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ABSTRACT  

History of arsenic (As) in science has been overshadowed by its notoriety as a 

poison in homicides. Arsenic is considered as being synonymous with 

toxicity. Alarming As concentrations in natural waters is now a worldwide 

problem and referred to as the biggest natural calamity 21 st century. With 

greater public concern of As poisoning in human health, there has been a 

growing interest in developing regulatory guidelines and remediation 

technologies for mitigating As-contaminated ecosystems. Urgent steps must 

be taken to reduce these impacts by providing access to safe water as a 

fundamental human right. Delaying mitigation is increasing death and disease.  

Considerable technologies are available to reduce As concentrations in 

water but most of them are cost-prohibitive for small communities or less 

developed countries such as Bangladesh, Ghana, which are likely to face 

expensive and technically imposing challenges to run up against the maximum 

contaminant level of 10 μg As L-1. Several models show a wide range of costs 

for the different technologies, which can impede their implementation to As-

contaminated sources. For these reason, it is particularly important to 

investigate and promote new As remediation technologies able to remove As 

from contaminated areas in an inexpensive and safe way. Hence, it is 

necessary to conduct researches on novel sorbents at low cost, easily 

synthesized, or even by-products coming from production processes, available 

for free or at very low price.  

Layered double hydroxides (LDHs) show excellent capacity to sorb and 

exchange anions. Although As has a high affinity for sorbents containing Fe, 

only few studies have been carried out on the sorption of arsenite [As(III)] 

onto a Fe-based LDH. In the present work we evaluated the sorption of As(III) 

onto a LDH containing Mg and Fe (Fe–Mg-LDH) (easily reproducible anionic 
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clays at low cost) as affected by : (i) pH; (ii) the presence of increasing 

concentrations of organic [citrate (CIT) and oxalate (OX)] and inorganic 

[phosphate (PO4), selenite (SeO3) and sulphate (SO4)] ligands, (iii) the effect 

of residence time on the desorption of As(III) by these ligands, and; (iv) the 

kinetics of desorption of As(III) by PO4. 

The As(III) sorption isotherms, carried out at different pHs, indicated a good 

affinity of the harmful oxyanion for the sorption sites of the Mg–Fe-LDH. 

This material was able to remove efficiently As(III) from contaminated 

solutions over a wide range of pH, but more in acidic than in alkaline systems. 

Competing ligands differently prevented the As(III) sorption on Mg–Fe-LDH, 

according to the following order: SO4 < -OX << SeO3 < CIT < PO4. The 

desorption of As(III) by these anions decreased with increasing As(III) 

residence time on LDH surfaces. A comparison between the 

sorption/desorption of As(III) and As(V) on/from Mg–Fe-LDH in the presence 

or absence of anions highlights that less As(III) than As(V) is sorbed, whereas 

more As(III) than As(V) is desorbed by all the selected organic and inorganic 

ligands, but PO4. 

In recent decades, Fe-(hydr)oxides (e.g., Ferrihydrite and Goethite) have 

attracted substantial attention for their potential use as As sorbents. A plethora 

of scientific works, however, demonstrates their effectiveness in removing 

arsenate [As(V)] ions from aquatic environments, while few studies have been 

done for assessing their ability in adsorbing As(III) ions from contaminated 

water, at varying pHs, in presence of competing anions. 

The aim of the work was to study the As(III) removal from 

contaminated waters by Fe-based minerals, by using Ferrihydrite [non-

crystalline Fe-(hydr)oxide)] and Goethite [crystalline Fe-(hydr)oxide] as 

sorbent media in batch experiments. In particular, it was studied: i) the 
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Langmuir isotherms of As(III) on Ferrihydrite and Goethite at pH 6.0; ii) 

arsenite sorption at different pHs; iii) arsenite sorption in presence of selected 

competing ligands, such as citrate (CIT), molybdate (MoO4), oxalate (OX), 

phosphate (PO4), selenite (SeO3), selenate (SeO4), and sulphate (SO4).  

Both Ferrihydrite and Goethite samples show a high affinity for As(III). 

However, the Ferrihydrite samples, characterized by a higher surface area 

(104.9 m2 g-1), were able to sorb much greater amounts of As(III) than the 

Goethite, with a lower surface area (42.3 m2 g-1). However, Ferrihydrite (Sm = 

1245.1 mmol kg-1) adsorbed much more As(III) than Goethite (Sm = 327.9 

mmol kg-1), essentially because of its greater surface area (178.2 vs. 42.3 m2 g-

1) and, hence, lower degree of crystallinity, as well as to the greater affinity of 

As(III) for its surfaces. Probably, in our tests, Ferrihydrite adsorbed As(III) on 

their own external surfaces by forming a greater amounts of inner-sphere 

complexes vs. those formed by Goethite.  

The sorption of As(III) was lightly pH dependent. In fact, in the pH 

range of 4.0-9.0 the quantities of As(III) adsorbed resulted to be practically 

constant. At higher pHs we observed a decrease in As(III) sorption by both the 

sorbents, probably because of the competition with the increasing amounts of 

hydroxyl ions and the repulsion between the negative charged As(III) ions 

(pKa = 9.2 and 12.1) and the negative charged surfaces of two Fe-

(hydr)oxides.   

The organic and inorganic ligands showed different capacities to compete with 

As(III) for the sorption sites of the Ferrihydrite and Goethite, according to the 

following increasing sequence: selenate< sulphate < oxalate < citrate < 

selenite ≈ molybdate< phosphate on Ferrihydrite, and sulphate ≈ selenate< 

oxalate < citrate <molybdate< selenite ≈ phosphate on Goethite. 
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Carrot (Daucus carota L.) is a very popular root vegetable and widely 

consumed by humans. However, the study about influence of organic 

amendment (i.e. humic acid) and inorganic fertilizers (i.e. N, P, K) on As 

uptake, translocation, and its toxicity in carrot is limited.  

The presence of As in soils and/or groundwaters used for agricultural 

purposes, causes a strong abiotic stress to the cultivated plants, which 

elucidates itself through the reduction of biomasses and, specially, yields. It is 

therefore covetable to identify and develop production techniques capable of 

limiting the mobility and phyto-availability of As in soil, through the 

stabilization of the metalloid on the more recalcitrant soil fractions. In the 

present work it was carried out an experiment on an edible plant, carrot 

(Daucus carota L.), irrigated with different solutions containing As(III) (0, 3 

and 6 mg L-1) and grown in a As-uncontaminated soil amended with 

increasing amounts (half and full doses) of stabilized humic acid and fertilized 

(half and full doses) with inorganic fertilizer. The aims of this experiment 

were to study: i) the influence of the humic acid application and inorganic 

fertilizer on the mobility and phyto-availability of As in soil; ii) the influence 

of the humic acids and inorganic fertilizer on the growth of the carrot plants 

and their uptake of As from contaminated systems. Carrot was selected as a 

test plant in this study, because this crop is grown in several As-contaminated 

areas and suffers from As toxicity.  

Carrot plants growth (taproots and shoots dry matter production) was 

significantly affected by As and soil amended with humic acid and 

fertilization with inorganic fertilizer treatments. Increasing As concentration in 

the irrigation water decreased markedly the dry biomass of carrot plants, as a 

consequence of the phytotoxic effect of As.   
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Carrot plants irrigated with water containing 3 mg As L-1 produced, on 

average, a biomass 22.1% lower than plants irrigated with As-uncontaminated 

water. Likewise, the biomass of the plants irrigated with water containing 6 

mg As L-1 resulted to be, on average, 39.3% lower, compared to As control 

plants. Beside As treatment, the growth of carrot plants was also significantly 

affected by fertilization with humic acids or inorganic fertilizers. It is 

conceivable as all the fertilized plants grew much more than non-fertilized 

plants. In comparison with unfertilized As 6 plants, for example, As 6 carrots 

amended with full dose of humic acids (F.O.D.) produced 90.1% more of 

biomass, whereas those treated with full dose of inorganic fertilizers (F.I.D.) 

grew 97.2% more.  

As a consequence of negative effects on plants, As causes a reduction of 

the photosynthesis rate and damages the chloroplasts membranes and their 

structure. In the present study we also noted that the chlorophyll A+B 

concentration progressively decreased, as long as increased As levels were 

supplied to carrot plants by the irrigation water. In comparison to the 

unfertilized control, significantly higher chlorophyll A+B concentration was 

found in the leaves of the carrots fertilized either with humic acids or 

inorganic fertilizers.   

Most of the As taken up by our carrot plants was accumulated in their 

taproots, while a lesser allocation of toxicant occurring in the leaf biomass, in 

all experimental treatments.  Indeed, plants amended with humic acids 

(H.O.D. and F.O.D.) exhibited a lower concentration of As in their own 

tissues, while the opposite was occured in those fertilized with inorganic 

fertilizer. These findings are strictly related to the higher availability of As in 

the soil fertilized with inorganic fertilizers vs. that amended with humic acids. 

A low As allocation in carrot yield is definitely desirable, because a high 
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content of As in edible part of plant could cause contamination of the human 

food-chain, being carrots a low-cost carotenoids and dietary fibers, 

antioxidants source and one of the most consumed root vegetable around the 

world including Italy.  

The concentration of the free-fraction of As in soil samples (non-

specifically sorbed As) decreased significantly by increasing level of organic 

fertilizer (i.e. humic acid) application, whereas the higher the organic dose the 

higher was the concentration of specifically sorbed As by soil colloidal 

particles. Moreover, by increasing As concentration in irrigation solutions 

there was an increase of both concentrations of As non- and specifically 

sorbed in soil samples.  

On the contrary, the fertilization of soil with inorganic fertilizers (H.I.D. 

and F.I.D.) determined a significant increase of the nonspecifically sorbed As 

fraction, with a consequent decrease of the specifically sorbed As, compared 

control.  

The use of a classical soil amendant as humic acid in the present work, 

in addition to improve carrot plants growth and their nutritional status, has 

allowed to limit the As uptake by biomasses, through the immobilization of 

the metalloid, derived by irrigation water, on/in their humified organic 

macromolecules. Furthermore, the soil amendment by humic acids falls within 

the context of organic farming, eco-friendly production system, which ensures 

the sustainability of the soil, improving its fertility. 
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1.1 Arsenic 

Arsenic (As) is one of the most toxic elements found in nature. It ranks 20th in 

natural abundance, comprising about 0.00005% of the earth’s crust, 14th in 

seawater, and 12th in the human body (Mandal and Suzuki, 2002). It is a 

ubiquitous element, can pollute soil, water, and plants including other 

compartments of the ecosystem and the environment, and ultimately affects 

human health and well being. The sources of As in the environment are 

mainly geogenic, i.e. naturally occurring (Smedley and Kinniburgh, 2002; 

Nriagu et al., 2007). The king of poisons (i.e. As), has probably influenced 

human history more than any other element or toxic compound as a class one 

carcinogen (Zhao et al., 2010; Duan et al., 2012). For the thousands of years 

that people have worked and lived with this enigmatic element, tens of 

thousands have died of it and millions have been sickened by it (Nriagu et al., 

2007).  

In neutral oxygenated waters, As(V) is the thermodynamically favored 

form, whereas As(III) is stable under reducing conditions (Frankenberger Jr., 

2002; Smedley and Kinniburgh, 2002; Mahimairaja et al., 2005). Arsenite is 

25-60 times more toxic and mobile than As(V); however, As(III) mainly arises 

from its state as H3AsO3 at pH < 9.0, whereas As(V) is present in the charged 

species (H2AsO4
− and HAsO4

2−) which predominate in a wide pH range 

(Frankenberger Jr., 2002; Smedley and Kinniburgh, 2002). 

In general, the inorganic As (such as trivalent arsenite (As(III)) and 

pentavalent arsenate (As(V)) are more prevalent and toxic than the organic As 

in terrestrial environments. Arsenite has an affinity for sulfhydryl groups 

existing in cysteine residues to exert detrimental effects on general protein 

metabolism with high toxicity (Rai et al., 2011). Arsenite stimulated 
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generation of reactive oxygen species (ROS) was proven to damage proteins, 

lipids, and DNA (Ali et al., 2012). Arsenite is more prevalent in groundwater 

than previously believed. Indeed, reducing conditions in alluvial aquifers 

supplying single families may result in significant exposures to naturally 

occurring As(III). Moreover, the mechanism promoting the mobility of As(III) 

in groundwater is the onset of reducing conditions in alluvium in which iron 

oxides have sorbed As. Such conditions may result in concentrations of As in 

groundwater as high as several hundred micrograms per liter (Korte and 

Fernando, 1991).  

In addition, the degree of toxicity of As compounds is inversely 

proportional to the rate of excretion from the body and can be shown as 

follows: arsine > As(III) > As(V) > methylated arsenicals (Puttemans and 

Massart, 1982).  

The acid dissociation constants of the four As species demonstrate why ion 

exchange chromatography is an effective separation method (Table 1).  

Table 1 Approximate values for the pKa's of the four arsenic species  

Arsenic species pK1 pK2 pK3 
 

As(III): Arsenious acid 
 

9.2 
 

— 
 

— 

As(V): Arsenic acid 
 

2.2 
 

6.9 
 

11.5 

(MMA): Monomethylarsonic acid 
 

4.1 
 

8.7 
 

— 
 

(DMA): Dimethylarsinic acid 
 

1.6 
 

6.3 
 

— 
 

 

Arsenic contamination of surface- and ground-waters occurs worldwide 

and has become a socio-political issue in several parts of the globe. For 

example, millions of people are at risk from drinking As-contaminated water 

in West Bengal (India) (Nriagu et al., 2007) and Bangladesh (Chakraborti et 
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al., 2010). Significant number of people from China (Rahman et al., 2009), 

Vietnam (Smedley and Kinniburgh, 2002), Taiwan (Tseng et al., 2005), Chile 

(Bundschuh et al., 2012), Argentina (Barringer and Reilly, 2013), and Mexico 

(Meza et al., 2004) are likely at risk as well. 

Hence, there are much attention in developing guidelines and 

remediation technologies for mitigating As-contaminated ecosystems because 

of the greater public awareness of As poisoning on human health. A good 

number of technologies, including chemical immobilization has been applied 

with varying levels of success either to completely remove As from the system 

or to reduce its biotoxicity. Layered double hydroxide (LDH), Ferrihydrite and 

Goethite may offer a low-cost and ecologically viable means for the mitigation 

of As toxicity in the environment. 

 

1.1.1 Origin and sources of arsenic contamination 

Arsenic compounds (both organic and inorganic) are ubiquitous in rocks, soil 

sediments and various raw materials such as metal ores and concentrates, coal, 

peat, oil, chemical and industrial products, and its flow in different 

compartments of the ecosystem (Figure 1). Arsenic contamination occurs by 

anthropogenic activities (54 countries/territories), coal activities (geogenic 

coal excluding coal burning) (28 countries/territories), geogenic (68 

countries/territories), mining activities (74 countries/territories), petroleum 

activities (17 countries/territories), volcanogenic activities (35 

countries/territories) (Murcott, 2012). 
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Figure 1 Arsenic distribution from environment to human body and its toxic 
effect. Arsenic releases into the environment by natural processes and 
anthropogenic activities such as weathering of rocks and sediments, 
hydrothermal ore deposits, volcanic eruptions, geothermal activities, wind-
blown dust, and mining. Peoples use As-contaminated water for their daily 
purposes (drinking, cooking, etc). People also use As contaminated water for 
irrigation and livestock resulting contamination in the food chain. As a result, 
arsenic easily enters in to the human body through consumption of crops as 
well as animals products, and may cause of cancer, dermal diseases, 
cardiovascular diseases, respiratory diseases, neurological diseases, 
hematological diseases, renal diseases, and hepatic diseases. 
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1.1.1.1 Geological sources 

At varying concentrations, As is widely distributed in all geological materials. 

An average concentration of 1.5 to 2.0 mg As/kg is expected in the continental 

crust of the earth. The mean concentrations of As in igneous rocks ranged 

from 1.5 to 3.0 mg/kg, whereas in sedimentary rocks range from 1.7 to 400 

mg/kg (Smedley and Kinniburgh, 2002). Arsenic is a major constituent in 

more than 245 minerals (Mandal and Suzuki, 2002). Realgar (As4S4) and 

orpiment (As2S3) are the two common As sulfides where As occurs in reduced 

form while As occurs in oxidized form in the mineral arsenolite (As2O3), 

loellingite (FeAs2), safforlite (CoAs), niccolite (NiAs), rammelsbergite 

(NiAs2), arsenopyrite (FeAsS), cobaltite (CoAsS), enargite (Cu3AsS4), 

gerdsorfite (NiAsS), glaucodot [(Co,Fe)AsS], and elemental As are other 

naturally occurring As-bearing minerals (Nriagu et al., 2007). In neutral 

oxygenated waters, As(V) is the thermodynamically favored form, whereas 

As(III) is stable under reducing conditions (Mahimairaja et al., 2005).  

Geogenic contamination of As in soils and water has been reported in 

many parts of the world. One typical example is the extensive As 

contamination of groundwaters in Bangladesh and West Bengal, India. 

Relatively high concentrations of naturally occurring As can appear in some 

areas as a result of inputs from geothermal sources or As-rich groundwaters 

(Sharma et al., 2014). Arsenic mobilization can depend on many other 

geochemical conditions. A special feature is the large differences in rainfall 

between seasons and extensive water withdrawal resulting in large 

groundwater table fluctuations and thus an increased ventilation of deeper 

sediments for the Bengal Delta. The penetration of oxygen into the sediments 

in the dry season resulting in oxidation of As bearing pyrites like Pyrite (FeS) 
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and Arsenopyrite (FeAsS) is leading to As mobilization (Navas-Acien et al., 

2008).  

In the atmosphere, natural emission of As include windblown dust from 

weathered continental crust, forest fires, vegetation emissions, volcanoes, sea 

spray, hot springs, and geysers (Nordstrom, 2002). Volcanoes are also 

considered as a geogenic source of As to the environment (Centeno et al., 

2007). In natural lakes, levels of As range from 0.2 to 56 μg/l (Crecelius, 

1975). In deep sea water, its average concentration is reported to be 1.7 mg/l at 

a salinity of 3.6% (Bruland, 1983). High levels of As are noted in both 

dissolved and particulate phases in rivers influenced by contamination from 

anthropogenic sources in Europe and North America (Seyler and Martin, 

1991). It has been reported that the concentrations varied between 1 and 8 µg/l 

in seawater (Mandal and Suzuki, 2002). 

Weathering and leaching of geological formations and mine wastes 

result in elevated concentrations of As in natural waters in several areas. 

Mobility of As is constrained in the surface water because of the prevalence of 

oxic conditions. On the other hand, reducing conditions offered by the aquifers 

lead to the mobilization of As, thereabout increasing the risk of groundwater 

contamination. Natural occurrence of As is widely reported in groundwater in 

several parts of the world, and the concentrations vary significantly depending 

on the redox characteristics of the groundwater and the lithological 

characteristics of the bedrock (Bhattacharya et al., 2004; Nguyen and Itoi, 

2009). 

 

1.1.1.2 Anthropogenic sources 

Arsenic introduces into the environment via various anthropogenic activities. 

These sources release As compounds that differ greatly in chemical nature 
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(speciation) and bio-availability. Mining, smelting, and ore beneficiation, 

pesticides, fertilizers and chemical industries, thermal power plants using coal, 

wood preservation industries using CCA, and incinerations of preserved wood 

wastes contribute to significant influx of As to the environment (Bhattacharya 

et al., 2002). The flue gases and particulate from smelters can contaminate 

nearby ecosystems downwind from the operation with a range of toxic 

metal(loid)s, including As (Adriano, 2001). Mining and smelting activities 

lead to high concentrations of As in sulphide mineral deposits (Thornton, 

1996).  

Commercial wastes, coal ash, mining industry and the atmospheric 

fallout from the steel industry are the leading sources of As discharged onto 

land (Eisler, 2004). Arsenic trioxide (As2O3) is used extensively in the 

manufacturing of ceramic and glass, electronics, pigments and antifouling 

agents, cosmetics, fireworks, and Cu based alloys (Winder, 2004). Arsenic is 

also used for wood preservation in conjunction with copper (Cu) and 

chromium (Cr), i.e., copper-chromium-arsenate (CCA). In addition, As 

releases during their mining and smelting processes because As is widely 

distributed in the sulfide ores of Pb, Zn, Au, and Cu. Elevated concentrations 

of As, as well as other metals such as Cd, Cu, Fe, Pb, Ni and Zn, are 

commonly encountered in the acid mine effluents (Bundschuh et al., 2012). In 

studies of acid mine drainage, adsorption of As on Fe(OH)3 surfaces was 

found to be the principal sink for As (Webster et al., 1994). Furthermore, 

agricultural inputs such as fertilizers, pesticides, and desiccants are the major 

sources of As in soils. There are low levels of As in N and K fertilizers as well 

as lime. Therefore, the possible As accumulation in soils due to repeated 

application of As containing fertilizers raise the levels (Jiang and Singh, 

1994). 
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Inorganic arsenicals (e.g. arsenic trioxide, arsenic acid etc.) have been 

widely used in pigments, pesticides, insecticides, herbicides, and fungicides 

over hundreds of years (Chisholm, 1972). At present, As is no longer used in 

agriculture in the developed countries, but persistence of the residues of the 

inorganic arsenicals in soils is an issue of environmental concern (Smith and 

Brauning, 1995). The use of pesticides, lead arsenate (PbAsO4), calcium 

arsenate (CaAsO4), magnesium arsenate (MgAsO4), zinc arsenate (ZnAsO4), 

zinc arsenite [Zn(AsO2)2], and Paris Green [Cu(CH3COO)2 ∙ 3Cu(AsO2)2] in 

orchards has contributed to soil As contamination in several parts of the world 

(Peryea and Creger, 1994). The use of sodium arsenite (NaAsO2) to control 

aquatic weeds has contaminated small fish ponds and lakes in several parts of 

United States with As (Adriano, 2001). Arsenic contamination in soil was also 

reported due to the arsenical pesticides used in sheep and cattle dips to control 

ticks, fleas, and lice (McBride et al., 1998). 

Likewise, timber treatment effluent is considered to be the major source 

of As contamination in aquatic and terrestrial environments in New Zealand 

(Bolan et al., 2004). Continuous application of fertilizers containing trace 

levels of As also results in As contamination of soil, thereby reaching the food 

chain through plant uptake (Zhao et al., 2010).  

The use of chromated copper arsenate (CCA) and other As-based chemicals in 

wood preservation industries has caused widespread contamination of soils 

and aquatic environments (Bhattacharya et al., 1996). CCA had attained wide-

scale industrial application as a wood preservative owing to biocidic 

characteristics of Cu(II) and AsO4. The preservative chemical used for 

pressure impregnation comprises a water based mixture of dichromic acid 

(H2Cr2O7), arsenic acid (H3AsO4), and Cu(II) as divalent cation at variable 

proportions (Jacks and Bhattacharya, 1998). Chromium is used to bind As and 
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Cu into the cellular structure of the wood. Fixation of CCA is dependent on 

the transformation of Cr(VI) to Cr(III), a reaction that is dependent on the 

temperature and water content of the wood. Cr(III) forms insoluble complexes 

with both As and Cu (Ryberg and Haugen, 1990). Further stabilization of 

these complexes takes place after complete fixation of the As and Cu in the 

wood tissues and minimizes the risk of leaching of the CCA components from 

the processed wood. Among the active ingredients of CCA wood 

preservatives, As is most mobile and toxic to a broad range of organisms, 

including human beings. 

Sediments in a drain adjacent to the cemented impregnation platform 

contained an average 632 mg As/kg. Arsenic concentrations in the reference 

soils (119 mg/kg) were lower than in the contaminated area, but exceeded the 

level of As in average glacial till (Bhattacharya et al., 2002). Analyses of 

water in a stream found As concentration of 238 μg/l (Bhattacharya et al., 

1995). Groundwater contamination must be considered as an imminent risk 

close to wood preservation sites, and especially at older sites where 

precautions against spills and material handling were not taken adequately. 

Coal combustion not only releases gaseous As into the atmosphere, but 

also generates fly and bottom ash containing varied amounts of As. Disposal 

of these materials often leads to As contamination of soil and water (Beretka 

and Nelson, 1994). High-As-bearing coals combustion is known to be a 

principal pathway of As emission in the Guizhou province, China (Zheng et 

al., 1996). In addition, open coal-burning stoves used for drying chili peppers 

have been the principal cause of chronic As poisoning in a population of 

nearly 3,000. Fresh chili peppers have less than 1 mg As/kg, while chili 

peppers dried over high-As coal fires were reported to contain more than 500 

mg As/kg (Zheng et al., 1996). Consumption of other tainted foods, ingestion 
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of kitchen dust containing as high as 3,000 mg As /kg, and inhalation of 

indoor air polluted by As from coal combustion are the other causes of chronic 

As poisoning. 

The incidental use of preserved wood in open fires, indoors or outdoors 

is a possible pathway for exposure through air particulates. CCA impregnated 

wood burning from a sawmill was found to be a source of As contamination to 

the environment (Aggett and Aspell, 1980). The content of As in air 

particulates from open fires was found to exceed the German air quality 

standards by 100-fold (Bringezu, 1990). The ashes, spread on lawns or 

vegetable cultivations, pose further risk to human health. In addition, tobacco 

smoke is another source of As emission in the indoor environment. It is 

interesting to note that mainstream cigarette smoke contains 40-120 ng As per 

cigarette (USEPA, 1988). Tannery industries are also route for exposure of As 

through foods. As concentration in vegetables grown in and around the 

Hazaribag tannery industrial region, Dhaka, Bangladesh was higher than the 

safe limit (Islam et al., 2014).  

 

1.1.1.3 Biogenic redistribution 

Biological sources contribute small amounts of As into soil and water 

ecosystems. However, plants and microorganisms affect the redistribution of 

As through their bioaccumulation (e.g., biosorption), biotransformation (e.g., 

biomethylation) and transfer (e.g., volatilization) (Azizur Rahman et al., 

2012). Arsenic accumulates readily in living tissues because of its strong 

affinity for proteins, lipids and other cellular components (Ferguson and 

Gavis, 1972; Ali et al., 2012). 

Aquatic organisms are particularly known to accumulate As, resulting in 

considerably higher concentrations than in the water in which they live (i.e., 
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biomagnification). They subsequently become a source of environmental 

contamination upon their disposal or consumption. Arsenic could be 

transferred from soil to plants and later to animals and humans, involving 

terrestrial and aquatic food chains. For example, one of the major sources of 

As input to soils is poultry manure addition. In United States, 20-50 mg of As 

is introduced to the environment through the use of As compounds (e.g., 

Roxarsone, ROX) in poultry feed (Christen, 2001). However, in many 

situations the soil-plant transfer of As is low (Burlo et al., 1999; Bhatti et al., 

2013) and it is important to recognize that metal(loid)s loading through 

manure application may overestimate their actual net accumulation in soil, as 

a substantial portion of the metal(loid)s in manure originate in crop uptake and 

are therefore being recycled within a production system (Bolan et al., 2004). 

 

1.1.2 Arsenic contamination in the world 

A good number of large aquifers in various parts of the world have been 

identified with problems from As occurring at concentrations above 50 µg/l 

(Smedley and Kinniburgh, 2002). Arsenic pollution of drinking water supplies 

has been reported from over 105 countries, posing a serious health hazard to 

an estimated 226 million people worldwide (Murcott, 2012). Major As 

pollution has been reported in the USA, China, Chile, Bangladesh, Vietnum, 

Taiwan, Mexico, Argentina, Poland, Canada, Hungary, New Zealand, Japan 

and India (Nickson et al., 2000; Chakraborti et al., 2002; Hossain, 2006; 

Mondal et al., 2007; Nriagu et al., 2007). In Bangladesh, it has been estimated 

that 35–77 million people are exposed to As-contaminated well water 

(Rabbani et al., 2002; Chakraborti et al., 2004). The recent discovery of As 

enrichment on a large scale in Bangladesh has highlighted the need for a rapid 
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assessment of the situation in alluvial aquifers throughout the world (Smedley 

and Kinniburgh, 2002).  

In Asian countries, the highest number of people consuming and using 

As-contaminated drinking water and groundwater for crops irrigation purposes 

suffer from arsenicosis (Chakraborti and Das, 1997). The range of As 

concentrations found in natural waters is large, ranging from less than 0.5 µg/l 

to more than 5000 µg/l. The As content in groundwaters as reported  (Mandal 

and Suzuki, 2002; Smedley and Kinniburgh, 2002; Liu et al., 2003; Nriagu et 

al., 2007) is wide in range (West Bengal , India <10–3200 µg/l, Thailand 1–

>5000 µg/l, Cambodia 1–1610 µg/l and Bangladesh <0.5–2500 µg/l, Taiwan 

34–558 µg/l and Vietnam 3050 µg/l in rural groundwater samples. In 17 

districts (out of 64)  of Bangladesh, its concentration is as high as 1000 µg/l 

(Harvey et al., 2002; Hossain, 2006). Surface water is also found to be 

contaminated with As by the anthropogenic sources to various degrees. In an 

early experiment, NaCl-dominated brine of Tisakürt, Hungary, contains more 

than 5800 µg/l of As (White et al., 1963). As-contaminated groundwater is a 

severe problem in West Bengal, India (Bhattacharya et al., 2011). In Italy, the 

higher As concentrations were found in groundwaters of some Italian regions 

including Emilia, Lombardia (Zavatti et al., 1995), Campania (Dall’Aglio, 

1996) , Po river delta (Di Giuseppe et al., 2014) and Viterbo area (Sappa et al., 

2014). In Latin America, many regions are widely (Mexico 50–24000 μg/l, 

Argentina 10–5000 μg/l, Chile 30-5100 μg/l, Peru 200-1680 μg/l) reported for 

the occurrence of high As in groundwater and surface water due to a 

combination of geological processes and/or anthropogenic activities 

(Bundschuh et al., 2012).  

It is well established that As-contaminated groundwater used for 

irrigation can pose an equally serious health hazard to people eating food from 
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the crops irrigated (Williams et al., 2006) and that As accumulating in 

irrigated soils poses a serious threat to sustainable agriculture in affected areas 

(Heikens, 2006; Brammer and Ravenscroft, 2009).  The major cereals such as 

rice (Rahman and Hasegawa, 2011) wheat (Pigna et al., 2009; Pigna et al., 

2010) maize (Rosas-Castor et al., 2014) vegetables (Roychowdhury et al., 

2002; Alam et al., 2003) accumulate As more than the hygienic limit. Straw  

can accumulate high level of As (Abedin et al., 2002). In a later case, it comes 

into human body through food chain (Rahman et al., 2008).  

 

1.1.3 Bangladesh, a country of huge As contamination 

Considering the affected population, As problems in groundwater of 

Bangladesh represent the most serious occurrences identified globally. A 

survey looked at the As concentrations of drinking water from deep wells in 

64 districts in the country and found that 59 had concentrations >10 µg/l and 

43 had concentrations >50 µg/l (Hossain, 2006). The (BGS, 1999) estimated 

that about 21 million people in Bangladesh are exposed to As concentrations 

>0.05 mg/l. Numerous scientific papers (Karim, 2000; Nickson et al., 2000; 

Harvey et al., 2002; Horneman et al., 2004; Zheng et al., 2004; Ahmed et al., 

2006; Hossain, 2006) and some organizations (Dhaka Community Hospital 

(DCH), 1997; British Geological Survey (BGS), 2000; DPHE/BGS/DFID 

(Department for International Development), 2000) have implemented 

different As programs and revealed the extent and severity of the problem. To 

date, different issues such as population exposed to contaminations, 

assessment and modeling of As transport, As mobility and groundwater 

extraction, cause of contamination and number of people suffering from 

arsenicosis have been addressed. Groundwater As contamination is a severe 
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problem in Bangladesh. About 60% of groundwater sources of this country are 

affected by As contamination (Joarder et al., 2002).  

Bangladesh depends heavily on groundwater for drinking water supply 

and irrigation puposes. Groundwater development has been actively 

encouraged in this region over the last 3 decades by government and other 

agencies as a means of providing an alternative to contaminated surface water 

and thereby reducing the incidence of water-borne diseases. Almost all the 

village people use the tubewells.  

As a consequence of As-contaminated water and food over prolonged 

periods resulting chronic As diseases. The As calamity of Bangladesh can be 

described as the largest known mass poisoning in the history considering the 

number of population (Rabbani et al., 2002). 

In a review article, it was mentioned that (1) is the problem becoming worse 

and if so, will it continue to worsen? Has the increased use of groundwater for 

irrigation purposes caused As to be mobilized and enter the groundwater? (3) 

How acute is the risk that As in irrigation water will enter the food chain 

(Hossain, 2006)? Later, it was shown in an another review that  that the 

problem is being worst and it caused As to be mobilized and enter the 

groundwater by increasing use of groundwater for irrigation purposes 

(Brammer and Ravenscroft, 2009). In addition,  the risk that As in irrigation 

water is acute in cereals such as rice (Norton et al., 2009) barley (Dago et al., 

2014) and other vegetables (Alam et al., 2002; Alam et al., 2003).   

There are consolidated evidences on the rice (staple food) and As of 

Bangladesh have been made such as genotype and environment effects 

(Ahmed et al., 2011), cooked rice (Bae et al., 2002), temporal variations (the 

role of iron plaque) and spatial distribution (Dittmar et al., 2007; Garnier et al., 

2010), fate of irrigation-water As and bioavailability (Khan et al., 2009; Khan 
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et al., 2010), wetland condition (Khan et al., 2010), As transport across rice-

field soils (Polizzotto et al., 2013), toxicity (photosynthesis, growth and yield) 

(Azizur Rahman et al., 2007; Panaullah et al., 2009), daily dietary intake (Kile 

et al., 2007; Rahman et al., 2013). Varietal differences, speciation of As in rice 

and the levels and impact of As in straw on animal health also need to be 

considered (Duxbury et al., 2003). Rice consumption may therefore represent 

a significant risk, mainly when As is present in its inorganic forms, As(III) and 

As(V) (ATSDR, 2007; Meharg et al., 2009). Rice grain had As levels of 0.03–

1.84 mg/kg dry weight (dw) (Meharg and Rahman, 2003) 0.05–2.05 mg/kg 

dw (Das et al., 2004) collected from groundwater As contaminated area of 

Bangladesh. In this manner, rice could be considered an important contributor 

to total As intake in Bangladesh.   

No significant research was carried out on the market basket survey to 

know the As accumulation in food except (Anawar et al., 2012; Saha and 

Zaman, 2013). They found that all the food items collected from local market 

accumulate considerable amount of As. Little amount of As accumulation in 

foods is a matter of concern because almost all the people drink As 

contaminated water (more than the permissible limit by WHO).  

 

1.1.4 Permissible limit for food and drinking water 

In 1903, the first limit on As concentration in water was established at 108 

µg/l by the Royal Commission of London (Stöhrer, 1991).  International 

guidelines have been established for As in drinking water since the 1950s and 

the historical developments in the guideline values for As in drinking water 

and reflects the increasing awareness to protect the populations (Table 2) 

(WHO, 2005). The maximum contaminant level  of As in drinking water had 

also been reduced from 50 to 10 µg/l by European Commission (ECD, 1998). 
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Environmental authorities have taken a more stringent attitude towards the 

presence of As in water. World Health Organization (WHO) and National 

Health and Medical Research Committee, Australia, recommended maximum 

contaminant level  of As in drinking water as 10 and 7 µg /l respectively 

because of the negative impact of As on human health (WHO, 1993; 

NHMRC, 1996). Japan and Canada reduced the MCL for As in drinking water 

to 10 and 25 µg/l, respectively. The MCL for As in countries like India, 

Bangladesh, Taiwan, China, Vietnam, Chile etc. is 50 µg/l where the 

groundwater As contamination is high (Nordstrom, 2002). The USEPA 

changed the maximum contaminant level (MCL) for arsenic from 50 µg/l in 

1974 to 10 µg/l in 2001 due to its long-term health effect (Melitas et al., 

2002). World Health Organization (WHO) As guideline value 50 µg/l to 10 

µg/l resulted in a several times increase of the number of population exposed 

to As. In Honduras (1995), Costa Rica (1997), El Salvador (1997), Colombia 

(1998), Guatemala (1998), Nicaragua (1999), Panama (1999), Bolivia (2004), 

Brazil (2005), Argentina (2007), and Chile (2008) made their law following 

the provisional value of WHO for drinking water.  The permissible limit of 

Uruguay, Peru, and Venezuela are 50 μg/l; Mexico reduced the limit of 25 

μg/l in 2005. In Argentina, the national limit is not applied to all provinces but 

they regulate the permissible As concentration by their own rules and 

regulations (Bundschuh et al., 2012).  

Only a few countries have established national legislative limits for 

inorganic As including China (CFSA, 2005), Australia and New Zealand 

(ANZFA, 2011) and India (Awashthi, 1999). The Chinese permissible limits 

are in rice 0.15 mg/kg, flour 0.10 mg/kg, other cereals 0.20 mg/kg, vegetables 

0.05 mg/kg, fruit 0.05 mg/kg, poultry 0.05 mg/kg, egg 0.05 mg/kg, milk 

powder 0.25 mg/kg, fresh milk 0.05 mg/kg, beans/pulses 0.10 mg/kg, fish 0.10 



INTRODUCTION 

28 | P a g e  

 

mg/kg, algae 1.50 mg/kg, shellfish 0.50 mg/kg) (CFSA, 2005) and Australia 

and New Zealand fixed 1–2 mg/kg for seafood products (ANZFA, 2011). 

Indian standard for As in foods 1.1 mg/kg (Awashthi, 1999). The Joint 

FAO/WHO Expert Committee on Food Additives recommends a provisional 

tolerable weekly intake (PTWI) of inorganic As of 15 μg/kg body weight, 

equivalent to 130 μg/day for a 60-kg person (WHO, 1989). In China, daily iAs 

intake by the human population is around 42  µg/day, and rice is the largest 

contributor of total iAs intake accounting for about 60% (Li et al., 2011). In 

countries, such as Switzerland, the tolerable limit of As concentration in 

fodders is 4 mg/kg; shows that this value is not exceeded by the As 

concentrations found in the leaves and stems (Gulz et al., 2005). The 

maximum tolerable daily intake of As (III) is 2 µg/kg body mass (WHO, 

1993).  Food and Agricultural Organization (FAO) permissible limit for 

irrigation water is 0.10 mg/l (Bhattacharya et al., 2010). Plants application for 

irrigation of vegetables, fruits, forages, etc. and plants consumption (raw or 

cooked) are considered to make the provisional limit in some region of the 

world. Furthermore, the limit of As in water for animal husbandry is regulated 

individually in some Latin American countries; the national limits vary 

between 10 μg/l (Chile) and 500 μg/l (Argentina). There is no national 

regulations for irrigation water and water for animal husbandry in Nicaragua, 

El Salvador and Guatemala (Bundschuh et al., 2012). Urgent action must be 

taken to settle up the hygienic level of As for food, drinking water for human 

and livestock, soil and irrigation water taking into account the As-

contamination.  
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Table 2 Developments in the WHO’s guideline value for maximum As 

concentration in drinking water (WHO, 2005). 

Year Guideline 

(µg/l) 

Reasons for the change in the guideline 

1958 200 Noted possible risk for adverse health effects 

1963 50 No reason was mentioned 

1971 50 It is wise to have a guideline value as low as 

possible 

1984 50 No health effects were observed at this level 

yet 

1993 10 Realized risk of excess skin cancer, and 

practical limit to 

chemical analysis at that time 

2003 10 Uncertain risk assessment of As 

carcinogenicity. 

Prohibitive mitigation costs at lower 

concentrations 

Adopted from (Sharma et al., 2014). 

1.1.5 Arsenic toxicity towards plants 

It is reported that long term use of As contaminated water for irrigation  

results elevated As levels in agricultural soils, and thereby in food crops 

(Williams et al., 2005; Dahal et al., 2008). Additionally, the elevated level of 

As is reported to inhibit seed germination and seedling establishment (Abedin 

and Meharg, 2002), and inhibits photosynthesis which eventually affect the 

growth and often leads to death (Rahman et al., 2007). The bioavailability of 

As in crop plants depends on several physical and chemical factors including 

pH, redox potential, organic matter content, texture and clay mineralogy, iron, 

aluminum and manganese content, presence of inorganic (particularly 

phosphate) and organic (humic and fulvic acids and roots exudates) ligands, 

and microbial activity (Violante et al., 2005). Organic matter may form 

complexes with trace elements and control the mobility and availability of As 
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in soils.  However, in acidic or slightly acidic conditions, organic matter may 

compete with As for the same adsorption sites and form surface complexes 

with iron hydroxides, resulting in the release of As to soil solution (Wang and 

Mulligan, 2006).  

Arsenic is non-essential element and generally toxic to plants (Zhao et 

al., 2009). There is no single level of As in water and soil that can be toxic to 

plants. Plant species tolerate varying amounts of As in soils and water. 

Likewise, it does vary in different cultivars (Brammer and Ravenscroft, 2009). 

Although As is extremely toxic for plant tissues, these can accumulate a small 

amount of the inorganic forms, such as the As(III) through aquaporin channels 

and the arsenate (AsV) through the phosphate transporter system (Zhao et al., 

2009). Arsenic form has been reported as the authentic factor determining the 

phytotoxicity in several plants (Marin et al., 1992; Carbonell et al., 1998). 

Arsenite possesses a high affinity for the sulfydryl groups of amino acids such 

as cysteine and thereby inactivates a wide range of enzymes in intermediate 

metabolism (Fendorf et al., 1997). However, the study about influence of 

organic amendment and inorganic fertilizers on As accumulation, 

translocation, and its toxicity in plants is limited (Cao and Ma, 2004). 

Furthermore, only partial attention has been paid to the risks of using 

contaminated ground water for irrigation. 

Various symptoms of As toxicity in different edible plants have been 

reported. Roots are usually the first tissue to be exposed to As, where the 

metalloid inhibits root extension and proliferation (Garg and Singla, 2011). 

The presence of As in irrigation water or in soil at an elevated level could 

hamper normal growth of plants with toxicity symptoms such as biomass 

reduction (Carbonell-Barrachina et al., 1997), decrease of plant height 

(Ahmed et al., 2006), morphological changes (Srivastava et al., 2009), often 
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leading to death (Jiang and Singh, 1994) affects the photosynthesis (Azizur 

Rahman et al., 2007), delayed seedling emergence, yellowing and wilting of 

leaves, brown necrotic spots on older (Huq et al., 2006) and yield losses 

(Cozzolino et al., 2010). 

Increasing As level in the irrigation water decreased markedly the dry 

matter production, as a consequence of the phytotoxic effect of As. Turnip 

plant growth (as represented by roots and shoots dry matter production) was 

significantly affected by As treatments and As chemical form was more 

important than the As level in solution in determining the phytotoxic effect of 

As on this turnip cultivar (Burlo et al., 1999). The phytotoxic effect of As 

determined a strong inhibition of root growth and, to a lesser extent, leaf 

development. For instance, lettuce plants irrigated with water containing 10 

mg/l of As produced less than a third of the root biomass of the control 

(Caporale et al., 2014). 

Straighthead disease reduced grain yield in rice (BRRI 29) irrigated 

with As, and with the increase in soil As concentration, the severity of 

straighthead increased significantly (Smith et al., 2010). In sorghum, shoot 

and root dry matter yield were repressed by higher As levels (Shaibur et al., 

2008). In rice, yield decline was regressively from 7–9 to 2–3 t/ha with 

increasing soil-As concentration (Panaullah et al., 2009). Numerous 

physiological processes are susceptible to As toxicity. Cellular membranes 

become damaged in plants exposed to As, causing electrolyte leakage (Singh 

et al., 2006). Low As burden causes the number of nitrogen-fixing root 

nodules to be repressed in soybean (Vázquez et al., 2008). 

The As tolerance has been identified in a number of plant species 

(Sharples et al., 2000). The As tolerance in grasses results from suppression of 

a high-affinity P/As uptake system (Meharg and Macnair, 1992). There are 
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relatively few species of plants that are naturally As tolerant. Among these are 

a group of plants including Pteris vittata and other members of the Pteridaceae 

that hyperaccumulate As (Ma et al., 2001; Zhao et al., 2009). Even some 

medicinal plants such as Mimosa pudica L., Panax notoginseng (Burkill) 

Chen ex Wu & Feng can tolerate high level (5200 mg/kg) of As. Rice plants 

can uptake higher As while grown in As-treated soils; plants died at 

concentration >1500 mgAs/kg (Nriagu et al., 2007).  

Exposure to As(V) causes considerable stress in plants, including 

inhibition of growth (Stoeva and Bineva, 2003), physiological disorders 

(Stoeva et al., 2005) and finally death. As(III) reacts with sulfhydryl groups (–

SH) of enzymes and tissue proteins, inhibiting cellular function, causing death 

(Smith et al., 2010). However, As(V) will not normally have high enough 

cytoplasmic concentrations to exert toxicity because As(V) is rapidly reduced 

to As(III) in plant tissue (Verbruggen et al., 2009). The majority of the As 

remains in roots as an As(III)-tris glutathione. The thiolate donors are 

probably either glutathione or phytochelatins. Endogenous plant enzyme 

arsenate reductase (ACR) activity converts As(V) to As(III) in roots, 

immobilizing As below ground (Verbruggen et al., 2009).   

In a significant manner, maize seedlings were  reduced in plant fresh 

weight with the assayed concentrations of As(III) and/or As(V) (Requejo and 

Tena, 2005). The binding of As(III) to the thiol groups of proteins or enzyme 

co-factors may alter or inhibit their activity, also exposing cellular processes 

to risk. Oxidative stress brought about by the inevitable production of reactive 

oxygen species (ROS) that occurs during As exposure has most recently 

gained favor as the main driver of As toxicity in plants. However, which 

cellular processes are most sensitive to As toxicity and which As species pose 
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the greatest threats to plant cell health remain unclear (Finnegan and Chen, 

2012). 

Arsenite was found to be more toxic than As (V) for rice seed 

germination (Abedin and Meharg, 2002). Furthermore, it is estimated that the 

As content of rice is over 10 times greater than that found in other cereals 

(Duxbury and Panaullah, 2007). The As concentrations in different plant 

tissues followed the order: root > straw > leaf > husk > grain (Liu et al., 2006).  

Arsenate (AsO4
3−) is an analog of phosphate (P) and competes forth same 

uptake carriers in the root plasmalemma of plants (Meharg and Macnair, 

1992). The negative effects of As on growth and productivity were promoted 

in the presence of P fertilization (Pigna et al. 2008). Arsenite may decrease all 

the endpoints more remarkably than arsenate (Liu et al., 2005) . In contrast, 

plants with added P, may a little or moderate decrease in grain yield. In winter 

wheat, As slightly reduced both root and shoot biomass. P supply slightly 

reduced root dry weights, but markedly increased shoot dry weights (Geng et 

al., 2006). 

Indeed, the capacity of keeping As(III) away from vital metabolic 

targets during the translocation and sequestration process in As-

hyperaccumulators, the exact nature As toxicity, the combination of 

mechanisms for toxicity such as inorganic phosphorus replacement, sulfhydryl 

binding, or ROS production, most vulnerable plants parts metabolism, the 

most critical molecular targets and protection via breeding or direct 

engineering, growth stimulation at low concentrations and sustainability, the 

possibility of As free edible part still remain unknown (Finnegan and Chen, 

2012).  

 

1.1.6 Arsenic toxicity to human health 

http://en.wikipedia.org/wiki/Arsenic
http://en.wikipedia.org/wiki/Arsenic
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Arsenic is a food chain contaminant and class I carcinogen (IARC, 2012). 

Foods are the main sources of As intake for humans who are not exposed to 

elevated As in drinking water. As a result of As-contamination in food and 

drinking water, it easily enters into the human body. The epidemiological 

studies showed that the chronic arsenic poisoning can cause serious health 

effects including cancer, dermal diseases, cardiovascular diseases, respiratory 

diseases, neurological diseases, hematological diseases, renal diseases, and 

hepatic diseases (Figure 1) (Jain and Ali, 2000; Liao et al., 2005; Huang et al., 

2006; Li et al., 2012). Dietary intake of total As ranges from 10 to 200 μg per 

person per day in various countries (WHO, 1989; Schoof et al., 1999). Food 

consumption may represent a significant risk cooked with highly As 

contaminated water. There is an evidence of As intake through cooked rice 

based on the As bioaccessibility. It highlights that a few grams of cooked rice 

(less than 25 g dry weight per day) cooked with highly As contaminated water 

is equivalent to the amount of As from 2 liter water containing the maximum 

permissible limit (10 μg As/l) (Signes-Pastor et al., 2012). 

Straw is an agricultural by-product, the dry stalks of cereal plants such 

as rice, wheat, maize, barley, sorghum.  Arsenic accumulation in rice straw at 

very high levels indicates that feeding cattle with such contaminated straw 

could be a direct threat for their health and also indirectly to human health 

through presumably contaminated bovine meat, milk and milk products 

(Abedin et al., 2002).  

Many researchers attempted to investigate the various pathways of 

human exposure to As (Figure 1) (Bae et al., 2002; Roychowdhury et al., 

2002; Alam et al., 2003; Duxbury et al., 2003; Meharg and Rahman, 2003; Al 

Rmalli et al., 2005). In humans, skin is the most sensitive target organ for 

chronic As exposure.  Skin lesions  like raindrop pigmentation, palmer and 
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plantar hyperkeratosis, hypo and hyper pigmentation are regarded as hallmark 

of As toxicity (Ahsan et al., 2006). Among these skin lesions, palmar and 

plantar hyperkeratosis are known as premalignant skin lesions, which later 

develop into skin cancer (Tseng, 1977) like basal cell carcinoma (BCC), 

squamous cell carcinoma (SCC) and Bowen’s disease (BD) (Banerjee et al., 

2011).  

People consume As from drinking water, cooked water and from 

contaminated foodstuffs in the worst As-affected areas of Bengal delta plain, 

India. The toxicity of As in human system were dependent on the gender, age 

and exposure routes as well as nutritional status. Assessment on calories 

intake belongs to poor nutrition in the study areas. Cases of melanosis were 

higher compared to other dermal diseases (Samal et al., 2013). In another 

study, brittle nail, patchy alopecia, facial edema as well as nonpitting edema of 

the feet and rarely conjunctival congestion have been reported as signs of 

arsenical skin diseases (Stöhrer, 1991). It is well known that high levels of As 

are associated with increased risk for cardiovascular disease. Vice versa, long-

term exposure to low to moderate As levels was also associated with 

cardiovascular disease incidence and mortality (Moon et al., 2013). The 

surprising characteristic of As is that it may increase both malignant and non 

malignant respiratory disease. Ingestion of iAs in drinking water results in 

pulmonary effects manifested by cough, chest sounds in the lungs and 

shortness of breath (Mazumder et al., 2000). In addition, chronic exposure to 

iAs is associated with lower intelligence quotient (IQ) and learning disabilities 

as well as memory impairment. There was a dose-dependent relationship 

between As levels in water and poor performance scores on intelligence 

measures. Comparing with different studies, children exposed to >50 μg/l 

arsenic had poorer intellectual performance than those exposed to < 2 μg/l) 
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resulted in no measurable effects on IQ, moderate exposures (142 μg/L and 

190 μg/l) resulted in decreases of 5 and 10 IQ points, respectively (Tyler and 

Allan, 2014). Moreover, hematological disorders have been reported in acute 

and chronic As poisoning. Anemia, leucopenia, and thrombocytopenia were 

found exposed to As in drinking water in Niigata Prefecture, Japan, half of the 

patients having arsenical skin lesions. Likewise, West Bengal on 156 people 

exposed to arsenic-contaminated water (50-14,200 µg/L) showed incidence of 

anemia in 47.4% of cases (Mazumder and Dasgupta, 2011). Chronic kidney 

disease is an important global health problem. In a recent review, there was 

evidence of a positive association between As exposure and kidney disease 

mortality. Assessment of a small number of studies with three or more 

categories showed a clear dose-response association between As and prevalent 

albuminuria and proteinuria, but not with chronic kidney disease outcomes 

(Zheng et al., 2014). Futhermore, the hepatotoxic effect of As has long been 

recognized. From hospital-based studies on arsenicosis, hepatomegaly was 

found in 76.6% in West Bengal, India. Prolong drinking of As-contaminated 

water is associated with hepatomegaly. Predominant lesion of hepatic fibrosis 

appears to be caused by As induced oxystress (Mazumder, 2005). Arsenic was 

shown to adversely impact reproductive and child health, as it was shown to 

cross the placenta and cause low birth weight, and fetal loss and infant 

mortality (Hopenhayn et al., 2003; Rahman et al., 2010), adverse pregnancy 

(Hasnat, 2005). There are increasing reports of chronic arsenicism worldwide, 

including cutaneous malignancies as also cancer of internal organs, like 

bladder cancer (Steinmaus et al., 2003) lung cancer, kidney and liver cancer 

(Chen and Ahsan, 2004; Ahsan et al., 2006; Pimparkar and Bhave, 2010; 

Banerjee et al., 2011).   
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More than 700,000 people in the South and East Asian region have been 

affected by arsenicosis and As-related diseases, especially skin and internal 

(lung, bladder, kidney) cancers (Rahman et al., 2009). A cancer epidemiology 

study in Antofagasta found that As exposures in early life were strongly 

associated with increased mortality from bladder cancer, laryngeal cancer, 

liver cancer, and chronic renal disease in adults younger than 50 years old 

(Smith et al., 2012). Similar pattern of cancer risk was demonstrated in people 

chronically exposed to elevated levels of As in groundwater in northern 

Argentina (Aballay et al., 2012). A growing concern over the incidence of 

widespread human exposure of As has been seriously noticed during the past 

three decades globally (Nordstrom, 2002; Kapaj et al., 2006; Nriagu et al., 

2007; Bundschuh et al., 2009). Therefore, it is strongly recommended a total 

understanding of the adverse effect of this carcinogen on health, potential 

molecular mechanism and thus paving the strategies to intervene.  

 

1.2 Layered double hydroxide (LDH) 

Layered double hydroxides (LDHs), or the so-called anionic clays, consist of 

layers of MII and MIII cations which are octahedrally co-ordinated by six 

oxygen anions, as hydroxides (Wells, 1984) and are host-guest materials that, 

owing to their potential application in these and other areas, have recently 

gained much attention (Roy et al., 1992). These layers exist with a similar 

layered structure to that exhibited by natural Mg(OH) , also known as brucite. 

The substitution of M cations into the brucite-like hydroxide layer imparts an 

overall positive charge on the octahedral layer (Reichle, 1986).  

In recent decades, a class of anionic clays known as layered double 

hydroxides (LDHs) or hydrotalcite-like compounds has attracted considerable 

attention from both industry and academia (Williams and O'Hare, 2006). 
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Although LDHs exist as naturally occurring minerals (e.g., green rusts), they 

are also relatively simple and economical to synthesize. The structure of 

LDHs is based on positively charged brucite-like sheets and the positive 

charges are balanced by intercalation of anions in the hydrated interlayer 

regions. LDH have relatively weak interlayer bonding and as a consequence, 

exhibit excellent ability to capture and exchange organic and inorganic anions 

(Cavani et al., 1991; Williams and O'Hare, 2006; Goh et al., 2008; Wang et 

al., 2009; Chetia et al., 2012). Thus, unlike other anion adsorbents, such as 

noncrystalline or poorly crystalline Al- and Fe-(hydr)oxides, on which 

contaminants are adsorbed on their external surfaces, the internal surface of 

each individual hydroxide sheet in LDHs can provide binding sites for 

contaminants in addition to those on their external surfaces. Because of these 

unique characteristics, LDH materials usually show a higher adsorption 

capacity for the anions in solution. 

In the last decade studies have been carried out on the removal of As 

[mainly As(V)] from contaminated waters using different forms of LDHs as 

sorbents (You et al., 2001; Yang et al., 2005; Goh et al., 2008; Grover et al., 

2009; Violante et al., 2009; Wang et al., 2009; Caporale et al., 2011; Park and 

Kim, 2011; Chetia et al., 2012). Arsenate was usually removed more easily 

than As(III) by Mg–Al-LDHs. It was demonstrated that As(III) is sorbed on 

chloride-LDHs (You et al., 2001) but not on carbonate-LDHs. In fact, As(III) 

is much more difficult to remove than As(V) both by calcined and uncalcined 

LDHs (Yang et al., 2005). 

However, few studies have been carried out on the removal of As by 

Mg–Fe-LDH (Carja et al., 2005; Carja et al., 2008; Türk et al., 2009; Türk and 

Alp, 2010; Caporale et al., 2011; Park and Kim, 2011), but all of them were 

devoted to As(V) and not to As(III) sorption. Furthermore, the effect of 
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foreign ligands on the sorption/desorption of As on/from LDHs has received 

some attention, but the anions taken into consideration were usually chloride, 

carbonate, nitrate, sulphate and phosphate (You et al., 2001; Yang et al., 2005; 

Wang et al., 2009), whereas poor attention has been dedicated to the effect of 

other inorganic ligands (e.g. selenite and selenate) and low molecular mass 

organic anions, which often are present in As-contaminated waters (Caporale 

et al., 2011). 

Recently, it has been demonstrated that Mg–Fe-LDHs was efficient 

sorbents for the removal of As(V) from contaminated waters, especially those 

containing Fe versus Al. The sorption and desorption of As(V) on/from these 

minerals in the absence or presence of selected organic and inorganic ligands 

were affected by pH, residence time, nature and concentration of competing 

anions (Caporale et al., 2011). In contrast, the capacity of LDHs to sorb 

As(III) in presence of competing ligands has received scant attention (You et 

al., 2001) and deserves to be studied in detail. Furthermore, to our knowledge 

till today the sorption/desorption of As(III) on/from a Fe-based LDH was not 

studied. 

In particular, combination of two dimensional layered material and 

intercalation technique offers new area for developing nanohybrids with 

desired functionality. Nanohybrids have composites function and most 

biomolecules that are negatively charged can be incorporated between 

hydroxide layers as charge compensating anions through ion exchange. 

Mineral of this family is Hydrotalcite (Mg-Al-CO3). LDHs have technological 

importance in catalysis, separation technology, optics, medical science and 

nanocomposite material engineering (Khan et al., 2001). 

Research on LDHs (i.e. Uncalcined carbonate-LDHs, uncalcined 

chloride-LDHs, uncalcined nitrate-LDHs, uncalcined and calcined Mg–Al 
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LDHs, calcined LDHs such as Mg–Fe LDHs) were investigated for their 

adsorption characteristics with oxyanions (e.g. As(III)) (Kovanda et al., 1999; 

Manju et al., 1999; You et al., 2001; Yang et al., 2005; Gillman, 2006; Shibata 

and Murayama, 2006). 

The charge density and the anion exchange capacity of the LDHs may 

be controlled by varying the M2+/M3+ ratio. However, a broad spectrum of 

charge-balancing anions may be incorporated, namely halides, oxyanions, 

silicates, polyoxometalate anions, complex anions, and organic anions 

(Newman and Jones, 1998). 

The removal of As(III) from water by hydrotalcite was characterized. 

The maximum removal to be 78.2% (Manju et al., 1999). In addition, calcined 

Mg-Al-CO3 LDH is a promising adsorbent for the removal of trace levels of 

As. 

Hydrotalcite- and hydrocalumite-type LDH can be used for removal of 

As(III) from solutions. Calcined carbonate form was also effective in removal 

of As(III) from contaminated water. In case of hydrotalcites the mechanism of 

uptake was topotactic exchange. The kinetics study showed that anion 

exchange process was very fast and apparently attained a steady-state. 

Arsenite removal was found to be 87.5% and 83.6% with the nitrate forms of 

hydrotalcite and hydrocalumite, respectively (Grover et al., 2009). 

The LDH samples (LDH-Cl and LDH-CO3) sorbed more PO4 than 

As(V), but after calcination LDH-CO3 showed a greater capacity to sorb both 

the oxyanions. Competition in sorption between PO4 and As(V) was affected 

by pH, reaction time, surface coverage and sequence of addition of the anions. 

The final As(V) sorbed/phosphate sorbed molar ratio (rf) increased with 

reaction time or by adding As(V) before phosphate, but decreased by 

increasing pH and by adding phosphate before As(V) (Violante et al., 2009).  
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However, LDHs have several shortcomings that may limit their large-

scale applications for oxyanion removal such as i) precursor metals could be 

released in the solution, particularly at lower pH values, ii) regeneration of the 

spent LDHs can be costly, iii) high basicity would be introduced to the 

product water if the calcined LDHs are used.  

In conclusion, it can be stated that, i) LDHs offer technical as well as 

economical merits in treating waters and wastewaters containing harmful 

oxyanions (Gillman, 2006), ii) they consist of hydroxides of common and 

abundant metals on the earth and can be synthesized economically (Cavani et 

al., 1991), iii) oxyanion adsorption process using LDHs shows considerably 

faster kinetics in comparison to most of the biological treatment processes 

(Yang et al., 2005), iv) The main advantages of LDHs over the conventional 

anionic exchange resins include their higher anion exchange capacity for 

certain oxyanions and their good thermal stability (Das et al., 2004), v)  LDHs 

can be fully regenerated in a short time for reuse (Kuzawa et al., 2006).  

Furthermore, some other important factors that may influence the 

efficiency of oxyanion adsorption on LDHs including the presence of 

competitive anions, LDHs/oxyanions ratio, temperature, nature of LDH 

precursor metals, crystallinity of LDHs, layer charge and interlayer anion 

charge of LDHs, LDH particle sizes, and calcination effect.  

 

1.3 Ferrihydrite 

Ferrihydrite is one of the most ubiquitous iron (oxyhydr)oxides and identified 

by poorly crystalline to amorphous phase with stoichiometry near 

5Fe2O3·9H2O (Oremland and Stolz, 2003). It is the solid formed upon rapid 

hydrolysis of ferric iron solutions at 20–30°C (Dzombak, 1990). Despite the 

ubiquity of ferrihydrite in natural sediments and its importance as an industrial 
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sorbent, the nanocrystallinity of this iron oxyhydroxide has hampered accurate 

structure determination by traditional methods that rely on long-range order 

(Michel et al., 2007). 

It is well evaluated that Ferrihydrite has fresher and higher adsorption 

capacity. Its large surface area, strong adsorptive properties, and low cost 

make it an attractive material for removal of both cationic and anionic 

impurities from wastewater and drinking water. Ferrihydrite readily adsorbs 

arsenic (V) in the form of arsenate anion (AsO4
3−), but probably the most 

effective method of removal of As from aqueous solutions is through 

coprecipitation of As with ferrihydrite (Richmond et al., 2004). 

Moreover, iron oxides, including the poorly crystalline iron oxides, e.g., 

ferrihydrite, have a strong affinity for both As(III) and As(V). The retention of 

As(III) and As(V) is predominantly by ligand exchange with surface structural 

OH2 and/or OH- at surface adsorption sites. The retention of both As(III) and 

As(V) is strongly pH dependent, but with opposite trends. At low to moderate 

As adsorption levels, the adsorption envelopes of As(III) and As(V) usually 

cross within the pH range of 6-7.5, i.e., ferrihydrite exhibits a relatively 

greater retention of As(V) at lower pH values, whereas As(III) is more 

strongly retained at higher pH values. As(III) is less strongly retained than 

As(V) at pH < 6 (Jain et al., 1999). Viceversa, there is a discrepancy between 

theoretical considerations and experimental observations. Several studies 

concluded that As(V) adsorption is pH-dependent whereas As(III) adsorption 

is less affected by pH (Jeong et al., 2007; Maiti et al., 2008). 

Arsenate was better adsorbed than As(III) on ferrihydrite at a low initial 

concentration, while the opposite occurred at a high initial arsenic 

concentration (Jain and Loeppert, 2000). It was reported that As(V) adsorption 

was greater than As(III) adsorption at a lower pH (4) (Raven et al., 1998) 

http://en.wikipedia.org/wiki/Arsenic
http://en.wikipedia.org/wiki/Arsenic
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whereas As(III) adsorption was greater at a higher pH (Dhaka Community 

Hospital (DCH), 1997) or at high As concentrations.  

Some important point regarding ferrihydrite: i) It can be effectively 

used to achieve a low level of As in drinking water supplies for small 

communities ii) The isotherm plots for iron oxide-coated sand (IOCS) and 

ferrihydrite (FH) suggested that the As adsorption can be best described by the 

Freundlich isotherm at the range studied iii) the As adsorption capacities of 

IOCS and FH were estimated at 18.3 and 285 μg/g, respectively iv) the large 

difference in surface area could be the reason that the adsorption capacity of 

FH was higher compared to the adsorption capacity of IOCS v) the results of 

the speciation studies with natural water containing As were encouraging and 

showed that the speciation protocol adopted in this study, using nitric acid 

preservation, can be adopted in the field vi) speciation studies with natural 

water showed that the particulate and soluble As contributed 11.4 and 88.6%, 

respectively, of the tAs present in the natural water (Thirunavukkarasu et al., 

2003). 

Contrary to the theoretical prediction that As(V) should adsorb more 

strongly than As(III) at pH values below the point of zero charge (pzc) of 

ferrihydrite of about 7 to 8, As(III) more or less outcompeted As(V) across the 

pH scale from 4 to 10. At low pH, As(V) impedes the adsorption of As(III) but 

to a lesser degree than As(III) impedes As(V) adsorption at a pH above 6, 

which is below the PZC of ferrihydrite. The effect of As(III) on the adsorption 

of As(V) increased with an increase in pH, and the adsorption of As(V) was 

almost absent at a pH of 8 to 9 (Qi and Pichler, 2014). 

It has been demonstrated that As(III) sorption onto two-line ferrihydrite 

is considerably fast and the equilibrium is achieved within the reaction time of 

3 h. The two-line ferrihydrite is an efficient sorbent for arsenite due to its 
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peculiar amorphous characteristic, large surface area, and high PZC. The 

results indicated that As(III) has a strong affinity for two-line ferrihydrite and, 

in particular. The mechanism for this high retention of As(III) by twoline 

ferrihydrite was elucidated by spectral evidence and structural data obtained 

by X-ray absorption spectroscopic measurements (Kim et al., 2014). 

The ability of sulfhydryl ligands to compete with ferrihydrite for As(III) 

was tested in various anoxic mixtures of both adsorbents. It was documented 

that sulfhydryl ligands are highly competitive As(III) complexing agents that 

can stabilize As in its reduced oxidation state even under prolonged oxidizing 

conditions. These findings are particularly relevant for organic S-rich semi-

terrestrial environments subject to periodic redox potential changes such as 

peatlands, marshes, and estuaries (Hoffmann et al., 2014). 

At relatively high As concentrations, As(III) reacted faster than As(V) 

with the ferrihydrite, i.e., equilibrium was achieved sooner, but As(V) 

adsorption was faster at low As concentrations and low pH. Adsorption 

maxima of approximately 0.60 (0.58) and 0.25 (0.16) molAs molFe
−1 were 

achieved for As(III) and As(V), respectively, at pH 4.6 (pH 9.2 in 

parentheses). The results of this study show that both As(III) and As(V) have 

strong affinities for ferrihydrite, and arsenite can be retained in much larger 

amounts than arsenate at high pH (approximately >7.5) or at high As 

concentrations in solution. Spectral evidence and structural data will be 

required to obtain molecular explanations for the high retention of arsenite by 

ferrihydrite (Raven et al., 1998). 

Adsorption was observed to increase with increasing pH to a maximum 

at pH 7–9, after which sorption decreased slightly with further increase in pH 

(Gao and Mucci, 2001). The sorption capacity of As(III) was greater than that 

of As(V) in the range of pH 4.0–11.0. The capability of organic and inorganic 
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ligands in preventing As sorption follows the sequence: 

SeO4 ≈ SO4 < OX < MAL ≈ TAR < CIT < SeO3 ≪ PO4. The efficiency of 

most of the competing ligands in preventing As(III) and As(V) sorption 

increased by decreasing pH, but PO4 whose efficiency increased by increasing 

pH (Zhu et al., 2011). Complete sorption of As(V) onto ferrihydrite was 

observed after 8 h, the kinetics of sorption of As(V) was evaluated for the 

reaction period 0.167 to 8 h for all the oxides for uniformity (Pigna et al., 

2006).  

 

1.4 Goethite 

Goethite, one of the most thermodynamically stable iron oxides, has been 

extensively researched especially the structure (including surface structure), 

the adsorption capacity to anions, organic/organic acid and cations in the 

natural environment and its potential application in environmental protection. 

For example, the adsorption of heavy metals by goethite can decrease the 

concentration of heavy metals in aqueous solution and immobilize; the 

adsorption to soil organic carbon can decrease the release of carbon and fix 

carbon (Liu et al., 2014). 

As oxyanions, considered as priority pollutants, were removed from dilute 

aqueous solutions by sorption onto synthetic goethite, a typical inorganic 

adsorbent (Matis et al., 1997). Goethite can be considered as a useful potential 

extractant for the removal of priority pollutants from dilute aqueous streams 

(Matis, 1994). 

The combination of bio-oxidation with goethite is a promising approach 

for As removal from contaminated groundwater, although in a model system 

at the present stage. The combined use of Aliihoeflea sp. strain 2WW and 
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goethite is 100-fold higher efficient in adsorbing 200µg/L As(V) than As(III). 

Resting cells of Aliihoeflea sp. strain 2WW oxidize 200  µg/l As(III) in 32 h. 

2WW-goethite system remove 95% of the As(III) present, meeting World 

Health Organization limit adequately (Corsini et al., 2014). 

The adsorption of As on goethite in a 0.7 mol/L NaCl solution 

decreases in competitive experiments with phosphate. The reduction in uptake 

is proportional to the initial amount of phosphate in solution (Gao and Mucci, 

2001). 

The surface properties of a well-crystallized synthetic goethite have 

been studied by acid–base potentiometric titrations, electrophoresis, and 

phosphate and As(V) adsorption. The charging behavior of the goethite 

surface is characteristic of a pure sample with no surface carbonate 

contamination. Phosphate and As(V) adsorption decrease as the pH increases 

in either 0.1 or 0.01 M electrolyte. However, the effects of pH and electrolyte 

concentration are more pronounced for phosphate than for As(V). Arsenate 

adsorption is almost independent on the electrolyte concentration. These 

differences in the adsorption behavior explain why several reports indicate 

that As(V) adsorbs more than phosphate on goethite whereas other reports 

indicate the opposite phenomenon (Antelo et al., 2005). 

Most of the articles deal with adsorption on goethite (α-FeOOH), which 

has become a model solid for adsorption studies because goethite is one of the 

most common and stable crystalline iron (hydr)oxides in natural environments 

and is also a solid that can be prepared in a very reproducible way with 

particles of controlled size and geometry. Whereas in some articles it is 

reported that As(V) adsorbs more strongly than phosphate, in contrast, the 

opposite behavior is observed (Gao and Mucci, 2001). It is found that the 

adsorption decreases as the pH increases in both cases. It is also reported that 
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although the affinity of both anions for the surface is high, that of As(V) is 

higher. No data for lower ionic strength were presented (Hongshao and 

Stanforth, 2001). The maximum sorption capacity is estimated to be 7.0×10−6 

mol m−2 goethite, under similar experimental conditions (Asta et al., 2009). 

Goethite and jarosite are effective As(V) sorbents in highly acidic pH, 

favouring the natural attenuation of arsenic in acid mine drainage (AMD) 

environments. These sorption capacities are in the wide range of that of low-

cost adsorbents or activated carbons at very low pH. pH has little effect on 

As(V) removal and ionic strength has no substantial effect on the arsenic 

sorption on jarosite and goethite. The competitive effect of sulphate, which is 

the main anion in AMD impacted waters, is greater on the As(V) sorption 

capacity of jarosite than on that of goethite (Asta et al., 2009). 

Different studies have been carried out on the As(III) and/or As(V) 

sorption on amorphous iron oxides (Wilkie and Hering, 1996; Goldberg and 

Johnston, 2001) and on the As sorption onto goethite, especially related to the 

As(V) sorption. In this sense, it was noted that the sorption of As(V) on 

goethite decreased with the increase of pH in the range 6–11,(Grossl and 

Sparks, 1995) and was showed that both As(V) and As(III) sorption on 

goethite decreased at neutral to alkaline and the variation of the sorption with 

the initial concentration of As(V) followed the Langmuir isotherm (Matis et 

al., 1997). A decrease of the As(V) sorption on goethite with pH while As(III) 

had a range of pH of maximum sorption between 5 and 9 (Manning et al., 

1998). In another study it was observed that the sorption of As (either As(III) 

and As(V)) is higher in a natural goethite than in a natural magnetite and 

higher for As(V) than for As(III) (Bowell, 1994). 

Among the various adsorbents, iron bearing minerals especially goethite 

was observed to be more effective and economically viable. Various synthesis 
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methods of goethite (Kosmulski et al., 2004) were reviewed and found that the 

particle size, shape and surface area of goethite depend on the Fe(III):OH 

ratio, the rate of base titration of iron salt, temperature of neutralization and 

time of crystallization. Most of the synthesis methods were based on 

neutralization of ferric nitrate with an alkali and subsequent aging spanning 

from 20 h to 336 h. The specific surface area of goethite specimens obtained 

by the above method ranges from 11m2 g−1 to 150 m2 g−1 (Kosmulski et al., 

2004).  

The adsorption amount of goethite to As(V) decreased from 4.7 to 1.1 

mg g-1 as the pH increased from 5 to 8 (Lakshmipathiraj et al., 2006). 

Additionally, competitive adsorption on goethite also has been the subject of 

much research because the competitive adsorption results at least to some 

extent, affects the bioavailability of nutrients and immobilization of toxic 

chemicals, such as the competitive adsorption between phosphate and 

sulfate/As (Gao and Mucci, 2003). 

Both hematite and goethite are able to adsorb more than 80% of As, 

whatever the initial concentration may be, at natural pH water,. The iron 

oxides used in this work should be suitable candidates as sorbents for As(V) 

removal technologies (Mamindy-Pajany et al., 2009). 

Arsenite adsorbed on goethite under air dry conditions was not stable. After 20 

days, more than 20 % of absorbed As(III) was oxidized to As(V). The 

adsorption-oxidation system composed of goethite may be significant in 

decreasing As toxicity in terrestrial environments (Sun and Doner, 1998).  

The competitive adsorption of phosphate and As on goethite was 

investigated to better understand the bonding mechanisms for the two ions. 

The anions were added both simultaneously and sequentially. When added 

simultaneously, the two ions were adsorbed about equally, with the total 
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surface coverage being slightly greater than for either ion alone. When added 

sequentially, the extent of exchange for the first ion depended on the 

equilibration time before the second ion was introduced the longer the 

equilibration time the greater the exchange (Hongshao and Stanforth, 2001). 

The adsorption of As(V) and As(III) on goethite and ferrihydrite  in the 

presence of several naturally occurring organic ligands was investigated. They 

found that both As(V) and As(III) adsorption may be decreased which 

depended on the pH of the system, the type of Fe oxide, and the type of 

organic ligand (Grafe et al., 2002).  

The adsorption of silicic acid at all pH values and concentrations 

decreased the rate of As adsorption and the total quantity of As adsorbed. 

Furthermore, the quantity of As adsorbed decreased as the surface 

concentration of silicic acid increased. No clear pH trend was observed for the 

inhibition of consist arsenite adsorption in the presence of silicic acid At a 

silicic acid concentration of 0.10 mM, arsenite adsorption was reduced the 

greatest at a pH value of 4 followed by a pH value of 8. At a silicic acid 

concentration of 1.0 mM, arsenite adsorption was reduced the greatest at a pH 

value of 8 followed by equal quantities at pH values of 4 and 6 (Waltham and 

Eick, 2002). 

Maximum As desorption by goethite was found at pH 8.0 and by 

clinoptilolite at pH 10.0 and 0.01 M KCl. The experimental results of As 

adsorption were comparable successfully fitted to Freundlich and Temkin 

isotherms (Dimirkou et al., 2009). 
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2.1 Aims of the present work 

Arsenic contamination in terrestrial and aquatic ecosystems is a very 

important environmental issue due to its negative impact on livestock and 

human health. With greater public awareness of As poisoning in animal and 

human nutrition, there has been a growing interest in developing regulatory 

guidelines and remediation technologies for mitigating As-contaminated 

ecosystems. However, numerous treatment technologies are available to 

reduce As concentrations in contaminated waters (Williams and O'Hare, 

2006). The most effective As treatment processes include adsorption, ion 

exchange, reverse osmosis, and nanofiltration (Mohan and Pittman, 2007). 

The majority of As removal technologies from contaminated waters treat 

As(V) much more effectively than As(III), so a pre-oxidation step is 

recommended for source waters containing As(III) at significant 

concentrations (Frankenberger Jr., 2002). These As treatment technologies 

have been successfully applied to remove trace As concentrations from 

contaminated waters, but most of them are cost-prohibitive for small 

communities or developing countries, which are likely to face expensive and 

technically imposing challenges to face the maximum contaminant level of 10 

μg As L-1. Several models show a wide range of costs for the different 

technologies, which can hinder their implementation to As-contaminated 

sources (Pirnie, 1999). For these reason, it is extremely important to 

investigate and promote new As remediation technologies able to remove As 

from contaminated areas in an inexpensive and safe way.  

In the present work, the competition between As(III) with organic and 

inorganic ligands for the sorption sites on LDH, obtained by coprecipitating 

Mg with or Fe (Fe-Mg-LDH), was studied. LDHs are relatively simple and 

economical to synthesize by coprecipitation methods under laboratory 
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conditions (Cavani et al., 1991), thus they can be produced in large quantities. 

LDHs also form in soil environments (e.g., green rusts) and present peculiar 

sorption capacities (Violante et al., 2008). In this work we studied the sorption 

of As(III) onto a LDH containing Mg and Fe (Mg–Fe-LDH), as affected by: 

(i) pH; (ii) the presence of increasing concentrations of organic [citrate (CIT) 

and oxalate (OX)] and inorganic [phosphate (PO4), selenite (SeO3) and 

sulphate (SO4)] ligands, (iii) the effect of residence time on the desorption of 

As(III) by these ligands, and; (iv) the kinetics of desorption of As(III) by PO4. 

Furthermore, competitions in sorption of these anions on LDHs have received 

scant attention.  

Ferrihydrite is known to play an important role in the natural 

environment. Its large surface area, strong adsorptive properties, high 

adsorptive capacity and low cost make it an attractive sorbent for removal of 

As. In addition, Goethite, one of the most thermodynamically stable iron 

oxides has been extensively researched. The adsorption of As by Goethite can 

decrease the concentration of As in aqueous solution. The aim of this 

experiment was to study the As(III) removal from contaminated waters by Fe-

based minerals, by using Ferrihydrite [non-crystalline Fe-(hydr)oxide)] and 

Goethite [crystalline Fe-(hydr)oxide] as sorbent media in batch experiments. 

In particular, it was studied: i) the Langmuir isotherms of As(III) on 

Ferrihydrite and Goethite at pH 6.0; ii) arsenite sorption at different pHs; iii) 

arsenite sorption in presence of selected competing ligands, such as citrate 

(CIT), molybdate (MoO4), oxalate (OX), phosphate (PO4), selenite (SeO3), 

selenate (SeO4), and sulphate (SO4).  

To assess the possible health risk to humans consuming crops irrigated 

with As contaminated water, information is needed regarding the soil-plant 

transportation of As and to minimize the accumulation of As in plants 
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consumed directly by humans, farm animals or wildlife (Zhao et al., 2010). 

Apart from the health risk, the presence of As in irrigation water and/or in soil 

at an elevated level could hamper normal growth of plants with toxicity 

symptoms such as biomass reduction (Caporale et al., 2013) and yield losses 

(Jiang and Singh, 1994). The spread of contaminants in soil can be obstracted 

by the soil stabilization technique. The application of stabilizing agents to 

contaminated soils is a remediation technique that reduces both mobility and 

bioavailability of trace elements (Kumpiene et al., 2008). Incorporation of 

low-cost, widely available materials as humic acid into soil for As 

immobilization offers various potential advantages over other methods such as 

cost, simple methodology and low environmental impact. In the present work 

it was carried out an experiment on an edible plant, the carrot (Daucus carota 

L.), irrigated with different solutions containing As(III) and grown in a As-

uncontaminated soil amended with increasing amounts of stabilized humic 

acid and inorganic fertilizer. The aim of this experiment was to study the 

influence of the organic amendment (i.e. humic acid) and inorganic 

fertilization on: i) the mobility and phyto-availability of As in soil; ii) the 

growth of the carrot plants; iii) the As uptake and translocation in plant 

compounds from contaminated systems. Carrot was selected as the test plant 

of this study, because this crop is grown in several As contaminated areas 

throughout the world and suffers from As toxicity.  
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3.1 Study on the LDH 

3.1.1 Synthesis and characterization of the Mg–Fe-LDH 

The Mg–Fe-LDH was prepared by the coprecipitation method described by 

Caporale et al., (2011). Briefly, solutions containing MgCl2.6H2O and 

FeCl3.6H2O (initial Mg/Fe molar ratio equal to 2) were slowly added with 

stirring at 20°C to a NaOH solution at pH 10.0. The pH was maintained 

constant for 24 h by adding 2 mol/l L
_1 NaOH using an automatic titrator 

(Potentiograph E536 Metrom Herisau) in conjunction with an automatic 

syringe (burette 655 Dosimat), at 20°C. The suspension was centrifuged at 

10,000g for 30 min, rinsed five times with deionized water and then dialyzed 

for 21 d, freeze dried and lightly ground to pass through a 0.315 mm sieve.  

In our previous work Caporale et al., (2011) the nature of this material 

was studied by X-ray diffraction (XRD) and Fourier Transform Infrared 

(FTIR) spectroscopy and its surface area (273 m2 g
_1) was determined by H2O 

sorption at 20% relative humidity. We showed that this Mg–Fe-LDH sample 

exhibited to XRD and FT-IR characteristic peaks and bands of hydrotalcite, 

even though relatively broad and weak. By prolonging the aging of this 

material for 30 d at 50°C these peaks and bands appeared stronger and sharper 

(see Caporale et al., (2011), their Figs. 1 and 2B). We considered the material 

aged at 20°C a mixture of materials of different crystallinity, size and nature, 

precisely LDH (mainly) and short-range ordered oxides. This material could 

be similar to that synthesized by (Park and Kim, 2011) at 30°C, which they 

called ‘‘amorphous’’ Mg–Fe-LDH, in spite of their sample showed distinct 

XRD peaks. 

 

3.1.2. Arsenite sorption at different pHs 
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Suitable volumes of 0.1 mol L
_1 solution containing sodium arsenite (NaAsO2) 

were added to flasks containing 100 mg of Mg–Fe-LDH, in order to have 

initial As(III) concentrations in the range of 5×10˗4 to 8.75×10
_3 mol L

_1. Each 

suspension was shaken for 24 h at 20°C on a magnetic stirrer, keeping a 

constant pH of 6.0 or 9.0 by adding 0.1 or 0.01 mol L
_1 HCl or NaOH with the 

automatic titrator/syringe. 

The sorption of As(III) onto the Mg–Fe-LDH was also carried at 

different pH values (from 4.0 to 10.0) by adding a suitable amount of As(III) 

(1875 mmol kg
_1, a quantity slightly higher than that necessary to reach a 

maximum sorption at pH 6.0, as determined from the sorption isotherm) to 

100 mg of Mg–Fe-LDH. The suspensions were shaken for 24 h at 20°C on a 

magnetic stirrer and their pHs were kept constant by adding 0.1 or 0.01 mol 

L
_1 HCl or NaOH. 

The final volume of the suspensions was adjusted to 20 mL with 0.01 

mol L
_1 KCl and the LDH/solution ratio was 5 g L

_1. Finally, the suspensions 

were centrifuged at 10,000g for 20 min and then filtered through 0.22-µm 

membrane filters. The filtrates were stored at 2°C until analysis. The 

experiments were conducted in triplicate. 

 

3.1.3 Sorption of As(III) in presence of organic and inorganic 

ligands 

To flasks containing 100 mg of Mg–Fe-LDH suitable amounts of solutions 

containing As(III) as NaAsO2 (1000 mmol kg
_1) and organic (CIT as 

C6H5Na3O7.2H2O or OX as Na2C2O4) or inorganic (PO4 as KH2PO4, SeO3 as 

Na2SeO3.5H2O or SO4 as MgSO4.7H2O) ligands were added, in order to have 

initial ligand/As(III) molar ratios (R) of 1, 2, 3 or 5. The As(III) surface 



MATERIALS AND METHODS 

57 | P a g e  

 

coverage of the Mg–Fe-LDH was about 75% (based on the sorption isotherm 

at pH 6.0). The suspensions were shaken for 24 h at 20°C on a magnetic stirrer 

and their pHs were kept constant at 6.0 as described before. The final volume 

was adjusted to 20 mL with 0.01 mol L
_1 KCl and the LDH/solution ratio was 

5 g L
_1. Finally, the suspensions were centrifuged at 10,000g for 20 min and 

then filtered through 0.22-µm membrane filters. The filtrates were stored at 

2°C until analysis. The experiments were conducted in triplicate. 

 

3.1.4 Effect of residence time on the desorption of As(III) by 

organic and inorganic ligands 

To 100 mg of Mg–Fe–LDH were added suitable amounts of 0.1 mol L
_1 

NaAsO2 solution, so that the As(III) surface coverage of the anionic clay 

(1000 mmol kg
_1) was about 75% (based on the sorption isotherm at pH 6.0). 

The suspensions were shaken for 24, 72 or 168 h at 20°C on a magnetic stirrer 

and their pHs were kept constant at 6.0 as described before. All the As(III) 

added was completely sorbed within 24 h systems. Organic (CIT or OX) or 

inorganic (PO4, SeO3 or SO4) ligands [initial ligand/As(III) molar ratios (R) of 

1 and 3] were then added to all these As(III) sorbed LDH systems. The final 

volume was adjusted to 20 mL with 0.01 mol L
_1 KCl and the LDH/solution 

ratio was 5 g L
_1. The suspensions were kept at pH 6.0 with 0.1 or 0.01 mol 

L
_1 HCl or NaOH for further 24 h at 20°C and then centrifuged at 10,000g for 

20 min and filtered through 0.22-µm membrane filters. The filtrates were 

stored at 2°C until analysis. The experiments were conducted in triplicate. 

 

3.1.5 Kinetics of desorption of As(III) by PO4 
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The kinetic study was carried out using the 24 h As(III) sorbed Mg–Fe-LDH 

(1000 mmol kg
_1) system (described in the previous section), to which suitable 

amounts of PO4 were added, in order to have initial PO4/As(III) molar ratios 

(R) of 1 and 3. The final volume was 20 mL and the LDH/solution ratio was 5 

g L
_1. The amount of As(III) desorbed by PO4 was determined from 0.08 to 50 

h at pH 6.0 and 20°C. The suspensions from each sampling period were 

centrifuged at 10,000 g for 20 min and then filtered through 0.22-µm 

membrane filters. The filtrates were stored at 2°C until analysis. The 

experiments were conducted in triplicate. 

 

3.1.6 Arsenite determination 

The concentration of the As(III) in the filtrates was determined by flow-

injection hydride generation atomic absorption spectrometer, using a Perkin–

Elmer AAnalist 700 interfaced with the FIAS 100 hydride generator. The 

reagents used for HG-AAS were 10% (v/v) HCl, 0.2% NaBH4 in 0.05% 

NaOH. The samples were reduced prior to analysis with 5% (w/v) KI and 5% 

(w/v) ascorbic acid to improve sensitivity. The As detection limit provided by 

this method was 2.7×10
_8 mol L

_1.  

The amount of As(III) sorbed was determined by the difference between 

the amount initially added and that determined in the filtrates. The ±values in 

the tables indicate the standard deviation. The intraday repeatability study was 

carried out by the analysis of the same standard solution five consecutive 

times (n = 5) in the same day under the same conditions. The interday 

precision was carried out for three successive days using the same conditions. 

The relative standard deviation of these measurements ranged from 1.5% to 

3.6%. 
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3.2 Study on the Ferrihydrite and Goethite 

3.2.1  Synthesis and characterization of the Ferrihydrite and 

Goethite 

Ferrihydrite was synthesized by precipitating 0.1 mol L-1 Fe(NO3)3 at pH 5.5 

with 0.5 mol L-1 NaOH at a rate of 0.5 mL min-1 (Cornell and Schwertmann, 

1996). The suspension’s pH was maintained constant for 24 hours by adding 

2.5 mol L-1NaOH using an automatic potentiometric titrator(Potentiograph 

E536 MetromHerisau), at room temperature (around 20°C). 

Goethite was prepared by precipitating 0.5 mol L-1 Fe(NO3)3 at pH 12.0 

with slow addition of 1.0 mol L-1NaOH (Atkinson et al., 1968). The 

suspension was aged for 7 days at room temperature (around 20°C)and then 

for 20 days on a heated plate at 65°C. During all the aging process, 

suspension’s pH was maintained constant by adding 1.0 mol L-1NaOH using 

the automatic potentiometric titrator. 

Subsequently, both Ferrihydrite and Goethite suspensions were 

centrifuged at 10,000 rpm for 30 min, rinsed five times with ultrapure water, 

transferred into porous dialysis membranes for being dialyzed with deionized 

water for 16 days [molecular weight (MW) cut off of 15000], freeze-dried, 

and lightly ground to pass through a 0.315 mm sieve. 

 

3.2.2 Arsenite sorption isotherms at pH 6.0 

Suitable volumes of 0.1 mol L-1 solution containing sodium arsenite (NaAsO2) 

were added to flasks containing 100 mg of either Ferrihydrite or Goethite, in 

order to have initial As(III) concentrations in the range of 5 · 10-4 to 4.0 

(Goethite) or 8.0 (Ferrihydrite) · 10-3 mol L-1. Each suspension was shaken for 
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24 h at 20 °C on a magnetic stirrer, keeping a constant pH of 6.0 by adding 0.1 

or 0.01 mol L-1HCl or NaOH with the automatic titrator. The final volume of 

the suspensions was adjusted to 20 mL with 0.01mol L-1KCl and the 

sorbent/solution ratio was 5 g L-1. Finally, the suspensions were centrifuged at 

10,000 x g for 20 min and then filtered through 0.22-µm membrane filters. 

The filtrates were stored at 2°C until analysis. The experiments were 

conducted in triplicate. 

 

3.2.3 Arsenite sorption at different pHs 

The sorption of As(III) on the Ferrihydrite and Goethite was also carried at 

different pH values (from 4.0 to 10.0) by adding a suitable amount of As(III) 

[400 (Goethite) or 1500 (Ferrihydrite) mmol kg-1, a quantity slightly higher 

than that necessary to reach a maximum sorption at pH 6.0, as determined 

from the sorption isotherms] to 100 mg of each sorbent. The suspensions were 

shaken for 24 h at 20 °C on a magnetic stirrer and their pHs were kept 

constant by adding 0.1 or 0.01 mol L-1HCl or NaOH.The final volume of the 

suspensions was adjusted to 20 mL with 0.01mol L-1KCl and the 

sorbent/solution ratio was 5 g L-1. Finally, the suspensions were centrifuged at 

10,000 x g for 20 min and then filtered through 0.22-µm membrane filters. 

The filtrates were stored at 2°C until analysis. The experiments were 

conducted in triplicate. 

 

3.2.4 Sorption of As(III) in presence of competing ligands 

To flasks containing 100 mg of either Ferrihydriteor Goethite,suitable 

amounts of solution containing As(III) as NaAsO2 (specifically: 870 mmol kg-

1 for Ferrihydriteand 230 mmol kg-1 for Goethite) and organic (CIT as 
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C6H5Na3O7 ∙ 2H2O or OX as Na2C2O4) or inorganic (MoO4 as 

Na2MoO4∙2H2O, PO4 as KH2PO4, SeO3 as Na2SeO3 ∙ 5H2O,SeO4 as Na2SeO4∙ 

10H2O or SO4 as MgSO4 ∙ 7H2O) ligands were added, in order to have initial 

ligand/As(III) molar ratios (R) of 1 or 3. The As(III) surface coverage of 

bothsorbents was about 70 % (based on the sorption isotherm at pH 6.0). The 

suspensions were shaken for 24 h at 20 °C on a magnetic stirrer and theirpHs 

were kept constant at 6.0 as described before. The final volume was adjusted 

to 20 mL with 0.01mol L-1KCl and the sorbent/solution ratio was 5 g L-1. 

Finally, the suspensions were centrifuged at 10,000 x g for 20 min and then 

filtered through 0.22-µm membrane filters. The filtrates were stored at 2°C 

until analysis. The experiments were conducted in triplicate.   

 

3.3 Study on the carrot plants (Daucus carrota L.) 

3.3.1 Soil preparation and characterization 

The soil used in this experiment was collected from the sub-surface layer (10-

30 cm) of a grassland in the Portici (Naples) area. The soil samples for carrot 

cultivation and chemical analysis, after air-drying, were passed through 5 and 

2 mm sieves respectively. 

Soil fractions (sand, silt and clay) were separated using a pipette and a sieving 

method, following a pretreatment with H2O2 to oxidize organic matter, and 

dispersion was aided by sodium hexametaphosphate. Soil pH was measured 

by potentiometry in distilled water (1:2.5 soil/water ratio). The soil organic C 

content was determined by wet digestion using the modified Walkley-Black 

procedure. For determination of CEC, the soil was extracted with 1 M 

NH4OAc at pH 7.0. The total soil N was determined using a NCS Elemental 

Analyzer (NA 1500 Series 2). Available P concentration was determined by 
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the colorimetric method using 0.5 M NaHCO3 as the extractant. The As 

background in the soil was determined by extracting the soil with concentrated 

HNO3 and HF at 5:1 ratio.  

 

 

3.3.2 Experimental design 

Carrot seeds (Daucus carota L.) were seeded into a polystyrene alveolar 

seedbed consisting of 90 holes (25 mm diameter, 40 mm depth) containing 

soil. At the moment of transplanting into pots containing 6 kg of soil (one 

plant per pot, 15 days after plant emerging), plants were placed in an unheated 

greenhouse. All of them were initially irrigated with As-uncontaminated water 

(first 5 days after transplanting) and thereafter irrigated for 60 days with water 

containing sodium arsenite (NaAsIIIO2, Sigma-Aldrich, USA) at two different 

concentrations: 3 (As 3) and 6 (As 6) mg As L
_1. The experiment included a 

control set of plants irrigated with As-uncontaminated water (control) for 60 

days. Constant volumes of irrigation waters were frequently added to each pot, 

in order to maintain the soil moisture at 65 % of the field capacity, avoiding 

any phenomenon of leaching. A basal fertilization, by organic or inorganic 

fertilizers, was also supplied to the carrot plants; in particular, two sets of 

plants were amended with half (1/2 O) and full (1 O) doses of organic liquid 

amendant (consisting of commercial humic acids extracted by leonardite: 

Energizer 70 WDG, Diachem, Italy) and other two sets of plants were 

fertilized with half (1/2 I) and full (1 I) doses of inorganic liquid fertilizer 

(consisting of NH4NO3, KNO3 and KH2PO4). To these set plants were 

provided the half (1/2 O and 1/2 I) and full (1 O and 1 I) amounts of NPK 

taken up by carrot during its entire life cycle (168 mg N, 82 mg P, 220 mg K). 
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The experiment also included a control set of unfertilized plants (no F). The 

pots were organized in a completely randomized design with 4 replicates for 

each treatment, and rearranged every 5 days. The watering of the carrot plants 

was stopped 4 days before harvesting. 

 

3.3.3 Chlorophyll A and B concentrations in carrot leaves 

1 mg leaves of each plant were sampled in order to determine the chlorophyll 

A and B contents. Extraction of chlorophylls from carrot leaves was carried 

out using 80% acetone in deionized water (v/v). One gram of fresh leaves was 

homogenized with 5 ml of acetone and shaken for 1 hour on a reciprocal 

shaker at 200 rpm. The homogenate was filtered through 0.22 µm filter and 

the residue was similarly extracted once again and filtered. The two filtrates 

were combined and the final volume was made up to 10 ml. All extracts were 

assayed using Bio-red Benchmark Microplate reader. Chlorophyll A and B 

contents (mg g−1 dry weight) were calculated by absorbance values at 663 nm 

(D 663) and 645 nm (D 645) using the formula of Arnon, (1949).  

3.3.4 Harvest and plant samples collection 

The carrot plants were harvested when they reached the typical market size 60 

days after transplanting. Roots and leaves were sampled separately at harvest 

time. Above-ground biomass was removed by cutting the base of the plant 1 

cm above the soil surface. The fresh tissues of the carrot plants were weighed, 

washed with deionized water to remove soil residues and then dried in an oven 

for 2 days at 70°C. Thereafter, dried plant tissues were weighed and then 

ground using a PM 200 ball mill (Retsch). 
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3.3.5 Determination of nonspecifically and specifically sorbed As 

in the soil 

Arsenic fractions in each soil sample were extracted using the first two step 

sequential extraction procedure (SEP). Briefly, one gram of each soil sample 

was shaken with 25 mL of a 0.05 M (NH4)2SO4 for 4 h at 20°C, on a 

reciprocal shaker at 150 rpm. Following the shaking, the suspensions were 

centrifuged for 15 min at 3500 x g and the supernatants were then filtered 

through 0.45-µm membrane filters (Step 1). Subsequently, each soil sample 

was shaken with 25 mL of a 0.05 M (NH4)H2PO4 for 16 h at 20 °C, on a 

reciprocal shaker at 150 rpm. Following the shaking, the suspensions were 

centrifuged for 15 min at 3500 x g and the supernatants were filtered through 

0.45-µm membrane filters (Step 2). The As fractions extracted by these two 

sequential steps were assumed to correspond to nonspecifically sorbed As 

(Step 1) and specifically sorbed As (Step 2). The concentration of the As 

fractions was determined as discussed below in the section 3.3.6. 

 

3.3.6 Measurement of As and P concentration in dried plant 

tissues and soil 

Dried root and leaf samples were digested in a microwave (Milestone, 

Digestor/Dring Ethos 900); 0.5 g of dried plant tissues were weighed into 

PTFE vessels and digested in 5 mL of HNO3 (65 %), 0.5 mL of HF (50 %) 

and 2 mL of H2O2. All solutions obtained were passed through a 0.22 mm 

filter and diluted to 50 mL with deionized water. Thereafter, the measurement 

of As and P concentrations was performed by a flow-injection hydride 

generation atomic absorption spectrometer (Perkine Elmer AAnalist 700 

interfaced with the FIAS 100 hydride generator), and a inductively coupled 
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plasma atomic emission spectroscopy (ICP-AES, Varian, Liberty 150), 

respectively. The As and P detection limits of these methods were 1.5 · 10
_3 

mg L
_1 and 1.2 · 10

_2 mg L
_1, respectively. All analyses were carried out in 

triplicate. Each analytical batch contained at least one reagent blank and one 

internationally certified reference material (CRM) such as oriental tobacco 

leaves CTA-OTL-1. 
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4.1 Study on the LDH 

4.1.1 Arsenite sorption isotherms at different pHs 

The Langmuir isotherms of As(III) onto the Mg–Fe-LDH at pH and 9.0 are 

depicted in Figure 2.  The shape of the isotherms indicates a good affinity of 

the harmful oxyanion for the sorption sites of the anionic clay. Greater 

amounts of As(III) were sorbed by Mg–Fe-LDH at pH 6.0 (Sm = 1621.7 mmol 

kg
_1) than at pH 9.0 (Sm = 1406.0 mmol kg

_1), probably because of the 

competition with hydroxyls ions, which have higher affinity for LDHs than 

As(III) ions (You et al., 2001). 

The sorption capacity of the Mg–Fe-LDH resulted to be much lower for 

As(III) than As(V) (Sm = 2595 mmol kg
_1, (Caporale et al., 2011). You et al., 

(2001) claimed that As(III) was not sorbed on Mg–Al-LDH because carbonate 

ions are preferentially sorbed and prevent As(III) exchange. Indeed, in the 

sample used in this work the presence of carbonate was significant (Caporale 

et al., 2011). 
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Figure 2 Sorption isotherms of As(III) onto Mg–Fe-LDH at 20°C and pH 6.0 

or 9.0, after 24 h of reaction time. 
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In addition, the Langmuir constant K of As(III) (Table 3) was around an 

order of magnitude smaller compared to that of As(V) (Caporale et al., 2011), 

indicating a much higher affinity of the Mg–Fe-LDH for As(V) than As(III). 

This trend was also found by other authors (Yang et al., 2005; Wang et al., 

2009; Xing et al., 2009; Wang et al., 2010), who ascertained a higher As(V) 

removal from aqueous solutions by Mg–Al-LDHs (Yang et al., 2005; Xing et 

al., 2009) or green rusts (Wang et al., 2010) compared to that of As(III). The 

difference in the total amounts sorbed of As(III) and As(V) on the LDH 

adsorbents may be related to the different species found in solution for these 

two forms of As with different oxidation states H2AsO4
_
 and HAsO4

2_
 versus 

H3AsO3). 

Table 3 Langmuir sorption capacity (Sm) and the constant K for As(III) as 

obtained from the sorption isotherms of the Fe-Mg-LDH at pH 6.0 and 9.0. 

Sample Surface 

area (m2 g-

1) 

pH Sm             

(mmol kg-1) 

K R2 

Fe-Mg-

LDH 

273 6.0 1621.7 

(5.94)a 

2.02 0.98 

9.0 1406.6 

(5.15)a 

1.22 0.97 

a Numbers in parenthesis indicate the amount of As(III) sorbed as mmol m-2× 

10-3
.
 

 

The sorption of As(III) onto Mg–Fe-LDH in the range of pH from 4.0 to 

10.0 is shown in Figure 3 and resulted to be significantly pH dependent. At pH 

4.0–5.0 the quantities of As(III) sorbed resulted to be constant, but at pH > 5.0 

they decreased. The rate of decline in the amount of As(III) sorbed was 

relatively constant from pH 5.0 to 9.0 (on average 66.6 mmol As(III)/pH unit), 
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whereas it was considerably higher between pH 9.0 and 10.0 (184.2 mmol 

As(III)/pH unit). The decrease in sorption of As(III) with increasing pH could 

be attributed to the increasing concentrations of hydroxyl ions which have an 

high affinity for LDH surfaces and at pH > 9.0 also to the repulsion between 

the negative charged As(III) ions (pKa = 9.2 and 12.1) and the negative 

charged LDH. According to (Goh et al., 2008; Park and Kim, 2011) the point 

of zero charge (pzc) of Mg–Fe-LDH was 8.9 and 9.8, respectively. (Caporale 

et al., 2011) found the same trend with As(V), but the rate of decline of its 

sorption with increasing pH was more pronounced than that of As(III). Similar 

results were also found by (Dixit and Hering, 2003; Zhu et al., 2011), who 

noted a higher rate of decline of the sorption of As(V) with increasing solution 

pH compared to that of As(III) onto ferrihydrite and Fe-oxide minerals, 

respectively. 
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Figure 3 Arsenite sorbed by Mg–Fe-LDH as a function of pH. 

 

4.1.2 Effect of organic and inorganic ligands on the sorption of 

As(III) 
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The sorption of As(III) in presence of increasing concentrations [initial 

ligand/As(III) molar ratios (R) of 1, 2, 3 and 5] of organic (CIT or OX) or 

inorganic (PO4, SeO3 or SO4) ligands on Mg–Fe-LDH, after 24 h of reaction at 

pH 6.0, is shown in Table 4 and Figure 4. The ligands efficiency (%) in 

preventing As(III) sorption on Mg–Fe-LDH was calculated by subtracting the 

amount of As(III) sorbed in presence of ligand from that sorbed in absence of 

ligand, divided by the amount sorbed in absence of ligand (Figure 4) (Violante 

and Pigna, 2002). 

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

SO
4

OX

SeO
3

CIT

PO
4

L
ig

a
n

d
 e

ff
ic

ie
n

c
y
 (

%
)

Ligand/As(III) molar ratio (R)  
 

Figure 4 The efficiency (%) of the ligands in preventing As(III) sorption on 

Mg–Fe-LDH as a function of ligand/As(III) molar ratio (R), after 24 h of 

reaction time at pH 6.0 and 20°C. Initial As(III) concentration was 1000 mmol 

kg
_1. 

Organic and inorganic ligands showed different capacities to compete 

with As(III) for the sorption sites of the Mg–Fe-LDH. Sulphate resulted to be 

the weakest among the competing ligands and its efficiency in preventing 

As(III) sorption on Mg–Fe-LDH surfaces ranged from 6.3 (R = 1) to 12.1% (R 
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= 5) (Table 4, Figure 4). The amount of As(III) sorbed in presence of OX was 

quite similar to that in presence of SO4 at R = 1, but at higher R values OX 

showed to have a relatively higher efficiency in inhibiting As(III) (16.6% at R 

= 5) (Figure 4). The efficiency of these anions in preventing As(III) sorption 

on this sorbent was also similar to that in reducing As(V) sorption (Caporale et 

al., 2011). 

 

Table 4  Amount of As(III) sorbed on Fe-Mg-LDH in presence of increasing 

concentrations of competing ligands, after 24 h of reaction time at pH 6.0 and 

20 °C. Initial As(III) concentration was 1000 mmol kg-1.  

Ligand As(III) sorbed (mmol kg-1) 
R a = 1 R a = 2 R a = 3 R a = 5 

SO4 936.9 ± 66.2 922.5 ± 83.5 893.2 ± 69.4 879.5 ± 57.4 
OX 932.8 ± 52.6 880.1 ± 63.7 859.5 ± 78.0 833.9 ± 61.5 

SeO3 834.1 ± 71.8 714.7 ± 44.5 668.4 ± 37.6 593.1 ± 48.2  
CIT 779.4 ± 47.9 617.1 ± 42.3 551.1 ± 43.8 432.0 ± 30.1 
PO4 763.4 ± 52.0 553.5 ± 33.9 465.3 ± 29.5 325.7 ± 18.8 

      a R indicates the initial ligand/As(III) molar ratio. Data are expressed as 

mean values ± SD (n = 3). 

 

Selenite resulted to be stronger than OX and SO4 in competing with 

As(III), showing an efficiency ranging from 16.6 (R = 1) to 40.7% (R = 5) 

(Figure 4). Selenite replaced more As(III) than As(V) (Caporale et al., 2011) 

from this Mg–Fe-LDH. In fact, at R = 5 its efficiency in preventing As(III) 

sorption was about two times greater than that in preventing As(V) fixation. 

The amount of As(III) sorbed in presence of equimolar concentration of 

CIT (779.4 mmol kg
_1) was similar to that sorbed in presence of PO4 (763.4 

mmol kg
_1) (Table 4). However, with increasing R, the ability of PO4 in 

inhibiting As(III) sorption resulted to be higher than that of CIT. At R = 5, the 
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efficiency of PO4 in preventing As(III) sorption was 67.4%, versus 56.8% of 

CIT (Figure 4). 

The efficiency of CIT was much higher than that of OX clearly because 

CIT is easily sorbed on LDH because of its high charge and the capacity to 

form strong inner-sphere complexes. 

Zhu et al., (2011) and Violante et al., (2010); Violante, (2013) also found that 

CIT has an influence much higher than OX in inhibiting As(III) and As(V) 

sorption onto Al- and Fe-(hydr)oxides. In this work we confirmed that PO4 is 

the strongest ligand in preventing As sorption also on Mg–Fe-LDH. 

In conclusion, many factors seems to affect the sorption of organic and 

inorganic anions onto Mg–Fe-LDH and, consequently, their ability in 

competing with As(III) [as well as As(V)], such as: (i) their valency; (ii) their 

size; (iii) their orientation in the interlayer of LDHs (Meyn et al., 1990) and 

(iv) their capacity to form outer- or innersphere complexes onto variable 

charge minerals eventually present as impurities. 

 

4.1.3 Effect of residence time on the desorption of As(III) by 

organic and inorganic ligands 

Figure 5 shows the desorption of As(III) from Mg–Fe-LDH by the competing 

ligands, at pH 6.0 and R = 1 (Figure 5A) and 3 (Fig. 5B), as a function of 

As(III) residence time (24 and 168 h) on LDH surfaces. The effect of a 

residence time of 72 h is not shown for sake of clarity. 

The ability of the competing ligands in removing As(III) previously sorbed 

onto Mg–Fe-LDH surfaces followed the sequence: SO4 < OX << SeO3 < CIT 

< PO4, regardless the residence time. Obviously, a greater As(III) desorption 

(in%) occurred when greater amounts of each ligand was added (Figure 5). In 
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fact, at R = 3 all the ligands desorbed nearly twice the amount of As(III) 

removed at R = 1. However, the higher the As(III) residence time the lower 

the amount of the metalloid desorbed by each competing ligands. Probably, by 

increasing residence time a better diffusion of As(III) ions occurred into the 

interlayers of Mg–Fe-LDH, which, consequently, were not easily replaced by 

other anions. Some authors found that As(III) (You et al., 2001), SeO3 but not 

selenate (You et al., 2001) and As(V) (Violante et al., 2009) were intercalated 

with time into the layer spaces of a Mg–Al-LDH. 

Recent literature on Fe- and Al-(hydr)oxides (Meyn et al., 1990; Arai 

and Sparks, 2002; Pigna et al., 2006; Violante et al., 2008; Caporale et al., 

2011) also showed that an increase in residence time of As(V) resulted in a 

decrease in its desorption by competing anions from minerals surfaces, due to 

the formation of more stable surface complexes. In fact, formation of inner-

sphere complexes by As(III) and As(V) onto a Fe(II)–Fe(III)-LDH (green 

rust) has been demonstrated (Wang et al., 2010). 
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Figure 5 Effect of the residence time on As(III) desorption from Mg–Fe-LDH 

by competing ligands, which were added 24 h (black bars) and 168 h 

(checkered bars) after As(III). Initial ligand/As(III) molar ratios were 1 (A) 

and 3 (B). The numbers above the bars indicate the As(III) desorbed (%). The 

initial As(III) concentration was 1000 mmol kg
_1. 

 



RESULTS AND DISCUSSION 

74 | P a g e  

 

Greater percentages of As(III) than As(V) (as referred to the amounts of 

the oxyanion initially sorbed) were replaced by the competing ligands but 

PO4. For example, at R = 3 and after a residence time of 168 h, 7.1%, 9.3% 

and 23.2% of As(III) versus 0.7%, 1.5% and 1.5% of As(V) (Caporale et al., 

2011) were replaced respectively by SO4, OX and SeO3. Vice versa, 40.2% of 

As(III) versus 54.5% of As(V) were desorbed by PO4. These findings could be 

due to the fact that the quantities of both PO4 (Sm = 2470 mmol kg
_1) and 

As(V)(Sm = 2595 mmol kg
_1) sorbed on Mg–Fe-LDH (Caporale et al., 2011) 

were much higher than those of As(III) (Sm = 1621 mmol kg
_1; Table 3). 

Clearly, when PO4 was added to the LDH on which As(V) was previously 

sorbed it competed with As(V) for common sites. Vice versa, because As(III) 

did not occupy all the sites occupied by As(V), PO4 was initially sorbed on 

empty sites easily accessible and only later this oxyanion competed with 

As(III) for common sites. However, these findings merit closer attention.  

 

4.1.4 Kinetics of desorption of As(III) by PO4 

The kinetics of desorption of As(III) by PO4 (initial R values of 1 and 3) from 

Mg–Fe-LDH, as a function of time, is shown in Figure 6A. It was well 

described by the Elovich equation (Figure 6B); the linear form of this equation 

(Sparks, 2003; Pigna et al., 2006) is given by: 

 

𝑞𝑡 =  
1

𝛽
 ln(𝛼𝛽) +

1

𝛽
ln(𝑡) 
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where qt is the amount of As(III) desorbed for a given time (t), and α and ß are 

the Elovich coefficients, representing the initial desorption rate (mmol kg
_1 

min
_1) and the desorption coefficient (mmol kg

_1), respectively. 
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Figure 6 Kinetics of desorption of As(III) by PO4 from Mg–Fe-LDH (A), also 

described by the Elovich equation (B). The initial PO4/As(III) molar ratios 

were 1 (R = 1) and 3 (R = 3); initial As(III) concentration was 1000 mmol 

kg
_1. 

The amount of As(III) desorbed from the LDH sites increased with 

time, being characterized by an initial very fast desorption reaction (0.08–5 h), 

followed by a much slower desorption reaction until a plateau was reached 

(Figure 6A). Precisely, after 0.08 h (5 min) of reaction, PO4 removed the 

15.8% and 30.4% of the As(III) previously sorbed on Mg–Fe-LDH, at R = 1 

and 3, respectively, which represent the fraction of the As(III) less strongly 

bonds and/or more accessible and then more easily desorbable. 

After 48 h of reaction with PO4, the Mg–Fe-LDH released 25.9% and 

42.7% of the initially bound As(III), at R = 1 and 3, respectively. Caporale et 

al., (2011) studied the sorption/desorption of As(V) on/from the same Fe-
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based LDH and found that a greater percentage (as referred to the amount 

initially sorbed) of As(V) was replaced by PO4. A possible explanation of 

these findings has been given before. 

Table 5  Kinetic paramaters by simply regression analysis of As(III) 

desorption by PO4 for the reaction period 5 min to 48 h for the Fe-Mg-LDH 

using the Elovich kinetic equation, at initial PO4/As(III) molar ratios of 1 (R = 

1) and 3 (R = 3).  

 

PO4/As(III)  

molar ratio (R) 

Elovich Kinetic Equation   αb βb 

 

R2 

R = 1 qt
a = 197.50 + 16.34 ln(t) 2.901 × 106 0.0612 0.9834  

R = 3 qt
a = 365.38 + 17.42 ln(t) 2.244 × 

1010 

0.0574 0.9146 

     a  qt  is the amount of As(III) desorbed (mmol kg-1) in time t (min). 

     b  α and β are Elovich coefficients obtained from the Elovich kinetic model 

qt = (1/β) ln(α β) + (1/β) ln(t). 

The initial As desorption rate (α) and desorption coefficient (ß) were 

higher for As(III) (Table 5) than As(V) (Caporale et al., 2011). As reported by 

(Sparks, 2003) some researchers have used the α and ß coefficients to estimate 

reaction rates. An increase in α and/or a decrease in ß would increase reaction 

rate, but according to (Sparks, 2003) this interpretation is questionable. 

Anyway, our data do not permit to give a reasonable explanation on the 

differences in the kinetics of removal of As(III) and As(V) by PO4 from Mg–

Fe-LDH. 

 

4.1.5 Conclusions on the work of the LDH 
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The findings of this study give useful information on the As(III) sorption 

capacity of a Fe-based LDH and the factors (pH, presence and concentration 

of organic and inorganic ligands, residence time) which affect As(III) removal 

by this anionic clay from contaminated solutions. Arsenite sorption isotherms 

indicated a good affinity of this harmful oxyanion for the sorption sites of the 

Mg–Fe-LDH, which could be considered a reliable mean to remove efficiently 

As(III) from contaminated solutions, especially in alkaline environments. 

Competing ligands strongly prevented the As(III) sorption by Mg–Fe-LDH, 

following the order: SO4 < OX << SeO3 < CIT < PO4. The desorption of 

As(III) by these anions decreased with increasing As(III) residence time on 

LDH surfaces. We found that more As(V) than As(III) was sorbed on this 

Mg–Fe-LDH and that all the ligands but PO4 inhibited As(III) sorption more 

than As(V) and desorbed greater percentages of As(III) than As(V) previously 

fixed on the sorbent. The kinetics of desorption revealed that the most easily 

desorbable fraction of As(III) was removed by PO4 in the first few hours of 

reaction. 

 

4.2 Study on the the Ferrihydrite and Goethite 

4.2.1 Nature of the Ferrihydrite and Goethite 

The Fe-(hydr)oxide obtained at pH 5.5 and aged for 24 h at room temperature 

was identified to be Ferrihydrite. In fact, the X-ray diffraction pattern (XRD) 

of the sample showed four characteristicbroad and weak peaks of the 

Ferrihydrite, centered at 0.254, 0.225, 0.198, and 0.148 nm (Figure 7), which 

indicate a poorly crystalline nature of thesorbent, characterized by particles of 

smaller size with high surface area (178.2 m2 g-1, Table 6). 
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The Fe-based product synthesized at pH 12 andaged at 65°C was 

identified to be Goethite, characterizedby the intense XRD peaks observed at 

0.419, 0.338, 0.269, 0.258, 0.244, 0.225, 0.219, 0.172 and 0.168 nm (Figure 

7), which indicate a well-crystallized structure of the sorbent (Cornell and 

Schwertmann, 1996). The surface area of Goethite resulted to be of 42.3 m2 g-1 

(Table 6). 

 

Figure 7 Powder X-ray diffraction patterns of Ferrihydrite and Goethite. 

 

4.2.2 Arsenite sorption isotherms at pH 6.0 

The Langmuir isotherms of As(III) onto Ferrihydrite or Goethite at pH 6.0 are 

depicted in Figure 8. The sorption data of As(III) sorbed onto two sorbents 

conformed to the Langmuir equation in the following form:  S = SmKc/(1+Kc)  

where S is the amount of the element sorbed per unit mass of sorbent (mmol 

kg-1), Sm is the maximum amount of As(III) that may be bound to the sorbent 

(sorption capacity), c is the equilibrium solution concentration (mmol L-1), and 

K is a constant related to the binding energy.   

The sorption isotherms of As(III) onto Ferrihydrite or Goethite were 

typical H curve (Giles et al., 1974), indicating a very high affinity of As(III) 
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for the sorption sites of these two sorbents (Figure 8).The high affinity of the 

harmful anion for the surfaces of Fe-based (hydr)oxides has been widely 

recognized (Zhu et al., 2011; Caporale et al., 2013; Violante, 2013). However, 

Ferrihydrite (Sm = 1245.1 mmol kg-1) adsorbed much more As(III) than 

Goethite (Sm = 327.9 mmol kg-1), essentially because of its greater surface 

area (178.2 vs. 42.3 m2 g-1) and, hence, lower degree of crystallinity, as well as 

to the greater affinity of As(III) for its surfaces. This latter statement is 

supported by the K values (which describe the binding energy), obtainedfrom 

the As(III) sorption isotherms: K value of Ferrihydrite (i.e., 38.5), in fact, 

resulted to be almost three-fold higher than that of Goethite (i.e., 13.2). 

Goldberg and Johnston, (2001), indeed, stated that Fe-(hydr)oxides usually 

adsorb As(III) anions on their external surfaces by both inner- and outer-

spherebonds.Probably, in our tests, Ferrihydrite adsorbed As(III) on their own 

external surfaces by forming a greater amounts of inner-sphere complexes vs. 

those formed by Goethite. Accordingly, Ona-Nguema et al., (2005), by 

EXAFS analysis, demonstrated that As(III) forms similar surface complexes 

on Ferrihydrite and Hematite (stronger) that differed from those formed on 

Goethite and Lepidocrocite (weaker). 
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Figure 8 Arsenite sorption sotherms onto Ferrihydrite and Goethite at pH 6.0 

and 20°C, after 24 h of reaction time. 

 

4.2.3Arsenite sorption at different pHs 

The sorption of As(III) onto Ferrihydrite and Goethite in the range of pH from 

4.0 to 10.0 is shown in Figure 9 and resulted to be lightly pH dependent. In 

fact, in the pH range of 4.0-9.0 the quantities of As(III) adsorbed resulted to be 

practically constant, being As(III) practically uncharged (i.e., H3AsO3
0). At 

higher pHs we observed a decrease in As(III) sorption by two sorbents, 

probably because of the competition with the increasing amounts of hydroxyl 

ions and the repulsion between the negative charged As(III) ions (pKa = 9.2 

and 12.1) and the negative charged surfaces of two Fe-(hydr)oxides. 

According to Pigna et al., (2006), the point of zero charge (pzc) of Ferrihydrite 

and Goethiteis expected to be at 8.70 and 7.45, respectively. Similar results 

were also found in other scientific works (Manning and Goldberg, 1996; 

Inskeep et al., 2001; Grafe et al., 2002; Dixit and Hering, 2003; Zhu et al., 

2011).  
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Figure 9 Arsenitesorbed by Ferrihydrite and Goethite as a function of pH. 

 

4.2.4 Effect of organic and inorganic ligands on the sorption of 

As(III) 

The efficiency (%) of the ligands in preventing As(III) sorption on 

Ferrihydrite and Goethite, as a function of ligand/As(III) molar ratio (R) (i.e, 1 

and 3), after 24 h of reaction time at pH 6.0, is shown in Figures 10 and 11. 

The efficiency (%) was calculated by subtracting the amount of As(III) sorbed 

in presence of ligand from that sorbed in absence of ligand, divided by the 

amount sorbed in absence of ligand. 

The selected organic and inorganic ligands showed different capacities 

to compete with As(III) for the sorption sites of the Ferrihydrite and Goethite, 

according to the following increasing sequence: selenate< sulphate < oxalate < 

citrate < selenite ≈ molybdate< phosphate on Ferrihydrite, andsulphate ≈ 

selenate< oxalate < citrate <molybdate< selenite ≈ phosphate on Goethite.  

Selenate and SO4 slightly inhibited the sorption of As(III) on 

Ferrihydrite and Goethite, since these anions usually form outer-sphere 
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complexes onto the surfaces of variable charge minerals. Peak et al., (2001), 

Peak and Sparks, (2002), and Zhang and Sparks, (1990) demonstrated, by 

EXAFSstudy, that SeO4 forms a mixtureof outer- and inner-sphere surface 

complexes onto Ferrihydrite and Goethite, with a decrease of inner-sphere 

complexes at increasing pH, whereas SO4 forms both outer-sphereand inner-

sphere surface complexes on Goethite at lessthan pH 6.0, outer-sphere 

complex at pH> 6.0, and formspredominantly outer-sphere surface complexes 

on Ferrihydrite. 

The efficiency of CIT was much higher than that of OX clearly because 

CIT is easily sorbed on Fe-based (hydr)oxides, because of its high charge and 

the capacity to form strong inner-sphere complexes. Zhu et al., (2011) and 

Violante, (2013) also found that CIT has an influence much higher than OX in 

inhibiting As(III) and As(V) sorption onto Al- and Fe-(hydr)oxides.  

Selenite resulted to be one of the strongest anions in competing with As(III) 

for sorption sites of Ferrihydrite and Goethite, probably because itusually 

forms inner-sphere complexes on both these Fe-based (hydr)oxides (Peak et 

al., 2006). By our competitive study, we also noted that MoO4 has a good 

affinity for Goethite surfaces, and even more those of Ferrihydrite. The 

efficiency (%) of this anion in preventing As(III) sorption on Ferrihydrite, 

indeed, resulted to be slightly higher than that of SeO3, and quite similar to 

that of the strongest competing anion (i.e., PO4).  

As expected, PO4 demonstrated to be the strongest among the selected 

ligands in competing with As(III)for the surfaces of Ferrihydrite and Goethite, 

essentially because its high affinity for the surfaces of Fe-based (hydr)oxides, 

which usually bind such anion by strong inner-sphere complexes (Zhu et al., 

2011; Caporale et al., 2013). 
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Table 6 Langmuir sorption capacity (Sm) and the constant K for As(III), as 

obtained from the sorption isotherms on the Ferrihydrite and Goethite at pH 

6.0 and 20°C. 

Sorbent pH Surface Area  
(m2 g-1) 

Sm             
(mmol kg-1) 

K R2 

Ferrihydrite 6.0 178.2 1245.1 38.5 0.97 
Goethite 6.0 42.3 327.9 13.2 0.94 
 

4.2.5. Conclusions on the work on Ferrihydrite and Goethite 

The results of this study give important information on the As(III) sorption 

capacity of Fe-based minerals (Ferihydrite and Goethite) and the factors (pH, 

presence and concentration of organic and inorganic ligands which affect 

As(III) removal by this anionic clay from contaminated solutions. Arsenite 

sorption isotherms indicated high affinity of this harmful oxyanion for the 

sorption sites of the Ferrihydrite and Goethite, which could be considered to 

remove efficiently As(III) from contaminated solutions. Competing ligands 

Figure 10 The efficiency (%) of the ligands in 

preventing As(III) sorption on Goethite as a 

function of ligand/As(III) molar ratio (R), after 

24 h of reaction time at pH 6.0 and 20°C. Initial 

As(III) concentration was 230 mmol kg-1. 

 

Figure 11 The efficiency (%) of the ligands in 

preventing As(III) sorption on Ferrihydrite as a 

function of ligand/As(III) molar ratio (R), after 24 

h of reaction time at pH 6.0 and 20°C. Initial 

As(III) concentration was 870 mmol kg-1. 
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strongly prevented the As(III) sorption following the order: selenate< sulphate 

< oxalate < citrate < selenite ≈ molybdate< phosphate on Ferrihydrite and 

sulphate ≈ selenate< oxalate < citrate <molybdate< selenite ≈ phosphate on 

Goethite. Finally, by comparing these data with those obtained with Mg-Fe-

LDH it is noteworthy to point out thatAs(III) adsorption by Fe-based LDH 

wasa little higher if compared with Ferrihydrite, and significant higher if 

compared with Goethite, since LDH wide interlayer region is easily accessible 

to a great amount of As(III) ions. However, by studying As(III) adsorption in 

presence of competing ligands, we observed that As(III) is more strongly 

adsorbed Fe-(hydr)oxides than LDH, because of the formation of inner-sphere 

complexes vs. weaker electrostatic bonds. 

 

4. 3. Study on the carrot plants (Daucus carota L.)  

4.3.1 Soil characterization 

The soil used in this experiment was collected from the sub-surface layer (10-

30 cm) of a grassland in the Portici (Naples) area. Its principal physical and 

chemical properties are reported in Table 7. According to the soil 

classification of Food and Agriculture Organization (FAO) World Reference 

Base for Soil Resources, we can considerate this soil as a Calcari-Vitric 

Cambisol. Briefly, this was a sandy-loam neutral soil, with low organic matter 

content and P availability, and very low As-background. 
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Table 7 Physical and chemical properties of the soil. 

Soil Properties Amount 

Sand (g kg
_1) 473 ± 32 

Silt (g kg
_1) 371 ± 25 

Clay (g kg
_1) 156 ± 11 

pH (in H20) 7.34 ± 0.18 

Organic carbon (g kg
_1) 10.90 ± 0.45 

CEC (mequiv 100 g
_1) 17.26 ± 0.59 

Total N (g kg
_1) 1.02 ± 0.07 

C/N 10.69  

Available P (mg P2O5 kg
_1) 10.35 ± 0.50 

Total As (mg kg
_1) 4.67 ± 0.21 

 

4.3.2. Effect of As and fertilization on the growth of carrot 

plants 

The growth of the carrot plants was significantly (p<0.0001) impaired by the 

irrigation with As-contaminated waters (Table 8). Increasing As level in the 

irrigation water, indeed, decreased markedly the dry matter production of 

carrot plants, as a consequence of the phytotoxic effect of As. For instance, 

carrot plants irrigated with water containing 3 mg As L-1 produced, on 

average, a biomass 22.1% lower than plants irrigated with As-uncontaminated 

water (As 0). Likewise, the biomass of the plants irrigated with water 

containing 6 mg As L-1 resulted to be, on average, 39.3% lower, if compared 

to that of As control plants (As 0) (Table 8). Carrot plants stressed by As 

started to show symptoms of As toxicity (i.e., the appearance of red-brown 
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necrotic spots on the leaves, in some cases followed by foliar senescence) 12-

15 days after the first irrigation with the As 3 and As 6 contaminated waters, 

but none of them died from As intoxication.The phytotoxic effect of As on 

edible plants have been shown in different studies. Shri et al., (2009) noted 

that As is highly toxic during the germination and growth of rice seeds. 

Sensitive edible plants, such as bean (Caporale et al., 2013), lettuce (Caporale 

et al., 2014), radish (Bhatti et al., 2013), tomato (Pigna et al., 2012) and wheat 

(Pigna et al., 2009) suffered considerable stress upon As exposure, with 

negative outcomes on plant growth, net photosynthesis rate and fruit yield. 

Beside As treatment, the growth of carrot plants was also significantly 

(p<0.0001) affected by fertilization with humic acids or inorganic fertilizers. It 

is conceivable as all the fertilized plants grew much more than non-fertilized 

plants (Table 8). Within fertilized plants, carrots treated with inorganic 

fertilizer grew slightly more than those amended with commercial humic 

acids, probably because of the faster and higher availability of its nutrients. 

Accordingly, the P status of fertilized plants resulted to be a little higher than 

that of the amended plants, significantly higher in comparison to unfertilized 

plants (data not shown). In comparison with unfertilized As 6 plants, for 

example, As 6 carrots amended with full dose of humic acids (F.O.D.) 

produced 90.1% more of biomass, whereas those treated with full dose of 

inorganic fertilizers (F.I.D.) grew 97.2% more.  
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Table 8 The dry weight of the roots and shoots biomass at harvest time. 

 

Organic, 

inorganic 

and As 

treatments 

Taproots 

(g) 

Shoots Total biomass 

No F As 0 5.71 ± 0.25 efg 3.98 ± 0.31 efg 9.69 ± 0.72 efgh 

H.O.D As 0 

 

7.10 ± 0.66 cde 

(24.34%) 

4.90 ± 0.42 cde 

(23.17%) 

12.00 ± 1.08 cde 

(23.86%) 

F.O.D As 0 

 

9.48 ± 0.90 ab 

(66.02%) 

6.83 ± 0.60 ab 

(71.56%) 

16.31 ± 1.56 ab 

(68.30%) 

H.I.D As 0 

 

7.86 ± 0.65 bc 

(37.65%) 

5.76 ± 0.41 bc 

(44.73%) 

13.62 ± 0.80 bc 

(40.56%) 

F.I.D As 0 

 

10.38 ± 0.92 a 

(81.79%) 

7.25 ± 0.61 a 

(82.16%) 

17.63 ± 1.62 a 

(81.94%) 

No F As 3 4.30 ± 0.23 gh 3.02 ± 0.19 gh 7.32± 0.43 hi 

H.O.D As 3 

 

5.59 ± 0.41efg 

(30.00%) 

3.89 ± 0.32 efg 

(28.81%) 

9.48± 0.76 efgh 

(29.51%) 

F.O.D As 3 

 

7.50 ± 0.48 cd 

(74.42%) 

5.38 ± 0.45 cd 

 (78.15%) 

12.88 ± 0.89 cd 

(75.96%) 

H.I.D As 3 

 

6.05 ± 0.57 def 

(40.70%) 

4.45 ± 0.38 def 

(47.35%) 

10.50 ± 0.91 def 

(43.44%) 

F.I.D As 3 

 

8.21± 0.64 bc 

(90.93%) 

5.70 ± 0.50 bc 

(88.74%) 

13.91 ± 1.29 bc 

(90.03%) 

No F As 6 3.05± 0.28 h 2.38 ± 0.21 h 5.43 ± 0.31 i 

H.O.D As 6 

 

4.32 ± 0.40 gh 

(41.64%) 

3.23 ± 0.30 gh 

(35.71%) 

7.55± 0.70 ghi 

(39.04%) 

F.O.D As 6 

 

5.86 ± 0.50 defg 

(92.13%)  

4.46 ± 0.38 def 

(87.39%) 

10.32 ± 0.85 defg 

(90.06%) 

H.I.D As 6 

 

4.66 ± 0.36 fgh 

(52.79%) 

3.59 ± 0.25 fg 

(50.84%) 

8.25 ± 0.68 fghi 

(51.93%) 

F.I.D As 6 

 

6.04 ± 0.43 def 

(98.03%) 

4.67 ± 0.29 cdef 

(96.22%) 

10.71 ± 0.72 def 

(97.24%) 

As treatment p ˂ 0.0001 p ˂ 0.0001 p ˂ 0.0001 

Fertilization p ˂ 0.0001 p ˂ 0.0001 p ˂ 0.0001 

Interaction 0.3432 0.5232 0.4518 
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4.3.3 Chlorophyll A+B concentration in the carrot leaves 

By this study we also noted that the chlorophyll A+B concentration 

progressively decreased (p<0.0001), as long as increased As levels were 

supplied to carrot plants by the irrigation water (Figure 12). The 

photosynthetic pigments are some of the most important cellular components 

of plants, hence, they are targets of the toxic As effect (Miteva, 2002). In fact, 

the presence of As in the plant leaves has been shown to damage the  

chloroplast’s membrane structure, drastically reducing the rate of 

photosynthesis carried out by plants (Marques and Anderson, 1986; Miteva, 

2002; Miteva and Merakchiyska, 2002). In a previous study, As was reported 

to reduce the chlorophyll biosynthesis in maize (Jain and Gadre, 1997). Later, 

it was observed that both chlorophyll A and B concentrations in rice leaf 

decreased significantly with the increase of As concentrations (Rahman et al., 

2007). 

In comparison to the unfertilized control (no F As 0, no F As 3 or no F As 6), 

significantly (p<0.0001) higher chlorophyll A+B concentration was found in 

the leaves of the carrots fertilized either with humic acids or inorganic 

fertilizers (Figure 12). A positive effect on chlorophyll A and B 

concentrations, due to organic fertilization, was also noted by Caporale et al., 

(2013), who treated As-stressed bean plants with commercial stabilized 

compost.  
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Figure 12 Effect of humic acid or inorganic fertilizer and arsenite on the 

Chlorophyll A and chlorophyll B content of carrot plant. 

 

4.3.4 Arsenic concentration in carrot taproots and shoots  

Significantly (p<0.0001) higher concentrations of As were found in carrot 

tissues when plants were irrigated with water containing increasing levels of 

As (Table 9). In the Bengal Delta region, where As-contaminated water has 

been used for irrigation, relatively high concentrations of As have been 

reported in some vegetables including carrot (Alam et al., 2003; 

Roychowdhury et al., 2003; Williams et al., 2006), with As present only in 

inorganic forms (Williams et al., 2006).  

Most of the As taken up by our carrot plants was accumulated in their 

taproots, while a lesser allocation of toxicant occurring in the leaf biomass. A 

greater accumulation of As in carrot taproots vs. leaves was also observed in 

other studies (Bohari et al., 2002) and (Codling et al., 2014) with As-treated 

carrot plants.  

Within each set of As treated plants (As 0, As 3 and As 6), the 

concentration of As in carrot taproots and leaf biomass significantly 
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(p<0.0001) changed according to the kind of fertilizer supplied (Table 9). In 

comparison to unfertilized controls (no F As 0, no F As 3 or no F As 6), 

indeed, plants amended with humic acids exhibited a lower concentration of 

As in their own tissues (up to -18.8%), while the opposite was observed in 

those fertilized with inorganic fertilizer (up to +12.4%) (Table 9). These 

findings are strictly related to the higher availability of As in the soil fertilized 

with inorganic fertilizers vs. that amended with humic acids (as discussed 

below in the 4.3.5 section, and shown in Table 10).  
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Table 9 Arsenic concentration (mg As kg
_1 dry weight) in the taproots and 

shoots of carrot determined at harvest time 

Organic, 

inorganic 

and As 

treatments 

Taproots 

(mg/kg) 

Shoots  

No F As 0 0.120±0.008 e 0.073±0.005 e 

H.O.D As 0 

 

0.115±0.007 e 

(-4.17%) 

0.070±0.004 e 

(-4.11%) 

F.O.D As 0 

 

0.102±0.005 e 

(-15.00%) 

0.061±0.002 e 

(-16.44%) 

H.I.D As 0 

 

0.124±0.010 e 

 (3.33%) 

0.075±0.006 e 

(2.74%) 

F.I.D As 0 

 

0.132±0.011 e 

 (10.00%) 

0.080±0.005 e 

(9.59%) 

No F As 3 2.15±0.14 d 0.97±0.06 d 

H.O.D As 3 

 

2.04±0.17 d 

 (-5.12%) 

0.91±0.05 d 

(-6.19%) 

F.O.D As 3 

 

1.79±0.13 d 

 (16.74%) 

0.80±0.04 d 

(-17.53%) 

H.I.D As 3 

 

2.23±0.16 d 

 (3.72%) 

1.01±0.06 d 

(4.12%) 

F.I.D As 3 2.40±0.15 d 

 (11.63%) 

1.07±0.07 d 

(10.31%) 

No F As 6 4.83±0.31 ab 2.13±0.15 ab 

H.O.D As 6 

 

4.51±0.27 bc 

(-6.63%) 

1.98±0.15 bc 

(-7.04%) 

F.O.D As 6 

 

3.92±0.28 c 

(-8.84%) 

1.75±0.13 c 

(-17.84%) 

H.I.D As 6 

 

5.06±0.35 ab 

(4.76%) 

2.25±0.16 ab 

(5.63%) 

F.I.D As 6 

 

5.43±0.38 a 

(12.42%) 

2.38±0.17 a 

(11.74%) 

As treatment p ˂ 0.0001 p ˂ 0.0001 

Fertilization  p ˂ 0.0001 p ˂ 0.0001 

Interaction p ˂ 0. 005 p ˂ 0.001 
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4.3.5 Non- and specifically-sorbed As concentrations in soil 

samples 

The irrigation of the soil with As-contaminated waters significantly 

(p<0.0001) increased both the nonspecifically and specifically sorbed As 

fractions in the soil, following the order: As 6 > As 3 > As 0, which indicated 

an increased availability of As in the soil, and the contemporary occupation of 

the soil sorption sites with increasing As concentration (Table 10).  

Within two set of plants irrigated with As-contaminated waters (As 3 and As 

6), the supply of commercial humic acids (H.O.D. and F.O.D.) to the soil,  led 

to a significant (p<0.0001) decrease of the nonspecifically sorbed As (up to -

21.7%), with the contemporary increase of the specifically sorbed fraction (up 

to +21.4%), in comparison to the unfertilized control (no F) (Table 10); this 

trend was probably due to partial immobilization of the As by the organic 

functional groups on the humic acids, either directly or through cation 

bridging. Anions are usually not sorbed by soil organic matter, but As(III) and 

As(V) have been found to be bound to humic acids  (Thanabalasingam and 

Pickering, 1986). Indeed, many binding mechanisms have been proposed for 

the sorption of As anions to organic matter, which include the formation of: i) 

outer-sphere complexes with protonated amino groups, ii) covalent bonds with 

carboxylate or phenolate groups and iii) the formation of ternary complexes 

with polyvalent cations (Fe, Al) forming a bridge between As anions and 

organic matter (Mikutta and Kretzschmar, 2011). Arsenic may form 

complexes with humic acid with a higher affinity for As(V) than for As(III) 

(Fakour and Lin, 2014). Humic acids has a great potential for influencing 

sorption behavior and redox transformation of As species through interacting 

with Fe oxide surfaces and/or with As itself, and thus may play a significant 
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role in the fate, transfer and release of As from terrestrial environments into 

the groundwater (Fakour and Lin, 2014).  

On the contrary, the fertilization of soil with inorganic fertilizers (H.I.D. 

and F.I.D.) determined a significant (p<0.0001) increase of the nonspecifically 

sorbed As fraction (up to +13.0%), with a consequent decrease of the 

specifically sorbed As (up to -12.8%), if compared to data found in the soil of 

unfertilized control (no F) (Table 10); this behavior was probably due to the 

competition between the contaminant and the phosphorus, supplied by 

fertilization and ready available, for the sorption sites of the soil Al- and Fe-

(hydr)oxides (Violante and Pigna, 2002; Violante, 2013). A slight 

enhancement of As mobility in soil (i.e., increase of nonspecifically sorbed As 

fraction), due to P application by inorganic fertilizers, was also observed by 

Cozzolino et al., (2010), in a study with lettuce plants grown in a natural As-

contaminated soil (containing 250 mg As kg-1). 
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Table 10: Non- and specifically-sorbed As concentrations in soil samples 

 

Organic, inorganic 

and As treatments 

Nonspecifically 

sorbed As in 

soil 

(µg/kg) 

Specifically 

sorbed As in 

soil 

(mg/kg) 

No F As 0 18.65±1.55 g 0.183±0.015 e 

H.O.D As 0 

 

17.78±1.23 g 

(-4.66%) 

0.192±0.016 e 

(4.69%) 

F.O.D As 0 

 

15.65±1.18 g 

(-16.09%) 

0.213±0.016 e 

(16.03%) 

H.I.D As 0 

 

19.42±1.75 g 

(4.13%) 

0.176±0.014 e 

(-4.03%) 

F.I.D As 0 

 

20.71±1.79 g 

(11.05%) 

0.164±0.012 e 

(-10.63%) 

No F As 3 213.4±17.6 ef 0.778±0.058 d 

H.O.D As 3 

 

201.3±13.5 ef 

(-5.67%) 

0.822±0.063 d 

(5.66%) 

F.O.D As 3 

 

173.6±12.3 f 

(-18.65%) 

0.925±0.065 d 

(18.89%) 

H.I.D As 3 

 

224.0±17.8 e 

(4.97%) 

0.740±0.050 d 

(-4.88%) 

F.I.D As 3 

 

239.2±19.9 de 

(12.09%) 

0.687±0.037 d 

(-11.70%) 

No F As 6 357.1±18.5 bc 1.380±0.134 bc 

H.O.D As 6 

 

331.3±18.4 c 

(-7.22%) 

1.485±0.137 ab 

(7.61%) 

F.O.D As 6 

 

279.8±13.9 d 

(-21.65%) 

1.675±0.150 a 

(21.38%) 

H.I.D As 6 

 

375.0±18.9 ab 

(5.01%) 

1.308±0.110 bc 

(-5.22%) 

F.I.D As 6 

 

403.6±20.3 a 

(13.02%) 

1.203±0.084 c 

(-12.83%) 

 

4.3.6 Conclusions on the study on the carrot plants 

The irrigation of carrot plants with As-contaminated waters caused a severe 

phytotoxic effect, as indicated by the drastic reduction of biomass and 
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chlorophyll A and B concentrations in the leaves. The supply of either humic 

acids or inorganic fertilizers alleviated, at least in part, the toxicity of the As, 

essentially by stimulating plant growth and promoting nutrient uptake (e.g., 

P), with a consequent dilution of As inside plant tissues. The mobility of As in 

the soil was slightly reduced by application of humic acids, because of the 

partial immobilization of the As on their organic functional groups, whereas 

was slightly enhanced by the treatment with inorganic fertilizers, probably 

because of the competition between the contaminant and the P, supplied by 

fertilization, for the sorption sites of the soil Al- and Fe-(hydr)oxides. 
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5.1 Overall conclusions  

At present, As-contaminated soil and aquatic environment management is an 

important issue and a global concern because it is the biggest mass poisoning 

in history. It is necessary to improve sustainable environmental health and also 

to minimize the adverse impact on humans to be successful.  

Numerous technological developments occurred in the last decade are 

leading to a gradual economic growth of many countries, but, at the same 

time, they cause serious environmental risks and damages, including As 

contamination. Concentrations of As more than the hygienic level appear 

frequently in drinking-water, posing an important environmental issue, 

particularly in densely populated area such as Bangladesh, India where the 

demand for water is very high. In fact, 226 million people in 105 

countries/territories across the world are exposed to levels of As in their 

drinking-water that exceed the WHO recommended permissible limit of 10 μg 

L-1 and 100 million of these are exposed to level of over 50 μg L-1 (Murcott, 

2012). The epidemiological studies showed that the chronic arsenic poisoning 

can cause serious health effects including cancer, dermal diseases, 

cardiovascular diseases, respiratory diseases, neurological diseases, 

hematological diseases, renal diseases, and hepatic diseases. Therefore, 

necessary steps must be taken to reduce these impacts by providing access to 

safe water as a basic human right. Delaying mitigation will increase death and 

disease.  

The immobilization of As on the surfaces of sorbents is considered by 

the scientific community, a effective and safe removal method of As from 

contaminated water. However, the high cost of production of most sorbents 

capable to remove As(III) and As(V) ions from contaminated solutions, 

strongly limits their spread and use, on a large scale. It is therefore necessary 
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to research on novel sorbents at low cost, easily synthesized, available for free 

or at very low price. Surveys conducted in the present work have followed 

exactly this line of thought, through the study of the removal capacity of 

As(III) from contaminated solutions by LDHs (easily reproducible anionic 

clays at low cost) and Ferrihydrite and Goethite. The implementation of 

decontamination systems of As-contaminated waters by providing for LDHs, 

Ferrihydrite and Goethite use would be able to unify the lower costs of 

remediation and effective removal of the metalloid from them. In fact, the 

As(III) sorption capacity exhibited by LDHs, Ferrihydrite and Goethite is 

absolutely comparable to that of the more expensive sorbents (Kapadia, 2000).  

It is well established that As can enter the food chain, affecting food 

safety. This poses a potential dietary risk to human health in addition to the 

risk from drinking contaminated water. Food chain contamination by As, in 

fact, has become a burning issue in recent decade because of their potential 

uptake and translocation in the edible part of plants by contaminated soil 

and/or groundwater (Bundschuh et al., 2012). Therefore monitoring programs 

for As contribute to improving food safety, alert of actual and potential food 

scares, and facilitate evaluation of possible health hazards by providing 

continuous information on levels of environmental pollution.  

Less well-known but potentially more serious is the risk of As to crop 

production. Continuous build up of As in the soil from As-contaminated 

irrigation water reduces crop yields in the long term. 

The presence of As in soils and/or groundwaters used for agricultural 

purposes, causes a strong abiotic stress to the cultivated plants, which 

manifests itself through the reduction of biomasses and, specially, yields, 

mostly non-tradable, both for the size that the high As concentration. It is 

therefore desirable to identify and develop production techniques capable of 
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limiting the mobility and phyto-availability of As in soil, through the 

stabilization of the metalloid on the more recalcitrant soil fractions.  

The use of a classical soil amendant as humic acids in the present work, 

in addition to improve carrot plants growth and their nutritional status, has 

allowed to limit the As uptake by biomasses, through the immobilization of 

the metalloid, derived by irrigation water, on/in their humified organic 

macromolecules. Furthermore, soil amendment by humic acids falls within the 

context of organic farming, eco-friendly production system, which ensures the 

sustainability of the soil, improving its fertility. 
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As: arsenic  

 

PO4: phosphate 

 

P: phosphorus 

 

As(III): arsenite SO4: sulphate  

 

N: nitrogen 

 

µg/l: microgram/liter MoO4: molybdate  

 

K: potassium 

 

 

As(V): arsenate 

 

SeO3: selenite  

 

mg: milligram 

H.O.D.: half organic dose 

 

SeO4: selenate 

 

As2S3: orpiment  

 

 

F.O.D.: half organic dose 

 

OX:  oxalate  

 

As2O3: arsenolite   

 

H.I.D.: half organic dose 

 

CIT: citrate 

 

FeAs2: loellingite 

 

F.I.D.: half organic dose 

 

MMA: monomethylarsonic 

acid 

 

CoAs: safforlite 

 

As4S4: realgar   

 

DMA: dimethylarsinic acid 

 

FeAsS: arsenopyrite  

 

NiAs: niccolite  

 

NiAs2: rammelsbergite  

 

NiAsS: gerdsorfite  

 

CoAsS: cobaltite  

 

Cu3AsS4: enargite  

 

FeAsS: Arsenopyrite 

 

AsS (Co,Fe):glaucodot  

 

FeS: Pyrite and  

 

Cu: copper 

 

CCA: copper-chromium-arsenate  

 

Cd: cadmium 

 

Ni: Nickel 

 

Fe: iron 

 

Pb: lead 

 

CaAsO4: calcium arsenate  

 

Zn: zink 

 

PbAsO4: lead arsenate  

 

Zn(AsO2)2: zinc arsenite  

 

MgAsO4: magnesium arsenate  

 

ZnAsO4: zinc arsenate  

 

H3AsO4: arsenic acid  

 

Paris Green: Cu(CH3COO)2 ∙ 

3Cu(AsO2)2 

 

H2Cr2O7: dichromic acid  

 

BCC: basal cell carcinoma  

 

ROX: Roxarsone 

 

DCH: Dhaka Community 

Hospital  

 

LDHs: layered double 

hydroxides 

 

SCC:  squamous cell carcinoma 

 

BD: Bowen’s disease 

 

WHO: World Health 

Organization 

KCl: potassium chloride 

 

h: hour 

 

FAO: Food and Agricultural 

Organization 
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