
COMPLETE, as for ATL?. The algorithmic procedures is based on an automata-theoretic
approach, which reduces the decision problem for the logic to the emptiness problem of a
suitable universal Co-Büchi tree automaton (UCT, for short) [GTW02]. From an high-level
point of view, the automaton construction seems similar to what was proposed the in literature
for CTL? [KVW00] and ATL? [Sch08]. However, our technique is completely new, since it
is based on the novel notions of behavioral semantics and disjoint satisfiability.
Principal sentences. To proceed, we first have to introduce the concept of encoding for an
assignment and the labeling of a DT.

Definition 2.4.5 (Assignment-Labeling Encoding) Let T be a DT, t ∈ StT one of its
states, and χ ∈ AsgT (V, t) a t-total assignment defined on the set V ⊆ Vr. A (ValAcT (V)×
2AP)-labeled DcT -tree T ′ , 〈StT , u〉 is an assignment-labeling encoding for χ on T if
u(lst((ρ)≥1))=(χ̂(ρ), apT (lst(ρ))), for all ρ ∈ TrkT (t) 8.

8Note that lst(ε) = ε.



Observe that there is a unique assignment-labeling encoding for each assignment over a given
DT.

Now, we prove the existence of a UCT UAc
[ψ for each SL[1G] goal [ψ having no principal

subsentences. The UAc
[ψ recognizes all the assignment-labeling encodings T ′ of an a priori

given assignment χ over a generic DT T , whenever the goal is satisfied on T under χ.
Intuitively, we start with a UCW, recognizing all infinite words on the alphabet 2AP that satisfy
the LTL formula ψ, obtained by a simple variation of the Vardi-Wolper construction [VW86].
Then, we run it on the encoding tree T ′ by following the directions identified by the assignment
in its labeling.

Lemma 2.4.1 (SL[1G] Goal Automaton) Let [ψ an SL[1G] goal without principal subsen-
tences and Ac a finite set of actions. Then, there exists an UCT UAc

[ψ , 〈ValAc(free([ψ))×
2AP,Dc,Q[ψ, δ[ψ, q0[ψ,ℵ[ψ〉 such that, for all DT s T with AcT = Ac, states t ∈ StT ,
and t-total assignments χ ∈ AsgT (free([ψ), t), it holds that T , χ, t |= [ψ iff T ′ ∈ L(UAc

[ψ ),
where T ′ is the assignment-labeling encoding for χ on T .

Proof. A first step in the construction of the UCT UAc
[ψ , is to consider the UCW Uψ ,〈2AP,

Qψ, δψ,Qψ,ℵψ〉 obtained by dualizing the NBW resulting from the application of the classic
Vardi-Wolper construction to the LTL formula ¬ψ [VW86]. Observe that L(Uψ) = L(ψ),
i.e., this automaton recognizes all infinite words on the alphabet 2AP that satisfy the LTL
formula ψ. Then, define the components of UAc

[ψ , 〈ValAc(free([ψ)) × 2AP,Dc,Q[ψ, δ[ψ,

q[ψ,ℵ[ψ〉, as follows:

• Q[ψ , {q[ψ} ∪Qψ, with q[ψ 6∈ Qψ;

• δ[ψ(q[ψ, (v, σ)) ,
∧
q∈Qψ

δ[ψ(q, (v, σ)), for all (v, σ) ∈ ValAc(free([ψ))× 2AP;

• δ[ψ(q, (v, σ)),
∧
q′∈δψ(q,σ)(v◦[, q′), for all q∈Qψ and (v, σ) ∈ ValAc(free([ψ))×2AP;

• ℵ[ψ , ℵψ.

Intuitively, the UCT UAc
[ψ simply runs the UCW Uψ on the branch of the encoding individuated

by the assignment in input. Thus, it is easy to see that, for all states t ∈ StT and t-total
assignments χ ∈ AsgT (free([ψ), t), it holds that T , χ, t |= [ψ iff T ′ ∈ L(UAc

[ψ ), where T ′ is
the assignment-labeling encoding for χ on T . �

We now introduce a new concept of encoding regarding the behavioral dependence maps
over strategies.

Definition 2.4.6 (Behavioral Dependence-Labeling Encoding) Let T be a DT, t ∈ StT
one of its states, and θ ∈ BSDFStrT (t)(℘) a behavioral dependence map over strategies
for a quantification prefix ℘ ∈ Qnt(V) over the set V ⊆ Vr. A (SMAcT (℘) × 2AP)-
labeled Dir-tree T ′ , 〈StT , u〉 is a behavioral dependence-labeling encoding for θ on T if
u(lst((ρ)≥1))=(θ̃(ρ), apT (lst(ρ))), for all ρ∈TrkT (t).

Observe that also in this case there exists a unique behavioral dependence-labeling encoding
for each behavioral dependence map over strategies.



Finally, in the next lemma, we show how to locally handle the strategy quantifications
on each state of the model, by simply using a quantification over actions modeled by the
choice of an action dependence map. Intuitively, we guess in the labeling what is the right
part of the dependence map over strategies for each node of the tree and then verify that, for
all assignments of universal variables, the corresponding complete assignment satisfies the
inner formula.

Lemma 2.4.2 (SL[1G] Sentence Automaton) Let ℘[ψ be an SL[1G] principal sentence with-
out principal subsentences and Ac a finite set of actions. Then, there exists an UCT UAc

℘[ψ ,

〈SMAc(℘) × 2AP,Dc,Q℘[ψ, δ℘[ψ, q℘[ψ,ℵ℘[ψ〉 such that, for all DT s T with AcT = Ac,
states t ∈ StT , and behavioral dependence maps over strategies θ ∈ BSDFStrT (t)(℘), it
holds that T , θ(χ), t |=B [ψ, for all χ ∈ AsgT ([[℘]], t), iff T ′ ∈ L(UAc

[ψ ), where T ′ is the
behavioral dependence-labeling encoding for θ on T .

Proof. By Lemma 2.4.1 on the preceding page of SL[1G] goal automaton, there is
an UCT UAc

[ψ , 〈ValAc(free([ψ)) × 2AP,Dc,Q[ψ, δ[ψ, q0[ψ,ℵ[ψ〉 such that, for all DTs T
with AcT = Ac, states t ∈ StT , and assignments χ ∈ AsgT (free([ψ), t), it holds that
T , χ, t |= [ψ iff T ′ ∈ L(UAc

[ψ ), where T ′ is the assignment-labeling encoding for χ on T .
Now, transform UAc

[ψ into the new UCT UAc
[ψ , 〈SMAc(℘) × 2AP,Dc,Q℘[ψ, δ℘[ψ,

q0℘[ψ,ℵ℘[ψ〉, with Q℘[ψ , Q[ψ, q℘[ψ , q[ψ, and ℵ℘[ψ , ℵ[ψ, which is used to han-
dle the quantification prefix ℘ atomically, where the transition function is defined as fol-
lows: δ℘[ψ(q, (θ, σ)) ,

∧
v∈ValAc([[℘]]) δ[ψ(q, (θ(v), σ)), for all q ∈ Q℘[ψ and (θ, σ) ∈

SMAc(℘) × 2AP. Intuitively, UAc
℘[ψ reads an action dependence map θ on each node of the

input tree T ′ labeled with a set of atomic propositions σ and simulates the execution of the
transition function δ[ψ(q, (v, σ)) of UAc

[ψ , for each possible valuation v = θ(v′) on free([ψ)

obtained from θ via a universal valuation v′ ∈ ValAc([[℘]]). It is worth observing that we
cannot move the component set SMAc(℘) from the input alphabet to the states of UAc

℘[ψ by
making a related guessing of the dependence map θ in the transition function, since the
automaton is universal and we have to ensure that all states in a given node of the tree T ′, i.e.,
in each track of the original model T , make the same choice for θ.

Finally, it remains to prove that, for all states t ∈ StT and behavioral dependence maps
over strategies θ ∈ BSDFStrT (t)(℘), it holds that T , θ(χ), t |=B [ψ, for all χ ∈ AsgT ([[℘]], t),
iff T ′ ∈ L(UAc

℘[ψ), where T ′ is the behavioral dependence-labeling encoding for θ on T .
[Only if]. Suppose that T , θ(χ), t |=B [ψ, for all χ ∈ AsgT ([[℘]], t). Since ψ does not

contain principal subsentences, we have that T , θ(χ), t |= [ψ. So, due to the property of UAc
[ψ ,

it follows that there exists an assignment-labeling encoding T ′χ ∈ L(UAc
[ψ ), which implies the

existence of a (Dc×Q[ψ)-tree Rχ that is an accepting run for UAc
[ψ on T ′χ. At this point, let

R ,
⋃
χ∈AsgT ([[℘]],t) Rχ be the union of all runs. Then, due to the particular definition of the

transition function of UAc
℘[ψ, it is not hard to see that R is an accepting run for UAc

℘[ψ on T ′

defined as above. Hence, T ′ ∈ L(UAc
℘[ψ).

[If]. Suppose that T ′ ∈ L(UAc
℘[ψ). Then, there exists a (Dc × Q℘[ψ)-tree R that is an

accepting run for UAc
℘[ψ on T ′. Now, for each χ ∈ AsgT ([[℘]], t), let Rχ be the run for UAc

[ψ

on the assignment-state encoding T ′χ for θ(χ) on T . Due to the particular definition of the



transition function of UAc
℘[ψ, it is not hard to see that Rχ ⊆ R. Thus, since R is accepting, we

have that Rχ is accepting as well. So, T ′χ ∈ L(UAc
[ψ ). At this point, due to the property of

UAc
[ψ , it follows that T , θ(χ), t |= [ψ. Since ψ does not contain principal subsentences, we

have that T , θ(χ), t|=B[ψ, for all χ∈AsgT ([[℘]], t). �
Full sentences. By summing up all previous results, we are now able to solve the satisfiability
problem for the full SL[1G] fragment.

To construct the automaton for a given SL[1G] sentence ϕ, we first consider all UCT UAc
φ ,

for an assigned bounded set Ac, previously described for the principal sentences φ ∈ psnt(ϕ),
in which the inner subsentences are considered as atomic propositions. Then, thanks to the
disjoint satisfiability property of Definition 2.4.3 on page 53, we can merge them into a unique
UCT Uϕ that supplies the dependence map labeling of internal components UAc

φ , by using
the two functions head and body contained into its labeling. Moreover, observe that the final
automaton runs on a b-bounded decision tree, where b is obtained from Theorem 2.4.3 on
page 55 on the bounded-tree model property.

Theorem 2.4.4 (SL[1G] Automaton) Let ϕ be an SL[1G] sentence. Then, there exists an
UCT Uϕ such that ϕ is satisfiable iff L(Uϕ) 6= ∅.

Finally, by a simple calculation of the size of Uϕ and the complexity of the related
emptiness problem, we state in the next theorem the precise computational complexity of the
satisfiability problem for SL[1G].

Theorem 2.4.5 (SL[1G] Satisfiability) The satisfiability problem for SL[1G] is 2EXPTIME-
COMPLETE.

Proof. By Theorem 2.4.4 of SL[1G] automaton, to verify whether an SL[1G] sentence ϕ
is satisfiable we can calculate the emptiness of the UPT Uϕ. This automaton is obtained by
merging all UCTs UAc

φ , with φ = ℘[ψ ∈ psnt(ϕ), which in turn are based on the UCTs UAc
[ψ

that embed the UCWs Uψ. By a simple calculation, it is easy to see that Uϕ has 2O(|ϕ|) states.
Now, by using a well-known nondeterminization procedure for APTs [MS95], we obtain

an equivalent NPT Nϕ with 22O(|ϕ|)
states and index 2O(|ϕ|).

The emptiness problem for such a kind of automaton with n states and index h is solvable
in time O(nh).Thus, we get that the time complexity of checking whether ϕ is satisfiable
is 22O(|ϕ|)

. Hence, the membership of the satisfiability problem for SL[1G] in 2EXPTIME

directly follows. Finally the thesis is proved, by getting the relative lower bound from the
same problem for CTL? [VS85]. �



CHAPTER 3

Synthesis

The chapter is organized as follows. In Section 3.1 we provide the basic notions and formal
definitions of rational synthesis. Then, in Section 3.2 we introduce and solve the problem
of qualitative rational synthesis, showing that it is in 2EXPTIME-COMPLETE. Finally, in
Section 3.3 we address also a quantitative variant of rational synthesis, proving that it is in
2EXPTIME-COMPLETE, as well as the qualitative case.

3.1 Rational synthesis

We define two variants of rational synthesis. The first, cooperative rational synthesis, was
introduced in [FKL10]. The second, non-cooperative rational synthesis, was introduced
in [KPV14].

We work with the following model: the world consists of a system and an environment
composed of k agents: α, . . . , αk. For uniformity, we refer to the system as Agent α. We
assume that Agent αi controls a set Xi of propositions, and the different sets are pairwise
disjoint. At each point in time, each agent sets his propositions to certain values. Let
X =

⋃
0≤i≤k Xi, and X−i = X \Xi. Each agent αi (including the system) has an objective

ϕi, specified as an LTL formula over X.
This setting induces the CGS G = 〈AP,Ag,Ac, St, tr, ap, s〉 defined as follows. The

set of agents Ag = {α, α, . . . , αk} consists of the system and the agents that constitute the
environment. The actions of Agent αi are the possible assignments to its variables. Thus,
Aci = 2Xi . We use Ac and Ac−i to denote the sets 2X and 2X−i , respectively. The nodes of
the game record the current assignment to the variables. Hence, St = Ac, and for all s ∈ St

and〈c0, . . . , ck〉 ∈ Ac ×Ac × · · · ×Ack, we have δ(s, c0, . . . , ck) =〈c0, · · · , ck〉.
A strategy for the system is a function f : Trk→ Ac. In the standard synthesis problem,

we say that f realizes ϕ0 if, no matter which strategies the agents composing the environment
follow, all the paths in which the system follows f satisfy ϕ0. In rational synthesis, on
instead, we assume that the agents that constitute the environment are rational, which soften
the universal quantification on the behavior of the environment.

Recall that the rational-synthesis problem gets a solution concept as a parameter. As
discussed in the introduction, the fact that a strategy profile is a solution with respect to
the concept guarantees that it is not worthwhile for the agents constituting the environment
to deviate from the strategies assigned to them. Several solution concepts are studied and
motivated in game theory. Here, we focus on the concepts of dominant strategy and Nash
equilibrium, defined below.

The common setting in game theory is that the objective for each agent is to maximize
his payoff – a real number that is a function of the outcome of the game. We use payoffi :
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Figure 3.1: A game.

Pth→ R to denote the payoff function of Agent αi. That is, payoffi assigns to each possible
path π a real number payoffi(π) expressing the payoff of αi on π. For a strategy profile P, we
use payoffi(P) to abbreviate payoffi(play(P, s)). In the case of an LTL goal ψi, we define
payoffi(π) = 1 if π |= ψi and payoffi(π) = 0, otherwise.

The simplest and most appealing solution concept is dominant-strategies solution [OR94].
A dominant strategy is a strategy that an agent can never lose by adhering to, regardless of the
strategies of the other agents. Therefore, if there is a profile of strategies P =〈f, . . . , fk〉 in
which all strategies fi are dominant, then no agent has an incentive to deviate from the strategy
assigned to him in P. Formally, P is a dominant strategy profile if for every 1 ≤ i ≤ k and for
every (other) profile P′, we have that payoffi(P′) ≤ payoffi(P′[i← fi]).

As an example, consider the game in Figure 3.1, played by three agents, Alice, Bob, and
Charlie, whose actions are {a, a}, {b, b}, and {c, c}, respectively. The arrows are
labeled with the possible action of the agents. Each agent wants to visit a state marked with
his initial letter, infinitely often. In this game, the strategy for Bob of always choosing b
on his node 2 is dominant, while all the possible strategies for Charlie are dominant. On
the other hand, Alice has no dominant strategies, since her goal essentially depends on the
strategies adopted by the other agents. In several games, it can happen that agents have not any
dominant strategy. For this reason, one would consider also other kind of solution concepts.

Another well known solution concept is Nash equilibrium [OR94]. A strategy profile is
a Nash equilibrium if no agent has an incentive to deviate from his strategy in P provided
that the other agents adhere to the strategies assigned to them in P. Formally, P is a Nash
equilibrium profile if for every 1 ≤ i ≤ k and for every (other) strategy f ′i for agent αi, we
have that payoffi(P[i← f ′i]) ≤ payoffi(P). An important advantage of Nash equilibrium is
that it is more likely to exist than an equilibrium of dominant strategies [OR94] 1. A weakness
of Nash equilibrium is that it is not nearly as stable as a dominant-strategy solution: if one of
the other agents deviates from his assigned strategy, nothing is guaranteed.

For the case of repeated-turn games like infinite games, a suitable refinement of Nash
Equilibria is the Subgame perfect Nash-equilibrium [Sel75] (SPE, for short). A strategy
profile P = 〈f, . . . , fk〉 is an SPE if for every possible history of the game, no agent αi
has an incentive to deviate from her strategy fi, assuming that the other agents follow their
strategies in P. Intuitively, an SPE requires the existence of a Nash Equilibrium for each
subgame starting from a randomly generated finite path of the original one. In [FKL10], the
authors have studied cooperative rational synthesis also for the solution concept of SPE. To

1In particular, all k-agent turn-based games with ω-regular objectives have Nash equilibrium [CMJ04].



do this, the synthesis algorithm in [FKL10] was extended to consider all possible histories of
the game. In SL such a path property can be expressed combining strategy quantifiers with
temporal operators. Indeed, the formula ϕ = [[~x]][(~x)Gψ(~y), with free(ϕ) = ~y, states that,
for all possible profile strategies the agents can follow, the game always reaches a position in
which the formula ψ(~y) holds. Thus, for all possible paths that can be generated by agents,
the property holds. By replacing ψ(~y) with the above formula, we then obtain a formula
that represents SPEs. Hence, the cooperative and non-cooperative synthesis problems can be
asserted in SL also for SPE, and our results hold also for this solution concept.

In rational synthesis, we control the strategy of the system and assume that the agents
that constitute the environment are rational. Consider a strategy profile P =〈f, . . . , fk〉 and
a solution concept γ (that is, γ is either “dominant strategies” or “Nash equilibrium”). We
say that P is correct if play(P) satisfies ϕ0. We say that P is in a f-fixed γ-equilibrium
if the agents composing the environment have no incentive to deviate from their strategies
according to the solution concept γ, assuming that the system continues to follow f. Thus, P

is a f-fixed dominant-strategy equilibrium if for every 1 ≤ i ≤ k and for every (other) profile
P′ in which Agent 0 follows f, we have that payoffi(P′) ≤ payoffi(P′[i← fi]). Note that for
the case of Nash equilibrium, adding the requirement that P is f-fixed does not change the
definition of an equilibrium.

In the context of objectives in LTL, we assume the following simple payoffs. If the
objective ϕi of Agent αi holds, then his payoff is 1, and if ϕi does not hold, then the payoff
of Agent i is 0. Accordingly, P = 〈f, . . . , fk〉 is in a dominant-strategy equilibrium if
for every 1 ≤ i ≤ k and profile P′ = 〈f′, . . . , fk ′〉 with f ′0 = f, if play(P′) |= ϕi, then
play(P′[i← fi]) |= ϕi. Also, P is in a Nash-equilibrium if for every 1 ≤ i ≤ k and strategy
f ′i, if play(P[i← f ′i]) |= ϕi, then play(P) |= ϕi.

Definition 3.1.1 (Rational synthesis) The input to the rational-strategy problem is a set X

of atomic propositions, partitioned into X, . . . ,Xk, LTL formulas ϕ0, . . . , ϕk, describing
the objectives of the system and the agents composing the environment, and a solution concept
γ. We distinguish between two variants of the problem:

1. In Cooperative rational synthesis [FKL10], the desired output is a strategy profile P

such that play(P) satisfies ϕ0 and P is a f-fixed γ-equilibrium.

2. In Non-cooperative rational synthesis, the desired output is a strategy f for the system
such that for every strategy profile P that includes f and is a f-fixed γ-equilibrium,
we have that play(P) satisfies ϕ0.

Thus, in the cooperative variant of [FKL10], we assume that once we suggest to the
agents in the environment strategies that are in a γ-equilibrium, they will adhere to the
suggested strategies. In the non-cooperative variant we introduce here, the agents may follow
any strategy profile that is in a γ-equilibrium, and thus we require the outcome of all these
profiles to satisfy ϕ0. It is shown in [FKL10] that the cooperative rational synthesis problem
is 2EXPTIME-COMPLETE.

Note that the input to the rational synthesis problem may not have a solution, so when
we solve the rational-synthesis problem, we first solve the rational-realizability problem,



which asks if a solution exists. As with classical synthesis, the fact that SL model-checking
algorithms can be easily modified to return a regular witness for the involved strategies in
case an existentially quantified strategy exists, makes the realizability and synthesis problems
strongly related.

Example 3.1.1 Consider a file-sharing network with the system and an environment consist-
ing of two agents. The system controls the signal d and d (Agent α and α can download,
respectively) and it makes sure that an agent can download only when the other agent uploads.
The system’s objective is that both agents will upload infinitely often. Agent α controls the
signal u (Agent α uploads), and similarly for Agent α and u. The goal of both agents is
to download infinitely often.

Formally, the set of atomic propositions is X = {d, d, u, u}, partitioned into X0 =

{d, d}, X1 = {u}, and X2 = {u}. The objectives of the system and the environment are
as follows.

• ϕ0 = G(¬u → ¬d) ∧ G(¬u → ¬d) ∧ GFu ∧ GFu,

• ϕ1 = GFd,

• ϕ2 = GFd.

First, note that in standard synthesis, ϕ0 is not realizable, as a hostile environment needs
not upload. In the cooperative setting, the system can suggest to both agents the following
TIT FOR TAT strategy: upload at the first time step, and from that point onward upload iff
the other agent uploads. The system itself follows a strategy f according to which it enables
downloads whenever possible (that is, d is valid whenever Agent α uploads, and d is
valid whenever Agent α uploads). It is not hard to see that the above three strategies are
all dominant. Indeed, all the three objectives are satisfied. Thus, the triple of strategies is a
solution for the cooperative setting, for both solution concepts.

What about the non-cooperative setting? Consider the above strategy f of the system,
and consider strategies for the agents that never upload. The tuple of the three strategies is in
a f-fixed Nash equilibrium.

This ensures strategies for the environment to be dominant. Indeed, if Agent α changes
her strategy, ϕ1 is still satisfied and vice-versa. Indeed, as long as Agent α sticks to his
strategy, Agent α has no incentive to change his strategy, and similarly for Agent α. Thus,
f is not a solution to the non-cooperative rational synthesis problem for the solution concept
of Nash equilibrium. On the other hand, we claim that f is a solution to the non-cooperative
rational synthesis problem for the solution concept of dominant strategies. For showing
this, we argue that if f and f are dominant strategies for α and α, then ϕ0 is satisfied
in the path that is the outcome of the profile P = 〈f, f, f〉. To see this, consider such a
path π = play(f, f, f). We necessarily have that π |= ϕ1 ∧ ϕ2. Indeed, otherwise f and
f would not be dominant, as we know that with the strategies described above, α and α
can satisfy their objectives. Now, since π |= ϕ1 ∧ ϕ2, we know that u and u hold infinitely
often in π. Also, it is not hard to see that the formulas G(¬u → ¬d) and G(¬u → ¬d)
are always satisfied in the context of f, no matter how the other agents behave. It follows that
π |= ϕ0, thus f is a solution of the non-cooperative rational synthesis problem for dominant
strategies.



3.2 Qualitative Rational Synthesis

In this section we study cooperative and non-cooperative rational synthesis and show that
they can be reduced to the model-checking problem for SL[NG]. The cooperative and non-
cooperative rational synthesis problems for several solution concepts can be stated in SL[NG].

We first show how to state that a given strategy profile ~y = (y0, . . . , yk) is in a
y-fixed γ-equilibrium. For αi ∈ Ag, let ϕi be the objective of Agent αi. More-
over, for a given strategy profile ~y, by [(~y) = (α, y) . . . (α, yn) we denote the bind-
ing prefix assigning each strategy to the corresponding agent, and by [(~y−i, zi)]) =

(α, y) . . . (α, yi−)(α, zi)(α, yi+) . . . (α, yn) we denote the binding prefix assigning the
each strategy to the corresponding agent but α, to which it assigns the strategy zi. For a
solution concept γ and a strategy profile ~y = (y0, . . . , yk), the formula ϕγ(~y), expressing that
the profile ~y is a y0-fixed γ-equilibrium, is defined as follows.

• For the solution concept of dominant strategies, we define:

ϕγ(~y) := [[~z]]
∧k
i=1 ([(~z)ϕi → [(~z−i, yi)])ϕi).

• For the solution concept of Nash equilibrium, we define:

ϕγ(~y) := [[~z]]
∧k
i=1 ([(~y−i, zi)ϕi → [(~y)ϕi).

• For the solution concept of Subgame Perfect Equilibrium, we define:

ϕγ(~y) := [[~x]][(~x−0, y)F
∧k
i=1 [[zi]][(~y−i, zi)ϕi → [(~y)ϕi.

We can now state the existence of a solution to the cooperative and non-cooperative
rational-synthesis problem, respectively, with input ϕ0, . . . , ϕk by the closed formulas:

1. ϕγcRS := 〈〈y〉〉〈〈y〉〉 . . . 〈〈yk〉〉(ϕγ(~y) ∧ ϕ0);

2. ϕγnoncRS := 〈〈y〉〉[[y]] . . . [[yk]](ϕγ(~y)→ ϕ0).

Indeed, the formula 1 specifies the existence of a strategy profile P = 〈f, . . . , fk〉 that is
f-fixed γ-equilibrium and such that the outcome satisfies ϕ0. On the other hand, the formula 2
specifies the existence of a strategy f for the system such that the outcome of all profiles that
are in a f-fixed γ-equilibrium satisfy ϕ0.

As shown above, all the solution concepts we are taking into account can be specified in
SL[NG] with formulas whose length is polynomial in the number of the agents and in which
the alternation depth of the quantification is 1. Hence we can apply the known complexity
results for SL[NG]:

Theorem 3.2.1 (Cooperative and non-cooperative rational-synthesis complexity) The
cooperative and non-cooperative rational-synthesis problems in the qualitative setting are
2EXPTIME-complete.

Proof. Consider an input ϕ0, . . . , ϕk, X, and γ to the cooperative or non-cooperative
rational-synthesis problem. As explained in Section 3.1, the input induces a game G with
nodes in 2X . As detailed above, there is a solution to the cooperative (resp., non-cooperative)



problem iff the SL[NG] formula ϕγcRS (resp., ϕγnoncRS) is satisfied in G. The upper bound then
follows from the fact that the model checking problem for SL[NG] formulas of alternation
depth 1 is in 2EXPTIME in the size of the formula (Cf., Theorem 2.3.4 on page 47). Moreover,
the model-checking algorithm can return finite-state transducers that model strategies that are
existentially quantified.

For the lower bound, it is easy to see that the classical LTL synthesis problem is a special
case of the cooperative and non-cooperative rational synthesis problem. Indeed, ϕ(I,O)

is realizable against a hostile environment iff the solution to the non-cooperative rational
synthesis problem for a system that has an objective ϕ and controls I and an environment that
consists of a single agent that controls O and has an objective True, is positive. �

3.3 Quantitative Rational Synthesis

As discussed in this chapter introduction, a weakness of classical synthesis algorithms is the
fact that specifications are Boolean and miss a reference to the quality of the satisfaction.
Applications of game theory consider games with quantitative payoffs. Thus, even more than
the classical setting, the rational setting calls for an extension of the synthesis problem to a
quantitative setting. In this section we introduce Objective LTL, a quantitative extension of
LTL, and study an extension of the rational-synthesis problem for specifications in Objective
LTL. As opposed to other multi-valued specification formalisms used in the context of
synthesis of high-quality systems [BCHJ09, ABK13], Objective LTL uses the syntax and
semantics of LTL and only augments the specification with a reward function that enables a
succinct and convenient prioritization of sub-specifications.

Objective LTL (OLTL, for short) is an extension of LTL in which specifications consist
of sets of LTL formulas weighted by functions. Formally, an OLTL specification over a set
X of atomic propositions is a pair θ =〈Ψ, f〉, where Ψ =〈ψ1, ψ2, . . . , ψm〉 is a tuple of LTL
formulas over X and f : {0, 1}m → Z is a reward function, mapping Boolean vectors of length
m to integers. We assume that f is given by a polynomial. We use |Ψ| to denote

∑m
i=1 |ψi|.

For a computation π ∈ (2X)ω, the signature of Ψ in π, denoted sig(Ψ, π), is a vector in
{0, 1}m indicating which formulas in Ψ are satisfied in π. Thus, sig(Ψ, π) =〈v, v, . . . , vm〉
is such that for all 1 ≤ i ≤ m, we have that vi = 1 if π |= ψi and vi = 0 if π 6|= ψi. The
value of θ in π, denoted val(θ, π) is then f(sig(Ψ, π)). Thus, the interpretation of an OLTL
specification is quantitative. Intuitively, val(θ, π) indicates the level of satisfaction of the LTL
formulas in Ψ in π, as determined by the priorities induced by f. We note that the input of
weighted LTL formulas studied in [CY98] is a special case of Objective LTL.

Example 3.3.1 Consider a system with m buffers, of capacities c, . . . , cm. Let fulli,
for 1 ≤ i ≤ m, indicate that buffer i is full. The OLTL specification θ = 〈Ψ, f〉, with
Ψ =〈Ffull1, Ffull2, . . . , Ffullm〉 and f(v) = c · v + · · ·+ cm · vm enables us to give
different satisfaction values to the objective of filling a buffer. Note that val(〈Ψ, f〉, π) in a
computation π is the sum of capacities of all filled buffers.

In the quantitative setting, the objective of Agent α is given by means of an OLTL
specification θi =〈Ψi, fi〉, specifications describe the payoffs to the agents, and the objective



of each agent (including the system) is to maximize his payoff. For a strategy profile P, the
payoff for Agent α in P is simply val(θi, play(P)).

In the quantitative setting, rational synthesis is an optimization problem. Here, in order to
easily solve it, we provide a decision version by making use of a threshold. It is clear that the
optimization version can be solved by searching for the best threshold in the decision one.

Definition 3.3.1 (Quantitative rational synthesis) The input to the quantitative rational-
strategy problem is a set X of atomic propositions, partitioned into X, . . . ,Xk, OLTL
specifications θ0, θ1, . . . , θk, with θi = 〈Ψi, fi〉, and a solution concept γ. We distinguish
between two variants of the problem:

1. In cooperative quantitative rational synthesis, the desired output for a given threshold
t ∈ N is a strategy profile P such that payoff0(P) ≥ t and P is in a f-fixed γ-
equilibrium.

2. In non-cooperative quantitative rational synthesis, the desired output for a given thresh-
old t ∈ N is a strategy f for the system such that, for each strategy profile P including
f and being in a f-fixed γ-equilibrium, we have that payoff0(P) ≥ t.

Now, we introduce some auxiliary formula that helps us to formulate also the quantitative
rational-synthesis problem in SL[NG].

For a tuple Ψ = 〈ψ1, . . . , ψm〉 of LTL formulas and a signature v = {v, . . . , vm} ∈
{0, 1}m, let mask(Ψ, v) be an LTL formula that characterizes computations π for which
sig(Ψ, π) = v. Thus, mask(Ψ, v) = (

∧
i:vi=0 ¬ψi) ∧ (

∧
i:vi=1 ψi).

We adjust the SL formulas Φγ(~y) described in Section 3.2 on page 65 to the quantitative
setting. Recall that Φγ(~y) holds iff the strategy profile assigned to ~y is in a f-fixed γ-
equilibrium. There, the formula is a conjunction over all agents in {α, . . . , α}, stating that
Agent α does not have an incentive to change his strategy. In our quantitative setting, this
means that the payoff of Agent α in an alternative profile is not bigger than his payoff in ~y.
For two strategy profiles, assigned to ~y and ~y′, an SL formula that states that Agent α has
no incentive that the profile would change from ~y to ~y′ can state that the signature of Ψ in
play(~y′) results in a payoff to Agent α that is smaller than his current payoff. Formally, we
have that:

Φeq
i (~y, ~y′) =

∨
v∈{1,...,mi}:fi(v)≤payoffi(~y) [(~y

′)mask(Ψi, v).

We can now adjust Φγ(~y) for all the cases of solution concepts we are taking into account.

• For the solution concept of dominant strategies, we define:

Φγ(~y) :=
∧
i∈{1,...,n} [[~z]]Φeq

i (~y, (~z[α← y]);

• For the solution concept of Nash equilibrium, we define:

Φγ(~y) :=
∧
i∈{1,...,n} [[~z]]Φeq

i (~y, (~y[α← zi]);

• For the solution concept of Subgame Perfect Equilibrium, we define:

ϕγ(~y) := [[~x]][(~x[α← y])F
∧
i∈{1,...,n} [[~z]]Φeq

i (~y, (~z[α← y0])).



Once we adjust Φγ(~y) to the quantitative setting, we can use the same SL formula used
in the non-quantitative setting to state the existence of a solution to the rational synthesis
problem. We have the following:

• Φγ
RS := 〈〈y〉〉〈〈y〉〉 . . . 〈〈yk〉〉(Φγ(~y) ∧ ϕ0);

• Φγ
nonRS := 〈〈y〉〉[[y]] . . . [[yk]](Φγ(~y)→ ϕ0).

Theorem 3.3.1 The cooperative and non-cooperative quantitative rational-synthesis prob-
lems are 2EXPTIME-COMPLETE.

Proof. We can reduce the problems to the model-checking problem of the SL formulas
Φγ
RS and Φγ

nonRS , respectively. We should, however, take care when analyzing the complexity
of the procedure, as the formulas Φeq

i (~y, ~y′), which participate in Φγ
RS and Φγ

nonRS involve a
disjunction over vectors in {0, 1}mi , resulting in Φγ

nonRS of an exponential length.
While the above prevents us from using the doubly exponential known bound on SL

model checking for formulas of alternation depth 1 as is, it is not difficult to observe that the
run time of the model-checking algorithm in [MMPV14], when applied to Φγ

nonRS , is only
doubly exponential. The reason is the fact that the inner exponent paid in the algorithm for SL
model checking is due to the blow-up in the translation of the formula to a nondeterministic
Büchi automaton over words (NBW, for short). In this translation, the exponentially many
disjuncts are dominated by the exponential translation of the innermost LTL to NBW. Thus,
the running time of the algorithm is doubly exponential, and it can return the witnessing
strategies.

Hardness in 2EXPTIME follows easily from hardness in the non-quantitative setting.
�



CHAPTER 4

Pushdown ATL?

The chapter is organized as follows. In Section 4.1 we introduce the definition of PGS, where
we also provide an example that helps clarifying the setting. There, we also show how a PGS
can be embedded into a (infinite-state) CGS. In Section 4.2 we recall the syntax and the
semantics of ATL? over CGSs and then, exploiting the results in the previous section, we
define the model-checking problem of ATL? over PGSs. Finally, in Section 4.3 we show
that this problem can be solved in 3EXPTIME by means of an automata-theoretic approach.
There, we also show a 2EXPSPACE-HARD lower-bound.

4.1 Pushdown Games

Classically, ATL? formulas are interpreted over Concurrent Game Structures [AHK02]. Here,
we instead interpret ATL? formulas over a new semantic framework, which we call Pushdown
Game Structure. Intuitively, this new formalism provides a concurrent game structure in
which a stack is added and the labeling and transition functions depend on its content. In this
section, we also show that every pushdown game structure can be transformed into a suitable
concurrent game structure, so providing the required interpretation of ATL? formulas over
the former. However, note that the latter requires a infinite number of states, used to represent
all the possible configurations the pushdown system can enter. We start with the definition of
pushdown game structures.

Definition 4.1.1 (Pushdown Game Structure) A Pushdown Game Structure (PGS, for
short) is a tuple P = 〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉, where AP, Ag, Ac, Loc and Γ are
finite sets of atomic propositions, agents, actions, locations, and stack alphabet, respectively,
l ∈ Loc is an initial location, and ap : Loc × Γ⊥ → 2AP is a labeling function, where
Γ⊥ = Γ ∪ {⊥} and ⊥ is the special bottom stack symbol not contained in Γ. Let Dc , AcAg

be the set of decisions, i.e., functions from Ag to Ac representing the action choices for each
agent. Then, tr : Loc× Γ⊥ ×Dc→ Loc× Γ∗⊥ is a transition function mapping a location, a
stack symbol, and a decision to a location and a word in the stack alphabet.

A pair s = (l, α) ∈ St , Loc × (Γ∗ · {⊥}) is called state or configuration. We write
top(α) for the left most symbol of α and call it the top of the stack content α. The PGS
moves according to the transition function. This means that, if it is in the location l, the top of
the stack content is γ, and the agents make a decision δ, then tr(l, γ, δ) = (l′, α) means that
the execution moves to the location l′ and the symbol γ is replaced with α on the top of the
stack content. We assume that, if ⊥ is popped, then it is pushed right back, and that is the
only case in which it is pushed. This means that ⊥ is always on the bottom of the stack and
nowhere else. The stack containing only the symbol ⊥ is said to be empty.



As the stack has no a priori bound on its size, the set St is assumed to be possibly infinite.
Saying this, it turns out that PGSs are infinite-state multi-agent systems.

The notion of labeling and transition can be lifted to states, as follows. For a state
s = (l, α), we define ap(s) = ap(l, top(α)). Moreover, for a decision δ ∈ Dc, we define
tr((l, γ · α), δ) = (l′, β · α), with (l′, β) = tr(l, γ, δ).

l, β

lun, β

lun,⊥

l,⊥

la, α lb, α

a ∗ ∗; ε b ∗ ∗; ε

a ∗ ∗; ε b ∗ ∗; εun ∗ ∗; ε

∗1∗; push(ra)
∗0∗; ε

∗ ∗ 1; push(rb)
∗ ∗ 0; ε

∗∗∗; pop

∗∗∗; pop

∗ ∗ ∗; ε

Figure 4.1: A Pushdown system scheduler.

Note that for a classical pop we
write the empty word ε on the stack.
To make a classical push one has to
first put back the read top symbol
and then push the required word.
The transition function also allows
to perform in one step a pop-push
operation that replaces the top stack
symbol with the required word. To
get familiar with PGSs, we give an
example.

Example 4.1.1 (Pushdown scheduler) Take a system consisting of two processes a and b

that may access to a common resource via the respective requests ra and rb and a scheduler
s that can grant in a LIFO order the processes requests, all memorized into a stack. As model
we use a PGS P = 〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉, with AP = {ra, rb, ga, gb, a, b, e},
Ag = {s, a, b}, Ac = {a, b, un, 0, 1}, Loc = {l, la, lb, lun}, and Γ = {ra, rb}. The
scheduler s controls the location l by means of the actions a, b, and un, standing for “a can
make a request”, “b can make a request”, and “the system can unload the stack requests”,
respectively. Accordingly, they lead to the locations la, lb, and lun. On la and lb, the agents
a and b, respectively, can either make a request via action 1 or skip it with action 0. In the
former case, the request is recorded into the stack by writing the symbol rx, for x ∈ {a, b};
otherwise, in the latter case there is no operation over the stack. Finally, the location lun
triggers the granting phase by emptying the stack. During this phase, neither a nor b can
make any further request. This can be seen as a legitimate constraint by thinking how classical
synchronizing and backup systems are designed.

The labeling function, for all γ ∈ Γ⊥ and x ∈ {a, b}, is defined as follows: ap(l,⊥) = ∅,
ap(l, rx) = {x}, ap(lx, γ) = {x}, ap(lun, rx) = {gx}, and ap(lun,⊥) = {e}. Intuitively,
propositions a and b means that agents a and b are authorized to make a request, respectively.
The proposition rx, instead, occurs when the corresponding request has been just made by
agent x. On the other hand, the proposition gx occurs when the request rx has been just
granted. Finally, e indicates that the unloading phase is terminated and so the stack is empty.

The transition function tr is described directly in Figure 4.1. The labeling of the edges
have the following meaning. First, note that it is composed of two parts separated by a
semi-column. The left part represents the decision of the agents, given in the order s < a < b.
The right part represents the stack operation. As an example, the label ∗1∗; push(ra) says
that agent a is making a request ra and the symbol ra is pushed on the stack, where the
symbol ∗ denotes any possible action for the other agents. The nodes represent all possible
states. Note that, for the locations la and lb we have collapsed the two possible configurations



with β = ⊥ and β 6= ⊥ since the transition over them does not depend on the stack content.
Finally, observe that the stack is unbounded and so an execution might generate an infinite
number of distinguished states. Also, observe that the stack is fundamental to keep track of
the order in which the requests appear.

Clearly, a PGS P =〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉 can be suitably turned into a CGS
GP =〈AP,Ag,Ac, St, tr, ap, s〉, where St = Loc×Γ∗⊥, s = (l,⊥), and the functions ap

and tr are the lifting on states of the corresponding functions in P . Intuitively, the states of G
are used to implicitly represent both the current location and store the stack content. Despite
this, it is important to observe that, while a PGS has a finite number of control locations, the
corresponding CGS necessarily has an infinite number of control states, as the number of
different stack contents is unbounded.

4.2 ATL? over pushdown systems

In this section, we recall the syntax of ATL? and introduce its semantics over PGS via its
representation in terms of CGS (with infinite states). We start with the definition of ATL?

syntax.

Definition 4.2.1 (ATL? Syntax) ATL? formulas are built inductively from the set of atomic
propositions AP and agents Ag, by using the following grammar, where p ∈ AP and A ⊆ Ag:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈A〉〉ϕ.

A sentence is a Boolean combination of ATL? formulas of the form 〈〈A〉〉ψ. Intuitively,
〈〈A〉〉ψ means that each agent in A has a strategy such that, whatever the other agents do, the
resulting play satisfies ψ.

We now provide some examples of ATL? formulas that will be useful in the sequel.
Precisely, we consider ϕ1 = 〈〈{s}〉〉(GFa ∧ GFb ∧ GFe), ϕ2 = 〈〈∅〉〉(GFa ∧ GFb ∧ GFe)

and ϕ3 = 〈〈∅〉〉((ra ∧ X(¬eUrb)) → (Fgb → XFga)) over the sets AP and Ag given in
Example 4.1.1 on the preceding page. The formula ϕ1 states that agent s has a way to let
propositions a, b, and e to occur infinitely often. The formula ϕ2 states that, no matters how
the agents behave, propositions a, b, and e occur infinitely often. Finally, the formula ϕ3

states that, whenever a request rb occurs after an ra one in the same loading phase, then, if rb
is eventually granted, then ra is granted later on as well.

We now provide the semantics of ATL?.

Definition 4.2.2 (ATL? Semantics) For a CGS G =〈AP,Ag,Ac,St, tr, ap, s〉 and a path
π ∈ Pth, the modeling relation G, π |= ϕ is inductively defined as follows:

• The atomic and boolean cases are defined as usual;

• G, π |= 〈〈A〉〉ϕ if there is an assignment χA such that G, π′ |= ϕ, for all π′ ∈
play(χA, (π)0);

• G, π |= Xϕ if G, (π)≥1 |= ϕ;



• G, π |= ϕ1Uϕ2 if there exists j ∈ N such that G, (π)≥i |= ϕ1, for all i < j, and
G, (π)≥j |= ϕ2.

For a sentence ϕ and two paths π, π with (π)0 = (π)0, it holds that G, π |= ϕ iff
G, π |= ϕ. Indeed, according to the semantics of the existential quantification 〈〈A〉〉ψ, the
only element of the path to take into account is the first one. For this reason, for a sentence ϕ
we write G, s |= ϕ if G, π |= ϕ for some π ∈ Pth(s). Finally, we say that G satisfies ϕ, and
write G |= ϕ, if G, s |= ϕ.

To get familiar with the semantics, consider the PGS P given in Example 4.1.1 on page 70
and the formulas ϕ1, ϕ2, and ϕ3 given above. It is easy to see that GP |= ϕ1. Indeed, the
strategy f that allows the scheduler to pick infinitely often the actions a, b, and un, makes
all the generated paths to satisfy GFa ∧ GFb ∧ GFe. On the other hand, it is easy to see that
GP 6|= ϕ2. Indeed, the strategy f for s such that f(ρ) = a, for all ρ ∈ Trk, never makes b
and e to occur in the generated paths. Finally, the formula ϕ3 simply states that, whatever the
three agents in the system do, the unloading phases always grant the requests in the reverse
order they occur.

Definition 4.2.3 (Model-checking) For a given PGS P and an ATL? formula ϕ, the model-
checking problem is to decide whether GP |= ϕ.

4.3 Model Checking

In this section, we provide a 3EXPTIME upper-bound and a 2EXPSPACE lower-bound for the
model-checking problem of ATL? over PGS.

4.3.1 Upper-bound Complexity

For the upper bound we use an automata-theoretic approach. We start with some notation and
the definition of nondeterministic pushdown automata. See [KPV02, KVW00] for more.

For a given set D ⊆ N, a D-tree T is a prefix closed subset of D∗, i.e., a set in which, if
x · d ∈ T then x ∈ T. The elements of T are called nodes and the empty word ε is called the
root of T. For x ∈ T, the set of children of x is children(T, x) , {x · i ∈ T : i ∈ D}. For
x, y ∈ T, we write x ≺ y to mean that x is a proper prefix of y, i.e., there exists z ∈ D∗ such
that x · z = y. For x ∈ T, a path in T from x is a minimal set π ⊆ T such that x ∈ π and
for each y ∈ π such that children(T, y) 6= ∅, there exist exactly one node in children(T, y)

belonging to π. For an alphabet Σ, a Σ-labeled tree is a pair T =〈T,V〉 where T is a tree and
V : T→ Σ maps each node in T to an element in Σ. In the following, we mainly consider Σ

to be the set power set 2AP of atomic propositions AP.
A Nondeteriministic Pushdown Tree Automata (PD-NTA, for short), over Σ-labeled

trees, is a tuple A =〈Σ,Γ,Q, q, α0, δ,F〉, where Σ and Γ are finite input and stack alphabet
sets, Q is a finite set of states, q is an initial state, α0 ∈ Γ∗ · ⊥ is an initial stack content,
δ : Q×Σ×Γ⊥ → 22(Q×Γ∗)

is a transition function such that, for all (q, σ, γ) ∈ Q×Σ×Γ⊥,
δ(q, σ, γ) is a finite set, and F is an acceptance condition over Q.



When the automaton is in a state q, reading an input node x labeled with σ ∈ Σ, and the
stack contains a word γ ·α in Γ∗⊥, it chooses, for some k ∈ N, a tuple〈(q, β1), . . . , (qk, βk)〉 ∈
δ(q, σ, γ) and splits in k copies such that, for each 1 ≤ i ≤ k, the i-th copy is in the state qi
and the stack content is updated by removing γ and pushing βi. Then, it reads the node x · i.

A run of a PD-NTA on a Σ-labeled tree T = 〈T,V〉 is a (Q × Γ∗⊥)-labeled tree 〈T,
r〉 such that r(ε) = (q, α0) and for each x ∈ T with r(x) = (q, γ · α), there is a tuple
〈(q, β1), . . . , (qk, βk)〉 ∈ δ(q,V(x), γ) for some k ∈ N, such that, for all 1 ≤ i ≤ k,
r(x · i) = (qi, βi · α) if γ 6= ⊥, and r(x · i) = (qi, βi · ⊥), otherwise.

Given a path π starting from ε, by infr(π) we denote the subset of states q such that there
are infinitely many x ∈ π such that r(x) ∈ {q} × Γ∗⊥. A path satisfies a parity condition
F = {F1, . . . ,Fk}, with Fi ⊆ Fi+, for all i < k, and Fk = Q, if the minimum index
1 ≤ i ≤ k such that infr(π) ∩ Fi 6= ∅ is even. A run 〈T, r〉 is accepting if every path
satisfies the acceptance condition. The PD-NTA A accepts an input tree〈T,V〉 iff there is
an accepting run of A over it. The language of A, denoted by L(A), contains all the trees
accepted by A. The emptiness problem for PD-NTA is to decide, for a given A, whether
L(A) = ∅. In [KPV02] it is reported the following.

Theorem 4.3.1 The emptiness problem for a parity PD-NTA is EXPTIME-COMPLETE.

In several branching-time temporal-logic verification settings, the automata-theoretic
approach has been fruitfully applied. Very close to our case are the procedures deployed for
model checking pushdown systems over CTL? specifications [BEM97, BMP10, Boz06] and
finite-state CGSs over ATL? specifications [AHK02]. The former is a top-down procedure
that first builds an automaton accepting all the trees that satisfy the formula and then checks
for the membership problem of the tree unwinding of the pushdown model. Precisely, to get a
tight complexity, it starts with a single-exponential alternating 1 parity tree automaton and
the membership problem results in a special alternating pushdown tree automaton named
one-letter, with no blow-up in size, whose emptiness can be checked in exponential-time2

resulting in an overall doubly-exponential time solution. The procedure for ATL?, instead,
uses a doubly-exponential bottom-up approach based on the idea of labeling each state of the
structure with subformulas true in that state. In our setting we can neither proceed with the
membership problem nor use a bottom-up procedure. Indeed, because of ATL?, we need to
consider not just the unwinding of the model but the tree execution induced by the player
existentially quantified in the formula. Moreover, because of the possible infinite number
of configurations induced by the PGS, a bottom-up procedure could never terminate. For
this reason, we use a top-down approach that constructs a doubly exponential PD-NTA that
simultaneously checks whether a tree is an execution of the structure and a model of the
formula. As far as we know, this is the first top-down automata-theoretic approach exploited
for ATL?. Some details about this automata construction are reported in the following.

Theorem 4.3.2 The model-checking problem for ATL? on PGS can be solved in 3EXPTIME.

1Automata having as transition relation a positive Boolean combination of states and directions [KVW00].
2Recall that in general the emptiness check for alternating pushdown automata is undecidable [KPV02].



Proof. We give an intuition behind the automata construction by providing some details
on how to extend the one introduced in [BEM97] used to solve the model-checking problem
for branching-time specifications over pushdown systems. The mentioned approach starts
with a tree automaton accepting all tree models of a formula ϕ, namely the formula automaton
Aϕ, over which one can build a PD-NTA AP,ϕ accepting the unwinding of the pushdown
structure P iff it is contained in the language of the formula automaton Aϕ. To handle ATL?,
one can start with a doubly-exponential parity tree automaton as an adaptation of the one
provided in [Sch08]3. Moreover, in order to correctly evaluate the formula over a PGS we
need not just to consider the unwinding of the structure but rather the execution trees induced
by the formula and precisely from the players existentially quantified in it. This results in
selecting at each node subsets of children upon the choices of the players. As the number
of these subsets is linear in the number of the decisions of the structure, the overall size of
the PD-NTA we construct remains doubly-exponential. Thus, from Theorem 4.3.1 on the
previous page we derive a 3EXPTIME procedure. �

4.3.2 A Lower-bound Complexity

In this section, the model-checking problem for ATL? over PGSs is shown to be 2EXPSPACE-
HARD by means of a reduction from the model-checking problem for quantitative ATL? over
one-counter games [Ves14]. We first give the definition of one-counter games.

Definition 4.3.1 (One-counter Game) A one-counter game is a tupleM =〈AP,Ag,Loc,

(Loca)a∈Ag, l,R, L〉 where AP is a finite set of atomic propositions, Ag is a finite set
of agents, Loc is a finite set of locations, (Loca)a∈Ag is a partition of Loc, assigning to
each agent its own set of locations, R ⊆ Loc × {−1, 0, 1} × Loc is a transition relation,
L : St→ 2AP is a labeling function, and l is an initial location.

Intuitively, a computation inM starts from the initial location l with a counter set to the
value 0. Then, at each location l ∈ Loca, the owner agent a selects a successor l′ and updates
the counter according to the transition relation R, i.e., if a selects the triple (l, ι, l′) ∈ R, then
the computation moves to the location l′ and the current value v of the counter is updated
to v + ι. As additional feature, if the counter value is 0, then the transitions providing a
decreasing of the counter are disabled. Formally, a computation inM is an infinite sequence
of pairs η = (l, v) · (l, v) . . . ∈ (Loc × N)ω such that, for all i ∈ N, we have that
(li, vi+ − vi, li+) ∈ R. For convenience, by loc(η) ∈ Locω and cnt(η) ∈ Nω, we denote
the projections of η on locations and counter values, respectively.

One-counter games can be used to interpret quantitative ATL? (QATL?, for short),
which is obtained from ATL?, by extending the syntax as in the following.

Definition 4.3.2 (Quantitative ATL?) Formulas of QATL? are built inductively from the
set of atomic propositions AP and agents Ag, by using the following grammar, where p ∈ AP,
r is a variable ranging on N, ./∈ {≤, <,=, >,≥,≡k}, c ∈ N, and A ⊆ Ag:

3In [Sch08] it is given a single-exponential alternating automaton that can be easily translated into a non-
deterministic one with a single exponential-time blowup.



ϕ := p | r ./ c | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈A〉〉ϕ.

As in ATL?, a QATL? sentence is a Boolean combination of formulas of the form 〈〈A〉〉ψ.
Formulas in QATL? are interpreted over one-counter games and computations. For each
one-counter gameM and a computation η, and two natural numbers c, k ∈ N, we say that
M, η |= r ./ c if (cnt(η))0 ./ c, for all ./∈ {≤, <,=, >,≥,≡k}, while for the atomic
proposition, Boolean, temporal, and agent quantification cases, the semantics is defined as
in ATL?. Also in the case of QATL? sentences, the satisfaction on a given computation η
depends only on its first configuration. Then, the relationM, (l, i) |= ϕ is well-defined and,
so, the model-checking problem consists on checking whetherM, (l, 0) |= ϕ.

In [Ves14], it has been shown that the model-checking problem for QATL? over one-
counter games, with counter coded in unary, is 2EXPSPACE-COMPLETE and PSPACE-
COMPLETE for QATL? formulas of bounded size. We now show that such a problem
can be reduced to the model-checking problem of ATL? over PGSs. Indeed, consider the
following construction.

Construction 4.3.1 Let M = 〈AP,Ag,Loc, (Loca)a∈Ag, s,R, L〉 be a one-counter
model and ϕ an QATL? formula with n, . . . , nk being the natural numbers for
which there is an occurrence of r ≡ni ci in ϕ, for some ci ∈ N. Then the de-
rived PGS is given by PM,ϕ = 〈AP′,Ag′,Ac′,Loc′,Γ, tr, ap, s〉 where: AP′ =

AP ∪ {o, zero, ], modn , . . . , modnk , modn , . . . , mod
n−
n , . . . , modnk , . . . mod

nk−
nk
}, Ag′ =

Ag ∪ {cnt}, Ac′ = Loc × {−1, 0,+1} ∪ {o, ], modn , . . . modnk}, Loc′ = Loc ∪
{l], ln , . . . , l

n
n−, . . . , l

nk
 , . . . , lnknk−}, Γ = {1}, ap is such that: ap(l, γ) = L(l) ∪ {o},

for all l ∈ St, ap(l], 1) = {]} and ap(l],⊥) = {], zero}, and ap(lnij , 1) = {modni}
and ap(lnij ,⊥) = {modni , mod

j
ni}. The transition function is given as follows. For each

(l, ι, l′) ∈ R, with l ∈ Loca, we have that: tr(l, γ, δ[cnt 7→ o][a 7→ (l′, ι)]) = (l′, ε) if ι =

−1, tr(l, γ, δ[cnt 7→ o][a 7→ (l′, ι)]) = (l′, 1) if ι = 0, tr(l, γ, δ[cnt 7→ o][a 7→ (l′, ι)]) =

(l′, 1 · 1) if ι = +1. tr(l, γ, δ[cnt 7→ ]]) = (l], ε), tr(l, γ, δ[cnt 7→ modni) = (lni , ε),
tr(l], γ, δ) = (l], ε), tr(l

nj
i , 1, δ) = (l

nj
(i+)modnj

, ε), tr(l
nj
i ,⊥, δ) = (l

nj
i , ε).

Intuitively, the PGS PM,ϕ emulates the counter inM with a one-symbol stack, in the usual
way. When the transition in M asks for an increasing of the counter, then a the symbol
1 is pushed on the top of the stack. On the other hand, when the transition inM asks for
a decreasing of the counter, then, the symbol in the top of the stack is popped out. Note
that the original model never decreases the counter set to the value 0. This means that
PM,ϕ never performs a pop when the stack is empty. Finally, if the transition inM does
not modify the counter, then PM,ϕ does the same. For what the labeling regards, for a
location l ∈ Loc we extend the labeling given inM with an auxiliary atomic proposition o,
to keep track in the execution that PM,ϕ is emulating the one generated inM. For what the
additional locations concerns, we label configurations having l] as location with the atomic
proposition ], to keep track that the execution is performing a check on the size of the stack.
Moreover, we label (l,⊥) also with the atomic proposition zero, in order to remember that
the stack has been emptied. For what the locations of the form l

nj
i regards, we label all

the corresponding configurations with the atomic proposition modnj to remember that the



execution is performing a check modulo nj of the stack, and the one with the symbol ⊥ also
with mod

nj
i to remember that the stack has been emptied in m steps, with m ≡nj i. Moreover,

in order to emulate the checks of the QATL? formula, we add some auxiliary location. For
example, we add a location l] from which the game loops indefinitely and performs a pop
of the stack up to empty it, whatever is the decision made by the agents. Agent cnt has the
power to enter the location l], from each original location l ∈ Loc, at any execution point.

l, γ

l], 1 l],⊥

o ∗ . . . ∗;α

] ∗ . . . ∗; pop

] ∗ . . . ∗; pop

∗ . . . ∗; pop

∗ . . . ∗; pop

∗ . . . ∗; ·

Figure 4.2: The transition to the
counting location.

To better understand this point, assume the execu-
tion to be in a location l of the PGS, as depicted in
Figure 4.2. In the case the agent cnt picks the action
o, then the execution moves to a location and makes
a stack operation according to the choices of the rest
of the agents, emulating the execution in M. On the
contrary, in the case the agent cnt picks the action ],
then the execution moves to the location l]. Observe
that, once a transition to l] is performed, the number of
steps (including such transition) in which the stack gets
empty is exactly the length of its content.

Thus, for each configuration s = (l, α) the fact that
|α| ≤ c, for a given c ∈ N, is equivalent to the fact that P, s |= 〈〈{cnt}〉〉(X] ∧ Xczero) 4.
Indeed, with the temporal property X] we are forcing the agent cnt to move on l]. Then,
the stack is emptied in exactly |α| steps, so less than c, which implies that the temporal
specification Xczero is satisfied. From this, we can derive that P, s |= 〈〈cnt〉〉(X] ∧ Xczero)

iffM, (l, |α|) |= r ≤ c. By exploiting the equivalences (r < c)↔ (r ≤ c− 1), (r > c)↔
¬(r ≤ c), (r ≥ c) ↔ ¬(r > c), and (r = c) ↔ ((r ≤ c) ∧ (r ≥ c)), we can check any
ordering of the counter by checking the satisfaction of a suitable ATL? formula in PM,ϕ.

l, γ

l, 1 l,⊥

l, 1l,⊥

o ∗ . . . ∗;α

mod ∗ . . . ∗; pop

mod ∗ . . . ∗; pop

∗ . . . ∗; pop
∗ . . . ∗; pop

∗ . . . ∗; pop
∗ . . . ∗; pop

∗ . . . ∗; ·

∗ . . . ∗; ·

Figure 4.3: The transition to the
counting modulo 2 location.

We can address the problem also for the formula r ≡n
c. Indeed, we commit the agent cnt to pick a suitable
action modn and so the PGS to enter a substructure suitably
defined for this kind of check. As an example, consider
the situation depicted in Figure 4.3 for ≡2. In this case,
when the agent cnt pick its action mod, then the execution
moves to l and, from that point onward, switches from l
to l and viceversa, popping the top of the stack at each step.
As soon as the stack is emptied, the execution loops in the
location reached when the last popping has been performed.
Also in this case, it is not hard to see that the execution
starts looping on the location li such that i = |α|mod2.
This implies that, for each configuration s = (l, α), the
fact that |α| ≡n c, for some n, c ∈ N, is equivalent to
check whetherPM,ϕ, (l, α) |= 〈〈{cnt}〉〉(Xmodn∧Fmodcn).
Indeed, the temporal specification Xmodn is used to force
the agent cnt to pick the action modn, while the formula

4By Xc we are denoting c occurrences of the operator X.



Fmodcn is satisfied iff the stack is emptied in a number m
of steps such that m ≡n c.

Finally, consider a QATL? formula of the form ϕ = 〈〈A〉〉ψ. Interpreting ϕ over a one-
counter gameM is equivalent to interpret the formula 〈〈A ∪ {cnt}〉〉XGo ∧ ψ on the derived
PGS P . Indeed, with the temporal specification XGo we are essentially forcing the agent
cnt to always pick its action o. This implies that the other agents in A can apply the same
strategies they use inM in order to satisfy the formula ψ also in P .

By applying the above reasoning, for a QATL? formula ϕ we define recursively the
following transformation τ(ϕ): τ(p) = p; τ(r ≤ c) = 〈〈{cnt}〉〉(X]∧Xczero); τ(r ≡n c) =

〈〈{cnt}〉〉(Xmodn∧Fmodcn); τ(¬ψ) = ¬τ(ψ); τ(ψ1∧ψ2) = τ(ψ1)∧τ(ψ2); τ(Xψ) = Xτ(ψ);
τ(ψ1Uψ2) = τ(ψ1)Uτ(ψ2); τ(〈〈A〉〉ψ) = 〈〈A ∪ {cnt}〉〉(XGo ∧ τ(ψ)).

It is not hard to prove the following theorem.

Theorem 4.3.3 (Model-checking Reduction) For a given one-counter game M and a
QATL? formula ϕ, it holds thatM |= ϕ iff PM,ϕ |= τ(ϕ)

Note that, for counters coded in unary, we have that the construction of the PGS re-
ported above is of size polynomial in the size of the one-counter game. From this and from
Theorem 4.3.3 we derive the following.

Corollary 4.3.1 (Model-checking Lower-bound) The model-checking problem for ATL?

over PGS is in 2EXPSPACE-HARD.
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[Büc62] J.R. Büchi. On a Decision Method in Restricted Second-Order Arithmetic. In
International Congress on Logic, Methodology, and Philosophy of Science’62,
pages 1–11. Stanford University Press, 1962.

[Bul14] N. Bulling. A Survey of Multi-Agent Decision Making. KI, 28(3):147–158,
2014.

[CBC13] C. Chareton, J. Brunel, and D. Chemouil. Towards an Updatable Strategy
Logic. In Proceedings 1st International Workshop on Strategic Reasoning, SR
2013, Rome, Italy, March 16-17, 2013., pages 91–98, 2013.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In Logic of Programs’81,
LNCS 131, pages 52–71. Springer, 1981.

[CGP02] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
2002.

[CHJ08] K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment Assumptions for
Synthesis. In CONCUR’08, volume 5201 of LNCS, pages 147–161. Springer,
2008.

[CHP07] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In Concur-
rency Theory’07, LNCS 4703, pages 59–73. Springer, 2007.

[Chu63] A. Church. Logic, Arithmetics, and Automata. In International Congress of
Mathematicians’62, pages 23–35, 1963.
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