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Introduction

Seismic Hazard describes the potential for dangerous, earthquake-related natural

phenomena such as ground shaking, fault rupture, or soil liquefaction. These phe-

nomena could cause adverse consequences to society such as the destruction of build-

ings of the loss of life. Seismic Risk is the probability of occurrence of these conse-

quences.

The output of the seismic hazard analysis could be a description of the intensity

of shaking of a nearby magnitude eight earthquake or a map which shows levels

of ground shaking in different regions of a country having equal chance of being

exceeded, The output of the seismic risk analysis could be the probability of damage

from a nearby magnitude eight earthquake or the probability of fatalities due to

seismically induced buildings accidents.

For a correct evaluation of the seismic hazard we have to consider several aspects:

• the characterization of the source or sources of the hazard, in terms of size,

spatial location, orientation, slip type, probability of rupture, etc.;

• the characterization of the seismic wave propagation until a particular location;

• the site response to a particular earthquake, in terms of peak ground accelera-

tion (PGA) or in term of response spectra (relation between amplitude of the

ground accelerations and its frequency): in fact the amplitude of earthquake

ground motion can be increased or decreased by both the properties and the
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configuration of the near surface material through which seismic waves prop-

agate. For this reason the same earthquake, at the same distance from the

source, can produce different ground acceleration in function of the site re-

sponse.

Consider the approach to seismic zonation of a country, characterized by ground

motion, slope instability and liquefaction, we can divide the knowledge level in three

parts which are more and more accurate:

Grade 1: the only knowledge we have is from historical earthquakes, from interviews

with local residents and from geological and geomorphological maps; the typ-

ical scale of this mapping is 1 : 1000000 ÷ 1 : 50000.

Grade 2: the knowledge is from simplified geotechnical studies, from air photos, from

field studies and from remote sensing; the typical scale of this mapping is

1 : 100000 ÷ 1 : 10000.

Grade 3: this level of knowledge is the more accurate and it is based on geotechnical

investigation and analysis of recorded data of ground motion; ; the typical

scale of this mapping is 1 : 25000 ÷ 1 : 1 : 5000.

It is clear that for a more accurate mapping of seismic hazard it is necessary to have

a kind of sensors which can record with high accuracy and in a broad frequency

band, in particular at low frequency, because much of the energy released during an

earthquake results in teleseismic signals with periods ranging from hours to seconds.

The work we present is related to the development of a new kind of seismic sensor

based on the inteferometric phenomena of light. The laser interferometry is one of

the most sensitive and widely used techniques for small displacement measurement,

whose success is mainly due to its very good performances and the large availability,

high quality and relatively low cost of optical components and laser sources. This
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technique is flexible enough to be effectively used in very different applications, like

the one we present in this work. This work is organized in the following parts:

• in the chapter 1 we will discuss some hints about seismic signals and about

the instruments used to measure them.

• in the chapter 2 we will discuss about the interferometric phenomena of light

and we will show the theoretical analysis of possible instrument based on an

interferometric device;

• in the chapter 3 the experimental results obtained with a prototype developed

will be shown;

• in the chapter 4 we will present the theoretical model and some preliminary

results about another kind of interferometric seismic sensor based on feedback

principle and we will discuss how to improve its characteristics.
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Chapter 1

Hints about seismic waves

propagation and measurement

Any quantitative description of seismic waves requires the ability to characterize the

internal forces and deformations in solid materials. We now begin a brief review of

theory of stress and strain, which do not exist independently in a material; they are

linked through the constitutive relationship that describes the nature of elastic solids.

Then, using the stress and strain theory we construct the seismic wave equation for

elastic wave propagation in uniform whole space. Solving this equation, we obtain

that the solutions are plane waves called body waves. However, when a free surface

exists in a medium, other solutions are possible, which are called surface waves. At

the end of the chapter we present a review about the actual seismic instruments, in

particular mechanical and electromagnetic seismometers.
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1.1 Stress and Strain

1.1.1 Stress tensor

A stress tensor describes internal forces in a solid volume. Consider a small volume

from the interior of a solid body. What external forces act on this block? There

are “body forces”, originated outside the block and which act on every molecule

within the block. There are also ”surface forces”, which are forces that act on the

surface of the block through surrounding molecules, through atomic and molecular

bonding. These forces are primarily between neighbors and next-nearest neighbors.

The surface force per unit area of the surface is called the stress [1].

Consider an infinitesimal plane of arbitrary orientation within a homogeneous

elastic medium in static equilibrium. The orientation of the plane can be specified

by its unit normal vector n̂. The force per unit of area exerted by the side in the

directional of n̂ across this plane is termed traction and is represented by a vector

t(n̂). The t component which is normal to the plane is termed the normal stress;

the parallel component is called the shear stress. In the case of fluid, there are no

shear stress and t = −Pn̂, where P is the pressure.

The stress tensor τij in Cartesian coordinates system may be defined by the trac-

tion across the x1x2, x2x3 and x1x3 planes, with normals n3, n1 and n2 respectively,

as:

τij =











t1(n1) t1(n2) t1(n3)

t2(n1) t2(n2) t2(n3)

t3(n1) t3(n2) t3(n3)











(1.1)

The stress tensor is symmetric and so contains only six independent components.

The traction across any arbitrary plane of orientation defined by n̂ may be ob-

tained by multiplying the stress tensor by n̂, that is

t(n̂) = τ n̂ (1.2)
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The stress tensor is simply a linear operator which produces the traction vector t

from normal vector n, and, in this sense, the stress tensor exists independently of

any particular coordinate system. The stress tensor generally varies with position

in a material; it is a measure of the force acting on infinitesimal planes at each point

in the solid. Stress provides a measure only of the forces exerted across these planes

and has units of force per unit of area. However, other forces may be present (for

example the gravity); these forces are termed body forces and have unit of forces

per unit volume or mass.

1.1.2 Strain tensor

Consider a volume in three dimensional space, any point can be identified by a

vector r = (x1, x2, x3). If there is a deformation, the same point can be indicated

with a new vector r′ = (x′

1, x
′

2, x
′

3), and we define the deformation vector u = r′ − r.

The coordinates x′

i depend on the coordinates xi and so also the deformations ui

depend on xi. Consider an infinitesimal deformation, the differential du is1

dui = ∂juijdxj + O(dx2
j) (1.3)

The matrix ∂juij is the Jacobian matrix J (displacement gradient matrix) associated

with the displacement field u in the Cartesian coordinate system x.

The matrix J can be written as a sum of a symmetric matrix ǫ̂ and a skew-

symmetric matrix ω̂, where ǫ̂ = (J + JT )/2 and ω̂ = (J − JT )/2. The elements of ǫ̂

and ω̂ are

ǫij =
1

2
(∂juij + ∂iuji)

ωij =
1

2
(∂juij − ∂iuji) (1.4)

1We adopt the Einstein’s convention that repeated index means the sum over this index and

the convention that ∂juij = ∂ui

∂xj
and ȧ = da

dt
.
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The symmetric matrix ǫ̂ represents a second order symmetric tensor (the irrotational

strain sensor) and ω̂ a second order skew-symmetric rotation matrix [1].

The effect of ǫ̂ and ω̂ may be illustrated by considering what happens to an

infinitesimal cube (see figure 1.1). The off-diagonal elements of ǫ̂ cause shear strain;

for example, in two dimension, if ω̂ = 0 and there is no volume change, then

J = ǫ̂ =





0 θ

θ 0



 =





0 ∂3u13

∂1u31 0



 (1.5)

where θ is the angle in radians through which each side rotates. Note that the

total change in angle between the sides is 2θ. In contrast, the ω̂ tensor causes rigid

rotation, for example, if ǫ̂ = 0, then

J = ω̂ =





0 θ

−θ 0



 =





0 ∂3u13

∂1u31 0



 (1.6)

Figure 1.1: The different effects of the strain tensor ǫ̂ (on the left) and the rotation

sensor ω̂ (on the right) are illustrated by the deformation of a square in the xz plane

in a Cartesian reference system x, y, z.

1.1.3 The linear stress-strain relationship

Stress and strain are linked in elastic media by a stress-strain relationship or consti-

tutive relationship. The most general linear relationship between stress and strain
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tensor is the Hooke’s law [1]:

τij = cijklǫkl (1.7)

where cijkl is termed the elastic tensor. The equation 1.7 assumes perfect elasticity:

there is no energy loss as the material deforms in response to applied stress. The

elastic tensor is a fourth-order tensor with 81 components. However, because of

the symmetry of the stress and strain tensor, only 21 of these components are

independent.

If we assume isotropy (cijkl is invariant with respect to rotation), it can be shown

that the number of independent parameters can be reduced to two and

cijkl = λδij + µ(δilδjk + δikδjl) (1.8)

where λ and µ are called Lamé parameters of the material and δij is the Kronecker

delta. Then the stress-strain relationship 1.7 for an isotropic solid is [2]:

τij = [λδij + µ(δilδjk + δikδjl)]ǫkl

= λδijǫkk + 2µǫij (1.9)

The two Lamé parameters completely describe the linear stress-strain relation-

ship within an isotropic solid: µ is termed the shear modulus and it is a measure

of the resistance of the material to shearing; λ does not have a simple physical

explanation. Other commonly used elastic constants for describing isotropic solids

are:

• the Young modulus E: the ratio of extensional stress to the resulting exten-

sional strain for a cylinder being pulled on both ends;

E =
(3λ + 2µ)µ

(λ + µ)

• the bulk modulus k: the ratio of hydrostatic pressure to the resulting volume

change, a measure of the incompressibility of the material;

k =
λ + 2µ

3
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• the Poisson’s ration σ: the ratio of the lateral contraction of a cylinder (being

pulled on its ends) to its longitudinal extension.

σ =
λ

2(λ + mu)

1.2 The seismic wave equation

1.2.1 The momentum equation

In the section 1.1 the stress, strain and displacement field are considered in static

equilibrium and unchanging with time. However, because seismic waves are time-

dependent phenomena that involve velocities and accelerations, we need to account

for the effect of momentum. We do this by applying Newton’s law to a continuous

medium.

Consider the force on an infinitesimal cube dV = dx1dx2dx3 in (x1, x2, x3) coor-

dinate system, as shown in figure 1.2. The surface forces on each surface of the cube

are given by the product of the traction vector and the surface area:

F S
i = τijn̂j (1.10)

and, integrating over all the face

F S =

∫

S

τ · n̂dS (1.11)

There may also exist a net body force on the cube that acts proportionally to

the volume of material, that, for all the volume, is

F body =

∫

V

fdV (1.12)

The mass of out infinitesimal cube is dm = ρdV , where ρ is the density. The

acceleration of the cube is given by the second time derivative of the displacement

u.

9



dx1

dx2

dx3

x1

x2

x3

t(−x1)

t(x1)

Figure 1.2: Pictures of the force on the (x2, x3) face of an infinitesimal cube in

(x1, x2, x3) Cartesian space.

Substituting the equation 1.11 and 1.12 into F = ma we obtain

∫

S

τ · n̂dS +

∫

V

fdV = ρü (1.13)

By the divergence theorem applied to tensor

∫

S

τ n̂dS =

∫

V

∇ · τdV (1.14)

then the equation 1.13 becomes

∫

V

[∇ · τ + f − ρü] dV = 0 (1.15)

Since the equation 1.15 is valid for arbitrary volume V , the integrand vanishes

everywhere and we obtain the momentum equation [2]

∇ · τ + f − ρü = 0 (1.16)

in absence of body forces, we have the homogeneous equation of motion

∇ · τ − ρü = 0 (1.17)

that governs seismic wave propagation outside source regions.
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1.2.2 Seismic wave equation

In order to solve the equation 1.17 we require a relationship between stress and strain

so that we can express τ in terms of displacement u. Recall the linear, isotropic

stress-strain relationship 1.9 and the definition of strain tensor 1.4 we obtain:

τij = λδij∂kuk + µ(∂iuj + ∂jui) (1.18)

If we substitute equation 1.18 in equation 1.17 we can write in vector notation

ρü = ∇λ(∇ · u) + ∇µ · [∇u + (∇u)T ] + (λ + µ)∇∇ · u + µ∇2u (1.19)

We use the vector identity

∇2u = ∇∇ · u −∇×∇× u (1.20)

to obtain the seismic wave equation [3]:

ρü = ∇λ(∇ · u) + ∇µ · [∇u + (∇u)T ] + (λ + 2µ)∇∇ · u − µ∇×∇× u (1.21)

The first two terms on the right-hand side involve gradients in the Lamé pa-

rameters themselves and are non zero whenever the material is inhomogeneous.

Furthermore, we can consider the velocity as a function only of dept, then the ma-

terial can be modeled as a series of homogeneous layers. Within each layer, there

are no gradient in the Lamé parameters and so these terms go to zero. The differ-

ent solutions of each layer are linked by calculating the reflection and transmission

coefficients for waves at both side of the interface separating the layers. The effects

of a continuous velocity gradient can be simulated increasing the number of layers.

Then, if we ignore the gradient terms, the momentum equation for homogeneous

media becomes:

ρü = (λ + 2µ)∇∇ · u − µ∇×∇× u (1.22)

that is the standard form for seismic wave equation [1] [2] [3]. However, it is im-

portant to remember that it is an approximate equation, which neglects the gravity

and the velocity gradient terms and assumes a linear, isotropic Earth model.
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1.2.3 P- and S- waves

We can separate the equation 1.22 into solution for P-waves and S-waves by taking

the divergence and the curl, respectively. Taking the divergence of equation 1.22

and using the vector identity ∇ · ∇ × Ψ = 0, we obtain

∇2(∇ · u) − 1

α2

∂2(∇ · u)

∂t2
= 0 (1.23)

where the P-wave velocity, α, is given by

α2 =
λ + 2µ

ρ
(1.24)

Taking the curl of equation 1.22 and using the vector identity ∇ × ∇φ = 0, we

obtain

∇2(∇× u) − 1

β2

∂2(∇× u)

∂t2
= 0 (1.25)

where the S-wave velocity, β, is given by

β2 =
µ

ρ
(1.26)

A table of typical seismic waves velocities is shown in table 1.3.

Potentials

The displacement u is often expressed in terms of the P-wave scalar potential φ and

S-wave vector potential Ψ, using the Helmholtz decomposition theorem2:

u = ∇φ + ∇× Ψ with ∇ · Ψ (1.27)

We then have

∇ · u = ∇2φ (1.28)

∇× u = −∇2Ψ since ∇ · Ψ = 0 (1.29)

2Each differentiable field can be expressed as the gradient of scalar field plus the curl of vectorial

field.
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Figure 1.3: P- and S- wave velocities for different materials.

Substituting into 1.23 and 1.25, we may obtain

∇2φ − 1

α2

∂2φ

∂t2
= 0

∇2Ψ − 1

β2

∂2Ψ

∂t2
= 0 (1.30)

The P-wave solution is given by the scalar wave equation for φ; the S-wave solution

is the vector wave equation for Ψ.

Polarization of P- and S- waves

The general solutions of equations 1.30 are plane waves described by general func-

tion:

u(x, t) = A(ω)ei(k·x−ωt) (1.31)

where k = (ω/c)k̂ is the wave vector and c the phase velocity of the wave. Other

parameters and their relationship are shown in table 1.1.

Consider the equation for P-wave. Because u = ∇φ, we have ux = ∂xφ, uy = 0

and uz = 0. Note that for a plane wave propagating in the x direction there is no

13



Name Symbol Relationship

Angular frequency ω ω = 2πf = 2π/T = ck

Frequency f f= ω/(2π) = 1/T = c/Λ

Period T T = 1/f = (2π)/ω = Λ/c

Velocity c c = Λ/T = fΛ = ω/k

Wavelength Λ Λ = c/f = cT = 2π/k

Wave vector k k = ω/c = 2π/Λ = 2πf/c

Table 1.1: Harmonic wave parameters

change in the y and z direction, so the spatial derivative ∂y and ∂z are zero. For

P-waves, the only displacement occurs in the direction of propagation along the x

axis. Such wave is termed longitudinal. Also, because ∇ × ∇φ = 0 the motion is

curl-free or irrotational. Since P-waves introduce volume changes in the material

(∇ · u 6= 0), they can also be termed compressional or dilatational. However, note

that P-waves involve shearing as well as compression; this is why the P velocity is

sensitive to both the bulk and shear moduli.

Now consider a plane S-wave propagating in the positive x direction. The dis-

placement is

ux = (∇× Ψ)x = ∂zΨy − ∂yΨz = 0

uy = (∇× Ψ)y = ∂xΨz − ∂xΨz = ∂xΨz

uz = (∇× Ψ)z = ∂yΨx − ∂xΨy = −∂xΨy (1.32)

thus giving

u = ∂xΨzŷ − ∂xΨyẑ (1.33)

The motion is in the y and z direction, perpendicular to the propagation direction.

S-wave particle motion is often divided in two components: the motion within a

vertical plane through the propagation vector (SV-waves) and the horizontal motion

14



in the direction perpendicular to this plane (SH-wave). Because ∇·u = ∇·(∇×Ψ) =

0, the motion is pure shear without any volume change.

Particle motion for harmonic P-wave and for harmonic shear wave polarized in

the vertical direction (SV-wave) is illustrated in figure 1.4.

Figure 1.4: Displacement occurring from a harmonic plane P-wave (top) and S-wave

(bottom) traveling horizontally.

1.3 Surface waves

Our treatment to this point has been limited to body waves, solutions to the seismic

wave equation which exist in whole spaces. However, when free surfaces exist in

a medium, other solutions are possible and are called surface waves. There are

two types of surface waves that propagate along Earth’s surface, Rayleigh waves

and Love waves. For laterally homogeneous models, Rayleigh waves are radially

polarized (P/SV) and exist at any free surface, whereas Love waves are transversely

polarized and require some velocity increase with depth (or a spherical geometry).

Surface waves are generally the strongest arrivals recorded at teleseismic distances
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and they provide some of the best constraints on Earth’s shallow structure and low-

frequency source properties. They differ from body waves in many respects: they

travel more slowly, their amplitude decay with range is generally smaller, and their

velocities are strongly frequency dependent.

1.3.1 Love waves

Love waves are formed through the constructive interference of high order SH surface

multiples, i.e. SSS, SSSS, SSSSS, etc. (for more details see [2] [3]). Thus, It

is possible to model Love waves as a sum of body waves. To see this, consider

monochromatic plane wave propagation for the case of a vertical velocity gradient in

a laterally homogeneous model. In this case, a plane wave defined by ray parameter

p will turn at the depth where β = 1/p.

Along the surface the plane waves will propagate with horizontal slowness defined

by p. If the surface bounce points are separated by a distance X(t), then the travel

time along the surface between bounce points is given by pX(p). This follows from

our definition of a plane wave and does not depend upon the velocity model. In

contrast, the travel time along the ray paths is given by T (p) and is a function of

the velocity-depth profile (see figure 1.5). If these travel times are not the same,

as it generally happens, destructive interference will occur except at certain fixed

frequencies. Along the surface, the phase (0 to 2π) of an harmonic wave will be

delayed by ωpX(p), where ω is the angular frequency of the plane wave.

The phase along the ray path is delayed by ωT (p)− π/2, so the requirement for

constructive interference is

ω =
n2π + π/2

T (p) − pX(p)
with is an integer (1.34)

The wave travels along the surface at velocity c = 1/p, thus the equation 1.34 defines

the c(ω) function for the Love waves, often termed as dispersion curve. The values

16



V

Z

X(p)

Figure 1.5: Ray paths T (p) (on the right) for a model with a continuous velocity

increase with depth (on the left) will curve back toward the surface.

of ω given n = 0 are termed the fundamental modes; highest modes are defined

by larger values of n. The frequency dispersion in the Love waves results from ray

geometry and does not require any frequency dependence in the body wave velocity

β.

The velocity defined by c is the velocity with which the peaks and troughs at

a given frequency move along the surface and is termed phase velocity. When the

phase velocity varies as a function of frequency, as in equation 1.34, the wave is

dispersed and the group velocity (the velocity with which the energy propagates)

will be different from the phase velocity. In the Love waves, the energy must move

along the actual ray path and thus the group velocity U is defined by

U =
X(p)

T (p)
(1.35)

The relationship between the phase velocity and the group velocity is shown in

figure 1.6 as a sum of SH surface waves.

1.3.2 Rayleigh Waves

For SH polarized waves, the reflection coefficient at the free surface is one, and

the interference between the downgoing SH-waves and those turned back toward

the surface produces Love waves. The P/SV system is more complicated because
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Figure 1.6: The relationship between the phase velocity and the group velocity is

shown. The dashed lines show the group and the phase velocities at a fixed value of

the ray parameter p.

the surface reflections involve both P- and SV-waves. In this case, the upgoing

ad downgoing body waves do not sum constructively to produce surface waves.

However, a solution is possible for inhomogeneous waves trapped at the interface:

the resulting surface waves are termed Rayleigh waves [2] [3].

Let us begin by examining what occurs when P- and SV-waves interact with a

free surface. For a laterally homogeneous medium, the displacements for harmonic

plane waves propagating in the +x direction are given by

u = Ae−iω(t−px−ηx) (1.36)

where p is the horizontal slowness and η =
√

1/c2 − p2 is the vertical slowness for

the wave velocity c. Now for equation 1.36, consider a plane wave solution for φ and

Ψy ( the only part of Ψ that produces SV motion for plane wave propagation in the

x direction):

φ = Ae−iω(t−px−ηαz) (1.37)
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Ψy = Be−iω(t−px−ηβz) (1.38)

where A and B are the amplitude of P- and SV-waves respectively, and the vertical

slownesses are ηα and ηβ. The ray parameter p is constant and both P- and SV are

assumed to have the same horizontal slowness.

Now consider the boundary conditions at the free surface (z = 0). Both the

normal and the shear traction must vanish, and, recalling the equation 1.9 it is

possible to obtain a set of equations for the ray parameter and for the vertical

slownesses:

A(2pηα) − B(p2 − η2
β) = 0

A[α2(p2 + η2
α) − 2β2p2] − B(2β2ηβp) = 0 (1.39)

This coupled set of equations describes the free surface boundary condition for P-

and SV-waves with horizontal slowness p. When p < 1/α, there are two real solu-

tions, a positive value of ηα for down-going P-waves and a negative value for up-going

P-waves (assuming the z axis points down-going). Similarly, when p < 1/β, then ηβ

is real and there exist both down-going and up-going SV-waves.

However, our interest is in the case of p > β−1 > α−1 and both ηα and ηβ are

imaginary. In this case the equation 1.36 becomes

u = Aeiωηze−iω(t−px) (1.40)

and we see that imaginary values of η will lead to real values in the exponents and so

the wave amplitude decays exponentially as a function of depth. For z = 0 we have

only single imaginary values of η and the linear system of equation for A and B given

in 1.39 has a non trivial solution only when the determinant vanishes. Substituting

for ηα and ηβ, we can obtain an equation involving the ray parameter p and the

body waves velocities α and β.
(

2p2 − 1

β2

)2

− 2p2

(

p2 − 1

α2

)1/2(

p2 − 1

β2

)1/2

= 0 (1.41)
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This is termed the Rayleigh function and has a single solution, with the exact value

of p depending upon α and β. Using the solution for p we can obtain the relative

amplitude of the P and SV components and so, using the relations 1.27, also the

vertical and horizontal displacements. Particle motion for both Love and Rayleigh

waves are compared in figure 1.7.

Figure 1.7: Displacement occurring from a Love (top) and Rayleigh (bottom) travel-

ing horizontally. Love waves are purely transverse motion, whereas Rayleigh waves

contain both vertical and radial motion. In both case, the wave amplitude decays

strongly with depth.

1.4 Seismometers

In this first chapter we have discussed Earth motion in terms of the displacement

field u(x, t), but we have not mentioned how these movements are actually recorded.

A device that detects seismic wave motion is termed seismometer; the entire instru-

ment package, including the recording apparatus, is called seismograph. The most
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common type of seismometer is based on the inertia of a suspended mass, which tend

to remain stationary in response to external vibrations. As an example, figure 1.8

shows a simple seismometer scheme that will detect vertical ground motion.

�
�
�

�
�
�

Fluid
Viscous

Hinge

Spring

To amplifier

Magnet

Coil

Figure 1.8: A simple inertial seismometer for measuring vertical motion.

A mass is suspended from a spring and connected to a lever such that it can move

only in the vertical direction. Motions in the lever are dumped using a “dash pot”

to prevent excessive oscillations near the resonant frequency of the system. The

differential motion between the mass and the seismometer case (which is rigidly

connected to Earth) is measured using the voltage induced in a coil by the motion

of a magnet. The induced voltage is proportional to the velocity of the mass for the

instrument shown in figure 1.8. In alternative seismometer designs, the displacement

or acceleration of the mass may be measured. Another scheme, which is similar to

the one shown in figure 1.8, can be used to detect horizontal ground motion; in this

case the mass is suspended as a pendulum. Both vertical and horizontal suspended

mass instrument are called inertial seismometers.

1.4.1 Force feedback seismometer

The best modern instruments are more sophisticated than the simple mechanical

seismograph illustrated in figure 1.8. They are designed to achieve a linear response
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to Earth motion over a wide range of both amplitude and frequency. Mechanical non-

linearity can arise from the finite length of the springs and levers used in the design.

For example, the design shown in figure 1.8 will be linear only for excursions of the

mass which are small compared to the length of the lever arm. Linearity is often

maintained in modern instrument through the use of force-feedback designs in which

the mass is maintained at fixed point. The seismograph records a measure of the

force that is required to keep the mass at rest; this force is directly related to Earth

acceleration. For example we discuss the functionality of a standard seismometer,

the ”EpiSensor model FBA ES-T” of Kinemetric c©.

The Episensor consists of three orthogonally mounted force balance accelerome-

ters (FBAs), X-axis, Y-axis and Z-axis, inside a sensor casing. Each accelerometer

module is identical and plugs into a board that provides the final output circuit and

the carrier oscillator. The figure 1.9 shows a simplified block diagram of the major

components of each of the FBAs.

Figure 1.9: Simplified block diagram of an accelerometer.

The working principles are the following:
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• the oscillator applies an AC signal of opposite polarity to two moving capacitor

plates (also referred to as the moving mass). When the accelerometer is zeroed

and when no acceleration is applied, these applied are symmetrical to the fixed

central plate and no voltage is generated.

• An acceleration causes the coil and capacitive sensor plate, which are a single

assembly mounted on mechanical flexures (springs), to move with respect to

the fixed central plate of the capacitive transducer.

• This displacement results in a signal on the center plate of the capacitor be-

coming unbalanced, resulting in an AC signal of the same frequency as the

oscillator being passed to the amplifier.

• The amplifier amplifies this AC signal. This error signal is then passed to the

demodulator where it is synchronously demodulated and filtered, creating a

DC error term in the feedback amplifier.

• The feedback loop compensates for this error signal by passing current through

the coil to create a magnetic restoring force to balance the capacitor plates

back to their original null position.

• The current traveling through the coil is thus directly proportional to the

applied acceleration. By passing this current through a complex impedance

consisting of a resistor and capacitor, it can be converted to a voltage output

proportional to acceleration with a bandwidth of approximately 200Hz.

• Selecting a particular resistor value sets the full-scale range. The resistor values

are determined by a high accuracy network, so the range can be set at g/4,

g/2, g, 2g and 4g, where g is the gravity acceleration.

• The capacitor and overall loop again are selected along with the resistor to

ensure an identical transfer function on each range.
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• The voltage output of the resistor capacitor network is set to 2.5 V for the

acceleration value corresponding to the particular range. This voltage is then

passed into a low-power and low-noise amplifier that amplifies this signal by

either 1 or 4 to give a single-ended output of either ±4 V or ±10 V .

• A second amplifier is also present which inverts the signal from the first and

can be connected to the negative output lead. This allows the unit to give a

differential ±5 V or ±20 V to match the input to digitizers.

It is possible to determine a good empirical model of the system, which uses two

pair of conjugate poles to represent the transfer function of the instrument. If this

transfer function is corrected for the DC sensitivity of the sensor, the amplitude

agreement is within ±0.5 dB over the bandwidth of the sensor. This model can be

represented as
V (s)

A(s)
=

k1k2

(s − p1)(s − p2)(s − p3)(s − p4)
(1.42)

where k1 = 2.46 · 1013, k2 is the sensitivity in V/g, p1,2 = −981 ± 1009i, p3,4 =

−3290 ± 1263i, V (s) is the Laplace transform of the output voltage and A(s) is

the Laplace transform of the input acceleration. The amplitude of the transfer

function 1.42 is shown in figure 1.10. Remember that the episensor has a dynamic

range of 155dB in the frequency band 0 ÷ 200 Hz and its sensitivity is 80V/g, in

differential mode with a full scale range of ±g/4,

1.4.2 Classification of modern seismometer

Modern seismometers can be roughly divided into three types by purpose of use:

sensitivity seismometers for earthquake research observation, strong-motion seis-

mometers for earthquake engineering , and control-type seismometers for secondary

disaster prevention.
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Figure 1.10: Amplitude transfer function of the episensor.

• Sensitivity seismometers for earthquake research observation: a typical sensi-

tivity seismometer is an electrodynamic seismometer. This kind of seismome-

ter measures micro earthquakes, that the human body cannot feel. This seis-

mometer is required to detect the rising part of the waveform of P- and S-waves,

which will be necessary for determining the hypocenter, and to record the ex-

act times. To ensure this sensitivity observation, it is essential to eliminate

miscellaneous man-made vibrations. Thus, sensitivity seismometers should be

installed in earthquake observation stations distant from urban cities or in

very deep underground observation bore.

• Strong-motion seismometers for earthquake engineering: a strong-motion seis-

mometer mainly refers to a seismometer used to record how the ground under

a structure responds to strong earthquake motions. Strong-motion seismome-

ters start up only after they detect an earthquake greater than a preset level.

They use their vertical movement components to detect the earliest P-waves,

and this detection starts them up. They record waveform data with a delay

circuit of ten seconds. It does take some time to cause the circuit to rise, but
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the seismometers can actually obtain the waveform that was generated ear-

lier than the seismometers started recording. The earthquake data, including

waveform, will be recorded in an IC card. The data stored can be remotely

accessed through the public telephone line. Thus, data from multiple locations

can be collected and managed. Modern seismometers are computer systems

with communication capability and with internal sensitivity sensors, rather

than mere mechanical seismometers. The conventional seismometers were used

solely for recording waveforms. The combined use of high-performance sen-

sors, such as servo acceleration sensors, and a micro processor has changed this

conventional seismometer into a new recording system equipped with multiple

channels and functions. The new strong-motion sensor also collects wind di-

rection and speed data along with seismic data. For this reason, the modern

seismometer is also used as a disaster prevention system.

• Control-type seismometers for secondary disaster prevention: control-type

seismometers issue an alarm signal immediately after an earthquake motion

greater than a preset level occurs. These seismometers are not necessarily

required to record seismic waves. However, they do need to offer accuracy

and reliability that are different from those seen in other seismometers, since

malfunction will directly cause huge economical loss or social disorder. These

control-type seismometers are used to protect the infrastructure of our mod-

ern society, including railroads, nuclear plants, petrochemical complexes, and

power and gas facilities. One of the familiar examples of use of the control-

type seismometer is the emergency shut-down system to stop elevators in case

of an earthquake. The simplified type is often interlocked with an automatic

broadcast system in places where people gather, such as department stores

and banks, in order to prevent panics in case of an earthquake. Display-type

seismometers are used to display the extent of damage and the correct seismic
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intensity immediately after an earthquake. This information will be useful for

evacuation and safety activities.

1.4.3 Laser Techniques

In the last years, several instruments, based on light interference phenomena, have

been developed. In the section 2.1 the interference phenomena will be discussed,

while in this paragraph we just show a lot of this kind of instruments.

The first class of interferometric sensors for seismic applications are strainmeters:

they are built to measure the time variation of either linear strain, areal strain, shear

strain, or volumetric strain. Largely used for geophysical purposes are extensome-

ters, which measure the variation of distance between two fixed points in cavities,

mines, or trenches (or, occasionally, on the surface). The class of laser strainmeters

date back to the 1960s, and consist of a long path Fabry Perot or a Michelson in-

terferometer. The variations of length are detected with a sensitivity of 10−9 on

baselines ≈ 102 m. For more details we refer to [6], [7], [8], [9], [10] and [11].

The second class of interferometric sensor are accelerometer in which the reading

system of the oscillating component is based on light interferometry. For examples

we refer the work [12], [14] and [13]. Anyway we have not found any commercial

sensors, based on interferometry, for geophisics applications.
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Chapter 2

Interferometric seismic sensors

2.1 Optical Interferometry

The theory of optical interference is based essentially on the principle of the linear

superposition of electric field. According to this principle, the electric field E pro-

duced at a point in the empty space jointly by several different sources is equal to

the vector sum of the field produced by the different sources. The same is true for

the magnetic field. This principle is a consequence of the fact that the Maxwell’s

equations are linear differential equations.

Let us consider two plane harmonic waves of the same angular frequency ω. The

electric fields are then

E(1) = E1 exp(i(k1 · r − ωt + φ1))

E(2) = E2 exp(i(k2 · r − ωt + φ2)) (2.1)

Here the quantities φ1 and φ2 have been introduced to allow for any phase difference

between the sources of the two waves. If the difference φ1 − φ2 is constant, the two

sources are said to be mutually coherents and also the resulting waves are termed

mutually coherents. The irradiance at a point is proportional to the square of the
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amplitude of the light field at the point in question. Thus the superposition of two

monochromatic plane waves, aside from a constant proportionality factor, result in

an irradiance function

I = |E|2 = E · E∗ = (E(1) + E(2)) · (E∗

(1) + E∗

(2)) =

= |E1|2 + |E2|2 + 2E1E2 cos θ =

= I1 + I2 + 2E1E2 cos θ (2.2)

where

θ = k1 · r − k2 · r + φ1 − φ2 (2.3)

The term 2E1E2 cos θ is called the interference term and it indicates that I can be

greater or smaller than the sum I1+I2, depending on the value of θ. These variations

are the interference fringes that are seen when two mutually coherent beams of light

are combined. If the sources of two waves are not mutually coherent, then the

quantity θ, defined in the equation 2.3, varies with time in a random fashion. The

result is that the mean value of cos θ is zero, and there is no interference. This is

the reason for which interference fringes are not observed with two separate light

sources.

In the case of partial coherence of two sources 1 and 2, the irradiance I can be

expressed as

I =< E · E∗ >=< |E1|2 + |E2|2 + 2Re(E(1) · E∗

(2)) > (2.4)

where the sharp brackets denote the time average. If we assume that all quantities

are stationary and that the optical fields have the same polarization, the equation 2.4

can be written as

I = I1 + I2 + 2Re < (E1 · E∗

2 > (2.5)

Let us define the mutual coherence function of the two field E1 and E2:

Γ12(τ) =< (E1(t) · E∗

2(t + τ) > (2.6)
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and the self-coherence function

Γ11(τ) =< (E1(t) · E∗

1(t + τ) > (2.7)

from the definition we see that Γ11(0) = I1 and Γ22(0) = I2. If we use a normalized

correlation function called degree of partial coherence:

γ12 =
Γ12(τ)√

I1I2

(2.8)

then the irradiance can be expressed as follows:

I = I1 + I2 + 2
√

I1I2Re(γ12(τ)) (2.9)

Thus, in term of |γ12| we have the following type of coherence

|γ12| = 1 Complete coherence

0 < |γ12| < 1 Partial coherence

|γ12| = 0 Complete incoherence

In the patter of interference fringes, the intensity varies between two limits, Imax

and Imin. If we define the fringe visibility as

V =
Imax − Imin

Imax + Imin

(2.10)

it follows that

V =
2|γ12|

√
I1I2

I1 + I2

(2.11)

In particular, if I1 = I2, then V = |γ12|, that is, the fringe visibility is equal to

the modulus of the degree of partial coherence. In the case of complete coherence

the interference fringes have the maximum contrast of unity, whereas for complete

incoherence the contrast is zero; that is, there are no interference fringes at all.
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Figure 2.1: Optical scheme of a Michelson inteferometer

2.2 Model of interferometric seismic sensor

The best and most versatile interferometric device is the interferometer developed by

Michelson in 1880. The basic designed is shown in figure 2.1. The electromagnetic

field Ein from the source falls on a lightly silvered glass plate (Beam Splitter, Bs),

that divides the beam in two parts. These separated beams are reflected back to Bs

by the mirror S1 and S2, as shown. The interference patters is observed in Eout.

Assuming a plane wave beam, the Michelson interferometer output, I(t), can be

generally expressed as

I(t) = Imin +
Imax − Imin

2
[1 + cos(φ(t))] (2.12)

where φ(t) is the phase difference between the two beam, and Imax and Imin are

the maximum and the minimum output intensities, respectively. In particular, the

maximum value of the intensity is reached when the two beams are recombined in

phase, while the minimum is instead obtained when they are recombined in opposi-

tion of phase. Generally, these quantities are time dependent, but for a Michelson

Interferometer with well aligned mirrors and nearly equal arm lengths, negligible

laser source amplitude noise and coherent length of the laser source much longer

than the arm lengths, we can consider them constant. Therefore, the only time
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dependent quantity in equation 2.12 is the phase change φ(t), expressed as

φ(t) =
4πn(t)

λ(t)

{

[l2(t) − l1(t)] +
2
∑

i=1

[li(t) + d]
2
∑

j=1

θ2
i,j

}

(2.13)

where λ(t) is the laser beam wavelength, n(t) is the spatial mean refraction index,

li(t) is the ith arm-length, d is the distance of the beam-splitter from the output

photodiode, and θi,j is the jth tilt of the mirror in the ith arm.

Note that all these functions are in principle time dependent. To understand the

time evolution of the phase it is necessary to calculate the total derivative

φ̇(t) =
dφ

dt
=

φ(t)

n(t)
ṅ − φ(t)

λ(t)
λ̇ − 4πn(t)

λ(t)

d(l2 − l1)

dt
+

+
4πn(t)

λ(t)

[

(θ1,1 + θ1,2)l̇1 + (θ2,1 + θ2,2)l̇2

]

+

+
4πn(t)

λ(t)

[

(l1 + d)(θ̇1,1 + θ̇1,2) + (l2 + d)(θ̇2,1 + θ̇2,2)
]

(2.14)

Considering finite quantity, the total phase variation due to each time dependent

quantity is the following:

∆φ(t) =
φ(t)

n(t)
∆n

∆φ(t) =
φ(t)

λ(t)
∆λ

∆φ(t) =
4πn(t)

λ(t)
(θ1,1 + θ1,2)∆l1

∆φ(t) =
4πn(t)

λ(t)
(θ2,1 + θ2,2)∆l2

∆φ(t) =
4πn(t)

λ(t)
∆(l2 − l1)

∆φ(t) =
4πn(t)

λ(t)
(l1 + d)∆θ1,1

∆φ(t) =
4πn(t)

λ(t)
(l1 + d)∆θ1,2

∆φ(t) =
4πn(t)

λ(t)
(l2 + d)∆θ2,1

∆φ(t) =
4πn(t)

λ(t)
(l2 + d)∆θ2,2 (2.15)
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Using these equation it is possible to calculate the phase error due to the geometrical

fluctuation of the interferometer components. It is important to note that these

errors depend critically by experimental setup.

Furthermore, since techniques exist allowing to perform the alignment control of

the optics in a way completely independent from the longitudinal degrees of freedom,

it is possible to introduce the hypothesis of a perfectly aligned system, so that the

equation 2.13 can be written as

φ(t) =
4πn(t)

λ(t)
leq(t) (2.16)

where leq(t) = l2(t) − l1(t) is the longitudinal Michelson interferometer arm-length

difference, that is of course a time dependent function. Then, to extract the arm-

length change due to the presence of a seismic wave, we choose one arm as reference,

mechanically fixing its length and protecting it from refraction index changes, which

may simulate mechanical length changes. The other arm, that is the measurement

arm, is instead allowed to change its length in order to measure the passage and the

amplitude of a seismic wave.

Note that in this model we did not take into any account the transfer function of

the mechanical mounting on which the mirrors of the interferometer are mounted.

If the effect of the mounting must be taken into account because it has effects in the

interferometer measurement band then, assuming that the mechanical mountings

have only linear effects on the output, it is possible to express the output of the

interferometer as the convolution of the input signal and the mechanical mountings

impulse response, that is

∆leq(t) = k2(t) ∗ l2(t) − k1(t) ∗ l1(t) (2.17)

where k1(t) and k2(t) are the impulse response of the mechanical mounting relative

to the mirror 1 and to the mirror 2, respectively. In particular, if the mechani-

cal mountings are the same for both the mirrors then k1(t) = k2(t) = k(t) and
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leq(t) = k(t) ∗ (l2(t) − l1(t)). Furthermore note that the oscillations of the optical

holders induced by ground motion are anyway at frequencies enough high to be

attenuated by the low pass anti-aliasing filters located before the ADCs and so we

can approximate k(t) = 1.

Two further approximation can be done. The first approximation consist in

assuming the laser wavelength enough stable so that the time dependent of the

λ function can be considered constant for our purpose. This approximation can

be done using a stabilized laser source. These laser system provide high levels of

frequency and intensity reference for precision applications that are dependent or

enhanced by a single, invariant frequency, such interferometry. The ultra stable,

narrow band, single longitudinal output enables highly repeatable and highly ac-

curate measurements with enhanced resolution. For example, we can consider the

stabilized laser system model 05-STP-903 of Melles-Griot. It has frequency (nom-

inal) f = 473.61254THz, frequency stability guaranteed ∆f = ±2.0 MHz and

wavelength λ = c/f = 632.8 nm. The fluctuation of wavelength is

∆λ =

∣

∣

∣

∣

∂λ

∂f

∣

∣

∣

∣

∆f =

∣

∣

∣

∣

− λ

f 2

∣

∣

∣

∣

∆f ≈ 10−15 (2.18)

therefore, considering constant laser wavelength in our model, we have a relative

error of ∆λ/λ ≈ 10−9 that it is acceptable for our applications. For what concern

the intensity stability, if we monitor the power of the laser source, we can eliminate

its fluctuations.

The second approximation consists in assuming the index of refraction constant

and equal for both arm. The index of refraction, one of the most significant param-

eters of the atmosphere for optical wave propagation, is very sensitive to small-scale

temperature fluctuations. In particular, temperature fluctuations combined with

turbulent mixing induce a random behavior in the filed of atmospheric index of

refraction. A the point R in the space and time t, the index of refraction can be
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mathematically expressed by

n(R, t) = n0 + ∆n(R, t) (2.19)

where n0 =< n(R, t) >≈ 1 is the mean of the index of refraction and ∆n(R, t)

represent the random deviation, thus < ∆n(R, t) >= 0. Normalizing the values of

n(R, t) to n0, fluctuations of the index of refraction are related to corresponding

temperature and pressure fluctuations. In particular, the index of refraction for the

atmosphere can be written for optical and IR wavelengths as [4]

n(R, t) = 1 + 77.6 · 10−6(1 + 7.52 · 10−3λ−2)
P (R, t)

T (R, t)
(2.20)

where λ is the optical wavelength in µm, P is the pressure in mB, and T is the tem-

perature in Kelvin. According to this expression, then the change in the refraction

index can be expressed as

∆n(R, t) = +77.6 · 10−6(1 + 7.52 · 10−3λ−2)
1

T (R, t)
∆P (R, t)

−1.17 · 10−9λ−3P (R, t)

T (R, t)
∆λ − 1

T 2(R, t)
∆T (R, t) (2.21)

As it is possible to see from this equation, the wavelength dependence is small for

optical frequencies, that is positive since we use laser emitting in the optical and

near infrared bands (from 0.4 µm up to 1.2µm). Moreover, since the pressure fluctu-

ations are generally negligible, it is easy to see that the refractive index fluctuations

associated with the visible and near infrared region of the spectrum are mainly due

to random temperature fluctuations (humidity fluctuations only contribute in the

far infrared region). Changes in the optical signal due to absorption or scattering

by molecule or aerosols are not considered here.

Therefore, as a conclusion, when the interferometer is in vacuum or positioned

in a quiet and thermally stabilized environmental place, then, at a first level of

approximation, the index of refraction can be considered constant. In figure 2.2 an
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example of the variation of refraction index in function of temperature and pressure

variation is shown.
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Figure 2.2: Variation of index of refraction for λ = 0.5435µm.

In the case that a more accurate measure is necessary, we can operate in this way.

Define λn the wavelength of the laser source in vacuum, and λa the laser wavelength

in air. So the index of refraction is as

n =
λn

λa

(2.22)

and we can be defined the wavelength correction number (WCN) as the inverse

of the index of refraction. This wavelength correction number can be derived by

direct measurement of the index of refraction with a refractometer or by using

empirical data. In absence of a refractometer, it is best to measure the air pressure,

temperature and relative humidity, and then to relate this data to the refractive

index using the semi-empirical formulas obtained by Barrel and Sears [16] and by

Edlin [17], for examples:

WCN =
1

n
=

106

N + 106
(2.23)
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where

N = 0.3836391P ·
[

1 + (0.817 − 0.0133T )106 · P
1 + 0.0036610T

]

− 3.033 · 10−3 · e−0.057627T · H
(2.24)

and where the pressure P is measured in mmHg, the temperature T in Celsius and

the humidity in perceptual %.

For example, assuming standard and homogeneous air composition, a one part-

per-million error (ppm) will result from any one of the following condition:

• 1o C change in air temperature;

• 2.5 mm of mercury change in the air pressure;

• 80% in relative humidity.

The equation 2.24 gives only an approximation of the refractive index, and thus it has

some limitations related to the accuracy of measuring the atmospheric conditions.

Generally it is possible to obtain an accuracy of 0.01 ppm using the formula 2.24.

2.2.1 Transfer function estimate

To estimate the transfer function of interferometer, we consider that the seismic

wave s(t) is a seismic wave whose propagation vector k lays in the plane in which the

sensitive arm l2(t) of the interferometer is located, as shown in figure 2.3. Therefore,

the arrival of a seismic wave along the plane of the interferometer is sensed first by

the end mirror S2 and then, after a delay time t0, by the mechanical support, hosting

the remaining components of the interferometer (beam splitter, mirror S1, etc.). For

simplicity, in our model we consider this mechanical support equivalent to a mass

located on the beam splitter position. Of course, due to its structure, the model is

symmetric. In fact, the same seismic wave traveling in the opposite direction will
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Figure 2.3: Scheme of interferometer response to a seismic wave

be first sensed by the mechanical support, and then, after the same time delay t0,

will be detected by the end mirror, S2.

Let α be the angle between the wave vector k and the optical axes line l2, L2

the position of the mirror S2, Lb the position of the mirror S1 respect to the beam

splitter and vs the wave group velocity of signal s(t), then t0 can be written as

t0 =
[L2 + g2(t) + s(t)] cos α

vs

(2.25)

where g2(t) quantifies the residual noise on the mirror S2, filtered by the mechanical

transfer function of the mounting.

For t > t0 the wave front moves both the mirror and the optical length becomes

l1(t) = Lb + gb(t)

l2(t) = L2 + g2(t) + [(s(t) − ass(t − t0)] cos(α) (2.26)

where as is the attenuation factor expressing the ratio of the seismic wave amplitude
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at the second mirror with respect to the first one (0 ≤ as ≤ 1). In this way the

phase changes as

φ(t) =
4πn

λ
[L2 − Lb + g2(t) − gb(t) + (s(t) − ass(t − t0)) cos(α)] (2.27)

Let ∆L(t) = [L2 − Lb] + g2(t) − gb(t) be the length change in absence of signal,

then the relationship in the Laplace domain between the seismic signal s(t) and the

phase is

φ(s) =
4πn

λ

[

∆L(s) + S(s)
(

1 − ase
−t0s
)

cos(α)
]

(2.28)

The transfer function of the system that links the input seismic signal s(t) with the

output Michelson phase change φ(s) can be written as

H(s) =
φ(s)

S(s)
=

4πn

λ

(

1 − ase
−t0s
)

cos(α) (2.29)

while the transfer function for the noise can be written as

Hn(s) =
φ(s)

∆L(s)
=

4πn

λ
(2.30)

that shows that the interferometer is fully sensitive to all local micronoise (mechan-

ical, refraction index changes, etc.).

Let us now analyze the behavior of the interferometer in the limit of short arm-

length short compared with the wavelength of the seismic waves. In this case the

delay time t0 becomes small, so that it is possible to expand e−t0s in Taylor series as

H(s) =
4π n

λ
cos(α)

(

1 − as

∞
∑

k=0

sk

k!

dke−t0s

dsk

∣

∣

∣

∣

t0=0

)

=
4π n

λ
cos(α)

(

(1 − as) + as

∞
∑

k=1

sk

k!

dke−t0s

dsk

∣

∣

∣

∣

t0=0

)

(2.31)

And since we are considering an interferometer with short arms, we can retain only

the term for k = 1 of Taylor series and it is possible to consider that the attenuation

factor as = 1. In this way we obtain the relation between the input seismic signal
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s(t) with the output Michelson phase change φ(t) can be written in the Laplace

domain as

φ(s) =
4πn

λ
cos(α)t0sS(s) (2.32)

and then in the time domain as

φ(t) =
4πn

λ
cos(α)t0

(

U(t − t0)
ds(t)

dt

)

(2.33)

This means that according to the above hypothesis the interferometer phase is pro-

portional to the input signal derivate at least at the first order, and therefore to the

velocity of the seismic waves.

Here, in order to provide a clearer and simpler analysis we report the harmonic

response of the interferometer to seismic signals whose wavelengths are much larger

than the interferometer arm-lengths. Using the t0 explicit form, the harmonic re-

sponse is

H(jω) =
4πn

λvs(jω)
jω cos2(α) (2.34)

where vs(jω) is the velocity of seismic wave at angular frequency ω.

In order to show the angular dependence of the instrument sensitivity, we plotted

the sensitivity diagram according to equation 2.34 (see figure 2.4). In can be easily

seen that this diagram has the classical shape of a dipole, in which the maximum

sensitivity is for α = 0 and α = π and the minimum sensitivity is for α = π/2

and α = 3π/2. According to this diagram it is easy also to see that it is possible

to build an omnidirectional interferometric instrument to measure seismic noise, by

simply using the Michelson interferometers oriented perpendicularly each other. In

fact, with interferometers with equal armlengths and with optics having the same

characteristics, is possible to build an instrument able to detect seismic waves with

no angular dependence.

The only remaining point is how to extract the function φ(t) by the measurement

of the interferometer intensity through the output photodiode. For this task it is
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Figure 2.4: Normalized sensitivity diagram for a Michelson interferometer with free

mirror in the 0 rad direction.

necessary the inversion of the equation 2.12 to obtain

φ(t) = cos−1

[

2
I(t) − Imin

Imax − Imin

− 1

]

(2.35)

Particular care is needed in the application of this formula. In fact, if during the

selected time interval the output intensity of the interferometer reaches its maximum

or minimum value, then the equation 2.35 is not longer valid due to the periodicity of

the cosine function. Physically, it means that the interferometer is passing from the

working fringe to the next one. The method used to solve this problem is presented

in the section 2.3. At this point it is enough to derive numerically the equation 2.33

to obtain the acceleration of free mirror respect to the reference bench:

a(t) =
d2s(t)

dt2
=

λ

4πnto cos(α)
φ̇(t) (2.36)
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2.2.2 Error in Taylor expansion

The equation 2.33 has been written considering only the first term of the Taylor

series. In order to evaluate the instrument sensitivity it is important to consider the

error in the Taylor series truncation.

Consider the formula of the rest of the Taylor series:

Rn(t0) =

∫ t0

0

f (n+1)(t)
(t − t0)

n

n!
dt

If we retain only the first term in the Taylor series, we make an error

R2 =

∥

∥

∥

∥

3π2f 2L4

v4
s

∥

∥

∥

∥

(2.37)

For our prototype, in which L = 0.2, and for several wave velocities we make an

error in function of the seismic wave frequency illustrated in figure 2.5:
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Figure 2.5: Phase error due to Taylor series truncation.
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2.2.3 Optimum fringe geometry

Controlling fringe geometry is necessary for basic operation of the interferometer

as well as maximizing the signal to noise ratio. This is accomplished by properly

offsetting, magnifying, and directing the laser beam in the arms, before they reach

the photodiodes. The component of the interferometer, for example the separation

distance d of the two beam, can be controlled to produce an optimum fringe pattern

at the photodiodes.

Maximum visibility

In interferometry, the visibility is usually defined as the ratio of the maximum mea-

sured signal and the minimum, as shown in equation 2.10. In this paragraph the

visibility is defined as the difference between the maximum and the minimum, not

the ratio. This difference becomes a voltage difference at the photodiode outputs

and will be compared to the background electronic noise for a signal to noise ratio

calculation.

Consider a laser source with wavelength λ, the width of a fringe δ = λ/2 and the

photodiode sensor size l can be optimized to give the greatest visibility. Consider a

sensor of width l centered on fringe pattern as depicted in figure 2.6. The cylindrical

lens expands the laser beam for matching the diode sensor area. It is assumed that

the beam width, b is much greater then the beam separation distance, d. The

maximum integrated intensity measurement will occur when the sensor is centered

on the bright region of the spatially harmonic intensity distribution, I(ξ), which is

given by

I(ξ) =
P

2b

(

1 + cos

(

2ξπ

δ

))

(2.38)

where P is the total power of the combined beams, ξ is the location along the fringe

pattern. The intensity distribution for two interfering, circular cross section beams
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Figure 2.6: Diode fringe pattern.

with a Gaussian intensity distribution is more complicated then equation 2.38, but

is not necessary for this analysis.

Integrating equation 2.38 over the length of the sensor l gives the maximum

integrated intensity measurement:

Smax =
P

2b

∫ l

0

(

1 + cos
2ξπ

δ

)

dξ =
P

2b

(

l +
δ

2π
sin

πl

δ

)

(2.39)

Similarly, for the minimum integrated intensity measurement is centered on a dark

part of the fringe pattern:

Smin =
P

2b

∫ l

0

(

1 − cos
2ξπ

δ

)

dξ =
P

2b

(

l − δ

2π
sin

πl

δ

)

(2.40)

Differencing Smax and Smin gives an expression for the visibility:

V = Smax − Smin =
P

b

(

δ

π
sin

πl

δ

)

(2.41)

It is now clear that the optimum relationship between fringe width δ and the pho-

todiode sensor size l is

l =
δ

2
(2.42)
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that gives a maximum visibility of

Vmax =
Pδ

bπ
(2.43)

Beam separation distance

The fringe pattern intensity will have an harmonic spatial distribution similar to

figure 2.6. The fringe pattern can be predicted by treating each laser beam as a

diverged spherical wavefront. The fringe width δ is

δ =
λR

d
(2.44)

where R is the radius of curvature of the wavefront of the laser beam. The beam

width b is given by

b = Rφ (2.45)

where φ is the laser beam divergence angle. Combining equation 2.43, 2.44 and 2.45

gives an expression for the maximum visibility:

Vmax =
Pλ

φπd
(2.46)

Equation 2.46 predicts that decreasing d (increasing the fringe width) yields

better visibility. d can be made arbitrarily small but the sensed portion of the

interference pattern l can be no larger than the width of the entire interference

pattern, which is of course limited to the beam width b. Further, there is a more

practical upper bound on δ, and thus on l. Recall that at least 1/4 cycle (δ/4) of

an intensity distribution is needed to allow proper placement of the diodes and this

is the actually the required distance between center locations of the photodiode.

Considering now that the photodiode is to have a width of δ/2, the fringe pattern

must now contain at least 3/4 of a cycle of fringes, or 3δ/4. If the beam of width

b are offset by a distance d, the size of the interferometer region will have a width
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b − d. This gives, using equation 2.44 and 2.45,

b − d =
3

4
δ =

3

4

(

λb

φd

)

(2.47)

Solving for d after neglecting the second order term:

d =
3

4

(

λ

φ

)

(2.48)

For example, for a Helium-Neon laser with φ = 1.6 mrad

d =
3

4

(

632.8 nm

1.6 mrad

)

= 0.39 mm (2.49)

This magnitude of position is easily achieved with optical translation stages. A

larger separation distance will produce more fringes with smaller fringe width δ.

The equation 2.46 shows that the signal strength will decrease proportionally.

Fringe pattern magnification

The interference region will most likely need to be magnified to accommodate the

size of the photodiode. The interference region should be 3/4 of the fringe width and

the sensor should be 1/2 of the fringe width, which means the interferometer region

should be 3/2 of the width of the photodiode. In our experiment, the photodiodes

were about 5 mm wide squares. This required a magnification factor of about 4.

The magnification is done with a cylindrical lens so that the fringes are made wider

then the photodiode but not taller. This utilizes all the available light for better

signal to noise ratio.

2.2.4 Sampling frequency choice

To choose the sampling frequency Fc it is important to consider that the sampling

frequency must be at least two times the maximum frequency of the acquired signal
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I(t) (Nyquist theorem). Thus the sampling frequency Fc should be higher than

φ̇(t)/π, where φ̇(t) is the velocity of the phase.

Remember that

φ(t) =
4πnt0

λ

ds(t)

dt
(2.50)

and that the propagation time t0 = L/vs, the instantaneous frequency of I(t) is

f(t) =
φ̇

2π
=

2nL

λvs

d2s(t)

dt2
(2.51)

Then it is possible to choose the sampling frequency considering the maximum

acceleration ap that the instrument can measure. In fact the sampling frequency is

related to the phase derivative by the relation

Fc > 2fmax =
φ̇

π
(2.52)

and so we are able to determine the minimum sampling frequency in function of the

instrument parameters as

Fc >
4nL

λvm

ap (2.53)

where the peak acceleration ap is a calibration parameter and vm is the minimum

wave velocity attended. For example, for our prototype in which L = 0.2, if we

choose the sampling frequency following the graph of figure 2.7.

2.3 Signal reconstruction

As we have seen, from equation 2.35 we are not able to reconstruct the phase φ(t)

without ambiguity because of the periodicity of the function cosine. To avoid this

problem there are a lot of algorithms. We use the algorithm shown in the next

paragraph (2.3.1). To apply this algorithm two signals are necessary, the first one

proportional to the sine of the phase, and the last one proportional to the cosine

of the phase. To obtain these signals we propose the techniques, shown in para-

graph 2.3.2 and 2.3.3 .
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Figure 2.7: Minimum sampling frequency in function of minimum seismic wave

velocity for ap = g/4.

2.3.1 Phase-unwrapping algorithm

Suppose that we have two signals in quadrature, V1(t) and V2(t), proportional to

the sine and the cosine of the phase φ, respectively. Both signals are equidistantly

sampled with the sampling periods T = ti+1 − ti, given a series of measurement

values V1(ti) and V2(ti). The observation period is defined from i = 1 . . . n.

In the first step a quadrature error correction is necessary. In fact if we make a

parametric plot of the interferometer signal and the lockin signal, the orbit defined by

the Lissajous pattern will not be perfectly circular for several reasons. Misalignment

of the beams will reduce the amount of the light captured by the detector; offsets

and gains of the amplifier used for the signal conditioner, and principally the two

signal are not perfectly in quadrature. Uncorrected, the ellipticity causes significant

errors if trying to estimate displacements of only a fraction of wave length.

In this case the phase difference φ0 is not exactly π/2 and an error in calculating
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the position arises. This error can be corrected, but since it is not cumulative, and

repeats every time the path length changes by the laser wavelength λ, this correction

is only needed when the motion on scale much less then λ are important. For a phase

misalignment of φ0, the two signal in quadrature can be represented (after it has

been normalized) as

V1 = sin(φ(t) + φ0)

V2 = cos(φ(t)) (2.54)

For a given set of measurements, equations 2.54 contain two unknown: φ(t) and φ0.

An equation can be written involving only V1, V2 and φ0:

V 2
2 =

[

cos
(

arctan
(

V1/V2−sin φ0

cos φ0

))]2

+
[

sin
(

arctan
(

V1/V2−sin φ0

cos φ0

+ φ0

))]2

1 +
(

V1

V2

) (2.55)

Section of data are used to curve fit for φ0. Once a value for φ0 is found, all the V1

data can be corrected to represent a diode measurement with φ0 = 0. Equations 2.54

can be used to solve for actual φ(t)

φ(t) = arctan

(

V1/V2 − sin(φ0)

cos φ0

)

(2.56)

After the quadrature error correction procedure, φ0 = 0 and the corresponding

values of the phase of motion φ(t) at ti is determined as follow:

φ(ti) = arctan
V1(ti)

V2(ti)
+ mπ, with m = 0, 1, 2, . . . (2.57)

An integer number m is chosen to avoid discontinuities of φ(ti). To determine m

and φ(ti), we must find the discontinuities of the arctangent term in equation 2.57

and determine whether to add to, or subtract from, m. Figure 2.8 gives a scheme

of the algorithm.

In step I, the adjacent values are compared. If the difference between the two

values is greater that π/2, we infer a discontinuity and it reveals that there is a
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Figure 2.8: Algorithm of the phase-unwrapping process.

changing of the fringe. In the step II, the direction of the discontinuity is determined

by the slope of the adjacent values and 1 is added to or subtracted from m, depending

on the direction.

2.3.2 Modulation technique

The modulation technique consists in changing the optical length of an interferom-

eter arm as

lm(t) = lmc
cos(ωmt) (2.58)

where lmc
is the modulation amplitude and fc = 2π/ωm is the modulation amplitude.

Then the intensity measured by the photodiode is

I(t) = Imin +
Imax + Imin

2

{

1 + cos

[

4πn

λ
(leq(t) + lmc

cos(ωmt))

]}

(2.59)
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where leq(t) is the equivalent displacement of the free mirror. With a lot of algebra

we obtain

I(t) = Imin +
Imax − Imin

2

{

1 + cos

(

4πn

λ
leq(t)

)

cos

(

4πn

λ
m cos(ωmt)

)

+

− sin

(

4πn

λ
leq(t)

)

sin

(

4πn

λ
m cos(ωmt)

)}

−→

I(t) =
Imax + Imin

2
+

Imax − Imin

2
cos

(

4πn

λ
leq(t)

)

cos

(

4πn

λ
m cos(ωmt)

)

+

−Imax − Imin

2
sin

(

4πn

λ
leq(t)

)

sin

(

4πn

λ
m cos(ωmt)

)

(2.60)

Considering the Bessel series

cos(z cos(θ)) = J0(z) + 2
+∞
∑

k=1

(−1)kJ2k(z) cos(2kθ)

sin(z cos(θ)) = 2
+∞
∑

k=0

(−1)kJ2k+1(z) cos((2k + 1)θ) (2.61)

it is possible to expand the equation 2.60 in series as

I(t) =

(

Imax + Imin

2

)

+

(

Imax − Imin

2

)

cos

[

4πn

λ
leq(t)

]

·
[

J0

(

4πn

λ
lmc

)

+ 2
+∞
∑

k=1

(−1)kJ2k

(

4πn

λ
lmc

)

cos(2kωmt)

]

+

−
(

Imax − Imin

2

)

sin

[

4πn

λ
leq(t)

]

·
[

2
+∞
∑

k=0

(−1)kJ2k+1

(

4πn

λ
lmc

)

cos[(2k + 1)ωmt]

]

(2.62)

The equation 2.62 shows that the output signal is composed by the sum of harmonics

of the modulation frequency with amplitude depending by the mirror displacement

leq(t) and by the modulation amplitude lmc
.

If we choose the modulation amplitude lmc
≪ λ it is possible to consider only

the term J0 and J1 of the Bessel series to obtain

I(t) ≃
(

Imax + Imin

2

)

+

(

Imax − Imin

2

)

cos

(

4πn

λ
leq(t)

)

J0

(

4πn

λ
lmc

)

+
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−
(

Imax − Imin

2

)

sin

(

4πn

λ
leq(t)

)

2J1

(

4πn

λ
lmc

)

cos(ωmt) (2.63)

To obtain a signal proportional to the cosine of the mirror displacement leq(t),

we filter the signal I(t) with a low pass filter with cutoff frequency equal to the

maximum frequency expected of leq(t) and less than the modulation frequency. The

last step is to subtract the mean of I(t) to obtain

V2(t) =

(

Imax − Imin

2

)

J0

(

4πn

λ
lmc

)

cos

(

4πn

λ
leq(t)

)

(2.64)

To obtain a signal proportional to the sine of mirror displacement leq(t), we can

use the synchronous demodulation technique. This procedure can be realized using

a lockin amplifier, which schema is shown in figure 2.9.

Photodiode
signal Band pass

filter

Low pass

filter

Demodulating

signal

Demodulated

signal

Figure 2.9: Block scheme of a lockin amplifier.

The lockin amplifier works according to the following steps:

1. to increase the signal to noise ratio, the output of the photodiode is filtered

with a pass band filter with center frequency equal to the modulation frequency

ωm/2π and with pass band equal to the frequency band of leq(t). In this way

we obtain the signal

Î(t) = −
(

Imax − Imin

2

)

sin

(

4πn

λ
leq(t)

)

2J1

(

4πn

λ
lmc

)

cos(ωmt) (2.65)
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2. it multiplies this signal with a sinusoidal with the same frequency and the

same phase of the modulation signal, to obtain the signal

Î(t) = −
(

Imax − Imin

2

)

sin

(

4πn

λ
leq(t)

)

2J1

(

4πn

λ
lmc

)

(1 − sin2(ωmt))

(2.66)

3. it uses a low pass filter to obtain the signal

V1(t) = −
(

Imax − Imin

2

)

sin

(

4πn

λ
leq(t)

)

2J1

(

4πn

λ
lmc

)

(2.67)

In this way it is possible to obtain two signal in quadrature to use the phase-

unwrapping algorithm.

2.3.3 The quadrature laser interferometer

The quadrature interferometer uses a polarized laser, two photodiodes and an optical

trick. The laser is oriented so the polarization axis is rotated π/4 radians with

respect to the alignment of the beam splitter and reference mirror, as shown in

figure 2.10. The one polarized beam oriented at this angle is vectorially equivalent

Figure 2.10: Exploted view of a quadrature laser interferometer.
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to two beam of equal intensity occupying the same space, designed with V and H,

one polarized vertically and one polarized horizontally. The two beam are ultimately

separated with a polarized beam splitter, and using a photodiode for each beam,

two interferometer are created from these components.

The trick is provided by a polarized device called 1/4 wave retarder, which is

designed to slow light polarized in its axis more than the light polarized perpen-

dicular to its axis. Its axis is placed in parallel with the polarization of beam ”V”,

effectively adding 1/4 wavelength of its path. That photodiodes’ output will always

differ by 1/4 of a fringe, or π/2 from each other, so the beams in the two arms are

in quadrature.

With a single detector the determination of the displacement is very difficult,

since the variation of the photodiode output is severely dependent on the average

position of the mirror. In fact, best photodiodes resolution occurs in the middle of

the fringe, in which the change of the light intensity as a function of the mirror po-

sition is at a maximum. Poorest resolution occurs when the average mirror position

causes intensity extrema (dark and fringe) whether from maximal constructive or

destructive interference between the beams.

For vibration amplitudes smaller than the wavelength, intensity variation around

the minimum (or maximum) of intensity would be very small. In such an unfor-

tunate condition, it would be useful to be able to reposition one of the mirrors to

change the path length of 1/4 wavelength, so that the photodiodes would have max-

imum sensitivity, as in the middle fringe. The quadrature laser effectively solves the

problem by using two interferometers, one of which has a path length 1/4 wavelength

longer than other, so one is always near the point of maximal sensitivity.
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Chapter 3

Implemented Prototype

The experimental apparatus used as prototype for a laser interferometry based seis-

mic sensor consists mainly of a Michelson interferometer in air, an accelerometer for

comparison, a digital acquisition system to get data from these instruments and to

store them in an electronic archive. A triaxial episensor (model FBA ES-T, from

Kinemetrics) is located close to the interferometer to monitor the acceleration in

that point. The episensor is made of three independent accelerometers oriented in

the different directions of the space. In this way the probe can measure the accel-

erations along the three spatial axis: x, y and z. The user selectable full scale of

all the accelerometers was chosen at ±g/4, where g = 9.806m/s2 is the standard

gravitational acceleration while the voltage output level is fixed at 20V . In this

configuration the instrumental sensitivity is ±80 V/g. The band nominally spans

from DC to 200Hz, while the nominal dynamic range is 155dB, according to the

instrument specifications.
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3.1 The optical setup

A scheme of the implemented interferometer test system is shown in figure 3.1. The

light beam coming from the laser is sent to a first beam-splitter. The deviated

beam is sent to a photodiode 1 used to monitor the light source power, while the

transmitted one is split again by the second beam-splitter and, after the reflection

of the two resulting beams on the end mirrors 1 and 2, is finally recombined on the

interferometer output photodiode 2. The arm-lengths of the interferometer are about

20 cm. An optical isolator, located between the laser and the first beam-splitter,

prevents the backscattering of light toward the laser source. A phase modulator

is placed along the fixed arm. All the optical elements of the interferometer are

fixed to an optical bench with 30 cm of height and 60 cm of width. In the following

subsections the characteristics of the optical components are shown.
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Figure 3.1: Optical setup of our prototype (not in scale).
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The Laser

The laser used in the prototype is a Helium-Neon laser, model 25-LGP-173 of Mells-

Griot c© with the specifications shown in table 3.1. It has been chosen because it

guarantees a good frequency stability at a low cost. In figure 3.2 the power spectral

density of the amplitude laser noise is shown. As can be seen, these fluctuations

are relevant particularly in the frequency band f < 1 Hz while the resonances at

high frequency are due to the photodiode noise. If we want a better frequency or

intensity stability it is possible to use a stabilized laser source.

Optical characteristics

Output Wavelength: 543.5 nm

Output Power: 0.3 mW

Mode: TEM00

Mode Spacing: 373MHz

Beam Dimension (1/e2): 0.79 mm

Far-Field Divergence (1/e2): 0.88 mrad

Polarization: Linear

Maximum Mode Sweeping: 5%

Long-Term Drift: ±2%

Noise Range: 30Hz ± 10 MHz

Noise: < 0.5% rms

Table 3.1: Laser characteristics.

The Optical isolator

The optical isolators are used to reduce or eliminate the effects of optical feedback,

reflections of the laser’s own energy back into itself. The effects of optical feedback

are well known: amplitude fluctuation, frequency shift, limitation of modulation
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bandwidth, noise and even damage. Much like a diode in an electrical circuit, the

isolator transmits light in one direction only. An isolator consists of a Faraday

rotator, two polarizers and a body to house the parts. The Faraday rotator consists

of a magneto-optic material contained in a magnetic field.

The optical isolator is based on the Faraday effect: the plane of polarized light

rotates while transmitting through glass (or other material) that is contained in a

magnetic field; the direction of rotation is dependent on the direction of the magnetic

field, and not on the direction of light propagation (non-reciprocal). The amount of

rotation is Q = V LH, where:

• V is the Verdet constant, a property of the optical material; it is important to

note that the Verdet Constant is wavelength-dependent.

• L is the path length through the optical material in centimeters.

• H is the magnetic field strength in Oersted.

Figure 3.2: Power spectral density of the amplitude laser noise.
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Laser light, whether or not polarized, enters the input polarizer and becomes

linearly polarized, say in the vertical plane (0◦). It then enters the Faraday rotator,

designed to rotate the plane of polarization by 45◦, say in the clockwise sense. It then

exits through the output polarizer whose axis is at 45◦ (see top part of figure 3.3).

The light leaves the isolator, and reflections occur. This reflected light constitutes

feedback. This feedback re-enters the isolator, back through the output polarizer

where it is re-polarized at 45◦. It then passes back through the rotator and is further

rotated by another 45◦, still in the clockwise sense, making a total of 90◦ with respect

to the input polarizer (0◦). It is seen that the light is extinguished here (see bottom

part of figure 3.3). Thus, we have succeeded in isolating the laser from its own

reflections.
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Figure 3.3: Optical isolator effect on input laser beam (top) and on the reflected

laser beam (bottom).

In a correctly adjusted isolator, maximum isolation and transmission occur to-

gether when the axis of the input polarizer is parallel to the plane of the polarized

laser, and the output polarizer is at 45◦. If the wavelength changes, then rotation is

no longer 45◦, and both isolation and transmission will decrease. Thus, it is desirable

to readjust the isolator if the wavelength changes.

The optical isolator used in the our prototype is a OFR c©, model IO-3-λ-LP,

having the following characteristics:
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Aperture Laser wavelength Transmission Isolation

3.0 mm 505 ± 700 nm > 93% 35 ± 40 dB

Mirrors and beam splitters

The mirrors are broadband metallic mirrors, model 05B10ER.1 of the Newport c©,

with enhanced aluminum coating and Pyrex c© substratum. Pyrex c© is chosen be-

cause it has very low thermal expansion. The multilayer dielectric stack deposited

over the aluminum film boosts reflectance and improves the durability of the coating.

The average reflectivity is greater then 93% in the visible range.

The beam splitters are laser line non-polarizing cube beam splitters, model

05BC16NP of the Newport c©. They provide true 50/50 beamsplitting without al-

tering the beam polarization. These beamsplitters consist of a pair of precision

right-angle prisms carefully cemented together to minimize wavefront distortion.

The hypotenuse of one of the prisms is coated with a multilayer all-dielectric non

polarizing beamsplitter coating optimized for a specific laser line. The four faces are

antireflected coated with a multilayer dielectric coating to minimize surface reflection

losses at the laser lines. The specifics are: a waveform distortion < λ/4, a transmis-

sion and a reflection coefficient of 50% ± 3% and a deviation of the transmission or

of the reflection beam < 5 arcmin.

The phase modulator

Electro-optic modulators allow you to control the amplitude, the phase and the

polarization state of an optical beam electrically. They are made out of discrete

pieces of nonlinear optical crystal and they are based on electro-optic effect.

The electro-optic effect in a crystal is the change in the refractive index that is

proportional to the magnitude of an external applied electric field. In particular,
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the induced refractive index change caused by an external electric field is

∆n =
1

2
n2

erijE (3.1)

where ∆n is the change in the index of refraction, ne is the unperturbed index

of refraction, r33 is the appropriate element in the third-rank electro-optic tensor

describing the optical proprieties of the crystal, and E is the applied electric field.

The most common crystal, used in the amplitude and phase modulators, are of

lithium tantalate, or Magnesium oxide-doped lithium niobate. These crystals are

grown in large, low scatter-loss boules, and have a wide transparency window. They

are also nonhygroscopyc so they can be left in use for indefinite periods without

being in a sealed enclosure.

The phase modulator is the simplest electro-optic modulator. An electric field

is applied along one of the crystal’s principal axes. Light polarized along any other

principal axis experiences an index of refraction change, hence an optical path length

change, that is proportional to the applied electric field.

Thus the phase of the optical field exiting from the crystal therefore depends

on the applied electric field. The most common phase modulator is the transverse

modulator, as shown in figure 3.4, which consists of an electro-optic crystal between

parallel electrodes.

These modulators develop large electric field between the electrodes while si-

multaneously providing a long interaction length l in which to accumulate phase

shift. The optical phase shift ∆φ obtained from applying a voltage V between the

electrodes is given by

∆φ =
2π

λ

(

n3
er33

2

)

l

d
V (3.2)

where λ is the laser wavelength and d is the electrode separation.

A commonly used figure of merit for electro-optics modulators is the half-wave

voltage Vπ. It is defined as the voltage required to produce an electro-optic phase
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Figure 3.4: Scheme of phase modulator.

shift of π. Substituting in the equation 3.2 yields

Vπ =
λd

n3
er33l

(3.3)

For a broadband phase modulation and for a laser emitting at λ = 543.5 nm (green),

Vπ is typically 105V , corresponding to a modulation depth of 0.03 rad/V . Note that

at other wavelength these values change proportionally.

The photodiodes

The photodiodes used in the prototype setup are produced by Hamamatsu c© model

S2387-110R and they have the following characteristics:

Active area diameter 10 mm

Wavelength Range. 320 ÷ 1100nm

Photo sensitivity 0.58 A/W at peak

Dark current Max. 0.2 nA

Terminal capacitance 1.2 · 104 pF

In figure 3.5 the power spectral density of signal of the obscured photodiode is

shown. As it can be seen, in absence of signal, the photodiode noise, considering

also the electronic and the acquisition system noise, is quite constant in frequency

and it is about 25µV/
√

Hz.
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3.2 Electronic setup and acquisition system

The signal coming from the photodiodes, from the lockin amplifier and from the

episensor are collected by an acquisition system. This is composed by an analog

pre-processing board followed by the analog to digital converter (ADC) board. The

analog pre-processing consists in amplifying the signals to fit their amplitude to

the ADC converters dynamics. In the appendix 4.3, the electronic schemes of the

amplifiers for photodiodes and for the episensor signals respectively are shown. All

the chain is shown in figure 3.6.

Then the signals are filtered with suitable anti-aliasing filters. In our experiment

we use a 16 bit ADCs, so we have a dynamic range of 96 dB. The implemented

antialiasing filter guarantees that, for sampling frequency above the frequency of

about 470Hz, we have a aliasing error lower of ADC noise. The filter is an eight

order Chebyschev low pass filter with a band pass ripple of 0.5dB and a cut-off

frequency of 200Hz. Each filter used in the acquisition system was characterized
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Figure 3.5: Photodiode noise.
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Figure 3.6: Data Acquisition system.

to ensure that its behavior coincides with the one used in the calculated response.

In appendix the electronic scheme of antialiasing filter is shown and its magnitude

response is shown in figure 3.7.

The digital converter consists of a VME board equipped with a 16 bit ADC

with 32 channels. The sampling frequency Fs is fixed at 5000Hz for the tests, in

order to guarantee very good performances of the antialiasing filters. Consider the

equation 2.53, in this configuration the instrument is able to measure a maximum

acceleration of

ap <
λvmFs

4nL
≈ 3.15

m

s2
(3.4)

for vm ≈ 800m/s, as calculated in the next paragraph. The ADCs noise measured
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Figure 3.7: Frequency response of the antialiasing filter.

by two channels is shown in figure 3.8. As can be seen, it is constant in band it is

∼ 1.5 µV/
√

Hz.

Actually the phase shift induced by the filtering is not significant for the following

analysis, because all signals are affected by the same shift. The sampling frequency

is generated by an internal clock of the ADC board and the general timing system

is simply the CPU clock. This arrangement is very useful during the test phase, but

for setting up a complete measurement system a GPS timing board is necessary to

provide a precise timing to perform coincidence with other seismic stations.

The ADC board is managed by a PowerPC CPU based computer board on VME

bus, running LynxOS operating system. The CPU collects the data acquired by the

ADC and pack them in frames, each one 1 second long. These frames are then

sent to a workstation for the analysis through a Fast Ethernet network. The frames

are then packed together in longer frames and analyzed. The analysis process does

not require high computing power and therefore is performed in real-time. The

processed data are packed again and sent to another workstation, equipped with a

very large hard disk space, for the final storage.
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3.3 Experimental results

In the following we present the experimental results of implemented prototype. Con-

sider the figure 3.1, using the signal coming from the photodiode 1 (Ph1(t)), it is

possible to reduce the fluctuations of interference signal (Ph2(t)). In fact, if there is

a variation ∆I(t) in the laser power I(t), the photodiode 1 measures the quantity

Ph1(t) = k(I(t) + ∆I(t)) (3.5)

where k is the fraction of the laser beam separated by the beam splitter (in theory

k is 0.5). The photodiode 2 measures the quantity

Ph2(t) =
(1 − k)(I(t) + ∆I(t))

2
[1 + C cos(φ(t))] (3.6)

where C is the visibility of the fringes. If we consider the ratio

Ph2(t)

Ph1(t)
=

(1 − k)

2k
[1 + C cos(φ(t))] (3.7)
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it is possible to eliminate the laser power fluctuations ∆I(t).

At this point it is necessary to understand the signal to noise ratio (SNR) of the

instrument. Defining the signal to noise ration as

SNR =

∫

|S(f)|2df
∫

|N(f)|2df (3.8)

in figure 3.9 the power spectral density of the acquisition system noise, measured

with laser off, and of the interferometer signal are shown. In our experimental

arrangement the SNR results about 20 dB in the band [0.1 ÷ 100] Hz.
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Figure 3.9: Instrument SNR.

As illustrated in the section 2.3.1, the first step of the procedure is the quadrature

correction to normalize the interferometer signal and the lockin signal in the range

[−1 : 1]. In figure 3.10 the parametric plot of the interferometer and of the lockin

signal is shown. As it can be seen, after the quadrature correction, the Lissajous

figure is corrected and the data are arranged on a circle.

After the phase correction, the phase unwrapping algorithm is applied to recover

the interferometer phase without ambiguity using the equation 2.57. Afterward, it
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is necessary to use the equation 2.36 to calculate the ground acceleration. The nu-

merical derivative of the phase is calculated using the central differences algorithms

(see appendix 4.3) approximating the derivative as

dφ(t)

dt
≈ φ(n + 1) − φ(n − 1)

2∆t
(3.9)

In figure 3.11 the power spectral density of acceleration measured by the episensor

and by the interferometer. It easy to verify the good agreement between the two

instruments in the the band 1±50 Hz. The empirical value t0 is evaluated comparing

the power spectral density of the acceleration measured by the episensor and by the

interferometer, shown. Considering the interferometer arm-length, the velocity on

the ground of the acoustic waves in our laboratory is about 800m/s.

Since the prototype is not in vacuum, it is important to evaluate the influence of

the air pressure fluctuation. For this reason two microphones are used to measure

the influence of the fluctuations of air pressure in the interferometer output. In

68



0 5 10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

A
cc

el
er

at
io

n 
(m

 s
−

2  H
z−

1/
2 )

Interferometer

Episensor

Figure 3.11: Power Spectral Density of acceleration measured by the episensor (dots)

and by the interferometer (line).

figure 3.12 the power spectral density of acceleration measured by the episensor

(dots) and by the interferometer (line), compared with the microphone’s signal and,

as can be seen, there are several common frequency resonances.

To understand the influence of the air pressure fluctuations in the interferometer

and the episensor measure, also the coherence function is calculated. The coherence

between two signals, f(t) and g(t), is defined as

C(f) =

∫

f(t)g(t)e−i2πftdt
(∫

f(t)e−i2πftdt
) (∫

g(t)e−i2πftdt
) (3.10)

The function C(f) varies in the range [0, 1] and it measures the correlation degree at

the frequency f . The coherence function between the interferometer the microphones

output and between the episensor the microphones outputs are shown in figure 3.13.

As it can be seen, the effects of the fans of the air conditioner are relevant in the band
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Figure 3.12: Power Spectral Density of acceleration measured by the episensor (dots)

and by the interferometer (line), compared with the microphone’s signal.

20 ÷ 40 Hz, while in the band 40 ÷ 200 Hz also the resonances of the air pressure,

related to the room dimension are present. In fact, considering the linear dimension

of laboratory Li where the instrument is installed, it is possible to calculate these

resonances using the equation fn = n v
2Li

, where v is the sound wave velocity. For

example, the first two harmonics of the air pressure resonance in the laboratory at

the temperature of 27◦ C are shown in the table 3.2. The equation we use to evaluate

the sound velocity is

v =

√

7

5

(

RT

0.029

)

(3.11)

where R is the gas constant and T is the temperature in Kelvin.

To reduce the influence of the acoustic noise, the interferometer has been pro-

tected with a cover. Of course, monitoring the pressure and the temperature of

the air, the environmental effects can be controlled and reduced. In figure 3.14 the

power spectral density of the acceleration measured by the episensor and by the

interferometer in the new configuration is shown. As can be seen, reducing the air
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Figure 3.13: Coherence function between the microphones and the interferometer

(top) and between the microphone and the episensor (bottom).

x y z

Dimension (m) 4.5 8.7 2.5

First resonances (Hz) 77 40 139

Second resonances (Hz) 154 80 278

Table 3.2: Resonances of the air pressure in the laboratory.

pressure fluctuations the accordance is better in the frequency band until 100Hz.

The signal at frequency ≈ 17 Hz must be yet understood. The decreasing of the

sensitivity in the low frequency band is probably due to the laser frequency noise

and to the fluctuations of the index of the refraction. We have to consider also that

in the case of low frequency wave, the wave velocity can be so high that the sampling

frequency is not enough high to measure the fringe frequency (see figure 2.7), and

this reduces the sensitivity at low frequency,

In figure 3.15 the time evolution of the acceleration measured by the episensor

and by the interferometer is shown. As it can be seen, the sensitivity of the interfer-
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interferometer.

ometer is enough to reveal a particular structure in the data: in fact the acceleration

measured by the interferometer seems composed by separable different signals. A

more accurate analysis it is necessary to understand the sources of these signals.

Note that these signals are not clearly present in the episensor output, probably due

to the high noise level at high frequency.
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interferometer.
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Chapter 4

Suspended Interferometric

prototype

In the previous chapter we have discussed as a laser strainmeter can be used as a

velocimenter for seismic waves measurement. We have made several approximations

and we have revealed the following problems:

• The sensitivity in the frequency band f < 0.5 Hz is too low and so it has been

improved;

• the instrument noise is still too much high; the sensitivity can be improved

– developing an automatic alignment procedure to reduce the noise induced

by the non perfect and non stabilized alignment of the recombined laser

beams on the photodiode;

– sheltering the instrument by air pressure and temperature fluctuations;

– using a laser source stabilized in frequency;

• in the case of earthquake, the displacement can be enough large to misalign-

ment the laser beams and so it is necessary to improve the linearity of the
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instrument.

For this reason we have projected a highly sensitive wide-band seismometer which

can detect the horizontal component of the ground acceleration, and a simple test

system has been realized.

4.1 Principle

We made use of a pendulum as a reference of vibration detection. Suppose that a

pendulum, whose resonant frequency is f0 = ω0/2π and whose quality factor is Q,

is suspended with an external force of fe, applied to mass m. We can describe this

system with the following equation of motion:

ẍ +
ω0

Q
(ẋ − ẏ) + ω2

0(x − y) =
fe

m
(4.1)

where x and y denote the displacement of the pendulum mass and that of the

suspension point, respectively.

By introducing a relative displacement d = x − y and the Fourier transform,

equation 4.1 becomes

d(ω) =

(

−ω2y(ω) − fe(ω)

m

)

H(ω) (4.2)

where the transfer function of the pendulum H(ω) is

H(ω) =
1

−ω2 + i(ω0/Q)ω + ω2
0

(4.3)

If we control the force fe so as to make d constant using a feedback filter with a

transfer function F (ω), from the feedback force we can obtain the vibration spectrum

of the ground as

|y(ω)| =
|fe(ω)|

m

1

ω2

∣

∣

∣

∣

1 + H(ω)F (ω)

H(ω)F (ω)

∣

∣

∣

∣

(4.4)

75



If we prepare a feedback filter that satisfies |H(ω)F (ω)| ≫ 1 over a wide frequency

range and read-in a feedback signal, we can create a wideband seismometer: in fact

fe(ω)/m = ω2y(ω) directly express the acceleration of the ground. If the condition

H(ω)F (ω) ≫ 1 is not satisfied, we use the closed loop transfer function to measure

the ground acceleration as

|ay(ω)| = ω2y(ω)

(

1 + H(ω)F (ω)

H(ω)F (ω)

)

fe(ω)

m
(4.5)

Schematic figure 4.1 shows a pendulum and the laser, beam splitter, as well as

the fixed and the free mirror that form the Michelson interferometer. Assuming

that the fixed mirror moves together with the ground, we can detect the relative

displacement d between the ground and the pendulum mass, from the fringe signal

detected by the photodiode. An interferometer allows a highly sensitive detection of

the displacement thus leading to a very sensitive seismometers. This fringe signal is

analyzed to recover the pendulum displacement and this signal is feed back through

the feedback filter as forces to the pendulum on which the free mirror is attached.

The feedback force fe is applied as a magnetic interaction between the magnets on

the pendulum and the magnetic field produced by the coils. Because the current of

the coil is proportional to fe, we can obtain the horizontal component, in the “free

mirror”-“beam splitter” direction, of the acceleration of the ground from the current

using equation 4.4.

4.2 Developed prototype

The seismometer which we actually have made differs slightly from that shown in

figure 4.1 and it is implemented mainly to test the possibility to realize of a different

kind, and we hope, more accurate instrument. All the components are mounted on

a optical table within an episensor to verify the results. The experimental setup

is composed by a Michelson interferometer, like that shown in figure 3.1, where
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Figure 4.1: Block diagram of the feedback system.

the free mirror is fixed on a double pendulum, shown in figure 4.2, as suspended

system. The interferometer armlengths are about 40 cm long. The double pendulum

is chosen because, it is equivalent to a low pass mechanical filter with good isolation

above the frequency corner with an amplitude attenuation propto(f/f0)
4, where f0

is the resonant frequency. This configuration corresponds to have an attenuation

of 80 dB/dec above f0. In this way the suspended mass can be consider “free” and

it can be used as a inertial mass. More complex techniques to reduce the resonant

frequency and to increase the attenuation factor above the resonant frequency are

section 4.3.

The double pendulum is composed by two masses:

• the upper mass is an aluminum parallelepiped of dimension 14 × 14 × 12 cm

and mass 6.5, Kg, suspended in the barycenter to the tower with a steel wire

12 cm long and 0.2 mm width. On the side of this mass there are four magnets

used, together with coils mounted on the tower, to force the mass position.

• the bottom mass is a cylindrical mass of 3.2 Kg suspended to upper mass using

two aluminum wire. On the front side of this mass a mirror is fixed.

All the wires are fixed using special supports to reduce the energy loss due to the
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Figure 4.2: Pictures of the double pendulum.

friction.

4.2.1 The reading system

To control the upper mass of the double pendulum, we implement a position reading

system based on optical lever and bidimensional photodiodes, called position sensing

detector (psd). The optical scheme of a psd is shown in figure 4.3.

We use the psd model S2044 produced by Hamamatzu c©. The sensitive surface

is a square with concave sides to reduce the non linear effects of the borders and with

four electrodes. The spatial resolution of this sensor is about 0.6 µm. The current

signal of each electrodes is converted in a voltage signal by an amplifier. To obtain

a signal proportional to the coordinates of the laser beam in a reference system

centered in the photodiode, we combine the voltage signal a : i of each electrodes

as:

x = a2+a3−a1−a4

a1+a2+a3+a4
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Figure 4.3: Optical Scheme of the reading system.

y = a1+a2−a3−a4

a1+a2+a3+a4

(4.6)

In this way it is possible to reconstruct the position of the laser beam on the pho-

todiode surface. In figure 4.4 the scheme of the psd is shown.

a1

x

y

a4 a2

  a3

Figure 4.4: Scheme of the position sensitive detector.

The reading system is based on the principle of the optical lever: a laser beam is

reflected by the mirror on the mass and it impinges, in ideal condition of fixed mass,
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the center of the psd. If there is a movement of the mass, and so of the mirror, there

is a movement of the laser beam that we can measure with the psd. It is possible

to demonstrate that if we use a single optical lever, we are not able to discriminate

between translations and rotations of the mass and. For this reason, we decide to

use a double optical lever, composed by two lever with the same geometrical char-

acteristics. This arrangement permits us to measure and translation and rotation

of the mass. In fact

• in ideal condition, if the mass moves of a quantity x, the laser beam moves of

a quantity

∆t1 = 2x tan(i) (4.7)

on the first psd and

∆t2 = −∆t1 = −2x tan(i) (4.8)

on the second psd, where i is the impact angle of the laser beam on the mirror,

as can be seen in figure 4.5.

Figure 4.5: Laser beam response to a translation of the mirror.

• in ideal condition, if the mass rotates of an angle δ, the laser beams move in

the same sense on each psd of a quantity

∆r1
= ∆r2

=
1

cos(2δ + i)

[

b sin(2δ)

cos(i)
− 2L sin δ sin(δ + i)

]

(4.9)

where 2L is the distance between the two psd.
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As can be seen the psd signals contain information both about the translation

and about the rotation of the mass. Consider the linear combination

∆1 ≡ ∆t1 + ∆r1
= ∆t + ∆r

∆2 ≡ ∆t2 + ∆r2
= −∆t + ∆r (4.10)

if we defined the function

∆+ ≡ ∆t1 + ∆r1

2
= ∆r

∆− ≡ ∆t2 + ∆r2

2
= −∆t (4.11)

we obtain a signal ∆+ proportional only to the rotation and a signal ∆− proportional

only to the translation. In this way we have uncoupled the two movements and we

are able to use these signals as error signals for the control filters.

If there is an asymmetric of the reading system, we have to replace the equa-

tions 4.11 with

∆+ ≡ a1∆t1 + b1∆r1

∆− ≡ a2∆t2 + b2∆r2
(4.12)

where the coefficients have to be calculated using a statistical fit on experimental

data. Of course, to read all six degrees of freedom, we have to place a double optical

lever on each side of the mass.

Figure 4.6: Laser beam response to a rotation of the mirror.
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4.2.2 The digital control system

The feedback system used in the experimental setup is composed by

• the reading system, based on a double optical lever implemented using a single

laser source, a beam splitter and three mirror and two photodiodes;

• the conditioner amplifiers, used to convert the current signals of the photodi-

odes in voltage signals, amplified to match the ADC dynamics;

• the 16 bit ADC, which converts the voltage signals in digital signals;

• the CPU, which reads the digital data from the ADC, converts these signals

in mass position using the equation 4.12, calculates the control signal and it

send this signal to the DAC;

• the 16 bit DAC, which converts the digital control signals into analog signals

and send them to the coils’ driver.

• the actuation system, which is composed by four coil fixed on the mechan-

ical support, aligned to four magnets fixed on the oscillating mass. With

this arrangement we are able to apply and longitudinal force and torsional

momentum.

The complete scheme of the control system is shown in figure 4.7, where are visible

only two magnets and two coils instead four for simplicity.

Consider the reference system on the upper mass shown in figure 4.8, it is possible

to obtain the error signal using the equation

θy ∝ ∆x1 + ∆x2

z ∝ ∆x1 − ∆x2

θx ∝ ∆y1 + ∆y2 (4.13)
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Figure 4.7: Control system scheme.

where Deltax1, ∆x2, ∆y1 and ∆y2 are the position of the laser beams on the two

psd.

Figure 4.8: Reference system on the upper mass.

The theoretical model of the suspension

Unfortunately we are not able to measure the open loop transfer function of the

suspended masses because the motion is too large that the laser beams go out the
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sensitive surface of the position sensing photodiodes. To overcome this problem we

choose to analyze the suspended system by the theoretical point of view. For this

task we calculate the Lagrange equations for the six degree of freedom of masses.

In the approximation of small displacement we linearize the Lagrange equation and

we calculate the transfer functions that link the motion of the suspended point with

the variables x, y, z, θx, θy and θz fro each mass and so we estimate the frequencies

of the normal modes. Just as an example, considering the upper mass, for the tilt

mode θy and θx we calculate the following transfer functions:

Hθx
(s) = 1150

(s2 + 0.002s + 405.8)

(s2 + 0.002s + 6.645)(s2 + 0.002s + 522.4)

Hθy
(s) = 4.685

(s2 + 0.002s + 94.94)

(s2 + 0.002s + 0.0363)(s2 + 0.002s + 118.2)
(4.14)

where the dc gain is determined using the measured transfer function in closed loop.

In figure 4.9 the transfer function of the rotational degrees of freedom of the upper

mass, θx, θy, is shown. As it can be seen there are two resonant frequency (0.41 Hz

and 3.64 Hz for θx and 0.03 Hz and 1.73 Hz for θy) and a zero factor due to the

bottom mass for each degree of freedom.

In figure 4.10 the transfer function of lower mass, for the z degrees of freedom is

shown. As it can be seen there are two resonant frequencies (0.78 Hz and 1.56 Hz).

Because the z-axis is one of the two optical axis of Michelson interferometer, this

degree of freedom has to be controlled used the error signal extracted from the

interferometer signal. This is the sensitive part of the instrument.

The control filters

Calculated the theoretical transfer functions, we use them to implement the control

filters for the tilt mode of the upper mass. In this way the longitudinal mode of the

lower mass, that is measured by the interferometer, is, at the moment, the only not

controlled mode. The control filters for θx and θy are shown in figure 4.11 and they
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Figure 4.9: Transfer functions for the rotational degrees of freedom of the upper

mass.

are described by the following equations:

Gθx
= K1

1

s

(

s2 +
2π0.13

0.5
s + (2π0.13)2

)(

s2 + 2π0.67
100

s + (2π0.67)2

s2 + 2π0.67
2.5

s + (2π0.67)2

)

×

×
(

s2 + 2π1.4
10

s + (2π1.4)2

s2 + 2π1.4
2

s + (2π1.4)2

)(

1

s2 + 2π17.3
0.5

s + (2π17.3)2

)

(4.15)

Gθy
= K2

1

s

(

s2 +
2π0.364

0.5
s + (2π0.364)2

)(

s2 + 2π1.165
100

s + (2π1.165)2

s2 + 2π1.165
2.5

s + (2π1.165)2

)

×

×
(

1

s2 + 2π36.4
0.5

s + (2π36.4)2

)

(4.16)

where K1 and K2 are the gains of each control filter.

The closed loop transfer functions (for the tilt mode of the upper mass) are

shown in figure 4.12.
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Figure 4.11: Control filter for θx and θy.
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Figure 4.12: Closed loop transfer function for the θx and for the θy modes.

4.2.3 Experimental results

In this chapter we show only very preliminary results about the force feedback

prototype. Consider that the angular degrees of freedom of the upper mass of the

suspended system are controlled, there is a residual motion of ≈ 100µrad for θx and

≈ 50µrad for θy, as can be seen in figure 4.13.

In this configuration, the only not controlled motion is the longitudinal mode

along the z-axis. The movement of the bottom mass along this axis is measured

with the Michelson interferometer and, using the phase-unwrapping algorithm, we

can reconstruct the displacement. Now we can follow two principal strategies:

• we use the pendulum as an inertial seismometer with natural frequency of

about 3Hz. In this way, for frequencies above of the natural frequency, the
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Figure 4.13: Power Spectral Density of the residual angular motion of the upper

mass of the suspension.

bottom mass can be considered “free” and the pendulum is a displacement

sensor with the accuracy given by the interferometric readout.

• we use the displacement signal reconstructed analyzing the interferometer sig-

nal as error signal to control also the movement along the z-axis. In this way

we have realized a force feedback accelerometer with interferometric readout.

Unfortunately, at the moment, we have not possibility to act on the back of the

bottom mass, so we are able only to evaluate the response of the system to ground

motion using the instrument as an passive seismometer. In this way we also test

the interferometric readout system. In figure 4.14 the power spectral density of the

signal reconstructed analyzing the interferometer fringes is shown.

As it can be seen the low frequency part (f . 0.5 Hz) is dominated by the

effect of the derivative algorithm1. In the band 0.5 . f . 3 Hz the characteristic

1To obtain the acceleration spectrum from measurement of displacement, we have to calculate

the second derivative of the data and this corresponds to multiply the displacement spectrum by

a factor (2πf)2.
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Figure 4.14: Power Spectral Density of the longitudinal mode as measured with the

interferometer.

frequency shape of the pendulum transfer function is present. In fact it can be seen

the longitudinal motion of the bottom mass, and also several frequency peaks due to

the residual angular tilt of the masses coupled between them. In the frequency band

f & 3 Hz, the control transfer function has not relevant effects on pendulum mode

and the low pass mechanical filter realized by the suspension decreases the motion

of the bottom mass so that it can be consider “free”. In this band the interferometer

signal is related directly to the ground motion. For frequency greater of 100Hz, the

effect of the antialiasing filters are dominants.

It is interesting also to evaluate the transfer function which links the accelera-

tion of the ground, measured with an episensor, and the acceleration measured by

the interferometer, shown in figure 4.15. As it can be seen, at low frequency the

interferometer mainly measure the motion of the pendulum. In the band 2÷ 15 Hz

the transfer function is approximately 1 and so the interferometric sensor measure
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correctly the ground motion. At frequency greater than 20Hz, the effect of the

air conditioner and the effect of misalignment of the arms of the interferometer are

present. As it can be seen there is also an increase of the control noise due to the

uncorrected coupled between different degrees of freedom.
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Figure 4.15: Transfer function of the longitudinal mode of the suspended mass.

Of course these are only preliminary results and several improvement must be

done, in particular in these direction:

• it is necessary to implement a more robust control filters to reduce some more

the angular motion; in fact these movement cause a misleading signal in the

interferometer output;

• the effects of the air pressure fluctuations have to be monitor to evaluate their

effects to the index of refraction variation and so to the interferometer signal;

• an accurate system of actuators must be design to control also the motion of

the bottom mass; this way we can implement a force feedback seismic sensor

based on interferometric readout.

• a more compact design have to be developed for testing the sensor in a site.
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4.3 Increasing of the measurement band

To increase the frequency band of the interferometric seismometer it is necessary

to reduce the frequency corner of the oscillating mechanical part so that it can be

consider “free” from ground accelerations with a better approximation.

A particular type of isolator under investigation is an N stage isolation stack con-

sisting of alternating masses and spring. Such a low pass mechanical filter has good

isolation above a low-frequency corner with an amplitude attenuation ≈ (f/f0)
2N ,

where f0 is the resonant frequency. Below the corner frequency, N normal modes

exist in the response of the stack driven by external disturbances. The amplitudes

of these normal modes depend linearly on their Q factor and therefore the resonant

mode amplitudes may rise many orders of magnitude higher than the background

seismic noise. These peaks need to be attenuated as much as possible.

Various techniques such as magnetic eddy current damping or active damping

may be used but a simpler approach would be to use an ultralow frequency (ULF)

mechanical low pass filter in a front end, pre-isolation stage. Such a ULF stage could

theoretically attenuate the normal mode amplitudes up to six orders of magnitude

given a ULF stage with a resonant frequency of 10mHz. Thus a system of isolation

stack and ULF stage (f0 ≈ 10 mHz) forms a super attenuator and is theoretically

capable of reducing seismic noise by up to a factor of 109 on the bottom mass of the

suspension.

One approach to creating a ULF filter is by using an inverted pendulum. In

this paragraph we investigate the performance and mechanical properties of an in-

verted pendulum in the form of a horizontal platform capable of onedimensional

low-frequency motion. The effect of an inverted pendulum ULF stage on the nor-

mal modes of an isolation stack has been modeled and can be seen in figure 4.16.

This shows the response of a five-stage isolation stack driven by seismic noise. Curve

A shows the response of a five-stage isolation stack alone (Q = 103); curve B shows
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the same stack with a front end ULF stage with a resonant frequency of 10 mHz.

The benefits of a ULF stage can be clearly seen with a normal mode attenuation of

up to six orders of magnitude.

Figure 4.16: Theoretical response of a five-stage isolation stack (Q = 103) supporting

a 1 m pendulum which in turn is supporting the test mass.

To understand the dynamics of an inverted pendulum, a simple ideal mechanical

model can be constructed. An inverted pendulum consists of a platform with given

mass m mounted on top of support rods of length l which act as cantilever springs

and can be displaced by x meters. The restoring spring force (spring constant k),

F = kx acts against the gravitational force (acceleration g) Fg = −mg sin(θ) ≈
−(mgx)/l, assuming the small angle approximation sin(θ) = θ. Therefore

F = Fg + Fs =
(

k − mg

l

)

x = k̂x (4.17)

and the pendulum undergoes single harmonic motion. Considering the resonant

frequency of a pendulum to be ω0 = 2πf0 =

√

k̂/m, the resonant frequency for an

inverted pendulum is given by

ω0 =

√

k

m
− g

l
(4.18)
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given the condition
k

m
− g

l
≥ 0 (4.19)

As can be seen the gravitational component acts as a negative spring which

reduces the resonant frequency of the pendulum. However, when the pendulum is

damped such that, for a given decay constant η, k/m ∼ η2/4m2, then the system

has an additional damping term. Therefore the natural frequency can be expressed

as

ω0 =

√

k

m
−
(

g

l
+

η2

4m2

)

(4.20)

The point at which the resonant frequency is zero is when the gravitational force

becomes greater that the restoring force of the spring and the pendulum collapses.

This defines the critical mass which is given by

mc =
kl

g
(4.21)

The Q factor of the pendulum can be found by substituting equation 4.18 into the

expression for the Q of a generic mechanical system. Thus the Q factor for an

inverted pendulum system is given by

Q =

√

klm − gm2

lη2
(4.22)

At low frequency the terms in expression 4.18 almost cancel and the pendulum

become unstable if the frequency is dependent on the mechanical parameters of

the system. With such an instability near the critical mass, it will be necessary to

introduce active feedback to control the dynamics of the pendulum which provides

an additional negative spring force γd to the system [22]. In figure 4.17 the ultra

low frequency isolation system is shown. This suspension will be used to develop

a suspended Michelson interferometer with Fabry-Perot mode cleaner for seismic

noise studies in the VIRGO laboratory, in Naples.
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Figure 4.17: Ultra low frequency isolation system developed in the VIRGO labora-

tory, in Naples.
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Conclusions

In this work we have introduce the use of laser beams interferometry for the project

of a two new kind of seismic sensors. The main idea was to use the high sensitivity

of interferometric technique to measure ground motion.

The first kind of sensor, that we have developed, is shown in chapter 2. This

kind of sensor is based on a Michelson interferometer, with a one mirror fixed on the

ground and the other one fixed on an bench with the remain optical components.

We have demonstrated that the interferometer output is proportional to the velocity

of seismic waves. To do this we have:

• calculated the theoretical transfer function in the approximation of seismic

wavelength much smaller that interferometer armlengths, calculating the error

of this approximation;

• calculated the effects of misalignment on the output of the interferometer in

the approximation of plane wavefront;

• evaluated the effects of index of refraction fluctuations;

• calculated the directional sensitivity diagram;

• calculated the conditions for optical matching between the laser beam spot

size and the photodiode size;

• optimized the choice of the sampling frequency;
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• used an phase-unwrapping algorithms to reconstruct correctly the phase of the

laser beam impinging on the output photodiode;

In the chapter 3 the experimental results on a prototype developed to confirm

the theoretical results obtained in the chapter 2 is shown. Analyzing the figure 3.14

we can conclude that a preliminary experimental test on this technique confirms

the theoretical results, allowing for an interferometric measurements of the ground

acceleration that is in good agreement with the measure provided by a standard

accelerometer for seismic applications, at least in the frequency band 0.5 ÷ 100Hz.

The sensitivity of such device should be limited only by the environmental parame-

ters like temperature and pressure, whereas the laser intensity can be continuously

monitored in order to take into account its variations. Of course the set-up used was

not optimized, and future work is needed in order to obtain further improvements

in the signal extraction quality as well as in the noise level of the instrumentation.

However the first experimental results are very promising.

In the chapter 4 a suspended prototype is shown. A novel approach, based on

optical levers, for reading of the oscillating mass is introduced. With this arrange-

ment we are able to calculating the error signals needed to control the suspended

mass. Also in this prototype the reading is made using a Michelson interferometer

to archive a high sensitivity. Some preliminary results on the control of the angular

motion of the suspension is shown. We can conclude that if we use this prototype as

an inertial seismometer, at the frequency above the resonant frequency of the sus-

pension, the measured of the ground motion is in good agreement with the measure

provided by a standard accelerometer for seismic application. In particular, in the

band 2 ÷ 20 Hz the transfer function between the measure of the ground motion

with an episensor and with the interferometer, is about 1. In the frequency band

f > 20 Hz the effects of the air pressure fluctuation due to the air conditioners are

present and this decreases the sensitivity of the instrument. We think that, shielding
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the instrument from this noise, the sensitivity can increase.

Unfortunately, at the moment, we are not able to act behind the mass and so a

force feedback prototype has not been tested. However an error signal measured with

an interferometer device is available and we can use it to control the bottom mass

of the suspension. In this way, locking the interferometer, for example, on the dark

fringe, we can archive a measure of the ground displacement and, through the control

signal, of the ground acceleration with a typical sensitivity of the interferometers

(fraction of laser wavelength).

Future developments of this work involve:

• the project of a portable version of the sensor, shown in the chapter 2, to test

it in site measurements;

• the implementations of an actuator system to control the bottom mass using

the interferometer signal to test a force feedback prototype;

• the use of a ultra low frequency (ULF) suspension, shown in the paragraph

4.3, to reduce the resonant frequency of the pendolar system. In this way we

can be able to measure ground acceleration in low frequency band (f < 1 Hz).
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Electronic Schemes
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Figure 18: Amplifier of the photodiodes signal.
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Figure 19: Amplifier of the episensor signals
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Figure 20: Antialiasing filters.
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Central differences

Consider a function f : [a, b] → ℜ, continuous and with continuous derivative in

[a, b], and we want to approximate the first derivative in x̄. Let h > 0 be a small

real numerical value, the incremental

δ+f(x̄) =
f(x̄ + h) − f(x̄)

h
(23)

can be considered an approximation of f ′(x̄). The error in this approximation can

be calculated considering the expansion in Taylor series of f(x) in x̄. In fact

f(x̄ + h) = f(x̄) + hf ′(x̄) +
h2

2
f ′′(ξ) + o(h3) (24)

where ξ is a point in (x̄, x̄ + h). In this way the equation 23 becomes

f(x̄ + h) − f(x̄)

h
= δ+f(x̄) = f ′(x̄) +

h

2
f ′′(ξ) + o(h2) (25)

and so approximating f ′(x̄) with δ+f(x̄) we make an error of o(h). For this reason

the approximation 25 is called finite difference formula. In the same way it is possible

consider the Taylor series of f(x̄) using back difference

f(x̄ − h) = f(x̄) − hf ′(x̄) +
h2

2
f ′′(η) + o(h3) (26)

where η is a point in (x̄ − h, x̄).

Subtracting the equation 24 and 26 we obtain the approximation of the first

derivative f ′(x̄) called central difference:

δf(x̄) =
f(x̄ + h) − f(x̄ − h)

2h
(27)
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Using this approximation, we make an error of o(h2) instead of o(h), as in the case

of the forward or backward difference, which can be evaluate considering that

f ′(x̄) − δ(x̄) =
h2

12
[f ′′′(ξ) − f ′′′(η)]. (28)
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