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Abstract 
Access to Space is still in its early stages of commercialization. Most of the attention is 

currently focused on sub-orbital flights, which allow Space tourists to experiment 

microgravity conditions for a few minutes and to see a large area of the Earth, along 

with its curvature, from the stratosphere. Secondary markets directly linked to the 

commercial sub-orbital flights may include microgravity research, remote sensing, high 

altitude Aerospace technological testing and astronauts training, while a longer term 

perspective can also foresee point-to-point hypersonic transportation. 

In recent years some private enterprises have started to develop reusable airplane-like 

vehicles to perform sub-orbital missions. The design of such vehicles is based on the 

integration of the systems developed for aeronautical purposes and the technological 

solutions required for the flight into the stratosphere at super-hypersonic speed. 

In this scenario University of Naples “Federico II”, with the support of other universities 

and small and medium enterprises, is investigating a new concept for a small 

passenger hypersonic airplane of six seats, for long-duration sub-orbital Space tourism 

missions and point-to-point medium range hypersonic transportation. Such aircraft will 

operate on short-medium length runways of existing even small airports, since it is 

intended to take-off and land horizontally with relatively small speed and landing loads.  

The vehicle conceptual design is defined by the complex interplay of aerodynamics, 

atmospheric heating, materials, structures, propulsion, fuel selection and flight 

mechanics/dynamics. 

The flight envelope covers subsonic, transonic, supersonic and hypersonic flight 

regimes, being hypersonic the most challenging one, constrained on the lower 

boundary by heating and material limits, and on the upper boundary by aerodynamic lift 

and propulsion performance.  

Main objective of the present thesis is to provide some contributions to the studies of 

this vehicle, through a synergistic integration between disciplines such as 

aerothermodynamics, propulsion and flight mechanics.  

In particular this work has been focused on the aerodynamic analysis, which is 

essential for the evaluation of the effects of the aerodynamic heating and for flight 

mechanics studies.  

In this context a validation methodology of an engineering tool has been carried out, 

aimed at the achievement of the aerodynamic database covering all flight regimes and 

the prevision of the surface thermal loads which occur in the hypersonic phase, the 

most severe condition in terms of aerodynamic heating.  



 
 

The evaluation of the effects of the aerodynamic heating has allowed a preliminary 

identification of proper materials able to sustain the hypersonic phase.  

These analyzes are related to a preliminary reference configuration. Flight mechanic 

studies have allowed to refine the vehicle, although more detailed studies on the 

upgraded configuration are foreseen as future development.  

The aerodynamic database of the upgraded configuration has been implemented in a 

flight simulator, along with propulsion and inertia data and trim performances have 

been evaluated.  
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1 Introduction 
In this chapter a brief introduction on super-hypersonic vehicles is presented, 

underlining the challenges won in the past and the state-of-the-art technologies.  

Commercial sub-orbital flight is then introduced and the most relevant vehicle concepts 

proposed worldwide are discussed. In particular the attention is focused on most 

promising concepts for Space tourism and point-to-point super-hypersonic 

transportation purposes. 

 

1.1 A historical perspective on super-hypersonic vehicles 

Human dream of flying has lead to several challenges. The engineering challenges 

involved in pushing aircraft to fly faster and faster are perhaps the greatest of all.  

As an approach to the hypersonic vehicles, one may begin by introducing high-

performing aircrafts that have flown at successively higher speeds [1,2]. 

At Mach number of 2, typical examples include the supersonic interceptor F-104 

Starfighter and the civil SuperSonic Transport (SST) aircrafts Tupolev Tu-144 and 

Concorde. Those aircrafts were built of aluminum and used afterburning turbojets for 

propulsion. 

Concorde, jointly developed and produced under and Anglo-French treaty, entered 

service in 1976 and continued commercial flights for 27 years. The aircraft was retired 

after the type's only crash in 2000 and a decision by Airbus to discontinue maintenance 

support.  

 

   
(a) (b) (c) 

Figure 1.1: Lockheed F-104 Starfighter (a); Tupolev Tu-144 (b)  
and Aérospatiale-BAC Concorde (c) 

 

At Mach 3 and higher, there was the SR-71, a strategic reconnaissance aircraft 

developed by Lockheed in the 1960s. The aircraft, powered by two Pratt & Whitney J-

58 engines, cruised at 85000 feet (~26 km) of altitude and Mach 3.2. The ability to 

achieve high-altitude high-Mach flight derives from its propulsion system and 

structures. In particular the Turbine-Based Combined Cycle (TBCC) engines merged 

the low-speed attributes of turbojets with the high-speed capabilities of ramjets, to 

achieve maximum performance. Structures were 93% titanium with the balance 
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consisting of high temperature composite materials, able to sustain the aerodynamic 

heating that brought temperatures above 500°F (260°C). 

 

  
(a) (b) 

Figure 1.2: Lockheed SR-71 (a); surface temperature distribution at cruise conditions (b) 
 

At Mach 4 and above the physics of flow is dominated by aerodynamic heating. No 

version of the turbojet served at such speeds. It was necessary to use a ramjet or a 

rocket.  

The Lockheed X-7, an unmanned ramjet test bed, was built of steel and when it flew 

past Mach 4.3 in 1958, the aerodynamic heating became so severe that it produced 

structural failure and a consequent breakup of the vehicle in flight. 

The V-2 rocket, developed during the Second World War in Germany, flew above Mach 

5. Steel proved suitable for its construction and aerodynamic heating played only a 

limited role in the overall design of the missile.  

The term "hypersonics" was coined in 1946 by Hsue-shen Tzien, a Chinese 

aerodynamicist at the California Institute of Technology. Since then, it has involved in 

different significant areas of application. 

The first was the atmospheric re-entry, which came to the forefront during the mid-

1950s. The successful development by United States Air Force (USAF) of a heat shield 

to protect the first InterContinental Ballistic Missile (ICBM) against the intense 

aerodynamic heating opened the door to a host of other initiatives. The US Mercury, 

Gemini and Apollo and the Soviet Vostok, Voskhod and Soyuz were capsules with 

ablative heat shields, that re-entered the atmosphere ballistically, using parachutes to 

slow the final descent. The return of capsules from orbit became routine, allowing 

astronauts and cosmonauts to come back to Earth safely. The Soyuz-type vehicle is 

still in use today, transporting astronauts to and from the International Space Station 

(ISS).  

The first manned airplane to fly hypersonic was the North American X-15. This rocket-

powered research airplane designed during the 1950's and operated by USAF and 

NASA set speed and altitude marks that were not surpassed until the advent of the 

shuttle.  The aircraft, built of the nickel alloy Inconel-X 750, was characterized by a 
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relatively high hypersonic lift-to-drag ratio, which offered enough cross-range for many 

missions. It reached altitudes high enough for some of its pilots to qualify as astronauts 

and routinely withstood temperatures of 1200°F (~650°C). On its fastest flight, the 

vehicle achieved Mach 6.7 and returned with some pieces of the sharp leading edges 

of the wing melted off. This flight showed that the aerodynamic heating effects would 

extremely difficult to solve with the available materials and technologies.  

 

 

Figure 1.3: North American X-15, first hypersonic vehicle 

 

To overcome the limit of the thermal protection materials NASA and USAF researchers 

began to look at combining the thermally efficient blunt body with the ability to generate 

lift. Since 1960s, a series of reusable lifting vehicles designed to re-enter the 

atmosphere from orbit and to land safely without parachutes to a chosen landing site, 

like an airplane, were tested. The manned Northrop M2-F2 and HL-10 flown to study 

and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle.  

In the same period the USAF developed the X-20 Dyna-Soar, a manned winged re-

entry vehicle designed for a variety of American military and Space missions. 

Unfortunately the vehicle was never built: the program was cancelled in 1963 just after 

the construction had begun. It was a far more advanced concept than other human 

spaceflight mission of the period and was of concern for future Spaceplane design 

concepts. 

 
Figure 1.4: X-20 Dyna-Soar  

In 1963 the ASSET (Aerothermodynamic Elastic Structural Systems Environmental 

Tests) project involved the testing of an unmanned sub-scale re-entry vehicle (originally 

designed to verify the superalloy heat shield of the Dyna-Soar prior to full-scale 

manned flights) and provided a lot of data useful for the development of future space 

vehicles. In 1964 the USAF START (Spacecraft Technology and Advanced Re-entry 
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Test) project to test the SV-5 configuration began. In the first phase, called PRIME 

(Precision Recovery Including Maneuvering Entry), sub-scale SV-5D vehicles were 

launched on Atlas boosters and flew hypersonic re-entries. In the second phase a full-

scale, manned vehicle called SV-5P (which became the X-24 A) was built, to explore 

speed from low supersonic down to landing.  

Subsequently the USAF developed a series of aircraft characterized by higher 

hypersonic efficiency than lifting bodies. They were intended both for re-entry vehicles 

and hypersonic-cruise airplanes. The X-24B, delivered in 1972, presented high 

performances and was favorably compared to contemporary fighters by pilots. In the 

last two flights of the X-24B, in 1975, pilots Manke and Love made the first two 

landings of a lifting body on a conventional runway. 

Soviets also experimented with lifting bodies, under Project Spiral. The Mikoyan-

Gurevich MiG-105, originally conceived in response to the American X-20 Dyna-Soar, 

was a manned test vehicle to explore low-speed handling and landing.  

  
Figure 1.5: NASA X-24 B 

 

Early shuttle concept designs favoured a lifting body, based on the HL-10 shape but 

finally a swept delta wing configuration, like the Dyna-soar, was chosen in order to 

achieve the maximum cross-range on re-entry. The development of the fragile but 

effective and reusable Thermal Protection System (TPS) allowed the vehicle to sustain 

the strong aerodynamic heating during the re-entry phase, which brought temperatures 

of about 3000°F (~1650°C).  

The National Aerospace Plane (NASP) program, started in mid-1980s, was the first 

American attempt to create a Single Stage To Orbit (SSTO) spacecraft able to takeoff 

and land horizontally, the X-30. Propulsion systems based on innovative airbreathing 

engines (scramjets) and rockets were considered. The project was cancelled in the 

early 1990s, before a prototype was completed, due to cost and technical challenges, 

but it was later developed into X-43, which was essentially an unmanned scaled-down 

X-30. In 2004 the X-43A set a speed record of approximately 6.6 mph (10.6 km/h). 

The X-51 was an unmanned scramjet demonstration aircraft designed for high range 

hypersonic flight at Mach number of 6. The program is a collaborative effort of USAF, 
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NASA, DARPA with industry partners Boeing and Pratt & Whitney Rocketdyne. In May 

2013 the vehicle reached speeds of over Mach 5 for 143 seconds, setting the record 

for the longest duration airbreathing hypersonic flight. The test proved the technologies 

in hypersonic field has matured enough to open the door to practical applications, such 

as advanced defense systems and more cost-effective access to space. 
 

   
(a) (b) (c) 

Figure 1.6: NASP X-30 (a), X-43 (b), X-51 (c) 
 

 

1.2 Commercial sub-orbital flight 

Access to Space is still in its early stages of commercialization. Most of the attention is 

currently focused on sub-orbital flights, while orbital ones still appear limited and 

expensive.  

Sub-orbital flights allow Space tourists to experiment microgravity conditions for a few 

minutes and to see a large area of the Earth, along with its curvature, from the 

stratosphere [3]. As shown in Figure 1.7, secondary markets directly linked to 

commercial sub-orbital flights may include microgravity research, remote sensing, high 

altitude Aerospace technological testing and development, astronauts training and so 

forth, while a longer term perspective can also foresee point-to-point hypersonic 
transportation.  

 
Figure 1.7: Commercial sub-orbital Space flight and prospective markets 

Altitude

Orbital Flight
(i.e. LEO, e.g ISS)

Sub-Orbital Flight
(i.e. up to 100 km )

Parabolic Flights
(i.e. within airspace)

Space Tourism
• Earth View from Stratosphere
• Experiment Microgravity Conditions

Microgravity Research
Aerospace Testing
Astronaut Training 
Remote Sensing

Hypersonic Point-to-Point 
Transportation
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In recent years several private enterprises have started to develop reusable airplane-

like vehicles to perform sub-orbital missions, for Space tourism and super-hypersonic 

point-to-point transportation purposes.   

The design of such vehicles is based on the integration of the systems developed for 

aeronautical purposes and the technological solutions required for the flight into the 

stratosphere at super-hypersonic speed.  

The most promising concepts for Space tourism and point-to-point super-hypersonic 
transportation are presented in the following sections. 

1.2.1 Space tourism  

Some private enterprises have recently been approaching Space flight with a relatively 

low-cost philosophy, hoping to create a Space tourism business. 

Scaled Composites constructed for the ambitious British company Virgin Galactic the 

Space Ship One (SS1), a sub-orbital air-launched Spaceplane for manned private 

Spaceflight. In its first flight in 2004, the vehicle reached 100 km altitude on a sub-

orbital trajectory 36 years after the X-15, developed by NASA at the turn of 50s and 

60s. The company is presently test qualifying an enlarged version of the SS1, named 

SS2, intended to carry passengers for a short-duration Space flight at a fare of about 

200 k$ per seat. The aircraft is carried to its launch altitude by a Scaled Composites 

White Knight Two, before being released to fly into the upper atmosphere powered by 

its rocket engine; then the ship glides back to the Earth and performs a conventional 

runway landing. In October 2014, the first SS2 craft called VSS Enterprise broke up in-

flight and crashed in the Mojave Desert. Despite the accident, a second SS2 called 

VSS Voyager is under construction. 

 

 
Figure 1.8: Virgin Galactic SpaceShipTwo on WhiteKnightTwo 

Other projects included in this frame are Bristol Spaceplanes (BSP) Ascender, the 

EADS Spaceplane and the XCOR Lynx [5].  

The Ascender is a small Spaceplane for Space tourism and microgravity research 

purposes. The vehicle is designed to takeoff from a typical runway powered by two 

turbojet engines, achieve altitudes of up to 100 km taking advantage from the hydrogen 

peroxide rocket engine, gliding back to the Earth and, finally, land on the same runway 
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using the turbojet engines. Also the EADS (European Aeronautic Defence and Space 

Company) Spaceplane uses turbojet engines for the atmospheric phase and by a 

rocket engine (powered by liquid methane and liquid oxygen) for the Space tourism 

phase. The XCOR Lynx, a rocket powered Spaceplane under development by the 

American company XCOR Aerospace, is designed to realize horizontal takeoff and 

horizontal landing (HTHL) and to carry one pilot and one ticketed passenger and/or a 

payload above 100 km. As of March 2014, the passenger ticket was projected to cost 

95 k$. 

 

(a) (b) (c) 

Figure 1.9: BSP Ascender (a), EADS Spaceplane (b), XCOR Lynx (c) 

 

Table 1.1 provides an overview over selected concepts. 

 

  
X-COR Lynx

 

EADS 
SpacePlane

 

Virgin 
Galactic SS2 

 

BSP 
Ascender 

 
 

      

Crew + 
Passengers  1+1 1+4 2+6 1+2 

      

Max. Altitude  100 km 100 km 110 km 100 km 
      

Max. Mach 
Number  3 3 3.5 3 

      

Max. 
Acceleration  4.5g 4.5g 6g 6g 

      

Propulsion 
System  Rocket Turbojets, Rocket Rocket Turbojets, 

Rocket 
      

Takeoff/Landing  HTHL HTHL Air Launch,  
Glide Landing HTHL 

      

Cost/seat  95k$ 200k€ 200k€ 100k$ 
      

Table 1.1: Main features of vehicle concepts for Space Tourism 
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Recent survey studies assessed the potential market for sub-orbital vehicles [6,7]. The 

one performed by EADS and IPSOS shows that there is a sizable market for sub-

orbital tourism and that people willing to pay around 200 k€ for that could be in the 

order of 50000, just 16 years after the market start. This market is of course much 

larger than the one related to orbital Space tourism missions on the International Space 

Station (ISS). In this case, in fact, only 7 people had the opportunity, up to now, to 

perform this experience paying from 20 M$ to 40 M$. It is obvious that these fares can 

be paid only by the so called Ultra High Net Worth Individuals (UHNWI).  

Sub-orbital Space tourism may also be seen as an intermediate step towards a novel 

concept of orbital Space tourism, based on reusable winged vehicles. Indeed, the 

employment of reusable components could strongly reduce the cost per seat up to 2 

orders of magnitude, depending on the number of flights scheduled. In addition, the 

development of a winged re-entry vehicle could represent a safer and more 

comfortable way to cross the atmosphere [8]. 

 
1.2.2  Super-hypersonic point-to-point transportation 

In the faster and faster business world of today, no SuperSonic Business Jet (SSBJ) is 

currently available, although several research and development programs for 

commercial aviation have been proposed in recent years. The civil large scale 

SuperSonic Transport (SST) aircrafts Tupolev Tu-144 and Concorde had relatively high 

costs, high noise, high fuel consumption and some environmental concerns.  

Thanks to some recent research programs such as the QSP (Quiet Supersonic 

Platform) project sponsored by the American DARPA (Defense Advanced Research 

Projects Agency) and the EU funded LAPCAT and FAST 20XX, technologies to solve 

the main issues of supers-hypersonic flights have been developed.  

The LAPCAT (Long-Term Advanced Propulsion Concepts and Technologies) A2 

vehicle is designed to carry 300 passengers from Brussels to Sydney in 2-4 hours. The 

vehicle is powered by the Scimitar hypersonic air-breathing engine, conceived by 

Reaction Engines Limited, using liquid hydrogen fuel and able to sustain Mach 5 flight. 

In the FAST (Future high-Altitude high-Speed Transport) 20XX research project two 

vehicle concepts have been investigated by DLR (German Aerospace Center). The 

second concept, SpaceLiner, is a fully-reusable two-stage rocket-powered vehicle, 

which accommodate about 50 passengers. The aircraft offers ultra-fast point-to-point 

transportation along long distances (maximum Mach number of 25 and range up to 

18000 km) and is able to takeoff and land horizontally. 
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(a) (b) 

Figure 1.10: EU funded projects: LAPCAT A2 (a), FAST20XX SpaceLiner (b)  
 
 

 

In recent years American and European private enterprises and institutions have 

started to invest in projects regarding new-generation high performance super-

hypersonic vehicles. The most relevant are shown below.  

The Gulfstream X-54 project is intended to produce an experimental supersonic aircraft 

able to produce a low sonic boom, taking advantage of the technologies developed by 

NASA in the last decades. The vehicle, designed to perform cruise at a Mach number 

over 1.4 and at an altitude above 50000 feet (~15.2 km), is intended to provide enough 

data to reform national and international regulations on supersonic over-land flight. 

The Quiet SuperSonic Transport (QSST) is a project by Supersonic Aerospace 

International (SAI) to develop a commercial supersonic business jet able perform 

cruise at a Mach number of 1.6-1.8 and an altitude of 60000 feet (~18.3 km), with a 

range of 4,600 miles (~7400 km).  The two-engine gull-wing aircraft would create a 

sonic boom only 1% as strong as that generated by the Concorde. The Lockheed 

Martin began developing the vehicle in 2001 under a $25-million contract from SAI, 

which has planned to achieve first flight in 2017 and begin customers' deliveries by 

2018. The price per aircraft was expected to be about $80 million.  
The Aerion SSBJ and the Spike S-512 are two concepts for a supersonic business jet, 

designed by the American enterprises Aerion Corporation and Spike Aerospace, 

respectively.  

Both the vehicles, if produced, would allow travels from Europe to North American in 

few hours. Aerion Corporation plans flight testing to begin in 2019 and the first aircraft 

to reach the market in 2021. The price per vehicle is expected to be $80 million, with 

development costs ranging from $2.5 to $3.0 billion.  
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(a) (b) 

  
(c) (d) 
Figure 1.11: Concepts for supersonic business jets:  

Gulfstream X-54 (a), SAI QSST (b), Aerion SSBJ (c) and Spike S-152 (d) 
 

 

The HiSAC (High Speed AirCraft) project brings together 37 partners coordinated by 

Dassault Aviation. The project is aimed to evaluate the feasibility of a small supersonic 

business jet that would meet future environmental standards concerning sonic boom 

and atmospheric emissions.  

SoniStar is a supersonic passenger business jet proposed by the company HyperMach 

Europe Aeronautics. The vehicle would carry 32 passengers in luxury accommodation, 

reaching speeds of up to Mach 4.4 and altitudes of 60000 feet (~18.3 km). Sonic 

boom is intended to be avoided through electromagnetic drag reduction technology, 

currently not existing.  

In the ZEHST (Zero Emission Hyper Sonic Transport) project, EADS and Japan are 

developing an environmentally friendly hypersonic passenger aircraft. Powered by two 

turbofans (for takeoff and up to Mach 0.8), rocket boosters (up to Mach 2.5) and two 

ramjets, the vehicle would reach an altitude of 32 km and Mach number of 4-5. The 

aircraft would carry 50-100 passengers and be able to takeoff and land on current 

airport runways. ZEHST is envisaged to fly by 2050, from London to Japan in less than 

3 hours. 

 

   
(a) (b) (c) 

Figure 1.12: Concepts for super-hypersonic vehicles:  
Dassault Aviation HiSAC (a); SoniStar (b); ZEHST (c) 
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Table 1.2 provides an overview over various vehicle concepts for super-hypersonic 

point-to-point transportation. All these projects show that several worldwide companies 

operating in the aerospace industry are confident in the strong, long-term potential of 

intercontinental aircrafts for different applications. Bombardier Aerospace forecast a 

total of 24000 business jet deliveries from 2013 to 2032 in the business jet segment, 

which represents approximately $650 billion in industry revenues. North America is 

expected to receive the greatest number of new business jet deliveries, followed by 

Europe and China. It is also expected that key growth markets including Brazil, India, 

Russia/the Commonwealth of Independent States (CIS), Mexico, and Turkey will 

receive a significant share of business jet deliveries during the next 20 years. If only 

1% of the mentioned market would simply pass to high supersonic/hypersonic 

transportation sector, i.e. 240 deliveries with $6 billion revenues, it would comply with 

almost all the market studies performed during the last decade on the supersonic 

business jet market segment.  
 

   Passengers Cruise 
Altitude 

Cruise 
Mach 

Number 
Down-
Range 

Propulsion 
System 

       

Gulfstream 
X-54 

 
12 15.2 km 1.4 - Turbofans 

       

Aerion 
 SSBJ 

 
18 15.5 km 1.6 7400 km Turbofans 

       

Spike  
S-152 

 
18 18.3 km 1.6 7400 km Turbofans 

       

HiSAC 
 

16 20 km 1.8 9000 km Turbofans 

       

QSST 
 

 
12 18.3 km 1.8 7400 km - 

       

HyperMach 
SoniStar 

 
32 18 km 4.4 - S-MAGJET 

       

ZEHST 
 

 

50-100 32 km 5 9000 km 

Turbofans 
Rocket 
Ramjets 

 
 

 
     

LAPCAT 
A2 

  
300 25 km 5 20000 km Scimitar 

Engines 
       

Table 1.2: Main features of vehicle concepts for super-hypersonic transportation 
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2 HyPlane vehicle 
The increasing number of projects regarding airplane-like vehicles for Space tourism 

and super-hypersonic point-to-point transportation perspectives induce to reasonably 

expect the aviation to include in the near future very high speed systems. In this 

scenario University of Naples “Federico II”, in the wider frame of the Space 

Renaissance (SR) Italia Space Tourism Program [1] and with the support of other 

universities and small and medium enterprises (including Polytechnic of Turin and 

BLUE Engineering) is investigating a new concept for a small passenger hypersonic 

airplane (named HyPlane) of six seats, for long-duration sub-orbital Space tourism 

missions and point-to-point medium range hypersonic transportation [2,3,4,5,6]. 

 

 

 
Figure 2.1: Vehicle concepts for Space tourism and  

super-hypersonic point-to-point transportation 
 

 

In this chapter the vehicle system concept is presented. Main aerodynamic features, 

propulsion system and the potential mission scenarios are discussed, pointing out the 

main applications and opportunities offered to travellers.  
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15-20 km
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2.1 System concept 

HyPlane is designed for long-duration sub-orbital Space tourism missions which offer 

short and repeated periods of low-gravity, in the high stratosphere where a large view 

of the Earth is ensured. The vehicle is also consistent with a point-to-point medium 

range hypersonic transportation and will operate on short-medium length runways of 

existing even small airports, since it is intended to takeoff and land horizontally with 

relatively small speed and landing loads. Most of the previous and actual studies 

concerning super-hypersonic civil transport aircraft designs have tended toward large 

aircrafts, characterized by hundreds of tons of mass and hundreds of passengers. This 

has resulted in great difficulty in determining a valid and sustainable operational 

concept, because of the system high complexity, requiring very long time to reach the 

sufficient technology readiness level. The development of a small hypersonic plane (of 

the size of an executive jet) may open new markets and applications, such as “urgent 

business travel”, taxi aircraft for persons, specific goods, human organs and so forth. 
Figure 2.2 illustrates a vehicle preliminary configuration. 

 
 

 
Figure 2.2: Artistic rendering of HyPlane hypersonic vehicle 

 

The design of such a hypersonic airplane is based on the concept of integrating 

available technologies developed for aeronautical and space atmospheric re-entry 

systems. The vehicle conceptual design is defined by the complex interplay of 

aerodynamics, atmospheric heating, materials and structures, propulsion, fuel 

selection, cabin, tank and subsystems sizing. The flight envelope covers subsonic, 

transonic, supersonic and hypersonic flight regimes, being hypersonic the most 

challenging one, constrained on the lower boundary by heating and material limits, and 

on the upper boundary by aerodynamic lift and propulsion performance.  
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(a) (b) 

  
(c) (d) 

Figure 2.3: Perspective (a), side (b), top (c), front (d) views of HyPlane 
 

The airframe consists of a fuselage, a high performance variable-delta wing with four 

elevons, both internal and external. If deflected symmetrically, the four elevons provide 

pitch control, while asymmetric deflections of the external elevons (ailerons) provide roll 

control. It also features a vertical tail, with a moveable rudder, for directional control.  

The fuselage is separated in different compartments. A pressurized compartment holds 

the cockpit from which a pilot and a co-pilot and a cabin for the accommodation of six 

passengers. Unpressurized compartments hold the tricycle landing gear, the 
subsystems and the propellant tanks. 

 
 

Figure 2.4: HyPlane internal layout 
 

The vehicle, powered by Turbine Based Combined Cycle (TBCC) engines plus a 

throtteable Rocket, is characterized by a relatively high aerodynamic efficiency and low 

wing loading.  

As it is in most hypersonic planes designs, the aircraft needs to have a relatively high 

lift-to-drag ratio, for different reasons. First, the requirement to fly in the atmosphere 

using also rocket engines forces the designers to minimize the required thrust, so that 

the propellant mass at takeoff can be small. Second, the high aerodynamic efficiency 
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guarantees the maximization of the range with the minimum fuel consumption, crucial 

in the hypersonic cruise scenario. Third, the manoeuvring performances are improved 

if the aircraft has a high enough lift-to-drag ratio. 

The low wing loading makes possible a high altitude flight, which offers a better Earth 

view and may open to new applications  (e.g. remote sensing, high altitude 

technological demonstrations, etc.).  

The wing area is large enough to aerodynamically sustain the aircraft gross takeoff 

weight with relatively low velocities and to reduce, at relatively high altitudes, 

aerodynamic heating and sonic boom during cruise and supersonic descent approach 
(efficient overland routes) and the consequent environmental impact.  

The vehicle main geometric characteristics are reported in Table 2.1.  

 

Geometric parameters  
  

Fuselage length [m] 23.6 
Nose Radius of Curvature [m] 0.03 

  
Wing Area [m2] 140 
Wing Span [m] 13.5 
Aspect Ratio 1.3 

Wing Chord at Root [m] 16.7 
Wing Chord at Tip [m] 2.5 

Wing Mean Aerodynamic Chord [m] 12 
  

Vertical Tail Span [m] 3.6 
Vertical Tail Area [m2] 14 

Vertical Tail Chord at Root [m] 6.4 
Vertical Tail Chord at Tip [m] 1.8 

Vertical Tail Sweep [deg] 57 
  

Internal Elevons Area [m2] 10.3 
External Elevons Area [m2] 4.9 

Rudder Area [m2] 3.0 
  

Table 2.1: HyPlane main geometric features 

 

Wing and vertical tail airfoil is presented in Figure 2.5. A symmetrical thin airfoil with 

blunt leading edge, suitable for both hypersonic cruise and high aerodynamic load 

manoeuvres, has been chosen. Table 2.2 summarizes airfoil main geometric features, 

assuming a chord of 1 m. 
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Figure 2.5: HyPlane wing  and vertical tail airfoil 

 

 

Table 2.2: Main geometric features of wing and vertical tail airfoil 

 

2.2 Propulsion System 

2.2.1 Turbine-Based Combined Cycle engines 

HyPlane takes advantage from state-of-the-art airbreathing hypersonic propulsion. 

Current design is based on combined-cycle engines, capable of operating in multi-

modes and then extremely versatile and efficient in different flight conditions.  

In particular the vehicle is powered by two Turbine-Based Combined Cycle (TBCC) 

engines. A TBBC engine is essentially a combination of a low-speed turbine engine 

and higher speed ramjet, to achieve maximum performance [7]. The TBCC engines 

operate by using a gas turbine propulsion cycle that passes to a ramjet cycle at high 

Mach number. In this condition, in fact, the air-flow bypasses the turbomachinery, 

because pressure, temperature, and flow velocity would make such turbine impractical, 

redundant, or both.  
An example of operative TBCC engine is the J58 utilized in the Lockheed SR-71 

Blackbird, working in multiple cycles depending on the flight regime. More recent 

advanced hypersonic systems, such as the DARPA Blackswift, have been proposed 

using TBCC-class propulsion system [8]. 

In the present work a conceptual Mach 4 TBCC developed by AFRL (Air Force 

Research Laboratory) has been considered. The engine deck provided uninstalled 

thrust and specific impulse information, for the JP-4 hydrocarbon fuelled engine, as a 

Airfoil geometric parameters (Chord=1m) 
Leading edge radius of curvature [m] 0.0007 

Maximum thickness [m] 0.03 

Maximum thickness location [m] 0.3 
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function of flight altitude and Mach number [9]. Figure 2.5 shows the deduced 

maximum thrust and the specific impulse as a function of Mach number for different 

altitudes. 

 

  
(a) (b) 

Figure 2.6: Performances of Turbine-Based Combined Cycle : maximum thrust per engine (a) 
and specific impulse (b) as a function of Mach number at different altitudes 

 

2.2.2 Rocket engine 

HyPlane is powered also by a throtteable rocket, which guarantees adequate 

propulsive characteristic to fly sub-orbital trajectories and is based on the utilization of 

hydrogen peroxide (H2O2) as oxidizer, which has several advantages. 

In particular this engine offers the versatility of operating in monopropellant mode 

(offering a small thrust for attitude control) and bipropellant mode, using Kerosene as 

fuel. The high available thrust offered by the latter mode is crucial in a Space tourism 

mission scenario, where high accelerations are necessary to perform sub-orbital jumps. 

Since the H2O2 decomposes into a mixture of superheated steam and oxygen to a 

temperature of about 1000 K, a propulsion unit without a requirement for a separate 

ignition system offers a higher system reliability.  

Moreover the H2O2 is considered a green propellant due to the reduced emissions and 

the low toxicity, ensuring a very limited environmental impact. The average 

performances of the rocket identified for this work are shown in Table 2.3. 

 
 

Average Thrust [kN] Average Specific Impulse [s] 

200 310 

Table 2.3: Rocket engine main performances 
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2.3 Preliminary mass budget 

A preliminary mass budget has been elaborated in order to assess the feasibility of the 

vehicle configuration, according to the main mission requirements. The study is based 

on both statistical correlation and engineering design of specific subsystems.  

These models, taking also into account heavier vehicles designed in past years, 

provide preliminary results, which can be useful in the first stages of the iterative design 

process. 

The following assumptions have been made in order to obtain the vehicle mass budget 

and the mass breakdown among its main subsystems: 

1. The fuel weight depends on the aircraft configuration and on the mission 

requirements. In particular an overall fuel weight of 16 tons has been 

considered necessary for the hypersonic medium range point-to-point mission. 

2. The vehicle empty weight can be estimated from statistics on the basis of the 

HASA model proposed in literature [10]. 

3. The crew and passengers weights have been determined considering the worst 

case scenario of all adult and male passengers travelling in winter (i.e. 100 kg 

per person, according to the Federal Aviation Administration). 

According to the considered model, the overall vehicle weight has been computed by 

iteratively solving a number of equations for different parameters, including the total 

volume and the total gross weight of the vehicle.  

The different steps include: 

1. The assignment of proof values for some parameters, in particular total volume 

and total gross weight of vehicle. 

2. The comparison between the assigned and the computed value of each 

parameter. 

3. The iteration until a sufficient accuracy is reached. 

After having added a proper mass design margin, the method has an overall accuracy 

around 20% for the total gross mass estimation, while the errors regarding the mass 

breakdowns are estimated to be larger.  

The predicted takeoff weight of the aircraft is about 26.3 tons. In Figure 2.7 the total 

vehicle mass breakdown and the structural mass distribution are reported. 
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(a) (b) 
Figure 2.7: Total (a) and structural (b) mass breakdowns 

 

As the propellant is consumed during the flight, the vehicle center of gravity, estimated 

taking advantage of a CATIA tool [11], has a significant longitudinal excursion while it is 

possible to neglect its vertical position variation. In particular it moves forward of about 

2 m: the CoG is approximately located at 16 m and at 14 m from the apex of the nose, 

at takeoff and at zero-fuel condition, respectively (Figure 2.8).  

 
Figure 2.8: Vehicle CoG longitudinal excursion as the propellant is consumed  

(from the apex of the nose) 
 

2.4 Potential mission scenarios 

HyPlane is designed to be able to realize long duration missions, both for Space 

tourism purposes and for hypersonic cruises over transcontinental distances (with a 

total range in the order of 6000 km). This can be achieved, as mentioned previously, 

optimizing the propulsion performances of the TBCC and the rocket in the different 

phases of the flight envelopes. 

The HyPlane mission profile begins with a Horizontal Takeoff (HT) from a short-

medium length runway, taking advantage from the two TBCC engines operating in 

turbojet mode and from the lift forces resulting from the relatively large wing surface.  

Then, an ascent phase is performed to reach suitable conditions for the sub-orbital 

parabolic manoeuvres or for the hypersonic cruise. In particular this phase consists in 
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an initial subsonic ascent to altitude between 5 and 10 km and in a subsequent 

acceleration through trans-supersonic speed range and climbing along a constant 

dynamic pressure trajectory, using the TBCC engines. During the acceleration, when 

the aircraft reaches a sufficient altitude and speed, the engine operating mode 

undergoes a transition to ramjet.  

Then the HyPlane performs its nominal mission, namely a sequence of 3 sub-orbital 

parabolas using the rocket engine, or the hypersonic cruise using the TBCC operating 

in ramjet mode, with a total range of 6000 km.  

After that, the aircraft performs a gliding descent, a powered approach to the terminal 

area and, finally, a Horizontal Landing (HL) on a conventional runway.  
The total duration of the mission in both cases is less than 2 hours. 

In summary, the mission specifications include: 

1. HT with TBCC operating in turbojet mode 

2. Subsonic ascent to altitudes between 5 and 10 km 

3. Acceleration through the trans-supersonic speed range and climbing along a 

constant dynamic pressure trajectory (the TBCC operating mode undergoes a 

transition to ramjet) 

4. Sequence of 3 sub-orbital parabolas (using rocket engine) or hypersonic cruise 
5. Gliding descent, powered approach and HL 

In an early conceptual phase, mission trajectories have been computed considering the 

dynamic equations of motion for a point mass characterized by three degrees of 

freedom, before considering a six degrees of freedom model (Chapter 7).  The set of 

first order nonlinear ordinary differential equations [12] has been numerically integrated 

at discrete time-steps and taking advantage of the Euler's method.  
 

2.3.1 Space tourism mission 

In a Space tourism mission scenario, similarly to subsonic airplanes performing 

parabolic flight, the HyPlane will be able to execute 3 sub-orbital jumps, each providing 

up of a couple of minutes of low gravity. During  this period passengers will experience 

weightlessness conditions,  enjoying a beautiful view of the Earth from the Space.  

Before each sub-orbital jump, the vehicle begins flying at hypersonic speed in a steady 

horizontal attitude, at a Mach number of 4 and at an altitude of 30 km. During this 

steady flight the gravity level is 1g.  

Then the airplane gradually pulls up the nose and starts accelerating along a climbing 

trajectory with flight path angle up to 20°. During this phase the passengers experience 
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conditions of increased acceleration (~ 3 to 4 g), immediately prior to the two minutes 

of low-gravity. The peak of the sub-orbital trajectory is achieved below 70 km altitude. 

The extended duration low-gravity period is followed by another manoeuvre 

characterized again by hyper-gravity conditions, before the aircraft again flies a steady 

horizontal path.  

 
Figure 2.9: Space tourism mission scenario 

 

The downrange for each sub-orbital jump is about 300 km. In Figure 2.10 a possible 

parabolic trajectory is shown along with the corresponding Total Sensed Acceleration 

(TSA), the thrust provided by the Rocket engine and the consumed mass profiles. 

The described scenario offers the opportunity to execute microgravity research under 

relatively extended duration and repeated low-gravity conditions, offering the chance 

for human, biological and physical research in preparation for long-duration missions 

onboard orbital Space laboratories.  

 

  
(a) (b) 

Figure 2.10: HyPlane performances along a possible sub-orbital parabola trajectory. 
Altitude and Total Sensed Acceleration (TSA) profiles (a);  

thrust provided by the rocket engine and mass variation profiles (b) 
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2.3.2 Hypersonic cruise mission 

In a hypersonic point-to-point scenario the vehicle accelerates along a constant 

dynamic pressure flight path to the maximum Mach number (4-5).  

The final altitude is reached after about 15 minutes, with a relatively low fuel 

consumption, due to the relatively high specific impulse of the TBCC operating as a 

turbojet. 

The hypersonic cruise can be performed with a small flight path angle, to maintain the 

aerodynamic efficiency relatively high, in order to maximize the downrange.  

 

 
Figure 2.11: Hypersonic point-to-point mission scenario 

 

In Figure 2.12 a possible hypersonic cruise trajectory is shown along with the 

corresponding Mach number and sonic boom profiles. Sonic boom has been estimated 

with the simplified formula 

݌߂ =
ܹܭ

ଵ
ଶ(ܯଶ − 1)

ଷ
଼

ܪܯ
ଷ
ସ

 

where ܭ = 260 ே
௠మ ቆ

௠
య
ర

ே
భ
మ
ቇ has been deduced from data of the Concorde and the Space 

Shuttle, ܹ is the instantaneous weight of the vehicle, ܯ is the Mach number and ܪ is 

the altitude.  

During cruise and supersonic descent approach the sonic boom felt on the ground is 

far below 100 Pa, ensuring a very limited environmental impact. 
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(a) (b) 

Figure 2.12: HyPlane performances along a possible hypersonic point-to-point trajectory. 
Altitude and Mach number profiles (a); sonic boom profile (b) 
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3 Aerodynamic models 
The aerodynamic characteristics of the HyPlane can be evaluated with different tools. 

Computational Fluid Dynamic (CFD) simulations are generally very expensive in terms 

of computational effort, pre and post-processing time. 

In fact a very high number of computational cells is necessary for a complete three 

dimensional compressible viscous analysis with radiative equilibrium boundary 

conditions. Moreover the grid generation for different configurations requires a long 

time, taking into account all possible deflections of control surfaces and engine 

integration. Furthermore the verification of results quality and the evaluation of 

aerodynamic performances need additional time.  

In preliminary design phases the extensive application of complex CFD procedure is 

therefore prohibitive and more rapid and economical estimation of aerodynamic 

performances are frequently required. Engineering level nonlinear aerodynamic 

methods for estimating aerodynamic performances on traditional configuration aircraft 

(body-wing-tail geometries) in subsonic or supersonic regimes, can provide a relatively 

fast and accurate estimations of stability and control characteristics, for a wide range of 

Mach and Reynolds number, corresponding to several flight conditions.  

The most popular codes utilized for these analysis are the software USAF Digital 

Stability and Control DATCOM (suitable for conventional configuration aircraft) and 

Missile DATCOM (specially developed for slender vehicles), written in Fortran 

language. 

In this work both CFD simulations and Missile DATCOM software have been used to 

achieve the vehicle aerodynamic database. Missile DATCOM has been preferred over 

Digital, due to different reasons. Missile DATCOM provide outputs for all flight regimes 

while Digital is not able to provide several outputs for transonic and super-hypersonic 

regimes, for the configuration under investigation. Moreover Missile allows to model 

airbreathing engine intakes, unlike Digital. CFD simulations are necessary to 

accomplish a more accurate aerodynamic analysis and to characterize the vehicle also 

from an aero-thermodynamic point of view. 

In this chapter the models adopted by Missile DATCOM software and CFD simulations 

are presented. In the first section the techniques implemented in Missile DATCOM, the 

approximations introduced in the vehicle model and the accuracy provided by the 

results are presented.  

In the second section the formulations of the models adopted in the CFD simulations - 

namely the fluid-dynamic governing equations and the turbulence, laminar-turbulent 

transition and radiation models - are shown. Adopted computational grid and CFD 

solver are also described. 
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3.1 Missile DATCOM model 

3.1.1 Techniques and accuracy 

Missile DATCOM is a semi-empirical aerodynamic prediction code which offers the 

possibility  to quickly and economically carry out aerodynamic performance analysis of 

conventional configurations of aircrafts and missiles, with a predictive accuracy suitable 

for the conceptual and preliminary design phase.  

The program combines approximate theoretical relationships and empirical data and 

provides  good accuracy for traditional configurations.  

The program is based on component build-up techniques, which calculates the 

aerodynamics of each component of the aircraft separately, then estimates the effects 

of the interactions between the various components and  finally attempts to synthesize 

a solution for the complete configuration.  

 

 
Figure 3.1: Component build-up technique 

 

 

Computed data include aerodynamic force and moment coefficients, stability and 

control derivatives (longitudinal and lateral-directional, static and dynamic).  

These results can be also obtained varying the flight parameters (angle of attack, 

sideslip angle, Mach number, altitude and control surface deflections) for subsonic, 

transonic, supersonic and hypersonic regimes.  

The 1997 FORTRAN 90 version has been used for this study. The software requires a 

input file named for005.dat, written according to DATCOM syntax, containing the flight 

conditions and the geometry description of the vehicle and prints an output file which 

encompasses the aerodynamic parameters listed in Tables 3.1 and 3.2, all expressed 

in the body axes (Figure 3.2) except for the drag and lift coefficients. 
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Figure 3.2: Missile DATCOM body axis system 

Longitudinal 
Force and 

Moment Coefficients 

஺ܿ Axial force coefficient 
ܿே Normal force coefficient 
ܿ஽ Drag coefficient 
ܿ௅ Lift coefficient 
ܿெ Pitch moment coefficient 

Longitudinal 
Static 

Derivatives 

ܿ௅ఈ Lift coefficient derivative 
with angle of attack 

ܿெఈ Pitching moment coefficient derivative 
with angle of attack 

Longitudinal 
Dynamic Derivatives 

ܿ௅ఈ̇ Lift coefficient derivative 
with rate of change of angle of attack 

ܿெఈ̇ Pitching moment coefficient derivative 
with rate of change of angle of attack 

ܿ௅௤ Lift coefficient derivative 
with pitch rate 

ܿெ௤ Pitching moment coefficient derivative 
with pitch rate 

Table 3.1: Longitudinal aerodynamic parameters computed by Missile DATCOM 

 
 

Lateral-Directional 
Force and 

Moment Coefficients 

ܿ௒ Side force coefficient 
ܿ௟ Rolling moment coefficient 
ܿே Yawing moment coefficient 

Lateral-Directional 
Static Derivatives 

ܿ௒ఉ Side force coefficient derivative 
with sideslip angle 

ܿ௟ఉ Rolling moment coefficient derivative 
with sideslip angle 

ܿேఉ Yawing moment coefficient derivative 
with sideslip angle 

Lateral-Directional 
Dynamic Derivatives 

ܿ௒௣ Side force coefficient derivative 
with roll rate 

ܿ௟௣ Rolling moment coefficient derivative 
with roll rate 

ܿ௟௥  
Rolling moment coefficient 

derivative with yaw rate 
ܿே௣ Yawing moment coefficient derivative 

with roll rate 

ܿே௥ 
Yawing moment coefficient derivative 

with yaw rate 
Table 3.2: Lateral-directional aerodynamic parameters computed by Missile DATCOM 
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The methods implemented in the software to  predict the aerodynamic parameters of 

the various components of the aircraft (body, fins, airbreathing engine inlets) and the 

effects of the interaction between them are summarized in Tables 3.3-6 [1]. 

 

 
BODY AERODYNAMIC METHODOLOGY 

AERODYNAMIC 
PARAMETER 

SUBSONIC 
(M<0.8) 

TRANSONIC 
(0.8≤M≤1.2) 

SUPER-HYPERSONIC 
(M>1.2) 

Skin Friction Drag 
Laminar: Blasius, Hoerner Fluid Dynamic Drag 

Turbulent: Van Driest II, MDAC (McDonnell Douglas Aircraft Company) 
West Handbook 

Pressure/Wave Drag USAF DATCOM 4.2.3.1 
(Hoerner Fluid Dynamic Drag) 

Transonic Area 
Rule 

SOSE (Second Order 
Shock Expansion) 

VDH (Van Dyke Hybrid) 
Hypersonic Newtonian 

Theory 

Base Drag Nose-Cylinder: NSWC (Naval Surface Warfare Center) charts 
Boattail: NASA TR-R100 

Axial force at angle of attack Allens and Perkins Crossflow, Jorgensen SOSE (Second Order 
Shock Expansion) 

VDH (Van Dyke Hybrid) 
Hypersonic Newtonian 

Theory 

Potential Normal Force and 
Pitching Moment 

Nose-Cylinder: Messersmitt-Bölkow-Blohm 
Boattail: NSWC (Naval Surface Warfare Center) 

charts 

Viscous Normal Force and 
Pitching Moment Jorgensen viscous crossflow 

Dynamic Derivatives Slender Body Theory, Ericsson 
Damping Derivatives SPIN 73 code 

Table 3.3: Main methodologies implemented in Missile DATCOM  
for body aerodynamic parameters computation 

 

 

 

FIN AERODYNAMIC METHODOLOGY  
AERODYNAMIC 

PARAMETER SUBSONIC (M<0.6) TRANSONIC 
(0.8≤M≤1.4) 

SUPER- HYPERSONIC  
(M>1.4) 

Airfoil 
Section Weber  

Skin Friction Drag 
Hoerner Fluid Dynamic Drag 

MDAC (McDonnell Douglas Aircraft Company) West Handbook 
USAF Datcom 4.1.5.1 

Pressure/Wave Drag Hoerner Potential Flow Theory 
Base Drag Empirical (NWL-TR-3018) 

Induced Drag USAF DATCOM, section 4.1.5.2  

Potential Normal 
Force 

USAF DATCOM, 
section 4.1.3.2 

(Lowry-Polhamus) 

R.A.S. (Royal  
Aeronautical Society) 

Data Sheets 
USAF DATCOM, section 4.1.3.2 

Viscous Normal Force USAF DATCOM, section 4.1.3.3 
Pitching Moment USAF DATCOM, section 4.1.4.2 

Dynamic and Damping 
Derivatives 

Methods based on lifting surface theory for subsonic speeds and  
on linearized theory for supersonic speeds, Look-up Tables 

Table 3.4: Main methodologies implemented in Missile DATCOM  
for fin aerodynamic parameters computation 
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INLET AERODYNAMIC METHODOLOGY  
AERODYNAMIC 

PARAMETER SUBSONIC (M<1) SUPERSONIC (M>1) 

Skin Friction Drag Laminar: Blasius, Hoerner Fluid Dynamic Drag 
Turbulent: Van Driest II, MDAC (McDonnell Douglas Aircraft Company) West Handbook 

Pressure/Wave Drag USAF DATCOM section 4.2.3.1, Transonic 
Area Rule Supersonic Area Rule 

Additive Drag  Engineering Method  
(AIAA 91-0712) 

Potential Normal Force 
and Pitching Moment Engineering Method (AIAA 90-3091) 

Viscous Normal Force 
and Pitching Moment Jorgensen viscous crossflow 

Table 3.5: Main methodologies implemented in Missile DATCOM  
for inlet aerodynamic parameters computation 

 
 

AERODYNAMIC 
PARAMETER FIN-BODY SYNTHESIS AERODYNAMIC METHODOLOGY 

Body-Fin Upwash Empirical Correlation (AIAA 96-3395) 
Fin-Body Carryover Slender Body Theory (NACA-TR-1307) 

Fin deflection Slender Body Theory (AGARD-R-711) 
Body Vortex Empirical (NWC-TP-5761) 
Fin Vortex Line Vortex Theory  (NACA-TR-1307) 

Dynamic Derivatives Equivalent Angle of Attack (AIAA 97-2280) 
Table 3.6: Main methodologies implemented in Missile DATCOM  

for fin-body interference estimate 
 

The ability of Missile DATCOM in predicting aerodynamic performances for various 

aircrafts and missile configurations has been studied in many research works [2,3,4]. 

Literature results have shown good agreement with experimental data, but have also 

revealed that this software is not able to provide accurate results for every 

configuration. Studies have shown that normal force is predicted with the minimal error, 

while the axial force is one of the most difficult aerodynamic forces to accurately 

predict. In particular, for body-wing-tail configurations, the normal force coefficient is 

expected to be predicted with an error lower than 9%, while the axial force and the 

pitching moment coefficients with error lower than 12% [2]. Both over and under 

prediction were observed. While the accuracy of specific quantities depends on input 

geometry and flight conditions, the overall accuracy of the code is deemed to be at a 

level suitable to support preliminary design studies. 

 
3.1.1 HyPlane model 

The methods implemented in Missile DATCOM encompass a wide range of 

configurations and flight conditions, according to their range of applicability 

requirements.  

The HyPlane configuration includes a body (the fuselage), three fins (two wings and a 
vertical tail) and two airbreathing engines.  
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Unfortunately Missile DATCOM limitations do not allow reproducing exactly the real 

shape of the HyPlane. Indeed, a simplified shape, as similar as possible to the original 

geometry, has been modelled, according to the software limitations.  

In particular some approximations have been introduced, for fuselage and wing. 

HyPlane fuselage complex shape has been modelled as an axisymmetric body, with 

elliptical cross-sections, since the used software version allows to model only 

axisymmetric bodies, with circular or elliptical cross-sections.  

The variable delta wing has been modelled as a double delta wing, since the software 

allows reproducing only few sweep angles for each fin. HyPlane vertical tail has been 

exactly modelled, thanks to its simple shape. Wing and vertical tail airfoil has been 

defined by specifying upper and lower surface coordinates at different chord stations. 

The achieved model is presented in Figure 3.3.  

 

  
(a) (b) 

Figure 3.3: HyPlane clean configuration.  
Original geometry (a) and Missile DATCOM model (b) 

 

Also control surfaces have been modelled without any approximation. The 

axisymmetric inlets of the two airbreathing engines have been modelled by specifying 

the inlet ramp angle and cowl external diameter at five axial locations. The achieved 

complete model is presented in Figure 3.4.  
 

  
(a) (b) 

Figure 3.4: HyPlane complete configuration.  
Original geometry (a) and Missile DATCOM model (b) 

 

Tables 3.7 and 3.8 show the range of applicability required by Missile DATCOM 

methods. It is possible to observe that HyPlane configuration and flight envelope can 

be quite good handled by Missile DATCOM.  
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Parameters Priority 1 Priority 2 HyPlane 
Angle of attack [deg] α -20≤α≤20 180≤α≤180 0≤α≤20 

Angle of sideslip [deg] β -20≤β≤20 180≤β≤180 -20≤β≤20 

Mach number 6≥∞ܯ≥0 10≥∞ܯ≥0 6≥∞ܯ≥0 ∞ܯ 

Body fineness ratio (l/d)B 6≤(l/d)B≤20 1≤ (l/d)B≤30 (l/d)B=7.9 

Nose fineness ratio (l/d)N 0.5≤(l/d)N≤5 0≤(l/d)N≤7 (l/d)N=4 

Fin exposed span 
to diameter (b/d)F 1≤(b/d)F≤6 0≤ (b/d)F≤10 Wing: (b/d)F=1.8 

Vert. Tail: (b/d)F=1.2 
Fin aspect ratio AR 0.6≤AR≤4 0.1≤AR≤10 Wing: AR=1.3 

Vert. Tail: AR=0.93 
Fin planform  Triangular, trapezoidal All Wing: Double Delta 

Vert. Tail: Trapezoidal 
Control method  All moveable fin All All moveable fin 

Fin deflection incidence [deg] δ 0≤δ≤30 0≤δ≤60 0≤δ≤30 

Reynolds number/ft RN 3x105≤RN≤2x107 103≤RN≤3x107 3x105≤RN≤2x107 

Table 3.7: Missile DATCOM applicability to different geometric configurations  
and flight conditions 

 

Geometric feature/ Flight condition Subsonic Transonic Supersonic HyPlane 

Nose shape 
Cone V V V  

Tangent Ogive V V V Tangent Ogive 
Other ? V V  

Nose bluntness 

Sharp V V V  
Spherical ? ? V Spherical 
Truncated X X V  

Other X X V  

Body configuration 

Nose-Cylinder V V V  
Nose-Boattail ? ? V  

Nose-Flare ? ? V Nose-Cylnder-
Boattail 

Nose-Cylinder-
Boattail V V V  

Nose-Cylinder-Flare ? ? V  
Body Fineness 

Ratio 2≤l/d≤28 V V V (l/d)=7.9 

Body angle of 
attack 0≤α≤30 V V V 0≤α≤20 

Fin planform 

Trapezoidal V V V  

Double Delta - 
Cranked V V V 

Wing: 
Double Delta 

 
Vert. Tail: 

Trapezoidal 
Other ? X X  

Fin taper ratio 0≤λ ≤1 V V V Wing: λ=0.15 
Vert. Tail: λ= 0.5 

Fin aspect ratio 0.5≤AR≤4 V V V 
Wing: AR=1.3 

 
Vert. Tail: AR=0.93 

Fin airfoil section 
Supersonic V V V  

NACA V V X User Defined 
Other V V X  

Fin leading edge Spherically blunted V V V Spherically blunted 
Fin trailing edge Non sharp V V V Non sharp 

Fin angle of attack 0≤α≤60 V V V 0≤α≤30 

Fins combination 
Planar V V V  

Cruciform V V V Planar 
Other ? ? ?  

V : Application suitable           ? : Application questionable/limited           X: Does not apply  

Table 3.8: Component build-up approach applicability to different geometric configurations  
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3.2 CFD Models 

3.2.1 Fluid dynamic governing equations 

The considered fluid dynamics governing equations take into account the effects of 

turbulence and compressibility. They are obtained properly averaging the compressible 

Navier-Stokes equations which express the conservation of mass, momentum and 

energy. The equations, in Cartesian integral form, for an arbitrary control volume 
ܸ enclosed in the surface ܣ with normal ݊, may be written: 

߲
ݐ߲
න ܸ݀ߩ
௏

+ ර ݒߩ ∙ ܣ݀ ݊
஺

=  0  

߲
ݐ߲
න ܸ݀ݒߩ
௏

+ ර ݒݒߩ
஺

∙ ܣ݀ ݊ = −ර ܫ݌
஺

∙ ܣ݀ ݊ + ර ߬
஺

∙   ܣ݀ ݊

߲
ݐ߲
න ܸ݀ܧߩ
௏

+ ර ݒܪߩ
஺

∙ ܣ݀ ݊ = −ර ݍ
஺

∙ ܣ݀ ݊ + ර(߬
஺

∙ (ݒ  ∙   ܣ݀ ݊

where: 

 ݒ ,ߩ, p are the flow density, velocity vector and pressure 

  ߬ is the viscous stress tensor  

 ݍ is the heat flux vector, given by the Fourier's law ݍ =  −݇∇ܶ, where ݇ is the 

thermal conductivity and ܶ is the flow temperature  

 ܧ = ݁ + ଵ
ଶ
หݒห

ଶ and ܪ = ℎ + ଵ
ଶ
หݒห

ଶ
= ܧ + ௣

ఘ
 are the flow total energy and the total 

enthalpy, per unit mass, respectively, where ݁ and ℎ are the internal energy and 

the enthalpy, per unit mass, respectively. 

The flow, considered an ideal gas, is also governed by the equation of state ݌ =  . ܴܶߩ 

Let ߶(ݔ,  a dependent variable. The time (Reynolds) average and the Reynolds (ݐ

decomposition into the average and the fluctuation components are defined by: 

߶ത =  ଵ
்

 ∫ ,ݔ)߶ ்ݐ݀(ݐ ,      ߶ = ߶ത +  ߶′ 

The density weighted time (Favre) average and the Favre decomposition are defined 

by: 

߶෨ = ఘథതതതത

ఘഥ
  ,     ߶ = ߶෨ +  ߶′′ 

The Favre-averaged Navier-Stoker (FANS) equations are obtained inserting the 

Reynolds decomposition for ߩ and  ݌, and the Favre decomposition for ݑ, ݁ and ℎ into 

the governing equations and averaging them. 
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The resulting equations for the mean quantities are similar to the original equations, 

except for some additional terms: 

 the viscous stress is augmented by the so-called Reynolds stress tensor 

߬௧ = ݒߩ ݒ′′ ′′ 

 the heat flux is augmented by the so-called Reynolds heat flux  ݒߩ′′ℎ′′ 

 a term representing the transport for turbulent kinetic energy by turbulent 

velocity fluctuation and the work done by the viscous stress due to turbulent 

velocity fluctuation.  

 

Using the Boussinesq approximation, the Reynolds stress tensor can be written as: 

߬௧ = ௧ܵߤ2 −  
2
3
൫ߤ௧∇ ∙ v +  ܫ൯݇ߩ

where: 

 ߤ௧  is the eddy dynamic viscosity 
 ܵ =  ଵ

ଶ
 ൫∇ݒ  ൯ is the strain rate tensor்ݒ∇ +

 ݇ is the turbulent kinetic energy 

The fluid dynamic governing equations are closed by the Menter's Shear Stress 

Transport (SST) ݇ − ߱ turbulence model, widely used in aerospace applications. 

 
3.2.2 SST ࢑ − ࣓ turbulence model  

The ݇ − ߱ turbulence model is based on two transport equations, for the turbulent 

kinetic energy ݇ and the specific dissipation rate ߱ (identified as a frequency of the 

turbulence).  

In the book by D.C. Wilcox [6] the original form of the model is discussed and 

comparisons with other turbulence models are presented. The main advantage of the 

݇ − ߱ model over the ݇ −  model is its superior performance for boundary layers ߝ

under adverse pressure gradients. The biggest disadvantage, in its original version, is 

a strong sensitivity to the values of ߱ in the free stream outside the boundary layer [7], 

a non-issue for the ݇ −  model. This shortcoming was addressed by Menter, who ߝ

combined the original ݇ − ߱ model for use near walls and the ݇ −  model away from ߝ

walls using blending  functions (which include functions of wall distance). In particular 

Menter transformed the ε transport equation into a ߱ transport equation, presenting a 

cross-diffusion term containing the dot product ∇݇ ∙ ∇߱. Moreover Menter modified the 

eddy viscosity formulation to account for the transport effects of the principle turbulent 
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shear stress and dubbed the model containing this modification the SST (Shear-Stress 

Transport) ݇ − ߱ model [8,9].  

The transport equations, for ݇ and ߱ are: 
 
߲
ݐ߲
න ܸ݀݇ߩ
௏

+ න ݒ݇ߩ ∙ = ܣ݀ ݊ න ߤ) + ݇∇ (௧ߤ௞ߪ ∙ ܣ݀ ݊ + 
஺

 
஺

 

+න ቂߛ௘௙௙ − ௞ܩ  ϒ′ߚߩ∗ ఉ݂∗(߱݇ −߱௢݇௢)ቃܸ݀
௏

 

߲
ݐ߲
න ܸ݀߱ߩ
௏

+ න ݒ߱ߩ ∙ ܣ݀ ݊ = =  න ߤ) + ߱∇ (௧ߤఠߪ ∙ ܣ݀ ݊ + 
஺

 
஺

 

+න − ఠܩൣ ߚߩ ఉ݂(߱ଶ −߱௢ଶ) + ఠ൧ܸ݀ܦ
௏

 

The production of ݇ and ߱ are computed as, respectively: 

= ௞ܩ ௧ܵଶߤ  −
2
3
∇݇ߩ ∙ ݒ −  

2
3
∇)௧ߤ ∙  ଶ(ݒ

= ఠܩ ρ γ ൤൬ܵଶ −
2
3
൫∇ ∙ ൯ݒ

ଶ
൰ −  

2
3
߱∇ ∙  ൨ݒ

where ܵ is the modulus of the strain rate tensor ܵ. 

ఠܦ ఠ is a cross-diffusion term, defined asܦ = 2(1− ఠమߪߩ(ଵܨ
ଵ
ఠ
∇݇ ∙ ∇߱. 

The eddy turbulent viscosity is evaluated as ߤ௧ = ܶ  with ,ܶ݇ߩ  = min ቈ ଵ

୫ୟ୶ቀఠ,ೄಷమబ.యభቁ
, ଴.଺
√ଷௌ

቉. 

 :ଶ are blending functions, defined asܨ ଵ andܨ

ଵܨ = tanh(ܽݎ ଵ݃
ସ)  , ܽݎ ଵ݃ = min ቂmax ቀ √௞

଴.଴ଽఠ௬
, ହ଴଴௩
ఠ௬మ

ቁ , ଶ௞
௬మ஼஽ೖഘ

ቃ 

ଶܨ =  tanh(ܽ݃ݎଶଶ) , ܽ݃ݎଶ = max ቀ ଶ√௞
ఉ∗ఠ௬

, ହ଴଴௩
௬మఠ

ቁ 

where ܦܥ௞ఠ = max ቀଵ
ఠ
∇݇ ∙ ∇߱, 10ିଶ଴ቁ, β∗ = 0.09 and ݕ is the distance to the nearest 

wall.  

The coefficients β, ߪ௞, ߪఠ  ଵ, according toܨ are computed from the blending function  ߛ ,

the equation (for the generic coefficient ߶): 

߶ = ଵ߶ଵܨ  + (1−  ଵ)߶ଶܨ

where the coefficients ߶ଵ and ߶ଶ are: 

ଵߚ = ௞ଵߪ , 0.075 = ఠଵߪ , 0.85 = 0.5 , ϒଵ = βభ 
β∗
− ఠଵߪ 

௄మ

ඥఉ∗
 

ଶߚ = ௞ଶߪ , 0.0828 = ఠଶߪ , 1 = 0.856 , ϒଶ = βమ 
β∗
− ఠଶߪ 

௄మ

ඥఉ∗
 

with ܭ = 0.41. 

ߛ ௘௙௙ is the effective intermittency andߛ = min[max(ϒ௘௙௙ , 0.1), 1]. ݇௢ and ߱௢ are the 

ambient turbulence values in source terms that counteract turbulence decay.  
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In order to evaluate the effects of compressibility, coefficients ߚ and ߚ∗ are replaced by, 

respectively:  

௖௢௠௣ߚ = ߚ  − ∗ߚ 1.5 max(ܯ௧
ଶ ௧଴ܯ−

ଶ )  

௖௢௠௣ߚ
∗ = −1]∗ߚ 1.5 max(ܯ௧

ଶ ௧଴ܯ−
ଶ )]   

where ܯ௧଴
ଶ =  ଵ

ସ
. 

The SST ݇ − ߱ model is particularly suitable for complex boundary layer flows under 

adverse pressure gradient and separation, typical phenomena of external 

aerodynamics. Moreover it is a prerequisite for the ߛ − ܴ݁ణ  transition model, presented 

in the next section. 
 
 

ࢽ 3.2.3 −  transition model  ࣖࢋࡾ

The ߛ − ܴ݁ణ  transition model [10,11] is a correlation-based transition model specifically 

formulated for unstructured CFD codes.  

The model is based on two transport equations, for the intermittency ߛ and for the 

transported transition momentum thickness Reynolds number ܴ݁ణ௧ . By the latter a 

correlation for the transition onset momentum thickness Reynolds number  ܴ݁ణ௧ 

defined in the freestream is propagated into the boundary layer, thought the variable 

ܴ݁ణ௧. In this work the free stream has been defined in terms of an iso-value based on 

wall distance.  

߲
ݐ߲
න ܸ݀ߛߩ
௏

+  න ݒߛߩ ∙ = ܣ݀ ݊ න ቆߤ +
௧ߤ
௙ߪ
ቇ  ∇ϒ ∙ ܣ݀ ݊ +

஺
 

஺
න ൣ ఊܲ − ఊ൧ܸ݀ܧ
௏

 

߲
ݐ߲
න ణ௧ܸܴ݀݁ߩ
௏

+ න ݒణ௧ܴ݁ߩ ∙ = ܣ݀ ݊ න ߤ)ణ௧ߪ + ߛ∇ (௧ߤ ∙ ܣ݀ ݊ +
஺

 
஺

න ణܲ௧ܸ݀
௏

 

where: 

ܲϒ = [௢௡௦௘௧ܨߛ]ܵߩ௟௘௡௚௧௛ܿ௔ଵܨ 
ଵ
ଶ(1− ܿ௘ଵߛ) 

ణܲ௧ =  ܿణ௧
ଶܷߩ

ߥ500
൫ܴ݁ణ௧ −  ܴ݁ణ௧൯(1−  (ణ௧ܨ

ϒܧ = ܿ௔ଶܨߛܹߩ௧௨௥௕(ܿ௘ଶߛ − 1) 

ܹ is the modulus of the vorticity tensor  ܹ =  ଵ
ଶ

 ൫∇ݒ −  ൯ and ܷ is the local velocity்ݒ∇ 

magnitude. 

The transport equations are controlled by the following functions. In particular ܨ௟௘௡௚௧௛ 

and ܨ௢௡௦௘௧ control the length and onset location of transition respectively, while  ܨ௧௨௥௕  

and ܨణ௧ control the boundary layer destruction and detector respectively.  
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௢௡௦௘௧ଵܨ =  ோ௘ೡ
ଶ.ଵଽଷ ோ௘ഛ೎

௢௡௦௘௧ଶܨ ,  = min[max(ܨ௢௡௦௘௧ଵସ ,(௢௡௦௘௧ଵܨ, 2] , 

௢௡௦௘௧ଷܨ = max[1− ቀோ௘೅
ଶ.ହ
ቁ
ଷ

, ௢௡௦௘௧ܨ ,(0 = max(ܨ௢௡௦௘௧ଶ − ௢௡௦௘௧ଷܨ , 0) 

௧௨௥௕ܨ = exp ൤− ቀோ௘೅
ସ
ቁ
ସ 
൨  ,  ܨ௪௔௞௘ = exp ൤− ቀோ௘ഘ

ଵ଴ఱ
ቁ
ଶ 
൨ 

ణ௧ܨ = min ቊ݉ܽݔ ቈܨ௪௔௞௘ ݌ݔ݁ ቆ−൬
݀
ߜ
൰
ସ

ቇ , 1 − ൬
ܿ௘ଶߛ − 1
ܿ௘ଶ − 1

൰
ଶ

 ቉ , 1ቋ 

 

ܴ݁௩   is the strain rate Reynolds number,  ்ܴ݁ is the turbulence Reynolds number. ܴ݁ణ௖ 

is the critical momentum thickness Reynolds number where the intermittency first 

appears in the boundary layer. 

ܴ݁௩ =  ఘௗ
మௌ
ఓ

 ,  ்ܴ݁ =  ௞
ఔఠ

 ,  ܴ݁ఠ =  ఘఠ௬
మ

ఓ
 

ߜ =  50ܹ ௗ
௎
஻௅ߜ   , ஻௅ߜ = ଵହ

ଶ
஻௅ߴ ஻௅ߴ  , = ோ௘ഛ೟ఔ

௎
 

 

The coefficients are defined as: 

ܿ௔ଵ = 2.0 , ܿ௔ଶ = 0.06 , ܿ௘ଵ = 1.0 , ܿ௘ଶ = ௙ߪ ,50 = 1.0, ܿణ௧ = ణ௧ߪ ,0.03 = 2.0 

The effective intermittency is obtained from: 

௘௙௙ߛ  = max(ߛ,  ,( ௦௘௣ߛ

= ௦௘௣ߛ min ቂ2݉ܽݔቀ ோ௘ഌ
ଷ.ଶଷହோ௘ഛ೎

− 1,0ቁ ௥௘௔௧௧௔௖௛ܨ , 2ቃ ௥௘௔௧௧௔௖௛ܨ , ణ௧ܨ = exp ൬−ቀோ೅
ଶ଴
ቁ
ସ
൰ 

 

Three correlations, for ܴ݁ణ௧ , ܴ݁ణ௖ and ܨ௟௘௡௚௧௛, close the ߛ − ܴ݁ణ transition model. The 

model was originally published incomplete [10], since only the correlation for ܴ݁ణ௧ was 

reported while the other two correlations were omitted.  

In this work the correlation for ܴ݁ణ௧ developed by Menter et al. [10] and later revisited 

by Langtry [11] has been used. The missing correlations have been introduced via field 

function, using the two correlations derived from calibration against zero-pressure 

gradient flat plate data, by Suluksna et al. [12]. 

The correlation for ܴ݁ణ௧ has the following form: 

ܴ݁ణ௧ = ቐ
ቈ1173.51 − 589.428 ௨ܶ +

0.2196

௨ܶ
ଶ ቉ ,ణߣ)ܨ ௨ܶ) ;           ௨ܶ ≤ 1.3

331.5( ௨ܶ − 0.5658)ି଴.଺଻ଵߣ)ܨణ, ௨ܶ);                            ௨ܶ > 1.3
 

,ణߣ)ܨ ௨ܶ) = ቐ1 + exp ቈ−൬
2 ௨ܶ

3
൰
ଵ.ହ 
቉ ൫12.986ߣణ + ణߣ123.66

ଶ + ణߣ405.689
ଷ൯; ణߣ  ≤ 0

1 + 0.275 exp(−2 ௨ܶ) [1 − exp(−35ߣణ)]; ణߣ                                          > 0
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 :ణ is the Thwaite's parameter and ௨ܶ is the turbulence intensityߣ

ణߣ =
ଶߴ

ߥ
ܷ݀
ݏ݀

  , ௨ܶ = 100
ට2݇

3
ܷ

 

where  ௗ௎
ௗ௦

 is the acceleration along the streamwise direction. 

The correlations for  ܴ݁ణ௖ and ܨ௟௘௡௚௧௛ are as follows: 

ܴ݁ణ௖ = min൫0.615ܴ݁ణ௧ + 61.5,ܴ݁ణ௧൯ 

௟௘௡௚௧௛ܨ = minൣ0.5 + ൫7.168݌ݔ݁ − 0.01173ܴ݁ణ௧൯ , 300൧ 

 
3.2.4 Radiation model 

The considered radiation model allows simulating thermal radiation exchange between 

diffuse surfaces forming a closed set, considering the medium between them non-
participating.  

The radiation flux on each surface is a function of the surface radiation properties 

(emissivity, reflectivity, transmissivity and radiation temperature) and thermal boundary 

conditions imposed on the surface. In the present work an emissivity of 0.8, a 

reflectivity of 0.2 (and, consequently, a zero transmissivity) have been assigned to the 
vehicle surface.  

The considered model, based on the theories described in detail in [13,14] operates in 

the following steps: 

1) Spatial discretization of the boundary surfaces into patches 

2) View factors calculation using ray tracing method  

3) Imposition of the radiation balance on the entire closed set of surfaces and 
calculation of radiative fluxes on the surfaces. 

The amount of radiation exchanged between surfaces depends on the diffuse emission 

from the surface, the position and orientation of the surfaces relative to each other and 

the presence of any specularly transmissive or reflective surfaces that may alter the 

direct transfer between the surfaces. The latter two are taken into account for the 

calculation of the view factors which represent the fraction of uniform diffuse radiation 
leaving a surface that directly reaches another surface [13]. 

For two finite surfaces view factor ܨଵିଶ is the ratio between the radiation power emitted 

by S1 and received by S2 and the total radiation power emitted from S1 and can be 

obtained by integration over constituent elemental surfaces. 
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Figure 3.5: Radiation exchange between two finite surfaces 

ଵିଶܨ =  
1
ଵܵ
ඵ

cosߚଵ cosߚଶ
ଶܮߨ

݀ ଵܵ݀ܵଶ
ௌభௌమ

 

where β is the angle between the surface normal and a line joining the two surfaces 
and L is the distance between the two surfaces. 

The view factors must satisfy the reciprocity relation:  

ଵିଶܨ ଵܵ =  ଶିଵܵଶܨ 

In the adopted model the boundary surfaces are discretized into small elements called 

patches and view factors are calculated for each patch pair. An environmental patch is 

also created by the code in order to collect and account for all the energy radiated to 

and from the environment around the regions. The emissive power and the radiation 
properties are assumed to be uniform over the surface of each patch.  

The double integral is approximated using a ray tracing approach: for each patch, a 

predefined number of rays is traced through the computational domain starting at the 

patch centroid; the directions are based on discretization of an ideal hemisphere over 
the patch.  

After the calculation of the view factors for the patch pairs, radiant fluxes on each patch 

are obtained by enforcing radiation equilibrium on the entire closed set of surfaces for 

each radiation spectrum of spectral band. In this work the simplified grey spectrum 

model has been assumed, for which radiation properties surfaces are considered the 
same for all wavelengths.  

For a generic patch i the radiation contributions are the incident, emitted and 

transmitted radiations. 
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Figure 3.6: Schematic representation of radiation fluxes on patch i 

 
For the radiation balance over the entire closed set of surfaces, all the radiation 

received by each patch must come from the other patches. Summing over all the 

௣ܰ patches, the incident radiation flux of the patch i is: 

ܳூ,௜ =  ௜ܵܫ௜ =  ෍
௝ି௜ܨ

(1 − ߬௜ − (௦,௜ߩ

ே೛

௝ୀଵ

ௗ,௝ܬ ௝ܵ + 
௘ି௜ܨ

(1 − ߬௜ − (௦,௜ߩ
 ௘ܵ௘ܬ

where: 

 ௜ܵ is the surface of the patch i  

 ܫ௜ is the incident radiation on the patch i  

 ܨ௝ି௜  is the view factor j to i calculated using ray tracing 

 (1 − ߬௜ −  ௦,௜) is the diffuse portion of the surface properties at patch i, where ߬௜ߩ

is the transmissivity and ߩ௦,௜  is specular component of reflectivity 

 ܬௗ,௝   is the diffuse radiosity of the patch j  

 subscript e is used for the environmental patch. 

The general reciprocity relationship for view factors between surfaces that may be 

transmissive and/or specularly reflective is: 
௝ି௜ܨ ௝ܵ

൫1− ߬௜ − ௦,௜൯ߩ
=  

௜ି௝ܨ ௜ܵ

൫1− ௝߬ − ௦,௝൯ߩ
 

Combining the last two equations and introducing the effective radiosity as 

௜ܬ
௘௙௙ =  

ௗ,௝ܬ

൫1− ߬௜ − ௦,௜൯ߩ
 

 the incident radiation can be written as: 

௜ܫ =  ∑ ௜ି௝ܨ
ே೛
௝ୀଵ ௝ܬ

௘௙௙ + ௘ܬ௜ି௘ܨ 
௘௙௙  

 
The diffuse radiosity of the patch i is the sum of the emitted and the diffusely reflected 

radiations: 

ௗ,௜ܬ = ௜ܧ +  ௜ܫௗ,௜ߩ
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Combining the last two equations for each patch a set of radiation balance equations 

for ܬ௝
௘௙௙  is obtained 

൫1− ௝߬ − ௜ܬ௦,௝൯ߩ
௘௙௙ − ௗ,௜ߩ  ෍ܨ௜ି௝

ே೛

௝ୀଵ

௜ܬ
௘௙௙ = ௜ܧ ௘ܬ௜ି௘ܨௗ,௜ߩ +

௘௙௙ 

The surface emissive power is given by the Stefan-Boltzmann law ܧ௜ = ߪ௜ߝ  ௜ܶ
ସ, where 

௜ߝ   is the emissivity, ߪ is the Stefan-Boltzmann constant and ௜ܶ is the surface 

temperature. Similarly the effective radiosity of the environment, modelled as a black 

body with unity emissivity, is proportional to the fourth power of the environment 

temperature ܬ௘
௘௙௙ = ߪ  ௘ܶ

ସ. 

The emissive power, reflectivity, and transmissivity for the patch i are obtained by 
surface-averaging the face (f) values for the N boundary faces that constitute each 

patch: 

௜ܧ =  
∑ ఌ೑ೖ ೑்ೖ

ర  ௌ೑ೖ
೑ಿ(೔)
೑భ(೔)

∑ ௌ೑ೖ
೑ಿ(೔)
೑భ(೔)

௜ߩ  ,   =  
∑ ఘ೑ೖ  ௌ೑ೖ
೑ಿ(೔)
೑భ(೔)

∑ ௌ೑ೖ
೑ಿ(೔)
೑భ(೔)

 ,   ߬௜ =  
∑ ఛ೑ೖ  ௌ೑ೖ
೑ಿ(೔)
೑భ(೔)

∑ ௌ೑ೖ
೑ಿ(೔)
೑భ(೔)

 

At this point the set of radiation balance equations is solved by the software. 

The radiative heat flux to the face is given by the difference between the total 

absorption and the total emission: 

௙(௥ݍ) = ൫1− ௙߬൯ܫ௙ −  ௙ܬ 

where the incident radiation at each face is simply equal to the irradiation on the 
associated patch i and the face diffuse radiosity is the sum of the emitted and the 

diffusely reflected radiations: 

௙ܫ = ௙ܬ   , ௜ܫ  = ௜ܫ௙ߩ  +  ௙ܧ 

Finally, the effects of radiation are taken into account by augmenting the total boundary 

heat flux by radiative heat flux.  

௙ݍ = ௙(௡௢ ௥௔ௗݍ) +  ௙(௥ݍ) 

 

 
3.2.5 Computational grid 

In the present work both structured and unstructured grids have been generated. Two 

and three dimensional structured grids have been constructed to model simple 

geometries, such as the fuselage and the wing taken individually and the engine air 

intake, taking advantage of the commercial CAE pre-processing software ANSA [15]. 

The three dimensional unstructured grid used to model the entire vehicle have been 

achieved using the commercial software STAR-CCM+ [16], used also as solver.  
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In this case meshing guidelines provided by [16] were generally followed, taking into 

account that the generated grid would have been used for subsonic, trans-supersonic 

and hypersonic regimes. 

The external boundary position has been chosen to avoid problems of interference with 

the flow field around the vehicle. In particular the overall length of the computational 

domain was about eight times the length of the body.  

A robust prism layer meshing algorithm has been used to capture the boundary layer. 

The volume mesh has been refined in different areas, by using arbitrarily-shape 

volumetric control regions. First of all, an overall refinement has been made around the 

entire vehicle, then a finer one around the wing and the vertical tail. Moreover special 

refinements have been applied in high spatial gradient zones, such as the nose and the 

leading edges of lifting surfaces  (characterized by small curvature radii) and the body-

wing junction, in order to better capture the flow gradients in the solution. Finally the 

volume mesh has been refined at tips of lifting surfaces and downstream them in order 

to capture wake vortices. The obtained grid provides proper resolution of geometry and 

good cell quality.  

Key mesh parameters are summarized in Table 3.9. A grid convergence analysis, for 

the hypersonic cruise condition. is reported in section 4.3. 

 

Mesh parameters 

Number of Cells 6.5 M 

Number of Surface Faces 1.3 M 

Number of Prism Layers 20 
Table 3.9: Computational grid main parameters 

  
Figure 3.7: Polyhedral grid 

 

Different grids have been generated in order to simulate the effect of the elevons 

deflections. In these grids further refinements have been defined in the area between 

the wing trailing edge and the elevons, in order to capture separate flow regions 

(Figure 3.8). 



42 
 

   
Figure 3.8: Computational grid refinement near the elevons  

A different mesh has been generated for the configuration including turboramjet 

engines. The obtained volume grid consists of 7.2 million cells (Figure 3.9). 

 

 
 

Figure 3.9: Surface grid on the vehicle with engines 
 

Grids have not been customized for any particular attitude. Angles of attack were 
accomplished by rotating the domain while leaving the grid unaltered. 

 

3.2.6 Solver 

The transport equations with suitable boundary conditions have been numerically 

solved taking advantage of STAR-CCM+, based on the finite-volume method. Discrete 

versions of the integral form of the transport equations are applied to each cell of the 

computational grid, in order to obtain a set of linear algebraic equations, which are 

solved with an algebraic multigrid solver. This approach can be applied both to 

generated structured and unstructured grids.  

Steady state solutions have been evaluated, using a coupled implicit numerical 

resolutions scheme.  

The coupled approach consists in the simultaneous solution of the mass, momentum 

and energy equations. The non-linear governing equations have been linearized, by 
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means of an implicit formulation, in order to produce an algebraic system of equations 

for the dependent variables in every computational cell. 

An implicit scheme foresees that, in each cell the unknown quantity of a generic 

variable is evaluated using a relation which includes both existing and unknown values 

from neighbouring cells. Unknown therefore appears in more than one equation in the 

system and these equations are solver simultaneously to achieve the unknown values. 

Since the governing equations are non-linear and coupled, an iterative process is 

applied in order to obtain a converged solution. There are two levels of iteration: an 

outer iteration loop controlling the solution update and an inner loop governing the 

iterative solution of the linear system. The linear system is solved approximately at 

each iteration, by means of algebraic multigrid methods. 

The different boundary conditions used in this work are: 

 Free-stream, to model the flow conditions encountered in the flight envelope 

pressure outlet, for the downstream surfaces. 

 Wall (non-slip) to model the impermeable surface of the vehicle immersed in the 

viscous flow. 

 Axis/symmetry plane, to model 2D axisymmetric and 3D symmetric problems, 

respectively. 
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4 Assessment of aerodynamic prediction capabilities  
4.1 Study logic 

Missile DATCOM software and CFD simulations have been used to predict HyPlane 

aerodynamic behaviour. The first one has several limitations: only traditional 

configurations can be addressed, some analysis assume only axisymmetric 

configurations, very different models are employed for the analysis of subsonic or 

super-hypersonic regimes and transonic regimes are often not well modelled.  

For this reason, before carrying out an extensive parametric analysis to completely 

assess the aerodynamic performances of the aircraft at all the relevant operative flight 

conditions particular efforts have been dedicated to verify the validity of this method for 
the problem under investigation, also by means of CFD simulations. 

In Figure 4.1 a synthetic study logic scheme of this validation procedure and the final 

goals of this work are presented.  

 

 

 
Figure 4.1: Study logic scheme 

 

 

First of all a preliminary assessment of Missile DATCOM and CFD prediction 

capabilities in hypersonic regime, since HyPlane primarily operates in this regime.  
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In particular an assessment of Missile DATCOM has been carried out, by means of a 

comparison with experimental data for a preliminary configuration of the X-15 (body-

wing-tails-elevons) in terms of both longitudinal and lateral-directional aerodynamic 

characteristics. This analysis is reported in the first section of this chapter.  

Then an assessment of the adopted CFD model for the configuration body-wing-tail in 

hypersonic cruise condition has been achieved, with a grid convergence analysis, 
presented in the second section. 

Subsequently both the aerodynamic prediction methods have been utilized to predict 

longitudinal aerodynamic coefficients for several flight conditions in subsonic, transonic, 

supersonic and hypersonic regimes, for the configuration body-wing-tail-elevons. The 

comparison between the results achieved by the two methods is presented in the third 

section. One of the most important results of this validation analysis is that the 

aerodynamic characteristics computed with Missile DATCOM can be properly 

corrected (particularly in transonic regime) using CFD techniques, to support vehicle 
design work. 

Finally the effects of the TBCC engines on the aerodynamic predictions, for the 

hypersonic cruise condition, have been studied. This analysis is reported in the fourth 
section of this chapter.  

After the procedure of assessment of prediction capabilities described in this chapter, 

the validated engineering model has been extensively used for the building of the 

vehicle complete aerodynamic database, presented in chapter 5.  

Further CFD analyzes aimed at investigating the boundary layer laminar-turbulent 

transition process have also been carried out, in order to investigate its effect on 

aerodynamic heating occurring in the hypersonic cruise phase and to establish a 
preliminary materials assessment, presented in chapter 6.  

Finally the aerodynamic database has been implemented in a flight simulator, to 
perform flight mechanics analysis (chapter 7). 
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4.2 Preliminary assessment of Missile DATCOM prediction capabilities in 
hypersonic regime  

In this section a comparison between Missile DATCOM results and experimental data 

is presented, for a preliminary configuration of the X-15.  

The experimental data are the results of a study on different preliminary configurations 

of the X-15, carried out in the Langley Research Center in 1969 [1].  

The analyzed configuration, illustrated in Figure 4.2, is characterized by a flat-top, 

negative-camber dihedral delta wing (with incorporated trapezoidal elevons to provide 

pitch control), an upper and a lower vertical tails. Tip fins are not considered in the 

Missile DATCOM model, such as in the reported experimental analysis. The 

experimental tests were conducted in a Mach 6 wind tunnel, at a free-stream Reynolds 

number of 2.71∙ 107 per meter.  

 
Figure 4.2: X-15 preliminary configuration 

Figures 4.3 and 4.4 show the comparison between experimental data and Missile 

DATCOM results, in terms of longitudinal aerodynamic coefficients and lateral-

directional static derivatives, respectively.  

A satisfactory agreement has been found with longitudinal experimental data. In 

particular lift coefficient prediction has a minimal error, drag coefficient is slightly 

overestimated for low angles of attack and underestimated for higher angles of attack; 

the pitching moment prediction presents a more consistent error. Some discrepancies 

have also been found for lateral-directional static derivatives. 

 

   
(a) (b) (c) 

Figure 4.3: Lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack at  ܯஶ = 6, ܴ݁ஶ = 2.71 ∙ 10଻. 

Comparison between experimental data and Missile DATCOM results 
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(a) (b) (c) 

Figure 4.4: Side force (a), rolling moment (b) and yawing moment (c) coefficients  
as a function of angle of attack at  ܯஶ = 6, ܴ݁ஶ = 2.71 ∙ 10଻.  

Comparison between experimental data and Missile DATCOM results 
 

The effect of the elevons deflection has also been investigated. Figure 4.5 shows a 

comparison between experimental and numerical results in terms of ܿ௅  and ܿ஽, for a 

10° elevons deflection. A satisfactory agreement has been found for the lift coefficient, 
while an underestimation of the drag coefficient for high angles of attack has emerged. 

 

  
(a) (b) 
Figure 4.5: Lift and drag coefficients as a function of  

angle of attack, with ߜ௘ = 10°, at ܯஶ = 6, ܴ݁ஶ = 2.71 ∙ 10଻.  
Comparison between experimental data and Missile DATCOM results 
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4.3 Preliminary assessment of CFD model in hypersonic regime 

Three unstructured meshes have been generated using STAR-CCM+ to perform a grid 

sensitivity analysis in hypersonic conditions, in order to ensure the independence of 

computed results from the mesh size. For this analysis the HyPlane body-wing-tail 

configuration has been considered. 

A "medium" polyhedral grid with 20 prism layers on the body surface has been 

generated. This mesh has been properly refined in critical areas such as the nose and 

the leading edges of lifting surfaces and to the body-wing junction, in order to better 

capture the flow gradients in the solution. Further refinements have been applied at tips 

of lifting surfaces and downstream them in order to capture wake vortices, for total of 

6.5 M cells.  

A "coarse" grid has been generated by increasing the global cell size of the mesh by 

60%, reducing the number of prism layers and removing some refinements, while a 

"fine" grid has been obtained by reducing the size of 40% and increasing the number of 

prism layers.  Key mesh parameters are summarized in Table 4.1. The obtained grids 

provide proper resolution of geometry and good cell quality. 

 

Parameters Coarse Medium Fine 

Number of Cells 4.6 M 6.5 M 13.5 M 

Number of Surface Faces 1.1 M 1.3 M 1.5 M 

Number of Prism Layers 15 20 25 

Table 4.1: Coarse, medium and fine grids main parameters 

Figure 4.6 shows the grid density on the vehicle and the symmetry plane, respectively, 

for the coarse, the medium and the fine meshes.  

The assumed flow conditions for the simulations are shown in Table 4.2.  

Results of the simulations in terms of longitudinal aerodynamic coefficients are 

presented in Table 4.3. Longitudinal forces and moment are nondimensionalized by the 

freestream dynamic pressure and the reference area, which is the wing area. In 

addition, pitching moment is nondimensionalized by the reference length, which is the 

wing mean aerodynamic chord. Pitching moment is evaluated with respect to a pole at 

15 m distance from the apex of the vehicle nose. 
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(a) 

  

(b) 

  

(c) 

Figure 4.6: Coarse (a), medium (b) and fine (c) grids 

 

Case [ࢍࢋࢊ] ࢻ [࢓࢑]ࡴ ∞ࡹ 

1 4 30 0 

2 4 30 4 
Table 4.2: Flow conditions for the grid sensitivity analysis 

 

Table 4.3: Longitudinal aerodynamic coefficients computed by CFD simulations  
adopting different grids 

 

Since deviations in results with the fine grid are lower than 2%, the medium grid has 

been chosen to perform the CFD analysis. This grid has been used not only for 

calculations in hypersonic regime, but also in subsonic and trans-supersonic regimes. 

Case Grid CL CD CM 

1 
Coarse -0.00670 0.00880 -0.00560 
Medium -0.00702 0.00902 -0.00549 

Fine -0.00701 0.00909 -0.00547 

2 
Coarse 0.0570 0.0124 -0.0102 
Medium 0.0569 0.0127 -0.0100 

Fine 0.0570 0.0128 -0.0100 



51 
 

4.4 Utilization of Missile DATCOM and CFD model for different flight 
conditions 

Preliminary computations have been performed to cross-check the longitudinal 

aerodynamic coefficients obtained by means of Missile DATCOM software and CFD 

simulations, for the HyPlane body-wing-tail-configuration, for several flight conditions, 

in subsonic, transonic, supersonic and hypersonic regimes (Figure 4.7). The effect of 

the elevons deflection has also been investigated, for some flight conditions.  
 

 
Figure 4.7: Flight conditions investigated with Missile DATCOM and CFD simulations 

 

For CFD simulations the boundary layer has been assumed fully turbulent, in order to 

be conservative in the estimation of the skin friction drag. Pitching moment is evaluated 

with respect to a pole at 15 m distance from the apex of the vehicle nose.  

 
4.4.1 Body-wing-tail configuration 

The analysis is performed for Mach numbers from 0.2 to 6, altitudes up to 30 km and 

angles of attack from 0° to 20°, as shown in Table 4.4. 

Regimes [ࢍࢋࢊ] ࢻ [࢓࢑]ࡴ ∞ࡹ 

Subsonic 
0.2 0 0,4,8,12,16,20 

0.7 10 0,4,8,12,16,20 

Transonic 

0.9 10 0,4,8,12,16,20 

1.0 10 0,4,8,12,16,20 

1.1 10 0,4,8,12,16,20 

1.2 10 0,4,8,12,16,20 

Supersonic 
1.5 15 0,4,8,12,16,20 
2.0 20 0,4,8,12,16,20 

3.0 20 0,4,8,12,16,20 

Hypersonic 
4.0 30 0,4,8,12,16,20 

6.0 30 0,4,8,12,16,20 

Table 4.4: Flight conditions investigated with Missile DATCOM and CFD simulations 
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Subsonic regime 

The longitudinal characteristics computed with the two different tools, for the analyzed 

subsonic flight conditions, are reported in Figures 4.8 and 4.9.  

A very good agreement has been found for the prediction of ܿ௅ and ܿ஽, while 

discrepancies in the computation of ܿெ  have emerged, for angles of attack of 4°, 8° 

and 12°. 

   
(a) (b) (c) 

Figure 4.8: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for  ܯ∞ = 0.2, ܪ = 0 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 
 
 

   
(a) (b) (c) 

Figure 4.9: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for ܯ∞ = 0.7, ܪ = 10 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 
 

The pressure distributions on the vehicle and on the symmetry plane corresponding to 

the solutions computed with CFD simulations at 0.2=∞ܯ and 0=ܪ km, at different 

angles of attack are presented in Figure 4.10.  

In Figure 4.11 it is possible to observe the vortical structures forming over the delta 

wing in high-subsonic regime (ܯஶ=0.7, 10=ܪ km), as the angle of attack increases. 

The vorticity contours and surface streamlines on different sections along the vehicle 

length (10 m, 14 m, 18 m and 22 m etc distance from the nose apex) computed at 8°=ߙ 

are presented in Figure 4.12. 
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(a) (d) 

  
(b) (d) 

  
(c) (f) 

 
Figure 4.10: Pressure contour on the vehicle and the symmetry plane  

computed with CFD simulations. ܯ∞ = 0.2, ܪ = 0 ݇݉. 
ߙ = 0° (a), ߙ = 4° (b), ߙ = 8° (c), ߙ = 12° (d), ߙ = 16° (e), ߙ = 20° (f) 

 

 

 
(a) (b) 

(c) 
Figure 4.11: Pressure contour on the vehicle and streamlines computed with CFD simulations.  

∞ܯ  = 0.7, ܪ = ߙ .݉݇ 10 = 0° (a), ߙ = 4° (b), ߙ = 8° (c) 
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Figure 4.12: Vorticity contours and surface streamlines computed with CFD simulations. 

∞ܯ  = 0.7, ܪ = ߙ ,݉݇ 10 = 8° 
 

Transonic regime 

Figures 4.12-15 show lift, drag and pitching moment coefficients computed with the two 

different aerodynamic prediction methods, for the selected transonic flight conditions. In 

transonic regime Missile DATCOM overpredicts lift and drag coefficients and 

underpredicts pitching moment coefficient, if compared to CFD.  

Discrepancies are very pronounced, especially for  ܯஶ=1. 

 

   
(a) (b) (c) 

Figure 4.12: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for  ܯ∞ = 0.9, ܪ = 10 ݇݉.  
Comparison between Missile DATCOM and CFD results 
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(a) (b) (c) 

Figure 4.13: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for ܯ∞ = 1.0, ܪ = 10 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 
 
 

   
(a) (b) (c) 

Figure 4.14: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for ܯ∞ = 1.1, ܪ = 10 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 
 
 
 

   
(a) (b) (c) 

Figure 4.15: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for ܯ∞ = 1.2, ܪ = 10 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 

Supersonic regime 

The longitudinal characteristics computed with two different methods, for the analyzed 

supersonic flight conditions, are reported in Figures 4.16-18.  

It is possible to observe that the discrepancy registered in transonic regime reduces as 

the Mach number increases. In fact, for  ܯஶ=3, the semi-empirical prediction code 

produces results very close to the CFD ones, for all the coefficients.  

In this regime Missile DATCOM tends to overestimate lift and drag coefficients for high 

angles of attack, with respect to CFD results. 
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(a) (b) (c) 

Figure 4.16: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for  ܯ∞ = 1.5, ܪ = 15 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 
 
 

   
(a) (b) (c) 

Figure 4.17: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for  ܯ∞ = 2.0, ܪ = 20 ݇݉. 
Comparison between Missile DATCOM and CFD results 

 
 
 

   
(a) (b) (c) 

Figure 4.18: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for ܯ∞ = 3.0, ܪ = 30 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 

 

The Mach number contour and the pressure distribution on the vehicle corresponding 

to the solutions computed with CFD at  2.0=∞ܯ and 20=ܪ km, at different angles of 

attack, are presented in Figure 4.19. 
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(a) 
 

 
 

(b) 
 

 
 

 
(c) 

 

  
Figure 4.19: Mach number and pressure contours on the vehicle and the symmetry plane 

computed with CFD simulations.  ܯ∞ = 2.0, ܪ = 20 ݇݉. 
ߙ = 0° (a), ߙ = 4° (b), ߙ = 8° (c) 
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Hypersonic regime 

In Figures 4.20 and 4.21 longitudinal aerodynamic coefficients evaluated with the 

adopted techniques are presented, for two different hypersonic conditions, 

corresponding to  ܯஶ=4 and ܯஶ=6 respectively, at 20=ܪ km.  

Results provided by the two different methods are very close, for all the coefficients. 

Also in this regime Missile DATCOM tends to overestimates lift and drag coefficients 

for high angles of attack, with respect to CFD results. 
 

   
(a) (b) (c) 

Figure 4.20: Predicted lift (a), drag (b) and pitching moment (c) coefficients  
as a function of angle of attack, for ܯ∞ = 4.0, ܪ = 30 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 

   
(a) (b) (c) 

Figure 4.21: Predicted lift (a), drag (b) and pitching moment (c) coefficients 
as a function of angle of attack, for ܯ∞ = 6.0, ܪ = 30 ݇݉.  
Comparison between Missile DATCOM and CFD results 

 

In Figure 4.22 it is possible to observe the evolution of the conical shock wave that 

originates from the vehicle nose varying the angle of attack, for  4=∞ܯ and 30= ܪ km. 
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(a) (b) 

  
(c) (d) 

 
Figure 4.22: Pressure contour on the vehicle and the symmetry plane  

computed with CFD simulations.  ܯ∞ = 2.0, ܪ = 20 ݇݉. 
ߙ = 0° (a), ߙ = 4° (b), ߙ = 8° (c), ߙ = 12° (c) 

 

Summary for all flight regimes 

Figure 4.23 shows lift, drag and pitching moment coefficients as a function of Mach 

number, for different angles of attack, computed by the two methods. Solid lines refer 
to Missile DATCOM results while dots are CFD values. 

  
(a) (b) 

 
(c) 

Figure 4.23: Lift (a), drag (b), pitching moment (c) coefficients  
as a function of Mach number for different angles of attack,  

computed by Missile DATCOM (solid lines) and CFD simulations (dots) 
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The averaged deviation of Missile DATCOM computations, with respect to CFD results 

is presented in the Table 4.5, for the lift, drag and pitching moment coefficients, varying 

the flight regime. CFD values have been chosen to nondimensionalise the absolute 

deviation.  

An important result of this analysis is that the aerodynamic characteristics computed 

with Missile DATCOM can be properly corrected (particularly in transonic regime) using 

CFD techniques, to support vehicle design work. For the other flight regimes, obtained 

correlation is generally satisfactory.  

CFD analysis confirms that Missile DATCOM is particularly suitable during conceptual 

and preliminary design phases. 

 

Regimes Lift Deviation Drag Deviation 
Pitching Moment 

Deviation 

Averaged 
Deviation 

Subsonic 4.6% 15.1% 29.2% 19.0% 
Transonic 20.3% 18.2% 39.0% 25.7% 

Supersonic 14.4% 6.8% 12.0% 11.1% 
Hypersonic 8.3% 12.1% 8.5% 9.6% 

Table 4.5: Deviation of Missile DATCOM computations, with respect to CFD results, for lift drag 
and pitching moment coefficients, varying the flight regime 

 

4.4.2 Body-wing-tail-elevons configuration 

Analysis of the effect of pitch control surfaces has been conducted for some flight 

conditions and different elevons deflections, shown in Table 4.6.  

The elevons deflection is assumed positive when both the elevons are deflected 

downward. With this convention a positive elevons deflection produces a negative 

pitching moment. 

 

 [ࢍࢋࢊ] ࢋࢾ [ࢍࢋࢊ] ࢻ [࢓࢑]ࡴ ஶࡹ
0.7 10 0 0,10,20 

2.0 20 0 0,10,20 

4.0 30 0 0,-10,-20 

Table 4.6: Flight conditions investigated with Missile DATCOM and CFD simulations 

 

In figures 4.24-26 contributes to lift, drag and pitching moment coefficients predicted by 

the two different tools are presented, as a function of elevons deflections. 

A reasonable agreement between results has been found. In particular the two 

methods predict very close contribute to ܿ஽, while the contributes to ܿ௅  and ܿெ 
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computed by Missile DATCOM are slightly lower in subsonic and higher in supersonic 

regime, if compared to CFD results.  

 

   
(a) (b) (c) 

Figure 4.24: Predicted contributes to lift (a), drag (b) and pitching moment (c) coefficients as a 
function of elevons deflection, for  ܯ∞ = 0.7, ܪ = ߙ,݉݇ 10 = 0°. 

Comparison between Missile DATCOM and CFD results 
 

 

   
(a) (b) (c) 

Figure 4.25: Predicted contributes to lift (a), drag (b) and pitching moment (c) coefficients as a 
function of elevons deflection, for  ܯ∞ = 2.0, ܪ = 20 ݇݉, ߙ = 0°. 

Comparison between Missile DATCOM and CFD results 
 

 

   
(a) (b) (c) 

Figure 4.26: Predicted contributes to lift (a), drag (b) and pitching moment (c) coefficients as a 
function of elevons deflection, for  ܯ∞ = 4.0, ܪ = 30 ݇݉, ߙ = 0°. 

Comparison between Missile DATCOM and CFD results 
 

Figures 4.27-29 illustrate the pressure distribution on the vehicle for the analyzed flight 

conditions. 
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(a) (b) 

 
Figure 4.27: Pressure contour on the vehicle computed with CFD simulations 

∞ܯ)  = 0.7, ܪ = 10 ݇݉, ߙ = ௘ߜ .(0° = 10° (a), ߜ௘ = 20° (b)  
 
 
 
 
 

  
(a) (b) 

 
Figure 4.28: Pressure contour on the vehicle computed with CFD simulations  

ஶܯ)  = 2.0, ܪ = 20 ݇݉, ߙ = ௘ߜ .(0° = 10° (a), ߜ௘ = 20° (b) 
 
 
 
 

  
(a) (b) 

 
Figure 4.29: Pressure contour on the vehicle computed with CFD simulations 

ஶܯ)  = 4.0, ܪ = 30 ݇݉, ߙ = ௘ߜ .(0° = −10° (a), ߜ௘ = −20° (b)  
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4.5 Effects of engines on aerodynamic predictions in hypersonic regime 

For a correct estimate of the aerodynamic database it is necessary to take into account 

the presence of the TBCC engines.  

Therefore the air-intake and the engine external configuration have been preliminarily 

designed, in order to assess the effect on the aerodynamic performances.   

In this section the designed variable geometry air intake is presented and its 

functioning is briefly shown. Then the CFD analysis aimed at achieving the inlet main 

performances are presented. In particular two operating conditions have been 

investigated: the nominal hypersonic cruise condition and a supersonic condition, 

corresponding to different spike configurations. Finally the effect of the presence of the 

engines on the HyPlane global lift and drag coefficients, in hypersonic cruise 

conditions, evaluated by CFD simulations and Missile DATCOM, is presented. 

 
4.5.1 Mixed compression variable geometry inlet 

The extent of the HyPlane operating speed and altitude ranges necessitates a variable-

geometry inlet, able to supply to the engine a flow at correct pressure and velocity 

throughout the flight envelope. In particular an axisymmetric mixed internal/external 

compression supersonic inlet, using a translating spike has been considered.  

The considered air intake has been designed to produce, at nominal conditions (at 

cruising speed and altitude), a cone-shaped shock impinging at the cowl lip (external 

compression) and getting reflected along the duct enclosed by the spike and cowl 

internal surface, leading to a further internal compression which terminates with a 

normal shock in the throat (at Mach number near one), ensuring subsonic conditions at 

the entrance of the combustion chamber and producing a relatively high total pressure 

recovery.   

In operation, the spike translates as a function of altitude and Mach number, varying 

the position of the cone shaped shock wave and the size of the inlet throat area, in 

order to capture and maintain the normal shock wave in the optimal position.  

In Figure 4.30 the geometry of the designed inlet and the schematic of flow at the 

nominal cruise condition are illustrated. 
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Figure 4.30: Schematic of flow field for the HyPlane turbo-ramjet inlet at the nominal condition 

 

4.5.2 CFD analysis and inlet performances 

Two different spike configurations have been modelled (Figure 4.31). The first, 

corresponding to the nominal condition (ܯஶ=4, 30=ܪ km) is characterized by a throat 

area of 0.17 m2. The second configuration is obtained by translating the spike of 0.66 

m forward and provides a throat area of 0.4 m2; the corresponding flight condition is 

ܪ  ,ஶ=2ܯ =15 km, as summarized in Table 4.7. 
 

 
Figure 4.31: Turbo-ramjet variable geometry inlet. Dimensions expressed in meters 

 

 [࢓࢑] ࡴ ∞ࡹ [૛࢓]࢚࡭ 

Nominal (Cruise) 0.17 4.0 30 

Supersonic 0.4 2.0 15 

Table 4.7: Analysed turbo-ramjet inlet operating conditions 

 

A two-dimensional structured grid of about 0.12 million quadrilateral cells has been 

generated with the pre-processor ANSA. Steady state, axisymmetric RANS equations, 

closed by the ݇ − ߱ turbulence model, have been solved, using a coupled implicit 

numerical resolutions scheme. The effect of the presence of the combustion chamber 
is taken into account by imposing a high back pressure at the exit of the engine inlet. 

The results of the numerical simulations are presented in terms of contours of the main 

fluid dynamic quantities. In particular the distributions of Mach number, pressure, 

temperature, total pressure and streamlines for the nominal (cruise) condition and the 
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considered supersonic condition, at zero angle of attack, are presented in Figures 4.32 
and 4.33, respectively.  

An oblique shock wave attached to spike's tip, that externally compresses the flow, is 

originated. At the nominal condition (ܯஶ=4, 30=ܪ km) the shock-on-lip condition is 

satisfied while for the supersonic condition (ܯஶ=2,  ܪ =15 km) the shock angle is larger, 

causing an external bleeding of flow. The throat area increase, resulted from the spike 

forward translation, allows catching and retaining the normal shock wave in the throat.  

In fact in both examined cases, it is possible to see a series of reflected compression 

shock waves, along the duct enclosed by the spike and the cowl internal surface, 

through which the flow is decelerated, approaching Mach number near to one in the 

throat section, where a normal shock wave occurs. This functioning guarantees a good 
total pressure recovery, ensuring a relatively high air intake efficiency, defined as: 

ߟ = ଴ଶ݌ ⁄଴ଵ݌  

where ݌଴ଵ and ݌଴ଶ are the total pressure values upstream and downstream the inlet, 

respectively.  

 

  
(a) (b) 

Figure 4.32: Mach number, pressure (a), streamlines and temperature (b) distributions  
at ܯஶ = ܪ ,4 = 30 ݇݉ and ߙ = 0°, computed by CFD simulations 

 
 

  
(a) (b) 

Figure 4.33: Pressure, temperature (a), streamlines and total pressure (b) distributions  
at ܯஶ = ܪ ,2 = 15 ݇݉ and ߙ = 0° , computed by CFD simulations 

 
A three-dimensional structured grid of 0.78 million hexahedral cells has been created in 

order to evaluate the alteration of the inlet performances as the angle of attack 

increases during the hypersonic cruise (Figure 4.34).  
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(a) (b) 
Figure 4.34: Computational domain (a) and surface grid on the air intake (b) 

 

Figure 4.35 shows the flow field at an angle of attack of six degrees (expected 

maximum angle of attack during the cruise phase).  

 

  
(a) (b) 

Figure 4.35: Mach number (a) and pressure (b) distributions  
at ܯ∞ = ܪ ,4 = 30 ݇݉ and ܣ݋ܣ = 6°, computed by CFD simulations 

 

The computed performances, in terms of mass capture and efficiency, for the different 

cases, are reported in Table 4.8. Results are in agreement with experimental and 

numerical results for similar air intakes available in literature [2]. Furthermore, the very 

limited deterioration of the inlet performances due to the asymmetry of the shock 
structures ensures a stable combustion during the hypersonic cruise.  

 ࣁ Mass capture [%] Efficiency [°]ࢻ [࢓࢑] ࡴ ∞ࡹ 
Nominal (Cruise) 4.0 30 0 100 0.617 

Supersonic 2.0 15 0 35 0.662 

Off-design (Cruise) 4.0 30 6 91 0.605 

Table 4.8: Turbo-ramjet supersonic inlet main performances 
 

4.5.3 Body-wing-tail-engine configuration 

Engines have been integrated to the vehicle body-wing-tail configuration, to perform 

CFD analysis aimed at studying their effects on lift and drag coefficients for hypersonic 

cruise conditions.  
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Figure 4.36 shows the comparison between the computed surface pressure distribution 

for the configurations without and with engines, at zero angle of attack.  

 

  
(a) (b) 

 
Figure 4.36: Pressure distribution for ܯஶ = ܪ ,4 = 30 ݇݉ and ߙ = 0°  

on the configuration without (a) and with engines (b), computed by CFD simulations 
 

In Table 4.9 results provided by CFD simulations and Missile DATCOM software, for 

two hypersonic cruise conditions are reported.  

It can be observed that the presence of the engines causes a relatively slight increase 

of drag force acting on the aircraft.  

In particular for 0°=ߙ Missile DATCOM and CFD predict a drag force increase of 4.5% 

and 12.5%, respectively. For 4°=ߙ it can be observed a reduced discrepancy between 

the predictions of the two methods: CFD computes an increase of 21%, Missile 

DATCOM of 23%.  

 

Configuration 
 Flight Condition  CFD  Missile DATCOM 

 ࡰࢉ ࡸࢉ  ࡰࢉ ࡸࢉ  [°]ࢻ [࢓࢑] ࡴ ஶࡹ 
Body-Wing-Tail  

4.0 30 0 
 -0.0072 0.0088  0 0.008 

Body-Wing-Tail-Engines   -0.0105 0.0094  0 0.009 

Body-Wing-Tail  
4.0 30 4 

 0.0529 0.012  0.077 0.013 

Body-Wing-Tail-Engines   0.0572 0.0145  0.084 0.016 

Table 4.9: Lift and drag coefficients during hypersonic cruise, for the configuration with and 
without engines, computed by CFD simulations and Missile DATCOM 
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5 Aerodynamic database 

In this chapter the aerodynamic database of the vehicle, achieved by Missile DATCOM, 

is presented. It refers to the complete vehicle configuration (body-wing-tail-engines-

elevons-ailerons-rudder) and includes longitudinal and lateral-directional force and 

moment coefficients, static and dynamic derivatives, varying Mach number (from low 

subsonic to hypersonic regime), altitude (from sea level to 70 km), angle of attack (from 

-6° to 20°) and control surfaces deflections.  

Longitudinal forces and moments are nondimensionalized by the freestream dynamic 

pressure and the reference area. In addition, longitudinal and lateral-directional 

moments are nondimensionalized by the reference lengths, which are the wing mean 

aerodynamic chord ܿ̅ and the wingspan ܾ, respectively.  

The longitudinal (pitch rate) dynamic derivatives are nondimensionalized by the 

quantity ̅ܿݍ 2 ∞ܸ⁄ , while lateral-directional (roll rate, yaw rate) dynamic derivatives are 

nondimensionalized by the quantities ܾ݌ 2 ∞ܸ⁄  and ܾݎ 2 ∞ܸ⁄ , respectively. 

Aerodynamic moments are evaluated with respect to a pole at 15 m distance from the 

apex of the nose, which corresponds to an intermediate position of the vehicle CoG as 

the propellant is consumed (Figure 2.8). 

 

5.1 Longitudinal aerodynamic coefficients 

Figures 5.1-3 show the behaviour of longitudinal aerodynamic coefficients with angle of 

attack for different values of Mach number. The lift and pitching moment coefficient 

have an almost linear profile in the examined range of angles of attack, while the drag 
coefficient presents the typical parabolic behaviour.  

  
(a) (b) 

Figure 5.1: Lift coefficient as a function of angle of attack at different Mach numbers.  
Subsonic (a) and supersonic (b) regimes 
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(a) (b) 

Figure 5.2: Drag coefficient as a function of angle of attack at different Mach numbers.  
Subsonic (a) and supersonic (b) regimes 

 
 

  
(a) (b) 

Figure 5.3: Pitching moment coefficient as a function of angle of attack at different Mach 
numbers. Subsonic (a) and supersonic (b) regimes 

 

Figure 5.4 shows the behaviour of the lift and drag coefficients with the freestream 

Mach number, at different angles of attack. The coefficients rise with Mach number in 

the subsonic regime, especially at high angles of attack, reaching a maximum at about 

 .ஶ=1, then decrease in the super-hypersonic regime, approaching at a constant valueܯ

The trend of the pitching moment coefficients varying the freestream Mach number is 
also presented in Figure 5.5, for different angles of attack. 



70 
 

  
(a) (b) 

Figure 5.4: Lift (a) and drag (b) coefficients as a function of Mach number, 
at different angles of attack 

 

 
Figure 5.5: Pitching moment coefficient as a function of Mach number, 

at different angles of attack 
 

 

The dependence of lift and pitching moment coefficient on altitude is negligible, while 

the effect of altitude on drag coefficient has been taken into account. Figure 5.6 shows 

the drag coefficient as a function of angle of attack, at Mach number of 4, at five 
different altitudes from 10 to 70 km.  

 
Figure 5.6: Drag coefficient as a function of angle of attack at different altitudes (ܯஶ = 4) 
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A comparison with other super-hypersonic vehicles, in terms of lift-to-drag ratio in the 

cruise phase, has been carried out.  

In Figure 5.8 cruise aerodynamic efficiency values performed by a series of super-

hypersonic vehicles, including HyPlane (illustrated in Figure 5.7), are reported, along 

with the Kuchemann's empirical relationship, known as the "ܮ ⁄ܦ  barrier" [1].  

As well known, high ܮ ⁄ܦ  are very difficult to achieve at high Mach numbers, due to the 

strong viscous effects and shock waves that vehicles suffer in these conditions.  

HyPlane vehicle, characterized by a slender shape and sharp leading edges that allow 

minimizing the super-hypersonic wave drag produced by the wing, exhibits a 
hypersonic ܮ ⁄ܦ ௖௥௨௜௦௘  of approximately 4.0. This value is intermediate between the 

aerodynamic efficiency performed by supersonic business jets and the X-15, flying at 

Mach 5. 

 

   
 

Tupulev Tu-144 Concorde SR-71 X-15 
    

   
SpaceShipTwo LAPCAT A2 HyPlane 

   
Figure 5.7: Super-hypersonic vehicle configurations 

 
 
 

 
Figure 5.8: Cruise lift-to-drag ratio for super-hypersonic vehicles and the "L/D barrier" 
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5.2 Lateral-directional derivatives 

In this section the trends of the vehicle aerodynamic derivatives are presented, both 

static and dynamic, both longitudinal and lateral-directional, as a function of angle of 

attack and Mach number. 

Side force coefficient derivative with sideslip angle is presented in Figure 5.9 while 

rolling and yawing moment coefficients derivatives with sideslip angle are presented in 

Figure 5.10, as a function of angle of attack, at different Mach numbers.  

Lateral-directional stability criteria (ܿ௒ఉ < 0,   ܿ௟ఉ < 0,   ܿேఉ > 0) are met for all the 

HyPlane effective operative conditions.  

 
Figure 5.9: Side force coefficient derivative with sideslip angle  

as a function of angle of attack, at different Mach numbers 
 
 

  
(a) (b) 

Figure 5.10: Rolling (a) and yawing (b) moment coefficients derivatives with sideslip angle  
as a function of angle of attack, at different Mach numbers 
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5.3 Dynamic derivatives 

In this section dynamic derivatives are presented, both longitudinal and lateral-

directional. Figures 5.11 and 5.12 show lift and pitching moment coefficients derivatives 

with rate of change of angle of attack and with pitch rate as a function of Mach number.  

 

.    
(a) (b) 

Figure 5.11: Lift derivative with rate of change of angle of attack (a) and pitch rate (b)  
as a function of Mach number 

 
 

  
(a) (b) 

Figure 5.12: Pitching moment derivative with rate of change of angle of attack (a)  
and pitch rate (b) as a function of Mach number 

 

In Figures 5.13-15 side force, rolling moment and yawing moment coefficients 
derivatives with roll and yaw rates, as a function of Mach number, are presented. 
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(a) (b) 

Figure 5.13: Side force coefficient derivative with roll rate (a) and yaw rate (b)  
as a function of Mach number 

 

  
(a) (b) 

Figure 5.14: Rolling moment coefficient derivative with roll rate (a) and yaw rate (b) 
as a function of Mach number 

 

  
(a) (b) 

Figure 5.15: Yawing moment coefficient derivative with roll rate (a) and yaw rate (b)  
as a function of Mach number 

 

Longitudinal and lateral-directional stability criteria (ܿெ௤ < 0,   ܿ௟௣ < 0,   ܿே௥ < 0) are met 

for all flight conditions.  
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5.4 Effect of control surface deflection 

5.4.1 Elevons effect 

Figures 5.16-17 show the contributes to lift, drag and pitching moment coefficients due 

to pitch control surfaces.  

Results are presented as a function of the elevons deflection angle ߜ௘, at different 

Mach numbers. The elevons deflection is assumed positive when both the  elevons are 

deflected downward. With this convention a positive  elevons deflection produces a 

negative pitching moment. 
 

  
(a) (b) 

Figure 5.16: Contributes to lift (a) and  drag (b) coefficients as a function of elevons deflection 
angle, at different Mach numbers 

 
 
 
 

 
Figure 5.17: Contribute to pitching moment coefficient as a function on elevons deflection angle, 

at different Mach numbers 
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5.4.2 Ailerons effect 

Figures 5.18-19 show the contributes to lift, drag, pitching and rolling moment 

coefficients due to roll control surfaces.  

Results are presented as a function of the right aileron deflection angle ߜ௔, at different 

Mach numbers. The deflection is assumed positive when the right aileron is deflected 

downward. With this convention a positive  aileron deflection produces a  rolling 

moment to the left (negative). The contribute to yawing moment coefficient (adverse 

yaw) is also presented in Figure 5.20. 
 

  
(a) (b) 

Figure 5.18: Contributes to lift (a) and  drag (b) coefficients as a function of  
aileron deflection angle, at different Mach numbers 

 
 
 

  
(a) (b) 

Figure 5.19: Contributes to pitching (a) and rolling (b) moment coefficients as function of aileron 
deflection angle, at different Mach numbers 

 
 



77 
 

 
Figure 5.20: Contributes to Yawing moment coefficients as function of  

aileron deflection angle, at different Mach numbers 
 
 

5.4.3 Rudder effect 

Figure 5.21 shows the contributes to drag and side force coefficients due to yaw control 

surfaces. The contributes to yawing moment coefficient and rolling moment coefficients 

(induced roll) are also presented in Figure 5.22. 

Results are presented as a function of the rudder deflection angle ߜ௥, at different Mach 

numbers. The rudder deflection is assumed positive when the rudder  trailing edge is 

deflected left. With this convention a positive elevons deflection produces a negative 
yawing moment.  

 

 
(a) (b) 

Figure 5.21: Contributes to Drag (a) and  Side force (b) coefficients as a function of ailerons 
deflection angle, at different Mach number 
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(a) (b) 

Figure 5.22: Contributes to Yawing (a) and  Rolling (b) moment coefficients as a function of 
ailerons deflection angle, at different Mach number 
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6 Aerodynamic heating and preliminary materials 
identification 

The aerodynamic heating is one of the problems during the super-hypersonic flight, 

due to the high convective heat fluxes on the outer surface of the vehicle, dictated by 

the very high speeds. Convective heat flux is partly conducted to the solid and partly 

radiated into the atmosphere. When conduction in the solid may be neglected (i.e. for 

materials with very low thermal conductivity) and a steady state is achieved, a 

"radiative equilibrium" is established, in the sense that the overall surface convective 

heat flux is perfectly balanced by the overall surface radiative flux. The corresponding 
surface temperature is known as "radiative equilibrium temperature" [1].  

This chapter is devoted to the numerical prediction by CFD simulations of the thermal 

loads acting on the vehicle, during cruise phase (the most severe condition in terms of 

aerodynamic heating), with particular attention to the most thermally stressed parts, 
namely the nose and the wing leading edges).  

The aerodynamic heating and then the surface temperature distributions strongly 

depend on the boundary layer laminar-turbulent transition. In fact the transition process 

has a dramatic effect on many integral quantities. The boundary layer thickness and 

the momentum thickness roughly double, skin friction and heat transfer significantly 

increase in the transition region and in the turbulent region heat transfer can be almost 
an order of magnitude higher than laminar heating.  

For this reason a CFD analysis aimed at the assessment of the boundary layer 

transition process has been performed. The analysis, reported in the first section of this 

chapter, has revealed that a fully turbulent boundary layer must be assumed for the 

materials identification, because the assumption of laminar regime would 
underestimate heat fluxes and then temperatures reached by the vehicle surface.  

On the basis of thermal loads computed assuming fully turbulent boundary layer, 

presented in the second section, a preliminary materials identification has been 

proposed, in the third section. 
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6.1 Boundary layer laminar-turbulent transition assessment  

The boundary layer laminar-turbulent transition process is dependent upon a number of 

parameters. The transition process is affected by geometry, Mach and Reynolds 

numbers, angle of attack, surface temperature, chemistry effects and a number of 

minor effects. Also the receptivity of the boundary layer to free stream disturbances, 

surface roughness and body vibrations allows the appearance and growth of 

instabilities that, ultimately, lead to transition to turbulence [2]. 

In this section a CFD analysis aimed at the assessment of the boundary layer transition 

process, on HyPlane fuselage and wing, in the hypersonic cruise conditions, is 

presented. The process has been predicted adopting ߛ − ܴ݁ణ transition model. The 

model has been at first applied to predict the transition on a flat plate in hypersonic 

conditions, producing results in reasonably agreement with experimental data. 

 
6.1.1 A case study: flat plate in hypersonic regime 

A CFD analysis aimed at predicting the laminar-turbulent transition on a isothermal flat 

plate in hypersonic condition has been carried out, in order to validate the adopted 

ߛ − ܴ݁ణ transition model, by comparing numerical results with experimental data 

achieved at NASA Langley Research Center [3].  

Numerical solutions have been obtained by solving steady state, compressible RANS 

equations, using a coupled implicit numerical resolution scheme.  
The flow conditions are reported in Table 6.1, where ܯஶ, ஶܶ and ܴ݁ஶ are the 

freestream Mach number, temperature and Reynolds number, respectively, and ௪ܶ is 

the wall temperature. 

 

 [ࡷ]࢝ࢀ [࢓/૚]∞ࢋࡾ [ࡷ]∞ࢀ ∞ࡹ

6.0 65.04 2.638 ∙ 107 106.67 
Table 6.1: Flow conditions for flat plate test 

Since the boundary layer is very thin and the normal gradient of flow field parameters is 

very large, the computational grid must be constructed with sufficient attention, in order 

to simulate accurately the structure of the flow field in the boundary layer [4]. In fact the 

adopted ߛ − ܴ݁ణ transition model requires a high-quality, refined low Reynolds number 

mesh, with near-wall spacing such as  ݕା = ඥఘఛೢ௬
ఓ

 is between 0.1 and 1 [5].  

A two-dimensional structured computational grid of about 31000 quadrilateral cells has 

been generated. The grid, illustrated in Figure 6.1, is characterized by a near wall layer 

thickness of 10-7 and satisfies the constraint on ݕା.  
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Figure 6.1: 2D structured hypersonic flat plate grid  

 

Comparison between CFD predictions and experimental data, in terms of Stanton 

number variation as a function of the local Reynolds number are shown in Figure 6.2. 

 

 

Figure 6.2: Stanton number variation as a function of the local Reynolds number.  
Comparison between numerical and experimental results 

 

 

Numerical results of the transitional case and experimental data were quite close. In 

particular the Stanton number trend in laminar conditions and the transition start are 

excellently predicted by the numerical simulation. The transition process duration and 

the Stanton number peak are relatively slight underestimated by the model. The 

Stanton number trend in turbulent conditions had a certain difference that could be 

considered acceptable according to the spreading law of the experimental data. 

However, the overall curve trend basically matched, and then it is possible to retain the 

adopted turbulence model able to reasonably reflect the development process of 
turbulence. 
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6.1.2 Application to HyPlane fuselage and wing  

The assessment of the boundary layer transition on HyPlane fuselage and wing, in 

hypersonic cruise conditions (Table 6.2), has been achieved by solving steady state, 

compressible RANS equations, using a coupled implicit numerical resolution scheme. 

An emissivity of 0.8, a reflectivity of 0.2 (and, consequently, a zero transmissivity) have 

been assigned to the vehicle surface. 

 

 
 

Table 6.2: Flow conditions for the assessment of the boundary layer transition process  
on HyPlane fuselage and wing 

 

 

The three cases summarized in Table 6.3 have been analyzed, both for fuselage and 

wing of the vehicle under investigation, in order to identify the most critical conditions in 

terms of aerodynamic heating. 

 

 

Cases Boundary layer Viscous Model 

1 Laminar - 

2 Transitional ߛ − ܴ݁ణ laminar-turbulent transition model 

3 Fully turbulent SST (Menter) ݇ − ߱ turbulence model 

Table 6.3: Studied cases for aerodynamic heating evaluation on HyPlane fuselage and wing 

  

 [ࢍࢋࢊ] ࢻ [࢓࢑]ࡴ ஶࡹ

4 30 0 
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Fuselage 

The considered computational domain has an overall length of about two times the 

length of the fuselage. A structured grid of about 5.2 million cells, which fulfils the 

mentioned requirement for wall ݕା, has been generated (Figure 6.3). 

Special attention has been paid to the nose, because of its small curvature radius (3 

cm), in order to better capture the flow gradients in the solution. Figure 6.3 shows the 

computational domain and the surface grid on the fuselage forefront.  

 

 

  
(a) (b) 

Figure 6.3: Computational domain (a) and surface grid (b) on the vehicle fuselage forefront  
 

 

Figure 6.4 shows the surface radiative equilibrium temperature distributions on the 

fuselage forefront, for the three analyzed cases.  

It is evident that the temperature jump caused by the laminar-turbulent transition is 

predicted to occur in different longitudinal stations, depending on the roll position.  

This is evidently due to the fact that the fuselage is not axisymmetric.  

In particular on the symmetry plane, on the upper side, the transition process is 

predicted to start at about X=0.5 m, before elsewhere, where the temperature 

discontinuity occurs up to about X=5 m. 
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(a) 

 
 

(b) 

  

(c) 

 
Figure 6.4: Radiative equilibrium temperature distribution on the vehicle forefront fuselage  

∞ܯ) = 4, ܪ = 30 ݇݉, ߙ = 0°). Laminar (a), transitional (b) and fully turbulent (c) boundary layer 
 
 

Figure 6.5 shows the radiative equilibrium temperature variation along the fuselage (on 

the symmetry plane, upper side) for laminar, transitional and fully turbulent boundary 

layer.  

For the identification of the materials able to sustain the hypersonic phase, the fully 

turbulent CFD solution must be taken into account, which is the most severe in terms of 
surface temperature peak and distribution.  
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(a) (b) 

Figure 6.5: Radiative equilibrium temperature variation along the vehicle forefront fuselage  
for laminar, transitional and fully turbulent boundary layer (ܯஶ = 4, ܪ = 30 ݇݉, ߙ = 0°). 

Linear scale (a) and logarithmic scale (b) for the X axis 
 

  

In figure 6.6 the turbulence intensity and intermittency ߛ distributions on the symmetry 

plane are presented. A ߛ value of 0 suggests laminar flow and a value of 1 refers to 

fully turbulent flow. In both the contours it is possible to clearly visualize the onset of 

transition of the flow from laminar to turbulent. 

 

 

  

  
(a) (b) 

Figure 6.6: Turbulence intensity (a) and intermittency (b) distributions on the symmetry plane 
∞ܯ) = 4, ܪ = 30 ݇݉, ߙ = 0°) 
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Wing 

The considered computational domain has been discretized in a structured grid of 

about 6.5 million cells, which satisfy the requirement for wall ݕା (Figure 6.7). Special 

attention is paid to the leading edge because of its small curvature radius.  

 

 

(a) (b) 
Figure 6.7: Computational domain (a) and surface grid (b) on vehicle wing 

 

In Figure 6.8 the radiative equilibrium temperature distribution on the vehicle wing is 

illustrated for the three different analyzed cases. It is possible to observe that the 

temperature jump caused by the laminar-turbulent transition roughly follows the 

variable delta wing shape.  

 
(a) 

 
(b) 

 
(c) 

 
Figure 6.8: Radiative equilibrium temperature distribution on the vehicle wing  

∞ܯ) = 4, ܪ = 30 ݇݉, ߙ = 0°). Laminar (a), transitional (b), fully turbulent (c) boundary layer 
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In Figure 6.9 the radiative equilibrium temperature along the vehicle wing mean 

aerodynamic chord for laminar, transitional and fully turbulent boundary layer, is 

reported. The transition process starts at about 20%ܿ̅ . The boundary layer becomes 

fully turbulent almost at 40% of the chord.  

 
 

Figure 6.9: Temperature variation along the vehicle wing mean aerodynamic chord for laminar, 
transitional and turbulent boundary layer (ܯ∞ = 4, ܪ = 30 ݇݉, ߙ = 0°) 

 
 

In the turbulence intensity contour at mean aerodynamic chord span location (Figure 

6.10) it is easy to recognize the transition process onset.  

 

 

 
Figure 6.10: Turbulence intensity and intermittency distributions along on the symmetry plane 

∞ܯ) = 4, ܪ = 30 ݇݉, ߙ = 0°). Transitional (a) and fully turbulent (b) boundary layer. 
 

Also in this case, for the identification of the materials able to sustain the cruise phase, 
the fully turbulent CFD solution must be taken into account. 



88 
 

6.2 Aero-thermal analysis 

In this section more detailed results of the CFD analysis carried out assuming fully 

turbulent boundary layer are presented, for the vehicle nose and wing in hypersonic 

cruise conditions. 
 

6.2.1 Nose 

The distribution of the radiative equilibrium temperature on the nose is shown in Figure 

6.11. The convective heat flux and the corresponding radiative equilibrium temperature 

variations along the symmetry plane are presented in Figure 6.12.  

 

 
 

 
 

(a) (b) 

 
Figure 6.11: Radiative equilibrium temperature distribution on the vehicle nose  

at 30=ܪ ,4=∞ܯ km and 0°=ߙ. Top view (a) and side view (b) 
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Figure 6.12: Convective heat flux and corresponding radiative equilibrium temperature along the 

vehicle nose at 30=ܪ ,4=∞ܯ km and 0°=ߙ. 
 

The Sutton and Graves engineering model [6] allows to analytically estimate the 

convective heat flux at the stagnation point of axisymmetric blunt bodies. The model is 

characterized by the equation: 

௖௢௡௩̇ݍ = ටܪଵܭ
ఘ௏మ

ோ೙
    

where ܪ is the total specific enthalpy, ߩ is the air density, ܸ is the flow velocity, ܴ௡ is 

the nose radius and ܭ = 3.6 ∙ 10ିସ [݇݃
భ
మ ݉ൗ ] is a constant based on the gas 

composition. Radiative equilibrium temperature ௪ܶ can be computed by imposing the 

equilibrium between heat fluxes: 

௖௢௡௩̇ݍ ൬1−
ܿ௣ ௪ܶ

ܪ
൰− ߝߪ ௪ܶ

ସ = 0 

where ܿ௣ = ߪ and ܭ݃݇/ܬ 1005 = 5.67 ∙ 10ି଼ ܹ/݉ଶܭସ are the specific heat at constant 

pressure and the Stefan-Boltzmann constant, respectively.  

This model predicts a surface stagnation-point temperature of 600°C, very close to the 

CFD result. In particular the semi-empirical method overpredicts the equilibrium 

temperature of 5%. 
 

6.2.2  Wing 

The distribution of the radiative equilibrium temperature is shown in Figure 6.13. The 

convective heat flux and radiative equilibrium temperature variations along different 

sections along the wing span (1 m, 2 m, 3 m ad 4 m distance from the wing root) are 

presented in Figure 6.14.  
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Figure 6.13: Radiative equilibrium temperature distribution on the wing  

at ܯஶ=4, 30=ܪ km and 0°=ߙ. Sections at 1 m, 2 m and 3 m distance from the wing root 
 
 
 

 
Figure 6.14: Convective heat flux and corresponding radiative equilibrium temperature along the 

considered wing sections at 30=ܪ ,4=∞ܯ km and 0°=ߙ 
 

It can be observed that stagnation convective heat flux and consequent radiative 

equilibrium temperature computed at wing leading edge are lower than the 

corresponding values calculated on vehicle nose, despite the wing leading edge radius 

of curvature is lower than nose one.  

This result is due to geometrical factors. In fact Tauber [7] found that the stagnation 

convective heat flux on a cylindrical leading edge of a finite length wing is reduced of a 

factor  √2, due to the wing bidimensionality effect,  with respect to the one evaluated on 

a spherical nose. A further reduction factor depends on the leading edge sweep angle. 
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Along the span the peak temperature increases, as the wing leading edge radius of 

curvature decreases, until a maximum of about 430°C.  

 

6.3 Preliminary materials assessment 

On the basis of the equilibrium temperature complete distributions computed assuming 

a fully turbulent boundary layer, for the hypersonic cruise condition (Figure 6.15),  three 

different areas have been identified with a possible material pre-selection, based on 

thermal resistance performances. Main idea is to apply advanced but available 
structural technologies with special thermal protection only for localized elements. 

  
(a) (b) 

 
Figure 6.15: Radiation equilibrium temperature distribution for ܯ∞ = 4, ܪ = 30 ݇݉, ߙ = 0°. 

Leeside (a) and windside (b) 
 

 

In particular, the following zones have been identified: 

 Nose, wing and vertical tail leading edges and control surfaces reach 

temperatures above 400°C. For these areas carbon fiber reinforced ceramics 

composite materials (e.g Boron Carbide B4C or Silicon Carbide SiC) could be 

used, as well as actively cooled solutions. 

 Fuselage and wing surfaces are expected to be at temperature in the range 

300-400°C. For such areas titanium alloys could be employed. 

 For the aft fuselage, estimated to be exposed  at temperature below 300°C,  

light temperature carbon fiber composite materials (e.g. Bismaleimides BMI) 

could be selected to gain weight with respect to titanium although the last 

remains to be applicable. 

 

Such zone identification is shown in Figure 6.16. The main physical properties -  

density ߩ, specific heat capacity ܿ௣, thermal conductivity ߣ , melting point ெܶ௘௟௧௜௡௚ and 

emissivity ε - of the considered materials are reported in Table 6.4.  
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Figure 6.16: Preliminary structure and materials assessment 

 
 
 

Materials ࣋ [ࢍ࢑ ⁄[૜࢓ ࡶ] ࢖ࢉ  ࢍ࢑ ∙ ⁄[ࡷ ࢃ] ࣅ  ࢓ ∙ ⁄ࡷ  ࢿ [ࡷ]ࢍ࢔࢏࢚࢒ࢋࡹࢀ [

Boron Carbide (B4C) 2500 950 90 2723 0.8 

Silicon Carbide (SiC) 3100 670 77.5-125.6 3070 0.8 
Ti-3Al-2.5V 4480 525 11.8 1973 0.45 

Table 6.4: Main properties of the identified materials 
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 7 Preliminary trim performances 
A six degree of freedom nonlinear dynamic model of the aircraft under investigation 

has been achieved by exploiting a flight simulation platform called MASLab 

(Multipourpose Aircraft Simulation Laboratory), developed by polytechnic of Turin, in 

the frame of the Clean Sky project [1].  

The obtained model and a proper algorithm have allowed evaluating longitudinal trim 

performances. This study refers to an upgraded configuration, which meets pilot 

visibility and aircraft stability requirements.  

In this chapter the criteria applied to refine the vehicle are brifly shown and the 

upgraded configuration is presented. Then the models adopted in the flight simulator 

and the trim algorithm are described. Finally the trim performances are reported. 

 

7.1 Configuration upgrade 

The vehicle configuration has been refined, in order to meet pilot visibility and stability 

requirements, while maintaining the hypersonic aerodynamic efficiency unaltered. 

First of all the vehicle nose shape has been modified to improve the pilot field of view 

during landing phase, according to civil aircraft requirements. The central and rear 

parts of the body, which hold passengers and fuel tanks, have been left unchanged. 

This modification has resulted in the shortening of the vehicle fuselage of almost two 

meters. 

In addition the vehicle original configuration has presented a longitudinal stability issue. 

In particular it has been found that at maximum takeoff weight and subsonic conditions, 

the vehicle center of gravity lies further from the nose than the total vehicle center of 

pressure. The problem is not experienced in supersonic flight conditions, where the 

center of pressure moves backward (lying at approximately 50%ܿ̅) and the center of 

gravity moves forward as the propellant is consumed (Figure 7.1). 

 
Figure 7.1: Longitudinal position of vehicle center of gravity  

at maximum takeoff weight and empty weight  
 

Therefore the wing planform has been changed to ensure (ݔ஼ீ − (௖௣ݔ < 0 for every 

computed position of the vehicle center of gravity and every flight regime. In particular 
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the upgraded wing planform presents a reduced root chord and an enlarged span, to 

move back the center of pressure in subsonic regime, while maintaining the same wing 

area. 

Moreover vertical tail has been changed to guarantee, for the new wing-body 
configuration, directional stability (ܥேఉ  >0)  for all operative flight conditions.  

The original and the upgraded configurations are illustrated in Figure 7.2. Main 

geometric parameters are reported in Table 7.1. 

  

 
 

  
(a) (b) 

Figure 7.2: HyPlane original configuration (a) and upgraded configuration (b) 
 

 

Geometric parameters Original configuration Upgraded Configuration 
   

Fuselage length [m] 23.6 21.8 
Nose Radius of Curvature [m] 0.03 0.03 

   
Wing Area [m2] 140 140.2 
Wing Span [m] 13.5 16 
Aspect Ratio 1.3 1.8 

Wing Chord at Root [m] 16.7 14.4 
Wing Chord at Tip [m] 2.5 2.5 

Wing Mean Aerodynamic Chord [m]m] 12 11 
   

Vertical Tail Span [m] 3.6 4.5 
Vertical Tail Area [m2] 14 18 

Vertical Tail Chord at Root [m] 6.4 6.2 
Vertical Tail Chord at Tip [m] 1.8 1.8 

Vertical Tail Sweep [deg] 57 57 
   

 Table 7.1: HyPlane configurations main geometric features 
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Figures 7.3 and 7.4 show the upgraded vehicle CoG longitudinal position and inertia 

properties, as the propellant is consumed. These quantities have been evaluated 

taking advantage of a CATIA tool. 

 

 
Figure 7.3: Vehicle CoG longitudinal position (from the nose apex)  

as the propellant is consumed  
 
 
 
 

  
(a) (b) 

  
(c) (d) 

Figure 7.4: Vehicle inertia properties with respect to body axes centered in the CoG,  
as a function of fuel mass 
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7.2 Six-DoF nonlinear dynamic model 

The six-dof nonlinear dynamic model of the vehicle, developed in MATLAB Simulink [2] 

environment, includes different blocks (Figure 7.5). 

 

 
Figure 7.5: MASLab model block diagram 

Pilot 

The Pilot block provides the external command inputs including the deflections of 

control surfaces (ߜ௘  , ௔ߜ   ,  It can be linked to a joystick for manual .்ߜ ௥) and the throttleߜ 

control in real-time. 

Actuators 

The Actuators module calculates the effective deflections of control surfaces resulting 

from pilot inputs and takes into account the fact that surfaces must be moved by real 

devices which do not operate instantly. Actuators are modelled by means of first order 
transfer functions. 

Equations of motion 

The module Equations of motion includes the six-DoF equations which govern the 

motion of the aircraft (supposed to be a rigid body), the kinematic and the navigation 

equations. Gravitational, aerodynamic and propulsive forces and moments acting on 

the aircraft are expressed in body axes reference frame. Aircraft position and attitude 
are expressed in Earth reference frame. 

These equations allow calculating the state variables:  

 transitional velocities with respect to body reference frame: ݓ ݒ ݑ  

 angular velocity with respect to body reference frame: ݎ ݍ ݌ 

 Euler angles  which express aircraft attitude:  ߮ ߴ ߰ 

 aircraft position with respect to Earth reference frame: ܺாீ  ாܻீ  ܼாீ  
 

The six-DoF equations of motions are defined as: 

PILOT
δe δa δr δT

AIRCRAFT DYNAMICS

Aerodynamic 
Database

ACTUATORS

Engine
Database

AERODYNAMICS

PROPULSION

FUEL & INERTIA

EQUATIONS OF MOTION 
(6 DoF, Rigid Body, 

Body Axes)

GRAVITY

ATMOSPHERE

STATE VARIABLES
V α β p q r 

φ ϑψ Xe Ye Ze
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where ݉ is the vehicle mass and [ܫ]஻ is the Inertia matrix:  

஻[ܫ] =  ൥ 
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The kinetic and navigation equations are, respectively: 
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The solution of these equations provides the value of the state vector derivative ܺ̇ 

which is integrated to obtain the new value of ܺ = ாீܺ  ߰ ߴ ߮ ݎ ݍ ݌ ݓ ݒ ݑ] ாܻீܼாீ]் by 

means of a Discrete-Time Integrator block in which a sample time and a initial condition 

ܺ௭௘௥௢ are defined.  

The module also includes the conversion of translational velocities into the equivalent 

values of airspeed ܸ, angle of attack ߙ and sideslip angle ߚ: 

ܸ = ඥݑଶ + ଶݒ ߙ ଶݓ+ = ଵି݊ܽݐ
ݓ
ݑ

ߚ  = ଵି݊݅ݏ
ݑ
ܸ

 

 
Atmosphere 

The Atmosphere module provides the values of environmental variables, in particular 

the static temperature ஶܶ and pressure ݌ஶ (using the classic 1976 COESA Atmosphere 

model) and the gravitational acceleration ݃, obtained directly from the altitude value 

ܪ = −ܼாீ . From these more variables are calculated: air density ߩஶ  and viscosity ߤஶ, 

Mach number ܯஶ, dynamic pressure ݍஶ and Reynolds number ܴ݁ஶ. 
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Gravity 

The Gravity module calculates the values of gravitational forces acting on the aircraft 

using the equations below. Gravitational moments are identically zero, because 

evaluated with respect to body axes centered in the aircraft CoG. 

൝
ܺீ
ܻீ
ܼீ
ൡ = ൝

−݉݃ sinߴ
݉݃ cosߴ sin߰
݉݃ cos ߴ cos߰

ൡ 

Aerodynamics  

The Aerodynamics module calculates the values of aerodynamic forces and moments 

acting on the aircraft, taking into account the aircraft altitude, Mach number and control 
surfaces deflections.   

In particular the module operates in a sequence that involves: 

1. The calculation of the aerodynamic coefficients and derivatives by using a set of 
2D and 3D look-up-tables, that constitutes the vehicle Aerodynamic Database 

of the upgraded configuration. 

 

2. The calculation of the aerodynamic force and moment coefficients using the 

equations: 

ܿ୐ =  ܿ୐ ௕௔௦௜௖ + ܿ߂୐ ௘௟௘௩௢௡௦ + ܿ߂୐ ௔௜௥௘௟௢௡௦ +  ܿ୐ఈ̇  
̅ܿߙ̇
2ܸ

 +  ܿ୐௤ො  
̅ܿݍ
2ܸ

 

ܿ஽ =  ܿ஽ ௕௔௦௜௖ + ܿ߂஽ ௘௟௘௩௢௡௦ + ܿ߂௅ ௔௜௥௘௟௢௡௦ ஽ ௥௨ௗௗ௘௥ܿ߂ + +   ஽ ௦௜ௗ௘௦௟௜௣ܿ߂ 

ܿெ =  ܿெ ௕௔௦௜௖ + ெ ௔௜௟௘௥௢௡௦ܿ߂ + ெ ௘௟௘௩௢௡௦ܿ߂ + ܿெఈ̇  
̅ܿ ߙ̇
2ܸ

+  ܿெ௤ො  
̅ܿݍ
2ܸ

 

ܿ௒ =  ܿ௒ఉ ߚ     ௒௥௨ௗௗ௘௥ + ܿ௒௣ොܿ߂ +
ܾ݌
2ܸ

 +  ܿ௒௥̂  
ܾݎ
2ܸ

 

ܿ௅ =  ܿ௅ఉ ߚ  + ߂  ܿ௔௜௥௘௟௢௡௦ + ௅ ௥௨ௗௗ௘௥ܿ߂   + ܿ௅௣ො    
ܾ݌
2ܸ

 +   ܿ௅௥̂  
ܾݎ
2ܸ

 

ܿே =  ܿேఉ ߚ + + ே ௔௜௥௘௟௢௡௦ܿ߂ ே ௥௨ௗௗ௘௥ܿ߂   +  ܿே௣ො    
ܾ݌
2ܸ

 +  ܿே௥̂  
ܾݎ
2ܸ

 

 
Force coefficients expressed in wind axes (ܿ୐ and ܿ஽) are transformed to obtain 

their body-axes equivalents (ܿ௑ and ܿ௓) using the equations: 

 

ቄ
ܿ௑
ܿ௓ቅ = ൤ sinߙ − cosߙ cosߚ

− cosߙ − sinߙ cosߚ൨ ቄ
ܿ୐
ܿ஽ቅ 

 

3. The calculation of the aerodynamic forces and moments using the equations: 
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Propulsion 

The Propulsion module calculates the values of propulsive forces and moments acting 

on the aircraft.  

In particular the value of maximum available thrust  ௠ܶ௔௫ provided by each engine is 

calculated taking into account the aircraft altitude and Mach number (Figure 2.6a), 
using a 2D look-up table that constitutes the Engine Database. This value is multiplied 

by the throttle  ்ߜ  (that assumes values from 0 to 1) to achieve the effective thrust. 

Supposing that the thrust vectors provided by the two engines are applied in their 

center of gravity and parallel to longitudinal body axis, the propulsive forces and 
moments are: 

൝
்ܺ
்ܻ
்ܼ
ൡ = ൝

௠ܶ௔௫ ்ߜ 2
0
0

ൡ ൝
்ܮ
்ܯ
்ܰ

ൡ = ൝
0

்ܼܺ௔௥௠
0

ൡ 

where ܼ௔௥௠ is the vertical distance between the vehicle and the engines center of 

gravity.  
 

Fuel & Inertia 

The Fuel & Inertia module calculates the current fuel consumption ݉௣̇  using the 

equation: 

݉௣̇ =  −  
ܶ

௦௣ܫ ∙ ݃ௌ௅
 

where the value of the TBCC engine specific impulse ܫ௦௣ is calculated taking into 

account the aircraft altitude and Mach number (Figure 2.6b), using a look-up table and 
݃ௌ௅  is the gravitational acceleration at sea level.  

The value of the current mass of the aircraft is obtained by subtracting the amount of 

fuel used from available onboard fuel and adding it to the aircraft empty weight. A set of 

1D look-up tables is used to calculate aircraft center of gravity position and the inertia 

tensor for the current aircraft mass. 

 
7.3 Trim algorithm 

Trimmed flight conditions are a prerequisite for linearizing the nonlinear model as well 
as for initializing the model for dynamic simulations. 

The aircraft nonlinear dynamic model can be synthetically expressed as: 

݂ ൫ܺ̇,ܺ,ܷ൯ = 0   ,  with 
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ܺ = ாீܺ  ߰ ߴ ߮ ݎ ݍ ݌ ߚ ߙ ܸ]  ாܻீ  ܼாீ]்   and     ܷ = ௘ߜ]  ்[்ߜ  ௥ߜ  ௔ߜ  

  

The trimmed condition is defined as a condition ܺ = ܺ௧௥௜௠ which satisfies: 

ܺ̇ = 0 , ܷ =  ݐݏ݊݋ܿ

According to the latest equations the trimmed flight condition is achieved when the 

sums of all forces and moments acting on the aircraft are equal zero. That means that 

the transitional and rotational accelerations ܸ̇, , ߙ̇ ,ߚ̇ ̇ ݌ , ̇ ݍ ,  .are identically zero  ݎ̇

Steady-state wings-level flight conditions have been analyzed, with the following 

additional constraints: 

̇߰  ߰  ߴ̇  ̇߮  ߮  ≡ ≡ ݎ  ݍ  ݌           0 0 

The calculation of the trimmed flight conditions can't be done analytically, because of 

the complex functional dependence of the aerodynamic data. A convenient way to find 

trimmed flight condition is by using a numerical algorithm suggested in [3] and 

presented in Figure 7.6. The algorithm is based on multivariable optimization method 

SIMPLEX [4], which minimizes a scalar cost function ܬ built from the sum of the 

squares of the derivatives above mentioned: 

ܬ = ଶݑ̇  + ଶݒ̇ + ଶݓ̇ + ଶ̇݌)10 + ଶݍ̇ + (ଶݎ̇ +  100(߶̇ଶ + ଶߴ̇ + ߰̇ଶ)  

The user specifies flight conditions, in particular altitude ܪ, airspeed ܸ and climb angle 

 as well as the aircraft mass ݉. The trim algorithm iteratively adjusts the control ,ߛ

variables - ߜ௘  , ,௔ߜ  in order to minimize the -ߚ,ߙ - and appropriate state variables - ்ߜ,௥ߜ 

scalar cost function ܬ.  

In the minimization procedure the remaining variable ߴ is determined from the 

constraint equation: 

tanߴ =  ௔௕ା ୱ୧୬ϒ √௔మି ௦௜௡మϒ ା ௕మ

௔మି ௦௜௡మϒ 
ߴ      , ≠ ± గ

ଶ
 

ܽ = cosߙ ∙ cosߚ           ܾ = sin߶ ∙ sinߚ + cos߶ ∙ sinߙ ∙ cosߚ 

The numerical trim procedure is repeated iteratively until ܬ is minimized. The last 

adjusted state and control variables represent the desired trimmed flight conditions. 
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Figure 7.6: Trim algorithm 

7.4 Trim performances 
 
Figure 7.7a shows the two regions enclosing Mach number and altitude conditions, for 

which the vehicle is able to perform steady-state wings-level flight, at maximum takeoff 

weight and empty weight.  

The two regions exhibit the same lower boundary and different upper boundaries. 

Lower boundary curve discontinuities are due to limitation for maximum available 

thrust. In transonic regime the upper boundary curves decrease because the available 

thrust is not able to balance drag force, due to the drag divergence effect around 

ஶܯ = 1 combined with the decrease of the available thrust with altitude.   

In the other graphs of Figure 7.7 corresponding ranges of angle of attack, elevons 

deflection angle and turboramjet throttle, as a function of Mach number, are presented.  

In subsonic regime, as Mach number increases lift coefficient increases and the angle 

of attack necessary to balance vehicle weight decreases, reaching minimum around 

ஶܯ = 1. Obviously a lower angle of attack leads to a lower elevons upward deflection 

angle necessary to balance the nose down pitching moments produced by wings and 

turboramjet thrust. 

The behaviour is opposite in supersonic regime: the reduction of ܿ௅, as the Mach 

number increases, involves higher values for ߙ and then higher values for ߜ௘  to satisfy 

vertical forces and pitching moment equilibrium, respectively.  

In the transition from subsonic to supersonic regime the backward translation of the 

vehicle center of pressure leads to a further increase of ߜ௘ values required to trim the 

aircraft. This justifies the jump presented around ܯஶ = 1. 

Flight Conditions

V H ϒ m

Minimization 
Algorithm
(SIMPLEX)

AIRCRAFT
STATE-MODEL

f(Xdot, X, U)=0

Scalar Cost 
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Flight – Path 
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The high negative values of ߜ௘ in supersonic regime are also due to the need to 

equilibrate the pitching moment produced by the high turboramjet thrust necessary to 

equilibrate the high pressure drag developed in supersonic flow. 

As the altitude increases, the reduction of air density leads to an increase of lift 

coefficient and consequently of angle of attack, necessary to guarantee vertical force 

equilibrium. Subsequently a higher elevons deflection angle is necessary for pitching 

moment balance.  

As the weight decreases, a lower ܿ௅  and then a lower ߙ is necessary for vertical force 

equilibrium. Subsequently a lower ߜ௘  is required to trim the aircraft.  

 

  
(a) 

 
(b) 

 

  
(c) 

 
(d) 

 
Figure 7.7: HyPlane trim envelop at MTOW and EW (a). Angle of attack (b), elevons deflection 

angle (c) and turboramjet throttle (c) in trimmed conditions 
 

The effect of climb angle is visible in Figure 7.8. As ߛ increases, the maximum altitude 

decreases, due to the longitudinal component of the weight force added to the drag 

force to be equilibrated by the engines thrust.  
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Figure 7.8: HyPlane trim envelope at MTOW varying the climb angle 

 

In Figure 7.9 2D maps of aerodynamic efficiency corresponding to trimmed flight 

conditions for the vehicle, at maximum takeoff weight and empty weight, are presented.  

It is possible to observe that the vehicle is able to perform a cruise at Mach number of 

4 and an altitude of 30 km, with a trimmed lift-to-drag ratio of about 4.  

 

  
(a) (b) 

Figure 7.9: HyPlane aerodynamic efficiency in trimmed conditions 
at maximum takeoff weight (a) and at empty weight (b) 

 

 

These results can be helpful to identify trajectories which minimize fuel consumption 

and maximize downrange.  
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8 Conclusions 
In this work some contributions to the studies for a new concept for a small hypersonic 

airplane of six seats for Space tourism and point-to-point hypersonic transportation 

purposes, have been provided, through a synergistic integration between disciplines 
such as aerothermodynamics, propulsion and flight mechanics. 

Research has been focused on aerodynamic analysis, which is essential for the 

evaluation of the effects of the aerodynamic heating in the hypersonic phase and for 

flight mechanics studies. In particular a validation methodology of an engineering tool 

has been carried out, aimed at the building of a comprehensive aerodynamic database 
and at the prevision of the effects of the aerodynamic heating in hypersonic regime. 

On the basis of the predicted surface thermal loads occurring in the hypersonic cruise, 

proper materials able to sustain the most severe hypersonic conditions have been 
preliminarily identified.  

Preliminary mission analysis carried out considering a three degree of freedom model 

have shown that vehicle is able to perform a medium range hypersonic cruise or a 

long-duration Space tourism mission (characterized by a sequence of sub-orbital 

parabolas offering short and repeated periods of low gravity in the high stratosphere), 

by optimizing the propulsion performances of two Turbine Cased Combined Cycle 

engines and a rocket engine in the different flight phases. 

Finally longitudinal trim performances have been evaluated, taking advantage of a six 

degree of freedom model encompassing the vehicle aerodynamic, propulsive and 

inertia data. This analysis refers to an upgraded configuration of the vehicle, refined to 
meet visibility and stability requirements. 

All presented methodologies and results can be considered a starting point for studies 

on more complex systems, based on the proposed concept of integrating aeronautical 
and Space technologies. 

An appropriate Automatic Flight Control System for the vehicle could be studied in 
future works. 

 
 

 


