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Abstract

Microfluidics have received great attention in the last decades due to its

wide applicability in molecular analysis, biodefense, molecular biology and

microelectronics. In the molecular analysis field, in particular, several ap-

plications such as particles/cells counting and separation are explored. For

these applications, particles or cells are commonly suspended in Newtonian

liquids. More recently, an increasing interest in using viscoelastic fluids in

microfluidic devices is observed. Indeed, it has been recently proven that the

non-Newtonian rheological properties of the fluid allow to perform several of

the above mentioned operations by using simpler apparati as compared to

the case with a Newtonian liquid. In most applications, microchannels with

a square cross-section are used, due to the ease of fabrication.

In this thesis, we study the effect of fluid rheology on the suspended par-

ticle motion, in square-shaped microchannels. To this aim, several fluids

are considered. Elastic, constant-viscosity fluids promote particle migration

towards the channel centreline, achieving the so-called 3D focusing. For

shear-thinning fluid, in contrast, the migration phenomenon is more com-

plex: at low flow rates, i.e. in the constant viscosity region, particles still

migrate towards the channel centreline, while at high flow rates, i.e. in the

shear-thinning region, the migration reverts direction, and the particles are

driven towards the corners of the channel cross-section. In addition, our re-

sults highlight the weak effect of inertia on particle migration as compared

to viscoelastic effects, even for low elasticity suspending liquids.

In the second part of this thesis, we exploit the viscoelasticity-induced parti-

cle migration to design amicrorheometer capable of estimating the relaxation

time of viscoelastic fluids, down to milliseconds. A remarkable improvement

in the accuracy of the measure of the relaxation time is found, when compar-

ing our results with experimental data obtained from shear or elongational



experiments available in literature. Good agreement of our results with avail-

able theoretical predictions is also found.

Finally, we design and fabricate a microfluidic device for deflection of mag-

netic particles from a contaminated streamflow into a clean one. This device

is made of two modules: a first one (a straight channel), where magnetic

particles are 3D focused on the channel centreline; a second one (a H-shaped

channel), where a permanent magnet is used to displace the magnetic beads

from the original to the buffer stream. When viscoelastic focusing and mag-

netophoresis are combined, by applying the two moduli in series, a deflection

efficiency of ∼ 96% can be achieved.
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Introduction

The December 29th 1959 was an important day for some scientists. While

many people were coming out from Christmas holidays and were projected to

the upcoming new year (so they were preparing meals and fireworks), at the

California Institute of Technology a man was giving a speech while walking

on the stage of the American Physical Society. He was a physicist, and prob-

ably many of the scientists in that room for the meeting would have wanted

to think to something different from physics. Nevertheless, the speaker was

actually really good, and the title of his speech caught the audience atten-

tion; in fact, still today, it sounds very strange. The heading, indeed, was

There is plenty of room at the bottom [1], referring to the world at the nano-

scales. The orator was talking about something completely avulsed from

the world around him, which was focusing on macro-technologies instead.

But the speaker was a physicist, physicists were looking for atoms(!), and

in particular he was Richard Feynman (Nobel prize in 1965), and all the

scientific community knew how good was that speaker. Richard Feynman

was talking about something completely new at the time, something that

was not related to the ‘fundamental physics’ of elementary particles, gravita-

tion, etc. but to the strange phenomena that occur in complex situations at

the nano-scales. Several technologies, in fact, have been required to explore

the nano-scales and their development took approximately twenty years from

Feynman speech. The first obtained devices, however, can be classified just as

a ’proof of concept‘, because they were not useful for practical applications,

but just to prove that it is really feasible to produce these technologies.

One very important example of a practical micro-device involving me-

chanical and electrical parts, the so-called Micro Electro Mechanical Systems

(MEMS), was a chip for the airbag activation in the cars [2]. In particular,

a few millimetres long chip had the mechanical system for the impact de-

tection, and the electrical part to give the signal to the airbag. From that
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moment on, several other technologies were developed, and more and more

devices produced.

When microfabrication was almost standardised, the scientific community

started to think to new applications, in particular for the healthcare. Some

of those applications required fluid pumping through the device. At this

purpose, the design of amicro-pump was necessary. One example is offered by

the Debiotech company [2], that patented and produced the first micropump

for diabetics people. This device could be applied directly on the body and

released a fixed amount of insulin directed in the patient without passing

through the conventional syringes.

During the 90’s many research groups started to work in the microfluidic

field [3, 4, 5], in particular in many applications such as cell stretching and

flow cytometry. Flow cytometry is a biophysical method, involving laser,

used for cell or particle counting: this method allows to count particles flow-

ing in a microchannel (∼ 10−4 meters wide). In particle counting, laser

beam intercepts a particle flowing in the microchannel: as the laser beam

size is quite smaller than the channel dimensions, it is required that most of

the flowing particles follow the same path-line, where the beam is pointed.

If particles in the the channel are randomly distributed, particle counting is

not possible. In other words, particles should be focused at a certain position

in order to match the laser beam. Positioning particles at a specific channel

position (often, this is the centreline of the channel) is called particle focus-

ing. Another important microfluidic application is particles separation [6].

Common separation processes include filtration and centrifugation and, most

prominently, forms of chromatography and electrophoresis. All these proce-

dures are done in a batch way. Microfluidic would then be an improvement,

in terms of continuous operations.

All these operations are performed in single microfluidic devices. A novel

challenge today is to design several microfluidic devices, each one performing

a ‘unit operation’. Several devices working together can be used in complex

situations, thus replying what happens in chemical plants. In this way, each
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microdevice in the ’plant‘ acts as a single module leading to what is called

modular microfluidics. Two microfluidic modules are analysed in this thesis:

the focusing and the deflection modulus. In the first one, it is possible to

achieve a 3D particle focusing; in the deflection modulus, instead, particles

are deflected from a streamflow to another one.

In microfluidic systems Newtonian fluids (e.g. water) are commonly used.

To promote particle migration in Newtonain liquids, complex geometry, ex-

ternal fields or inertial effects are needed [7, 8, 9] . However, the use of non-

Newtonian fluids has recently received great interest, due to the possibility

to generate forces ‘from the inside’ of the flowing fluid [10]. There are experi-

mental and numerical evidences of the strict relation between these forces and

particle migration in cylindrical and rectangular geometries [10, 11, 12, 13].

Therefore, non-Newtonian liquids can be used as suspending fluids for many

applications. From the analysis of the state of art regarding the use of vis-

coelastic fluids in microfluidic applications, it is however apparent that a

comprehensive explanation of the effect of fluid rheology on particle migra-

tion is still missing. It is important to highlight that the correct knowledge

of the migration phenomena is very important to design microfluidic devices.

Motivated by these observations, in this thesis, we study the effect of the

suspending viscoelastic fluid on the motion of suspended particles. In Chap-

ter 1 we report the state of art on particle migration in microchannel first,

and on the focusing and separation techniques later. In Chapter 2 we present

a novel method to extract the exact particle positions in the square cross-

section by combining experiments and numerical simulations. In the same

chapter, we also present a novel method to measure the relative viscosity by

using Optical Tweezers (OT), without passing through the Fourier transform.

In Chapter 3 we report the rheological characterisation of the fluids used in

this thesis. In particular we focus on a constant-viscosity fluid (Poly Vynil

Pyrrolidone water solution), on several shear-thinning fluids (Poly Ehylene

Oxide at several mass concentrations) and on HydroxyEthyl Cellulose solu-

tions. In Chapter 4, we use the results of Chapter 3 to qualitatively and
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quantitatively analyse particle migration phenomena in viscoelastic liquids.

In Chapter 5 we present a novel method to measure fluid relaxation times

down to milliseconds based on particle migration in viscoelastic liquids, and

a device to deflect magnetic particles from a contaminated streamflow to a

buffer one. The last device was designed as the combination of two sepa-

rate apparati working in series, each one performing a unit operation. This

device is therefore an example of a modular microfluidic system. Finally,

conclusions are presented and possible future works are discussed.

4



Chapter 1

State of Art

In this section we will briefly report the state of art on the manipulation

of micro-sized particles in microfluidic devices. First of all, we proceed to

explain the particle migration phenomenon, i.e. the particle motion transver-

sally to the flow direction, in Newtonian (constant viscosity and no elasticity)

and non-Newtonian liquids. This background, in fact, represents the baseline

fluid dynamic knowledge for what follows in the work. In addition particle

migration is fundamental to understand some microfluidic designs for several

applications such as particle focusing (see Section 1.2) and particle separation

(see Section 1.3).

1.1 Particle migration in Poiseuille flow

Let us consider a single particle, with a certain diameter Dp, suspended in

a Newtonian liquid subjected to the flow, for example, in a square-shaped

channel with side H >> Dp, and faraway from the walls. In this case, the

particle flows undisturbed [14], with no transversal motions, because it does

not feel the walls. If, in contrast, the channel side is H ∼ 10Dp (say),

some non-linear phenomena can occur in dependence on the flow conditions.

In this section we will focus on situations where the confinement ratio (see

Section 2.9 for more details) β = Dp/H ∼ 0.1; it is properly the situation
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where such non-linear phenomena can occur.

1.1.1 Particle migration in Newtonian liquids

Inertialess flow conditions

For a particle suspended in a Newtonian fluid (constant viscosity and no

elasticity) flowing in a microchannel, the well know Navier-Stokes equations

apply [15]:

∇ · v = 0 (1.1)

ρ
∂v

∂t
+ ρv · ∇v = −∇℘+ η△v (1.2)

where ρ is the fluid density, v is the fluid velocity, ℘ = p + ρg, where p is

the pressure and g is the constant gravitational acceleration, and η is the

fluid viscosity. These equations are non-linear because of the presence of the

term v · ∇v, negligible when inertial forces are negligible. In this case, NS

equations assume the form:

−∇℘+ η△v = 0 (1.3)

these equations (namely Stokes equations) together with linear boundary

conditions, are linear, and the time-reversal theorem [7] is valid. Such theo-

rem, when applied to the case of a spherical particle suspended in a matrix

subjected to a Poiseuille flow (i.e. the flow in pipes with a parabolic velocity

profile), establishes that a particle suspended in the Newtonian fluid, starting

from a certain position (flow line) within the channel, cannot migrate trans-

versely to the flow direction. This result hold, of course, for a non-Brownian

and non-buoyancy particle in the dilute regime (where particle-particle inter-

actions are negligible) and for Newtonian fluids in inertialess conditions. It is

possible to better understand the theorem in the conditions of interest here

by using a reductio ad absurdum arguments as schematised in Figure 1.1.

Let us assume that the particle can migrate. When imposing a flow in

the positive x-direction, a particle in position 1 can migrate, e.g., towards

the position 2, i.e. in the positive y-direction (see Figure 1.1a) . When,
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Figure 1.1: Reductio ad absurdum of the time-reversal theorem. (a) A parti-

cle migrate from position 1 to position 2 when imposing a flow in the positive

x-direction. (b) Assuming the validity of the time-reversal theorem, when

imposing the flow in the negative x-direction, the particle starting from po-

sition 1 should migrate to position 2. (c) Is the same situation as in (b) for

an observer situated on the opposite side of the channel, i.e. is the ’mirror‘of

(b). Situation in (c) is the same of (a) but with a different arriving position

2. It is in contrast with the time-reversal theorem.

in contrast, imposing the flow in the negative x-direction, because of the

time-reversal theorem, the particle must migrate in negative y-direction (see

Figure 1.1b). For an observer situated on the opposite side of the channel,

however, the situation showed in Figure 1.1b is actually that of Figure 1.1c.

The scheme in Figure 1.1c, however, is the same as in Figure 1.1a with a

different final point 2. This would imply that a particle starting from a

certain position could attain different final positions 2, which is in contrast

with the (assumed) uniqueness of solution of the NS equations. Basing on

the simple argumentations here presented, we can then state that a particle
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suspended in a matrix subjected to Poiseuille flow in inertialess conditions

cannot migrate transversally to the flow direction.

Inertial flow conditions

In the previous section we have seen how particles suspended in a matrix

subjected to Poiseuille flow cannot migrate in inertialess conditions, due to

linearity of the Navier-Stokes equations. For the full Navier-Stokes equations

(with a non-linear term also) the time-reversal theorem does not apply, and

therefore particles could experience some force that push them transversally

to the flow direction. Several theoretical and experimental works [8, 16, 17]

studied particle migration in inertial flow conditions. In particular, Segré

and Silberberg [16] found that particles suspended in a liquid subjected to

Poiseuille flow when inertia is not negligible migrate towards several ‘equi-

librium’ positions situated at Rss = 0.6R from the channel centreline, where

Rss is the so-called Segré-Silberberg radius and R is the channel radius.

Therefore, all particles will eventually lie on a circle located at Rss. These

equilibrium positions are the result of a force balance between the wall-lift

force Fw that pushes particles away from the wall and the shear-gradient

force Fs that pushes particles towards the wall. Ho and Leal [8] theoretically

studied the motion of a particle suspended in a Newtonian matrix subjected

to Poiseuille flow when inertia is not negligible, in a planar geometry. They

found the same results of Segré and Silberberg, but with Hss = 0.6H/2 where

H is the channel height.

In Summary, particles in inertial flow conditions experience migration

forces that push them towards an equilibrium positions situated at 0.6R from

the centreline for the cylindrical channel and at 0.6H/2 for the rectangular

geometry.

1.1.2 Particle migration in non-Newtonian liquids

We have previously seen that inertial effects promote particle migration or-

thogonal to the flow direction to a single surface. Particle migration is also
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possible by introducing a non linearity in the NS equations, due to the ‘com-

plexity’ of the fluid [10, 11, 13]. Such fluid should show some complex rhe-

ological properties when subjected to flow. In particular, non-Newtonian

fluids in flow are able to store a certain amount of elastic energy. For that

reason, they are also called viscoelastic liquids. We anticipated that when

Re ∼ 0 we neglect the non linear term in NS equation; however, we must

include now a new nonlinear term, given by the fluid complexity. The NS

equations, in fact, come from the more general Cauchy equations [15]:

ρ
∂v

∂t
+ ρv · ∇v = ρg +∇ · T (1.4)

where T is the stress tensor. NS equation are obtained introducing a consti-

tutive equation. For the Newtonian liquid T is expressed by:

T = −pI +
1

2
η(∇v +∇vT ) (1.5)

Replacing this expression in Eq. (1.4), NS Equations are again obtained.

In contrast, when the fluid is non-Newtonian, the stress tensor T is written

as:

T = −pI +
1

2
η(∇v +∇vT ) + τ (1.6)

The last term τ can be modeled in several ways. Just to make an example,

we report here the Giesekus model, where τ is given by the following equation

[18]:

λ
▽
τ +

αλ

η
τ · τ + τ = ηp(∇v +∇vT ) (1.7)

where the symbol ▽ on τ is the upper convected Maxwell derivative [19],

ηp is another viscosity, λ is the fluid characteristic time, and α is a ‘shear-

thinning’ parameter. This equation is strongly non linear. It means that

again, in principle, particles can move transversally to the flow direction,

because the time-reversal theorem does not apply. Ho and Leal [9] theoret-

ically studied the motion of a particle suspended in a viscoelastic fluid in a

two-dimensional flow. They found that the particles experience a force that

push them towards the channel centreline, regardless of their initial positions.
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Therefore, particles suspended in a viscoelastic fluid, even in inertialess condi-

tions, experience a net ‘internal’ force that pushes them towards the channel

centreline. This force, obviously, strongly depends on the fluid properties

[12, 20]. In conclusion, particles suspended in a non-Newtonian fluid and

subjected to a Poiseuille flow can migrate transversally to the flow direction

even in inertialess flow conditions, due to the complex flow properties of the

suspending medium .

1.2 Particle focusing in microfluidic devices

Particle focusing is achieved when all the particles lie, i.e. are focused, on

certain fixed positions within the channel. In particular, two different kinds

of particle focusing exist: when the particles’ equilibrium positions lie on

a specific channel surface, we say that 2D particle focusing is achieved [21];

when, in contrast, all the particles lie on a single-line, we say that 3D particle

focusing is achieved [11]. In order to focus 2D or 3D particles, several tech-

nologies can be used. In particular, we have seen that particles suspended in

a Newtonian matrix in inertialess flow conditions cannot migrate transver-

sally to the flow direction. Therefore, in order to focus particle suspended

in Newtonian media several complex designs involving, for example, sheath

flows are needed (passive focusing). For some ’special‘ particles, like electric

or magnetic ones, several external fields can be used to push particles to-

wards several equilibrium positions within the channel (active focusing). In

contrast, particles suspended in a non-Newtonian matrix explore an internal

force that push them towards several ‘equilibrium’ positions, thus simplifying

the channel design and the experimental apparatus at the same time. In this

section, we will report some methods to achieve particle focusing, involving

different designs.
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1.2.1 Sheath flow focusing

As explained in the previous section, particles suspended in Newtonian liq-

uids and subjected to Poiseuille flow cannot migrate transversally to the

flow direction in inertialess conditions [7]. Hence, in order to achieve parti-

cle focusing in Newtonian liquids and inertialess conditions, it is necessary

to properly design the microlfuidic device. One of this chip-design involves

sheath flows, as reported in Figure 1.2a. Lee et al. [22], in particular, de-

signed a microfluidic device with two sheath flows as reported in Figure 1.2a.

The streamflow containing particles suspended in a Newtonian matrix is in-

jected with an imposed flowrate Qi. At the channel inlet, of course, particles

are randomly distributed within the cross-section. Therefore, two side chan-

nels carrying in the unloaded fluid with a flow rate Qs, are used, in order to

focus particles on a single stream-plane. In fact, particles from the inlet can

move in the y-direction only due to the sheath flows. They cannot migrate

towards the z-direction, i.e. along the channel depth H, because of the fluid

dynamic conditions [7]. By changing the ratio Qs/Qi, it is possible to ob-

tain a stream-plane with different ‘thicknesses’, up to achieving a 2D particle

focusing.

In order to achieve a 3D particle focusing, in another work Lee et al. [23]

proposed a different more complex design, which is reported in Figure 1.2b.

In this device there are two inlets: in the first one a red blood cell solution is

injected, while in the second one a dye solution is fed. The device is designed

with a contraction-expansion array; when both the solution and the dye pass

through this region, they experience the so-called Dean vortices [21] gener-

ated by the centrifugal force, that pushes the particles towards the centreline.

As a matter of fact, this channel is designed with one sheath flow that first

pushes the red blood cell solution towards the wall on a plane (2D focusing),

and then with a contraction-expansion array (generating Dean vortices), that

pushes these cells towards the channel centreline. The devices presented here,

are designed for cell/particle focusing. Both of them, however, even if they

actually do 2D or 3D focusing, are very difficult to fabricate and to control,
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Figure 1.2: (a) Schematic illustration of symmetric hydrodynamic 2D flow

focusing. Reprinted with permission from Lee et al. [22]. (b) Schematic of

the contraction-expansion array microchannel for 3D hydrodynamic focusing;

downside figure is the image of red blood cells focused by a phosphate buffered

saline flow. Reprinted with permission from Lee et al. [23]

because of the multiple inlet design.

1.2.2 Dielectrophoresis-based focusing

To reduce the complexity of the channel design, it is possible to achieve par-

ticle focusing by involving an external field that act on the particles, thus

pushing them towards some position within the channel [24]. As a first exam-

ple, we report here a focusing device based on the dielectrophoresis (DEP).

DEP is the migration of particles transversally to the flow direction, due to

the behaviour of an electrical dipole in an electric field. Indeed, if there ex-

ists a field gradient normal to the applied flow, particles at different initial

positions can be deflected on different streamlines. Chu et al. [25], for ex-

ample, designed a microfluidic device (see Figure 1.3a) in which a dielectric

structure, together with an electric field, promotes 3D particle focusing on

a channel centreline. In fact, particles coming inside the channel inlet ran-

domly distributed are deflected by an external electric field (normal to the
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Figure 1.3: (a) Schematic view of the 3D particle focusing channel using

positive DiElectroPhoresis (DEP) guided by a dielectric structure between

two planar electrodes. Side figures are the images of 2 µm polystyrene beads

near the end of the focusing channel when AC voltage is off (top and on

(middle for top view, bottom for the side view). Reprinted with permission

from Chu et al. [25]. (b) Schematisation of the axisymmetric focusing of

particles in a single circular microcapillary. Reprinted with permission from

Chu et al. [25] and Kim and Yoo [26].

flow direction) towards the channel centreline. Figure 1.3a reports also the

experimental images when the electric field is OFF (top), where particles are

randomly distributed within the cross section, and when the electric field is

ON, from the top view (middle image) and side view (bottom image).

Another very clever way to achieve 3D particle focusing by using electric

field was presented by Kim an Yoo [26], and is reported in Figure 1.3b. It is
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well known that when particles are lagged in a Poiseuille flow, they migrate

towards the channel axis due to a ’lift‘force generated by the imbalance of

the velocities [27, 28]. Kim and Yoo use this phenomenon to achieve 3D

focusing; in particular, the lag force is generated by an electric field that lags

the particles flowing in the microchannel (see Figure 1.3b). At the end, par-

ticles migrate towards the channel centreline achieving the 3D axisymmetric

focusing. This method has the great advantage of a very simple geometry

(a straight channel); on the other hand, an external electric field is neces-

sary. Therefore, in all dielectrophoresis applications, the device complexity

is replaced by the difficult in controlling an electric field.

1.2.3 Inertial focusing

As described in Section 1.1.1, in inertial fluid dynamic conditions, particles

suspended in a flowing liquid can experience forces that push them towards

some equilibrium positions [8, 16]. These equilibrium positions, in addition,

are different for different channel geometries [21, 29]. Di Carlo [21] com-

prehensively studied the particle focusing in a square-shaped microchannel

geometry and compared the results with that of Segré and Silberberg [16].

In Figure 1.4(a-b) the comparison between equilibrium position in cylin-

drical and square-shaped geometry is reported. The forces acting on the

particles are reported in Figure 1.4(c-d). By assuming a random distribution

at the channel inlet and, with relevant inertial effects, particles in a cylinder

migrate towards a position situated at 0.6R from the centreline, where R is

the channel radius. In cylindrical geometry, then, particles are 2D focused,

because they lie on a cylindric surface within the channel and coaxial with it.

In the square-shaped microchannel the focusing mechanism is the same, i.e.

only wall lift and shear gradient force act on the particle, but the equilibrium

positions are different (see Figure 1.4b). In fact, particles now occupy four

symmetrical equilibrium positions, situated at 0.6H/2 from the centreline

and at the middle height of each channel face. Therefore, particles are not

2D focused, because they are not lying on a surface. In this case we can say
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Figure 1.4: (a) Representation of inertial particle migration in cylindrical

channel. (b) Representation of inertial particle migration in square shaped

microchannel. (c) Force acting on a particle in inertial conditions. (d)

Force field simulation on a particle over a quarter of channel cross section.

Reprinted with permission from Di Carlo [21]

that particles are 3D focused on each channel face. Of course, this does not

mean that particles are fully 3D focused, because they are divided among four

single lines. Experimental results on focused particle positions, obtained by

using holographic microscopy, are available in literature [30]. The presence of

the four corners significantly alter the equilibrium positions with respect to

the cylindrical geometry. Inertial focusing, in both these geometries, cannot

be used, for example, for flow citometry or particle counting. In fact, cells

or particles should lie on a single line (not on four lines) in order to be easily

detectable by a laser spot. Several other works are available in literature on

the combination of inertial migration and curved microchannel [31, 32]. In

particular Gosset and Di Carlo [31], studied the effect of inertia and Dean

vortices on particle focusing in a rectangular-shaped device with a curved mi-
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crochannel. In the first part of the device, i.e. a simple rectangular straight

channel, particles migrate towards only two equilibrium positions located on

the long channel faces [29, 33]. These equilibrium positions are the initial

positions for the second part of the device, i.e. a curved channel. Gosset

and Di Carlo showed that particle focusing is affected by the combination

of inertia and Dean flow, in particular particles migrate inward or outward

depending on the initial positions. A more recent study of Martel and Toner

[32], showed the decoupled effect of inertia and Dean flow in curved geome-

tries with different radius of curvature. The main result was the existence

of a set of conditions where a single equilibrium position is achieved for par-

ticles of different sizes. These results, however, are still difficult to explain

(as remarked by the authors) due to the complexity of the fluid dynamic

conditions in those devices.

1.2.4 Viscoelastic focusing

Even if particle migration in viscoelastic fluids was a well known phenomenon

since the 1976 [9], only in 2007 the work of Leshansky et al. [10] reported the

experimental evidence of particle focusing in viscoelastic liquids in a microflu-

idic channel. Leshansky et al. studied the focusing of particles suspended

in a water solution of Poly Vynil Pirrolidone (PVP) at 8% w/w (viscoelas-

tic fluid), in a rectangular slit-like channel. They showed that 2D particle

focusing is achieved in this geometry, in the absence of inertial effects. In

particular, particles are focused on the middle-plane of the channel. They

also showed that the migration velocity is proportional to the gradient of

the first normal stress difference ∇N1. By using the same suspending fluid,

D’Avino et al. [11] showed that all the particles migrate towards the channel

centreline in a cylindrical microchannel, thus achieving for the first time a

purely viscoelastic 3D focusing (see Figure 1.5b). They also reported a design

criterion based on scaling arguments from which, known the channel geome-

tries and the fluid properties, it is possible to derive the so-called focusing

length, i.e. the distance from the inlet at which particles are 3D focused.
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Figure 1.5: (a) Simulation of the particles trajectories starting from different

initial positions. Particles which initial positions r < r∗ migrate towards

the centrline. Particles which initial positions r > r∗ migrate towards the

walls (b) Experimental image of 3D focused particles suspended in PVP 8%.

(c) Experimental image of the bistability scenario in PEO 1% w/w. Some

particles started at r > r∗ migrated towards the channel wall. Reprinted

with permission from D’Avino et al. [11]

They further showed that a shear-thinning fluid, i.e. a fluid with a viscosity

that is function of the shear rate γ̇ (see Section 3.2 for more details), gives

raise to a bistability scenario: in the constant viscosity region (low flowrate)

particles migrate towards the centreline, while in the thinning region (high

flow rate) particles migrate towards the wall (see Figure 1.5). More recently,

Seo et al. [34] reported more experiments on the effect of the shear thin-

ning on particle migration in cylindrical channel, by using the holographic

microscopy. They found results substantially analogous to those by D’Avino

et al. [11]. Very recently, Kang et al. [35] showed that even small ppm of

λ-DNA, that is a semi-flexible polymer [36], can 3D focus particles of sev-

eral dimensions around the channel centreline. In conclusion, viscoelastic 3D

focusing was achieved in cylindrical geometry.

Nevertheless, square-shaped geometry are more common in microfluidics, be-

cause of their simpler fabrication. Yang et al. [13] studied the effect of fluid
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Figure 1.6: (a) Experimental snapshot of positions of particles suspended in

PVP 8% , flowing in a square-shaped channel at different flow rates. (b) N1

distribution in a square cross section of the channel: five minima are present

at the center and at the four corners. (c) Experimental snapshot of particle

positions in a square channel using PEO 0.05% wt at different flow rates.

Reprinted with permission from Yang et al. [13]

properties on particle focusing in square-shaped microchannel. They found

that by using a water solution of PVP 8% w/w, particles migrate towards

five equilibrium positions, namely the centreline and the four corners, as

reported in Figure 1.6(a-b), for every imposed flow rate Q. The explana-

tion of this phenomenon is inside ∇N1: the five equilibrium positions in the

square channel correspond to the five minima of N1 (figure 1.6b). The au-

thors demonstrated that, by changing the fluid with a PEO 4MDa 0.05% wt

(shear thinning fluid), particles can be aligned on the centreline combining
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viscoelastic effects and inertial effects (Figure 1.6c). In fact, particles at the

corners are pushed away because of inertial wall lift force and migrate towards

the centreline because subjected to the elastic force. The main disadvantage

of this kind of 3D focusing is in the rather narrow range of flow rate available

for alignment: at low flow rates elastic effects are dominant; at high flows rate

inertial effects dominate. This focusing mechanism then applies only when

inertial and elastic forces are comparable. Recent simulations by Villone et

al. [12] comprehensively explain the effect of fluid properties on particle mi-

gration in square-shaped geometries. Villone et al. predict that particles

suspended in a viscoelastic constant-viscosity fluids (like the water solution

PVP 8% wt), in inertialess conditions, always migrate towards the channel

centreline, regardless of their initial positions, thus achieving a 3D particle

focusing. These results are of course in contrast with those of Yang et al.

[13] that showed five equilibrium positions in inertialess conditions. Villone

et al. [12], in addition, showed that for shear-thinning fluids, a bistability

scenario appears, in analogy to what occur in cylindrical microchannels. In

this case however, there exists a well defined ‘separatrix line’ in the channel

cross-section with a position strongly dependent on the flow: particles with

initial positions ‘below’ the separatrix, i.e. included between the separatrix

line and the centreline, migrate towards the channel centreline, while parti-

cles with initial positions ‘above’ the separatrix, migrate towards the channel

walls. By increasing the flow rate and the nonlinear viscoelastic properties,

the separatrix line approaches the centreline. It exists a condition for which

all the particles migrate towards the channel walls, regardless of their initial

position. The authors also showed that particles suspended in a viscoelastic

fluid with a non negligible second normal stress difference N2 migrate to-

wards the channel centreline, the walls, and other positions dictated by the

presence of secondary flows. This result about N2 was recently experimen-

tally confirmed by Lim et al. [20]. Very recently, Seo et al. [37] performed

several experiments on the effect of the shear thinning on particle migration

in square-shaped channel, by using the holographic microscopy. They found
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that particles suspended in PVP 8% wt are always 3D focused on the channel

centreline, in agreement with the simulation of Villone et al. [12]. They also

reported experiments on shear-thinning fluids, finding that when exploring

the fluid shear-thinning region, particles start to migrate away from the cen-

treline. Nevertheless, they did not find the conditions predicted by Villone

et al. [12] for which all the particles are focused at the channel corners. To

the best of our knowledge, there are no experimental observations of this

condition. We can therefore summirise by saying that particles suspended

in a viscoelastic liquid can be 3D focused in a simple geometry, without any

external field. Furthermore, many advantages in fabrication and controlling

system can be obtained by simply using viscoelastic liquids.

1.3 Particle separation in microfluidic devices

In the previous sections we introduced the particle migration mechanism

(Section 1.1.2) and presented several methods to achieve particle focusing

(Section 1.2). In this section we proceed to report on several techniques for

particle separation. Continuous particle separation in microfluidic device, in

fact, is very common [5] and widely studied [6, 38]. In many cases, separation

techniques use some of the previously described focusing methodologies.

1.3.1 Pinched flow fractionation

A first way to separate particle of different dimensions was presented by

Yamada et al. [39], and is called pinched flow fractionation.

This technique is schematised in Figure 1.7. Liquid with particles is

injected from the upper channel inlet while a second stream with the unloaded

liquid come in from a side channel. The two currents ’meet‘each other in the

so-called pinched segment. In this segment, all the particles coming from the

upper inlet are pushed towards the upper wall by the sheath flows (sheath

flow focusing), in dependence on the imposed flow rate. Beyond the pinched

segment, particles explore a sudden expansion; due to their differing fluid
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Figure 1.7: Schematic representation of pinched flow fractionation. Particles

are previously focused on the upper wall by using a sheath flows. After the

pinched segment, they are pushed on different flow line, i.e. are separated,

basing on their size. Reprinted with permission from Yamada et al. [39]

dynamic conditions, particles experience different forces depending on their

size. In particular, small particles follow a streamline close to the upper wall

in the sudden expansion, while bigger particles flow close to the centreline.

This method allows to separate particles of 15 µm from particles of 30µm.

The technique was also scaled down later [40] to separate particles of 1µm

from particles of 2µm. The main advantage of this technique is its versatility,

as separation of particles of various sizes can be achieved, while the disad-

vantages are the complex geometry design and in multiple inlet controlling.
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Figure 1.8: Schematic representation of hydrodinamic filtration. (a) Parti-

cles migrate towards the walls due to the presence of the lateral channels. (b)

Particles smaller than a certain threshold (that depends on the channel de-

sign) flow in the lateral channel. (c) When a large part of the fluid flow in the

lateral channels, bigger particles move in the lateral channels. (d) Overview

of the separation technique. Reprinted with permission from Yamada et al.

[41]

1.3.2 Hydrodynamic filtration

Another technique involving purely hydodrynamic effects is the so-called hy-

drodynamic filtration [41, 42], shown in Figure 1.8. The suspension contain-

ing particles of different sizes is injected from a common inlet. In this case

there are no sheath flows and, in inertialess conditions, particles flow in the

main channel without migrating transversally to the flow direction [7]. The

main channel is surrounded by several lateral channels that are not inlets

but outlets. All the particles are deflected towards the walls. Particles with

a diameter smaller than a certain threshold (that depends on the channel

design) flow in lateral channels (see Figure 1.8(a-b)), while ’bigger‘particles
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continue to flow in the main channel. Finally, when a large part of the flow

has gone in the lateral channels, the remaining bigger particles also move

in the side channels (see Figure 1.8c). By repeating this procedure several

times, particles of different dimensions are separated by using only hydrody-

namic effects (see Figure 1.8d). The main advantage of this technique is to

manage and control just one inlet. Nevertheless, the device is very complex

to fabricate, and is not versatile. In fact, the channel design strongly depends

on the particle diameter and it is not always possible to use the same device

to separate different ’couples‘ of particle sizes. With this method, particles

of 1 and 3 µm were firstly separated. Afterwards, particles of 1 and 2 µm

were also separated.

1.3.3 Deterministic lateral displacement

Amother important method for hydrodynamic particle separation is the so

called deterministic lateral displacement (DLD) [43] a schematisation of which

is shown in Figure 1.9. In this configuration, rows of obstacles are shifted

with refer to each other of a certain amount (see Figure 1.9a), and then

realigned again after few rows.

Imposing a laminar flow in y direction, particles diffuse around the obsta-

cles following a specific path depending on their size. Particles quite smaller

than the distance between obstacles will follow a certain path, but larger

particles will follow a different path. Since this mechanism depends on the

interaction between particles and obstacles only, it is possible to determinis-

tically separate particles of different sizes. It is also possible to combine the

flow around the obstacles with electric fields [6]. This combined method was

used to separate DNA molecules of different dimensions in few seconds [45].

When DNA molecules go inside the microchip, they experience a first strong

electric field E1 applied diagonally, so they move in the E1 direction without

diffusing. E1 is switched to a weaker electric field E2 applied in x direction,

so molecules diffuse around obstacles in different way due to their sizes. Af-

ter this step, E2 is switched to E1 again, so molecules move diagonally and
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Figure 1.9: Schematic representation of the Deterministic Lateral Displace-

ment DLD. (a) Example of laminar flow between the obstacles. (b) Magnifi-

cation of the flow between the obstacles. (c) Force balance on the particles.

Particles of different sizes follows different paths. (d) Force balance on the

particles as in (c) when an electric field is involved. Reprinted with permis-

sion from McGrath et al. [44]

the cycle is repeated; at the end they are separated. This method allows the

separation of DNA molecules, but with several problems due to the electric

field and Brownian motion controlling.

Due to the its simplicity, DLD (with and without electric field) was widely

used for several applications reviewed in [44]. The most important advan-

tage of this technique is the possibility to determine particles or molecules

paths a priori, thus achieving a really high efficiency as compared with other

methods.
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Figure 1.10: Principle of the H-shaped microchannel for (a) particle isolation

in different streams and (b) separation in flow of magnetic from non magnetic

particles. Reprinted with permission from Pamme [46]

1.3.4 Magnetophoresis-based separation

Magnetophoresis-based separation is widely used for several purposes such

as magnetic particles/cells sorting and separation of particles/cells from a

contaminated streamflow [6, 46]. Several devices to separate magnetic from

non-magnetic particles or magnetic particles of different size have been pro-

posed [46, 47]. A recently used design consists of a central separation chamber

with two inlets and two outlets [46, 48, 49, 50].

This device is commonly referred to as ‘H-shaped’ channel (see Fig-

ure 1.10) [46]. In one inlet, the sample containing magnetic beads and non-

magnetic particles is injected, whereas a buffer solution enters the other inlet

at the same flow rate. Laminar flow prevents the mixing of the two streams

in the separation chamber.

A magnetic field (e.g., generated by a permanent magnet) is used to re-

cruit the magnetic beads towards the clean buffer stream. Xia et al. [48] inte-
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grated a microfabricated high-gradient magnetic field concentrator (HGMC)

at one side of the central chamber to separate magnetic beads from 1.6 to

2 µm in diameter, either bare or carrying bacteria, in a 200 × 50 µm rect-

angular cross-section microchannel with a separation efficiency of ∼ 90%.

Kim et al. [49] were able to implement continuous immunoconjugation of

4.5 µm-diameter microparticles and 7.5 µm-diameter cells and their subse-

quent separation within a single microfluidic device. More recently, Wu et

al. [50] studied the separation of Red Blood Cells conjugated with magnetic

1 µm microbeads. A multichannel version of this device has also been pro-

posed, which is able to separate magnetic beads of different size [51]. In

addition, sorting of cells from 9 to 13 µm in diameter, loaded with magnetic

nano-particles was demonstrated [47].

1.3.5 Inertia-based separation

As anticipated in Section 1.1.1, particles subjected to inertial flow experience

forces that push them towards some equilibrium position [21, 29]. The kinet-

ics of inertial migration strongly depends on the particle dimension, in fact

the inertial migration velocity Vinertial ∝ D3
p [52]. However, it was predicted

that particle equilibrium position is independent of particle size when the

particle Reynolds Number Rep < 1 [52]. In other words, particles with dif-

ferent dimensions will occupy the same spatial equilibrium positions. Thus,

in these conditions, inertial-based particle separation is possible only when

there is an additional force that acts on the particles in contrast with the lift

force. As anticipated in Section 1.2, particles in curved microchannels expe-

rience the so-called Dean vortices that generate additional forces. Di Carlo

et al. [52] proposed a serpentine microfluidic device that is able to separate

particles and droplets with high efficiency and throughput. In particular,

they separate 9 µm particles from 3.1µm particles with a purity of particles

that varies from 99.9% for bigger particles to 56% for smaller particles.

An improvement of this technique was more recently presented by Kun-

taegowdanahalli et al. [53] and a process device schematisation is reported
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Figure 1.11: Schematisation of the microfluidic device. Particles are initially

randomly distributed while after several spirals they are focused on different

positions towards the inner wall. At the end they are separated in different

channels. Reprinted with permission from Kuntaegowdanahalli et al. [53]

in Figure 1.11. In this device, particles of three different sizes, namely 10, 15

and 20 µm, are suspended in water all together. At the device inlet, particles

injected from the inner inlet (left one in Figure 1.11) are randomly distributed

between the inner and the outer wall. After some loops, particles occupy dif-

ferent equilibrium positions in dependence on their size. At the end, particles

are collected in three different channels (for each half of the main channel).

Particles are separated in a 5-loop Archimedean spiral microchannel with an

efficiency of ∼90%. In order to prove the versatility of the device, the authors

separate neuroblastoma and glioma cells with an efficiency around 80%. In

addition with this device it is possible to achieve a throughput of ∼1 mil-

lioncells/min. Other more recent applications of inertial-based microfluidic

can be found in [54, 55].
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Figure 1.12: Schematisation of the separation device. Particles are injected

from two side inlets and are pushed towards the walls from the central sheath

flow. Then bigger particles migrate towards the channel centreline while

smaller one stay closed to the wall. Reprinted with permission from Nam et

al. [56]

1.3.6 Viscoelasticity-based separation

In Sections 1.1.2 and 1.2.4, we saw that particles suspended in a viscoelastic

fluid and subjected to a Poiseuille flow can migrate transversally to the flow

direction, by occupying some equilibrium positions depending on the flow rate

Q, the fluid relaxation time λ, and the fluid properties (constant viscosity

or shear-thinning). The particle viscoelastic migration velocity is strongly

size dependent [10]. Hence, particles of different sizes, in the same channel,

can reach their equilibrium position with different kinetics. In other words,

for a given channel length L, particles of different sizes will occupy different

positions in the channel. Yang et al. [13] were the first to separate particles

of different sizes (5.4 and 2.4 µm) in a device made of a straight channel and

an abrupt expansion, just by using fluid viscoelasticity. In another work,

Yang et al. [57] use the same procedure of ref. [13] to separate red-blood
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cells from particles because of their different migration behaviours.

Nam et al. [56] use the device schematised in Figure 1.12 to separate particles

of 1 µm and 5 µmwith an efficiency∼99%. In particular, particles of different

sizes are injected from two side inlets and are all pushed towards the two walls

by the central sheath flow. Then, bigger particles start to migrate towards

the channel centreline, while smaller ones stay close to the wall. In this way,

at the channel outlet, particles of different sizes can be collected in different

streams. They also use the same device to separate platelets from red blood

cells with a purity of 99.9%.

Very recently Ahn et al. [58] extended the work of Yang et al. [13], by

considering the effects of the initial particle concentration (particle-particle

interactions play in fact a significant role), of the polymer concentration in

the suspending matrix, and of the flow rate on the separation efficiency in a

simple straight channel.

Recently D’Avino [59], presented a numerical study on the non-Newtonian

deterministic lateral separator. He found that a shear-thinning fluid gives rise

to a lower ‘critical diameter’, i.e. the diameter for which two different parti-

cles (one larger and one smaller than such diameter) follow different paths, in

the deterministic lateral displacement constriction. Thus, by using a shear-

thinning fluid as a suspending liquid, it is possible to tune opportunely the

critical diameter for a fixed design.
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Chapter 2

Materials and Methods

2.1 Suspending fluids and particles

Fluids

Several polymers in water solutions at different mass concentrations were

used in this work.

Poly Vynil Pyrrolidone (PVP), with average Molecular weight Mw=360

kDa, was purchased by Sigma Alderich. Aqueous solutions of PVP at mass

concentration of 8% have been used. The solutions were stirred at 400 rpm

by using a magnetic stirrer for 24 h at T ∼ 40◦C.

PolyEthylene Oxide (PEO), with average Molecular weight Mw=4 MDa,

was purchased by Sigma Alderich. The solvent used to prepare the solutions

is a glycerol-water solution at 25% wt of glycerol, in order to avoid particle

sedimentation problems. The solvent viscosity is η = 0.002 Pa·s. Solutions

of PEO at several mass concentrations ranging from 0.08% to 0.8%, have

been used. The solutions were stirred at 400 rpm by using a magnetic stirrer

for 24 h at T ∼ 25◦C.

Non-ionic PolyAcrylamide (niPAM), with average Molcular weightMw=5-

6 MDa, was purchased by Sigma Alderich. The solvent used to prepare the

solutions is a glycerol-water solution at 25% wt of glycerol, in order to avoid

particle sedimentation problems. The solvent viscosity is again η = 0.002
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Pa·s. Solutions of niPAM at several mass concentration ranging from 0.05%

to 0.5%, have been used. The solutions were stirred at 400 rpm by using a

magnetic stirrer for 12 h at T ∼ 25◦C. NiPAM have also been used for the

experiments discussed in Section 5.2; in particular an aqueous solution 0.5%

w/w was used.

Two ionic PolyAcrylAmides (iPAM, from Polysciences Inc.) having nom-

inal molecular weight of Mw = 1, 500 Da and of Mw = 1, 145, 000 Da

were used to prepare aqueous solution at mass concentrations ranging from

≈ 5% w/w to ≈ 40% w/w and from ≈ 0.1% w/w to ≈ 1% w/w, respectively.

The solutions were stirred at 200 rpm for 48 h at room temperature.

HydorxyEthyl Cellulose (Average Molcular weight Mw=250 kDa) was

purchased by Sigma Alderich. Aqueous solutions of HEC at mass concen-

trations of 0.05%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.8% w/w, have

been investigated. The solutions were stirred at 200 rpm for 48 h at room

temperature.

Particles

Two sets of polystyrene (PS) particles (Polysciences) with diameter 5.8±0.6

µm and 10±1 µm are used. In both cases, a dilute suspension with a vol-

ume fraction ϕ = 0.01% is prepared. Particles are added to the matrix and

put in a mixer (Vortex, Falc Instruments) to guarantee a good dispersion,

and then in an ultrasonic bath (Falc Instruments) to remove air bubbles;

this procedure is repeated before each experiment. The PS particles have a

density ρp = 1.05 g/ml; we estimate that PVP solution has a density ρ = 1

g/ml. A rough calculation of the sedimentation velocity from the Stokes law

shows that this density mismatch does not induce any relevant particle sed-

imentation effect in our experimental timescales. Regarding PEO and PAM

solutions, the amount of glycerol in the solution matches the particle density,

therefore no sedimentation occurs. Regarding the experiments reported in

Section 5.2, magnetic, Nickel-covered spherical particles (Dynabeads) with

diameter Dp = 10 ± 1 µm, ρp = 1.1 g/ml, magnetisation m = 1.8 emu/g
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have been suspended in aqueous solution of niPAM 0.5% w/w, with a volume

fraction ϕ = 0.02.

2.2 Rheological Measurements

Rheological measurements were performed by using a stress-controlled rota-

tional rheometer MCR 302 (Anton Paar Instrument) able to detect Torque

down to about ∼ 0.1 µNm. The measurements were performed with a cone

and plate geometry of 50 mm and of 60 mm diameter and equipped with a

solvent trap to avoid fluid evaporation. Temperature was kept to 22◦C.

2.3 Microfluidic Devices Fabrication

In this section we present the two different fabrication techniques used to

produce the devices used in this work. All the experiments described in

Chapter 4 and in Section 5.1 were carried out in a square-shaped microchan-

nel made of Poly Methyl Metachrilate (PMMA), while the experiments dis-

cussed in Section 5.2 were carried out in a PolyDimMthylSiloxane (PDMA)

microdevice. Both techniques are presented in the follow.

Poly Methyl Metachrilate (PMMA) Device

The square-shaped microchannel is milled on the PMMA substrate (PMMA,

substrate thickness 1 mm, Goodfellow) using the Micromilling (Minitech

CNC Mini-Mill): a 2 mm tip is first used to mill all the substrate of 150

µm to guarantee level uniformity. A tip with the same dimension of the

channel side is, then, inserted in the machine to mill the channel. Finally,

two holes are made in the substrate to prepare the access to the inlet and

the outlet of the channel (see below). An analysis with a profilometer (Veeco

Dektak 150) has been performed to confirm that the accuracy of the channel

depth is within 10%. The channel is bonded on another PMMA substrate by

immersing the two pieces in absolute ethanol (from Sigma-Aldrich) for about
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20 minutes, clamping them together and putting in the oven at T = 40◦ C

for about two hours.

PolyDimMthylSiloxane (PDMA) device

In this case we proceeded in two main steps: i) Fabrication of the master

mold; ii) PDMS replica on the master fabricated in i).

i) The master mold was made of Poly Methyl MethAcrylate (PMMA,

substrate thickness 1 mm, Goodfellow) by following the same steps described

above without the bonding part.

ii) A PolyDiMethylSiloxane (PDMS) master has been obtained from the

PMMA mold as follows. Dow Corning Sylgard 184 Silicone elastomer and

curing agent (10:1 in weight) were thoroughly mixed. The mixture was de-

gassed in a vacuum chamber for 30 minutes in order to remove air bubbles

arising from the mixing. Afterwards, the mixture was poured on the PMMA

mold and cured at 80◦C for 2 hours. Such a temperature is below the PMMA

melting temperature (∼ 95◦C), thus assuring that the channels milled on the

PMMA block do not deform. After curing, the PDMS was peeled off the

PMMA block. Solid PDMS was used as an intermediate master to generate

PDMS replicas of the microfluidic device by pouring liquid PDMS on it. In

order to prevent adhesion of the PDMS replicas on the PDMS master, this

was immersed for about 2 minutes into a silane solution, i.e., a mixture of

94% v/v isopropanol (Sigma Aldrich), 1% acetic acid (Sigma Aldrich), 1%

Fluorolink S10 (Solvay), and 4% deionized water [60]. Then, the PDMS

master was placed in the oven at 120◦C for 30 minutes, thus allowing a com-

plete reaction of the master PDMS surface with the fluorinated polymer.

The treated PDMS master was thoroughly rinsed in ethanol and cleaned in

an ultrasonic bath (20 min). To make a replica, PDMS mixture (10:1) was

poured on the silanized PDMS master and cured as described above, and

finally peeled-off. Inlets and outlets were created by using a puncher. The

PDMS replica was bonded on a glass microslide after performing an oxygen

plasma treatment with a Plasma cleaner (Diener Electronics-Femto) at 50 W
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and 0.4 mbar for 1 minute. Then, the microfluidic chip was incubated in the

oven at 120◦C for 1 hour to complete glass-PDMS bonding. Finally, Teflon

pipes were sealed on the two inlets with standard PDMS that was cured at

120◦C for 15 minutes.

2.4 Feeding system

The flow rate is controlled by a syringe pump (Nemesys apparatus), using

glass syringes. This machine is able to discriminate different flow rates with

a precision of 0.001 µl/min. The flow rates applied vary in the range 0.01

µl/min ⩽ Q ⩽ 12 µl/min. Steady state conditions and absence of possible

leaking are verified through the invariance of the particle velocity.

2.5 Atomic Force Microscopy Measurements

Atomic force microscopy (AFM) imaging, used in Section 3.4, was performed

using a JPK NanoWizard II Bio AFM (JPK, Germany), in combination with

an MLCT-UC (Bruker company) cantilever (spring constant = 0.01 N/m).

The AFM is mounted upon a Zeiss Observer A1 Axio (Zeiss, UK) confocal

microscope, which is used for the alignment and positioning of the AFM

cantilever upon the sample. The imaging process was undertaken in contact

mode in air at room temperature.

2.6 Particle distributions

Particles flowing in the channel are observed using an inverted microscope

(Olympus Flash IX-71) and a straight microscope (Olympus BX63) with a

4x objective to reach the best field of depth without losing information on

particle motion. Image sequences are collected with a fast camera (IGV-

B0620M, Imperx and CCD Hamamatsu) at a frame rate variable between 10

and 600 fps depending on the flow rate. The observations are all made at a
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Figure 2.1: Concentric bands dividing the channel cross-section used to com-

pute the particle distributions. X and Y are the dimensionless coordinates

of the channel cross-section. The dashed lines delimit the region accessible

to the particles. The bands are progressively numbered from the inner one

(k = 1) to the outer one (k = 6). Notice that the first band has almost the

same dimension of the particle.

fixed distance from either channel inlet. All the experiments are performed

at room temperature.

The velocity distributions are measured by particle tracking. To quantify

the particle focusing, we evaluate the fraction of particles passing in a certain

zone of the square cross-section by considering concentric bands, as reported

in Figure 2.1. We compute the fraction fk of particles in the band k as [11]:

fk =

nk

Akvk∑
k

nk

Akvk

(2.1)

where nk is the number of particles flowing in the band k (always at a

fixed distance from the inlet), Ak and vk are the cross-sectional area and the

average velocity of the band k, respectively. The normalization of each nk in

Eq. (2.1) through the product Akvk in Eq. (2.1) is made to properly take into

account that different bands have different areas and velocities. To obtain a
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good statistical sample, at each flow rate we collect a number of frames to

get, in total, more than 100 particles.

To describe the procedure adopted to compute the number of particles

in each band nk, let us introduce a Cartesian reference frame with the ori-

gin at the center of the channel cross-section. (The coordinates are made

dimensionless by using the cross-section side H as characteristic length.) We

denote with Z the flow direction, and with X and Y the directions parallel

and orthogonal to the plane containing the device (see Figure 2.1). From

the particle tracking experiments, we measure the particle velocity Vz along

the flow direction as well as the coordinate Xp of the particle center. Notice

that the two particle velocity components within the channel cross-section,

Vx and Vy, which contribute to the migration velocity, are not directly visual-

ized from the tracking method. Indeed, migration is a very slow process, and

no appreciable change in those velocities can be detected in the observation

window used in our analysis (that covers a distance of about 1 mm).

To locate a particle with a known translational velocity Vz in one of

the bands, we performed preliminary numerical simulations (the details are

given in the next subsection) aimed to calculate the velocity of a sphere

along the flow direction in a square-shaped channel for different positions in

the cross-section, i.e. the function Vz,sim=Vz,sim(Xp, Yp), where the subscript

‘sim’ stands from simulated velocity. The solid lines in Figure 2.1 are the

isovelocity contours Vz,sim(Xp, Yp) = Vk with Vk a velocity value depending on

the band k. We select Vk as the values such that the corresponding isoveloc-

ity curves divide the cross-section semiaxes in six equally-spaced segments.

In this way, the knowledge of the measured particle velocity Vz and of the

calculated Vz,sim univocally allows to collocate a particle in a specific band.

Notice that, with the adopted choice for Vk, the first band, bounded by the

red curve, is only slightly larger in size than the particle.

The procedure just discussed is similar to the one used for a cylindrical

channel [11, 61]. However, in the latter case, the fluid velocity field without

particles was considered. In all the experiments of Section 4.1 and Section 5.1,
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we account for the effective particle velocity, thus getting high accuracy,

especially far from the channel center, where confinement leads to large ‘slip

velocities’ (defined as the difference between the actual particle velocity and

the virtual fluid velocity at the same position of the particle). Therefore,

in Figure 2.1, the solid lines are the loci of points corresponding to the

same velocity of the particle (and not of the ‘empty’ fluid). The details

of these simulations are reported in Section 2.10. On the other hand for

the experiments of Section 4.2 and 4.3, we used numerical simulations of the

unloaded fluid. The details of these simulations are given in Section 2.10

The knowledge of the particle coordinate Xp and of the particle transla-

tional velocity, combined with the numerically computed velocity map, now

allows us to find out the exact position of the particle within the band. In-

deed, the following equation:

Vz,sim(Xp, Yp) = Vz (2.2)

can be solved for Yp giving the coordinate of the particle center along the

observation direction. Notice that, in Eq. (2.2), the quantities Xp and Vz are

measured by experiments, whereas the functional form of Vz,sim is computed

by simulations.

2.7 Microrheological Measurements

All the microrheology data in Section 3.3 and 3.4 were derivded by using

Optical tweezers. Optical trapping was achieved by means of a titanium-

sapphire laser with a 5 W pump (Verdi V5 laser; Coherent Inc.), which

provides up to 1 W at 830 nm. OT are built on an inverted microscope,

where the same objective lens (100x, 1.3 numerical aperture, Zeiss, Plan-

Neofluar) is used for both focus the trapping laser beam and visualise the

thermal fluctuations of a single 5µm diameter silica bead. Samples were

mounted on a motorized microscope stage (Prior Pro-Scan II). A CMOS

camera (Dalsa Genie HM640 GigE) was used to collect high-speed images of
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a reduced field of view. These images were processed in real time at ∼1 kHz

using homemade LabVIEW (National Instrumens) single-particle-tracking

software [62] running on a personal computer. Note that each trajectory was

made from at least 106 data points.

2.8 Microrheology with Optical Tweezers

When a micro-sized spherical particle is immersed in a fluid at thermal equi-

librium, it experiences random forces due to thermal fluctuations of the sur-

rounding fluid’s molecules; these forces generate the so called Brownian mo-

tion of the particle. The statistical mechanics study of the particle trajectory

has the potential of providing information on the viscoelastic properties of

the suspending fluid as introduced by Mason and Weitz [63] in the case of

freely diffusing particles. When the particle fluctuations are constrained by a

harmonic potential generated by the optical tweezers, the particle trajectory

can be described by means of a generalised Langevin equation [64]. The stiff-

ness of the optical trap k can be easily determined by applying the principle

of equipartition energy:

d

2
kbT =

1

2
k⟨r2j ⟩ (2.3)

where ⟨r2j ⟩ is the time-independent variance of the Carteisan component (j =

x, y, z) of the (d)-dimensional vector describing the particle’s displacement

from the trap center, the origin of r. For example, Figure 2.2a shows the

y-component of the trajectory of an optically trapped 5µm diameter bead

suspended in water.

The linear viscoelastic properties of a fluid are fully defined by its shear

complex modulus: G∗(ω) = G′(ω) + iG′′(ω), which is a complex number

that provides information on both the elastic and viscous nature of the fluid.

In particular, the real part G′(ω) is called storage (elastic) modulus and

the imaginary part G′′(ω) is called loss (viscous) modulus and they provide

information on the viscoelastic nature of the fluids.
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a) b)

Figure 2.2: a) The y-component of the trajectory of an optically trapped

5µm diameter bead suspended in water over a period of 50ms. The inset

shows the same component as before, but over the entire experiment of ∼
22 min. b) The normalised position autocorrelation function A(τ) and the

normalised mean square displacement Π(τ) versus lag-time τ evaluated from

the trajectory shown on the left. The red line is the theoretical prediction

for such a system: Π(τ) = 1 − e−λτ [64]; where λ = κ/(6πaη), κ the trap

stiffness, η the fluid viscosity and a the bead radius. The inset is a schematic

view of an optically trapped glass bead.

We now proceed to describe a novel method to derive the relative viscosity

with optical tweezers without applying Fourier transform [65]. In particular

the value of the relative viscosity ηr = η/ηs (with η the fluid viscosity and ηs

the solvent viscosity), is a direct reading from the Normalised Positions Au-

tocorrelation Function (NPAF). This method was used to derive ηr values for

ionic-PAM and HydroxyEthyl Cellulose in Sections 3.3 and 3.4. We therefore

proceed to describe more in deeper this method. In the simplest case when a

particle of radius a is suspended into a Newtonian fluid (i.e. a fluid with con-

stant viscosity η and no elastic components), the particle normalised position

autocorrelation function assumes the form of a single exponential decay [64]:

A(τ) ≡ ⟨x(t0)x(t0 + τ)⟩t0
⟨x2⟩eq

= e−λτ (2.4)

where λ = κ/(6πaη) is the characteristic relaxation rate of the compound sys-
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tem (also known as the “corner frequency” [66]). In the NPAF definition, the

brackets ⟨· · · ⟩t0 indicate the average taken (by time-translation invariance)

over all initial times t0 within a single trajectory, τ is the lag-time (or time

interval (t− t0)), x(t) is the one dimensional particle position from the trap

centre (which is assumed to be coincident with the origin of the coordinate

system), and ⟨x2⟩eq is the equilibrium variance of the bead position. Notice

that, the calibration method based on the principle of equipartition energy

(see above) is independent from the rheological nature of the fluid under

investigation, i.e. from its Newtonian/non-Newtonian character. However,

when changing the suspending fluid (e.g., by changing concentration) or the

laser properties (e.g., the laser power), the calibration procedure to determine

κ must of course be repeated, because variations of the experimental con-

ditions will affect the measured variance ⟨x2⟩eq, hence the stiffness κ. From

Eq (2.4), with a simple change of variables, it is possible to write:

A(τ ∗) = e−τ∗/ηr (2.5)

where τ ∗ = τκ/(6πaηs) is a dimensionless lag-time containing the pure sol-

vent Newtonian viscosity ηs. It follows that, in anA(τ ∗) vs τ ∗ plot, by drawing

a horizontal line starting from the ordinate e−1, the abscissa of its intercept

with A(τ ∗) provides a direct reading of the solution relative viscosity ηr. No-

tably, in the case of pure solvent (water), the abscissa of the intercept of e−1

with A(τ ∗) is 1.

In general, polymer solutions as those employed in this work are non-Newtonian,

especially at relatively high concentrations where the viscosity may not be

constant, particularly at high frequencies (or high shear rates). It follows that

Eq. (2.4) may not be valid for those solutions, at least not for all concentra-

tions. In dilute conditions, however, at relatively low polymer concentrations,

most of solutions tend to show a Newtonian behaviour over a wide range of

shear rates (e.g. see Figure 3.2), and this is especially so towards vanishingly

small values of concentration, which coincidentally are the same conditions

required for measuring [η]. Hence, the applicability of Eqs. (2.4) and (2.5)

for measuring ηr, and therefore [η], is confirmed in those conditions.
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When considering more concentrated solutions, we can argue as follows. It

is always possible to write the NPAF in the general form:

A(τ ∗) = A0(τ
∗)e−τ∗/ηr (2.6)

The above described graphical procedure will therefore stay valid in gen-

eral, i.e. for whatever solution concentration, if the following two conditions

are met: i) τDλ0 ≪ 1, where τD is the fluid’s longest relaxation time and

λ0 = κ/(6πaη0) is the system corner frequency evaluated with the solution

zero-shear viscosity η0; ii) A0(τ
∗ ≥ τ ∗D) ≃ 1, where τ ∗D is a dimensionless time

equals to τD/(6πaηs/κ). Condition ii) simply states that the A(τ ∗) function

decays exponentially beyond τ ∗D, and, more importantly, that its ‘initial de-

cay’, i.e. below τ ∗D, is small when compared to its ‘complete decay’, up to

A(−) = 1/e. When taken together, therefore, conditions i) and ii) simply

state that there exists a large range of lag-times τD < τ ≲ λ−1
0 , where the

decay described by Eqs. (2.6) is in fact indistinguishable from one mathe-

matically described through Eq. (2.5). (Notice that, for τ > λ−1
0 the elastic

component of the OT dominates the particle dynamics whatever the nature

of the surrounding fluid.)

It is clear that, with the two just mentioned conditions fulfilled, the graph-

ical procedure illustrated above will work properly even under non-dilute

conditions. Of course, in rheological investigations, the fulfilling of condi-

tions i) and ii) above is uncertain prior of performing the measurements,

simply because the parameters τD and η0 are yet unknown. As a practical

recipe, therefore, we should simply look, when measuring the NPAF, to the

linearity of the log-linear plot of A(τ ∗) vs τ ∗; if linearity is there, then ηr can

be directly obtained, irrespective of other rheological measurements aimed

to ascertain the Newtonian/non-Newtonian nature of the solution under in-

vestigation. In all the OT experimental data reported in Figures 3.7, 3.8

and 3.10, we have been ensured about the linearity of A(τ ∗).
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2.9 Dimensionless parameters

In this section we proceed to present several dimensionless parameters used

in this work. The entity of fluid viscoelasticity can be quantified by the

Deborah number defined, for a rectangular-shaped channel, as:

De =
λ

tf
=

λQ

H2W
(2.7)

It is obvious that for square-shaped microchannel De = λQ/H3 because

H = W . The Deborah number is the ratio between the fluid relaxation

time λ and the flow characteristic time tf = H2W/Q. When De = 0 the

fluid is Newtonian because λ = 0, while increasing De corresponds to more

pronounced elasticity.

Another important parameter for the system under investigation is the

Reynolds number:

Re =
ρQ

ηH
(2.8)

i.e. the ratio between inertial and viscous forces.

Yang et al. [13] compared viscoelastic and inertial forces through the

Elasticity number :

El =
De

Re
=

λη

ρH2
(2.9)

Viscoelastic or inertial forces are dominant when El ≫ 1 or El ≪ 1,

respectively, whereas, if El ∼ 1, the viscoelastic forces are comparable with

the inertial ones. We anticipate here that, basing on the results of Section 4.3,

this number is not sufficient in describing the synergic effect of inertia and

elasticity.

Another important parameter is the so-called confinement ratio defined

as:

β =
Dp

H
(2.10)

A value of β ∼ 0.1 is sufficient to promote non-linear phenomena in

several flow conditions [11, 12, 13].
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In order to analyse data of Section 5.2, we need to define a dimensionless

number that involves a magnetic field. In particular we need of a parameters

that compares the viscous force with the magnetic one. At this aim, let

us consider a magnetic spherical particle with diameter Dp suspended in

a viscoelastic fluid flowing in a straight microchannel. A cubic permanent

magnet with side length lm is located at a distance lm from the side of the

channel. We denote with x the flow direction, and y and z the directions that

identify the channel cross-section. In microfluidic flows, inertial forces are

commonly negligible with respect to viscous forces; therefore, the Reynolds

number Re, that gives the relative weight of these two forces, is much less

than unity. In the assumption of no particle sedimentation, the magnetic

bead is subjected to a drag viscous force FD, a magnetic force FMn due to

the permanent magnet and an elastic force F el due to the fluid viscoelasticity.

These forces can be expressed as follows:

FD = 3πηDp(uf − up) (2.11)

FMn =
πD3

p

6
µ0

χeff

2
∇H2 (2.12)

F el = AD3
p∇N1 (2.13)

In Eq. (2.11), the Newtonian drag expression is used with η the fluid vis-

cosity, and uf and up the fluid and particle velocities. The magnetic force

in Eq. (2.12) assumes that the particles are not magnetically saturated, so

that their magnetization is a linear function of the magnetic field H (see,

e.g., [67]). In this equation, µ0 and χeff are the permeability of vacuum and

the effective susceptibility of the beads which is related to the intrinsic sus-

ceptibility χi through χeff = χi/(1 + χi/3) [67, 68]. Finally, the viscoelastic

force in Eq. (2.13), is proportional to the gradient of the first normal stress

difference N1 = Txx − Tyy, where T is the fluid stress tensor [10, 11] and

A is a numerical factor. The normal stresses arise from fluid viscoelasticity

and are responsible for particle migration.[10, 11, 69] The first normal stress

difference can be rewritten as N1 = Ψ1γ̇
2 where Ψ1 is the first normal stress

difference coefficient and γ̇ is the shear rate.
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A force balance on the magnetic bead leads to:

FD + FMn + F el = 0 (2.14)

Eq. (2.14) allows to calculate the velocity of the particle up and, then, its

trajectory in the channel. By using the expressions given in Eqs.(2.11)-(2.13),

the force balance reads in dimensionless form as:

u∗
p =u∗

f +Mnp∇∗ [H∗ (x∗
p, y

∗
p, z

∗
p, l

∗
m, s

∗
m

)]2
+

CDeβ2f ∗
(
y∗p, z

∗
p,
W

H

) (2.15)

where starred symbols denote dimensionless quantities. Notice that the chan-

nel height H has been chosen as characteristic length and the average fluid

velocity Q/(WH) as characteristic velocity, where Q is the flow rate and W

the channel width. The function f ∗ accounts for the shear rate gradient term

arising from Eq. (2.13). Such a term can be derived from the fully developed

velocity field in the rectangular channel which is available as a series solution

[70, 71]. The function f ∗ depends on the particle position along the channel

cross-section and on the aspect ratio of the cross-section W/H with W the

width of the channel. The magnetic field is a function of the particle position

in the channel, the distance between the magnet and the channel side lm and

the magnet side length sm.

Eq. (2.15) contains the dimensionless parameter ‘particle magnetization

number’, which compares magnetic and viscous forces. In symbols:

Mnp =
D2

pw

18ηQ
µ0

χeff

2

(
Br

µ

)2

(2.16)

in which Q is the flow rate, Br is the remanence of the magnet and µ is the

permeability of the beads.

In Eq. (2.15), other parameters are the channel aspect ratio W/H, the

distance of the magnet from the channel side l∗m and the length of the magnet

s∗m. Notice that all these parameters are related to the geometry of the

system. Finally, C is a numerical factor.
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2.10 Numerical simulations

Fluid loaded with particle

3D numerical simulations have been performed to derive the translational

velocity of a spherical particle in a square-shaped channel in a pressure-driven

flow. The suspending liquid was assumed to be inertialess and Newtonian.

The no-inertia assumption is motivated by the negligible Reynolds number

for the conditions of our experiments (see later). The second assumption

derives from the polymer solutions’ rheology at small mass concentrations

(see Figure 3.1, 3.2, 3.5, 3.10),that shows a constant viscosity over the whole

range of shear rates of experimental interest. If a particle is included in the

fluid, the elastic stress distribution around the particle will alter its motion.

However, the effect of the fluid elasticity on the slip velocity has been found to

be quite small [72], and the Newtonian approximation is therefore acceptable.

With those assumptions, the governing equations for the fluid motion are

the continuity and the momentum equations:

∇ · v = 0 (2.17)

−∇p+ η∇2v = 0 (2.18)

where v is the fluid velocity and p is the pressure. Regarding the boundary

conditions, no-slip is imposed at the channel walls, periodic boundary condi-

tions are prescribed between the inflow and outflow sections, together with

a flow rate Q in inflow. Finally, the rigid-body motion is imposed at the

particle surface:

v = Vp + ωp × (r − rp) (2.19)

with V p and ωp the (unknown) translational and angular particle velocities,

and rp its center. Because of the inertialess assumption, the total force

and torque acting on the particle surface are zero. Details on the numerical

procedure are given elsewhere [11].

For a specific initial position (Xp0, Yp0) of the particle in the channel cross-

section, the solution of the above system of equation gives the velocity and
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pressure fields along with the translational velocity Vz,sim (notice that Vz,sim is

the only non-zero component of V p, as no migration occurs in an inertialess

Newtonian fluid). By changing the initial coordinates of the particle center

on a regular grid and by interpolating the computed velocity data with an

high-order polynomial function, we end up to an expression for Vz,sim(Xp, Yp)

that can be used for calculating the particle fraction, as previously described.

Unloaded fluid

Numerical simulations of the velocity profile of the fluid without particles

in the square-shaped microchannel are performed, to be used in Section 4.2

and 4.3, together with particle tracking experiments, to reconstruct the par-

ticle positions. The following governing equations are solved by the finite

element method:

∇ · v = 0 (2.20)

−∇p+ 2∇ · [η(IID)D] = 0 (2.21)

where v is the fluid velocity, p the pressure, η(IID) the local shear rate

dependent viscosity, and D = (∇v + ∇vT )/2 the rate-of-deformation ten-

sor. Indeed the viscosity is a function of the second invariant of the rate-

of-deformation tensor IID ≡
√
2D : D which, in simple shear, becomes

IID = γ̇ [73]. For the constitutive equation η(γ̇), we selected the Bird-

Carreau model [74]:

η(γ̇) = η∞ + (η0 − η∞)
1

[1 + (K IID)2]
1−n
2

(2.22)

with parameters obtained by fitting the viscosity trends of the experimen-

tal fluids reported in Figure 3.2. The curves are superimposed to experimen-

tal data. The simulations are performed in a square-shaped microchannel of

a 100 µm side (the same used for experiments of Section 4.2 and 4.3), with

periodic boundary conditions between inflow and outflow, no-slip at the walls

and by imposing the experimental flow rates at the inlet section.
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Notice that velocity Vsim,z in Eq. (2.2) should be the particle velocity

whereas the velocity v computed from Eqs. (2.20)-(2.22) is the fluid veloc-

ity, which is obtained in the absence of the particle. In confined systems,

those two velocities are not exactly the same. In particular, in pressure-

driven flows, the velocity of the fluid at the same location of the particle

center is slightly higher than the particle velocity (it is conventionally stated

that the particle lags the fluid). For the investigated confinement ratio, the

discrepancies between those two velocities is quite small around the channel

centreline [75] whereas it might become relevant for particles very close to

the walls, i.e. for those particles belonging to the outermost bands. However,

we recall that the aim of the procedure adopted to reconstruct the particle

positions is that of assigning each particle to a specific band k. Thus, the

most critical situation occurs for those particles lying close to the boundary

between the fifth and sixth band for which an overestimation of the velocity

will lead to an erroneous assignment of particles to the bands. However,

those events are statistically irrelevant in all the cases considered in what

follows, and hence particle distributions are never significantly altered.
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Chapter 3

Rheolibrary

In this section we report the rheological characterisation of a wide class of

fluids spacing from the liquids belonging to the so-called ’constant viscosity

fluids’ class to the much more complex cellulose solutions. Aim of this section

is to introduce the reader to the polymers’ solution rheological characteristics

in order to have a possibly comprehensive overview of the viscoelastic fluids

used in this work.

3.1 Poly Vynil Pyrrolidone (PVP)

Poly Vynil Pyrrolidone water solution could be taken as representative of the

class of the elastic constant-viscosity fluids.

The PVP water solution 8% w/w was already used in literature to study

particle migration in microchannels [10, 11, 13].

Figure 3.1 shows the rheology of the fluid. The viscosity is constant

(η = 0.09 Pa·s) for about three decades of shear rate γ̇. A very slight shear-

thinning behaviour is observed for the largest shear rates. The frequency

response measurements reported in Figure 3.1b highlight the viscoelastic

character of the fluid, with a non-zero value of the storage modulus G′. The

data shown in Figure 3.1b indicates the typical terminal behaviour of the

moduli with the frequency, G′ ∝ ω2 and G′′ ∝ ω, thus the PVP solution is
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Figure 3.1: (a) Measured steady shear viscosity (black circles) for the aqueous

8% wt PVP solution. (b) Measured elastic modulus G′ (white triangles) and

loss modulus G′′ (black triangles) for the aqueous 8% wt PVP solution. The

slopes of the straight lines are 2 and 1 forG′ andG′′, respectively, and indicate

the expected frequency dependence in the ‘terminal region’ of a viscoelastic

fluid.

well-described by a Maxwell fluid [19] with a single relaxation time λ that

can be obtained from the intersection of the slopes of the two moduli giving

a value of λ ∼ 1.3 · 10−3 s.

3.2 PolyEthylene Oxide (PEO)

Polyethylene Oxide is one of the most studied polymers due to its wide

range of applications [76, 77]. In addition, it was recently used in several

microparticle manipulation applications [13, 34, 37]. At low polymer con-

centration (dilute regime), PEO solutions exhibit a constant viscosity over

several decades of γ̇. By increasing the concentration, however, PEO solu-

tions start to show a shear thinning behaviour [78], i.e. the viscosity does
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Figure 3.2: Measured steady shear viscosity for several concentration of PEO

in Glycerol-water solution at 25% w/w.

depend on the shear rate. In particular, the viscosity of PEO solutions at rel-

atively high concentration (semi-dilute and entangled regime) is a decreasing

function of the shear rate γ̇.

Figure 3.2 shows the rheology of different concentrations of PEO in Glycerol-

water solution at 25% w/w. At c = 0.1% the solution viscosity is constant

over three decades of γ̇. When increasing the polymer concentration up to

c = 0.5% the PEO solution exhibits a shear-thinning behaviour starting from

γ̇ ∼ 100 s−1. This behaviour is more and more pronounced when increasing

the polymer concentration; in particular at c = 1.6% the shear-thinning zone

starts from γ̇ ∼ 1 s−1. This is due to the intermolecular interactions between

polymer chains, that cause shear-thinning at lower shear rate values [19, 79].

It is possible to determine the polymer solution behaviours at different

concentrations, i.e. the different polymer regimes, from the plot of the so-

called zero-shear viscosity as a function of the concentration [19]. As a

matter of fact, only for the polymers regime characterisation, we mainly use

the specific viscosity ηsp defined as:
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ηsp =
η0
ηs

− 1 (3.1)

where η0 is the zero-shear viscosity of the polymer solution and ηs is the

solvent viscosity.

The rheological behaviour of polymer solutions is strongly dependent on

concentration and on the nature of the solvent [19, 80]. It has been theoret-

ically predicted and experimentally demonstrated that the physico-chemical

and rheological behaviour of a solution with flexible polymers drastically

changes at some characteristic concentrations [80, 81]; of interest are the

overlap concentration c∗ and the entanglement concentration ce. Such two

quantities mark the transitions between different concentration regimes, from

dilute to semidilute unentangled (through c∗) and to semidilute entangled

(through ce), by increasing polymer concentration.

Different scaling laws apply depending on the polymer solution’s concen-

tration regime [80]. These laws also contain important information about

the ‘quality’ of the solvent for the dissolved polymer [80, 81, 82] through the

fractal polymer dimension ν, that somehow quantifies the volume pervaded

by a polymer coil within the liquid. A value of ν = 0.5 identifies the so called

θ-solvent, while ν = 0.6 defines a good solvent [83].

The scaling law for ηsp as a function of concentration and fractal polymer

dimension ν for Dilute, SemiDilute Unentangled and SemiDilute Entangled

regime are respectively [80, 81]:

ηsp,D ∝ c ηsp,SDU ∝ c1/(3ν−1) ηsp,SDE ∝ c3/(3ν−1) (3.2)

with obvious meaning of the subscripts.

Regarding PEO solutions, the value for the ν coefficient is available from

the literature. Tirtaatmadja et al. [82] took several experiments on PEO

solutions, at different molecular weight, in water and glycerol-water mixtures,

finding ν = 0.55 in all cases, in good agreeement with the Polymer Handbook

[84] and with other works [85, 86].
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Figure 3.3: Plot of the specific viscosity as a function of concentration for

PEO 4 MDa. Dashed and solid lines are the scaling law predictions for a

neutral polymer with fractal dimension ν = 0.55 in the dilute and semidilute

unentangled regime, respectively. Error bars, estimated from the average of

the zero-shear viscosity values in the rheology curves, are always smaller than

the symbol size. Vertical black dashed lines are an estimate of the values of

c∗ (left) and ce (right), respectively (see text).

Figure 3.3 shows the plot of the specific viscosity as a function of con-

centration for PEO solutions. Dashed line and solid line in Figure 3.3 are

the theoretical predictions of the specific viscosity for a neutral polymer in

good solvent, with ν = 0.55. Dashed line refers to the dilute regime while

solid one refers to the semidilute unentangled regime. With ν = 0.55, the

expressions for ηsp in those regimes are (from Eq. (3.2)):

ηsp,D ∝ c ηsp,SDU ∝ c1.36 (3.3)

The curves given by Eq. (3.3) can of course be vertically shifted depending

on prefactors, which however are not easily assessed from theoretical argu-

ments. Thus, in order to properly identify the different regimes, i.e. the
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vertical positions of the two curves, we proceed as follows. We fit different

subsets of our complete data set with the available prediction of Eq. (3.3);

we then choose the data subset with the highest number of data points that

gives the coefficient of determination R2 closest to the unity as the subset

representative of a concentration regime. For example, we take the data sub-

set ranging from 0.08 g/dl < c < 0.8 g/dl and evaluate the R2 imposing the

equation ηsp,SDU = Ac1.36. We thereafter compare this R2 value with the

one obtained by choosing a narrower data subset, e.g. in the range 0.1 g/dl

< c < 0.6 g/dl, and choose the subset with the R2 value closer to unity. By

repeating this procedure, we arrive to the curves reported in Figure 3.3, thus

identifying the dilute and semidilute unentangled regime. From Figure 3.3

it is now possible to estimate the value of the overlap concentration c∗, and

also that of the entanglement concentration ce: we find c∗PEO ∼ 0.1 g/dl and

ce,PEO ∼ 0.45 g/dl. Indeed, when c > 0.45 g/dl, experimental data clearly

start to deviate from the theoretical prediction for the semidilute unentangled

regime, suggesting the transition to a new regime.

In Figure 3.4 the viscoelastic response of several PEO solutions is re-

ported. At c = 0.7% the solution behaves like a Maxwell fluid with a single

relaxation time λ given by the intersection of the two straight lines in the

terminal region of G′ and G′′. When increasing the polymer concentration, a

more pronounced deviation from the pure Maxwell model is observed. For ex-

ample at c = 1% the solution follow the Maxwell model up to ω ∼ 10 rad/s,

after that it starts to deviate. This behaviour is enhanced at c = 1.6%, in fact

the terminal region finishes at ω ∼ 1 rad/s; above ω ∼ 1 rad/s the solution

deviates from the Maxwell fluid model. This behaviour is common in almost

all the polymer solution in the semidilute entangled regime, i.e. above the

entanglement concentration ce [79]. The explanation of this deviation resides

again in the intermolecular interaction between polymer chains; furthermore

it is not possible to consider these fluids as Maxwell-like with a single λ, but

they can be mathematically modelled as a modified Maxwell fluid with sev-

eral relaxation times, or λ-spectra. Nevertheless, the intersection between
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Figure 3.4: Measured elastic modulus G′ (black circle) and loss modulus G′′

(white triangles) for several concentration of PEO in Glycerol-water solution

at 25% w/w. (a) c = 0.7%. (b) c = 0.8%. (c) c = 1%. (d) c = 1.2%.

(e) c = 1.6%. The slopes of the straight lines are 2 and 1 for G′ and G′′,

respectively, and indicate the expected frequency dependence in the ‘terminal

region’ of a viscoelastic fluid.

the straight lines of the Maxwell model gives the longest relaxation time,

that will be used later to describe the dynamics of microparticles suspended

in a non-Newtonian matrix subjected to pseudo-Poiseuille flow.
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c [%] λ [ms]

0.7 4

0.8 8

1.0 20

1.2 80

1.6 190

Table 3.1: Longest relaxation times at different PEO concentration. These

values are evaluated by the intersection of the two straight lines in the ’ter-

minal region’ as for the Maxwell fluids model.

Table 3.1 reports the longest λ-value, evaluated by the intersection of the

two straight lines in the ’terminal region’ as for the Maxwell fluids model.

Finally, notice that λ-values at c < 0.7% are not detectable by conven-

tional rheometer because of technological limitations. A novel method to

evaluate fluid relaxation time values down to millisecond is presented in Sec-

tion 5.1.

3.3 PolyAcrylAmide (PAM)

PolyAcrylamide solutions are widely used for several different applications

ranging from biology [87, 88] to industry [89]. It is well known that strongly

different rheological behaviours can show up, depending on the synthesis

procedure, leading to the nomenclature of ionic and non-ionic PAM [90,

91, 92, 93]. In particular, non-ionic PAM behaves like a neutral flexible

polymer; the ionic one, in contrast, behaves like a polyelectrolyte polymer as

comprehensively reported in several works [87, 91].

We anticipate here that we used the non-ionic PAM for some applications

described in Section 5 and the ionic PAM to validate the method to derive the

relative viscosity by Optical Tweezers, previously described (See Section 2.8).
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Figure 3.5: Measured steady shear viscosity for several concentration of PAM

in Glycerol-water solution at 25% w/w.

non-ionic PolyAcrylAmide (niPAM)

The shear rheological behaviour of non-ionic PAM (niPAM) for several mass

concentrations is reported in Figure 3.5.

At low polymer concentration niPAM solutions behave like a constant-

viscosity fluid as for the PEO. By increasing the polymer concentration up

to c = 0.8%, it is possible to appreciate a weak shear-thinning behaviour

starting from γ̇ ∼ 30 s−1.

Figure 3.6 shows the specific viscosity ηsp of niPAM solutions, as a func-

tion of the concentration. Dashed line and solid line in Figure 3.6 are the

theoretical predictions of the specific viscosity for a neutral polymer in good

solvent, with ν = 0.585. Dashed line refers to the dilute regime while solid

one refers to the semidilute unentangled regime. With ν = 0.585, the expres-

sions for ηsp in those regimes are (from Eq. (3.2)):

ηsp,D ∝ c ηsp,SDU ∝ c1.32 (3.4)

Also in this case, by following the same procedure previousy described, we

determine the prefactors in Eq. (3.4) and then draw the dashed and the solid
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Figure 3.6: Plot of the specific viscosity as a function of concentration for

PAM 5-6 MDa. Dashed and solid lines are the scaling law predictions for a

neutral polymer with fractal dimension ν = 0.585 in the dilute and semidilute

unentangled regime, respectively. Error bars, estimated from the average of

the zero-shear viscosity values in the rheology curves, are always smaller than

the symbol size. Vertical black dashed lines are an estimate of the values of

c∗ (left) and ce (right), respectively (see text).

lines in Figure 3.6. We estimate an overlapping concentration c∗PAM ∼ 0.1

g/dl and an entanglement concentration ce,PAM ∼ 0.35 g/dl.

Concerning the fluid viscoelasticity, information on the fluid relaxation

time λ will be given later in the Section 5.1.

ionic PolyAcrylAmide (iPAM)

PolyAcrylamide in ionic form, iPAM, shows a different rheological behaviour

respect to the non-ionic one as already reported in literature [92, 93].

Figure 3.7 shows the relative viscosity ηr = η/ηs as a function of the mass

concentration c for several ionic PAM solutions at two molecular weights

(1500 Da and 1.145 MDa). Notice the really good agreement in Figure 3.7
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Figure 3.7: Comparison of the relative viscosity (respect to the water) as

a function of concentration for ionic PAM 1.145 MDa and ionic PAM 1500

Da, by using Bulk rheology and Optical Tweezers . Solid and Dashed lines

are the scaling law predictions for a polyelectrolyte with fractal dimension

ν = 0.585 in the semidilute and entangled regime, respectively.

between data measured by conventional rheometry and the ones by using

Optical Tweezers coupled with the method described in section 2.8. Let us

discuss the ionic PAM 1500 Da first. For this solution the chain length is

quite small because of its small molecular weight (compared to PAM 1.145

MDa). It implies that in order to reach the overlapping and the entangle-

ment concentration, high polymer concentrations are needed. That is why

in Figure 3.7 we investigate mass concentration for ionic PAM 1500 Da up

to c = 32 g/dl. At mass concentration up to ce ∼ 12 g/dl, the relative

viscosity ηr ∝ c0.5; while for c > ce, the relative viscosity ηr ∝ c1.5, both
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Figure 3.8: Extrapolation of the intrinsic viscosity. The reduced viscos-

ity vs. concentration derived from the data shown in Figure 3.7. The lines are

linear fits of OT data. The linear extrapolation of ηred to zero concentration

provides a reading of the PAMs’ intrinsic viscosities.

in good agreement with the theoretical prevision for polyelectrolyte solution

in good solvent in the semidilute and the entanglement regime, respectively

[80]. From Figure 3.7 it is possible to notice the same trend described above

for the ionic PAM 1.145 MDa. The only difference resides inside the posi-

tion of the entanglement concentration ce due to the difference in the chain

length. Regarding the ionic PAM 1.145 MDa, the entanglement concentra-

tion ce ∼ 0.38 g/dl. It is also possible to plot the same data of Figure 3.7 in

terms of the reduced viscosity ηred = ηSp/c, as showed in Figure 3.8.

The extrapolation of ηred for c → 0 gives the intrinsic viscosity [η], that

is used to estimate the polymer molecular weight by using the well known

Mark Houwink relations (that depends on the polymer nature) [19]. Mark

Houwink equations for the ionic PAM solution presented here can be written

as [94]:

59



[η] = 6.31× 10−3M0.80 (3.5)

[η] = 4.90× 10−3M0.80 (3.6)

where the above two equations are valid for PAMs with low (≲ 105 Da) and

high (≳ 105 Da) molecular weights, respectively.

In Table 3.2 we report the results obtained by substituting the values of

[η] derived from Figure 3.8 in both Eqs (3.5) and (3.6) and compare them

with the nominal values of the molecular weights provided by the supplier;

the agreement is very good, especially when considering the respective range

of validity of the two equations.

In order to give more details about the shear viscosity and the frequency

response of a polyelectrolyte solutions, we report in Figure 3.9 the rheology

of ionic PAM 1500 Da only at some chosen concentrations.

Figure 3.9a shows the comparison between shear rheology measured by

conventional rheometry and frequency data derived by microrheology with

Optical Tweezers. At lower mass concentration the viscosity is almost con-

stant over four order of magnitude like for the constant-viscosity fluids. By

increasing the concentration up to c = 32% the fluid exhibits a shear thin-

ning behaviour from γ̇ ∼ 100s−1. At low shear rate, instead, optical tweezers

reveals an increasing of the viscosity when decreasing γ̇. This behaviour can

be related to some intermolecular interaction between polymer chains in the

entangled regime; such interactions are destroyed when increasing γ̇ because

[η][g/dl] Equation M [Da] M[Da]

- Nominal 1500 1145000

0.022± 0.008 Equation (3.5) 1506 906302

3.68± 0.24 Equation (3.6) 2066 1240000

Table 3.2: Comparison between nominal and measured molecular weights of

two commercially available polyacrylamides.
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Figure 3.9: (a) Comparison between bulk (open symbols) and microrheology

(closed symbols) measurements of the shear and complex viscosity, respec-

tively, of ionic PAM 1500 Da at several concentrations. (b-d) Measured elas-

tic modulus G′ (blue circle) and loss modulus G′′ (grey triangles) for several

concentration of ionic PAM 1500 Da water at (b) c = 5.47%. (c) c = 13.4%.

(d) c = 32%. Straight and dashed lines are the theoretical prevision for

polyelectrolyte polymers in good solvent.

of the fast shearing process. Figure 3.9(b-d) show the frequency response of

ionic PAM at some mass concentrations. In semidilute regime at low frequen-

cies, G′ and G′′ follow the well known scaling law for the Maxwell fluid [19].

In addition, in the entangled regime the solutions behaves like a Maxwell

fluid at low frequencies and deviate from that at high frequencies, in fact

from ω ∼ 100 rad/s we find G′, G′′ ∝ ω0.5, as theoretically predicted [80].
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3.4 HydroxyEthyl Cellulose (HEC)

Cellulose is the most abundant material on earth [95]. In particular, Hydrox-

yEthylCellulose (HEC) is obtained by reacting ethylene oxide with wood-

based cellulose [96]. Due to its water solubility, HEC is widely used as thick-

ening agent in several industrial applications such as paints [97], textile [98]

and in many biomedical applications such as membrane preparation [99],

pharmaceutical applications [100], drug delivery [101] and tissue engineering

[102]. Hence the general interest in the rheological properties of HEC so-

lutions [96, 102, 103, 104]. Previous rheological measurements [96] showed

that, at relatively high flow rates, all the investigated HECs solutions mani-

fest a shear thinning behaviour; this was confirmed by further studies [103].

In addition, it is well known that cellulose contains nanofibers with high

degree of crystallinity [105, 106, 107]. In particular, HEC nanofibers in so-

lution behave like semi-flexible rods and that the nanofibers interact each

other by hydrogen bonds and/or Van der Waals interactions [106], forming

mesoscopic structures and/or local networks. A further evidence of the ex-

istence of elongated supramolecular structures in HEC water solutions was

provided by Arfin and Bohidar [107] via transmission electron microscopy

(TEM) images. Here we report the rheological characterisation of the HEC

through Bulk rheology measurement, i.e. by using conventional rheometers,

and microrheological measurements by using Optical Tweezers.

In Figure 3.10 the comparison between viscosity curves (open symbols)

obtained from bulk rheology measurements and complex viscosity (filled sym-

bols) obtained by Optical Tweezers of HEC solutions at concentrations rang-

ing from 0.05% to 0.8% w/w are reported. The results indicate that for

c < 0.2% all the solutions have an almost constant viscosity value for shear

rate (γ̇). For c > 0.2%, in contrast, at high shear rates, the solutions exhibit

a weak shear thinning behaviour [96, 103, 104], as shown in Figure 3.10.

In addition, we appeal to the empirical Cox-Merz rule [108], which al-

lows comparison between linear and non-linear rheology measurements; as

reported in Figure 3.10. Quantitative agreement between micro- and bulk-
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Figure 3.10: Comparison between bulk (open symbols) and microrheology

(closed symbols) measurements of the shear and complex viscosity, respec-

tively, of HEC at several concentrations.

rheology is apparent.

In Figure 3.11 we report the plateau value of the viscosity as a function

of the HEC concentration for both the adopted methods of investigation.

At low concentrations (i.e. for c < 0.2% w/w) the viscosity scales with the

concentration as η ∝ c0.5; whereas, at HEC concentrations c > 0.2% w/w,

the viscosity scales with the concentration as η ∝ c3. These scaling laws

are typical of rod-like polymer solutions [109, 110, 111, 112] moving from

a dilute to an entangled regime, respectively. Notably, these results are in

agreement with the transmission electron microscopy images reported by

Arfin and Bohidar [107] that show the existence of rod-like structures due to

the HEC nanofibers interaction. In order to assess the presence of complex

structures in our system, we carried out dry atomic force microscopy images,

reported as insets in Figure 3.10. For c > 0.2%, we found rod-like structures

similar to those found by Arfin and Bohidar [107]. We report, as an example,

in the insets the AFM images for c = 0.05% and c = 1%. Rod-like structures
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Figure 3.11: Comparison between micro- and bulk-rheology measurements

of the viscosity concentration scaling laws obtained from the measurements

shown in Figure 3.10. Insets are AFM images of HEC solution at c = 0.05%

(left side) and c = 1% (right side). The scale bar is reported in white with

Lscale = 5µm.

are present only in the concentrated regime; in fact, several measurements

taken at concentration lower than c = 0.2% did not reveal the existence of

any meso-structures like those observed in the entangled regime. Finally,

it is worthy to highlight that the value of the overlapping concentration,

measured at the transition between the above mentioned regimes, i.e. c∗ ∼=
0.22% w/w, is in good agreement with those found in literature of c∗ ∼=
0.2% w/w [107, 113, 114].

Some microrheology results have been already shown in Figure 3.10 in

terms of the fluids’ complex viscosity |η∗(ω)| = G∗(ω)/ω, and a good agree-
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Figure 3.12: Comparison between the HEC solutions’ linear viscoelastic mod-

uli versus frequency measured with both a conventional rotational rheometer

(filled symbols) and with optical tweezers (open symbols) for HEC concen-

trations: a) 0.05%, b) 0.08%, c) 0.1%, d) 0.2%, e) 0.3%, f) 0.4%, g) 0.5%, h)

0.8%w/w.
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ment with the bulk rheology measurements has been found for all the ex-

plored HEC concentrations. We proceed now to compare the micro- and

the bulk-linear rheology measurements, in terms of storage modulus G′ and

viscous modulus G′′, performed on water based solutions of HEC at differ-

ent concentrations as shown in Figure 3.12. At very low concentration the

rheometer is not able to detect the low elasticity of the samples, while op-

tical tweezers do, as also reported by Pommella et al. [91]. Different is the

story for the solutions at relatively high HEC concentrations, where both

the moduli are measurable by both the techniques and they are in remark-

able agreement. Moreover, the results shown in Figure 3.12 are also in good

agreement with the theoretical predictions for the linear viscoelastic response

of rod-like polymer solutions [115]. In particular, in Figure 3.12 it is possible

to identify the characteristic frequency scaling laws of the moduli, predicted

for instance by Morse [116, 117, 118] and Shankar et al. [115], for rod-like

polymers solutions: i.e. ω5/4 and ω3/4.
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Chapter 4

Particle Migration in

Viscoelastic Liquids

As anticipated in Chapter 1, particles suspended in viscoelastic fluids and

subjected to shear or Poiseuille flow, are pushed towards several equilibrium

positions in dependence on the fluid rheology [10, 12, 119, 120, 121]. In this

section we report the effect of fluid rheology on particle migration in a square-

shaped microchannel. We will use the viscoelastic fluids previously described.

Aim of this section is to give an overview of the migration phenomenon and

its entity, under qualitative and quantitative arguments.

4.1 Particle Migration in Elastic Constant-

Viscosity Fluids

We proceed now to study the particle migration dynamic for particle sus-

pended in PVP 8%, i.e. a constant-viscosity fluid as described in Section 3.1,

in two different PMMA square-shaped microchannels (see Chapter 2 for fab-

rication details). The channel schematisation together with the channel cross

section division in bands (see Section 2.6 for details) is reported in Figure 4.1

In order to study the effect of the entrance, two differently shaped en-

trances at the channel ends are made. The first entrance (triangular shape
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Figure 4.1: (a) Schematic representation of the channel used in the experi-

ments. A smooth (indicated by the arrow number 1) and an abrupt (indicated

by the number 2) entrances at the channel ends are fabricated in order to

study entrance effects on the particle distributions. In the figure, the rele-

vant dimensions are reported. (Dimensions along X and Z are not in scale.)

(b) Concentric bands dividing the channel cross-section used to compute the

particle distributions. X and Y are the dimensionless coordinates of the

channel cross-section. The dashed lines delimit the region accessible to the

particles. The bands are progressively numbered from the inner one (k = 1)

to the outer one (k = 6). Notice that the first band has almost the same

dimension of the particle.

from the top view, left side of Figure 4.1a) is designed in such a way to as-

sure a smooth velocity field from the inlet to the main channel. The second

entrance (rectangular shape from the top view, right side of Figure 4.1a) is

designed to study the effect of an abrupt contraction on the particle distri-

bution. As sketched in Figure 4.1a, the inlet/outlet holes are positioned at

the end of the diverging sections, hence far from the main channel, avoiding

clogging. In what follows, we refer to the first entrance as smooth and to the

second one as abrupt.

The relevant dimensions of the device are shown in Figure 4.1a. Two

dimensions for the side of the channel cross-section H are considered (50 µm

and 100 µm). In the 50 µm channel the suspension with particle diameter 5.8

µm is made to flow, whereas a suspension of particles with diameter Dp =

10 µm is pumped through the 100 µm channel. In this way, the confinement
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ratio β = Dp/H is about 0.1 for both systems.

First, we study the particle migration in the 50 µm channel (El = 49).

In Figure 4.2a, the particle fractions in the six bands at 4 cm from the inlet

of the channel for a smooth entrance are reported, for different Deborah

numbers. For De = 0.0045, the particles are uniformly distributed within

almost the whole cross-section, as expected. Indeed, at such a low Deborah

number, the fluid is essentially Newtonian. Only the external band (k = 6)

is empty of particles, likely due to some migration that, although weakly, is

taking place.

At De = 0.012 we observe a particle depletion from the two external

bands due to an increased viscoelastic effects, although the particles are still

randomly distributed within the rest of the channel section. Starting from

De = 0.061, a peak corresponding to the inner band appears and grows as

the Deborah number increases. For the highest flow rate, corresponding to

De = 0.18, we found that about 84% of particles are enclosed within the

circle around the channel centreline.

In Figure 4.2b and 4.2c, the particle positions over the channel cross-

section are reported. Each point in the figures, generated by the position

reconstruction procedure described previously (see Chapter 2), represents

the coordinates of a particle center. The data are denoted by different colors

according the bands they belong to. At De = 0.0045 (Figure 4.2b), the par-

ticles are randomly distributed along the whole cross-section, in agreement

with the black bars of Figure 4.2a. At De = 0.18, the most of the points are

included in the first band reflecting the quantitative behaviour of the purple

bars in Figure 4.2a. Particles are also present in the second band (green

symbols). Notice that the number of the green circles is about one-half of

the red ones; nevertheless, the height of the bar corresponding to the second

band is much lower than the height of the first one. In this regard, we re-

call that, in the calculation of the particle fractions through Eq. (2.1), the

number of particles nk is normalised by the area of the band that is quite

large for the green data as compared to the red ones. On the other hand,
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Figure 4.2: Experimental results for the 50 µm channel (Elasticity number

El = 49). (a) Fractions of particles in the different band k measured at 4 cm

from the inlet, for a smooth entrance, as a function of De. (b) Particle po-

sitions on the square cross-section for the smooth inlet at De = 0.0045. The

symbols denote the position of the particle centers and are colored according

the band they belong to. See Figure 5.3 for the meaning of the solid and

dashed lines. (c) Particle positions as in (b), at De = 0.18. (d) Fractions

of particles in the different band k measured at 4 cm from the inlet, for an

abrupt entrance, as a function of De. (e) Particle positions as in (b), for

an abrupt entrance at De = 0.0055. (f) Particle positions as in (b), for an

abrupt entrance at De = 0.2.

the average velocities of the two bands, v1 and v2, are comparable, and only

slightly affect the particle fractions. Much less particles are found in the

third band that is almost absent in terms of particle fractions. In conclusion,

the data shown in Figs. 4.2a and 4.2c clearly demonstrate the possibility to

align particles on a single streamline (the channel axis) in a square-shaped

channel by exploiting purely viscoelastic effects, i.e. a 3D purely viscoelastic
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Figure 4.3: Experimental results for the 100µm channel (Elasticity number

El = 12). (a) Fractions of particles in the different band k measured at 4

cm from the smooth inlet as a function of De. (b) Particle positions on the

square cross-section for the smooth inlet at De = 0.01. (c) Particle positions

on the square cross-section for the smooth inlet at De = 0.2. In (b) and (c),

the same colouring of symbols as in Figure 4.2 is adopted.

focusing is here achieved for the first time in a square-shaped geometry. The

required focusing length decreases with the Deborah number, as reported in

the previous literature for different channel geometries [10, 11, 61].

The data shown above refer to a smooth entrance (left side of Figure 5.3a)

that assures an uniform particle distribution over the inlet channel section, as

confirmed by movies taken upstream the converging section. A non-uniform

distribution may occur by modifying the shape of the region between the

feed and the square-shaped microchannel. An effect of the entrance has been

already noted in cylindrical channels where the contraction generated by two

concentric pipes leads to a non-uniform inlet distribution [61].

To explore the entrance effect on the particle focusing, we feed the sus-

pension from the side 2 shown in Figure 4.1a. The abrupt contraction has

a large aspect ratio (20:1). The experimental results are reported in Fig-

ures 4.2(d-f). A similar qualitative behaviour as for the smooth entrance is

found. However, the particle distributions are quantitatively different. By

looking at the De = 0.0054 case, we clearly observe that the fifth bar is lower

for the abrupt entrance as compared to the De = 0.0045 case of Figure 4.2a.
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This is also confirmed by comparing the particle positions in Figures 4.2e

and 4.2b: a lower number of particles is present in the fifth band (purple

circles) and most of them are already on the boundaries of the fourth band.

By increasing the Deborah number, it is observed that the same fraction of

particles in the inner circle obtained for a smooth entrance at De = 0.18

(the highest purple bar in Figure. 4.2a) can be achieved at a lower Debo-

rah number for an abrupt contraction (De = 0.136, the highest green bar

in Figure 4.2d). Equivalently, for a fixed Deborah number, an abrupt in-

let contraction requires a shorter channel length, as compared to a smooth

entrance, to achieve 3D particle focusing. The higher focusing efficiency is

readily observed from the data in Figure 4.2f where the most of the particles

have the center within the inner band (compare with Figure 4.2c). A possible

explanation for the observed entrance effect could be the existence of high

normal stress regions around the corners of the abrupt contraction [122] that

push the particles away from the corners, leading to a free-particle depletion

layer along the channel walls.

Finally, we investigate the effect of the channel dimension on the parti-

cle focusing. In Figures 4.3a, 4.3b, 4.3c, the particle distributions and the

positions on the channel section are reported for a channel with side length

H = 100 µm. The confinement ratio β = Dp/H = 0.1 is essentially the

same as in the previous case. However, the Elasticity number is 4 times

lower (El = 12). The analysis of the distributions show a similar qualitative

behaviour as for the 50 µm channel, supporting a fair scalability of the 3D

viscoelastic focusing. The similar trends for both channel size also confirm

that the value of the Elasticity number El = 12 (large channel) is still suf-

ficiently high, assuring the predominance of the viscoelastic forces over the

inertial ones.

By further increasing the channel dimension, the Elasticity number de-

creases and inertia should start to play a role, reducing the efficiency of the

elastic focusing (inertial forces push the particles away from the center [16]).

In the opposite situation of smaller channel and particle dimensions, thermal
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fluctuations become important, and should again lead to a dispersion of the

particles over the channel section [123].

4.2 Particle Migration in Shear-thinning Flu-

ids

In order to study particle migration in shear-thinning liquids, we adopted

the PEO 4MDa in Glycerol-water solution 25% w/w at several mass concen-

trations, as a representative suspending medium. Experiments were carried

out in a PMMA square-shaped microchannels (see Chapter 2 for fabrication

details) with H = 100 µm. The channel schematisation together with its

relevant dimensions are reported in Figure 4.4.

We present the experimental results for the PEO suspending fluid at the

concentration of 0.8% wt first. As shown in Fig. 3.2, the fluid viscosity is

essentially constant with the shear rate up to γ̇ ∼ 30 s−1. In the range of flow

Figure 4.4: Schematic representation of the channel used in the experiments.

A smooth entrance at the channel ends are fabricated in order to guarantee

an uniform particle distributions. In the figure, the relevant dimensions are

reported. The dimensions along Y and Z are not in scale.
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Figure 4.5: Experimental results for PEO 0.8%(a-c) wt and PEO 1.6% wt(d-

f). (a) Fractions of particles in the different band k measured at 8 cm from

the inlet as a function ofDe. (b) Particle positions on the square cross-section

at De = 0.033. The symbols denote the position of the particle centers and

are colored according the band they belong to.(c) Particle positions as in (b),

at De = 0.13. (d) Fractions of particles in the different band k measured at

8 cm from the inlet as a function of De. (e) Particle positions as in (b) at

De = 0.3. (f) Particle positions as in (b), at De = 9.2.

rates investigated for this liquid, the Elasticity number is constant as well.

For this set of experiments, we evaluate El ∼ 40, i.e. the fluid elasticity is

expected to be dominant with respect to inertia. We therefore expect results

similar to those presented in the previous section.

Figure 4.5a reports the fraction of particles in the bands for three different
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Deborah numbers, whereas Figures. 4.5b and 4.5c show the reconstruction

of the particle positions over the channel cross-section for the minimum and

maximum values of the Deborah number. It is readily observed that, at

De = 0.033, viscoelastic effects are present but weak: the particles tend to

still migrate towards the channel centreline but, at 8 cm from the inlet, they

are distributed between the bands k = 1 and k = 3. By Increasing De,

viscoelastic forces become stronger and the most of the particles are more

focused in the innermost band. From this first set of experimental results

it clearly appears that particles suspended in a fluid with constant viscos-

ity under elasticity-dominant conditions are subjected to a migration force

towards the channel centreline. In the above presented data, we reported

results on particle migration when exploring the constant viscosity-region of

the suspending fluid. Now we proceed to show the data on particle migra-

tion when exploring the constant viscosity and the thinning region. To this

aim, we report in Figure 4.5d, the migration of particles suspended in the

high concentration PEO 1.6%. Due to the high viscoelasticity of the solution

(λ ∼ 0.18 s), the Deborah number is relatively high even at low flow rates.

At the lowest Deborah number here considered (De = 0.3), the viscosity is

equal to the zero-shear one; at the highest De number (De = 9.2) instead,

the viscosity is ∼ 1/4 of its zero-shear value (see Figure 3.2). In short, ex-

cept for the lowest De, the fluid is always in the shear-thinning region of the

flow curve for all the examined flow rates. As a consequence, the Elastic-

ity number will be changing with the flow rate in the experiments. Notice,

however, that the smallest Elasticity number is El ∼ 4500 (corresponding to

De = 9.2), i.e., for the PEO 1.6% suspending fluid, inertial effects are always

definitely irrelevant. From Figures. 4.5a-4.5c, a qualitative difference from

the previous case is observed. At the lowest Deborah number (De = 0.3)

particles still migrate towards the centreline in agreement with the previous

cases. The presence of the shear thinning, however, does influence the mi-

gration phenomenon, because only around 60% of the particles are focused

in the centreline (see Figure 4.5b), in contrast with higher percentage values
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Figure 4.6: Experimental results for HEC 1% wt. (a) Fractions of particles

in the different band k measured at 8 cm from the inlet of the microchannel

with H = 100µm, as a function of De. (b) Particle positions as in (b) at

De = 0.0158. (f) Particle positions as in (b), at De = 0.316.

found before. Notice, however, that all the particles are located between

the first two bands, somehow confirming the previous results pertaining to

lower values of λ. By increasing the Deborah number for the PEO 1.6%, a

different scenario takes place as apparent in Figure 4.5: the particles now

do not migrate towards the channel centreline, but towards the corners. At

De = 9.2, all the particles belong to the outermost band and are positioned

at the corners only (see Figure 4.5c). Apparently, also the particles initially

located around the channel centreline have been driven outwardly towards

the channel corners.

We proceed now to describe migration of particles suspended in HEC

water solutions. As already mentioned before, HEC is a shear thinning fluid

that, in the entangled regime, shows the formation of supramolecular struc-

tures (see insets in Figure 3.11) due to the interactions between polymer

chains.

We therefore report in Figure 4.6a the fraction of particles in the bands for

fours different Deborah numbers and in Figure 4.6(b-c) the reconstruction of

the particle positions. Here we expect to see the same qualitative behaviour

encountered for PEO 1.6%. Particles suspended in HEC 1%, migrate always
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towards the channel walls in the range of examined De. As a difference

with PEO 1.6%, at De = 0.158 particles migrate towards the whole band

k = 6. When increasing the De by a factor 2, particles migrate towards the

four corners and also towards the corners of the fifth band. This behaviour

is, strictly speaking, different from the one showed in Figure 4.5f and it

could be ascribed to the presence of supramolecular structures with a length

comparable to the particle size. It could imply, in fact, a wide depletion

layer closed to the channel walls that affects the migration phenomenon.

Nevertheless a more deeper investigation is necessary in order to fully clarify

these results.

At the end of this section, we want to highlight that the motion towards

the channel corners reported in the present paper, occurring at high De

for shear-thinning fluids, agrees with recent 3D finite element simulations

where the motion of a single spherical particle suspended in liquids modelled

through several constitutive equations and flowing in a square-shaped mi-

crochannel under inertialess conditions is investigated [12]. In that work, for

fluids with a zero second normal stress difference (for which secondary flows

are absent), the numerical predictions show that the particle migrates to-

wards the channel centreline or the corners depending on its initial position.

The two migration directions are separated by a closed curve. The position of

such a curve strongly depends on the constitutive and flow parameters and,

in particular, on the entity of the shear-thinning. For strongly shear-thinning

fluids and high De, the separatrix approaches the channel centreline and wall

attraction results.

4.3 Effect of Inertia and Elasticity on Particle

Migration

In this section we investigate the co-occurring effect of inertia and elasticity

on particle migration by selecting the PEO 0.1% wt as suspending liquid

(Figure 4.7(a-c)) . Same results apply for HEC 0.05% (Figure 4.7(d-f)).
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For PEO 0.1%, indeed, we found that the Elasticity number El ∼ 0.6, which

would mean that inertial and viscoelastic forces are comparable. Experiments

were carried out in the same square-shaped microchannel with H = 100 µm

of Figure 4.4.

From the data shown in Figure 4.7a, however, we observe a qualitatively

similar situation as the PEO 0.8% wt case (see Figure 4.5(a-c)): at low Deb-

orah numbers, the particles are essentially randomly distributed between the

bands k = 1 and k = 5 and only the outermost band is empty; as the Debo-

rah number increases, more and more particles move towards the innermost

band. For the highest flow rate considered, the most of the particles are con-

fined in the inner two bands and only few of them still belong to the third

one. Notice that no particle is anyway found at some equilibrium position

between the channel centreline and the walls, or in the corners. It so appears

that, even for an Elasticity number around unity, the focusing mechanism

induced by the fluid viscoelasticity dominates being essentially unaffected by

inertial effects. In other words, even when the Reynolds number becomes

comparable with the Deborah number, the effective migration force acting

on the particles stays always directed towards the centreline, regardless of

the initial particle position, similarly to the purely viscoelastic case. In con-

clusion we found that inertia is negligible with respect to elasticity on the

focusing mechanism. By varying the Elasticity number over almost two or-

der of magnitude, from El ∼ 0.6 (PEO 0.1%) to El ∼ 40 (PEO 0.8%), no

qualitative change in the final particle position (the centreline) is observed,

suggesting that the migration induced by viscoelasticity is, as a matter of

fact, the only relevant mechanism for elastic, constant-viscosity fluids. In

this regard, we mention recent experiments by Choi et al. [30] on particle

migration induced by inertial effects in Newtonian fluids flowing in square-

shaped microchannel. They have found that particles confined in a channel

with β ∼ 0.1 experience a very limited migration across the streamline within

10 cm of channel length even at Re ∼ 7. Only by increasing the Reynolds

number up to Re ∼ 50, a transversal motion towards four attractors located
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Figure 4.7: Experimental results for PEO 0.1% and HEC 0.05%. (a) Frac-

tions of particles in the different band k measured at 8 cm from the inlet

of the channel with H = 100µm as a function of De for PEO 0.1%. (b)

Particle positions on the square cross-section at De = 0.015. The symbols

denote the position of the particle centers and are colored according the band

they belong to.(c) Particle positions as in (b), at De = 0.17. (d) Fractions

of particles as in (a) for HEC 0.05%. (e) Particle positions on the square

cross-section at De = 0.023. The symbols denote the position of the parti-

cle centers and are colored according the band they belong to. (f) Particle

positions as in (e), at De = 0.1.

at the center of each face is found. A similar situation has also been reported

in a cylindrical channel [34]. In other words, for a fixed confinement ratio

β, the condition O(De) = O(Re), corresponding to O(El) = 1, seems to de-
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note a situation where the particle migration is distinctly governed by elastic

effects rather than inertial ones.

An idea about the relative strength of elasticity and inertia on particle

migration can be given by comparing the theoretical expressions for the mi-

gration velocity due to elastic and inertial effects. In Poiseuille tube flow,

the inertial migration velocity can be expressed as [124]:∣∣V in
m

∣∣ = BRec β
3 r

R
(4.1)

where r and R are the particle radial position and the tube radius, respec-

tively, B is a constant and Rec = ρ ŪR/η the Reynolds number defined for

a cylindrical channel with average velocity Ū .

In the same flow field, the migration velocity due to elasticity is [11]:∣∣V el
m

∣∣ = ADec β
2 r

R
(4.2)

with A a constant and Dec = λ Ū/(2R) the Deborah number defined for a

cylindrical channel. Both relationships hold around the channel centreline

and for small confinement ratios and flow rates. From the two expressions

above, we get: ∣∣∣∣V in
m

V el
m

∣∣∣∣ = B

A

Rec
Dec

β =
B

A

1

El
β (4.3)

By taking the values of the constants A ≈ 6.6 and B ≈ 1.4 from Refs. [11]

and [124], respectively, an estimate of the right-hand side the PEO 0.1%

gives that the ratio of the migration velocities is about 3.3 · 10−2, confirming

that inertial effects are much smaller than the elastic ones. Therefore, from

Eq. (4.3) appears that the Elasticity number alone gives misleading indica-

tions about the relative strength of inertia and viscoelasticity, and one should

account for the confinement ratio as well as the correct prefactor B/A. A

similar conclusion concerning the inability of the Elasticity number alone to

describe the relative effects of inertia and viscoelasticity can be reached by

looking at the results reported in Ref. [125]. In that work, indeed, the au-

thors succeeded in going down to El = 0.05, and nevertheless found focusing

towards the centreline, as in a purely viscoelastic situation. We would also
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like to signal that recent 2D simulations of the coupled inertia-viscoelastic

case [126] appear to confirm that Re much larger than De is needed (by

at least one order of magnitude) to appreciate deviations from the purely

viscoelastic case.

81



Chapter 5

Applications

In this chapter we will use all the informations about particle migration in

viscoelastic fluids previously described, in order to present two microfluidic

applications, both of interest for the scientific community. The first one is

a novel method to derive the fluid relaxation time λ down to milliseconds.

The second one combines particle migration in viscoelastic liquids with the

magnetophoresis in order to achieve high-efficiency deflection of magnetic

particles from a contaminated streamflow into a cleaned one.

5.1 Determination of the fluid relaxation time

λ from particle migration in square-shaped

microchannel

As comprehensively described in the previous chapters, an accurate knowl-

edge of the fluid relaxation time λ is crucial in the microfluidic design [11, 35].

A major problem in measuring fluid relaxation time by conventional tech-

niques [127] arises for small values of λ (down to milliseconds). The latter is

just the case, however, for polymer solutions at low polymer concentrations,

which are just the ones generally used in microfluidic devices due to their

capability to be pumped through small channels with acceptable pressure
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drops. Other important examples of fluid with quite small relaxation times

are dilute solutions containing proteins, DNA or biopolymers, all of them

being of interest in biological applications [35, 125].

5.1.1 Conventional techniques for measuring λ

Several methods to measure the fluid relaxation time are commonly used, as

reported in the literature. A first way to measure λ is through the so-called

linear viscoelastic response experiments, in which a shearing sinusoidal defor-

mation is applied to the material placed between parallel plates, and the vis-

cous and elastic response of the material are separately evaluated [19]. From

these measurements, it is possible to derive the fluid characteristic time by

varying the oscillation frequency and observing the switch from a predomi-

nantly viscous to a predominantly elastic response [79], those responses being

quantified by the loss modulus G′′ and the storage modulus G′, respectively.

Fluids with really small relaxation times (around milliseconds), however, ex-

perience the transition from a predominantly viscous to a predominantly

elastic regime at rather high frequency (∼300 Hz), where the inertia of the

rheometer can affect the measurement [19]. It remains possible to extrapo-

late the value of λ for a wide class of non-Newtonian fluids from the linear

viscoelastic response data at low frequencies [19]. The fundamental bottle-

neck in this case resides in the possibly small values of the storage modulus

G′ (less than 10−3 Pa), which might even be not detectable by conventional

rheometers [127]. In conclusion, the main difficulty of this procedure is due

to technological limitations of conventional rheometers presently available on

the market [128].

A second approach to determine λ is based on the measure of the first

normal stress difference N1 by a steady state shearing experiment [79] and

on using the relation N1 ∝ λ [19]. Because of the steady state conditions of

this kind of experiment, the measure might seem easier than the one through

linear oscillations [19]. However, values of N1 are typically rather low, and

are scattered [129], and so it is difficult to extract an accurate value for λ
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from this method.

To overcome these difficulties, a novel method named Capillary Breakup

Extensional Rheometry (CaBER) has very recently been proposed [82]. The

CaBER measurement is based on the evaluation of the rheological extensional

properties of the liquid, that are related to its viscoelasticity [130, 131]. As

anticipated, the main advantage of this technique is in its ability to measure

relatively low values of the fluid relaxation time[13, 20, 82]. The intrin-

sic difficulties in controlling an elongational flow field should be considered,

however. Moreover, Zell et al. [129] recently showed that a significant differ-

ence between the relaxation time measured by CaBER and by conventional

rheometers through N1 may exist. Specifically, it has been demonstrated

that, for PolyEthylene Oxide and PolyAcrylAmide solutions, λ-values taken

by CaBER experiments are about forty times larger than those derived from

N1 measurements in shear [129].

It so appears that an accurate method for measuring relaxation times

of an important class of non-Newtonian fluids (i.e., with low elasticity) is

missing. As previously mentioned, this is a relevant issue in microfluidic

applications using viscoelastic fluids, because the relaxation time is needed

in the design formulas of focusing and separation devices [11, 20, 56, 61], and

an erroneous estimate would result in under/oversized devices.

5.1.2 Microfluidc techniques for measuring λ

Novel promising techniques for probing non-Newtonian properties have been

developed just in the microfluidics field. As pointed out by Pipe and McKin-

ley [132], the emergent field of microrheometry allows to measure rheological

properties of materials, overcoming the technical limitations of conventional

rheometry. Indeed, a variety of techniques to accurately measure shear and

elongational viscosities have been proposed [132, 133]. Very recently, Zilz et

al. [127] presented a microfluidic device to derive the fluid relaxation time of

low-viscoelastic polymer solutions. The idea is to relate the viscoelastic in-

stability generated in a serpentine microchannel [134] to the fluid relaxation
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time λ. This technology requires a complex channel geometry (several bend-

ings) and an efficient controlling system. The flow instability, in addition,

is a delicate phenomenon, as testified by the width of the error bars in the

their experimental data [127].

5.1.3 Working principle of our ‘microrheometer’

We proceed know to show the working principle of our ’microrheometer‘. In

previous chapter we have seen how fluid elasticity is able to efficiently fo-

cus particles along the centreline of a microfluidic channel [11, 20, 56, 61].

In this regard, Romeo et al. [61] showed that the spatial evolution of the

particle distribution along the micropipe axis is univocally determined by

a single dimensionless parameter given by θ = De(L/D)β2, where L is the

distance from the inlet, D is the channel diameter and β = Dp/H is the

confinement ratio with Dp the particle diameter. Such a scaling (Blue circle

in Figure 5.1), valid for low Deborah numbers and for values of β < 0.1, has

been validated through numerical simulations [61] and experiments [34, 61].

In Figure 5.1, we report the data taken from Section 4.1 (open symbols)

along with numerical predictions (blue closed circles) obtained through a

(dimensionless) migration velocity of the form VM(r) ∝ −Deβ2 r, with r

the distance of the particle from the channel centreline. In this figure, f1 is

the fraction of particles within a circular region in the channel cross-section

around the centreline, with radius approximately equal to a particle diame-

ter. We recall that the experiments of Figure 5.1 were carried out by using a

water-polymer solution of Poly Vinyl Pyrrolidone (PVP) at 8% wt. In partic-

ular they are the same data presented in Section 3.1 and plotted as a function

of θ. Numerical simulations [61] were performed at low Deborah numbers

(thus non-linear effects such as shear-thinning are not accounted for), and

for relatively low confinement ratios, i.e. for β < 0.15 (see Section 2.10 for

details). The good agreement between experiments and simulations even in

a square-shaped microchannel confirmed the validity of the above mentioned

scaling.
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Figure 5.1: Fractions of particles in the first band f1 as a function of the

dimensionless parameter De(L/H)β2 as derived from 3D simulations (filled

symbols) and experiments (open symbols) as reported in Section 4.1 . The

black solid line is a fit of the simulation data through Eq. (5.1). Error bars

are calculated from three sets of measurements; error bars smaller than the

symbol size are not shown.

Notice that the trend shown in Figure 5.1 is, in principle, valid for any

viscoelastic fluid, provided that the Deborah number is low, which holds for

most of viscoelastic fluids with λ of the order of milliseconds. In other words,

within the assumptions discussed above, the blue symbols in Figure 5.1 repre-

sent an universal mastercurve describing the spatial evolution of the fraction

of particles in the inner band f1 along the channel axis. Thus, no calibration

curve is needed as the experimental conditions, such as channel and particle

dimensions, are varied. Therefore, for a given set of geometrical parameters

(cross-section channel side length H, confinement ratio β) and flow rate Q,
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by measuring the fraction of particles f1 at a distance L from the inlet, the

relaxation time λ (included in De) can be evaluated from the mastercurve.

The previous arguments are based on the predominance of purely elastic

effects, with the neglecting of other hydrodynamic phenomena [61]. As a

matter of fact, particles subjected to flow in a microfluidic straight channel,

even in the case of a Newtonian suspending liquid, can experience hydro-

dynamic effects due to inertia, such as the Segré-Silberberg [16] effect and

the Saffman lift force [135]. It is readily shown, however, that both these

inertia-driven migration effects are negligible with respect to the viscoelastic

migration. Indeed, the ratio between the Segré-Silberberg and viscoelastic

migration velocity can be estimated as proportional to (Ref/De) β [11, 124],

with Ref the Reynolds number of the fluid. Similarly, the ratio between the

Saffman [135] and viscoelastic migration velocity can be estimated as pro-

portional to
√

RepVs/(Deβ2) with Rep the Reynolds number of the particle

and Vs the so-called ‘slip velocity’ i.e., the longitudinal actual velocity of the

particle minus the fluid velocity at the same position. Thus, it is apparent

that, when both these two velocity ratios are less than unity, the only rel-

evant mechanism of migration is the one due to viscoelasticity. As shown

below, our experiments are so designed as to meet the just mentioned work-

ing conditions; hence, since all the hydrodynamic effects are negligible, the

measured λ corresponds to the elastic relaxation time only.

As a further confirmation that the characteristic time measured in our ex-

periments is the constitutive relaxation time of the suspending fluid, we com-

pare such constitutive time with the only other characteristic time present

in our situation, namely, the so-called ‘particle hydrodynamic characteris-

tic time’ given by τ = ρdd
2/(18η) [136]. It is readily shown that the ratio

τ/λ comes out proportional to (Rep/De) β which, in our conditions, is much

smaller than unity.

The blue filled symbols in Figure 5.1 were derived from 3D numerical

simulations, thus no analytical curve is available. It is helpful to adopt an

interpolating analytical expression through the simulation data in Figure 5.1
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in order to easily obtain the θ-value from the measured f1. We find that the

following function describes the data with a sufficient accuracy:

f1 =
1

1 +Be−C θ2
(5.1)

(Eq. (5.1) has to be regarded as a simple formula describing the calculated

data, with no physical justification.) This equation is reported with the

black line in Figure 5.1, with B = 2.7 and C = 2.75 obtained by fitting the

simulation data. The solid line well fits the data except around the bending

towards the plateau. As discussed below, measurements should be avoided

in this region, thus the deviations from Eq. (5.1) are not relevant for our

purposes.

By inverting the equation above, we get:

θ =

√
1

C
ln

(
f1B

1− f1

)
(5.2)

that allows to directly compute θ from f1.

A final remark about the choice of the θ-value is in order. The trend re-

ported in Figure 5.1 reaches a plateau at θ > 1, i.e. all the particles have

been focused in the circular band around the channel centreline. In this

case, the mastercurve is not invertible. Thus, a feasible measure of the fluid

relaxation time through f1 requires θ < 1. From the definition of θ, it so

appears that such a parameter can be changed in several ways. However,

the channel side length H needs to be selected sufficiently low in order to

guarantee negligible inertial effects. The confinement ratio must satisfy the

condition β < 0.15 but, at the same time, the particle size should be suffi-

ciently large to avoid diffusion, and problems in particle tracking experiments.

Recommended ranges for these two parameters are H = 50 − 100 µm with

β = 0.05− 0.1. Therefore, those two quantities are constrained within quite

small intervals. On the other hand, the flow rate Q and the distance from

the channel inlet L can be easily adjusted in order to get the θ value in the

correct range. More specifically, to speed-up the measurement, it is desirable

to use relatively high flow rates, with the only limitation due to avoiding the
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arising of inertial effects that can alter the phenomenon. In conclusion, the

distance from the inlet of the observation section, proportional to θ, is the

tunable parameter to perform reliable measurements.

5.1.4 Determination of the fluid relaxation time with

our Microrheometer

We proceed to prove the validity and reliability of the presented method,

on two polymer solutions classes, namely PEO and NiPAM, described in

Section 3.2 and in Section 3.3, respectively. We compare the so obtained

experimental results with those available in literature and with theoretical

predictions. With the characterisation of both polymer solutions completed

in previous sections, i.e., having identified their respective concentration

regimes, we proceed now to show the predictions for the relaxation time,

and to compare our data and those by Zell et al. [129] with such predictions.

The predicted scaling laws for the relaxation time, are [80]:

λD ∝ c0 λSDU ∝ c(2−3ν)/(3ν−1) λSDE ∝ c3(1−ν)/(3ν−1) (5.3)

for the dilute, semidilute unentangled and semidilute entangled regime, re-

spectively [80, 81]. Regarding PEO solutions, the following expressions

should hold (see Eq. (5.3) with ν = 0.55):

c < c∗PEO ∼ 0.1 g/dl λ ∝ c0 (5.4)

c∗PEO < c < ce,PEO ∼ 0.45 g/dl λ ∝ c0.69 (5.5)

Figure 5.2a shows the relaxation time λ as a function of the concentration.

Vertical dashed lines are the estimate of the overlap concentration c∗PEO(left)

and of the entanglement concentration ce,PEO(right) from our previous anal-

ysis. It is apparent from Figure 5.2a that most of our λ data(red circles) are

in the semidilute unentangled regime. We draw the black line in Figure 5.2a,
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Figure 5.2: (a) Comparison between experimental results on the fluid re-

laxation time λ derived from our ‘microrheometer’ with the ones by Zell

et al.[129], for PEO 4 MDa at different concentrations. Dashed line is the

Zimm prediction for the dilute regime, solid line is the Rouse prediction

for the semi-dilute unentangled regime, both of then with ν = 0.55. Verti-

cal black dashed lines are at c∗ (left) and ce (right), respectively. Error bars,

evaluated by dividing the statistical samples in three sets and calculating the

standard deviation between the three λ-values, are smaller than the symbol

size. (b) Comparison between experimental results on the fluid relaxation

time λ derived from our ‘microrheometer’ with the ones by Zell et al., for

PAM 5-6 MDa at different concentrations. Dashed lines are two possible

Zimm predictions for the dilute regime. Solid line is the Rouse prediction for

the semi-dilute unentangled regime. All these lines are for ν = 0.585. Black

dashed line is the expected theoretical prediction below c∗PAM. Red dashed

line is the Zimm prediction through our own data for c << c∗PAM. Vertical

black dashed lines are at c∗(left) and ce(right), respectively. Error bars are

evaluated by dividing the statistical samples in three sets and calculating the

standard deviation between the three λ-values. Error bars smaller than the

symbol size are not shown.

i.e. the theoretical prediction as in Eq. (5.5), after having computed the pref-

actor from the data subset in between the two vertical dashed lines. Notice

how our data are less scattered with respect to the those by Zell et al. [129],
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obtained from steady shear measurements of N1. Our experimental data are

also in rather good agreement with the power-law prediction of Eq. (5.5).

In particular, by applying the fitting procedure described above for data in

the semidilute unentangled regime we find R2
PEO,micro = 0.96, whereas it is

R2
PEO,Zell et al. = 0.49 for Zell et al. data [129]. Hence, our results are largely

less scattered than those obtained from standard rheometrical measurements.

Figure 5.2b shows the relaxation time λ as a function of the concentration

for the PAM solutions. The scaling law are here obtained by assuming ν =

0.585 in Eq. (5.3):

c < c∗PAM ∼ 0.1 g/dl λ ∝ c0 (5.6)

c∗PAM < c < ce,PAM ∼ 0.35 g/dl λ ∝ c0.32 (5.7)

Most of the data are again in the semidilute unentangled regime, and show

again a good agreement with the power-law of Eq. (5.7) (the prefactor was ob-

tained again from data in between c∗PAM and ce,PAM only), with R2
PAM,micro =

0.96. Notice that, also in this case, the R2 calculated from the rheometrical

data by Zell at al. [129] (R2
PAM,Zell et al. = 0.45) is much smaller than our

own, thus confirming that conventional rheometrical techniques are less ef-

fective than the microrheometrical technique proposed here. For c < c∗PAM,

conversely, data are not in strict agreement with theoretical predictions. In-

deed, data would be expected to lye on the black horizontal dashed line of

Figure 5.2b, whereas they tend to lye (for c ≪ c∗PAM) on the red dashed

line of the same plot. This behaviour possibly evidentiates that the dilute-

semidilute unentangled transition is not sharp. The same kind of discrepancy

with the theory around c∗ had been previously found by Tirtaatmadja et al.

[82] on PEO solutions. Indeed they found that, for 0.05 c∗ < c < c∗, the

relaxation time λ ∝ c0.65, in contrast with the Zimm prevision in Eq. (5.3);

they also found that the Zimm prevision is only recovered when c ≪ c∗.

This unexplained behaviour is, in fact, similar to our observations below

c∗PAM. However, more data in the low concentration range would be needed

to confirm or deny the presence of such pre-transitional behaviour.
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5.2 Magnetic particles deflection in a modu-

lar microfluidic device combining magne-

tophoresis and viscoelasticity

The deflection efficiency of magnetic beads in a microfluidic channel through

magnetophoresis can be improved if the particles are somehow focused along

the same streamline in the device. In this section, we present a microflu-

idic device aimed to deflect magnetic beads from a contaminated stream into

a cleaned one. At this aim, we design and fabricate a microfluidic device

made of two modules, each one performing a unit operation. A suspension

of magnetic beads in a viscoelastic medium is fed to the first module, which

consists in a straight rectangular-shaped channel. Here, the magnetic parti-

cles are focused by exploiting fluid viscoelasticity. Such a channel is one inlet

of the second module, which is a H-shaped channel, where a buffer stream

is injected in the second inlet. A permanent magnet is used to displace the

magnetic beads from the original to the buffer stream. Experiments with

a Newtonian suspending fluid, where no focusing occurs, are carried out

for comparison. When viscoelastic focusing and magnetophoresis are com-

bined, magnetic particles can be deterministically separated from the original

streamflow to the buffer, thus leading to a high deflection efficiency (up to

∼ 96%) in a wide range of flow rates. The effect of the focusing length on

the deflection of particles is also investigated.

5.2.1 Concept design

A schematic top view of the device used in this work is reported in Figure

5.3a: the microfluidic system is composed of two modules in series, and

each of them performs a unit operation. The first module (light blue in

Figure 5.3a) is a straight microchannel with rectangular cross-section with

sides W = 100 µm and H = 50 µm, and length Lf. A suspension of 10 µm

diameter magnetic beads is fed at the inlet of this channel with a flow rate Q.

92



Figure 5.3: (a) Schematic top view (not to scale) of the modular microfluidic

device. The focusing module is shown in light blue, the separation module

is shown in orange. The height of the device is H = 50 µm. (b) Closer

view of the separation channel. The nomenclature adopted in the main text

to indicate the two parts of the separation chamber, the outlets and the

walls of the separation channel orthogonal to the xy-plane is reported. (c)

Schematic representation of the possible trajectories of the magnetic beads

in a Newtonian fluid. The green paths correspond to beads that do not cross

the dashed-dotted line and exit the channel through the lower outlet. The

blue curves denote particles that correctly migrate in the buffer stream and

are transported out of the device through the upper outlet. The red paths

correspond to beads that deviate too much and get close to the top wall. (d)

Schematic representation of the magnetic beads trajectories after viscoelastic

focusing. The blue line is the ideal path followed by the focused particles.

The green and red dashed lines delimit the range of possible trajectories

corresponding to the correct displacement of the particles.
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When a viscoelastic fluid is used as suspending medium, particle alignment

is expected to occur in this module. For this reason, we will refer to such a

channel as the ‘focusing module’.

The focusing module is connected to the second part of the device (orange

in Figure 5.3a) consisting of a microchannel with rectangular section with

sides 2W and H, and length Ld. As discussed below, magnetic deflection of

the beads takes place in this channel, thus it will be referred as ‘deflection

module’. The focusing module is one inlet of the deflection module, which

possesses a second side inlet and two outlets. From the side inlet, a buffer

solution made by the same fluid as the suspending matrix of the suspension is

injected with the same flow rate Q of the particle suspension. Thus, the fluid

(suspension and buffer solution) in the deflection chamber flows at a flow

rate 2Q. Due to the low Reynolds numbers (see below), no mixing occurs

downstream the junction [21]. In this channel, of course, the viscoelastic

normal stresses still act on the particles. However, the confinement ratio

along the y−direction in the deflection channel (see Figure 5.3b) is twice

smaller as compared to the focusing channel. As the migration velocity is

proportional to the square of the confinement ratio [11], the lateral motion in

the deflection module is much less effective than that occurring in the focusing

module. Hence, without other external forces, the magnetic beads as well as

other particles suspended in the sample essentially keep on traveling on the

same streamlines as in the focusing module and remain below the dash-dot

line of Figure 5.3b. We will refer to the region of the channel below the dash-

dot line, i.e., the one aligned with the cross-section of the focusing module,

as ‘lower-half’ of the deflection chamber. Conversely, we will refer to the

region of the channel above such dash-dot line, i.e., the one corresponding to

the cross-section of the buffer solution inlet, as ‘upper-half’ of the deflection

chamber. Similarly, the two exit channels are referred to as lower and upper

outlets. Since the outlets are symmetric with respect to the deflection channel

centerplane, the suspension and the buffer solution leave the channel from

the lower and upper outlets, respectively. Finally, we indicate with ‘top’
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and ‘bottom’ walls, the two walls of the deflection channel orthogonal to the

xy−plane (see Figure 5.3b) near the upper and lower outlets, respectively.

The objective of the device is to displace the magnetic beads from the

original to the buffer stream. To this aim, a cubic permanent magnet with

side sm (green in Figure 5.3) is placed at a distance lm from the top wall

of the deflection module. The magnetic particles are subjected to a lateral

magnetic force that deflects their path and move the beads from the lower

to the upper half of the deflection chamber.

In the absence of focusing, the magnetic beads are randomly distributed

along the cross-section of the channel inlet. Neglecting small flow distur-

bances due to the junction, it can be assumed that the beads are still ran-

domly distributed as they get in the lower half of the deflection channel

(Figure 5.3c). The beads near the walls travel slower than those near the

centreline. Furthermore, the particles near the centreline are closer to the

magnet than those near the bottom wall and, as such, experience a stronger

magnetic force. Depending on the flow rate and on the magnitude of the

magnetic force, three different behaviours may occur: i) the particles can be

correctly displaced from the lower to the upper half of the deflection chamber

and leave the device through the upper outlet (blue trajectory in Figure 5.3c);

ii) the particles are displaced to the upper half of the channel but travel very

close to the top wall whether the flow rate is too low and/or the magnetic

force is too high (red trajectory in Figure 5.3c); iii) the particle displacement

is insufficient and they leave the device through the lower outlet if the flow

rate is too high and/or the magnetic force is too low (green trajectory in

Figure 5.3c). Needless to say, particles traveling close to the top wall are

undesired as they flow very slowly (decreasing the deflection throughput) or,

even worse, they can remain attached to the wall. It should be noted that,

for a fixed flow rate and magnetic force, the path followed by each particle

strongly depends on its position along the channel cross-section. In dimen-

sionless terms, a specific value of the particle magnetization parameter might

be optimal for particles near the centreline but not for those near the walls,

95



or vice versa.

If the particles have been effectively aligned on the centreline of the fo-

cusing module as schematically shown in Figure 5.3d, they should follow the

same streamline in the deflection module. Of course, the magnetic force as

well as the particle velocity changes as the beads cross the deflection chamber.

However, in principle, the history of the magnetic force and velocity experi-

enced by each particle should be the same. Therefore, we expect that, in a

range of the particle magnetization parameter, all the particles are equally

displaced from the lower to the upper half of the deflection chamber and

leave the device through the upper outlet, as shown by the blue trajectory in

Figure 5.3d. Low values of the particle magnetization parameter (i.e., a low

magnetic force and/or high flow rate) would lead to an insufficient displace-

ment and all the particles leave through the lower outlet. On the contrary,

high Mnp-values (i.e., a high magnetic force and/or low flow rate) would

push the particles near the upper wall of the deflection chamber, reducing

the deflection efficiency. The appropriate range of Mnp is determined by the

two values corresponding to the dashed green and red trajectories in Figure

5.3d.

From the discussion just presented, it clearly appears that the deflection

efficiency is strictly related to the focusing efficiency that, in turn, can be

improved in several ways (e.g., by increasing the fluid elasticity, the flow rate,

the confinement or the channel length [11]). To analyse the combined effect

of the focusing on the magnetic particle displacement, we fabricated two

devices with different lengths of the focusing module Lf and of the deflection

channel Ld. More specifically, we refer to ‘short’ device corresponding to

Lf = 5 cm and Ld = 1 cm and to ‘long’ device the one corresponding to

Lf = 7 cm and Ld = 1.6 cm.

5.2.2 Device efficiency

Figure 5.4 shows a top view of the deflection module near the two outlets

for four different conditions. The long device, as defined in section 5.2.1 was
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Figure 5.4: Top-view of the deflection module bifurcation with a suspension

of particles flowing in the long device. Four different experimental settings

are considered: (a) particles suspended in 60% w/w GWS without magnet

(De = Mnp = 0); (b) particles in 60% w/w GWS with the permanent

magnet (De = 0, Mnp = 0.5); (c) particles in 0.5% w/w PAM without

magnet (De = 0.24, Mnp = 0); (d) particles in 0.5% w/w PAM with the

permanent magnet (De = 0.24, Mnp = 0.21).

used in these experiments. In Figure 5.4a, a snapshot of the distributions

of particles suspended in 60% w/w GWS in the absence of the magnet,

i.e., for De = Mnp = 0, is reported. All the particles are confined in the

lower half of the channel, due to the fluid dynamics action of the buffer

solution stream; moreover, since no lateral migration occurs in inertialess

Newtonian fluids, the particles are randomly distributed within the channel

cross-section. In such a situation, they follow the fluid streamlines and leave
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the device through the lower outlet.

When the magnet is introduced, the nickel-coated particles feel the mag-

netic force and cross the streamlines of the fluid carrier moving from the

lower to the upper half of the deflection channel. However, as the beads ar-

rive in the deflection module randomly distributed, they flow with different

velocities and perceive different magnetic forces depending on their position.

A typical situation is shown in Figure 5.4b, corresponding to the Newto-

nian suspension (De = 0) with Mnp = 0.5. In this case, some particles are

deviated to the upper outlet, whereas other particles still exit the channel

through the lower outlet. In addition, it can be also noted that the particles

that crossed to the upper part of the deflection channel are very close to the

upper wall, and can eventually roll over or get stuck on the PDMS wall.

In the case of the suspension of particles in the 0.5% w/w PAM, the

alignment of the beads on the centreline of the focusing module occurs owing

to the fluid viscoelasticity. Hence, in the absence of the magnet (Mnp = 0),

they are expected to exit the deflection module through the lower outlet by

following the same streamline. This is indeed the case, as confirmed in Figure

5.4c for De = 0.24.

By introducing the magnet, the particles are deviated towards the upper

half of the channel. In contrast with the Newtonian suspension, the particles

are focused on the same streamline thus moving with similar velocities and

they perceive a similar magnetic force while traveling in the deflection chan-

nel. Therefore, they can be deterministically addressed to the desired outlet,

as displayed in Figure 5.4d for Mnp = 0.21 and De = 0.24. In addition,

viscoelastic forces acting in the deflection module push the beads towards

the channel center, thus preventing them to stick on the top wall.

A quantification of the device’s performance is done by introducing the

deflection efficiency ηtot as:

ηtot =
Nup

Nup +Ndown +Nstuck

(5.8)

with Nup the number of particles exiting the deflection module through

the upper branch, Ndown the number of particles exiting through the lower
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Figure 5.5: deflection efficiency ηtot as a function of the inverse of the particle

magnetization number 1/Mnp for 60% w/w GWS (orange bars) and 0.5%

w/w PAM (blue bars), (a) refers to the short device whereas (b) to the long

device. The error bars are obtained by dividing each sample in three subsets

and calculating the average efficiency and the corresponding standard devi-

ations for these three data subsets. The right red dashed region corresponds

to Mnp-values such that all the particles exit the deflection channel through

the lower outlet. The left green dashed region corresponds to Mnp-values

such that all the particles move in proximity of the top wall of the deflection

channel and do not exit the device within the observation time of the exper-

iments. The values of 1/Mnp corresponding to the boundaries of these two

regions (dash-dot lines) refer to the PAM solution.

branch, and Nstuck the number of particles stuck on the wall in the observa-

tion time, respectively. We performed experiments at different flow rates in

both the short and long device.

In Figure 5.5, ηtot is shown as a function of the inverse of Mnp for 60%

99



w/w GWS (orange bars) and 0.5% w/w PAM (blue bars), for the short

(Figure 5.5a) and long (Figure 5.5b) device. We choose to plot the efficiency

versus 1/Mnp as, for fixed fluid and geometrical parameters, it is proportional

to the flow rate, which is our operating variable. For both suspending fluids

and in both devices, by decreasing Mnp (i.e., by increasing the flow rate), the

deflection efficiency ηtot first increases, then it attains a maximum, and finally

decreases. Such a behaviour can be explained in terms of the competition

among drag force, magnetic force, and, for the PAM solution, elastic force.

For the Newtonian matrix, at high Mnp-values (low flow rates), the mag-

netic force is much stronger than the drag force, so the term Nstuck is high,

and ηtot decreases. In addition, as discussed above, sedimentation also plays a

role at low flow rates, pushing the particles towards the channel wall parallel

to the xy-plane (see Figure 5.3). Here, the beads velocity is low, enhancing

the effect of the magnetic force in deflecting the particle trajectories, and

increasing the fraction of particles that are collected to the top wall of the

deflection channel. On the other hand, at very low Mnp-values (very high

flow rates), the drag force largely overcomes the magnetic attraction. In this

case, the flow velocity is so high that the magnetic force is unable to displace

the particles from the lower to the upper half of the deflection channel and

the particles get out of the device through the lower outlet. This increases

the term Ndown and consequently decreases the deflection efficiency.

Similar considerations can be done for the viscoelastic suspension. In

this case, however, at the lowest flow rate, the onset of normal forces pushes

the particles away from walls. In addition, the normal forces also contrast

sedimentation by pushing particles towards the middle of the channel cross-

section. Both effects contribute to decrease Nstuck and, in fact, an efficiency

higher than the Newtonian case is observed. At the largest flow rate, similarly

to the Newtonian case, the translational particle velocity is too large and the

beads escape from the magnetic field and go through the lower branch. These

two limiting behaviours are indicated as green and red dashed zones in Figure

5.5. Notice that the values of 1/Mnp reported in this Figure that delimit
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these zones (dash-dot lines) correspond to the lowest and the highest flow

rates such that the deflection efficiency of beads in the viscoelastic suspension

is approximately zero.

Interestingly, at intermediate flow rates, a systematically higher efficiency

is found for the viscoelastic case compared with the Newtonian one. Let

us first consider the data pertaining to the short device shown in Figure

5.5a. While the best efficiency achievable with 60% w/w GWS is about

80% at 1/Mnp = 2.55, the best performance with 0.5% w/w PAM is 92%

at 1/Mnp = 2.66. Moreover, such a remarkable efficiency-value is almost

invariant in the range 1.77 < 1/Mnp < 3.1, whereas significant decreases

are detected for the Newtonian suspending liquid as Mnp moves away (in

both directions) from 2.55. The higher efficiencies as well as the wider flow

rate range that allows for the best deflection performances can be ascribed

to the effect of particle alignment in the focusing module: the beads, follow-

ing the same streamline, perceive the same magnetic action and are equally

displaced from the original suspension to the buffer solution. As discussed

in section 5.2.1, if the particles are perfectly aligned before entering the de-

flection module and feel the same magnetic force (i.e., the beads are exactly

equal in size and have the same magnetic susceptibility), they should fol-

low a single path for a fixed particle magnetization parameter. Therefore,

the operative range of the device in terms of Mnp is readily identified: the

lowest Mnp-value (the highest flow rate) corresponds to the path such that

the particles ‘hit’ the junction between the two outlets (green line in Figure

5.3d); the highest Mnp-value (the lowest flow rate) corresponds to the path

such that the beads approach the upper wall of the deflection channel just

before the outlets (red line in Figure 5.3d). For particle magnetization num-

bers in between these two limiting values, all the particles leave the device

through the upper outlet achieving, theoretically, an efficiency close to unity.

The lower efficiency found in these experiments could be ascribed to several

reasons: i) the focusing is strong but not perfect; ii) slightly different particle

sizes and/or susceptibility affect the magnetic force; iii) particle aggregates
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are occasionally observed in our experiments; iv) sedimentation might have a

weak effect in the focusing module, working against alignment. Nevertheless,

the measured efficiency is always larger than the Newtonian case, proving the

effectiveness in using fluid viscoelasticity combined with magnetophoresis.

The effect of the focusing on bead deflection efficiency is readily observed

by looking at the data for the long device shown in Figure 5.5b. The longer

focusing length improves the alignment of the particles entering the deflection

chamber and, in turn, contributes to: i) increase the efficiency up to 96%

(at 1/Mnp ∼ 5); ii) extend the operative range of particle magnetization

parameter that assures high deflection efficiency. In this regard, it has to be

mentioned that the longer deflection channel of this device (as compared to

the short one) also contributes to increase the performances by preventing

particle deflection due to the magnetic force while the beads travel in the

focusing channel. Finally, a longer deflection channel is also responsible for

the wider operative range of flow rates reported in Figure 5.5. (Notice, for

instance, that ηtot is approximately zero for the viscoelastic case at 1/Mnp ∼
5.7 for the short device and 1/Mnp ∼ 9 for the long one.) Indeed, in the

long deflection channel, the particles are subjected to the magnetic force for

more time before encountering the bifurcation. Hence, even at high flow rates

(low Mnp-values), they have sufficient space to cross from the lower to the

upper-half of the deflection module.

We also remark that the separation efficiency achieved in our device

through combination of viscoelastic focusing and magnetophoresis is higher

than that obtained in similar devices where no particle alignment is prelim-

inarily achieved [51]. Appreciable efficiency values can be obtained in New-

tonian suspending media, but needing the use of extra components that con-

siderably complicate the device fabrication such as micro-combs with sharp

tips, ring conductors, angled ferromagnetic wire or strip arrays (see [137] and

the references therein).

As a proof of principle, we run an experiment where we feed the device

with a rhodamine-contaminated 0.5% w/w PAM solution carrying 10 µm
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Figure 5.6: Top-view of the deflection module bifurcation showing the de-

flection of the magnetic particles from a rhodamine-contaminated 0.5% w/w

PAM solution for Mnp = 0.24 and De = 0.21.

diameter nickel-coated particles, whereas the side flow is a ‘clean’ 0.5% w/w

PAM solution with the same flow rate. The particle magnetisation number

is Mnp = 0.21, whereas the Deborah number is De = 0.24. Figure 5.6 shows

a snapshot of the top view of the deflection module near the bifurcation.

The magnetic beads are displaced from the rhodamine-contaminated stream

(dark grey) to the buffer solution (light grey) following approximately the

same trajectory. The beads are finally collected at the end of the upper

outlet.

Finally, we demonstrate the performances of our device by separating

magnetic and non-magnetic beads simultaneously suspended in the inlet

stream. Figures 5.7a1 and 5.7b1 show a top view of the deflection mod-

ule near the two outlets when 10 µm diameter magnetic beads are suspended

in the PAM solution together with either 6 µm or 20 µm diameter non-

magnetic beads, respectively. The long device is used with Mnp = 0.21 and
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Figure 5.7: Left: Top-view of the separation module bifurcation showing the

separation of 10 µm magnetic particles from 6 µm (a1) and 20 µm (b1) non-

magnetic particles. The long device is used with Mnp = 0.21 and De = 0.24.

Right: Number of beads exiting the outlet branches normalised by the total

number of particles of the same size Ntot observed in the experiments. In the

legend, PS and NC denote PolyStyrene and Nickel-Coated particles.

De = 0.24. In both cases, almost all the magnetic beads are displaced to

the buffer stream and leave the device through the upper outlet. In contrast,

the non-magnetic particles remain confined in the lower-half of the deflection

channel. Notice that the non-magnetic beads are, of course, subjected to the

alignment phenomenon in the focusing module and, indeed, travel through

the deflection chamber following the same streamline. (Actually, the smallest

beads are not perfectly aligned because of the lower confinement ratio in the

focusing module that reduce the viscoelastic force [61]). In Figures 5.7a2 and
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5.7b2, we report the number of magnetic and non-magnetic beads exiting the

upper and lower branches normalized by the total number of particles Ntot

of the same size observed in the experiments. It clearly appears that only

a few fraction of magnetic particles (blue bars) leave the device through the

lower branch, whereas all the non-magnetic particles, regardless of their size,

remain confined in the lower-half of the deflection channel and leave the de-

vice through the lower outlet. We also mention that no particle (magnetic

or non-magnetic) has been observed near the channel walls, confirming the

improved fluid dynamic conditions induced by the focusing mechanism. As

a final comment, the alignment of the non-magnetic beads has the further

advantage of speeding up the particle outflow rate as they travel along a

streamline close to the central one (that is the fastest).
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Chapter 6

Conclusions

In this thesis the effect of fluid viscoelasticity on particle migration in square-

shaped microchannels is studied. In Chapter 3 we characterised several

polymer solutions classes ranging from the constant viscosity fluid (as the

Poly Vynil Pyrrolidone solution) to the more complex HyroxyEthyl Cellu-

lose (HEC). PVP presents a constant viscosity over three order of magnitude

in the shear rate γ̇. In addition, the fluid elastic properties reflect those of

the Maxwell fluid [19]. Poly Ethylene Oxide solutions, in contrast, exhibit

different rheological behaviours in dependence on their mass concentration.

In particular, at low concentration they behave like the constant-viscosity

liquids with an elastic Maxwell-like behaviour. At a polymer concentration

c = 0.5%, the solution exhibits a shear-thinning behaviour starting from

γ̇ ∼ 100 s−1. This behaviour is more and more pronounced when increasing

the polymer concentration; in particular at c = 1.6% the shear-thinning zone

starts from γ̇ ∼ 1 s−1. This is due to the strong intermolecular interactions

between polymer chains, that cause shear-thinning at lower shear rate val-

ues [19, 79]. We also characterised the transition between different polymers

regimes for PEO 4 MDa. In particular we estimated the value of the over-

lap concentration c∗, and also that of the entanglement concentration ce: we

find c∗PEO ∼ 0.1 g/dl and ce,PEO ∼ 0.45 g/dl. In the semidilute entangled

regime, a deviation from the pure Maxwell model in the elastic response at
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high frequencies is observed. This behaviour, however, is common in almost

all the polymer solution in this regime. The explanation of this deviation

resides again in the intermolecular interaction between polymer chains; fur-

thermore it is not possible to consider these fluids as Maxwell-like with a

single λ, but they can be mathematically modelled as a modified Maxwell

fluid with several relaxation times, or λ-spectra. Nevertheless, the intersec-

tion between the straight lines of the Maxwell model, i.e. at low frequencies,

gives the longest relaxation time. Regarding the non-ionic PolyAcrylAmide

(niPAM), results analogous to the PEO solutions have been found. We re-

ported the estimate for the overlapping concentration c∗PAM ∼ 0.1 g/dl and

an entanglement concentration ce,PAM ∼ 0.35 g/dl. Ionic PolyAcrylAmide

(iPam) have a different rheological behaviour respect to the non-ionic one.

In this case, in fact, macro- and micro-rheological measurement (the last one

performed by using Optical Tweezers (see section 2.8)) show that iPam solu-

tions behave like polyelectrolyte polymers. iPam with two different molecular

weights, namely Mw = 1500 Da and Mw = 1.145 MDa, in water solution

at several mass concentrations are characterised. In particular, we found an

entanglement concentration ce ∼ 12% for the iPam 1500 Da and ce ∼ 0.38%

for iPam 1.145 MDa. A remarkable agreement between micro- and macro-

rheology data are found for both fluid by applying the procedure described

in section 2.8. In addition, from microrheology measurements, we derive the

solutions’ frequency response for iPam 1.145 MDa. Good agreement between

experimental data and theoretical predictions is found. We finally reported

the rheology of HydroxyEthyl Cellulose solutions (HEC). The results indi-

cate that for c < 0.2% all the solutions have an almost constant viscosity

value for shear rate. For c > 0.2%, in contrast, at high shear rates, the so-

lutions exhibit a weak shear thinning behaviour. For c > 0.2% in addition,

we found rod-like structures with a length ∼ 8 µm, similar to those found by

Arfin and Bohidar [107]. Regarding the dynamic response, it was possible to

identify the characteristic frequency scaling laws of the moduli, predicted for

instance by Shankar et al. [115] and Morse [116, 117, 118], for rod-like poly-
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mers solutions. We recall again the remarkable agreement between macro-

and micro-rheology data.

In Chapter 4 several important results on particle migration in viscoelas-

tic liquids are obtained. We demonstrated for the first time the capability to

achieve 3D focusing in square-shaped microchannel by using purely viscoelas-

tic forces. A water solution of 8% PVP is used as suspending liquid. A novel

method to reconstruct the particle position over the channel cross-section by

combining simple optical microscopy particle tracking measurements and nu-

merical simulations is proposed (see section 2.6). Experiments are performed

in two channels with cross-section side dimension of 50 µm and 100 µm at

different flow rates. The confinement ratio is kept constant, β ∼= 0.1, and the

measurements are taken at a given distance from the inlet (L = 4 cm). In

order to optimise the flow-focusing conditions, for the 50 µm channel, we also

investigate the effect of the entrance shape (smooth and abrupt). For all the

tested flow and geometrical conditions, our results show that the particles

migrate towards the channel centreline, promoting 3D flow focusing. The

focusing mechanism is enhanced for higher flow rates (higher Deborah num-

bers). An abrupt contraction at the entrance alters the inlet distribution,

leading to a particle depletion layer along the channel walls, and reducing

the focusing length.

In the same chapter, we carried out several experiments on particle migra-

tion in PEO solutions at different flow rates, in order to study the effect of the

shear-thinning and the competition between inertia and elasticity. Measure-

ments are taken at a fixed distance from the inlet L = 8 cm and the particle

positions over the channel cross-section are recovered by combining a particle

tracking method with 3D numerical simulations as reported in Section 2.10.

Our results show that particles suspended in PEO at low concentration, i.e.

a constant-viscosity fluid, are focused towards the channel centreline due to

the medium elasticity. Such an inward migration occurs even at the lowest

Elasticity number (El ∼ 0.6) for which one could expect that inertial effects

(working in opposite direction as the viscoelastic ones) play a role. Since
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our experiments do not show any qualitative change from the high Elasticity

number case, we conclude that elastic forces are much stronger than the in-

ertial ones when the two representative dimensionless numbers (De and Re)

are of the same order of magnitude, and hence El ∼ 1. Indeed, the relevant

dimensionless parameter should account for the confinement ratio as well as a

prefactor ‘measuring’ the relative strength of the inertial and viscoelastic mi-

gration velocities. Finally, strongly shear-thinning fluids qualitatively alter

the scenario; in particular, particles migrate towards the channel centreline

when exploring the fluid constant-viscosity region, whereas at high flow rate,

i.e. in the fluid shear-thinning region, particles are pushed towards the cor-

ners of the channel cross-section. This is the first experimental observation

of particles at the corners. Same results hold for particle suspended in HEC

solutions at concentrations c < ce = 0.2%. When c > ce in contrast, parti-

cles migrate towards the channel walls at low Deborah numbers De, while

by increasing the De of a factor of 2, particles migrate towards the four cor-

ners and also towards the corners of the fifth band. This behaviour could

be ascribed to the presence of supramolecular structures, in the entangled

regime, with a length comparable to the particle size. It could imply, in fact,

a wide depletion layer closed to the channel walls that affect the migration

phenomenon. Nevertheless a more deeper investigation is necessary in order

to fully clarify these results.

In Chapter 5 we reported two applications arose from the results of Chap-

ter 4. First, we presented a novel method to measure the relaxation time λ

of viscoelastic fluids down to milliseconds. The idea is to exploit the relation

between the characteristic time λ and the phenomenon of viscoelasticity-

induced particle migration in microchannel flow presented in Chapter 4. We

demonstrate that an accurate measurement of λ can be obtained from the

measurements of the normalised particle fraction f1 at the axis of the mi-

crochannel. We point out that the measurements of f1 does require rather

standard particle tracking experiments, thus making the proposed method

handy and relatively easy to be performed. The performances of the ‘mi-
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crorheometer’ are tested on two glycerol-water solutions on PEO and niPAM

solutions at various concentrations. The obtained data are reliable, accurate,

and in good agreement with theoretical predictions [80, 81]. The range of ap-

plicability of our novel technique is comparable with that recently proposed

by Zilz et al. [127]. Our device, however, is by far simpler in terms of design

and working principles. Indeed, the working principle of our ‘microrheome-

ter’, being based on the ‘universal’ curve, does not need a calibration pro-

cedure. In this regard, we remark that the measurements performed in this

paper exploit a square-shaped microchannel with side H = 100 µm.

Finally, we presented a modular microfluidic device in which deflection

of magnetic particles in a H-shaped channel is achieved with a deflection

efficiency up to 96%. The idea is to align the magnetic beads in a focusing

module before entering the deflection module. Particle alignment is induced

by using a viscoelastic fluid as suspending medium. The focusing module

is one inlet branch of the H-shaped channel, whereas a buffer solution is

injected in the other inlet. A permanent magnet is used to generate an

attractive magnetic force which displaces the beads from the original to the

buffer stream.

We have demonstrated that the preliminary focusing effect improves the

deflection efficiency by reducing the number of particles that leave the chan-

nel through the undesired outlet or that get stuck on the wall closer to

the magnet. Furthermore, by confining the particles to move along a single

streamline strongly enlarges the operative window of the device (in terms of

flow rate, magnet and particle properties) that assures the highest deflection

efficiency. Moreover, the normal stresses induced by fluid viscoelasticity also

have a positive effect in contrasting sedimentation which is an issue when

dealing with micrometer-sized particles. The proposed modular device has

been successfully tested to separate magnetic and non-magnetic beads of

different size with high efficiency.

As a final remark, we highlight that the viscoelastic fluid employed in

this work is a 0.5% w/w aqueous solution of PolyAcrylamide, thus a very
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dilute solution of a fully biocompatible polymer. Hence, the use of the de-

vice proposed here could be straightforwardly extended to biological and

biotechnological applications.

In conclusion we have comprehensively analysed the particle migration

phenomenon in viscoelastic liquids by using several suspending matrices. All

the results found from the particle migration phenomenon are used to design

a novel method to derive the fluid relaxation time and a modular microfluidic

device useful for deflecting magnetic particles from a contaminated stream-

flow into a cleaned one.

Future works could explore more in deeper the effect of very complex

fluids, like cellulose solutions and wormlike micellar solutions, on particle

migration. In addition more concentrated solutions, in terms of particles

concentration, could be explored in order to confirm or not such conclusions.

Moreover, 3D particle focusing can be used to deterministically separate par-

ticles by adding a deflection modulus in series. Recent simulations [138], show

that particles suspended in a non-Newtonian fluid, subjected to a Poiseuille

flow and all starting from the centreline can be equally spaced along the

centreline; at the best of out knowledge, no experimental evidence of this

phenomenon are at the moment available in literature. Finally it could be

interesting to extend the results of the ’microrheometer‘ to other fluid typol-

ogy and in a wider concentration range.
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