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GENERAL BACKGROUND,  

SUMMARY OF RESEARCH ACTIVITY  

AND AIMS OF THE THESIS 
 

 

Primary Immunodeficiencies (PIDs) consist of a group of monogenic diseases, 

all characterized by impaired immune responses of either innate and/or adaptative 

immunity. They lead to a variety of manifestations, including vulnerability to pathogens 

and opportunistic microbes, allergy, inflammation, autoimmunity and cancer. The 

incidence of PIDs varies from 1 in 600 to 1 in 500,000 live newborns, depending upon 

the specific disorder (1, 2). More than 260 disorders have been identified up to now, 

deriving from mutations in over 300 different genes, thanks to recent next generation 

sequencing technologies (3-5).  

 

During my PhD program in “Human Reproduction, Development and Growth” 

(XXVII Cycle, years 2011-2014), I contributed to the development of new approaches 

for the treatment of PIDs and other genetic diseases by advanced therapies, such as gene 

and cellular therapy.  

Moreover, I participated in the clinical and biological characterization of patients 

with immunodeficiencies and in the implementation of new approaches for the clinical 

management of children affected by hematological and immunological disorders 

undergoing bone marrow transplantation.  

My other lines of research have been focused on the use of new drugs in 

pediatric population, characterization of severe and unusual conditions and description 

of the State of the Art of known patologies in childhood.  

In my thesis I will describe the main points mentioned above. 

 

Research activity in PIDs is fervid and continues to produce new information on 

genes involved in differentiation and function of the immune system cells and on new 

mutations and molecular mechanisms. Gene sequencing has allowed to link different 

clinical presentations to single gene defects that were thought in the past to display a 

traditional presentation only. On the same time, this underlines the role of other factors, 

both genetic and non-genetic, in the regulation of gene expression (6). In the present 

thesis, I will present two papers I participated to, dealing with clinical and biological 

characterization of patients affected by PIDs. The first consists in the evaluation of the 
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intergenerational and intrafamilial phenotypic variability in a cohort of familial cases 

carrying a 22q11.2 deletion, while the second is related to the analysis of the regulatory 

and effector T cell functions in a CD25 deficient patient harboring a novel IL2RA 

mutation.  

 

Noteworthy, some working groups (WG) emerged and are active in studying 

several aspects of rare and severe primary  immunodeficiency diseases worldwide. The 

Primary Immune Deficiency Treatment Consortium (PIDTC), a network of 33 centers 

in North America, is an example of working group actually running projects of study 

and characterization of PIDs. Current protocols address the natural history of patients 

treated for severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome 

(WAS), and chronic granulomatous disease (CGD) through retrospective, prospective, 

and cross-sectional studies. Moreover, the establishment of partnerships with European 

and other International colleagues, the work with patient advocacy groups to promote 

community awareness and the setting of prospective treatment studies to determine 

optimal therapies and the future directions of clinical research for PIDs are other major 

purposes (7).  

In Italy, the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) is a 

good example of network that coordinates the work of many onco-hematological 

pediatric centers across the nation, carrying out projects of surveys and promoting the 

drawing up of recommendations, guidelines and diagnostic and therapeutic protocols in 

pediatric patients affected by haematological and oncological diseases. As a member of 

this association, in this thesis I will present some works I contributed to, in the context 

of the AIEOP Supportive Therapy WG, Infectious Diseases WG and Bone Marrow 

Transplant WG, dealing with new approaches for the clinical management of children 

affected by hematological and immunological disorders undergoing bone marrow 

transplantation.  

 

Many PIDs are life-threatening, notably PID affecting T lymphocytes (8) and for 

this reason hematopoietic allogeneic stem cell transplantation (HSCT) has been used for 

almost 50 years in the attempt to cure PIDs (9-11). Successful results and improvement 

of survival and quality of life have been achieved for many PIDs, as severe combined 

immunodeficiencies (SCIDs); however, for other T cell immunodeficiencies, as 

Wiskott-Aldrich Syndrome (WAS), hemophagocytic lymphohistiocytosis (HLH), 

chronic granulomatous diseases (CGDs) and several other diseases, the procedure is still 
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associated with complications and mortality, especially due to the immune conflict 

between the donor and the host immune system, leading to  rejection and graft-versus-

host disease (GvHD) and infectious complications related to myeloablative conditioning 

regimens. These issues are mostly overcome when a HLA genoidentical donor is 

available, but the outcome can be poor in other settings, despite the recent progresses in 

new conditioning regimens, GvHD prevention, immune manipulation and unrelated 

donors’ choice (4, 9-11).  

 

Early diagnosis and treatment remain a main issue for all forms of PID to 

prevent organ damage and life-threatening infections and to improve prognosis and 

quality of life (6, 12). New methods for neonatal detection of PID have been recently 

developed and have been shown to be a suitable screening for the vast majority of 

severe immunodeficiency diseases characterised by T- or B-lymphopenia in newborns 

(6, 12-14). 

 

In this scenario, gene therapy (GT) has been a challenging new approach in the 

last years, particularly directed to patients affected by defined PIDs and lacking a 

suitable bone marrow donor, as a life-saving alternative (15). Despite the advantages of 

an autologous and “personalized” procedure, and the impressive clinical results on 

patients with X-linked SCID, ADA SCID, CGD and WAS, gene therapy treatment has 

been in some cases counterbalanced by serious complications of insertional 

oncogenesis, drawing attention to the need of new generation of viral vectors and new 

approaches of gene correction with superior safety characteristics (15-17). The data 

regarding the long term follow-up of ADA SCID patients treated with γ-retroviral 

vector GT in San Raffaele Institute in the last two decades are presented as the main 

study of this thesis. Moreover, I will present preliminary results on patients treated more 

recently with LV-based hematopoietic stem cells (HSC) GT in our Institute.  

 

Clinical application of new therapeutic strategies has extended in the last two 

decades to several other genetic diseases, including blood borne, such as 

hemoglobinopathies and sickle cell disease (17), and metabolic diseases; among the 

latter category, relevant results have been achieved with gene therapy in patients with 

X-linked adrenoleukodystrophy (18) and metachromatic leukodystrophy (MLD) (19). 

The last mentioned trial has been conducted by LV-based approach in San Raffaele 
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Institute for Gene Therapy and the publication containing data of the first 3 patients is 

following presented as a part of my research work.  

 

As one of the most severe forms of muscular dystrophy, though still not 

permanently curable, Duchenne Muscular Dystrophy (DMD) is currently an object of a 

number of new therapies entering clinical experimentation or progressing up to phase III 

studies (20-24). All appear to be safe but, despite early encouraging results, efficacy has 

still to be reached and, moreover, most are limited to specific subsets of patients. The 

recent characterization of mesoangioblasts (MABs), a subset of pericytes from mouse, 

dog and human skeletal muscle that can be expanded in culture and maintain the ability 

to differentiate into skeletal and smooth muscle (25-27), migrating selectively, when 

delivered intra-arterially, in downstream inflammed tissues, has made a concrete 

possibility to perform cellular therapy for murine and canine model of muscular 

dystrophies (28-30). On the basis of the safety of this approach and partial efficacy in 

ameliorating the dystrophic phenotype, the same strategy has been attempted in a first-

in-human phase I/II clinical trial in DMD children, named “Cell Therapy of Duchenne 

Muscular Dystrophy by intra-arterial delivery delivery of HLA-identical allogeneic 

mesoangioblasts”, in San Raffaele Scientific Institute, Milan. Having participated in the 

Study as Scientific Collaborator e Clinical Coordinator, I will show in this thesis the 

results on the 5 treated patients, that have been recently submitted in a scientific journal.  

 



                        _____                                     ________________ GT for ADA SCID: long-term F-U   

 

12 

 

 

 

 

 

 
Chapter 1 

 

 

“Gene Therapy for Immunodeficiency  

due to Adenosine Deaminase Deficiency:  

update on long-term follow-up” 
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1.1 INTRODUCTION 
 
 

1.1.1 Adenosine deaminase (ADA) deficiency, an inborn error of 

purine metabolism 

 

Inborn errors of purine metabolism exhibit broad neurological, immunological, 

hematological and organ manifestations. These enzymes are widely but not ubiquitously 

distributed in human tissues and are crucial for synthesis of essential nucleotides. The 

purine bases (adenine, guanine and hypoxanthine, and the catabolites xanthine and uric 

acid) are heterocyclic imidazolopyrimidine molecules that are crucial for integral 

functions in cell physiology. Along with the related pyrimidines, purines form 

nucleosides and nucleotides that are the vital building blocks for the nucleic acids DNA 

and RNA, as well as being central to metabolic regulation, energy conservation and 

transport, formation of coenzymes (the nicotinamide nucleotides, NAD/NADP, and the 

flavin nucleotides, FMN/FAD), phospholipid and glycolipid synthesis, signal 

transduction and translation (31, 32), As a result, defects in the metabolic pathways of 

these important molecules, although rare, can be disabling or deadly (33). 

At present, >35 enzyme defects of nucleotide synthesis, salvage and catabolism 

of both purines and related pyrimidines have been identified (34, 35), but only 17–18 of 

these are associated with serious clinical consequences (36). These defects are generally 

rare: the prevalence of these disorders is presently unknown and probably 

underestimated (33). 

 

As an enzyme of the purine salvage pathway, adenosine deaminase (ADA) 

catalyzes the deamination of adenosine and 2’- deoxyadenosine, as well as several 

naturally occurring methylated adenosine compounds (37, 38). The deamination of 

adenosine and 2’-deoxyadenosine gives rise to inosine and deoxyinosine, respectively 

(39). Further conversion of these deaminated nucleosides leads to hypoxanthine, which 

can be either transformed irreversibly into uric acid or salvaged into mononucleosides 

(33) (Figure 1.1). Mutations in the ADA gene cause alterations in ADA activity, 

enzyme stability, and survival leading to accumulation of Ado, dAdo, and 

deoxyadenosine nucleotides (dAXP) in plasma, red blood cells (RBCs), and tissues; the 

concentration of dAXP represents a common measurement of the systemic toxicity level 

in ADA-deficiency (40).  High concentrations of these adenosine-related metabolites 
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have a profoundly deleterious effect on lymphocyte development through perturbation 

of multiple intracellular enzymes including ribonucleotide reductase, terminal 

deoxynucleotidyl transferase, and S-adenosylhomocystine hydrolase.  Since the toxic 

metabolites that accumulate because of the enzyme defect primarily derive from dying 

cells, it has been hypothesized that each infection results in additional attrition of 

immune cells and function.  In addition to immune cell counts and functionality, 

intracellular ADA expression levels and purine metabolite concentrations are important 

biomarkers of ADA deficiency (40).   

Although ADA is present in all cell types, its enzyme activity differs 

considerably among tissues. The highest amounts in humans are found in lymphoid 

tissues, particularly the thymus, where it plays an important role in lymphocyte 

development, the brain, and gastrointestinal tract. ADA activity is particularly high in 

thymocytes of the thymic cortex, but drops off rapidly in the medulla (41).  The ADA 

enzyme is ubiquitously expressed both intracellularly and on the cell surface where it 

complexes with two molecules of CD26 as a combined protein (42-44). 
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Figure 1.1: The adenosine deaminase (ADA) metabolism. 

 

 
 

Most adenosine derives from endogenous breakdown of ATP and degradation of RNA, or is 

taken up exogenously by ubiquitously expressed nucleoside transporters. Unlike adenosine, 2’-

deoxyadenosine is formed by DNA degradation and is predominantly catabolized by ADA. Further 

conversion of inosine nucleoside leads to hypoxanthine, which can either enter a non-reversible pathway 

to uric acid or salvaged back into other mononucleosides. In the absence of ADA, the presence of these 

alternative “bypass” pathways results in normal concentrations of the catabolic products of the enzyme 

reaction in patients with ADA-SCID. Conversely, the levels of ADA substrates, adenosine and 2’-

deoxyadenosine, are not only found in increased amounts in extracellular body fluids, but they also 

“spillover” into additional pathways normally only minimally utilized, thus contributing to the pathogenic  

mechanisms of the disease (From Sauer AV et al., Front Immunol 2012). 

 

 

1.1.2 Other ADA enzymes disorders  

 

There are two enzymes which carry out ADA activity, named ADA1 and 

ADA2.  ADA1, a 40 kD monomeric protein with a 200 kD, noncatalytic combining 

protein, is responsible for about 90% of adenosine deamination.  ADA2 is larger at 110 

kD and appears to play a general adenosine deamination role in serum (43). Relevant 

disorders arise from deficiencies of ADA enzymes, while rare superactivities of ADA 

also may occur (33) (Table 1.1).    
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1.1.2.1  ADA superactivity  

 

An autosomal dominantly inherited Coombs’ negative nonspherocytic 

haemolytic anaemia was reported, with greatly increased erythrocyte ADA activity of 

approximately 45–to 70-fold elevation (45) (Table 1.1). Milder elevations of 

erythrocyte ADA activity (two- to six-fold) are found in patients with Diamond-

Blackfan anaemia 1 (DBA1; OMIM # 105650), an autosomal dominant disorder with a 

high degree of clinical and genetic heterogeneity (46). It remains unclear whether ADA 

has any role in the pathophysiology of DBA, which has been categorised as a 

ribosomopathy with genetic defects identified in nine different ribosomal genes: RPS19, 

RPL5, RPS26, RPL11, RPL35A, RPS10, RPS24, RPS7 and RPS17 (47). DBA classical 

features include normochromic macrocytic anemia, reticulocytopenia and nearly absent 

erythroid progenitors in the bone marrow. 

Patients show growth retardation, and approximately 30 to 50 % have 

craniofacial, upper limb, heart and urinary system congenital malformations. The 

majority of patients have increased mean corpuscular volume, elevated erythrocyte 

ADA activity and persistence of hemoglobin F (33, 48). 

 

1.1.2.2  ADA2 deficiency 

 

CECR1 (cat eye syndrome chromosome region, candidate 1, OMIM # 607575) 

encodes ADA2, an adenosine deaminase (ADA) isoform that has partial structural 

homology with human ADA1. Both proteins catalyze the deamination of adenosine and 

2′-deoxyadenosine to inosine and 2′-deoxyinosine, respectively, but the affinity of 

ADA2 for adenosine is lower than that of ADA1 by a factor of approximately 100 (49) 

(Table 1.1). 

ADA2 is a secreted homodimer highly expressed in plasma, whereas ADA1 is 

monomeric and largely intracellular (50). Whole-exome sequencing identified loss of-

function mutations in CECR1 in three unrelated patients with a syndrome of 

intermittent fevers, early-onset lacunar strokes and other neurovascular manifestations, 

livedoid rash, hepatosplenomegaly, systemic vasculopathy and mild immunodeficiency 

(33). 
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Subsequent candidate-gene sequencing was performed in three patients with a 

similar phenotype, as well as two young siblings with polyarteritis nodosa and one 

patient with small-vessel vasculitis (33). 

Skin, liver and brain biopsies revealed vasculopathic changes characterised by 

compromised endothelial integrity, endothelial cellular activation and inflammation. 

Immunologic assessment showed mild abnormalities, such as hypogammaglobulinemia 

and increased B-cell death and reduced B-cell differentiation. Patients had significantly 

decreased ADA2 activity in plasma, and Western blot analysis showed reduced ADA2 

protein levels in cell lysates, consistent with a loss of function. ADA1 specific activity 

was preserved (33). 

Studies in patients’ cells and in zebrafish support the hypothesis that ADA2 is a 

growth factor for endothelial and leukocyte development and differentiation. These data 

also suggest that ADA2 deficiency may compromise endothelial integrity while 

polarising macrophage and monocyte subsets toward pro-inflammatory cells, 

establishing a vicious circle of vasculopathy and inflammation (49, 51, 52). Potential 

therapeutic strategies may include fresh-frozen plasma or recombinant ADA2, since 

ADA2 is found in plasma, and bone marrow transplantation, given that monocytes and 

macrophages, the main producers of ADA2, are derived from bone marrow (33, 49).  

 

Table 1.1 ADA enzymes disorders   

 

Modified from Balasubramaniam S., J Inherit Metab Dis, 2014. 
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1.1.3 ADA1 deficiency or ADA SCID 

 

Deficiency of ADA1 (ADA-SCID, OMIM # 102,700) is the second-most 

prevalent form (approximately 15%) of all SCID cases (53, 54) (Figure 1.2) and 

represents one-third of cases of autosomal recessive SCID (55). ADA-SCID affects 

every year 1:200,000 to 1:1,000,000 live births, both males and females, with autosomal 

recessive inheritance. The causative gene is the ADA gene, a 12-exon/32 kb gene 

located on chromosome 20q13.12 (56). The overall incidence in Europe is estimated to 

range between 1:375,000 and 1:660,000 live births (55).  

ADA-SCID was first reported in 1972 in two patients with severely impaired 

cellular immunity (57). Since then, many advances have been reported in the diagnosis, 

management and treatment for this disease (Figure 1.3). Current available therapeutic 

options include bone marrow transplantation (BMT), enzyme replacement therapy with 

bovine ADA (Peg-ADA), or hematopoietic stem cell gene therapy (HSC-GT) (44).   

ADA-deficient patients suffer from lymphopenia, severely impaired cellular and 

humoral immune function, failure to thrive, and a rapidly fatal course due to infection 

(39). Moreover, autoimmune manifestations are commonly observed in milder forms of 

the disease (44). 

While in rare cases SCID may be diagnosed at birth, the average age 

at diagnosis is approximately 4 months (58).  In any case, an early diagnosis and 

treatment is mandatory to prevent ADA SCID symptoms and also to get the best 

therapeutic effect, because the chances for treatment success are highest for those who 

have not yet experienced severe opportunistic infections (59). For this reason, 

diagnostic methods to make early diagnosis are important to significantly improve 

patient health outcomes, while at the same time reducing the cost of medical care.  

 

 

 

 

 

 

 

 

 

http://www.adagen.com/glossary.html#diagnosis
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Figure 1.2 Relative frequency of the different molecular defects in SCID. 

 

 

From Buckley RH. Annu Rev Immunol. 2004;22:625–655. 

 

 

Figure 1.3 Timeline of Advances in SCID. 
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1.1.3.1 Genotype/Phenotype Correlations  

 
            ADA is the only gene to cause ADA SCID (60). Sequence analysis can identify 

most known ADA pathogenic variants, except for large deletions, which are detected by 

deletion/duplication analysis. To date, more than 70 different mutations in the ADA 

gene have been identified, distributed as follows: 60% substitution mutations, 20% 

splicing mutations, 13% deletion mutations and 7% termination mutations (nonsense) 

(61).  

 

           ADA deficiency is associated with a broad clinical and mutational spectrum. 

Defining the relationship of genotype to phenotype among patients with different 

degrees of immunodeficiency has been complicated because the disease is rare, most 

mutations are ‘private’ and patients are often heteroallelic. In recent years, knowledge 

of ADA structure and systematic expression of mutant alleles have revealed that 

phenotype is strongly associated with the sum of ADA activity provided by both alleles 

(62). 

 

         The clinical expression of immunodeficiency can be influenced strongly by 

environmental factors, such as exposure to and treatment of pathogens, and also by 

genes (other than that for ADA) that affect responses to infection (56). Somatic 

mosaicism due to in vivo reversion to normal of an inherited mutation in the ADA gene 

has also been observed in some cases of ADA SCID (60, 63, 64). Nevertheless, at the 

extremes, phenotype and residual ADA activity clearly are related: blood mononuclear 

cells from healthy subjects with partial deficiency have 5%–70% of normal ADA 

activity, versus <1%–2% in cells from patients with SCID. From reports of new ADA 

mutations, some splicing and missense alleles appear to be associated with delayed and 

late-onset phenotypes (60, 65-69). This suggests that allele combinations providing 

more than some critical level of functional mutant enzyme (or of normal ADA from 

splicing mutants) (66, 70) can confer a milder phenotype than SCID.  

 

          Arredondo Vega et al. (56) noticed that expressed ADA activity of wild-type and 

mutant alleles ranged over five orders of magnitude. The disease-associated alleles 

expressed 0.001%–0.6% of wild-type activity, versus 5%–28% for alleles from 

“partials”. A relationship with erythrocyte deoxyadenosine nucleotide (dAXP) levels 

was also established (Table 1.2). 

http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/gene/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/deletion-duplication-analysis/


                                                                                     GT for ADA SCID: long-term F-U   

21 

 

            A scale for ranking novel ADA alleles based on expression may have utility for 

newborn screening for primary immunodeficiency disorders (62). 

 

Table 1.2 Total Expressed ADA Activity and Erythrocyte dAXP levels for 

Phenotype Groups. 

 

  
 

From Arredondo-Vega. Am J Hum Genet. 1998. 

 

 

1.1.3.2 Clinical characteristics and their pathogenesis 

 

Immune defects 

 

          The majority of patients (80–85 %) show an early onset severe form of ADA 

SCID with absence of cellular and humoral immunity and hypoplasia or apparent 

absence of lymphoid tissue (59, 71), which present within 1 to 6 months of age with 

multiple recurrent infections by fungal, viral, and opportunistic agents and a rapidly 

fatal course (57, 72).  

            Lymphopenia and attrition of immune function over time are the two findings 

common to all presentations of ADA deficiency. Recent studies have shed additional 

light on the mechanisms leading to abnormal T-cell development and function. Analysis 

of the thymus of an ADA-deficient patient revealed severe atrophy as well as loss of 

cortex-medulla demarcation (73). Immature thymus epithelial cells were abundant while 

Autoimmune Regulator expressing mature thymus epithelial cells were absent. 

Dendritic cells were severely depleted while macrophage-like cells were increased, 

possibly because of the need to remove apoptotic thymocytes. Another group 

investigated causes for the impaired responses of ADA deficient T cells to stimulation. 
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CD4+ T cells from ADA-deficient patients had severely compromised TCR/CD28-

driven activation, including  hypo-phosphorylation of Zeta Associated Protein-70, Ca2+ 

flux and ERK1/2 signaling, resulting in impaired proliferation and cytokine production 

(74). Hence, diverse mechanisms might account for abnormal function of T cells in 

ADA deficiency. This leads to severe depletion of all three major categories of 

lymphocytes, T-, B-, and NK-cells (72, 75, 76).  

Total immunoglobulin levels may be only slightly depressed at birth due to the 

maternal contribution of IgG, whereas both IgM and IgA, which ordinarily do not cross 

the placental barrier, are often absent. However, once IgG levels decline as maternal 

antibodies are cleared, a pronounced hypogammaglobulinemia signals the absence of 

humoral immunity (39, 77).  

 

          ADA SCID onset occurs between 6 months and the first few years in 10-15% of 

patients with a “delayed” clinical manifestation and from second to fourth decades in a 

smaller percentage of patients with “late” onset, showing less severe infections and a 

slowly deteriorating immune function (59, 71).  

          Finally, the benign condition called “partial” ADA deficiency is characterized by 

a decreased enzyme activity in erytrocytes, but a residual enzyme activity in leukocytes 

and other nucleated cells (70).  

Delayed or late-onset patients have significant immunodeficiency, but variable 

clinical manifestations (69). In some cases, residual ADA activity (approximately 5% of 

normal) supports generation of  normal numbers of lymphocytes (71). These delayed or 

late onset forms show progressive immunological and clinical deterioration, often 

associated with autoimmune manifestations, including hemolytic anemia, and immune 

thrombocytopenia (78, 79). Serum immunoglobulin levels are altered in late-onset 

patients, with IgG2 levels being highly reduced or absent. IgE levels are elevated and 

often associated to eczema and asthma. An inability to produce antibodies against 

polysaccharide and pneumococcal antigens was frequently found in ADASCID patients 

with milder forms of the disease (80, 44). 

 

Non-immune defects 

 

The initial and most devastating presentation of ADA-SCID is due to the 

immune defects (81). Nonetheless, several non-immune abnormalities have been 

described in ADA deficiency, indicating that this disease should be considered a 
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systemic metabolic disorder (39, 79) and more complex than other forms of SCID (75, 

82). ADA is ubiquitously expressed in all cell types; when absent, the systemic 

metabolic toxicity is frequently associated with organ damage (83). These include 

failure to thrive (75, 76); hepatic and renal disease (82, 84); skeletal alterations such as 

cupping and flaring of the costochondral rib junctions; brain, lung and bone marrow 

alterations that will be discussed in detail below for their relevance.  

Complications from infections usually predominate in the clinical presentation 

of infants with ADA deficiency, therefore, the full spectrum of non-immunologic 

manifestations and their natural course may be obscured (85). Several abnormalities 

have been described in low numbers of patient, and might reflect effects of infectious 

agents rather than primary defects due to ADA deficiency: i.e., renal and adrenal 

abnormalities, phyloric stenosis, and hepatic disease (39, 44). 

 

 Brain abnormalities  

ADA-deficient patients may suffer neurological deficits, developmental delay 

and sensory-neuralhearing loss secondary to infections, autoimmunity or transplantation 

(85-87). Additionally, neurological abnormalities, such as spasticity, hypotonia, head 

lag, nystagmus, difficulties in focusing gaze, seizures and inability to focus and high 

frequency sensorineural deafness have been reported (85, 88, 89), which were not 

explained by infections or medications (90). Computed tomographic scans and cranial 

MRI of these patients revealed volume loss as well as basal ganglia and thalamus 

abnormalities, possibly due to accelerated nerve cell death or altered stimulation of 

adenosine receptors (71). Cognitive and neurobehavioural abnormalities as below-

average IQ, hyperactivity, attention deficits, among ADA-deficient infants have been 

also described, commonly seen also in other inborn errors of purine metabolism, 

suggesting that abnormal purine homeostasis might be directly responsible for their 

development (71).  

 

 Lung abnormalities 

Many ADA-deficient patients suffer from severe lung disease, which in a few 

cases has been attributed to infections and/or immune dysregulation. Yet, in most ADA-

deficient patients no respiratory pathogens are isolated (91).   

Lung abnormalities were recently reviewed among 16 ADA-deficient patients 

(92). 
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Broncho-alveolar lavage and lung biopsies in affected patierns identified 

accumulation of Periodic Acid Schiff positive, surfactant-like granular material as well 

as macrophages engulfing lamellar bodies, typical of pulmonary alveolar proteinosis 

(PAP) in seven patients (43.8%). To confirm that ADA deficiency causes PAP and to 

better understand the pathogenesis of PAP, the same group showed that ADA-/- mice 

suffer from many of the metabolic, immune and systemic features observed in ADA-

deficient patients and develop lethal respiratory disease by 3 weeks of age, due to 

accumulation of surfactant in the alveoli (93).  Importantly, early restoration of ADA 

activity in ADA-/- mice prevented the development of PAP, thereby confirming that 

ADA deficiency directly contributes to PAP formation (71). 

 

 Bone Marrow  abnormalities 

Neutropenia in ADA-deficient patients has often been related to autoimmunity 

or infections (94). Recently hypocellular bone marrow and mild dysplastic changes of 

three hematopoietic lineages were also identified in an ADA-deficient patient (95). 

Moreover, 13 ADA-deficient patients exhibited various abnormalities in their peripheral 

neutrophils including prolonged neutropenia, hypogranular and vacuolated neutrophils 

as well as hyperlobular and pyknotic neutrophils (96). These patients also had 

large/giant platelets, as well as atypical eosinophils with cytoplasmic vacuoles, uneven 

granulation and hyperlobular nuclei. Bone marrow examinations performed in a few 

ADA-deficient patients revealed myelodysplastic changes. Importantly, there was an 

inverse relationship between phosphorylated ADA substrates and neutrophil numbers 

suggesting a primary myelotoxic process (96). Studies in ADA-/- mice provided 

additional insight into the potential effects of impaired ADA function on the bone 

marrow (82). 

Fibroblast colony formation assays showed that ADA-deficient bone marrow 

mesenchymal progenitor cells grew normally, but these cells supported long-term 

culture initiating colony formation less efficiently than wild-type cells. Proteome 

profiling of total cytokine and chemokine production from the supernatant of the 

cultures revealed reduced levels of M-CSF, IL-6, CXCL1/10, and soluble Intra-Cellular 

Adhesion Molecule 1. Importantly, the percentage of early hematopoietic stem cells was 

significantly lower in the bone marrow of ADA_/_ mice (82), although it is still not 

clear whether this reflects a primary hematopoietic defect or is secondary to a stroma 

defect (71). 
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1.1.4 Diagnosis of ADA SCID  

A suspicion of ADA SCID should be considered an emergent condition in an 

infant with a serious infection, as its early detection dramatically improve the chances of 

survival (72, 97).  

Physical examination reveals absence of lymphoid tissue and the thymus is 

radiographically undetectable. The presence of skeletal abnormalities may aid in the 

diagnosis (98). 

Immunologic evaluation must be accomplished as quickly as possible. 

Characteristic laboratory abnormalities include severe, age-adjusted lymphopenia and 

pan-hypogammaglobulinemia – only present after loss of maternally inherited 

immunoglobulins -, reduced or absent major lymphocyte subpopulations (T, B and NK 

cells) by flow cytometry analyses and absent or profoundly reduced T-cell proliferation 

to mitogens and antigens (72).  

Maternal T-cells may engraft in some patients with ADA SCID and obscure the 

peripheral blood lymphocyte phenotype. On occasion, engrafted maternal T-cells may 

become activated by HLA disparities and cause clinical graft-vs-host disease, to be 

suspected in infants with diffuse cutaneous eruptions and/or other clinical and 

laboratory suspicion of ADA SCID and to be distinguished from erythrodermia 

associated with Omenn Syndrome (97).  

The assessment of ADA catalytic activity is useful for the confirmation of ADA 

SCID diagnosis. Affected individuals who have not been transfused have less than 1% 

of normal ADA catalytic activity in erythrocyte hemolysates or in DBS extracts, while 

affected individuals who have been recently transfused may require testing of 

fibroblasts or leukocytes (99). Analysis of ADA enzymatic activity in plasma is not 

useful for diagnosis because ADA activity is much lower in plasma than in cells, even 

in non ADA-deficient individuals, and because plasma contains adenosine deaminase 

activity caused by ADA2. ADA2 has a much lower affinity for substrate and, unlike 

ADA1, is insensitive to inhibition by EHNA (erythro-9-(2-hydroxy-3-nonyl)adenine), 

which allows ADA1 and ADA2 to be quantitated independently. ADA activity 

measurement sometimes can give misleading results: a severe defect in ADA activity 

can be found in clinically unaffected subjects with a ‘partial’ ADA deficiency, because 

http://www.ncbi.nlm.nih.gov/books/NBK1483/#ada.REF.hershfield.2001.1
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variable residual ADA activity expressed in cells different from immune cells can be 

sufficient to maintain good immune function (59). 

Measurement of metabolites is absolutely mandatory to confirm the diagnosis of 

immunodeficiency due to ADA deficiency (59, 99). These markers help to confirm the 

diagnosis and to monitor therapies intended to restore ADA function: 

 Elevated deoxyadenosine triphosphate (dATP) or total dAdo nucleotides 

(dAXP) in erythrocytes:Mature red cells normally lack dAXP. In the absence of 

ADA, excessive dAdo phosphorylation leads to a marked increase in dATP and 

total dAXP, a finding pathognomonic for ADA deficiency (it does not occur 

with ADA2 deficiency). In untreated affected individuals, the level of dAXP in 

hemolysates or DBS extracts correlates with clinical phenotype (SCID > 

"delayed/late" onset > "partial ADA deficiency"). Even after transfusion, some 

elevation in erythrocyte dAXP persists and strongly indicates underlying ADA 

deficiency. 

 Reduced S-adenosylhomocysteine hydrolase (AdoHcyase, SAHase) activity in 

erythrocytes: Owing to inactivation by dAdo, erythrocyte AdoHcyase activity is 

less than 5% of normal. 

 Elevated Urinary dAdo: Excretion of dAdo is markedly elevated in untreated 

affected individuals. 

 Elevated levels of Ado and dAdo in extracts of dried blood spots (DBS), 

quantified using tandem mass spectrometry, is a sensitive method for screening 

neonates for ADA deficiency (14, 100 101).  

Sequence analysis of the ADA gene is also available to confirm diagnosis.  

 

1.1.5 Newborn screening 

There is a consensus that nearly all cases of SCID could be diagnosed at birth if 

routine blood counts were done and flow cytometry, as well as T-cell counts, were 

performed when lymphocyte levels are below the normal range in newborns. Once a 

diagnosis is confirmed, treatment can begin immediately (102, 103). 

 

http://www.ncbi.nlm.nih.gov/books/NBK1483/#ada.REF.hershfield.2001.1
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/affected/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/phenotype/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/affected/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/screening/
http://www.ncbi.nlm.nih.gov/books/NBK1483/#ada.REF.azzari.2011.1394
http://www.ncbi.nlm.nih.gov/books/NBK1483/#ada.REF.speckmann.2012.991
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/screening/
http://www.adagen.com/glossary.html#flow
http://www.adagen.com/glossary.html#lymphocyte
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The profound reduction in T lymphocytes in nearly all forms of SCID can be 

identified in DBS from neonates by demonstrating a reduced level of T-cell receptor 

excision circles (TRECs) in extracted DNA. TREC screening is now performed in 

several states in the US * and may be adopted by others. Universal newborn screening 

has helped to establish the true incidence of SCID in California (1 in 66,250 live births) 

and has led to the improvement of survival outcome (6). The potential use of TRECs 

evaluation from DNA of DBS as method to evaluate ADA SCID has been proposed but, 

unfortunately, this approach is expensive, it takes a long time and it lacks of sensitivity 

in diagnosis of late and delayed onset ADA SCID (59).  

As about 15% of all cases of SCID result from ADA deficiency, biochemical 

testing for ADA deficiency should be performed as a follow up in all newborns who are 

positive by TREC screening. Reduced levels of a B lymphocyte marker, kappa-deleting 

recombination excision circles (KRECs), have also been found in DNA from DBS of 

individuals with delayed- or late-onset ADA deficiency (100).  

ADA SCID screening by tandem mass spectrometry for analysis of metabolites 

from DBS could potentially be an easier and cheaper method (13).  

 

 

 

 

 

 

 

 

 

______________________ 

* The States and US Territories screening all newborns for SCID as of August 2014 are: California, 

Colorado, Connecticut, Delaware, Florida, Illinois, Iowa, Maine, Massachusetts, Michigan, Minnesota, 

Mississippi, New Jersey, New York, Ohio, Oregon, Pennsylvania, Rhode Island, Texas, Utah, 

Washington, West Virginia, Wisconsin, Wyoming, District of Columbia and Navajo. Louisiana and 

Puerto Rico have both stopped screening due to a lack of funding. Ontario, Canada is also screening all 

newborns for SCID (104). 

http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/dna/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/marker/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/recombination/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/dna/
http://www.ncbi.nlm.nih.gov/books/NBK1483/#ada.REF.speckmann.2012.991


                                                                                     GT for ADA SCID: long-term F-U   

28 

 

1.1.6 Autoimmunity in ADA SCID  

 

Immune dysregulation involving B cells, with multiple forms of autoimmunity, 

has been described in ADA SCID patients (44).  

Autoimmune dysregulation is frequently observed in patients with milder forms of the 

disease or late-onset patients. They may manifest as autoimmune hypothyroidism, 

diabetes mellitus, hemolytic anemia, and immune thrombocytopenia (69, 105) (Figure 

1.4). Similar complications, such as autoimmune hemolytic anemia and autoimmune 

thyroiditis, have also been reported in patients after long-term PEG-ADA treatment (38, 

69, 81, 105, 106). No specific reports on immune dysregulation or autoimmunity in 

BMT-treated ADA-SCID patients are available in literature (106). Nevertheless, 

autoimmune manifestations have been reported in larger single-center studies on BMT-

treated patients with various kinds of immunodeficiencies, including ADA deficiency 

(107, 108). The major immune dysregulations observed in both studies included thyroid 

autoimmunity, autoimmune hemolytic anemia, and glomerulonephritis (107, 108). 

Autoimmune manifestations have also been described in patients treated with HSC-GT 

(109). Four ADA-SCID patients, including one patient that already showed immune 

dysregulation while on PEG-ADA, developed signs of autoimmunity, such as hemolytic 

anemia, thrombocytopenia, autoimmune hepatitis, and autoimmune thyroiditis (109 and 

unpublished observation). 

Since varying degrees of immune reconstitution can be achieved by the available 

treatment options for ADA-SCID, break-down of tolerance and development of 

autoimmunity can represent a major concern.  

Two studies assessed defects in the lymphoid compartments of ADA-SCID 

patients following PEG-ADA. Different degrees of abnormalities in the B-cell 

compartment and inability to respond to vaccines, despite the presence of normal 

serum-Ig or hypogammaglobulinemia were reported (110). Moreover, a retrospective 

longitudinal analysis in ADA-SCID patients treated with PEG-ADA showed that 

decreased levels of newly produced B cells underlie the progressive and significant 

decrease in circulating B cells in these patients (106). Since long-term PEG-ADA 

treatment is associated with abnormalities in B cell subsets, but often also with a 

decrease in T-cell functions (110), a limited B or T-cell repertoire combined with 

alterations in peripheral tolerance could further favor breakdown of tolerance (Figure 

1.5).  
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A recent study (111) also demonstrated a significantly reduced frequency of 

CD4+CD25+FoxP3+ regulatory T cells among ADA-deficient patients and that these 

cells had reduced ability to suppress proliferation of co-cultured autologous responder T 

cells. Similarly, regulatory T cells from ADA-deficient mice had significantly reduced 

suppressive activity. Whether regulatory T cell abnormalities are also responsible for 

Omenn’s syndrome that has been described in ADA-deficient patients (112) is still not 

clear. The autoimmunity observed in ADA-SCID might also be due to defective central 

and peripheral B cell tolerance. Indeed, new emigrant/transitional and mature naive B 

cells from ADA-SCID patients were shown to contain excess auto-reactive clones. 

Moreover, B cell receptor and Toll-like receptor functions in B cells are impaired after 

ADA inhibition, which might also contribute to B-cell tolerance defects (113). 
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Figure 1.4 Current therapeutic options in ADA-SCID and reported autoimmune 

manifestations after treatment. 

 

 

 

Immune reconstitution in ADA deficiency can be achieved by bone marrow transplantation, 

enzyme  replacement, or gene therapy, nonetheless recovery of immune functions may vary depending on 

the applied treatment and patient’s characteristics. Treatment of choice remains bone marrow 

transplantation from a HLA-identical sibling donor, while transplants from alternative donors are 

associated with high morbidity and mortality. Enzyme replacement therapy using pegylated bovine ADA 

is a non-curative treatment requiring weekly intramuscular injections with PEG-ADA. ADA-SCID has 

been the pioneer disease for the development of human gene therapy. It is based on the reinfusion of 

autologous HSC transduced with a retroviral vector containing the ADA cDNA. Variable degrees of 

immune reconstitution can be achieved by these treatments, but onset of autoimmunity is of concern in 

post-treatment ADA-SCID patients. Reported autoimmune manifestations include: autoimmune 

hypothyroidism, diabetes mellitus, thrombocytopenia, hemolytic anemia, and development of anti-ADA 

antibodies (From Sauer AV et al., Front Immunol 2012). 

 

 

 

 

 



                                                                                     GT for ADA SCID: long-term F-U   

31 

 

 

Figure 1.5 Immune reconstitution and development of autoimmunity after PEG-

ADA treatment. 

 

 

 

Enzyme replacement therapy with pegylated bovine ADA is a lifesaving but non-curative 

treatment for ADA-SCID patients. It provides metabolic detoxification and protective immune function 

with patients remaining clinically well, but immune reconstitution is often suboptimal and may not be 

long-lived. Shortly after initiation of PEG-ADA treatment, patients show recovery of B-cell counts, 

followed by a gradual increase in T-cell numbers and reconstitution of immune cell functions. However, 

the long-term consequences of PEG-ADA treatment are unknown. Immune recovery in B and T- cells is 

below normal levels. Major concerns are the susceptibility to opportunistic infections and the 

development of autoimmunity due to lymphopenia with gradual decline of immune functions and 

perturbation of T- and B-cell tolerance (From Sauer AV et al., Front Immunol 2012). 
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1.1.7 Therapies for ADA Deficiency 

 

Bone marrow transplantation with allogeneic HSC has long been considered the 

mainstay of ADA-SCID treatment. However, unlike other forms of SCID, ADA-SCID 

patients can be treated with pegylated bovine ADA (PEG-ADA), which it not approved 

in the EU but is frequently available under compassionate use, or  in clinical trials of 

Autolotous HSC-GT (109, 114). The availability of different treatment modalities 

presents an opportunity for improved patient care but also difficulties in deciding upon 

the specific choice of treatment for individual patients (Figure 1.4). Making the correct 

choice is further complicated by the fact that ADA deficiency is not purely an immune 

defect, and that the systemic manifestations, which can be of major clinical 

consequence, must also be managed (81). 

 

1.1.7.1 Hematopoietic stem cell-transplantation  

 

Hematopoietic stem cell-transplantation (BMT) from allogeneic human 

leukocyte antigen (HLA)-compatible sibling donors resulting in long-term survival and 

effective immune reconstitution is the treatment of choice for patients with ADA-SCID 

and other severe variants of primary immunodeficiencies. Since less than 20% of ADA-

SCID patients have access to HLA-matched family donors, transplants are often 

performed from mismatched family or matched unrelated donors (81, 115, 116).  

In a series of 475 patients with SCID from the European SCETIDE database, 51 

patients with ADA-SCID were included, and the study documented a 3-year survival of 

81% for HLA-matched transplantations and 29% for HLA-mismatched transplantations 

with no information on the degree of immune recovery (115). Only 4 unrelated donor 

transplantations were reported in this series, and no outcome data on these patients were 

presented. A subsequent report on 699 patients with SCID included 75 patients with 

ADA-SCID, but the specific outcome for the patients with ADA-SCID alone was not 

documented (9). A series of 15 patients with ADA-SCID showed overall survival (OS) 

of 80%, but there were only 6 transplantations from mismatched family donors and 2 

transplantations from unrelated donors in this series (85). 

A recent retrospective analysis on the specific outcome of transplants for ADA-

SCID, performed by Hassan et al. in 2012, collected data from several multicenter 

studies and analyzed the survival of 106 patients who received a total of 119 transplants 
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in the past 30 years (58), representing to date the only definitive analytical study of a 

large number of ADA-SCID children given HCT. BMT from matched sibling (MSD) 

and family donors (MFD) had a significantly better overall survival (86 and 83%) in 

comparison to BMT from matched unrelated (MUD) (67%) and haploidentical donors 

(HAPLO) (43%), while the outcome in mis-matched unrelated donor (MMUD) 

recipients was unacceptable (29%). Comparison of OS in MSD HCT with MMUD, 

HAPLO and MUD HCT showed a significant difference (P < .05). These data indicate 

that despite recent progress in transplantation, the use of alternative donors is still 

associated with a reduced overall survival (58, 81). This is further complicated by the 

fact that ADA-SCID patients are more difficult to transplant especially from unrelated 

and haploidentical donors possibly due to their need for conditioning and the underlying 

metabolic nature of the disease (81, 82).  

The large Hassan study also addressed the controversial question for 

preconditioning of SCID children before HCT. A significantly improved OS was 

observed in unconditioned transplantations (78%) in comparison with transplantations 

after MAC (78% vs 56%; P = .009), while transplantations after RIC had an OS of 67%. 

Indeed, almost all unconditioned transplants had the benefit of HLA matching, so the 

superior survival was not unexpected, and ADA-deficient cells may be more susceptible 

to toxic effects of preconditioning agents (118). Despite the lack of conditioning in most 

MSD/MFD transplantations, a high rate of engraftment was observed (40 

transplantations in the 2 groups with an engraftment rate of 90%), while non-

engraftment was a major problem after unconditioned haploidentical transplants (58).  

When the type of conditioning within transplantations from different donor 

sources was evaluated, it was shown a good survival in MSD/MFD transplantations 

even in RIC and MAC regimens, whereas survival was decreased in MUD 

transplantations and was much worse in MMUD and HAPLO HCT. The degree of HLA 

disparity appeared to play the major role in determining outcome, irrespective of 

conditioning regimen (58). 

From the analysis of other variables, no difference in survival outcome was 

found between patients who had received > 3 months PEG-ADA for metabolic 

detoxification before transplant and patients who had received no or short-term (< 3 

months) ERT. A trend to better survival, even if not statistically significant, was 

observed in babies transplanted < 6 months of age; certainly, a prolonged pretransplant 

period in an unprotected environment would favour acquisition of a potentially fatal 

virus or bacterial infection and would contribute to metabolic and post-infectious organ 
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sequelae. No significant difference in TRM or OS was observed between patients with a 

more severe phenotype in terms of residual ADA activity and levels of toxic metabolites 

before transplantation. The source of stem cell used (BM, PBSCs, or UCB stem cells) 

also had no significant effect on TRM or OS (58). 

 

Long-term immune recovery showed that regardless of transplant type, overall 

T-cell numbers were similar. Humoral immunity and donor B cell engraftment was 

achieved in nearly all evaluable surviving patients and most patients were able to 

discontinue immunoglobulin replacement (58).  

According to the longest F-U available data for some patients, the 

immunological and metabolic recovery after transplant was well maintained even after 

10 years or longer (81). Nevertheless, delayed or suboptimal immune reconstitution as a 

result of poor early engraftment or gradual decline in immune functions was observed in 

a significant fraction of surviving patients (81).  

Infections and graft-versus-host disease (GvHD) still represent major issues in 

allogeneic transplant setting. In the Hassan cohort the majority of deaths (63%) after all 

types of transplantations were in the first 100 days after HCT, with severe infections 

(pneumonitis/respiratory failure and sepsis) which formed > 50% of all deaths followed 

by GVHD and fungal infections. Transplant from MMUD and HAPLO was associated 

to a higher risk of complications (58). Autoimmune and inflammatory manifestations, 

persistent infections, and disease-related issues have been described in ADA SCID 

patients after BMT (85, 88, 107).  

 

The results obtained with transplantation from HLA-identical siblings or family donors 

indicate that there is a strong correlation between superior donor/host compatibility and 

outcome both in terms of survival and sustained immune recovery. If a fully matched 

sibling or family donor is available, the evidence currently available suggests that a 

transplant should be undertaken without any conditioning. The success rates associated 

with such procedures and the effective long-term reconstitution in both T- and B-cell 

compartments does not at present warrant the use of alternative therapies. Some have 

argued that the use of a conditioning regimen may improve stem cell engraftment and 

promote an improved quality of immune reconstitution long term. However, the current 

data do not show any waning of immune function even more than 10 years after 

unconditioned HSCT, and the majority of patients have remained free of 

immunoglobulin therapy. Further strong evidence to the contrary would be required 
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before this recommendation is changed. On the other side, the current evidence suggests 

that haploidentical donor transplants (performed with or without conditioning) have a 

poor chance of success and are therefore only undertaken if no other treatment options 

are available (44, 81, 119). 

 

1.1.7.2 Enzyme replacement therapy with PEG-ADA 

 

Enzyme replacement therapy (ERT) with PEG-ADA (Adagen®) was developed 

as life saving, not curative treatment for patients lacking a HLA-compatible donor, 

when risks associated with a partially mismatched transplant do exist, or when graft 

failure is high as in the delayed- or late-onset phenotypes. PEG-ADA has also been used 

as a secondary therapy in patients who have failed to engraft following an 

unconditioned BMT/SCT, or in whom an acceptable recovery of immune function has 

not been achieved following experimental gene therapy (81).   

PEG-ADA is not approved in any EU Member State and it is available through 

compassionate use or special laws in the EU. It requires life-long weekly or bi-weekly 

i.m. injections and regular monitoring of plasma ADA activity and red blood dATP. 

Recent published results on patients who received PEG-ADA between 1986 and 2008 

showed that the overall probability of 20 year-survival on PEG-ADA is estimated to be 

78% (81). 

 

Attachment of PEG through lysine residues confers several therapeutically 

beneficial properties to ADA (120, 121). This chemical modification of the bovine 

enzyme reduces its immunogenicity and prevents its degradation by plasmatic proteases 

as well as the binding of neutralizing antibodies (120, 121). Thereby the circulating life 

of the compound is prolonged from minutes to days as clearance from the circulation is 

inhibited (122). Cellular uptake of PEG-ADA is insignificant and its distribution is 

limited to the plasma. Enzymatically active ADA continuously circulates and eliminates 

accumulating adenosine and 2’-deoxyadenosine metabolites (123).  The principle of 

exogenous PEG-ADA administration is based on the direct conversion of accumulating 

ADA substrates in the plasma and the indirect reduction of intracellular toxic 

metabolites by diffusion (44). 

 

To date more than 150 patients worldwide have received this treatment (81, 

122). In general, PEG-ADA treatment seems to be well tolerated, with clinical benefits 
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appreciable after the first month of therapy (Figure 1.5). Studies have shown that upon 

the initiation of PEG-ADA therapy, the absolute numbers of circulating T- and B- 

lymphocytes and NK-cells increase and protective immune function develops (124). 

Although only limited information is available, some analysis indicated that about half 

of PEG-ADA treated patients discontinued IVIg (81), whereas long-term follow-up 

suggests that immune recovery is often incomplete (122). Two retrospective studies 

showed that despite initial improvements, the lymphocyte counts of all PEG-ADA 

treated patients were below the normal range at all times. A gradual decline of 

mitogenic proliferative responses occurred after a few years of treatment and normal  

antigenic responses occurred less than expected (106, 125). No toxic or hypersensitivity 

reactions have been reported with PEG-ADA administration. However, several other 

side effects have been reported including manifestations of immune dysregulations as 

autoimmunity (type I diabetes, hypothyroidism, immune thrombocytopenia, hemolytic 

anemia) and allergic manifestations (69, 105) (Figure 1.5). An additional concern with 

PEG-ADA beyond about 8–10 years is the emergence of serious complications, 

including lymphoid and hepatic malignancies, and progression of chronic pulmonary 

insufficiency (81). The main side effect associated with the use of PEG-ADA is the 

development of anti-ADA antibody. The development of specific IgG antibody to 

bovine peptide epitopes of PEG-ADA has been reported by several groups and often 

coincides with an improvement in humoral immunity (126-128). In about 10% of 

treated patients, inhibitory antibodies lead to the enhanced clearance of PEG-ADA with 

subsequent decline in metabolic parameters and immune function and therefore 

requiring increase in dosage, administration of corticosteroids, or cessation of therapy 

(53, 126, 127).  

The high cost of lifelong therapy is another major issue of ERT (81).  

 

1.1.7.3 Gene Therapy 

 

HSCT and ERT are effective therapies, but both have their own limitations. 

Moreover, some ADA SCID patients may not be candidates for cytoablation due to 

infectious damage to the lung or liver, or may have a milder phenotype that does not 

justify the risks associated with allogeneic BMT.  

A gene therapy approach for ADA-SCID was developed because it was easier to 

treat by genetic correction than some other indications. This provided an alternative 

mode of treatment for patients without a suitable HSCT donor and access to PEG-ADA.  
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Haematopoietic stem cell gene therapy consists of isolating hematopoietic stem 

cells from the bone marrow of the patient, transducing them with a recombinant viral 

vector (such as a retrovirus) encoding a functional copy of the ADA gene that is capable 

of integrating its genetic material into that of the host cell, and then re-infusing the 

modified cells into the patient. As it is effectively an autologous transplant, full 

cytoreductive regimes are unnecessary in SCID diseases and their associated risks are 

avoided. Because ADA is an enzyme and is not involved in processes controlling cell 

proliferation/apoptosis, tight gene expression regulation has not to date been shown to 

be crucial and overexpression is unlikely to cause significant side effects (129). 

 

Gene corrected cells are expected to have a selective advantage over their 

deficient counterparts in a toxic environment, similar to what is seen in clinical cases of 

somatic mosaicism, where patients experience immune recovery after the emergence of 

a clone that has reverted the mutation in the ADA gene to normal (Hirschhorn R. In 

vivo reversion to normal of inherited mutations in humans. J Med Genet 2003; 40(10): 

721-8. Liu P, Santisteban I, Burroughs LM, Ochs HD, Torgerson TR, Hershfield MS, et 

al. Immunologic reconstitution during PEGADA therapy in an unusual mosaic ADA 

deficient patient. Clin Immunol 2009; 130(2): 162-74). Patients may still experience 

clinical benefit even if ADA normal levels are not attained since as reported elsewhere, 

individuals expressing as low as 5% of the normal ADA activity can have normal 

immune functions (131, 132).  

 

1.1.8 Gene Therapy Clinical Studies for ADA SCID 

 

 
The first attempts at developing a gene therapy (GT) protocol to treat ADA-

SCID patients were published in the 90’s (Table 1.3) (133, 134). The strategy of these 

studies was, initially, to obtain lymphocytes from the patient blood and modify them 

with ADA-coding retroviral vectors (RV). Although some improvement in antigen-

dependent responses, isohemagglutinin titres and lymphocyte ADA levels were 

observed after gene therapy, the clinical benefit of the treatment could not be clearly 

evaluated as PEG-ADA was administered alongside the gene modified T-cells. 

Nevertheless, the trials showed that gene modified cells were able to persist in the 

circulation for as long as ten years after treatment. 
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In a second group of studies, it was attempted to infuse gene modified peripheral 

blood lymphocytes and/or bone marrow progenitors into patients (Table 1.3) (135-138). 

Again, the outcome of the trials was confounded by the simultaneous administration of 

PEG-ADA. However, it was demonstrated that gene-modified stem cells were able to 

engraft and give rise to a progeny of marked cells in the periphery. 

 

A number of amendments were introduced into the GT protocols in order to 

improve the transduction efficiency and engraftment of modified stem cells, as well as 

to provide a selective pressure for the corrected cells that would ultimately translate into 

clinical benefit for the patients. The ex-vivo culture of human HSCs was refined with 

cytokine cocktails that stimulated proliferation and maintained the “stemness” of the 

CD34+ population (139); whereas the retroviral vector transduction efficiency was 

enhanced by colocalizing the virus and cells onto fibronectin fragments (138, 140). 

The engraftment of infused stem cells was optimized by the inclusion of a mild 

pre-conditioning regimen, to make space for the corrected progenitors (141). Finally, 

the selective pressure for outgrowth of gene-modified progeny was provided by the 

withdrawal of ERT prior to GT. This last alteration was justified by the observations of 

Aiuti et al. in the study published in 2002. A 10-fold increase in peripheral gene-marked 

lymphocytes was observed in a patient in whom ERT had to be suspended due to 

complications (142). 

 

A third series of trials started in 2000 with these improved conditions. Following 

2 pilot studies (141), a phase I-II clinical trial of gene therapy of HSC was initiated at 

HSR-TIGET in Milan, Italy, in 2002 up to date (Table 1.4). Replication-deficient, 

recombinant retroviruses derived from the backbone of Moloney murine leukemia virus 

(MLV) were selected for these trials because of the available long-term experience and 

their ability to efficiently insert the therapeutic gene into the genome of dividing 

hematopoietic cells. The patients were pre-conditioned with a reduced dose of busulfan 

and PEG-ADA administration was stopped prior to GT. A report on the results of the 

first 10 patients was published in 2009 (109). In summary, at 1 year post-transplant, 

vector-marked cells were found in bone marrow in the CD34+ population (5%), 

granulocyte (3.5%), megakaryocyte (8.9%), erythroid (3.8%) and B cell progenitor 

(8%) population. In the peripheral blood, the marking of T, B and NK cells was 

between 50 and 90%, meaning that in a toxic metabolic environment there is a selective 

advantage for corrected lymphocytes. ADA levels in blood mononuclear cells and 
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erythrocytes did not reach the levels observed in normal individuals (33.6% and 1.9% of 

normal, respectively), but levels were sufficient to observe a substantial decrease of 

toxic metabolites in the red cell lineage and allow functional immune recovery. There 

was an increase in the number of circulating naïve T cells and presence of T cell 

receptor excision circles (TRECs) in CD3+ cells, suggesting that normal thymic activity 

was restored and importantly, polyclonal T cell receptor repertoires were detected in the 

patients. The circulating T cells displayed normal proliferative responses to mitogens, 

alloantigens, Tetanus toxoid and Candida albicans in vitro. The number of B and NK 

cells also increased over time, although, similar to the T cell compartment, less than half 

of the patients reached normal cell counts. However, the recovered cells exhibited 

normal functions. Normal serum immunoglobulin levels were detected in five out of ten 

patients, allowing for discontinuation of immunoglobulin therapy. In these same 

individuals, antibodies against viral and bacterial antigens were detected after 

immunization. Most patients were able to lead a normal life after treatment; only two of 

them had to be restarted on ERT. Importantly, no adverse events related to the therapy 

have been reported so far.  

 

In 2003 a similar study was initiated in UK by Gaspar group on patients who 

had no matched donor available and who were failing on PEG-ADA. Similar to the 

Italian trial, ERT was discontinued one month before gene therapy, and the patients 

were preconditioned with one dose of melphalan instead of busulphan. The results on 

the first patient were published in 2006, two years after initiation of treatment (138, 

143). Lymphocyte counts increased in this patient, alongside a decrease in erythrocyte 

dATP levels. The recovery of thymic function was confirmed by the detection of 

TRECs in the CD4+ and CD8+ subsets, and the newly generated T cells showed 

proliferative responses upon PHA and CD3 stimulation, as well as a normal 

heterogeneous T cell repertoire. Gene marking was higher in the lymphocyte population 

(50% in T and NK) than in the myeloid population (less than 0.1%). 

More patients have been treated to date (144, and unpublished data). Similar to 

the initial report in patient 1, two additional patients have experienced good immune 

recovery and metabolic detoxification, and in a fourth, gene-modified cells make 

dominant contributions to immune recovery even though PEG-ADA was restarted. 

Failure of gene therapy has been observed in two individuals due to a poor stem cell 

harvest in the first, and low transduction efficiency in the second. Three patients have 

been able to stop Ig replacement and of these two have made normal vaccine responses. 
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Gene Therapy has been safe and well tolerated, although integrations near proto-

oncogenes have been detected in the Italian and UK studies (145. and unpublished 

data). 

 

Another clinical trial was conducted at the National Institute of Health and 

Children’s Hospital of Los Angeles, and the results confirm the importance of 

nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with 

gene therapy for ADA SCID patients (146). Ten patients with ADA SCID were treated 

with GT using 2 slightly different retroviral vectors for the transduction of patients’ 

bone marrow CD34+ cells. Four subjects were treated without pretransplantation 

cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout 

the procedure, in the assumption that ERT usage could promote gene-modified cell 

proliferation (147). Only transient (months), low-level (< 0.01%) gene marking was 

observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene 

marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 

years). Six additional subjects were treated using the same gene transfer protocol, but 

after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three 

of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in 

PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. 

Two subjects were restarted on ERT because of poor gene marking and immune 

recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation.  

 

Recently, based on major safety issues arising in clinical trials of retroviral GT 

for the treatment of SCID-X1, CGD and WAS, that will be discussed below, 

alternatively strategies based on ADA encoding lentiviruses (LVV), with a safer design 

and profile than γ-RV, were developed and studied  in preclinical ADA SCID models. 

Mortellaro et al developed a SIN LVV in which the expression of the human ADA gene 

was driven by a PGK promoter. ADA-deficient mice transplanted with ADA-/- bone 

marrow cells transduced with the ADA encoding LVV were rescued from lethality and 

corrected for both their metabolic and immunologic defects in a way that was similar to 

bone marrow transplantation (148). To improve the efficacy of ADA gene transfer in 

HSC, the group of Dr. Kohn and Dr. Gaspar designed an LVV that included a codon-

optimized human cADA gene under the control of the short form elongation factor-1α 

promoter (LV EFS ADA) that displayed high-efficiency gene transfer and sufficient 
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ADA expression to rescue ADA -/- mice from their lethal phenotype with good T- and 

B-cells reconstitution. Moreover, in vitro  immortalization assays demonstrated that LV 

EFS ADA had significantly less transformation potential compared to gRV vectors, 

without clonal skewing (149).    

On this basis, a phase I/II trial with the use of LV EFS ADA is actually running 

in collaboration in UK and US for the treatment of ADA SCID children. To date, 5 

patients aged between 1.2-4.5yrs have been treated, after conditioning with Busulfan 

i.v. at a single dose of ~5mg/kg. A mean of 5 x 10e6 CD34+ cells/kg were infused with 

a mean vector copy number (VCN) in the transduced population of 4.2 (range: 2.4-6.1). 

At a mean follow up of 361 days, there has been significant immunological recovery, 

with a rise of total T cell and CD4+ counts and normalization in mitogen responses. 

Integration site analysis shows some expansions but no persistence of expanded clones 

(reported at ESID meeting 2014 (Gaspar et al)). 

 

1.1.9 Insertional Mutagenesis and ADA SCID 

 

To date, no adverse events of clonal proliferation have been reported in over 40 

ADA-SCID patients treated with γ-RV in Italy, UK, and USA since 2000.  

A major concern has been the vector-related leukaemogenesis observed with a γ-

RV of similar architecture in two of the clinical trials for X1-SCID (150, 151). 

GammaRV preferentially integrate near the regulatory regions of active genes (152); in 

these early clinical trials the vectors used had intact LTRs (long terminal repeat 

sequences) with powerful viral enhancer-promoter sequences that are able to drive the 

expression of not only the therapeutic gene in the provirus, but also the expression of 

genes surrounding the insertion site. In 5/20 patients in the SCID-X1 trials, the vector 

integrated near a proto-oncogene (in 4 cases, LMO2), deregulating its expression and 

contributing to the development of T-cell leukaemia. Moreover, it has been recently 

documented by Pignata’s group the involvement of γc in several immune and endocrine 

pathways, supporting the implication of such a molecule in the control of cell growth 

and proliferation under physiological or pathogenic conditions (152bis). In particular, it 

has been shown a direct relationship between the amount of γc expression and the 

proliferative capability of control lymphoblastoid cells (152ter), implying a direct 

involvement of γc in self-sufficient growth in a concentration-dependent manner. The 

same group demonstrated that the knockdown of γc molecule through short interfering 
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RNA is able to decrease the cell proliferation rate in malignancies, thus confirming a 

direct involvement of the molecule as a key player in cell cycle progression 

(152quater). 

In a trial for CGD, clonal dominance was observed with γ-RV insertions 

occurring near the MDS1-EVI1 locus (153, 154). In a more recent update on GT clinical 

trial for WAS by Klein et al, 7/10 treated patients developed hematologic malignancies 

(4 cases of T-cell acute lymphoblastic leukemia, 2 primary T-ALL with secondary 

AML and one acute myeloid leukemia), with hotspots found within LMO2 and 

MDS/EVI1 (16, 155). Integration site analyses have been analysed for the ADA SCID 

patients that had participated in the TIGET study (145) and in the UK study 

(unpublished data). Both show a high proportion of insertions occurring in the 

proximity of gene transcriptional start sites (TSS), with more than one insertion 

occurring near tumour associated genes, including LMO2. However, despite the long-

term follow up, no clonal proliferation has been observed in any of the patients. TIGET 

has carried out a deep analysis of the samples obtained from the patients pre- and post-

GT. Firstly, since the insertions in the proximity of LMO2 were of particular concern, 

the expression of this gene was analysed by Q-RTPCR in purified post-GT granulocyte, 

CD3+, CD4+ and CD8+ populations from four patients and compared to healthy 

controls; no significant difference was observed between both groups in any of the 

populations (145). In a subsequent study, the expression profile of purified CD4+ and 

CD8+ populations post-GT from three patients was studied by microarray analysis and 

compared to the profile of age-matched healthy controls; and again no significant 

differences were observed. T cell clones were isolated from two patients, and the 

expression of the genes in the 100 kb window around the insertion site was analysed. 

Approximately 5.8% of the genes analysed were either up or downregulated, but these 

changes did not translate into proliferative advantage or altered functional responses to 

mitogens in the individual clones; nor did they reflect onto the gene expression profile 

of the bulk T cell populations. Nevertheless, none of these clones had insertions near 

LMO2 (156).  

The question remains as to whether the clones with γ-RV insertions near proto-

oncogenes are being selected in vivo, and if that is the case, why are they not dominant 

in the ADA-SCID patients. The most recent data from TIGET seems to give an 

explanation on this point (129). In order to unveil the influence the target cell type and 

its status has on vector integration and engrafment, the samples pre-infusion and post-

GT from the PBL-GT (142) and the HSC-GT (141) studies were analysed for vector 
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integration distribution. First, comparing the pre-infusion to post-GT datasets in the 

HSC-GT study, a slight skewing of the T cell and granulocyte populations towards 

insertions near TSS of genes is observed in the post-GT group, that is not seen in the 

PBL-GT samples; however the TCR diversity remained polyclonal at the time of 

collection, indicating no clonal dominance. A number of integration hotspots were 

identified in the pre-infusion samples for both PBL-GT (transduced CD3+) and HSC-

GT (transduced CD34+), but there was little overlap between them. The integrations 

largely occurred in genes that were highly expressed in the target cell at the time of 

transduction, many of them cell-type specific. The hotspots were later associated with 

DNAse hypersensitive sites and histone modifications characteristic of open chromatin, 

pointing towards a preference for integration within transcriptionally active regions. In 

addition, the CD3+ retrieved post-GT shared few integration sites with their transduced 

HSC progenitors, and these integrations were within gene regions that remained 

transcriptionally active in T cells (129). 

In summary, the existence of similar integration sites in the cells from ADA-

SCID and SCID-X1 or CGD gene therapy patients is not necessarily indicative of clonal 

selection due to transformation. The initial integration into CD34+ cells pre GT is 

influenced by the open chromatin areas in the genome at the time of transduction and 

these areas are similar for all three diseases. Furthermore, the enrichment for insertions 

within active gene expression regions in the CD3+ cells post-GT is most probably 

related to the fact that cells capable of expressing ADA have a selective advantage in a 

toxic metabolite environment. A number of other factors, such as disease background, 

the ADA transgene or the kinetics of lineage reconstitution may determine whether 

sufficient mutagenic events are accumulated for leukaemic transformation (138). 
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1.2 AIMS 

 

The aim of the present study is to evaluate the long term outcome of 18 patients 

affected by ADA deficiency treated between 2000 and 2011 with HSC-GT after non-

myeloablative conditioning regimen.  

Specifically, we compared long-term survival with those of standard bone 

marrow recipients and focused on immune reconstitution after treatment.  
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1.3 PATIENTS AND METHODS 

1.3.1 Overview of the Clinical Development Program 

 

Eighteen patients have been treated in the context of two pilot studies 

(AD1117054, N=1 and AD1117056, N=2), one pivotal study (AD1115611, N=12, 

named main study) and a compassionate use program (CUP, N=3). All patients were 

then enrolled in a long-term F-U study, that allowed long-term assessments beyond the 

initial follow-up period of each study.  

 

The clinical trials were founded initially by Fondazione Telethon. Following 

initial encouraging results, in 2010 GSK acquired the licence for the product and began 

to complete its development towards marketing authorization.  

 

 

1.3.2 Clinical Studies 

 

The pilot study 1 enrolled 1 subject (Subject 1) in 2000 who was treated with 

open-label GSK2696273 at Hadassah University in Jerusalem, Israel, with the 

cooperation of Ospedale San Raffaele s.r.l. Istituto Scientifico San 

Raffaele (HSR-TIGET) in Milan, Italy.  Subject 1 was consented to LTFU from Year 

13 onward.  Data from this subject are summarized in previous publications (109, 141).   

 

The pilot study 2 contained data from 2 ADA-SCID patients (Subjects 2 and 3) 

starting in 2001 who were treated with HSC-GT and included follow-up data for 3 years 

post-treatment at the HSR-TIGET in Milan, Italy. The study protocol is described in a 

publication (158). Study design and enrollment criteria of the second pilot study were 

similar to those later defined in the main study (see below). 

 

The main study was an open-label, prospective, non-randomized, historical 

control, single-center phase 1/2 study conducted at the HSR-TIGET in Milan, Italy. In 

this study, 12 subjects (Subjects 4 to 15) were enrolled starting in 2002 and treated with 

HSC-GT, then followed for 3 years post-treatment. Study design is illustrated below.  
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Three patients (Subjects 16 to 18) received HSC-GT under a named patient 

program for compassionate use (hereafter referred to as the CUP).  The program was 

initiated in 2010 at HSR-TIGET in Milan, Italy. All subjects had baseline characteristics 

consistent with the entry criteria for the main study and were followed for 3 years post-

treatment.  

 

Subjects 8 and 17 were withdrawn from the program after being treated with GT 

to receive HLA-matched sibling donor SCT. 

 

After the HSC-GT was in-licensed in 2010, GSK implemented a protocol 

amendment to the main study that formally extended longer-term follow-up to >3 years, 

and enrolled subjects after 3 years of post-treatment follow-up in their initial 

study/program, which included Pilot Study 2 and the CUP.  The single subject treated in 

Pilot Study 1 joined the AD1115611 LTFU study 13 years post-treatment.  

 

 

1.3.3  Summary of the main phase I-II study  

 

A summary of the characteristics of the main clinical trial as Final Version  (date 

02/04/2007) are reported below.  

 

Study design  

 

The main study was designed to investigate the safety and clinical efficacy of 

infusion of autologous CD34 positive cells transduced with a γRV vector in patients 

affected by ADA SCID in the absence of ERT.  

 

Principal  Investigator: Prof. Maria Grazia Roncarolo (Pediatric Clinical Research Unit 

HSR-TIGET, Milano), then replaced by Prof. Alessandro Aiuti. 

 

Co-Investigators: Dr. Alessandro Aiuti (Pediatric Clinical Research Unit  HSR-TIGET, 

Milano) 
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                                    Dr. Fabio Ciceri (Hematology and Bone Marrow Transplant Unit - 

hSR Milano).  

 

Study objectives 

 

1. Evaluation of the safety and the clinical efficacy of gene therapy, in the absence 

of enzyme replacement  therapy. 

2. Evaluation of biological activity (engraftment, ADA expression) of ADA 

transduced CD34+ cells and their hematopoietic progeny. 

3. Evaluation of immunological reconstitution and purine metabolism after gene 

therapy. 

 

Study endpoints 

 

Efficacy endpoints 

Primary endpoint  

1) Survival  

 

Secondary endpoints (in hierarchical order) 

1) Change  in the rate of severe infections (defined as infections requiring 

hospitalization or prolonging hospitalization);  

2) One-year change in T-lymphocyte counts (cells/µl); 

3) Modification of the "systemic" metabolic defect, analyzed by levels of purine 

 metabolites in RBC; 

4) One-year change in the proliferative response to polyclonal stimuli; 

5) One-year change in thymic activity (T-cell receptor excision circles); 

6) Presence of genetically modified cells in the bone marrow compartment and 

presence of ≥ 10% genetically modified cells in peripheral blood lymphocytes; 

7) Lymphocyte ADA enzyme activity; 

8) One-year change in lymphocyte counts (cells/µl); 

9)  Recovery of physical growth; 

10) Need of reintroduction of PEG-ADA (in patients previously treated with PEG-

ADA); 

11) Antibody response to vaccination. 
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Safety endpoints 

Adverse event (expected or unexpected) 

Serious adverse event (expected or unexpected) 

 

Study phases 

 

Patients were enrolled in the clinical trial after signature of the informed consent 

by their parents or legal tutors.  

After enrollment, they went though the six phases foreseen by the protocol 

(Figure 1.3.1): 

1) Screening phase, during which the conditions required by the clinical protocol 

for patients’ enrolment were assessed; 

2) Inclusion-Exclusion criteria application, at the end of the screening phase;  

3) PEG-ADA discontinuation, applicable for patients who at time of the application 

of inclusion/exclusion criteria were receiving PEG-ADA;  

4) Baseline phase, carried from the end of the screening phase to the day before the 

harvest of stem cells (day -5);  

5) Treatment phase, from day - 4 to day 0;  

6) Follow-up phase, during which patients underwent regular follow-up for a 

period of 3 years after gene therapy, to assess the safety and the efficacy of the 

treatment.  All subjects who completed the 3-year follow-up were offered the 

opportunity to remain in follow-up for an additional 5 years; thus, the total 

period of follow-up for each subject from the date of treatment was to be at least 

8 years.  After in-licensing of the product in 2010, GSK implemented a protocol 

amendment that extended the study follow-up until marketing approval of the 

product.   
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Figure 1.3.1   Study design. 
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Study population 

 

The target study population included patients <18 years old with ADA-SCID, as 

assessed by ADA enzymatic activity and/or genetic analysis, who lacked an HLA-

identical sibling, had received ≥6 months PEG-ADA treatment (except in cases in 

which PEG-ADA was unavailable or was not considered appropriate treatment), and 

who had demonstrated failure or intolerance to PEG-ADA therapy.  Gene therapy 

treatment consisted of a single infusion of autologous transduced CD34+ cells after 

which subjects were followed up for 3 years to evaluate safety and efficacy endpoints.  

After the 3-year follow-up period, subjects were followed-up annually.   

 

 

Inclusion Criteria 

 

Patients were enrolled  according to the following criteria: 

 ADA-SCID patients for whom an HLA–identical healthy sibling donor was 

not available as suitable bone marrow donor. The decision to treat the patients 

with alternative transplantation strategies was taken independently, before the 
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patient was taken into consideration for recruitment into the study; 

 Patients of pediatric age (< 18 years of age); 

 Patients for whom their legal tutors have signed the Informed Consent; 

 

and at least one of the following criteria: 

 

1) Patients who received enzyme replacement therapy (PEG-ADA) for at least 6 

months before enrolment and displayed at least two of the following immune 

parameter alterations: 

- Absolute  lymphopenia (<1500/µl) 

- Absolute T lymphopenia (<1000/ µl) 

- Requirement for IVIg infusion 

- Deficit of serum immunoglobulins (IgM or IgA 

or subclasses of IgG) or  lack of antibody 

response to vaccination. 

2) Patients who received enzyme replacement therapy (PEG-ADA), but were 

forced to discontinue the drug due to intolerance, allergy, or autoimmune 

manifestations; 

3) Patients for whom enzyme replacement therapy (PEG-ADA) is not a life long 

therapeutic option (e.g. patients from countries in which the drug is not 

available). 

   

Exclusion Criteria  

 

Patients were excluded from the study if met one of the following criteria: 

 Patients suffering from HIV infection; 

 Patients  with history or current malignancy; 

 Patients who received a previous gene therapy treatment in the 12 months 

preceding the enrolment; 

 Patients suffering from any other clinical condition that in the Investigator’s 

opinion was dangerous for the patient and would have prevented the good 

conduction of the experimental treatment, according to requirements. 
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1.3.4   Treatment design 

 

Treatment design is summarized in Figure 1.3.2. Apart from Subject 1, the 

treatment was performed for all the patients at the San Raffaele Hospital, Milan, Italy. 

 

Figure 1.3.2   Treatment design. 

 

 

 

On day -4, patients underwent BM harvest under general anesthesia. Autologous CD34+ cells 

were then purified, collected and transduced three times with GIADAl retroviral vector and re-infused 

back to the patients on day 0. On days -3 and -2, patients received conditioning, consisting of iv Busulfan, 

at a body weight-based and AUC-targeted dose, aimed to achieve significant depletion of endogenous 

HSPC cells, with limited toxicity.  

Note: Busulfan was administered orally in Subject 2 and, partly, in Subject 7 .   

 

 

1.3.4.1  Medicinal product 

 

The medicinal product is defined as an autologous CD34+ enriched cell fraction 

that contains CD34+ cells transduced with a retroviral vector that encodes for the 

human ADA cDNA, to be administered intravenously.  
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1.3.4.2  Dosage indications  

 

The optimal target dose to be infused iv to patients was 5-10x106 transduced 

CD34+ cells/Kg. Collection of 10-20x106 CD34+cells/Kg was recommended to let the 

patient receive a dose of manipulated cells within the target dose. 

 

 

1.3.4.3  Preparation to GT: CVC and stem cell back-up 

 

Before treatment, a central venous catheter (CVC) was placed under general 

anesthesia to allow infusion of required intravenous medications for conditioning, 

intravenous infusion of transformed cells, and intravenous medications/immunoglobulin 

and blood products post transplant. The CVCs were maintained for approximately 2 

years post-treatment. 

At least 3 weeks before gene therapy, the patients underwent bone marrow 

harvest, to collect stem/progenitor cells as rescue therapy available for future infusion. 

Whenever possible, the back-up collection was combined to the implant of CVC 

or to other diagnostic procedures requiring sedation/anesthesia. The back-up contained 

at least 1x106 CD34+ cells/Kg and was frozen and stored un-manipulated in liquid 

nitrogen, to be used in case of transplant failure or prolonged bone marrow aplasia.  

 

1.3.4.4  Antibiotic and Antiviral Medication Use  

 

Planned concomitant therapy included pentamidine as first-line Pneumocystis 

Jirovecci prophylaxis from the day before gene therapy until recovery of white blood 

cell counts, cotrimoxazole as Pneumocystis Jirovecci prophylaxis after recovery of 

blood cell counts, intravenous/oral antibacterial and antifungal prophylaxis according to 

local standards, acyclovir as Herpes Simplex prophylaxis until complete immunological 

reconstitution, pre-emptive therapy with ganciclovir or foscarnet according to local 

standards for subjects who were cytomegalovirus positive, and pre-emptive therapy 

with rituximab to subjects who were Epstein Barr virus positive and experienced a 

substantial increase in cellular viral load.  
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1.3.4.5  Bone marrow harvest 

 

After the patient had taken a bath, bone marrow was collected from the anterior 

and posterior iliac crests in the operating room under sterile conditions and using 

general anesthesia or deep sedation, on day –4. The bone marrow collection procedure 

was described in an internal SOP and was performed by trained physicians.  

Collection was performed through multiple aspirations with syringes connected 

to bone marrow aspiration needles. The bone marrow material was transferred from the 

syringe to a sterile bag containing anticoagulant. During the procedure, samples were 

taken to assess the number of nucleated cells using a hemogram. The number of CD34+ 

cells were also assessed by flow cytometry. 

The total volume of the required amount of bone marrow was estimated 

according to the content of bone marrow CD34+ cells determined at the start of the 

collection. On average, approximately 20-30 ml/kg patient body weight was collected to 

ensure sufficient cells were present to support production of gene corrected CD34+ 

cells.  When the bone marrow collection was completed, it was packaged in a closed 

sterile transfer pack appropriate for blood or marrow products, sealed and labelled and 

then transferred in a biohazard container from the research nurse or a physician to the 

manufacturing facility (MolMed S.p.A.). 

Hemoglobin values < 7.0 g/dl were corrected by irradiated and filtered red blood 

cells transfusion. 

 

 

1.3.4.6  Conditioning regimen  

 
To prepare the bone marrow compartment for HSC engraftment, the 

chemotherapy agent busulfan was given as non-myeloablative pre-conditioning prior to 

GT. This regimen was selected based on SCT engraftment outcomes showing enhanced 

gene marking with a non-myeloablative approach (109).  The busulfan dosing was 2 

mg/kg/day on days -3 and -2 (total final dose 4mg/Kg). If  the administration of  i.v 

busulfan was not possible (e.g. occlusion of the CVC), busulfan was administered  

orally (4 doses of 0.6 mg/Kg).  

Actually, the used dose represents approximately 25% of the typical dosage used 

in a myeloablative regimen, which would usually include additional chemotherapy 

agents at high doses.  The short half-life of busulfan (2.5 to 3 hr) was sufficient for drug 
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clearance prior to administration of the gene therapy dose.  After the first administration 

of busulfan, the plasmatic levels of the drug (Area under the curve, AUC) were 

measured and the dose was adjusted if needed for the second day of administration, 

based on actual exposure from the first day.   

 

 

1.3.4.7  Infusion of autologous gene modified CD34+ cells  

 

On day 0, patients had been prepared for the infusion of the transduced cells. 

Before it, all other iv drugs had been interrupted and a premedication with an 

antihistaminic drug (chlorphenamine) had been administered. Approximately 15-30 

minutes afterwards, transduced cells were infused iv through the CVC in about 20 

minutes. At the end of infusion, normal saline solution was used to wash the syringe 

previously containing the medicinal product and the CVC line. Vital signs (BP, HR, 

SO2) and symptoms had been monitored before infusion, then every ten minutes during 

it and every hour for 3 hours thereafter.  

 

 

1.3.5   Assessment of safety 

 

All AEs /ADRs of any severity and not considering the correlation with the 

medicinal product, were recorded on the corresponding page(s) included in the Case 

Report Form (CRF) and, when possible, symptoms were assembled as a single 

syndrome or diagnosis. Date of onset, maximal intensity, action taken with respect to 

medicinal  product, corrective therapy given, outcome and investigators’ opinion on a 

possible correlation between by the study medicinal product and AEs/ADRs were 

clarified. In the case, the patient had to be followed up until clinical recovery was 

complete and laboratory results had returned to normal, or until progression had 

stabilized.  

Toxicity grades of Adverse Events were defined based on the NIH/NCI 

Common Terminology Criteria for Adverse Events (CTCAE, version 4.0), as follows: 

- Grade 1:  Mild; asymptomatic or mild symptoms; clinical or 

diagnostic observations only; intervention not indicated. 
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- Grade 2:  Moderate; minimal, local or noninvasive intervention 

indicated; limiting age-appropriate instrumental activities of daily 

living. 

- Grade 3:  Severe or medically significant but not immediately life-

threatening; hospitalization or prolongation of hospitalization 

indicated; disabling; limiting self-care activities of daily living. 

- Grade 4:  Life-threatening consequences; urgent intervention 

indicated. 

- Grade 5:  Death related to AE. 

 

Safety assessments were the following:   

 

- AEs and SAEs  

- Hematologic parameters; 

- Clinical chemistry assessments, which include liver function tests  

- Vital signs  

- Electrocardiogram (ECG); 

- Physical examination; 

- Specialist examinations (ophthalmologist, neurologist, psychologist); 

- Instrumental tests (abdominal ultrasound scan, auditory evoked potential, 

tympanometry/audiometry and, for children over 5 years of age, respiratory 

functional tests); 

- Urinalysis; 

- Bone marrow morphology and bone marrow immunophenotype  

- Replication competent retrovirus testing.  

 

The AEs were transferred to GSK and assigned to one of the following 6 phases 

of the study:  

 Pre-treatment:  between screening visit but and Day -4 (excludes Subject 1); 
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 Treatment phase:  between Day -4 up to and including the date of gene therapy 

(excludes Subject 1); 

 3-month hospitalization:  between the day after the date of gene therapy and up 

to and including the end of the 3-month visit F-U (excludes Subject 1); 

 3 months to 3 years follow-up:  starting between the 3-month visit F-U up to and 

including the end of the 3-year visit F-U (excludes Subject 1); 

 4 to 7 years follow-up:  starting after the end of the 3-year visit up to and 

including the end of the 7-year visit F-U. 

 

The numbers of pre-treatment SAEs are likely under-estimated, as AEs were not 

formally collected prior to the start of treatment and information collected on the 

medical history and concomitant diseases CRF pages has been used to determine pre-

treatment SAEs that led to hospitalization, were life-threatening or led to death. 

 

 

1.3.6   Assessment of Efficacy 

1.3.6.1   Efficacy Endpoints  

 

The following efficacy endpoints were evaluated: 

 

1) Survival  

2) Intervention-free survival  

3) Severe infection rate  

4) Lymphocyte counts  

5) Thymic activity (TREC) 

6) V-beta repertoire in T cells  

7) Lymphocyte proliferation  

8) Serum immunoglobulins IVIG use post-gene therapy  

9) Vaccination responses 

10)  Physical growth 

11)  Presence of gene modified cells  

12)  Requirement for post-treatment PEG-ADA therapy 
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1.3.6.2  Efficacy Evaluations and statistical analysis  

 

The reported data of the clinical development of the gene therapy medicine  have 

been retrospectively collected from Glaxo-Smith-Kline (GSK) and the analyses of the 

data performed by GSK.  

Assessment of survival was presented as Kaplan-Meier curve, with a 95% CI.  

The survival rate following GT was compared with the published 67% overall survival 

rate in patients treated with conventional HLA-matched hematopoietic SCT from a 

MUD (58).  

All available data except for Subject 1 data were included in the analysis for the 

intervention-free survival.  Time to event (intervention or death) was presented using a 

Kaplan-Meier Survival curve.   

Severe infections and durations were identified from prior medical history and 

post-therapy adverse events (AEs).  Infection rates were estimated pre- and post-

treatment (up to 8 years) as the number of severe infections (defined as infections 

leading to or prolonging hospitalization) per person-year of observation. The 3-month 

hospitalization period post-treatment was not considered in the analysis. 

Changes from baseline for cell populations numbers and function over time were 

described by summary statistics and appropriate plots.  Mean changes from baseline at 

each year post-treatment (up to 8 years) were assessed using a MMRM analysis. A 

summary of proportion of responders determined  by CD3+, CD3+CD4+ and CD19+ 

cell counts used a denominator based on non-missing responses at each time point. 

Physical growth of individual subjects was assessed by height and weight over 

time, presented by gender.  Height and weight for all subjects was compared with WHO 

growth charts. Numbers of subjects shifting to above or below the 5th percentile for 

height and weight at baseline and at Years 1, 3, 5 and 8 were presented in appropriate 

charts for each gender.  

Percentage of subjects with genetically-modified cells was summarized with 

95% CIs, and longitudinal profiles over time were described by summary statistics and 

plots (both original and log-transformed data). Percentage of ADA responders was 

presented with 95% CIs, and longitudinal profiles and changes from baseline for 

lymphocyte ADA enzyme activity over time were described by summary statistics and 

plots. 
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Percentages of subjects reaching adequate systemic metabolic detoxification 

each year post-treatment were summarized separately for peripheral blood and bone 

marrow.  The denominator for percentages was based on non-missing responses at each 

time point. The percentage at each time point was compared with a 10% reference by 

means of a 1-sample proportion test (1-sided test) with a 95% CI for the proportion.   

Number/percentage of subjects who received post-treatment PEG-ADA, and 

time to receipt of ≥3 months of continuous PEG-ADA, were summarized.   

To evaluate CNS abnormalities, a customized query for neurologic, cognitive, 

and hearing impairment events was conducted that included a summary of subjects who 

experienced events in these following categories of system organ classes:  Nervous 

System, Psychiatric Disorders, Ear and Labyrinth Disorders, and General Disorders and 

Administration Site Conditions. 

Exploratory analyses of baseline predictors of efficacy were conducted utilizing 

data during the 0-3 years of follow-up from the main study, Pilot Study 2, and CUP. 

The following covariates were considered as potential predictors of efficacy:  age at 

gene therapy, CD34+ cells/kg and CD34+ cells/kg*VCN, and baseline values for 

lymphocyte (CD3+) counts in peripheral blood, TREC counts, dAXP concentration in 

peripheral blood, and body mass index (BMI).  The impact of these potential baseline 

predictors was assessed on intervention-free survival during the first 3 years, CD3+ cell 

counts in peripheral blood, and RBC dAXP levels in peripheral blood. 

For the intervention-free survival over the first 3 years, box plots were produced 

for each potential predictor comparing baseline covariate (y-axis) against categories of 

intervention-free survival (x-axis).  Given the limited number of subjects, no formal 

statistical analysis was performed. For CD3+ count and dAXP levels in RBC at the 

3-year visit, scatter plots were produced with endpoint of interest (y-axis) versus 

baseline characteristic of interest (x-axis). Pearson correlation coefficients were 

included. 

Subject 1, the single subject enrolled and treated in Pilot Study 1, contributes 

only the date of gene therapy from their original study for the purposes of the integrated 

efficacy analyses (to enable calculation of their duration of follow-up and survival), as 

there is no formal protocol available for Pilot Study 1.  
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1.3.7 Laboratory studies 

 

These investigations were performed in HSR-TIGET laboratories.  

 

Frequency of transduced cells 

 

Cell subpopulations were purified using antibody-coated microbeads or FACS 

sorting. The frequency of transduced cells and vector copy number were determined on 

genomic DNA by quantitative PCR analysis for NeoR vector sequences, normalized for 

DNA content (Aiuti A et al, NEJM). 

 

Immunological Studies 

 

All immunostaining and flow cytometry were performed as described (141). 

 

 In vitro T-cell responses to mitogens and antigens were measured by thymidine 

incorporation in proliferative assays (141).  

 

Specific antibodies were analyzed by ELISA, following patients’ immunization 

with toxoid vaccines, conjugated or bacterial polysaccharide antigens, or measles 

vaccine (159).  

 

TREC were measured in PB T cells by PCR2 and the TCR Vβ repertoire was 

analysed by FACS analysis using a mix of directly conjugated antibodies corresponding 

to 24 different TCR Vβ specificities (IOTest Beta Mark kit; Immunotech, France) and 

by spectratyping analyses (160).  
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Biochemical studies. ADA activity in cell lysates was measured by an adenosine 

to inosine conversion assay, followed by high-performance-capillary-electrophoresis 

(HPCE) (40). Total adenine ribo-(AXP) and deoxyribonucleotides (dAXP) in 

erythrocytes were measured by HPCE (40).  

 

The systemic metabolic defect was analyzed by measuring levels of purine 

metabolites in bone marrow and peripheral blood, where levels of dAXP in RBCs have 

been correlated with severity of disease (56).   
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1.4 RESULTS 

 

1.4.1 Treated patients characteristics  

 

As of May 2014, a total of 18 subjects were treated with HSC-GT gene therapy.   

The features of all 18 subjects treated with GT (sex, race, country of origin, age at 

treatment, F-U duration) at the time of GT are summarized in Table 1.4.1.   

All the subjects were affected by SCID due to ADA deficiency with early-onset 

manifestations. 

The median duration of follow-up is 6.94 years (range: 2.6 to 13.4).  No deaths 

have been reported. Sixteen subjects are currently in long term clinical follow up with 

long term follow up data available for 14 of these.  

 

1.4.1.1 Subject Demographics  

 

The approximate age at the time of ADA-SCID diagnosis ranged from <1 month 

to 1.25 years.  Most subjects were white and 61% were male (11 male and 7 female).  All 

subjects lacked a sibling HLA matched stem cell donor and were either failing to respond 

adequately to PEG-ADA or did not have access to it.  Patients’ country of origin included 

the EU, Middle East, Africa, North America and South America (Table 1.4.1).  

Consanguinity of parents was reported for 8 patients (Subjects 4, 5, 6, 8, 10, 13, 

17 and 18).  

The median subject age at the time of gene therapy was 1.7 years (range:  

0.5 months to 6.1 years) (Table 1.4.2). All subjects received busulfan reduced intensity 

conditioning prior to gene therapy. 

 

 

 

 

 

 



 

 

Table 1.4.1 Summary of Subjects Treated in GSK2696273 Clinical Program 

 

Abbreviations:  AA = African-American/African heritage; F = female; M = male; PEG-ADA = polyethylene glycol adenine deaminase; haplo-SCT = haplo-identical stem cell transplant; NA = not 

available; VCN = vector copy number; HSC-GT= hematopoietic stem cells-gene therapy.  

 
#      Subject 1 data from Years 0 to 13 limited to the date of gene therapy (for duration of follow-up and survival analysis) and data collected in LTFU (Year 13 onwards).   

*       i.v. 2 mg/kg/day for 2 days (Aiuti et al, 2009). 
§          Subject 2 received a second dose of gene therapy product that did not include busulfan pre-conditioning. 
$          Subject 8 withdrew from the main study on 08 June 2008 (reason: investigator discretion) when she became a candidate to receive an allogeneic sibling donor SCT. 
&        Subject 17 withdrew from LTFU prior to the Year 4 visit (reason: investigator discretion) when he became a candidate to receive an allogeneic sibling donor SCT; no LTFU data were reported. 

Subject Sex Race Clinical Study Prior SCT or PEG-ADA, 

duration  

Age at gene 

therapy, yrs 

GT treatment 

date 

Busulfan dose, mg HSC-GT 

 CD34+ cells 

x106/kg 

VCN of 

product 

Follow-up 

duration, yrs 

1# F White/Arabic Pilot 1 (Israel) None 0.6   07 Sept 2000 Not reported in 

CRF * 

8.5 2.28 13.4 

2 F White Pilot 2 (Tiget) Haplo-SCT 2.4 09 Mar 2001 24.0 (oral) 0.9 NA 13.1 

     5.0 17 Oct 2003§ None§ 2.1 2.15  

3 M White Pilot 2 (Tiget) Haplo-SCT 1.0 04 May 2002 17.4 6.7 0.85 11.9 

4 F White/Arabic Main Haplo-SCT &  

PEG-ADA (2 mo) 

1.9 19 Oct 2002 17.0 3.8 NA 11.6 

5 F White Main PEG-ADA (15 mo) 1.6 26 Mar 2004 20.0 9.6 1.89 9.9 

6 M White Main PEG-ADA (65 mo) 5.6 12 Nov 2004 14.5 9.46 1.05 9.0 

7 M White Main PEG-ADA (13 mo) 1.5 11 Nov 2005 17.4 9.0 0.82 7.0 

8$ F White Main PEG-ADA (32 mo) 2.8 17 Feb 2006 15.4 10.6 0.12 2.3 

9 M White Main PEG-ADA (10 mo) 1.4 20 Sep 2006 20.0 13.6 0.57 7.0 

10 F White/Arabic Main Haplo-SCT &  

PEG-ADA (11 mo) 

1.8 17 Nov 2006 20.0, 15.0$ 10.7 0.35 6.9 

11 M White Main PEG-ADA (8 mo) 1.6 09 Mar 2007 16.0 6.35 0.17 7.0 

12 M White Main PEG-ADA (12 mo) 1.3 19 May 2007 24.0 11.5 0.14 6.2 

13 M Asian Main PEG-ADA (1 mo) 0.5 28 Jun 2007 10.0, 3.0 18.15 0.06 6.2 

14 M White Main PEG-ADA (71 mo) 6.1 30 May 2008 44.0 5.97 0.54 5.1 

15 F White/Arabic Main PEG-ADA (12 mo) 2.5 27 Jun 2008 22.80 5.94 0.38 5.0 

16 M AA CUP PEG-ADA (23 mo) 2.3 26 Mar 2010 34.0 6.91 0.17 3.2 

17& M AA CUP PEG-ADA (7 mo) 0.7 16 Apr 2010 16.0 12.95 0.24 3.7 

18 M White/Arabic CUP PEG-ADA (24 mo) 2.1 20 May 2011 24.0 9.9 0.11 2.6 



__________________________________________GT for ADA SCID: long-term F-U 

  

 

63 

 

Table 1.4.2 Summary of Demographic Characteristics at Baseline/Date of GT  

 

Demographic N=18 

Age at gene therapy (years), n 18 

Median (min, max) 1.70 (0.5, 6.1) 

Sex, n 18 

Female, n (%) 7 (39) 

Male, n (%) 11 (61) 

Height (cm), n 14 

Median (min, max) 81.5 (70, 114) 

Weight (kg), n 17 

Median (min, max) 10.2 (6, 22) 

Race, n (%) 18 

White – White/Caucasian/European Heritage 10 (56) 

White – Arabic/North African Heritage 5 (28) 

African American/African Heritage 2 (11) 

Asian – Central/South Asian Heritage 1 (6) 
         

                        

 

 

1.4.1.2  Subject Baseline Disease Characteristics 

 

The majority of subjects (82%) experienced severe infections pre-GT, defined as 

infections that lead to hospitalization or prolongation of hospitalization, and most of these 

subjects had multiple occurrences (collected retrospectively). Overall, 40 events were 

registered, with an infection rate of 1.17 per person-year of observation. 

 

Apart from infections, 17 subjects reported medical conditions ongoing at 

screening (Table 1.4.3). 
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Table 1.4.3 Summary of Medical Conditions Ongoing at Screening in Two or 

More Subjects  

 

Medical condition N=17 

Any condition, n (%) 17 (94) 

Combined immunodeficiency 17 (94) 

Failure to thrive 9 (53)a 

Nuclear MRI abnormal 5 (29) 

Verbal delay/Speech disorder 4 (23) 

Sensorineural hearing loss 2 (11) 

Phimosis 2 (11) 

Food aversion 2 (11) 

Psychomotor retardation 2 (11) 
MRI = magnetic resonance imaging 

a. Subject 1 also had a clinical history of failure to thrive (Aiuti, 2009).  

 

After combined immunodeficiency, failure to thrive, one of the main 

characteristic of patients with ADA-SCID (161), was the most frequently reported 

ongoing medical condition at Screening, reported in Subjects 1, 2, 3, 4, 5, 6, 7, 8, 10 

(109), and 11.  

CNS abnormalities are also common in ADA-SCID patients. Four subjects in 

total presented at screening with developmental delay (Subject 6, 7, 8, 11) with 

impairment in one or more social or psycho-motor abilities (i.e. attention 

deficit/hyperactivity disorder, communication disorder, speech disorder) (109). Two 

subjects had sensorineural hearing loss (Subject 8, 14) and two VEP (Visually Evoked 

Potentials) prolonged latency (Subjects 11 and 15). 

Additional neurologic or central nervous system (CNS) abnormalities reported in 

individual subjects included one subject with mental retardation (Subject 14), one with 

left hypoacusia (Subject 6), one with generalized hypotonia (Subject 11), and one with 

hyperactivity (Subject 16).  

MRI alterations were reported in 5 patients (Subjects 7, 8, 11, 16) and mild EEG 

(electroencephalography) was reported in one (Subjects 16) (109).  

 

Other findings ongoing at Screening were hepatic abnormalities in 1 subject 

(Subject 2) with increased alkaline phosphatase, aspartate aminotransferase [AST], and 

lactate dehydrogenase [LDH] and 1 subject (Subject 8) with hepatomegaly. Subject 8 

also had chronic autoimmune haemolytic anemia. 
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1.4.1.3  Prior Bone Marrow Transplantation 

 

Four subjects had previously received an unsuccessful stem cell transplant from a 

haploidentical donor: 

 Subject 2 approximately 1 year 10 months prior to her first GT; 

 Subject 3 approximately 7 months prior to GT; 

 Subject 4 approximately 13 months prior to GT; 

  Subject 10 approximately 17 months prior to GT.  

 

1.4.1.4  Prior Enzyme Replacement Therapy 

 

Fifteen subjects had received ERT with PEG-ADA.  Among these, 10 subjects 

were receiving PEG-ADA at the time of the screening visit; PEG-ADA was discontinued 

10 to 22 days before gene therapy.  Subjects 1, 2, and 3 had not received prior PEG-ADA 

as it was not available in their country.   

 

1.4.2 Exposure to Busulfan and treatment with Gene Therapy 

 

All subjects received busulfan pre-conditioning before GSK2696273 treatment 

administration (Table 1.4.1).  Busulfan was administered at 2 mg/kg/day intravenously 

(except as noted below), divided into 4 doses of 0.5 mg/kg for a total final dose 4 mg/kg 

on study days -2 and -3.  Doses were reduced if plasma levels exceeded 4000 ng/ml*h, as 

measured after the 1st and 5th doses.  Most subjects received 2 doses and the mean daily 

dose was 20.6 mg (range, 6.5 mg to 44.0 mg).   

 

One subject (Subject 2) received HSC-GT treatment on 2 occasions, 2 years and 7 

months apart (Table 1.4.1).  Before the first infusion of gene-corrected cells, this subject 

received oral busulfan pre-conditioning.  The subject received a low dose of transduced 

bone marrow CD34+cells (0.9 x 106/kg) due to the low percentage of CD34+ cells at the 

time of bone marrow harvest. As the subject remained lymphopenic, PEG-ADA was 
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administered for 7 weeks, starting 2 years and 5 months after first gene therapy, in order 

to increase cellularity for a second bone marrow harvest.  A second gene therapy 

procedure (2.1 x 106/kg of transduced CD34+ cells) without busulfan pre-conditioning 

was then performed, 3.5 weeks after PEG-ADA had been discontinued. 

 

Subject 7 received the last 2 doses of busulfan as 2 mg/kg/day via oral 

administration.  Subject 6 did not receive busulfan on the second day of the regimen due 

to high exposure from the first administration.   

Subject 10 received busulfan without gene therapy due to a mycoplasma 

contamination of the bone marrow during the transduction process and the gene therapy 

product could not be released.  Consequently, the patient was not treated, the bone 

marrow back-up was re-infused and a single dose of granulocyte colony stimulating 

factor (G-CSF) was also administered; PEG-ADA was re-started. Then, a second 

busulfan regimen was given when a second dose of GT was transduced and successfully 

infused. 

 

Among all treated subjects, gene therapy product was administered at a median 

dose of 9.46x106 CD34+ cells/kg (range:  0.9 to 18.15x106 CD34+ transformed cells/kg) 

in a median volume of 26 mL (range:  10 to 40 mL); the median number of total 

nucleated cells was 23.10 x106 (range: 2.4-37 x106) (Table 1.4.4).  The lowest exposure 

to date was in Subject 2, who received a further treatment later on 
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Table 1.4.4 Summary of Gene Therapy Treatment 

Parameter Gene therapy 

(N=17) 

Total volume infused (mL)  

Mean (SD) 26.18 (7.32) 

Median (range) 26.00 (10.0-40.0) 

Total nucleated cells (x 106)  

Mean (SD) 21.72 (7.73) 

Median (range) 23.10 (2.4-37.0) 

Number of transduceda CD34+ cells/kg (x 106/kg)  

Mean (SD) 8.94 (4.04) 

Median (range) 9.46 (0.90-18.15) 

Vector specific PCR on colony forming cells (CFC) revealed an average vector 

copy number (VCN) per genome in CD34+ cells ranging between 2.28 (Subject 1) and 

0.06 (Subject 13) (Table 1.4.1). 

 

 

 

 

1.4.3 Efficacy outcomes 

 

1.4.3.1 Survival outcomes  

 

1) Survival 

 

A 100% survival rate has been observed for all subjects (N=18) who received 

HSC-GT treatment, with a median follow-up time of approximately 7 years (Figure 

1.4.1).  This survival rate exceeds the 67% overall survival rate of patients who received 

a MUD hematopoietic SCT after similar median duration of follow-up (58).   
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Figure 1.4.1 Survival Kaplan-Meier Plot Showing 100% Survival  

 

 

 
Note: Blue line depicted at estimated survival of 1.0 represents 100% survival in the population.  

 

 

2) Intervention-Free Survival 

 

Intervention-free survival was defined as survival without post-gene therapy 

events of PEG-ADA use for a continuous period of ≥3 months, SCT, or death (Figure 

1.4.2).  No deaths have occurred. Overall, 82% intervention-free survival rate is 

observed. 

Subject 2, 8 and 17 required continuous PEG-ADA post-gene therapy. Among 

them, Subject 2 had received a low cell dose and had a poor immune reconstitution; PEG-

ADA was administered for 7 weeks in preparation to the second gene therapy, performed 

without busulfan pre-conditioning and leading to the lack of the engraftment of gene 

modified cells.    

Subject 8 and Subject 17 received GT doses within the therapeutic range, but were 

considered as treatment failures due to the need for long term (> 3 months) post-treatment 

PEG-ADA; both of them received post-gene therapy HLA-matched sibling donor SCT 

when a sibling was born.   
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Figure 1.4.2 Survival Kaplan-Meier or Intervention Survival 

 

 

 

 

1.4.4 Severe Infections  

 

Change in the rate of severe infections was observed post-gene therapy (0.26 per person-

year - 3 year follow-up) when compared with the pre-gene therapy period (1.17 per 

person-year) (Figure 1.4.3).  

Figure 1.4.3 Rate of Severe Infections per Person-Year of Exposure by Year. 
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Despite the under-reported pre-gene therapy infections, a decrease of post-gene 

therapy severe infection rates each year following gene therapy is evident.  

A total of 15 severe infections were reported after HSC-GT treatment (compared 

to 40 event pre-treatment) mostly (12/15 events) occurring during the 3-year follow-up, 

as a common complication of partial immune reconstitution (Table 1.4.5). Following 

gene-therapy, the majority of subjects had only one occurrence of severe infection.  

The most frequently post-treatment severe infections were device-related 

infections (n=5) and gastroenteritis (n=3). Three of the device-related infections were 

reported in a single subject (Subject 10). Of note, 2 subjects reported varicella infection 

(Subjects 4 and 5) and 1 subject had Staphylococcal sepsis (Subject 16). 

The remaining infectious SAEs were respiratory tract infections (n=1), meningitis 

(n=1), pneumonia (n=1) and pyoderma (n=1). 

 The rate of severe infections declined in LTFU from Years 4 to 8. Four severe 

infections were reported in 3 subjects in the LTFU. There were no severe infections 

during Year 3. Two severe infections were reported between 4 and 5 years after gene 

therapy (pneumonia in Subject 11 and pyoderma in Subject 13), decreasing to 1 severe 

infection between 6 and 7 years (varicella in Subject 4), and 1 between 10 and 11 years 

after gene therapy (pneumonia in Subject 3). In addition, Subject 1 had a severe urinary 

tract infection at Year 13. All severe infections resolved (Table 1.4.5). 

Two of the infectious SAEs were Grade 4, as Staphylococcal sepsis and 

Pneumonia. 

 

 

 

 

 

 

 

 

 



__________________________________________GT for ADA SCID: long-term F-U 

  

 

71 

 

 

Table 1.4.5 Summary of Severe Infections Pre- and Post-Gene Therapy  

 

 N=17 

Pre-GT Post-GT 

n 17 17 

Number of patients with events, n (%) 14 (82) 10 (59) 

Number of events   

Total 40 15 

4 months to 3 years follow-up  12 

4 to 8 years follow-up  3 

Person-years of observation  

(free from infection) 

  

Total 34.30 89.23 

4 months to 3 years follow-up  45.81 

4 to 8 years follow-up  43.42 

Rate of infectiona   

Total 1.17 0.17 

4 months to 3 years follow-up  0.26 

4 to 8 years follow-up  0.07 

Number of occurrences per patient, n (%)   

n 14 10 

1 4 (29) 7 (70) 

2 4 (29) 1 (10) 

3 6 (43) 2 (20) 

 

Abbreviations:  GT = gene therapy. 

Note: Only data collected prior to PEG-ADA intervention (3 months of treatment with PEG-ADA) are 

included. 

a. Rate of infection estimated as number of infections over person-years of observation (free from 

infection)  
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1.4.5 Immune Reconstitution  

 

Evidence of immune reconstitution after gene therapy was measured by changes 

over time in peripheral lymphocyte counts (T cells, B cells, and NK cells), thymic 

activity (TRECs), peripheral T cell function (proliferation in response to polyclonal 

stimuli, diversity in V-beta repertoire), and B cell function (assessed indirectly by 

vaccination responses and IVIG use during follow-up). 

 

 

 

1.4.5.1 Immune Cell Counts 

 

Lymphocytes and CD3+ T cell counts significantly increased compared to 

baseline from Year 1 post-treatment. The increase was maintained throughout the 

duration of follow-up (Figure 1.4.4).  There were also sustained increases in CD4+ T cell 

(Figure 1.4.5) and CD8+ T cell subsets (Figure 1.4.6) after gene therapy, in particular 

from Year 1 onwards. CD4+ CD45RA+ naïve T cells followed the same pattern. 

 

Differently, changes from baseline were variable for CD19+ B cells and CD16+ CD56+ 

NK cells, with counts for both cell types decreasing from baseline to Year 1 and then 

increasing above the Year 1 counts from Year 2 onwards, achieving levels above baseline 

by Year 6 (for CD16+ CD56+ NK cells) or Year 8 (for CD19+ B cells) (data not shown). 
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Figure 1.4.4 Increased CD3+ cells (10^6/L) after Gene Therapy 

                     

 

 

 

 

 

               Figure 1.4.5 Increased CD3+CD4+ cells (10^6/L) after Gene Therapy 
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Figure 1.4.6 Increased CD3+CD8+ cells (10^6/L) after Gene Therapy     

                                                                                                                                                     

v                

 

An exploratory analysis was conducted to determine the proportion of responders 

at each time point. The subjects were qualified as T cell responders (CD3+ CD4+ count 

>300x106 cells/L and/or CD3+ >1000x106 cells/L) or B cell responders (CD19+ count 

>100x106 cells/L) based on cell counts in whole venous peripheral blood. Selection of the 

cut-off values to define responders was based on criteria reported by Hassan et al in 

patients receiving conventional SCT (58).  

At the 6-month visit there were 0/16 subjects who were responders, but by Year 1 

(n=15) between 25 to 50% subjects were B cell and T cell responders.  By Year 3 (n=14), 

approximately half of subjects were B cell and T cell responders.  By Year 5 (n=10), 

B cell response was 40%, a level that was generally maintained through Year 8.  The 

proportion of CD3+ CD4+ T cell responders in Year 5 was 80%, and this response level 

was maintained through Year 8.  This trend was generally reflected in the CD3+ T cell 

responder analyses from Year 5 onwards.   
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1.4.5.2 Immune Cell Function 

 

1)  T Cell Function 

 

 Thymic Activity 

TRECs in peripheral blood lymphocytes were increased with respect to baseline 

from Years 1 to 3 post-treatment, and gradually declined at Years 5 and 8, according to 

the decrease in thymus size and activity that can be expected in older children (162) (data 

not shown).  

The increase in TRECs observed beginning at Year 1 after gene therapy is in line 

with increased T cell counts from Year 1 onwards and, remarkably, with increased 

peripheral CD4+ CD45RA+ naïve T cells, as a product of thymic selection and 

successful recombination of V-beta T cell receptor chains in thymocyte precursors.  It 

also is in line with the decline in severe infection rates from Year 1 onwards after gene 

therapy, suggesting an improvement of the T cell mediated immune system following 

gene therapy.   

 

 T Cell Receptor Repertoire  

The diversity of T cell receptor V-beta chains was evaluated as a measure of T 

cell polyclonality.   

In the main study population, the majority of subjects (7/12) had evidence of 

polyclonal V-beta chains, although only 4 subjects had reports of a normal V-beta 

repertoire (polyclonal V-beta chains within the normal range) (data not shown).  

The majority of subjects for whom LTFU was available, including subjects from 

the pivotal study and both pilot studies, had evidence of a normal V-beta repertoire at one 

or more LTFU visits. Most subjects had presented prior to gene therapy with a polyclonal 

T cell receptor V-beta repertoire that included some V-beta chains above and some below 

the normal range.   

This was expected in a population of patients with ADA-SCID who were being 

treated with PEG-ADA; the detection of low numbers of some V-beta chains while 
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receiving PEG-ADA reflects that the immune system is often not fully reconstituted with 

PEG-ADA treatment (106).   

A diverse repertoire of T cells emerging from the thymus corresponds with other 

evidence of normal function, including proliferative response, post-treatment decline in 

severe infection rates, and positive response to routine childhood vaccinations. 

 

 Peripheral T Cell Proliferation 

From Year 1 onwards the mean and median results in the overall population 

showed robust proliferation in response to stimulation to both anti-CD3 and PHA 

polyclonal stimuli, increased over baseline (data not shown).  

The increases in T cell counts from baseline in conjunction with these data on 

proliferative capacity suggest that the increased cell numbers observed in the periphery 

represent functional T cells capable of clonal expansion.   

 

2) B Cell Function 

 

Despite B cell counts remained low and in some cases decreasing, functional 

immune protection was demonstrated by assessment of immunoglobulin levels over 

baseline, the discontinuation of IVIG supportive treatment after receiving gene therapy, 

and vaccine responses. 

 

 Immunoglobulins 

Most subjects in the main study showed acceptable levels of gamma globulin via 

serum protein electrophoresis, and all subjects enrolled in the LTFU had polyclonal 

serum antibody chains from Year 4 onwards.  No serum monoclonal protein was 

detected, suggesting that the gamma globulins present were polyclonal.  

There was a decline in the IVIG substitutive use as LTFU progressed in Years 4 

to 8 after gene therapy and this provides evidence for functional B cell and 

immunoglobulin production in the periphery. 
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 Requirement for IVIG Therapy  

All LTFU 15 patient were receiving IVIG treatment before GT and were 

maintained on IVIG after GT in the first months after treatment. Six patients  stopped 

IVIG during 0-3 years period. Five patients received IVIG during LTFU but stopped 

before the cut off data. Four patients are still receiving IVIG. Two patients were not 

considered in the analysis because of the withdrawal from the study for receiving HLA-

identical BMT (Subject 8 and 17). Subject 1 was not on IVIG. At last F-U 11 out of 15 

patients were off IVIG (Table 1.4.6). 

 

Table 1.4.6 Requirement for IVIG Infusion  

 

 

 

 

 

 

 

 

Abbreviations: IVIG=intravenous immunoglobulin; Y= Yes; N=No; LTFU=long term follow-up 

a: Subject 1 (Pilot 1 Study) is excluded from this analysis as this subject’s data regarding IVIG supplementation prior 

to Year 13 are not included in the clinical database. 

 

These data about IVIG weaning during F-U, provide evidence for functional B 

cell and immunoglobulin production in the periphery. These data are also in line with the 

post-treatment decline in severe infections and vaccination responses.  

   

 

 Vaccination Responses 

Vaccine responses were evaluated for all subjects who received vaccination 

during follow-up, by measurement of antigen-specific responses. 

IgG antibodies were detected at multiple time points following vaccinations 

against rubella, measles (rubeola), pertussis, tetanus, parotitis, and hepatitis B.  

Detectable antibodies to pertussis were found in 6 patients, to tetanus toxoid in 11 

IVIG supplementation N=15 

 

Off IVIG at baseline N 0 

Stop during 0-3 yrs N 6 

Stop during LTFU 

Off IVIG at last F-U 

N 5 

N 11 
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patients and to hepatitis B surface antigen in 8 patients. Moreover, two subjects received 

live attenuated measles-mumps-rubella vaccine and had detectable antibodies post-

vaccination (Subject 5 and 6). The vaccinations were performed at least 3 months after 

IVIG discontinuation. Antibodies were generally detectable at multiple time points, 

indicating long-lived antibody production. Further, subject status updates obtained during 

LTFU reported on-time receipt of vaccinations for the majority of subjects in both the 

Pivotal population and supportive studies.  Vaccine response data are in line with the 

post-treatment decline in severe infection rates and the decreasing use of IVIG in LTFU. 

These data provide supporting evidence of humoral immune reconstitution, and 

B cell development and functionality, as well as overall lymphocyte functionality 

following gene therapy. 

 

 

1.4.5.3 Autoimmunity 

 
Autoimmunity was not assessed as an efficacy endpoint, but is related to T cell 

and B cell function and therefore relevant to assessment of immune reconstitution.   

After gene therapy, 11 subjects reported a total of 26 events related to 

autoimmunity.  Grade 1 ANA positivity was the most frequently reported treatment-

emergent autoimmune event across subjects (in 7 patients at different time points, the 

majority in LTFU).  The clinical relevance of these events is not clear as positive ANA 

titers without clinical signs of inflammatory or autoimmune conditions pose a minimal 

risk for such disease in the pediatric population (163, 164).   

 

Four subjects had 6 SAEs of autoimmunity (anti-neutrophil antibody induced 

neutropenia, autoimmune thrombocytopenia [2 events], autoimmune aplastic anemia, 

autoimmune hepatitis, and Guillain-Barré syndrome).  All autoimmune SAEs resolved 

and none were deemed related to the investigational treatment by the investigator.  With 

one exception, all serious events occurred within the first 3 years following gene therapy. 

Subject 7 had a family history of autoimmunity and had repeated autoimmune 

manifestations between approximately 2 years and 4.5 years following gene therapy, and 

received prednisone and three doses of PEG-ADA during the first event (autoimmune 
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hepatitis) in an attempt to restore immune function and reduce the observed 

autoimmunity, with the resolution of the event. The subject also developed a SAE of 

aplastic anaemia, probably of autoimmune origin, and non-serious AEs of autoimmune 

haemolytic anaemia and autoimmune hypothyroidism (3 years after gene therapy).  The 

events responded to treatment with anti-CD20 monoclonal antibodies.  The haemolytic 

anaemia resolved but the autoimmune hypothyroidism was reported as ongoing at the 

time of data cut-off.   

Subject 8 had a history of autoimmune hemolytic anemia prior to gene therapy.  

Starting 4.5 months following gene therapy, this subject experienced repeated episodes of 

autoimmune thrombocytopenia.  This subject had incomplete immune reconstitution and 

as a result, long term PEG-ADA was reintroduced starting in July 2006.  The subject was 

considered to have an unsuccessful response to gene therapy and was withdrawn from the 

study in February 2008 when a sibling-matched BMT became available.  Evaluations of 

autoimmune antibodies showed a diffuse positivity for anti-nuclear antibody, anti-

neutrophil cytoplasmic antibody, anti-smooth muscle antibody, direct Coombs test, liver 

kidney microsomal antibody, and mitochondrial antibody.  

Subject 9 had an SAE of Guillain-Barré syndrome 3 years after gene therapy.  The 

subject was hospitalised and underwent comprehensive biochemical, microbiological and 

virologic evaluation, including neuroimaging and nerve conduction studies.  The tests 

confirmed Guillain-Barré syndrome, which was considered by the investigator to be not 

related to study treatment.  The subject was treated with high dose IVIG and the event 

resolved.  

To note, Subject 13 had Grade 2 autoimmune hypothyroidism approximately 1 

year after gene therapy, ongoing at the time of data cut-off.  
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1.4.6 Physical Growth 

 

Individual growth profiles are shown for all subjects treated with gene therapy 

(Figure 1.4.7).  Several subjects had height or weight that transiently fell below the curve 

at individual time points, but the majority either maintained or improved their age-

appropriate height and weight relative to standard curves.  However, Subject 8 had severe 

baseline disease activity and autoimmunity events considered as contributing factors to 

failure to thrive and Subject 10 was below the curve for weight only through Year 8, but 

was not far below the 5th percentile threshold.   

 

 

 

 

Figure 1.4.7 Individual Subject Profiles of Height and Weight by Gender  
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1.4.7 Biological Activity 

Biological activity was evaluated by means of measuring engraftment of gene 

modified cells (as determined by VCN) in bone marrow and peripheral blood cells 

(CD34+ stem cell, erythroid, granulocyte, and lymphocyte lineages), ADA activity in 

bone marrow and peripheral blood lymphocytes, and correction of the systemic 

metabolic defect as measured by dAXP levels in RBCs from bone marrow and 

peripheral blood. 

 

1.4.7.1 Vector copy number  

 

The ADA-transduced CD34+ cells and their progeny were isolated from purified 

bone marrow and peripheral blood through the last evaluation. Overall, there was a 

multilineage engraftment of ADA-transduced cells persisting over time (129). 

We report the behavior of peripheral blood granulocytes, as an example of a cell 

lineage that is not normally impacted by ADA-SCID, and lymphocyte populations 

which are profoundly negatively impacted by ADA-SCID. CD15+ granulocyte marking 

in peripheral blood was typically 0.5 to 3% during follow-up (Figure 1.4.8). Gene 

modified cells appeared in the circulation in the first months following gene therapy, 

and the numbers remained stable for the duration of follow up (>5 years).  As 

granulocytes do not have a survival advantage following gene transduction, the 

percentage of gene marked CD15+ granulocyte is a surrogate marker of the proportion 
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of gene modified stem cells in bone marrow.  The proportion of gene modified CD34+ 

cells in bone marrow is consistent with the results for CD15+ cells in peripheral blood.  

Bone marrow stem cells carrying the ADA transgene were able to support 

lymphocyte development in the periphery. Gene marking in CD3+ T cells was 

approximately 60 to 90% between Years 1 and 5 of follow-up (Figure 1.4.8). 

These data show there was no loss of gene marking in engrafted bone marrow 

and peripheral cells over 8 years of follow-up after gene therapy. 

Similarly to granulocytes, a relatively low proportion of gene modified cells was 

shown in the erythroid lineage, consistent with lack of survival advantage for this blood 

lineage.   

 

Figure 1.4.8 Persistence of ADA-transduced cells in blood over time 

  

              

 

An exploratory responder analysis was conducted to determine the proportion of 

subjects at each time point with bone marrow engraftment and peripheral circulation of 

gene modified cells.  Both of the following criteria had to be met to be considered a 

responder:   

1. Presence of  0.1% gene marked cells in bone marrow for both CD15+ granulocytes 

and erythroid cells (assessed by glycophorin A) and at least one of the CD3+ T cell, 

CD19+ B cell, or CD56+ NK subsets; and 

2. Presence of 10% gene marked cells in peripheral blood CD3+ T cells and CD19+ 

B cells. 

The definition of a responder was developed from previous experience with 

other gene therapy studies (165).   
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Among subjects with available data, 11 of 15 subjects (73%) were responders at 

Year 1.  This trend was maintained throughout follow-up to Year 8, with 79% to 100% 

of subjects per time point considered as responders.  

 

1.4.7.2 ADA Enzyme Activity  

 

The presence of ADA was documented through detection of its enzymatic 

activity in blood mononuclear cells, marrow mononuclear cells, plasma, and red blood 

cells and was confirmed through flow cytometry of T and B cells, and monocytes.  

Plasma ADA activity by Year 1 showed increased levels in comparison to 

baseline, that were maintained for the duration of follow-up to Year 8.  

All subjects apart from Subject 1, Subject 2 and Subject 3 were receiving PEG-

ADA prior to gene therapy (Table 1.4.1). Per protocol, PEG-ADA was discontinued 11 

to 22 days prior to gene therapy, and possible carryover effects of PEG-ADA exposure 

on early ADA activity could be present. Intracellular lymphocyte ADA activity was low 

at baseline, consistent with the disease. Following gene therapy, there was a marked 

increase in ADA activity in lymphocytes that was maintained for the duration of follow-

up (Figure 1.4.9).  Minor levels of ADA activity were evident in other cell lineages 

(e.g., erythrocytes), consistent with the relatively low levels of gene marking in these 

populations. 

ADA activity 210 nmol/h/mg represents 10% of the mean value for healthy 

subjects and is considered clinically relevant as it is a threshold for minimum normal 

activity and corresponds to a minimum ADA activity level reported to result in normal 

function (56, 166).   

Among subjects with available data, most had ADA > 210 from Year 2 onwards:  

8 of 12 subjects (67%) met response criteria at Year 2.  This trend was maintained 

throughout follow-up to Year 8, with 85% to 100% of subjects per time point 

considered as responders at each time point except Year 4, for which only 6 subjects 

had available data among whom 2 (33%) were responders.  
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               Figure 1.4.9 Means (95% CI) of Lymphocyte ADA Activity  

 

 

 

1.4.7.3 Purine Metabolites  

Levels of dAXP were measured in RBCs from bone marrow and peripheral 

blood. There was no appreciable reduction in dAXP levels in RBCs in the first months 

following gene therapy, since baseline values were already low due to carryover effect 

of prior PEG-ADA use and the low number of mature cells in the periphery arising from 

gene-modified stem cells. Post-baseline mean and median dAXP were below 

pathological levels (100 nmol/mL) and this trend was maintained for the duration of 

follow-up.  This was evidenced for dAXP levels in bone marrow-derived RBCs, with no 

decrease from baseline observed in the bone marrow. It was shown restored adenosine 

and adenosine metabolite clearance, evidenced in peripheral RBCs, by 6 months post-

gene therapy (data not shown). 

A responder analysis was conducted to determine the proportion of subjects at 

each time point assessed who had adequate systemic metabolite detoxification (dAXP in 

RBCs). A threshold of <100 nmol/mL dAXP in peripheral RBCs was chosen based on 

observations in patients treated with standard HLA-identical sibling donor SCT, was 

considered clinically meaningful and pre-specified for definition of responder (89, 128, 

167-169). In addition, dAXP levels have been correlated with ADA-SCID disease 
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severity (56). In this way, correction of the systemic metabolic defect of ADA 

deficiency was demonstrated by analysis of bone marrow from Year 2, with 100% of 

subjects considered as responders in bone marrow analyses from Year 2 through Year 8.  

From analysis of peripheral blood, 92% of subjects were responders at Year 2, generally 

maintaining through Year 8 of follow-up.   

 

1.4.8 Subjects with Unsuccessful Response to Gene Therapy     

 

Poor engraftment of gene modified bone marrow cells led in some cases to lack 

of response to gene therapy treatment, poor immune reconstitution and inadequate 

correction of the systemic metabolic and consequent suboptimal clinical benefit.  

Subjects who received GT and then required post-gene therapy PEG-ADA for 3 

months continuously or allogeneic transplant were excluded from efficacy analyses 

upon meeting either criterion and are also considered clinically to have experienced 

unsuccessful response to gene therapy. 

 

Three subjects met these criteria: 

 Subject 2 received two doses of gene therapy not in line with the recommended 

dosing and preconditioning regimen (first dose was below the recommended lower 

limit of cells and the second dose was without busulfan); this led to lack of 

engraftment. The persisting lymphopenia required reintroduction of short-term 

PEG-ADA for 2 months (from 2.4 years from the first gene therapy), before a new 

dose of gene therapy was administered. Long-term use of PEG-ADA was necessary 

from 4.5 years after the first gene therapy persisted during LTFU. 

 Subject 8 presented with a history of hemolytic anaemia that required steroidal 

treatment before and during gene therapy. A SAE of autoimmune 

thrombocytopenia required restart of PEG-ADA 5 months after gene therapy. In 

this case, the poor engraftment led to continuous administration of PEG-ADA for 

all the duration of follow-up until withdrawal from the study following allogeneic 

transplant from a sibling donor that was not available at the time of study 

enrolment.  
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 Subject 17 restarted PEG-ADA 0.34 years after gene therapy. This subject received 

further PEG-ADA intermittently on additional occasions due to poor immune 

reconstitution, then continuously through the end of the 0-3 year follow-up period.  

This subject received a sibling donor allogeneic SCT and was withdrawn from the 

study.  

 

1.4.9 Baseline Predictors of Efficacy Post-Gene Therapy  

 

Exploratory analysis was performed on the patient population to search for 

potential baseline predictors. Subjects with missing data or who started PEG-ADA were 

excluded.  

These additional integrated analyses did not show any clear relationship 

between baseline covariates and efficacy outcomes. In addition to 

CD34+ cells/kg*VCN, the other baseline variables considered were age at gene therapy; 

CD34+ cells/kg; and baseline values for peripheral CD3+ T cell counts, TREC counts, 

peripheral RBC levels of dAXP, and BMI.  The outcomes assessed were intervention-

free survival (for the first 3 years following treatment), changes in T cell counts at Year 

3, and changes in dAXP levels in RBCs at Year 3. 

The lack of correlation between age at the time of gene therapy and these 

endpoints is demonstrated in a boxplot for intervention-free survival at 3 years (1.4.10), 

scatterplot for CD3+ T cell counts (Figure 1.4.11), and scatterplot for peripheral RBC 

dAXP levels (Figure 1.4.12).   
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Figure 1.4.10 Boxplot of Intervention-Free Survival at 3 Years versus Age at 

Gene Therapy 

                

Note:  “Yes” indicates an intervention event occurred. 

*Note (for Figures 1.4.9, 1.4.10, 1.4.11):  Analysis includes N=14; Subject 1 did not have available data 

to contribute to 0-3 year data analyses other than survival and duration of follow-up, Subjects 8 and 17 

data were excluded from the point that they began long-term PEG-ADA use, and Subject 18 had data 

available up to the  Year 2.5 time point as of the data cut-off (08 May 2014). 
 
 
 
 

Figure 1.4.11 Scatterplot of Peripheral Blood T Cell Counts at 3 Years versus   

Age at Gene Therapy 

                    

                        Pearson Correlation Coefficient = -0.098 

                                      Note*(see Figure1.4.9)   
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Figure 1.4.12 Scatterplot of dAXP Levels in Peripheral Blood RBCs at 3 Years 

versus Age at Gene Therapy 

 

                     

                                 Pearson Correlation Coefficient = 0.421 
                              Note*(see Figure1.4.9)   
 

 

1.4.10 CNS Manifestations of ADA-SCID 

CNS abnormalities are frequent manifestations of ADA-SCID, even in patients 

that have been treated long-term with either ERT or SCT (81, 85).  

Although the duration of follow up reported here is relatively short there is no 

evidence of benefit or modifications of CNS abnormalities after gene therapy and this 

suggest that the neurological findings and features are not reversed nor delayed by this 

treatment. In one analysis from literature about CNS outcomes, half of patients with 

prior ERT who received allogeneic hematopoietic SCT developed CNS abnormalities, 

despite adequate metabolic detoxification (i.e., dAXP levels) (85), giving the idea that 

CNS manifestations of ADA-SCID are not expected to improve following standard of 

care (conventional hematopoietic transplant).  Toxic metabolite levels in patients 

receiving gene therapy have been shown to be comparable to those receiving SCT; 

however, no clear rationale for superior or inferior outcome with regard to CNS 

complications can be drawn from the available data. 

The most frequently reported CNS events were cognitive disorders (5 subjects).   

Two of the subjects considered to have unsuccessful gene therapy had CNS 

events.   
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The median time to onset of post-gene therapy CNS events for all subjects was 

3.07 years (range:  0.95 to 13.26 years). Most events were reported as ongoing 

(15/22 events). 

 

1.4.11 Quality of Life Evaluations 

 

Non-standardized and informal pediatric quality of life assessments have been 

performed in LTFU by subject status updates at annual follow-up visits, investigating in 

attendance at school, participation in sports, eating habits, and receipt of childhood 

vaccinations on the recommended schedule. Although these assessments were not pre-

specified as efficacy endpoints and baseline assessments were not collected, they 

provide some indication of the clinical benefit of gene therapy at LTFU time points with 

regard to overall well-being and daily function.  

The majority of subjects across all studies who had available LTFU data have 

reported on-time vaccinations, attendance at school or pre-school as appropriate for the 

subject’s age, and eating well with a varied and adequate diet.  Most subjects have not 

reported participating in sports during the LTFU, primarily due to their parents’ choice.   

 

 

1.4.12  Safety of the infusion of medicinal product 

 

The infusion of the medicinal product (autologous retroviral transduced CD34+ 

cells) was well tolerated by all patients and did not induce any adverse drug reactions in 

the hours following its administration.  

 

 

1.4.13 Overall safety surveillance 

 

1.4.13.1 Common Adverse Events (AEs) 

 

The most frequently reported AEs were infections and infestations, blood and 

lymphatic system disorders, and skin and subcutaneous tissue disorders. All subjects 

reported Grade 1 AEs and 17 of 18 subject reported Grade 2 AEs.  
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The most frequently reported Grade 3 (severe) AE was device-related infection 

(5 subjects) and more than half of subjects reported Grade 3, infectious AEs.  Other 

frequently reported (2 subjects) Grade 3 (severe) AEs were hepatic increased liver 

enzymes, anemia, neutropenia, gastroenteritis, pneumonia, and varicella.  All of the 

most frequently reported Grade 3 AEs resolved. 

Five subjects (28%) had Grade 4 events in the SOC of blood and lymphatic 

disorders.   

Three of the Grade 3 neurologic/hearing AEs are ongoing (hearing impaired, 

moderate mental retardation, severe mental retardation).  

 

1) Infections 

 

Four subjects experienced varicella and all of these subjects recovered.  Other 

less commonly reported opportunistic infections that occurred (and resolved) mostly out 

to the 3 year follow-up were experienced by 4 subjects: Aspergillus, cryptosporidial 

gastroenteritis, pulmonary mycosis and Cytomegalovirus infection in the same subject, 

Epstein-Barr virus infection. Oral candidiasis was reported in 6 subjects.  Five of the 

6 subjects that reported oral candidiasis post-treatment received multiple courses of 

antibiotics prior to the events, many as prophylaxis.  Two of the 5 subjects had events 

pre-treatment (Subject 4 and Subject 5). The highest densities were from the pre-

treatment to 3-month hospitalization period, prior to immune reconstitution. The 

1 subject with an event during the 4-7 year follow-up (Subject 4) also had events pre-

treatment and during the 3-month hospitalization period. 

One subject had meningitis and three reported sepsis and all subsequently 

recovered.  The latter three had CVCs in place, which is a known risk factor for sepsis.   

Six subjects reported 10 CVC infections, half of which were classified as SAEs.  

Most of these events (8/10 events) were Grade 3 and developed in the 3 month 

hospitalization or 3-year follow-up phase.  

A total of 12 subjects reported ear infections with onset mostly in the pre-

treatment to the 3 year follow-up period. 

Urinary tract infections were one of the most commonly reported infections.  

Overall, 10 subjects reported 21 UTIs, with no predominant organism reported.  The 

type of UTIs reported (enterococcal, Escherichia coli, Pseudomonas, and Klebsiella 

UTIs) are the same as the organisms that cause UTIs in the general population.  Most of 
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these events were reported during the 3-month hospitalization phase and early post-

discharge and were not related to catheter placement.  Seven subjects had recurrent 

UTIs:  5 subjects experienced 2 UTIs, and 2 subjects experienced 3 or more UTIs. Two 

subjects had serious UTIs.  The incidence of UTIs in males (6 males vs. 4 females) is 

higher than expected in a general population of pediatric patients.  Three of the male 

subjects had only 1 UTI, and 3 had 2 UTIs.  Three of the male subjects who experienced 

a UTI had congenital abnormalities ongoing at Screening, that are known to cause a 

predisposition for UTIs (2 subjects had phimosis [Subjects 3 and 9] and 1 subject had 

cryptorchidism [Subject 13]). 

 

2) Blood and lymphatic system disorders 

 

The blood and lymphatic system disorders AEs reported in 5 or more subjects 

were anemia and neutropenia. Anemia, neutropenia, febrile neutropenia, bone marrow 

failure, and/or thrombocytopenia were reported in 12 subjects.  

  

Five subjects (28%) had Grade 4 events and most occurred during the 3-month 

hospitalization phase. Five Grade 4 AEs were reported in the SOC of blood and 

lymphatic disorders (4 neutropenia AEs [1 of which was an SAE] and 

1 thrombocytopenia AE).  All of the Grade 4 blood and lymphatic disorder AEs 

occurred in the 3-month hospitalization phase and the majority occurred within 35 days 

of gene therapy, suggesting a correlation with chemotherapy with busulfan.   

 

3) Hypersensitivity 

 

Seventeen subjects reported 46 hypersensitivity events on or after treatment. The 

most frequently reported (3 subjects) events post-treatment were blood increased 

immunoglobulin E, atopic dermatitis, dermatitis, eosinophilia, and rash.  Most subjects 

had events in the 3-year follow-up phase (n=12) and most had Grade 1 events.  

Dermatitis and rashes are common in children with ADASCID (170) and in healthy 

children. The median time to onset of hypersensitivity events was 1.46 years (range 

0.02 to 11.84).  

Skin papillomas were reported in 4 subjects (3 of 4 had single events of short 

duration) and all resolved. Skin papillomas are caused by the human papilloma virus 
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(HPV) and are considered benign tumors. They have been reported in late-onset ADA 

deficiency (171) as consequence of the defect in cellular immunity including T cell and 

natural killer (NK), that is crucial to host defense against HPV.  

 

4) Hepatic Laboratory Abnormalities and Events 

 

Seven subjects experienced adverse events of hepatic transaminase elevations 

between 2X and 5X ULN, nearly all in the treatment and 3 month hospitalization 

phases, and most were likely a result of busulfan conditioning, as they resolved. 

Four subjects experienced hepatic steatosis (3 reported during LTFU) and 4 

subjects had hepatomegaly (2 reported pre-treatment). Of the 4 subjects with hepatic 

steatosis, 1 also had cholelithiasis and dyslipidemia (Subject 3), 2 had increased hepatic 

enzymes (Subjects 2 and 6), and Subject 6 also had an AE of hepatic fibrosis, a SAE of 

Epstein-barr virus, and high exposure to busulfan. Other subjects with more than 2 

hepatobiliary disorders or hepatic laboratory abnormalities included Subject 7 

(hepatomegaly, hepatic enzymes increased, and autoimmune hepatitis) and Subject 14 

(gallbladder cholestolosis liver disorder, hepatic lesion, and hyperplastic 

cholecystopathy).   

Hepatic steatosis is associated with nucleotide turnover, loss of ATP and 

generation of adenosine monophosphate (AMP) and enzymes of the purine metabolism 

(AMPK, AMPD2) are involved in controlling fat accumulation in the liver (172). 

Although there are no published reports in the literature of hepatic steatosis being 

associated with ADA-SCID, Sokolic et al. reported at 2013 CIS meeting that 2 subjects 

on ERT and one after gene therapy presented with metabolic syndrome and fatty liver 

(173).  Moreover, two ADA-SCID patients on long-term enzyme replacement therapy 

(who did not receive gene therapy), followed at San Raffaele Hospital showed fatty 

liver alterations (Aiuti, personal communication). In  the paediatric population, hepatic 

steatosis is often seen in non-alcoholic fatty liver disease (NAFLD) which involves 

intrahepatic fat accumulation that could include various degrees of necrotic 

inflammation and fibrosis (non-alcoholic steatohepatitis).  Paediatric NAFLD 

prevalence is estimated to be between 3% and 10% (174).  The cause is unknown but 

risk factors include features of the metabolic syndrome, namely, obesity, 

hypertryglyceridemia, insulin resistance, and type 2 diabetes mellitus. Other than one 

event of dyslipidemia, no subjects had metabolic syndrome risks. Further investigation 
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on the predisposition to fatty liver in ADA SCID patients is needed, but this event is 

unlikely to be an ADR.  

 

5) Oncogenesis events 

 

No malignancies were reported. Subject 12, a male aged 1.3 years at gene 

therapy, was diagnosed with “two millimetric nodules in upper right pulmonary lobe”, 

without symptoms, approximately 3 years after gene therapy. This subject also had an 

SAE of lipofibroma (175). 

A total of 4 subjects reported AEs of Grade 1 electrophoresis protein 

abnormality, one subject pre-treatment (Subject 10), 1 subject during the 3-month 

hospitalization phase, and 2 subjects during the 3-month to 3-year hospitalization phase, 

all of which resolved (Subject 5, 6, 10 and 17).   

Cytogenetic analyses, bone marrow morphology and bone marrow 

immunophenotype did not show major alterations. No abnormal blast values were found 

in either peripheral blood or bone marrow and therefore no AEs were reported. 

 

1.4.13.2 Serious Adverse Events (SAEs)  

Fifteen out of 18 subjects have reported 39 SAEs post-treatment.  Twenty-two of 

the 39 SAEs reported post-treatment were infectious. Two subjects had Grade 4 SAEs 

infections (see paragraph 1.4.4).  

 

The third Grade 4 SAE was a Grade 4 Neutropenia, that occurred in Subject 15 

from Day 12, persisting to Day 45.  The subject received antibacterial prophylaxis from 

Day 12.  Two doses of G-CSF were administered on Days 38 and 42.  The prolonged 

neutropenia was ascribed in part to conditioning related-myelotoxicity, and in part to an 

autoimmune phenomena, as anti-neutrophil antibodies were present.  For this reason, 

the subject was treated with high dose IVIG.  The event resolved after a duration of 29 

days. 

 

For autoimmunity SAEs see paragraph 1.4.5.3. 

 

One subject had an SAE of hypertension (Subject 8) for which long-term anti-

hypertensive therapy with amlodipine was administered.  
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1.4.14 Dose-Response Relationship 

 

The number of CD34+ cells administered is considered a key parameter in the 

successful outcome in bone marrow transplantation.   

In many transplant centers the minimum acceptable dose is considered to be 

2x106/kg CD34+ cells for a single transplant (176).  Furthermore, recent published 

consensus guidelines for autologous hematopoietic SCT recommend a minimum dose 

of 2x106 CD34+ cells/kg with a preferred target of 5x106 CD34+ cells/kg (177).  A 

maximum dose for CD34+ cells in autologous and allogeneic transplants is not typically 

defined, as the maximum dose often depends on practical and technical issues, such as 

the maximum number of bone marrow/cells that can be mobilized and collected from a 

single patient and, in case of major manipulation, the manufacturing process capacity.  

Based on the above considerations, the dose of 2x106 CD34+ cells/kg seems an 

appropriate lower dose limit supported by literature.  Additional support for 2x106 

CD34+ cells/kg being a minimally effective dose comes from Subject 2 in Pilot Study 2, 

for whom a first dose of 0.9x106 CD34+ cells/kg was not effective, leading to low gene 

marking and persisting lymphopenia, and the need of PEG-ADA administration. As 

already said, this subject also received gene therapy pre-conditioning with oral busulfan 

rather than via intravenously administration, and the product VCN for this patient was 

undetermined at the time of gene therapy, both factors that may have influenced the 

outcome of GT.   

No formal dose ranging studies have been conducted, but the great variability in the 

number of CD34+ cells harvested among the treated patients and the variability in the 

capacity of cells’ expansion during manufacturing, created a range of doses from 0.9 to 

18.1x106 CD34+ cells/kg into the GT development program, permitting an evaluation of 

safety and efficacy dose response across this range.   
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An exploratory analysis of dose response conducted on the Pivotal study population 

0-3 year data suggested a correlation between the dose (defined as CD34+ 

cells/kg*VCN) and the efficacy outcomes, including correlations between dose and 1-

year post dose granulocyte gene marking (R=0.8039) (Figure 1.4.13). Granulocyte gene 

marking is considered to be a good indicator of gene modified stem cell engraftment in 

bone marrow, so this is interpreted as evidence of higher doses of gene modified cells 

leading to increased engraftment of gene modified stem cells. 

Further positive correlations were also observed between dose and Year 3 T cell 

count (R=0.5570), Year 1 lymphocyte ADA activity (R=0.6432), and Year 2 

lymphocyte ADA activity (R=0.7567).   

These data also suggest that the number of CD34+ cells that a patient can donate 

at baseline is a predictor of long term outcome.  For this reason, it will be proposed for 

further development that patients should be able to donate a minimum of 4x106 CD34+ 

cells per kg body weight to be eligible for gene therapy (this is the number of cells that 

should be available at the end of cell purification).   

The dose response analysis was extended on the overall patients population 

dataset (excluding 2 subjects who required PEG-ADA reintroduction within 6 months 

post-gene therapy)  to assess correlation between dose and intervention-free  survival 

during 0-3 years, change from baseline in T cell count at Year 3, and dAXP levels in 

RBCs at Year 3. No correlation between dose and clinical response was shown. 

 
 

Figure 1.4.13 Gene Therapy Dose (CD34+ cells/kg*VCN) versus Percentage of 

Gene Marked CD15+ Granulocytes at 1 Year (Pivotal Population) 
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In the main clinical trial, a maximum of 40x106 CD34+ cells/kg were to be taken 

from a subject’s bone marrow and the maximum recommended reinfusion dose was 

20x106 CD34+ cells.  

There have been no dose-limiting toxicities observed within the administered 

dose range of 0.9x106 to 18.1x 106 CD34+ cells/kg.  An upper limit for the medicinal 

product dose has been defined based on practical and manufacturing limitations.  
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1.5 DISCUSSION 

 

1.5.1 Efficacy of Gene Therapy with autologous transduced 

CD34+ cells for the treatment of ADA SCID patients.  

This thesis reports clinical data from 18 ADA SCID subjects treated with 

autologous CD34+ cells transduced with retroviral vector encoding ADA.   

For all 18 subjects, prior PEG-ADA treatment had been ineffective or it was not 

a treatment option due to intolerance, lack of availability, or contraindication, 

andsubjects did not have a suitable sibling donor for HLA-matched SCT.  Four subjects 

had received prior unsuccessful allogeneic SCT, and 15 subjects had previously 

received prior PEG-ADA. This characteristics highlight the high unmet medical need in 

this subject population. 

Gene therapy was preceded by reduced intensity conditioning regimen. 

Preconditioning supported persistent engraftment of gene modified cells, expressing 

ADA-gene and resulting in correction of the ADA metabolic defect.  

A 100% survival rate, that was a primary endpoint of the main clinical study, 

was observed for all 18 subjects treated with a median follow-up duration of 

approximately 7 years (up to a maximum of 13 years for one subject). This exceeds the 

67% survival rate observed for MUDs recipients after a median follow-up of 6 years in 

conventional transplant settings (58).  

Severe infection rates, one of the key secondary endpoints for the main study, 

were significantly reduced after gene therapy in comparison to baseline, and from Year 

1 onwards remained lower than baseline, showing to further reduce in each year after 

gene therapy. 

Evidence of immune reconstitution was observed from 6 months post-gene 

therapy, with significant increases in numbers of peripheral CD3+ T cells (another key 

secondary endpoint for the main study) and T cell subsets.  

  The increases in T cell subsets were accompanied by evidence of thymopoiesis 

(TRECs) and peripheral T cell function (i.e., robust proliferation responses to anti-CD3 

antibody or PHA stimulation) from Year 1 onwards; no clear changes in CD16+ CD56+ 

NK cell counts were visible and B cell counts post-gene therapy were variable, with 

some increases and some decreases from baseline, but adequate function was 
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demonstrated by vaccine responses, increases in serum immunoglobulin production, and 

decreased IVIG requirement over time (especially from Year 4 onwards in LTFU). 

Persistent evidence for engraftment of gene modified cells in multiple lineages 

in the BM and PB was observed, without loss of gene marking over 8 years of follow-

up. Higher levels of gene marking in mature lymphoid cells supported the hypothesis 

that gene modified cells have a selective advantage.   

ADA-gene expression, measured as ADA activity in bone marrow and blood, 

decreased during the few weeks after treatment, in line with discontinuation of PEG-

ADA treatment, and then increased from around 1 year after treatment in both bone 

marrow and blood, after which expression was  stable for the duration of follow-up, 

reflecting synthesis of ADA in transduced cells.  

Peripheral blood lymphocyte ADA activity levels increased after treatment and 

remained stable during the follow-up, resulting in correction of the ADA metabolic 

defect measured by dAXP levels in RBCs. 

The majority of subjects (15 out of 18) did not require PEG-ADA after gene 

therapy; 3 subjects experienced gene therapy failure and required long term post-gene 

therapy PEG-ADA (3 months continuous use). 

Analyses of potential baseline predictors of benefit did not suggests any specific 

predictor for unsuccessful response to gene therapy. On this series experience, the 

availability of a minimum dose of 4x106 CD34+ cells per kg body weight (after cell 

purification) at baseline has been set as an eligibility requirement for gene therapy and 

as a likely predictor of long term outcome.  The absence of any correlation of outcome 

versus age supports an indication for gene therapy that covers a broad age range of 0-18 

years.  

There were no clear effects of gene therapy on CNS manifestations of the ADA 

SCID, as when CNS abnormalities were present prior to GT, these were not mitigated 

by the treatment, and as some patients developed CNS abnormalities after receiving 

gene therapy, similar to CNS outcomes in standard of care SCT of ADA-SCID (85).   

Overall quality of life for subjects who have received gene therapy suggests 

these children are growing with their peers (from physical growth data on height and 

weight),  are entering and maintaining regular school attendance, despite of eventual 

learning disabilities, and are participating in physical activities such as sports. This is a 

qualitative outcome that matches with the quantitative evidence of long-term clinical 

benefit. 
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1.5.2 Safety of treatment 

 

No treatment-related mortality (TRM) was registered in the clinical program. 

Preparatory conditioning with busulfan was well tolerated by all subjects. Hepatic 

enzyme increases, anaemia, and neutropenia occurred mostly in the 3 month 

hospitalization period after GT and were considered to be related to busulfan 

conditioning. AEs of cytopenias, elevations in transaminases and hypertension, 

observed post conditioning and likely related to busulfan, generally resolved over time.   

The infusion of the investigational medicinal product was well tolerated  

No fatal AEs following treatment were reported; on the other hand, as expected 

in ADA SCID (72), all 18 subjects experienced infectious AEs.  The 3 most frequently 

reported infectious AEs were normal, expected childhood infections, as upper 

respiratory tract infection, gastroenteritis, and rhinitis (178). Serious opportunistic 

infections were not common. The majority of severe infections occurred during 

immune reconstitution and, moreover, were often related to external factors, such as the 

presence of CVC or congenital abnormalities in several male subjects that experienced 

UTIs.  This is particularly meaningful, as the majority of subjects (82%) experienced 

severe infections and on multiple occurrences in the pre-treatment phase, despite the 

incidence of pre-treatment events may be underreported.  

No events indicative of leukemic transformation or myelodysplasia were 

reported.   

No AEs consistent with systemic allergic events were identified within the first 

year after gene therapy administration.   

Neurological events, including the cognitive and audiological events, were 

observed and are similar to those observed in patients treated with BMT or PEG ADA 

(89, 170).  These events may be directly related to ADA SCID, to infections that 

subjects may have experienced (e.g., meningitis), or to other medications received (e.g., 

antibiotics such as gentamycin). 

Overall, 10 subjects reported a total of 21 events related to autoimmunity with 

isolated antinuclear antibody positive as the most frequently and often nonspecific 

reported event. Three subjects had SAEs of autoimmunity and two of these subjects 

required reintroduction of PEG-ADA in order to reduce the autoimmunity phenomena. 

Autoimmune events in SCID patients are well described as a consequence of immune 
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dysregulation treated with HCT or PEG ADA during immune reconstitution (44) but 

may also be due to immune reconstitution that follows gene therapy. 

1.5.3 Comparison of retroviral gene therapy with HSCT  

 

HLA-matched sibling donor SCT is considered the gold standard in ADA-SCID 

therapy, but availability of a suitable sibling donor is limiting, making MUD transplant 

the more readily available and commonly used standard of care (10).  

The outcome of allogeneic HCT transplantations for children with SCID has 

improved dramatically over time (81, 115), but an emerging awareness is developing 

that some forms of SCID are more difficult to treat than others, in particular patients 

with T-B- SCID do worse than T-B+ SCID. This is either more true for SCID forms that 

are caused by defects of molecules more ubiquitously expressed than restricted to the 

immune system only (58).  

In particular for ADA SCID, the need for conditioning and the metabolic issues 

of the disease make transplantation from MMUD and HAPLO still characterized by 

increased risk of toxicity and poor outcome (58, 81, 82).  

Therefore, improvement in morbidity and mortality over the existing therapeutic 

options remains mandatory and gene therapy is a valid option with a favourable 

benefit/risk in relation to MUD BMT. 

Gene therapy is also potentially a treatment option for all patients without the 

need for a protracted donor search. 

 

1.5.3.1 Overall survival 

 

The results from Hassan et al. report documented, by retrospective analysis of 

transplantation among 106 patients with ADA-SCID, the different outcomes from 

different donor sources and after different conditioning regimens. They show clearly the 

importance of donor matching in improving outcome and the poor outcome in 

mismatched transplantations, as the most important factor influencing the success of the 

transplant. Overall survival was higher in genoidentical donor transplants (86% for 

MSD and 83% for MFD, both conditioned and unconditioned) than in HLA-matched 

MUDs (67%). Long-term survival rates of 67%, 43% and 29% were observed after 
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matched unrelated, haploidentical or mismatched unrelated donor respectively (58). 

Cumulative data from unrelated UCB transplant in primary immunodeficiencies show 

an estimate 5 year survival of 57% +/- 6% (81).  

The objective of the primary efficacy analysis in the main gene therapy study 

was to compare survival with the historical MUD rates, and the 100% survival of all 

gene therapy recipients compares favourably with lower 67% OS of MUDs recipients 

(58). Importantly, the observed 100% survival of all subjects in the gene therapy 

program is also greater than the sibling donor survival rates reported. Moreover, even 

considering patients requiring intervention (>=3 months PEG-ADA or SCT) as 

treatment failures, the survival rate without intervention in pivotal population (92%) 

exceeds the overall survival rate for MUD transplants and sibling donor transplants, 

while the survival rate without intervention in integrated population (82%)  remains 

higher than the MUD and is similar to the sibling donor survival rate.  

The superior results after MSD/MFD HCTs may also reflect a shorter donor 

search to transplantation time, due to the possibility (because of the ready availability of 

the donor) to perform MSD/MFD HCTs without conditioning and soon after the 

diagnosis in a patient less compromised following multiple infectious events or ongoing 

metaboli degeneration, in comparison with unrelated donor transplantations, where the 

delay may affect negatively on the clinical status of the patient (58). In this view, an 

advantage of autologous gene therapy procedure is that it is soon available for all 

patients (that can donate adequate CD34 cells), and does not require a delay in treatment 

while a matched donor is located. Moreover, treatment with gene therapy does not 

preclude alternatives in patients who fail to achieve adequate immune reconstitution 

(i.e. PEG-ADA or SCT). 

 

Age is indeed a significant risk factor in transplantation setting for ADA SCID 

patients, with a reported trend to better survival, even if not statistically significant, in 

children up to 6 months of age (58). Importantly, the median age at treatment was 1.7 

years (range, 0.5, 6.1), higher than that reported by Hassan, being 4 months (range, 2 weeks to 7 

years) (58). Moreover, the median available follow-up after gene therapy is 6.94 years 

(range: 2.6 to 13.4), comparable to the median follow-up of 6.5 years (range, 1.6-27.6) 

reported in Hassan cohort (58). These observations strengthen the better outcome of 

gene therapy if compared to MUD SCT as a treatment for ADA-SCID. 
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1.5.3.2 Conditioning regimens, complications and deaths  

 

The majority of deaths (63%) after all types of transplantations for ADA SCID 

are reported in the first 100 days after HCT and are mainly related to severe infections, 

as pneumonitis/respiratory failure and sepsis, followed by GvHD (15%) and fungal 

infections (11%). Only 13 deaths occurred after 100 days and only 2 of them were 

related to transplant-related complications, namely chronic GvHD (58).   

The use of myeloablative conditioning regimen in MUD/MMUD/HAPLO 

transplantations is an important factor playing a major role in determining the 

unfavourable outcome in ADA SCID patients, if compared to the unconditioned 

transplants from MSD/MFD. In particular, the absence of serotherapy in the MSD/MFD 

transplants allows a faster and better recovery of CD3+ cells in the first year after 

transplantation and in a decreased mortality for viral infections due to the more rapid T-

mediated resolution of the events. Conversely, transplantations after RIC had an OS of 

67%, and this was not significantly different from outcomes after unconditioned 

procedures (58). 

As reported above, the use of non-myeloablative conditioning regimen with 

Busulfan 2 mg/kg/day for 2 consecutive days prior to GSK2696273 gene therapy was 

well tolerated and led to successful treatment of the disease. No fatal AEs following 

GSK2696273 treatment were reported. Also after gene therapy, complications, 

previously described as AE/SAE, were mainly infectious and were observed in all 18 

subjects, highest in the pre-treatment to 3-month hospitalization period and then 

decreasing with time, a finding which would be expected in subjects becoming immune 

reconstituted. The most frequently reported infectious AEs were normal, expected 

childhood infections. Serious opportunistic infections were not common with only 1 

subject each reporting Aspergillus infection, cryptosporidial gastroenteritis, and 

pulmonary mycosis. The majority of severe infections (12 of 15) were reported during 

the 3-month to 3-year treatment period and all resolved. Moreover, all the subjects 

experienced a reduction in the rate of infections after gene therapy, demonstrating the 

significant benefit of this approach. Other AEs thought to be related to busulfan were 4 

episodes of neutropenia (1 of which was a SAE) and 1 episode of thrombocytopenia, 

occurring during the first 35 days from gene therapy. Moreover, 7 subjects showed a 

moderate increase of liver enzymes, as expected after chemotherapy, without other 

signs of liver failure. All the events resolved.  
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On the other hand, busulfan pre-conditioning was shown to be essential to obtain 

a good engraftment of engineered stem cells. Subject 2 received a first gene therapy 

after receiving oral busulfan; the CD34+cells dose was very low (0.9 x 106/kg), due to a 

low numbers of CD34 stem and early progenitor cells in the  harvested bone marrow. 

The patient has persistet lymphopenia and a second harvest was performed, with a 

second infusion of CD34+cells at the dose of 2.1 x 106/kg 2.6 yrs after the first gene 

therapy, but without busulfan conditioning. The immune reconstitution was not 

complete and the patient remained on long term PEG-ADA since 4.5 yrs after the first 

gene therapy.  

  

 

1.5.3.3 Engraftment, immune and metabolic reconstitution and outcome 

 

While superior survival was seen in patients who received unconditioned 

transplants in comparison to myeloablative procedures (81 and 54%), unconditioned 

HAPLO T-cell depleted transplantations had a high rate of graft failure or rejection, 

differently from the data of similar transplantations performed in SCID-X1 (179). At a 

less degree, non-engraftment occurred also in genoidentical transplants (in 13% of 

unconditioned sibling transplants), despite overall it was reported an excellent outcome 

with stable high levels of T donor chimerism and excellent T-cell numbers and function 

(58). 

Due to the lack of T and NK cells in ADA SCID patients, the basis of non-

engraftment is unlikely to relate to immunologic rejection. An alternative explanation 

could be the inability of the ADA-deficient marrow stromal microenvironment to 

support engraftment of wild-type HSCs, as supported by in vitro murine data, while in 

case of infusion of whole marrow, as for MSD/MFD transplantations, even if 

unconditioned, the engraftment is mainly of more mature cells (58).  In the HAPLO and 

MMUD setting, conditioned transplantations also have poor outcome, probably for the 

high toxicity of the regimen or the delayed T-cell reconstitution, with consequent 

inability to clear viral infections (58).  

All subjects who received gene therapy showed evidence of engraftment of gene 

modified bone marrow and peripheral cells, and the majority (15/18 subjects) were 

considered treatment successes on the basis of immune reconstitution and evidence of 

therapeutic mechanism of action.  Three subjects overall required intervention with 
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long-term PEG-ADA, and in two cases subsequent allogeneic SCT, and this 

intervention may have contributed to the 100% survival rate.  

One of the most important advantages of gene therapy contributing to the 

benefits and the success of this approach, is the use of autologous cells in the treatment 

dose, which reduces the risk of graft versus host disease and rejection (55). This is a 

considerable utility, especially versus mismatched HSCT in which the risk of GvHD is 

considerable. The absence of risk of GvHD permits also to avoid the long-term 

administration of immune suppressive prophylaxes and/or treatment, usually favouring 

viral reactivations that represent a quite common complication following HSCT and can 

be severe. In our study, 4 patients experienced Varicella infection (3 in the 3 months-3 

years follow-up and 1 at 6 year follow-up), 1 subject presented with pulmonary mycosis 

and consensual Cytomegalovirus infection and another subject underwent Epstein-Barr 

reactivation with persisting lymphopenia, both during the 3-month hospitalization 

phase. The EBV reactivation was a SAE which required back-up bone marrow cells on 

2 occasions, at approximately 1 and 2 months after gene therapy. All these AEs/SAE 

were well controlled thanks to careful viremia monitoring and prompt start of specific 

therapy. No EBV-associated PTLD have been observed as of last available follow-up.  

 

Long-term immune recovery in the Hassan cohort showed that regardless of 

transplant type, overall T-cell numbers were similar although a faster rate of T-cell 

recovery was observed following matched sibling or matched unrelated BMT. Post-

transplant TREC levels were low in unconditioned transplants, suggesting more limited 

stem cell engraftment with this approach. Interestingly, humoral immunity and donor B 

cell engraftment was achieved in nearly all evaluable surviving patients, including 10/12 

unconditioned patients, and most patients were able to discontinue immunoglobulin 

replacement. This supports the hypothesis from new B-cell reconstitution data in T-cell 

depleted haploidentical unconditioned transplants, that the purine salvage pathway is 

not as critical for B cells as it is for T cells, and that in ADA-SCID, host B-cell function 

can be reconstituted following donor T-cell reconstitution  (58, 180). Another 

hypothesis, is that may also be a survival advantage to ADA-expressing B-lymphocytes 

(58).  

According to the available data, the immunological and metabolic recovery after 

allogeneic transplant is well maintained even after 10 years or longer in some patients 

(81). Nevertheless delayed or suboptimal immune reconstitution as a result of poor early 
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engraftment or gradual decline in immune functions is observed in a significant fraction 

of surviving patients (81).  

 

For patients who received gene therapy considered as treatment responders 

(15/18), the cumulative evidence suggested development and normal function of T cells 

including increases in peripheral cell counts and proliferation from approximately 6 

months post-gene therapy and onwards, with the increased numbers and functionality of 

cells maintained from Year 1 through 8 years of follow-up. Recovery and maintenance 

of T cell counts over time was particularly significant and clearly sustained overtime, as 

demonstrated for subjects in the LTFU who remain alive and free of opportunistic and 

severe infections.  Importantly, TRECs in peripheral blood lymphocytes were increased 

from Years 1 to 3 post-treatment, and gradually declined at Years 5 and 8, in line with 

age-related decreases in thymus size; this was in line with the increase in lymphocytes 

counts and the detection of peripheral CD4+ CD45RA+ naïve T cells. As this appears to 

be a stronger evidence of prethymic progenitor cell engraftment than happens in 

allogeneic transplant setting, it is very encouraging in expecting a long term 

immunologic recovery after gene therapy, being anyway a long follow-up mandatory 

either in patients undergone allogeneic transplant or gene therapy.   Peripheral B cells 

counts did not show a clear increase post-gene therapy, but B cell function was 

evidenced by observed immunoglobulin production, vaccination responses, and 

decreased dependence on IVIG use over time. This evidence supports the possibility of 

one or both of the two hypothesis made before for B cells reconstitution. The biological 

evidence correlates with the timing of decreasing severe infection rates, which dropped 

post-gene therapy from Year 1 onwards.   

 

In the Hassan cohort, a metabolic correction was evident in all the transplanted 

patients irrespectively from the donor source and the intensity of conditioning regimen 

(MAC/RIC/unconditioned) (58).  The available data about long-term F-U after GT 

show comparable efficacy profile. The presence of gene modified bone marrow and 

peripheral cells across cell types (granulocytes, erythroid cells, T cells, B cells, and NK 

cells), elevated ADA activity, and reduced dAXP levels after receiving gene therapy 

collectively demonstrated the restoration of ADA function and correction of the 

metabolic defect and matched the timing of immune cell increases in numbers and 

function.  



                                                                                     GT for ADA SCID: long-term F-U   

106 

 

1.5.4 Comparison of retroviral gene therapy with ERT 

 

The successful data reported from transplantations from a well-matched donor 

source show that, once patients survive the procedure and engraft donor cells, relatively 

complete immune reconstitution is achieved.  

This observation is in striking contrast to the results of immune reconstitution 

after ERT. Evidence suggest that, despite being well detoxified, patients on long-term 

PEG-ADA present with T-cell numbers that are much below normal levels (58). The 

specific reasons are unclear, but the data suggest as the main reason that intracellular 

ADA expression either through transplantation of wild-type cells or GT of autologous 

cells corrects T-cell function more effectively than exogenous enzyme replacement. 

Moreover, differently from GT and BMT, the B-cell function defects are not fully 

repaired by ERT whereby only 50% of patients are able to discontinue Ig replacement 

therapy (58).  

In the main study, the medicinal product was studied in patients for whom PEG-

ADA was not a valid treatment option.  Positive outcomes have been demonstrated in 

patients treated with gene therapy that had not received prior PEG-ADA with no 

difference in the outcome from those who had received prior PEG-ADA (109).  

Although no comparative study between GT and PEG-ADA has been conducted, 

comparison between the data with GT and published data with PEG-ADA indicated a 

positive benefit risk for GT, particularly in relation to the 100% survival rate, and 82% 

intervention free survival rate following treatment with gene therapy and the durability 

of the immune reconstitution. 

 

Given these data, the prevailing current medical opinion is that ADA-SCID 

patients should receive definitive treatment such as SCT or gene therapy at an early age 

because better outcomes are achieved with earlier treatment. The results from gene 

therapy trials led to issue recommendation from the EBMT Inborn Error Working Party, 

according to which gene therapy is considered a valid option to all patients without an 

HLA-identical sibling donor, regardless of the age, availability of a MUD, and outcome 

of PEG-ADA therapy (181). 

 

A recent review by Gaspar (81) provides the policy at GOSH, which is aimed at 

first stabilizing patients with PEG-ADA and then offering patients MUD transplant or 



                                                                                     GT for ADA SCID: long-term F-U   

107 

 

gene therapy (Figure 1.6.1).  

The ADA SCID population candidate to receive gene therapy in the next future 

will be extended to all ADA SCID patients aged 0-18 years lacking a MSD. The 

indication will be to perform the gene therapy treatment as early as possible, also in 

patients who show a good immunological response to PEG-ADA, without waiting the 

ERT failure.  

 

 

Figure 1.5.1 From Gaspar et al. 2009, How I treat SCID. 
 

 

 

 
 

 

1.5.5 Autoimmunity 

 

Autoimmunity is occurring very often in SCID patients who achieve partial or 

poor immune reconstitution after conventional SCT or with PEG-ADA treatment (44, 

182), and in late onset ADA deficiency (66, 67), with various mostly hematological and 

endocrine manifestations (44, 81, 108). It has been argued that when patients with early-

onset ADA-SCID shift from a virtually complete lack of T-cell–mediated immune 

response prior to treatment to an intermediate level of T-cell function, this allows for the 
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development of allergy responses and autoimmune disease (44). This can happen 

following treatment with BMT, PEG-ADA, or also gene therapy.  

After gene therapy, 11 subjects reported a total of 26 events related to 

autoimmunity.  Grade 1 ANA positivity was the most frequently reported treatment-

emergent autoimmune event (4 events), whose clinical relevance is not clear as positive 

ANA titers without clinical signs of without inflammatory or autoimmune conditions 

pose a minimal risk for such disease in the pediatric population (163, 164). Several 

subjects treated with GT entered their study with a history of autoimmunity and 

experienced subsequent post-gene therapy autoimmune events considered as serious.  

Two subjects who had post-gene therapy autoimmune events reported as SAEs had a 

history of autoimmunity, and 2 subjects who did not present at baseline with a history of 

autoimmunity subsequently developed autoimmune SAEs after gene therapy.  Five out 

of 6 SAEs of autoimmunity (anti-neutrophil antibody induced neutropenia, autoimmune 

thrombocytopenia [2 events], autoimmune aplastic anemia, autoimmune hepatitis, and 

Guillain-Barré syndrome) occurred within the first 3 years following gene therapy.  

Two subjects (one of which was Subject 8 who had an unsuccessful response to 

GSK2696273 treatment) required reintroduction of PEG-ADA in an attempt to restore 

immune function and reduce the observed autoimmunity. Subject 8 had a history of 

autoimmune hemolytic anemia prior to gene therapy, that included chronic treatment 

with steroids, and had PEG-ADA reintroduced approximately 5 months after gene 

therapy due to an SAE of autoimmune thrombocytopenia, as already described (109).   

Importantly, chronic autoimmunity by the time of gene therapy treatment might 

have contributed to an unfavorable environment to achieve successful gene therapy and 

consequent failure of engraftment in this subject. Another hypothesis is the implication 

of mutation of single genetic loci leading to susceptibility to multiple autoimmune 

diseases in some patients, presumably modifying a generalized predisposition to 

autoimmunity with organ/disease specificity, as postulated (44). 

It remains unclear to what extent specific mechanisms of tolerance are affected in ADA 

deficiency (44). Reconstitution of effector T- and B-cells as well as metabolic 

detoxification after treatment might therefore be requirements for the onset of 

autoimmunity (44). 
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1.5.6 Safety considerations  

 

1.5.6.1 Risk of Mutagenesis 

 

Adenosine Deaminase is a house keeping gene, it is not involved in promoting 

cell proliferation (unlike Wiskott Aldrich Syndrome Protein or Rag 2 gamma in X-

SCID) and is only expressed at relatively low levels following gene therapy. 

 

In several gene therapy trials including the present one, where over 40 ADA-

SCID patients have been treated since 2000, no leukemic or oncogenic events were 

revealed, even if integration into known proto-oncogenes have been reported for all the 

trials (55). In this series of ADA SCID patients treated with GT, no adverse events 

indicative of leukemic transformation, lymphoproliferation, or myelodysplasia have 

been reported.  Moreover, analysis of bone marrow and peripheral blood smears has not 

revealed the presence of abnormal immature myeloblasts and no karyotypic alterations 

were found by cytogenetic analyses.  In addition, serum protein electrophoresis revealed 

no serum monoclonal protein during long-term follow up, suggesting that the gamma 

globulins present were polyclonal, indicative of a normal B cell compartment. 

It will be important to continue to monitor GT treated patients to ensure that 

existing data trends supporting the safety of gene therapy remain over the long term, but 

at this time, the benefit/risk seems very well supported in terms of leukaemia risk. 

 

1.5.6.2 Risks Associated with Posology and Manufacturing 

 

The recommended dose for GT (2 to 20x106 CD34+ cells/kg) was determined by 

observations from hematopoietic transplantation practice, the GT clinical program, and 

constraints of bone marrow harvest and the manufacturing process.   

Although no formal dose-ranging studies have been conducted, from the 

outcome gained from the administration of very different cell dose (between 0.9 and 

18.1x106 CD34+ cells/kg), a minimum recommended dose of 2x106 CD34+ cells/kg 

would be suggested; this is also in line with pediatric SCT dosing literature (183).  As 

approximately 10% of patients may not yield the minimum number (4 x 106) of CD34+ 

cells/kg required to ensure that the minimum dose can be manufactured, primarily due 

to the ADA deficiency in itself, an alternative is the use of a product derived from 



                                                                                     GT for ADA SCID: long-term F-U   

110 

 

frozen CD34+ cells in addition to the fresh product, to ensure manufacture and the 

infusion of an adequate quantity of CD34+ cells; this option is under evaluation.  

Moreover, since cells are infused fresh under the current process, there is also 

the risk that, due to initial contamination of the bone marrow harvest, the final product 

would be compromised. In this case, the patient will not be infused and will receive the 

bone marrow back-up.  

 

1.5.7 Benefit/Risk across the age of treatment 

 

Although the actual age range of patients that received treatment ranged between 

6 months to 6 years 1 month, there is a reasonable expectations that age range should be 

from birth to 18 years, as outcomes have shown no significant trend in relation to the 

age of patients treated to date in the gene therapy clinical program. 

In the series of ADA SCID European patients undergone BMT reported by 

Hassan, only one patient out of 106 was older than five years old (58) and in a similar 

US study across all SCIDs reporting two hundred and forty patients none were older 

than five years of age (10). Occasionally patients that have only partially responded to 

previous treatments may present and treatment centres can consider all treatment 

options.   

Although no information are available to support evaluation of GT in patients 

below six months of age, there are no data or hypotheses suggesting that GT would 

behave differently in very young infants and GT has not demonstrated age-related safety 

concerns.  Very young infants may experience additional potential benefits of early 

treatment with GT due to more active thymopoiesis and generally reduced concomitant 

disease at the time of treatment. 

With the increasing development of newborn screening (12) and well organised 

bone marrow donor registries, patients may present for treatment increasingly quickly.  

However, considering the time required to confirm ADA-SCID diagnosis, for patient’s 

stabilization and preparation for the treatment, more frequent is going to be the situation 

in which patients > 6 months of age will be referred to treating centers. Moreover, the 

treatment of children aged 0-6 months presents particular challenges, as the technical 

difficulty of bone marrow harvesting,  the limited volume of bone marrow that can be 

extracted and the increased variability of busulphan pharmacokinetics (in infants <9kg), 
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which may ultimately determine the age at which a patient may be safely undergo the 

treatment. 
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1.6 CONCLUSIONS  

 

Gene therapy for ADA SCID has led to 100% long-term survival (maximum and 

median follow-up of 13 and 7 years, respectively).  The majority of subjects have 

demonstrated evidence of multilineage engraftment of gene modified cells, sustained 

increases in functional gene modified lymphocytes, maintenance of a robust immune 

reconstitution, significantly fewer severe infections over time, and continued physical 

growth.  

Overall, safety data show that the gene therapy program was as expected for a 

pediatric autologous HSCT.  The frequency and severity of infections, severe, 

opportunistic and otherwise, trended downward as subjects became immune 

reconstituted.  No events indicative of leukaemic transformation or myelodysplasia 

were reported and no issues around immunogenicity were evident. At this time, 

identified adverse drug reactions are limited to those thought to be related to immune 

reconstitution (fever and various autoimmune events).     

Overall, based on the positive benefit to risk profile, the limitations associated 

with current therapeutic treatment options, and the significant mortality experienced by 

patients with ADA-SCID, there is an urgent medical need for additional therapeutic 

options. The gene therapy program developed at TIGET was inlicensed by GSK and is 

currently under further development, with the aim to obtain the registration in the 

market.  

There is a robust evidence of efficacy of the data for an ultra-rare disease, 

considered fatal in the first year of life when untreated, and appropriate comparisons 

with other treatments.  
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1.7 FUTURE PLANS 
  

Gene therapy has made significant progress over the last 20 years. Previous trials 

focused on the treatment of PIDs, and among them ADA SCID, with retroviral vectors 

have demonstrated clinical and biological efficacy. Unfortunately, in some cases of 

PIDs safety issues occurred, as hematological malignancies in 5/20 patients affected by 

SCID-X1, 3/5 patients treated for CGD and 7/10 patients affected by WAS (55).  

Despite this, no leukemic or oncogenic events after the use of retroviral vectors 

for the treatment of patients with ADA SCID have been reported in over 40 patients 

treated in UK, US and Italy (138). 

Although no vector-related harmful effects have been observed in any of the 

ADA-SCID trials, the development of new vectors with reduced risk of insertional 

mutagenesis, or alternative strategies of gene correction are important for all stem cell 

gene therapies (184).  

Lentiviruses are an attractive option, since insertions occur preferentially within 

transcriptional units but not immediately surrounding the transcriptional start site (185). 

In the last years, significant advances have been made in the study and the clinical 

application of GT with lentiviral vectors (LV), that have been attempted with benefit 

and a good safety profile to the treatment not only of PIDs. Among the other diseases in 

which this approach has been attempted there are hemoglobinopathies, as beta (β)-

thalassemia and sickle cell disease (17) and metabolic diseases, as Xlinked 

Adrenoleukodystrophy (18) and metachromatic leukodystrophy (19). In the PIDs field, 

very promising results have been obtained from the treatment of WAS with LV (186) 

and a recent attempt is in course by Kohn and Gaspar’s group of for ADA SCID 

(reported at ESID meeting 2014 (81). 

However, the semi-random integration of viral vectors into the genome of target 

cells means there is always a risk, even if small, of disrupting gene expression near the 

insertion sites (138). 

The ultimate goal for gene therapy would be to insert the therapeutic cassette in 

a known, safe location within the genome that would allow expression of the 

therapeutic gene without perturbing the expression of other genes in the vicinity (138). 

New technologies to target gene insertion should enhance safety further, 

maintaining appropriate regulatory control of gene expression and not risking 

genotoxicity through ectopic vector insertion. Technologies that allow highly specific 
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double-stranded DNA cleavage are beginning to be used for targeted gene insertion. 

This can be achieved by homologous recombination of corrected gene sequences by 

cellular DNA repair pathways following targeted DNA breakage. Zinc finger nucleases 

(ZFNs), meganucleases (MN), transcription activator-like effector nucleases (TALENS) 

and, more recently, clustered, regularly interspaced, short palindromic repeat (CRISPR) 

nucleases are all being developed to create highly specific gene targeting (184).  

The efficiency of gene editing using these techniques has improved notably in 

cell lines and certain primary cell lineages, although remains limited in primary HSC. 

Nonetheless, for disorders such as SCID-X1, where corrected cells acquire a notable 

survival advantage, gene repair by homologous recombination holds promise as the 

efficiency of nuclease reagents improves (138, 184). 

 

As data from the current clinical trials become available, it is likely that gene 

therapy will move from an experimental approach to become part of the mainstream 

therapeutic cellular armament, although long term follow-up of treated patients will be 

required to monitor potential long-term adverse events. The adoption of vector 

manufacture by mainstream pharmaceutical companies is likely to accelerate the 

adoption of gene therapy as a standard tool of cellular therapies.  
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SUMMARY AND FINAL REMARKS 
 

PIDs represent a heterogeneous and growing-in-characterization group of 

monogenic conditions which display very different phenotypes, that can range from 

being asymptomatic to manifestation of life-threatening conditions (2, 187).  

Among different therapeutic approaches, in recent years GT has attracted 

attention for the opportunity to provide a definitive, targeted and personalized treatment, 

with a good safety profile for several PIDs. As a consequence, GT has enlarged the 

percentage of patients affected by PIDs, for whom a compatible bone marrow donor 

was not available, that could have been cured. Moreover, new acquisitions gained in 

this field have created a new groundwork by the deeper study of many 

immunodeficiencies and their molecular and pathogenetic mechanisms.  

As the safety of the patients remains a crucial point, there is great expectation in 

the patients’ community that even safer and more effective approaches can be 

developed for a wider spectrum of PID and future goals include the conduct of 

prospective treatment studies to determine optimal therapies for PIDs, and for other 

genetic diseases. 

 

During my PhD program, I contributed to the development of “New approaches 

in management and treatment of primary immunodeficiencies and other genetic 

diseases”, in particular of innovative advanced cellular and gene therapy approaches. 

Moreover, I contributed to the clinical and biological characterization of patients 

with immunodeficiencies, in order to clarify unsolved issues and unknown mechanisms 

underlying the functionality of the immune system, determining a given clinical 

phenotype.  

Another line of research has been the implementation of new approaches for the 

clinical management of children affected by hematological and immunological 

disorders undergoing bone marrow transplantation.  

Furthermore, I have described the use of new drugs in pediatric population and I 

have characterized severe and unusual conditions in pediatric population.  

 

Overall, most of my studies were focused on investigating the safety and 

efficacy of alternative therapeutic strategies for the treatment of PIDs and other genetic 
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diseases and to implement the standards of care of bone marrow transplantation for 

pediatric patients with hematological and immunological diseases.  

These results represent an important goal in view of a coming era in which gene 

therapy and other advanced therapies will quickly move from being an experimental 

approach to a standard cellular therapy. 
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ABBREVIATIONS 

AE Adverse Event 

ADA Adenosine Deaminase  

ADR Adverse Drug Reaction 

AE 

AIEOP 

Adverse Event 

Associazione Italiana Ematologia Oncologia 

Pediatrica 

ALT Alanine Aminotransferase 

AME Absorption, metabolism, and excretion 

ANA Antinuclear Antibody 

AST Aspartate Aminotransferase 

BMT Bone Marrow Transplant 

CD4+ T cell subset 

CD34+ 

CGD 

Haematopoetic stem progenitor cells 

Chronic Granulomatous Disease 

CNS Central Nervous System 

CRF Case Report Form 

CSR Clinical Study Report 

CRT Catheter-Related Thrombosis 

CT Computed Tomography 

CTCAE Common Terminology Criteria for Adverse 

Events 

CUP Compassionate Use Programme 

CVC Central Venous Catheter 

dADP Deoxyadenosine diphosphate 

dAMP Deoxyadenosine monophosphate 

dATP Deoxyadenosine triphosphate 

dAxP 

 

DMD 

Deoxyadenosine nucleotides (dAMP, dADP, 

dATP) 

Duchenne Muscular Dystrophy 

ECG Electrocardiogram 

EEG  Electroencephalography 
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EMA European Medicines Association 

ERT Enzyme replacement therapy 

F-U Follow-up 

G-CSF Granulocyte Colony Stimulating Factor 

GSK 

GT 

GlaxoSmithKline 

Gene Therapy 

GTMPs Gene Therapy Medicinal Products 

GVHD 

HLH 

Graft Versus Host Disease 

Hemophagocytic Lymphohistiocytosis 

HPV Human papilloma virus 

HSC Hematopoietic Stem Cell 

HSC-GT Hematopoietic Stem Cell - Gene Therapy 

HSR Hospital San Raffaele 

HSCT Hematopoietic Stem Cell Transplant 

IgA Immunoglobulin A 

IgG Immunoglobulin G 

IgM Immunoglobulin M 

IV Intravenous 

IVIG Intravenous immunoglobulin 

LTFU 

LV 

Long term follow-up 

Lentivirus 

MAA 

MABs 

Market Authorization Application 

Mesoangioblasts 

MDS 

MLD 

Myelodysplastic syndrome 

Metachromatic Leukodystrophy 

MRI Magnetic Resonance Imaging 

NK Natural Killer 

NAFLD Non-Alcoholic Fatty Liver Disease 

NPP  

PIDs 

PIDTC 

Named Patient Program 

Primary Immunodeficiencies 

Primary Immune Deficiency Treatment 

Consortium 

PCR Polymerase Chain Reaction 
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PEG Polyethylene glycol 

PEG-ADA Polyethylene Glycol-modified bovine 

Adenosine Deaminase 

VEP Visually Evoked Potentials 

RAP Reporting and Analysis Plan 

RBC 

RV 

Red Blood Cells 

Retrovirus 

SAE Serious Adverse Event 

SCE Summary of Clinical Efficacy 

SCID Severe Combined Immunodeficiencies 

SCS Summary of Clinical Safety 

SCT Stem cell transplant 

SMQ Standardized MedDRA Query 

SOC System Organ Class 

PT Preferred term 

TIGET Telethon Institute for Gene Therapy 

UTI 

WAS 

Urinary Tract Infection 

Wiskott-Aldrich Syndrome 

WBC 

WG 

White Blood Cell 

Working Group 

VCN Vector Copy Number 
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