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Introduction

Let X and Y be two classes of groups. A group G is said to be an X -by-

Y group if there exists a normal subgroup N which is an X -group such that

G/N belongs to the class Y . Furthermore, a group G is said to be a minimal

non-X group if G is not an X -group but all its proper subgroups belong to

X . Minimal non-X groups have been studied for various choices of X , and

the results obtained show that the behaviour of subgroups of a given group

has a strong in�uence on the structure of the whole group.

A group G is called a T-group if normality in G is a transitive relation, or

equivalently if all subnormal subgroups of G are normal. The structure of

soluble T-groups was described by W. Gaschütz and D. J. S. Robinson. A

further contribution to this kind of investigation was given by C. Casolo who

studied soluble groups with �nite conjugacy classes of subnormal subgroups

(the so-called V-groups). The second chapter of this thesis deals with gener-

alized soluble groups whose proper subgroups belong to the class V.

A group G is said to be a CF-group if all its subgroups are normal-by-�nite,

i.e. if the index |X : XG| is �nite for every subgroup X of G. This class

was considered by Buckley, Lennox, Neumann, Smith, and Wiegold [16],[29].

They proved that if G is a CF-group such that every periodic image of G is

locally �nite, then G is abelian-by-�nite. In chapter 3 we obtain an exten-

sion of this result to the class of groups whose proper subgroups have the
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CF-property.

In recent years, the subject of the research has moved on groups of in�nite

rank and, in particular, on groups whose proper subgroups of in�nite rank

have some suitable property. Recall that a group G is said to have �nite

rank r if every �nitely generated subgroup of G can be generated by at most

r elements, and r is the least positive integer with this property. If there is

no such r, the group G has in�nite rank. A classical result of A.I. Mal'cev

[19] states that a locally nilpotent group of in�nite rank contains an abelian

subgroup of in�nite rank, and V. P. �unkov [30] shows that a similar result

holds for locally �nite groups. On the other hand, Y. I. Merzljakov [20]

has shown that there exist locally soluble groups of in�nite rank in which

every abelian subgroup has �nite rank. These results suggest that also the

behaviour of subgroups of in�nite rank in a generalized soluble group can

in�uence the whole group. Many authors have studied groups in which all

subgroups of in�nite rank have a given property, and in Chapter 4 we give

a further contribution to this topic investigating the structure of groups in

which every proper subgroup of in�nite rank contains an abelian (or a nilpo-

tent) subgroup of �nite index.

Observe that B. Bruno and R. E. Phillips [3], [5], proved that, within the

universe of imperfect groups, any minimal non-(abelian-by-�nite) group is

periodic and this result is still true if we consider minimal non-(nilpotent-by-

�nite) groups.

Most of our notation is standard, and we refer to [26].
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Chapter 1

Preliminary results

1.1 Groups with �nite conjugacy classes of sub-

normal subgroups

A group G is said to be a T-group if normality in G is a transitive relation, i.e.

if all subnormal subgroups of G are normal. The structure of in�nite soluble

T-groups has been described by D.J.S. Robinson [24]. Obviously, this class

is closed by homomorphic images and by subnormal subgroups. However the

class of T-groups is not subgroup closed. For example, the alternating group

of degree 5 A5 is a T-group, but it has a subgroup isomorphic to A4 which

does not have the T-property.

Since a subgroup is normal if and only if its conjugacy class is trivial, one of

the most natural generalization of normality, in the case of in�nite group, is

the requirement that the subgroup has only �nitely many conjugates. This

approach was suggested by a famous theorem of B.H. Neumann [22], who

proved that a group G has �nite conjugacy classes of subgroups if and only

if its center Z(G) has �nite index.
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Let us introduce two classes of groups that can be viewed as generalizations

of the class of T-groups.

Following C. Casolo [7] we will say that a group G is a V-group if each sub-

normal subgroup of G has only �nitely many conjugates, i.e. if the normalizer

of any subnormal subgroup of G has �nite index. Of course, all �nite groups

and all groups satisfying the minimal condition on subnormal subgroups have

the V-property. By result of Roseblade and Robinson (see, for instance, [26]

Theorem 5.49), if G is a group satisfying the minimal condition on subnor-

mal subgroups, then the Wielandt subgroup ω(G), which is the intersection

of the normalizers of all subnormal subgroups, has �nite index. Hence, in

this case, it's clear that |G : NG(H)| is �nite, for every subnormal subgroup

H of G.

A group G is said to be a T ∗-group if every subnormal subgroup of G has

�nite index in its normal closure, i.e. if |HG : H| is �nite for every subnormal

subgroup H of G. Obviously, subnormal subgroups and homomorphic images

of a group belonging to any of the classes under consideration, belong to the

same class.

Let Γ be a group of operators on the group G, and H ≤ G; we write

NΓ(H) = {a ∈ Γ|Ha = H} ≤ H;

moreover, we put

HΓ = 〈Ha|a ∈ Γ〉 and HΓ =
⋂
a∈ΓH

a.

In particular if Γ = G in its action by conjugation then HG and HG are,

respectively, the normal closure and the normal core of H in G. Finally, we

de�ne

PautΓ(G) = {a ∈ Γ|Ha = H,∀H ≤ G}
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and, obviously,

Paut(G) = {a ∈ Aut(G)|Ha = H,∀H ≤ G}

is the group of power automorphism of G.

Now we observe some results on the action of those particular types of auto-

morphism groups of abelian groups, which are relevant in our discussion.

Lemma 1.1.1. Let A be a periodic abelian group, Γ ≤ Aut(A) such that

|Γ : NΓ(H)| <∞ for every H ≤ A. Then |Γ : PautΓ(A)| is �nite.

Lemma 1.1.2. Let A be a torsion free abelian group, Γ ≤ Aut(A) such that

|Γ : NΓ(H)| <∞ for every H ≤ A. Then Γ is �nite.

We recall that a Baer group is a group in which all �nitely generated sub-

groups are subnormal, while the FC-center FC(G) of a group G is the sub-

group consisting of all elements of G with �nitely many conjugates. A group

G is called FC-group if it coincides with its FC-center, or equivalently if the

index |G : CG(x)| is �nite for each element x of G. Finite groups and abelian

groups are obvious examples of groups with FC-property. If x is any ele-

ment of a group G, we have xg = x[x, g] for each element g of G, and hence

the conjugacy class of x is contained in the coset xG′. Thus groups with

�nite commutator subgroup are FC-groups. Moreover, it is also clear that

all central-by-�nite groups belong to the class of FC-groups. The theory of

FC-groups had a strong development in the second half of last century. A

special mention is due here to R. Baer, Y.M. Gorcakov, P. Hall, L.A. Kur-

dachenko, B.H. Neumann, M.J. Tomkinson for the particular relevance of

their works. In this section we want to recall some classical results about

FC-groups.
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Lemma 1.1.3. If G is an FC-group, then G/Z(G) is a residually �nite

torsion group.

The following lemma is crucial in the study of FC-property. It is known as

Dietzmann's Lemma.

Lemma 1.1.4. (Dietzmann's Lemma) In any group G a �nite normal subset

consisting of elements of �nite order generates a �nite normal subgroup.

This allows us to describe FC-torsion groups in a di�erent manner.

Theorem 1.1.5. A torsion group G is an FC-group if and only if each �nite

subset is contained in a �nite normal subgroup.

Now, we are able to show some results on V-groups.

Lemma 1.1.6. Every Baer group belonging either to the class of V-groups

or to the class of T ∗-groups is nilpotent.

Proof. We �rst show that a Baer V-group is a T ∗-group. Let G be a Baer V-

group, and let x ∈ G. The subgroup 〈x〉 is subnormal in G, hence |G : NG(x)|

is �nite, and so the centralizer CG(x) has �nite index in G. Therefore, G is an

FC-group. Let H be a subnormal subgroup of G and let H = H1, H2, . . . , Hn

be the conjugates of H in G, with Hi = Hxi , xi ∈ G for i = 1, 2, . . . , n. If

h is an element of CH(xi), then h = hxi ∈ H ∩Hi, hence CH(xi) ≤ H ∩Hi,

for any i = 1, 2, . . . , n. Consequently |H : H ∩ Hi| ≤ |H : CH(xi)| is �nite.

If R = HG, then H/R is �nite and , as G/R is an FC-group, this implies

that HG/R is �nite and, in particular, |HG : H| < ∞. This holds for each

subnormal subgroup of G and so G is a T ∗-group.
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Now we want to prove that a Baer T ∗-group is nilpotent. Let G be such a

group. Then G is an FC-group and so G/Z(G) is a residually �nite torsion

group. Without loss of generality we may assume that G is a residually �nite

torsion group.

Assume, by contradiction, that G is not nilpotent. Since G is a Baer group,

it is also locally nilpotent, so G does not have nilpotent subgroups of �nite

index. Now, we construct, by induction on i, a group R which is direct

product of non-Dedekind, �nite normal subgroups of G. G is not nilpotent,

hence there exists a �nitely generated subgroup A1 of G, such that A1 is

a non-Dedekind group. A1 is also �nite because G is periodic. We put

R1 = AG1 ; then R1 is �nite, since both A1 and |R1 : A1| are �nite. Assume

now that we have already constructed non-Dedekind �nite normal subgroups

R1, . . . , Ri−1 such that Bi−1 = 〈R1, . . . , Ri−1〉 ' R1 × . . . × Ri−1. Bi−1 is

a �nite subgroup of the residually �nite group G, so there exists a normal

subgroup N of �nite index in G, such that N ∩ Bi−1 = {1}. By what we

observed above, N is not nilpotent and so it has a �nite subgroup Ai that is

non-Dedekind. Put Ri = AGi , then Ri is �nite and Ri ∩ Bi−1 ≤ N ∩ Bi−1 =

{1}, whence Bi = 〈R1, . . . , Ri〉 ' R1 × . . .×Ri.

By construction, for every i ∈ N, there exists a subgroup Hi of Ri which is

subnormal of defect exactly 2 in Ri. Put

R = 〈Ri : i ∈ N〉 '
⊗
i∈N

Ri

and

H = 〈Hi : i ∈ N〉.

Then H is subnormal of defect 2 in R, and, in particular, it is subnormal

in G. Thus |HG : H| is �nite, because G is a T ∗-group. But HG ≤ R, and

so there exists an n ∈ N such that HG ≤ HBn, where Bn = 〈Ri, . . . , Rn〉.

7



1.1. GROUPS WITH FINITE CONJUGACY CLASSES OF

SUBNORMAL SUBGROUPS 8

Then, if j > n and πj is the canonical projection of R on Ri, we get

πj(H
G) ≤ πj(HBn) = πj(H) = Hj. Whence πj(HG) = Hj and so Hj C Rj

contradicting our choice ofHj. This contradiction implies that G is nilpotent.

We recall that a Fitting subgroup of a group G is the subgroup generated by

all nilpotent normal subgroups of G.

Casolo proved also this important result on soluble V-groups.

Theorem 1.1.7. Let G be a soluble V-group. Then there exists a normal

subgroup N, of �nite index in G, such that N ′ is periodic and every subgroup

of N ′ is normal in N.

Proof. Let G be a soluble V-group and let F be the Fitting subgroup of G.

Then by Lemma 1.1.6 F is nilpotent. Let A = Z(F ). By result of B.H.

Neumann quoted at the beginning of this chapter, A has �nite index in F,

thus |G : CG(F/A)| is �nite. Let T be the torsion subgroup of A. By Lemma

1.1.1 and Lemma 1.1.2, respectively, |G : PautG(T )| and |G : CG(A/T )| are

�nite. Put

L = CG(F/A) ∩ CG(A/T ) ∩ PautG(T );

then L is normal in G and has �nite index. Since the group of power auto-

morphisms of any group is abelian, we have

L′ ≤ CG(F/A) ∩ CG(A/T ) ∩ CG(T ).

Hence

[F,L′, L′, L′] ≤ [A,L′, L′] ≤ [T, L′] ≤ [T,CG(T )] = 1.

Then, since CL′(F ) ≤ F ,

[CL′(F ), L′, L′, L′] = {1}

8
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so that CL′(F ) ≤ Z3(L′). Moreover, L′/CL′(F ) is nilpotent and this implies

L′ ≤ F . Now

γ4(L) = [L′, L, L] ≤ [F,L, L] ≤ [A,L] ≤ T,

thus L/T is a nilpotent V-group. If N/T = Z(L/T ), then |L : N | is �nite,

which implies that |G : N | is �nite and moreover N is normal in G. Now

N ′ ≤ T , so N ′ is a periodic abelian group; futhermore N ≤ L ≤ PautG(T ),

hence every subgroup of N ′ is normal in N.

Corollary 1.1.8. Every soluble V-group is metabelian-by-�nite.

Corollary 1.1.9. A �nitely generated soluble V-group is abelian-by-�nite.

Proof. Let G be a �nitely generated soluble V-group, and let N be a normal

subgroup of �nite index in G, such that N ′ is periodic and every subgroup of

N ′ is normal in N. Then N is also �nitely generated. Put N = 〈x1, . . . , xn〉.

If dij = [xi, xj], for i, j = 1, . . . , n, then 〈dij〉 is normal in N. N ′ is an abelian

periodic group generated by the set of dij elements, so it is �nite. Since N is

�nitely generated, this implies that Z(N) has �nite index in N, and so the

corollary is true.

1.2 Groups whose proper subgroups are abelian-

by-�nite

Let X be a class of groups. A group G is said to be a minimal non-X group

if G is not an X -group but all its proper subgroups belong to X . Many

results have been obtained on minimal non-X groups, for various choices

9
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of X . In particular, in 1984, B. Bruno [4] studied minimal non-(abelian-

by-�nite) groups. Clearly, Tarski groups, i.e. in�nite simple groups whose

proper non-trivial subgroups have prime order, are minimal non-abelian, and

this example suggests that some further restriction is necessary in order to

investigate the behavior of minimal non-(abelian-by-�nite) groups. A group

G is called locally graded if every �nitely generated non-trivial subgroup of

G contains a proper subgroup of �nite index. Locally graded groups form a

wide class, containing in particular all locally (soluble-by-�nite) groups, and

the assumption for a group to be locally graded is su�cient to avoid Tarski

groups and other similar pathologies. In fact, it is easy to show that any

locally (soluble-by-�nite) group whose proper subgroups are abelian is either

abelian or �nite.

We record the following obvious result, which will be frequently used.

Lemma 1.2.1. If G is a minimal non-(abelian-by-�nite) group, G does not

have proper subgroups of �nite index, hence FC(G) = Z(G) and, if N/K is

a �nite normal subgroup of G/K, then N/K is a central in G/K.

Lemma 1.2.2. Let G be a minimal non-(abelian-by-�nite) group and N a

proper normal subgroup of G. If F = FC(N), then F CG and N/F is �nite.

Moreover F ′ is �nite and central in G and [G,N ] ≤ F . Thus N is a soluble

group of derived lenght at most three and F is nilpotent of nilpotency class at

most two.

Proof. If F = FC(N), clearly FCG, and since N is abelian-by-�nite we have

that F has �nite index in N. Moreover F is central-by-�nite because it's an

abelian-by-�nite FC-group, and F ′ is �nite (see [26], part I, pag. 102) and

normal in G. By Lemma 1.2.1 F ′ ≤ Z(G) and N/F is central in G/F . Thus

10
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[G,N ] ≤ F and N ′′ ≤ N ′ ≤ Z(G). Hence N ′′′ = {1} and γ3(F ) = {1}.

A group G is called 3-decomposable if there exist three normal subgroups

A1, A2, A3, such that G = A1A2A3, and AiAj � G, for i, j = 1, 2, 3.

B. Bruno also proved that such groups are also abelian-by-�nite provided

that all proper subgroups are abelian-by-�nite.

Lemma 1.2.3. Let G be a group such that all proper subgroups of G are

abelian-by-�nite. If G is a 3-decomposable group, then G is abelian-by-�nite.

Proof. Suppose, by contradiction, that G is not abelian-by-�nite. Since G

is 3-decomposable, there are three normal subgroups A1, A2, A3, such that

G = A1A2A3. Since AiAj is a proper normal subgroup of G, the FC-center

FC(AiAj) = Fij has �nite index in AiAj, for every i, j ∈ {1, 2, 3}, with i 6= j.

Since |G : FijFkj| is �nite and G has no proper subgroups of �nite index, it

follows that G = FijFjk. Let x ∈ Fij ∩ Fjk, then the set of conjugates of x

is �nite. Thus Fij ∩ Fjk ≤ FC(G) = Z(G). Since Fij ∩ Fjk ∩ Aj has �nite

index in Aj, then Z(G) ∩ Aj has �nite index in Aj, for every j ∈ {1, 2, 3}.

Hence G/Z(G) is a product of �nite normal subgroups and so it is �nite.

This contradiction proves the lemma.

Using this result we can prove that a minimal non-(abelian-by-�nite) group

cannot be the product of two proper normal subgroups.

Lemma 1.2.4. Let G be a group such that all proper subgroups of G are

abelian-by-�nite. If G is the product of two proper normal subgroups, then G

is abelian-by-�nite.

11
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Proof. Let G = N1N2, with N1, N2 CG and, for i = 1, 2, put Fi = FC(Ni).

Assume, by contradiction, that G is not abelian-by-�nite. Then the product

F1F2 has �nite index in G, so by Lemma 1.2.1 we have G = F1F2. Now

Lemma 1.2.2 implies that F1 and F2 are nilpotent normal subgroups of G

and so G is nilpotent. The quotient G/G′ is divisible and abelian and, since

G is non-abelian, it follows that G/G′ is not periodic. This implies that G is

3-decomposable and for the result mentioned above we have the conclusion.

To fully understand the theory of groups with abelian-by-�nite proper sub-

groups we need to enunciate the following theorem, due to B. Bruno and R.

E. Phillips [5], which state, essentially, that a non perfect group, in which all

proper subgroups are abelian-by-�nite is either abelian-by-�nite or periodic.

Theorem 1.2.5. A non-perfect locally graded minimal non-(abelian-by-�nite)

group is periodic.

Moreover, B. Bruno and R. E. Phillips, in the same paper, proved the fol-

lowing lemma which is useful for our purpose (see [5], Lemma 2.3 ).

Recall that, for any group G, the symbol π(G) denotes the set of all prime

numbers p such that G has elements of order p.

Lemma 1.2.6. Let G be a group, and let A be a torsion-free abelian non

trivial normal subgroup of G such that G/A is periodic. Then for any �nite

set p of prime numbers, there exists a G-invariant subgroup N of A such that

A/N is periodic and π is contained in π(A/N).

After this discussion, it's clear that if we want to study locally graded minimal

non-(abelian-by-�nite) groups, we have to consider periodic groups with such

12
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properties.

First of all, we want record the following proposition, based essentially on

a result of G. Shute [28] which state that "if G is an in�nite locally �nite

simple group, which all proper subgroups soluble-by-�nite, then either

G ' PSL(2, F ) or G ' SZ(F ), where F is an in�nite locally �nite �eld with

no in�nite proper sub�elds".

Proposition 1.2.7. If G is a locally graded periodic minimal non-(abelian-

by-�nite) group, then G is not simple.

Using this result we can now prove the following proposition:

Proposition 1.2.8. If G is a locally graded periodic minimal non-(abelian-

by-�nite) group, then the derived subgroup G′ is a proper subgroup of G.

Proof. Let F be a subgroup maximal with respect to F CG and F ′′′ = {1}.

Suppose that F is a proper subgroup of G. Since G has no proper subgroups of

�nite index, G/F is in�nite and also G/F is a locally graded periodic minimal

non-(abelian-by-�nite) group. From 1.2.7, there is a normal subgroup N of G

with F � N � G. By 1.2.2, N ′′′ = {1} and this contradicts the maximality

of F. Thus we have F = G and G′′′ = {1}.

Now we give some further results about locally graded periodic minimal non-

(abelian-by-�nite) groups.

Lemma 1.2.9. If G is a locally graded minimal non-(abelian-by-�nite) group

and G′ < G. Then G′ has no proper G-invariant subgroups of �nite index

and G′ is abelian.

Proof. Let N be a proper subgroup of G′ such that N C G and |G′ : N | is

�nite. Since (G/N)′ = G′/N is �nite we have that G/N is an FC-group. By

13
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Lemma 1.2.1 G/N must be abelian and we have a contradicition.

Now, if F = FC(G′), by Lemma 1.2.2 and by the �rst part of this lemma,

we have G′ = F . Thus G′ is an abelian-by-�nite FC-group and this implies

that G′ is central-by-�nite, and again the �rst part of this lemma gives G′

abelian.

Observe, obviuosly, that the previous Lemma holds also for the class of locally

graded periodic minimal non-(abelian-by-�nite) groups.

Proposition 1.2.10. If G is a locally graded periodic minimal non-(abelian-

by-�nite) group, then G/G′ ' Z(p∞), for some prime p, and , if G is not a

p-group, then G′ is a p′-group, and there is a subgroup A ' Z(p∞) such that

G = AG′

Proof. The derived group G′ is a proper subgroup by Proposition 1.2.8 and

the quotient G/G′ is divisible for Lemma 1.2.1. Moreover Lemma 1.2.4 im-

plies that G/G′ ' Z(p∞), for some prime p, whence there is a maximal

p-subgroup P of G, such that G = PG′ (see [18] 1.D.4). Now, since G′ is

abelian by Lemma 1.2.9, we have G = POp′(G
′), where Op′(G

′) is the p′-

component of G′.

Obviously, if G is not a p-group, we have that P is a proper subgroup

of G and again, using the fact that G has no proper subgroups of �nite

index, we have G = AOp′(G′), where A is an abelian p-subgroup of G.

Thus G′ = [AOp′(G
′), AOp′(G

′)] ≤ Op′(G
′) and so G′ = Op′(G

′). Finally

A ' G/Op′(G
′) = G/G′ ' Z(p∞).

Lemma 1.2.11. If G is a locally graded periodic minimal non-(abelian-by-

�nite) group and there exists a subgroup A ' Z(p∞) such that G = AG′.

Then G′ cannot be decomposed into the product of two proper normal sub-

groups of G.

14
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Proof. Let G′ = N1N2, with N1, N2 C G and N1, N2 < G′. Then NiA is

a proper subgroup of G, for i = 1, 2. Since NiA is abelian-by-�nite and

A ' Z(p∞), we have A ≤ FC(NiA), for i = 1, 2, and this implies that every

element of A has just a �nite number of conjugates in G = AN1N2. Thus

A ≤ FC(G) = Z(G) and so G is abelian. This contradiction completes the

proof.

As a consequence of previous lemma we have:

Lemma 1.2.12. If G is a locally graded periodic minimal non-(abelian-by-

�nite) group and there exists a subgroup A ' Z(p∞) such that G = AG′,

then G′ is an abelian q-group, for some prime q.

The following lemma is a general result about automorphisms of torsion

abelian groups.

Lemma 1.2.13. [17] Let A be a torsion abelian group and let α be an auto-

morphism of A which has prime order q ∈ π(A). Then A = CA(α)× [A,α].

Proposition 1.2.14. Let G be a locally graded periodic minimal non-(abelian-

by-�nite) group and suppose that G is not a p-group, for some prime p. Then,

for all element a ∈ A, either a ∈ Z(G) or CG′(a) = {1}. In particular

CG′(A) = {1}.

Proof. Since G is not a p-group, by Lemma 1.2.13 we have

G′ = CG′(a)× [〈a〉, G′].

Moreover CG′(a) and [〈a〉, G′] are normal subgroups of G, thus, by Lemma

1.2.11, either G′ = CG′(a) and a ∈ Z(G), or G′ = [〈a〉, G′] and CG′(a) = {1}.

Finally, since G′ is not central in G, there exists an element a of A such that

CG′(A) ≤ CG′(a) = {1}.

15
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Lemma 1.2.15. Let G be a locally graded periodic minimal non-(abelian-by-

�nite) group and suppose that G is not a p-group, for some prime p. Then

G′ is a minimal normal subgroup of G and A is a maximal subgroup of G.

In particular G′ is an elementary abelian q-group, with q 6= p.

Proof. Let N CG and N < G′. Since AN is a proper subgroup of G we have

that AN is abelian-by-�nite. If B is an abelian subgroup of �nite index in

AN , A ≤ B and

B ∩N ≤ CN(A) ≤ CG′(A) = {1};

so N is �nite.

Now Lemma 1.2.1 gives

N ≤ Z(G) ∩G′ ≤ CG′(A) = {1};

thus G′ is a minimal normal subgroup of G and A is maximal in G, since

G = AnG′.

Now we are able to prove the following theorem:

Theorem 1.2.16. Let G be a locally graded periodic group which is not an

r-group, for any prime r. Then G has all of its proper subgroups abelian-by-

�nite if and only if either

1. G is abelian-by-�nite,

or

2. G = AnG′, where

� A ' Z(p∞), for some prime p;

16
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� G′ is an elementary abelian minimal normal q-subgroup of G, for

some prime q 6= p.

Proof. To prove the necessary condition we may suppose that G is not

abelian-by-�nite and then use Proposition 1.2.10 and Lemma 1.2.15.

For the su�cient condition, we will prove that if H < G, then H is abelian-

by-�nite. For this suppose H non-abelian. IfHG′/G′ < G/G′, we haveH∩G′

is an abelian subgroup of �nite index in H, and then H is abelian-by-�nite.

Hence, let HG′ = G, then H ∩G′ CG and since G′ is minimal normal sub-

group of G, either G′ < H and then H = G, or H ∩ G′ = {1} and so H is

abelian. The theorem is proved.

In this second part we analyze locally graded p-groups with abelian-by-�nite

proper subgroups.

Theorem 1.2.17. A locally graded p-group G has all its proper subgroups

abelian-by-�nite, if and only if, either G is abelian-by-�nite, or G′ is abelian,

the quotient G/G′ ' Z(p∞), and for all proper subgroups H of G, HG′ < G.

Proof. The necessary condition has already been proved in Lemma 1.2.9 and

in Proposition 1.2.10. The su�cient condition is quite obvious. Note that for

every H < G, HG′ is a proper subgroup of G and HG′/G′ is �nite. Moreover

H∩G′ is an abelian subgroup of �nite index in H. Thus H is abelian-by-�nite

and the theorem is proved.

Proposition 1.2.18. If G is a non-abelian periodic group, such that

G/G′ ' Z(p∞), and G′ is abelian, then G is not hypercentral. Moreover, if

G is a locally graded minimal non-(abelian-by-�nite) p-group, then all proper

subgroups of G are hypercentral and ascendant.

17
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Proof. Suppose that G is hypercentral, and let N be a G-invariant subgroup

of G′ of �nite exponent. Since G′ is abelian, then it is the product of a family

of G-invariant subgroups of �nite exponent. Moreover G′ ≤ CG(Z2(G)∩N).

Now let x ∈ G, y ∈ Z2(G) ∩N . Then, if t is the exponent of N, we have

[y, xt] = [yt, x] = 1.

Thus for every element x of G, xt ∈ CG(Z2(G) ∩ N), so G/CG(Z2(G) ∩ N)

has �nite exponent and it is a quotient of Z(p∞). Therefore Z2(G) ∩N is a

subgroup of the centre Z(G).

By induction on α, we will prove that Zα(G) ∩ N is contained in Z(G) for

all terms of the upper central series of G Zα(G). For, if we suppose that

Zβ(G) ∩ N ≤ Z(G), ∀β < α, and α is a limit ordinal, then, obviously,

Zα(G) ∩N ≤ Z(G).

If α is not limit and y ∈ Zα(G)∩N , then, ∀x ∈ G, [y, x] ∈ Zα−1∩N , and hence

[y, x] ∈ Z(G). The same argument used above gives Zα(G) ∩ N ≤ Z(G).

Since G is hypercentral, N ≤ Z(G) and then G′ ≤ Z(G). This implies that

G is abelian and this is a contradiction.

Let G be a locally graded minimal non-(abelian-by-�nite) p-group. Then,

for all proper subgroup H of G, HG′ < G. Thus HG′ = Hi = 〈ai, G′〉, where

aiG
′ is one of the generators of G/G′. We will prove that Hi is hypercentral.

In order to do this, let H̄i be any homomorphic image of Hi, H̄i = 〈āi, Ḡ′〉,

and let x̄ be a non trivial element of Ḡ′. Since H̄i is locally nilpotent, the

subgroup V̄ = 〈āi, x̄〉 is nilpotent and x̄ ∈ V̄ ∩ Ḡ′. Therefore V̄ ∩ Ḡ′ 6= {1}

is a normal subgroup of V̄ and Ḡ′ ∩ Z(V̄ ) 6= {1}. Hence there exists a non

trivial element ȳ ∈ Ḡ′ ∩ Z(V̄ ) such that [ȳ, āi] = 1. This implies CḠ′(āi) 6= 1

and then Z(H̄i) 6= 1. Thus Hi and H are hypercentral and hence H is also

ascendant for all H < G.

18
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1.3 Groups whose proper subgroups are nilpotent-

by-�nite

In this section we'll study locally graded minimal non-(nilpotent-by-�nite)

groups. We denote with NF this class. Such groups were studied by B.

Bruno in papers [2], [3].

Moreover, in 1995, B. Bruno and R. E. Phillips proved that Theorem 1.2.5

holds also for groups with nilpotent-by-�nite proper subgroups. In fact, they

proved the following theorem.

Theorem 1.3.1. A non-perfect locally graded minimal non-(nilpotent-by-

�nite) group is periodic.

We become with the study of locally graded periodic minimal non-(nilpotent-

by-�nite) groups which are not locally nilpotent. Obviously such groups are

locally �nite and contain no proper subgroups of �nite index. Moreover if G

is a periodic non-(locally nilpotent) NF -group and N/K is a �nite normal

subgroup of G/K, then N/K is central in G/K.

The next proposition shows that a periodic non-(locally nilpotent) NF -group

is not simple.

Proposition 1.3.2. Let G be a periodic non-(locally nilpotent) NF -group.

Then G is not simple.

Proof. By hypotheses it follows that G is a locally �nite and it's known,

by the quoted result of Schute, that a simple locally �nite group whose

proper subgroups contain a soluble subgroup of �nite index is isomorphic

to PSL(2,F) or to SZ(F ), where F is an in�nite locally �nite �eld with no in-

�nite proper sub�elds. Nor PSL(2,F) neither SZ(F ) are NF -groups, because
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they contain a proper subgroup which does not have a nilpotent subgroup of

�nite index. From this contradictions follows the theorem.

If G is a group, the product of all the normal locally nilpotent subgroups

of G is called Hirsch-Plotkin radical HP(G). Clearly, HP(G) is the unique

largest maximal normal locally nilpotent subgroup of G, and if G is not

locally nilpotent, then HP(G) is a proper subgroup.

Proposition 1.3.3. Let G be a periodic non-(locally nilpotent) NF -group.

Then G′ ≤ HP (G) < G and the commutator subgroup G′ is soluble.

Proof. Obviously, G/HP (G) is in�nite. Let N be a normal subgroup of G

such that HP (G) < N < G. If G/HP (G) is locally nilpotent such group

clearly exists, otherwise G/HP (G) is a periodic non-(locally nilpotent) NF -

group and the existence of N is assured by Proposition 1.3.2. Moreover N

isn't locally nilpotent, so HP (N) < N and HP (N) CG. Therefore

HP (N) ≤ HP (G) and |N : HP (N)| is �nite, since N is nilpotent-by-�nite.

This implies that N/HP (G) is �nite and hence central in G/HP (G).

Since G/N is in�nite, for the same resons given at the beginning of the

proof, there exists a subgroup N1 such that HP (G) < N < N1 C G and

N1/HP (G) ≤ Z(G/HP (G)). Repeating the reasoning, G/HP (G) is union

of an ascending chain of �nite abelian subgroups. Hence G/HP (G) is abelian

and G′ ≤ HP (G). Finally, G′ is locally nilpotent and nilpotent-by-�nite, so

G′ is soluble.

Proposition 1.3.4. Let G be a periodic non-(locally nilpotent) NF -group.

Then G cannot be the product of two proper normal subgroups.
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Proof. Suppose, by contradiction, that G = N1N2, with N1, N2 C G. Since

|Ni : HP (Ni)| is �nite, for i = 1, 2, and G cannot contains proper subgroups

of �nite index, we have G = HP (N1)HP (N2). This means that G is locally

nilpotent, a contradiction.

Proposition 1.3.5. Let G be a periodic non-(locally nilpotent) NF -group.

Then G/G′ is isomorphic to Z(p∞), for some prime number p.

Proof. The quotient G/G′ is a periodic divisible abelian group. By Propo-

sition 1.3.4, G can't be decomposed into the product of two proper normal

subgroups, so, necessarily, G/G′ ' Z(p∞).

Finally, we have the following characterization:

Theorem 1.3.6. Let G be a periodic non-(locally nilpotent) NF -group. Then,

there exists a subgroup A ' Z(p∞), such that G is the semidirect product

G = A n G′, and G′ is a p′-group. Moreover A centralizes every proper

A-invariant subgroup of G′.

Proof. G is a locally �nite group, and by Proposition 1.3.5 it follows that

there exists a Sylow p-subgroup P of G such that G = PG′. Since G is not

locally nilpotent, P is a proper subgroup of G and hence P is nilpotent-by-

�nite. Let Op(G
′) be a Sylow p-subgroup of G′. G′ is locally nilpotent by

Proposition 1.3.3, and it implies that Op(G
′)CG and G′ = Op(G

′)×Op′(G
′),

where Op′(G
′) is a p′-subgroup of G′. Furthermore Op(G

′) ≤ P and hence

G = POp′(G
′). Let A be a nilpotent subgroup of �nite index in P. Then

G = AOp′(G
′) and A ' G/Op′(G

′). It follows

A/A′ ' (G/Op′(G
′))/(G/Op′(G

′))′ ' G/G′ ' Z(p∞).
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A is a nilpotent subgroup, so A is abelian and we can conclude that

A ' Z(p∞) and G′ = Op′(G
′).

Now, let D be a proper subgroup of G′ such that DA = D. Then DA < G

and DA is nilpotent-by-�nite. Let N be a nilpotent normal subgroup of DA

such that |DA : N | is �nite. Since A ' Z(p∞), A ≤ N and DA = DN

is locally nilpotent. Now A is a p-group, D is a subgroup of G′ that is a

p′-group, therefore every element of A commutes with every element of D,

and the theorem is proved.

Corollary 1.3.7. Let G be a periodic non-(locally nilpotent) NF -group.

Then G′ cannot be decomposed into the product of two proper normal subgroup

of G and G′ is a q-group, for some prime q 6= p.

Now we give a description of locally graded p-groups which are minimal non-

(nilpotent-by-�nite). We will see that such groups are exactly the locally

nilpotent periodic minimal non-(nilpotent-by-�nite) groups.

First of all we show a general property of NF -groups.

Proposition 1.3.8. Let G be an NF -group and H a proper normal subgroup

of G. Then there exists a nilpotent normal subgroup N of G, such that N has

�nite index in H.

Proof. Let

A = {K CH|K is nilpotent of �nite index in H}.

Obviously, A is non empty since H is nilpotent-by-�nite. Let

A = {n ∈ N|n = |H/K|, K ∈ A}.

A 6= ø and it's a subgroup of the set of naturals numbers, so there exists
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λ = minA. If λ = 1, H is nilpotent and normal in G , thus the proposition is

proved. Otherwise, if H is not nilpotent, let K ∈ A be such that |H/K| = λ.

Let g be any element of G, then Kg C Hg = H and KKg ∈ A. KKg is a

proper subgroup of H, since KKg is nilpotent, and

µ = |(KKg)/K| < |H/K| = λ ≤ |H/KKg|,

moreover

|H/(KKg)| = |(H/K)/(KKg/K)| = λ/µ.

Thus we get λ ≤ λ/µ and this gives a contradiction if µ 6= 1. Hence µ = 1

and KKg = K, this means Kg ≤ K, ∀g ∈ G. Thus K CG and the theorem

is proved.

From the de�nition and from previous porposition it follows that an NF -

group have no proper subgroups of �nite index and cannot be the join of two

proper normal subgroups.

Proposition 1.3.9. A periodic NF -group G is locally nilpotent if and only

if G is a p-group, for some prime p.

Proof. Suppose that G is locally nilpotent. Since G cannot be the product

of two proper normal subgroups, then G is a p-group. Suppose, now, that G

is a p-group. In order to prove that G is locally nilpotent we will prove that

G is locally �nite. Let H be a �nitely generated subgroup of G. Then, since

G is locally graded and not nilpotent-by-�nite, H is a proper subgroup of G.

Thus H is nilpotent-by-�nite and this implies that H is �nite.

Lemma 1.3.10. Every proper normal subgroup of an NF -group G is soluble.
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Proof. Let H be a proper normal subgroup of G. By Proposition 1.3.8 there

exists a nilpotent normal subgroup N of G, such that H/N is �nite. Since G

does not have proper subgroups of �nite index, then H/N is central in G/N .

Thus H is soluble.
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Chapter 2

Groups whose proper subgroups

have �nite conjugacy classes of

subnormal subgroups

In this section we will focuse our attention on the class of V-groups. In

particular we will see what happens when all proper subgroups of a group G

have the V-property.

Recall here that a group G is said to have �nite (Prüfer) rank r if every

�nitely generated subgroup of G can be generated by at most r elements,

and r is the least positive integer with this property. If there is no such r,

the group G has in�nite rank. Clearly, groups of rank 1 are just the locally

cyclic groups.

Our results are proved in the class of strongly locally graded groups, it is

a class of generalized soluble groups, containing, in particular, all locally

(soluble-by-�nite) groups. It was introduced in [10]. We will see its con-

struction.

Let D be the class of all periodic locally graded groups, and let D̄ be the

25



26

closure of D by the operators Ṕ , P̀ , R, L (we are using the �rst chapter of

the monograph [26] as a general reference for de�nitions and properties of

closure operations on group classes). It is easy to prove that any D̄-group

is locally graded and that the class D̄ is closed with respect to forming sub-

groups. Moreover, N.S. �ernikov [8] proved that any D̄-group of �nite rank

is a �nite extension of a locally soluble subgroup. Obviously, all residually �-

nite groups belong to D̄ , and hence the consideration of any free non-abelian

group shows that the class D̄ is not closed with respect to homomorphic

images. We shall say that a group G is strongly locally graded if every sec-

tion of G is a D̄-group. Thus strongly locally graded groups form a large

class of generalized soluble groups, which is, obvious, closed with respect to

subgroups and homomorphic images.

The following lemma shows that strongly locally graded group admitting an

ascending normal series whose factors have �nite rank must be hyper-(abelian

or �nite).

Lemma 2.1.1. Let G be a strongly locally graded group admitting an as-

cending normal series whose factors have �nite rank. Then G also has an

ascending normal series in which every factor is either �nite or torsion-free

abelian of �nite rank.

Proof. Let H̄ = H/K be any normal section of G which has �nite rank.

Then H̄ is a D̄-group, so that it follows from a result of N.S. �ernikov [8]

that H̄ contains a locally soluble subgroup L̄ of �nite index, and of course L̄

can be chosen to be characteristic in H̄, and so also G-invariant. Moreover, it

is known that there exists a positive integer n such that L̄(n) is hypercentral
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(see [26] Part 2, Lemma 10.39), and hence L̄ has a characteristic ascending

series with abelian factors. As the primary components of any abelian group

of �nite rank satisfy the minimal condition, it follows that G has an ascending

normal series whose factors are either �nite or torsion-free abelian groups of

�nite rank.

We need also to prove that hyperabelian V-groups are soluble. This is ac-

tually an easy consequence of the results proved by Casolo on groups of

generalized power automorphisms of abelian groups.

Lemma 2.1.2. Let G be a hyperabelian V-group. Then G is soluble.

Proof. Let F be the Fitting subgroup of G. Then F is nilpotent by Lemma

1.1.6, and so every subgroup of F has �nitely many conjugates in G. In par-

ticular, it follows from Neumann's Theorem that the centre A = Z(F ) has

�nite index in F, so that the factor group G/CG(F/A) is �nite, and hence

also soluble. If T is the subgroup consisting of all elements of �nite order

of A, the abelian group A/T is torsion-free and so G/CG(A/T ) is �nite by

Lemma 1.1.2. Moreover, the subgroup K = PautG(T ) is normal in G, the

index |G : K| is �nite and K normalizes all subgroups of T, see Lemma 1.1.1.

In this situation it is well-known that [T,K ′] = 1. Put

N = K ′ ∩ CG(A/T ) ∩ CG(F/A).

Of course, G/K ′ is a soluble group, so that also G/N is soluble. On the other

hand, N stabilizes the series

{1} ≤ T ≤ A ≤ F,

and hence N/CN(F ) is nilpotent. As CN(F ) is contained in F, it follows that

the group G is soluble.
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Lemma 2.1.3. Let G be a group admitting an ascending normal series whose

factors have �nite rank. If the factor group G/G′ is periodic and divisible,

then G′ = G′′

Proof. Replacing G by the factor group G/G′, it can be assumed without

loss of generality that G is metabelian. Let X/Y be any G-invariant section

of G′ which is torsion-free abelian of �nite rank. Then G′ is contained in the

centralizer CG(X/Y ), so that G/CG(X/Y ) is a periodic linear group over

the �eld of rational numbers, and hence it is �nite (see [26] Part 1, p.85). It

follows from the hypothesis that G′ admits an ascending G-invariant series

whose factors are either �nite or torsion-free abelian of �nite rank, and by the

above argument G acts trivially on all such factors, because G/G′ is divisible.

Then G′ is contained in the hypercentre of G, and hence G is hypercentral.

In this situation it is known that G is periodic (see [27], Lemma 4), and so

it is abelian (see [26] Part 2, Theorem 9.23). Therefore G′ = G′′ and the

statement is proved.

Corollary 2.1.4. Let G be a soluble group admitting an ascending normal

series whose factors have �nite rank. If the factor group G/G′ is periodic

and divisible, then G is abelian.

Recall that a �nite residual of a group G is the intersection of all (normal)

subgroups of �nite index of G. Of course, the �nite residual J of a group G

may have in�nite index in G, but if the index |G : J | is �nite, then J cannot

contain proper subgroups of �nite index.

Now me can prove the main theorem.

Theorem 2.1.5. Let G be a strongly locally graded group admitting an as-

cending normal series whose factors have �nite rank. If all proper subgroups
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of G have the V-property, then G itself is a V-group.

Proof. Assume for a contradiction that the statement is false, and let X be a

subnormal subgroup of G with in�nitely many conjugates, so that the index

|G : NG(X)| is in�nite. If XG is the largest normal subgroup of G con-

tained in X, the subnormal subgroup X/XG of G/XG has likewise in�nitely

many conjugates, and hence replacing G by the factor group G/XG it can

be assumed without loss of generality that X does not contain non-trivial

normal subgroups of G. Moreover, since every proper subgroup of G has the

V-property, we have that X is contained in no proper subgroup of �nite index

of G.

By Lemma 2.1.1 the group G has an ascending normal series whose factors

are either �nite or torsion-free abelian of �nite rank, and such property is

also inherited by all subgroups of G. In particular, X contains a non-trivial

normal subgroup Y which is either �nite or torsion-free abelian. Then Y is

subnormal in G and the normalizer NG(Y ) is a proper subgroup of G contain-

ing X. It follows that the index |G : NG(Y )| is in�nite, and so replacing X by

Y we may also suppose that X is either �nite or torsion-free abelian. More-

over, if X is in�nite and x is a non-trivial element of X, the cyclic subgroup

〈x〉 is subnormal in G and X is contained in NG(〈x〉), so that |G : NG(〈x〉)|

is in�nite, and in this case we may even assume that X is in�nite cyclic.

Let N be any proper normal subgroup of �nite index of G. Then X ∩N is a

subnormal subgroup of G having �nitely many conjugates in N, and so also

in G. As X is contained in NG(X ∩ N), it follows that X ∩ N is normal in

G, and hence X ∩N = {1}. Since X is contained in no proper subgroups of

�nite index, it follows that G = NX, thus X is �nite and |G : N | ≤ |X|. This

argument shows that there is a bound for the indices of (normal) subgroups

of �nite index of G, and so G has only �nitely many subgroups of �nite index.
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Therefore the �nite residual J of G has �nite index in G, so that G = XJ

and J contains no proper subgroups of �nite index.

Let Σ be an ascending normal series of J whose factors are either �nite or

torsion-free abelian of �nite rank. Let H/K be a �nite factor of Σ. The index

|J : CJ(H/K)| is �nite, hence J = CJ(H/K), that is H/K is central. From

this observation, it follows that J is a hyperabelian group. Assume that J is

not soluble. Since Lemma 2.1.2 shows that all hyperabelian groups with the

V-property are soluble, it follows that J is perfect. If U/V is any torsion-free

factor of Σ, the group J/CJ(U/V ) is isomorphic to a linear group of �nite

degree over the �eld of rational numbers and it is soluble (see for instance

[26] Part 1, p.78). Thus CJ(U/V ) = J , so that Σ is a central series of J and

hence J is hypercentral, a contradiction since any hypercentral non-trivial

group has proper commutator subgroup. Therefore J is soluble.

Suppose now that the divisible abelian group J/J ′ is not periodic. Then the

additive group of rational numbers occurs as a homomorphic image of J, and

so J contains a normal subgroup L such that J/L is a periodic abelian group

with in�nitely many non-trivial primary components. Clearly, L has �nitely

many conjugates in G, so that J/LG is likewise periodic and hence J has a

decomposition J = J1J2, where J1 and J2 are proper G-invariant subgroups.

If G = XJi, with i = 1, 2 it follows from Dedekind's modular law that

J = J ∩G = J ∩XJi = Ji(X ∩ J)

and

|J : Ji| = |Ji(X ∩ J) : Ji| = |X ∩ J : X ∩ Ji| <∞.

This is impossibile, hence XJ1 and XJ2 are proper subgroups of G, so that

they have the V-property. Then the index |XJi : NXJi(X)| is �nite for

i = 1, 2, and hence NG(X) has �nite index in G. This contradiction proves
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that J/J ′ is periodic, so that J is abelian by Corollary 2.1.4, and of course it

is the direct product of a collection of Prüfer subgroups. Observe also that

the intersection X ∩J is a normal subgroup of G, so that X ∩J = {1} and X

is �nite. If P is any subgroup of J of type p∞, where p is a prime number, the

product XPG is a �ernikov group and hence it has �nite conjugacy classes

of subnormal subgroups. Therefore P normalizes X, J ≤ NG(X), and so X

is normal in G = XJ . This is a contradiction.

Suppose now that the group G has no proper subgroups of �nite index,

then arguing as for J, we can prove that G is soluble and G/G′ is periodic.

Corollary 2.1.4 implies G abelian and this last contradiction completes the

proof of the theorem.

Using a group construction due to V.S. �arin (see [26] Part 1, p.152), we

show an example of a periodic metabelian group which does not have the

V-property while all its proper subgroups are V-groups.

Let p be a prime number, and let GF(p) be the �eld with p-elements. If F is

the algebraic closure of GF(p), the multiplicative group F ∗ of F is a direct

product of Prüfer subgroups, one for each prime q 6= p; consider one of such

subgroups Q ' Z(q∞), and let A be the additive group of the sub�eld of

F generated by Q. Consider the semidirect product G = Q n A, then A is

a minimal normal subgroup of G of exponent p and the elements of Q act

by multiplication on A so that CG(a) = A for all a ∈ A\{0}. Clearly, G

is a metabelian group of in�nite rank, and it does not have the V-property,

since every proper non-trivial subgroup of A has in�nitely many conjugates

in G. On the other hand all proper subgroups of G are V-groups. Let H be

a non-abelian proper subgroup of G such that π(H) = {p, q}. Let X be a

subnormal subgroup of H and put Xp = X∩A. Obviously X/Xp is a q-group
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and it follows that

[X/Xp, A/Xp] = {1}.

Therefore [X,A] ≤ Xp ≤ X so that A ≤ NG(X) and X C XA and this

implies that X is a subnormal subgroup of G. Note that [A,X] = [A,AX] is

normal in G, but A is minimal normal in G and necessarily [A,X] = A. It

follows that A ≤ X and hence X C G.

We have seen that Casolo considered also the class T ∗, consisting of all groups

in which every subnormal subgroup has �nite index in its normal closure.

We can observe that the statement obtained replacing the property V by the

property T ∗ in our theorem is false.

To see this, consider the standard wreath product

G = Z(2∞)ğZ2,

and let B = B1 ×B2 be its base group, where

B1 ' B2 ' Z(2∞).

Of course, G is a metabelian group of �nite rank, and all its proper subgroups

have the T ∗-property. Let H be a non-abelian in�nite proper subgroup of G,

then H ∩ B 6= {1}. If there exist two distincts subgroups K1, K2 of H such

that K1 ' K2 ' Z(2∞), then H = B, that is H abelian. So, let K be the

only subgroup of H isomorphic to Z(2∞) and take an element h in H\K. It

follows that G = 〈B, h〉, and K is normal in G. Then K ≤ Z(G) and this

contradiction shows that every in�nite proper subgroup is abelian. Moreover

G is not a T ∗-group, since

BG
i /Bi ' B/Bi ' Z(2∞),

for i = 1, 2.
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Chapter 3

In�nite groups whose subgroups

are close to be normal-by-�nite

As already mentioned, in 1955 Neumann began a systematic study of �nite-

ness conditions on group theory de�ned by restrictions on the conjugacy

classes of subgroups. Among other results he proved that every subgroup H

of a group G has �nite index in its normal closure HG if and only if G is

�nite-by-abelian. In this chapter we consider a dual condition. A subgroup

X of a group G is said to be normal-by-�nite if the core XG of X in G has

�nite index in X . Finite subgroups and normal subgroups of an arbitrary

group are obvious examples of normal-by-�nite subgroups. We shall say that

a group G is a CF-group, which is the abbreviation of core-�nite, if each of

its subgroups is normal-by-�nite, that is, if H/HG is �nite for all subgroups

H of G. Such groups need not even be abelian-by-�nite due to the existence

of Tarski groups. The class of CF-groups is obviously subgroup-closed, but

we can prove that there exists a periodic metabelian group that is not a CF-

group but all its proper subgroups have the CF-property.

Let K be a group of type p∞ for some prime number p, and consider the
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standard wreath product

G = K o 〈x〉,

of K by a group 〈x〉 of order 2. Since K is not normal in G, the group G

does not have the CF-property. On the other hand, every proper subgroup

of G has the CF-property. Infact, let B be the base group of G and let H be

a proper subgroup of G. If H ≤ B, then H is abelian. So let suppose that H

is not contained in B. Obviously, the intersection H ∩ B 6= B. Thus H ∩ B

is either �nite or �nite extension of Z(p∞). Since the index |H : H ∩ B| is

�nite, we have that H is either �nite or �nite extension of Z(p∞), so that H

is a CF-group.

We shall say that a CF-group is BCF, which is the abbreviation of boundedly

core-�nite group, if there is an integer n such that H/HG has order at most

n for all H ≤ G.

CF-groups were studied, �rst, by Buckley, Lennox, Neumann, Smith and

Wiegold in [6] and later by H. Smith and J. Wiegold in [29].

In particular they proved that:

Theorem 3.1.1. (see [6]) Every locally �nite CF-group is abelian-by-�nite

and BCF.

Theorem 3.1.2. (see [29]) Let G be a CF-group such that every periodic

image of G is locally �nite. Then G is abelian-by-�nite.

It is still an open question whether an arbitrary locally graded CF-group G is

abelian-by-�nite. However the class of groups whose periodic homomorphic

images are locally �nite form a very large class, containing in particular the

class of locally (generalized radical) groups. Recall that a group G is called
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generalized radical if it has an ascending series whose factors are either lo-

cally nilpotent or locally �nite.

About BCF-groups Smith and Wiegold proved the following result.

Theorem 3.1.3. (see [29]) Every locally graded BCF-group is abelian-by-

�nite.

The aim of this section is to show that Theorem 3.1.2 can be extended to

the case of groups whose proper subgroups have the CF-property. Of course,

a group G satis�es this condition if and only if the index |X : XY | is �nite,

whenever X ≤ Y < G, which means that the subgroup X is close to be

normal-by-�nite in G.

Our �rst lemma describes a general property of CF-groups, which is of inde-

pendent interest.

Lemma 3.1.4. Let G be a CF-group whose periodic homomorphic images

are locally �nite. Then the subgroup G′′ is locally �nite.

Proof. Let a be any element of in�nite order of G. As the subgroup 〈a〉 is

normal-by-�nite, there exists a positive integer n(a) (depending of course on

a) such that the cyclic subgroup 〈an(a)〉 is normal in G, and hence

[G′, an(a)] = {1}. Let A be the subgroup of G generated by the powers an(a) ,

where a runs over all elements of in�nite order of G. Clearly, A is an abelian

normal subgroup of G, and the factor group G/A is periodic, and so even

locally �nite. Moreover, A ∩ G′ is contained in the center of G′, so that

G′/Z(G′) is locally �nite, and it follows from a classical result of Schur that

also the subgroup G′′ is locally �nite (see for instance [26] Part 1, Theorem

4.12).
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We need the following case of Maschke's Theorem for the proof of the main

theorem.

Theorem 3.1.5. (Maschke's Theorem) Let K be a �nite group that acts via

automorphisms on an elementary abelian p-group V, and assume that p does

not divide |K|. Suppose that U ⊆ V is a K-invariant subgroup. Then there

exists a K-invariant subgroup N ⊆ V such that V = U ×N .

Now we can prove our main result on this topic.

Theorem 3.1.6. Let G be a locally graded group whose periodic sections are

locally �nite. If every proper subgroup of G has the CF-property, then G is

abelian-by-�nite.

Proof. Assume for a contradiction that the group G is not abelian-by-�nite.

It follows from Theorem 3.1.2 that every proper subgroup of G is abelian-

by-�nite, so that G cannot contain proper subgroups of �nite index, and in

particular it is not �nitely generated. Then every �nitely generated subgroup

E of G has the CF-property, and so E ′′ is locally �nite by Lemma 3.1.4.

Therefore, the subgroup G′′ is likewise locally �nite. On the other hand, an

application of Theorem 1.2.5 yields that G is either perfect or locally �nite,

and hence G must be locally �nite. By Proposition 1.2.8 it follows that the

commutator subgroup G′ is properly contained in G, and by Proposition

1.2.10, we have that G/G′ is a group of type p∞ and G′ is a q-group, where

p and q are prime numbers.

Suppose �rst that p 6= q, so that Lemma 1.2.15 yields that G′ is an in�nite

abelian minimal normal subgroup of G, and there exists in G a subgroup P

of type p∞ such that G = PG′. Then Z(G) = CP (G′) is �nite, and

[Z2(G), G] ≤ Z(G) ∩G′ ≤ P ∩G′ = {1},
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so that Z(G) = Z(G) and the factor group G/Z(G) has trivial center.

Clearly, G/Z(G) is likewise a counterexample, and hence replacing G by

G/Z(G) it can be assumed without loss of generality that Z(G) = {1}.

Since G′ is a minimal normal subgroup of G, there exist elements a of G′ and

y of P such that 〈a〉y 6= 〈a〉. Let b be any element of G′ such that 〈b〉y = 〈b〉,

so that by = bi for some positive integer i < q . The set

K = {c ∈ G′|cy = ci}

is a proper G-invariant subgroup of G′ , so that K = {1}, since G′ is a

minimal normal subgroup of G. Thus, b = 1, and hence y moves all cyclic

non-trivial subgroups of G′, which means that

〈u〉 ∩ 〈u〉y = {1}

for every element u of G′.

For the sake of simplicity, suppose that y has order p, and let x11 be an

element of G′. Suppose that y maps x11 in an element x12, with x11 6= x12,

x12 will be mapped into x13, with x13 6= x11, x12, and so on up to x1p−1 that

will be mapped into x11. Therefore

〈x11, x12, ..., x1p−1〉y = 〈x11, x12, ..., x1p−1〉

and, by Theorem 3.1.5, we have

G′ = 〈x11, x12, ..., x1p−1〉 ×X1,

where X1 is an 〈y〉-invariant subgroup.

Now, let x21 be an element of X1 and suppose that y maps x21 in an element

x22, with x21 6= x22, x22 will be mapped into x23, with x23 6= x21, x22, and

so on up to x2p−1 that will be mapped into x21, with the same reasoning as
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before. Hence

〈x21, x22, ..., x2p−1〉y = 〈x21, x22, ..., x2p−1〉,

and

X1 = 〈x21, x22, ..., x2p−1〉 ×X2.

Iterating the procedure the commutator G′ can be decomposed into the fol-

lowing direct product

G′ = 〈x11, x12, ..., x1p−1〉× 〈x21, x22, ..., x2p−1〉× . . .×〈xn1, xn2, ..., xnp−1〉× . . .

Put

Yn = 〈xn1, xn2, . . . , xnp−1〉,

for every n ∈ N, and let xn be a non-trivial element of Yn, for each positive

integer n. Consider the in�nite group

X = 〈xn|n ∈ N〉 = Drn∈N〈xn〉.

Then X ∩Xy = {1}, and so in particular the core of X in 〈y,G′〉 is trivial.

Therefore, the CF-property does not hold for the proper subgroup 〈y,G′〉 of

G, and this contradiction shows that p = q, so that G is a p-group.

By Proposition 1.2.18, the group G cannot be hypercentral, so that its hy-

percenter Z(G) is a proper subgroup and the factor group G/Z(G) is likewise

a counterexample. Thus, it can be assumed without loss of generality that

Z(G) = {1}. Suppose that G′ contains a subgroup Q of type p∞, and let

H/G′ be any proper subgroup of G/G′. Since H has the CF-property, Q

is normal in H, and so its unique subgroup Q1 of order p is normalized by

H. On the other hand, G/G′ is the join of its proper subgroups, and hence

the subgroup Q1 is normal in G, contradicting the assumption Z(G) = {1}.
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Therefore, G′ is reduced, and so G′/(G′)p is in�nite. Clearly, the factor group

G/(G′)p is also a counterexample, and replacing G by G/(G′)p we may also

suppose that G′ has exponent p. Consider again any proper subgroup H/G′

of G/G′. Then H is nilpotent (see [26] Part 2, Lemma 6.34), and hence

Z(H) ∩ G′ is a non-trivial normal subgroup of G′. Let V be a subgroup of

G′ such that

G′ = (Z(H) ∩G′)× V.

Since H is a CF-group, the index |V : VH | is �nite. On the other hand,

VH has obviously trivial intersection with Z(H), so that VH = {1} and V is

�nite. It follows that Z(H)∩G′ has �nite index in G′ , so that also the index

|H : Z(H)| is �nite and hence the commutator subgroup H ′ of H is �nite by

the already quoted theorem of Schur. However, G has no �nite non-trivial

normal subgroups, so that H ′ = {1} and H is abelian. As

G =
⋃

G′≤H<G

H,

it follows that G itself is abelian, and this last contradiction completes the

proof of the theorem.

We have seen that in [29] it was proved that if G is a locally graded group

for which there exists a positive integer k such that |X : XG| ≤ k for every

proper subgroup X, then G is abelian-by-�nite. Since all periodic sections of

these groups are locally �nite, our theorem has the following consequence.

Corollary 3.1.7. Let G be a locally graded group whose proper subgroups

have the BCF-property. Then G is abelian-by-�nite.

We have already seen that the behavior of subgroups of in�nite rank of a

given group has a strong in�uence on the structure of the whole group. If we
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require the CF-property only for subgroups of in�nite rank, we can see that

the group is still abelian-by-�nite, just in case the group belongs to the class

of locally (soluble-by-�nite) groups.

First of all, we need the following lemma.

Lemma 3.1.8. Let G be a locally (soluble-by-�nite) group of in�nite rank.

If all proper subgroups of in�nite rank of G have the CF-property, then G is

either abelian-by-�nite or periodic.

Proof. Assume for a contradiction that the group G neither is abelian-by-

�nite nor periodic. Since any locally (soluble-by-�nite) CF-group is abelian-

by-�nite, it follows from Lemma 4.1.10 that all proper subgroups of G are

abelian-by-�nite. Thus, G = G′ by Lemma 1.2.5. It is also clear that G has no

proper subgroups of �nite index, so that in particular every �nitely generated

subgroup of G is abelian-by-�nite, and so has �nite rank. Therefore, G

contains an abelian normal subgroup A such that G/A has �nite rank by

Theorem 4.1.5. Let E be any �nitely generated subgroup of G. As G/A

cannot be �nitely generated, the product EA is a proper subgroup of in�nite

rank of G, and hence it has the CF-property. Then (EA)′′ is locally �nite

by Lemma 3.1.4, and so E ′′ is �nite. Therefore G = G′′ is locally �nite, and

this contradiction completes the proof.

Theorem 3.1.9. Let G be a locally (soluble-by-�nite) group of in�nite rank

whose proper subgroups of in�nite rank have the CF-property. Then G is

abelian-by-�nite.

Proof. Assume for a contradiction that the group G is not abelian-by-�nite.

Then G is periodic by Lemma 3.1.8, and a contradiction can be obtained
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arguing as in the proof of Theorem 3.1.6. To this aim, it is enough to observe

that in the second part of that proof the hypotheses are applied only to

subgroups of in�nite rank.

It is an open question whether an arbitrary locally graded group of in�nite

rank must contain a proper subgroup of in�nite rank, and this problem seems

to be the main obstacle in order to extend Theorem 3.1.9 to the case of locally

graded groups.
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Chapter 4

Groups whose proper subgroups

of ini�nite rank have an X -group

of �nite index

4.1 Groups whose proper subgroups of ini�nite

rank are abelian-by-�nite

In recent years a series of papers has been published on the behavior of

groups of in�nite rank in which every proper subgroup of in�nite rank has

a suitable property (see for instance [9], [11], [15]). In this section we give

a contribution to this topic, investigating the structure of groups in which

every proper subgroup of in�nite rank contains an abelian subgroup of �nite

index.

To fully understand our result, it is necessary to consider groups in which

every proper subgroup is nilpotent-by-(�nite rank). This class was consid-

ered by M. R. Dixon, M. J. Evans and H. Smith in [16].
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First of all, we note the following fact.

Lemma 4.1.1. Suppose that G is an in�nite simple locally �nite group.

Then G has all proper subgroups nilpotent-by-(�nite rank) if and only if

G ' PSL(2, F ) or G ' SZ(F ), for some in�nite locally �nite �eld F con-

taining no in�nite proper sub�eld.

Theorem 4.1.2. Let G be a locally (soluble-by-�nite) group in which every

proper subgroup is nilpotent-by-(�nite rank). Suppose that G is not a perfect

p-group. If G has no in�nite simple images then G is nilpotent-by-(�nite

rank).

Theorem 4.1.3. Let G be a group with all proper subgroups nilpotent-by-

(�nite rank) and suppose that G is locally (soluble-by-�nite) and locally of

�nite rank. Suppose that G is not locally �nite, then G is nilpotent-by-(�nite

rank).

A similar result holds also for groups in which every proper subgroup is

abelian-by-(�nite rank).

Theorem 4.1.4. Let G be a group whose proper subgroups are abelian-by-

(�nite rank). If G is locally nilpotent, or locally �nite with no in�nite simple

images, then G is abelian-by-(�nite rank).

Finally, we have a corresponding result for groups in which every proper

subgroup is (nilpotent of class c)-by-(�nite rank).

Theorem 4.1.5. Suppose that G is a group whose proper subgroups are

(nilpotent of class c)-by-(�nite rank).
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1. If G is locally soluble then G is nilpotent-by-(�nite rank) and either G

is (nilpotent of class c)-by-(�nite rank) or G is soluble.

2. If G is locally (soluble-by-�nite) and locally of �nite rank, but not locally

�nite, then G is nilpotent-by-(�nite rank) and either G is (nilpotent of

class c)-by-(�nite rank) or G is soluble.

Now, we can return to the study of groups of in�nite rank in which all proper

subgroups of in�nite rank have an abelian subgroup of �nite index.

Lemma 4.1.6. Let G be a group whose proper subgroups of in�nite rank

are abelian-by-�nite. If the factor group G/G′ has in�nite rank, then every

proper subgroup of G is abelian-by-�nite.

Proof. Let X be any subgroup of �nite rank of G. Then XG′ is properly

contained in G, and so there exists a proper subgroup Y of G of in�nite rank

such that XG′ ≤ Y . Therefore X is abelian-by-�nite.

Our next result allows us to restrict considerations to the case of groups

whose lower central series terminates with the commutator subgroup.

Lemma 4.1.7. Let G be a group of in�nite rank whose proper subgroups of

in�nite rank are abelian-by-�nite. If G contains a proper subgroup which is

not abelian-by-�nite, then G′ = [G′, G] and G is either perfect or metabelian.

Proof. Since G/G′ has �nite rank by Lemma 4.1.6 and G′/[G′, G] is a homo-

morphic image of the tensor product

(G/G′)⊗ (G/G′),

it follows that also the nilpotent group G/[G′, G] has �nite rank. Then

[G′, G] must have in�nite rank, and hence all proper subgroups of G/[G′, G]
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are abelian-by-�nite. Assume for a contradiction that [G′, G] is properly

contained in G′. Then G/[G′, G] cannot be abelian-by-�nite, since G has no

proper subgroups of �nite index, and hence Theorem 1.2.5 and Proposition

1.2.10 show that

(G/[G′, G])/(G/[G′, G])′ ' G/G′

is a group of type p∞ for some prime number p. It follows that the nilpotent

group G/[G′, G] is abelian, and this contradiction shows that G′ = [G′, G].

Suppose now that G′ is a proper subgroup of G. Then G′ has in�nite rank,

thus it is abelian-by-�nite, and so it contains an abelian characteristic sub-

group A of �nite index. As the factor group G/A has �nite commutator

subgroup, it is nilpotent-by-�nite (see [26], Part 1, Theorem 4.25). On the

other hand, G has no proper subgroups of �nite index, so that G/A is nilpo-

tent and hence even abelian by the �rst part of the proof. Therefore G′ = A

is abelian.

Now we give a general result on locally (soluble-by-�nite) groups.

Lemma 4.1.8. Let G be a locally (soluble-by-�nite) group containing a proper

normal subgroup N such that G/N has �nite rank. Then G has a non-trivial

homomorphic image which is either �nite or abelian.

Proof. Assume that G has no proper subgroups of �nite index. As the fac-

tor group G/N is (locally soluble)-by-�nite by a result of N.S. �ernikov,

it is even locally soluble. Then there exists a positive integer k such that

G(k)N/N is hypercentral (see [26], Part 2, Lemma 10.39), and it follows that

the commutator subgroup of G is a proper subgroup.

The next lemma improves the result obtained by Bruno and Phillips on

periodicity of non-perfect minimal non-(abelian-by-�nite) groups.
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Lemma 4.1.9. Let G be a locally (soluble-by-�nite) group of in�nite rank.

If all proper subgroups of in�nite rank of G are abelian-by-�nite, then G is

either abelian-by-�nite or periodic.

Proof. Assume for a contradiction that the group G is neither abelian-by-

�nite nor periodic. In particular, G has no proper subgroups of �nite index

and so it cannot be �nitely generated. As �nitely generated abelian-by-�nite

groups have obviously �nite rank, it follows from the hypotheses that every

�nitely generated subgroup of G has �nite rank. Moreover, it is also clear

that each proper subgroup of G is abelian-by-(�nite rank). Then either G

is soluble or it contains an abelian normal subgroup A such that G/A has

�nite rank by Theorem 4.1.5, so that an application of Lemma 4.1.8 shows

that G′ is a proper subgroup of G.

It follows from Theorem 1.2.5 that G contains proper subgroups which are

not abelian-by-�nite. Then G/G′ must have �nite rank by Lemma 4.1.6,

and G′ is an abelian subgroup of in�nite rank by Lemma 4.1.7. Suppose

�rst that the group G/G′ is not periodic. Since G/G′ is divisible, G can be

decomposed into the product of two proper normal subgroups of in�nite rank.

Then G is nilpotent-by-�nite, and so nilpotent. Again Lemma 4.1.7 gives now

the contradiction that G is abelian. Therefore G/G′ must be periodic, and

hence G′ is not periodic. Let T be the subgroup consisting of all elements of

�nite order of G′. If T has in�nite rank, then all proper subgroups of G/T

are abelian-by-�nite, and hence the non-periodic group G/T is abelian-by-

�nite by Theorem 1.2.5. Then G/T is abelian, a contradiction, because T is

properly contained in G′. Therefore T has �nite rank, and the factor group

G/T is likewise a counterexample, so that without loss of generality it can

be assumed that G′ is a torsion-free abelian group. If q1 and q2 are distinct

prime numbers, by Lemma 1.2.6 there exists a G-invariant subgroup N of G′
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such that G′/N is periodic and q1,q2 belong to π(G′/N). As G′ is torsion-free,

the subgroup N has in�nite rank, and hence all proper subgroups of G/N are

abelian-by-�nite. On the other hand, G/N is not abelian-by-�nite, and its

commutator subgroup is not a primary group, contradicting Theorem 1.2.5.

The statement is proved.

We are now in a position to prove our main result on this topic.

Theorem 4.1.10. Let G be a locally (soluble-by-�nite) group of in�nite rank

whose proper subgroups of in�nite rank are abelian-by-�nite. Then all proper

subgroups of G are abelian-by-�nite.

Proof. Assume for a contradiction that the statement is false. In particular,

G is not abelian-by-�nite, and so it has no proper subgroups of �nite index.

Moreover, G is periodic by Lemma 4.1.9, and hence locally �nite. Suppose

that G contains a proper normal subgroup K such that G/K is simple. Then

G/K must have in�nite rank by Lemma 4.1.8 and hence it is isomorphic

either to PSL(2,F) or to Sz(F) for some in�nite locally �nite �eld F containing

no in�nite proper sub�elds as a consequence of Lemma 4.1.1. On the other

hand, each of the last two groups contains a proper subgroup of in�nite rank

which is not abelian-by-�nite (see for instance [23]). This contradiction shows

that G has no in�nite simple homomorphic images, so that Theorem 4.1.4

ensures that it contains an abelian normal subgroup N such that G/N has

�nite rank, and henceG′ is a proper subgroup of G by Lemma 4.1.8. It follows

from Lemmas 4.1.6 and 4.1.7 that G′ is an abelian group of in�nite rank. Let

X be a subgroup of �nite rank of G which is not abelian-by-�nite. Clearly,

X cannot be contained in any proper subgroup of in�nite rank of G, and so

XG′ = G. Then X/X ∩G′ ' G/G′ has no proper subgroups of �nite index,

and hence it is divisible. Moreover, the abelian normal subgroup X ∩ G′ of
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G has �nite rank, so it is the direct product of its primary components, and

hence it is covered by �nite characteristic subgroups. Then X/CX(X ∩ G′)

is residually �nite, since X/X ∩ G′ does not contain proper subgroups of

�nite index, it follows that X ∩ G′ is contained in the center of X, and so

X is nilpotent. Consider now a maximal abelian normal subgroup A of X

containing X ∩ G′. Then CX(A) = A, and hence the divisible group X/A

is isomorphic to a group of automorphisms of A. On the other hand, A

is covered by �nite characteristic subgroups, so that its full automorphism

group is residually �nite. Therefore X = A is abelian, and this contradiction

proves the statement.

It is an open question whether an arbitrary locally graded group of in�nite

rank must contain a proper subgroup of in�nite rank. This seems to be the

main obstacle to extending our theorem to the case of locally graded groups.

However, we will point out that this is at least possible for a special class of

locally graded groups, we can prove that our main theorem remains true in

the class of strongly locally graded groups.

We need the following result.

Lemma 4.1.11. Let G be a strongly locally graded group of in�nite rank. If

all proper subgroups of in�nite rank of G are locally (soluble-by-�nite), then

G is locally (soluble-by-�nite).

Proof. Suppose �rst that G is a �nitely generated non-trivial group, so that

it contains a proper subgroup H of �nite index. Then H is a �nitely generated

subgroup of in�nite rank, hence it is soluble-by-�nite and therefore G itself

is soluble-by-�nite. Assume now that G is not �nitely generated, so that all

its �nitely generated subgroups of in�nite rank are soluble-by-�nite. On the

other hand, it follows from �ernikov's result on D̄-groups that any �nitely
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generated subgroup X of G of �nite rank must be soluble-by-�nite. Therefore

G is locally (soluble-by-�nite).

Corollary 4.1.12. Let G be a strongly locally graded group of in�nite rank

whose proper subgroups of in�nite rank are abelian-by-�nite. Then all proper

subgroups of G are abelian-by-�nite.

Proof. The group G is locally (soluble-by-�nite) by Lemma 4.1.11, and so

the statement is a direct consequence of our Theorem 4.1.10.

4.2 Groups whose proper subgroups of in�nite

rank are nilpotent-by-�nite

We can prove that results obtained, in the last paragraph, for groups with

abelian-by-�nite proper subgroups can be extended to groups with nilpotent-

by-�nite proper subgroups.

Lemma 4.2.1. Let G be a group whose proper subgroups of in�nite rank

are nilpotent-by-�nite. If the factor group G/G′ has in�nite rank, then every

proper subgroup of G is nilpotent-by-�nite.

Proof. Let X be any subgroup of �nite rank of G. Then XG′ is properly

contained in G, and so there exists a proper subgroup Y of G of in�nite rank

such that XG′ ≤ Y . Therefore X is nilpotent-by-�nite.

Lemma 4.2.2. Let G be a group of in�nite rank whose proper subgroups of

in�nite rank are nilpotent-by-�nite. If G contains a proper subgroup which is

not nilpotent-by-�nite, then either G is perfect or G′ is nilpotent.
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Proof. Assume that G is not perfect. Since G/G′ has �nite rank by Lemma

4.2.1, G′ has in�nite rank. Thus, there exists a proper characteristic subgroup

N of G′ such that N is nilpotent and |G′ : N | is �nite. Clearly, G/N is an

FC-group and has no proper subgroups of �nite index. Then G/N is abelian

and G′ is nilpotent.

The next lemma is the analogue of the Lemma 4.1.9.

Lemma 4.2.3. Let G be a locally (soluble-by-�nite) group of in�nite rank.

If all proper subgroups of in�nite rank of G are nilpotent-by-�nite, then G is

either nilpotent-by-�nite or periodic.

Proof. Assume for a contradiction that the group G is neither nilpotent-by-

�nite nor periodic. In particular, G has no proper subgroups of �nite index

and so it cannot be �nitely generated. As �nitely generated nilpotent-by-

�nite groups have obviously �nite rank, it follows from the hypotheses that

every �nitely generated subgroup of G has �nite rank. Moreover, it is also

clear that each proper subgroup of G is nilpotent-by-(�nite rank). Then, by

Theorem 4.1.3 there exists a nilpotent normal subgroup K such that G/K has

�nite rank, so that an application of Lemma 4.1.8 yields that G is not perfect.

Lemma 1.3.1 implies that G contains a proper subgroup which is not nilpotent-

by-�nite. Then G/G′ must have �nite rank by Lemma 4.2.1, and G′ is a

nilpotent group of in�nite rank by Lemma 4.2.2.

Suppose �rst that the group G/G′ is not periodic. Since G/G′ is divisi-

ble, G can be decomposed into the product of two proper normal subgroups

of in�nite rank. Then G is nilpotent-by-�nite, and so nilpotent. There-

fore G/G′ must be periodic, and hence G′ is not periodic. Let T be the

subgroup consisting of all elements of �nite order of G′. If T has in�nite

rank, then all proper subgroups of G/T are nilpotent-by-�nite, and hence
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the non-periodic group G/T is nilpotent-by-�nite. Then G/T is nilpotent

and (G/T )/(G/T )′ ' G/G′ is periodic, hence G/T is periodic. Therefore

T has �nite rank, and the factor group G/T is likewise a counterexample,

so that without loss of generality it can be assumed that G′ is a torsion-

free group. Let L be the numerator of the torsion subgroup of G′/G′′, then

G′/L is abelian and torsion-free. If q1 and q2 are distinct prime numbers,

by Lemma 1.2.6 there exists a G-invariant subgroup N/L of G′/L such that

(G′/L)/(N/L) ' G′/N is periodic and q1,q2 belong to π(G′/N). Since G′/L

has in�nite rank, N/L has in�nite rank and all proper subgroups of G/N are

nilpotent-by-�nite. If G/N is nilpotent-by-�nite, then G/N is nilpotent and

(G/N)/(G/N)′ ' G/G′ is periodic and hence G/N is periodic too. It follows

that

G/N = G1/N ×G2/N,

where G1/N is a p-group and G2/N is a p′-group, for some prime number p.

Since N has in�nite rank, G1 and G2 have ini�nite rank. This implies that

G is nilpotent-by-�nite. Hence G/N is a periodic minimal non-(nilpotent-

by-�nite) group. If G/N is not locally nilpotent, by Corollary 1.3.7 G′/N

is a q-group, with q prime number. So G/N is locally nilpotent, and by

Proposition 1.3.9 follows that G/N is a p-group, with p prime number. This

last contradiction completes the proof.

Now we are able to prove the main theorem of this paragraph.

Theorem 4.2.4. Let G be a locally (soluble-by-�nite) group of in�nite rank

whose proper subgroups of in�nite rank are nilpotent-by-�nite. Then all

proper subgroups of G are nilpotent-by-�nite.

Proof. Assume for a contradiction that the statement is false. In particular,

G is not nilpotent-by-�nite, and so it has no proper subgroups of �nite index.
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Moreover, G is periodic by Lemma 4.2.3, and hence locally �nite. Suppose

that G contains a proper normal subgroup K such that G/K is simple. Then

G/K must have in�nite rank by Lemma 4.1.8 and hence it is isomorphic

either to PSL(2,F) or to Sz(F), for some in�nite locally �nite �eld F contain-

ing no in�nite proper sub�elds by Lemma 4.1.1. On the other hand, each

of the last two groups contains a proper subgroup of in�nite rank which is

not nilpotent-by-�nite (see for instance [23]). This contradiction shows that

G has no in�nite simple homomorphic images, so that either G contains a

nilpotent normal subgroup N such that G/N has �nite rank or G is a perfect

p-group by Theorem 4.1.2. If G is a perfect p-group, every proper subgroup

of G is nilpotent-by-�ernikov , so G itself is nilpotent-by-�ernikov (see [1],

Teorema 1.3) . Therefore G is nilpotent-by-�nite rank and by Lemma 4.1.8

it follows that G′ is a proper subgroup. Clearly, from Lemmas 4.2.1 and 4.2.2

we have that G/G′ has �nite rank and G′ is a nilpotent subgroup of in�nite

rank.

Let's prove that G′ is abelian.

Assume, by contradiction, that G′′ 6= {1}.

If G′′ has in�nite rank, let X be a subgroup of �nite rank of G′′ which is not

nilpotent-by-�nite. Since X cannot be contained in any proper subgroup of

in�nite rank, it follows that G = XG′′. G/G′′ is a group of �nite rank and

has no proper subgroup of �nite index, so that it is nilpotent ( see [26] part

2, Corollary 3 pag. 129), and hence it is abelian.

Now, let's suppose that G′′ has �nite rank, and let k be the derived lenght

of G. Let A be the last term of the derived series of G. A is an abelian

subgroup of �nite rank, so it is the direct product of its �ernikov primary

components Ap. Every CG(Ap) has �nite index in G, hence Ap ≤ Z(G), for

every component Ap. Thus A is contained in the centre of G. Note that the
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quotient G/A does not have all proper subgroups nilpotent-by-�nite. In fact,

if X is a subgroup of �nite rank which is not nilpotent-by-�nite, XA is a

proper subgroup of G and XA/A is not nilpotent-by-�nite. Then G/A is a

counterexemple, and we may suppose that G has derived lenght k − 1. Re-

peating the reasoning �nitely many times we have that the derived series of

G′′ is G-central, that is G′′ ≤ Zn(G). Obviously, G/G′′ is a counterexemple,

and we may suppose that G′′ = {1}. Let X be a subgroup of �nite rank of G

which is not nilpotent-by-�nite. Clearly, X cannot be contained in any proper

subgroup of in�nite rank of G, and so G = XG′. Then X/X∩G′ ' G/G′ has

no proper subgroups of �nite index, and hence it is divisible. Moreover, the

abelian normal subgroup X ∩G′ of G has �nite rank, so it is the direct prod-

uct of its primary components, and hence it is covered by �nite characteristic

subgroups. Then X/CX(X ∩G′) is residually �nite, since X/X ∩G′ contains

no proper subgroups of �nite index, it follows that X ∩G′ is contained in the

center of X, and so X is nilpotent.

Also in this case is not clear if our main theorem can be extended to arbitrary

locally graded groups. In any case we are able to prove our result in the class

of strongly locally graded groups.

Corollary 4.2.5. Let G be a strongly locally graded group of in�nite rank

whose proper subgroups of in�nite rank are nilpotent-by-�nite. Then all

proper subgroups of G are nilpotent-by-�nite.

Proof. The group G is locally (soluble-by-�nite) by Lemma 4.1.11, and so

the statement is a direct consequence of our Theorem 4.2.4.
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