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Summary 

Recently, researches attention has been focused on the development of mucosal 

immunity strategies based on the use of probiotic spores as mucosal adjuvant. As 

described in the introduction (Chapter 1) Bacillus subtilis spores are a good system 

to surface display and vaccine delivery. An important advantage of a spore-based 

display system is its high stability. 

Spores can survive under adverse environmental conditions and are resistant to 

proteolytic digestion. Therefore, they represent a good adjuvant to deliver antigens 

into the gastrointestinal tract and they could be used to mucosal vaccine. Also the 

mucosal vaccinology was used not only for responses toward pathogens but also for 

down-regulating inflammatory conditions. Among these conditions, celiac disease 

(CD) represents a very interesting model to test possible immunomodulatory 

strategies. So the aim of my research has been the use of Bacillus subtilis spores as a 

display system to development an immunomodulatory strategies for celiac disease. In 

particular, in Chapter 2 I focused my attention on the adsorption reaction of Bacillus 

subtilis spores and gliadin. I preliminarily explored the possibility of adsorbing 

gliadin on Bacillus subtilis spores and then characterized the gliadin-specific T cell-

mediated response elicited by the spore-adsorbed gliadin in DQ8 mice (a transgenic 

mouse model of gluten sensibility). A manuscript with the experiments described in 

this part of the thesis is in press (Roberta Bonavita, Rachele Isticato, Francesco 

Maurano, Ezio Ricca and Mauro Rossi, 2015. Mucosal immunity induced by gliadin-
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presenting spores of Bacillus subtilis in HLA-DQ8-transgenic mice, Immunology 

letters 2015, in press). 

In the second part of my research I focused my attention on the development of 

immunomodulatory strategy, based on the use of tolerogenic molecule to down 

regulate the inflammatory response induced by gliadin. Therefore, firstly I did 

biochemical analysis of soluble transamidated gliadin (spf), which is known to induce 

a decrease of INFγ into spleen cells and intestinal biopsies. I decided to characterize 

spf to identify similarity and differences with gliadin, in order to use transamidation 

products as alternative therapeutic strategies for celiac patients. The experiments of 

this biochemical characterization are described in the Chapter 3. Also, this part of 

my work has been published in 2013 (Maria F. Mazzeo, Roberta Bonavita, 

Francesco Maurano, Paolo Bergamo, Rosa A. Siciliano, Mauro Rossi, 2013. 

Biochemical modifications of gliadins induced by microbial transglutaminase on 

wheat flour. Biochimica et Biophysica Acta 1830:5166-74). 

After this biochemical analysis I decided to use this modified gliadin to analyzed its 

immune response into DQ8 mice. So in the Chapter 4 I put together experiments 

aimed at understanding immune response induced by spf and I compared this 

response with native gliadin. My experiments showed that spf is able to induce 

phenotypic shift of gliadin specific immune response. In fact it induced a regulatory 

response. This part of my research is the object of a publication that is still in 

preparation.  

http://www.sciencedirect.com/science/article/pii/S0304416513003243
http://www.sciencedirect.com/science/article/pii/S0304416513003243
http://www.sciencedirect.com/science/article/pii/S0304416513003243
http://www.sciencedirect.com/science/article/pii/S0304416513003243
http://www.sciencedirect.com/science/article/pii/S0304416513003243
http://www.sciencedirect.com/science/article/pii/S0304416513003243
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Finally, I verified  the capability of spores to adsorb spf and other 

immunomodulatory molecules such as conjugated linoleic acid (CLA). 



 

 

7 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

Introduction 
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Bacillus subtilis 

The life cycle of Bacillus subtilis 

Bacillus subtilis is a gram-positive bacterium. It is an aerobe with a doubling time of 

about 20 minutes when grown in rich medium at 37°C. During adverse environmental 

conditions, when either a nitrogen or carbon source becomes deficient, the vegetative 

cell initiates the process of sporulation. This process is characterized by an 

asymmetric division that gives rise to a larger mother cell and a smaller forespore, 

which matures into a spore (1, 2). 

The bacterial spore is a dormant cell with high stability and it is able to survive in 

adverse conditions, such as high temperatures, ph extremes, detergents, hydrolytic 

enzymes and antibiotics (3). This dormant spore can survive for several years or until 

nutrients are available in the environment. In this condition spores goes back 

vegetative cell through the process of spore germination. The life cycle of Bacillus 

subtilis is summarized into Figure 1.1. 
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Figure 1.1: The sporulation cycle of Bacillus subtilis (Adapted from Errington J. Regulation of 

endospore formation in Bacillus subtilis. Nat Rev Microbiol 2003; 1: 117-26). 

 

Bacillus subtilis sporulation 

When the nutrients are sufficient, Bacillus subtilis grows and divides into two 

genetically identical cells. Sporulation process is divided into seven stages based on 

morphological changes that give rise the two daughter cells different (Figure 1.1) (4). 

This is possible because they follow two different gene expression programmes 

controlled by four transcription factors. 
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Growing cells are in stage 0 and nuclear division precedes the initiation of 

sporulation. This is immediately followed by stage I, that is characterized by the 

presence of the two nucleoids in an axial filament. In stage II a septum is placed 

asymmetrically at one end of the cell such that it gives rise to two unequal 

compartments; a smaller forespore and a larger mother cell. The next stage is stage 

III, wherein the mother cell’s membrane grows around the forespore until the 

forespore is engulfed. Therefore the forespore has two membranes that will give rise 

to the outer and inner spore membranes. During stage IV peptidoglycan is deposited 

between the inner and outer spore membranes forming the cortex. The germ cell wall 

is also formed under the cortex. Also during this stage the forespore becomes more 

acidic and core dehydration begins. The transition to state V is characterized by 

development of coat layer outside the outer forespore membrane and synthesis of 

many coat proteins. During stage VI the spore core becomes maximally dehydrated 

and spores become metabolically dormant. Finally, in stage VII, the spore is released 

by lysis of the mother cell. 

 

Regulation of sporulation cycle 

Different gene expression programme of two daughters cell is controlled by cascade 

of sigma factors. The first sigma factors to direct sporulation-specific gene expression 

is σ
H
, which plays early role in sporulation and contributes to build the septum, 

together σ
A
. Once the sporulation septum is formed, σ

F
 becomes active into forespore 
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compartment and actives transcription of genes involved in engulfment (5). When σ
F
 

is active in prespore, σ
E 

becomes active into mother cell and the engulfment of 

forespore compartment is finished. After that another factor, σ
G 

becomes active into 

forespore, probably thanks to the presence of a channel. At this point the cytoplasm 

of the forespore dehydrates. Finally, last factor activated is σ
K
, that it is required for 

the final events of sporulation, in particular for the synthesis of coat. The mechanism 

of regulation of gene expression into two cell compartments called criss-cross 

regulation and was born in 1992 (6) (Figure 1.2). 
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Figure 1.2: (A) Morphological asymmetry. During sporulation surrounds the cells form an 

asymmetric septum, which then surrounds the smaller cell. This process of engulfment is completed 

by the loss of attachment between the forespore and the mother cell. (B) Genetic asymmetry. 

These morphological changes are accompanied by activation of specific transcription factors in 

each compartment (Adapted from Higgins D, Dworkin J. Recent progress in Bacillus subtilis 

sporulation. FEMS Microbiol Rev 2012; 36: 131-48). 

 

Spore structure 

The bacterial spore consist in various layers: a core, surrounded by the inner 

membrane, the cortex, the outer membrane, the coat and spore crust (Figure 1.3). 

The core is the innermost part of the spore. It contains the spore cytoplasm with all 

cellular components, such as cytoplasmic proteins, ribosomes and DNA. The water 
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content is 30–50 % of the core cytoplasm wet weight instead of the 70–88 % of the 

vegetative cytoplasm. 

This dehydratated state plays an important role in spore longevity, dormancy and 

resistance. Other molecules that play an important role in spore resistance is 

dipicolinic acid (DPA) and acid-soluble spore proteins (SASP) associated with spore 

DNA. (7, 8, 9). 

In coat formation the gene expression is regulated by coat proteins with 

morphogenetic activity. These proteins are: SpoIVA, SpoVID, CotE and CotH.  

SpoIVA is produced in the mother cell, under the control of σ
E
 and it is essential for 

the synthesis of spore cortex and for the localization of SpoVID and CotE (10). 

CotE is a 24 kDa produced in mother cell compartment and surrounds the engulfed 

forespore (11). The inner coat proteins collect in the space between CotE and the 

forespore surface, while the outer coat proteins assemble around the CotE layer. The 

formation of the outercoat involves CotE together with CotH (12). Also CotE 

interacts with many spore coat components (13). 

CotH is a 42.8 kDa protein that has a morphogenetic role in the assembly of coat 

components and in the development of lysozyme resistance of spore (12). In the 

mother cell compartment CotH acts as a chaperone and also it is essential for 

stabilization of CotG and CotC. 

The spore core is surrounded by the inner membrane, which is the site where spore 

germination receptors are located. Inner membrane is rounded by cortex. The cortex 
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is composed of peptidoglycan and it has a crucial importance for the maintenance of 

spore core dehydration. The inner part of the cortex is called the germ cell wall or 

primordial cell wall and it is also composed of peptidoglycan. The germ cell wall 

becomes cell wall of the freshly germinated spore following spore germination. 

Around the cortex there is the outer membrane. The outer membrane, deriving from 

engulfment, has opposite polarity with respect to the inner membrane (Figure 1.3). 

 

 

Figure 1.3: Structure of spore. An artistic representation of spore and its layers. 

 

Use of Bacillus spores as a display system 

Recent studies show a novel surface display system based on the use of bacterial 

spores. There are many advantages in the use of spores, such as stability even after a 
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prolonged storage, resistance to lysozyme so they can cross gastrointestinal tract and 

finally the possibility to display large multimeric protein because the protein are 

produced in the mother cell and assembled around the forming spore without 

transport through the membrane (14). 

The spore-based display system requires the construction of a gene fusion between 

gene coding for spore surface protein (carrier) and the heterologous DNA coding for 

the protein to be displayed (Figure 1.4). With this process many heterologous protein 

are expressed on the surface of spores and they are used for many application, such as 

vaccine vehicles (15). 

Two antigen were initially selected to bind spore coat protein: C-terminal fragment of 

the tetanus toxin (TTFC) and B subunit of the heat labile toxin (LTB). The strategy to 

obtain recombinant Bacillus subtilis spores expressing CotB-TTFC or CotB-LTB on 

their surface was based on use of the cotB gene and its promoter for the construction 

of translational fusions and chromosomal integration of the cotB-tetC and cotB-eltB 

gene fusions into the coding sequence of gene amyE. Another coat protein that it is 

used as a carrier is CotC (16). 
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Figure 1.4: Spore surface-display. A schematic image of spore display system. (Adapted from 

Ricca E and Cutting SM: Emerging Applications of Bacterial Spores in Nanobiotechnology. J 

Nanobiotechnology 2003; 1: 6) 

 

Spore surface-display system based on non-recombinant approach 

The major disadvantages of recombinant approach are the release of live recombinant 

organisms into nature, raising concerns over the use and clearance of genetically 

modified microorganisms. To overcome this obstacle, a non-recombinant approach to 

use spores as a display system has been recently proposed. In the first study 

suggesting that heterologous proteins can be adsorbed on the spore surface, the 

mammalian NADPH-cytochrome P450 reductase (CPR), a diflavin-containing 

enzyme, was over-expressed in sporulating Bacillus subtilis cells and released into 

the culture medium after sporulation by autolysis of the mother cell and was found 
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associated to spore surface. So the protein was spontaneously bound to spore surface 

(17). In this first study the authors did not observe the mechanism involved into 

spontaneously adsorption. An essential characteristic of adsorption reaction is the pH 

of the binding buffer. In fact we have been shown that when the pH of the buffer is 

acid (pH 4) there is an increase of binding efficiency (18). Elettrostatic and 

hydrophobic forces were suggested to drive the adsorption reaction. 

Also recent studies shown that mutant spores with a strongly altered (cotH) or 

completely lacking (cotE) outer coat adsorbed heterologous protein more efficiently 

than wild-type (wt) spores do (19, 20). Interestingly, autoclaved spores were also 

found to be effective in adsorbing heterologous proteins and stimulating an 

immunological response towards an host antigen (21). So, the spores as antigen 

vehicle by nasal or oral route, represent a promising tool in mucosal vaccinology. 

Mucosal vaccinology could be instrumental not only to induce response toward 

antigen but also to down-regulate an inflammatory condition. In this case celiac 

disease represents an interesting model to test immunomodulatory strategies. 
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Celiac Disease 

Celiac disease: definition and etiopathogenesis 

Celiac disease is an immune-mediated enteropathy caused by ingestion of wheat 

gluten and prolamins, generally developed in genetically susceptible individuals. 

Approximately 90% of patients with celiac disease have HLA DQ2 which is 

generally in tight linkage with the DR3 haplotype, and most of the remaining patients 

(8% to 10%) have HLA DQ8 associated with the DR4 (22). Therefore, individuals 

with celiac disease almost always have the DQ2 or DQ8 molecule: DQ2 is present in 

approximately 30% of the general population and DQ8 is present in 40% of the 

general population (23). 

Celiac disease is a multifactorial disorder with genetic factor and environmental 

factor: gluten. Gluten ingestion caused villus atrophy, hypertrophic crypts, and 

infiltration of intraepithelial lymphocytes (IELs). 

Gluten is a mixture of proteins: gliadins and glutenins. Gliadin is considered the toxic 

component responsible of celiac damages into intestinal mucosa of celiac patients. 
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Biochemical characteristic of gliadin 

The gliadin fraction has been grouped in three classes named “α,” “γ,” and “ω” based 

on biochemical analysis that revealed a tight structural relationship among the various 

constituents. The numerous components of gliadin can be classified according to their 

primary structure into omega 5, omega 1,2, alpha- and gamma-type. Omega-types 

have almost entirely repetitive amino acid sequences consisting of glutamine, proline 

and phenylalanine. While alpha and gamma-type gliadins contain four and five 

different domains, respectively. Unique for each alpha and gamma-type is domain I, 

which consists mostly of repetitive sequences rich in glutamine, proline and aromatic 

amino acids. In vitro testing of gliadin peptides revealed that domain I of alpha-type 

gliadins is involved in activating celiac disease. The sequences -Pro-Ser-Gln-Gln- 

and -Gln-Gln-Gln-Pro- were demonstrated to be common for toxic gliadin peptides 

(24). Have been identified some of protein with “toxic” activity as listed in Table 1 

(25). 

 

Tab1 Toxic gliadin peptides 
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A binding motif for the HLA-DQ8 molecule has been described by using a 

combination of computational sequencing data, in vitro binding assays (26, 27), and 

x-ray crystallography (28). The motif consists of five anchor regions: P1 and P9 

anchors require negative or polar residues; P4 with aliphatic/aromatic, neutral 

residues; P6 with small aliphatic amino acids and any residue at P7 (Figure 1.5). 

 

 

Figure 1.5: Binding motif of HLA-DQ. Schematic representation of binding motif of HLA-DQ 

with pocket anchors crucial for gliadin binding (Adapted by Sollid LM. Coeliac disease: dissecting 

a complex inflammatory disorder. Nat Rev Immunol, 2002, 2: 647-55). 

 

The high content of glutamine makes gluten a good substrate for tissue 

trasglutaminase (tTG) (29). 

This enzyme is constitutively expressed into lamina propria and it converts glutamine 

into the negatively charged glutamic acid, a process called deamidation. This process 

has a key role into activation of immune response toward gliadin. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sollid%20LM%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Nat%20Rev%20Immunol.');
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Innate and Adaptive immune response 

Tissue transglutaminase plays critical role in the development of immune response 

toward gluten. It deamidates gliadin in the lamina propria causing change of the some 

glutamine residues into glutamic acid. Deamidated peptides bind with far greater 

affinity to specific positively charged residues on the peptide-binding groove of 

HLA-DQ2 or HLA-DQ8 major histocompatibility complex (MHC) class II 

molecules. These peptides are then presented by HLA-DQ2 or HLA-DQ8 to activate 

gliadin-specific CD4
+
T cells thereby activating an intestinal inflammatory response 

(29). 

This inflammatory disease is characterized by high production of IFN-γ and a 

decrease of IL10. So the phenotype of adaptive immune response is Th1.  CD4
+
T cells 

stimulate cytotoxic T cells and fibroblasts to produce a particular matrix 

metalloproteinase pattern which is responsible for degradation of both extracellular 

matrix and basement membrane. Activated T cells also become able to trigger 

enterocyte apoptosis by producing molecules like Fas ligand and granzyme, which 

are responsible for cytotoxicity, leading to the characteristic mucosal lesions. 

Stimulated CD4
+
T cells are also able to induce lymphocyte B differentiation into 

plasma cells producing specific anti-gliadin and anti-tissue transglutaminase 

antibodies (25). 

Also gluten stimulates IL-15 production, which characterizes innate response. IL-15 

causes an upregulation of stress protein by enterocytes that are recognized by the 
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natural killer receptors present on intraepithelial lymphocytes. Therefore in CD are 

induced two effector immune responses: adaptive (a gluten specific CD4
+
Tcell 

response) and innate (mediated by intraepitelial lymphocyte) summarized into Figure 

1.6. 

 

 

Figure 1.6: Schematic representation of immune response toward gluten (Adapted by 

Ciccocioppo R, Di Sabatino A, Corazza GR. The immune recognition of gluten in coeliac disease. 

Clin Exp Immunol 2005; 140: 408–16) 

 

Therapeutical Strategies 

The treatment for celiac disease is a gluten free diet. This involves elimination of the 

grains containing gluten, wheat, rye and barley, as well as food products and 



 

 

23 

 

additives derived from them (30). Maintaining a gluten free diet improves the health 

and quality of life, but there is low adherence to diet especially for adult patients. 

There are numerous reasons why there is low adherence to the diet. They include 

palatability, cost and availability, inadequate food labeling as well as social pressures 

and quality-of-life issues (17). 

Therefore many studies are focused to develop new therapeutical strategies 

alternative to the gluten free diet. 

Non dietary therapies have focused on three main areas: to decrease gluten exposure, 

to modify intestinal permeability and to modulate immune activation. 

Kapoerchan et al (31) have shown that gluten peptides can be modified at specific 

positions with an amino acid substitution, without affecting their affinity for HLA-

DQ2, and that these constructs can compete with native gluten peptides and prohibit 

recognition by HLADQ2-specific T-cells. These antagonist peptides might be a 

therapeutic option to treat CD patients. 

A major approach that has been explored is the enzymatic degradation of the large, 

immunogenic gliadin peptides into small non toxic fragments. This can be performed 

by prolyl endopeptidases (PEPs). These are proteases able to degrade the proline-rich 

gluten peptides into smaller, less immunogenic fragments. This can be achieved by 

bacterial, or fungal enzymes (29, 32). Alternatively, probiotics have been 

demonstrated to degrade gluten and exert a protective effect on the damage exerted 

by gluten on cell cultures (33). 
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Another therapeutic target is to prevent the migration of luminal gluten peptides 

across the intestinal epithelium. Therefore a peptide that inhibits the action of zonulin 

and the increase of intestinal permeability have been discovered (34). 

Another potential target of drug therapy is modulation of the immune response to 

gluten. This may be achieved by preventing gliadin deamidation through the 

inhibition of tissue transglutaminase, by preventing HLA presentation through 

blocking the HLA DQ2 or DQ8 molecules, or by modulating cytokine production. 

There are many studies that showed modulation of cytokine production and they are 

based on modification of wheat flour or immunomodulatory strategies to tolerize 

toward gluten. Gianfrani et al 2007 (35) and Lombardi et al 2013 (36) showed that 

the transamidation of wheat flour with microbial transglutaminase can be used to 

block the T-cell-mediated gliadin activity. 

Also Rossi et al (37) showed that intranasal administration of gliadin in mice 

systematically immunized with gliadin induced an IFNγ decrease. This results 

highlighted the potential usefulness of ag delivery by nasal route as useful vaccine 

strategy. 
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Use of Bacillus subtilis spores to induce an intestinal 
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Introduction 

As described in the Chapter 1, probiotic bacterial strains represent very promising 

new tool for active vaccination. They are used to vehicular antigen toward target cell, 

but also for down-regulating adverse immune responses and tolerance induction. The 

development of immunomodulatory strategy based on mucosal immunity generally 

requires efficient antigen delivery and adjuvant systems. 

Initially, the adjuvant system used ADP-ribosylating enterotoxins, LT and CT (1). 

However, CT as well as LT are normally considered to be too toxic for human use. 

Recently, attention has been focused on spores produced by Gram positive bacteria, 

such as Clostridium or Bacillus genres (2). Specifically, Bacillus subtilis spores have 

been engineered to display antigens (3, 4) as well active enzymes (6). Spore display 

system has many advantages. An important advantage of a spore-based display 

system is its high stability. In fact spores can survive under adverse environmental 

conditions for a long period and are resistant to proteolytic digestion (6). Therefore, 

they potentially represent a good adjuvant to deliver antigens into the gastrointestinal 

tract and to induce a specific immune response (7). 

A spore display system normally requires fusion between genes encoding for spore 

coat protein, called carrier and a DNA coding for heterologous passenger protein. 

This construct after transcription process is displayed on spore surface. Genetic 

manipulation has many obstacle, therefore more recently, a non recombinant 

approach has been developed. Non recombinant approach are based on the 
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spontaneously stable adsorption of an antigen or foreign protein on the spore surface. 

There are many studies that show this adsorption reaction and have been shown that 

mutant spores with a strongly altered (cotH) or completely lacking (cotE) outer coat 

adsorbed heterologous protein more efficiently than wild-type (wt) spores (8, 9). 

Interestingly, autoclaved spores were also found to be effective in adsorbing 

heterologous proteins and stimulating an immunological response towards an host 

antigen (10). So, it can be concluded that spores are a useful vaccine system. 

Mucosal vaccinology could be instrumental not only for boosting responses towards 

pathogens but also for preventing/down-regulating ongoing intestinal inflammatory 

conditions. Among these conditions, celiac disease (CD) represents a very interesting 

model to test possible immunomodulatory strategies, considering that the eliciting 

antigen (wheat gliadin) and the immunopathogenic mechanisms are known. 

CD is an immune-mediated enteropathy triggered by wheat gliadin in HLA-DQ2 or 

HLA-DQ8-expressing individuals. This disease is characterised by activation of 

intestinal gliadin-specific CD4
+
T cells with a Th1 phenotype, which appear to play a 

major role in the induction of villus atrophy and increased intestinal permeability 

(11). HLA-DQ8-transgenic mice have widely been used both to further dissect the 

molecular mechanisms underlying CD pathogenesis and to develop possible 

immunomodulatory strategies (12, 13, 14). So we preliminarily explored the 

possibility of adsorbing gliadin on Bacillus subtilis spores and then characterised the 
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gliadin-specific T cell-mediated response elicited by the spore-adsorbed gliadin in 

DQ8 mice. 
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Materials and Methods 

Strains  

The Bacillus subtilis strains used in this study were PY79 (wt) (7) and its isogenic 

mutant derivatives ER220 (cotH-null mutant) (15) and DL76 (cotE-null mutant) (16). 

Sporulation of Bacillus subtilis was induced by growth in Difco Sporulation Media 

(SPM) at 37°C for 30 h with strong shaking. After incubation at 37°C, spores were 

collected and centrifuged 10 min at 7000 g. Then, the pellet was resuspended in 

distilled water. This washing step was repeated several times. Spores were separated 

from vegetative cells by a renografin gradient purification step (17). Spore amount 

was determined by plate counting of spore serial dilutions. 

 

Antigen preparation 

Gliadin was extracted from wheat flour by a modified Osborne protocol (18). Briefly 

wheat flour was resuspended in 0.4 M NaCl and was centrifuged at 1000 rpm for 10 

min. Then the pellet was washed for several times and gliadin was extracted in 70% 

ethanol. The supernatant, which contained gliadin, was recovered and freeze-dried. 

Protein content was measured by Bradford analysis (19). Gliadin stock solution was 

prepared by suspending 10 mg gliadin in 50 mM acetic acid. 
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Binding assay 

In total, 2x10
9
 spores were incubated with 125 μg native gliadin from the stock 

solution in 200 μl of 50 mM sodium acetate, pH 4.0 (adsorption solution), for 1 h at 

RT by continuous shaking (7). The spores were centrifuged at 13000 g for 10 min 

and washed three times to remove unbound gliadin. The pellet (spore-adsorbed 

gliadin) was used for in vitro and in vivo experiments. Gliadin adsorption was 

evaluated by dot blot and Bradford analyses (19). The dot blot analysis was 

performed as previously described (20). The membrane was probed with an in-house-

produced mouse polyclonal antibody against wheat gliadin (1:5000 dilution) and then 

with biotinylated streptavidin peroxidase-conjugated anti-mouse IgGs (1:10000 

dilution; Dako SpA, Milano, Italy). 

Immunodetection was performed using ECL reagent (Amersham-GE Healthcare 

Europe GmbH, Glattbrugg, Switzerland) and a ChemiDoc XRS system (Bio-Rad 

Laboratories, Hercules, CA). For Bradford analysis, the amount of spore-adsorbed 

gliadin was calculated as the difference in the protein content of the adsorption 

solution before and after incubation. 

 

Mice and immunization protocol 

Transgenic mice expressing the HLA-DQ8 molecule were maintained under 

pathogen-free conditions at our animal facility (Accreditation No. DM.161/99). The 

animals were reared on a gluten-free diet for several generations and were used at the 
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age of 6-12 weeks. The experiments were approved by the National Institutional 

Review Committee and performed in accordance with European regulations (EU 

Directive 2010/63/EU). In tolerizetion experiments, mice were nasally administered 

multiple doses of spore-adsorbed gliadin (days: -6, -5, -4, and -3; 1, 2, 3, and 4; and 

8, 9, 10, and 11; 2x10
9
 11 spores/dose). The control groups were mice instilled with 

multiple doses of free gliadin (40 μg) dissolved in water or with water alone. On days 

0, 7 and 14 the mice were injected intraperitoneally (i.p.) with gliadin emulsified with 

FCA (day 0) or IFA (days 7 and 14). The mice were sacrificed on day 21. In 

immunisation experiments, mice were nasally administered seven doses of spore-

adsorbed gliadin (2x10
9
 spores/dose) or an equivalent amount of free gliadin at 

weekly intervals. The mice were sacrificed one week later to collect the spleens and 

mesenteric lymph nodes (MLNs). Also in another immunization experiment mice 

were intragastric immunized with spore-adsorbed gliadin (2x10
9
 spores/dose) one 

dose a week for six weeks. The mice were sacrificed one week later to collect spleens 

and MLNs. 

 

Isolation of T cells and dendritic cells (DCs) from DQ8 mice 

The spleens and MLNs were passed through a stainless-steel wire mesh and 

subsequently through a 40 μm cell strainer (Falcon, BD Biosciences, Erembodegem, 

Belgium) to separate the cells. The splenic suspension was further treated with Tris-

buffered ammonium chloride solution to remove erythrocytes. Then untouched 
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CD4
+
T cells from the splenic and MLN cells of immunised mice were separated 

using a CD4
+
T Cell Isolation Kit (Miltenyi Biotec Srl, Calderara di Reno-BO, Italy). 

Finally, CD4
+
T cell aliquots (5x10

5
) were added to plates containing DCs. Immature 

DCs (iDCs) were purified from the bone marrow of the femurs and tibiae of naïve 

DQ8 mice according to a published protocol (21). Briefly femurs and tibiae of mice 

were re-moved and purified from the surrounding muscle tissue. Then intact bones 

were left in 70% ethanol for 2–5 min for disinfection and the marrow flushed with 

PBS using a Syringe with a 0.45 mm diameter needle. 

At day 0 cells were seeded at 5x10
6
 100 mm dish in 10 ml complete RPMI-1640 with 

20 ng/ml rmGM-CSF. Every two days half of the culture supernatant was collected, 

centrifuged, and the cell pellet resuspended in 10 ml fresh medium containing 20 

ng/ml rmGMCSF and given back into the original plate. From day 8 to 10 cells can 

be used. 

 

In vitro co-cultures 

iDCs were placed in 48-well plates (2.5x10
5
 cells/well), incubated with gliadin alone 

(100 μg/ml) or spore-adsorbed gliadin (DC:spore ratio: 1:30) for 18 h and finally 

pulsed with LPS for 4 h to stimulate maturation of the DCs. After removal of the 

spent medium, 5x10
5
 CD4

+
T cells were added along with fresh medium, and the co-

cultures incubated for 72 h. Supernatants were collected and analysed for cytokine 

secretion. 
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Western blotting 

iDCs were incubated at 37°C for different times (0-18 h) with spore-adsorbed gliadin 

(DC:spore ratio: 1:30) or free gliadin to analyse the antigen-processing kinetics. After 

incubation, the iDCs were washed with phosphate buffer, recovered, centrifuged and 

resuspended in Laemmli sample buffer and boiled for 5 min. Then equivalent protein 

aliquots were fractioned by 12 % denaturating SDS-PAGE, after that blotted on 

Immobilon PVDF membranes (Millipore, Billerica, MA, USA) and probed with 

mouse anti-gliadin serum (1:5000 dilution). After washing, the membranes were 

incubated with peroxidase-conjugated anti-mouse IgG antibodies (1:10000 dilution; 

Dako SpA, Milano, Italy). Finally, immunodetection was performed using ECL 

reagent and Hyperfilm (GE Healthcare Europe GmbH - Filiale Italiana, 20 Milan, 

Italy). 
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Cytokine assay 

Spleen and MLN cells isolated from immunised mice were cultured at 2.5x10
6
 

cells/ml in 24-well plates in the presence or absence of gliadin (100 μg/ml) or an 

equivalent amount of spore-adsorbed gliadin. After 72 h, supernatants were collected 

and analysed for IFN-γ and IL-10 protein levels by ELISA using commercial kits. 

Supernatants from co-cultures of DCs and CD4
+
T cells were similarly analysed. 

 

Statistical analysis 

Differences among the various experimental groups were determined by one-way 

ANOVA, followed by the Turkey test (for the spore adsorption test and co-culture 

experiments) or the Kruskal-Wallis non-parametric test and Dunn’s multiple 

comparison test for post-test analysis (for the in vivo analyses). P < 0.05 was selected 

to denote a significant difference. 
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Results 

Adsorption of gliadin to Bacillus subtilis spores 

A preliminary test was performed to identify the optimal binding buffer conditions to 

adsorb gliadin on spore surface, taking into account the known hydrophobicity of this 

protein. Previous study showed that soluble proteins were more efficiently adsorbed 

on the surface of Bacillus subtilis spores in phosphate buffer at pH 4.0 than at pH 7.0 

(7). We found that this condition were not suitable for gliadin, because there were 

protein precipitation. So we demonstrated that wheat gliadin was efficiently 

solubilised in 50 mM sodium acetate at pH 4 at a concentration of 625 μg/ml 

(adsorption solution). For adsorption reaction we used wt spores, CotH and CotE 

mutants spores at 2x10
9
 spores because our previous data indicated that an optimal 

nasal dosage in mice is 2x10
9
 spores/20 μl (22). Therefore 2x10

9
 wt or mutant spores 

were incubated in 200 μl adsorption solution for 1 h. 

To assess the amount of gliadin adsorbed on the spore surface, the adsorption mixture 

was centrifuged to separate spore-adsorbed gliadin from free gliadin. Then the pellet 

washed for several times to remove unbound gliadin. Finally two-fold serial dilutions 

of the pelleted fractions were dot blotted and probed with anti-gliadin antibody. 

The results showed that CotH, but not wt spores, bound gliadin (Figure 1). Gliadin 

was also similarly adsorbed by CotE spores and CotH spores (data not shown). 

Interestingly, autoclaved wt spores were more effective in adsorbing gliadin than 

untreated wt spores, but still less efficient than autoclaved mutant spores. By 
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densitometric analysis of dot blots (no densitometric software), we estimated that 

approximately 6, 10 and 24 ng gliadin/10
6
 spores were adsorbed on autoclaved wt, 

CotH and CotE spores, respectively. Only faint residual positivity was observed in 

washes, suggesting the absence of substantial gliadin leakage. This was a qualitative 

determination. 

 

Figure 1: Dot blot analysis of gliadin adsorption by B. subtilis spores. Serial dilutions of 

untreated or autoclaved wt and mutant (cotH and cotE) spores were analysed following the 

adsorption reaction with gliadin. 

 

To quantitatively asses spore-adsorbed gliadin, we determined the difference between 

the initial gliadin content and the residual gliadin in the adsorption solution following 
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the incubation step by Bradford Test. The results reported in Table 1 confirmed the 

better performance of autoclaved spores in terms of gliadin-binding activity. 

Interestingly, the gliadin content was higher than the content estimated by dot blot 

analysis for all spore types. Surprisingly, autoclaved wt spores showed the maximal 

binding capacity (41.1 ± 9.7 % for 2x10
9
), followed by CotH (28.0 ± 1.4 %) and 

CotE (25.0 ± 5.7 %) spores. 

 

Table 1: Percentage of adsorbed gliadin on wild type (wt) and mutant spores 

 

Together, these data suggest that gliadin molecules were not only bound on the 

external surface, but probably it was incorporated into a network created by spores. 
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The absolute values of the amount of gliadin adsorbed by the different tested spores 

are shown in Figure 2. 

Based on these results, autoclaved wt spores were used to analyse the induction of an 

immune response in DQ8-transgenic mice. 

 

 

Figure 2: Quantitative analysis of conjugated gliadin. The amount of gliadin (μg) adsorbed on 

2x10
9
 spores was calculated as the difference in the protein concentration of the adsorption solution 

before and after incubation. Light grey columns, represented wt spores; dark grey columns, cotH 

spores; black columns, cotE spores. The data represent the mean ± SD of three different 

experiments. *, P < 0.05. 
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In vitro analysis of immune response to gliadin 

To analyse immune response toward gliadin we firstly evaluated the influence of 

spores on gliadin processing by antigen-presenting cells (APCs) in vitro. Spore-

adsorbed gliadin and an equivalent amount of free gliadin were incubated with bone 

marrow-derived iDCs (DC:spore ratio: 1:30) from DQ8 mice for 1-18 h. Protein 

samples were then analysed by Western blotting using anti-gliadin mouse serum as a 

probe. Interestingly, uptake of spore-adsorbed gliadin occurred faster than for free 

gliadin, in fact positive signals were observed after 1 and 2 h, respectively (Figure 

3A). Also we observed that both signals disappeared after 4 h, suggesting similar 

kinetics of processing. 

Then in the next experiment we wanted to analyse interaction between DCs and T 

cells. Therefore antigen-pulsed mature DCs (mDCs) were incubated with autologous 

gliadin-specific CD4
+
T cells for 72 h. The results of this experiment shown that 

gliadin-pulsed mDCs stimulated higher levels of IFN-γ in CD4
+
T cells than did 

mDCs challenged with spore-adsorbed gliadin (Figure 3B). These data were expected 

considering that, on the latter mDCs, a reduced number of DQ8 molecules could 

present gliadin peptides, probably because of steric obstruction or masking of the 

binding sites. Also we demonstrated that gliadin-pulsed mDCs were able to stimulate 

CD4
+
T cells isolated from mice immunised with spore-adsorbed gliadin. Under the 

various examined experimental conditions there were not significant levels of IL-10 

(data not shown). 
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Figure 3: In vitro antigen processing of spore-adsorbed gliadin. A) Western blot analysis of 

antigen uptake and processing. iDCs were incubated with spores alone (lane a), gliadin (lane b) or 

spore adsorbed gliadin (lane c) at different times (from 0-18 h). 

B) In vitro analysis of the gliadin-specific CD4
+
T cell-mediated response. mDCs (2x10

5
 cells/well) 

that were not pulsed (black columns) or that were pulsed with gliadin (white columns) or spore-

adsorbed gliadin (grey columns) were incubated with CD4
+
T cells (5x10

5
 cells/well) isolated from 

DQ8 mice parenterally immunised with gliadin or spore adsorbed gliadin. IFN-γ levels secreted in 

the supernatant after 72 h of co-culture were detected by ELISA. The columns are the mean ± SD of 

duplicate analyses. The results are representative of three different experiments. **, P < 0.001. 
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In vivo analysis of immune response induced by gliadin adsorbed spores 

We previously reported that intranasal administration of gliadin in DQ8 mice was 

able to down-regulate the antigen-specific systemic response (13). Therefore we 

tested if intranasal administration of spore adsorbed gliadin similarly induced 

tolerance in mice systemically immunised with native gliadin. So mice received free 

gliadin or spore adsorbed gliadin before immunization. We observed that mice 

nasally treated with gliadin showed a significant increase in antigen-specific IL-10 

secretion at the systemic level, compatible with the activation of T regulatory cells 

(Figure 4 panel C). In contrast, spore adsorbed gliadin failed to induce a similar 

phenotypic change; in fact the IL-10 secretion decreased both at systemic level and in 

the intestinal compartment (Figure 4 panel C and D). These results suggested that 

adsorbed gliadin lost its intrinsic tolerogenic properties. 

Another important result was the capability of spore to vehiculate gliadin into the 

intestine by inducing an amplifying the IFN-γ production (Figure 4 panel B). 
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Figure 4: Effect of nasal administration of spore-adsorbed gliadin in immunised DQ8 mice. 
Analysis of cytokine pattern of spleen and MLN cells isolated from DQ8 mice i.n. treated with 

spore adsorbed gliadin (triangles), gliadin (squares) or water (circles) and immunised i.p. with 

wheat gliadin. The results represent one of three independent experiments, and the bars are the 

median values. There were 5-6 mice in each group. *, P < 0.05. 

 

Then we analysed whether spore-adsorbed gliadin was able to directly induce a T 

cell-mediated mucosal response. Mice were nasally or intragastric immunised with 

spore-adsorbed gliadin (2.0x10
9
 spores/dose) or were nasally immunized with free 

gliadin (40.0 μg/dose). The animals were dosed once per week for 7 weeks and 

sacrificed one week later, and their spleens and MLNs were analysed for gliadin-
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specific production of IFN-γ and IL-10 in vitro. Both spleen and MLN cells from 

mice immunised with spore-adsorbed gliadin secreted significantly higher IFN-γ 

levels than those from mice challenged with free gliadin (Figure 5). In contrast, IL-10 

was not significantly produced (data not shown). 

 

Figure 5: Induction of gliadin-specific cell immunity by nasal administration of spore-

adsorbed gliadin in DQ8 mice. DQ8 mice were intranasally immunised with spore-adsorbed 

gliadin (square) or an equivalent amount of gliadin (circles). Gliadin-specific IFN-γ levels are 

reported after subtracting the value in the absence of antigen. The results are representative of three 

different experiments. There were 4-5 in each group. The bars represent the median values. *P 

<0.05. 

 



 

 

47 

 

Furthermore, intragastrically administered gliadin adsorbed spores did not induce an 

immune response (Figure 6). So the nasal route represents in our hand the optimal 

way to immunize with antigen adsorbed spores. 
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Figure 6: Effect of intragastric administration of spore-adsorbed gliadin in DQ8 mice. DQ8 

mice were intragastrically immunized with spore-adsorbed gliadin for six weeks, one dose a week. 

Gliadin-specific IFN-γ levels are reported after subtracting the value in the absence of antigen.  
 

We further analysed the response to gliadin in the intestinal CD4
+
T cell sub-

population. As shown in Figure 7, spore-adsorbed gliadin induced an increased 

secretion of IFN-γ in CD4
+
T cells isolated from MLNs following in vitro stimulation 

with gliadin. IL-10 was not induced in gliadin-specific CD4
+
T cells, indicating that 
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nasal administration of spore-adsorbed gliadin promoted a Th1-biased immune 

response in the intestinal compartment of DQ8-transgenic mice. 

 

Figure 7: Characterization of the intestinal gliadin-specific response induced by nasal 

administration of spore-adsorbed gliadin in DQ8 mice. Mice were intranasally immunized. 

CD4
+
T cells were isolated from MLNs by immunomagnetic sorting and analysed in vitro for 

gliadin-specific IFN-γ (upper panel) and IL-10 secretions (bottom panel). The results are 

representative of three different experiments. The columns represent the mean + SD of triplicate 

cultures. **, P < 0.001. 
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Discussion and Conclusion 

Our results showed that gliadin-pulsed DCs stimulated gliadin adsorbed spores 

specific CD4
+
T cells to induce a Th1-biased antigen-specific intestinal response in 

DQ8 mice. 

An adaptive response to gliadin-derived peptides caused by activation of CD4
+
T 

cells, occurs in the lamina propria of the small intestinal mucosa (23). These cells 

also represent the main immunological target for tolerance strategies. The classical 

protocol of oral tolerance with native antigen is not applicable in CD because local 

administration of gliadin peptides could develop the risk of exacerbating the disease. 

So in this part of the study we wanted to use nasal delivery of spore-adsorbed gliadin 

for inducing an antigen specific intestinal response to verify the ability of Bacillus 

subtilis spores to act as a mucosal adjuvant and antigen vehicle. Recently, a non-

recombinant approach has been proposed based on non-covalent antigen adsorption, 

which involves electrostatic and hydrophobic forces that are not yet fully 

characterised (9). Acidic pH and antigen solubility (8) appear to play major roles in 

this mechanism. For these reasons, the use of hydrophobic antigenic molecules such 

as wheat gliadin carries the risk of stochastic aggregation, with unpredictable 

biological outcomes. So we tested the optimal binding buffer. 

Moreover, to maximise the adsorbed gliadin molecules:spore ratio, we tested wt 

Bacillus subtilis and two mutant strains to identify which spores showed the highest 
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binding efficiency for gliadin. CotH and CotE belong to a small subset of coat 

proteins that play a regulatory role in the formation of the spore coat.  

Dot blot experiments clearly indicated that surface binding of gliadin essentially 

occurred when mutant spores were used. In addition to differences in coat 

architecture, Bacillus subtilis wt spores are known to be negatively charged in water, 

whereas both CotH and CotE mutant spores are not or are less charged (8, 24). 

Whether structural and/or chemical peculiarities are involved in determining the 

adsorption properties of spores remains to be fully addressed but an important result 

was that binding efficiency increased following drastic physical treatment via 

autoclaving. The treatment was particularly effective for wt spores. Furthermore, 

gliadin adsorption occurred at an acidic pH, a condition in which the number of 

negative surface charges is further reduced. Taken together, these data suggest a 

prevalent role of the structural features of spores in determining the loading capacity 

for gliadin. 

Notably, comparison between dot blot and spectrophotometric protein analysis 

clearly indicated that the amount of bound gliadin was higher than shown by dot blot 

data. Therefore we suggest that most gliadin avoided from antibody recognition, 

probably because it was incorporated inside structural niches of spores.  

Another important result was the high stability of gliadin-spore interactions. Based on 

the biochemical results, autoclaved wt spores were chosen for subsequent 

immunological studies.  
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Next, we studied spore-adsorbed gliadin processing by DCs in vitro. We initially 

analysed gliadin uptake in iDCs by Western blotting. Interestingly, we found that 

spore-adsorbed gliadin was incorporated more rapidly than free gliadin was, 

suggesting that antigen uptake occurred through different mechanisms. Whereas 

endocytosis of free gliadin is receptor mediated, the spore-adsorbed gliadin 

presumably was internalised by phagocytosis (25), but independently of the specific 

routing, both antigens were degraded at same time. In fact, we observed that spore-

adsorbed gliadin and free gliadin were processed by DCs with similar kinetics. 

Notably, by using mDCs as APCs, we found that gliadin-pulsed mDCs stimulated not 

only gliadin-specific CD4
+
T cells but also CD4

+
T cells isolated from mice 

immunised with spore-adsorbed gliadin. 

Together, the biochemical and immunological data indicated that gliadin bound to 

spores was correctly processed and was able to induce a T cell-mediated response 

with the same phenotype. 

These results encouraged the study of the immunological properties of spore-bound 

gliadin in vivo. We initially tested the potential of this antigen to modulate the 

ongoing intestinal response to wheat gliadin. We used previously established protocol 

of nasal administration (13) and we have shown that spore-adsorbed gliadin were 

unable to induce down-regulation of immune response, but this antigen administered 

in multiple doses activated a Th1- intestinal response towards gliadin. 
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In conclusion, we demonstrated that nasal delivery of a spore-adsorbed food protein 

can induce an antigen-specific cell-mediated response. In particular, spore-adsorbed 

gliadin was able to induce an intestinal CD4
+
T cell response. Further studies are 

required to better characterise the phenotype of the induced response and, more 

particularly, to develop an immunomodulatory strategy based on nasal delivery of a 

spore-adsorbed protein with tolerogenic properties.  
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Chapter 3 

Biochemical characterization of transamidated gliadin 
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Introduction 

As described in Chapter 2 we demonstrated that nasal delivery of a spore-adsorbed 

food protein can induce an antigen-specific cell-mediated response. Next, we planned 

to bind a protein with immunomodulatory activity to spores. Firstly we focused our 

attention on transamidated gliadin because it has been shown to cause a dramatic 

down-regulation in IFNγ production in vitro in the intestinal T cells of CD patients 

(1). 

In the small intestine of CD patients, specific glutamine residues are converted to 

glutamic acid by tissue transglutaminase (tTGase); this post-translational 

modification plays a major role in intestinal T cell activation. Tissue transglutaminase 

(TG2) modifies proteins and peptides by transamidation or deamidation of specific 

glutamine residues. During transamidation reaction, an acyl residue, derived from the 

γ-carboxamide group of a peptide-bound glutamine (acyl donor), is transferred to an 

appropriate primary amine, most commonly the ε-amino group of lysine residues 

(acyl acceptor). In the first step, the side chain of a glutamine residue forms a 

thioester with the active site cysteine, and ammonia is released (acylation). In the 

following transamidation step, the activated acyl group is transferred to the acyl 

acceptor amine, forming an isopeptide bond (deacylation). Alternatively, hydrolysis 

of the thioester bond leads to deamidation, converting the glutamine into a glutamic 

acid residue (2). The transamidation, using food-grade microbial transglutaminase 

(mTGase), masks glutamine residues of gliadin causing a down-regulation of immune 
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response and a positive changes in the phenotype of the antigen-specific immune 

response in models of gluten sensitivity (3). 

Interestingly, mTGase was shown to exhibit a similar site specificity as tTGase on 

synthetic peptides, but lacked deamidase activity (1). Therefore in this study, we 

examined the biochemical features of gluten following the two-step transamidation 

reaction of wheat flour. 

This enzymatic treatment was associated with a progressive production of new forms 

of gliadins with higher molecular weights that became soluble in water. We 

confirmed that transamidation reactions performed on wheat flour could successfully 

prevent the formation of immunodominant gluten peptides. Furthermore, we 

evidenced for the first time the ability of mTGase to inhibit the activity of the 

celiacogenic p31–49 in Caco-2 cells. 
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Materials and Methods  

Transamidation reaction of wheat flour  

A commercial preparation of bread wheat flour was used. A total of 100 g of flour 

was suspended in 8 volumes of 0.4 M NaCl and stirred for 10 min to extract 

albumin/globulins. The flour suspension was then centrifuged at 1000 g for 10 min, 

and the supernatant was discarded. The recovered pellet was exhaustively washed 

with water to eliminate any residual soluble protein, suspended in 1 volume of water 

containing 20 mM pharmaceutical grade lysine ethyl ester (K-C2H5; NutraBio.com, 

Middlesex, NJ, USA) and 8 U/g flour mTGase (ACTIVA®WM, specific activity: 81-

135 U/g, Ajinomoto Foods Hamburg, Germany), and incubated for 2 hrs at 30°C. 

The suspension was then centrifuged at 3000 g for 10 min, and the soluble protein 

fraction (spf) was recovered in the supernatant. In the two-step process, the pellet was 

suspended again in 1 volume of water containing a final concentration of 20 mM K-

C2H5 and fresh mTGase (8 U/g flour) and incubated for 3 hrs at 30°C. For the 

control, the sample was prepared using the same protocol in the absence of mTGase.  

 

Purification of protein fractions  

Gliadin was extracted from wheat flour by a modified Osborne protocol (4). Briefly 

wheat flour was resuspended in 0.4 M NaCl and was centrifuged at 1000 rpm for 10 

min. Then the pellet was washed for several times and gliadin was extracted in 70% 

ethanol. The supernatant, which contained gliadin, was recovered and freeze-dried. 
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Protein content was measured by Bradford analysis (5) and qualitatively analyzed by 

8-16 % denaturing SDS-PAGE and Coomassie R-250 blue staining. 

Gliadin stock solution was prepared by suspending 10 mg gliadin in 50 mM acetic 

acid. 

 

Peptide synthesis and transamidation reaction 

Peptide p31–49 was synthesized by GeneCust Europe Laboratoire de Biotechnologie 

du Luxembourg S.A (Dudelange, Luxembourg). Purity (N95%) was assessed by the 

manufacturer by means of RP-HPLC and mass spectrometric analyses. 

Transamidation reaction of the peptide was carried out in 25 mM ammonium 

bicarbonate (pH 8.3) containing 20 mM K-C2H5 and 0.015 U/10 μg peptide mTGase 

at 37 °C for 30 min. 

 

Western blotting 

Equivalent protein aliquots (50 μg) were fractionated by 15% denaturing SDS-PAGE, 

blotted onto ImmobilonTM PVDF membranes (Millipore SpA, Vimodrone-MI, Italy) 

and probed with in-house produced mouse anti-sera toward native gliadins (1:10,000 

dilution), transamidated gliadins (K-gliadins; 1:10,000 dilution) or spf (1:10,000 

dilution). After washing, the membranes were incubated with biotinylated 

streptavidin-peroxidase-conjugated antibodies against mouse IgGs (Dako SpA, 

Milano, Italy, 1:5,000 dilution). Finally, immunodetection was performed using 
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Hyperfilm and ECL reagents (Amersham-GE Healthcare Europe GmbH, Glattbrugg, 

Switzerland). 

 

Chymotryptic digestion of native gliadin, spf and transamidated gliadins  

Enzymatic digestion was performed in 50 mM Tris-HCl (pH 8.5), at 37°C for 4 hrs 

using an enzyme to substrate ratio of 1:50 w/w. 

 

Cell culture and in vitro experiments 

Caco-2 cells obtained from the American Type Culture Collection (ATCC, 

Gaithersburg, MD, USA) were used for experiments between passages 16 and 35. 

Cells were cultivated in DMEM (GIBCO—Life Technologies, Grand Island, NY, 

USA) containing 10% FCS (GIBCO), 100 units/mL penicillin–streptomycin 

(GIBCO) and 1 mM glutamine at 37 °C in a humidified 5% CO2 atmosphere. For the 

experiments, the cells were seeded at a density of 30 × 10
4
/cm

2
 and used on the third 

day post-confluence. 
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Analysis of tTGase transamidating activity 

Caco-2 cells were incubated for 90 min with 0.5 μM EZ-Link Pentylamine-Biotin 

(ThermoFisher Scientific, Erembodegem, Belgium) and treated for the last 60 min 

with either native or transamidated peptide p31–49 (25–100 μg/mL). The positive 

control was cells treated with 10 μM ionomycin (Sigma-Aldrich, St. Louis, MO, 

USA). After incubation cells were lysed and protein aliquots (100 μg) were coated 

into the wells of a 96-well plate. The wells were blocked with 10% bovine serum 

albumin, then incubated with peroxidase-conjugated streptavidin (1:3000 dilution, 

BioLegend, London, UK) in 5% bovine serum albumin. To reveal peroxidase 

activity, 3,3′,5,5′-tetramethylbenzidine (Sigma-Aldrich) was added to each well and, 

after stopping the reaction with H2SO4, absorbance was read at 450 nm. Data were 

evaluated by one-way analysis of variance (ANOVA) and Tukey test post-hoc 

analysis. P <0.05 was selected as the level denoting a statistically significant 

difference. Proteins from cell lysates were also analysed to SDS-PAGE, blotted onto 

Immobilon™ PVDF membranes, probed with peroxidase-conjugated streptavidin and 

visualized by ECL reagents. 

 

Analysis of tTGase protein expression 

Caco-2 cells were incubated for 48 h with either native or transamidated peptide p31–

49 (25–100 μg/mL). Equivalent protein aliquots were fractionated by 12% SDS-

PAGE, blotted onto Immobilon™ PVDFmembranes (Millipore) and probed with 
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anti-tTGase monoclonal antibody (TG II, clone CUB7402, Lab Vision Corporation, 

Fremont, CA, USA) followed by incubation with secondary anti-mouse antibodies 

conjugated with peroxidase (Sigma-Aldrich). Finally, immunodetection was 

performed using Hyperfilm and ECL reagents (Amersham). Blotted membranes were 

subsequently stained with Coomassie blue R-250 as loading control. 

 

Results  

Different solubilization of gluten components following transamidation of wheat 

flour 

During the transamidation process the production of isopeptide bonds by catalytic 

activity of mTGase dramatically decreased the gliadin content of wheat flour to 17.4 

+ 0.7% (mean + SD; Table 1), in agreement with previous results (3). Interestingly, 

glutenins were also partially recovered following transamidation treatment (47.4 + 

2.5%, Table 1). The residual insoluble gliadins and glutenins were further reduced to 

7.6 + 0.5% and 7.5 + 0.3%, respectively, after a second transamidation step (Figure 

1A, upper panel). In particular, gliadin content essentially decreased to 40% during 

the first enzyme step, whereas glutenins resulted more markedly reduced during the 

second transamidation step. In line with these results, the water-soluble protein 

fraction (spf) increased during the first enzyme step and peaked at the end of this step 

(Figure 1A, lower panel). To identify molecular changes produced in the residual 

alcohol-soluble fraction (gliadins) during the transamidation reaction, protein aliquots 
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were collected at different times of transamidation process and analyzed by SDS-

PAGE. An interesting result was distinct bands in the 29-45 kDa mw range, that 

characterize native gliadins. This native gliadin decreased during the two-step 

reaction, substituted by a protein with high molecular weight, in fact we observed a 

transient appearance of new components having a MW>200 kDa (Figure 1B). 
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Figure 1: Biochemical and physical modifications of gliadins and glutenins after 

transamidation. A, Upper panel, percentage of residual insoluble prolamins at different times of a 

two-step transamidation reaction; lower panel, relative soluble protein fraction (spf) yield 

expressed in mg protein/g flour; the dotted line identifies the two enzymatic steps. B, SDS-PAGE 

analysis of proteins isolated from flour after removal of the albumin/globulin fraction and at 

different times of a two-step enzymatic reaction. Molecular weights of protein markers are indicated 

(kDa). 
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Immune cross-reactivity of different gliadin forms after flour transamidation 

To analyze transamidation products and establish the relationship among gliadins, spf 

and new hmw alcohol-soluble components, we produced mouse anti-sera toward spf 

and transamidated insoluble gliadins (K-gliadins). Then we examined cross-reactivity 

among different forms. Western blot analysis performed by probing protein samples 

with an anti-native gliadin antiserum confirmed the loss of immune cross-reactivity in 

K-gliadins and spf, in agreement with previous findings (4) (Figure 2A). On the 

contrary, anti-K-gliadins antibodies identified epitopes in all examined samples. 

These findings confirmed the presence of native gliadin-specific determinants in K-

gliadins. (Figure 2B). Adsorption of serum with native gliadins caused a strongly 

reduced reactivity with native gliadin in all samples but, interestingly, pre-treated 

serum still recognized high molecular weight (hmw) bands suggesting that this new 

epitopes were generated following transamidation of gliadin with K-C2H5 (Figure 

2C). Probing with anti-spf serum also showed cross-reactivity of spf with native 

gliadins. Interestingly, this antiserum weakly cross-reacted with proteins in K-

gliadins of similar hmw (Figure 2D). Coomassie blue staining of electrophoresed 

proteins confirmed that Western blot results were not due to differences in protein 

content (Figure 2E). 
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Figure 2: Cross-reactivity of different transamidated form. 

A-D Western Blot of different forms of transamidated gliadin, probing with anti-native gliadin A; B 

anti K gliadin untreated serum; C anti K gliadin preadsorbed with native gliadin; D anti-spf. E 

SDS-PAGE of different amount of native gliadin, spf and K-gliadin. 

 



 

 

67 

 

We found that this feature was not a technical artifact, as it was confirmed by using 

two different preparations of immunogens and anti-sera (Figure 3A). 

Next, we examined the kinetic of transamidation process by probing with anti-K-

gliadins antibodies. Results reported in Figure 3B showed the appearance of hmw 

proteins after only 0.5 hrs of treatment. In agreement with data reported in Figure 1B, 

positive staining of hmw bands in the alcohol-soluble fraction was short-lived and 

there was a progressive reduction of cross-reacting proteins in the 45-29 kDa mw 

range. 
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Figure 3: Cross-reactivity of transamidated gliadin forms. A, Western blot analysis of high 

molecular weight (hmw) components in spf and K-gliadin fractions by comparing two different 

preparations of anti-spf serum. B, Western blot analysis of proteins isolated from 
flour at different times of a two-step enzymatic reaction and probed with anti-K-gliadin antiserum. 

 

Transamidation modified gliadin activity 

Mass spectrometric analysis of native gliadin digest identified four known 

celiacogenic peptides, α-gliadin p56–68 (6), α-glia-33-mer (7), peptide #19(8), and α-

gliadin p31–49, which contained peptide fragment p31-43 known to induce intestinal 

damage into CD patients (9). 
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Analysis of transamidation reaction mixture by MALDI–TOF-MS clearly indicated 

that celiacogenic peptide, p31–49 was modified by the addition of one K-C2H5 

moiety and this modified form accounted for more than 90% (data not shown). 

To specifically evaluate the biological effects of transamidation products we analyzed 

α-gliadin p31–49, using a synthetic peptide p31–49. 

It was previously shown that Ca
2+

 mobilization induced by gliadin peptide p31–43 

activated the crosslinking function of intracellular tTGase in Caco-2 cells. Therefore, 

we tested the ability of p31–49 to activate tTGase in this cell line and how this 

activity was modified on transamidation. We used pentylamine-biotin as tTGase 

substrate and quantify the intracellular transamidating activity in Caco-2 cells by a 

microplate assay on cell homogenates obtained after incubation with different 

amounts of p31–49. As previously reported for p31–43 (10), we found that tTGase 

activity was higher in p31–49-treated cells than in cells exposed to pentylamine-

biotin alone (Figure 6A), in particular at a dose of 25 μg/mL. Interestingly, in cells 

treated with transamidated p31–49 there was not increase of tTGase activity. Also 

protein aliquots were fractionated by SDS-PAGE, blotted and probed with 

peroxidase-conjugated streptavidin. Results showed a 78 kDa band, presumably 

tTGase, that resulted stronger in samples incubated with native p31–49 than in those 

treated with transamidated peptide at the doses of 25 and 50 μg/mL (Figure 6B). 

Finally, we evaluated the effect of modified p31–49 on tTGase expression in Caco-2 

cells. Western blot analysis of different amounts (1–10 μg) of lysates from cells 
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incubated with 25 μg/mL native/transamidated p31–49 indicated that there was not 

differences in tTGase expression into examined samples (Figure 6C). 
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Figure 6: Biological activity of peptide p31–49 and its transamidated form in Caco-2 cells. A, 

Quantification of tTGase activity from lysates of Caco-2 cells incubated with 25–100 μg/mL native 

or transamidated p31–43 in the presence of pentylamine-biotin. Values are the means ± SD of at 

least 3 independent experiments performed in duplicate;* P <0.05. B, tTGase activity of protein 

fractions from Caco-2 cells incubated with 25 and 50 μg/mL peptide and analyzed following SDS-

PAGE and blotting by using peroxidase-streptavidin as probe and ECL detection (upper); post-

Coomassie staining of the blotted membrane (bottom), C, Western blot analysis of different protein 

fractions from Caco-2 cells incubated with 25 μg/mL peptide using an anti-tTGase monoclonal 

antibody as probe. K-p31–49: transamidated p31–49. 



 

 

72 

 

Discussion and Conclusion 

In this part of the thesis we studied transamidation reaction and characterized 

transamidated products to identify their immunological property. We showed that the 

two-step transamidation reaction of wheat flour with lysine ethyl ester produced 

water-soluble gluten and modified immunogenic and not immunogenic epitopes of 

gliadins. 

Gluten proteins are divided into two classes based on their solubility in alcohol–water 

solutions: gliadins (soluble) and glutenins (insoluble). 

In this study firstly we found that the solubility of both gliadins and glutenins was 

drastically changed following mTGase treatment of wheat flour in the presence of K-

C2H5. Also during transamidation step there was different yields of solubilized 

gliadins and glutenins. 

More specifically, we found that in the first step of transamidation was produced the 

soluble protein fraction (spf) which resulted mainly enriched in gliadins, indicating 

that these prolamins represent a favorite substrate for mTGase. 

We reported that hmw forms (>200 kDa) were transiently produced in the residual 

insoluble gliadins during the enzymatic treatment. In parallel, we observed a decrease 

of 29–45 kDa gliadins. The appearance of hmw forms was confirmed by Western 

blot analysis and indicated the formation of neo-epitopes following transamidation in 

both K-gliadins and spf. 
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Interestingly, these experiments also revealed traces of hmw spf forms in the alcohol-

soluble fraction, further indicating that they are mainly formed by gliadin monomers 

and K-C2H5, though the contribution of glutenins cannot be completely excluded. 

In this study we found that gliadin peptides containing immunogenic epitopes were 

completely modified by the transamidation reaction. mTGase modified the same 

glutamine residues that are involved into celiacogenic epitopes. 

Taken together, biochemical and structural data pointed out the existence of a mixed 

population of transamidated gliadins that included partially transamidated gliadins 

showing the classical mw range; discrete hmw gliadins, fully transamidated, that 

progressively acquired water-solubility. Interestingly, the transamidated forms were 

characterized by a complete loss of immune cross-reactivity toward anti native 

gliadin antibodies. So the transamidation of wheat flour in the presence of K-C2H5 

causes effective epitope masking of gliadin. 

To demonstrate that transamidation reaction mediated by mTGase modified gliadin 

activity we used a syntetic celiacogenic peptides p31–49. 

It is known that p31–43 induced interleukin (IL)-15 secretion in enterocytes which 

caused the disappearance of the villi in CD. Subsequent studies showed that p31–43 

altered the trafficking of vesicular compartments in the intestinal Caco-2 cell and 

induced cell proliferation and crypts hyperplasia in CD (11). More recently, gliadin 

peptide p31–43 was reported to induce tTGase activation in Caco-2 cells thought 
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Ca
2+

 release (10). This activation could contribute to the inflammatory response in 

CD.  

Our data indicated that p31–49, like p31–43, increased the intracellular specific 

activity of tTGase in Caco-2 cells. Importantly, transamidated p31–49 was unable to 

induce a similar activity, probably it was unable to evoke an increase of Ca
2+

 in the 

cytosol. 

In summary, the detoxification protocol of wheat flour based on the use of food-grade 

mTGase and K-C2H5 largely produced fully transamidated water-soluble gliadins that 

lost their bio-immune activity. 
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Characterization of immunomodulatory molecules and 

their adsorption on Bacillus subtilis spores 
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Introduction 

As described in the Chapter 1 only gluten free diet alleviates the symptoms of CD 

and normalizes antibody levels and the intestinal mucosa (1). On the other hand, the 

research of alternative therapeutic approaches is very active. In particular, we focused 

our attention on possible immunomodulatory strategies based on the use of modified 

gliadin by food-grade microbial transglutaminase (mTGase), which caused positive 

change of immune response. 

Recently, as described in Chapter 3 we characterized the products of a two-step 

transamidation process and demonstrated that this enzymatic treatment prevents the 

formation of immunodominant gluten peptides (2). 

Therefore in this part of the study we wanted to immunologically characterize 

modified gliadin to identify a specific components  responsible of 

immunomodulatory properties. Firstly, we characterized soluble transamidated 

gliadin (spf) and used its to induce an immune response into DQ8 mice to verify the 

phenotype of immune response. Then, we compared responses of native and modified 

gliadin and concluded that spf induced a phenotypic shift of the immune response. 

Another molecule with previously characterized beneficial property in celiac disease 

was conjugated linoleic acid (CLA). In particular, it CLA caused a decrease of 

gliadin toxicity and had a protective effect against oxidative stress induced by gliadin 

(3).Therefore, in the second part of the study we adsorbed spf and CLA on spores 

surface to evaluate the effectiveness of these tools as immunomodulatory strategies. 
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Materials and Methods 

Gliadin preparation and transamidation reaction 

Native and modified gliadin were extracted from wheat flour by a modified Osborne 

protocol (4). In briefly, a total of 100 g of flour was suspended in 8 volumes of 0.4 M 

NaCl and stirred for 10 min to extract albumin/globulins. The flour suspension was 

then centrifuged at 1000 g for 10 min, and the supernatant was discarded. Then, the 

pellet was washed several times to remove any residual soluble protein. To obtained 

modified gliadin the pellet was suspended in a solution containing 20 mM 

pharmaceutical grade lysine ethyl ester (K-C2H5; NutraBio.com, Middlesex, NJ, 

USA) and 8 U/g flour mTGase (ACTIVA®WM, specific activity: 81-135 U/g, 

Ajinomoto Foods Hamburg, Germany), and incubated for 2 hrs at 30°C. The 

suspension was then centrifuged at 3,000 g for 10 min, and the soluble protein 

fraction (spf) was recovered in the supernatant. Protein content was measured by 

Bradford analysis (5). 

Gliadin and Spf stock solution were prepared by suspending 10 mg protein in 50 mM 

acetic acid. 

 

Reverse Phase Cromatography (RP-HPLC) 

The components of native gliadin and soluble transamidated gliadin were separated 

by micro-RP-HPLC (column μRPC C2/C18 PC 3.2/3, SMART, Pharmacia). 2,5 mg 

of native gliadin was suspended in 1 ml of 10% buffer B according Wieser et al 1994 



 

 

79 

 

(6) while 2,5 mg of soluble transamidated gliadin (spf) was suspended in 1ml buffer 

A. The elution system were: (A) water with 0.1% trifluoric acid and (B) acetonitrile 

(90% v/v), water (10%), 0.1% trifluoric acid. Elution was performed by a linear 

gradient from 25 to 80% solvent B at a flow rate 100 μl/min and monitored at 280nm. 

The eluates were collected in fractions that were dried in a Speed-Vac centrifuge 

(Savant instruments, Inc. Farmingdale, NY, USA), lyophilized and stored at -20°C. 

The amount of protein in each fraction was determined by Bradford Test (5). The spf 

fractions were analysed by 12.5% SDS-PAGE (7).  
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Immunization Protocol 

Transgenic mice expressing the HLA-DQ8 molecule were maintained in pathogen-

free conditions at our animal facility (Accreditation No. DM.161/99). DQ8 mice 

maintained for several generations on a gluten free diet and used at the age of 6-12 

wk. These experiments were approved by the National Institutional Review 

Committee and performed in accordance with European regulations (EU Directive 

2010/63/EU). In immunization experiments, mice were injected intraperitoneally 

(i.p.) with gliadin or spf (100 μg) emulsified with FCA (day 0) or IFA (days 7 and 

14). Mice were sacrificed on day 21 to collect spleens. 

 

Isolation of T cells from spleen of DQ8 mice 

Spleens were passed through a 40 μm cell strainer (Falcon, BD BIOSCIENCES, 

Erembodegem, Belgium) to separate cells. The splenic suspension was further treated 

with Tris-buffered ammonium chloride solution to remove erythrocytes. Then CD4
+
T 

cells from spleens of immunized mice were separated by using the CD4
+
T Cell 

Isolation Kit (Miltenyi Biotec Srl, Calderara di Reno-BO, Italy). Finally, CD4
+
T cells 

aliquots (5x10
5
) were added to plates with mature dendritic cells (mDCs).  
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DCs and CD4
+
T cells co-cultures 

Immature dendritic cells (iDCs) were purified by bone-marrow of femurs and tibiae 

of naïve DQ8 mice according with a published protocol (8). On day 8 non-adherent 

DCs were harvested by gentle pipetting and were placed in 48-well plates (2.5 x 10
5
 

cells/well), incubated with gliadin or protein fractions of gliadin (28 μg/ml); spf or 

protein fractions of spf (50 μg/ml) for 18 h and finally pulsed with LPS for 4 h to 

stimulate maturation of DCs. After 5x10
5 

 CD4
+
 T cells were added to mDCs and co-

cultures for 72 h. Supernatants were collected and analyzed for IFN-γ and IL-10 

protein levels by ELISA using commercial kits. 

 

Binding assay 

In total, 2x10
9
 spores were incubated with 125 μg spf from the stock solution in 200 

μl of 50 mM sodium acetate, pH 4.0 (adsorption solution), for 1 h at RT by 

continuous shaking (9). The spores were centrifuged at 13000 g for 10 min and 

washed three times to remove unbound spf. Also 2x10
9
 spores were incubated with 

different concentration (90 μg; 47μg and 19 μg) of conjugated linoleic acid (CLA), 

isomers’s mixture (Tonalin TG80; Cognis) in the same buffer used for spf. The 

amount of CLA bound to spores was determined by measuring absorbance at 236 nm 

(max absorbance value for CLA) (10). 

Spf adsorption was evaluated by dot blot and Bradford analyses (5). The dot blot 

analysis was performed as previously described (11). The membrane was probed with 
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an in-house-produced mouse polyclonal antibody against spf (1:5000 dilution) and 

then with biotinylated streptavidin peroxidase-conjugated anti-mouse IgGs (1:10000 

dilution; Dako SpA, Milano, Italy). Immunodetection was performed using ECL 

reagent (Amersham-GE Healthcare Europe GmbH, Glattbrugg, Switzerland) and a 

ChemiDoc XRS system (Bio-Rad Laboratories, Hercules, CA). 

The amount of spf or CLA adsorbed spores was calculated as the difference in the 

protein content or fatty acid content of the adsorption solution before and after 

incubation. 

 

Statistical analysis 

To determine statistically significant differences among the various experimental 

groups were used one-way ANOVA. P < 0.05 was selected to denote a significant 

difference. 
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Results 

Analysis of immune response induced by native gliadin and transamidated 

gliadin (spf) 

In the first experiment mDCs were pulsed with gliadin or spf and then were co-

cultured with gliadin or spf specific CD4
+
T cells. We observed that only gliadin-

pulsed mDCs, as previously described, induced production of IFN-γ in gliadin 

CD4
+
T cells (Figure 1 panel A). Interestingly, we showed that spf specific CD4

+
T 

cells also recognized gliadin (Figure 1 panel C) but they induced an increase of 

gliadin-specific IL-10 production. Also, spf specific CD4
+
T cells produced IL-10 

when DCs was pulsed with spf (Figure 1 panel D). 
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Figure 1: In vitro analysis of the gliadin or spf-specific CD4
+
T cell mediated response. mDCs 

(2x10
5
 cells/well) that were not pulsed (diamond) or that were pulsed with gliadin (square) or spf 

(triangle) were incubated with CD4
+
T cells (5x10

5
 cells/well) isolated from DQ8 mice parenterally 

immunised with gliadin or spf. 
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Isolation of gliadin and spf fractions 

The different components of gliadin and spf were separated by RP-HPLC. We 

observed that in the elution profile of gliadin there were seven majority peaks that 

were separately collected (Figure 2A). Interestingly, in the elution profile of spf there 

were only three different majority peaks (Figure 2B) that were analysed by SDS-

PAGE. Electrophoresis analysis of spf fractions showed that the each fraction was 

characterized by discrete protein bands with different migration rates (Figure 2B). 

 

 

Figure 2: Reverse-Phase Chromatography. Purification of gliadin and spf by Reverse-Phase 

Chromatography with SMART System. A) Gliadin chromatogram at 280 nm. B) Spf chromatogram 

at 280 nm and SDS-PAGE of three protein fragments identified. 
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In vitro analysis of immune response to different gliadin fractions 

In the next experiment we incubated iDCs with different fractions of gliadin and then 

pulsed with LPS to induce their maturation (mDCs). mDCs were incubated with 

autologous gliadin- or spf-specific CD4
+
T cells for 72 h. To evaluate the phenotype 

of the induced immune response we assessed the secretion of IL-10 and IFN-γ in the 

supernatant and expressed these values as IL-10/IFN-γ ratio. We observed that all 

gliadin fractions stimulated higher production of IFN-γ and a lower production of IL-

10 in gliadin-specific CD4
+
T cells (Figure 3 left panel). Interestingly, we showed that 

these fractions induced an increase of IL-10 production in spf-specific CD4
+
T cells, 

as a higher IL-10/IFN-γ ratio was reported. In particular, we identified fractions 3 and 

4 as components that significantly increased this ratio in comparison with the other 

fractions and the same whole gliadin (Figure 3 right panel). 
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Figure 3: In vitro analysis of gliadin fraction immune response. mDCs (2x10
5
 cells/well) that 

were pulsed with gliadin or its fractions were incubated with CD4
+
T cells (5x10

5
 cells/well) isolated 

from DQ8 mice parenterally immunised with gliadin or spf. We calculated IL10/IFN-γ to define 

phenotypic of immune response. The results represent one of three independent experiments, and 

the bars are the median values. There were 5-6 mice in each group. *, P < 0.05. 

 

Next, mDCs pulsed with the different spf fractions were incubated with autologous 

spf-specific CD4
+
T cells. We observed that IL-10 production in spf-specific CD4

+
T 

cell was mainly related to the components in fraction 3 of spf (Figure 4). 
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Figure 4: In vitro analysis of spf peptide fragments’s immune response. mDCs (2x10
5
 

cells/well) that were pulsed with spf or its fractions were incubated with CD4
+
T cells (5x10

5
 

cells/well) isolated from DQ8 mice parenterally immunised with spf. The columns are the mean ± 

SD of duplicate analyses. 

 

Adsorption of spf on Bacillus subtilis spores 

As previously described, gliadin was adsorbed to Bacillus subtilis spores in a 50 mM 

sodium acetate pH 4. Accordingly, we used the same conditions to adsorb spf to 

spores. We tested different strains of spores: autoclaved wt, autoclaved or not CotH 

and autoclaved or not CotE. To verify binding efficiency we did a dot blot analysis 

using two strains wt and CotH and we observed that mutant CotH bound spf with 

major efficiency. Also in this case we observed that the adsorption was stable (Figure 

5). 
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Figure 5: Dot Blot analysis of spf adsorbed spores. Serial dilutions of untreated wt and CotH 

spores were analyzed following the adsorption reaction of spf’s different amount (10μg, 25μg and 

50μg). 

 

Then, to determine the amount of spf adsorbed spores we did Bradford test and we 

showed that CotE, autoclaved or not, bound the highest amount of proteins (Figure 

6). 
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Figure 6: Quantitative analysis of spf adsorbed spores. The amount of spf (μg) adsorbed on 

2x10
9
 spores was calculated as the difference in the protein concentration of the adsorption solution 

before and after incubation. The data represent the mean ± SD of three different experiments. 
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The exact amounts of spf adsorbed spores were reported in Table 1. 

 

Table 1: Percentage of spf adsorbed on wt and mutant spores 

 

Adsorption of CLA on Bacillus subtilis spores 

As described previously, for adsorption reaction 2*10
9
 spores were used in 50 mM 

sodium acetate pH 4. The strain used for this reaction was mutant CotE and we tested 

different concentration of CLA isomers’s mixture. We showed that CLA isomers 

bound spores with high efficiency when the concentration of fatty acid in the 

adsorption buffer decreases (Figure 7 left panel). In fact we observed about 100% 

adsorption by incubating 19 μg of CLA isomers with spores (Figure 7 right panel). 

Also, we demonstrated that the adsorption of CLA to spores was stable. 
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Figure 7: Quantitative analysis of CLA adsorbed spores. Percentage of adsorbed CLA (Left 

panel) or μg CLA (right panel). The amount of CLA adsorbed on 2*10
9 

spores was calculated as the 

differences of fatty acid content between before and after incubation.  
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Discussion and Conclusion 

In this study we shown that spf specific CD4
+
T cells were able to induce a 

phenotypic shift of gliadin dependent immune response. In a previous study it has 

been demonstrated that when spleen cells, isolated from immunized mice, were 

challenged with spf there was a down-regulation of gliadin specific immune response 

(12). So, we further characterized spf and used this protein to induce a regulatory 

response into DQ8 mice. 

Firstly we confirmed that in vitro challenge with spf induced a down regulation of the 

gliadin specific CD4
+
T cells response. Interestingly, we demonstrated that spf 

specific CD4
+
T cells recognized also native gliadin. So we confirmed that spf derived 

from modification of native gliadin still harboring gliadin T cell epitopes. Also, we 

showed that spf specific CD4
+
T cells induced an increase of IL-10 produced by 

native gliadin. Another interesting data was the ability of spf specific CD4
+
T cells to 

induce an IL-10 dependent immune response. Notably, the IL10/IFN-γ ratio 

confirmed that spf induced a regulative response and we showed that fraction 3, 

separated by reverse phase chromatography, gave a major contribution to this 

production. So, we concluded that spf was an important molecule with a potential 

immunomodulatory activity, able to down-regulate the inflammatory response. 

Then, we analysed the immune response of seven different gliadin protein fractions 

separated by reverse phase chromatography. We observed that all protein fractions 

stimulated gliadin specific CD4
+
T cells to produce high level of IFN-γ but, 
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interestingly, when gliadin fraction- pulsed mDCs interacted with spf specific CD4
+
T 

cells, there was an increase of IL-10 production. Also interestingly two fraction 

significantly induced a phenotype shift toward a regulative response. So, we have 

further confirmed the immunomodulatory ability of spf. Then, we adsorbed this 

molecule to spores in the perspective to induce a regulative response into DQ8 mice. 

We showed that spf stably bound spores and that strain CotE had a major binding 

efficiency for spf. This strain has also been used to bind CLA, another 

immunomodulatory molecule. We found that also this molecule was stably adsorbed 

to spores.  

We concluded that this system represent a promising tool to induce an 

immunomodulatory response in inflammatory conditions.  

Experiments are planned to use bacterial spores adsorbed with the characterized 

molecules as mucosal adjuvants aimed at restoring the regulatory response toward 

gliadin. 
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