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In recent years significant change in the power grid for the distribution of electrical energy 

have been observed. Thanks to liberalization of the electrical market and the incentives 

offered to the production of energy from renewable sources, the number of medium and small 

producers has increased. Moreover, with the development of communication technology, the 

transmission grid has been increasingly equipped with automated devices capable of 

monitoring and transmitting some information about the grid and, in some cases, to control 

the actuation devices connected to the grid itself. In this scenario, the term smart grid was 

born, used to describe energy networks that can automatically monitor energy flows and 

adjust to changes in energy supply and demand accordingly. When coupled with smart 

metering systems, smart grids reach consumers and suppliers by providing information on 

real-time consumption. As an example, consumers can adapt their energy usage to different 

energy prices throughout the day with personal smart meters, saving money on their energy 

bills by consuming more energy in lower price periods. As it can be expected, the wider the 

grid, the larger the number of smart meters required for its monitoring. However, deploying 

thousands of such devices turns rapidly to be too expensive. Consequently, the realization of 

the distributed measurement system could not be economically sustainable. 
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Abstract 

To overcome the considered limitations, the research activities have been focused on the 

possibility to move towards a different approach for monitoring grid deployed on wide 

geographical areas, exploiting the advantages of an innovative acquisition paradigm: the 

Compressed Sampling (CS) . CS is a signal processing technique for efficiently acquiring and 

reconstructing a signal from far fewer samples than those required by the Shannon-Nyquist 

sampling theorem. In particular, the proposed architecture consists of low cost nodes 

mandated only to sample and digitize a limited number of input signal samples and transmit 

them to a central measurement unit, thus saving the costs related to large memory supports 

and expensive digital processing units. Once the samples are received, the central unit 

recovers the signal spectrum thanks to CS-based algorithm and carries out the desired 

measurements. Thanks to the CS-based approach, it is possible to design and realize a 

measurement node, characterized by reduced memory depth and only one ADC, suitable for 

poly-phase system with neutral wire that allows meeting the requirements of a distributed 

measurement system. Numerical and experimental test verified highlight the capability of CS-

based acquisition approach of correctly measuring the root-mean-square amplitude of voltage 

waveforms and assuring simultaneous multi-channel acquisitions. Finally, the compliance of 

the measurement node based on CS approach with the current Power Quality standards is 

assessed and discussed. 
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Introduction 

Electricity is the most versatile and widely used form of energy and global demand is growing 

continuously. The electrical power system was built up over more than 100 years. It is now 

one of the most effective components of the infrastructure on which modern society depends. 

It delivers electrical energy to industry, commercial and residential consumers, meeting ever-

growing demand. Most of today's generation capacity relies on fossil fuels and contributes 

significantly to the increase of carbon dioxide in the world's atmosphere, with negative 

consequences for the climate and society in general. To satisfy both the increasing demand for 

power and the need to reduce carbon dioxide emissions, there is need of an electric system 

that can handle these challenges in a sustainable, reliable and economic way. To this aim, it is 

necessary to modernize the whole grid infrastructure. 

In particular, the challenges and needs for future transmission grids can be summarized in 

four main aspects:  

 Environmental challenges. Traditional electric power production, as the largest man-

created CO2 emission source, must be changed to mitigate the climate change. Also, a 

shortage of fossil energy resources has been foreseen in the next few decades. Natural 

catastrophes, such as hurricanes, earthquakes, and tornados can destroy the 

transmission grids easily. Finally, the available and suitable space for the future 

expansion of transmission grids has decreased dramatically. 

 Market/customer needs. Full-fledged system operation technologies and power 

market policies need to be developed to sustain the transparency and liberty of the 

competitive market. Customer satisfaction with electricity consumption should be 

improved by providing high quality/price ratio electricity and customers’ freedom to 

interact with the grid. 

 Infrastructure challenges. The existing infrastructure for electricity transmission has 

quickly aging components and insufficient investments for improvements. With the 

pressure of the increasing load demands, the network congestion is becoming worse. 
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The fast online analysis tools, wide-area monitoring, measurement and control, and 

fast and accurate protections are needed to improve the reliability of the networks. 

 Innovative technologies. On one hand, the innovative technologies, including new 

materials, advanced power electronics, and communication technologies, are not yet 

mature or commercially available for the revolution of transmission grids; on the other 

hand, the existing grids lack enough compatibility to accommodate the 

implementation of spear-point technologies in the practical networks 

Whereas the innovation of the transmission grid was driven by technology in the past, the 

current power industry is being modernized and tends to deal with the challenges more 

proactively by using state-of-the-art technological advances in the areas of sensing, 

communications, control, computing, and information technology. The shift in the 

development of transmission grids to be more intelligent has been summarized with the term 

“Smart Grid". 

Smart grids will provide more electricity to meet rising demand, increase reliability and 

quality of power supplies, increase energy efficiency, be able to integrate renewable energy 

sources into power networks. The benefits associated with the Smart Grid include: 

 More efficient transmission of electricity 

 Quicker restoration of electricity after power disturbances 

 Reduced operations and management costs for utilities, and ultimately lower 

power costs for consumers 

 Reduced peak demand, which will also help lower electricity rates 

 Increased integration of large-scale renewable energy systems 

 Better integration of customer-owner power generation systems, including 

renewable energy systems 

 Improved security 

Deploying a suitable distributed measurement system is a fundamental early step to grid 

modernization. The distributed measurement system will give consumers the information they 

need to make intelligent decisions, the ability to execute those decisions and a variety of 

choices leading to substantial benefits they do not currently enjoy. In addition, system 

operators will be able to greatly improve consumer service by refining utility operating and 

asset management processes based on distributed measured system data. Each measurement 
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node has to perform acquiring, processing, control, and communication task. Moreover it has 

to be equipped with Power Quality (PQ) monitoring capabilities, in order to enable more 

rapid detection, diagnosis and resolution of PQ problems. The IEC 61000-4-30 standard 

defines the methods for measurement and interpretation of results of PQ parameters involved 

in 50/60 Hz power supply systems. The considered parameters concern with power frequency, 

magnitude of the supply voltage, flicker, supply voltage dips and swells, voltage interruptions, 

transient voltages, supply voltage unbalance, voltage and current harmonics and 

interharmonics, signaling on the supply voltage and rapid voltage changes. In particular, the 

standard referenced in IEC 61000-4-7 suggests the realization of measurement instruments 

which, after a suitable synchronization pre-processing, adopt suitable Fast Fourier Transform 

(FFT) calculations on consecutive, and without gaps, periods of 200 ms. Consider a poly-

phase system with neutral wire, where four currents and four voltages have to be detected, 

synchronized, measured and analyzed with good accuracy and spectral resolution. As a 

consequence, the measurement instrument has to be able to: (i) simultaneous acquisition of 

multiple signals (i) estimate the frequency of incoming signals, (ii) change (in a digital or 

analog way) the sampling frequency, (ii) store and manage a large number of data; (iii) 

calculate in sequence or simultaneously, eight FFTs in a very short time, and (iv) detect and 

classify events. The compliance with IEC 61000-4-30 using the suggested synchronized FFT 

analysis needs processing and memory capabilities, notable increases the cost of the each 

measurement node. As it can be expected, the number of measurement nodes increases 

according to the extension of the monitored grid. If wide grid have to be monitored, it should 

be necessary to deploy thousands of these measurement nodes over the area. Therefore, the 

realization of the distributed measurement system could not be economically sustainable. At 

the same time, it is very important to carry out a distributed monitoring of the PQ phenomena 

in many points of the electrical plant to detect and to isolate the distorting loads. It is evident 

that to allow the realization of cost effective PQ monitoring network efforts have to be done 

in minimizing both the memory and computational burden. Hardware platform as low-cost 

microcontrollers are frequently taken into account to realize low-cost sensor node for a 

distributed measurement system. Typical microcontroller integrate sensing, data acquisition 

system (DAS), processing unit and communication block in a single chip allowing cost-

effective realization of measurement nodes (Fig.0.1). However, they are generally 

characterized by limited hardware resources, in term of number of available analog-to-digital 
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converters (ADCs) and in term of memory depth. The considered platform can, in fact, 

scarcely store more than few kilobytes of data, and typically adopt multiplexer to share 

different physical channels over the same ADC. In order to recognize, without ambiguity, the 

power quality disturbances, PQ standards often require a long-time analysis, thus, a great 

number of samples has to be stored and transmitted.  

 
Fig. 0.1 Traditional architecture for PQ monitoring. 

 

Unfortunately, this requirement is in contrast with the characteristics of the low-cost 

microcontroller. In addition, the adoption of a multiplexer to share different physical channels 

over the same ADC, allows only sequential acquisitions. As a consequence, overall 

measurement performance is limited, because an unwanted phase displacement turns out to be 

imposed on the acquired signals. This phase shift is mainly due to the inter-channel delay the 

multiplexer spends to acquire two samples on different channels, and proves to be a deep 

constraint that typically reduces the applicability of low-cost measurement nodes. As an 

example, the measurement of power flows, requiring the process of the voltages and currents 

waveform, digitized in the same instants, could be strongly degraded from the use of DASs 

based on low-cost microcontrollers. Therefore, low-cost measurement nodes, based on 

microcontroller architectures, do not meet the desired requirements for smart grid monitoring. 

To overcome the considered limitation, the research activity suggests the possibility to move 

towards a different approach for monitoring grid deployed on wide geographical areas, 

exploiting the advantages of an innovative measurement approach: the Compressed Sampling 

(CS). CS is a signal processing technique for efficiently acquiring and reconstructing a signal 

from far fewer samples than those required by the Shannon-Nyquist sampling theorem . In 

particular, the proposed architecture consists of low cost nodes mandated only to sample and 

digitize a limited number of input signal samples and transmit them to a central measurement 

unit, saving, thus, the costs related to large memory supports and expensive digital processing 

units. Once the samples have been received, the central unit recovers the signal spectrum 

thanks to CS-based algorithm and carries out the desired measurements. The proposed 
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Introduction 

architecture is shown in Fig.0.2, where two main blocks can be observed: the single Sampling 

Node (SN) and the Central Measurement Unit (CMU).  

 

 
Fig. 0.2 Proposed architecture based on CS approach. 

 

The CMU, with high computational capability and equipped with a high capacity hard disk, is 

mandated to both process the acquired samples and estimates PQ parameters. The CMU 

stores the entire reconstructed spectrum, so that the details of the voltage waveform are 

permanently saved for successive observations. In other words, thanks to the CS-based 

approach, it has been possible to design and realize a measurement node, characterized by 

reduced memory depth and only one ADC, that allows meeting the following requirements of 

a distributed measurement system: 

• recording of long traces for off-line analysis 

• simultaneously acquiring voltages and currents waveforms 

• monitoring Power Quality  

• reducing costs for a single node 

thus proving suitable for Smart Grid environment.  

The present Ph.D. final work is organized as follows: in Chapter 1, a brief theoretical 

background on the Compressive Sampling is given. In Chapter 2 the applicability of 

compressive sampling techniques in PQ measurements is investigated. In particular, aim of 

the research activity in this first step, is definition of a PQ measurement method, based on the 

compressive sampling, capable of (i) assuring measurement performance comparable with 

those required by standards and granted typical PQ measurement methods and instruments, 

and (ii) drastically reducing the required memory with respect to traditional measurement 

methods. In Chapter 3 a novel acquisition approach, based on CS, capable of carrying out 

multichannel simultaneous data acquisition also through inherently sequential DASs is 
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presented. To this aim, the approach exploits a unique time-basis for all the input channels 

adopted, along with a compressive random sampling, in order to assure the reconstruction of 

desired signals without any artefact due to the inter-channel delay and/or sequential 

acquisition scheme. It is worth noting that for distributed measurement systems consisting of 

distributed acquisition nodes and a central computing unit that processes measurement data, 

improving the performance of the embedded DAS, in terms of sample rate, can be crucial for 

the improvement of the whole measurement system. To this aim, a new method based on 

compressive sampling, which permits to increase the maximum sample rate of DAS 

integrated in low-cost microcontrollers, is proposed in Chapter 4. Finally, in the Chapter 5, by 

means of numerical and experimental tests, the compliance of the measurement node based on 

CS approach with the current Power Quality standard is assessed. In particular, the capability 

of CS-based acquisition approach of correctly measuring root-mean-square amplitude of 

harmonic and interharmonic voltage pollution has been verified. 
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Chapter 1: Compressive Sampling 

1 Compressive Sampling 

The Shannon-Nyquist sampling theorem states that one must sample at least two times faster 

than the signal bandwidth to prevent harmful information loss when capturing a signal [1]. In 

many applications, including digital image and video cameras, the required Nyquist rate is so 

high that too many samples are acquired, making compression a necessity before storing or 

transmitting operations. In other applications, including imaging systems (medical scanners 

and radars) and high-speed analog-to-digital converters, increasing the sampling rate is very 

expensive. Recently a novel sensing/sampling paradigm, known as Compressive Sampling 

(CS), that goes against the common wisdom in data acquisition has been proposed [2]. 

Compressive Sampling theory asserts that one can recover certain signals and images from far 

fewer samples or measurements than traditional methods use [3]. In other words, the new 

method is able to capture and represent compressible signals at a rate significantly below the 

Nyquist rate. A CS technique can be divided in two fundamental stages: (i) A first stage in 

which the input signal is acquired directly in a compressed form; (ii) A second stage in which 

the input original signal is correctly reconstructed by means a suitable CS-Solver [4]. 

To make this possible, CS relies on two principles: (i) sparsity, which pertains to the signals 

of interest, and (ii) incoherence, which pertains to the sensing modality.  

• Sparsity expresses the idea that the “information rate” of a continuous time signal may 

be much smaller than suggested by its bandwidth, or that a discrete-time signal 

depends on a number of degrees of freedom that is comparably much smaller than its 

(finite) length. More precisely, CS exploits the fact that many natural signals are 

sparse or compressible in the sense that they have concise representations when 

expressed in the proper basis 𝚿 [5]. 

• Incoherence extends the duality between time and frequency and expresses the idea 

that objects having a sparse representation in 𝚿 must be spread out in the domain in 

which they are acquired, just as a Dirac or a spike in the time domain is spread out in 

the frequency domain. In a different way, incoherence says that unlike the signal of 

interest, the sampling/sensing waveforms have an extremely dense representation in 𝚿 

[6]. 
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Fig.1.1 As an example, a sinusoidal signal is characterized by an endless evolution versus 
time, while its Fourier transform contain the same information in only two coefficients different from zero. 

 

The crucial observation is that one can design efficient sensing or sampling protocols that 

capture the useful information content embedded in a sparse signal and condense it into a 

small amount of data [7]. These protocols are nonadaptive and simply require correlating the 

signal with a small number of fixed waveforms that are incoherent with the sparsifying basis. 

What is most remarkable about these sampling protocols is that they allow a sensor to very 

efficiently capture the information in a sparse signal without trying to comprehend that signal. 

Further, there is a way to use numerical optimization to reconstruct the full-length signal from 

the small amount of collected data. 

1.1 Compressible signals 

Consider a real-valued, finite-length, one-dimensional, discrete-time signal x, which can be 

viewed as an N × 1 column vector in RN with elements x[n], n = 1, 2,..., N. Any signal in RN 

can be represented in terms of a basis of N × 1 vectors {𝜓𝑖}𝑖=1𝑁 . For the sake of simplicity, let 

us assume that the basis is orthonormal. Using the N × N matrix [𝜓1|𝜓2| … |𝜓𝑁] with the 

vectors {𝜓𝑖} as columns, a signal x can be expressed as: 

𝐱 = ∑ fi ∙N
i=1 ψi   or .... 𝐱 = 𝚿𝐟  (1.1)  
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where f is the N × 1 column vector of weighting coefficients 𝑓𝑖 = 〈𝑥,𝜓𝑖〉 = 𝜓𝑖𝑇𝑥 and∙𝑇  

denotes transpositions. Clearly, x and f are equivalent representations of the signal, with x in 

the time or space domain and f in the 𝚿 domain. The signal x is said to be K-sparse if it is a 

linear combination of only K basis vectors; that is, only K of the coefficients in (1.1) are 

nonzero and (N − K) are zero. The case of interest is when K << N. The signal x is 

compressible if the representation (1.1) has just a few large coefficients and many small 

coefficients. 

 
Fig. 1.2 Compressible signals 

1.2 Transform coding and its inefficiencies 

The fact that compressible signals are well approximated by K-sparse representations forms 

the foundation of transform coding [8]. In data acquisition systems (for example, digital 

cameras) transform coding plays a central role: the full N-sample signal x is acquired; the 

complete set of transform coefficients {𝑓𝑖} is computed via 𝑓 = 𝜓𝑇 𝑥; the K largest 

coefficients are located and the (N − K) smallest coefficients are discarded; and the K values 

and locations of the largest coefficients are encoded. Unfortunately, this sample-then-

compress framework suffers from three inherent inefficiencies. First, the initial number of 

samples N may be large even if the desired K is small. Second, the set of all N transform 

coefficients {𝑓𝑖} must be computed even though all but K of them will be discarded. Third, the 

locations of the large coefficients must be encoded, thus introducing an overhead. 

1.3 Compressive Sampling 

Compressive Sampling address these inefficiencies by directly acquiring a compressed signal 

representation without going through the intermediate stage of acquiring N samples. Consider 

a general linear measurement process that computes M << N inner products between x and a 
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collection of vectors �𝜙𝑗�𝑗=1
𝑀

 as in 𝑦𝑗 = 〈𝑥,𝜙𝑗〉. Arrange the measurements 𝑦𝑗 in a M x 1 

vector 𝑦 and the measurements vectors 𝜙𝑗𝑇as rows in a M x N matrix 𝚽. 

 
Fig. 1.3 Sampling matrix 𝚽 allows selecting M measured values from which reconstructing the original signal. 

 

Thus, from a mathematical point of view, the relation between the sequence of acquired 

samples 𝒚 ∈ ℝm and the input signal of interest 𝒙 ∈ ℝncan be expressed as: 

𝒚 = 𝚽𝒙 (1.2)  

In other words, the sampling matrix 𝚽 allows selecting M measured values from which 

reconstructing the original signal.  

1.4 Sensing Matrix Determination 

Unfortunately, the system described in (1.2) turns out to be an underdetermined system of 

linear equations; this kind of systems have usually infinitely many solutions, meaning that 

there are infinitely many candidate signals 𝒙� [6] 

Under the assumption that x is characterized by a sparse representation in a proper basis, the 

sequence of acquired measurements can be expressed in terms of the sparse representation of 

x by combining eq. (1.1) and (1.2), 

𝒚 = 𝚽𝒙 = 𝚽𝚿𝒇 (1.3)  

Introducing a new matrix, referred to as sensing matrix, according to 

𝐀 = 𝚽𝚿 (1.4)  

where 𝐀 ∈ ℝ𝑚 𝑥 𝑛, the following equation system has to be solved to achieve the sparse signal 

f 

𝒚 = 𝐀𝒇 (1.5)  

 

16 
 



Chapter 1: Compressive Sampling 

 
Fig. 1.4 Sensing Matrix A 

1.5 Sparse Solution Evaluation 

Even though the equations system in (1.5) is still underdetermined, the sparsity of f can be 

exploited to find a suitable solution [9]. More specifically, it is possible to recover x by 

solving the following optimization problem 

𝒇� = argmin
𝒇

‖𝒇‖1  s. t.  𝒇 ∈ 𝓑(𝒚)  (1.6)  

where ‖∙‖1 stands for the l1-norm (i.e. the sum of the absolute values of the f components) and 

𝓑(𝒚) is a proper constraint that assures the consistence with the samples y. In particular, in 

the presence of noise-free samples, the feasible set 𝓑(𝒚)  can be expressed as 

𝓑(𝒚) = {𝒇:𝐀𝒇 = 𝒚}   (1.7)  

If the acquired samples have been contaminated with small amount of noise ε (such as the 

quantization noise) a better expression would be 

𝓑(𝒚) = {𝒇: ‖𝐀𝒇 − 𝒚‖𝟐 ≤ 𝛆}  (1.8)  

In other words, the best estimate 𝒇� of the input signal spectrum turns out to be the sparse 

representation characterized by the minimum l1-norm. The use of l1-norm grants, in fact, that 

obtained solution will be sparse, condition that is usually not met when least square 

minimization approaches are adopted. Moreover, the constraints (1.7) and (1.8) define the so-

called feasible set and assure that the required estimate 𝒇� is a solution (either absolute or 

approximated) of the equations system (1.5). 

Once the solution 𝒇� is obtained, the input signal of interest can easily be recovered by 
means of (1.1): 
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𝒙� = 𝚿𝒇�  (1.9)  

  

 
Fig. 1.5 Real and reconstructed samples 

 

The following inequality furnishes the lower limit of the number of samples M of x to be 

acquired, according to the sparsity of x and the characteristics of the sampling: 

M ≥ C ∙ µ2(𝚽,𝚿) ∙ S ∙ log N (1.10)  

where M is the number of measurements, C is a positive constant, µ the coherence between 

the matrices 𝚽 and 𝚿, S the sparsity, and N the number of points to be reconstructed. The 

coherence is defined as the quantity: 

𝜇(𝚽,𝚿) = √𝑛
𝑚𝑎𝑥

1 ≤ 𝑘, 𝑗 ≤ 𝑛�
�< 𝜑𝑘,𝜓𝑗 >�� (1.11)  

and φk and ψj stand, respectively, for the k-th row and the j-th column of the matrices 𝚽 and 

 𝚿 and <∙.∙> indicates the traditional inner product. It is cleraly that the number of 

measurements mainly depends on the sparsity S of 𝑥 , and coherence 𝜇. In order to exploit 

effectively a compressive sampling technique, a low value both sparsity S and coherence 𝜇 

has to be meet. The lower their values, the fewer the samples required for a reliable 

reconstruction of f and consequently of the original signal x. The sparsity S depend both by a 

suitable choosing of the orthonormal base and the intrinsic characteristics of signal x. If 𝚽 

and 𝚿 contain uncorrelated elements, the coherence is small. The minimum level of 

coherence is equal to 1, whereas the maximum level is √𝑁 . In a CS-based approach, the 

coherence should be as much as possible close to 1. Surprisingly, it has been demonstrated 
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that random matrices are largely incoherent with any fixed orthonormal bases 𝚿. Thus, by 

selecting a random sampling matrix 𝚽, it is possible to obtain a small coherence [10]. 
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2 Compressive Sampling Approach for the 
Measurement of Electrical Power Quality  

2.1 Introduction 

Nowadays, large scale monitoring of Power Quality (PQ) in electrical power plants is a 

pressing need in many countries due to both liberalization of the electrical market and deeper 

interconnections of electrical networks. Today, quality objectives have become more and 

more explicit either in the form of contracts negotiated with customers, or as definite 

objectives agreed with the Regulator that may even impose penalties in the case of non-

observance of the PQ objectives. To meet PQ targets, it is indispensable that the interested 

parties agree on the method of gathering and presenting estimated data. For these reasons 

many standards regulate PQ disturbances by means of suitable indices[1-4]. 

The IEC 61000-4-30 standard [3] defines the methods for measurement and interpretation of 

results of PQ parameters involved in 50/60 Hz power supply systems. The considered 

parameters concern with power frequency, magnitude of the supply voltage, flicker, supply 

voltage dips and swells, voltage interruptions, transient voltages, supply voltage unbalance, 

voltage and current harmonics and interharmonics, mains signaling on the supply voltage and 

rapid voltage changes. In particular, the standard referenced in [4] suggests the realization of 

measurement instruments which, after a suitable synchronization pre-processing, adopt 

suitable Fast Fourier Transform (FFT) calculations on consecutive, and without gaps, periods 

of 200 ms. Let it consider a poly-phase system with neutral wire, where four currents and four 

voltages have to be detected, synchronized, measured and analyzed with good accuracy and 

spectral resolution. This means that the measurement instrument has to be able to: (i) estimate 

the frequency of incoming signals, (ii) change (in a digital or analog way) the sampling 

frequency, (ii) store and manage a large number of data; (iii) calculate in sequence or 

simultaneously, eight FFTs in a very short time, and (iv)detect and classify events. The 

compliance with [5] and [6] using the suggested synchronized FFT analysis needs processing 

and memory capabilities, that may limit the cost effective of the measurement solutions 

present on the market. Several approaches, based on alternative analysis principles, for 

automatic detection and classification of PQ disturbances were proposed in literature [7]-[11]. 

Some of them are based on time-frequency representations such as wavelet transform or short 

time Fourier transform, which are assisted e.g. by neural networks or fuzzy expert systems. 
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Methods based on pattern recognition using support vector machines are also used as useful 

techniques for disturbance classifications. Other approaches apply mathematical morphology 

and/or the calculation of the root mean square (RMS) value. Finally some methods proposed 

the use of digital filter based techniques [12], [13]. 

Taking into account what stated above, two huge requirements have to be satisfied: (i) the 

contemporaneously acquisition of multiple signals (up to 8) at very high data rate for a 

minimum time of 200 ms required by PQ standards;(ii) the use of numerical techniques with 

high computational burden required by the most of the presented PQ measurement methods. 

At the same time, it is very important to carry out a distributed monitoring of the PQ 

phenomena in many points of the electrical plant to detect and to isolate the distorting loads. It 

is evident that to allow the realization of cost effective PQ monitoring network efforts have to 

be done in minimizing both the memory and computational burden of PQ measurement 

instruments. A valuable help to deal with the considered problem is given by Compressive 

Sampling (CS) approach. This way, in this Chapter the applicability of compressive sampling 

techniques in PQ measurements is investigated. In particular, the preliminary research 

activities  have been focused on the definition, implementation and assessment of a novel PQ 

measurement method, based on the compressive sampling, capable of  

i. assuring as good measurement accuracies as those required by current standards and 

granted by typical PQ measurement methods and instruemnts,  

ii. drastically reducing the required memory with respect to traditional measurement 

methods. 

2.2 The Proposed Method 

2.2.1 Transformation Matrix Determination 

According to what stated in Chapter 1, a necessary condition to apply CS-based methods is 

that the unknown N-dimensional signal x has to be sparse in a suitable orthonormal basis. For 

the sake of simplicity, let us consider the PQ analysis of only stationary signals. In the 

specific application, input signals consists of the sum of a limited number sinusoidal 

components (at harmonic and/or interharmonic frequency). This way, it turns out to be natural 

to choose the traditional DFT as transformation matrix relating the input signal x with its 

complex spectrum f. This way, the corresponding entries of the transformation matrix Ψ are 

defined as: 
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𝜓𝑖,𝑝 =
1
√𝑛

𝑒𝑗
2𝜋
𝑛 𝑖∙𝑝       ∀𝑖,𝑝 ∈ [0, . . ,𝑛 − 1] (2.1)  

2.2.2 Sampling Matrix Determination 

In order to assure a low level of coherence, a sampling random matrix has to be adopted to 

obtained M measurements y from the unknown input signal x. A simple random matrix can be 

obtained by randomly deleting N-M rows from the square identity matrix I (obtaining, thus, a 

rectangular sampling matrix having MxN size). This is equivalent to perform a non uniform 

sampling of M samples in the considered observation interval.  

 

 
Fig. 2.1 Random matrix obtained by randomly deleting N-M rows from the square identity matrix I. 

For the sake of the clarity, let us assume to be interested in recovering an 8-samples input 

signal x from 3 samples y acquired in time domain. The equations system (1.2) can be 

rewritten as 

�
𝑦(0)
𝑦(1)
𝑦(2)

� = �
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0 0 0 0 0 0 0 1
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⎥
⎤

= �
𝑥(0)
𝑥(4)
𝑥(7)

� (2.2)  
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2.2.3 Sensing Matrix Determination 

Thanks to the specific choice of the sampling matrix, the matrix A can be generated as a 

submatrix of Ψ, thus reducing the computational burden of the method, since A doesn’t have 

to be calculated from actual multiplications. It is, in fact, evaluated as the rows of the matrix 

Ψ, whose indexes match those the sampling instants ki, thus granting its possible 

implementation also on devices characterized by reduced memory depth. With reference to 

the sampling matrix in (2.2), the corresponding sensing matrix is given by 

𝐀 =
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⎢
⎢
⎡

1
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1
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1
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⎥
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 (2.3)  

2.2.4 Input Signal Recovering 

Once determined the matrix A, the spectrum of the input signal can be obtained by finding the 

sparse sequence 𝒇� that is solution of the equation system (1.5) and characterized by the 

minimum l1-norm. The estimated input signal x� can thus be evaluated according to (1.9) and 

the obtained reconstruction is characterized by a resolution in time domain equal to  

𝑇𝑊
𝑁

 (2.4)  

where 𝑇𝑊 is the observation time interval and N is the number of sample of the reconstructed 

input signal 𝒙�. Once obtained the time domain evolution of the signal of interest, the desired 

value of voltage is achieved by evaluating the RMS value of the reconstructed signal. 

2.3 Numerical results 

In order to preliminarily assess the performance of the proposed method, a number of tests 

were carried out by means of numerical simulations. With regard to the signal reconstruction, 

as for the successive numerical and experimental tests performed in the research activity, a 

free-tool (namely CVX by CVX Research [14] and working in MATLABTM environment) has 

been adopted for the solution of convex optimization problem associated with (1.5). As an 
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example, an input signal has been generated according to the parameters shown in Table 1; 

acquisition parameters have been set according to those provided by Fluke 1760 [15].  
Table 1- Signal and acquisiiton parameters 

Samples number n 2048 
Sampling rate [kSa/s] 10.24 
Carrier frequency [Hz] 50 
Max Harmonic order 40 
Acquired samples m 200 

Vertical resolution [bit] 14 
 

With regard to the harmonic content, the amplitude of each component has randomly been set 

in the interval from 0% up to 5%. Fig. 2.2 shows the original signal along with the m samples 

acquired for its reconstruction by means of CS.  

 
Fig. 2.2 Example of signal acquired according to ths CS paradigm. 

 

The results obtained by means of the proposed method are given in Fig.2.3, where the 

remarkable concurrence between original and reconstructed spectrum of the input signal can 

be noticed. The difference between nominal and estimated RMS voltage equal to 0.06% 

confirms the efficacy of the method and suggest its use for the implementation of an 

embedded meter whose specification would be very close to that granted by Fluke 1760.  
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Fig. 2.3 Original (blu) and reconstructed (red dots) spectrum. 

 

To better appreciate the capability of the method, Fig.2.4 and Fig.2.5 show the reconstructed 

signal along with the amplitude difference with respect to the original signal. 

 
Fig. 2.4 Original and reconstructed signal. 
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Fig. 2.5 Amplitude difference between original and reconstructed signal. 

 

To further investigate the capabilities of the method, the evolution of the difference between 

estimated and nominal rms voltage has been measured versus different values of number of 

acquired samples and normalized bandwidth (Fig.2.6). The input signal is characterized by 

the same frequency of the previous example; the same guard interval has also been taken 

into account. As it can be noticed, the higher the number of acquired samples, the better the 

associated power estimate, whatever the spectral content of the considered signal. 

Nevertheless, a defined region characterized by the best performance (difference lower than 

0.1%) can be highlighted. 
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Fig.2.6  Evolution of the difference between estimated and nominal RMS voltage versus the number of 

acquired samples and harmonic order 

2.4 Conclusions 

The first steps of the research was activities focused of the definition of a new 

measurement method based on compressive sampling techniques for Power Quality 

measurements. In particular, the suitability of the method at measuring the RMS voltage of 

signal characterized by different levels of harmonic distortion has been assessed. Thanks to 

the attractive properties of CS, it has been possible to reconstruct signals of interest from a 

very limited number of samples (down to 20 random samples for pure sinusoidal tones). In 

other words, it has been proved that by using a compressive sampling approach, a notably 

reduction of the required memory depth, to perform long-time analysis, has been obtained. 

Several tests conducted on numerical signals showed the promising results granted by the 

method; differences between estimated and nominal RMS value never greater than 0.01% 

also in the presence of severe harmonic distortion if the suitable number of samples are 

taken. 
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3 Multi-channel Simultaneous Data Acquisition 
Systems. 

3.1 Introduction 

In most of the Power Quality applications, the monitoring networks can be thought as the 

connection of wireless cost-effective and tiny nodes, which have to cooperate in order to 

perform measurement, processing, control and communication tasks. To better appreciate the 

meaning of concepts as “cost-effective” and “tiny”, it has to be considered that, if no 

compliance is needed, the cost of each wireless node, involving sensing, data acquisition 

system (DAS), processing unit and radio communication blocks, has to be lower than few 

euros. To this aim, hardware platforms as low-cost microcontrollers, field programmable gate 

arrays (FPGAs) with a reduced number of gates, or cheap digital signal Processors (DSPs) are 

frequently taken into account. All of them integrate most of the abovementioned blocks in a 

single chip allowing cost-effective realization of measurement nodes; however, limited 

hardware resources, in terms of internal memory depth and number of available 

analog-to-digital converters (ADCs), generally characterize them. The considered platforms 

can, in fact, scarcely store more than few tens of kilobytes of data, and typically adopt 

multiplexers to share different physical channels over the same ADC.  

To accomplish the measurement tasks, long time intervals are usually observed and, 

consequently, acquisition, storage and transmission of a great number of samples is involved; 

moreover, problems related to time base errors have to be taken into account [1], not to 

mention EMC issues presented by the acquisition system [2]. Unfortunately, the associated 

hardware requirements clash with the typical features of the considered platforms as well as 

with the “cost-effective” and “tiny” issues. 

To face the considered problem, new acquisition and processing strategies, capable of 

reducing hardware requirements of the nodes and allowing reliable measurements to be 

carried out, have recently been proposed in literature. One of the most promising technique is 

the Compressive Sampling (CS) [3]-[5]. The application of CS drastically reduces the number 

of acquired, stored, processed and transmitted information data, making it reliable the 

adoption of the considered low-cost hardware platforms for the above-mentioned applications.  
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 Moreover, in most of PQ applications, the measurement node is required to simultaneously 

acquires a number of quantities (e.g. voltage and current acquisition for smart metering 

applications). This requirement cannot be met on most of the considered platforms, since, as 

stated above, they multiplex input physical channels to reduce the cost of the ADC section 

(i.e. one of the most expensive), thus allowing only sequential data acquisition to be 

performed. Therefore, overall measurement performance is limited, because an unwanted 

phase displacement turns out to be imposed on the acquired signals. This phase shift is mainly 

due to the inter-channel delay the multiplexer spends to acquire two samples on different 

channels, and proves to be a deep constraint that typically reduces the applicability of 

low-cost measurement nodes. 

Although many studies can be found in scientific literature concerning with the application of 

CS to measurement applications (in particular, to WSNs), the attention has been generally 

paid to aspect as memory management, energy consumption, and communication 

optimizations [6],[7] or single channel implementation of acquisition strategies [8], [9]. 

Examples of multi-channel DASs based on CS are also present in the literature [10]; however, 

most of them requires hardware modifications to be implemented. Finally, the effect of the CS 

on the phase shift of the acquired signals due to the inter-channel delay in multichannel 

platforms has to be yet deeply investigated. In this chapter  a novel acquisition approach, 

based on CS, capable of carrying out multichannel simultaneous data acquisition also through 

inherently sequential DASs is presented. To this aim, the approach exploits a unique time-

basis for all the input channels adopted, along with a compressive random sampling, in order 

to assure the reconstruction of desired signals without any artefact due to the inter-channel 

delay and/or sequential acquisition scheme. 

3.2 The Proposed CS-based Acquisition Approach 

Taking advantage of some attractive features of CS theory, a new sampling method based on 

the application of the CS is proposed with the aim of realizing low-cost multi-channel 

simultaneous DASs, capable of overcoming the limitations due to their inherent multiplexed 

architecture in cost effective hardware platform as microcontrollers or FPGAs. The generality 

of the proposed method allows it to be able of working with success whatever the number of 

considered input channels. For the sake of the clarity, it is described with references to an 

application example, which involves a DAS consisting of four independent input channels 
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multiplexed on a single ADC. The multiplexed structure of the ADC imposes that the 

acquisition of the same signal on the four channels turns out in four digitized waveforms, 

whose channel to channel phase shifts are mainly due to the sampling interval and inter-

channel delay. In particular, the higher the frequency of the input signal, the lower the 

sampling interval, and the worse the associated phase shift among the channels due to the 

presence of the inter-channel delay. This is a very important consideration since the deeper 

worsening in the channel to channel phase reconstruction are obtained when the sampling 

frequency increases and when the user expects to have more resolution and accuracy on the 

acquired signal. 

A. Problem statement 

The traditional sequential acquisition scheme adopted by most of the available low-cost 

embedded systems is shown in Fig.3.1. Several input channels (sometimes up to 64) can 

exploit a very limited number of sampling and analog-to-digital-conversion blocks (usually 

not greater than 4), thus making it necessary to multiplex the data acquisition stage among the 

different channels (as an example, Fig.3.1 shows the considered problem with reference to 

eight input channels multiplexed on a single ADC). Such a condition gives rise to drawbacks 

that can be harmful for some applications; in particular:  

1. the lowest available sampling interval grows, thus reducing the bandwidth of the 

signals that can be acquired and measured according to the traditional sampling 

 
[36]. 

 
Fig.3.1 Typical DAS architecture of low cost devices, 
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theorem. With reference to Fig.3.2, the minimum allowed sampling interval 𝑇𝑠𝐴𝑐𝑡 

is, in fact, equal to 

 TsAct = nChan(Ts + Tid) (3.1) 

where Ts indicates the sampling time, i.e. the time interval required to complete the 

operations of acquisition and analog-to-digital conversion of a single sample, Tid 

stands for the interchannel delay (i.e. the time interval needed by the hardware to 

change the input channel connected with the ADC) and nChan is the number of 

active input channels. 

 

Fig.3.2. Sequential data acquisition involving different physical channels. 

2. even though the available sampling period would be sufficient for assuring an alias-

free sampling of the desired input signals, the sequential acquisition scheme 

introduces an artificial phase shift (equal to 2𝜋𝑓𝑥(𝑇𝑠 + 𝑇𝑖𝑑) in consecutive channels 

in the acquisition sequence, 𝑓𝑥 being the frequency of the input signal). The 

considered phase shift could distort some measurement results (as an example, 

active power measurement in Power Quality applications); the higher the frequency 

of the input signal, the worse the effect of the considered phase shift.  

Moreover, the limited resources usually available in terms of memory depth do not allow the 

acquisition of long sequences of samples when several input channels are involved. As an 

example, even though the dimension of the random access memory of embedded devices have 

been increasing in recent years, only a few of them allow a real time acquisition of 16-bit 
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sample sequences longer than 5 kSamples if the number of input channels is equal or greater 

than 4. 

To overcome the considered drawbacks,  hereinafter it is presented a suitable acquisition 

approach based on compressive sampling in order to make it possible to carry out multi-

channel simultaneous data acquisition also in the presence of an inherently sequential DAS. 

From an operating point of view (Fig.3.3), a unique, common time-basis, whose period is 

equal to Ts, is exploited to set the sampling instants on the different channels; the instants are 

defined according to the CS theory and randomly determined (as stated in the successive 

Section). Even though the channels order in the acquisition sequence could in principle be 

randomly chosen (thus improving the performance in terms of randomness and matrices 

incoherence), it is here considered sequential, without loss of generality.  

 

Fig.3.3. Proposed data acquisition approach involving different physical channels. 

As it can be appreciated in Fig.3.3, the only constraint for the proposed approach to work with 

success is that the time interval between two successive sampling instants should be greater 

than Tid. The considered strategy generates the following advantages: 

• thanks to the “compressive” approach, it is possible to acquire a limited number of 

samples for each channel, and successively reconstruct the signals of interest, 

whose dimensions could be greater than the available memory depth of the device; 
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• the adopted time-basis allows the reconstruction of the input signals on the 

different channels as they were simultaneously acquired, being both the starting 

time of reconstruction and reconstruction/sampling period Ts common. 

3.3 CS-based simultaneous data acquisition 

 Sampling instants selection 

Let us suppose that each input signal can suitably be reconstructed through m≪n samples, 

according to CS approach; this way, four times m samples have to be digitized for all the 

channels. A traditional random number generator can be adopted in order to set the sequence 

of sampling instants indices sj (with j=1,..,4m), i.e. the multiples of the common sampling 

period Ts adopted for signal reconstruction (Tj = sjTs in Fig.3.3). According to the acquisition 

approach presented in Fig.3.3, the sampling matrix can be arranged to have 4m rows and n 

columns, as shown in Fig.3.4 where 𝑦 ∈ ℝ4𝑚 , 𝚽 ∈ ℝ4𝑚 𝑥 𝑛 , and 𝑥1, 𝑥2, 𝑥3 and 𝑥4 ∈ ℝ𝑛 , are 

the input signals connected to each of the four channels. As for the entries of the matrix, for 

each row only one element, whose column index is equal to the associated sampling instant 

index sj, is different from zero and equal to one. This way, the vector y contains the 

interleaved samples acquired on all the input signals. To suitably reconstruct the associated 

input signals, the entries of y have to be reordered and separated in four sequences, referred to 

as 𝑦1,  𝑦2, 𝑦3and 𝑦4 ∈ ℝ𝑚 . Moreover, starting from the whole sampling matrix 𝚽 ∈ ℝ4𝑚 𝑥 𝑛 , 

four different matrices 𝚽𝑖 ∈ ℝ𝑚 𝑥 𝑛  (one for each channel) can be attained in a similar way. 

 

Fig.3.4. CS implementation: the sampling matrix is iteratively applied to the signals acquired on the different 
channels. 
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 Optimal generation of the transformation matrix and input signals 

reconstruction 

The sequence of acquired samples for each input signal can be expressed in terms of the 

sparse representation of 𝑥𝑖 

 yi =  Φi ∙ Ψ ∙ fi (3.2) 

With regard to the transformation matrix 𝚿, it has to be chosen according to specific features 

both of the input signal and sampling matrix; in particular, an orthonormal basis capable of 

simultaneously assuring the lowest value of (i) transformed signals sparsity and (ii) coherence 

with the sampling matrices has to be preferred. For the application considered in the research 

activity, 𝚿 is calculated according to the aforementioned discrete Fourier transform rules, 

under the assumption of stationary and periodic signals (i.e. characterized by sparse 

representation in the frequency domain) in the observation interval. A new matrix, referred to 

as sensing matrix 𝑨𝑖, can be determined by applying the following expression 

 𝐀i =  𝚽i ∙ 𝚿 (3.3) 

This way, in order to reconstruct the sparse signal f, the following equation system has to be 

solved 

 𝐲i =  𝐀i ∙ 𝒇i (3.4) 

Thanks to the particular choice of the sampling matrix 𝚽𝑖, the sensing matrix 𝐀𝑖 turns out to 

be a submatrix of 𝚿; this way, the computational burden of the method is reduced since the 

matrix 𝐀𝑖 is not real-time calculated through a pure multiplication, but it is evaluated as the 

rows of the discrete Fourier transform matrix, whose indexes are equal to those of the 

sampling instants. In other words, each 𝐀𝑖 is obtained randomly selecting n rows from the N x 

N discrete Fourier transform 𝚿. 

According to what stated above, after determining the matrix 𝐀𝑖, the spectrum of the input 

signal can be obtained by finding the sparse sequence 𝑓𝑖 that solves the equation system (3.4) 

and is characterized by the minimum l1-norm. The estimated input signal 𝑥�𝑖 can thus be 

evaluated according to (3), and the obtained reconstruction is characterized by a resolution in 

the time domain equal to 𝑇𝑠. 

It is worth noting that, thanks to the proposed approach, it is possible to reconstruct the input 
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signal on each channel in such a way that all channels have a common, unique time base. This 

way, no phase shift due to the inter-channel delay is introduced, to the detriment of the 

computational burden. 

3.4 Numerical results 

A number of numerical tests have been conducted to preliminarily verify the capability of the 

proposed method in overcoming the inherent limitations of multiplexed acquisition 

architecture. To this aim, a DAS, involving 4 physical channels and equipped with only one 

ADC, has been simulated; a channel period Ts (including the time needed to sample, convert 

and change channel) always equal to 2 µs has been considered (corresponding to an 

equivalent sample rate of 500 kS/s). The sequence of sampling instants have been generated 

through a traditional pseudo-random number generator and the obtained sequence has been 

divided for each channel according to what stated in Section 2.3 to set the corresponding m 

random samples. This way, 4 physical channels connected to the same input signal have been 

simulated.  

With regard to the signal reconstruction, as for the successive experimental tests, a free-tool 

(namely CVX by CVX Research [11] and working in MATLABTM environment) has been 

adopted for the solution of convex optimization problem associated with (17). Signals have 

been reconstructed in such a way as to cover an observation interval equal to 2 ms; in other 

words, the number n of samples of the final reconstruction has been set equal to 1000. Their 

phase has been evaluated in the frequency domain, and the phase shift ∆ϕi (i = 2,3,4) between 

the signal reconstructed for the i-th channel and that reconstructed for the first channel, taken 

as reference, has been calculated. As expected, the lower the magnitude of ∆ϕi, the better the 

capability of the proposed method of exploiting the simulated sequential DAS as a 

simultaneous one. Moreover, the availability of the nominal input signal has allowed the 

evaluation of the so-called reconstruction error according to the traditional expression: 

 𝜀𝑖 =  ‖𝑥�𝑖−𝑥𝑖‖2‖𝑥𝑖‖2
100 (3.5) 

and, consequently, the assessment of the capability of the proposed approach of correctly 

reconstructing the signal of interest. 

Even though the past experiences ([12],[13]) proved that the proposed approach works with 

success in the presence of any periodic signal, for the sake of simplicity only sinusoidal 
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signals have been taken into account in all the conducted tests. According to the general CS 

theoretical framework, the proposed approach, in fact, assures reliable results as long as the 

constraint on the number of acquired samples m and the spectral content (i.e. the sparsity of 

the input signal in frequency domain) is met.  

A first set of tests has aimed at assessing the performance of the proposed method in the best 

operating conditions, i.e. no noise has been added to the input signal and no quantization of 

the acquired samples has been considered. The maximum ∆ϕi and εi achieved in each test 

configuration (characterized by different values of m, varying within the interval 20-100, and 

signal frequency fx, varying within the interval 500-50000 Hz) have been adopted as 

performance factors. The obtained results are shown in Tab.I. As it can be appreciated, the 

proposed method has assured a complete “synchronization” of the four input channels; phase 

shifts never greater than 9.3·10-10 rad have, in fact, been experienced. Negligible values of ε, 

experienced throughout the tests, corroborates the satisfying results. 

Tab.I. Maximum phase shifts and reconstruction errors, expressed respectively in radians and relative 

percentage terms, for different values of m and fx. 

       fx[Hz] 

m 
500 1000 5000 10000 50000 

 

20 
6.3·10-10 9.3·10-10 5.1·10-11 7.2·10-12 3.9·10-11 ∆ϕ 

3.0·10-7 2.0·10-7 9.6·10-8 6.4·10-8 1.1·10-8 ε 

40 
-7.0·10-11 4.6·10-10 2.8·10-12 4.8·10-11 7.5·10-10 ∆ϕ 

5.2·10-8 2.5·10-7 8.3·10-8 7.4·10-8 1.4·10-7 ε 

60 
1.8·10-10 8.7·10-12 1.9·10-11 -1.2·10-11 2.4·10-10 ∆ϕ 

2.3·10-7 5.4·10-8 1.0·10-8 3.5·10-8 3.9·10-8 ε 

80 
-1.1·10-11 2.4·10-11 -9.6·10-12 3.1·10-10 -3.9·10-11 ∆ϕ 

1.3·10-8 3.8·10-8 1.7·10-8 1.4·10-7 1.8·10-7 ε 

100 
1.3·10-13 9.9·10-13 3.4·10-12 -5.6·10-11 1.3·10-10 ∆ϕ 

1.3·10-9 2.3·10-9 1.3·10-8 5.2·10-8 1.5·10-8 ε 

 

The effect of the quantization on the method's performance has then been analyzed; to this 

aim, different vertical resolutions (nBit), within the interval 6-14 bit, have been taken into 

account. In each executed simulation, the amplitude and frequency of the input signal have 

been equal respectively to the converter full scale (2nBit-1) and 5 kHz. As expected, the higher 

38 
 



Chapter 3: Multi-channel Simultaneous Data Acquisition Systems 

the value of nBit, the better the performance of the method (Tab.II). Moreover, satisfying 

results have been granted also for a higher number of random samples, to the detriment of the 

computational burden. As an example, signals reconstructed from 100 random samples, 

digitized by means of a 6-bit ADC, have been very close to those reconstructed from a lower 

number of samples (up to 60), digitized by means of a 10-bit ADC. 

Tab.II. Maximum phase shifts and reconstruction errors, expressed respectively in radians and relative 

percentage terms, for different values of m and nBit. 

nBit 

m 
6 8 10 12 14 

 

20 
0.0039 0.0012 0.00027 5.8·10-5 4.67·10-5 ∆ϕ 

1.3 0.36 0.11 0.020 0.014 ε 

40 
0.0011 0.00042 0.00030 -9.0·10-6 5.5·10-6 ∆ϕ 

0.89 0.22 0.053 0.011 0.0034 ε 

60 
0.0016 -0.00066 -6.5·10-5 1.0·10-5 -2.3·10-6 ∆ϕ 

0.68 0.17 0.043 0.0096 0.0028 ε 

80 
0.00099 6.61·10-5 0.00010 2.3·10-5 5.97·10-7 ∆ϕ 

0.68 0.11 0.039 0.0080 0.0028 ε 

100 
0.00062 -0.00013 8.4·10-5 9.4·10-6 -2.7·10-6 ∆ϕ 

0.44 0.093 0.027 0.0064 0.0019 ε 

 

To investigate the effect of randomness in sample selection, further tests have been conducted 

considering a 12-bit ADC; in particular, the same values of number of samples and signal 

frequency as in the first tests have been considered. Moreover, for each couple m and fx, 100 

simulations have been carried out by randomly varying the sequence of sampling instants; the 

mean and experimental standard deviation of the phase shift are given, respectively, in Tab.III 

and Tab.IV. Mean values of ∆ϕ never greater than 1·10-5 rad have assured an unbiased 

reconstruction of the input signals, i.e. no phase artifact due to the application of the proposed 

approach has been introduced. With regard to the experimental standard deviation, it 

decreases upon the increasing of the number of acquired samples. Moreover, as it can be 

appreciated in Tab.IV, it decreases upon the increasing of the frequency; the reason of this 

behavior has to be found in the growing number of signal periods included in the observation 
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interval, that helps the phase estimation process in a similar way as in other traditional 

reconstruction algorithms (e.g. time domain sine-fit). 

Tab.III. Mean phase shift, expressed in radians, for different values of m and fx. 

       fx[Hz] 

m 
500 1000 5000 10000 50000 

20 2.4·10-6 -2.1·10-6 -8.2·10-6 9.3·10-6 1.7·10-6 

40 -1.2·10-6 7.5·10-6 8.5·10-6 -2.5·10-6 -2.6·10-7 

60 -1.2·10-7 -5.7·10-7 5.1·10-6 -1.9·10-7 1.6·10-11 

80 7.4·10-7 -1.8·10-7 -1.8·10-6 1.1·10-6 2.7·10-12 

100 -9.6·10-6 5.4·10-6 7.3·10-7 6.5·10-7 -8.6·10-10 

 

Tab.IV. Experimental standard deviation of the phase shift, expressed in radians, for different values of m 

and fx. 

       fs[Hz] 

m 
500 1000 5000 10000 50000 

20 8.7·10-5 8.2·10-5 6.7·10-5 4.5·10-5 3.8·10-5 

40 4.7·10-5 5.3·10-5 4.1·10-5 4.1·10-5 2.6·10-6 

60 4.1·10-5 4.0·10-5 2.9·10-5 2.3·10-5 2.7·10-10 

80 4.2·10-5 3.1·10-5 1.8·10-5 1.1·10-5 8.8·10-11 

100 2.9·10-5 2.8·10-5 1.6·10-5 5.2·10-6 8.7·10-9 

 

Also, some tests have been conducted with the aim of assessing the robustness of the 

proposed acquisition approach to additive noise. Different signal-to-noise ratios (SNRs), 

varying within the interval 0-70 dB, have been considered and, for each SNR value, the input 

signal has been buried in additive white Gaussian noise, the root mean square (RMS) 

amplitude of which, 𝜎𝑟𝑚𝑠, has been evaluated according to 

 σrms = Arms10−
SNR
20  (3.6) 

where Arms stands for the RMS value of the input signal. As in the previous tests, for each 

configuration of SNR and m, 100 simulations have been executed; the obtained results, in 

terms of mean and experimental standard deviation, are shown in Tab.V and Tab.VI, 
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respectively. As it can be appreciated, the proposed method is capable of granting reliable 

results only for SNR values greater than 40 dB, whatever the number of acquired samples. 

 

Tab.V. Mean phase shift, expressed in radians, for different values of SNR and m. 
SNR [dB] 

m 
0 10 20 30 40 50 60 70 

20 -0.052 0.040 0.012 0.0024 0.00022 0.000194 -5.5·10-5 2.5·10-5 

40 -0.014 0.0059 0.0039 -0.00083 9.8·10-5 0.000121 -1.6·10-5 5.9·10-6 

60 0.038 -0.0053 -0.0025 -0.0012 -6.0·10-5 -0.00012 2.1·10-5 -7.4·10-6 

80 0.0085 -0.0018 -0.0017 -0.00014 -9.6·10-5 7.0·10-5 -6.4·10-7 4.2·10-7 

100 0.022 -0.00097 0.00092 0.00055 -0.0002 6.3·10-5 2.0·10-5 -6.1·10-6 

 

Tab.VI. Experimental standard deviation of the phase shift, expressed in radians, for different values of SNR 
and m. 

 

3.5 Experimental Results 

A number of experimental tests have also been carried out in order to assess the performance 

of the proposed method implemented on actual cost-effective platform. To this aim, a proper 

measurement station have been realized; it consisted of (i) microcontroller (both 8 and 32 bit 

architecture) and FPGA-based platforms, (ii) a dual –channel arbitrary function generator 

AFG3252C by Tektronix (vertical resolution equal to 14 bits, analog bandwidth of 240 MHz, 

maximum output update frequency equal to 1GS/s), and (iii) a personal computer mandated 

to: 

1. generate the random sequence of the sampling instants; 

SNR [dB] 

m 
0 10 20 30 40 50 60 70 

20 0.46 0.16 0.049 0.016 0.0050 0.0015 0.00049 0.00015 

40 0.27 0.078 0.023 0.0075 0.0026 0.00088 0.00024 7.5·10-5 

60 0.23 0.066 0.022 0.0067 0.0021 0.00061 0.00019 6.8·10-5 

80 0.18 0.04 0.018 0.0058 0.0016 0.00052 0.00017 4.8·10E-5 

100 0.15 0.050 0.015 0.0040 0.0016 0.00057 0.00016 5.0·10-5 
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2. transmit it to the acquisition platform;  

3. receive the digitized random samples;  

4. reconstruct the input signals according to the CS theory.  

As for the numerical tests, the phase shift among the signals digitized or reconstructed for 

each input channel has been adopted as performance factor. 

3.5.1 Tests conducted through 32-bit microcontroller 

A first set of experiments have been carried out through a STMicroelectronics 

microcontroller, namely STM32F303VCTM, based on 32-bit ARM Cortex M4 family and 

featuring a maximum operating frequency equal to 72 MHz, data memory depth of 40 KB, 

four ADCs with selectable vertical resolution (6, 8, 10, and 12 bit) and full scale of 3.3 V, and 

a minimum sampling time equal to 200 ns@12 bit. The experiments have aimed at comparing 

the performance of the proposed sampling approach to that inherently granted by the 

microcontroller, and have been performed with a sample rate equal to 150 kS/s. In particular, 

the three following acquisition strategies have been taken into account: 

1) Sequential acquisition: according to Fig.3.1, only one ADC has alternately digitized 3 

kSamples on 4 physical input channels, spending a time interval equal to 6.67µs to 

switch from one channel to the next; 

2) “Simultaneous” acquisition: the four ADCs of the device have been employed, each of 

which configured to digitize 3 kSamples on a specific physical channel at a rate of 150 

kS/s. The availability of four ADCs has allowed an acquisition process as close as 

possible to a pure simultaneous one. In this configuration, the time delay between 

samples associated with successive channels is only due to the time the 

microcontroller takes to execute the few instructions needed to send the Start Of 

Conversion to the ADC, i.e. about 50 ns. 

3) Compressed acquisition: according to Fig.3.2, just one ADC converting 4 physical 

channels has been employed; the acquisition instants (and, consequently, the delays 

between samples of successive channels) are determined as a random sequence. As 

stated above, the algorithm generating the random sequence has been implemented in 

order to assure a minimum distance between two successive sampling instants equal or 

greater than 6.67 µs. To compare the results with those provided by the previous 

acquisition strategies, the compressive sampling algorithm has been configured in 
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such a way as to provide signals reconstructed on 3 kSamples. Finally, regarding the 

acquired samples, tests have been performed with a number of m equal to 20, 40, 60, 

80, and 100, respectively. The vertical resolution of the ADC has been set equal to 12 

bits. 

For each considered acquisition configuration, the 4 channels of the device have 

been fed with the same signal, consisting of a sinusoidal waveform whose amplitude 

and offset were equal to 2.8Vpp and 1.4V, respectively. Five tests have been 

conducted for five different signal frequencies: 150Hz, 300Hz, 1500Hz, 3000Hz, 

15000Hz, and, for each test, the phase difference between the waveforms acquired on 

4 channels have been measured in frequency domain. As for the numerical tests, the 

maximum absolute value of the phase shifts measured over three channels with respect 

to that of the signal on the first channel, taken as the reference, has been assumed as 

indicator of the method performance. The tests were repeated 30 times for each couple 

of frequency and number of samples, in order to gain the mean value and experimental 

standard deviation of the phase shifts . The obtained results are shown in Fig.3.5. 

 

Fig.3.5. Measured phase shift in different acquisition modes. 

As expected, in the "simultaneous" and sequential acquisition modes, the values of the phase 

shift between channels linearly evolved versus frequency, since they are due to the delay 

between the acquisition of two successive channels. For the sequential acquisition, the phase 

shift reaches 0.6 radians, making this method unfit to measure quantities depending on the 

phase relationship between the signals on different channels (as an example measurements of 
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electrical power or energy). The acquisition in "simultaneous" mode exhibits the same 

evolution versus frequency, but, of course, the phase shift grows with a lower slope; it can be 

seen as a lower bound of the ADC performance . 

On the contrary, signals reconstructed by means of the proposed method shows a phase shift 

between channels only slightly dependent on the input frequency and always lower than 

0.7centiradian, even though only 20 samples per channel are acquired (i.e., with a 

compression ratio of 99.3 %). The maximum phase shift is reduced to values lower than about 

1 milliradian (equal to 0.016 % of the signal period) if 80 or 100 samples are acquired, i.e. if 

the compression ratio drops to 96.7%.  

a) b) 

Fig.3.6. a) Reconstructed signals and b) sample-by-sample differences between the obtained waveforms when 
the proposed acquisition approach is applied to 20 random samples per channel. 

 

As an example, Fig.3.6a shows the signals reconstructed by means of the proposed acquisition 

approach when a sinusoidal signal with a frequency equal to 150 Hz is considered; only 20 

random samples per channel have been acquired. To better appreciate the performance of the 

proposed approach, sample-by-sample differences between the signal of each input channel 

and that peculiar of the first one, taken as reference, are shown in Fig.3.6b. For the sake of 

clarity, a different artificial offset has been added to each signal in order to separate the 

considered waveforms. The improvement granted by a higher number of acquired samples is 

highlighted in Fig.3.7a and Fig.3.7b, where the same quantities of Fig.3.6 are gained with 

respect to signals reconstructed from 100 acquired random samples. 

44 
 



Chapter 3: Multi-channel Simultaneous Data Acquisition Systems 

a) b) 

Fig.3.7. a) Reconstructed signals and b) sample-by-sample differences between the obtained waveforms when 
the proposed acquisition approach is applied to 100 random samples per channel. 

Comparing the obtained results with those given in Tab.III and Tab.IV for numerical tests in 

similar conditions, a slight performance degradation has been experienced; it is mainly related 

to (i) spectral leakage phenomena due to the finite time-basis resolution and (ii) an effective 

number of the bits of the ADC lower than 12. 

Ultimately, obtained results prove that the proposed acquisition approach allows to 

reconstruct the input waveform on 3000 samples with a phase error practically negligible, 

even though a multiplexed converter characterized by an inter-channel delay of 6.67µs is 

employed and a number of samples per channel lower than 100 is stored. In other words, the 

used low-cost architecture, combined with the proposed approach, appears to be equivalent to 

a much expensive device, constituted by four ADCs that work simultaneously, which has to 

assure a synchronization error as low as few tens of nanosecond at the highest input 

frequency.  

Further tests have been carried out in order to assess the performance of the CS-based 

approach in different operating conditions. As an example, Tab.VII shows the mean value 

along with experimental standard deviation of the phase shifts experienced for different 

vertical resolutions of the converter; the considered phase shifts have been obtained by 

applying at the four input channels a sinusoidal waveform whose frequency was equal to 

500Hz.  
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Tab. VII Phase shifts of reconstructed waveforms at signal frequency equal to 500Hz. 

 m=20 m=100 

Mean [rad] Standard deviation [rad] Mean [rad] Standard deviation [rad] 

Nbit=8 0.0017 0.0041 0.0003 0.0013 

Nbit=10 0.0008 0.0042 0.0001 0.0013 

Nbit=12 0.0006 0.0042 0.0003 0.0015 

 

In a similar way, the results given in Tab.VIII have been obtained when the frequency of the 

input signal has been set equal to 50kHz. As for the previous test, the sampling instants have 

been determined as a random sequence; according to what stated in Section 2.3, the minimum 

distance between two successive instants has been forced equal to 2µs, since the equivalent 

sampling frequency was 500kS/s. 

Tab.VIII Phase shift of reconstructed waveforms at signal frequency equal to 50kHz. 

 m=20 m=100 

Mean [rad] Standard deviation [rad] Mean [rad] Standard deviation [rad] 

Nbit=8 0.0029 0.0059 0.0021 0.0043 

Nbit=10 0.0024 0.0073 0.0018 0.0044 

Nbit=12 0.0020 0.0059 0.0014 0.0040 

 

For tests conducted on sinusoidal signals with frequency equal to 500Hz, the measured phase 

shift was negligible, but for 8-bits resolution; in this case, the acquisition of 100 samples is, in 

fact, required to obtain phase shift value lower than 1 mrad. With regard to tests involving 

50kHz sine-wave, the mean is affected by the converter resolution and exhibits higher values 

of the phase shift, although it is still lower than 3 mrad. On the contrary, the standard 

deviation of the results do not seem to depend on the resolution of the used converter, 

whatever the frequency of the input signal. 

Other tests have been carried out to characterize the proposed acquisition approach with 

respect to the compression ratio. The four input channels has received a sinusoidal signal 

characterized by a frequency of 5 kHz, and the converter has been exploited to acquire 100 

random samples per channel. The processing algorithm has been configured to reconstruct the 

acquired signals respectively on 1000, 3000, 5000, and 10000 samples, with an equivalent 

sampling rate of 500 kS/s.  
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Measurement results (Fig.3.8) have shown that the mean phase shift of the reconstructed 

signals, estimated on 30 measures, is slightly influenced by the compression ratio and is 

always lower than 0.8 milliradians (i.e. 0.01% of the signal period). 

 

Fig.3.8. Evolution of the maximum phase shift of reconstructed waveforms versus the number of reconstructed 
samples; all tests have been carried out starting from 100 random samples digitized for each channel. 

 

The associated standard deviation is, instead, lower than 0.3 milliradians when the 

compression ratio is equal to 96.7%, and increases up to 0.8 milliradians when the 

compression ratio reaches 99% (i.e., for n equal to 10 kSamples). Moreover, thanks to the 

proposed approach, it has been possible to reconstruct up to 40 kSamples; this result cannot 

be achieved through the traditional acquisition approach on the considered platform, since 

80 KB memory depth is at least required. 

Further tests have been conducted in order to assess the performance of the approach when 

the acquired waveforms exhibit a nominal phase shift, i.e. to assess that the reconstruction 

algorithm does not introduce artifacts in the signal phase. In particular, two physical channels 

have been supplied with two signals presenting a phase shift respectively equal to 0°, 5°, 10°, 

15°, 20°. Tests have been carried out for two values of input signal frequency (500Hz and 

50kHz) and number of acquired samples m (20 and 100).  

Fig.3.9 shows the evolution of mean and associated experimental standard deviation of the 

reconstructed phase shifts versus the nominal values, when the frequency of the input signal is 
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500Hz; to better appreciate the performance of the proposed approach, Fig.3.10 shows the 

differences between the measured and nominal phase shifts.  

 

 Fig.3.9 Measured phase shift versus nominal one with signal frequency equal to 500Hz. 

 

Fig.3.10 Difference between measured and nominal phase shift with signal frequency equal to 500Hz. 

 

In a similar way, the results obtained for a signal frequency of 50kHz are plotted in Fig.3.11 

and Fig.3.12. 
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Fig.3.11 Measured phase shift versus nominal one for a signal frequency equal to 50kHz. 

 

Fig.3.12 Difference between measured and nominal phase shift with signal frequency equal to 50kHz. 

 

When the signal frequency is 500Hz, the difference between the phase shift of the 

reconstructed signals and the actual phase shift has always been lower than 2 milliradians 

even for the outstanding compression ratio obtained by acquiring 20 samples and 

reconstructing the waveform on 3000 points. As it can be expected, if the compression ratio is 

so high, the measurement results are characterized by a worst standard deviation. As a matter 

of practice, the measurements performed at different compression ratios have proved to be 
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compatible with one other, with a standard deviation that increases when the number of 

acquired samples decreases. The same conclusions can be drawn when the signal frequency is 

50kHz; in this case, as expected, the standard deviations increase, causing the reconstructed 

phases to be affected by greater uncertainty.  

3.5.2 Tests conducted on 8-bit microcontroller 

Similar test have been conducted on a 8 bit-microcontroller, namely PIC18F4620TM by 

Microchip, mounted on a PICDEM Plus board and characterized by an actual operating 

frequency equal to 1 MHz, data memory depth of 4 KB, a single ADC with vertical resolution 

and full scale voltage equal respectively to 10 bits and 5V, 13 input channels, and a minimum 

sampling time of 20µs@10bit. The microcontroller has been programmed in such a way as to 

digitize the signal connected simultaneously to four physical channels. Once again, the phase 

shift among the different channels has been chosen as performance factor.  

Due to the limited operating frequency and the inherent 8-bit architecture of the PIC18F4620, 

the tests presented in the following have been carried out at 5 kS/s; channel selection and 

sample storage have, in fact, required several atomic instructions, thus reducing the maximum 

available sample rate. This way, the minimum time difference between successive samples in 

the random sequence has been configured equal or greater than 200 µs. The tests have been 

designed to randomly digitize from 20 up to 100 samples for each channel, covering an 

observation interval of 600 ms, and to obtain reconstructed signals characterized by 3000 

samples for each channel, i.e. a whole set of 12 kSamples, a number unfeasible to be acquired 

through the considered microcontroller, which makes it outperform more expensive devices.  

A sinusoidal waveform, with a peak-to-peak amplitude and offset equal respectively to 4.9 V 

and 2.5 V, has been used as input signal for the considered four physical channels. Tests have 

been conducted for different signal frequencies: 5Hz, 10Hz, 50Hz, 100Hz, 500Hz. Similar 

considerations to those concerning the tests presented in the previous section can be drawn 

with regard to the phase shift measurement and the number of repetitions for each 

configuration of signal frequency and number of acquired samples. The obtained results are 

shown in Fig.3.13. 
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Fig.3.13 Measured phase shift in different acquisition configurations. 

 

Similarly to what experienced with the 32 bit-microcontroller, the reconstructed signals show 

a phase shift between channels only slightly dependent on the input frequency. In particular, 

the phase shift has always been lower than 2 milliradians, with a number of digitized random 

samples within the interval 40-100; the superior performance with respect that exhibited in the 

presence of the 32 bit-microcontroller has to be associated with the lower value of the 

involved signal frequencies. By reducing the number of acquired random samples down to 20, 

the phase shift has grown to 4 centiradians, thus proving it unsuitable to reconstruct signals 

with s sufficient accuracy. The superior performance with respect to the results shown in 

Fig.3.5 for the 12 bit ADC has to be ascribed to the lower values of the involved signals and 

sampling frequencies; in spite of the lower number of bits of the PIC4620TM than that of the 

STM32TM (10 vs. 12), the PIC4620TM has worked in less critical conditions thus assuring 

better results. In the same way as the 32 bit-architecture, further tests have been conducted in 

order to assess the performance of the approach when the acquired waveforms exhibit a 

nominal phase shift equal to 0°, 5°, 10°, 15°, 20°. Two values of the input signal frequency (5 

Hz and 500 Hz) and number of acquired samples (20 and 100) have been considered. Fig 3.14 

shows the evolution of the mean and associated experimental standard deviation of the 

reconstructed phase shift versus the nominal value, when the frequency of the input signal is 5 

Hz. 
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Fig.3.14 Measured phase shift versus nominal one for a signal frequency equal to 500Hz. 

 

To better appreciate the performance of the approach, Fig.3.15 shows the difference between 

the measured and nominal phase shift.  

 
Fig.3.15. Difference between measured and nominal phase shift for a signal frequency equal to 5Hz. 

 

Results obtained for an input signal frequency equal to 500 Hz are shown in Fig.3.16 and 

Fig.3.17. 
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Fig.3.16 Measured phase shift versus nominal one for a signal frequency equal to 5Hz. 

 
Fig.3.17 Difference between measured and nominal phase shift for a signal frequency equal to 500Hz. 

 

For tests conducted with a signal frequency equal to 5 Hz, the difference between the 

measured and nominal phase shift has always been lower than 1 milliradians, whatever the 

number of acquired samples; as expected, the value of m has highly affected the experimental 

standard deviation. On the contrary, when the signal frequency has been set equal to 500 Hz, 

the approach’s performance proved to be dependent on the number of acquired samples; 

differences and experimental standard deviations up to 5 and 15 centiradians, respectively, 

have been experienced in the tests with 20 random samples. However, the tests conducted 
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reconstructing the input signals from 100 acquired samples confirmed the satisfying 

performance of the acquisition approach. 

3.5.3 Tests conducted on a FPGA-based platform 

The last set of tests has been carried out on a National Instruments sbRIO-9632TM Embedded 

Device. The considered device is a 2MGates FPGA-based hardware with analog inputs and 

digital input/output pins. As for the analog inputs, it features up to 16 differential channels (32 

single ended) and two analog to digital converters that receive up to 8 differential channels 

through a multiplexer device. The maximum vertical resolution is equal to 16 bits, while the 

maximum sample rate is equal to 250 kS/s on a single channel and reduces to about 15 kS/s 

when the whole channel set is considered. This device allows the development of Labview-

based software and communicate with a personal computer through a Ethernet connection 

with a TCP/IP protocol. 

Since the manufacturer does not specify its value, the inter-channel delay has preliminarily 

been estimated in a number of operating conditions involving different sample rates and 

signal frequencies) A mean value of 19.7 µs with an experimental standard deviation of 3.1 µs 

has been experienced on the whole operating frequency range of the onboard ADC channels. 

Then, two tests have been carried out on several sinusoidal signals characterized by a peak to 

peak amplitude equal to 1 V and different frequency values. In the former test, a sampling 

frequency equal to 10 kS/s (very close to the maximum one allowed by the device) has been 

adopted, while in the latter a lower sampling frequency (50 S/s) has been chosen. In 

particular, the former test has aimed at investigating the approach's performance when the 

inter-channel delay is very close to the sampling interval (equal to 100 µs), while in the latter 

test the inter-channel delay produces a reduced phase shift among the multiplexed channels. 

Sinusoidal signals with frequencies within the interval 50-4000 Hz have been considered in 

the former test, while sinusoidal signals with frequencies within the interval 1-20 Hz have 

been considered in the latter test. 

As in the previous numerical and experimental tests, the effect of multiplexed channels have 

been analyzed in terms of phase shift of the second, third and fourth channel with respect to 

the first one, when a sequential acquisition is considered. In particular, the obtained values for 

the two considered scenarios are given in Fig.3.18. 
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a)

b) 

Fig.3.18 Measured phase shift for the four channels versus signal frequency: a) sampling frequency equal to 
10kS/s; b) sampling frequency equal to 50 S/s. Multiplexed acquisition is involved. 

 

It is worth noting that, without the proposed acquisition approach, the presence of the 

multiplexer worsens the phase alignment among channels, giving rise to phase shifts in the 

range from few milliradians, for low sample rates, up to more than 1 radian, when the sample 

rate increases.  

As for the proposed CS-based acquisition approach, a number of tests have been executed in 

the same operating conditions involving multiplexed acquisitions. For the sake of brevity, 

only the results related to a compression ratio equal to 10 are discussed in the following 

(Fig.3.19); a total of 200 consecutive experiments have, in particular, been considered. 
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a)

b) 

Fig.3.19 Measured phase shift for the four channels versus the signal frequency: a) sampling frequency equal to 10kS/s; b) 
sampling frequency equal to 50 S/s. The compressed acquisition approach is involved. 

 

It is possible to appreciate how the proposed acquisition approach deeply reduces the 

measured phase shift; in particular, a maximum phase shift equal to 0.5 radians is experienced 

for a sample rate equal to 10 kS/s, lower than that experienced with the multiplexed 

acquisition in the same operating condition. In addition, it is possible to highlight that, 

independently from the sample rate, typical phase shifts within ±0.1 radian have been 

experienced. This shifts are very good if compared to those typically experienced in the 

multiplexed acquisition when the sample rate is greater than 1 kS/s. 

3.6 Conclusions 

The second step of the research activity has dealt with the definition and implementation of an 

acquisition approach, based on compressive sampling, for simultaneous data acquisition, 
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which turns out to be mandatory when poly-phase systems for power distribution are taken 

into account. The approach exploits some attractive features of the CS, along with the 

availability of a common time basis, to randomly digitize a reduced number of samples and 

successively reconstruct the desired input signals without introducing fake phase shifts among 

the channels. The approach has proved particularly addressed to typical sequential data 

acquisition systems, such as those usually included in low-cost measurement solutions based 

on microcontrollers, FPGAs and similar intended to be adopted for the final smart grid meter. 

A number of tests carried out both on numerical and actual sinusoidal signals highlighted and 

confirmed the promising performance of the proposed acquisition approach. Phase shifts, ∆ϕ, 

among the reconstructed waveforms as low as few milliradians (about 0.016% of a whole 

period) have, in fact, been experienced in several measurement conditions, involving different 

values of the number of acquired samples, vertical resolution and input signal frequency, for 

8-bit and 32-bit microcontrollers. Results not as good as the aforementioned ones have been 

achieved in tests conducted on FPGA; even though the phase shift proved to be lower than 

that obtained with pure sequential acquisitions, values of ∆ϕ up to 0.5 rad have been 

encountered. Such a difference has to be ascribed to the non-efficient implementation 

(associated with the LabView environment) of the sampling algorithm. 
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4 Sample Rate Enhancement In DASs For Low-Cost 
Sensing Nodes. 

4.1 Introduction 

In recent years, embedded systems (such as microcontrollers, field programmable gated 

arrays, digital signal processors and so on) have been playing a fundamental role in 

metrological applications. The availability of integrated systems capable of digitizing, 

processing and transmitting measurement results offers the opportunity of realizing nodes for 

distributed and/or portable measurement systems characterized by reduced costs and good 

performance. Typical application examples are smart meters for energy billing or analysis of 

electrical power quality [1]-[4], monitoring of environmental quantities of interest [5]-[8], 

control of complex production process [9]-[11]. 

Architectures based on successive approximation registers are usually chosen for the data 

acquisition section (DAS, mainly based on the ADC embedded in the measurements nodes), 

due to their straightforward implementation and a nominal vertical resolution that is suitable 

for most of the considered application. Nevertheless, some specific solutions for band-pass 

signals [12]-[14] and some dedicated solutions exploiting more performing ADCs (Σ∆ or 

flash converters) are also available on the market [15]. 

The most significant parameters commonly used for characterizing and determining the 

performance of the DAS are: 

• nominal vertical resolution: usually expressed in bits, it defines how many distinct 

output codes the DAS can produce; depending on the specific architecture of the 

ADC, typical resolution varies between 10 and 14 bits; 

• maximum sample rate: it defines the capability of the DAS of rapidly sampling and 

converting the input signal and directly determines the maximum spectral 

component that can be alias-free sampled. Typical actual values for low cost 

microcontrollers range from few tens of kilohertz up to 5 MHz; 

• memory depth: combined with the sample rate, it determines the maximum 

observation interval the microcontroller can acquire for successive processing. 

Values from few kilobytes up to some megabytes are usually found; 

• input bandwidth: determines the maximum frequency of spectral components that 

the ADC can receive as input without significant distortion; to assure alias-free 
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digitization of the input signal, it is usually set no higher than half maximum 

sample rate, even though some solutions dedicated to digital downconversion 

provide larger bandwidth [16]. 

For the proposed distributed monitoring systems of Power Quality, consisting of 

distributed acquisition nodes and a central computing unit that processes measurement data, 

improving the performance of the embedded DAS, in terms of sample rate enhancement, can 

be crucial for the improvement of the whole measurement system. To this aim, a new method 

based on compressive sampling (CS), which permits to increase the maximum sample rate of 

DAS integrated in low-cost microcontrollers, is proposed in the following. Some papers 

recently focused their attention on the possibility of exploiting CS to enhance the performance 

of ADC in terms of sample rate. In particular, in [17] CS is used to extend the traditional 

equivalent time sampling (ETS) scheme in order to reconstruct the input signal with a higher 

time resolution. However, a number of periods of the input signal much higher than those 

successively reconstructed are involved, which poses severe constraints on the stability of the 

time base. Such problem has been solved for random sampling CS-based ADC in [18] 

through an ad-hoc new circuit. An alternative is represented by CS-based ADCs exploiting 

random demodulation [19], which have been shown to have good performance for most 

measurement applications [20]. In particular, a significant improvement in terms of sample 

rate has been obtained, though at the expenses of architectural complexity, due to the presence 

of the analog mixing of the input signal with a pseudo-random sequence. 

Differently from the abovementioned solutions, the method proposed hereinafter does not 

require any hardware modification (as external clock circuits and/or analog mixing stages) to 

increase the sample rate and turns out to be the optimal solution for the majority of already 

available ADCs integrated in embedded systems. The proposed acquisition strategy permits, 

in fact, to achieve a higher time resolution when digitizing a signal included in the ADC 

bandwidth in real-time, by combining the already available hardware section (constituted by 

the traditional ADC and the high resolution time basis) with a proper software procedure, 

which provides a suitable random sequence of sampling instants and reconstructs the signal of 

interest according to the CS theory. 

4.2  Increasing the effective sample rate of embedded DAS 

For the sake of clarity, the key idea underlying the method is described and compared both to 

the traditional and compressive sampling approach. 
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4.2.1 Traditional Sampling Approach 

In Fig.4.1 the traditional sampling approach, adopted by the majority of ADCs, is shown. The 

ADC operates at its highest sampling rate and input signal samples are uniformly taken with a 

sampling period equal to Tconv, which is the time interval required by the ADC to digitize (i.e. 

to sample and convert) a single sample. Alias-free sampling can be assured on signal whose 

maximum spectral content is lower than 1/(2Tconv). It is useful to highlight that in the case of 

low cost microcontrollers , the limited memory depth (usually shorter than 10kSamples) 

permits to save only short time records of the input signal.  

 

Fig. 4.1. Traditional approach for signal sampling; samples of the input signal of interest are 

uniformly digitized with constant period equal to Tconv. 

4.2.2 CS-based Sampling Approach 

As shown in Fig.4.2, if the samples (indicated by black dots) are randomly acquired 

throughout the observation interval, the signal of interest can accurately be reconstructed 

(samples marked by red dots) as it had been continuously digitized with a sampling period 

equal to Tconv.  

It is worth noting that the desired reconstruction is achieved starting from a very limited 

number of random signal samples. It was shown that accurate reconstruction can be gained, 

with a compression ratio up to 98% for multicomponent signals (i.e. 10kSamples input signals 

were recovered starting from 200 acquired random samples). 
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Fig.4. 2. Sampling strategy based on CS; only few samples are randomly digitized from which the 

input signal can be reconstructed with constant sampling period equal to Tconv. 

4.2.3 Proposed Sample Rate Improvement 

A new method (in the following referred to as new acquisition strategy) based on CS has been 

defined and implemented for increasing the effective sample rate of embedded DAS. The 

availability of a suitable time basis allows to finely set the random sampling instants (i.e. the 

time instants the ADC starts to convert a single sample, which are marked as black dots in 

Fig.4. 3), with a time resolution equal to Tc. Even though the conversion of a single sample 

takes a time Tconv greater than Tc (Tconv = 5 Tc in the example shown in Fig.4. 3), the proposed 

approach assures that the input signal will finally be reconstructed (red dots) at an effective 

sample rate equal to 1/Tc. As it can be expected, the only constraint is that the time difference 

between two successive actual sampling instants should be greater than Tconv. 

 

Fig.4. 3. Proposed acquisition strategy based on CS; thanks to the availability of a suitable time-

basis, the input signal can be reconstructed with constant sampling period equal to Tc<Tconv. 

4.3 Proposed Sampling Approach 

To improve the sample rate of ADC in low-cost embedded systems, the traditional hardware 

for analog-to-digital conversion has been complemented with a proper digital signal 
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processing mandated to generate the random sequence of sampling instants and reconstruct 

the signal of interest from the acquired samples (Fig.4.4). In particular, the sequence of the 

random sampling instants is determined as a multiple of a high resolution time-basis, Tc, and 

exploited to control the start of conversion (SOC) signal of the ADC. The sequence of 

considered instants and the corresponding samples (digitized at lower rate, equal to 1/Tconv, by 

the ADC) are given as input to the CS-based algorithm for the successive signal 

reconstruction, with a time resolution equal to that of the adopted time basis. Specific details 

about the determination of the random sampling instants along with some guidelines for the 

reconstruction algorithm are given in the following. 

 

Fig.4. 4. Block diagram of proposed solution for improving ADC sample rate. 

4.3.1 Sampling Instants Determination 

The first step of the new acquisition strategy is the determination of the actual sampling 

instants. According to the random sampling approach [21], the sampling instants ti are 

randomly chosen throughout the considered observation interval Tw equal to n times Tc. The 

key idea underlying the proposed sampling strategy is that the considered instants can be 

expressed as an integer multiple of the high resolution time basis Tc  

𝑡𝑖 = 𝑘𝑖𝑇𝑐,    𝑘𝑖 ∈ [0, 𝑛 − 1] 𝑎𝑛𝑑 𝑖 = 1, . . ,𝑚 (4.1)  

This way, the final signal reconstruction will be obtained with the same time resolution, 

thus granting a suitable enhancement of the nominal ADC sample rate. In order to assure 

proper operations of the CS-based ADC, the sampling instants ti have to satisfy the following 

expression (Fig.4.3) 

𝑡𝑖 = 𝑡𝑖−1 + 𝑇𝑐𝑜𝑛𝑣 + 𝑇𝑟𝑎𝑛𝑑 (4.2)  
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where Trand is the random interval between the end of a conversion and the start of the 

successive one; the considered constraint assures that no new conversion will start until the 

pending one is over. Moreover, a specific software procedure has been implemented in order 

to assure the generation of a pseudo-random sequence of multiples ki capable of assuring the 

full coverage of the observation with a suitable grade of randomness. In particular, let fr the 

value of the ratio between Tconv and Tc; the pseudo-random sequence generator has to assure 

the determination of m sampling instants within the interval from 0 up to nTc each of which 

far at least frTc from the successive one. To this aim, the procedure enlists the following steps: 

1. Evaluation of a suitable acceptance threshold tsh, equal to m/n (only m sampling 

instants among n possible values have to be determined) in the first iteration; 

2. Current sampling instant index ki is initially equal to 0; 

3. A pseudo-random number is generated according to uniform random distribution within 

the interval from 0 up to 1; 

4. If the obtained pseudo-random number is lower than the acceptance threshold, then ki is 

retained in sampling sequence and its value is updated by adding fr; 

5. If the obtained pseudo-random number is greater than the acceptance threshold, then ki 

is dropped and its value is incremented by one; 

6. If the number of sampling instants included in the sequence is lower than m and ki is 

lower than n-1 return to step 3; 

7. If ki is not lower than n but the sampling instants sequence is not yet full, a new 

acceptance threshold has to be calculated; this is particularly likely when the value m·fr 

is close to n. To assure a fast convergence of the procedure, a threshold increment by 

20% was adopted, i.e. the new value of tsh is 1.2 times the old tsh value; once updated 

the tsh value, return to step 2; 

8. If the number of sampling instants included in the sequence is equal to m and ki value is 

lower than n-1, the sampling instants sequence is complete and can be adopted to 

acquire the samples of the input signal. 

With regard to Tconv, since it is generated from the same fundamental clock, it usually is a 

multiple of the adopted time basis; if this is not the case, the first multiple of Tc immediately 

greater than Tconv is used, thus granting that condition (4.1) always holds. 
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According to the CS approach, and following the procedure described in the previous 

chapters, once the samples have been digitized, the input signal is reconstructed with the high 

resolution time basis Tc. 

4.4 Numerical Results 

To preliminarily assess the performance of the proposed sampling strategy, several tests have 

been executed by means of numerical simulations. The effect of the most influencing 

parameters, such as number of acquired samples m, ADC sample rate fconv, ADC vertical 

resolution nbit, signal-to-noise ratio SNR, jitter and input signal sparsity S, has been evaluated. 

Parameters value has been chosen as close as possible to those provided by the cheapest 

microcontrollers [22] or granted by most of the embedded systems [23] that are currently 

available on the market. Similar values will be selected in the successive actual experimental 

tests. With regard to the number of acquired samples m, it has always been lower than 

typically available memory depth. On the contrary, the number of samples n granted for the 

signal reconstruction has been even much greater than memory depth, thanks to the CS-based 

approach. 

As an example, some of the obtained results are presented in the following. Unless otherwise 

indicated, the input signal for tests has been a pure unipolar sinusoidal signal whose full scale 

amplitude and frequency were equal respectively to 2nbit-1 codes and 5 kHz; 80 random 

samples have been digitized with an effective vertical resolution of 12 bits at an ADC sample 

rate fconv equal to 10 kS/s, and the signal has been reconstructed over a time sequence of 

10,000 samples at an effective sample rate fc of 1 MS/s. For the sake of clarity, the parameters 

values are summarized in Table I.  

Table I. Parameters values typically adopted in numerical tests. 

Number of acquired samples 80 
Number or reconstructed samples 10000 
fconv [kS/s] 10  
nbit 12 
fc [MS/s] 1 
Input signal frequency [kHz] 5 
Input signal amplitude [Codes] 2𝑛𝑏𝑖𝑡 − 1 
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The reconstruction error has been used to assess the performance of the acquisition strategy. It 

is defined as: 

𝜀 =
‖𝑥� − 𝑥‖
‖𝑥‖

∙ 100 (4.3)  

where 𝑥� is the reconstructed signal and x is the original one. 

4.4.1 ADC Sample Rate and Vertical Resolution 
A first set of tests aimed at verifying the dependence of the performance of the proposed 

acquisition strategy on the ADC conversion period and effective number of bits. Several 

nominal values of ADC sample rate fconv and vertical resolution nbit have been taken into 

account. 

As an example, Fig.4.5 shows the input signal, the acquired samples and the reconstructed 

signal (which completely overlies the input signal) when nbit and fconv were equal respectively 

to 12 and 10 kS/s. It is worth noting that 80 samples are randomly taken throughout 50 

periods of the input signal; the acquired sequence clearly violates the Nyquist theorem. To 

better appreciate the performance of the proposed acquisition strategy, point-by-point 

differences ∆x between the reconstructed signal 𝑥� and the input signal x is shown in Fig.4.6. 

Differences greater than 1 code have never been found, thus assuring a reconstruction error as 

low as 0.007%. 

 

Fig.4. 5. Example of input signal, acquired samples (red circles), and reconstructed signal. 
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Fig.4. 6. Point-by-point differences between reconstructed and input signal. 

Some results of the executed tests are summarized in Fig.4.7. As it can be seen, the 

performance of the acquisition strategy turned out to be almost independent from the nominal 

ADC sample rate. This way, the desired acquisition can be carried out by exploiting the ADC 

with the lowest available sample rate. It is so possible to make the ADC working in less 

critical conditions, thus allowing to take advantage of most of its effective number of bits. 

Moreover, for each test configuration in terms of nbit and fconv, reconstruction error proved to 

be lower than the associated least significant bit (LSB), thus assuring that no harmful artifacts 

have been introduced by the proposed strategy. Finally, to compare the performance of the 

proposed acquisition strategy with that granted by the traditional CS approach [24], the same 

test has been executed with a tconv equal to tc for each value of nbit. The obtained values (i.e. 

the markers corresponding to a nominal ADC sample rate of 1 MHz in Fig.4.7) highlighted 

that no significant difference can be appreciated whatever the vertical resolution of ADC; this 

behavior can be easily explained if the equations system (5) is taken into account. Even 

though a suitable procedure for the generation of the random sequence of sampling instants 

has been defined, this choice involves no significant differences in solving the system (5). In 

other words, any random sequence is as good as any other from a theoretical point of view; 

only a negligible degradation in the mean performance is experienced, due to the time 

difference constraint (2) that slightly reduce the possible randomness of the sequence indexes. 

Similar considerations hold also in the other investigated test conditions. 
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Fig.4. 7. Reconstruction error versus the ADC sample rate for different values ADC vertical 

resolutions; markers associated with an ADC nominal sample rate of 1MS/s accounts for traditiona 

CS approach. 

4.4.2 Noise 

The influence of the noise on the performance has successively been investigated. For each 

value of SNR, 1000 pseudo-random sequences generated according to an additive white 

Gaussian noise (AWGN) have been added to the input signal; the average value of 

reconstruction errors have been evaluated.As an example, some results, obtained for different 

values of effective number of bits, are shown in Fig.4.8. As expected, the higher the SNR, the 

better the performance of the proposed acquisition strategy. In particular, reconstruction error 

similar to those given in Fig.4.7 have been achieved only for the higher values of SNR. 
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Fig.4. 8. Reconstruction error versus SNR; for different values of effective number of bits, nbit. 

4.4.3 Number of Acquired Samples and Effective Sample Rate 

A number tests have then been performed for different combinations both of number of 

random samples m and effective sampling frequency fc. As an example, some results are 

summarized in Fig.4.9. As it can be appreciated, the difference between reconstructed and 

original signal is always lower than 1 LSB, including when only 20 random samples are 

acquired, i.e. in the presence of a compression ratio �1 − 𝑚
𝑛
� ∙ 100 equal to 99.8%.  

 

Fig.4. 9. Reconstruction error versus the effective sample rate fc for different values of number m 

of randomly acquired samples. 
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4.4.4 Jitter 

As stated above, all the clock signals (included the high resolution time basis adopted by 

the proposed acquisition strategy) of an embedded system are derived from a fundamental 

clock, usually referred to as instruction cycle clock, fCk. Due to the specific architecture of the 

microcontroller and the software implementation of the time basis, a random difference 

between the nominal sampling instant and the effective one can occur. Such difference can be 

expressed in terms of number instruction cycles and typically assume integer values within 0 

and 10 [23]. In other words, from the nominal SOC instant to its actual execution, a random 

number of instruction cycles could occur, due to latency or uninterruptable instructions 

problems. It is worth noting that this drawback can be mitigated but not completely 

eliminated and acts as a jitter on the high resolution time basis. Moreover, the actual jitter of 

the fundamental clock can be neglected in the following analysis, since its value is much 

lower than that associated to the instruction cycles. For the sake of the clarity, Fig.4.10a and 

Fig.4.10b show the actual SOC events (point-dashed lines) associated with a difference of two 

instruction cycles (TJt) from the nominal SOC event (dashed line) in the presence of ratios 

fCk/fc equal respectively to 1 and 4; the effect of the jitter on the actual digitized sample (circle 

marker) on the input signal (full line curve) is clearly reduced. 

To analyze the effect of jitter, several scenarios have been simulated in terms of different 

values of ratio between instruction cycle clock frequency and effective sample rate. As an 

example, obtained results are presented in Fig.4.11 and Fig.4.12 for jitter values of 10 (worst 

case) and 2 (reduced jitter) instruction cycles, respectively.  

 

Fig.4. 10. Effect of instruction cycle jitter for different values of fCk/fc. 
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As it can be appreciated in Fig.4.11, 10 instruction cycles jitter highly degrades the 

performance of the proposed acquisition strategy. As expected, the worst results have been 

experienced when the effective sample rate matched the instruction cycle clock frequency; in 

this case, a difference with respect to the nominal value up to ten sampling instants can occur. 

Better results have been obtained for higher values of the ratio fCk/fc. However, values of 

reconstruction error never lower than 0.1% have been encountered. The performance of the 

proposed acquisition strategy improves if the jitter is reduced down to 2 instruction cycles 

(Fig.4.12). Reconstruction errors of few hundredths can, in fact, be assured with a suitable 

level of ratio fCk/fc. 

 

Fig.4. 11. Reconstruction error versus the number m of randomly acquired samples for different 

values of the ratio fCk/fc. when jitter equal to 10. 
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Fig.4. 12. Reconstruction error versus the number m of randomly acquired samples for different 
values of the ratio fCk/fc. when jitter equal to 2. 

4.4.5 Input Signal Sparsity 

Finally, the reconstruction error has been evaluated versus different values of number of 

acquired samples and number of spectral components included in the input signal (i.e. the 

signal sparsity in frequency domain). Specific test parameters are presented in Table II. As for 

the sparsity, its maximum value has been chosen according to eq.(14), once defined the 

highest number of random acquired samples. For each value of the signal sparsity 1000 

numerical input signals have been generated by adding S spectral components whose 

amplitude, phase and location within the Nyquist band have randomly been selected. For each 

test configuration, minimum, average and maximum values of the reconstruction errors have 

been calculated in terms of m and S;  some of the results are reported in Table III. 

Table 2. Parameters adopted in numerical tests conducted with different values of signal sparsity S 

and m. 

Number of acquired samples m [20, 40, 60, 80. 100] 
Jitter [Instruction cycles] 2 
SNR [dB] 50 
fCk/fc 20 
Input signal sparsity S [1,3,5,7,9,11] 
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As it can be expected, the higher the spectral content of the input signal, the higher the 

number of samples that have to be acquired in order to accurately reconstruct the signal. 

However, values of reconstruction error up to 10% has been experienced also when the input 

signal has been recovered from 100 random samples; this is mainly due to the effect of the 

considered jitter on spectral components characterized by higher frequency. This way, either 

the use of instruction cycle clocks with higher values of frequency or a greater number of 

random acquired samples is advisable to further mitigate this harmful effect. 

Table 3. Reconstruction error, expressed in relative percentage value, obtained in numerical tests 

conducted with different values of signal sparsity S and m. 

 m=20 m=40 m=60 m=80 m=100  

S=1 
0.02 0.01 0.01 0.01 0.01 Min 
1.04 0.85 0.80 0.78 0.79 Avrg 
3.52 1.89 1.65 1.55 1.61 Max 

S=3 
0.28 0.05 0.05 0.05 0.05 Min 

10.86 1.32 0.59 0.54 0.52 Avrg 
22.45 11.88 1.56 1.38 1.32 Max 

S=5 
4.11 0.21 0.04 0.05 0.03 Min 

17.34 6.77 1.00 0.45 0.41 Avrg 
35.52 20.45 10.06 1.71 1.29 Max 

S=7 
12.15 1.41 0.25 0.11 0.08 Min 
21.55 13.28 5.69 0.61 0.38 Avrg 
51.58 22.71 17.26 2.47 1.11 Max 

S=9 
11.59 9.05 1.19 0.19 0.12 Min 
26.98 17.09 10.82 3.40 0.45 Avrg 
50.76 28.47 24.22 16.41 1.94 Max 

S=11 
11.61 9.06 5.82 0.90 0.19 Min 
28.10 19.15 14.49 8.34 2.28 Avrg 
56.48 26.18 25.37 19.26 9.48 Max 

 

4.5 Experimental Tests 

A number of tests have finally been executed to assess the performance of the proposed 

acquisition strategy on two different cost-effective hardware architectures, characterized, 

respectively, by 8 and 32-bits core microcontrollers and specifications very close to those 
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presented in Section I and Section IV. A suitable measurement station has been setup 

(Fig.4.13), which includes: 

• a microcontroller acting as DAS (either 8 or 32 bits); 

• a dual-channel arbitrary function generator AFG3252C (maximum output 

frequency 240 MHz, 14 bits vertical resolution, 128 kSamples memory depth) by 

Tektronix; 

a personal computer mandated to (i) generate the random sequence of sampling instants, (ii) 

transmit it to the low-cost DAS, (iii) receive back the acquired samples and (iv) process them 

by means of a free tool (namely CVX [25] and working in MATLABTM environment). 

 

Fig.4. 13. Block diagram of the adopted measurment station. 

Input signals characterized by several sparsity values have been taken into account. With 

specific regard to signals different from pure sinusoidal tones, the so-called optimized 

multisine [26], has been adopted as test signal. The optimized multisine can be expressed as 

the sum of cosine waveform according to: 

 

𝑥(𝑡) = �𝐴ℎ cos(2𝜋𝑓ℎ𝑡 + 𝜑ℎ)
𝑆

ℎ=1

 (4.4)  
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where Ah, fh, and ϕh stand for the amplitude, frequency and phase of the h-th spectral 

component, respectively. Their values can easily be combined to generate a multitone signal 

whose amplitude is tailored to the ADC full scale range (3V and 5 V for 8 and 32-bits 

architecture respectively). In particular, for the considered application, the amplitude of the 

spectral components have been set to the same value in order to obtain a flat amplitude 

spectrum in the frequency region of interest. The phase of each component has been selected 

according to the criterion of crest factor (CF) minimization, thus assuring signals with suitable 

SNR in the whole observation interval. More specifically, Schroeder multisine [27] has been 

adopted; CF minimization was achieved by setting phase values according to the following 

expression: 

𝜑ℎ = −
ℎ(ℎ − 1)

𝑆
π (4.5)  

As for the tests conducted in simulations, the reconstruction error has been adopted as the 

performance indicator. The best estimate of the input signal x has been gained through either 

the traditional four parameters sine-fit [28] or multisine interpolation [29] of the reconstructed 

signal, according to the corresponding test. 

4.5.1 Tests conducted on 32-bits microcontroller 

The performance of the acquisition strategy have first been assessed on a 

STM32F303VCTM by STMicroelectronics, a microcontroller based on ARM Cortex M4 

core. It is characterized by a maximum instruction cycle frequency fCk equal to 72 MHz, data 

memory depth of 40 KB, four ADCs with selectable vertical resolution (6, 8, 10, and 12 bit) 

and full scale of 3 V [23]. The available values of Tconv consisted of the sum of: 

• a constant term TSAR equal to (nBit+0.5) TCk required for the execution of the 

operations of internal SAR ADC; 

• a selectable term TSamp ranging from 1.5 up to 601.5 TCk accounting for the 

sampling time [23]. 

Unless otherwise indicated, the input signal for tests has been a pure unipolar sinusoidal 

signal whose full scale amplitude and frequency were equal respectively to 3 Vpp and 

1.2 kHz; 100 random samples have been digitized with a nominal vertical resolution of 12 bits 

and the input signal has been reconstructed over a time sequence of 10000 samples. The 

microcontroller was operated at its maximum instruction cycle frequency. 
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A first set of tests have been conducted to assess the influence of the nominal sample rate, 

fconv, on the reconstruction performance of the proposed strategy. As expected, the higher the 

value of Tconv, (due to greater values of TSamp), the better the strategy performance, to the 

detriment of the ADC nominal sample rate. As an example, Table IV summarizes the results 

obtained on a sinusoidal signal with frequency equal to 6 kHz, for effective sample rate 

ranging from 1 MS/s and 12 MS/s: severe performance degradation has been experienced 

with the lowest value of Tconv (195 ns). This is mainly due to limited duration of the associated 

sampling time; this way, largest Tconv (usually 32 TCk) have been adopted in the successive 

experimental tests. 

Table 4. Effect of TConv (expressed in terms of multiple of fundamental instruction clock tCk), on 

mean reconstruction errors and experimental standard deviation for different conditions of 

effective sample rate. 

 m=20 m=50 m=100  

14 32 194 14 32 194 14 32 194 tConv [tCk] 

fc = 1 MS/s 
0.278 0.057 0.076 0.235 0.078 0.079 0.124 0.083 0.080 Avrg 

0.068 0.008 0.019 0.047 0.024 0.021 0.021 0.008 0.007 Std 

fc = 2 MS/s 
0.267 0.075 0.066 0.168 0.079 0.081 0.100 0.081 0.079 Avrg 

0.053 0.017 0.009 0.021 0.015 0.012 0.014 0.015 0.009 Std 

fc = 4 MS/s 
0.243 0.073 0.060 0.116 0.075 0.072 0.109 0.081 0.078 Avrg 

0.045 0.019 0.010 0.057 0.006 0.010 0.059 0.006 0.003 Std 

fc = 12 MS/s 
0.125 0.069 0.069 0.087 0.081 0.089 0.094 0.079 0.083 Avrg 

0.051 0.016 0.012 0.047 0.011 0.009 0.021 0.011 0.007 Std 
 

More exhaustive tests have been carried out on pure sinusoidal signals in different 

conditions of input signal frequency fs, number of acquired samples m, ADC actual sample 

rate fconv and frequency ratio fCk/fc. For each test configuration, 100 acquisitions have been 

made and the reconstruction error has been evaluated in terms of its mean and standard 

deviation values. In order to compare the results of the different configurations, the same 

sequence of random sampling instants has always been adopted. As an example, Fig.4.14 

shows some results obtained when Tconv and fc were equal respectively to 2.7 µs and 12 MS/s. 

Similar results have been gained in the other tests configurations. The reconstruction error got 
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worse for higher values of input signal frequency; the main reason for this was the effect of 

the instruction cycle jitter, as it can be noticed in Fig.4.14 and Table V.  

In particular, Fig.4.15 reports the evolution of the mean reconstruction error versus the 

effective sample rate of the converter for 6 kHz input signal; as it can be noticed, the higher 

the effective sample rate, the better the reconstruction error, since the jitter effect is reduced. 

The jitter effect is more evident from the results reported in Table V, which refer to a 

sinusoidal signal with frequency equal to 60 kHz, while the fundamental instruction clock 

adopted for the time basis was equal either to 12 and 72 MS/s. 

 

Fig.4.14. Reconstruction error versus the input signal frequency for different number m of 

randomly acquired samples. 

 

Fig.4. 15. Reconstruction error versus the effective sample rate for different number m of 

randomly acquired samples. 
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A specific feature of the arbitrary function generator has been exploited to assess the 

performance of the acquisition strategy in the presence of noisy signals. To this aim, 

wideband AWGN signals (characterized by different amplitude levels and 240 MHz 

bandwidth) have been generated and added to the signal of interest. Fig.4.16 shows the results 

obtained when Tconv and fc were equal, respectively, to 2.7 µs and 12 MS/s; results similar to 

those achieved without noise are granted only for SNR higher of 50 dB, i.e. the SNR value 

corresponding to the effective quantization noise of the adopted ADC. 

Table 5. Mean reconstruction errors and experimental standard deviation for different conditions 

of effective sample rate and fundamental instruction cycle clock. 

 m=20 m=50 m=100  

fc = 1MS/s  

fCk=12 MHz 

6.5 1.94 1.85 Avrg 

1.2 0.34 0.30 Std 

fc = 1MS/s 

fCk=72 MHz 

3.3 0.97 0.93 Avrg 

0.9 0.12 0.13 Std 

fc = 2MS/s 

fCk=12 MHz 

4.4 1.18 1.12 Avrg 

0.8 0.12 0.11 Std 

fc = 2MS/s 

fCk=72 MHz 

2.5 0.76 0.72 Avrg 

0.6 0.08 0.07 Std 

fc = 4MS/s 

fCk=12 MHz 

3.2 1.13 1.08 Avrg 

0.6 0.11 0.10 Std 

fc = 4MS/s 

fCk=72 MHz 

2.1 0.72 0.68 Avrg 

0.4 0.13 0.10 Std 

fc = 12MS/s 

fCk=12 MHz 

1.9 0.71 0.73 Avrg 

0.4 0.08 0.07 Std 

fc = 12MS/s 

fCk=72 MHz 

1.6 0.62 0.67 Avrg 

0.3 0.06 0.05 Std 
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Fig.4.16. Reconstruction error versus signal-to-noise ratio. 

 
The effect of the input sparsity has, finally, been investigated by means of the 

aforementioned multisine signal. To this aim, signals composed by different harmonic 

components have been taken into account. As an example, the results obtained for input signal 

involving up to 11 spectral components when Tconv and fc were equal respectively to 444 ns 

and 12 MS/s, which are given in Fig.4.17, show that the higher the spectral content, the worse 

the reconstruction error. Nevertheless, satisfying results (ε<1%) are granted in the whole 

analysis range. 

 

Fig.4. 17. Reconstruction error versus the sparsity of the signal 
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4.5.2 Tests conducted on 8-bits microcontroller 

Further experiments have been carried out on PIC18F4620 by Microchip, a typical 

example of very low cost, low performance 8-bit microcontroller. It is characterized by a 

maximum instruction cycle frequency fCk equal to 10 MHz, data memory depth of 4 kB, a 

single ADC with selectable vertical resolution (8 and 10 bit) and full scale of 5 V [22]. 

With regard to the considered configuration, a traditional external 4 MHz clock has been 

adopted, thus granting an effective fCk equal to 1 MHz. Similarly to the 32-bits 

microcontrollers, the nominal conversion interval TConv is given by the sum of a constant term 

equal to 11 TCk (needed for the digitization of the single sample) and a tunable sampling time 

ranging from 2 up to 20 TCk [22]. Tests have been conducted to the minimum Tconv (i.e. 15 µs) 

capable of assuring reliable conversion of the input signal, thus granting a theoretical 

maximum sample rate of about 66 kS/s. Unfortunately, the actual sample rate was limited to 

20 kS/s due to some instructions (beyond the traditional registers move) needed to implement 

the random acquisition strategy. Even in the presence of highly optimized assembly 

implementation of the code, no new acquisitions could start before the considered instructions 

have been executed. Thanks to the CS-based approach, the considered drawback has not only 

been recovered, but also overcome with sample rate values otherwise unavailable on the 

device. 

A first set of measurements involved different conditions of input signals frequency and 

number of acquired samples. Experiments have been conducted at an effective sampling rate 

fc equal to 1 MS/s (i.e. the worst condition in terms of instruction jitter) and nominal vertical 

resolution nbit equal either to 8 or 10 bits. As for the successive tests, signal amplitude has 

been set to match the ADC full scale (5V). For each test configuration, 100 successive 

random sequences have been acquired; as for the 32 bits microcontroller, the same sequences 

of sampling instants have been adopted in order to compare the performance throughout the 

different configurations. Some results, in terms of average reconstruction error and 

experimental standard deviation, are reported in Table VI and Table VII for 10 and 8 bits 

resolution, respectively.  

  

80 
 



Chapter 4: Sample Rate Enhancement In DASs For Low-Cost Sensing Nodes 

 

Table 6. Mean reconstruction errors and experimental standard deviation with nominal vertical 

resolution of 10 bits. 

fs (Hz) m=20 m=50 m=100  

100 
0.47 0.32 0.04 Avrg 

0.16 0.10 0.01 Std 

500 
2.9 2.3 0.28 Avrg 

0.2 0.2 0.01 Std 

1000 
4.4 4.4 0.55 Avrg 

0.4 0.3 0.02 Std 

 

As it could be expected, the highest the number of acquired samples, the better the 

reconstruction performance. This is particularly true for signals characterized by the highest 

frequency values, in correspondence of which the effect of instruction cycle jitter proved to be 

worse; jitter influence was so high in such conditions that similar results have been achieved 

for both vertical resolutions. As for the 32-bits microcontroller, its effect should be mitigated 

by setting higher values of instruction cycle frequencies.  

Table 7. Mean reconstruction errors and experimental standard deviation with nominal vertical 

resolution of 8 bits. 

fs (Hz) m=20 m=50 m=100  

100 
0.48 0.36 0.18 Avrg 

0.15 0.09 0.01 Std 

500 
2.9 2.2 0.32 Avrg 

0.3 0.2 0.03 Std 

1000 
4.4 4.3 0.58 Avrg 

0.4 0.4 0.03 Std 

 

The effect of noise on reconstruction performance has then been assessed by means of 

several tests conducted with different levels of AWGN signals and number of acquired 

samples. The test signal was a pure sinusoidal tone whose frequency has been set to 100 Hz. 

As an example, some results obtained for SNR values varying upon the interval from 20 up to 

50 dB are shown in Table VIII. As it can be noticed, obtained results are better than those 

achieved in tests conducted through numerical simulations. Experienced improvement mainly 
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relies on the reduced input bandwidth of the considered ADC (few tens of kHz), capable of 

cutting most of the high bandwidth (240 MHz) added noise. 

Further tests have finally been conducted with optimized multisine input signals. Different 

conditions of signal sparsity and number of acquired samples have been taken into account. 

As an example, Fig.4.18 shows estimated input signal, acquired samples and the reconstructed 

signal when S and m were equal respectively to 5 and 100. More details can be appreciated in 

Fig.4.19, where the point-by-point differences between reconstructed and input signal is 

plotted. Some results are given in Table IX. No reliable results were obtained with a number 

of acquired samples lower than 20, while 50 samples allowed to reconstruct the input signal 

with no more than 7 spectral components; as it can be expected, the best results were achieved 

only when at least 100 random samples were acquired. 

Table 8. Mean reconstruction errors and experimental standard deviation in different noise 

conditions. 

SNR 

(dB) 
m=20 m=50 m=100  

20 
1.5 1.5 1.5 Avrg 

0.2 0.2 0.2 Std 

30 
0.62 0.58 0.52 Avrg 

0.10 0.11 0.05 Std 

40 
0.51 0.36 0.20 Avrg 

0.15 0.10 0.03 Std 

50 
0.53 0.35 0.14 Avrg 

0.14 0.09 0.02 Std 
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Fig.4. 18. Example of estimated input signal, acquired samples (red circles), and reconstructed 
signal in the presence of 5-components multisine. 

 

Fig.4.19. Point-by-point differences between reconstructed and input signal. 
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Table 9. Mean reconstruction errors and experimental standard deviation in different conditions of 

input signal sparsity. 

Sparsity m=50 m=100  

3 
0.60 0.09 Avrg 

0.22 0.01 Std 

5 
2.5 0.29 Avrg 

0.8 0.04 Std 

7 
4.6 0.35 Avrg 

1.2 0.11 Std 

9 
- 0.53 Avrg 

- 0.16 Std 

11 
- 0.62 Avrg 

- 0.21 Std 

 

4.6 Conclusions 

In this Chapter a new acquisition strategy, based on compressive sampling, for the 

improvement of the effective sampling rate of ADC usually integrated in microcontrollers or 

embedded systems has been presented. The proposed strategy is tailored on cost-effective 

embedded systems characterized by reduced performance in terms of data acquisition block, 

and exploits the availability of a high resolution time basis to finely set the sampling instants 

of the random samples acquired through a low-rate ADC. Thanks to the adopted CS approach, 

the signal of interest can be reconstructed with the same time basis, thus enhancing the sample 

rate. 

Preliminary tests conducted in simulations highlighted the promising effective 

performance of the proposed strategy in the presence of signals characterized by different 

amplitude and spectral contents. Experimental tests have also been carried out on 

microcontrollers characterized by different internal architecture and operating specifications. 

It is worth highlighting that satisfying results were obtained with both embedded systems, 

with increase of effective sample rate up to 50 times with respect of the actual ADC sample 

rate. Different measurement conditions in terms of input signal and noise have been taken into 

account as well as several configurations of acquisition parameters, such as effective sample 

rate, nominal number of bits and number of acquired random samples. The results obtained 
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and discussed can be adopted as guidelines in choosing the proper trade-off between desired 

reconstruction error and computational burden. 
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5 Compliance assessment of the CS based 
architecture in Harmonic and Interharmonic 
Measurements. 

5.1 Introduction 

Recently, the increasing use of electronic devices and the large use of renewable energy 

sources in the transmission grid are leading to the generation of power quality disturbances. 

Consequently, in order to evaluate the power quality in a grid, the capability of measuring 

disturbances and the identification of the their sources is becoming very relevant. The 

measurement system of the grid electrical quality has to be distributed, with the measurement 

nodes that locally acquire the signals, process the sample in order to calculate the quantities of 

interest, and send them back to a central collecting and processing unit. 

As it can be expected, the number of measurement nodes increases according to the extension 

of the monitored grid. Even though the cost of the single nodes should not be excessive 

(ranging from 10 k€ for high performance meter down to few hundreds of euro for devices 

not compliant with the current measurement standards), deploying thousands of such devices 

turns rapidly to be very expensive.  

To overcome the considered limitation, the research activities presented in the previous 

chapters  suggest evidenced the possibility to move towards a different approach for 

monitoring grid deployed on wide geographical areas, exploiting the advantages of an 

innovative measurement approach: the Compressed Sampling. In particular, the proposed 

architecture consists of low cost nodes mandated only to acquire and digitize a limited 

number of input signal samples and transmit them to a central measurement unit, saving, thus, 

the costs related to large memory supports and expensive digital processing units. Once the 

samples have been received, the central unit recovers the signal spectrum thanks to CS-based 

algorithm and carries out the desired measurements. In the following, a number of numerical 

and experimental tests assessed that the measurement node based on CS approach is 

compliant with the current Power Quality standard. In particular, the capability of CS-based 

acquisition approach of correctly measuring root-mean-square amplitude of harmonic and 

interharmonic voltage pollution has been verified. 
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5.2 The proposed approach 

The standard IEC 61000-4-7 (Electromagnetic compatibility (EMC) Part 4: Testing and 

measurement techniques Section 7: General guide on harmonics and interharmonics 

measurements and instrumentation, for power supply systems and equipment connected 

thereto) suggests a method of interharmonics measurement based on the concept of the so-

called “grouping”. Its basis is Fourier analysis performed in a time-window equal to 10 cycles 

of the fundamental frequency (50Hz), i.e. approximately 200 ms. Sampling is synchronised 

with the power supply frequency by means of a phase-locked loop. The result is a spectrum 

with 5 Hz resolution.  

The sample rate, according to the Nyquist theorem, has to be set equal or greater than 10 kS/s, 

whereas the number of samples has to be equal or greater than 2000, since 100 harmonics are 

spread over 1000 bins. In order to exploit the Fast Fourier Transform (FFT) algorithm, a 

number of samples equal to a power of two is usually preferred. Successively, the spectrum is 

further processed according to the standard, in order to estimate the harmonics and 

interharmonics pollution affecting the measured voltage. 

In particular, as recommended by the IEC 61000-4-7 standard, the process is based on 

grouping and subgrouping of spectral components. These operations allows to measure the 

harmonic and interharmonic amplitudes even in the presence of slight fluctuation of 

frequency, which causes that the energy of a harmonic component spreads over different bins 

of the spectrum. The grouping operation for the estimation of harmonics amplitude is shown 

Fig. 5.1a, whereas the subgrouping one is shown in Fig. 5.1b. With regard to the harmonic 

components, if kh is the frequency bin associated to the the hth order component, the amplitude 

of the hth harmonic group Xhg,h is obtained by taking into account the amplitudes X of the ten 

nearest bins, according to the formula:  

 Xhg,h = �1
2

Xkh−5
2 + ∑ Xkh+i

2 + 1
2

Xkh+5
24

i=−4  (5.1) 
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Fig.5.1 a) Harmonic group b) Harmonic subgroup. 

The amplitude of the harmonic subgroup Xhsg,h, of the hth order, instead, is obtained by taking 

into account the two nearest bins: 

 Xhsg,h = �∑ Xkh+i
21

i=−1  (5.2) 

Similarly, the amplitude of the hth interharmonic group Xig,h is defined according to: 

 Xig,h = �∑ Xkh+i
29

i=1  (5.3) 

The amplitude of the hth interharmonic subgroup group Xisg,h is given by: 

 Xisg,h = �∑ Xkh+i
28

i=2  (5.4) 

For the sake of clarity, a graphical representation of interharmonic group and subgroup is 

shown in Fig. 5.2. 
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Fig.5.2 a) Interharmonic group b) Interharmonic subgroup.  

In the proposed approach, instead, only M<<N samples of the input signal are digitized; but in 

order to assure the frequency resolution compliant to the standard, the sampling process still 

have to be synchronized with the fundamental input frequency with the aim of acquiring an 

observation interval involving exactly 10 periods of the input signal. 

To this aim, the internal architecture of the proposed CS-based Sensor Node is shown in 

Fig.5.3  

 

Fig.5.3 Scheme of the CS-based Sensor Node. 

The pre-processing block receives in input the signal of interest, usually characterized by 

nominal amplitude of 230 VRMS, and adapts the voltage levels to the range of the ADC. The 
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Time Base Generation Block determines the time base resolution Tc, locked to the signal 

career frequency, in order to assure a synchronous sampling and prevent spectral leakage 

phenomena. However, the required sampling frequency is lower than that 10 kS/s, since the 

time base 𝑇𝐶 is only used for generating the random sampling instants.  

The Generation of Random Sampling Instants Block, in fact, receives Tc, and determines the 

sampling matrix Φ. In particular, this block randomly generates M integer numbers ki and 

obtains the M sampling instants ti as random integer multiple of the resolution time bases 𝑇𝐶 

[1]: 

 ti = kiTc,    ki ∈ [0, N − 1] and i = 1, . . , M (5.5) 

Finally, the Sampling Conversion Block acquires and converts the reduced number of 

samples according to the received sampling instant and stores them. 

The acquired M samples are sent, then, to the Central Measurement Unit, together with the 

sampling instants, that are necessary for the CS-based spectrum reconstruction. 

The CMU has to perform the following tasks: (i) recovering of the magnitude spectrum of the 

input signal x, by means of a proper routine (CS-Solver) able to solve the convex 

minimization problem; (ii) estimation of harmonic and interharmonic disturbances according 

to IEC 61000-4-30 standard; (iii) data aggregation over 10 minutes intervals; and (iv) storage 

of the spectrum reconstructed through the samples received by all the sensing nodes deployed 

within the monitored grid.  

Since the samples are stored in the CMU memory, it is not necessary to aggregate them. 

Therefore, time domain waveform of the input signal can be easily recovered at any time, if 

required by the operator (for example, if a fault has occurred). This capability is a further 

considerable advantage, with respect to traditional architecture, especially if diagnostics 

issues of the grid are taken into account. 

5.3 Test Assessment 

5.3.1 Aims of the tests 

Several tests, both numerical and experimental have been performed in order to assure that the 

measurement system based on CS is compliant to the standard. The tests have been carried 

out by means of the following steps: (i) a proper source supplies a voltage waveform affected 
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by harmonics and interharmonics whose order and amplitude are determined a priori, (ii) the 

measurement device performs the measurements of the groups and subgroups as defined in 

(5), (6), (7), and (8) and (iii) verifies that the deviation between the imposed values and those 

measured is lower than the recommended limit. 

As regards the measurement of harmonic and interharmonic disturbances, the IEC 61000-4-30 

standard refers to IEC 61000-4-7, that provides the accuracy requirements. The uncertainty 

limits associated with the harmonic subgroups measurements are reported in Tab. I for 

different conditions of meter class and component amplitude (Um) with respect to the rated 

RMS voltage (Unom) of the power system. 

Tab.I Limits of desired uncertainty related to class A and B meters according to the standard IEC 61000-4-7. 

Class Measurement Conditions Maximum error 

A Voltage 
Um ≥ 1% Unom ± 5 % Um 
Um < 1% Unom ± 0.05 % Unom 

B Voltage 
Um ≥ 3% Unom ± 5 % Um 
Um < 3% Unom ± 0.15 % Unom 
 

Numerical tests have been carried out through a suitable algorithm developed in Mathworks 

Matlab® programming language. The script allows to synthetize 2048 samples of a discrete-

time reference signal x, with a time period of 20 ms and an associated sampling rate of 

10.24 kS/s, made by sums of sinusoidal wave shapes at harmonic and interharmonic 

frequencies. It is possible to set the nominal amplitude of each harmonic and interharmonic 

component.  

Also the acquisition system has been simulated in Matlab, through a proper sampling and 

quantizing function, which allows to select: (i) the resolution time base Tc for the random 

sequence of sampling instants; (ii) the resolution (i.e. the number of bits) of the simulated 

ADC; (iii) the number of samples M and the number of reconstructed samples N, which both 

determine the compression ratio 

 𝐶𝑅 = �1 − 𝑀
𝑁
� ∙ 100 (5.6) 

The digitized samples are then supplied to the reconstruction algorithm, in order to estimate 

the magnitude spectrum of the input signal. At this aim, one of the free available CS-Solvers, 

CVX, is used [2], with the aim of finding the sparse solution of the convex optimization 

problem. 
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As performance factor, the difference between measured and nominal amplitude of each 

harmonic and/or interharmonic subgroup has been evaluated and compared with the 

maximum error defined in the IEC 61000-4-7 for class A meters.  

5.3.2 Selection of the Test Signal 

It is worth noting that particular attention has to be paid to the selection of the harmonic 

content of the generated test voltage. The number of test voltage sets, in fact, could be 

theoretically infinite due to the degrees of freedom associated to the number of harmonic and 

interharmonic components, to their frequency and to their amplitude.  

According to condition (1.10) the performance of the CS approach depend on the sparsity of 

the input signal; the higher is the number of frequency components (i.e. the sparsity S), the 

higher is the number of required samples M for accurately reconstruct the input signal. 

Therefore, the reference input signal has been selected in order to assess the proposed 

approach in the worst operating conditions. At this aim, the harmonic and interharmonic 

components have been set according to the maximum values reported in the standard EN 

50160, which defines the main voltage characteristics of electricity supplied by public 

distribution network under normal operating conditions. 

With specific regard to spectral harmonic content, during the period of a week, the 95% of 

RMS values of each individual harmonic voltage up to the 25th order, aggregated over time 

intervals of 10 minutes, shall be less than or equal to the values given in Tab. II. Moreover, 

the total harmonic distortion of the supply voltage (including harmonics up to the order 40) 

shall be less than or equal to 8%.  
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Tab.II – Limit values of individual harmonic voltages at supply terminals for order up to 25 given in per cent of 

the fundamental amplitude u1 

Odd harmonics 
Even harmonics 

Not multiples of 3 Multiples of 3 

Order h 
Relative amplitude 

uh 
Order h 

Relative amplitude 

uh 
Order h 

Relative amplitude 

uh 

5 6.0 % 3 5.0 % 2 2.0 % 

7 5.0 % 9 1.5 % 4 1.0 % 

11 3.5 % 15 0.5 % 6 ... 24 0.5 % 

13 3.0 % 21 0.5 %   

17 2.0 %     

19 1.5 %     

23 1.5 %     

25 1.5 %     

 

Therefore, the signal x has been obtained by combining all the spectral harmonics up to 25th 

order. The amplitudes of the harmonic components have been set equal to the limits provided 

by EN 50160, with the purpose of assessing the proposed approach with the input signal 

affected by the maximum pollution admitted on the transmission networks. The harmonic 

content of the test signal is shown in Fig.5.4, where the amplitudes are referred to the rated 

RMS voltage Unom of 230 V. 

 
Fig.5.4 Harmonic content of the test signal  

95 
 



Chapter 5: Compliance assessment of the CS based architecture in Harmonic and 
Interharmonic Measurements 

Several tests have been performed by varying the characteristics of the acquisition system 

(resolution and number of acquired samples), in order to establish the proper trade-off 

between hardware costs and compliance to the uncertainty limits stated by the standard.  

5.3.3 Simulation Results 

As an example, Fig.5.5, shows the test signal and the acquired samples, highlighted by means 

of red markers. As can be observed, samples have been taken uniformly at random in the 

observation time window of 200 ms. 

 
Fig.5.5 The test signal in time-domain (blue line) and the acquired random samples (red dots) 

The amplitude spectrum of the test signal has been reconstructed by means of CS-based 

spectrum estimation by taking 125, 150, 175 random samples with a vertical resolution of 10 

bits. The 3D-bar plot in Fig.5.6 shows the differences between measured and nominal 

amplitude of each harmonic subgroup. The red surface shapes the maximum error allowed 

according to IEC 61000-4-7 for each harmonic subgroup. As it can be appreciated, most of 

the amplitude measured with only 125 and 150 random samples are not compliant with the 

limits of desired uncertainty (the relative 3D-bar plot passes the red surface). On the contrary, 

by increasing the number of acquired samples up to 175, an accurate estimate of the RMS 

amplitude of each harmonic subgroup can be gained. The numerical results prove that the CS-

based PQ instrument is able to measure the polluted voltage of actual electrical power 
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delivery systems by means of the acquisition of only 175 samples, rather than the 2048 

samples necessary to traditional PQ instruments (i.e. a compression ratio of 91.45% is 

obtained), with notable reduction of the involved memory depth.  

 
Fig.5.6 Measured error for each harmonic subgroup for different number of random samples. 

In order to assess the performance in actual operating conditions the influence of the noise has 

been successively investigated by means additional tests. As an example, results with a Signal 

to Noise Ratio (SNR) of 60 dB and for different values of effective number of bits, are shown 

in Fig.5.7.  

The amplitude spectrum of the test signal has been reconstructed by means of CS-based 

algorithm by taking 250 random samples with a resolution of 10, 12, 14 bits. In this instance, 

the relative 3D-bar plot proves that if the number of bits is equal to 10, some RMS amplitudes 

of harmonic subgroups are not correctly measured. On the contrary, a resolution at least equal 

to 12 effective bits is suitable to perform harmonics measurements compliant with standard 

IEC 61000-4-7. 
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Fig.5.7 Measured error for each harmonic subgroup for different ADC resolutions.  

 

5.3.3.1 Issue concerning interharmonic components 

Most of the instruments performing PQ measurements make use of a phase locked loop in 

order to synchronize the acquisition with the fundamental frequency of the input signal so that 

exactly 10 cycles are obtained. This approach is, obviously, not suitable for the measurement 

of interharmonics component, whose frequency is not an integer multiple of the fundamental 

frequency. Since the observation interval does not include an integer number of periods of the 

interharmonic components, the magnitude spectrum suffers from spectral leakage. Traditional 

PQ instruments usually mitigate this effect by applying a suitable window to the input signal.  

The proposed CS-based PQ instrument also takes advantage from a proper windowing 

technique; in particular, the Hanning window is applied to the acquired samples.  

In order to assess the performance of proposed method also if interharmonic components 

occur, a suitable number of tests have been conducted. In Fig.5.8, the signal obtained by 

combining the test signal in Fig.5.4 with two interharmonics is shown. In this instance, the 
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interharmonic frequencies have been set equal to 75.5 and 775.5 Hz, whereas the amplitudes 

have been set equal to 30 Vrms 

 
Fig.5.8 Test signal used to assess the proposed method also in presence of interharmonic components. 

 
Fig.5.9 Signal windowed through Hanning function. 

 

99 
 



Chapter 5: Compliance assessment of the CS based architecture in Harmonic and 
Interharmonic Measurements 

and 15 Vrms respectively. For the sake of clarity, the samples acquired according to the CS 

strategy and processed through the Hanning window, are shown in Fig.5.9, marked with red 

dots. 

The 3-D bar plot in Fig.5.10 shows that for the considered test signal, windowed with a 

Hanning function, an accurate estimate of the RMS amplitude of each interharmonic subgroup 

can be gained by means of no less than 350 samples, slightly greater than required when the 

considered test signal is obtained by combining all the spectral harmonics up to 25th order. 

This results could be expected, since the test signal used in order to assess the performance of 

the proposed method in occurrence of interharmonic pollution, have been obtained adding to 

test signal of Fig.5.4 two interharmonic components, thus increasing the sparsity S of the 

input signal. 

 
Fig.5.10  Measured error .in presence of interharmonic components for different number of random samples. 

5.3.4 Experimental Results 

Numerical results have provided fundamental information about the characteristics that the 

acquisition system has to meet, in terms of vertical resolution (effective number of bits) and 

number of samples. In particular, an ADC characterized by 12-bit resolution and able to 

acquire about 250/350 random samples (depending on the occurrence of interharmonic 
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components), over an observation time interval of 200 ms, should be adopted in order to 

assure measurement results compliant with IEC 61000-4-7 standard.  

The performances of the proposed approach have been further assessed also in actual 

operating conditions, through the realization of a proper test station, that has been set up 

exploiting high-performance components, in order to evaluate the performance of the 

reconstruction algorithm regardless the uncertainty introduced by the hardware devices.  

 
Fig.5.11 Set up for experimental tests. 

In particular, the measurement station (Fig. 5.11), involves:  

• A Data Acquisition System (DAS) NI9215, by National Instruments, characterized by 

a sample rate of 10 kS/s for each channel, an input voltage ranges of ±10.4 V and a 

nominal vertical resolution of 16 bit. 

• An electrical power calibrator FLUKE 6100A [3], able to generate a wide variety of 

complex signals, including harmonic and interharmonic components; the calibrator 

FLUKE 6100A has been configured in order to provide the same signal adopted in the 

numerical tests. 

• A voltage transducer LEM CV 1000, characterized by an extended bandwidth from 

DC up to 500 kHz, with a conversion ratio equal to 100, and an overall accuracy of 

0.1%, mandated to adapt the output signal of the calibrator. 
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• A Personal Computer (PC) mandated to: (i) set calibrator FLUKE 6100A by means of 

a proper user interface; (ii) set parameters of the data acquisition system and start the 

acquisition process; (iii) receive and process the digitized samples in order to 

reconstruct the input signal. 

Since the available DAS executes only traditional uniform sampling, the random sampling, 

necessary for exploiting the CS-based approach, has been obtained through a proper 

decimation process, performed by a software application. As reported in the flow chart of 

Fig.5.12, the DAS acquires N samples according to its constant sampling rate fc and sends 

them to the PC, where a suitable function, "Random Sampling", randomly extracts the desired 

number M of samples from the measurements vector of size N. As matter of practice, this 

operation is equivalent to perform a random sampling of M samples of the input signal 

acquired at M random instants that are integer multiple of Tc=1/fc in the observation time 

interval. In order to assure a frequency resolution equal to 5 Hz and the reconstruction of the 

spectral components up to the 100th harmonic, 2000 samples have been acquired during an 

observation interval of 200 ms. 

As for the numerical tests, the performances of the proposed approach are quantified through 

the comparison with results obtained through the traditional DFT algorithm. The amplitude of 

the frequency components measured through DFT, in fact, is considered as the reference 

values. In the left side of the flow chart in Fig.5.12, the reference harmonic amplitudes are 

obtained by processing the complete vector of 2000 samples according to the traditional 

Fourier analysis. In the right side of the flow chart, the compressed vector of M samples is 

given as input to the CS-based reconstruction algorithm. Both the two approach compute the 

magnitude spectrum on 2000 bins and determine the amplitude of harmonic and 

interharmonic subgroups. Successively, for each harmonic and/or interharmonic order, the 

difference between the amplitudes measured by means of CS-based spectrum estimation and 

that measured by means of DFT (referred to as measured error) has been evaluated and 

compared with the maximum error defined in the IEC 61000-4-7 for class A meters. Also in 

this instance, the algorithm has been implemented through Mathworks Matlab® programming 

language. 
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Fig.5.12  Flow chart illustrating the operation of the experimental assessment. 

Also in these tests, compliance with IEC 61000-4-7 standard has been evaluated versus 

different values of number of random samples M. For each test configuration, 100 

acquisitions have been performed and the difference between amplitudes measured by means 

CS-based spectrum estimation and reference amplitudes of each harmonic and/or 

interharmonic subgroup has been evaluated in terms of mean and standard deviation.  

According to a worst-case approach, the maximum value observed within the 100 repeated 

acquisitions of the measured error has been evaluated for each harmonic subgroup and for 

different number M of samples. The results are shown in Fig.5.13. As it can be noticed, the 

non-idealities characterizing the actual acquisition process affect the accuracy of the CS-based 
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reconstruction algorithm. In fact, in this instance the minimum number of samples required in 

order to assure the compliance to the standard for each frequency component is M=450, 

causing the increase of the compression ratio up to 77%. 

 

Fig.5.13 Maximum measured error within 100 repeated acquisitions for different number of samples in 
experimental tests.  

Additional information about the experimental characterization is given in Tab. III, where, for 

each harmonic group and for three values of M, have been estimated: (i) the error limit stated 

by the standard, (ii) the mean the error measured on 100 repeated acquisition, (iii) the 

maximum observed error, and (iv) the number of trials (in terms of percentage of 100 

acquisitions) in which the maximum measured error is lower than the allowed limit (i.e. the 

error is compliant to the standard). 
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Tab.III – Experimental results for different number of samples. 

  M=350 M=400 M=450 
Orde

r 
limit 
[V] 

mean [V] max [V] compliance 
to standard 

mean [V] max 
[V] 

compliance 
to standard 

mean 
[V] 

max [V] compli
ance to 
standar

d 
2 0,235 0,044 0,198 100% 0,035 0,570 99% 0,025 0,074 100% 
3 0,580 0,049 0,633 99% 0,031 0,305 100% 0,027 0,082 100% 
4 0,119 0,044 0,261 93% 0,036 0,667 99% 0,022 0,083 100% 
5 0,694 0,055 0,669 100% 0,032 0,207 100% 0,027 0,108 100% 
6 0,115 0,063 1,156 91% 0,036 0,776 98% 0,024 0,102 100% 
7 0,579 0,057 0,916 97% 0,041 0,581 100% 0,025 0,087 100% 
8 0,115 0,067 0,985 91% 0,032 0,112 100% 0,027 0,108 100% 
9 0,178 0,054 0,696 95% 0,034 0,611 98% 0,024 0,119 100% 

10 0,115 0,054 0,846 94% 0,030 0,113 100% 0,027 0,090 100% 
11 0,406 0,062 0,914 97% 0,042 0,573 99% 0,031 0,101 100% 
12 0,115 0,063 1,166 91% 0,034 0,522 99% 0,029 0,089 100% 
13 0,350 0,059 1,087 97% 0,038 0,271 100% 0,031 0,102 100% 
14 0,115 0,064 0,875 91% 0,036 0,289 98% 0,028 0,074 100% 
15 0,115 0,058 1,077 93% 0,034 0,290 99% 0,027 0,109 100% 
16 0,115 0,059 0,764 92% 0,036 0,336 98% 0,028 0,109 100% 
17 0,235 0,063 0,948 96% 0,041 0,477 99% 0,031 0,117 100% 
18 0,115 0,058 0,744 93% 0,031 0,120 99% 0,026 0,078 100% 
19 0,176 0,054 0,660 95% 0,035 0,327 99% 0,028 0,080 100% 
20 0,115 0,048 0,520 93% 0,036 0,253 99% 0,025 0,080 100% 
21 0,115 0,053 0,777 95% 0,037 0,184 98% 0,027 0,088 100% 
22 0,115 0,048 0,660 93% 0,032 0,161 99% 0,022 0,085 100% 
23 0,176 0,054 0,623 97% 0,036 0,105 100% 0,031 0,092 100% 
24 0,115 0,045 0,393 94% 0,036 0,224 97% 0,028 0,093 100% 
25 0,178 0,052 0,336 98% 0,045 0,153 100% 0,036 0,120 100% 

 

As it can be expected, the higher the number of random acquired samples, the better the 

performance of the proposed approach in terms of both maximum error and number of 

compliant results; some deviations from this general enhancement, however, have been noted 

(e.g. 2nd and 4th harmonic orders). Such a behavior is related to the reconstruction quality that 

depends on the number of acquired samples; according to what stated in [4], correct 

reconstructions are granted “with overwhelming probability” only if eq. (1.10) is strictly 

satisfied. If this is not the case, unpredictable outliers can likely occur also if the number of 

acquired samples is close to the required value (depending on the specific random sequence of 

acquired samples). When 450 random samples are taken into account, the proposed approach 

always assured convergent reconstruction and, as a consequence, reliable results; no outliers 

have been evidenced throughout the tests in the considered experimental configuration. 

As confirmation, Fig.5.14 shows the measured errors obtained for the 11th harmonic group in 

the different considered acquisition conditions. In particular, for each value of M, both the 

scattered plot of the measured errors and the corresponding empirical probability density 

functions (EPDFs) are drawn. Most of the measured errors (approximately 94%) were spread 

out in a limited interval equal for all the values of M and the width of main lobe of the EPDFs 

were roughly the same. The EPDF corresponding to 350 and 400 presented spurious samples 
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i.e. “outliers” far from the mean value causing the experienced worsening of the maximum 

error. 

 
Fig.5.14 Scattered plot and EPDF of measured error for different number of samples.  

5.4 Conclusions  

The results experienced in both numerical and actual experiments highlighted that by means 

of the CS-based approach the measurement of harmonic and interharmonic disturbances, 

compliant with the error limits stated by the current standards, can be obtained through the 

acquisition of a reduced number of samples, achieving a compression ratio equal to 77%. 

Thanks to these features, it is possible to exploit a cost-effective architecture for monitoring 

harmonic and interharmonic pollution on wide grid. The opportunity of acquiring a reduced 

number of samples not only makes possible the employment of low-cost devices, but it also 

allows to store in the memory of the CMU the minimal information for successive full 

reconstruction of the time domain waveforms if required for diagnostic issues.  
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Conclusions and Future Developments 
The research activity, presented in this Ph.D. final work, suggests the possibility to move 

towards a different approach for monitoring grid deployed on wide geographical areas, 

exploiting the advantages of an innovative measurement approach: the Compressed Sampling. 

In particular, the proposed architecture consists of low cost nodes mandated only to sample 

and digitize a limited number of input signal samples and transmit them to a central 

measurement unit, saving, thus, the costs related to large memory supports and expensive 

digital processing units. Once the samples have been received, the central unit recovers the 

signal spectrum thanks to CS-based algorithm and carries out the desired measurements. In 

other words, thanks to the CS-based approach, it has been possible to design and realize a 

measurement node, characterized by reduced memory depth and only one ADC that allows 

meeting the requirements of a distributed measurement system suitable for Smart Grid 

environment.  

In Chapter 2, a new method for the measurement of electrical power quality based on the new 

paradigm of compressive sampling has been presented. In particular, the attention has been 

focused on the measurement of the root means square (RMS) voltage whatever the harmonic 

content of the input signal. It has been proved that by using a compressive sampling approach, 

a notably reduction of the required memory depth to perform long-time analysis has been 

obtained. In Smart Grid applications, the measurement node is required to simultaneously 

acquire a defined number of quantities (e.g. voltage and current acquisition for smart metering 

applications). This requirement cannot be met on most of the traditional low-cost platforms, 

since they multiplex input physical channels to reduce the cost of the ADC section (i.e. one of 

the most expensive), thus allowing only sequential data acquisition to be performed. 

Therefore, overall measurement performance is limited, because an unwanted phase 

displacement turns out to be imposed on the acquired signals. This phase shift is mainly due 

to the inter-channel delay the multiplexer spends to acquire two samples on different 

channels, and proves to be a deep constraint that typically reduces the applicability of 

low-cost measurement nodes. To overcome the considered limitations, in chapter 3 a novel 

acquisition approach, based on CS, capable of carrying out multichannel simultaneous data 

acquisition also through inherently sequential DASs has been presented. The approach 

exploits a unique time-basis for all the input channels adopted, along with a compressive 

random sampling, in order to assure the reconstruction of desired signals without any artefact 
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due to the inter-channel delay and/or sequential acquisition scheme. A number of tests carried 

out both on numerical and actual sinusoidal signals highlighted and confirmed the promising 

performance of the proposed acquisition approach. Phase shifts among the reconstructed 

waveforms as low as few milliradians (about 0.016% of a whole period) have, in fact, been 

experienced in several measurement conditions, involving different values of the number of 

acquired samples, vertical resolution and input signal frequency, for 8-bit and 32-bit 

microcontrollers. 

For the proposed distributed monitoring systems, improving the performance of the embedded 

DAS, in terms of sample rate enhancement, can be crucial for the improvement of the whole 

measurement system. To this aim, a new method based on compressive sampling (CS), which 

permits to increase the maximum sample rate of DAS integrated in low-cost microcontrollers, 

has been proposed in Chapter 4. Preliminary tests conducted in simulations highlighted the 

promising effective performance of the proposed strategy in the presence of signals 

characterized by different amplitude and spectral contents. Experimental tests have also been 

carried out on microcontrollers characterized by different internal architecture and operating 

specifications. It is worth highlighting that satisfying results were obtained with different 

embedded systems, with increase of effective sample rate up to 50 times with respect of the 

actual ADC sample rate. 

Finally, in the Chapter 5, the compliance of the measurement node based on CS approach 

with the current Power Quality standard has been assessed by means of numerical and 

experimental tests. In particular, the capability of CS-based acquisition approach of correctly 

measuring root-mean-square amplitude of harmonic and interharmonic voltage pollution has 

been verified. 

The results provided by means of the CS-based approach experienced in both numerical and 

actual experiments highlighted that the measurement of harmonic and interharmonic 

disturbances, compliant with the error limits stated by the current standards, can be obtained 

through the acquisition of a reduced number of samples, achieving a compression ratio equal 

to 77%. Thanks to these features, it is possible to exploit a cost-effective architecture for 

monitoring pollution on smart grid. 

Future research activities can be addressed to:  

1. performance comparison, in terms of computational burden, among the different 
tools available for the solution of the optimization problem, 
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2. identification of optimal random sequence capable of making the proposed 
strategy with the lowest reconstruction error, 

3. exploitation of transformation matrix based on wavelet transforms in order to 
perform reconstruction of non stationary signals  

4. the implementation of the whole smart meter on a low-cost embedded system. 
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