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Abstract  

 

ABSRACT 

 

 

 

In the last decades the number of applications in civil engineering of special anti-seismic devices 

such as isolators and supplemental damping systems has been continuously growing thanks to 

their capability to provide higher safety levels to both new mission critical and existing 

structures. Passive control systems still appear very attractive with respect to active or semi-

active control systems thanks to their capability to work without any external power source.  

The design of such systems, i.e. supplemental damping systems or seismic isolation ones, 

usually involves a trial and error process for the achievement of a satisfactory performance of 

the structural system. To improve competitiveness and effectiveness of passive control systems, 

their design should be tuned to an optimal value corresponding to a target performance. 

Aim of the thesis is the investigation of the effects of supplemental damping on the definition of 

its optimal value in typical passively controlled civil engineering structures, such as damper 

braced frames or isolated bridges.  

In case of supplemental damping systems, these are usually inserted in a bracing configuration 

into new or existing structures, thus being activated by interstory drifts. Structural dynamics of 

the damping-braced frame may be strongly affected not only in terms of damping but also 

eigenvalues and eigenvectors. In addition to this, the effect of the brace stiffness in energy 

dissipation mechanism of supplemental dampers is still not fully addressed in most design and 

optimization procedures. Even if it is well known that stiffer braces improve damping capacity, 

the exact value of the brace stiffness is usually neglected, while in practice brace dimensions 

have to be limited for functional or aesthetic requirements. This thesis properly addresses the 

effects of the frame to brace relative stiffness parameter on the dynamic behavior and the 

optimization procedure of single story and multistory frames. 

In case of seismic isolation, large displacements are usually introduced at the level of the system 

and supplemental damping is needed for their mitigation. Also in this case an optimal damping 

level of the isolation system may be defined, since very high damping is not beneficial. 
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Chapter 1 introduces the concept of passive control against earthquake induced vibrations. An 

overview of most commonly adopted supplemental damping and seismic isolation systems with 

their characteristics is provided.   

 

Chapter 2 is devoted to modeling of damping systems. Concepts of equivalent damping and 

stiffness are introduced, due to their common use in simplified nonlinear analysis methods. 

Different kinds of hysteresis, viscous and viscoelastic models are described and mathematical 

laws for representation of corresponding behavior are suggested. In addition to this, a specific 

section is devoted to show the effects of the damper supporting brace stiffness on the brace-

damper assembly force-displacement behavior. In the final section, elastomeric and friction 

isolators’ behavior is presented. 

 

Chapter 3 deals with the general problem of designing supplemental damping systems. After 

showing effects of damping on structural dynamics of a simple system, general considerations 

for structures with passive energy dissipation systems are provided. Difference between 

traditional and supplementally damped structures are highlighted. In a following section, code 

provisions for supplementally damped structures are provided. Due to deficient European 

seismic regulations for this kind of structures, American FEMA provisions represent the most 

acknowledged references. According to those, the different analysis methods and mechanical 

models, with their applicability and their approximations, together with the definition of 

equivalent damping are illustrated in detail. A hint to yielding frames with supplemental 

damping systems is also provided. 

 

Chapter 4 deals with an optimal design problem for a simple linear-elastic frame equipped with 

dissipative braces (steel diagonal brace in series with a dissipative viscous or friction device). 

Aim of the chapter is the definition of the optimal device parameter (the viscous damping 

coefficient or the yielding force) able to provide the minimum frame displacement or base shear.  

An analytical approach is suggested for determining the theoretical optimal value of the viscous 

damping or the yielding force parameter, able to minimize the maximum displacements, clearly 

accounting for the influence of the supporting brace stiffness. Properly defined design spectra 

are provided in the first part of the chapter.  

It is proved that extremely varying damping coefficients are able to vary the dynamic properties 

(frequency and mode shapes) of the structure between two limit cases, namely those 
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corresponding to the bare frame (zero value of the damping parameter) and the elastically braced 

frame (theoretically infinite value of the damping parameter). 

The proposed analytical method is validated by means of numerical analyses carried out on a 

simple frame subjected to seven spectrum-compatible earthquake records, according to the 

Italian Code for Constructions. Therefore, an effective design method is delivered: proposed 

optimal values can be assumed as a starting point of the optimization operative procedure; then, 

an iterative analysis is needed in seismic perspective in order to determine the effective optimal 

values of the design parameters for the minimization of the desired response. 

 

Chapter 5 represents a further development of the work presented in Chapter 4 in the case of a 

multi degree of freedom system. In the first part of the work, a theoretical study in frequency 

domain has been developed in order to detect the dynamic behavior of a MDOFs frame equipped 

with viscous dissipative braces. Each brace mounted in series with a damper is modeled by a 

Maxwell element having a complex stiffness acting in parallel with the stiffness of the bare 

frame. The proposed approach allows to take into account the effect of the brace stiffness on the 

optimal value of the viscous damping coefficient and the effectiveness of the supplemental 

damping system. With the aim of defining an optimal damping parameter, assumed as the one 

able to yield the minimum resonance peak in the overall range of frequencies, a numerical 

solution for different MDOFs systems is provided.  

In the second part of the work, a wide numerical investigation is carried out on different 3 DOFs 

frames under different recorded earthquakes, assumed to be subjected to a retrofit intervention 

by means of viscous dissipative braces. The analysis is devoted to prove the combined effect of 

the brace-damper stiffness on the dynamic behavior of the frame structures, and to validate the 

optimization procedure. Time history analysis demonstrate the effectiveness of the theoretically 

obtained design parameter.  

 

Chapter 6 presents the definition of optimal design parameters characterizing the isolation 

system of a bridge, both in case of elastomeric and sliding bearings, having viscoelastic or rigid-

plastic behavior, respectively, installed between the piers and the deck. In this case the isolation 

period is usually defined a priori, than objective of the design becomes the definition of the 

optimum damping level of the system. 

Using frequency response analysis, a simple procedure is proposed to determine the optimal 

value of the viscous coefficient or the yield displacement of the isolators. The adequacy of the 
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proposed procedure is finally verified through time-history analyses performed on a practical 

case under natural earthquakes. 

 

Chapter 7 depicts the main conclusion of the work, with an insight to future developments.  

 

Keywords: optimal damping; optimal design; damper brace assembly; seismic isolation 

damping. 
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1. INTRODUCTION TO PASSIVE CONTROL SYSTEMS 

 

1.1 Introduction 

The basic principle of conventional earthquake-resistant design is to ensure an acceptable safety 

level while avoiding catastrophic failures and loss of life. When a structure does not collapse 

during a major earthquake, and the occupants can evacuate safely, it is considered that this 

structure has fulfilled its function even though it may never be functional again. Generally, 

designing for the so called “life-safety” performance level is considered adequate for ordinary 

structures and has been the basis for modern seismic provisions up to this day (Christopoulos 

and Filiatrault 2006).  

This approach may not be acceptable for new strategic structures, such as those important for 

management of the seismic emergency. Also existing structures often suffer from lack of 

capacity design concepts that makes conventional retrofit techniques unsatisfactory.  

In these cases passive control strategies may play a very important role to achieve the desired 

level of performance. 

For mission critical structures, however, higher performance levels can be expected, while 

keeping economic factors in mind. For example, avoiding collapse is not sufficient for facilities 

such as hospitals, police stations, communication centers and many other structures that must 
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remain functional immediately after an earthquake. Over the last 40 years, a large amount of 

research has been devoted into developing innovative earthquake resistant systems in order to 

raise the seismic performance level of structures, while keeping construction costs reasonable. 

Most of these systems are intended to dissipate the seismic energy introduced into the structure 

during an earthquake by supplemental damping mechanisms and/or to isolate the main 

structural elements from receiving this energy through isolation systems.  

A part from new designed civil structures, an important problem is also related to safety level 

of existing ones. In order to prevent collapse during severe earthquake shaking, existing 

structures may need to develop high level of interstory drifts in order to dissipate a sufficient 

amount of energy to prevent collapse. However, interstory drifts of this magnitude will 

generally result in severe damage to a building’s non-structural components. In addition to this, 

older civil structures, due to absence of capacity design criteria and lack of technical details in 

critical regions, cannot be cyclically deformed into inelastic range without risk of collapse. 

Conventional upgrading schemes for building and bridges generally involve strengthening and 

stiffening effects, thus attracting greater seismic forces involving expensive foundation work, 

column strengthening and so on. At the same time, innovative techniques for ductility 

improvement (i.e. FRP column confinement), may not be sufficient for providing the needed 

plastic deformation capacity.  

As a response to the shortcomings of conventional seismic design (i.e. strength reduction factor 

R ), a number of innovative approaches have been developed with the aim of reducing the 

energy adsorbed by the structure, and in particular the dissipation of energy due to structural 

damage.  

Supplemental damping systems use special devices that are often referred to as “mechanical 

dampers”. This supplemental mechanical energy dissipation, activated trough movements of 

the main structural system, reduces the overall dynamic response of the structure during a major 

earthquake. Furthermore, the main elements of the structure are protected by diverting the 

seismic energy to these mechanical devices that can be inspected and even replaced following 

an earthquake. Ideally, if all the seismic energy adsorbed by the mechanical dampers, the main 

structure will not sustain any damage.  

Seismic isolation systems involve the installation of isolators beneath the supporting points of 

a structure. For buildings, the isolators are usually located between the superstructure and the 

foundations while for bridges they are introduced between the deck and the piers. The isolators, 

designed to have a much lower lateral stiffness than the superstructure they protect, separate 
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the main structure from structural elements connected to the ground. From an energy point of 

view, a seismic isolation system limits the transfer of seismic energy to the superstructure. 

Ideally, if no seismic energy is transmitted to the superstructure, it remains literally unaffected 

by a seismic attack. Conversely, the isolators must be capable of undergoing the movements 

imposed by ground shaking, while maintaining their ability to carry gravity loads from the 

superstructure to the ground. In order to reduce isolators’ deformations, supplemental damping 

systems can also be provided. 

 

1.2 Passive control systems: general basis 

Innovative protection strategies against earthquake have been rapidly adopted in the last 

decades. A classification of the most common control systems includes four groups, identified 

as (i) passive, (ii) active, (iii) hybrid, and (iv) semi-active control systems, in compliance with 

the basic principles behind the control strategies (Di Sarno and Elnashai 2005). Relevant 

assumptions and specific mechanisms characterizing each category are summarized hereafter. 

Active control systems (ii) possess external sources powering control actuator(s) that apply 

forces to the structure in a predefined manner. These forces can be used both to add and 

dissipate energy in the structure. In an active feedback control system, the signals sent to the 

control actuators depend upon the dynamic response of the system that is measured through 

physical sensors, i.e., optical, mechanical, electrical or chemical sensors. 

Unlike devices for active control, passive control systems (i) do not require any external power 

source; the vibration causes them to impart forces which protect the structure.  

Hybrid systems (iii) combine both active and passive control approaches. To maximize the 

system efficiency, it is common practice to employ active devices that may redress drawbacks 

exhibited by certain passive dampers, and vice versa. 

Similar in principle to active control, semi-active control systems (iv) require lower external 

energy sources. Typically, they do not add energy to the structural system. Therefore, bounded-

input as well as bounded-output stability is guaranteed. Semi-active control devices are often 

viewed as controllable or smart passive devices. 

Passive control systems can be mainly classified in  

1) base isolation, 

2) supplemental damping systems 
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whose different working principles will be described in following paragraphs.  

Also tuned/liquid mass dampers have to be mentioned among this category, but are not the 

object of the present thesis.  

A passive control system, whether an energy dissipation system or a dynamic vibration 

adsorber, or even a seismic isolation system, develops motion control forces at the points of 

attachment of the system. The power needed to generate these forces is provided by the motion 

of the points of attachment during dynamic excitation (Figure 1.1). The relative motion of these 

points of attachment determines the amplitude and direction of the control forces.  

 

Figure 1.1Passive control system working principle. 

The effectiveness of passive protection systems is based on the reduction of elements seismic 

demand, enhancing structural ability to dissipate energy and allowing the structure to remain 

elastic without suffering significant damage during strong earthquakes, contrary to what 

happens in the conventional design that aims to increase the energy dissipation capacity 

accepting the presence of damage and the formation of plastic hinges within the elements. 

Passive control systems allow the reduction of the structural response to seismic input providing 

additional energy dissipation capacities or modifying dynamic structural properties.  

The effectiveness of seismically isolated structures or structures with supplemental damping 

has been recently codified in international seismic regulations and recommendations. In 

Europe, regulations for base isolated systems have been suggested. It is recognized that passive 

energy dissipation devices can absorb a portion of the earthquake-induced energy in structures 

and reduce the demand on primary structural members such as beams, columns, beam–column 

joints, and walls; thus, structural safety may be guaranteed.  

Seismic isolation and supplemental damping systems are viable retrofitting strategies to 

enhance earthquake performance in building structures and/or whenever owners can afford the 

costs of design, fabrication, and installation of these special devices. These costs are offset by 

the reduced need for stiffening and strengthening.  
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1.2.1 Base Isolation 

Base isolation is a viable strategy for retrofitting steel and composite buildings because of its 

(i) functionality; (ii) contents protection; (iii) investment protection and (iv) construction 

economy. Composite structures are generally used for buildings in commercial and financial 

areas which contain sensitive and valuable equipment vital for business and emergency use; 

their disruption after an earthquake can have a devastating socioeconomic impact. Fixed-base 

buildings may, in fact, undergo large storey drifts (flexible structures) or high floor 

accelerations (rigid structures) causing structural and/or non-structural damage. In these cases, 

retrofitting via seismic isolation is a cost-effective option; drifts and accelerations may be 

reduced by a factor of 2÷6 (Figure 1.2, Figure 1.3). Buildings retrofitted with seismic isolation 

systems consist of three distinct parts: the structure above the isolation system, the isolation 

system itself and the foundation and other structural elements below the isolation system. Each 

should be properly assessed and detailed to ensure the effectiveness of this rehabilitation 

strategy. Transient design situations such as lifting the superstructure, cutting structural 

elements, placing the isolators and giving back the load to the columns, should be adequately 

checked at the design stage. Isolators are generally located in sub-basements, at the top of 

basement columns, or at the bottom or top of first-storey columns. Therefore, the working site 

is limited to garages or warehouses with no interruption of activities within the building and no 

damage to finishes and equipment. From a mechanical viewpoint, the use of isolation devices 

in seismic applications, particularly for retrofitting, relies upon three fundamental mechanical 

properties: (i) horizontal flexibility to increase structural period and reduce the transfer of 

seismic energy to the superstructure (except for very soft sites); (ii) energy dissipation 

(damping) to reduce displacements; and (iii) sufficient stiffness at small displacements to 

provide adequate rigidity for service level environmental loads. Isolators should exhibit 

significant energy dissipation capacity and/or recentering capability. This target can be 

achieved either by choosing devices with intrinsic dissipative and re-centring capacities or by 

providing ad hoc additional elements.  
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Figure 1.2Response spectrum acceleration highlighting range periods characteristics of conventional and 

isolated buildings. 

 
Figure 1.3Fixed base and isolated buildings deformations. 

1.2.2 Supplemental damping 

Design and retrofit of steel and composite buildings may also be performed by employing 

dampers. Recently, their use has been allowed by US design and assessment guidance 

documents which also provide comprehensive design rules. These devices, like base isolation, 

reduce the demand on the structure by enhancing global damping; this limits damage to 

structural and/or non-structural components.  

Dampers may be grouped as a function of their mechanical response as follows:  

- Displacement-dependent dampers: force–displacement response characteristics depend 

primarily on the relative displacements. They include hysteretic (metallic), friction based, and 

SMA dampers. 

- Velocity-dependent dampers: force-displacement response characteristics depend primarily 

on the relative velocity or the frequency of the motion. They include primarily viscous dampers. 

Viscoelastic devices are displacement and velocity dependent; they exhibit an elastic stiffness 

along with a viscous component. 

All devices possess a similar feature, i.e. they convert external kinetic energy into heat; 

however, the latter may be performed in different ways. Dampers may assume different 
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configurations with respect to the structural system that resists lateral forces (Figure 1.4). They 

can be placed either externally or share common elements with the structural systems. These 

layouts point to a fundamental difference between structures with dampers and base isolation: 

the latter forms a series system (structure and isolators) while the former is a parallel system 

(structure and dampers). Isolators dissipate the input energy before it is transferred to the 

superstructure. By contrast, dampers receive and dissipate seismic energy in combination with 

the lateral force-resisting structure. The amount of dissipation depends upon the dynamic 

characteristics of both components. As a result, the damping should be tuned for optimum 

performance of the overall system; this is usually a cumbersome iterative design procedure. 

A large number of passive control systems has been developed and installed in structures for 

performance enhancement under earthquake loads (Figure 1.5). These devices provide 

additional damping to the structure, thus increasing dissipated energy. With respect to the case 

of base isolation systems, energy dissipators do not have to carry the structural weight, thus 

allowing easier, smaller and cheaper elements. Furthermore their eventual substitution after a 

strong earthquake requires a less invasive intervention since their location is not at the interface 

between the bottom of the structure and foundation system. They are generally located in steel 

braces connecting two adjacent floors or between wall infills and beams since their correct 

operating needs relative displacements. The components and connections transferring forces 

between energy dissipation devices shall be designed to remain linearly elastic. 

The employment of energy dissipation devices provides a reduction of bending moment and 

shear forces acting in columns next to braces. The drawback is that dissipative braces also 

generate an increasing of the axial force and sometimes of the base shear, thus requiring a local 

strengthening to the foundation system. 

Energy dissipation systems may be considered in a somewhat broader context than isolation 

systems. For taller buildings (where isolation systems may not be feasible) energy dissipation 

systems can be considered as a valid design strategy; moreover they could be useful for control 

of building response due to small earthquakes, wind or mechanical loads. 
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Figure 1.4 Typical configurations for insertion of dissipative devices into frames. 

 

Figure 1.5 Applications of dampers in new or existing frames: (a) viscous fluid devices and (b) buckling 
restrained braces. 

1.3 Energy balance equation  

The energy concept has been profitable used in the past for the analysis and design of traditional 

constructions and, more recently, has also been applied to gain deeper insight into the behaviour 

of passively controlled structures.  

 Let us consider a simple SDOF structural system (Figure 1.6) of mass  subjected to a seismic 

input at its base represented by a given ground acceleration  (Serino and Occhiuzzi 1994). 

The system is provided with a dashpot of the linear viscous type, with a velocity proportionally 

constant equal to . Denoting with  the displacement of the mass  relative to the base and 

with  the total restoring force acting in the columns, not necessarily elastic nor 

linear, the equation of motion is given by: 
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   (1.1) 

The viscous damping force  accounts for all inherent velocity dependent energy 

dissipating mechanisms in the structure other than the inelastic hysteretic energy dissipated by 

the structural members. Note that these damping mechanisms are usually not velocity 

dependent, but are expressed in this way for mathematical convenience.  

 
Figure 1.6 Structural scheme for energy balance equation. 

Given  and multiplying both sides of eq.1.1 by  and 

integrating between the starting time of the excitation , when the system is supposed to be 

at rest ( ), and the generic time  we obtain: 

 

where  denotes the absolute displacement of mass  with respect to a 

fixed reference system. The first term on the left hand side can be written in the form 

 

i.e., as the sum of the absolute kinetic energy and the work done by the total input force acting 

at the base of the structure, which corresponds to the seismic input energy. Substituting the 

latter in the previous equation the energy balance equation at time  is obtained: 

 

where: 

, is the absolute kinetic energy; 

, is the equivalent viscous damping dissipated energy; 

, is the restoring force adsorbed energy; 
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, is the seismic input energy, having a true physical meaning as it is 

defined as the total base shear integrated over the ground displacement. 

It is worthy to point out that in defining the energy quantities, we called “dissipated” an 

irrecoverable energy quota, e.g. transformed into heat or lost in material plastic deformation, 

while we called “adsorbed” an energy quantity corresponding to the area below a generic force-

displacement curve, which thus may be totally or partially recovered. With this in mind, the 

restoring force adsorbed energy can be split into two quantities: the irrecoverable hysteretic 

energy  and the elastic stored energy , which is completely recoverable.  

     (1.2) 

The energy balance equation given in (1.2) provides a very useful tool to understand how a 

control system operates. Introducing a supplemental damping system (both viscous and 

hysteretic type), the global dissipated energy quotas  increase so that, for a given input 

energy, absolute kinetic energy and elastic stored energy decrease and thus structural response 

is reduced. 

In case of base isolation, the input energy  reaching the superstructure is significantly 

reduced and energy dissipation is concentrated in the isolation system.  

It is very important to understand that for design purposes, the most desirable response of a 

structure equipped with a passive energy dissipating system is not necessarily associated with 

maximum energy dissipated by dampers. This can be seen by defining the vibrational energy 

, which corresponds to the portion of the input energy at time  that has not been 

dissipated by viscous damping or by supplemental damping system and that can potentially 

cause damage to the structure (Christopoulos and Filiatrault 2006). The main structure is 

therefore best protected when  is minimized at all times.  

It can be seen that the vibrational energy is equal to the sum of the kinetic energy and adsorbed 

energy flowing in the system at time : 

 

From eq. (1.2), the vibrational energy is also equal to the difference between the seismic input 

energy and the supplementally dissipated energy: 

    (1.3) 

Therefore, the design strategy resides in minimizing the difference between the seismic input 

energy and the energy dissipated by the dampers. This goal can be achieved by: 
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- Seismic isolation, mainly reducing input energy but also providing additional damping 

to reduce structure’s displacements to acceptable values; 

- Supplemental damping systems, mainly increasing dissipated energy (Figure 1.7).  

Equation (1.3) clearly shows that maximizing the energy dissipated by the supplemental 

dampers does not necessarily lead to a minimum vibrational energy, since the amount of input 

energy can also increase significantly. This result leads also to the conclusion that for design 

purposes, the optimum properties of the selected passive energy dissipating system depend on 

both the properties of the ground motion and of the structural system.  

The means by which energy is dissipated is either yielding of mild steel, sliding friction, motion 

of a piston or a plate within a viscous fluid, orificing of fluid, or viscoelastic action in polymeric 

materials. In addition to increasing the energy dissipation capacity per unit drift of a structure, 

some energy dissipation systems also increase strength and stiffness. Such systems include the 

following types of energy dissipation devices: metallic yielding, friction and viscoelastic. 

Energy dissipation systems utilizing fluid viscous dampers will not generally increase the 

strength or stiffness of a structure unless the excitation frequency is high.  

  
(a)                                                              (b) 

Figure 1.7 Energy plot for a structure (a) w/o dampers (b)with dampers (Lobo et al., 1993). 

1.4 Supplemental damping systems 

The primary reason for introducing energy dissipation devices into a building frame is to reduce 

the displacements and damage in the frame. Displacement reduction is achieved by adding 

either stiffness and/or energy dissipation (generally termed damping) to the building frame. 

Metallic-yielding, friction and viscoelastic energy dissipation devices typically introduce both 

stiffness and damping; viscous dampers will generally only increase the damping in a building 

frame. Figure 1.8 simply illustrates the impact of different types of dampers on the force-
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displacement response of a building. The addition of viscous dampers does not change the 

force-displacement relation; that is, the “with viscous EDS” curve is essentially identical to the 

“without EDS” curve in Figure 1.8. 

 

Figure 1.8 Effects of energy dissipation on the force-displacement response of a building (FEMA 274). 

The degree to which a certain device is able to limit damaging deformations in structural 

components depends on the inherent properties of the basic structure, the properties of the 

device and its connecting elements, the characteristics of the ground motion, and the limit state 

being investigated. Given the large variations in each of these parameters, it is usually necessary 

to perform an extensive suite of nonlinear response-history analyses to determine which 

particular passive energy dissipation system is best suited for a given case. 

Figure 1.9 summarizes the main properties of most acknowledged damping systems: 
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Figure 1.9 Summary of construction, hysteretic behavior, physical models, advantages, and disadvantages 
of passive energy dissipation devices for seismic protection applications. 

 

1.4.1 Displacement-dependent devices 

Displacement-dependent devices, also known as rate-independent, may exhibit either rigid-

plastic (friction devices), bilinear (metallic yielding devices), or trilinear hysteresis. The 

response of displacement-dependent devices should be independent of velocity and/or 

frequency of excitation, thus they are also called rate-independent. The force-displacement 

response of a displacement-dependent device is primarily a function of the relative 

displacement between each end of the device. Figure 1.10 shows force-displacement relations 

for displacement-dependent devices. 
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Figure 1.10 Idealized force-displacement response of hysteretic devices (FEMA 273). 

 

 1.4.1.1 Metallic yield dampers 

Hysteretic dampers are metal devices that can dissipate energy from an earthquake through 

inelastic deformation of metals. These dampers may yield either in bending, torsion and/or 

axially (mild steel) or shear (mild steel or lead): as a result they will be damaged after an 

earthquake and may need to be replaced (Figure 1.11). 

 

Figure 1.11 Metallic dampers: a) U-steel; b) torsional-beam; c) flexural-beam (Kelly et al., 1972). 

Some particularly desirable features of these devices are their stable hysteretic behavior, low-

cycle fatigue property, long term reliability, and relative insensitivity to environmental 

temperature. Hence, numerous analytical and experimental investigations have been conducted 

to determine these characteristics of individual devices. After gaining confidence in their 

performance based primarily on experimental evidence, implementation of metallic devices in 

full-scale structures has taken place. The earliest implementations of metallic dampers in 

structural systems occurred in New Zealand and Japan (Aiken and Kelly 1992).  

Two major types of metallic dampers are buckling-restrained brace dampers (BRBs) and added 

damping and stiffness dampers (ADAS), yielding axially and flexurally, respectively. 
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1.4.1.1.1 ADAS dampers 

ADAS (added damping and stiffness) dampers consist of a series of steel plates wherein the 

bottom of the plates are attached to the top of a chevron bracing arrangement and the top of the 

plates are attached to the floor level above the bracing (Figure 1.12). As the floor level above 

deforms laterally with respect to the chevron bracing, the steel plates are subjected to a shear 

force. The shear forces induce bending moments over the height of the plates, with bending 

occurring about the weak axis of the plate cross section. The geometrical configuration of the 

plates is such that the bending moments produce a uniform flexural stress distribution over the 

height of the plates. Thus, inelastic action occurs uniformly over the full height of the plates. 

For example, in the case where the plates are fixed-pinned, the geometry is triangular (Figure 

1.13 (a)). In the case where the plates are fixed-fixed, the geometry is an hourglass shape (Figure 

1.13 (b)). To ensure that the relative deformation of the ADAS device is approximately equal 

to that of the story in which is installed, the chevron bracing must be very stiff. 

Pioneering applications of ADAS were made in New Zealand and Japan; recently they have 

also been used for seismic rehabilitation of steel and composite structures. Chevron braces are 

usually combined with ADAS devices (Figure 1.12); ADAS dampers, located between the end 

of cross braces and beam mid-span, are activated by storey drifts. These dampers should be 

designed in such a way that at their yielding, axial loads in the braces are lower than buckling 

load. The design is therefore uneconomical because the tensile plastic capacity of diagonals is 

not fully exploited. The performance of these dampers depends upon the elastic stiffness and 

yield force of the damper and the elastic stiffness of the structure to which it is applied. To 

achieve maximum effectiveness the device should have high stiffness. In practical applications 

(damping of the device varying between 10 and 15%), it is difficult to separate the effects of 

added stiffness from the effects of added damping on response; both tend to reduce the 

displacement response. The higher the device-to-structure stiffness is, the higher the damping 

will be. As a consequence, hysteretic dampers do not simply add damping, but modify 

significantly all dynamic characteristics of the structure. Typically, they reduce the fundamental 

period, thus increasing the base shear. However, these systems are particularly attractive for 

retrofitting of steel buildings that are vulnerable to resonant response with the ground.  
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Figure 1.12 ADAS device model. 

 

(a) 

 

(b) 

Figure 1.13 (a) TADAS device and (b) ADAS device. 

 

1.4.1.1.2. BRB dampers 

A variation of the devices described above but operating on the same metallic yielding principle 

is the tension/compression yielding brace, also called the unbonded brace (Clark et al 1999; 

Wada et al 1999), which has found applications in Japan and the USA. As shown in Figure 

1.14(a), an unbonded brace is a bracing member consisting of a core steel plate encased in a 

concrete-filled steel tube. A special coating is provided between the core plate and concrete in 

order to reduce friction. The core steel plate provides stable energy dissipation by yielding 

under reversed axial loading, while the surrounding concrete-filled steel tube resists 

compression buckling. Experimental and analytical work on hysteretic dampers has been 

carried out in Europe during the last decade; several new configurations and devices have been 

proposed.  
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Under compressive loads, the damper behavior is essentially identical to its behavior in tension 

(Figure 1.14(b)). Since buckling is prevented, significant energy dissipation can occur over a 

cycle of motion.  

In many cases, BRB dampers are installed within a chevron bracing arrangement. In this case, 

under lateral load, one damper is in compression and the other is in tension, and hence zero 

vertical load is applied at the intersection point between the dampers and the beam above. In 

this regard, the dampers may be considered as superior to a conventional chevron bracing 

arrangement where the compression member is expected to buckle elastically, leaving a 

potentially large unbalanced vertical force component in the tension member that is, in turn, 

applied to the beam above. 

During the initial elastic response of the BRB damper, the device provides stiffness only. As 

the BRB damper yields, the stiffness reduces and energy dissipation occurs due to inelastic 

hysteretic response.  

 
(a) 

 
(b) 

Figure 1.14 (a) Unbounded brace and (b) corresponding axial force-displacement behavior. 
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Figure 1.15 BRB attached to conventional steel brace.

A cheaper configuration for inserting BRB devices (Figure 1.15), is to attach them at the edge 

of an elastic-designed steel brace, so limiting the dimension of the device.  

Note that, in present seismic design documents (BSSC 2004; ASCE 2005), buckling-restrained 

braces are regarded as being part of a bracing system, rather than as part of a damping system. 

A response modification factor ( R ), which accounts for the hysteretic energy dissipation 

capacity of the BRB, is assigned to structures that incorporate BRB devices and the design 

process is similar to that used for other conventional bracing systems. Specifically, R  values 

of 7 and 8 are used for BRB frames with non-moment resisting beam-column connections and 

moment resisting beam-column connections, respectively. Proponents of the BRB system have 

encouraged the classification as a bracing system so as to foster more rapid implementation.  

 

1.4.1.1.3. Shear link dampers 

A more recent application of metallic damper is represented by shear link devices, designed to 

yield in shear to limit the maximum force due to lateral loads transmitted to primary structural 

members (Figure 1.16(a)). They are usually attached to diagonal or chevron brace, activated by 

interstory drift. 

A particular shear link device (Bozzo shear link) is shown in Figure 1.16 (Hurtado and Bozzo 

2008). 
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(a) 

 
(b) 

Figure 1.16 (a) Shear link energy dissipation device and (b) corresponding shear force-displacement 
behavior. 

It essentially consists in a metallic plate to yield in shear. The main shape is obtained from a 

rectangular hot laminated element in structural steel, which is made thinner by a milling 

process. In this way, without any welded part, it is possible to obtain some thinner “windows” 

that under shear stress can yield in a stable manner (Figure 1.16(b)), thanks to transverse and 

longitudinal stiffeners. 

Moreover, thanks to small transversal dimensions of the milled areas, uniform energy 

dissipation is ensured for very low values of shear stresses, since the device requires low shear 

forces to yield. Consequently, it has the advantage of starting to dissipate energy at very small 

deformations with the potential of reducing inter-storey drifts for buildings, thus providing an 

important benefit for non–structural elements. 

Shear link energy dissipation device must be designed so that yielding is reached before 

buckling in supporting braces. 

 

1.4.1.2. Friction dampers 

These dampers rely upon the mechanism of friction between two solid bodies sliding relative 

to one another. Friction is an excellent mechanism of energy dissipation; it has been used 

extensively and successfully in automotive breaks to dissipate kinetic energy. 

Various materials are used for the sliding surface such as brake pad material on steel, steel on 

steel, steel on brass in slip-bolted connections, graphite-impregnated bronze on stainless steel 

and other metal alloys. The choice of the base metal for friction dampers is crucial; poor 

corrosion resistance can often reduce the coefficient of friction assumed in the design for the 

intended life of the device. Low-carbon alloy steels corrode and their interface properties vary 

with time, while brass and bronze promote additional corrosion when in contact with low 
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carbon. By contrast, stainless steels do not appear to suffer additional corrosion when in contact 

with brass or steel; therefore, they are suitable for such devices. Generally, friction devices offer 

good seismic performance and their response is independent of loading amplitude, frequency 

and number of cycles. They combine high energy-dissipation potential and relatively low cost, 

and are easy to install and maintain. In designing friction-based dampers it is essential to 

minimize stick-slip phenomena, thus avoiding high frequency excitation. The ratio of initial 

slip load to storey yielding shear and ratio of bracing-to-storey stiffness also significantly affect 

the performance of the device. Friction devices usually produce a stable rectangular hysteresis, 

although some are configured to produce self-centring force and provide nonrectangular 

hysteresis shapes with load proportional to displacement. The Coulomb model is a macroscopic 

hysteretic model for friction-based dampers with a constant coefficient of friction. 

Friction dampers have been commonly placed within diagonal braces, as with yielding metal 

dampers, but can also be placed horizontally between the top of a wall and the beam above. 

These devices initially possess finite stiffness because they are mounted on braces; therefore, 

their behaviour is similar to hysteretic damping. 

A typical friction damper (Palle friction damper) is shown in Figure 1.17: it can be installed at 

the crossing of two braces where tension in one brace forces the joint to slip, thus activating 

four links which in turn force the joint in the other brace to slip (Pall and Marsh 1982; Pall and 

Pall 1993). This device is fixed under wind and moderate earthquakes but slips under intense 

ground motions, thus protecting primary structural members from yielding. 

 

Figure 1.17 Palle friction device: frame location (left), device layout (middle) and hysteretic loop (right). 

Sliding connections contribute to elevate friction and hence, energy dissipation.  

The device can be calibrated via the tightening force applied to the bolts. Diagonal braces using 

the Pall system possess enhanced dissipative capacity -the energy dissipation is roughly two-

fold- with regard to ordinary cross-bracings. 

During cyclic loading, the mechanism enforces slippage in both tensile and compressive 

directions. Generally, friction devices generate rectangular hysteresis curves. This force system 
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causes the rectangular damper to deform into a parallelogram, dissipating energy at the bolted 

joints through sliding friction. In recent years, there have been a number of structural 

applications of friction dampers aimed at providing enhanced seismic protection of new and 

retrofitted structures. This activity in North America is primarily associated with the use of Pall 

friction devices in Canada and the USA; and slotted-bolted connection in the USA (Grigorian 

et al 1993). 

Recently, novel friction dampers have been tested experimentally and many have been installed 

in new and existing buildings around the world. Two examples of devices for braced 

connections are provided in Figure 1.18; they are a slotted bolted connection energy dissipator 

and a novel device for inverted V-braced connections, respectively. Slotted bolted connections 

are becoming very popular for braced connections because they require only a slight 

modification of standard construction practice, and are thus easy to construct and implement. 

They also make use of materials widely available on the market, and are a cost-effective mean 

of retrofitting existing steel and composite framed buildings. These connections are designed 

to dissipate energy through friction between the steel surfaces along the brace in tension and 

compression loading cycles; alternatively, brass in contact with steel may be used. Experimental 

tests have shown that the behaviour of connections with brass on steel is more uniform; 

moreover, they are simpler to model analytically than those using steel on steel, and their 

performance in braced systems is very satisfactory. It has slotted holes in the main connection 

plate which are parallel to the line of loading. The main plate is sandwiched between two outer 

members. A friction lining pad is placed between each outer member and the main plate. The 

lining pad moves with the outer member. Two bolts are used to clamp together the plates and 

lining pads. Upon tightening the bolts, frictions develop between the contact surfaces of lining 

pads and slotted plate.  

When either tensile or compressive forces are applied to the connection and the friction is 

exceeded, the slotted plane slips relative to the lining pads and energy is dissipated. The 

effectiveness of the novel damper for inverted V-braced connections (Figure 1.18) has been 

assessed experimentally and numerically. The damper consists of three steel plates, i.e. one 

central (vertical), two on the side (horizontally) and two circular friction pad discs sandwiched 

between the steel plates. The central plate is used for the connection with the mid-span of the 

floor beam in the frame. This connection  is pinned and thus increases the relative rotation 

between the central and the side plates; as a result, energy dissipation is enhanced.  
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Figure 1.18 Novel friction dampers for braced connections: slotted bolted connection (left) and inverted V-
braced connection (right). 

Experimental testing (e.g., see Pall and Marsh 1982) has shown that a reasonable model for 

defining the behavior of friction dampers is given by the idealized Coulomb model of friction: 

)sgn(uNP  

where  coefficient of dynamic friction, and N normal force at the sliding interface. 

Within the context of a friction damper, the idealized Coulomb model assumes that the 

clamping (or normal) force and the coefficient of friction are maintained at constant values over 

extended durations of time. This can be difficult to achieve in practice and thus the damper 

friction force may change with time. The potential variability in the friction force could be 

accounted for in design in a manner similar to the way that variability in other structural 

parameters might be considered. The idealized hysteretic response of a friction damper for 

cyclic loading reveals that the force output is bounded and has the same value for each direction 

of sliding. The hysteresis loops are rectangular, indicating that significant energy can be 

dissipated per cycle of motion. However, the rectangular shape of the hysteresis loops indicates 

that the cyclic behavior of friction dampers is strongly nonlinear. The deformations of the 

structural framing are largely restricted until the friction force is overcome; thus, the dampers 

add initial stiffness to the structural system. Note that, if a restoring force mechanism is not 

provided within the friction damper system, permanent deformation of the structure may exist 

after an earthquake.  

The Sumitomo Device was designed and developed by Sumitomo Metal Industries, Ltd., Japan, 

originally as a shock absorber in a railway rolling stock. It is a cylindrical device with friction 

pads that slide directly on the inner surface of the steel casing of the device (Figure 1.19). The 

friction device might be attached to the underside of the floor beams and connected to chevron 

brace assemblages. The Sumitomo dampers exhibited outstanding behavior: their hysteretic 

behavior is extremely regular and repeatable. The devices show almost no variation in slip load 
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during earthquake motion; their force-displacement response is known to be quite independent 

of loading frequency, amplitude, number of loading cycles, and temperature.  

 

Figure 1.19 Sumitomo friction device. 

Friction devices are insensitive to temperature variation. Among their disadvantages it is 

important to highlight that the interface condition could change with time; moreover the friction 

coefficient, during the displacement, is a function of velocity, axial force and contact surface's 

conditions. Consequently it is difficult to ensure a friction coefficient independent by time and 

by device's status. A further disadvantage is that if restoring forces are not provided, a structure 

equipped with friction dampers may present permanent displacements after a strong ground 

motion.  

 

1.4.2. Velocity-dependent devices 

Velocity-dependent devices response depends on the relative velocity between each end of the 

damper; they are also known as rate-dependent devices and include solid/fluid visco-elastic 

devices, and fluid viscous devices, that respectively consist in dampers operating by 

deformation of visco-elastic materials and dampers operating by forcing a fluid through an 

orifice. In Figure 1.20 typical behaviour of these devices is depicted. 
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Figure 1.20 Idealized force-displacement loops of velocity-dependent energy dissipation devices (from 
FEMA 273). 

Typically these devices exhibit stiffness and damping coefficients which are frequency 

dependent. Moreover, damping force in these devices is proportional to velocity, that is, the 

behaviour is viscous. Accordingly, they are classified as viscoelastic systems. A purely viscous 

device is a special case of a viscoelastic device with zero stiffness and frequency independent 

properties. 

 

1.4.2.1. Viscous dampers 

The viscous fluid (VF) devices, developed recently, include viscous walls and VF dampers. The 

viscous wall, developed by Sumitomo Construction Company, consists of a plate moving in a 

thin steel case filled with highly VF (Figure 1.21).  

Figure 1.21 Oiles viscous wall damper. 

The VF damper, widely used in the military and aerospace industry for many years, has recently 

been adapted for structural applications in civil engineering. 

A VF damper generally consists of a piston within a damper housing filled with a compound of 

silicone or similar type of oil; the piston may contain a number of small orifices through which 
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the fluid may pass from one side of the piston to the other (Figure 1.22). Thus, VF dampers 

dissipate energy through the movement of a piston in a highly VF based on the concept of fluid 

orificing. Viscous fluid dampers have in recent years been incorporated into a large number of 

civil engineering structures. In several applications, they were used in combination with seismic 

isolation systems.  

 

Figure 1.22 Viscous fluid damper. 

As the damper piston rod and piston head are stroked, fluid is forced to flow through orifices 

either around or through the piston head. The resulting differential in pressure across the piston 

head (very high pressure on the upstream side and very low pressure on the downstream side) 

can produce very large forces that resist the relative motion of the damper. The fluid flows at 

high velocities, resulting in the development of friction between fluid particles and the piston 

head. The friction forces give rise to energy dissipation in the form of heat. The associated 

temperature increase can be significant, particularly when the damper is subjected to long-

duration or large-amplitude motions. Mechanisms are available to compensate for the 

temperature rise such that the influence on the damper behavior is relatively minor (Soong and 

Dargush 1997). However, the increase in temperature may be of concern due to the potential 

for heat-induced damage to the damper seals. In this case, the temperature rise can be reduced 

by reducing the pressure differential across the piston head (e.g., by employing a damper with 

a larger piston head). During seismic events the oil starts to move and its temperature increases, 

thus causing a decrease of its viscosity and capability of dissipating energy. If time duration of 

an earthquake is relatively short, temperature increase may not be significant. 

Interestingly, although the damper is called a viscous fluid damper, the fluid typically has a 

relatively low viscosity (e.g., silicone oil with a kinematic viscosity on the order of 0.001 m2/s 

at 20°C). The term viscous fluid damper is associated with the macroscopic behavior of the 

damper which is essentially the same as that of an ideal linear or nonlinear viscous dashpot (i.e., 

the resisting force is directly related to the velocity). Note that the fluid damper shown in Figure 
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1.22 includes a double-ended piston rod (Constantinou and Symans 1993) (i.e., the piston rod 

projects outward from both sides of the piston head and exits the damper at both ends of the 

main cylinder). Such configurations are useful for minimizing the development of restoring 

forces (stiffness) due to fluid compression. Moreover, these viscous dampers exhibit stiffening 

characteristics at higher frequencies of deformation; thus, they are used to damp higher mode 

effects. As an alternative to viscous fluid dampers, viscoelastic fluid dampers, which are 

intentionally designed to provide stiffness in addition to damping, have recently become 

available for structural applications. These dampers provide damping forces via fluid orificing 

and restoring forces via compression of an elastomer. Thus, more accurately, the dampers may 

be referred to as viscoelastic fluid/solid dampers.  

Viscous dampers have low resistance to deformation when loads are applied slowly, but 

resistance increases as the applied deformation rate increases. When they are installed in 

buildings, usually in bracings, input energy due to earthquake loading is transformed by friction 

into heat. Viscous dampers have been used to control the vibrations of new buildings and to 

retrofit either RC or steel frames, especially in Japan and in US.  

 

1.4.2.2. Viscoelastic dampers 

These devices are based on viscoelastic materials (VE), such as copolymers or glassy 

substances, with high energy dissipation due to shear deformations. Viscoelastic materials have 

linear response over a wide range of strains at constant temperature. At large strains, e.g. 300–

500%, the energy dissipation produces self-heating, affecting the mechanical properties of the 

material, which then becomes highly nonlinear. Typical viscoelastic dampers are shown in 

Figure 1.23: they consist of viscoelastic layers bounded with steel plates. Mounted in the 

structure, shear deformation and hence, energy dissipation, take place when structural vibration 

induces relative motion between outer steel flanges and centre plates.  

The device is mounted in the structure so that relative floor displacement causes shear 

deformation of the device. The mechanical properties of VE materials depend on temperature, 

frequency and strain amplitude. 

The expected frequencies of the device motion can be approximated with sufficient accuracy 

to establish the proper frequency property for a specific application (Shen and Soong 1995). 

The device temperature will increase from the initial ambient temperature of the device as the 

dissipated energy is converted to heat. This range of expected temperature for which the device 

operates must be included in the design for a specific application.  
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The main VE material properties used in the designing VE devices are the storage modulus, 'G

, which provides the “elastic” shear stiffness of the material, and the shear loss modulus, ''G , 

which represents the velocity-dependent or viscous stiffness of the material (Fu and Kasai 

1998). The material stress-strain relationship can be expressed as 

/)('')(')( tGtGt  

where )(t  is the shear stress as a function of time; )(t  is the shear strain as a function of 

time; )(t  is the shear strain rate of change (shear velocity) as a function of time; and  is the 

circular cyclic frequency in radians per sec.  

Figure 1.23 Visco-elastic damper and mechanical behavior. 

Figure 1.24 shows dependence of VE-behavior on cyclic amplitude and frequency, or rate 

dependence.  

 

Figure 1.24 Typical hysteretic shapes of VE solid device. 

Several analytical expressions are provided in the literature for 'G  and shear loss ''G . In 

general, the storage and loss moduli are dependent on frequency of motion, strain amplitude, 

and temperature. At a given frequency and shear strain amplitude, the storage and loss moduli 

have similar values that increase with an increase in the frequency of motion. Thus, at low 

frequencies, viscoelastic dampers exhibit low stiffness and energy dissipation capacity. 
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Conversely, at high frequencies, stiffness and energy dissipation capacity are increased. Note 

that increases in temperature, due to cycling of the damper, can significantly reduce the storage 

and loss moduli, resulting in reduced stiffness and energy dissipation capacity (Figure 1.26(a)). 

A simplified bounding analysis can be employed wherein lower and upper bound temperatures 

are used to predict maximum forces and displacements, respectively. 

Viscoelastic materials do not gain plastic deformations and, at the same time, provide stable 

behavior with dissipative capacity for small values of deformations. Main drawbacks are 

limited maximum strain and potential debonding failure. 

It has been observed that the variations in )('G  and )(''G  fall into straight lines on a log-

log plot with respect to cyclic frequency (Figure 1.25). Thus, at a given temperature, only two 

tests at different frequencies are needed to define this log-log plot straight-line relationship.  

Figure 1.25 Dependence of shear moduli on temperature and frequency. 

Experimental data have shown that, although )('G  and )(''G  are functions of excitation 

frequency, their ratio, i.e. the loss factor ''
'

G
G

, usually varies between 0.8 and 1.40 (Figure 

1.26(b)). For practical applications it is independent of strain and temperature and is also often 

used as a measure of energy dissipation capacity of the viscoelastic material. 
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Figure 1.26 (a) Hysteretic cycles for different temperatures; (b) Values of G’, G’’ and η for several values 
of temperature, frequency and strain amplitude. 

VE dampers are among the first energy dissipation devices employed in order to control 

vibration induced by the wind action in high-rise buildings, such as it was the case of World 

Trade Center of New York in 1969.  

 

1.4.3. Other dampers 

This classification (other) includes all devices that cannot be classified as either displacement 

or velocity-dependent. Examples of “other” devices include shape-memory alloys (SMA), 

friction-spring assemblies and pressurized fluid- viscous dampers with recentering capability. 

Figure 1.27 presents force-displacement relations for these devices, which dissipate energy 

while providing recentering capability, and resist motion with a nearly constant force. 

 
Figure 1.27 Idealized force-displacement loops of energy dissipation devices with recentering capability 

(from FEMA 273). 

Shape memory alloys are metal alloys which can sustain large strains (up to 10%) with no 

residual deformation after unloading (super-elasticity). This property is due to reversible solid-

to-solid phase transformations (austenite to martensite), which can be either thermal or stress 

induced. The chemical instability of the martensite which switches to austenite at low stresses 

generates stable hysteretic loops, thus giving rise to adequate energy dissipation capacity 

(Duerig et al 1990). It suffices here to say that these special metal alloys exhibit advantageous 

re-centring properties and high low-cyclic fatigue resistance; therefore, SMAs are particularly 

attractive for applications in seismic design and redesign. Recently, they have been 

implemented in several dissipative devices for earthquake protection, especially diagonal 

braces and base-isolation systems. These devices combine re-centring and dissipative 

properties, as displayed in Figure 1.27.   
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1.5 Seismic isolation systems 

Base isolation represents an effective way to reduce seismic stresses in buildings by inserting 

an horizontally flexible and dissipative interface at the base of the building, between foundation 

system and superstructure. The structure rests on special isolation devices which allow 

significant relative displacements and provide sufficient energy dissipation capability to limit 

them.  

The presence of these elements leads to the decoupling of the building from the soil movement, 

making the building more flexible and thus producing a lengthening of the structural period of 

vibration. Added damping is an inherent property of most isolators, but may also be provided 

by supplemental energy dissipation devices installed across the isolation interface. In this way 

the response spectrum acceleration coordinate is brought down, as Figure 1.2 depicts. 

Seismic isolators are mainly divided into elastomeric (Figure 1.28(a)) and friction isolators 

(Figure 1.28(b)), according to the type of energy dissipation mechanism.  

 
(a) (b)

Figure 1.28 (a) LDRB-LC and (b) FPS isolators (courtesy of FIP Industriale). 

 

1.5.1 Elastomeric isolators 

Elastomeric isolators are usually made of layers of rubber separated by steel shims, which 

constrain lateral deformation of the rubber under vertical loads. Laminated rubber bearings can 

withstand large gravity loads, while providing only a fraction of the lateral stiffness of the 

superstructure they support. As shown in Figure 1.28(a), a typical laminated-rubber bearing is 

composed of elastomeric tuber layers alternating with steel plates solidly joined together under 

high pressure and temperature through a process called vulcanization. The vertical stiffness of 

the bearing is greatly enhanced by the presence of the steel plates.  
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Elastomers manufactured with special fillers ensure elevated hysteretic energy dissipation. 

Elastomeric devices are high-damping rubber bearings (HDRBs), low-damping rubber bearings 

(LDRBs) or low-damping rubber bearings with a lead core (LDRB-LC). These devices have 

been used worldwide in new and existing structures because of their high efficiency.  

Increasing damping in rubber allows to reduce the relative displacement between the structure 

and everything else connected with it.  

HDLRBs and LDLRBs respectively provide a damping ratio around 10-15% in the first case, 

and 5% in the second. More recently, high damping rubbers have been suggested for laminated 

rubber bearings, reaching values of equivalent viscous damping of approximately 20% at shear 

strains of 300%. Using lead core in conjunction with low damping rubber also provides 

relatively high level of damping. Lead has not only very good fatigue resistance properties but 

is also commonly available since it is used in batteries at a purity level of more than 99.9%.  

 

1.5.2 Friction isolators 

An alternative type of isolation device is given by friction isolation devices. In this case the 

structure is supported by sliding seals which frictional forces oppose to the structural movement 

dissipating energy. The main parameter in this type of isolation system is the coefficient of 

friction relative to the contact surfaces and its main advantage is the cost and the absence of 

limitation to the allowable vertical load to be transmitted. They have two main disadvantages: 

friction is usually difficult to quantify (usually in the range 4÷12 %, mainly depending on 

velocity, pressure and surface conditions) and permanent offset between the sliding parts may 

occur after an earthquake, especially in non re-centring systems.  

Sliding devices are usually flat assemblies, such as sliding poly-tetrafluoroethylene (PTFE), or, 

more commonly, have a curved surface, i.e. a friction–pendulum system (FPS). The latter 

overcomes the above disadvantages by employing a curved rather than a flat surface. One 

example of frictional isolation system is the friction pendulum (FPS), depicted in Figure 1.29. 
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Figure 1.29 Friction pendulum system. 

This system consists of two sliding plates characterized by curved surfaces covered with a layer 

of stainless steel; between them there is an articulated slider that can move on the curved 

surfaces. The side of the slider in contact with the spherical surfaces is coated with a low friction 

material. Friction pendulum bearings use characteristics of a pendulum to lengthen the natural 

period of the isolated structure so that to reduce earthquake forces. The curved shape of FPS 

surfaces should enable the structure to return to its initial position after the action of an 

earthquake, using the weight of the structure itself. 

The choice of isolators should comply with specific acceptance criteria. In particular, it should 

remain stable for design displacements and provide increasing resistance with increasing 

displacement (no degradation) under repeated cyclic load. 
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Chapter 2 

 

2. MODELING OF DAMPING SYSTEMS 

 

2.1 Introduction 

This chapter describes mechanical properties and mathematical modeling of dampers, not only 

supplemental damping systems but also seismic isolators, making some general comments on 

their structural applicability. The concept of replacing the complicated and often nonlinear 

behaviour of dampers and isolators by equivalent linear stiffness and damping characteristics 

has enormous benefits for the preliminary analysis and design of passively controlled structures. 

As noted above, the force-displacement relation for selected types of devices may be dependent 

on environmental conditions (e.g., wind, aging, and operating temperature), excitation 

frequency, sustained deformations and bilateral deformations. Such dependence should be 

accounted for and could be investigated by analysis of the mathematical model with limiting 

values assigned to the properties of the devices. 
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2.2 Effective damping and stiffness 

Although damping in actual structures is due to several energy-dissipating mechanisms acting 

simultaneously (friction, hysteresis, etc.), a mathematically convenient approach is to idealize 

them by equivalent viscous damping.  

Damping in actual structures is usually represented by equivalent viscous damping. It is the 

simplest form of damping to use since the governing differential equation of motion is linear 

and hence amenable to analytical solution. The advantage of using a linear equation of motion 

usually outweighs whatever compromises are necessary in the viscous damping approximation. 

In this section we determine the damping coefficient for viscous damping so that it is equivalent 

in some sense to the combined effect of all damping mechanisms present in the actual structure. 

The simplest definition of equivalent viscous damping is based on the measured response of a 

system to harmonic force at exciting frequency  equal to the natural frequency  of the 

system. The damping ratio eq  is calculated through the dynamic amplification factor. This is 

the equivalent viscous damping since it accounts for all the energy-dissipating mechanisms that 

existed in the experiments. 

Another definition of equivalent viscous damping is that it is the amount of damping that 

provides the same bandwidth in the frequency-response curve as obtained experimentally for 

an actual system, (i.e. the halphpower bandwidth method). The damping ratio eq  can also be 

calculated in free vibration by means of the logarithmic decay. 

If the system’s resisting force is measured during vibration, an effective method for defining 

equivalent viscous damping is to equate the energy dissipated in a vibration cycle of the actual 

structure and an equivalent viscous system. For an actual structure the force-displacement 

relation obtained from an experiment under cyclic loading with displacement amplitude ou  is 

determined; such a relation of arbitrary shape is shown schematically in Figure 2.1. The energy 

dissipated in the actual structure is given by the area DE  enclosed by the hysteresis loop. 

Equating this to the energy dissipated by viscous damping at the same amplitude leads to 

1 1
4 /

D
eq

S

E
E

     (2.1) 
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Figure 2.1 Energy dissipated in a cycle of harmonic vibration determined from experiment (Chopra 2011). 

where the strain energy, 2
0

1
2S effE k u , is calculated from the secant stiffness determined by 

experiment at maximum displacement. 

Secant stiffness can be determined as follows: 

0 0
eff

F F
k

u u
 

where 0u  and 0u  are maximum positive and negative displacements, respectively, F  and 

F  the corresponding restoring force. 

If the experiment leading to the force-deformation curve of Figure 2.1 and hence DE  is 

conducted at  where the response of the system is most sensitive to damping, eq. (2.1) 

specializes to 

1
4

D
eq

S

E
E

 

The damping ratio eq  determined from a test at  would not be correct at any other 

exciting frequency, but it would be a satisfactory approximation. 

The energy dissipated in inelastic deformations of the structure can also be modeled by 

equivalent viscous damping. This idealization is generally not satisfactory, however, for the 

large inelastic deformations of structures expected during strong earthquakes. Inelastic 

deformations and associated energy dissipation should be accounted by nonlinear force-

deformation relations. 
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Experiments on structural metals indicate that the energy dissipated internally in cyclic straining 

of the material is essentially independent of the cyclic frequency. Similarly, forced vibration 

tests on structures indicate that the equivalent viscous damping ratio is roughly the same for all 

natural modes and frequencies. Thus we refer to this type of damping as rate-independent linear 

damping. Other terms used for this mechanism of internal damping are structural damping, 

solid damping, and hysteretic damping.  

2.3 Displacement dependent dampers 

Metallic yielding and friction devices dissipate energy through yielding of metallic materials or 

through sliding contact friction between adjoining surfaces, respectively. Both devices can be 

considered hysteretic since their energy dissipation is not sensitive to the relative velocity. Thus 

they can be modeled with force-displacement hysteretic relationships that are well known to 

structural engineers.  

These energy dissipation devices could be small relative to the structural framing member sizes. 

If this is true, then when the structural members begin to yield, their energy dissipation can far 

exceed the device energy dissipation. In other words, hysteretic dampers can be extremely 

effective and can be evaluated as equivalent viscous damping until the structure yields.  

Some typical models that have been used to represent the nonlinear force-displacement 

relationships are the simple elastoplastic model, the bilinear model, and the Bouc-Wen model 

which are illustrated in Figure 2.2 and discussed below. The cyclic hysteretic characteristics of 

these models is based on their skeleton curve, which is the name given to the monotonic force-

deflection curve obtained by increasing the force acting on the structure from 0 to the desired 

force or displacement.  

 and discussed below. The cyclic hysteretic characteristics of these models is based on their 

skeleton curve, which is the name given to the monotonic force-deflection curve obtained by 

increasing the force acting on the structure from 0 to the desired force or displacement.  

(a) (b) (c) 

Figure 2.2 Hysteretic force-displacement models: elastoplastic (a), bilinear (b), Bouc-Wen (c). 
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Rheological models and corresponding hysteresis cycles of elastoplastic and bilinear force-

displacement relationships are shown in Figure 2.3: 

a)  b)  c)  

 
 

Figure 2.3 Rheological models and hysteresis loops: (a) elastoplastic (b) rigid – plastic with hardening (c) 
elastic – plastic with hardening (bilinear). 

Friction behavior can be modeled with an elastoplastic behavior with infinite elastic stiffness 

(Figure 2.4). This means that at the initial state, the device provides a significant contribution 

to the global stiffness of the structure.  

Figure 2.4 Rheological model and hysteresis loop for frictional behavior. 

The cyclic hysteretic shapes are twice the size of the skeleton curve, with a starting point at the 

selected return displacement. The area enclosed within one cycle of the hysteretic curve is the 

energy dissipated per cycle. The equivalent viscous damping is obtained by setting the area 

within the hysteretic loop equal to the area within a viscous damper cycle at the same maximum 

displacement. This is done for each of these characteristic force-displacement shapes in the 

following discussion, assuming that maximum displacement maxx  is constant and always larger 

than the system’s yielding displacement. 

 

2.3.1 Elastoplastic form 

The initial elastic stiffness is determined from experimental yield force and yield displacement 

as: 

yye xFk /  

F

x

F

x

F

x

F

x
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Whenever the device displacement exceeds yx the force is equal to yF . The energy dissipated 

per cycle is equal to the area within the hysteretic loop between ( yF , maxx ) and ( yF , maxx ), 

which is: 

max4 ( )ep y yE F x x  

For the elastoplastic model, setting epE  equal to the energy-viscous value (i.e. 2
maxv dE C x

) results in an equivalent viscous damping coefficient of: 
2 2

max max4 ( ) / (2 )d y yC F x x T x  

 Strain energy at maxx  is: 

max
1
2s yE F x      (2.2) 

 

and the corresponding equivalent damping ratio is: 

max

2 (1 )
4

yed
eff

s

xE
E x

    (2.3) 

Secant stiffness can be expressed as: 

max max

y y
eff e

F x
k k

x x
 

 

Figure 2.5 Hysteresys loop for elastoplastic case. 

Considering the plot of Figure 2.5, dissipated energy can also be expressed as: 

2 2max
max max4 ( ) 4 ( 1) 4 4ep y y e y e y e y

y

xE F x x k x k x x k x
x

   (2.4) 

To detect the influence of the yielding displacement with respect to the maximum one, eq. (2.4) 

is derived respect to yx , thus obtaining: 

max4 8ep
e e y

y

dE
k x k x

dx
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By setting 0ep

y

dE
dx

, it is found that maximum value of dissipated energy is attained at the 

point  

2
maxxxy  (Figure 2.6), with a corresponding value of 2

maxep eE k x . 

 

Figure 2.6 Energy dissipated versus yielding displacement. 

In the following figures (Figure 2.7), four hysteresis cycles are plotted for different values of 

max/ xxy , i.e. 0, 0.25, 0.5 (corresponding to optimum) and 1. 

 

(a) 

 

(b) 

 

(c) 
(d) 

Figure 2.7 Hysteresys cycle for different xy/xmax= 0 (a), 0.25 (b), 0.5 (c), 1 (d). 

In both cases max/ 0yx x  and max/ 1yx x , dissipated energy is zero.  

Figure 2.8 shows the trend of the damping ratio eff  from eq. (2.3), that is maximum in case of 

0
maxx
xy , i.e. friction behavior. 

 

Figure 2.8 Equivalent viscous damping for hysteretic systems. 

This trivial example is useful to give the idea of optimum yielding displacement depending on 

the system’s properties, showing that maximum dissipated energy and maximum damping do 

not correspond to the same condition.  

For a friction device damper, eq. (2.2), (2.3) and (2.4) with 0yx  can be adopted. 
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2.3.2 Bilinear form 

As in the elastoplastic case, the initial elastic stiffness is given by: 

/e y yk F x  

The second slope, typically called the strain-hardening slope, is defined as having a stiffness pk

. It should be noted that the strain-hardening stiffness affects both the cyclic energy dissipated 

and the device restoring force, being respectively: 

max4( ) ( )b e p y yE k k x x x     (2.5) 

max max
1 ( )
2s y p yE F k x x x  

The equivalent stiffness can be taken as the secant stiffness at the maximum device 

displacement: 

max

max

( )e y p y
eff

k x k x x
k

x
 

This means that the restoring force increases as the displacement exceeds yx , and the energy 

dissipated per cycle decreases as the hardening stiffness increases.  

The eq. (2.5) can be properly manipulated to make a comparison with eq. (2.4) and it results, 

for the same initial stiffness ek  and maximum displacement maxx : 

ep
e

p
b E

k
k

E )1(  

The bilinear form reduces to the elastoplastic model setting 0pk . 

 

2.3.3 Bouc-Wen model 

The Bouc–Wen model is often used to describe hysteretic phenomena. It was introduced by 

Bouc (Bouc 1967) and extended by Wen (Wen 1976), who demonstrated its versatility by 

producing a variety of hysteretic patterns. The hysteretic behavior is treated in an unified 

manner by a single nonlinear differential equation with no need to distinguish different phases, 

as for example in the various Coulomb friction models. 

The non linear restoring force can be expressed as: 

( ) ( ) (1 ) ( )y
y

y

F
F t a x t a F z t

x
    (2.6) 
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where )(tx  is the displacement, yF  the yield force, yx  the yield displacement, a the ratio of 

post-yield to pre-yield (elastic) stiffness and )(tz  a dimensionless hysteretic parameter that 

obeys a single nonlinear differential equation: 

)()]))()((()([1)( txtztxsigntzA
x

tz n

y

, 

where A , , , n are dimensionless quantities controlling the behavior of the model, )(sign  

is the signum function and the overdot denotes the derivative with respect to time. Small values 

of the positive exponential parameter n correspond to smooth transition from elastic to post-

elastic branch, whereas for large values of n the transition becomes abrupt, approaching that 

of the bilinear model. Parameter A  was introduced in the original paper, but it became evident 

that it is redundant and so is usually set equal to unity. Parameters ,  control the size and 

shape of the hysteretic loop. The model is relatively insensitive to the absolute values of β and 

 if both are changed proportionally, though very large values (absolute values > 50.0) of both 

parameters tend to cause significant numeric noise. Absolute values of  and  inversely 

influence hysteretic stiffness and strength, as well as the smoothness of the hysteresis loop. 

However, the magnitude of influence is quite small. Great sensitivity exists as to the relative 

value of  with respect to  and vice versa. The combination of  and  dictates whether 

the model describes a hardening or softening load-slip relationship (Figure 2.9). However, these 

parameters do not have clear physical interpretation. 

Figure 2.9 a) Hysteretic force versus total displacement: effect of increasing n on softening hysteresis is 
shown. All other parameters are kept constant. b) Similar to a) but β and γ are set to yield a hardening 

hysteresis. 

It follows from eq. (2.6) that the restoring force )(tF  can be analyzed into an elastic and a 

hysteretic part as follows: 

)()( tx
x
F

atF
y

yel  
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( ) (1 ) ( )h
yF t a F z t  

Thus, the model can be visualized as two springs connected in parallel (Figure 2.10), where 

y

y
i x

F
k  and f ik ak  are the initial and post-yielding stiffness of the system. 

 

Figure 2.10 Bouc-Wen model. 

The dissipated energy is expressed by the area enclosed by hysteretic loops, generally 

employing numerical evaluation:  

dxFE h  

Due to problems of numerical accuracy, usually an alternative method based on complementary 

areas respect to the outer rectangle is adopted. This formulation is numerically stable for both 

partially and fully yielding systems. 

An important modification to the original Bouc–Wen model was suggested by Baber and Wen 

(Baber and Wen 1981) and Baber and Noori (Baber and Noori 1986), i.e. Bouc-Wen-Baber-

Noori model. 

This modification included strength, stiffness and pinching degradation effects, by means of 

suitable degradation functions: 

)(])()()())(()[()(
)(
))(()( 1 txtztztztxsignAtzhtz nn  

where the parameters )( , )(  and )(zh  are associated with the strength, stiffness and 

pinching degradation effects, respectively. The )( , )(  and )(A  parameters are defined 

as linearly-increasing functions of adsorbed hysteretic energy . 
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2.4 Velocity dependent dampers 

The force-displacement response of a velocity-dependent device is primarily a function of the 

relative velocity between each end of the device. In this case associated damping is viscous 

type. 

 

2.4.1. VE solid devices  

The most common rheological  model for a visco-elastic material is the Kelvin-Voigt model, 

made by a spring and a dashpot acting in parallel (Figure 2.11Errore. L'origine riferimento 

non è stata trovata.).  

Figure 2.11 Rheological model and hysteresis cycle for a visco-elastic device. 

It is seen that the force-displacement relationship is an ellipse with a nonzero slope. The slope 

is associated with the 'G  term, and the area of the ellipse is related to the ''G  term, so that the 

former influences the stiffness and hence the frequency of the damper, while the latter relates 

to the energy dissipated in each cycle. 

Consider a sheet of VE material bonded between two plates with area A  and thickness t . The 

effective or equivalent stiffness of the device is: 

'( ) /dk AG t  

and the effective or equivalent viscous damping coefficient is: 

''( ) /dC AG t  

The force in the device is a function of the velocity x  and the displacement x  and can be 

computed as: 

)()()()()( txCtxktF dd  

thus contributing to increase both viscous damping and lateral stiffness. 

When the loss factor is used, the effective viscous damping can be expressed as 

/dd kC  

Cd

kd

F

xxmax

Fmax
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2.4.2. Viscous Fluid Devices 

Experimental testing (Seleemah and Constantinou 1997) has shown that a suitable 

mathematical model for describing the behavior of viscous fluid dampers is given by the 

following nonlinear force-velocity relation: 

)sgn()()( xxCtF d     (2.7) 

where )(dC  is generalized damping coefficient, which is approximately constant below about 

4 Hz, and   takes values in the range of about 0.15 2 . The value 2  is achieved with 

cylindrical orifices, a performance which is typically unacceptable.  

When 1 , the device exhibits linear behaviour. Small values of , such as 0.5, are effective 

in attenuating high-velocity shocks, as those expected in near-fault earthquake excitation; 1  

is usually desirable in structural applications against wind or earthquakes (Figure 2.12). 

Lower limits of the exponent cause the damper forces are not out of phase with the 

displacements and hence are additive to the structural displacements. This coupling effect 

increases with the amount of damping provided; the more damping provided, the smaller the 

benefit of having the damper force out of phase with the structure force. 

 

 

Figure 2.12 Cyclic behavior for a pure viscous dashpot for several values of a. 

The force that is generated by the fluid damper is due to a pressure differential across the piston 

head. However, the fluid volume is reduced by the product of travel and piston rod area. Since 

the fluid is compressible, this reduction in fluid volume is accompanied by the development of 

a restoring (spring like) force. This is prevented by the use of the accumulator. Tested devices 

showed no measurable stiffness for piston motions with frequency less than about 4 Hz. The 

devices may provide additional viscous type damping to the fundamental mode and additional 

damping and stiffness to the higher modes. Alternatively, fluid dampers may be constructed 
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with run-through rod. This design prevents compression of the fluid and it does not require an 

accumulator.  

These dampers provide damping forces via fluid orificing and restoring forces via compression 

of an elastomer. Thus, more accurately, the dampers may be referred to as viscoelastic 

fluid/solid dampers (Figure 2.13).  
 

 
(a)  

(b) 

Figure 2.13 Rheological model for (a) a pure viscous and (b) a viscoelastic fluid damper. 

Under steady-state harmonic motion, the hysteresis loops for the linear case ( 1) are 

elliptical (see Figure 2.12) and approach a rectangular shape as  approaches zero. The energy 

dissipated per cycle of steady-state harmonic motion is obtained by integrating eq. 2.7 over the 

displacement leading to the following expression (Constantinou et al 1996): 
1
max 0 maxdE C x F x  

where 

)2(
)2/1()2(4

2

 

and 0F  peak force developed by the damper; maxx  peak displacement across the damper; 

gamma function; and  parameter whose value depends exclusively on the velocity 

exponent, .  

For a given force and displacement amplitude, the energy dissipated per cycle for a nonlinear 

fluid damper is larger, by a factor / , than that for the linear case and increases monotonically 

with reducing velocity exponent (up to a theoretical limit of 27.1/4  which corresponds to 

a velocity exponent of zero). For a given frequency of motion, and displacement amplitude, 

maxx , to dissipate the same amount of energy per cycle, the damping coefficient of the nonlinear 

damper, NLC , must be larger than that of the linear damper, LC , as given by: 

1
max( )NL LC C x  

The damper coefficient dC  can assume almost any value by changing orifice configuration: it 

may be increased or decreased simply by installing more or fewer dampers in the structure. 

Cd

Cd

kd
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Certain types of viscous dampers have a relief valve providing a limited velocity. This is useful 

in limiting forces but reduces out-phase between velocity and displacements which may 

undermine the effectiveness of the damper on the global structural performance. 

It is clear from Figure 2.12 that the equivalent stiffness for a viscous fluid device is 0 . Thus, 

by itself, the device does not add stiffness when applied to a structure.  

2.5 Modeling of brace damper assembly 

Energy dissipating devices are typically attached to a structure through bracing, which may take 

the form of a diagonal or a chevron brace. For example, Figure 2.14 illustrates the installation 

of a damper on top of a chevron brace. The energy dissipation assembly of this story and bay 

of the structure consists of the chevron brace and the damper installed in series. When the brace 

has infinite stiffness, the force exerted by the damper on the top girder is related to the relative 

velocity and/or displacement between the top and bottom girders. In this case, analysis of the 

damped structure may be performed by assuming models of Section 2.3. and 2.4. 

A damper-brace component consists of a damper connecting with a brace in series.  

The stiffness of the brace connecting the damper to the structure actually affects the damper 

efficiency significantly, which depends on the damper parameters and the natural frequencies 

of the structure. In most cases, its influence on the performance of the damper should not be 

neglected; in other words the brace stiffness should not be approximately treated as infinite in 

seismic response analysis of the structure with dampers. 

 

Figure 2.14 SDOF model with dissipative braces. 

The behavior of this assembly is best described by the Maxwell model for which the force, F , 

exerted on the top girder is described by: 

21 xxxxx
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where dF  is the force in the damper, bF  is the force in the brace, 1xxd  is the damper relative 

displacement, 2xxb  is the brace relative displacement, x  is the frame relative displacement. 

The damper provides the most effective reduction in vibration response of the structure with a 

rather stiff brace, i.e. 0bx  and dx x . Thus, the brace stiffness is found to have significant 

effect on the vibration control performance of the damper and thus it is an important parameter 

in designing such an energy dissipation system. 

 

2.5.1 Velocity dependent damper brace assembly 

In case of velocity dependent damper, complex response theory is adopted in the following (Fu 

and Kasai 1998; Ou et al 2007).  

The damping force generated by the damper can be expressed as: 

  1
''' )( xikkF ddd       (2.8) 

where '
dk  and ''

dk  are the damper storage modulus and loss modulus, respectively. 

For a viscoelastic damper, ' '
d eff

G Ak k
t

 and '' ''
d d

G Ak C
t

; for a viscous damper, 0'
dk  

and dd Ck '' . In other words, a pure viscous dashpot has no storage stiffness, meaning that 

exerted force is zero at maximum displacement. 

The resistance force of the brace can be expressed as: 

2
''' )( xikkF bbb  where bb kk '  and 0''

bk     (2.9) 

The rheololgical models of such viscous and viscoelastic damper–brace component are shown 

in Figure 2.15. 

 
(a) 

 
(b) 

Figure 2.15 Rheological model of brace damper assembly: (a) viscous case, (b) viscoelastic case. 

Combining eqs. (2.8) and (2.9), the resistance force of the damper–brace component can be 

described by the kelvin model as: 

xkxikkF dbdbdb
~)( '''     (2.10) 

 

where '''~
dbdb ikkk  is a complex stiffness.  
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Eq. (2.10) is obtained going through the following passages in frequency domain: 

dbbdd Fxkxikk 21
''' )(  

))(())(()( '''
2

'''
1

'''

b
dddddddb k

FxikkxxikkxikkF  

xikk
k

ikkF dd
b

dd
db )()1( '''

'''

 

k
ikkk
kikk

k
ikk

ikk
x

F

dbd

bdd
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dd

dddb ~
)(

)(

)1(

)(
'''

'''

'''

'''

 

The general form of the complex stiffness ' ''
db dbk k k  is the following: 

2''2'

2'''22'
'

)( dbd

dbdbdb
db kkk

kkkkkkk      (2.11) 

''
2''2'

2
''

)( d
dbd

b
db k

kkk
kk      (2.12) 

For the viscous case ( 0'
dk ), '

dbk  and ''
dbk  specialize in: 
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The brace-damper restoring force becomes: 
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or, in time domain: 

xcxkFdb )(')('     (2.13) 

where '' dbk k  and ''' /dbc k  are, respectively, the storage stiffness and damping coefficient 

of the brace-damper. These quantities are, in general, frequency dependent. 

By definition of the relaxation time 
b

d

k
C

 (Constantinou et al 1996), in case of pure viscous 

behavior terms of eq. (2.13) become: 
2

2 2'( )
1

dCk  
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and 

221
)(' dCc      (2.14)  

For infinitely stiff bracing, 0 , 0)('k  and which describes the case of linear viscous 

damper with dCc )(' .  

For any other case, the energy dissipation assembly exhibits viscoelastic behavior. It can be 

seen from eq. (2.14) that the greater is the qunatity 22 , the lower is )('c with respect to dC

. 

It is meaningful to understand the effect of both parameters bk  and dC  on the dynamic 

properties of the brace-damper assembly.  

In the case bk , ''
ddb kk  and ''''

ddb kk , thus reducing to the purely viscous or viscoelastic 

behavior corresponding to viscous dashpot or viscoelastic dashpot, respectively. Thanks to 

inifinite brace stiffness, there is no loss of efficiency in the brace-damper assembly, i.e. 1xx  

and 02x . 

In the case ''
dk , i.e.  dC  or )(''G  corresponding to viscous dashpot or 

viscoelastic dashpot, respectively, bdb kk '  and 0''
dbk  accounting for a purely elastic behavior 

without any damping. 

In the case '
dk  for the viscoelastic damper, bdb kk '  and 0''

dbk  accounting for a purely 

elastic behavior without any damping. 

It is worth to note that both extremely low and high values of the forcing frequency  yield no 

damping in the response, resulting: 

- 0    0'
dbk  and 0''

dbk  

-    bdb kk '  and 0''
dbk  

The loss factor of the viscous damper–brace component, db , is obtained from eqs. (2.11) and 

(2.12) as: 

d
db

db
db k

k 2'

''

    (2.15) 

In eq. (2.15), db  is an important parameter which reflects the damping characteristic of the 

damper–brace component; '
dbk  represents additional stiffness when the damper–brace 
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component is added to the structure; ''
dbk  is associated with the energy dissipation capacity of 

the damper–brace component. Hence, a rate dependent damper-brace component is 

equivalently modeled by a Kelvin-Voigt type dashpot – spring model shown in Figure 2.16. In 

the equivalent model, the viscous coefficient of the dashpot element, 'C  and the stiffness of the 

spring element, 'k , can be expressed as /' ''
dbkC  and '' dbkk , respectively.  

 

Figure 2.16 Rheological model of velocity dependent – damper assembly. 

 

2.5.2. Frame - velocity dependent damper assembly 

Assuming the brace-damper is inserted in a frame with lateral shear stiffness equal to fk , the 

system resisting force is: 

xikkktFtFtF dbdbfdbf )('')(')()()(    (2.16) 

The rheological model is illutrated in Figure 2.17Figure 2.15. The inherent viscous damping is 

neglected in the following ( 0c ). 

(a) (b) 

Figure 2.17 Rheological model of SDOF system with dissipative brace: (a) viscous case, (b) viscoelastic 
case. 

As before, the term involving xkk dbf )('  in eq. (2.16) indicates the elastic force of the 

whole system (i.e. in phase with the system’s displacement). Thus, the whole system’s stiffness 

becomes )('dbf kk , where )('dbk  is named added stiffness. The term involving  

xik db )(''  indicates the viscous force of the whole sytem (i.e. out-of-phase with the system 

displacement), thus reflecting the energy dissipation capability of the system. 

During one harmonic movement cycle, the maximum strain energy is: 
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2
)(

2
max' xkkE dbfs  

and the dissipated energy: 
2
max

'' )( xkE dbd  

When the excitation frequency  reaches the system’s resonance frequency (assuming a mass 

attached to the right end of the system), the added damping ratio caused by the damper is: 
''

'4 2( )
d db

d
s f db

E k
E k k

 

By previously defined stiffness terms, damping ratio in case of viscous damper becomes: 
2

2 2 2 2 22( )
b d

dv
f b f d b d

k C
k k k C k C

    (2.17) 

It can be noted that in both cases 0  and , the equivalent damping ratio is zero. 

In ideal case of infinitely stiff brace it reduces to: 

2
d

dv
f

C
k

        (2.18) 

When the sytem is vibrating at its natural frequency n , eq. (2.18) becomes the well known:

mk
C

f

d
dv 2

 

Introducing non-dimensional terms 
b

f

k
k

 and 
f

d
d k

k ''
'' , equivalent damping ratio is: 

)]1(1[2 2''

''

d

d
d  

An added stiffness ratio can also be defined as the ratio between the damped-brace stiffness and 

the frame stiffness: 

2''2

2'''

0 1 d

d

f

db

k
k  

When ''
d  tends to infinity, 0  monotonically tends to its maximum value that is 1  and d  

tends to 0 . This phenomenon is understandable because when the damper loss stiffness 

becomes very large, the damper tends to lock and only the brace deforms. This means that also 

pure viscous damper, when added to elastic brace, can create added stiffness, that can be as 

large as brace stiffness, adding to the original system, especially under high mode motion, 
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because viscous dampers show rigid behavior under high frequency vibration. A stiffer 

supporting brace ( 0) can reduce added stiffness while increasing supplemental damping.  

For a given , damping ratio exhibits a maximum for a certain value of ''
d : for both extremely 

low ( 0''
d ) and high ( ''

d ) values of the parameter, damping ratio is zero.  

The system global resisting force can be rewritten by means of the damping ratio as: 

)21()1()( 0 df ixktF  

' 2 ''2 2
max max 0 max( ) (1 ) 1 4f db db f dF x k k k k x  

The frequency of the damped-braced system can thus be expressed as follows: 

0(1 )
( ) f

db

k
m

 

Depending on the external force frequency, damped-braced system frequency can vary in the 

range: 

f f b
db

k k k
m m

 

By providing added stiffness and damping, supplemental dampers change the original system’s 

period and damping ratio, and therefore influence the seismic response of the system. 

A stiff brace has a positive effect in reducing both maximum acceleration and displacement. By 

increasing ''
d , maximum displacements reduce while accelerations reduce at the beginning but 

increase after a turning point. Fu and Kasai recommend using 1.0  or at least 2.0 , since 

for 1.0  improvement in reduction is not significative and may even become worse. A value 

5.11''
d  is suggested for the best results.  

The behavior of the damped system depends on both added stiffness ratio 0  and added 

damping ratio d .  

 

2.5.3. Displacement dependent damper brace assembly (friction case) 

In case of hysteretic behaviour, classical force-displacement formulation is adopted.  

In case of friction behaviour (Figure 2.18Figure 2.18), the damper force can be expressed as: 

yd FF  for 1 0x  
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(a) 

 
(b) 

Figure 2.18 Rheological model (a) and hysteretic cycle (b) of a friction damper. 

Equivalent viscous damping of a friction damper is always equal to: 

2

2
14

4
4

max

max

xF

xF
E

E

y

y

s

d
d  

If the brace is connected to the damper (Figure 2.19(a)), the damper-brace component can be 

described by: 

1db bF k x  for 1
y

y
b

F
x x

k  

db yF F  for 1 yx x  

 

 

 
(a) 

 
(b) 

Figure 2.19 Rheological model (a) and hysteretic cycle (b) of brace+ friction damper. 

Assuming the same maximum displacement maxx , the damper-brace hystreretic cycle is shown 

in Figure 2.19(b), and the equivalent viscous damping is: 

)1(2

2
14

)(4

4 max
max

max

xk
F

xF

k
F

xF

E
E

b

y

y

b

y
y

s

d
d  

so reduced by a factor )1(
maxxk

F

b

y  with respect to the pure friciton behavior. 

2.5.4. Frame - displacement dependent damper assembly (friction case) 

When a friction damper-brace assembly is inserted in a linear elastic frame (Figure 2.20), the 

rheological model can be represented as follows, assuming inherent viscous damping c=0 for 

sake of simplicity. 

F y

F

x

Fy

xmax

F ykb
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Figure 2.20 Rheological model of SDOF system with friction-dissipative brace. 
 

 

 

 

+ 

  

 

= 

Figure 2.21 Force-displacement behavior of a SDOF system with friction-dissipative brace. 

Considering the force-displacement response of Figure 2.21, dissipated energy only accounts 

for friction contribution and is equal to:  

)(4 max
b

y
yd k

F
xFE  

while strain energy is given by: 

maxmax )(
2
1 xxkFE fys  

Frame stiffness increases elastic strain energy while leaving the same amount of dissipated 

energy, thus the equivalent damping ratio results: 

)(

)1(
2

4 max

max

xkF
xk
F

F

E
E

fy

b

y
y

s

d
d  

and the secant stiffness is: 

f
y

eff k
x
F

k
max

 

 

2.5.5. Displacement dependent damper brace assembly (elastoplastic case) 

In case of elasto-plastic behaviour (Figure 2.22), the damper force can be expressed as: 

1xkF ed  for yxx1  

F y
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yd FF  for yxx1  

 

 
(a) 

 
(b) 

Figure 2.22 Rheological model (a) and hysteretic cycle (b) of an elastoplastic damper. 

Equivalent viscous damping of an elasto-plastic damper is equal to: 
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If the brace is connected to the damper (Figure 2.23), the damper-brace component can be 

described by: 

1 1
e b

db eq
e b

k kF x k x
k k

 for 1
y

y
eq

F
x x

k  

db yF F  for 1 yx x  

 

 

 
(a)  

(b) 

Figure 2.23 Rheological model (a) and hysteretic cycle (b) of brace - elastoplastic damper assembly. 

Assuming the same maximum displacement maxx  and that db yF F , the damper-brace 

hystreretic cycle is shown in Figure 2.23 (b), and viscous damping is equal to: 
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With respect to friction behavior, a reduction of the provided damping can be appreciated due 

to the ratio 1
e

eq

k
k
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2.5.6. Frame - displacement dependent damper assembly (elastoplastic case) 

If an elastoplastic damper-brace model is inserted in a linear frame (Figure 2.24), the 

rheological model can be set as: 

 

Figure 2.24 Rheological model of SDOF system with elastoplastic dissipative brace. 
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= 

 

Figure 2.25 Force-displacement behavior of a SDOF system with elastoplastic-dissipative brace. 

As in the friction case, bare frame response does not affect energy dissipation but just increases 

elastic strain energy (Figure 2.25), thus resulting: 
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Equivalent damping ratio is obvioulsy reduced with respect to the friction case: 
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while increasing the secant stiffness by fk : 
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2.6 Modeling of isolators’ behavior  

The role of damping in seismic isolation is complementary: shifting of period is carried out 

introducing lateral flexibility at a certain level (usually at the foundation) so that a strong 

reduction of accelerations and interstory drifts on the upper structure is obtained. The price of 

this benefit is in accepting much larger displacements, usually concentrated at the isolation 

level. To reduce them to acceptable values, an important contribution is provided by increasing 

damping up to certain limits (Figure 2.26). 

 

 

Figure 2.26 Non-Isolated, Isolated and Isolated-Damped Reinforced Concrete Frames. 

In the following two main types of systems that have been widely used in the last fifteen years, 

namely the laminated-rubber bearings systems and the friction pendulum systems, are 

examined. 

 

2.6.1. Elastomeric isolators  

The steel plates vulcanized to the rubber layers limit severely the flexural deformations of a 

laminated-rubber bearing. Therefore, it can be assumed that pure shear deformations occur in 

the rubber only. The lateral stiffness of a laminated-rubber bearing can be approximated as: 

r

rr
b h

AGk  

where rG  is the shear modulus of rubber at the design strain, rA  is the rubber layer area and rh  

is the total rubber height. This equation neglects the reduction in lateral stiffness at large 

displacements.  

Experiments have shown that the energy dissipation through shear deformations in rubber 

layers of laminated-rubber bearings can be modeled by equivalent viscous damping. Typical 
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bearings used in bridges provide equivalent viscous damping of the order of 5% to10% of 

critical. High damping rubbers are now available for bearing applications that can produce 

viscous damping up to 20% of critical.  

Even if the most appropriate model is the Bouc-Wen (Figure 2.27(a)), common practise adopts 

an equivalent model made by a spring with stiffness bk acting in parallel with a viscous damper 

of coefficient dC  (Figure 2.27(b)), representing effective stiffness and damping at the design 

displacement, respectively.  

 
(a) 

 

 
(b) 

Figure 2.27 (a) Hysteresys plot of an HDRB; (b) rheological model. 

Supplemental damping can be provided to a system isolated with laminated-rubber bearings 

through external supplemental damping devices such as hysteretic or viscous dampers 

discussed in earlier chapters. 

Isolator damping can also be increased by external components such as lead plugs inserted in 

the center of the bearing. The lead plug is introduced into a laminated rubber bearing to increase 

the damping by hysteretic shear deformation of the lead. The main reason why lead is chosen 

as the material for the central plug is that, at room temperature, lead behaves approximately as 

an elastic-plastic solid and yields in shear at relatively low stress of about 10 MPa.  

Figure 2.28 compares the force-displacement hysteresis loop of a laminated-rubber bearing with 

the one obtained with the same bearing incorporating a lead plug inserted down its center. It 

can be seen that, before yielding of the lead plug, the lateral stiffness of the lead-rubber bearing 

is much larger than the lateral stiffness of the laminated-rubber since both the lead and the 

rubber deform elastically. After yielding of the lead plug, however, the lateral stiffness of both 

bearings is equal to the elastic shear stiffness of the rubber alone.  

Cd

kb
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Figure 2.28 Force-Displacement hysteresis loops of a (dashed) Laminated Rubber Bearing and Lead 
Rubber Bearing (solid). 

A reasonable model of the hysteretic behaviour of a lead-rubber bearing is a bilinear solid with 

elastic stiffness 1k , a post-yield stiffness 2k  and a yield force yF  (Figure 2.29). The elastic 

stiffness 1k  can be obtained by: 

1
p p r r

l b
r r

G A G Ak k k
h h

 

 

Where: 

- rh  is the total rubber height 

- pA  is the area of the lead plug 

- rA  is the area of the rubber 

- pG  is the shear modulus of lead MPa150  at room temperature 

- rG  is the shear modulus of rubber 5.0  to MPa1   

 

The post-yield stiffness 2k  is equal to the lateral shear stiffness of the rubber bk : 

r

rr
b h

AGkk2

 
For practical size bearings, the lateral stiffness can be estimated as: 

bkk 101  

The yield force yF  can be estimated by the shear force required to yield the lead plug plus the 

elastic force carried by the rubber at the corresponding yield displacement: 
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)1(
pp

rr
ppyy AG

AGAF  

where MPapy 10  is the shear yield strength of the lead.  

For practical size bearings, yield force can be estimated as: 

y py pF A  

Figure 2.29 Rheological model (a) and hysteretic plot (b) for a Lead Rubber Bearing. 

 

2.6.2. Friction isolators 

The lateral force-displacement relationship for a sliding pendulum system is: 

R
WF      (2.19) 

providing the lateral stiffness of the FPS base isolator /k W R (Figure 2.30).  

 

Figure 2.30 Principle of operation of the friction pendulum system. 

The natural period of a pendulum system depends only on the radius of the bearing and this 

would represent a significant advantage of the FPS system since a target isolated period can be 

achieved independent of the mass of the superstructure.  

A particularization of sliding isolator is represented by flat surface, where R and the device 

has no post-sliding stiffness. For this reason flat surface isolators have no recentering 

capabilities. 

In reality, friction forces are present at the sliding interface and must be overcome before the 

bearing can slide. Figure 2.31 shows a typical hysteresis response of a FPS bearing where a 
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certain amount of friction is present at the interface. The system is near rigid until this friction 

force is overcome. Then the force increase is proportional to the lateral stiffness of the FPS. 

The force required to overcome the initial friction is equal to W  where  is the coefficient 

of friction of the sliding interface. Because of this initial breakaway friction, the effective 

stiffness of the isolator is dependent on the friction coefficient of the system  and the 

maximum displacement of the isolator maxx . This effective stiffness effk , which is larger than 

the one described in eq. (2.19), is given by: 

max

1
effk W

R x
 

 

A friction model with hardening seems quite adequate to capture experimentally obtained 

hysteretic response of an FPS system: 

Figure 2.31 Rheological model (a) and hysteretic plot (b) for a FPS isolator. 

A further development of the sliding isolator type is represented by double curvature friction 

pendulum systems, introduced to accommodate the need of larger displacements demand that 

may increase the cost of the isolation bearings significantly. If both the bottom and the top 

sliding surfaces have the same curvature and the same friction coefficient, hysteretic behaviour 

remains unchanged as the one shown in Figure 2.31.  

 

2.6.3. The role of damping in seismic isolation 

Recent moderate or large magnitude earthquakes in urban areas have led to significantly 

increase the current code requirements in many countries. The codes governing the design of 

seismically isolated structures have always been more conservative than those for conventional 

structures, and those codes are sometimes so conservative that the benefit of seismic isolation, 

that provides functionality (elastic response) for large ground motion at an effordable cost, may 

be jeopardized. For the design of base isolation systems for buildings located at near-fault sites, 

the design engineer is faced with even larger displacements for the isolators.  
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In many isolated structures designed according to the most recent Californian design codes, the 

code requirements are so conservative that the designers are using additional viscous dampers 

in an attempt to control the large design displacements, and damping factors for the isolation 

system of the order of 50% are obtained. Clearly, at this level of damping the equations cannot 

remain uncoupled and a complex modal analysis should be used. Kelly (Kelly 1999) studied 

the effect of high levels of damping in the isolation system. 

These dampers reduce displacements, but at the expense of significant increases in interstorey 

drifts and floor accelerations in the superstructure.  

To prove the effect of additional damping on isolated structure, Kelly proposed a very effective 

dissertation on the role of damping on isolated structure (Figure 2.32). An elementary analysis 

based on a simple model of an isolated structure is used to demonstrate this dilemma. The model 

is linear and is based on modal analysis, but includes the modal coupling terms caused by high 

levels of damping in the isolation system. At high level of damping the equations of motion 

cannot remain uncoupled and a complex modal analysis should be used. For this reason a 

similar approximation will be used in this section to demonstrate the effect of high levels of 

damping in the isolation system on the response of the structure. 

 

 

Figure 2.32 Parameters of 2 DOF isolated system. 

Referring to the 2DOFs system (Kelly 1990), it was proved the interstorey drift s s bv u u  can 

be decomposed in three contributions: 

-
max

)1(
sv  produced by the base shear generated by the isolation system; 

-
max

)2(
sv  produced by the uncoupled modal equations  

-
max

)3(
sv  produced by the coupling terms, generally neglected in most analysis.  

For small values of b  (isolation system critical damping ratio), say 10.0 , the first term, 

max

)1(
sv , is the dominant term. For all values of b  the second term, 

max

)2(
sv  is always much 
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less than the first term and is neglected. The significance of the third term, 
max

)3(
sv , depends on 

the value of b . The author of the cited work demonstrated that, under certain reasonable 

assumptions, moving from 0.10b  to 0.50b  the ratio )1()3( / ss vv  passed from 33.0  to 

80.1 , respectively.  

This result implies that the addition of dampers (leading to large values of b ), while 

controlling the isolator displacement by reducing gbb uuv , has the counter effect of 

increasing the interstorey drift and floor accelerations. For a constant velocity design spectrum 

the accelerations generated by the coupling terms become the dominant term. It is not widely 

appreciated that in base-isolated structures the higher modes, which carry both the floor 

accelerations and the interstorey drift, are almost orthogonal to the base shear, so that a low 

base shear is not a guarantee of an effective isolation system. In this respect the effort to improve 

the performance of the system by adding damping is a misplaced effort and inevitably self-

defeating. 

A further consequence of the present US codes is that by identifying a MCE, i.e. an event with 

a return period of 1000 years, level for design of the isolators that is a very large and very rare 

event, it raises the possibility that in the more probable, lower-level earthquake, the isolation 

system will be too stiff and so heavily damped that it will not move. The result would be much 

less isolation than promised. While not an issue of life safety, it is possible that large enough 

floor accelerations could be generated to damage non-structural elements and equipment, in 

addition to disturbing occupants. The solutions to this dilemma of how to control displacements 

for large input level earthquakes while maintaining good performance for low-to-moderate 

input level earthquakes are several, but mainly reduce to designing a system that is very stiff at 

low input shaking, softens with increasing input reaching a minimum at the DBE, i.e. an event 

with a probability of exceedance of 10% in 50 years, and then stiffens again at higher levels of 

input. With frictional systems such as the FPS, this can be achieved by gradually increasing the 

curvature of the disc at radii larger than the DBE displacement and increasing the surface 

roughness. For elastomeric isolators it requires using the increased stiffness and increased 

damping that is associated with the strain-induced crystallization that occurs in the elastomer at 

strains around 150 to 200 % shear strain (depending on the compound). Other possibilities are 

to use a compound seismic isolator.  
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Chapter 3 

 

3. DESIGN OF SUPPLEMENTAL DAMPING SYSTEMS 

 

3.1 Introduction 

The presence of some damping (energy dissipation) in conventional buildings has long been 

recognized and accepted by practicing professional engineers. Although the nature of the 

energy dissipation inherent in buildings has not been explicitly identified, inherent equivalent 

viscous damping in the range of two percent to five percent of critical has become accepted in 

practice for linear response analysis of typical buildings. In fact most of the design spectra are 

developed assuming about five percent of critical viscous damping in the system. 

If there were no damping, vibrations would exist for all time. However, there is always some 

level of inherent damping which withdraws energy from the system and therefore reduces the 

amplitude of vibration until the motion ceases.  

However, the addition of supplemental damping systems can substantially increase damping 

(Figure 3.1).  

 



Chapter 3: Design of supplemental damping sytems 

 

77 

 

 
(a) 

 
(b) 

Figure 3.1 Effects of damping increase on spectral acceleration (a) and spectral displacement (b). 

The following discussion is intended to propose a dissertation on design issues for buildings 

with supplemental damping systems, including more advanced code provisions and proposed 

analysis methods. 

3.2 Effects of damping on SDOF structural dynamics 

Consider a single-degree-of-freedom system (SDOF – Figure 3.2) assumed to be linear elastic 

(lateral stiffness k ), with a linear viscous damper (damping coefficient c ), and a top mass 

(storey mass m ).  

 

Figure 3.2 SDOF linear elastic frame with viscous damper. 

The present chapter is devoted to summarize the effects of damping on this simple system in 

case of free vibration, harmonic excitation, unit impulse and ground motion (Chopra 2011). 

 

3.2.1. Free Vibration 

It is known that, when this system initially at rest and assumed to be linear elastic with less than 

critical viscous damping, is released from a displaced position, it will vibrate with decreasing 

amplitudes as shown in Figure 3.3 for increasing values of critical damping.  

 

m

k

u (t)
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Figure 3.3 Free vibration for ζ=2,5,10 and 20%. 

In condition of damped free vibration, the differential equation governing the motion is: 

Dividing by  gives: 

     (3.2) 

where mkn /  is the system natural frequency and  
crn c
c

m
c

2
 is the damping ratio 

or fraction of critical damping. The damping constant is a measure of the energy dissipated in 

a cycle of free vibration or in a cycle of forced harmonic vibration. However, the damping ratio 

- a dimensionless measure of damping - is a property of the system that also depends on its 

mass and stiffness.  

Figure 3.4 shows a plot of the motion )(tu  due to initial displacement )0(u for three values of 

. If crcc  or 1, the system returns to its equilibrium position without oscillating. If 

crcc  or 1, again the system does not oscillate and returns to its equilibrium position, as 

in the 1 case, but at a slower rate (Figure 3.4(a)). If crcc  or 1, the system oscillates 

about its equilibrium position with a progressively decreasing amplitude.  

For underdamped systems, free vibration solution to eq. (3.2) is: 

(0) (0)( ) [ (0) cos ( ) sin ]nt n
D D

D

u uu t e u t t  

where 

21nD  is the natural frequency of damped vibration.  

The natural period of damped vibration is DDT /2  and is related to the natural period nT  

without damping by: 
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n

D
TT  

(a)
(b)

Figure 3.4 (a) Free vibration of underdamped, critically-damped, and overdamped systems; (b) 
exponential decay in free vibration of an underdamped system. 

Effect of increasing damping is manifold: 

- amplitude of oscillation decreases with every cycle of vibration; 

- the natural frequency is lowered from n  to D , so lengthening the natural period from 

nT  to DT . 

Effect of lengthening natural period is negligible for damping ratios below 20%, a range that 

includes most structures (Figure 3.5). The most important effect of damping is on the rate at 

which free vibration decays. 

 

Figure 3.5 Effects of damping on the natural vibration frequency. 

 

3.2.2. Harmonic excitation 

The equation of motion for SDOF systems under harmonic force can be formulated as follows: 

tsenptkutuctum o)()()(  
where op  and  are the amplitude and the frequency of the external force, respectively.  

The solution is given by: 
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tDsenutBtAsenetu stDD
tn cos)(  

where   
k
pu o

st . 

Solution shows that )(tu  contains two distinct vibration components: (l ) the tsen  term, 

giving an oscillation at the forcing or exciting frequency,  and (2) the tsen D  and tDcos  

terms, giving an oscillation at the damped frequency of the system. The first of these is the 

forced vibration or steady-state vibration, it is present because of the applied force no matter 

what the initial conditions. The latter is the transient vibration, which depends on the initial 

displacement and velocity. 

After a while, essentially the forced response remains, and we therefore call it steady-state 

response. It should be recognized, however, that the largest deformation peak may occur before 

the system has reached steady state. 

Amplitude of forced vibration is stD u , where D  is the response amplification factor 

depending on both  and  defined as: 

222 21

1D  

A plot of the amplitude of a response quantity against the excitation frequency is called a 

frequency-response curve. Such a plot for deformation u  is given by Figure 3.6, wherein the 

deformation response factor D  is plotted as a function of  for a few values of ; all the 

curves are below the 0  curve. Damping reduces D  and hence the deformation amplitude 

at all excitation frequencies. 
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Figure 3.6 Dynamic amplification factor for harmonic excitation. 

In case of motion, the role of damping comes out both in the rate at which steady-state response 

is attained and in limiting the magnitude of this response when the forcing frequency is close 

to the natural frequency.  

The lighter the damping, the larger is the number of cycles required to reach a certain percentage 

of the steady-state amplitude. Even if frequency response curves clearly show that damping 

reduces the deformation amplitude at all excitation frequencies, it should be observed that 

increasing damping has a significant effect on the dynamic response of the system only when 

the excitation frequency is nearly the same as the natural frequency of the system (within about 

plus or minus 20%). Thus, if the frequencies of the system are not close to the expected 

frequencies of the input motions, added viscous damping will not have a significant impact on 

the response.  

 

3.2.3. Unit impulse 

A unit impulse causes free vibration of the SDOF system due to the initial velocity (Figure 3.7). 

The response for viscously damped systems is: 
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(a) (b)

Figure 3.7 (a) Unit impulse and (b) unit impulse response. 

When the excitation is a single pulse, the effect of damping on the maximum response is usually 

not important unless the system is highly damped (Figure 3.8). 

 
Figure 3.8 Shock spectra for a half-cycle sine pulse force. 

If the earthquake response of a building is thought as a series of responses to individual 

earthquake pulses, it would be concluded that the response of higher damped systems will be 

less because the individual response decay quickly and cannot accumulate (Hanson 1993). The 

response of more highly damped systems will be smaller than that of the lightly damped 

systems, because the initial amplitudes are smaller, and the responses decays more quickly.  

 

3.2.4. Ground motion 

As far as effects of a real ground motion on a SDOF system are concerned, Figure 3.9 shows 

an acceleration response spectra for three values of damping: moving from 2 to 5 and 10 % of 

equivalent viscous damping gradually reduces maximum acceleration. For earthquake ground 

motion inputs, the displacement response spectra decreases for elastic systems with changes in 

viscous damping.  
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Figure 3.9 Ground motion pseudo-acceleration response spectra for increasing values of damping. 

It is worth to note that the spectral acceleration Spa, which is exactly the acceleration at 

maximum displacement and is equal to the maximum displacement times the frequency 

squared, well approximates the maximum acceleration only for low damped systems.  

Figure 3.10 compares pseudo acceleration and maximum acceleration response spectra for the 

1940 El Centro earthquake (S00E) where it is demonstrated that, for large values of damping 

(i.e, 30% of critical and larger), the pseudo acceleration is typically less than the maximum 

acceleration. The maximum acceleration occurs at a time in which the displacement is less than 

maximum. 

 

Figure 3.10 Response spectra of maximum and pseudo acceleration. 

Consider a frame to have been designed for ductile behaviour following the capacity design 

approach. The yielding frame has substantial ability to dissipate energy. Approximately, one 

can determine an effective damping ratio of at least 30% of critical for this frame. With such 

ability to dissipate energy, an increase in this ability due to the added energy dissipation system 

will not be very effective in further reducing the displacement of the frame.  

To approximately quantify this further response reduction, Figure 3.11 was prepared from data 

in FEMA 273 (ATC 1997a). It presents plots of the displacement response ratio of a structure 
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in which an energy dissipating system caused an increase in the damping ratio by either 10 or 

20 or 30% of critical. The damping ratio of the structure without the energy dissipation system 

is shown to be in the range of 1 to 30% of critical. The response ratio shown here is valid for 

the so-called velocity domain of the response spectrum (long period range). As shown in Figure 

3.11, a structure with a damping ratio of 1 to 3% of critical will have its response reduced to 

approximately one half (reduction by 50%) when an energy dissipating system enhances 

damping by 20 to 30% of critical. However, when the structure has a damping ratio of 30%, an 

increase of damping by 20 to 30% of critical will cause a reduction of response to approximately 

0.85 of the value without the energy dissipation system (reduction by 15%).  

Actually, the reduction in response will be larger due to the increased effective stiffness of the 

structure, which is caused (a) by the reduction in drift, and (b) by the addition of stiffness in 

certain energy dissipation systems. 

 
Figure 3.11 Response reduction of structure with added damping of 10, 20 or 30 % of critical. 

3.3 Design considerations for structures with passive energy dissipation systems 

Seismic Drift-Controlled Structures (New Construction) 

For structures located in high seismic regions, member sizes of steel moment frames are usually 

determined by drift restrictions. Since passive energy dissipation systems are effective in 

reducing drifts, the use of such systems can lead to significant reductions in the size of framing 

members. Adding damping devices in each story, as it is generally recommended, creates a 

system that resembles a supplemental braced frame within the structure. This can be 

problematic since it may be difficult to convince owners and architects to disrupt an open floor 

plan with these elements. However, discreet locations can often be found to position these 
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elements within a floor plan. The inclusion of passive damping elements within steel moment 

frames offers the following advantages for seismic loading:  

when compared with the alternative of using a conventional moment frame, the required 

weight of the steel moment frame will generally be reduced, often more than offsetting 

the cost of adding the damping elements; 

when compared with the alternative of using a conventional braced frame, the various 

height limitations and seismic R  factors of the various ordinary braced frame, special 

concentrically braced frame, and eccentricity braced frame systems can cause some of 

the systems to be prohibited or more heavy than a passive-damped steel moment frame. 

The overturning moment and resulting foundation sizes beneath the conventional braced 

frames will almost always be larger; and 

the passive-damped steel moment frame can be designed to provide a reduced damage, 

performance-based earthquake design in which minimal inelastic deformation is 

required in the steel frame. In comparison, either a conventional moment frame or 

braced frame may be subjected to significant damage following a major earthquake. 

This is arguably the most important benefit resulting from the inclusion of dampers in 

flexible moment frame structures; 

it is important to note that applications of passive energy dissipation devices are not 

restricted to flexible steel moment frames. In fact, such devices have been implemented 

in concrete buildings and have been studied for application to light wood frame 

construction. Furthermore, application of such devices is not limited to office/residential 

construction. For example, the retractable roof structure of the Seattle, WA Mariners 

baseball stadium in Seattle employs large capacity viscous fluid dampers in the bottom 

chords of long-span roof trusses. 

 

Seismic Drift-Controlled Structures (Retrofit Construction) 

Retrofit applications of passive damping systems have been used to limit inelastic demands of 

connections in both steel and concrete moment frames. For existing steel and concrete buildings 

having framing connections, maximum inelastic rotation capacities can be used to define 

structure drift limitations that form the basis for design of a passive damping system, to be 

designed to meet this requirement.  
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Assuming perfectly rigid damper bracing and associated connections and assuming elastic 

structural response, linear viscous dampers produce forces within a given story that are 90° out 

of phase with respect to the restoring forces in the same story. In this case, for retrofit 

applications in which the damping is proportionally distributed, and considering only the 

response in the fundamental mode, the impact of the damping forces on the existing foundation 

may be minor and therefore the foundation, which is usually very difficult and expensive to 

retrofit, may require minimal, if any, strengthening. In reality, elastic structure forces and 

viscous damping forces are usually partially in phase, leading to the possibility of increased 

forces at the foundation level. The partially in-phase relation for the elastic and viscous damping 

forces can be induced by damper bracing and connection flexibility (Fu and Kasai 1998), higher 

mode effects, and non-proportional damping effects. It is also important to recognize that, for 

strong earthquakes, most structures employing viscous dampers will experience some level of 

inelastic response in the structure framing system. In this case, damping forces and inelastic 

restoring forces may be additive, causing significant increases in the base shear. Adding 

dampers to a structure introduces a new and very important design requirement in that the 

deformations along the load path between all dampers and the main structural elements must 

be included in the analysis (e.g., rigid diaphragm action cannot be assumed).  

 

Pros and Cons of Viscous Damper Velocity Exponent Value 

For a given peak force and displacement amplitude, as the velocity exponent of nonlinear fluid 

viscous dampers is reduced below unity, the energy dissipated per cycle of motion is increased 

since the area within the force-displacement hysteresis loop is larger. However, the additional 

energy dissipation afforded by the nonlinear dampers is minimal (at the extreme, the increase 

in energy dissipation afforded by a damper with velocity exponent of zero over that with a 

velocity exponent of 1.0 is by a factor of /4 ). As compared to a linear viscous damper 

(velocity exponent of unity), the forces transferred by a nonlinear damper to the structure will 

be more nearly in phase with the structure restoring forces such that the resulting design more 

nearly resembles that of a braced frame within the structure (albeit, a braced frame would have 

a limiting base shear whereas a structure with nonlinear viscous dampers may not, particularly 

if the velocity exponent is in the higher range of 0.6–1.0). The main advantage of using 

nonlinear viscous dampers with a low velocity exponent (say 0.5 or less) is that peak damping 

forces will be limited and smaller leading to limited base shears. On the other hand, using a 

more linear force-velocity relationship will generally result in somewhat lower effective 
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damping and somewhat greater damper forces (depending, of course, on the magnitude of the 

damping coefficient for the linear and nonlinear cases). The main advantage of using a more 

linear force-velocity relationship is that modeling of the damper is simplified and, for weak to 

moderate earthquakes that do not induce inelastic structural response, the damper forces within 

a given story are nearly 90° out of phase with respect to the elastic structural forces. As 

explained above, under certain special conditions, this may result in damper forces that have 

minimal effect on the forces at the foundation level. 

 

Improvement of Irregularity Conditions  

Mostly in retrofit situations, passive damping systems have been added to improve the response 

of irregular buildings (e.g., buildings having a soft story or a geometrical configuration in which 

excessive deformations are concentrated in local areas). By arranging damper locations and 

selecting damping values so that the resulting damper forces are in proportion to structure 

deformations, displacements in these areas can be reduced and overall response improved. For 

example, if a low-to midrise structure has a vertical irregularity in the form of a soft first story, 

dampers located in that story would experience significant deformations and thus produce 

significant damping forces. However, if the dampers were located only in that story, the 

Provisions require that nonlinear analysis be performed. Linear static and response spectrum 

analysis can only be performed if the damping system is distributed over the full height of the 

structure with at least two dampers per story. The performance of structures with plan 

irregularities that induce torsion can also be improved via strategic placement of dampers (Goel 

2000). 

 

Damper Placement and Damper Installation Configuration  

In general, the effectiveness of each damper in a structure is proportional to its maximum 

displacement and/or velocity and the damper design parameters. For a single mode of vibration, 

the effectiveness of the dampers can be maximized by positioning devices in accordance with 

the largest interstory displacements of the corresponding mode shape (or, conversely, the 

effectiveness of dampers for any single mode of vibration will be reduced if the dampers are 

located in stories having little interstory displacement for that mode). As an example, locating 

devices at each story within the core of a building may be effective for regular, symmetric 

structures, but might be ineffective for torsionally irregular structures since, although the 

fundamental translational vibration modes may be effectively damped, the torsional modes 
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might have little added damping (Goel 2000). Of course, the above approach to damper 

placement is based on the assumption that the mode shapes remain constant which is only valid 

if the structure remains elastic and the damping is distributed in a proportional manner. Other 

approaches to damper placement, including formal optimization of damper placement, have 

been developed (Lopez Garcia and Soong 2002). 

Dampers are attached to the main structural framing system via a bracing system. The bracing 

system may be diagonal bracing, chevron bracing, or cross-bracing. If the main structural 

framing is relatively stiff (e.g., reinforced concrete structures), the damper effectiveness is 

limited due to low displacements and velocities across the damper. This is particularly 

problematic when the damping system is also used to resist wind loading since wind-induced 

interstory drifts are usually much smaller than seismically induced drifts. To improve the 

effectiveness of dampers under such conditions, alternative damper bracing systems have been 

developed to amplify the motion of the damper. Examples of such amplification systems 

include toggle bracing and scissor-jack bracing.  

As mentioned previously, all bracing systems introduce flexibility into the damper assembly 

which reduces effectiveness of dampers. 

3.4 Load path in damping braced frames 

Energy dissipation devices will typically be attached to moment frames. While the energy 

dissipation system can result in significant reduction in drift (and, thus, reduction in column 

bending moment and/or reduction in inelastic deformation), it also affects load paths.  

Specifically, the change from a moment frame to a braced configuration can result in substantial 

increase in column axial forces. In addition to this, base shear can be affected due to larger 

lateral stiffness of the resisting system.  

 

3.4.1 Axial forces in columns 

Let us consider the implications of the use of energy adsorbing systems in an existing moment-

resisting frame building. The energy adsorbing devices are installed in new bracing systems 

and, say, are capable of reducing drifts to half of those of the original system in a severe 

earthquake. In the friction and steel yielding devices, the peak brace force occurs at the time of 

peak displacement. Accordingly, the additional column force, which is equal to sinF  (  is 

the brace angle with respect to the horizontal), is in-phase with the bending moment due to 
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column drift. Similarly, in the viscoelastic device a major portion of the additional column force 

is in-phase with the bending moment. In contrast, in the viscous device the additional column 

force is put-of-phase with the bending moment.  

The drift is not the only concern in design. Energy adsorbing devices may reduce drift and thus 

reduce inelastic action. However, depending on their force-displacement characteristics, they 

may induce significant axial column forces which may lead to significant column compression 

or even column tension. This concern is particularly important in the seismic retrofitting of 

structures which suffered damage in previous earthquakes. After all, it may not always be 

possible to upgrade the seismic resistance of such structures by the addition of energy adsorbing 

devices alone. It may also be necessary to strengthen the columns.   

 

3.4.2 Base shear 

It should be noted that, as shown in Figure 3.12(a), the base shear force response of the structure 

with energy dissipation systems may be larger than that of the structure without these systems.  

Figure 3.12 Pushover curves and force-displacement hysteresis loops of a yielding structure with and 
without energy dissipation systems: (a) having proper plastic hinge formation and (b) having improper 

plastic hinge formation. 

This would be the case when the pushover curve of the structure without an energy dissipation 

system exhibits essentially elastoplastic behavior. It is possible to have reduction in base shear 

force when the pushover curve exhibits significant post-yielding stiffness. 

Energy dissipation devices will also reduce force in the structure, provided the structure is 

responding elastically, but would not be expected to reduce force in structures that are 

responding beyond yielding. 
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Structures designed for low lateral forces without proper distribution of stiffness and detailing 

for ductility typically develop improper plastic hinge mechanisms and undesirable modes of 

deformation. Figure 3.12(b) shows a frame with such characteristics, where plastic hinges can 

form in the columns and lead to hysteresis loops with low energy absorption capability. Such a 

mechanism may lead to excessive hinge rotations which cannot be accommodated, resulting in 

deterioration of strength and stiffness and eventually failure. Figure 3.12(b) depicts a case in 

which neither significant deterioration nor failure has occurred. The addition of an energy 

dissipation system to this frame results in significant improvement in energy absorption 

capability and large reduction in displacement. This reduction in displacement is associated 

with reduction in plastic hinge rotation and possible elimination of some plastic hinges. 

However, the total force on the frame may be increased as a result of the increase in stiffness 

and/or strength provided by the energy dissipation system. 

It is apparent that energy dissipation systems are most useful in applications of seismic retrofit. 

3.5 Analysis of damper added structure vs traditional structure 

From the viewpoint of multistory structural analysis, significant differences can exist between 

the structural properties of a traditional structure and those of a damper added structure. For 

these cases, the traditional methods of analysis may need to be modified to account for these 

differences. Some potentially significant differences are listed below. 

Significant increase in damping 

Damper added structures exhibit significantly higher modal damping ratios than those 

associated with traditional structures. This is particularly true in higher modes, where damping 

ratios can reach values close to or even exceeding their critical values. Hence, the damping term 

in the equation of motion of a damper-added structure becomes important in determining the 

structure’s modal properties. 

Non proportional damping 

For analytical convenience proportional damping is usually assumed in the analysis of a 

traditional structure. This simplifies the structural analysis by using modal superposition. The 

consequence of adding dampers to a traditional structure depends on the location and 

characteristics of the selected devices. If the added damping is proportional – that is, if the 

undamped mode shapes of the structure with added stiffness that are due to damping devices 

diagonalize the structure’s damping matrix – then the structure has proportional damping. In 
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this case, the traditional modal analysis approaches work well. That is, the normal modes of 

vibration of the damped system are identical to those for the undamped structure, making the 

calculation of modal properties a routine procedure. 

The proportional damping assumption, however, is generally not valid for damper added 

structures, because it may not be practical to try to match added damper characteristics to the 

vibrations in the structural stiffness and mass of the building. In fact, in some cases it may be 

desirable to add dampers only at specific floors in the building. Thus, the distribution of the 

damping properties within the structure will probably not be proportional. In this situation, 

modifications of the traditional model analysis must be considered.  

Damping devices nonlinearities 

Whether a traditional structure behaves linearly or non linearly (because of yielding) under a 

given loading condition, a damper-added structure generally exhibits nonlinear behavior 

because damper dynamics are generally non linear in local displacements and velocities. This 

fact complicates exact structural analysis procedures considerably. Although a rigorous 

nonlinear time history analysis can be performed to verify the final design, simple 

approximation methods of analysis are needed for preliminary design and desirable for final 

design.  

Damper device nonlinerities and their “linearized” properties have been discussed in Chapter 

2.  

3.6 Code provisions for supplementally damped structures 

The effectiveness of seismically isolated structures or structures with supplemental damping 

has been recently codified in international seismic regulations and recommendations. The 

present paragraph provides an overview of the historical developments of building codes, with 

particular focus on American state of art, whose Provisions (BSSC 2004) probably represent 

cutting-edge of developments.  

 

3.6.1. Development of Guidelines and Design Philosophy 

Guidelines for the implementation of energy dissipation or damping devices in new buildings 

were first proposed by the Structural Engineers Association of Northern California (SEAONC) 

to provide guidance to structural engineers, building officials, and regulators who were tasked 

with implementing such devices in building frames. These guidelines were prepared in response 
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to the increased interest shown in damping devices following widespread damage to building 

frames in the 1989 Loma Prieta earthquake in Northern California and the emergence of 

vendors of damping hardware. The intent of the authors of that document was to direct the 

dissipation of earthquake-induced energy into the damping devices and away from components 

of the gravity-load-resisting system, thereby reducing repair costs and business interruption 

following severe earthquake shaking. 

In the mid 1990s, the Federal Emergency Management Agency (FEMA) funded the 

development of guidelines for the seismic rehabilitation of buildings. Four new methods of 

seismic analysis and evaluation were presented in the NEHRP Guidelines for the Seismic 

Rehabilitation of Buildings; FEMA Reports 273 (ATC 1997a) and 274 (ATC 1997b): (1) linear 

static procedure, (2) linear dynamic procedure; (3) nonlinear static procedure; and (4) nonlinear 

dynamic procedure. All four methods were displacement based and all directly or indirectly 

made use of displacement-related information for component checking (as such the FEMA 273 

and 274 procedures represented a paradigm shift in the practice of seismic design because the 

focus of analysis, design, and evaluation shifted from forces to deformations). Actions in 

components of a building frame were characterized as either deformation controlled (for ductile 

actions such as bending moments in beams) or force controlled (for brittle actions such as shear 

forces in columns). Rotation limits for deformation controlled actions were presented in the 

materials chapters of FEMA 273 for comparison with rotation demands estimated using the 

displacement-based methods of analysis. Strength limits were established for force-controlled 

actions using procedures similar to those in codes and manuals of practice. With regard to 

structures incorporating passive energy dissipation devices, the basic principles to be followed 

included: (1) spatial distribution of dampers (at each story and on each side of building); (2) 

redundancy of dampers (at least two dampers along the same line of action); (3) for maximum 

considered earthquake, dampers, and their connections designed to avoid failure (i.e., not the 

weak link in system); and (4) members that transmit damper forces to foundation designed to 

remain elastic. 

In 1997, Technical Subcommittee 12 (TS-12) of the Building Seismic Safety Council was 

tasked with developing analysis, design, and testing procedures for damping systems and 

devices for inclusion in the NEHRP Recommended Provisions for Seismic Regulations for New 

Buildings and Other Structures. The resultant provisions were required to be 100% consistent 

with those presented in the NEHRP Recommended Provisions for conventional construction. 

The equivalent lateral force and modal analysis procedures for damped buildings that were 
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developed are based in large part on the procedures of the NEHRP Rehabilitation Guidelines 

(FEMA 273 and 274) but assumed that: (1) the collapse mechanism for the building is a single-

degree-of freedom mechanism so that the drift distribution over the height of the building can 

be reasonably estimated using either the first mode shape or another profile such as an inverted 

triangle; (2) the building is analyzed in each principal direction with one degree of- freedom 

per floor level; (3) the nonlinear response of the building can be represented by an elastoplastic 

relationship; and (4) the yield strength of the building can be estimated by either simple plastic 

analysis or using the specified minimum seismic base shear and values of the response 

modification ( R ), the reserve strength of the framing system 0  and the deflection 

amplification ( dC ) factors presented in the NEHRP Recommended Provisions. The work of 

TS-12 resulted in a chapter entitled “Structures with Damping Systems” as a new addition to 

the 2003 NEHRP Recommended Provisions FEMA 450 (BSSC 2004), having first appeared as 

an appendix of the 2000 NEHRP Recommended Provisions. Recently, the 2003 NEHRP 

Recommended Provisions were reformatted and included in the 2005 edition of the ASCE/SIE 

7-05 Standard entitled “Minimum design loads for buildings and other structures” (ASCE 

2005). The earthquake load provisions in the ASCE/SEI 7-05 standard are substantially adopted 

by reference in the 2006 International Building Code (ICC 2006) and the Building Construction 

and Safety Code (NFPA 2006), the two model building codes used in the United States. 

As far as European regulations are concerned, both in force Europeran (1998-1 EN 2004) and 

Italian building Codes (NTC 2008) are still lacking an adequate dissertation on constructions 

with supplemental damping devices.  

Eurocode 8 does not provide any provision for design of supplemental damping systems, while 

NTC 2008 in section § 7.10 mainly deals with seismic isolated structures for which 

supplemental damping is considered an additional feature to reduce displacements to acceptable 

values. Italian commentary to building code (Circ.617 2009) just clarifies some general aspects 

of the design of buildings with supplemental damping braces. Guidelines (Reluis 2014) have 

just been published by Italian Department of civil Protection for analysis and modeling of 

structures with damping braces. European approach defines a damping reduction factor for 

effective damping larger than conventional 5%: 

10 0.55
5  
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With the aim of traducing the coefficient  into an equivalent damping factor Beq as included 

by US Provisions (Figure 3.13), it is found that Beq=1/  is in very good agreement with those 

of Figure 3.13. A dilemma of European codes is the limitation of damping benefits to maximum 

values of 25÷30%, for which the minimum value of the code provided coefficient  is 

attained, thus corresponding to a value Beq of the order of 1.8.  

 

3.6.2. Design Philosophy 

The basic approach followed in developing regulations on structures with damping systems in 

the aforementioned Provisions is based on the following concepts:  

-  The methodology is applicable to all types of damping systems, including 

displacement-dependent damping devices (hysteretic or friction systems) and velocity-

dependent  damping devices (viscous or viscoelastic systems); 

- The methodology provides minimum design criteria with performance objectives 

comparable to those for a structure with a conventional seismic-force-resisting system 

(but also permits design criteria that will achieve higher performance levels); 

- The methodology requires structures with a damping system to have a seismic-force-

resisting system that provides a complete load path. The seismic-force-resisting system 

must comply with the requirements of the Provisions, except that the damping system 

may be used to meet drift limits. Thus, the detailing requirements that are in place for 

structures without damping systems may not be relaxed for structures which include 

damping systems; 

- The methodology requires design of damping devices and prototype testing of damper 

units for displacements, velocities, and forces corresponding to those of the maximum 

considered earthquake; and 

- The methodology provides linear static and response spectrum analysis methods for 

design of most structures that meet certain configuration and other limiting criteria (for 

example, at least two damping devices at each story configured to resist torsion). In 

addition, nonlinear response history analysis is required to confirm peak response for 

structures not meeting the criteria for linear analysis (and for structures close to major 

faults). Note that the procedures in the 2003 NEHRP Recommended Provisions (BSSC 

2004) and the 2005 ASCE/SEI-7-05 standard (ASCE 2005) for analysis and design of 

structures with damping systems were largely based on studies that do not consider the 
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effects of near-field (close to the fault) seismic excitations. However, as demonstrated 

by Pavlou and Constantinou (Pavlou and Constantinou 2004), the 2000 NEHRP 

simplified methods of analysis for single-degree-of-freedom systems yield predictions 

of peak response of structures with damping systems that are generally accurate or 

conservative for the case of near-field seismic excitation (with a correction factor 

required for predicting peak velocity). 

3.7 Analysis of Structures with Energy Dissipation Systems   

Seismic isolation and energy dissipation systems are relatively new and sophisticated concepts 

that require more extensive design and detailed analysis than other structural typologies. The 

mathematical model of the damper-added building should include the plan and vertical 

distribution of the energy dissipation devices. This section specifies analysis methods and 

design criteria for energy dissipation systems. Simplified non linear analysis, i.e. linear static 

or dynamic analysis, even if more approximated, have enormous benefits for the preliminary 

analysis and design of damper added structure but require the definition of equivalent damping 

and equivalent stiffness.  

 

3.7.1 Design Effective Damping 

For structures with damping systems, the 2003 NEHRP Recommended Provisions FEMA 450 

(BSSC 2004) specifies that the response of the structure be reduced by the damping coefficient, 

B , based on the effective damping ratio, , of the mode of interest: 

)(
%)5,(),(

B
TSTS a

a  

This is the same approach that is used by the Provisions for isolated structures. The 

recommended values of the B  coefficient for design of damped structures are the same as those 

in previous Provisions FEMA 274 (Figure 3.13(b)) for isolated structures at damping levels up 

to 30%, but now extend to higher damping levels (Figure 3.13(a)) based on the results presented 

in Ramirez et al (Ramirez et al 2001).  
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(a) 

 

 
(b) 

Figure 3.13 Damping coefficient for different levels of damping: (a) FEMA 450 and (b) FEMA 274. 

FEMA 274 provided a general design spectrum for a conventional 5% damped system, to be 

scaled with damping coefficient sB  and 1B , with a  maximum allowable effective damping of 

50%. A further limitation was given by the fact that, these parameters usually underestimated 

the effective response reduction, as demonstrated by Ramirez (Ramirez et al 2001). For this 

reason an upgraded version came out in 2003 with FEMA 450. 

 

As for isolated structures, effective damping of the fundamental-mode of a damped structure is 

based on the nonlinear force-deflection properties of the structure. For use with linear analysis 

methods, nonlinear properties of the structure are inferred from overstrength, 0 , and other 

terms of the Provisions. For nonlinear analysis methods, properties of the structure are based 

on explicit modeling of the postyield behavior of elements.  

 
Figure 3.14 Reduction of the design demand due to effective damping. 

Figure 3.14 illustrates the reduction in design earthquake response of the fundamental mode 

due to the effective damping coefficient, DB1 , at the design displacement. In this figure, two 
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demand spectra are shown, one for a structure with 5% nominal inherent damping 

(characterized by the 5% damped design spectral response acceleration parameter at a period 

of one second, 1DS ) and the other for a structure with additional damping provided by inherent 

damping beyond the nominal 5% and added viscous damping from a damping system. The 

structure capacity curve is also shown and represents the nonlinear behavior of the structure 

responding in the fundamental mode and plotted in spectral acceleration/displacement 

coordinates. An intersection point (or performance point) exists between the demand and 

capacity curves which defines the expected performance of the structure. If the structure were 

assumed to remain elastic, the performance point would lie along the line marked 1T  where 1T  

represents the elastic fundamental period of the structure in the direction under consideration. 

Accounting for inelastic behavior, the performance point lies along the line marked DT1  where 

DT1  represents the effective period of the fundamental mode at the design spectral displacement 

( DSD1 ) in the direction under consideration (i.e., DT1  is based on the secant stiffness at the 

design displacement). As shown in Figure 3.14, the demand spectrum at the effective period 

(not sketched in Figure 3.14) is reduced in accordance with the effective damping coefficient, 

DB1 , which has contributions from three components: (1) inherent damping IB  - inherent 

damping of structure at or just below yield, excluding added viscous damping ( IB  is typically 

assumed to be 5% of critical); (2) hysteretic damping HB  - postyield hysteretic damping of the 

seismic-force-resisting system and elements of the damping system at the amplitude of interest 

(taken as 0% of critical at or below yield); and (3) added viscous damping VB  - viscous 

component of energy dissipation in elements of the damping system (taken as 0% for hysteretic 

or friction-based damping systems). 

Both hysteretic damping and the effects of added viscous damping are amplitude dependent 

and the relative contributions to total effective damping changes with the amount of postyield 

response of the structure. For example, adding dampers to a structure reduces postyield 

displacement of the structure and hence reduces the amount of hysteretic damping provided by 

the seismic-force-resisting system. If the displacements were reduced to the point of first yield, 

the hysteretic component of effective damping would be zero and the effective damping would 

be equal to inherent damping plus added viscous damping. 
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3.7.2 Evaluation of effective damping 

The effective damping at the design displacement, mD (BSSC 2004) of the mth mode of 

vibration of the structure in the direction under consideration shall be calculated using the 

following equation: 

HDDVmImD      (3.3) 

where 

- HD  component of effective damping of the structure in the direction of interest due 

to post-yield hysteretic behavior of the seismic-force-resisting system and elements of 

the damping system at effective ductility demand, D ; 

- I  component of effective damping of the structure due to the inherent dissipation of 

energy by elements of the structure, at or just below the effective yield displacement of 

the seismic force-resisting system; 

- Vm  component of effective damping of the mth mode of vibration of the structure in 

the direction of interest due to viscous dissipation of energy by the damping system, at 

or just below the effective yield displacement of the seismic-force-resisting system; 

- D  effective ductility demand on the seismic-force-resisting system in the direction 

of interest due to the design earthquake. 

Unless analysis or test data supports other values, the effective ductility demand of higher 

modes of vibration in the direction of interest shall be taken as 1.0. 

 

Inherent damping, I , shall be based on the material type, configuration, and behavior of the 

structure and non-structural components responding dynamically at or just below yield of the 

seismic-force-resisting system. Unless analysis or test data supports other values, inherent 

damping shall be taken as not greater than five percent of critical for all modes of vibration. 

 

Hysteretic damping of the seismic-force-resisting system and elements of the damping system 

shall be based either on test or analysis, or shall be calculated as follows: 

)11)(64.0(
D

IHHD q      (3.4) 

Where 
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- Hq  hysteresis loop adjustment factor; 

- D  effective ductility demand on the seismic-force-resisting system in the direction 

of interest due to the design earthquake. 

It must be noted that meaning of eq. (3.4) can be related to eq. (2.3). 

Unless analysis or test data supports other values, the hysteretic damping of higher modes of 

vibration in the direction of interest shall be taken as zero. 

The calculation of hysteretic damping of the seismic force-resisting system and elements of the 

damping system shall consider pinching and other effects that reduce the area of the hysteresis 

loop during repeated cycles of earthquake demand. Unless analysis or test data support other 

values, the fraction of full hysteretic loop area of the seismic-force-resisting system used for 

design shall be taken as equal to the factor, Hq  that shall not be taken as greater than 1.0 and 

not less than 0.5. 

 

Viscous damping of the mth mode of vibration of the structure, Vm , shall be calculated as 

follows: 

m

j mj
Vm W

W
4

      (3.5) 

where 

- mjW  work done by jth damping device in one complete cycle of dynamic response 

corresponding to the mth mode of vibration of the structure in the direction of interest at 

modal displacements, mrj ; 

- 1
2m im mi

i
W F  maximum strain energy in the mth mode of vibration of the structure 

in the direction of interest at modal displacements, mi ; 

- imF  mth mode inertial force at Level i ; 

- mi  deflection of Level i in the mth mode of vibration at the center of rigidity of the 

structure in the direction under consideration. 

Eq. (3.5) can also be formulated as: 



Chapter 3: Design of supplemental damping sytems 

 

100 

 

2 2

2

cos

( )

m j j mrj
j

Vm
i

mi
i

T C

W
g

    (3.6) 

where 

- mT  natural period of the mth mode of vibration; 

- jC  damping coefficient of the jth damping device; 

- iW  seismic weight at Level i . 

It must be noted that, due to inelastic system deformation, the role of effective viscous damping 

contribution in eq. (3.3) is magnified by a factor D  due to increase of the effective period 

mT  or, equivalently, to reduction of elastic strain energy at the denominator of eq. (3.5).  

 

3.7.3 Linear Analysis Methods 

In the 2003 NEHRP Recommended Provisions (BSSC 2004), the design earthquake 

displacements, velocities, and forces are specified in terms of design earthquake spectral 

acceleration and modal properties.  

The equivalent lateral force procedure is permitted to be used for design of structures with 

damping systems provided that: 

- in the direction of interest, the damping system has at least two damping devices in each 

story, configured to resist torsion; and 

- the total effective damping of the fundamental mode, mD (m = 1), of the structure in 

the direction of interest is not greater than 35 percent of critical. 

- the seismic-force-resisting system does not have plan irregularity or vertical 

irregularity; 

- floor diaphragms are rigid as defined in Sec. 4.3.2.1; and 

- the height of the structure above the base does not exceed 100 ft (30 m). 

The response spectrum procedure is permitted to be used for design of structures with damping 

systems provided that: 

- in the direction of interest, the damping system has at least two damping devices in each 

story, configured to resist torsion; and 
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- the total effective damping of the fundamental mode, mD (m = 1), of the structure in 

the direction of interest is not greater than 35 percent of critical. 

The elastic stiffness of elements of the damping system other than damping devices shall be 

explicitly modeled. Stiffness of damping devices shall be modeled depending on damping 

device type as follows:  

- Displacement-Dependent Damping Devices shall be modeled with an effective stiffness that 

represents damping device force at the response displacement of interest (e.g., design story 

drift). Alternatively, the stiffness of hysteretic and friction damping devices may be excluded 

from response spectrum analysis provided design forces in displacement-dependent damping 

devices are applied to the model as external loads. 

- Velocity-Dependent Damping Devices that have a stiffness component (e.g., visco-elastic 

damping devices) shall be modeled with an effective stiffness corresponding to the amplitude 

and frequency of interest. 

In order to determine design displacements, lowest effective stiffness and damping should be 

used. By contrast, design forces correspond to greatest stiffness values and lowest damping.  

For equivalent lateral force (ELF) analysis (linear static analysis), the response is defined by 

two modes: the fundamental mode and the residual mode. The residual mode is a new concept 

used to approximate the combined effects of higher modes. While typically of secondary 

importance to story drift, higher modes can be a significant contributor to story velocity and 

hence are important for design of velocity-dependent (rate dependent) damping devices. For 

response spectrum analysis (linear dynamic analysis), higher modes are explicitly evaluated. 

For both the ELF and the response spectrum analysis procedures, the response in the 

fundamental mode in the direction of interest is based on assumed nonlinear (pushover) 

properties of the structure. Nonlinear (pushover) properties, expressed in terms of base shear 

and roof displacement, are related to building capacity, expressed in terms of spectral 

acceleration and displacement, using mass participation and other fundamental-mode factors. 

When using linear analysis methods, the shape of the fundamental-mode pushover capacity 

curve is not known and an idealized elastoplastic pushover curve is assumed, as shown in Figure 

3.15.  
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Figure 3.15 Idealized elastoplastic pushover curve used for linear analysis. 

The idealized pushover curve shares a common point with the actual pushover curve at the 

fundamental mode design earthquake displacement, DD1 . Note that, in Figure 3.15, the 

parameters 1  and DSS , which are used to compute DD1 , represent the modal participation factor 

for the fundamental mode and the 5% damped design spectral response acceleration at short 

periods, respectively. The idealized pushover curve permits defining the effective global 

ductility demand due to the design earthquake, D , as the ratio of design roof displacement, 

DD1 , to the yield displacement, YD . This ductility factor is used to calculate various design 

factors (e.g., it is used in the computation of the effective period, DT1 , and the hysteretic 

damping ratio, H ) and to limit the maximum ductility demand, max , in a manner that is 

consistent with conventional building response limits. Design examples for structures with 

passive energy dissipation systems and using linear analysis methods have been developed and 

found to compare well with the results of nonlinear response-history analysis (Ramirez et al 

2001). 

The Provisions require that elements of the damping system be designed for actual 

fundamental-mode design earthquake forces corresponding to a base shear value of YV  (except 

that damping devices are designed and prototypes tested for maximum considered earthquake 

response) (see Figure 3.15). Elements of the seismic-force- resisting system are designed for a 

reduced fundamental mode base shear, 1V , where the force reduction is based on system 

overstrength, 0 , conservatively decreased by the ratio RCd /  ( dC  is the deflection 

amplification factor, R  is the response amplification factor), for elastic analysis (when actual 

pushover strength is not known). 
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In a simplified nonlinear method of analysis, response in the higher modes may be determined 

by application of the response spectrum method using the effective stiffness properties of the 

structure at the actual displacement of the structure.  

Under certain conditions, the damping ratio in higher modes may be very large and can reach 

critical values. The origin of this interesting phenomenon may be found in eq. (3.6): for higher 

modes, the device relative modal displacement rj  assume large values. It should be noted that 

this phenomenon cannot, generally, occur in structures having viscoelastic or hysteretic energy 

dissipation devices since such devices contribute stiffness and, therefore, cause an increase in 

the strain energy.  

Linear procedures require iterations for evaluation of the effective damping and stiffness. It is 

a trial and error process because effective damping and stiffness depend on structural response, 

both for rate dependent or independent devices.  

 

3.7.4 Nonlinear Analysis Methods 

The Provisions specify procedures for nonlinear static analysis and nonlinear dynamic 

(response-history) analysis. The nonlinear procedures are permitted to be used for design of all 

structures with damping systems. 

The nonlinear static analysis procedure is similar to the linear static analysis procedure in that 

the pushover capacity curve is used to define the nonlinear behavior of the structure. 

However, in the nonlinear static analysis procedure, the actual nonlinear force-displacement 

relation is used, rather than an idealized elastoplastic curve as shown in Figure 3.15. In addition, 

since actual pushover strength is known from the nonlinear pushover analysis, the force 

reduction for design of the seismic-force resisting system is based on overstrength alone with 

no additional reduction (i.e., in Figure 3.15, Cd/R is taken as 1.0).  

Non linear static procedure requires the definition of a “spectral capacity curve” (conceptually 

similar to the pushover curve) and a “design demand curve”. The design demand curve is 

derived from the elastic response spectrum using a level of equivalent damping consistent with 

the energy dissipated by the building in one cycle of loading to the assumed target displacement. 

Also in this case, even if the designer is required to run just one analysis to get the capacity 

curve, he needs to perform some iterations for the evaluation of the effective damping and so 

the effective design demand curve.  
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In general, nonlinear dynamic analysis procedure is the most robust procedure available for 

evaluating the behavior of systems that incorporate passive energy dissipation devices. Such 

analysis allows explicit modeling of individual devices, the elements connecting the devices to 

the structure, and the structure itself. If the connecting elements or the structural framing yields 

during the response, this behavior must be incorporated into the analytical model. It is noted 

that accurate modeling of the flexibility of the floor diaphragm and of the connecting elements 

(braces) is essential since a loss of effective damping may occur if these elements are overly 

flexible. To determine the effect of such flexibility on response, analyses should be run with 

both rigid and flexible diaphragms and connectors. If the difference in response for these two 

cases is significant, the designer should consider stiffening the connecting elements, or 

changing the deployment configuration of the devices.  

Nonlinear dynamic analysis may be performed using a variety of commercially available 

software and several academic programs. Most of these programs can readily be used to model 

the behavior of linear fluid viscous dampers, viscoelastic dampers, friction dampers, or metallic 

yielding dampers. However, modeling of some damping devices (e.g., nonlinear viscous 

dampers and dampers with temperature-dependent or frequency-dependent mechanical 

properties) can be more challenging or, in some cases, not possible with a given program. When 

the modeling of such behavior is not possible, the expected response may be bounded by 

analyzing the structure over a range of behaviors. For example, the properties of viscoelastic 

dampers are a function of the temperature of the viscoelastic material, with the temperature 

generally increasing during the response. The effect of the temperature increase is to reduce the 

effective damping capacity of the device. Hence, analyses should be run with the viscoelastic 

material at the ambient temperature and at the peak expected temperature (peak base shears 

may be obtained from the first analysis and peak displacements from the second). Note that this 

approach of performing analysis for upper and lower bound damper properties is recommended 

by the Provisions. According to the Provisions, a minimum of three ground motions are required 

for linear or nonlinear dynamic analysis, although it is usually beneficial to analyze the system 

for seven or more ground motions. The main benefit of using seven or more motions is that the 

system may be evaluated on the basis of the average among the seven responses, whereas if less 

than seven motions are used, the maximum values among all analyses must be used. The 

Provisions provide guidelines for appropriately scaling the ground motions.  

Only non linear dynamic analysis avoid iterations for the definition of the structural 

performance, since spectrum-matching acceleration records are usually obtained for a 5% 
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elastic design spectra. By proper modeling devices’mechanical behavior, the effective non-

linear response will be accounted for. The definition of effective stiffness and damping is not 

required for the purpose of design but can just be estimated for performance considerations. 

3.8 Design procedures: an overview 

Hanson and Soong imparted to design engineers and building officials basic concepts of the 

supplemental energy dissipation technology in the monograph series published by EERI in 2001 

(Hanson and Soong 2001). The authors focused on the concept that the design of a damper-

added structure is, in general, an iterative process: in step 1 an analysis of the bare frame is 

carried out, in step 2 the desired overall damping ratio is determined, in step 3 the available 

damper locations are selected, in step 4 the damper-induced damping and stiffness is calculated, 

in step 5 the equivalent modal damping ratios, stiffnesses and mode shapes associated with the 

damper-added structure are computed, in step 6 the analysis of the damper-added structure is 

performed. When steps 5 and 6 satisfy the desired damping ratio and the structural performance 

criteria the design is complete, otherwise a new design cycle has to be made, which may lead 

to new structural properties, damper locations, or damper properties. They presented two design 

examples of damper-added structure with viscoelastic and friction dampers, respectively.  

The optimum distribution of dampers can be cast in a context of optimum control theory, 

maximizing a given set of optimum location indices. A simplified method based on the 

sequential search algorithm (SSA) was developed by Garcia (Garcia 2001). Only linear viscous 

damper type is considered. 

For the case of linear viscous dampers, the optimum location index is simply given by the 

maximum interstorey velocity, which indicates that the optimum location is between two 

adiacent stories of the structure. In the case of regular buildings, the SSA will generally lead 

(Lopez Garcia and Soong 2002) to efficient damper configurations, particularly for low-to-

medium-rise buildings and for a number of dampers equal to or greater than 1.5–2 times the 

number of storeys. The resulting damper configurations are found to be sensitive to ground 

motion characteristics, especially for low levels of supplemental damping. 

 

3.8.1. Displacement dependent dampers 

The design of structures equipped with metallic or friction dampers is similar. Only the yield 

loads of the metallic dampers need to be substituted for the slip loads of the friction dampers. 
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A number of design procedures exists in literature and some general concepts are illustrated in 

this Chapter. 

Some procedures are based on maximization of dissipated energy (Baktash and Marsh 1987) 

by means of hysteretic dampers. Optimum performance from an energy point of view is not 

necessarily associated with maximum energy dissipation by the hysteretic dampers but rather 

with the minimization of the difference between the seismic input energy and the energy 

dissipated by the dampers.  

Ciampi et al. (Ciampi et al 1995) considered the design of hysteretic bracing systems using an 

approach based on inelastic response spectra. The design is defined by the choice of two 

characteristic parameters: the bracing stiffness bk  and the activation load of the bracing 

members aF . The authors recognized that the hysteretic bracing system needs to be activated 

much before yielding of the frame takes place. Consequently, the ratio of the displacement 

which causes yielding (or slipping) in the brace to the displacement which induces yielding of 

the frame is always equal to or less than one and is suggested to be taken close to 0.5. The 

application of this methodology to MDOF systems requires the selection of proper distributions 

of stiffness and yield force along the height of the building, aiming at uniform engagement of 

the bracing system in the energy dissipation process, and to avoid concentration of damage at 

specific locations in the frame.  

Filiatrault and Cherry (Filiatrault and Cherry 1990) determined an optimum activation shear 

distribution based on a numerical parametric study that takes into account the frequency content 

of the ground motion and the dynamic properties of the structure with and without the added 

bracing system. For a given ground motion, the optimum activation shear distribution is 

determined by minimizing a Relative Performance Index (RPI) derived from energy concepts. 

These authors recommended the selection of diagonal cross braces such that the ratio between 

the stiffness of the braced structure is about 6 times that of the unbraced one. Therefore the 

diagonal cross-braces should be chosen with the largest possible cross-sectional area within the 

limits of cost and availability of material. The procedure than requires the estimation of the 

design peak ground acceleration and the predominant period of the design ground motion for 

the site.  

The significance of optimal design was put forward by Filiatrault and Cherry (Filiatrault and 

Cherry 1988): it was suggested that the seismic response of friction damped braced frames is 

the least sensitive to variations in the slip load (as large as 20%) when they are tuned to the 
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optimal slip load value. This is schematically shown in Figure 3.16. Variations in the slip load 

in the friction device may occur due to environmental and constructional factors such as 

temperature change, adjustment and other uncertainties. Therefore, design procedure that target 

the optimal (minimum) response are likely to yield structures with a reduced sensitivity to 

variations in their actual slip load. Optimum activation loads of the hysteretic dampers are 

dependent on both the structural and ground motion characteristics.  

 
Figure 3.16 Effect of variation in slip load on displacement response. 

In general, the optimized performance indices used are either the maximum displacement 

response or the maximum acceleration response, or factored combinations of both to suggest a 

single optimized solution. However, both these families of design methods offer limited 

information about the possible range of different seismic performance that can be achieved by 

changing the added brace stiffness and/or the damper activation load, and do not allow the 

designer to explicitly target a desired performance level. It can be seen that generally, lower 

activation loads result in lower accelerations while the displacement response is variable for 

different values of the braced period. It can also be seen that for braced periods lower than 0.5s, 

the elastic response is the one which optimizes the displacement so that if the acceleration levels 

are acceptable, the retrofit strategy can simply consist of adding bracing members without the 

additional cost of adding the dampers. The best possible acceleration response of a structure 

equipped with hysteretic dampers is very close to the spectral acceleration of the unbraced 

structure and can be reached by using a low stiffness of the added bracing or by using a low 

activation load of the added damper such that the structure’s effective stiffness is similar to that 

of the unbraced frame during most of the response. In the former case, the displacement 

response will remain large because of the longer period of the braced frame, whereas in the 

latter case, when a higher brace stiffness is used in conjunction with a low slip load, not only 

the accelerations are reduced but the maximum displacement response is also controlled.  
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Procedures to extend SDOF approach to MDOF structures have also been suggested using a 

transformation based on the fundamental mode of vibration of the structure. The effect of the 

distribution of the activation load along the height of the building was also investigated by 

considering both a uniform activation load and an activation load distribution aimed at 

achieving simultaneous activation of the hysteretic dampers under the first mode of vibration 

of the structure. The distributed activation loads were found to improve the response of the 

structure and to better correspond with the expected response of the structure once it was 

designed with the method described above. 

 

3.8.2. Velocity dependent dampers 

In the design of structures equipped with viscoelastic dampers, the primary parameters to be 

evaluated are the required viscous damping ratio and the stiffness of the damping system. Since 

it is expected that structures equipped with viscoelastic dampers will respond with minimal 

yielding of the main structural elements under design level earthquakes, most design methods 

are based on elastic modeling of the main structure. 

The desired damping ratio in the fundamental mode of vibration of the structure 1  must be 

set. 

The stiffness dk  and the loss factor  of each viscoelastic damper must be selected based on 

the available viscoelastic material and the geometry of the damper. These parameters are 

usually determined based on the assumption that the added stiffness due to the viscoelastic 

dampers at each storey is proportional to the storey stiffness of the initial structure.  

This could be a trial and error procedure: even in case of proportional stiffness, viscoelastic 

damper properties are frequency, temperature and strain amplitude dependent.  

 

As fare as viscous dampers are concerned, since they are usually inserted in bracing members 

between diaphragms of the structures, the global damping matrix generated by the linear 

viscous dampers LC  may be assumed proportional to the global stiffness matrix of the structure 

K  (Chopra 2011): 

KCL 0       (3.5) 

From modal analysis, the generalized damping coefficient in the thi  mode of vibration iC  is 

given by:  
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where )(iA  is the thi  mode of vibration, i  is the damping ratio in the thi  mode, iK  is the 

generalized stiffness in the thi  mode of the original structure without damper, i  is the circular 

frequency associated with the thi  mode of vibration, and iM  is the generalized mass in the thi  

mode of vibration. 

From eq. (3.6) the proportionality constant 0  can be easily obtained as: 

0
2 i

i

 

Conceptually, the design process is simple. Once a desired viscous damping ratio in a particular 

mode is established (usually in the first mode), the proportionality constant 0  can be computed 

by Equation 3.6. The resulting global damping matrix LC  can then be obtained by 3.5. 

This conceptually simple approach is, however, difficult to apply for large structural systems 

for which the explicit form of the global damping matrix may not be obtained easily. Therefore, 

in most practical design situations, the damping constant for each damper is obtained by trial-

end-error. 

Some design procedure have been proposed by several authors to provide, for a target 

equivalent damping ratio, the corresponding damping coefficients and their distribution along 

the height (Christopoulos and Filiatrault 2006). Christopoulos and Filiatrault [Ch. 6.8.2] 

suggested a practical design procedure for estimating the damping constants of individual 

dampers on the basis of the knowledge of the interstory lateral stiffness and the introduction of 

a generalized stiffness coefficient of a fictitiously braced structure. 

Silvestri et. al (Silvestri et al 2010) proposed a practical procedure for the seismic design of 

building structures equipped with viscous dampers. It is based on five consecutive steps which 

move from the selection of a target reduction in the seismic response of the system (with respect 

to that of a system without any additional viscous dampers) to the identification of the 

characteristics (final design specifications) of viscous dampers which allow to obtain target 

reduction factors in the seismic response of the system. According to the analytical nature of 

the proposed procedure, very close correlations between damping coefficients and target 

reduction factors do exist only for structures which satisfy the shear-type, equal floor mass, and 

equal lateral stiffness hypotheses. Nonetheless, in case of structures which drift from the above 
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hypothesis, in the applicative examples there presented, it is observed that the correlation is still 

close and the results conservative.  

The proposed procedure allows to obtain the damping coefficient of each linear viscous damper 

by means of just a single and very easy formula starting from the knowledge of the target 

damping ratio, the fundamental frequency of the system, total mass, total number of stories, and 

total number of dampers at each story for each direction. This formula leads to a first 

dimensioning of the linear damping coefficients which leads to a damping ratio which is 

sufficiently close to the target one. 

Typical design procedures commonly refer to linear viscous dampers. In case of non-linear 

behavior (i.e. 1vd ) energy considerations lead to the equivalence of the energy dissipated 

by equivalent linear and non-linear damper as a function of the velocity exponent and the 

displacement amplitude. 

Most of design procedures are based on preserving the classical normal modes. This design 

approach leads to a distribution of damping constants proportional to the lateral stiffness of the 

original structure, which may lead to several different dampers in the structure. Although this 

approach is very simple, it may not be optimum from an economical point of view where same 

size dampers should be used as much as possible. Furthermore, the constraint on maintaining 

classical normal modes is not required particularly if nonlinear time-history dynamic analysis 

is used in the design process. 

3.9 Force reduction factor for yielding systems equipped with added viscous dampers 

An open issue is related to the effects of supplemental damping on the inelastic response of 

structural systems. Modern earthquake resistant design codes use earthquake spectral reduction 

factors to account for building inelastic response capabilities (strength reduction factor R in the 

American codes or q in the European codes): numerical values of the force reduction factor are 

generally given by codes only for the case of structures without added dissipative devices (thus 

considering only the inherent damping ratio, conventionally equal to 0.05). 

It is important to consider the consequences of including the effects of increased viscous 

damping on the inelastic response of structural systems so that appropriate supplemental 

damping reductions can be included in these code design procedures. Code design procedures 

which acknowledge spectral reductions due to inelastic deformations and other factors can be 
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retained while incorporating a separate reduction factor for added energy dissipation devices 

(Hanson 1993). 

For the case of structures equipped with added dampers, the actual codes do not allow to reduce 

the seismic demand by applying the force reduction factor, while it is suggested to reduce the 

seismic actions by means of the so-called reduction coefficient , which accounts for damping 

ratios  larger than 0.05. 

The objective of a recent research work (Palermo et al 2013) is to investigate the influence of 

higher damping ratios on the force reduction factor R . In more detail, the main goal is to obtain 

a relationship between the force reduction factor given by the codes (referred to as 5R ) for a 

structure characterized only by the inherent damping, and the one for the same structure 

equipped with added dampers ( R  ). 

(a) (b) 

Figure 3.17 (a) Seismic demand for elastic and inelastic SDOF systems (with and without added damping); 
(b) Elastic spectrum for 0.05 and 0.30 of damping ratio and corresponding design spectrum for a behavior 

factor equal to 4.0. 

The authors of this work proposed a global reduction factor for building structures equipped 

with added viscous dampers tot  in order to couple both the effects due to the ductility of the 

structural elements and to the dissipation in the viscous dampers. In detail, tot  can be expressed 

as a function of the behaviour factor q (typically provided by codes and expressed as 5 5q a R

, where a  is the overstrength factor), the reduction coefficient ( )  (typically provided by 

codes) and the ( )  coefficient (introduced in the cited work): 

5
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In order to quantify the magnitude of the reduction, Figure 3.17 gives a comparison of the elastic 

and inelastic design spectra as per Italian building code (NTC 2008) and the here proposed 

design spectrum given by Eq. (3.7), for the specific case of a behaviour factor 4q , a damping 

ratio equal to 0.30 and a peak ground acceleration equal to 0.35 g. For this case, the ordinate of 

the inelastic design spectrum with a damping ratio equal to 0.30 (i.e. Eq. (3.7) is reduced 

approximately to 0.5 of the ordinate of the inelastic design spectrum with a damping ratio equal 

to 0.05. 

3.10 Estimating response of yielding systems with energy dissipation devices  

The simplified non linear analysis methods discussed in Section 3.7.3 have been evaluated 

using design examples for structures with passive damping systems. The seismic response 

calculated using linear analysis was found to compare well with the results of nonlinear 

response history analysis (Ramirez et al 2001): the main features of the investigation are 

explained hereafter.  

Important steps in the simplified nonlinear method of analysis is the establishment of the design 

demand spectrum and the determination of response by overlaying this spectrum on the spectral 

capacity curve. In essence, this approach is one of replacing the nonlinear system by an 

“equivalent” linear system, defined by an equivalent stiffness and equivalent damping ratio. 

The method here used is the one proposed in FEMA for establishing equivalent linear systems 

based on the geometric stiffness approximation. That is, the effective period is determined from 

the secant (or effective) stiffness at maximum displacement u , whereas the effective damping 

is determined assuming the external strain energy equal to 2

2
1 uKs . The validity of this 

approximation was investigated by Ramirez. 

In this work, a single-degree-of-freedom system with the characteristics shown in Figure 3.18 

is analyzed. The system is characterized by ideal bilinear hysteretic behaviour, added linear 

viscous damping ratio v  representing the energy dissipation devices, inherent viscous damping 

ratio i  equal to 0.05 in both the elastic and inelastic ranges of displacement. 

The system was excited with the 20 horizontal components of the ten scaled earthquake 

motions. Also, Figure 3.19 shows average damped response spectra of these 20 scaled 

components. Note that the spectra present the spectral acceleration: they are useful in directly 
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obtaining the maximum displacement and acceleration at maximum displacement, but not the 

maximum acceleration. 

 

 
Figure 3.18 Analyzed SDOF inelastic system with linear viscous energy dissipation system. 

 
Figure 3.19 Avarage damped response spectra of scaled motions. 

The spectra of Figure 3.19 may be used to obtain response modification factors B  and compare 

these with those of Provisions. 

Dynamic response time history analyses of the system of Figure 3.18 were conducted for a wide 

range of parameters (strength to elastic demand ratio, post-yielding stiffness, linear added 

viscous damping, elastic period) and for 20 scaled earthquake components for each analyzed 

system. Values of effective period effT and effective damping eff  for each system were 

determined from the calculated average peak displacement D  and the corresponding 

acceleration response A (see Figure 3.18). Based on the geometric stiffness approach for 

approximating the system by an equivalent linear one and use of eq. (2.1), expressions for effT  

and eff  are: 
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   (3.8) 

Note that in Eq. (3.8), the first term represents the contribution from yielding of the framing 

system (assumed to be perfect bilinear hysteretic), the second term represents the contribution 

of viscous damping force associated with the energy dissipation devices and the third represents 

the inherent damping ( 05.0i ).  

The results of the investigation demonstrated that the simplified method of analysis predicts 

well the average of peak displacement response, although it occasionally under predicts the 

response by as much as 20%. Under prediction of displacement response typically occurs in 

situations where the contribution of hysteretic damping is significant.  
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Chapter 4 

 

4. A PROCEDURE FOR OPTIMAL DESIGN OF A SDOF 

FRAME 

 

4.1 Introduction 

The purpose of the chapter is the definition of a design procedure to determine the optimal 

design parameter of dissipative braces installed in a simple one story–one bay frame (Figure 

4.1), whose behavior has to remain elastic (Losanno et al 2014). External supplemental devices 

are assumed to be viscous dampers (linear viscous behavior – VD case) or friction dampers 

(rigid plastic behavior – FD case). The proposed methodology provides closed-form 

expressions of suitably defined adimensional damping parameters (i.e., adimensionalized 

viscous damping and adimensionalized yielding displacement), and points out the fundamental 

influence of a properly dimensioned braces stiffness on the optimal design of the dissipation 

devices, while current state of art usually assumes the supporting brace as infinitely rigid and 

models also the damper as directly connecting two stories. The analytical treatment at the base 

of the proposed method considers the response to a simple harmonic excitation with sweeping 

frequency, thus determining the frequency response functions (FRFs) for different values of the 

adimensional design parameters: theoretical optimal damping parameters are provided as the 

ones corresponding to a minimum of the resonance peak frame displacement and base shear, in 
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the overall range of frequencies. Then, the theoretical results are validated by means of 

numerical integration of the framed structure under real ground motions, thus giving just the 

required effectiveness to the design procedure.  

4.2 Steady-state response of a dissipative braced frame subjected to harmonic base 

motion 

The structural model (Figure 4.1) is a two degrees of freedom (DOF) system (x, xb), where the 

parameters kf and kb are, respectively, the lateral frame and the elastic brace stiffness. The 

supplemental damping device is defined by the damping coefficient Cd (in the VD case) or by 

the yield strength Fdy (in the FD case), while the frame has no inherent damping. The only mass 

accounted for is the floor mass m, so that the model reduces to a single dynamic DOF with two 

kinematic DOFs. It is worth to point out that the assumptions of frame elastic behavior with 

negligible damping contribution are based on the following consideration: an optimally 

designed supplemental damping system is able to produce a strong reduction of stresses in the 

structural and non-structural components, even for design earthquakes, so to keep them in the 

elastic field.  

The dynamic problem of the frame subjected to a harmonic base excitation can be formulated 

and solved as shown in the following. The equations of motion are derived together with the 

definition of the relevant design parameters and response quantities, and the optimal damper 

characteristics are obtained under the hypothesis that the ratio bf kk /  and the mass m  are 

known. For both VD and FD cases, a closed-form solution of the response is obtained. 

Even if earthquake motion is usually random, by means of the Discrete Fourier Transform 

Function (DFT), properly working on non-periodic data, it can be decomposed into a linear 

combination of harmonic functions. Typical ground motions contain a wide range of 

frequencies while system displacement response shows a dominant period very close to its 

natural period. A sweeping frequency (i.e., harmonic function with 0 ) of the excitation 

at the base is assumed, since due to extremely different values of the damping parameter, the 

effective frequency of the system vary significantly. In addition to this, for a damped system, 

the higher is the damping the shorter is the transitory condition, so that structural response tends 

to a single period harmonic function. 
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Figure 4.1 Braced frame model with viscous (VD) or friction (FD) device. 

The problem is first solved referring to the frame displacement x : the optimization procedure is developed with 

the aim of determining the value of the control device parameter corresponding to the minimum story drift ( optdC ,  

or optdyF , ) and base shear ( optfdC ,,  or optfdyF ,, ) over the whole range of frequency excitation.  

Moreover, one of the more effective way to understand the effects of dissipative braces on the 

structural dynamics, is by means of the energy balance equation, that is thus formulated for a 

controlled structure with linear elastic behavior and negligible viscous damping as 
a
insdvbasd

a
k EEEEEE . The energy a

kE  is the absolute kinetic energy, sdE  is the 

energy dissipated by the dissipative braces, aE  is the energy adsorbed by the frame (equal to 

the elastic recoverable strain energy), vbE  is the vibrational energy (equal to the sum of the 

kinetic energy and the elastic strain energy), and a
inE  is the absolute input energy. Maximizing 

the energy dissipated by the supplemental dampers does not necessarily lead to a minimum 

vibrational energy, since the amount of input energy can also increase significantly. The optimal 

design strategy of a supplemental damping system should be based on the minimization of the 

difference between the seismic input energy and the vibrational energy (Christopoulos and 

Filiatrault 2006). Only in this case, the variation of the input energy with the specific control 

system, defined by ( bk , dC ) or  ( bk , yF ), is properly accounted. 

 

4.2.1 Formulation of the equation of motion 

The general expression of the equation of motion for the model illustrated in Figure 4.1, 

subjected to a harmonic base acceleration ag(t) = ag,max · cos t , is simply the following: 

tmaxxxxFxm gbb cos,...),,,( max,  (4.1) 

m

kf
kb

device

Cd

l

 Fdy

ag (t)

h

xb (t)

x (t)
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where x  is the relative floor displacement, bx  is the relative displacement of the elastic element 

of the dissipative brace (in the following referred to as the brace), dot notation represents the 

derivative respect to time and ,...),,,( bb xxxxF  is the global restoring force. 

In order to single out the relevant design parameters of the control devices and the structural 

response parameters, it is needed to write Eq. (4.1) in a non-dimensional form. Considering the 

time parameter tb  and the reference displacement 2
max,max, / bgg ax , where 

fbfb mkk /)( , Eq. (1) can be expressed as follows: 

cos
,...),,,(

)(''
max,g

bb

ma
xxxxF

    →    cos)()('' f  (4.2)

where )'(  represents the derivative respect to , max,gxx  is the normalized frame 

displacement, max,)(,...),,,()( gfbbb xkkxxxxFf  is the normalized restoring force, and 

b is the normalized frequency. Eq. (4.2) represents the final form of the normalized 

equation of motion and it is developed in the following paragraphs for the two defined cases. 

It is worth to point out that, in general terms, such kind of manipulation (i.e., a normalization 

with respect to both a stiffness and a displacement term) allows to derive an adimensionalized 

set of equations and adimentional solutions, as shown in the paragraphs 4.2.2 and 4.2.3. 

4.2.2 Solution of the equation of motion for the VD case 

In the case of an added linear viscous device having damping coefficient dC  (Figure 4.2(a)), the equivalent 

damping ratio is defined as: 

f

d

km
C

2
 (4.3)

The restoring force in Eq. (1) may be expressed as dfbb FxkxxxxF ,...),,,( , where 

)( bdbbd xxCxkF . 

The force–displacement relationship for the Maxwell element composed by the spring bk  and 

the viscous dashpot dC  in series is given by the well-known expression xKxF dd , 

where the complex stiffness dK  is obtained as follows: 
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The quantities dK  and dK  are, respectively, the storage and the loss modulus of the 

Maxwell element. The restoring force xKKkxF ddf ))(')('()(  corresponds to 

sgbfddf KxkkxKKkf max,)(')('  (Figure 4.2(b)), where the 

normalized complex stiffness of the system sK  is: 

2 2

2 2 2 2

2 (1 )4 (1 )( )
1 1 [1 4 (1 )] 1 [1 4 (1 )]sK i  

' ''( ) ( )s sK iK      (4.5) 

with sK  and sK  the overall storage and the loss modulus of the controlled structure. 
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Figure 4.2 SDOF with purely viscous damper: (a) rheological model, (b) hysteretic cycle. 

Given that the system is linear, an exact solution can be easily evaluated. The steady-state 

response iemax  is periodic with frequency , giving the equation of motion: 

   1)()()( maxmax
2

sK     (4.6) 

where the amplitude of motion is the modulus of the complex number max : 
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 (4.7) 

The two limit cases, for which the behavior reduces to an elastic undamped system, are the 

following: 

00 dC  (no damper) 
2max

1
1 ; 

1resonance  

dC  (infinitely stiff damper) 
2max

1
1  

1resonance  

The quantity max  is plotted in Figure 4.3 for 0.1,1.0  ( ffb kkk ,10 ) and for several 

different values of : the strong influence of the device damping coefficient on the system 

response comes out, i.e. a deep modification in the dynamic behavior of the structure can be 

produced by a change in the viscous constant of the device. A very low value of  produces a 

peak of the curve near to the one of the no damping limit case. This peak decreases as far as  

increases but a large increase of the damping coefficient induces a shift of the resonance 

frequency toward the infinite damping limit case, with an increment, at the same time, of the 

peak amplitude.  

All the curves have a common point, corresponding to the intersection of the two limit curves 

for 0  and , whose coordinates are 1221  and 22max

. For , Eq. (4.8) gives 22max  for any value of , thus demonstrating that the 

point of coordinates ( )(, max ) is a common point for all curves. Therefore, the intersection 

point of the FRF curves, and consequently the optimal parameter opt , the optimal displacement 

max  and the corresponding frequency , are function of the structural parameter .  
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Figure 4.3 FRFs max  for =1,0.1 (VD case). 

For any value of , the cases 0  and  give a maximum displacement equal to 

(1 ) /  (static displacement) and zero, respectively. For 5.0  and for 0 , the static 

displacement is the largest one in the overall range of frequency, even if, for increasing , the 

larger is  the faster is the system growing in complex stiffness, then reducing max . 

Assuming that major frequency content of earthquake occurs toward , we can compute the 

value of  for which the intersection point corresponds to the local maximum of the curves, by 

imposing 0max
' . In this way, we get the following 3rd degree equation in the unknown 

2 : 01212214218 222223233 . 

The physically acceptable real solution, provided by the formula of Tartaglia-Cardano, 

represents the optimal value opt  of the parameter , for each assumed value of the parameter 

: 

 
212

1
opt ,         (4.9) 

The brace’s and device’s non-dimensional displacements, and the consequent relative frame-

to-brace displacement can be obtained through the following passages: 

      
2 2
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and their amplitudes are the moduli of the complex numbers max,b  and max,max b

: 

max22max

max22max,

141

1
141

12

b

b

   (4.11) 

Figure 4.4 shows the quantities max,b  and max,max b  as function of  for 0.1

. It is worth to notice that each of these curves has only one of the two resonance peaks of 

max , since max,b  is zero for 0 while max,max b  is zero for .   

(a) (b) 

Figure 4.4 (a) FRFs max,b , and (b) max,max b for 1  (VD case). 

As far as the maximum base shear in the frame is concerned, it can be expressed as 

maxmax sKf . In Figure 4.5 the curves maxf versus are plotted for 1,1.0 .  
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(a) (b)

Figure 4.5 FRFs maxf  for (a) 1.0  and (b) 1  (VD case). 

An optimization criterion for the design of the control system is the minimization of the 

maximum displacement max  in the whole range of , and the successive check of response 

in terms of base shear. This means to select the value opt  given by Eq. (4.9) as design 

parameter. 

A different criterion can provide the optimal value optf ,  as the one corresponding to the 

minimum resonance peak of the function maxf . The value optf , , numerically determined, is 

always lower than opt . Results in terms of )(opt  and )(,optf  are provided in the design 

spectrum of Figure 4.6(a). Higher values of damping ratios are required for small values of  

and, for a given , larger damping ratio is needed to optimize the frame displacement with 

respect to the base shear optimization. It is interesting to note that, in Figure 4.6(b), the optimum 

frame displacement and base shear, i.e. the minimum resonance peaks corresponding to opt  

and optf , , increase linearly with . 

(a) (b)
Figure 4.6 (a) VD optimal parameter and (b) story optimal displacement and optimal frequency ratio 

versus . 
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Some further considerations are made in the following in terms of normalized energy dissipated 

by the viscous devices. The dissipated energy during one cycle has been calculated as the area 

enclosed by the normalized force-displacement curve at the maximum displacement max:  

         2
max22 141

12
1

1
VDE      (4.12) 

The optimal damping parameter opt  is practically the value corresponding to the minimum of 

the maximum values attained by the energy curves, whose envelope is dashed in Figure 4.7(a). 

For both extremely low and high values of (i.e. 0  and ), large peak values of max 

are reached and this produces large amounts of dissipated energy. Obviously, no energy is 

dissipated in the two aforementioned limit cases ( 0  and ).  

Due to the fact that each value of max may correspond more than one value of  (see Figure 

4.3(b)), VDE  is not a one to one correspondence with max. In Figure 4.7 the trend of DE  as 

function of max (Figure 4.7(a)) and  (Figure 4.7(b)) is shown.  

(a) (b)

Figure 4.7 Viscous dissipated energy as function of (a) max and (b) for 1 . 

Considering Eq. (2.17): 

)(2 22222
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dbdfbf

db
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and substituting non-dimensional parameters, equivalent damping ratio is expressed as: 

1
)1(41 222d  

It is found that, for the case 1 , the optimal value )1(opt  yields a maximum equivalent 

damping ratio approximately %18  of critical.  
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Assuming 1.0 , for the corresponding optimal value )1.0(opt , the maximum equivalent 

damping ratio would become %75  of critical, thus confirming the influence of the supporting 

brace stiffness on the overall damping capacity.  

 

4.2.3 Solution of the equation of motion for the FD case 

In the case of a friction damper (Figure 4.8(a)), the expression of the restoring force is

dfbb FxkxxxxF ,...),,,( , where xkF bd  for yxx , and ybdyd xkFF  for 

yxx . 

It results xkxxF eq,...),( , i.e. a bilinear relationship characterized by an initial stiffness 

bf kk  and a post-yielding stiffness fk . The normalized restoring force is shown in Figure 

4.8(b). It depends on two dimensionless parameters bf kk  and . The normalized initial 

stiffness is equal to unity while the post-elastic stiffness becomes )1/( . The parameter  

is the normalized frame displacement max,/ gy xx  corresponding to the achievement of yielding 

in the device, with a normalized frame yield strength yf  corresponding to 

)1()( dyyfby FxkkF . 
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Figure 4.8 SDOF with purely friction damper: (a) rheological model, (b) f  hysteretic cycle. 

On the basis of the observations above, it is possible to state that the dynamic behavior of the 

simple frame equipped with elastic-perfectly plastic devices is completely defined by the 

following three parameters: ,  and . In this case, the equation of motion (4.2) is non-

linear, and a closed form solution cannot be easily derived as in the previous case. In the 

following, the slowly varying parameters method (Caughey 1960) is adopted. It can be 
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reasonably assumed that, under a harmonic base motion, the steady-state response is periodic 

with frequency : 

  coscos)( maxmax    (4.13) 

where max  and  are slowly varying functions of , and . Differentiating Eq. 

(4.13) with respect to , one obtains that sincossin maxmaxmax . For 

the hypothesis of the slowly varying parameters method, it is possible to approximate the values 

of max  and  by their mean values and to assume that the velocity  is harmonic, i.e. 

0sincos maxmax . Differentiating again the expression of  with respect to , 

one leads the expression of : cossincos maxmaxmax
2 . 

Substituting this latter in Eq. (4.2), leads to: 

2 ' '
max max maxcos sin cos ( ) cos( )f   (4.14) 

We can multiply the expression of  by cos , Eq. (4.14) by sin , subtract them and 

make the average over one cycle of , thus obtaining: 

sin
2
1sin

2
1 2

0max df    (4.15) 

Now, multiplying Eq. (4.14) by sin , Eq. (4.15) by cos , adding them and averaging over 

one cycle of , one obtains: 

 cos
2
1cos

2
2
0max

2

max df    (4.16) 

If the quantities 
2

0max sin1 dfS  and 
2

0max cos1 dfC  are defined, 

Eqs. (4.15) and (4.16) become: 

cos2

sin2

maxmax
2

max

maxmax

C
S

   (4.17) 

Using Figure 4.8(b), if 
max

1 21cos* , the quantities maxS  and maxC  may be 

readily evaluated: 
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maxmax

max
2max

max

0

*sin
1

1

ifS

ifS
    (4.18) 

maxmaxmax

max
max

max *2sin
)1(2

1
1

*
1

1

ifC

ifC
  (4.19) 

The steady state response, in terms of displacement and phase angle vs frequency, is obtained 

from Eq. (4.17) by setting max  and  equal to zero, and by eliminating  and 2 : 

1)()( 2
max

2
max

2
max SC    (4.20) 

max
2

max

max

)(
)(

tan
C

S
     (4.21) 

Differently from the VD case, now it is more convenient to express the quantity max  implicitly 

as a function of  from Eq. (4.20): 

2
max

2
maxmax

22
maxmaxmax

2 SC     (4.22) 

The maximum floor displacement max  is attained at the point where 2  has a double root, that 

is, for the value max
~

 which makes void the radical quantity in Eq. (4.22), thus satisfying 

the equation: 

    1)~( max
2S      (4.23) 

and the corresponding frequency is maxmax
~/)~(~ C .  

The limit cases ( 0  and ) again correspond, respectively, to the case of one spring 

( fk ) or two springs connected in parallel ( fk  and bk ), and are expressed as max : 

00 dyF  
max

max
2

1
1 ; 

1resonance  
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dyF  
max

max2 1  

1resonance  

The function )( max
2  in Eq. (4.22) is a continuous function whose derivative is discontinuous 

when max , being the response linear for any value of max . The quantity max  as a 

function of  is plotted in Figure 4.9 for 0.1,1.0  ( ffb kkk ,10 ) and for several different 

values of : the point of coordinates 1221  and 22max  still 

represents the intersection of the two limit cases but does not belong to all other curves. One 

notes that a very low value of  produces a peak of the curve near to the one relative to 0

, and its value decreases as far as the previous parameter increases; however, a further increase 

of the yield displacement induces a shift of the resonance frequency toward the value 1 

with an increment of the peak amplitude. Therefore, the resonance peak within the range 

,0  has a minimum value in correspondence of the frequency opt , equal to  relative 

to the intersection point between the limit curves: the value opt  is defined as the one 

corresponding to the curve )(max  having the minimum resonance peak, settled a certain . 

 (a) (b)

Figure 4.9 FRFs max  for (a) 0.1  and (b) 1  (FD case). 

Brace displacements are trivial: there is no relative displacement respect to the frame up to the 

yielding point , while after that the brace does not move anymore and the relative 

displacement is max  (Figure 4.10).  
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(a) (b) 

Figure 4.10 (a) FRFs max,b  and (b) max,max, bf for 1  (FD case). 

In order to get the maximum base shear, simple expressions are introduced. When max , 

the maximum force assumes the expression 
k

kf
1

)( maxmax , while maxmaxf  

for max . 

In Figure 4.11 the curves maxf versus are plotted for 1,1.0 . It can be noted that, for low 

values of , maximum base shear is almost equal to . 

(a) (b)

Figure 4.11 FRFs maxf  for (a) 1.0  and (b) 1  (FD case). 

Both parameters corresponding to minimum frame displacement and base shear in the overall 

range of frequency, namely respectively )(opt  and )(,optf , have been numerically 

determined: a design spectrum  is plotted in Figure 4.12(a). In Fig. Figure 4.12(b), the quantities 

)(max opt , )( ,max optff  and opt  are plotted versus .  
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(a) (b) 

Figure 4.12 (a) FD optimal parameter versus , (b) story optimal displacement and optimal frequency 
ratio versus . 

From Figure 4.12 it is clear that, as far as  increases, both optimal parameters and maximum 

response increase too.  

As in the VD case, the quantities )(max opt  and )( ,max optff  linearly increase with , and the 

value of the optimal parameter corresponding to minimum base shear is always lower than the 

one corresponding to minimum story drift. It also appears that the optimal sliding force in the 

device is lightly varying with , being practically constant when the frame displacement is 

minimized (
kk

f
f optoptd

optdy 11
,

,  for minimum displacement; 
kk

f
f optfoptdf

optdyf 11
,,,

,,  for 

minimum base shear).  

Energy dissipated by yielding dampers can be calculated as: 

k
EFD 1

1)(4 max       (4.24) 

As in the VD case, the optimal damping parameter opt corresponds to the minimum of the 

maximum values attained by Eq. 4.24 (dashed line in Figure 4.13(a)) and remarkable dissipated 

energy corresponds to both extremely low and high values of . In Figure 4.13, the trend of 

FDE  is shown as function of max (Figure 4.13(a)), with a minimum value on the x axis equal 

to  and as function of  (Figure 4.13(b)). 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 0.5 1 1.5 2 2.5 3

f

opt

fdy,opt

f,opt

ff,dy,opt

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

|
m

ax
|, 

|f m
ax

| 

| max|

opt

|fmax|



Chapter 4: A procedure for optimal design of a SDOF frame 
_______________________________________________________________________________________________________________________________________________________ 

133 

 

(a) (b)

Figure 4.13 Friction dissipated energy as function of (a) max  and (b) for 1 . 

By adapting the general formula 

s

d
d E

E
4

 

to the adimensionalized form of force-displacement relationship, equivalent damping ratio 

becomes: 

maxmax

max

)(
1

)1(

)(2
d  

It is found that, for the case 1, the optimal value )1(opt  yields a maximum equivalent 

damping ratio approximately %22  of critical.  

Assuming 1.0 , for the corresponding optimal value )1.0(opt , the maximum equivalent 

damping ratio would increase to %53  of critical, thanks to beneficial effect of stiffer supporting 

brace.  

4.3  Numerical validation of proposed design procedure 

The design procedure proposed in the previous paragraphs has been verified through a 

numerical investigation performed on a steel frame (of l = 5 m span and h = 3 m height), having 

a I-shaped columns’ cross section (European HEM 300) and a 25 tons mass, assumed as 

representative of a retrofitting design problem. Depending on the stiffness of the transversal 

beam, the period of the bare frame Tb varies in the range 0.09÷0.18 s, where the boundary values 

correspond to a shear type frame and a cantilevered columns frame, respectively. Both the latter 

frame configurations are considered, having lateral stiffness kf = kN/m93333122 3h
EI  and 
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kf = kN/m2333332 3h
EI , respectively. A diagonal brace, with slope )(

l
harctg  and lateral 

stiffness kb, is inserted to support the damping device (viscous or friction damper), so that the 

parameter  is immediately defined. The equation of motion has been solved by implementing 

the Newton-Raphson integration method (Chopra 2011) in Matlab® environment (Mathworks 

2010). In order to improve the accuracy of results, the time step has been set equal to 0.0001s 

and the parameters  and  to 1/2 and 1/6, respectively. 

To be representative of an actual design problem, the input at the base has been defined by 

means of ground motion records instead of harmonic excitation. For the latter case, numerical 

results have been verified to be in perfect agreement with the analytical ones, both in the VD 

and FD case. According to the Italian building code (NTC 2008), the design spectra (Figure 

4.14Figure 4.12) with 5% of critical damping have been defined for the life safety limit state 

(SLV) of a conventional building (functional class II) located in L’Aquila, Italy (13.37° 

longitude, 42.37° latitude) on soil type B (360 Vs,30 800 m/s) with a nominal life of 50 years, 

corresponding to a return period of 475 years, and providing a Peak Ground Acceleration equal 

to 0.35 g. A set of seven unscaled accelerograms matching the reference spectrum (Figure 4.14, 

Table 4.1) was found in the European ground motion database using Rexel v3.4 beta (Iervolino 

et al 2010). The average spectrum has 10% lower and 30% upper tolerance in the period range 

0.15-2 s. Peak Ground Displacements reported in Table 1 have been obtained by numerical 

integration of acceleration time histories in Seismosignal, with the constraint of velocities 

oscillating around zero after the end of the strong shaking (Seismosoft 2013). 

(a) (b)
Figure 4.14 (a) Code provided ( =5%) and selected ground motion acceleration and (b) displacement 

spectra. 
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Table 4.1 Selected spectrum-compatible accelerograms for site class B (as = aftershock). 

Waveform 

ID 

Earthquake 

ID 

Station 

ID 

Earthquake 

Name 
Mw 

Epicentral 

Distance [km] 

PGA 

[m/s2] 

PGV 

[m/s] 

PGD 

[m] 

6334 2142 
ST248

8 

South 

Iceland (as) 
6.4 11 4.12 0.97 1.47 

146 65 ST24 Friuli (as) 6 14 3.30 0.23 0.35 

291 146 ST276 
Campano 

Lucano 
6.9 16 1.72 0.27 0.73 

230 108 ST73 
Montenegro 

(as) 
6.2 8 2.62 0.27 0.38 

4677 1635 
ST256

2 

South 

Iceland 
6.5 21 2.23 0.21 0.82 

594 286 ST60 
Umbria 

Marche 
6 11 4.54 0.29 0.33 

199 93 ST67 Montenegro 6.9 16 3.56 0.42 1.49 

mean:    6.4 13.9 3.16 0.38 0.80 

 

The response of the frame including VD and FD systems has been evaluated under the above 

mentioned ground motions characterized by different frequency content, to numerically 

determine the optimal values of the parameters and , and compare them with those obtained 

from the analytical approach presented in the previous paragraph. The numerical investigation 

has been repeated for two different values of  (0.25 and 1) and for the aforementioned values 

of kf (93333 kN/m and 23333 kN/m), corresponding to the following dynamic properties in case 

of rigid frame-to-brace connection (limit case  or  - Table 4.2): 

Table 4.2 Frame dynamic properties for rigid frame-to-brace connection. 

kf [kN/m] [-] kb [kN/m] T [s] wb[rad/s] fb [hz] 

23333 1.00 23333 0.15 43.20 6.88 

23333 0.25 93333 0.09 68.31 10.88 

93333 1.00 93333 0.07 86.41 13.76 

93333 0.25 373333 0.05 136.63 21.76 

 

The frequency 
m

kk bf
b  and the corresponding normalized frequency  at resonance is 

equal to 1.  
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A parametric investigation has been performed for each ground motion and for each value of 

, by assigning extremely different values to both  (200 logarithmically spaced values between 

10-3 and 105) and  (200 logarithmically spaced values between 10-6 and 100): the maximum 

response values have been computed for each time history case. As suggested by current 

seismic codes in case of selection of seven records (1998-1 EN 2004), structural response is 

defined in terms of average values of both maximum displacements (frame displacement x, 

displacement of the elastic brace xb, relative displacement x-xb) and forces (base shear force V, 

axial force N produced by the brace). The numerical optimum parameter ( opt  or opt ) is the 

value corresponding to the minimum averaged structural response, for any given . The 

following figures summarize some relevant results of the numerical analysis performed on the 

case study for both control systems: the normalized average maximum response (frame 

displacement d, displacement of the elastic brace b, relative displacement r, base shear force v, 

axial force n) is plotted versus the value of the damping parameter in a semi-logarithmic scale. 

Time history analysis allowed also to determine the effect of the dissipative diagonal braces, 

having slope e and lateral stiffness bk , in terms of additional axial force in the columns. For a 

given stiffness bk  of the diagonal brace, the increase of the damping parameter from zero to 

infinite is always detrimental: the axial force goes from zero in case of no brace-frame coupling 

( 0i  or 0 ), to a maximum value resulted in case of complete coupling ( i  or 

). In addition to this, being axial force proportional to brace displacement, normalized 

functions N and xb are practically overlapping. On the other hand, a limitation in the use of 

bracing systems is also related to detrimental effects on the foundation both in terms of 

incremental base shear and axial force. This problem is a main drawback for all conventional 

bracing systems but must be taken into account also in case of dissipative braces that, generally 

speaking, provide both damping and stiffness. 

 

4.3.1 VD case 

In the VD case, the structural model is defined as a two DOFs system (x, xb - see § 4.2.2), where 

the only dynamic DOF is associated to the floor displacement. The equation of motion has been 

formulated as follows: 

lMxKxCxM gx  
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where b
T xxx , b

T xxx , b
T xxx , 

00
0m

M , 
b

f

k
k
0

0
K , 

cc
cc

C , 

1
1

I  and gx  is the base acceleration.  

Figure 4.15 and Figure 4.16 show the normalized average of the peak response values under 

the seven records, for several values of . In the same figures, the grey vertical straight line 

indicates the optimal value for the minimization of the story drift, ( opt = 2.04 for opt 

= 0.41 for while the black one indicates the optimal value for the minimization of the 

base shear ( opt = 0.69 for opt = 0.30 for , both determined from the theoretical 

treatment. (Figure 4.6 (a)) 

Figure 4.15 VD case: numerical results for kf=23333 kN/m. 

 

Figure 4.16 VD case: numerical results for kf=93333 kN/m. 

As expected, in all the analyzed cases, the response in terms of story drift and base shear shows 

a minimum value. The minimum frame displacement min occurs for a value of  larger than 

opt, and is , for low values of , close to the value of  corresponding to the limit case →  

(rigid frame-to-brace connection). The maximum displacement  ( opt) is strongly reduced with 

respect to the undamped case ( = 0).  
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However, it is worth to note that the minimum base shear Vmin occurs for a value practically 

equal to f,opt. Higher values of would be responsible for a worse condition due to a higher 

additional force transmitted by the damping brace.  

For the considered cases, the value opt  represents a good compromise which allows to optimize 

at the same time both the frame displacement and the base shear, with a limited effect in terms 

of additional axial stress in the columns, about 20 to 30 % of the force that would arise in case 

of rigid frame to brace connection. Differently from the present one, most common optimization 

procedures are based on the dimensioning of viscous dampers once a threshold equivalent 

damping ratio has been set. 

 

4.3.2 FD case 

In the FD case, the structural model is defined as a bilinear single DOF system (see § 4.2.3).  

Figure 4.17 and Figure 4.18 show the average frame response under the applied earthquake 

records for different values of . In the same figures, vertical straight lines indicate the 

theoretically determined optimal value for the minimization of the story drift (grey line at opt 

=1.97 for opt =  3.14 for , and the base shear (black line at f,opt = 1.42 for 

f,opt = 2.66 for .

Figure 4.17 FD case: numerical results for kf=23333 kN/m. 

Figure 4.18 FD case: numerical results for kf=93333 kN/m. 
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As in the VD case, the minimum frame displacement is in between the two boundary conditions, 

and for low values of  is almost equal to the rigid frame-to-brace connection scheme. The base 

shear shows a clear minimum too, for a value of  that is lower than numerical one. Optimum 

response corresponds to an acceptable increase of axial force in the columns (from 20 to 40% 

of the rigid connection case). Even if theoretically suggested values opt and f,opt are beneficial 

with respect to both limit cases ( = 0, → ∞), they are  higher than the numerical optimum. 

A corrective factor  able to tune the theoretical response to the effective one, can be 

introduced with the aim of reducing theoretical optimal values, so providing corrected values 

opt  and optf , . The role of the parameter can be seen in terms of providing an 

“equivalent” maximum ground acceleration max,ga  with respect to the harmonic base motion. 

It is well known that, during a seismic event, the maximum acceleration max,ga  just occurs at a 

certain instant, as a single pulse instead of harmonic excitation, not allowing the device to reach 

a steady state response condition. A value of 5.0 is proved to be suitable for this task, as 

shown by dashed vertical grey (at opt5,0 ) and black lines (at optf ,5,0 ) in the above Figure 

4.17 and Figure 4.18. In particular, the tuned value opt5,0  is able to significantly reduce both 

frame displacement and base shear and is deemed a satisfactory design value. 

In a FD system, it has been also verified what is the effect on structural response of the 

equivalent viscous damping due to bare frame and non-structural components: to this aim, the 

model of Figure 4.8(a) has been provided with a viscous dashpot acting in parallel with the 

spring elements. The equivalent viscous damping ratio is defined as 
f

d

km
C

2
. Values of  

= 2% and  = 5% strongly reduce the response in case of elastic behavior ( = 0 or → ) 

while, in case of significant yielding in the damper, maximum displacements and base shear 

are mainly dependent on hysteretic dissipation (Figure 4.19). 
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(a) (b)
Figure 4.19 Numerical results with additional viscous damping of  (a) 2% and (b) 5% (kf = 93333 kN/m), 

for record 6334 xa. 

The obtained optimal damping parameters could be compared with those computed by applying 

a design method presented in (Christopoulos and Filiatrault 2006). In order to obtain the 

minimum resonant amplitude, Christopoulos et Filiatrault suggested the following lateral load 

required to activate the damper: gWaF gdy 2 . This closed-form expression, where W 

is the weight of the structure, has been derived from a FRF analysis and is not dependent on the 

relative brace to frame stiffness, since the elastic supporting brace was assumed to be rigid. The 

application of the above expression to the case study considered in the proposed case would 

provide a yielding force of 136 kN. Such a value overestimates the effective optimal values 

determined through the above described procedure (Table 4.3) for the value optopt .   

Table 4.3 Optimal sliding force from proposed design procedure. 

kf [kN/m] [-] kb [kN/m] opt Fy [kN] Fdy [kN] 

23333 1.00 23333 3.14 50% 133 67 

23333 0.25 93333 1.97 50% 84 67 

93333 1.00 93333 3.14 50% 133 67 

93333 0.25 373332 1.97 50% 84 67 

 

As obtained theoretically, it has been proved that the optimal yielding force dyF  does not depend 

on . 

4.4 Effective design procedure 

The proposed operative design procedure is schematically summarized in the following 

flowchart of Figure 4.20. It is especially effective joining results of both theoretical treatment 

and numerical validation.  
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Figure 4.20 Flowchart of the suggested design procedure. 

Given the bare frame properties, the stiffness of the elastic brace kb is defined taking into 

account that the higher is the relative brace to frame stiffness, the more effective is the control 

system. A starting value of the damping parameter is assumed equal to opt  or opt , where 

opt  and opt  are the analytical results taken from Figure 4.6(a) or Figure 4.12(a), respectively, 

and 5,0 . Time history analysis are then performed under the code provided seismic action 

at ultimate limit state. Then, the response reduction level is checked, by verifying if the 

assumption of the values opt  or opt  corresponding to a specific  is able to produce an 

acceptable response reduction in terms of frame displacement and base shear, with an allowable 

level of column axial force. If the result is not satisfactory, a modification of the damping 

parameter can be made in order to get an improvement in the achievement of the desired 

response reduction level. Some iterations could be needed to define the effective optimal values 

( opt  or opt ), because the latters depend on both the properties of the ground motion and of the 

structural system. At the end of the procedure, when the optimal damping parameters opt  or 

opt  have been determined, if a certain response reduction target level is not fulfilled, a different 

solution can be pursued varying the brace stiffness bk , so reducing , in order to get a higher 

efficiency of the passive control system. Actually, real strong motion properties (magnitude, 

duration, frequency content, etc.) may play an important role in the determination of the 

effective design optimal value. 

BARE FRAME PROPERTIES
(kf, m)

OPTIMAL SUGGESTED
DAMPING PARAMETER ( opt or · opt)

FOR A GIVEN VALUE OF 

TIME HISTORY ANALYSIS FOR
CODE PROVIDED SEISMIC ACTION

STRUCTURAL RESPONSE
REDUCTION

ITERATION FOR
NUMERICAL OPTIMAL

VALUE

ELASTIC BRACE STIFFNESS kb
AND

DEFINITION OF =kf/kb

OPTIMAL DISSIPATION SYSTEM ( opt or opt)

Preliminary
design

Final Check



Chapter 4: A procedure for optimal design of a SDOF frame 
_______________________________________________________________________________________________________________________________________________________ 

142 

 

The next goal of the topic is to develop the current optimization procedure for a multi-degree-

of-freedom (MDOF) system. A case study MDOF system could be a n-story elastic frame with 

lateral story stiffness fk , equipped with n equivalent dissipative braces. The latters are obtained 

by connecting in series an elastic component of lateral stiffness bk  to a viscous (Cd) or friction 

damper (Fy). The analytical treatment presented in this work could be simply extended to a 

MDOF system, for both VD and FD cases, by adopting matrix instead of scalar quantities. Of 

course, the design objective would still represent the value of the optimal parameter able to 

yield a minimum response of the structure. 

4.5 Design example 

A design example is proposed to further validate the object of the Chapter. In this case, the 

simple frame (of l = 5 m span and h = 3 m height) has square cross section 40x40 cm with 25 

tons mass. Assuming a shear type model, lateral stiffness kf is equal to 56889 kN/m. The ratio 

 is fixed equal to 0.5, thus providing a diagonal brace (inclined by with horizontal stiffness  

kb = 2 kf. 

According to the Italian building code (NTC 2008), the design spectra (Figure 4.21) with 5% 

of critical damping have been defined for the collapse prevention limit state (SLC) of an 

important building (functional class III) located in Napoli, Italy (14.19° longitude, 40.83° 

latitude) on soil type B (360 Vs,30 800 m/s) with a nominal life of 100 years, corresponding to 

a return period of 2475 years, providing a Peak Ground Acceleration equal to 0,31 g. An 

ensemble of seven unscaled accelerograms matching the reference spectrum (Figure 4.21, Table 

4.4) was found in the European ground motion database using Rexel v3.4 beta (Iervolino et al 

2010). The average spectrum has 10% lower and 30% upper tolerance in the period range 0.15-

2 s.  
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Figure 4.21 (a) Code provided ( =5%) and selected ground motion acceleration and (b) displacement 
spectra – Case study. 

Table 4.4 Selected spectrum-compatible accelerograms for site class B (as = aftershock) – Case study. 

Waveform 

ID 

Earthquake 

ID 

Station 

ID 

Earthquake 

Name 
Mw

Epicentral 

Distance [km] 

PGA 

[m/s^2]

PGV 

[m/s] 
PGD [m]

6334 2142 ST2488 
South 

Iceland (as)
6.4 11 4.10 0.38 0.022 

146 65 ST24 Friuli (as) 6 14 3.30 0.23 0.039 

126 63 ST35 Friuli (as) 6 21 4.96 0.22 0.033 

197 93 ST63 Montenegro 6.9 24 2.88 0.39 0.102 

196 93 ST62 Montenegro 6.9 25 3.00 0.25 0.100 

4673 1635 ST2482 
South 

Iceland 
6.5 15 4.12 0.38 0.149 

6334 2142 ST2488 
South 

Iceland (as)
6.4 11 4.63 0.51 0.230 

mean:    6.4 17.3 3.86 0.34 0.10 

 

Seven time history analysis have been run for both VD and FD protection systems: normalized 

average of maximum results are then plotted in Figure 4.22 as function of the damping 

parameter (  or ). 

(a) (b) 

Figure 4.22 Design example for (a) VD case and (b) FD case. 

The design procedure is confirmed: both suggested values opt and optopt  provide the 

absolute minimum of the base shear and a value of the frame displacements close to its absolute 

minimum and lower than that corresponding to the rigid frame to brace connection condition. 

Better performance could be pursued lightly varying these parameters, i.e. increasing them, in 

order to further reduce displacements but accounting for increase in base shear force.  
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4.6 Conclusions 

The present Chapter dealt with an optimal design problem for a simple linear-elastic frame 

equipped with dissipative braces (steel diagonal brace in series with a dissipative viscous or 

friction device). Aim of the work is the definition of the optimal device parameter (respectively 

Cd for the viscous case VD and Fy for the friction case FD) able to provide the minimum frame 

displacement or base shear.  

A theoretical approach was suggested for determining an analytical optimal value of the viscous 

damping in VD case, or the yielding force in FD case, for a braced one-bay one-story frame 

subjected to a harmonic base motion. It was demonstrated that, given a certain frame to brace 

relative stiffness , for different values of the design parameters (adimensionalized viscous 

damping  or adimensionalized yielding displacement ), the behavior would span between two 

extreme cases both corresponding to an undamped response with an unbounded resonance. The 

process of adding damping would not be beneficial to any extent but just up to a certain level, 

depending on the objective of the optimization process. Within this field, the optimal values of 

 and  have been assumed as the ones corresponding to a minimum of the response curve in 

the overall frequency range for the frame displacement and the base shear. Design spectra are 

provided, where theoretical optimal values are given as a function of . 

Then, numerical analysis were performed to validate the proposed design method in case of a 

seismic retrofit problem for a simple frame subjected to seven spectrum-compatible earthquake 

records for a life safety limit state, according to the NTC. Both theoretical and numerical results 

demonstrated that: 

The brace stiffness kb is an additional design parameter that has to be properly selected taking 

into that that the higher is the brace stiffness the more effective is the control system in reducing 

inter-story drifts, but it may be detrimental in terms of base reaction. 

In the VD case, the value opt minimizing the peak amplitude of the frame FRF curve is usually 

lower than the one corresponding to the actual numerical optimum for the frame. This can be 

explained taking into account that the frequency content of a ground motion can vary 

significantly and does not correspond to a white noise exciting the overall range of frequencies 

of the system. Despite that, the theoretical value opt is very close to the numerical optimum for 
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the base shear, being also able at the same time to significantly reduce the frame response, so 

representing a reliable design parameter. 

In the FD case, theoretical values opt and f,opt tend to be higher than numerical optimum 

minimizing frame displacement and base shear, respectively, both occurring for a value that is 

about one half of the one theoretically determined. A correction parameter  has been 

introduced with the aim of considering as design parameter the value opt , practically 

reducing the maximum ground acceleration ag,max to an “equivalent” value max,ga  with 

respect to the harmonic excitation. 

Both theoretically and numerically, it comes out that the optimal damping parameter 

corresponding to minimum base shear is lower than the one giving the minimum story frame.  

Therefore, in the proposed design procedure, the suggested reference values can be assumed as 

a starting point in a case-dependent optimization process, then being necessary to perform 

iterative analysis under code provided seismic action, in order to check and find out the effective 

optimum value for the minimization of the desired response.  

It has also been observed that, for a given  and ground motion, the absolute minimum frame 

displacement and base shear are obtained by means of viscous damping rather than hysteretic 

damping. 
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Chapter 5 

 

5. A PROCEDURE FOR OPTIMAL DESIGN OF A MDOF 

FRAME 

 

5.1 Introduction 

Viscous dampers (VDs) have been employed for retrofit of existing structures or seismic 

protection of new buildings. They are generally attached to steel supporting braces. In most 

analysis, these braces are neglected and assumed to have infinite stiffness compared with that 

of the structure and dissipative devices. But, the dimensions of the steel braces often need to be 

limited for functional and aesthetic requirements, so that their stiffness cannot be considered 

infinite. Nevertheless, a certain brace stiffness is important for activating the energy dissipative 

mechanism of viscous dampers.  

The procedure of Chapter 4 is now extended to the MDOF case with reference to viscous 

damper braces following the same approach.  
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5.2 State of the art 

In the following, some results are cited, which have been produced by some researchers in the 

last few years. They are focused on the influence of the braces stiffness on the optimal design 

of the dissipative devices in a protected multi-story building.  

Chen and Chai (Chen and Chai 2011) studied shear-type buildings with Maxwell model-based 

brace-damper systems: after showing the closed-form solutions derived for a single-story 

building, an iterative numerical procedure was described for a multi-story building, to the aim 

of obtaining the minimum brace stiffness together with a set of optimal damper coefficients for 

a targeted reduction in terms of interstory drift, floor acceleration or base shear force. They 

concluded that a brace stiffness equal to the first story stiffness is adequate for the desirable 

levels of response reduction in typical applications. For example, in a ten-story building, the 

maximum response reduction was found to reach around 80% for story acceleration and base-

shear force-based indices, and around 90% for interstory drift-based index. 

Londono et al. (Londoño et al 2013; Londoño et al 2014) provided a study of the influence of 

brace stiffness on the damping action of linear viscous fluid dampers. It is a different approach 

based on the observation that the effects of brace stiffness can be represented as a first-order 

filter: in the first phase, the dampers are sized by using an optimization strategy that assumes 

the braces as infinitely stiff elements; then, the minimum brace stiffnesses are calculated based 

on desired damper efficiency over a predetermined frequency range. Numerical simulations of 

systems with added brace-damper assemblies acting under earthquake excitation were used to 

show the optimality of the solutions delivered using the proposed design procedure. 

Castaldo and De Iuliis (Castaldo and De Iuliis 2014) proposed an optimal integrated seismic 

design procedure of the elastic stiffness resources and viscoelastic properties of a dissipative 

bracing-damper system, to achieve a seismic design displacement, by explicitly considering the 

dynamic behavior both of the structural and dissipative bracing systems. The optimal 

combination of the elastic and viscoelastic design variables is evaluated by minimizing a cost 

index assumed as an optimized objective function. The obtained results showed that the use of 

the viscoelastic resources is more convenient for high period systems, in particular, with 

reference to periods longer than 0.5s and high design performance, optimal solutions present 

high amount of viscoelastic resources and minimal value for lateral stiffness resources of the 

structural system. Differently, in the case of low performance as well as for periods lower than 

0.5s, the optimal solution is pursued by maximizing the lateral stiffness of the structural system. 
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Singh and Moreschi (Singh and Moreschi 2001) suggested a gradient based approach that 

minimizes a performance index to achieve a target level of response reduction with the optimal 

distribution of viscous and viscoelastic dampers in building structures.  

Park et al. (Park et al 2004) applied a gradient-based optimization algorithm to minimize both 

the size of VED size and supporting brace stiffness to obtain a determined reduction of inter-

story drifts below given target values.  

Viola and Guidi (Viola and Guidi 2009) (Caughey 1960; Viola and Guidi 2009)suggested a 

procedure to analyze the supporting brace stiffness influence on the damping optimization of a 

linear-elastic shear-type model, by minimizing the sum of mean-square inter-story drifts to 

stationary random excitation. 

The procedure proposed in this Chapter is able to highlight the influence of supporting brace 

stiffness on both the structural dynamic response and the optimization of the devices’ damping 

coefficient in controlled shear-type buildings. A frequency domain approach is adopted for 

solving the equation of motion of a controlled shear-type multi-story elastic frame, defining the 

complex stiffness contribution of the brace + viscous damper equipment. The system of 

complex linear equations of motion provides the effect of both brace elastic stiffness and 

viscous damper coefficient on dynamic response, thus allowing to define an optimal 

supplemental damping system. The minimization of the transfer functions’ (FRFs) amplitude 

is set as target level by taking into account the effect of the dissipative braces on the frequencies 

of the structure. A FRF approach is also adopted in Takewaki (Takewaki 1997), but in that case 

undamped fundamental frequency of the system and constrained value of damping coefficients 

are assumed.  

The spatial distribution of brace + damper assemblies is assumed to be uniform along height, 

even if it is well known that damping coefficients should be higher at lower floors, where more 

significant relative displacements and velocity are expected.  

Another issue considered in the proposed work, is that excessive damping brings higher 

accelerations at higher floors, due to the predominance of the stiffening effect with respect to 

damping. However, the assumption of an elastic response of the bare frame is pursued, since 

high level of damping can ensure significant reduction of stresses in the structural elements 

even for design earthquakes.  
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5.3 Steady-state response of a dissipative braced multy-story frame subjected to harmonic 

base motion 

The response to a harmonic base motion of a multi-story braced frame, equipped with passive 

viscous (VD) dampers, is analytically examined using the frequency domain approach (Chopra 

2011), in order to determine the influence of the elastic brace’s stiffness (normalized parameter 

and the viscous damper coefficient (normalized parameter . 

The force–displacement relationship for a Maxwell element (Figure 5.1), composed by the 

spring bk  and the viscous dashpot dC  arranged in series and subjected to a harmonic 

displacement with frequency , can be expressed as 

fdfd xKxF  

 

Figure 5.1 Maxwell element with a spring and a dashpot connected in series. 

The complex stiffness dK  is obtained as follows: 

dd
db
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22211

 (5.1) 

where dK  and dK  are, respectively, the storage and the loss modulus of the Maxwell 

element.  

Neglecting inherent structural damping, the equations of motion for a linear n-story frame 

provided with viscous dissipative braces, each made of an elastic component (a steel brace) and 

a viscous dashpot connected in series (Figure 5.2), represent a system of n  2nd order differential 

equations with constant coefficients, having the following matrix  

  ti
g ex max,

2lMFxKxM dff ,   (5.2) 

where 

fnfnfifff
T xxxxxx 1321 ......fx     (5.3) 

is the vector of the unknown floor displacements, 

Cd

xf

kb

xb
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is the mass matrix, 
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is the stiffness matrix, 
TTTT

bfdbfbd xxCxxKF ,        (5.6) 

 with 

   bnbnbibbb
T xxxxxx 1321 ......bx ,     

(5.7) 

the vector of the unknown brace displacements, 
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bnbnbn
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1

1
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bK  

  (5.8) 

the dissipative-brace’s stiffness matrix, and 
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dndn

dndndndn

didi
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dC    (5.9) 

the viscous damping matrix, with 11...1...111Tl . 

 
Figure 5.2 Multi-story shear-type frame equipped with dissipative braces. 

The slab horizontal displacements fnff xxx ...,,, 21  and the top brace horizontal displacements 

bnbb xxx ...,,, 21  are relative to the base and represent the n2  kinematic unknowns of the 

problem. 

The following assumptions ffnff mmmm ...21 , ffnff kkkk ...21 , 

bbnbb kkkk ...21  and ddndd CCCC ...21  are made, denoting by fim , fik , bik  and 

diC , respectively, the floor mass, the floor stiffness, the brace stiffness and the viscous damping 

coefficient for the i-th  story.  
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The force-displacement relationships for the Maxwell elements, each composed by the spring 

bik  and the viscous dashpot diC  connected in series, are given by the expression 

fdfd xKxF , where the complex stiffness matrix dK  is the following: 

dndn

dndndn

didi

ddd

dddd

ddd

KK
KKK

KK

KKK
KKKK

KKK

...0...000

...0...000
........................
00......000
........................
00...0...0
00...0...
00...0...0

1

1

433

3322

221

dK  (5.10) 

with didi
dibi

dibidibi
di KiK

Ck
CikCkK 222

222

, being diK  and diK  the storage and the 

loss modulus of the Maxwell element, respectively. 

 Therefore, Eq. (5.2) can be written as  
ti

g ex max,
2lMxKKxM fdf ,   (5.11) 

thus reducing kinematic unknowns to only n frame displacements.  

The above equation can be written in non-dimensional form, by considering the initial 

hypothesis (floor mass, floor stiffness, brace stiffness and viscous coefficients equal for all the 

storys) and by introducing the non-dimensional time , where , 

and the non-dimensional displacement max,gxff xζ : 

ie2lζfζ ff ,    (5.12) 

with  and max,gbf xkkfdf xKKζf  

fsfdf ζKxFxK max,gbf xkk .  

The dynamic response is completely defined once the complex normalized stiffness matrix 

sK  of the controlled structure is known: 

bt fbfb mkk

b
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where 
1411

12
1411

14
2222

22

iKs , 
1

 (with 

 representing for the i-th floor the frame to brace relative stiffness) and 

. 

The equations of motion become 
i

fs eK 2)( lζf    (5.14) 

and the steady-state solution can be written as  

     iemaxf,f ζζ     (5.15) 

with max,max,3max,2max,1 ... fnfff
T

maxf,ζ . By substituting Eq. (5.15) into Eq. 

(5.14), after simple algebraic manipulations one obtains 

    22 lζKI maxf,snn    (5.16) 

 

5.3.1  Solution of the equation of motion 

Eq. (5.16) represents a system of complex linear equations in the unknowns maxf,ζ , whose 

solution provides the structural response as a function of : 

212 lKIζ smaxf, nn    (5.17) 

The solution of the system in Eq. (5.17) provides the n frequency response functions (FRFs) 

maxf,ζi , in terms of floor displacements relative to the base.  

Given a certain value of , for 0  and , each transfer function exhibits as many 

unbounded resonance as the degree of freedom of the frame, corresponding to the n natural 

frequencies of the un-braced and braced systems, respectively. It can be observed that, for 0  

bf kk

ffd mkC 2
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and  , the normalized dissipative-brace stiffness contribution  dK  is equal, respectively, 

to 0  and 
1

1
. 

For any   between zero and infinite, the generic function  maxf,ζi  tends to show n resonance 

amplitudes for values of   corresponding to the n frequencies of the system. Increasing  , a 

progressive shift of each frequency from 0  towards   limit case is observed. It must 

be noted that, only for 0  and   the system frequencies are natural, i.e. no damping 

takes place with a mathematical resonance.  

For the practical purpose of analyzing the earthquake induced response, it is reasonable just to 

consider the first vibration mode. Due to both regularity in mass-stiffness distribution and 

typical strong motion frequency content, higher modes can be deemed not likely to be excited. 

Under this assumption, the first normalized frequencies of the system, corresponding to 0  

and  , are denoted by i and s, respectively. Any finite value of   in the range 0÷∞, 

would produce a damped response with an effective resonance in the range i÷s. It is clear 

that, with respect to the case 0 , increasing damping above a certain optimal value is not 

beneficial because extremely large value of   would result in a much stiffened undamped 

system (limit case  ).  

This strong influence of the device’s damping coefficient on the structural response comes out 

from Eq. (5.17), i.e. a deep modification in the dynamic behavior of the structure can be 

produced by a change of the device’s viscous constant.  

Transfer functions expressed by Eq. (5.17) have been plotted for a 3 DOFs system, for different 

values of    (0, 0.1, 1, 100) and (0.1, 1). The results are shown in Bode plot format (Figure 

5.3, Figure 5.4), together with two vertical grey lines representing the normalized frequencies 

i (=0) and s (=∞). 

 (a) (b)
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 (c)
 (d) 

Figure 5.3 Bode plot for a 3-story frame with : (a) 0 , (b) 1.0 , (c) 1 , (d) 100 . 

(a)  (b) 
  

(c) 
(d) 

Figure 5.4 Bode plot for a 3-story frame with : (a) 0 , (b) 1.0 , (c) 1 , (d) 100 . 

Therefore, fixed , the effect of is remarkable both in terms of shift in the frequency of the 

system and peak amplitude at resonance. For and∞, Bode plots clearly show that, at 

resonance, amplitudes are unbounded and phase angles have a sudden change of ±π.  
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From this perspective, an optimization criterion could be derived: an optimal value opt can be 

searched as the one capable to yield a minimum resonance peak at the first frequency  (in the 

range i ÷ s). It must be noted that, thanks to structural regularity, a minimum of displacements 

corresponds to a minimum of interstory drifts. The value  represents the normalized eigen-

frequency of the system for the assigned value of  ( b ), and represents the dominant 

frequency that the system would exhibit if excited by an external force. In other words, an 

external pulsing force having frequency  would be responsible for the first resonance. 

Physical meaning of  ( ) is different from both natural undamped and damped frequencies, 

for any finite value of . Just for 0  and , the frequency  reduces to i and s, 

respectively. 

5.4 Analytical evaluation of brace-damper efficiency 

A numerical determination of the value opt has been made for each value of in the range 

[0,1÷5], for 3 DOFs, 6 DOFs and 10 DOFs systems (Figure 5.5(a)). In addition to this, the value 

of the normalized peak displacements maxf,ζ i , calculated for the value )(opt at the frequency 

, are plotted in Figure 5.5(b) for both base and top floor levels.  

(a) (b) 
Figure 5.5 (a) Values of opt vs  and (b) if,max vs  

For each number of DOFs, a decreasing trend of is detected, having a higher slope in the 

range of  [0.1÷2]. This means that higher values of require lower values of the optimal 

parameter due to the “loss of efficiency” of the dissipative bracing system in reducing the 

dynamic response. This outcome is opposite to the idea that, for a high value of , a higher 
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value of could be needed. It is worth to note that the finite stiffness of the elastic supporting 

brace should be properly accounted for, since the choice of the optimum is directly related to 

the parameter . 

As far as the influence of the number of DOFs is concerned, an increasing of it requires a larger 

opt, for any value of . This can be interpreted as due to the larger flexibility and larger mass 

of a taller frame, and so to the need of higher equivalent optimal damping opt to achieve an 

optimal response.  

Peak displacements )( opt
i

maxf,ζ  increase versus , thanks to the larger flexibility. A particular 

outcome is that, for a given , a model with a higher number of DOFs has lower 1st floor 

displacements than low-rise ones. Despite to this, the difference at the top floor is very narrow, 

especially for lower . This can be explained in relation to the higher optimal values of 

required by the larger DOFs models, with the consequent more significant improvement of 

the response.  

A measure of the brace-damper efficiency e, can be defined as the ratio between maximum 

displacement at the base evaluated at resonance for opt  corresponding to , with respect to the 

reference case 1.0 (Figure 5.6): 

     
)1.0,(

),(
1

1

opt

opt

maxf,

maxf,

ζ
ζ

    (5.18) 

 
Figure 5.6 Value of the efficiency  vs  

An important outcome is that the efficiency does not depend on the number of DOFs. As 

expected, the effectiveness of the control system tends to vanish for high values of 



Chapter 5: A procedure for optimal design of a MDOF frame 
_______________________________________________________________________________________________________________________________________________________ 
 

159 

 

5.5 Numerical analysis 

The aim of the paragraph is to investigate the effect of real strong motions on the structural 

response of a retrofitted 3 storey-one bay concrete frame, equipped with dissipative braces 

having different stiffness and viscous coefficients. Differently from theoretical procedure, in 

this case excitation is not a pulsing force but can be decomposed into a series of harmonic 

components by means of the discrete Fourier Transform algorithm. In addition to this, not only 

the steady state response, but also the transitory phase plays an important role and is accounted 

for. 

The single bay has 3 m height and 5 m span, with a mass of 20 t, columns cross section 

0,40x0,40 m2 and concrete modulus 30000 MPa. For every bay, an equivalent diagonal brace 

with horizontal stiffness kb is considered as supporting the damping device Cd.  

The structural model of a n-story frame is defined by a n2  DOFs system, where the first n 

dynamic DOFs are associated to the floor displacements. The equation of motion has been 

formulated as follows: 

lMxKxCxM gx    (5.19) 

where x  is the n2  displacement vector, M , K  and C  are n2  x n2  matrix, I  is the 

identity vector and gx  the base acceleration.  

The equation of motion has been solved numerically by implementing the Newton-Raphson 

integration method ( t=0.01s,  =1/2, =1/4). The input ground motion is represented by four 

unscaled recorded earthquakes (Seismosoft 2013): Imperial Valley (1979 - USGS STATION 

5115), Kobe (1995 - KAKOGAWA STATION), Loma Prieta (1989 - CDMG STATION 

47381), Northridge (1994 - CDMG STATION 24278). For these events, the average maximum 

ground displacement xg,max is estimated equal to 0.10 m. 

The dynamic response of the case-study under the above mentioned ground motions, 

characterized by different frequency content, has been obtained in order to numerically 

determine the effects of the design parameters ( ) and single out an optimal value of the 

parameter . Three different frames kind have been considered, characterized as below: 

a. shear type frame - =0.1 

b. shear type frame - =1 

c. finite beam stiffness (30x40 cm2 cross section) frame - =1 
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In Figure 5.7, the response for three different values of (0.05, 0.65, 15) has been calculated 

for case a, under Imperial Valley ground motion. It is evident that both the lowest ( =0.05) and 

the highest assumed value ( =15) are detrimental with respect to =0.65 (theoretical optimal 

value opt  from Figure 5.7), both in terms of maximum top floor displacements and 

accelerations. The effect of is remarkable also in terms of dominant frequency of the response: 

systems with higher tends to vibrate faster.  

 

(a) (b)
Figure 5.7 (a) Top floor displacements and (b) accelerations for three different values of  

A parametric investigation has been performed for each ground motion and for each case, by 

assigning extremely different values to  (200 logarithmically spaced values between 10-3 and 

105): the maximum response has been considered as result for each time history case and is 

plotted in what follows. The effective optimal value opt , numerically determined, is assumed 

as the value corresponding to the minimum structural response, under each seismic excitation. 

The following figures summarize some relevant results of the numerical analyses performed on 

the case studies: the maximum response is plotted versus the value of the parameter  in a semi-

logarithmic scale. The structural response is shown both in terms of kinematics (maximum floor 

displacements and accelerations), and static parameters (base shear force V and base axial force 

N due to the bracing system). Displacements and accelerations are normalized, respectively, 

with respect to xg,max and g, while forces are normalized with respect to the quantities 

)(max, fbg kkx  or gmtot , where totm  is the total mass of the frame. It must be noted that a gain 

of the parameter always produces an increase of the axial force in the columns. Drawbacks 

of bracing systems are mainly related to the detrimental effects on the foundation, both in terms 

of incremental base shear and additional axial force. This is a main issue for conventional 
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bracing systems, but it must be taken into account also in case of dissipative braces that provide 

both damping and stiffness. 

Main  results are summarized in the following figures (Figure 5.8 to Figure 5.19) where the 

vertical straight line indicates the optimal value opt  determined from the previous paragraph 

(Figure 5.5(a)).  

(a) (b) 

Figure 5.8 Numerical results for case a under Imperial Valley ground motion: (a) relative displacements 
and forces, (b) relative accelerations and forces. 

(a) (b) 

Figure 5.9 Numerical results for case b  under Imperial Valley ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 
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(a) (b) 
Figure 5.10 Numerical results for case c under Imperial Valley ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 

(a) (b) 

Figure 5.11 Numerical results for case a under Kobe ground motion: (a) relative displacements and forces,
(b) relative accelerations and forces. 

(a) 
(b) 
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Figure 5.12 Numerical results for case b under Kobe ground motion: (a) relative displacements and forces,
(b) relative accelerations and forces. 

(a) (b) 

Figure 5.13 Numerical results for case c under Kobe ground motion: (a) relative displacements and forces,
(b) relative accelerations and forces. 

(a) (b) 

Figure 5.14 Numerical results for case a under Northridge ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 
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(a) (b) 

Figure 5.15 Numerical results for case b under Northridge ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 

(a) (b) 

Figure 5.16 Numerical results for case c under Northridge ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 
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(a) (b) 

Figure 5.17 Numerical results for case a under Loma Prieta ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 

(a) 
(b) 

 

Figure 5.18 Numerical results for case b under Loma Prieta ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 
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(a) (b) 

Figure 5.19 Numerical results for case c under Loma Prieta ground motion: (a) relative displacements and
forces, (b) relative accelerations and forces. 

The global behavior of dissipative braced frames is strongly affected by both parameters  and . 

For a given , the variation of  in the range 10-3÷105 produces a shift of the frame lateral 

stiffness from the unbraced to the perfectly braced case, that for a shear-type frame means 

moving from single story stiffness kf ( ) to kf+kb ( ). 

In all the analyzed cases, the response in terms of interstory drift, maximum accelerations and 

base shear, shows a minimum for a value opt  between the two limit cases. Minimum frame 

displacements occur for a value of  larger than that one theoretically proposed, and result, for 

=0.1, almost coincident with those corresponding to the limit case  (rigid frame-to-brace 

connection). Maximum displacements evaluated for opt are strongly reduced with respect to 

the unbraced case ( =0).  

It is worth to note that minimum accelerations and base shear Vmin occur for a value opt  very 

close to opt. In any case the minimum value assumed by the aforementioned quantities is almost 

equal to the value calculated for opt. With respect to this value, higher values of would be 

usually responsible for a worsened condition in terms of maximum accelerations and base shear, 

due to the predominance of the brace stiffening effect.  

Despite this, resultant axial force at the base level due to bracing effect, increases as far as 

increases. The value opt resulted a good compromise which allows to optimize at the same 

time both frame displacements and accelerations, together with the base shear, having a limited 

effect in terms of additional axial stress in the columns (about 10÷40% of the value that would 

arise in a rigid-braced connection ). The assumption of shear-type frame is not limiting, 
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since even better results are obtained in case of finite beam stiffness, with a full stiffness matrix 

of the bare frame. For lower values of , numerical results confirmed that optimal response is 

obtained with larger values of , also achieving improved efficiency. 

5.6 Numerical evaluation of brace-damper efficiency 

As in the theoretical case, the efficiency parameter has been evaluated as defined in Eq. (5.18), 

both in terms of base shear and first interstory drift. As expected, this parameter decreases as 

far as  increases, even if the numerical curve has lower slope than the theoretical one, the latter 

representing a lower bound (Figure 5.20Figure 5.19). 

(a) 
(b) 

Figure 5.20 Numerical values of the efficiency in terms of (a) first interstory drift and (b) base shear. 

With respect to the common practice of neglecting the presence of the supporting brace, some 

analysis were run assuming the 3 story frame as a 3 DOFs model just having inter-story dampers 

without any brace, for every value of opt. For any  in the analysis range, the error e is defined 

as 

   
),(

),(
1

opt

opt

R
R

e      (5.20) 

where:  

- ),( optR is the response parameter in the 3 kinematic DOFs model, neglecting the brace; 

- ),( optR  is the response parameter computed in the 6 kinematic DOFs (complete) model, 

including the brace stiffness  .  

With respect to the real model including the brace effect, this assumption leads almost always 
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to unsafe evaluations of base shear and interstory drift, with an underestimate of maximum 

effects about 25÷35% (Figure 5.20). Dependency of error on  is not immediately clear, due to 

sensible effect of strong motion parameters.  
  

(a) (b) 
Figure 5.21 Numerical errors for simplified 3 DOFs dynamic model in terms of (a) first interstory drift 

and (b) base shear. 

For interstory drift estimate, just in few cases for 5.0  a small negative error has been 

appreciated, meaning that real models provide reduced displacements thanks to the coupling 

effect generated by the damper between the brace and the frame stiffness, for a high value of 

opt . A part from this, base shear estimate is always underestimated. 

5.7 Conclusions 

The effect of the brace stiffness in energy dissipation mechanism of supplemental viscous 

dampers is still not fully addressed in design and optimization procedures. Even if it is well 

known that stiffer braces improve the damping capacity, the exact value of the brace stiffness 

is usually neglected, while in practice brace dimensions have to be limited for functional or 

aesthetic requirements. This Chapter properly addresses the effects of the relative frame to brace 

stiffness parameter on the dynamic behavior and the optimization procedure of a shear type 

multistory frame.  

In the first part of the Chapter, a theoretical study in frequency domain has been developed in 

order to detect the dynamic behavior of a MDOFs frame equipped with viscous dissipative 

braces. Each brace mounted in series with a damper was modeled by a Maxwell element having 

a complex stiffness acting in parallel with the stiffness of the bare frame. The proposed 
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approach allowed to take into account the effect of the brace stiffness (kb) on the optimal value 

of the viscous damping coefficient (Cd), and the effectiveness of the supplemental damping 

system ( ). It was proved that extremely varying damping coefficients are able to vary the 

dynamic properties (frequency and mode shapes) of the structure between two limit cases, 

namely those corresponding to the bare frame (Cd=0) and the elastically braced frame (Cd=∞). 

With the aim to define an optimal damping parameter, defined as the one able to yield the 

minimum resonance peak in the overall range of frequencies, a numerical solution opt( ) for 

different MDOFs systems was provided.  

The assumptions of elastic frame behavior and negligible inherent structural damping are 

acceptable, since a strong reduction of demand on structural and non-structural components is 

expected for an optimally designed supplemental damping system.  

In the second part of the Chapter, a wide numerical investigation was carried out on different 3 

DOFs concrete frames under different recorded earthquakes, assumed to be subjected to a 

retrofit intervention by means of viscous dissipative braces. The analysis was devoted to prove 

the combined effect of the brace-damper stiffness on the dynamic behavior of the frame 

structures, and to validate the optimization procedure. Time history analyses proved the 

effectiveness of the theoretically obtained design parameter opt( ).  

Both theoretical and numerical results showed the dynamic effect of extremely varying 

damping coefficients (0<Cd<∞) and the “loss of efficiency” of the dissipative system, due to 

the finite stiffness of the elastic supporting brace arranged in series with the viscous damper. 

The common practice to neglect the presence of the supporting brace, just modeling inter-story 

dampers, may lead to underestimate maximum effects of more than 30%.  

An extension of the proposed design method could provide a more effective distribution of the 

optimal viscous coefficients along the height: the total viscous coefficient optn could be 

assigned according to the inter-story drift distribution. In addition to this, the sum of damper 

coefficients and their cost were not constrained in the present work, but it is an important issue 

to be properly considered in practical applications.  
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Chapter 6 

 

6. A PROCEDURE FOR OPTIMAL DESIGN OF THE 

SEISMIC PROTECTION SYSTEM FOR ISOLATED BRIDGES 

 

6.1 Introduction 

Aim of the chapter is the definition of optimal design parameters characterizing the isolation 

system of a bridge, both in the case of elastomeric (VI) and sliding bearings (SI), having 

viscoelastic or rigid-plastic behavior, respectively, installed between the piers and the deck 

(Losanno et al 2014). The problem is treated by means of an analytical approach. Using the 

frequency response analysis, a simple procedure is proposed to determine the optimal value of 

the viscous coefficient or the yield displacement of the isolators. The adequacy of the proposed 

procedure is finally verified through time-history analyses performed on a practical case under 

natural earthquakes.  

 

6.1 State of the art 

The seismic protection of bridge decks by using passive isolation systems represents a widely 

studied technique since the Eighties (Bhuiyan and Alam 2013), even though different more 

complex control strategies (e.g., semi-active and active ones) have been investigated and 

implemented in civil structures in the last twenty years. The design of a passive isolation system 
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for bridges is often treated as an optimization problem: once the objective of the optimization 

is defined, together with the constraints imposed by the problem, the design methodology is 

developed with the aim to determine the optimal mechanical characteristics of the protection 

devices. In the following, some proposals of different researchers will be summarized, first 

reporting those adopting optimization concepts in formulating the design criteria. 

Ciampi and De Angelis (Ciampi et al 1995) and Ciampi (Ciampi 1998) proposed an energy-

based methodology for the optimal design of dissipation devices used as base isolation systems 

of typical bridges. The approach consisted in the maximization of an appropriate 

nondimensional energy index defined as the ratio between the energy dissipated by the isolators 

and the input energy to the controlled bridge. Preliminary numerical results on a single degree 

of freedom (DOF) system allowed to build manageable design graphs of the optimal mechanical 

characteristics of the dissipative devices. Further curves were also provided for a check of the 

relevant structural response quantities and the damage level suffered by the devices. 

Hwang & Tseng (Hwang and Tseng 2005) derived some design formulas for both supplemental 

linear and non-linear viscous dampers to bridge structures. The damping coefficients of the 

added dampers were determined based on the concept of “composite damping ratio” in which 

the bridge components such as rubber bearings, piers and abutments may have different 

stiffnesses, lumped masses and damping ratios. In addition to the validation on a two DOFs 

simplified bridge model, a three-span bridge model was also used for the seismic response 

analysis, showing a good agreement with the proposed design formulas. 

Paolacci (Paolacci 2013) proposed a criterion to optimize the characteristics of viscoelastic 

control devices, based on an energy-based index (EDI) as objective function. An optimal design 

of the control system was obtained by maximizing the EDI index. An interesting outcome was 

that the multi-objective nature of the index induced a simultaneous reduction of both kinematic 

and static response quantities. The optimization procedure was applied to a single DOF system, 

representative of a structure equipped with viscoelastic dampers (VED): the behavior of the 

latter was modelled using a Maxwell unit. The comparison of the response to simple excitations, 

like harmonic and white-noise inputs, with the response to synthetic accelerograms, showed 

that the optimal design of the VED was practically independent of the input. This means that it 

is possible to obtain preliminary indications on the optimal characteristics of the dampers, even 

in closed form. 

On the other hand, other authors proposed to single out the optimal control system by the results 

of a wide parametrical investigation on benchmark bridges. 
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Madhekar and Jangid (Madhekar and Jangid 2009) presented the dynamic behavior of 

benchmark highway bridges using variable dampers under six bidirectional earthquake ground 

motions: a viscous damper was used as a passive control device and a variable damper, 

developed from a magnetorheological (MR) damper, was used as a semi-active control device. 

The study was based on the simplified lumped-mass finite element model of a highway bridge 

in Southern California. The prime aim of the study was to investigate the effectiveness of 

viscous dampers and variable dampers with a friction-type damping force scheme and a two-

step viscous damping force scheme, with important parametric variation. Numerical 

simulations were conducted by installing the devices between the deck and abutments of the 

bridge: the seismic response of the bridge was compared with the corresponding uncontrolled 

case, and controlled by alternative sample control strategies.  

Ozbulut & Hurlebaus (Ozbulut and Hurlebaus 2011) investigated the seismic response of a 

multi-span continuous bridge isolated with novel superelastic-friction base isolator (S-FBI), 

under near-field earthquakes. The isolation system consisted of a flat steel-Teflon sliding 

bearing and a superelastic NiTi shape memory alloy (SMA) device: while the sliding bearing 

decouples the superstructure of the bridge from its piers and dissipates energy through friction, 

the SMA device provides restoring force and additional damping. The key design parameters 

of an S-FBI system were the natural period of the isolated bridge, the yielding displacement of 

the SMA device, and the friction coefficient of the sliding bearings. The goal of this study was 

to obtain optimal values for each design parameter by performing sensitivity analysis of a bridge 

isolated by an S-FBI system. 

In the present chapter, it is adopted the same philosophical approach presented in previous 

works (Di Marzo et al 2000; Paolacci and Serino 2001), aiming to define the optimal design of 

an isolation system, in case of elastomeric and sliding bearings. In these two cited works, a 

simple operative procedure is delivered for singling out the optimal design parameter of a 

simple 1-DOF system representing an isolated simply supported bridge or a building’s isolated 

floor. The optimal design parameter, in case of both viscoelastic and rigid-plastic isolators, is 

defined under the action of a harmonic excitation, and then verified for a case study subjected 

to a seismic input.  

The proposed work presents a more complete design methodology for the isolation system, 

installed between the piers and the bridge deck. This methodology is the result of a detailed 

analytical treatment of simple dynamic systems incorporating the viscoelastic or rigid-plastic 

dissipative behaviors. With respect to previous works, the optimization process is developed 
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also in terms of top pier displacements, besides the deck displacements. Moreover, the proposed 

procedure includes specific seismic numerical analyses able to immediately confirm the 

analytical results or, eventually, state the need of a further iteration.  

The design procedure proposed in the present chapter is based on a different approach with 

respect to those adopted by other authors, developing different optimization concepts in 

formulating the design criteria. In Ciampi and De Angelis (1996), Ciampi (1998) and Paolacci 

(2013), an energy-based index, related to the energy dissipated by the devices, is formulated as 

objective function to maximize. Hwang & Tseng (2005) provided design formulas for 

supplemental linear and non-linear viscous devices for bridge structures, as a function of the 

desired dissipation level, assumed as given and not correlated to response parameters of the 

structure.  

 

6.2 Steady-state response of an isolated bridge subjected to a harmonic base motion 

The behavior of a simply supported bridge isolated by means of viscoelastic (i.e. laminated 

rubber bearing LRB) or rigid-plastic devices (i.e. friction pendulum system FPS), is analyzed 

(Figure 6.1(a)). 

The dynamic model simulating such a simple structure is also illustrated in the same Figure: it 

is a 2 DOFs model (x, xc), where the parameters kc and ki are the total lateral stiffness of the 

columns and the bearings, respectively. The procedure is valid in the case of i columns having 

the same stiffness kc1, being kc =i  kc1, and j isolators of equal stiffness ki1, being ki =j  ki1. The 

damping behavior is completely defined by the damping coefficient c (in the case of viscoelastic 

isolators – VI) or by the yield strength Fy (in the case of rigid-plastic or sliding isolators – SI) 

of the whole isolation system, thus neglecting damping in the columns. Moreover, m and mc are 

the mass of the deck and the participating mass of all piers, respectively. It is worth to note that, 

in most cases, mc is small compared to m and therefore can be neglected, so that the model 

reduces to a single dynamic DOF with two kinematic DOFs (Figure 6.1(b)). 

The dynamic problem of the bridge subjected to a harmonic base excitation can be formulated 

and solved as shown in the following. The equations of motion are derived together with the 

definition of the relevant design parameters and response quantities, and the optimal damping 

characteristics are obtained under the hypothesis that the ratio  = ic kk /  and the deck mass m  

are known. For both VI and SI cases, a closed-form solution of the response is obtained. 
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Even if earthquake motion is usually random, by means of the Discrete Fourier Transform 

Function (DFT), properly working on non-periodic data, it can be decomposed into a linear 

combination of harmonic functions. Typical ground motions contain a wide range of 

frequencies and system displacement response shows a dominant period very close to its natural 

period. A sweeping frequency of the excitation (i.e., harmonic function with 0 ) at the 

base is assumed, since due to extremely different values of the damping parameter, the effective 

frequency of the system vary significantly. In addition to this, for a damped system, the higher 

is the damping the shorter will be the transitory condition so that structural response will tend 

to a single period harmonic function.  

 

(a)

 
(b) 

Figure 6.1 (a) Bridge structure and (b) rheological model 

The problem is first solved by making reference to the deck displacement x : the optimization 

procedure is developed with the aim to determine the value of the normalized device’s damping 

parameter ( opti ,  or opt ) corresponding to the minimum deck displacement over the whole 

range of frequency excitation.  

On the other hand, different parameters can be also assumed as reference: the displacement of 

columns cx  in order to control the column base shear, or the relative displacement cxx  in the 

isolators in order to check the maximum allowable movement between the deck and the top of 

columns.  
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6.2.1 Formulation of the equation of motion 

Neglecting the participating mass of the piers (mc  = 0), the general expression of the equation 

of motion for the model illustrated in Figure 6.1(b), subjected to a harmonic base displacement 

xg(t) = xg,max · cos t , is simply the following: 

txmxxxxFxm gcc cos,...),,,( max,
2                          (6.1) 

where x  is the relative deck displacement, ,...),,,( cc xxxxF  is the linear or non-linear restoring 

force in the whole system and dot notation represents derivation with respect to time. 

In order to single out the relevant design parameters of the control devices and the structural 

response parameters, it is needed to write Eq. (6.1) in an adimensionalized form. Afterwards, 

introducing the non-dimensional time t , a different normalized form of the equation of 

motion can be found, being  a normalization frequency corresponding to the natural frequency 

of the system in one of the three following cases: 

i) infinitely stiff piers ( ck ): mkii  

ii) undamped system ( 0c  or 0yF ): mkkkk bcicb )(  

iii) not isolated bridge ( ik ): mkcc  

Considering the non-dimensional time parameter ti , Eq. (6.1) can be expressed as: 
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where ( ' ) represents derivation with respect to . After simple manipulations: 
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xxxxF                       (6.4) 

cos)()()('' 2f                             (6.5) 

where max,gxx  is the normalized deck displacement, max,,...),,,()( gccc xkxxxxFf  is 

the normalized restoring force, i is the normalized frequency. Eq. (6.5) represents the 

final form of the normalized equation of motion and it is developed in the following paragraphs 

for the two defined cases. 
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6.2.2 Solution of the equation of motion for the VI case 
In the case of viscoelastic isolators (VI) having damping coefficient c , the equivalent damping ratio is defined as: 

i
i m

c
2

 (6.6)

The force in the passive control system, i.e. the base shear of the pier, can be expressed in the 

frequency domain through the complex response method: 

))()(()()( ci xxcikF  (6.7)

 Since the top column displacement is given by cc kFx /)()( , Eq. (6.7) can be 

rewritten as: 

)()())()(()()( xK
k

FxcikF d
c

i (6.8)

where:  

c

i

i
d

k
cik

cik
x
FK

1)(
)()(  

(6.9) 

represents the complex stiffness of the controlled bridge. 

Dividing Eq. (6.9) by ck , the dimensionless system stiffness is: 

c

c
d

k
ci

k
ci

K
1

1

)(  (6.10) 

Substituting Eq. (6.6) in Eq. (6.10), the normalized stiffness becomes: 

2

2
22

2

2
22

2

2
2

2

4)1(

2

4)1(

4)1(

21

21

)(

i

i

i

i

i

i

d ii

i

K  (6.11) 

)()( dd KiK  

where )(dK  and )(dK  are, respectively, the overall normalized storage and loss modulus of 

the controlled bridge. 

The normalized restoring force of Eq. (6.5) becomes: 

)()( dKf  (6.12) 

and is illustrated in Figure 6.2. 
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Figure 6.2 Normalized restoring force - displacement relationship for the VI case. 

The global dynamic behavior of a rubber isolated bridge is completely defined by three 

parameters: , i  and . 

In this case, the system is linear and an exact solution for the steady-state response can be 

evaluated. The solution of Eq. (6.5) is extremely straightforward using the frequency domain 

approach.  

Assuming that a solution of Eq. (5) can be expressed in the form ))((
max )()( ie , the 

Fourier transform applied to Eq. (6.5) gets: 
2

maxmax
2 )())()(()( dd KiK  (6.13) 

where the storage modulus )(dK  and loss modulus )(dK  are those defined in Eq. (6.11). 

From Eq. (6.13) it is possible to express the complex response of the bridge in terms of 

maximum deck displacement: 

)()( 2

2

max

dd KiK
 (6.14) 

The amplitude of the response and its phase angle can be evaluated respectively as the modulus 

and the argument of the above complex relationship: 

2222

2

max
)()( dd KK

 (6.15) 

2)(
)(tan

d

d

K
K  (6.16) 
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The relations (6.15) and (6.16) are simply an extension of the classical amplitude – frequency 

and phase angle – frequency relationships for a standard linear elastic oscillator subjected to a 

harmonic base motion. 

Introducing the definitions of storage and loss moduli in (6.15) and (6.16), they become: 

2

2

2
2

2
2

2

2

2

2
2

2

2
2

2

max

41

2

41

4)1(

i

i

i

i

 

(6.17) 

2
2

24)1(
2tan

i

i  
(6.18) 

Eq. (6.17) is plotted in Figure 6.3 for different values of  and damping ratio i . 

The two limit cases, for which the behavior reduces to an elastic undamped system, are the 

following: 

00 ci  (no damping) 

2

2

max

1

; 

1resonance  

(6.19) 

ci  (infinite damping) 

2

2

max ; 

resonance  

(6.20) 

The two limit curves intersect in the point of coordinates 122 2  and 

/)2(max . A very low value of i  produces a peak of the curve near to the one of the 

no damping limit case. This peak decreases as far as i  increases but a large increase of the 

damping coefficient induces a shift of the resonance frequency toward the infinite damping 

limit case, with an increment, at the same time, of the peak amplitude. For , Eq. 6.17 
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gives /)2(max  for any other value of i , thus demonstrating that the point of 

coordinates ( )(, max ) is a common point for all curves.  

The value of opti ,  can be computed by imposing the condition that the above common point (

)(, max ) corresponds to the maximum of the generic curve, i.e., by imposing that 

0max
' . In this way, we get the following 3rd degree equation in the unknown 2

i : 

...)1()2)(132(4)2(8 4222632
ii kkkkkkk

0)1()1()1)(2(2.... 8252 kkkkk i  
(6.21) 

whose only real solution (all the other solutions are complex) is: 

)2(2
)1( 2

,opti  (6.22)

Therefore, the minimum resonance peak within the range ,0i  corresponds to the 

optimal resonance frequency opt . 

Figure 6.3 Maximum deck displacement versus frequency ratio  ( = 5, 20). 

The complex expression of the maximum force in the pier (equal to its normalized 

displacement), as well as in the control system, is given by: 

)()(
)(

2

2

max,

dd

dcc
KiK

Kf  (6.23) 

Figure 6.4 shows the modulus of Eq. (6.23) as function of the frequency ratio . It can be noted 

again that all curves have a common point corresponding to the intersection between the limit 

curves. The intersection point has now coordinates 
2
2

c  and 2
max,c  but this point 
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does not represent a maximum for all the curves. For i  the column displacement is 

practically the same as the deck displacement. For all finite values of 0i , max,c  is always 

lower than max  even if for  both max  and max,c  tend to 1.  

On the other hand, the quantity max,max c  (see Figure 6.5) is always decreasing with 

increasing i . 

Figure 6.4 Top column displacement versus frequency ratio  ( = 5, 20). 

Figure 6.5 Relative deck to pier displacement versus frequency ratio  ( = 5, 20). 

An optimization criterion for the design of the control system is the minimization of the 

maximum displacement max  in the whole range of , and the check a posteriori of the 

response in terms of base-shear. This means to select as design parameter the value opti ,  given 

in Eq. 6.22: a design spectrum is showed in Figure 6.6(a), for several values of . High values 

of damping ratio are required for small values of , whereas, for 10  opti ,  remains 

practically constant around the value 7.0 . It is interesting to note in Figure 6.6(b) that the 

optimum deck displacement, i.e. the minimum resonance peak for any value of  given by 



Chapter 6: A procedure for optimal design of the seismic protection system for isolated bridges 
_______________________________________________________________________________________________________________________________________________________ 
 

182 

 

opti , , decreases with  and tends to 1. For values of  greater than 3020 , a small decrease 

in the optimum response is produced. 

(a) (b) 

Figure 6.6 (a) VI optimal parameters for different normalizations and (b) deck optimal displacement and 
corresponding frequency ratio versus . 

If the other two expressions of the normalized frequency  are used, the expression of the 

optimal parameter can be easily evaluated as follows, and is also shown in Figure 6.6(a): 

)2(2
)1(

2
1

2 2

2

,
i

opt

c

opt
optc m

c
m
c

 (6.25)

 

6.2.3 Solution of the equation of motion for the SI case 

In the case of sliding isolators (SI), the restoring force ...),,,( cc xxxxF  is a bilinear relationship 

characterized by an initial stiffness ck  and a post-yielding stiffness icic kkkk . The 

supplemental device has a rigid-plastic behavior (Figure 6.7(a)) modeled by a spring ( ik ) acting 

in parallel with a friction element (sliding force yF ).  

The normalized restoring force is shown in Figure 6.7(b). It depends on two dimensionless 

parameters ic kk  and . The normalized initial stiffness is equal to unity while the post-

elastic stiffness becomes )1/(1 ;  is the normalized deck displacement max,/ gy xx  

corresponding to the achievement of yielding in the device, and it is equal to the normalized 

yield strength yf .  

)2(2
)1(

2
1

2 2

3

,
i

opt

b

opt
optb m

c
m
c

 (6.24)
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Figure 6.7 Normalized restoring force-displacement relationships (a) in the sliding isolators and 
(b) in the controlled bridge. 

On the basis of the observations above, it is possible to state that the dynamic behavior of the 

SI bridge case is completely defined by the following three dimensionless parameters: ,  

and . 

The equation of motion is non-linear and a closed form solution cannot be easily derived. In the 

following, the slowly varying parameters method (Caughey 1960) is adopted. It can be 

reasonably assumed that, under a harmonic base motion, the steady-state response is periodic 

with frequency : 

 coscos)( maxmax  (6.26)

where max  and  are slowly varying functions of , and . Differentiating Eq. 

(6.26) with respect to , one obtains: 

cossinsin maxmaxmax  (6.27)

For the hypothesis of the slowly varying parameters method, it is possible to approximate the 

values of max  and  by their mean values and to assume that the velocity  is harmonic, 

i.e:  

0sincos maxmax  (6.28)

Differentiating again Eq. (6.27) with respect to : 

sincoscos maxmaxmax
2  (6.29)

and substituting it in Eq. (6.5), leads to: 

cossincoscos max
2

maxmaxmax
2 f  (6.30)

We can multiply Eq. (6.30) by sin  and Eq. (6.28) by cos  and subtract them, thus obtaining: 

sincossincossincossin 222
maxmax

2 f  (6.31)



Chapter 6: A procedure for optimal design of the seismic protection system for isolated bridges 
_______________________________________________________________________________________________________________________________________________________ 
 

184 

 

The average made over one cycle of  leads to: 

sin
2

sin
2
1 22

0max df  (6.32)

Now, multiplying Eq. (6.28) by sin , Eq. (6.30) by cos  and adding them: 

coscoscoscos 2
max

2
max

2 f  (6.33)

and averaging over one cycle of , one obtains: 

cos
2

cos
2
1

2

22

0max

2

max df  (6.34)

If maxS  and maxC  are the two quantities: 

2

0max

2

0max

cos1

sin1

dfC

dfS
(6.35)

hence Eqs. (6.32) and (6.34) become: 

cos2

sin2
2

maxmax
2

max

2
maxmax

C
S

(6.36)

Using Figure 6.7(b), if 
max

1 21cos*  the quantities maxS  and maxC  are readily 

evaluated: 

maxmax

max
2max

max

if0

if*sin
1

S

S
(6.37)

maxmaxmax

max
max

max

if

if*2sin
)1(21

*
1

C

C
(6.38)

The steady state response is obtained by setting max  and  equal to zero in Eq. (6.36), 

which becomes: 

cos

sin
2

max
2

max

2
max

C
S

(6.39)

Eliminating  and 2  from Eq. (39), we get the following displacement – frequency and phase 

angle – frequency relationships in the unknowns max  and : 
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max )()( SC  (6.40)
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)(tan
C

S  
(6.41)

Differently from the VI case, now it is convenient to express the quantity max  implicitly as a 

function of  from Eq. (40): 

11 2
maxmax

2
max

22
maxmax

22
maxmaxmax

2

SCCC  (6.42)

The maximum deck displacement max  is attained at the point where 2  has a double root, i.e. 

for the value max
~  which makes void the radical quantity in Eq. (6.42), i.e. satisfies the equation: 

01

~
21arccos

~
21arccos2

2~
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1~~~
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42
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maxmax2
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max
2

max
22

max
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(6.43)

and the corresponding frequency is: 

)~()~(~)~(~
maxmax

2
max

2
max CCSS (6.44)

The limit cases ( 0  and ) again correspond, respectively, to the case of two springs 

( ck and ik ) connected in series or a single spring ( ck ), and are expressed as max : 

00 dyF   

max

max2

11
;

1resonance

(6.45)

dyF
 

max

max2

1
k ; 

resonance  

(6.46)
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The function )( max
2  in Eq. (6.42) is a continuous function whose derivative is discontinuous 

when max . This is because the response is linear for any value of max , being the 

flexibility of the system due to the only spring ck . 

By analyzing the frequency response function )(max , it is possible to figure out the role of 

the parameter  and propose a design methodology for determining its optimal value. 

The quantity max  as a function of  is plotted in Figure 6.8 for 20,5  and for several values 

of . The point of coordinates 122 2  and /)2(max  still 

represents the intersection of the two limit cases (Eqs. (6.45) and (6.46)) but does not belong to 

all other curves. One notes that a very low value of  produces a peak of the curve near to the 

one relative to 0 , and its value decreases as far as the previous parameter increases; 

however, a further increase of the yield displacement induces a shift of the resonance frequency 

toward the value  with an increment of the peak amplitude. Therefore, the resonance 

peak within the range ,0  has a minimum value in correspondence of the frequency opt

, quite close to the one ( ) of the intersection point between the limit curves. Therefore, settled 

a certain , the value opt  is defined as the one which satisfies the condition that its 

corresponding curve )(max  has the minimum resonance peak. 

Figure 6.8 Maximum deck displacement versus frequency ratio  ( = 5, 20). 

In order to get the derived response quantities, simple expressions, involving the normalized 

displacement max  and stiffness , are introduced. When max , the top column 

displacement max,c  (equal to the base shear) and the relative displacement max,c  

assume the expressions (Figure 6.9 and Figure 6.10): 
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1
max

max,c  (6.47)

1
)( max  (6.48)

while, maxmax,c  and 0  when max . 

One notes that once the device yields, the top column displacement max,c  is always lower than 

max  and that the relative displacement  is always decreasing for increasing values of . In 

addition to this, max,c  has a maximum value after the yielding of the control device, which is 

approximately equal to  for high values of , because of the limited force transmitted by the 

isolator after yielding. This behavior indicates a great advantage of the SI system with respect 

to the VI case: rigid-plastic devices apply a strong control on the maximum base-shear force, 

practically a known value ( yF ) for high values of . Differently from the VI case, it is now 

possible to derive a different optimal value optc,  giving the minimum resonance peak max,c in 

the columns. 

Figure 6.9 Top column displacement versus frequency ratio  ( = 5, 20). 

Figure 6.10 Relative deck to pier displacement versus frequency ratio  ( = 5, 20). 
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A design spectrum has been numerically derived and is plotted in Figure 6.11(a), where both 

the optimal values opt  and optc,  are shown as a function of the relative stiffness . In Figure 

6.11(b) are also plotted both the quantity )(max opt  and )( ,max, optcc  , and also the values opt  

and , all versus .  

(a) (b)
Figure 6.11 (a) SI optimal parameters for both deck and pier displacement and (b) deck optimal 

displacement, column optimal displacement, optimal frequency ratio and limit curves intersection point 
versus . 

From Figure 6.11 it is clear that, as far as  increases, both the optimal parameters and the 

maximum displacements decrease. Besides, the value of opt  is close to  and both parameters 

show a growing trend with . 

 

6.3 Numerical validation of proposed design procedure 

The design procedure proposed in the previous paragraphs has been verified through a 

numerical investigation performed on a typical isolated bridge having a target period Ti = 

2 = 2.5 s. The equation of motion has been solved by implementing the Newton-Raphson 

integration method (Chopra 2011) in Matlab® environment (Mathworks 2010). 

According to the Italian building code (NTC 2008), the design spectra (Figure 6.12) with 5% 

of critical damping have been defined for the near collapse limit state of a bridge (functional 

class III) located in Grottaminarda, Italy (15.03° longitude, 41.06° latitude) on soil type B 

(360 Vs,30 800 m/s) with a nominal life of 50 years, corresponding to a return period of 1462 

years. A set of seven unscaled spectrum matching accelerograms (Figure 6.12, Table 6.1) was 

found in the European ground motion database using Rexel v3.4 beta (Iervolino et al 2010). 

The average spectrum has 10% lower and 30% upper tolerance in the period range 0.15-2 s. 
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(a) (b) 
Figure 6.12 (a) Acceleration and (b) displacement design spectra ( =5%) and selected ground motion 

spectra. 

Table 6.1 Selected spectrum-compatible accelerograms for site class B. 

Waveform 

ID 

Earthquake 

ID 

Station 

ID 

Earthquake 

Name 
Mw 

Epicentral 

Distance [km] 

PGA 

[m/s2] 

PGV 

[m/s] 

4673 1635 ST2482 South Iceland 6.5 15 4.68 0.48 

535 250 ST205 Erzincan 6.6 13 5.03 1.02 

6263 1635 ST2484 South Iceland 6.5 7 6.14 0.50 

199 93 ST67 Montenegro 6.9 16 3.68 0.52 

197 93 ST63 Montenegro 6.9 24 2.88 0.47 

6334 2142 ST2488 
South Iceland 

(as) 
6.4 11 7.07 0.97 

594 286 ST60 Umbria Marche 6 11 5.14 0.32 

mean:       6.54 13.86 4.94 0.61 

 

In order to estimate the maximum expected ground displacement xg,max corresponding to the 

aforementioned spectra, it is necessary to compute the spectral displacement Sd in the long-

period range up to 10 s. Several authors (Faccioli et al 2004; Smerzini et al 2013) and also the 

NTC suggest to assume the following relationship: 

DCgg TTSax 025.0max,  (6.49)

where ag = 0.428 g is the peak ground acceleration on bedrock, S = 1.003 is the soil amplification 

factor and TC = 0.547 s is the control period corresponding to the beginning of the constant 

velocity branch of the design spectrum and TD = 3.310 s is the corner period denoting the 

beginning of the maximum displacement plateau. Eq. 6.49 provides xg,max = 0.19 m and this has 

been taken as reference for the SI case.  

The response of the VI and SI bridge has been evaluated under seven ground motions 

characterized by different frequency content, to numerically determine the optimal values of 
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the parameters i and , and to compare them with those obtained from the analytical approach 

presented in the previous paragraph. 

Structural response is showed in the following both in terms of deck and top pier absolute 

displacement, and also of deck-pier relative displacement. The numerical investigation has been 

repeated for 2 different values of  (5 and 20), which correspond to the following dynamic 

structural properties in case of rigid deck-to-pier connection (limit case i  or  - 

Table 6.2): 

Table 6.2 Bridge dynamic properties for rigid deck-to-pier connection. 

 [-] Tfb [s] wfb [rad/s] ffb [hz] 

5 1.12 5.59 0.89 

20 0.56 11.17 1.78 

 

where ifb  and the corresponding normalized frequency  at resonance is .  

If no supplemental damping is provided (limit case 0i  or 0 ), the dynamic properties of 

the system reduce to those in Table 6.3: 

Table 6.3 Bridge dynamic properties with 0i  or 0 . 

 [-] T0 [s] w0[rad/s] f0 [hz] 

5 2.75 2.28 0.36 

20 2.58 2.44 0.39 

 

where the frequency 
10 i  of the undamped structure corresponds to the normalized 

frequency ratio 
1

 at resonance.  

A parametric investigation has been performed for each ground motion and for each value of 

, by assigning extremely different values to both i (100 logarithmically spaced value between 

10-3 and 105) and  (100 logarithmically spaced value between 10-4 and 10): the pier and deck 

maximum displacements have been considered as result for each time history case and are 

plotted in what follows. The optimal parameter is the value corresponding to the minimum 

structural response in terms of pier or deck displacement, under each seismic excitation for a 

given .  



Chapter 6: A procedure for optimal design of the seismic protection system for isolated bridges 
_______________________________________________________________________________________________________________________________________________________ 
 

191 

 

The following Figures summarize some relevant results of the numerical analyses performed 

on the case study for both control systems. In particular, the maximum normalized displacement 

is plotted versus the value of the parameter i and  in a semi-logarithmic scale, so to make 

clear how different the response could be, ranging from one extreme to the other.  

 

6.3.1 VI case 

In the VI case, the structural model is defined as a two DOFs system (deck displacement x and 

pier displacement xc - see § 6.2.2), where the only dynamic DOF is associated to the deck 

displacement. The equation of motion has been formulated as follows: 

lMxKxCxM gx  

where c
T xxx , c

T xxx , c
T xxx , 

00
0m

M , 
ici

ii

kkk
kk

K , 

ii

ii

cc
cc

C , 
1
1

I  and gx  is the base acceleration.  

In this case, the time step has been assumed equal to 0.01s while the parameters  and  have 

been set to 1/2 and 1/4, respectively. Figure 6.13 to Figure 6.19 show the peak value of x, xc 

and x-xc under different applied earthquake records for the different values of i. In the same 

Figures, the vertical straight line indicates the optimal value determined from the proposed 

design procedure ( i,opt = 0.7171 for i,opt = 0.7079 for 

Figure 6.13 VI case: numerical results for ground motion #197.
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Figure 6.14 VI case: numerical results for ground motion #199. 

Figure 6.15 VI case: numerical results for ground motion #535 

 
Figure 6.16 VI case: numerical results for ground motion #594 
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Figure 6.17 VI case: numerical results for ground motion #4673. 

Figure 6.18 VI case: numerical results for ground motion #6263. 

 

 
Figure 6.19 VI case: numerical results for ground motion #6334. 

As expected, in all the analyzed cases, the response in terms of deck displacement shows a 

minimum value but this occurs for a value of i almost always larger than the theoretically 
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proposed one. With respect to the undamped case ( i=0), the deck response is strongly reduced. 

Main results are reported in Table 6.4: 

Table 6.4 Numerical optimum values of i for the deck displacement 

#197 #199 #535 #594 #4673 #6263 #6334 i,opt 

5 1.18 1.71 4.33 0.26 7.56 1.87 1.23 0.7171 

20 4.33 3.59 5.21 4.32 2.98 3.51 4.32 0.7079 

 

Regarding top pier displacement, it is worth to note that an increase in the value i is almost 

always responsible for a larger response of the column, due to the additional force transmitted 

by damping. However, it is clear from the above Figures that top pier peak response slightly 

reduces for i increasing between 0 and a value very close or slightly lower than i,opt. In other 

words, i,opt represents a good compromise value which allows to optimize at the same time 

both the deck and top pier maximum displacement. Table 6.5. summarizes the numerical 

optimal values i, always lower than i,opt: 

Table 6.5 Numerical optimum values of i for the pier displacement. 

#197 #199 #535 #594 #4673 #6263 #6334 i,opt 

5 0.27 0.1 0.27 0.15 0.13 0.53 0.12 0.7171 

20 0.32 0.22 0.22 0.09 0.15 0.35 0.15 0.7079 

 

6.3.2 SI case 

In the SI case, the structural model is defined as a bilinear single DOF system (see § 6.2.3). A 

time step of 0.0001s has been adopted to improve the accuracy of the integration with =1/2 

and =1/6. The damping ratio  has been set equal to zero, due to the lack of supplemental 

viscous damping. 

Figure 6.20 to Figure 6.26 show the peak value of x, xc and x-xc under different applied 

earthquake records for the different values of . In the same Figures, the vertical straight lines 

indicates the theoretically determined optimal  for the deck ( opt = 0.47 for opt = 0.17 

for and for the column ( c,opt = 0.28 for c,opt = 0.06 for 
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Figure 6.20 SI case: numerical results for ground motion #197. 

Figure 6.21 SI case: numerical results for ground motion #199. 

Figure 6.22 SI case: numerical results for ground motion #535.
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Figure 6.23 SI case: numerical results for ground motion #594.

Figure 6.24 SI case: numerical results for ground motion #4673

Figure 6.25 SI case: numerical results for ground motion #6263.
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Figure 6.26 SI case: numerical results for ground motion #6334. 

Differently from the VI case, the minimum of the deck response is not always between the two 

limit cases but sometimes reduces to the rigid deck-to-pier connection case, so implying the 

worst condition for the pier. For the value opt the deck response is always reduced with respect 

to the undamped case (  = 0). It must be noted that that the average of the actual numerical 

values in Table 6.6 is very close to the theoretically derived opt :  

Table 6.6 Numerical optimum values of  for the deck displacement. 

#197 #199 #535 #594 #4673 #6263 #6334 opt 

5 0.13 0.67 0.46 0.17 0.32 0.36 1.24 0.47 

20 0.12 0.22 0.22 0.03 0.15 0.32 0.46 0.17 

Similarly to the VI case, due to the coupling effect with the deck, the pier displacement 

significantly increases with except for a very low value of the ratio varying from 0 to a value 

lower than c,opt (Table 6.7). 

Table 6.7 Numerical optimum values of  for the pier displacement 

#197 #199 #535 #594 #4673 #6263 #6334 c,opt 

5 0.032 0.006 0.13 0.011 0.02 0.057 0.05 0.28 

20 0.005 0.057 0.027 0.002 0.013 0.013 0.017 0.06 

The outcome is that c,opt, instead of opt, may be taken as design value able to strongly reduce 

the deck response while lightly affecting the pier response. 

In a SI system, it has also been verified what is the effect of damping in the piers on the structural 

response: a value of =2% strongly reduces the response in case of elastic behaviour ( = 0 or 
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→ ) while, in case of significant sliding in the isolation system, maximum displacements 

are mainly dependent on hysteretic dissipation (Figure 6.27). 

Figure 6.27 Numerical results with additional viscous damping =2% for ground motion #6263 

 

6.4 Effective design procedure 

This paragraph summarizes the useful proposed design method. It has been developed taking 

into account the results of both theoretical treatment and numerical validation and is explained 

in the flowchart of Figure 6.28. Given the fixed-base bridge properties, the stiffness of the 

isolation system ki is defined to get a target period Ti. A starting value of the damping parameter 

is assumed equal to opti ,  or optc, , from Figure 6.6(a) or Figure 6.11(a) respectively, since they 

were proved to be very close to the effective numerical optimum. Time history analysis are then 

performed under the code provided seismic action and the performance is checked a posteriori 

(i.e., average or maxima of results depending on the number of assumed accelerograms). If not 

satisfactory, a modification of the damping parameter can be made in order to get an 

improvement in the achievement of the desired target performance level (e.g. in terms of 

absolute minimum deck displacement). Some iterations could be needed to define the effective 

optimal values ( opt  or opt ). 
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Figure 6.28 Flowchart of the suggested design procedure. 

Near fault ground motion was not properly addressed in this work even if it is of great concern 

for structures with long natural periods (Jònsson et al 2010). Near fault effects are mainly 

characterized by low frequency pulses, short duration and higher horizontal accelerations with 

a significant component in the vertical direction too. Due to their natural period, base isolated 

structures are more vulnerable when subjected to near fault motion: for single pulse excitation, 

the maximum response mainly depends on the ratio of the impulse duration to the natural period 

of the structure while the influence of damping is expected to be negligible (Chopra 2011), so 

isolators’ displacement may significantly increase. In this case, at the stage of numerical 

validation, some accelerograms were selected with low epicentral distance (R<15 km) and no 

significant difference emerged from response. 

Effects of different soil conditions and non-synchronous motion were neglected. The isolated 

bridge was designed as if subjected to a standard input motion, i.e., synchronous excitation and 

uniform soil condition. Its response under spatially varying ground motion can be evaluated by 

numerical simulations at the design stage. Design codes normally require consideration of 

ground motion spatial variability only for bridges several hundreds meters long, or in case of 

drastic variations of soil profiles. Eurocode 8 (1998-1 EN 2004) requires spatial variability to 

be considered in case of more than one ground type at the supports in case of continuous deck’s 

length exceeding 200 m over soil type D (higher values are suggested in case of better soil 

conditions). In the formulation of the equation of motion with input spatial variability, the 
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model must include the degrees of freedom at the supports so that kinematic vectors are splitted 

in n- unconstrained and m-support degrees of freedom. The n-vector x of the total displacements 

is the combination of a pseudo-static component xs and a dynamic component xd . The 

component xs is computed from an m- vector u of prescribed support displacements while the 

term xd is the effect of base accelerations. The spatial variation of the seismic action could be 

estimated using a simple approximate model based on pseudo-static effects of appropriate 

displacement sets imposed at the foundation of the supports, and then combined with the main 

inertial response. When a time-history analysis is performed, a sample acceleration motion, 

obtained by means of a vector of zero-mean random process having a power spectrum 

consistent with the elastic response spectrum, can be applied at each support, thus reflecting the 

probable spatial variability of the seismic action. Irrespective of bridge configuration, the 

displacement demand of most of the isolators increases in the presence of spatial variability 

(Lupoi 2009). Especially in the case of non uniform soil conditions underneath the bridge 

foundations (the source of the greater negative influence on the bridge response), specific 

studies are necessary and a safety factor approach cannot be pursued.    

Pounding effects must be properly considered in a seismically isolated bridge, since lateral 

displacements are expected to increase significantly. Available clearances at deck movement 

joints and abutment back-walls must be checked in order to avoid collision, according to code 

requirements. A design criterion for the optimal isolation system was defined to obtain the 

minimum deck displacement, so implying minimum required clearances. It was proved that 

deck displacement is strongly reduced thanks to a value of damping very close to the optimal 

one, thus giving an optimal deck displacement not so different or sometimes lower than the 

fixed-base one. Taking benefits from damping, the question of pounding can be properly 

mitigated in seismically isolated bridges.  

The proposed procedure was explained with reference to the Italian Code, where the collapse 

prevention limit state (SLC) has to be taken into account for the design of the isolation system: 

seismic action is defined for a 5% over 50 years probability of occurrence during the reference 

life VR, whose value strongly affects the definition of the return period TR (in this case about 

1500 years). In the Eurocode 8 non-collapse requirement must be fulfilled for bridge design at 

Ultimate limit state (ULS): an importance factor l depending on the importance class of the 

bridge is provided to scale seismic action (for class II-average importance, TR=475 years). In 

the US code, the maximum considered earthquake (MCE) must be taken into account in 
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designing the isolation unit (International Code Council 2000), with a 2% probability of 

exceedance in 50 years. 

In conclusion, the following recommendations are given: at the first-step of the design 

procedure, the suggested values of the reference parameters ( opti ,  or optc, ) have to be assumed; 

then, after acceleration input motion has been defined according to code provisions, time history 

analysis need to be performed. Seismic input has to take into account, if necessary, near fault 

effects and ground motion spatial variability. Numerical results are then compared with the 

design performance level, that may concern minimum deck displacement or pier base shear. 

Even if initial suggested values were numerically validated for real ground motions, optimum 

definition is case-dependent and the achievement of the desired performance level may require 

some iterations due to randomness of earthquake. Actually, real strong motion properties 

(magnitude, duration, frequency content, etc.) may play an important role in the determination 

of the effective design optimal value. 

 

6.5 Conclusions 

In an isolated bridge deck, the increase in the horizontal period of vibration implies the need 

for supplemental damping in order to reduce the deck displacement. In this chapter, a theoretical 

approach was suggested for determining the optimal value of the inherent viscous damping in 

case of viscoelastic isolators (VI) or the yielding force in case of sliding isolators (SI). The 

proposed method is based on the analytical determination of the response to a harmonic base 

motion, with the aim of obtaining the optimal values of the adimensionalized viscous damping 

parameter ( i) or yielding displacement ( ) able to minimize the structural response, for each 

value of the piers to isolators relative stiffness . The method can be applied to a single or 

multispan bridge, supported by two or more columns all having the same stiffness, isolated by 

means of elastomeric or sliding bearings. 

It was demonstrated that, given a certain target period of isolation Ti, for different values of the 

design parameters ( i or ), the behavior would span between two extreme cases both 

corresponding to an undamped response with an unbounded resonance. The process of adding 

damping is not beneficial to any extent but just up to a certain level, depending on the objective 

of the optimization process. Within this field, the optimal values of i and  have been assumed 

as the ones corresponding to a minimum of the response curve in the overall frequency range, 
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for the deck or the pier displacement. Design spectra are provided where theoretical optimal 

values are given as a function of . 

In the second part of the work, numerical analysis have been carried out to validate the proposed 

design method in case of two typical isolated bridges subjected to seven spectrum-compatible 

earthquake records for a near collapse limit state, according to the NTC. This was devoted to 

determine the change in the structural response produced by varying the parameters i and .  

The numerical analysis demonstrated that the value i,opt minimizing the peak amplitude of the 

deck frequency response curve is usually of the same order of magnitude but slightly lower than 

that corresponding to the actual numerical optimum for the deck. This can be explained taking 

into account that the frequency content of a ground motion can vary significantly and does not 

correspond to a white noise exciting the overall range of frequencies of the system. Despite 

that, the theoretical value i,opt is very close to the numerical optimum for the pier, being also 

able at the same time to significantly reduce the deck response. 

As regard the SI case, it has been proved that opt is in the average in good agreement with the 

numerical optimum values minimizing the deck response, the latter sometimes related to the 

rigid deck-pier connection behavior. On the other hand, the pier displacement increases with , 

a part for a small range of from 0 to a value lower than c,opt. In the SI case, numerical results 

are not only depending on the frequency content of the ground motion but also on the 

assumption regarding the definition of the maximum ground displacement xg,max that in the 

suggested analytical procedure represents the amplitude of the harmonic base motion and has 

been estimated by means of seismic hazard parameters. A part from the approximations and 

hypothesis of the method, c,opt seems to be an acceptable value capable to strongly reduce the 

deck response without significantly affecting the pier displacement.  

When designing an isolated bridge with elastomeric or sliding bearings, the optimal inherent 

viscous damping coefficient or the optimal sliding force, respectively, can be first adopted as 

i,opt or c,opt. In this case the expected structural response is characterized by significantly 

reduced deck displacements with not affected or just lightly worsened pier response respect to 

the case i = 0 or  = 0. Both parameters can be assumed as a starting point in a case-dependent 

optimization process, therefore being necessary to perform iterative analysis for the code 

provided seismic action in order to check and find out the effective optimum value for the 

minimization of the desired response.  
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From numerical results it has also been observed that, for a given  and ground motion, the 

absolute minimum deck displacement is obtained by means of viscous damping rather than 

hysteretic damping while for the minimum pier displacement there is no significant difference.   
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Chapter 7 

 

7. CONCLUSIONS AND FINAL REMARKS 

 
 

Aim of the thesis is the investigation of the effects of supplemental damping on the definition 

of its optimal value in typical passively controlled civil engineering structures, such as damper-

braced frames or isolated bridges.  

The design of a passive control system, i.e. a supplemental damping system or a seismic 

isolation one, usually involves a trial and error process for the achievement of a satisfactory 

performance of the structural system. To improve competitiveness and effectiveness of passive 

control systems, their design should be tuned to an optimal value corresponding to a target 

performance.   

Design of such control systems is an open issue and is often quite far from common engineering 

practise.  

 

After introduction to most acknowledged supplemental damping and seismic isolation systems 

(Chapter 1) and their modeling (Chapter 2), Chapter 3 depicted the state of art of applicable 

seismic regulations, mainly represented by America codes and FEMA provisions. A deficiency 

has been recognized in European framework. Different analysis methods have been analysed, 

with particular focus on the operational definition of effective damping, essential parameter for 

adoption of simplified non liner analysis methods (linear static and modal analysis). Attention 
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must be paid to proper modeling of the passive control system: in case of supplemental damping 

system, other than the damper behavior (hysteretic, viscous or viscoelastic), also the supporting 

brace stiffness needs to be properly accounted.  

Chapter 4 proposed a procedure for the optimal design of linear-elastic SDOF frame equipped 

with dissipative hysteretic or viscous braces. In Chapter 5 the same procedure is extended to 

the case of linear-elastic MDOF frame, just in case of viscous dampers. 

Each dissipative brace is assumed made by a steel diagonal brace in series with a dissipative 

viscous or friction device. The assumptions of elastic frame behavior and negligible inherent 

structural damping are acceptable, since a strong reduction of demand on structural and non-

structural components is expected for an optimally designed supplemental damping system. 

Objective of the procedure is the definition of the optimal value of the viscous damping 

coefficient and the yielding force of a supplemental damping brace, in function of the brace to 

frame relative stiffness. 

In Chapter 6, a procedure for the optimal design of the damping of the isolation system of a 

bridge deck has been proposed. Objective of the procedure was the determination of the optimal 

value of the inherent viscous damping in case of viscoelastic isolators or the yielding force in 

case of sliding isolators, in function of the pier to isolation system relative stiffness. The method 

can be applied to a single or multispan bridge, supported by two or more columns all having 

the same stiffness, isolated by means of elastomeric or sliding bearings. 

 

A similar dissertation was developed in all the aforementioned optimization cases. A theoretical 

approach based on frequency response functions was suggested for determining an analytical 

optimal value of the viscous damping coefficient and the yielding force of a supplemental 

damping brace or bridge isolation system. It was demonstrated that, given a certain relative 

stiffness, for different values of the design parameters, the behavior would span between two 

extreme cases both corresponding to an undamped response with an unbounded resonance.  

In a passive control system, the process of adding damping would not be beneficial to any extent 

but just up to a certain level, depending on the objective of the optimization process. Within 

this field, the optimal values of the damping parameters have been assumed as the ones 

corresponding to a minimum of the response curve in the overall frequency range for the 

frame/pier displacement and the base shear. Design spectra have been provided, where 

theoretical optimal values are given as a function of a relative stiffness parameter. 

Numerical analysis were performed to validate the proposed design methods.  
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In case of viscous behavior, it was found that the analytically determined values are the same 

order of magnitude than that corresponding to actual numerical optimum. This can be explained 

taking into account that the frequency content of a ground motion can vary significantly and 

does not correspond to a white noise exciting the overall range of frequencies of the system. 

Despite that, theoretical values tend to well approximate numerical ones.  

As regard the hysteretic case, it has been proved that theoretically suggested values are usually 

higher than effective optimum. In this case, numerical results are not only depending on the 

frequency content of the ground motion but also on the assumption regarding the definition of 

the maximum ground displacement, that in the suggested analytical procedure represents the 

amplitude of the harmonic base motion and has been estimated by means of seismic hazard 

parameters. For this reason, the numerical validation process may provide a tuning factor with 

the aim of considering as design parameter a reduced equivalent displacement with respect to 

the harmonic excitation. 

 

Both theoretical and numerical results demonstrated that: 

1. In a brace-damper system, brace stiffness is an additional design parameter that has to be 

properly selected taking into account that the higher is the brace stiffness the more effective 

is the control system in reducing inter-story drifts, but it may be detrimental in terms of 

base reaction; 

2. Both theoretically and numerically, it comes out that the optimal damping parameter 

corresponding to minimum base shear is lower than the one giving the minimum 

displacements; 

3. For a given relative stiffness, the absolute minimum displacement and base shear are 

obtained by means of viscous rather than hysteretic damping. 

 

Based on both theoretical and numerical results, design procedures are defined providing 

effective optimum values. The suggested reference values can be assumed as a starting point in 

a case-dependent optimization process, then being necessary to perform iterative analysis under 

code provided seismic action, in order to check and find out the effective optimum value for 

the minimization of the desired response. The optimum properties of the passive control system 

depend on both the properties of the ground motion and of the structural system.  
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As a perspective into future developments, the case of MDOF system with hysteretic dampers 

need to be developed, with the aim of obtaining a closed form solution for the design of optimal 

yielding force, according to a given brace stiffness distribution. State of art design procedures 

are mainly based on capacity curve definition and iterations for setting damping parameters. 

An extension of the proposed design method could provide a more effective distribution of the 

optimal viscous coefficients along the height: the story viscous coefficient could be arranged 

according to inter-story drift distribution. In addition to this, the sum of damper coefficients and 

their cost were not constrained in the present work, but it is an important issue to be properly 

considered in practical applications. 
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