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Abstract 

Since 50‟s the scientific community has been strongly interested in the 

modeling of several classes of stochastic processes, among which a 

particular attention has been attracted by hydro-meteorological phenomena. 

Indeed, both their synthetic reproduction and forecasting is a central point in 

the resolution of a wide class of problems, as the design and management of 

water resources systems and flood risk analysis. 

Concerning the modeling of generic stochastic variables, there are two 

crucial aspects to be addressed: the identification of the most appropriate 

model able to correctly reproduce the statistical features of the real process 

(i.e., model selection), and the estimation of the parameters of the selected 

model (i.e., model calibration) from available data, concerning both input 

and output processes of the system to be identified. 

During the last decades, considerable efforts have been undertaken by 

researchers to provide the scientific community with suitable calibration 

techniques of several class of models, resulting in the current availability of 

numerous procedures for the estimation of the selected model parameters. A 

general distinction can be made between time-domain and frequency-domain 

(or spectral-domain) calibration approaches, whose main difference consists 

in the typology of information adopted in the parameters estimation. Indeed, 

while the former are usually based on a numerical comparison between 

historical and synthetic series of the output process, spectral-domain 



 

 

procedures adopt, in several ways, the frequency information content of 

recorded input and output series. Such a substantial difference results in 

some considerable advantages for frequency-domain techniques, especially 

in the case of unavailability of sufficiently long and simultaneous records of 

both input and output variables. This latter condition, in particular, is not rare 

in the case of hydrologic model calibration problems, since the model input 

sequences (e.g., rainfall and air temperature series) and the output sequence 

(e.g., the streamflow series) can be usually both available but not 

simultaneously or even unavailable (i.e., poorly gauged or ungauged basins). 

These considerations make recommendable the adoption of frequency-

domain calibration techniques in hydrologic applications. 

Starting from this proposed framework, in this thesis the author focuses on 

the spectral-domain calibration problem of a widely developed class of 

models for the modeling of daily streamflow processes, the so-called shot 

noise models. These models consider the river flow process as the result of a 

convolution of Poisson-distributed occurrences, representing the rainfall 

process, and a linear response function, depending on the parameters to be 

estimated, representing the natural basin transformations. 

The technical literature provides several techniques for the calibration of this 

class of models, both in the time and in the frequency domain. Nevertheless, 

none of the existing procedures is found to take advantage of a remarkable 

property of shot noise models, i.e. the impulsive nature of the autocorrelation 

function of the input process. On the contrary, starting from this relevant 

feature, the proposed calibration technique allow the estimation of the basin 

response function parameters only through the knowledge of the power 

spectral density of the recorded streamflow series. Hence, on the one hand, 

the main drawbacks of classical time-domain calibration approaches are 



 

 

solved and, on the other hand, the dependence of existing frequency-domain 

techniques on the availability of both input and output data is overcome. 

The effectiveness of the proposed procedure is widely proved through its 

application to three daily streamflow series, associated to three watersheds 

located in the Italian territory. In particular, performances of the approach in 

the reproduction of the recorded flow series statistical properties are 

ascertained through a simulation analysis. 
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1. Introduction 

Stochastic modeling of hydro-meteorological phenomena has always been 

attracting a great interest among the scientific hydrologic community, 

especially given the relevant interest in the generation of synthetic data that 

represent non-deterministic inputs to the generic system under study, thus 

providing a basis for undertaking a variety of water-related design, 

operation, and diagnostic studies. Indeed, synthetic data generation allows 

accounting for uncertainty and large variability of input into the related 

process. Several technical fields are strongly suitable for the implementation 

of such approaches, due to the intrinsically uncertain nature of hydro-

meteorological phenomena involved, as input processes, into the problem to 

be solved. Moreover, the use of synthetic time series, instead of historical 

records, is essential for providing sufficiently large samples (e.g., with 

length of hundreds or thousands of years) in order to evaluate a wide range 

of possible outcomes [Efstratiadis et al., 2014]. 

One could think, for instance, to design and management problems of water 

resources systems, as the necessity of determining the most effective 

scheduling of an artificial reservoir over a fixed time period, in terms of 

maximization of system reliability (namely the probability of satisfying the 

associated water uses and constraints). In these cases the generation of 
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streamflow series from weekly to monthly aggregation scale is usually 

required. Moreover, for the representation of streamflows, finer time steps 

are also adopted (e.g., daily), for taking into account reservoir spills [Ilich, 

2014] and small-scale regulations. Another field of application of stochastic 

approaches involves the evaluation of flood risk, which requires even more 

detailed temporal resolutions (e.g., hourly). In particular, during the last 

years, a considerable attention has been paid to continuous flood modeling 

which makes use of synthetic rainfall [Boughton and Droop, 2003]. 

Synthetic weather data (i.e., temperature, potential evapotranspiration, solar 

radiation, wind velocity, etc.), can result particularly interesting in a wide 

range of water, energy and environmental applications, including the design 

and management of renewable energy systems [Tsekouras and 

Koutsoyiannis, 2014]. Furthermore, other several technical problems can be 

thought to be solved by the adoption of synthetic generator of river flows, as 

the evaluation of the long-time effects of erosion phenomena of river banks 

in a given section of interest, or the evaluation of the most convenient 

nominal power of a new hydropower system to be designed. 

The basic features of hydrologic time series that a stochastic model should 

be able to correctly reproduce can be summarized as [Efstratiadis et al., 

2014]: 

(1) asymmetric and marginal probability distribution; 

(2) persistent large amplitude variations at irregular time intervals and 

frequency-dependent amplitude variations; 

(3) periodicity, which appears at the sub-annual scale (e.g., monthly) and is 

due to the Earth motion; 

(4) intermittency, which is a key feature of several processes at fine temporal 

scales (e.g., daily rainfall and discharges) and which is quantified by the 

probability that the value of the process within a time interval is zero (often 

http://www.sciencedirect.com/science/article/pii/S1364815214002412#bib51
http://www.sciencedirect.com/science/article/pii/S1364815214002412#bib51
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referred to as probability dry). Intermittency also results in significant 

variability and high positive skewness, which are difficult to reproduce by 

most generators. 

Starting from these relevant properties, the scientific literature has provided, 

during the last decades, several models for the generation of synthetic 

hydrologic time series. Among others, it is worth reporting the following: 

shot noise model [Weiss, 1977], fragment model [Srikanthan and McMahon, 

1980], AutoRegressive Moving Average (ARMA) model [Box et al., 1994], 

Artificial Neural Networks (ANNs) [Raman and Sunilkumar, 1995], 

stochastic disaggregation model [Valencia and Schaake, 1973], Markov 

chain model [Aksoy, 2003], bootstrapping method [Lall and Sharma, 1996] 

and wavelets [Bayazit and Aksoy, 2001]. 

 

A considerable ability in the reproduction of hydrologic series, in particular 

river flow time series, considering a short-time scale (from daily to weekly), 

belongs to the aforementioned shot noise models, introduced by Bernier 

[1970]. Several hydrologic literature works have dealt with the adoption of 

this class of models for the reproduction of streamflow process main features 

[Weiss, 1977; Murrone et al., 1997; Xu et al., 1997; Xu et al., 2002; Claps 

and Laio, 2003 etc.], considering a shot noise process as input of a linear 

system that represents the watershed physical features. 

Furthermore, several techniques have been introduced for the calibration 

(i.e., the estimation of the model parameters value) of shot noise-based 

models [Kelman, 1980; Koch, 1985; Murrone et al., 1997; Xu et al., 2002; 

Claps et al., 2005]. Most of the existing approaches, in particular, are based 

on a time-domain procedure, consisting in a minimization of a cost function 

given by the sum of the differences between recorded and generated 

streamflow values. Such an approach, however, is conditioned by the high 

http://www.sciencedirect.com/science/article/pii/S0022169413003922#b0200
http://www.sciencedirect.com/science/article/pii/S0022169413003922#b0200
http://www.sciencedirect.com/science/article/pii/S0022169413003922#b0035
http://www.sciencedirect.com/science/article/pii/S0022169413003922#b0175
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availability of input/output recorded data, which can limit their adoption in 

the so-called ungauged basins (i.e., those basins with a limited availability of 

input and/or output data). 

 

Several recent contributions have dealt with calibration problems in case of 

ungauged basins. Some authors have discussed about the regionalization of 

rare hydrologic information [Bloeschl and Sivapalan, 1995; Post and 

Jakeman, 1999 and Parajka et al., 2005, among others]. Seibert and 

McDonnell [2002], instead, investigated on the adoption of soft-data, which 

are qualitative and/or scattered records. 

A further valid alternative to time-domain approaches is that offered by 

frequency-analysis of available input and output records, since spectral 

features contain information that are not obtainable by raw time series and 

that can be adopted to simplify the calibration procedure. A recent 

interesting contribution in this direction was that of Quets et al. [2010], who 

provided an interesting comparison between time and frequency-domain 

approaches. In general, several frequency-domain techniques have been 

introduced in the last years for the calibration of conceptual hydrologic 

models [Labat et al., 2000; Kirchner et al., 2000; Islam and Sivakumar, 

2002; Schaefli and Zehe, 2009 etc.]. Among them, a great interest has been 

attracted by the methodology introduced by Montanari and Toth [2007] (and 

subsequently adopted by Castiglioni et al. [2010]), who adopted the 

maximum likelihood estimator introduced by Whittle [1953], for the 

estimation of non-linear hydrologic models, from the only knowledge of 

input and output data power spectral density estimations. In particular the 

authors underlined how power spectral estimates could be achieved in 

absence of numerous and simultaneous input/output data records., thus 

assessing the usefulness of spectral-domain calibration techniques also in 
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presence of ungauged basins. Furthermore, starting from the pioneering 

work of Pegram [1980], in the last decades a relevant contribution to the 

spectral calibration of shot-noise based models has been developed [Diskin 

and Pegram, 1987]. In this Ph.D. thesis, the parameters, of a hydrologic 

conceptual linear model, were estimated through the minimization of a cost 

function, given by the difference between the Laplace transform of the 

historical and simulated streamflow series. However, to allow the application 

of the whole procedure, the authors clearly took into account the different 

structures of input and output sequences, following the previous contribution 

of Diskin [1964]. 

 

Starting from this framework, the main aim of the present dissertation is the 

description of a spectral-domain approach for the calibration of shot noise-

based models of streamflow processes. The whole work has to be intended 

as an advance of the works of Murrone et al., 1997 and Claps et al., 2005, 

who both adopted different time-domain procedures for the calibration of a 

lumped-conceptual effective rainfall-runoff model, for streamflow modeling, 

given by the series/parallel linear combination of linear reservoirs. The same 

simplified hydrological model has been adopted in the present thesis, since 

the central issue deals with the introduced calibration procedure, which, by 

taking advantage of a relevant spectral property of shot noise-based models, 

can allow the model calibration only by the availability of streamflow data 

(so, useful in the case of ungauged basins). 

The thesis has been structured as follows. 

In Section 2 (i.e., State of the Art), a comprehensive, but also synthetic, 

overview of time and frequency-domain, continuous time, calibration 

techniques of linear time invariant systems is provided. 
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Section 3 (i.e, Identification of shot noise process-based models) firstly 

provides a survey on the available models for the reproduction of short time 

scale discharge series. Among them, subsequently, a focus on the main 

properties of shot noise-based models is given, with the successive 

description of their classical calibration techniques, both in the time and in 

the frequency domain. Finally, the proposed calibration technique is deeply 

described, providing details on the techniques for the estimation of the 

power spectral density of the streamflow process and, moreover, on the 

selection and the estimation of the effective rainfall model, fundamental for 

the simulation analysis to be undertaken for the model validation and testing 

phase. 

In Section 4 (i.e., Application and testing), the overall calibration procedure 

is applied to three case-study Italian watersheds, whose characteristics, both 

in physical and climate terms, are provided in the first part of the section. 

Subsequently, once estimated the unknown response function parameters, 

results of several validation tests are provided, both in numerical and 

graphical form, in order to assess the effectiveness of the whole procedure. 

In Section 5 (i.e., Conclusions), the most important achieved results are 

synthetically provided. 

Eventually, the author provides the reader with an appendix, in order to 

allow the complete understanding of the numerous spectral analysis concepts 

that have been introduced in the whole thesis. 
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2. State of the art 

2.1. General aspects 

 

The main goal of the present Ph.D. dissertation deals with the development 

of a spectral-domain identification technique of linear dynamic, conceptually 

based, continuous and time invariant models of daily river flows. In 

particular, the author focused his work on shot noise process-based models, 

deeply discussed in Section 3 of the present thesis. 

In order to give to the reader the tools to understand the developed topic, in 

the present section a complete and synthetic description of time-domain 

identification techniques of linear Continuous Time (CT) invariant models is 

firstly provided. Secondly, frequency-domain identification procedures are 

analyzed in detail. 

 

In the system identification field, the identification of linear CT Time 

Invariant (TI) models was one of the first objectives pursued by the scientific 

community. In particular, in order to assess the parameters value of a generic 

CT model, the technical literature provides two distinct class of approach: an 

indirect and a direct technique. In the former, the sampled data of input and 

output processes are adopted in the identification procedure of a Discrete 



Section 2. State of the art 

 

8 

 

Time (DT) model, which is after converted in an equivalent CT model. In 

the latter, instead, a direct estimate of the CT model parameters is 

undertaken, without considering the equivalent DT model. 

Several authors have discussed about advantages and disadvantages of the 

two approaches. In particular, Rao and Unbehauen [2006] and Young and 

Garnier [2006] propose an interesting survey about this topic, providing 

some highlights, summarized hereinafter, on the reasons why one should 

prefer a CT modeling to a DT one. 

First of all, CT will always remain the natural basis of our understanding of 

the physical world, because all the physical laws (Newton‟s, Faraday‟s etc.) 

are in CT, with no chances of being rewritten in DT. 

Secondly, the process of discretization itself is associated with some 

undesirable consequences. In general, a strictly proper CT rational Transfer 

Function (TF),     , with   poles, transformed into its equivalent discrete 

expression,     , through the well-known relations between the Laplace 

plane (represented by the Laplace variable,  ) and the z-transform plane, 

remains rational and possesses generically     zeros that cannot be 

expressed in closed form in terms of the s-plane parameters and the sampling 

time    (for further details the reader can refers to Rao and Unbehauen 

[2006]).  

Thirdly, discretization may turn a native minimum phase CT model into a 

problematic one with non-minimum phase properties. As a matter of fact, as 

deeply described in Section 3, the identification procedure for the latter class 

of models is more problematic if compared to the former class. 

Furthermore, the fourth problem, listed by Rao and Unbehauen [2006] in 

their work, deals with the fact that discretization gives rise to undesirable 

sensitivity problems at high sampling rates, that is parameters value are 

dependent on the adopted sampling intervals of the input and output data. 
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Finally, and perhaps most importantly, CT models can be identified and 

estimated from rapidly sampled data, whereas DT models encounter 

difficulties when the sampling frequency is too high in relation to the 

dominant frequencies of the system under study [Astrom, 1969]. In this 

situation, the eigenvalues lie too close to the unit circle in the complex 

domain and the discrete-time model parameter estimates become statistically 

ill-defined. The practical consequences of this are: 

- either that the discrete-time estimation fails to converge properly, thus 

providing an erroneous explanation of the data; 

- or that even if convergence is achieved, the continuous-time model, as 

obtained by standard conversion from the estimated discrete-time model, 

does not provide the correct continuous-time model. 

From these considerations it should be evident the convenience of the 

adoption of the direct procedure in the identification of a CT and TI models, 

avoiding, in this manner, the step corresponding to the identification of an 

equivalent DT model. As a consequence, in the following part of the present 

section, a detailed review of only CT identification techniques, available in 

the scientific literature, is provided. 

It is worth noticing that for further details on some of the concepts treated in 

this section (e.g., the concept of TF of a linear model, poles and zeros of the 

TF etc.), the interested reader can refer to Appendix. 

 

2.2. Brief survey of CT models identification methods 

 

The theoretical basis for the statistical identification and estimation of linear, 

continuous-time models from DT sampled data can be outlined by 

considering the following Single-Input, Single-Output (SISO) system:  
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       (2.1) 

               (2.2) 

 

where   is any pure time delay in time units, the ratio              ⁄  is 

the system TF, and      e      are the following polynomials in the 

derivative operator      ⁄ : 

 

           
               (2.3) 

        
     

               (2.4) 

 

This transfer function model (TFM) structure is denoted by the triad [n, m, 

τ]. In Eq. (2.1),      is the input signal,      is the „noise free‟ output signal 

and      is the noisy output signal. In the following of the dissertation, the 

assumption of zero mean White Noise (WN) with Gaussian amplitude 

distribution for the noise term      is considered, for the sake of simplicity, 

even though this is not a restrictive assumption. The two series of 

coefficients    and    are the sets of the model parameters to estimate. 

By the principle of superposition for linear systems,      is a vector of 

stochastic disturbances which accounts for the combined effect of the input 

and output disturbances at the output of the system. Although the nature of 

this disturbance vector is not necessarily specified, it is often considered, for 

analytical purposes, to have rational spectral density and so to be described 

by the following Auto Regressive-Moving Average (ARMA) model: 

 

                  (2.5) 
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where the ratio between the two polynomials      and      is the 

disturbance TF,      , while      is a zero mean, serially uncorrelated, WN 

CT process. 

Once analytically defined the model   structure, given by Eqs. (2.1) and 

(2.2), it now possible to provide the model identification approach. The most 

obvious approach to the estimation of the parameters in a mathematical 

model, of a dynamic system, is to minimise a scalar cost (or loss) function  , 

which is formulated in terms of some norm in an error function,     , which 

reflects the discrepancy between the output of the model   and the real 

system   [Young, 1981]. It is the choice of      which most differentiates the 

various estimation methodologies which have been developed over the past 

fifty years and this is discussed in detail in this subsection. 

Concerning the choice of the cost function  , instead, the most common is 

given by the following relation: 

 

  ∑ ‖  ‖ 
  

    (2.6) 

 

where the subscript   indicates the value of the vector      at the ith 

sampling instant,   denotes the number of samples available in the 

observational interval and   is the vector of the weights to associate to each 

of the components of the vector     . 

Starting from previous considerations, the following part of the present 

subsection is aimed at the short description of the several approaches for the 

CT model identification. It is worth noticing that following procedures 

differ, between each other, for the error function      chosen in the 

definition of the cost function of Eq. (2.6). 
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The first proposed approach is known as Output Error (OE) or Response 

Error (RE) method and it is probably the most intuitively one to the problem 

of system parameter estimation. Here, the parameters are chosen so that they 

minimise either an instantaneous (in the purely deterministic case 

corresponding to the condition       ) or an integral (in the stochastic 

case) norm in the error between the model output, denoted by  ̂   , and the 

observed output     , i.e. with the following model error expression 

           ̂   . In the SISO case system of Eqs. (2.1) and (2.2), for 

instance, the error function is defined as: 

 

          
 ̂

 ̂
     (2.7) 

 

where  ̂ and  ̂ are, respectively, the estimates of the polynomials       and 

     that define together the TF of the system to be identified.  

 

The second approach is known as Equation Error (EE) method and clearly 

derives from an analogy with statistic regression analysis. Here, the error 

function is generated directly from the input-output equations of the model. 

In particular, considering the previously defined model  , a scalar error 

function is involved and it is defined as follows: 

 

      ̂      ̂     (2.8) 

 

The reader will certainly note that such a definition of the error function 

implies the time derivatives of the input and output process [Eykhoff, 1974]. 

See, for evidence, Eqs. (2.3) and (2.4) defining expressions of the 

polynomials      and     . It is worth noticing that in the deterministic case 
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(i.e. when the noise level of the measured input and output signals is low, 

that means with a noise/signal ratio < 5%), the (2.8) is a linear algebraic 

function of the unknown parameters; as a consequence, its minimization is 

much more straightforward than in the OE case. For this particular case, 

several EE schemes have been proposed in the scientific literature both for 

linear and nonlinear systems, and most are mentioned by [Eykhoff, 1974]. 

Nevertheless, the inherent limitations of the deterministic approach soon 

became apparent and many researchers suggested different solutions which 

were not so sensitive to stochastic disturbances of the signals. In particular, 

two were the main problems deriving from a deterministic approach applied 

to noisy signals: 

- the differentiation of signals possibly affected by noise (“noisy signal”); 

- the asymptotic bias in the parameters estimation. 

An alternative Generalized Equation Error (GEE) method is often defined to 

avoid the obvious problems that arise from the differentiation of noisy 

signal. Here, the input and output signal are passed through a State Variable 

Filter (SVF) set, denoted by     , which simultaneously filters the signal 

and provides filtered time derivatives [Young, 1964], which replace the exact 

but unobtainable derivatives in the definition of a modified version of     . 

Furthermore, the simplest solution to the asymptotic bias problem associated 

with the basic EE approach is the Instrumental Variable (IV) method. Here 

the least squares solution is modified to include a vector of instrumental 

variables,  ̂, which are chosen in order to be highly correlated with the 

noise-free output   of the system, but totally uncorrelated with the noise on 

the measurements of the system variables [Young, 1981]. 

Subsequently, the Refined IV (RIV) method, suggested by Young [1976], 

was introduced. It is a similar but more sophisticated IV procedure, which is 
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able to achieve asymptotic statistical efficiency by the introduction of 

adaptive “prefilters” on all the measured signals [Young, 1981]. 

 

The third reported approach is the Prediction Error (PE) method. Here, as in 

the OE case, the error function is usually defined as            ̂   , but 

with  ̂     ̂  | ̂ . As a matter of fact, in this case  ̂    is defined as some 

best prediction of     , given the current estimates of the parameters a that 

characterize the system and the noise models. In other words,  ̂  | ̂  is the 

conditional mean of      given all current and past information on the 

system. In the SISO case of model  , the most obvious PE method involves 

the minimization of a norm in     , defined as: 

 

     
 ̂

 ̂
*     

 ̂

 ̂
    + (2.9) 

 

where polynomials  ̂ and  ̂ define the noise model to sum to the output of 

the real system [Solo, 1978]. 

Of course other arrangements are possible for a PE error function definition, 

for example defining the error function within an EE context. For the sake of 

conciseness this scheme is not reported here, but one can surely state that the 

solution of the PE minimization problem is generally more complex than the 

OE and EE equivalents, since the formulation of the PE norm implies the 

concurrent estimation of the noise model parameters [Young, 1981]. 

 

The fourth reported approach can be considered as a particular case of the 

PE minimization and it is known as Maximum Likelihood (ML) method. It 

is considered separately here, however, because of its importance as a 

motivating concept in research. The ML approach is based on the definition 



Section 2. State of the art 

 

15 

 

of a PE type error function, but the formulation is restricted by the additional 

assumption that the stochastic disturbances to the system have specified 

amplitude probability distribution functions [Stepner and Mehra, 1973; 

Kallstrom et al., 1976]. In particular, in most applications, this assumption is 

restricted further for analytical tractability to the case of a Gaussian 

distribution, in which case, the ML formulation coincides with certain PE 

formulations. 

 

The ML method can often be extended so that a priori information on the 

probability distributions is included in the formulation of the problem. This 

is termed the Bayesian (B) approach, since it arises from Bayes rule for 

linking a priori to a posteriori probability statements and, so, allows for the 

inclusion of a priori information into the solutions of the estimation 

problem. Further details about this approach can be found in Young [1981]. 

 

2.3. Parameter identification of linear CT models in the frequency-

domain 

 

Model parameters estimation in the frequency-domain is of considerable 

interest because of its convenience in many practical situations. Information 

on the system behaviour under the influence of periodic test signals is the 

main input to spectral-domain identification algorithms. Identification in 

frequency-domain is discussed, in the present subsection, with reference to 

linear CT systems of the typology shown in Fig. 2.1., where      and      

are measurable input and output signals respectively, with the output signal 

corrupted by the coloured immeasurable noise signal     . 
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Fig. 2.1. Identification environment  

 

A system is generally represented by its frequency-response characteristic 

(Nyquist plot or its equivalent Bode plot): 

 

       
     

     
              (2.10) 

 

This information may be available at discrete frequency values,     , 

distributed, for example, logarithmically over the frequency range of 

interest, from computation or by direct measurement.       and       are 

the Fourier transforms of      and     , respectively, while       and 

      are, respectively, real and imaginary part of the complex system 

response function. 

Measurements (or equivalently estimates) of        , for discrete values of 

   covering the whole frequency range, can be obtained either [Rao e 

Unbehauen, 2006]: 

(a) from a discrete set of measured input-output spectra       and       for 

       , or 

(b) from direct excitation by periodic test signals, or 

(c) indirectly from arbitrary time-domain measurements of      and     , 

which, by Fourier transformation, convert the information into the 

frequency-domain. 
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Concerning the latter case, in particular, two main TF estimation methods 

are available in the literature, starting from recorded input and output signal. 

The first one deals with the so called Empirical Transfer Function Estimate 

(ETFE), given by the quotient between the Fourier transform of output and 

input signal [Ljung, 1987, Subsection 6.3]. The second one, instead, consists 

in the ratio between the input/output Cross-Power Spectral Density (CPSD) 

and the input Power Spectral Density (PSD) estimations [Broersen, 1995]. 

Even though the aim of the author is not that of focusing on a detailed 

description of TF estimator, it is worth noticing a fundamental feature of 

CPSD estimators, that is their ability in preserving both magnitude and phase 

information of the system frequency response. As a consequence, such an 

estimator can be successfully adopted both in the identification of linear TI 

minimum and nonminimum phase systems (for more details see, for 

reference, Nikias and Mendel [1993]). 

 

Starting from previous considerations, assume that the system is modelled by 

the following expression, corresponding to the scheme reported in Fig. 2.2 

(where       and       are, respectively, the output from the deterministic 

part of the model and the whole model output, both in the time domain): 

 

                              (2.11) 
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Fig. 2.2. Model of actual system 

 

where the TF,        , represents the model for the stochastic component 

which determines a coloured noise signal     , from a normally distributed 

zero-mean WN signal     , while the deterministic model part is described 

by the rational TF,        , defined as follows: 

 

        
     

    
 

             

              
      

      
 (2.12) 

 

In Eq. (2.12)       is the output, in the Laplace domain, corresponding to the 

considered model due to the input signal     , with      its Laplace domain 

expression. 

The parameter vector is given by: 

 

  [                  ]
  (2.13) 

 

The identification problem deals with the estimation of the vector   of the 

real parameters    and    (       ,). For this purpose, generally, the 

Laplace transform,   , of the output error,     is introduced (as defined in 

Fig. 2.3): 

 

           
       [            ] (2.14) 
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where      is the Laplace transform of the actual system output,     . 

 

 

Fig. 2.3. Definition of the general form of the output error e
*
(t) 

 

The best approximation for       , that is the real system TF, by the model 

         is thus obtained by minimizing the quadratic cost function of the 

model output error        , i.e.: 

 

           (2.15) 

 

where e is the vector containing the   sampled values, in equidistant 

intervals equal to the sampling time interval   , of the continuous error 

function        . 

The estimated parameter vector is finally computed from: 

 

 ̂        [∑          
   ] (2.16) 

 

Using Parseval‟s theorem in the frequency-domain, that is not reported here 

for the sake of conciseness, and introducing in Eq. (2.16) the Eq. (2.10), the 

parameter vector estimation finally becomes: 
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 ̂        *
 

 
∑

|      |
 

|         | 
|                 |  

   + (2.17) 

 

where the Laplace variable,        (with   and  , respectively, its real 

and imaginary parts), is replaced by its imaginary contribution, thus allowing 

the transition from the Laplace to the Fourier domain in order to allow the 

summation in the frequency domain reported by Eq. (2.17). 

In particular, if the        is independent of   then the parameter estimation 

will be consistent. This is usually the case in which        is given or fixed, 

but it should be noted that in many practical cases the parameters of the 

noise model are unknown and, thus, they have to be included in  . 

Furthermore, some authors have shown that Eq. (2.17) leads to a nonlinear 

least-squares problem [Unbehauen and Rao, 1997]. 

An alternative to the least-squares estimation, according to (2.17), is 

provided by the Maximum Likelihood (ML) estimation method [Pintelon et 

al., 1994]. According to this method, the negative logarithm of the likelihood 

function becomes: 

 

      

∑ ,   |         |
  

 

   
 

|      |
 

|         | 
|                 |

 - 
    

       
  (2.18) 

 

where    
  is the variance of        , according to Fig. 2.3. Of course, the 

estimate of the parameter vector is given by: 

 

 ̂              (2.19) 
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Owing to its numerical treatment, the ML-method is one of the most 

efficient identification methods. For this reason, many scientific works 

belonging to different scientific fields, which have been produced in the last 

fifty years, are based on this latter approach to solve the identification 

problem (for an example concerning the hydrologic field one could refer to 

Montanari and Toth [2006]). 

Up to this points, the author has assumed the “true” input      to be 

observable and, therefore, measurable. This, however, can result in a biased 

parameter estimation when the real measured input,      , is corrupted by a 

noise signal       , as shown in the following figure (where,       is the 

noise on the output signal from the actual system and       is the real 

measured output): 

 

 

Fig. 2.4. Errors-Invariable (EV) model structure 

 

Such an assumption can be overtaken by means of the application of the 

Errors-Invariable (EV) model structure [Soderstrom and Stoica, 1989] or the 

IV method, already proposed in Subsection 2.2, concerning time-domain 

identification approaches. In particular, it has been shown that estimators 

based on the EV model structure are consistent when the „true‟ spectral 

density matrix of the I/O noise is known a priori [Anderson, 1985]. 

 



Section 2. State of the art 

 

22 

 

Once presented, in this subsection, the most adopted estimators, in the 

frequency-domain, of the parameters vector of CT linear models, the 

intention of the author is to finally underline an important aspect concerning 

the system identification theory and the two main advantages of the 

frequency-domain identification approaches compared to time-domain ones. 

First of all, identification of a CT linear dynamic SISO systems usually starts 

with a discrete set of measurements of the input and output signals, sampled 

at equal time intervals. It is well known that discrete measurements do not 

contain all the information about the CT signals unless additional 

assumptions are made. In Schoukens et al. [1994] two very important 

assumptions were considered: 

(1)  the Zero-Order Hold (ZOH) assumption; 

(2)  the Band Limited (BL) assumption. 

In case (1), it is assumed that the excitation signal value,     , remains 

constant during the sampling interval (  ). In case (2), instead, it is assumed 

that the sampled signals,      and     , each have limited bandwidths. Both 

assumptions lead to an exact description of the CT system. However, it 

should be noted that the obtained models are only valid if their signals obey 

both the corresponding assumptions. 

Secondly, it is worth noticing that, for system identification problems in 

time-domain, large data sets are usually required. In particular, the record 

length is given by: 

 

       (2.20) 

 

where   is the number of data points. On the other hand, the sampling 

frequency    should be selected according to Shannon‟s sampling theorem: 
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       (2.21) 

 

where      is the frequency of the band-limited input or output signal, 

above which the signal spectrum vanishes. The lowest frequency of interest, 

    , determines the minimum record length: 

 

   
  

    
  (2.22) 

 

From (2.20) – (2.22), it is clear that an interesting information about the 

minimum number of data points in the time-domain is given by the 

following expression: 

 

  
     

    
  (2.23) 

 

So, if the frequency range of interest covers, for instance, 3 decades (that is, 

such that the ratio between the maximum and the minimum frequency of 

interest is equal to 1000), it is necessary a number of time-domain data 

points ad-hoc sampled of about L = 2000. 

Given these considerations, the aim of the author is to highlight that the large 

data sets, usually necessary in time-domain, can be replaced for 

identification in frequency-domain by a considerably reduced set of 

approximately logarithmically distributed frequency points,   , covering the 

frequency range of interest [Schoukens et al., 1994]. 

Furthermore, another relevant advantage of frequency-domain approaches 

consists in the fact that, given that the frequency response data (such as 

Fourier coefficients at different frequencies   ) may be obtained from 

different experiments, an experimental simplification is possible by 
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combining data from different experiments, which is not so easily possible in 

time-domain identification procedures. 

Finally, it is worth highlighting that all the symbols adopted in Section 2 are 

those usually adopted in the technical literature in the specific field of 

system identification. This is due to a specific author‟s decision, who 

preferred to avoid confusion in interested readers, who could refer to the 

numerous papers cited in the present section in order to acquire more 

detailed information on the identification of CT linear systems. For the same 

reason, some of the symbols adopted in Section 2 will be provided also in 

following sections but with a completely different meaning, in order to 

assure a continuity with the existing literature works concerning the study of 

stochastic shot noise modeling of daily streamflows. 



Section 3. Calibration of shot noise process-based models 

 

25 

 

 

 

 

3. Calibration of shot noise process-based 

models 

3.1. Introduction 

 

In Section 2 the more frequently adopted identification techniques of CT and 

TI models, both in the time-domain and in the frequency-domain, have been 

reported. Nevertheless, the main subject developed in this Ph.D. dissertation 

deals with a spectral domain-based identification approach of a particular 

class of models for daily streamflows reproduction and generation, known as 

shot noise process based-models (for the sake of brevity, from this moment 

the author will refer to this class of models as shot noise models). 

In the present section, a brief description of the scientific background 

concerning those models intended to the reproduction, forecasting and 

simulation of short-time discharge data will be firstly provided. At a later 

stage, general time and spectral-domain properties of the shot noise process 

will be described, and, eventually, a comprehensive description of shot noise 

models identification techniques will be provided. 
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3.2. Reproduction of short time scale discharge series: a survey 

 

Nowadays it is well recognized the difficulty in the use of limited 

streamflow time series in water resources planning and management 

problems. As a consequence, during the last decades, stochastic streamflow 

simulation has been attracting great interest among the scientific community, 

in particular thanks to its utility in optimization techniques [e.g., Karamouz 

and Houck, 1987; Karamouz et al., 1992; Chang and Chang, 2001; Ahmed 

and Sarma, 2005]. As a matter of fact, these methods produce synthetic 

streamflow traces that reflect the statistical properties of the historic data. 

Depending on the particular problem, the reproduction of the streamflow 

process is desired at different time resolution. In the past forty years, several 

classes of stochastic models were proposed, which generally looked at each 

time scale of aggregation individually. But in order to deal with water 

resources planning and management problems on a daily scale, the 

reproduction of short-time (that is, from daily to weekly) discharge data is 

needed. In particular, short time streamflow series are characterized by the 

presence of the intermittent pattern of dry/wet periods and by the skewed 

nature of the hydrographs, with sudden discharge increases and slow 

recessions [Murrone et al., 1997]. These features prevent the use of 

parametric and non-parametric methods (e.g., Auto Regressive Moving 

Average K-Nearest Neighbor, etc.) [see, e.g., Lall and Sharma, 1996; 

Ouarda et al., 1997; Prairie et al., 2006], which, instead, are successfully 

applied to monthly and annual data. 

The aptitude to reproduce the presence of peaks and recessions in daily 

discharge time series belongs to the filtered point processes [Bernier, 1970], 

also known as Shot Noise (SN) processes, that have received considerable 

attention in hydrologic literature [Weiss, 1977; Koch, 1985; Xu et al., 2002]. 
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The structure of this process consists of a point process that reproduces the 

occurrence (that is the sequence of effective rainfall events) which acts as 

the input of a system that is representative of the watershed transformations. 

Runoff is obtained by filtering the input through the system response 

function. 

The first comprehensive work on SN models of runoff was due to Weiss 

[1973; 1977], who introduced a model in which effective rainfall events 

were reproduced through a Poisson process of occurrences coupled to 

exponentially-distributed intensities. A two-component SN process results 

from this scheme, and the method of moments was proposed for parameter 

estimation. A more recent improved variant of Weiss‟ model was instead 

due to Cowpertwait and O'ConnelI [1992], who proposed the Neyman-Scott 

model to reproduce the effective rainfall process. Between Weiss [1973] and 

Cowpertwait and O'ConnelI [1992], several approaches, often based on SN 

formulation, were proposed for short-time runoff modeling (please refer to 

Murrone et al. [1997] for a comprehensive literature review). In particular, 

among them, it is worth underlining the contribution of Treiber and Plate 

[1977], Yakowitz [1979], Pegram [1980], Hino and Hasebe [1981], 

Vandewiele and Dom [1989], who proposed different linear or non-linear 

conceptual scheme of the watershed based on a SN formulation. 

A central point in the use of SN process-based methods is the calibration 

procedure adopted for the evaluation of the parameters on which the selected 

form of the system response function is based. In particular, most of the 

existing, and most recent, literature works are based on a time-domain 

iterative identification approach that consists of the minimization of the 

squared differences between the observed discharge values and those 

obtained by the convolution of the response function (to be identified) and 
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the input series [Murrone et al., 1997; Claps and Laio, 2003; Claps et al., 

2005; Xu et al., 2001]. 

A crucial aspect in the application of a time-domain approach concerns the 

generation of the occurrences (or effective rainfall) to be convolved with the 

watershed response function of a given form but with unknown parameters. 

As a matter of fact, the model parameters estimation is deeply dependent on 

the method chosen for the effective rainfalls modeling. For this reason, 

hereinafter, the authors will provide a thorough description of the main 

approaches available in the scientific literature for the effective rainfall 

occurrences and intensities determination. 

 

3.3. Shot noise models: main statistical properties 

 

Given a set of Poisson distributed points    (i.e. the time of occurrence of the 

ith input pulse) with average density  , the following process is given: 

 

     ∑   
    
    (3.1) 

 

where   is the time variable,    is a sequence of independent and identically 

distributed (i.i.d.) random variables, independent of the points    (i.e. the 

instant values corresponding to the effective rainfall occurrences), with mean 

   and variance   
  [Papoulis and Pillai, 2002, Subsection 10.2]. Hence the 

process      is a staircase function with jumps at points   , equal to   . The 

process      is the number of Poisson points in the interval      , hence its 

expected value is  {    }     and its second order moment is  {     }  

     . From this, it follows that: 

 

 {    }     {    }       (3.2) 
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 {     }    
  {     }    

  {    }    
             

    (3.3) 

 

It could be now possible to demonstrate that (but it is here avoided for the 

sake of conciseness):  

 

              
    

              (3.4) 

 

where            is the autocovariance function of the process     . 

The next step is to consider the impulse train, given by the following 

expression, which determines the so called Shot Noise (SN) process and that 

can be adopted to model the entire rainfall process: 

 

           ∑            (3.5) 

 

where   is the Dirac delta function. 

Given Eq. (3.4), it follows that: 

 

 {    }  
 

  
 {    }      (3.6) 

           
            

      
    

    
            (3.7) 

 

Convolving the SN process, i.e. the impulse train (3.5), with a function      

(that, in the hydrologic application, is representative of the watershed 

response function) the Generalized Shot Noise (GSN) process is obtained:  

 

     ∑                      (3.8) 

 



Section 3. Calibration of shot noise process-based models 

 

30 

 

where      is the streamflow variable, intended as a continuous time 

variable. Its main statistical properties are provided by the following 

expressions: 

 

 {    }   {    }          ∫       
 

  
 (3.9) 

                                    
    

            (3.10) 

   {    }            
    

   ∫        
 

  
  (3.11) 

 

where    {    } is the streamflow variable variance. 

 

Given the general formulation of SN processes, the intention of the author is 

now to highlight some of their properties that are necessary for the 

comprehension and the application of the frequency domain identification 

procedure proposed in this thesis. 

In particular, as revealed by Eq. (3.7), it is fundamental to underline the 

impulsive nature of the input process autocovariance function           . 

While the commonly adopted time-domain identification approaches, that 

will be discussed in Subsection 3.4, do not take any advantage from this 

powerful property, it is the basic principle on which the spectral-domain 

identification procedure here proposed was built. In particular, it is well 

known that the power spectrum     , or, more concisely, the spectrum, of a 

real or complex process      is the Fourier transform of its autocovariance 

function       . Hence the following relation is valid: 

 

       ∫       
 

  
        (3.12) 
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where   is the imaginary unit and   is the angular frequency. Similarly, it is 

worth underlining that the well-known Power Spectral Density (PSD) of the 

generic process     , or, more simply, its spectral density, is defined as the 

Fourier transform of the autocorrelation function of the process itself, 

suggesting that it is obtainable dividing the spectrum (3.12) by the variance 

of the process [Jenkins and Watts, 1968, p. 218]. This is the reason why it is 

not rare, in a system identification environment, to talk about the PSD 

instead of the spectrum of a given process. Thus, for the sake of simplicity, 

hereinafter the author will refer to the functions defined as in the equation 

(3.12) as PSDs. 

Given the above considerations and starting from Eq. (3.7), which shows the 

autocovariance expression of the impulse train process     , it should be 

evident that the PSD of      is equal to a constant, as provided by the 

following equation: 

 

          
    

    (3.13) 

 

Thus, considering that in case of linear systems the following relation is 

valid [Papoulis and Pillai, 2002, p. 412]: 

 

                             |    |  (3.14) 

 

where     and     are, respectively, the PSDs of the system response,     , 

and of the input process,     , H(ω) is the linear system TF and H
*
(ω) its 

complex conjugate, it is clear that, given the Eq. (3.13) and the superposition 

effect valid for linear systems, in case of SN model the following equation 

holds: 
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             |    |  [   
    

   ]|    |   |    |  (3.15) 

 

From Eq. (3.15) it is evident how the contribution of the impulse train 

spectral density,    , is only that of a scale factor,  , between the spectral 

density of the system response,    , and the linear system TF,     . Hence, 

starting from the knowledge of the output process, i.e. when river flow data 

are available, one can estimate the parameters of the watershed response 

function (model calibration) only by matching the PSD amplitudes, 

estimated at several frequencies, of the observed river flow records with the 

squared module of the linear system TF. 

However, it is worth noticing that, as outlined by Montanari and Toth 

[2007], the PSD of a process does not convey any information about the 

mean of the process itself. As a consequence, in this work, in order to allow 

the correct reproduction of the recorded streamflow series mean 

characteristics, obviously affected by seasonality, the author decided to 

include all the information on the mean of the output process,       in the 

input process,     , also known as effective rainfall process [see, for 

reference, Murrone et al., 1997]. Hence, the TF parameters estimation was 

undertaken, following the aforementioned Eq. (3.15), on the PSD,    ̅̅̅̅ , of the 

deseasonalized streamflow process,  ̅   , in order to avoid that the 

seasonality of the streamflow process mean level affected the form of the 

PSD and, thus, the estimated values of the parameters. More details about 

the deseasonalization processes are provided in following sections. 

As outlined in following Subsection 3.5, the main advantage of the proposed 

spectral-domain calibration procedure consists in the possibility to estimate 

the values of the TF parameters independently from the knowledge of input 

process data information, provided that, in the case of SN assumption, the 

PSD of the input process contributes to each frequency value with the same 
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amplitude. As a consequence, the procedure here presented is particularly 

suitable for the resolution of model calibration problems in the case of 

ungauged basins [see, for reference, Montanari and Toth, 2007] (i.e., those 

watersheds that are not provided with systems aimed at the recording of 

hydro-meteorological processes), which is a really common situation in 

developing countries where the demand of simulation tools, for design and 

management of new hydro-power systems, is increasing. 

Moreover, thanks to this remarkable characteristic of the calibration 

approach, the whole proposed methodology differentiates itself from the 

limited number of other frequency-domain approaches, for the calibration of 

SN models, available in the scientific literature. A relevant contribution to 

this topic was that by Diskin and Pegram [1987], who dealt with the 

spectral-domain calibration of a cell model for storm-runoff modeling, with 

available records of a particular storm and flood hydrograph event. In 

particular, the whole calibration procedure, once defined a model made by a 

proper combination of linear reservoirs, was based on the minimization of an 

objective function given by the sum of the differences between the Laplace 

transforms (estimated at several frequency values) of the recorded output 

sequence and that of the model output. The overall approach, however, was 

based on the analytical knowledge of Laplace transforms of the output and 

input signal (other than that of the basin response function), starting from the 

knowledge of the structures of input and output sequences (i.e., respectively, 

a histogram structure and a polygon structure). It is thus clear the advance 

that the calibration approach here described introduces, in the scientific 

literature, in the field of spectral identification approaches of shot noise-

based models. 
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In order to complete the position of SN process, some other few properties 

need to be provided. Since the density of the Poisson points and the 

distribution of the amplitudes    are assumed independent of time, the SN 

process results stationary, with a mean, as shown in Papoulis and Pillai 

[2002, p. 461], reported in the following equation: 

 

 [    ]       (3.16) 

 

The non-stationarity of the SN, that is useful for example to model 

seasonality, may arise from two different sources: 

(a) the dependence of   on time; 

(b) the dependence of    distribution on time. 

However, in both cases, following Roberts [1965], a useful equation that 

relates the mean of the streamflow process to properties of the rainfall 

process can be established as follows: 

 

 [    ]       [      ̅   ] (3.17) 

 

In Eq. (3.17),      is the time-varying density of the Poisson points and  ̅    

is the time varying (conditional) expected value of the pulse amplitude, 

given that there is a pulse in the interval [      ]  

Starting from the assumptions and the considerations about the SN process 

presented in the present section, in Subsection 3.4 the author will firstly 

provide a detailed description of the most adopted calibration approaches, in 

the scientific literature, of SN-based hydrological models. At a later stage, 

moreover, the effectiveness of spectral calibration methods will be shown, 

assuming stationarity of the SN process, thus leaving to future works the 

exploitation of non-stationarity. 
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3.4. Shot noise models: classical calibration approaches 

 

The procedure for parameters estimation of SN models is strictly related to 

the approach followed for the parameters estimation of the model of 

effective rainfall. In particular, for this latter goal, two alternatives are 

essentially available in the technical literature. 

In the first one, common to most of the SN models in literature [see, for 

reference, Weiss, 1973, 1977; O'Connell and Jones, 1979; Cowpertwait and 

O'Connell, 1992], the form of the underlying input process is pre-determined 

and its parameters are estimated through the method of moments applied to 

the streamflow statistics [Murrone et al., 1997]. The main drawback of this 

procedure are: 

(a) the fact that it does not allow the users to verify the hypothesis made on 

the input process; 

(b) the impossibility to evaluate the influence of the effects of the watershed 

transformations on the estimation of the effective rainfall model parameters. 

In the alternative approach these problems are overcome since the input 

series is reconstructed by inverse estimation. On the obtained series, 

parameters of the stochastic input model are thus evaluated. Several authors 

followed this latter procedure, each with a different ad-hoc introduced 

technique [see, among others, Treiber and Plate, 1977; Hino and Hasebe, 

1981, 1984; Battaglia, 1986; Wang and Vandewiele, 1994]. 

 

Concerning this latter procedure, a relevant scientific contribution was that 

of Murrone et al. [1997]. In this paper, the authors firstly defined the form of 

the basin response function     . In particular, it was assumed linear and 

given by the linear combination, through coefficients   , of the individual 

responses of its components. Each component was modelled as a linear 
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reservoir, with a corresponding Instantaneous Unitary Hydrograph (IUH) of 

exponential negative form. In order to test the procedure in various case 

studies, the authors decided for a basin response function given by the 

combination of 3 linear reservoirs (each representing one among the sub-

daily, over-month and over-year groundwater contributions). Moreover, the 

response function contribution corresponding to the surface component was 

modelled as an additional Dirac delta function, since the basin surface 

response lag was enough smaller than the time interval of data aggregation 

(considered from daily to weekly). 

Starting from these considerations, the estimation of the model parameters 

(i.e. linear combination coefficients,   , and storage coefficients,   , for each 

of watershed contribution) was undertaken, through minimization of the 

squared differences between recorded flow values and those obtained 

through convolution of the effective occurrences and the basin function. For 

this purpose, an iterative procedure resulted necessary, since the input 

intensities (hereafter defined as effective rainfall), in turn, were obtained by 

deconvolution of the recorded streamflow series through the system response 

function with unknown parameters. 

Finally, for the generation of synthetic streamflow series, fundamental for 

the statistical verifications, a Poisson White Noise Exponential Model 

(PWNE) [Eagleson, 1978] was fitted on the final effective rainfall series. In 

this manner, the generation of synthetic effective rainfall series, to convolve 

with the identified response function, was allowed. 

It is worth noticing the approach followed by the authors in the selection of 

rainfall occurrences and intensities at the first iteration, that is when no 

estimates of the response function parameters are available. Indeed, the net 

rainfall occurrence was assumed in each time instant presenting a discharge 

increase. However, in order to account for errors in discharge measurements, 
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a threshold value,  , was considered. In particular, only when the 

condition           was met, a trial value of the rainfall amount was 

assumed equal to            [Battaglia, 1986]. The choice of the 

threshold level was thus critical because of its direct influence on the number 

of input events. 

The main drawback in the adoption of such a procedure dealt with the 

necessity of several iterations to obtain the final parameters estimation, 

resulting in a lack of robustness of the overall approach. Moreover, few 

details were given by Murrone et al. [1997] about the selection of the 

threshold,  , value in the estimation of effective rainfall occurrences and 

intensities at the very first iteration. For the sake of conciseness, from this 

moment the author will refer to this method, for the selection of effective 

rainfalls, as Discharge Increments Pulses (DIP) approach [see Claps and 

Laio, 2003]. Even though frequently adopted, the DIP approach presented 

two relevant drawbacks [Claps et al., 2005]. First of all, the presence of 

noise in the daily streamflow measurements could result in small rises in the 

flow process records, resulting, in turn, in an overestimation of the mean 

number of rainfall events per year. Secondly, the basic hypotheses of 

mutually independent and Poisson-distributed pulses were often not 

respected by the estimated sequences.  

 

In order to overcome these two main drawbacks, Claps and Laio [2003] 

presented an evolution of the DIP approach. The Filtered Peak Over 

Threshold (FPOT) method was introduced in order to derive a more 

appropriate pulse sequence. Its main steps can be summarized as follows: 

(a) given the recorded daily discharge series, the occurrences are found in 

correspondence of all the local maxima of the series itself; 
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(b) given the local maxima values, a sequence of Filtered Peaks (FP) is 

determined by subtracting the first local minimum preceding the considered 

peak; 

(c) a threshold filter is increasingly applied to the FP series, in order to retain 

only significant peaks, until the peaks independence test of Kendall and the 

peaks Poisson distribution test of Cunnane are jointly met. 

As stated by the authors themselves, the adoption of the FPOT approach 

guarantees the following advantages if compared to the DIP one: 

(1) it allows one to avoid the deconvolution step in the peaks identification 

procedure, with considerable advantages in terms of procedure simplicity 

and robustness; 

(2) it returns an effective rainfall series that automatically meets both the 

independence and Poissonianity requirements of the PWNE model. 

Nevertheless, they also noticed that, as major drawback, the number of 

selected peaks is reduced to 5-20 per year [Claps et al., 2005], which 

underestimates the actual number of effective rainfall events. Such a 

consideration would suggest the inadequacy of the Poisson independent 

model in the correct reproduction of the effective rainfall behaviour. 

 

Another notable contribution to the identification of SN models was that of 

Xu et al. [2001; 2002], in which the daily streamflow process was regarded 

as a sum of two components with different characteristics, i.e. the direct 

surface runoff and the baseflow. In particular, the former, responsible of the 

short-term variations, was considered as an intermittent process with a 

Gamma response function. The latter was instead characterized by the 

conventional negative exponential response function (that of subsurface and 

groundwater storages) and was considered responsible for the long-term 

persistence displayed by the recorded streamflow series. Both the 
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components to the total streamflow process were calibrated by means of 

physical considerations on the case study watershed considered in the 

application, that are not reported here because not relevant according to the 

main goal of the present thesis. 

However, the notable contribution of the authors consisted in the procedure 

introduced for the estimation of pulse intensities necessary in the synthetic 

streamflows generation. Indeed, as in the previously described works, they 

referred to a sequence of uncorrelated rainfall pulses but following a Gamma 

probability distribution. In order to estimate the distribution parameters, 

starting from the recorded streamflow series, the authors followed these two 

steps: 

(a) to determine the occurrences, they assumed that pulses occur only on 

those days when streamflow increases; 

(b) to estimate pulses intensity, they made a least-squares fit of the 

reconstructed streamflow series (obtained through convolution of the input 

sequence with the known time response function) and the recorded one, 

assuming, of course, the unknown input intensities as the variable to be 

determined. Subsequently, in order to test the assumption of storm events 

compatible with a non-homogeneous Poisson point process (i.e. defining a 

different Poisson process, of a given parameter, for each month), the    

goodness-of-fit test was made for each month.  

 

Although the calibration approach presented in this work, that takes 

advantage of the SN model spectral properties described in Subsection 3.3, is 

completely independent from the technique adopted in the parameters 

estimation of the model of effective rainfall, it is of considerable interest due 

to its importance in the synthetic streamflow generation. As a matter of fact, 

a simulation analysis is necessary to assess the effectiveness of the model in 
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the reproduction of the main statistical features of the recorded series. For 

this purpose, in this thesis the author has selected the latter approach 

described, i.e. Xu et al. [2001; 2002], given its better performances, in terms 

of effective rainfalls features reproduction, verified in the following 

subsections. 

 

3.5. A spectral domain calibration procedure 

 

3.5.1. Model structure: the watershed response function 

 

Given the aforementioned modification of Eq. (3.15), in which, for each 

angular frequency  , the PSD of the deseasonalized streamflow process 

(   ̅̅̅̅    ) is equal to the squared module of the watershed TF (    ), in 

order to allow its application to a general case study, the definition of the 

shape of the basin response function      is needed. For this purpose, a 

preliminary description of how effective rainfall reaches the basin outlet is 

needed. In particular, three main runoff components can be identified: the 

baseflow (i.e. the return flow from groundwater capacities), the subsurface 

flow (i.e. interflow, representing rapid flow through pipes, macro-pores and 

seepage zones in the soil) and saturated overland flow (surface flow). The 

two latter components form the direct  runoff, also known as quickflow. It is 

worth underlying that separation of effective rainfall into the above 

components is non-linear, because the relative weight between direct and 

groundwater runoff depends on the infiltration capacity, that is function of 

the soil moisture state and of the intensity of rainfall. Nevertheless, this non-

linearity is not considered here, essentially because it is thought that for the 

aims of the analysis undertaken it is more important to test how well the 
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proposed framework is able to reproduce main runoff process features at 

different frequencies. 

Regarding the baseflow, Claps et al. [1993] demonstrated that, even in small 

basins, annual data can be autocorrelated, due to the presence of a 

groundwater contribution with very slow response time. Hence, even though 

in large basins the hydrogeologic scheme could be more complex, it is 

convenient to assume that when an annual autocorrelation is present in the 

considered time series this is due to the presence of a large and deep aquifer. 

Moreover, those authors also showed that in monthly data autocorrelation is 

present even when annual runoff is uncorrelated. As a consequence, the 

presence of a groundwater component that introduces “memory” in runoff 

data with a delay time of the order of few months is revealed. This over-

month groundwater component is due to the presence of aquifers which run 

dry within the dry season. 

Eventually, as regards direct runoff, if the basin is sufficiently large, even on 

daily data one can recognize the presence of both the subsurface and the 

surface runoff components. 

Therefore, from these considerations it follows that one cannot exclude that 

all four of the above components can be identified from the streamflow 

dynamics on a short time scale. Consequently, the most general watershed 

scheme includes four conceptual elements in parallel. 

Starting from the above considerations, in order to undertake, in the 

following subsections, some comparisons with results obtained by well-

known literature works, in this thesis the author has referred to the same 

response function shape adopted by Murrone et al. [1997]. In this latter work 

a conceptual model of the watershed is considered, with a basin response 

function given by the linear combination, through coefficients   , of its 

components contributions. Each component, modelled as a linear reservoir 
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(hence with a negative exponential impulse response      given in Eq. 

(3.18)), is representative of a corresponding groundwater contribution to the 

streamflow process, each with a proper storage coefficient   : 

 

            
    ⁄⁄   (3.18) 

 

The component identified by the coefficient    (see Eq. (3.19)) is instead 

representative of that amount of effective rainfall that reaches directly the 

basin outlet (surface runoff), i.e. with a response time    enough smaller 

than the interval of data aggregation and, for this reason, modeled as a Dirac 

delta function      [Claps et al., 2005]. Thus, it is possible to assume the 

following form of the time response function: 

 

            
  

  
      ⁄  

  

  
      ⁄  

  

  
      ⁄  (3.19) 

 

In the previous equation the groundwater components represented by the 

storage coefficients    are: the sub-daily (  , representing the sub-surface 

runoff); the over-month (  , representing the contribution of those 

groundwater capacities that are dry during the dry season); the over-year (  , 

representing deepest aquifers). Moreover, it is worth underlying that 

coefficients   , which are considered constant and which distribute the input 

volume among system elements, according to the continuity condition, have 

to fulfil the continuity condition: ∑      . 

 

Given the response function shape of Eq. (3.19), in order to apply the 

spectral property of Eq. (3.15), the analytical determination of the 

corresponding TF form (    ) is needed. Starting from the well-known 
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properties of the Laplace transform, which are not reported here for the sake 

of conciseness, it is possible to demonstrate that the Laplace transform, 

    , of the system response function of Eq. (3.19) is given by the following 

expression: 

 

 {    }          
  

     
 

  

     
 

  

     
 (3.20) 

 

where s is the complex Laplace variable (      ), given by the 

summation of its real ( ) and imaginary (  ) parts. 

Assumed the result shown in Eq. (3.20), it is now fundamental to determine 

the TF module. In particular, in order to make it estimable at discrete 

frequency values, it is needed to pass from the Laplace ( ) to the Fourier 

(  ) domain, given that the latter is the restriction of the former to its 

imaginary axis (i.e., assuming that      in Eq. (3.20)). Starting from this 

premise, once obtained the TF real (  ) and imaginary (  ) parts, that are 

not analytically reported here for the sake of brevity, the TF magnitude is 

easily obtainable, by the definition of the module of a complex number, as 

|     |  √               , which leads to the following expression: 
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 (3.21) 

 

with f the frequency value, expressed in Hertz, at which the module of the 

TF is estimated (which is related to the angular frequency by the following 

well-known relation:      ⁄ ). 
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In Section 4 it will be shown that, once numerically estimated the PSD of the 

streamflow process at discrete frequency values (  ), the TF module of Eq. 

(3.21) will be directly adopted in the estimation of the unknown watershed 

parameters. 

 

A crucial aspect that needs to be underlined consists in the fact that, thanks 

to the shape of the watershed response function adopted in this thesis, the 

basin response function is that of a minimum phase system. In the scientific 

literature a minimum phase system is that corresponding to a TF with two 

particular features: (a) a positive gain; (b) all poles and zeros with a 

negative/null real part [Bolzern et al., 2004]. For this reason, in such a 

system an unique relation between the amplitude and the phase diagrams of 

the systems response exists. It is thus possible to neglect the phase of the 

streamflow signal and calibrate the watershed response function only by 

fitting its PSD. 

According to the work of Muratori et al. [1992], about the minimum phase 

property of single-input single-output linear compartmental systems (i.e. 

networks of linear reservoirs), both the connection of n linear reservoirs in 

cascade and in parallel have minimum phase characteristics (see theorems 1 

and 2 of the cited work). Therefore, given the form of the response function 

shown in Eq. (3.19), corresponding to the parallel connection of four linear 

reservoirs (with the one corresponding to the surface runoff characterized by 

a detention time    enough smaller, and thus negligible, if compared to the 

data aggregation scale), it is possible to state that the system considered in 

this work possesses minimum phase properties. However, it is worth 

underlying that, given the minimum phase conditions reported in the cited 

work, several conceptual models based on the parallel and cascade 

connection of linear reservoirs, frequently adopted in hydrologic calibration 
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problems, have minimum phase properties. Hence, once clarified the 

minimum phase property associated to the adopted response function of Eq. 

(3.19), it is possible to state that, according to Eq. (3.15), in the present 

thesis the watershed model has been calibrated only by numerically 

matching, at each frequency, the squared values of Eq. (3.21) to the 

transformed streamflow process PSD, without paying any attention to the 

phase signal information. 

It is worth noticing that, as stated by Nikias and Mendel [1993], the 

autocorrelation, or equivalently the spectral density, domain suppresses all 

phase information about the system to be identified. As a consequence, a 

proper system calibration by the adoption of procedures based on the use of 

only PSD functions is possible only if the system is minimum phase, that is 

only if an univocal relation between magnitude and phase features of the 

model exists. As a matter of fact, the adoption of PSD-based techniques 

allows only the identification of minimum phase systems [Nikias and 

Mendel, 1993].  

 

3.5.2. PSD estimation techniques 

 

3.5.2.1. A brief overview 

 

Given the result shown in Eq. (3.15) and the expression of the TF module 

showed in Eq. (3.21), in the present subsection the author will provide an 

overview about PSDs, or equivalently power spectra, estimation techniques. 

The techniques for estimating the conventional power spectrum fall into two 

main categories: 

(a) the nonparametric or conventional methods; 

(b) the parametric or model-based methods; 
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The first category, in turn, includes two classes: the direct methods, which 

are based on the FT of the observed data, and the indirect methods, which 

consist in the computation of the FT of the estimated autocorrelation 

sequence of the data (e.g., the periodogram technique). The second class, 

that of parametric methods, includes algorithms such as MA, AR, and 

ARMA modeling, and eigen-space based methods such as MUSIC, Min-

Norm, etc., which are appropriate for harmonic models. Hereinafter the main 

features of the aforementioned categories of methods are described, with a 

particular focus on the adoption of the periodogram (widely adopted in 

technical literature) and of the autoregressive (AR) method, also known as 

maximum entropy method (MEM). 

 

3.5.2.2. Nonparametric (or conventional) methods 

 

The conventional estimators (or nonparametric ones) are generally easy to 

understand and easy to implement, but they are limited by their resolving 

power (the ability to separate two closely spaced harmonics), particularly 

when the number of samples is small. For random signals, these estimators 

typically require long observation intervals in order to achieve acceptably 

low values for the variances of the estimate. 

The most adopted nonparametric estimator of the power spectrum        of 

a generic time signal     , about which   recorded sampled values are 

available, is certainly the so-called periodogram [see, e.g., Montanari and 

Toth, 2007], defined as the discrete FT of the autocovariance function 

      : 

 

       ∑                  
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 (3.22) 
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As clearly showed, the periodogram can also be estimated as the squared 

value of the absolute value of the discrete FT of the time signal     . It is 

worth noticing that the periodogram is an unbiased estimator of the 

spectrum, even though its variance at any frequencies does not go to zero as 

the number of samples goes to infinity (i.e. it is not a consistent estimator). 

Nevertheless, as   increases the spacing between estimates that are 

uncorrelated decreases as    , thus the fluctuations in the periodogram 

become more rapid. However, there are several ways to make consistent the 

periodogram estimation, among which it is possible to distinguish between: 

- smoothing (or filtering) in the frequency domain (that leads to the well-

known Blackman-Tukey spectral estimator, which can be considered as a 

“locally” weighted average of the periodogram [see, for reference, Stoica 

and Moses, 2005, Subsection 2.5]); 

- averaging several periodogram estimates (Barlett, Welch and Daniell 

methods [Stoica and Moses, 2005, Subsection 2.7]). 

For the sake of conciseness the author will not provide any description of the 

aforementioned techniques, thus the interested reader is referred to the 

numerous technical works concerning this matter (among which Stoica and 

Moses [2005] Section 2 is suggested). 

 

3.5.2.3. Parametric (or model-based) methods  

 

The second category is that of parametric methods, which are based on 

parametric models of a time series, such as autoregressive (AR) models, 

moving average (MA) models, and autoregressive-moving average (ARMA) 

models (this is the reason why they are also known as model-based 

methods). To estimate the spectrum of a time series      with parametric 
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methods, thus, you need to firstly select an appropriate model and, secondly, 

obtain the model parameters of the time series. 

The AR or all–pole signals constitute the type that is most frequently used in 

applications. The AR equation may model spectra with narrow peaks, that is 

an important feature since narrowband spectra are quite common in practice. 

The estimations of AR model parameters are usually found by solving a 

system of linear equations, and the stability of the estimated AR polynomial 

can be guaranteed. In general, two techniques are considered for the 

estimation of AR parameters. The Yule Walker method that is base directly 

on the linear relationship between the covariances and the AR parameters. 

The Least-Square (LS) method, based on a LS solution of AR parameter 

from the corresponding time-domain equation [Stoica and Moses, 2005, 

Subsection 3.4]. 

The MA signal is obtained by filtering white noise with an all–zero filter. 

Owing to this all–zero structure, it is not possible to use an MA equation to 

model a spectrum with sharp peaks unless the MA order is chosen 

“sufficiently large”. Thus this contrasts with the ability of AR model to 

model narrowband spectra by the adoption of low model orders. On the 

contrary, the MA models allow the fitting of spectra with broad peaks and 

sharp nulls. Such spectra are not really spread in engineering applications, 

thus limiting the adoption of MA models in the estimation of PSD functions. 

Moreover, MA parameter estimation problem is basically a nonlinear one, 

thus the type of difficulties one should face in MA and more complete 

ARMA estimation problems are quite similar, so one usually prefers the use 

of the latter typology [Stoica and Moses, 2005, Subsection 3.5]. 

For spectra with both sharp peaks and deep nulls a modeling by either AR or 

MA equations of reasonably small orders is not reasonable. In these cases 

the adoption of the more general ARMA model, also called the pole-zero 
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model, is suggested. Two main groups of estimators of ARMA models are 

available in the technical literature. The “theoretically optimal” estimators 

are based on iterative procedures whose global convergence is not 

guaranteed. The “practical estimators”, on the other hand, are 

computationally simple and often quite reliable, but their statistical accuracy 

may be poor in some cases. The mainly adopted techniques in the estimation 

of ARMA type spectra are the so called Modified Yule-Walker method and 

the Two-Stage least square method. However, the intention of the author is 

not that of focusing on this typology of spectrum estimator, thus the 

interested reader is referred to Stoica and Moses [2005, Subsection 3.7] for 

more details.  

 

Given the classical features of common power spectra in hydrologic 

applications, the author has opted in favour of the AR typology among 

parametric estimators. Hence, hereinafter, a more detailed description of the 

all-poles model is provided. 

First of all, consider the transformation of the complex f-plane to a new 

plane, called the z-plane, through the relation: 

 

         (3.23) 

 

where Δ is the sampling interval of the continuous signal in the time domain 

(it is worth noticing that, limited to the present subsection, the reader must 

not confuse the   variable above defined with the one representing the 

impulse train process in the described shot noise structure). 

A formal expression to represent the “true” spectrum is the following 

Laurent series that depends on the infinite number of values   : 
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     |∑    
  

    |  (3.24) 

 

The (3.24) can be intuitively approximated in a general manner with a 

rational function with two finite series in both the numerator and the 

denominator. Less obviously, instead, there are some advantages in an 

approximation whose free parameters all lie in the denominator (all-poles 

approximation): 

 

     
  

|  ∑    
  

   |
  (3.25) 

 

As mentioned above, the approximation (3.25) of the real power spectrum 

goes under different names: indeed, apart from all-poles (where   is the 

number of poles adopted for the estimation) or autoregressive model, it is 

also usual to refer to Eq. (3.25) as maximum entropy method (MEM) 

approximation. Coefficients    can be evaluated by means of several 

estimation methods, among which the author has selected the Burg 

algorithm, developed by Burg [1975] and based on forward and backward 

prediction errors (see, for reference, Stoica and Moses [2005] Subsection 

3.9.3). 

Two main consideration need to be made concerning the all-poles spectra 

estimation technique. 

Firstly, the author wants to justify the reason behind the name MEM of the 

method. As underlined by Press et al. [1996, Subsection 13.7], whatever is 

the chosen value of   in (3.25), the series expansion in the equation defines 

a sort of extrapolation of the autocorrelation function to lags larger than  , 

even to lags larger than the number of measurable data  . It results this 

particular extrapolation can be shown to have, among all possible 
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extrapolations, the maximum entropy in a definable information-theoretic 

sense. Because of this “fictitious” property, it is thought in general that it 

gives intrinsically better estimates if compared to other methods. Obviously, 

after this short explanation, one will be sure that this common assumption is 

totally unfounded. 

The second consideration deals with the number   of poles (or order of the 

AR method) to adopt in the expansion series of Eq. (3.25). As reported by 

Press et al. [1996, Subsection 13.7], in common applications it is used to 

limit the order   of the MEM approximation to a few times the number of 

sharp spectral features that are desired to be fitted. In this way, the method 

tends to smooth the spectrum, that is often a desirable property to achieve. In 

general, however, even though exact values depend on the application 

considered, one might take   equal to 10 or 20 or 50 for   equal to 1000 or 

10000, in order to make the MEM estimation not much slower than the Fast 

Fourier Transform (FFT) estimation. 

 

3.5.3. The calibration approach 

 

3.5.3.1. The parameters estimation 

 

Once defined a form for the watershed TF, whose absolute value is showed 

in Eq. (3.21), in order to best model the behaviour of the basin forced by the 

effective rainfall process, the estimation of the unknown parameters vector θ 

is possible by the adoption of Eq. (3.15). For this aim, the estimation of the 

deseasonalized streamflow process PSD (   ̅̅̅̅ ), by the use of the 

aforementioned MEM method, was accomplished. Conversely, no 

estimation of the input process PSD was necessary (   ) since, as shown in 
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Eq. (3.15), its contribution in the relation between the output process PSD 

and the squared module of the TF is only that of a constant ( ). 

As widely repeated in previous sections, in order to allow the adoption of 

Eq. (3.15), it was necessary to deseasonalize the recorded streamflow series, 

    . For this purpose, even though not reported here for the sake of 

conciseness, the deseasonalization method, clearly described in Hipel and 

McLeod [1994, Chapter 13], consisting in the difference between the generic 

series value with the mean of its corresponding season, was adopted. 

Starting from these premises, the parameters estimation was conducted in a 

least square (LS) framework. The minimization of the sum of the squared 

differences between the numerical estimation of the deseasonalized 

streamflow process PSD, normalized in the range 0-1 (  ̅ ̅̅ ̅̅ ), and the analytic 

expression of the squared module of the TF (3.21), estimated in the 

frequency range of interest [     ], was thus undertaken (refer to the 

following equation): 

 

     ∑ [  ̅ ̅̅ ̅̅      |       |
 ]

  
    (3.26) 

 

Concerning the applied procedure, some important aspects need to be 

discussed. 

First of all, it is worth noticing that the contribution of the constant PSD 

value (G) of the input process was neglected in the determination of the TF 

parameters. This was mainly due to the fact that, in order to minimize the 

function      of Eq. (3.26), its value must equal the value assumed by the 

PSD at the lowest frequency of the frequency range of interest (the so called 

static gain). This is the reason why the model calibration was performed 

considering the PSD normalized in the range 0-1 (  ̅ ̅̅ ̅̅    ), obtained by 
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dividing each amplitude value by that assumed in correspondence of the 

lowest frequency. 

 

Secondly, as above stated, a frequency range of interest [     ] was 

defined in the minimization of Eq. (3.26). In order to understand such a 

decision of the author, consider Eq. (3.12) that defines the power spectrum 

(   ) as the FT of the autocovariance function (   ) of the generic time 

signal     . As a matter of fact, the following inverse transform holds: 

 

       ∫       
 

  
         (3.27) 

 

from which it follows, setting the lag    : 

 

         
  ∫       

 

  
   (3.28) 

 

Eq. (3.28) demonstrates that the power spectrum shows how the variance (or 

mean power) of the time process is distributed over frequency [Jenkins and 

Watts, 1968, chapter 6.2]. Specifically, the variance of the process which is 

due to frequencies in the range  -      is approximately         . It is 

thus clear that by integrating the power spectrum in a certain frequency 

range gives the amount of the total variance (or mean power) in that range.  
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Fig. 3.1. Realization of a generic process      

 

 

Fig. 3.2. Spectrum of the process      shown in Fig.3.1 
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For instance, consider the time process of Fig. 3.1 and the corresponding 

power spectrum of Fig. 3.2. It is evident that the series oscillates very 

quickly, with the corresponding spectrum with a large power at high 

frequencies and a small power at low frequencies. Hence quickly oscillating 

series are characterized by spectra which have most of their power at high 

frequencies. 

Given these considerations, when results of the described procedure to three 

case study watersheds are provided in Section 4, it will be evident a 

concentration of the total variance of the process in correspondence of the 

lowest frequency values. As a consequence, a neglect of the higher 

frequencies mean power contribution was possible, by minimizing Eq. (3.26) 

in a fixed frequency range of interest which goes from the lowest value to a 

opportunely selected maximum frequency limit. In particular, several cut-off 

frequencies were considered, evaluating the different estimated model 

performances in terms of its ability to generate synthetic streamflow series 

compatible, in terms of main statistical features, with the historic series. As 

widely shown in Section 4, major problems were found in the reproduction 

of the second and third order moments. Finally, however, the author 

concluded that, independently from the riverflow series considered, a 

frequency range of interest limited to 2 x 10
-6

 Hz was sufficient to meet all 

the tested statistics. 

 

Eventually, another consideration is needed concerning the PSD inability of 

conveying information about the phase of the system to be identified and the 

mean value of the process. As a matter of fact, the PSD of a time series is not 

affected in any manner by both a shift in the mean and a shift of the whole 

series in time (equivalent to a change in the phase) [see, e.g., Montanari and 

Toth, 2007]. As a consequence, when the spectral estimation of conceptual 
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models is undertaken by means of PSD-based estimators, researchers have 

adopted several techniques to cope with these two orders of problem. For 

instance, Montanari and Toth [2007] preserved the mean of the streamflow 

process through the assumption of zero mean for the residuals of the model, 

while they preserved the process phase introducing the PSD of the model 

error (that is connected to the system phase) in the objective function to 

minimize. In the present work, instead, the author solved these problems in 

different ways. 

Concerning the preservation of the process phase, the minimum phase 

property of the model was adopted. Indeed, as already mentioned in 

Subsection 3.5.1, such a property allows one to neglect the direct adoption of 

phase information in the identification procedure, since they are univocally 

determined from the knowledge of the process output process PSD. In other 

words, a model calibration undertaken in the spectral density domain returns 

the estimation of the minimum phase system corresponding to the adopted 

power spectrum. So, if one could preventively verify the minimum phase 

property of the model to identify, he is certain that the system identified by 

the adoption of a PSD-based estimator corresponds to the objective one. On 

the contrary, if the target system is not minimum phase (see the work of 

Muratori et al. [1992] about the minimum phase property of linear 

compartmental systems), the identified model (minimum phase realization of 

the adopted PSD) is not the correct one. 

The preservation of the mean, instead, was not guaranteed through the 

assumption of zero-mean residuals, since in the calibration approach no 

attention was paid to the input process, thus the estimation of model 

residuals was not possible. However, as deeply shown hereinafter, the ability 

of the model to reproduce the mean of the streamflow data was evaluated by 

comparing the moments of the observed and simulated discharge series 
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(through a simulation analysis). In particular, once the model has been 

calibrated, in order to generate synthetic streamflow series the preliminary 

generation of synthetic effective rainfalls is needed, to be subsequently 

convoluted in the time-domain with the time response function. For this aim, 

thus, the selection of a suitable effective rainfall model between several 

available in the literature is needed. In the following subsection the 

description of the selected model is provided, with a particular focus on the 

available techniques for the estimation of its parameters. 

 

3.5.3.2. Effective rainfall model selection and estimation 

 

As above highlighted, the generation of synthetic effective rainfall series is 

preparatory for the generation of synthetic streamflow series. In particular 

the first difficult task consists in the selection of an appropriate model for the 

representation of the effective rainfall process, given that the natural 

corresponding process is unobservable. At this stage, however, the author 

has considered that the effective rainfall process retains most of the 

stochastic properties of the total (observable) rainfall process, which has led 

to the necessity of estimating the effective rainfall series directly from the 

recorded streamflow series, as deeply described hereinafter. 

The model class selected is that of the physically-based point processes. 

Among them, the classical marked Poisson white noise processes [e.g., 

Eagleson, 1978] and the ones reproducing the rainfall events as a sequence 

of storms made of clusters of rain cells (such as the Neyman-Scott or the 

Bartlett-Lewis processes [e.g., Kavvas and Delleur, 1981; Rodriguez-Iturbe 

et al., 1984]) have been considered in a preliminary stage. The selection of 

the particular model to adopt in the simulation analysis has been mainly 

affected by the considered scale of aggregation, given that serial correlation 
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decreases with the increasing aggregation scale. In particular, for scale of 

aggregation up to 2 days, observable rainfall data present significant 

autocorrelation, which is generally reproduced correctly by cluster-type 

models [Bo et al., 1994]. However, given that in the definition of the 

effective rainfall process it is fundamental the adopted model of the 

watershed response, it is not guaranteed that the same degree of correlation 

exists also on the effective rainfall process. In particular, Murrone et al. 

[1997], following the procedure proposed by Cowpertwait and O'Connell 

[1992], investigated on the effectiveness of the estimation of the four-

parameters Neyman-Scott model, with exponential instantaneous pulses 

within a SN model of daily streamflows, on the effective rainfall series 

obtained by inverse estimation from the recorded streamflow process. As 

clearly reported by the authors, it was not possible to detect the "within 

storm" cellular structure of the effective rainfall, thus failing in the 

estimation of the most peculiar feature of this kind of models. Starting from 

this outcome, it was judged that the two-parameter PWNE model above 

mentioned represents a reasonable choice for short aggregation scales. 

 

In the PWNE model, the number   of occurrences in the time interval    

follows a Poisson distribution, with parameter  , while an exponential 

distribution, with mean   ⁄ , is assumed for the intensity of instantaneous 

pulses [Murrone et al., 1997]. The Probability Density Function (PDF) and 

the Cumulative Distribution Function (CDF) of the cumulated effective 

rainfall,  , over the duration    are given, respectively, by the following 

expressions (see, for reference, Eagleson [1978]): 

 

          [     
√    

 
  ( √     )    ] (3.29) 
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          ,  ∑ *
      

  
       + 

   - (3.30) 

 

where   is the Dirac delta function,    is the first order modified Bessel 

function and         is the Pearson‟s incomplete gamma function. 

Murrone et al. [1997] proposed and tested both Moments and Maximum 

Likelihood estimates of the couple of parameters   and  . However, in this 

work only the first estimation method has been adopted, thus only method of 

moments formula are provided below: 

 

 ̂  
   

 

  
   

        ̂  
   

  
  (3.31) 

 

where    and    are the sample mean and standard deviation of the 

cumulated effective rainfall series,     . In particular, in order to preserve 

the seasonal variability of the mean of the input process, and, consequently, 

of the output process, they were estimated on 13 different seasons of      

days each, wherein they were supposed to remain constant. 

It is worth underlying the importance of a proper estimation of the effective 

rainfall model parameters, since, as already pointed out in previous sections, 

the calibration procedure, synthesized by Eq. (3.26), does not allow the 

preservation of the first order moment of the record streamflow series. As a 

consequence, a crucial aspect in the estimation of the PWNE model, given 

by Eqs. (3.29) – (3.30), consists in the determination of rainfall pulses 

occurrences on which formula (3.31) are applied to return adequate 

parameters estimates. As a matter of fact, it should be noticed that the values 

assumed by the couples of the PWNE parameters, at each season of 28 days, 

directly affect the trend, given to the seasonality, of the mean of the impulse 

train process and, as a consequence, of the streamflow process. 
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In particular, in the SN modeling of occurrences, the methods for the 

effective rainfall model parameters estimation that have received more 

interest by the scientific community are those proposed by Xu et al. [2002] 

and Claps and Laio [2003], only briefly described in the Subsection 3.4, 

with the latter that has to be considered as an evolution of the 

aforementioned DIP approach (introduced by Murrone et al. [1997]). For 

this reason, in the following part of the present section, a comparison of their 

ability to reproduce the statistical properties of the observed streamflow 

series is provided. 

The first tested procedure, the so-called FPOT (Filtered Peaks Over 

Threshold), was proposed by Claps and Laio [2003] to which the reader has 

to refer for more details about the algorithm steps that, however, have been 

summarized in Subsection 3.4. As showed in the next section, concerning 

the application and the validation of the proposed calibration procedure, the 

main drawback of the FPOT technique consists in the poor number of 

selected effective rainfall events per year if compared to the actual number 

of events of the analyzed watershed. In particular, Claps et al. [2005] 

derived the result of about 5 – 20 events per year on a large number of runoff 

series, suggesting a clue of inadequacy of the Poisson independent model in 

the correct reproduction of the effective rainfall behavior. 

The second tested procedure is that originally proposed by Xu et al. [2001] 

and subsequently adopted by Xu et al. [2002]. As in Claps and Laio [2003], 

the unobservable pulse series is reconstructed by using observed daily 

streamflow data but this time it is assumed that pulses occur on all those 

days when streamflow increases (thus avoiding the poor number of effective 

rainfall occurrences of the FPOT technique). Once given the occurrences 

days, the pulses intensities are estimated by making a LS fit of the 

reproduced streamflow to the observed ones, with the former estimated by 
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the convolution of the ith iteration effective rainfall series and the time 

response function   with parameters given by the minimization of Eq. 

(3.26). Eq. (3.32) shows the aforementioned LS objective function, where 

     is the recorded daily streamflow at day   and    is the generic 

reconstructed pulse height. 

 

  ,
 

 
∑ [     ∑   (  )          

   ]
  

   -
  ⁄

 (3.32) 

 

Once obtained the reconstructed pulse heights series by minimization of Eq. 

(3.32), the non-homogeneous Poisson point assumption of the effective 

rainfall events is verified through a classic    goodness-of-fit test for each 

month of the year (see Section 4, concerning the application and the 

validation of the procedure, for more details). After that, the parameters of 

the PWNE model are estimated by the adoption of the method of moments 

formula of Eq. (3.31). As shown in the following section, the whole 

described procedure leads to a more realistic final effective pulse series if 

compared to the FPOT ones, in terms both of the number of occurrences and 

the peaks intensities. As a consequence, a more effective estimation of the 

PWNE model parameters is obtained, allowing, through the generation of 

synthetic rainfall series (following the procedure described in the next 

subsection), the reproduction of the streamflow recorded series first order 

moment in the streamflow simulation analysis. 
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3.6. Model validation and testing: a simulation analysis 

 

Once firstly estimated the time response function parameters by minimizing 

the cost function provided by Eq. (3.26) with respect to the parameters 

vector  , and once secondly estimated the effective rainfall model 

parameters (i.e.   and  ) on the input series obtained by the minimization of 

Eq. (3.32), a simulation analysis was undertaken in order to compare the 

synthetic streamflow series statistical features to those of the recorded one. 

For this purpose, a discrete time convolution (as that of Eq. (3.8)) between 

the time response function      with known parameters and the effective 

rainfall synthetic series was undertaken. 

In particular, the generation of synthetic rainfall series was accomplished 

through the adoption of the universal random variable generator deeply 

described by Hipel and McLeod [1994, p. 302], which allows one to 

transform a given sequence of independent uniformly distributed random 

variables to a sequence belonging to another known distribution. In such a 

framework, the first step is to produce independent variables that follow a 

uniform distribution on the interval (0,1) by the adoption of a random 

number generator. In particular, as clearly stated by Hipel and McLeod 

[1994, p. 297], even though a digital computer follows a strictly 

deterministic process (since it exactly adheres to some precise instructions), 

the generation of a sequence of numbers which appear to be independent 

values distributed on the unit interval is possible. These numbers are referred 

to as pseudo-random numbers and are generated by a pseudo-random 

numbers generator. Over the year a wide range of pseudo-random numbers 

generators has been developed. However, both for the sake of conciseness 

and for the wide availability of ad hoc routines in the Matlab environment, 
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the author will not provide a review of these generators, referring the 

interested reader to the Subsection 9.2.2 of Hipel and McLeod [1994]. 

Some details will be instead provided in the following lines about the 

aforementioned universal random variable generator that allow the 

transformation of a sequence of independent uniformly distributed random 

variables, {  }, to a new sequence, {  }, belonging to another distribution 

with known CDF,     . The generator adopted in the present work is that 

introduced by Yakowitz [1977, p. 41] and subsequently reported in Hipel and 

McLeod [1994, p. 302]. In particular, given the sequence {  }, the formula of 

the CDF,     , of the distribution that one wishes the transformed variable 

to follow and the length,  , of the {  } sequence to be generated, for each 

     of the input sequence the algorithm determines      such that: 

 

         {        } (3.33) 

 

It can be proven that, if the {  } are uniform, the obtained output sequence, 

{  }            , are independent and follow the required distribution 

    , that in this case corresponds to Eq. (3.30). 

Given that the parameters of the distribution (3.30) were estimated on 13 

different seasons of      days each, the above described procedure was 

applied to each single season in order to obtain a synthetic series of effective 

rainfall that follows the PWNE distribution characteristic of that season. 

Subsequently, rearranging the obtained sequences in the proper manner, 

synthetic effective sequences of length           (with      the defined 

number of years of the simulation and 364 the number of days in a year, 

considering 13 seasons of 28 days each) were obtained. In particular, in 

order to allow the study of mean statistical properties of synthetic 
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streamflow series, the generation of 1000 rainfall series of length   was 

executed. 

Finally, synthetic streamflow series, {     }, of equal length, were obtained 

through the discrete-time convolution between the generated effective 

rainfall series, {     }, where each       represents the cumulated rainfall 

value occurring in the time interval [           ] (where, in turn,   

represents the generic day of the whole simulation length), and the time 

response function,     , of Eq. (3.19), with known parameters. The 

discharge value,      , at time  , representing the mean daily flow in the 

interval [           ], was thus obtained by the following expression of 

the discrete-time convolution: 

 

      ∑ ,         *
 ̅        ̅(       )  ̅(       )

  
+- 

    (3.34) 

 

In Eq. (3.34),  ̅ stays for the double time-integral of the impulse response 

function,     , assumed for the whole watershed given by Eq. (3.19), whose 

analytical expression is given by: 

 

 ̅        ∑     (
 

  
  

 
 

    ) 
    (3.35) 

 

where   and   are, respectively, the storage coefficient and the linear 

combination coefficient of the generic linear reservoir characterizing the 

watershed response function of Eq. (3.19). Hence, the generic synthetic 

streamflow series was given by the sequence {     }, with       and 

         . 

In particular,      was selected in order to double the length of the recorded 

streamflow series, in terms of years (    ), to allow the removing of the first 
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     years from the synthetic streamflow series, in order to avoid the 

influence of initial conditions of the simulated series in the statistical 

analysis proposed in the following section. 

From the given framework, a comparison between statistical features of 

recorded and simulated streamflow series was thus carried out for each of 

the case-study riverflow series. In particular, as highlighted in Section 4, 

concerning the application of the proposed calibration procedure, the overall 

quality of the obtained solution was evaluated in terms of its ability to: 

a) reproduce the first three moments, averaged on the different months, of 

the recorded series probability distribution; 

b) return an average flow volume, in a period of length equal to     , similar 

to that corresponding to the recorded series; 

c) guarantee a satisfying reproduction of flow duration curves; 

d) reproduce minimum and maximum values, averaged on different 

aggregation scales, of the recorded series. 

More insight into the described analysis of the overall quality of the solution 

are provided in the following section. 
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4. Application and testing 

4.1. Description of the case studies streamflow series 

 

The identification procedure proposed in this thesis was applied to 3 time 

series of mean daily flows to allow the estimation of the TF parameters of 

the corresponding watersheds. In particular, in order to investigate on the 

capacity of the methodology to be adaptable in several different situations, 

one of the main necessities of the author was that of applying the overall 

procedure to case studies streamflow series belonging to different, in terms 

of physical characteristics, hydrologic watersheds. For this reason, the three 

series, related to three Italian rivers and listed in Tab. 4.1, were selected. In 

particular, in the cited table, for each streamflow series, the lengths of the 

recording periods,     , and the following main characteristics of rivers and 

corresponding basins are reported: the whole basin area,  , corresponding to 

the position of the gauging station on the river path; the length of the river 

path from the corresponding headwater to the considered gauging station, 

     ; the height of the gauging station above the sea level,   . In particular, 

the reader should note: the relevant difference between the basin area of the 

Bormida River and those of the two other rivers; the fact that the height of 

the gauging station of the Scrivia River almost double that of the Alento 
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River; the relevant difference existing in terms of length of the path from the 

sources to the gauging stations between the considered rivers. 

 

Tab. 4.1. Characteristic features of drainage basins and runoff series considered in 

the application 

Series Gauging station A [km2] hm [m a.s.l] Nrec [years] Lg.s. [km] 

(a) Alento at Casalvelino 284 350 15 30 

(b) Scrivia at Serravalle  605 695 14 80 

(c) Bormida at Cassine 1483 493 12 150 

            
 

The first recorded streamflow series is that related to the Alento River, 

which, with a global length of 36 km, originates in the mountain area of 

Monte Le Corne (894 m a.s.l.), within the Cilento National Park, and 

empties into the Tyrrhenian Sea. The whole path of the Alento River 

interests only the Campania region of Italy. The second historical series 

concerns the Scrivia River, which originates in the Liguria region territory, 

at an altitude of about 450 m a.s.l., and empties, after crossing both the 

territory of Piemonte and Lombardia regions, into the Po, i.e. river with the 

major length in Italy, with a total length of about 110 km. The third and last 

considered series is that related to the Bormida River, which, with a total 

length of about 180 km, originates in the Liguria region territory, at an 

altitude of about 800 m a.s.l., and empties, crossing also the Piemonte region 

territory, into the Tanaro river, which, in turns, empties into the 

aforementioned Po river. 

It is worth noticing that the given length      of the records is not intended 

as a continuous recording period, since, in order to deal with significant 
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records, the author needed to bound together two or more parts of 

consecutive records. However, in absence of changes in the existing natural 

flow regime, this necessity is not to be considered as a problem, since each 

year of records has to be seen as an individual and independent realization of 

the stochastic process of mean daily flows. Moreover, the author underlines 

that considered observation periods for the selected watersheds are 

equivalent to those adopted by Murrone et al. [1997] and Claps and Laio 

[2005] in the application of their previously described time-domain 

identification approaches to the same basins. Such a decision was due to the 

necessity to allow a significant comparison between the results of the 

spectral-domain calibration procedure, introduced in this work, and the 

traditional time-domain approach followed by the aforementioned works. 

 

However, the selection of the riverflow series listed in the previous table was 

not suggested only by considerations on physical characteristics of the 

corresponding watersheds. Indeed, the intention of the author was also that 

of testing the methodology effectiveness on case studies basins characterized 

by different climate regimes. In order to make such a point comprehensible, 

a short framework concerning the classification of the climate regime of a 

region needs to be presented in the following lines. 

Several criteria are available in the scientific literature to make a 

classification of the climate. In particular, Thornthwaite [1948] proposed a 

classification based on the so-called climate index ( )̅, given by the following 

equation: 

 

 ̅  
 ̅  ̅ 

 ̅ 
 (4.1) 
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where  ̅ is the mean annual rainfall depth (expressed in   ), to estimate as 

an arithmetic mean between the values obtained in the several recording 

years of observation of the phenomenon, and  ̅  is the mean annual potential 

evapotranspiration (expressed in   ), whose definition, among the several 

available in the technical literature, in terms of the monthly mean 

temperature,   ̅, is given by the empirical formula provided by Thornthwaite 

[1948]. Given the estimated value of the climate index according to Eq. 

(4.1), according to the Thornthwaite‟s criterion, it is possible to distinguish 

between: 

- humid climates, i.e. those characterized by  ̅   , and the corresponding 

sub-classes; 

- arid climates, i.e. those characterized by  ̅   , and the corresponding sub- 

classes. 

On the Italian territory the variability of the climate index between regions is 

due to several factors, among which: the extension of the territory on more 

than 10 degree of latitude, the thermo-regulator effect of the Mediterranean 

sea and, eventually, its complex orography, characterized by the Alps, which 

protect the peninsula from cold northern winds, and the Appennine. As a 

matter of fact, these factors determine the geographical variability of both 

the mean annual temperature ( ̅) and the mean annual rainfall depth ( ̅). In 

particular, the first gradually increases from the north to the south of the 

peninsula, while the mean annual rainfall depth is strongly influenced by the 

orography of the territory. As a consequence, given the cited variations of  ̅, 

and thus of  ̅ , and  ̅, the climate index given by Eq. (4.1) is strongly 

variable not only between different regions but also within the same generic 

region (for more details please refer to Penta and Rossi [1979]). 

However, in order to properly characterize the climate of a given Italian 

region it is also useful to reasoning on quantities as the monthly mean 
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rainfall depths,  ̅    (with   the subscript representing the jth month of the 

year), and the monthly mean potential evapotranspiration ( ̅   ). As a matter 

of fact, it should be known that in Italy the distribution of  ̅    varies 

consistently among the different regions according to the various rainfall 

regimes that characterize the Italian territory. In particular, it is possible to 

distinguish between [see for reference Bandini, 1931]: 

- a continental rainfall regime, which presents minimum values of the 

monthly mean rainfall depth in the winter season and maximum values in the 

summer season (this regime is typical of the continental Europe); 

- a maritime rainfall regime, which is the opposite of the continental one and 

which is characteristic of the coastal zones of central and southern Italy; 

- three different sub-coastal rainfall regimes (not reported here for the sake 

of brevity) that are intermediate between the previous ones, each 

characterized by two distinct maximum values, in spring and autumn, and 

two distinct minimum values, in winter and summer. 

Given that the dry season is defined as the ensemble of months   

characterized by  ̅     ̅   , one can recognize that the total dry season 

duration gradually increases passing from regions characterized by a 

continental to a maritime rainfall regime. 

Starting from the above provided framework, the author selected the three 

case studies streamflows series of Tab. 4.1 in order to apply the proposed 

spectral-domain calibration approach to basins characterized by different 

rainfall regimes. As a matter of fact, Scrivia and Bormida rivers time series 

(shown in Fig. 4.1b,c respectively) are associated to watersheds located in 

the north-west Italy and are mostly influenced by the climate of the Alps (i.e. 

a dominant continental regime). The Alento River streamflow series (see 

Fig. 4.1a), instead, is related to the Apennine region of central-southern 

Italy, hence it is mostly characterized by a maritime rainfall regime. 
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Fig. 4.1. Recorded streamflow series – (a) Alento; (b) Scrivia; (c) Bormida 

 

4.2. Power spectral density (PSD) estimation 

 

PSDs of the deseasonalized case studies streamflow series were estimated by 

the adoption of the maximum entropy method (MEM), deeply described in 

Subsection 3.5.2.3 dealing with parametric (or model-based) PSD estimation 

methods. In particular, coefficients    of Eq. (3.25) were evaluated by the 

adoption of the Burg algorithm, developed by Burg [1975] and based on 

forward and backward prediction errors (see, for reference, Stoica and 

Moses [2005], Subsection 3.9.3). For this purpose, the Matlab built-in 

function psd was adopted, selecting as estimator the burg option and setting: 

- the sampling frequency to          ⁄  Hz, given that 86400 is the 

number of seconds in a day (i.e. the sampling interval,   , of the recorded 

series in the case of mean daily streamflows); 
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- the number of poles in the MEM approximation of the “real” PSD, or, 

equivalently, the number of    coefficients in the denominator of Eq. (3.25), 

to     (for further details concerning this choice, please refer to 

Subsection 4.3.2). 

In the following Fig. 4.2 the PSDs estimates of the three case studies 

riverflow series, with the corresponding confidence interval at the 95% 

confidence level (represented by dash-dotted lines), are provided. 

Some aspects concerning the representation of the PSD need to be 

highlighted. First of all, it should be noticed that the highest frequency value 

for which the PSD is sought, is usually equal to     ⁄ . This frequency is 

known as the Nyquist frequency, sometimes also called the cut-off frequency 

  . Furthermore, it is worth noticing that the PSD is usually represented with 

the power, i.e. vertical, axis reported in decibel (dB) and the frequency, i.e. 

horizontal, axis reported in Hertz (Hz), with the latter according to a 

logarithmic scale. In particular, it is worth noticing that in order to obtain the 

generic power value,  , in decibel,    , the following transformation is 

needed:               . 
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Fig. 4.2. Burg PSD estimates (95% confidence limits in dash-dotted lines);     – 

(a) Alento; (b) Scrivia; (c) Bormida 

 

An interesting consideration is needed concerning the PSD frequency range 

of interest. It is well known that the total power in a time signal is the same 

whether one computes it either in the time domain or in the frequency 

domain (Parseval‟s theorem):  

 

             ∫ |    |    
  

  
∫ |    |   
  

  
 (4.2) 

 

where      is the Fourier transform of the function      [Press et al., 1996, 

p. 492]. In particular, if one wants to determine the amount of power 

contained in a certain frequency range, the one-sided power spectral density 

of the function needs to be estimated, that, in case of real time function, at 

each frequency   is equal to: 
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       |    |  (4.3) 

 

It is thus clear that the integral of the PSD over a given frequency band 

computes the average power in the signal over that frequency band. Starting 

from this consideration, given the PSD estimations of Fig. 4.2, it should be 

evident that, once passed a certain frequency value, the increase in the 

frequency band does not result in an considerable increase of the average 

power. As a consequence, one could define an exact frequency value (a cut-

off frequency) above which the neglect of the PSD contribution does not 

result in a relevant underestimation of the total average power of the signal. 

To cope with this problem, the author tested the calibration procedure 

described in Section 3, and applied to the three streamflow series in the 

following subsections, by applying it several times considering different 

values of the aforementioned cut-off frequency. Results were evaluated in 

terms of the ability of the estimated time response function, given by Eq. 

(3.19), to properly reproduce the main statistical features of the recorded 

series. In particular, the author noticed that above a cut-off frequency value 

of      Hz there was not an improvement of the aforementioned ability of 

the identified model. As a consequence, the fitting of the streamflow process 

PSD by means of the squared module of the TF with unknown parameters 

(through minimization of the cost function of Eq. (3.26)), was undertaken, 

for each of the case studies streamflow series, from the lowest frequency 

value to a maximum fixed to      Hz. 
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4.3. Transfer function parameters estimation 

 

4.3.1. A multidimensional minimization approach: Powell’s method 

 

Given the analytical TF form of Eq. (3.20), with the corresponding module 

formula of Eq. (3.21), and the couple of values frequency-power 

representing the PSDs estimation of the case studies riverflow series, in the 

determined frequency range of interest, the minimization of the cost function 

of Eq. (3.26) was undertaken in order to estimate values of the unknown 

response function parameters. 

For this purpose, a multidimensional minimization problem was defined, i.e. 

finding the minimum of a function,     , of more than one independent 

variable (  {                    }). Several methods are available in 

the technical literature for the resolution of such a problem and a thorough 

review is provided by Press et al. [1996, Section 10]. However, in this thesis 

the direction set (or Powell‟s) method [Powell, 1964] was adopted, and, in 

order to understand the usefulness of such a method, a brief introduction to 

direction set methodologies is needed. 

It is known that if one starts at a point   in a N-dimensional space and 

proceeds from there in some vector direction  , then any function of   

variables      can be minimized along the line   by one of the one-

dimensional methods described in Section 10 of Press et al. [1996]. Various 

multidimensional minimization methods consist of sequences of such line 

minimization and they differ between each other only by how, at each stage, 

the next trial direction   is chosen. In particular, an interesting class of 

methods is characterized by those whose choice of successive directions 

does not involve explicit computation of the cost function gradient, given 
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that, in many practical situations, this computation could represent a 

considerable limit to the application of the minimization procedure. 

In such a case, thus, one might first think of a simple method. Take the unit 

vectors              as a set of directions and, using one-dimensional 

methods, move along the first direction to its minimum, then, from there, 

along the second direction to the corresponding minimum, and so on, cycling 

through the whole set of directions, as many times as necessary, until the 

given cost function stop decreasing. It is thus obvious that what is mainly 

needed in these cases is a better set of directions than the   ‟s. All direction 

set methods, for instance, consist of prescriptions for updating the set of 

directions as the method proceeds, attempting to come up with a set which 

either: 

- includes some very good directions that will take the procedure far along 

narrow valleys of the solution space; 

- or includes some number of non-interfering, or conjugate, directions with 

the special property that minimization along one is not “spoiled” by 

subsequent minimization along another, so that interminable cycling through 

the set of directions can be avoided (for further details please refer to Press 

et al. [1996, Subsection 10.5]). 

In particular, the ideal direction set method would come up with a set of   

linearly independent, mutually conjugate directions. Powell [1964] first 

discovered a direction set method that produces such directions characterized 

by such a property. His methodology starts from initializing the set of 

directions    to the basis vectors, that is            , and, then, 

repeating the following steps until the function stop decreasing: 

- save the starting position as   ; 

- for      , move      to the minimum along direction    and call this 

point   ; 
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- for        , set        ; 

- set         ; 

- move    to the minimum along the direction    and call this point   . 

Powell [1964] showed that, for quadratic cost function of form similar to that 

of Eq. (3.26),   iterations of the above “basic procedure” produce a set of 

directions    whose last   members are mutually conjugate. Hence,   

iterations of the basic procedure, amounting to        line 

minimizations, will exactly minimize a quadratic form cost function. 

However, one of the main problem of the Powell‟s quadratically convergent 

method, consists in the fact that the procedure tends to produce sets of 

directions that fold up on each other and become linearly dependent. As a 

consequence, the procedure finds the solution only over a finite subspace of 

the full N-dimensional case. Nevertheless, there are several ways to fix up 

the problem of linear dependence in Powell‟s algorithm, among which Press 

et al. [1996, Subsection 10.5] provided three main alternatives that are not 

reported here for the sake of brevity. Among them, however, the one chosen 

by the author and implemented in the minimization algorithm consists in the 

introduction of a more heuristic scheme (due to Powell) which, once given 

up the property of quadratic convergence, tries to find some good directions 

along narrow valley, instead of   necessarily conjugate directions. The 

complete routine for the application of the Powell‟s method is reported in p. 

411 by Press et al. [1996]. 

 

4.3.2. Calibration results 

 

The above described almost quadratically convergent Powell‟s method was 

applied to estimate the vector parameter values,  , through the minimization 

of the cost function of Eq. (3.26), reported here for the sake of clearness: 
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     ∑ [  ̅ ̅̅ ̅̅      |       |
 ]

  
    (4.4) 

 

where the author reminds that   is the unknown model TF, whose form is 

given by Eq. (3.20), and   ̅ ̅̅ ̅̅  is the PSD of the deseasonalized recorded 

streamflow series,  ̅   , normalized in the range 0-1 for the reasons 

discussed in Subsection 3.5.3.1. 

Estimates of the response function parameters, for each case study, are 

reported in Tab. 4.2. Moreover, Fig. 4.3 graphically shows the PSDs fitting 

results, given the above discussed cut-off frequency value of      Hz. The 

almost perfect superimposition of the fitting functions (reported in red) on 

the estimated PSDs (reported in black) makes really difficult their graphical 

distinction. 

 

Tab. 4.2. Estimated parameters of the watershed TF of Eq. (3.20) 

Series  0 [-]  1 [-]  2 [-]  3 [-]  1 [d]    [d]    [d] 

(a) 0.157 0.045 0.550 0.249 0.9 34.4 36.2 

(b) 0.020 0.070 0.170 0.740 0.5 50.7 57.2 

(c) 0.122 0.039 0.571 0.268 0.4 30.8 25.9 
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Fig. 4.3. Fitting (red line) of the Burg PSD estimate (black line);     – (a) 

Alento; (b) Scrivia; (c) Bormida 

 

From the results provided in Tab. 4.2, it is evident the absence, for each of 

the identified response function, of a real over-year groundwater 

contribution, given that the corresponding storage coefficient (  ) results, in 

each case study watershed, quite similar to the value assumed by the over-

month contribution (  ). Such a result suggests the possibility to obtain a 

considerable fitting of the detrendized streamflow PSD also by the adoption 

of a three components-response function, that is one given by the parallel 

linear combination of a kinematic linear channel (  ), a sub-daily (     ) 

linear reservoir and a over-month (     ) linear reservoir. In order to test the 

validity of such a consideration, the author undertook the parameter 

estimation, for each of the case studies streamflow series, assuming a 2-poles 

TF watershed model given by the following expression: 
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 (4.5) 

 

From the parameters estimates provided in the following Tab. 4.3, it is 

evident that, for each of the case studies, the over-month response time (  ) 

assumes a value between those assumed by the over-month and the over-

year (  ) contributions in the case of the 3-poles TF. Furthermore, the 

corresponding coefficient (  ) assumes values almost equal to the sum of    

and    in the previous case. The possibility to obtain the same streamflow 

process PSD fitting, both by the adoption of a 3-poles and a 2-poles TF, is 

thus confirmed. 

 

Tab. 4.3. Estimated parameters of the watershed TF of Eq. (4.5) 

Series  0 [-]  1 [-]  2 [-] k1 [d] k2 [d] 

(a) 0.145 0.059 0.796 0.7 35.1 

(b) 0.080 0.000 0.920 0.8 55.8 

(c) 0.100 0.020 0.880 0.7 29.8 

 

However, starting from these considerations, the adoption of a more 

complex TF should be generally preferred in the proposed identification 

procedure, since, in case of watersheds well modelled by a lower number of 

parameters, the response function form is automatically simplified by the 

parameters estimation procedure, as clearly shown by the comparison of 

parameters estimates of Tab. 4.2 and 4.3. 

 

As above mentioned, the main reason of the choice of the response function 

form given by Eq. (3.19) was the necessity to allow the author to perform 
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some comparisons with results obtained by Murrone et al. [1997] and Claps 

et al. [2005]. In particular, in the former paper, a time-domain calibration 

procedure was applied to several basins belonging to the southern Italy 

territory, among which the one concerning the Alento River (series (a) of the 

three case study applications of the present thesis). The second cited work, 

instead, dealt with the time-domain identification of seven northern Italy 

natural watersheds, among which the ones related to the Scrivia and 

Bormida rivers, respectively series (b) and (c) of the present applications. In 

particular, Murrone et al. [1997] adopted a response function given by the 

linear combination of three linear reservoirs (representing the different basin 

storage capacities, each with a different storage constant) and a linear 

kinematic channel (representing, instead, the quick contribution to the runoff 

process). Claps et al. [2005], instead, undertook the calibrations by the 

adoption of a simpler form of the response function, that is characterized by 

only two, instead of three, linear reservoirs, linearly combined with a linear 

kinematic channel. 

However, thanks to calibration results shown in Tab 4.2 (referring to the 

adoption of three linear reservoirs) and Tab. 4.3 (which refers to the 

adoption of only two linear reservoirs), the author is able to provide a 

comparison between the time-domain identification approaches previously 

developed and the frequency-domain procedure here presented. Indeed, the 

following Tab. 4.4 provides the comparison of parameter estimations 

concerning the Alento series (a), reported from the work of Murrone et al. 

[1997], and Scrivia (b) and Bormida (c) series, reported from the paper of 

Claps et al. [2005]. 
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Tab. 4.4. Comparison of spectral and time-domain parameters estimates 

Series Approach c0 [-] c1 [-] c2 [-] c3 [-] k1 [d] k2 [d] k3 [d] 

(a) 

spectral 0.157 0.045 0.550 0.249 0.9 34.4 36.2 

Murrone et 
al. [1997] 

0.340 0.281 0.297 0.082 3.1 60.4 551.4 

(b) 

spectral 0.080 0.000 0.920 - 0.8 55.8 - 

Claps et al. 
[2005] 

0.120 0.280 0.600 - 2.7 56.9 - 

(c) 

spectral 0.100 0.020 0.880 - 0.7 29.8 - 

Claps et al. 
[2005] 

0.120 0.380 0.500 - 2.5 89.1 - 

 

Starting from the Alento series (a), it is evident a significant difference both 

in terms of linear combination coefficients and storage constants values. In 

particular, parameters obtained by the time-domain approach reveal that 

about the 8% of the global runoff process was attributed to a storage capacity 

with a storage coefficient significantly greater than one year. This result is in 

contrast to coefficients obtained by the spectral procedure, since the 

maximum storage coefficient obtained is equal to about one month. 

Moreover, also the direct runoff contribution coefficient (  ) is substantially 

greater than the one obtained by the proposed technique (i.e., about 35% 

against 16%). 

Concerning the calibration of the response functions of Scrivia and Bormida 

rivers, instead, the results provided by Claps et al. [2005] are substantially 

more similar to those here presented, both in terms of combination 

coefficients and storage constants. It is believed that this difference with the 

Alento River calibration was mainly due to the considerable advances made 

by the authors with the introduction of the FPOT approach, against the 
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previously adopted DIP approach, in the estimation of effective rainfall 

occurrences, as also clearly stated by the authors themselves in their most 

recent contribution. 

However, it is worth noticing that the slight differences concerning Scrivia 

and Bormida series calibrations, together with the strong differences 

concerning the Alento River estimates, are mainly due to the fact that, while 

there exists a strict dependence of the time-domain procedure on the 

technique adopted for the rainfall peaks identification (i.e., the previously 

cited DIP and FPOT), the proposed spectral approach, as widely underlined 

in previous sections, is completely independent from this problem. 

 

Furthermore, a fundamental observation, concerning the number of poles,  , 

adopted in the all-poles approximation of the “real” PSDs, is needed. Indeed,  

as stated in previous subsections, the number of poles, or, equivalently, the 

number of    coefficients in the denominator of Eq. (3.25), was set equal to 

4, for each of the case study streamflow series. Concerning this point, one 

could observe that a greater number of poles could have been adopted in 

order to improve the accuracy in the MEM approximation of the “real” PSD, 

since, as shown in the following Fig. 4.4, a greater value of the degree,  , of 

the denominator polynomial in the MEM formulation, would have resulted 

in a considerable different shape of the estimated PSD. Despite of this 

consideration, the reader must think that the TF     , provided by Eq. 

(3.20), is characterized by a limited number of degree-of-freedom, given that 

the number of poles of the modeling system was set to 3 (as a matter of fact 

only 3 linear reservoirs were considered in the watershed time response 

formulation, (3.19)). As a consequence, in Eq. (3.20), the number of free 

parameters is limited to 6, i.e. the 3 mean storage coefficients   , 

representing the parallel linear reservoirs, and 3 of the 4 combination 
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coefficients   , given that the fourth one is estimable as a linear combination 

of the first three. Hence, given the limited number of free parameters of the 

adopted TF, the improvement in the number of poles of the MEM 

approximation of the PSD would have not resulted in the improvement of its 

fitting through the minimization of the cost function      of Eq. (3.26). For 

the sake of clarity, Fig. 4.4 shows the best graphical fitting results of the 

PSD estimation of the three case study series, obtained by setting     , 

through the adoption of the TF form of Eq. (3.20). 
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Fig. 4.4. Twenty poles (    ) MEM approximation of the streamflow series 

PSD (black line) and corresponding best fitting results (red line) with the TF form 

of Eq. (3.20) – (a) Alento; (b) Scrivia; (c) Bormida 

 



Section 4. Application and testing 

 

89 

 

4.4. Validation of the procedure: a simulation analysis 

 

4.4.1. Synthetic effective rainfall series generation 

 

4.4.1.1. Comparison between two methods for pulse sequence derivation 

 

In order to test the performances of the proposed calibration procedure, in 

terms of reproduction of the main statistical features of the recorded 

streamflow series, the generation of synthetic flow series was required. For 

this purpose, the generation of synthetic effective rainfall series was 

preliminary necessary (through the universal random variable generator 

described in Section 3), to subsequently allow the discrete-time convolution 

of these series with the time response function of the basin. An even more 

necessary operation, however, consisted in the estimation of the parameters 

of the so-called PWNE model of effective rainfall, whose PDF and CDF are 

given, respectively, by Eq. (3.29) and (3.30). In Section 3 some details have 

been provided on the available techniques for the assessment of the sequence 

of rainfall pulses, starting from the recorded streamflow series, from which 

the parameters of the PWNE model thus estimated. In particular, the author 

focused on: the FPOT procedure, proposed by Claps and Laio [2003], and 

the procedure proposed by Xu et al. [2001], to which, from this moment, the 

author will refer as MA (Minimization Approach). 

Starting from this general framework, in the present subsection the intention 

of the author is to provide the reader with a comparison between results 

obtained by the adoption of the FPOT and the MA procedures. 

 

The first tested methodology is the FPOT procedure. As already mentioned 

in Section 3, the author highlights that, once estimated the sequence of 
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Filtered Peaks (FP, obtained by subtracting to each local maximum, of the 

streamflow series, the first previous local minimum), a threshold filter has to 

be increasingly applied to the FP series, until the independence test of 

Kendall and the Poisson distribution test of Cunnane are jointly met [Claps 

and Laio, 2003]. The author will refer to the peaks that meet these tests as 

significant FPOT peaks, which are graphically reported, for the first 

recording year of the streamflow process, in Fig. 4.5, for each case study 

series. 
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Fig. 4.5. Significant FPOT peaks in the first year of recording – (a) Alento; (b) 
Scrivia; (c) Bormida 
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The MA procedure by Xu et al. [2001] was also applied to each recorded 

streamflow series (for more details about the methodology, the interested 

reader may refer to Subsection 3.5.3.2). In particular, it is worth underlying 

that the pulse heights obtained by the application of MA procedure (from 

now called significant MA peaks) were estimated through the minimization 

of the cost function shown by Eq. (3.32). Given that, according to Xu et al. 

[2001], pulses occur on all those days when streamflow increases, it is 

obvious that the minimization of Eq. (3.32) defines a highly 

multidimensional minimization problem that the author solved by the 

adoption of the Powell‟s method described in Subsection 4.3.1. The 

estimated peak sequences, for each case study and for the first year of 

recording, are graphically reported in Fig. 4.6. 
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Fig. 4.6. Significant MA peaks in the first year of recording – (a) Alento; (b) 
Scrivia; (c) Bormida 
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Once estimated the significant peak sequences, the author verified that the 

storm events occurred along the time axis according to a non-homogeneous 

Poisson point process, as required by Xu et al. [2001]. For this purpose, a    

goodness-of-fit test was undertaken for each month of the year (Tab. 4.4 

provides    values for each of the 3 case study watersheds). 

 

Tab. 4.5.    goodness-of-fit test for non-homogeneous Poisson distribution on 

significant MA peaks 

Series (a) (b) (c) 

Month χ
2 value 

        
January 1.335 0.318 0.923 

February 0.556 1.072 0.079 
March 0.013 0.747 0.616 
April 0.080 0.344 0.989 
May 0.279 1.802 2.486 
June 1.083 0.490 3.023 
July 0.538 0.008 0.436 

August 0.003 0.670 0.372 
September 1.309 2.472 0.088 

October 0.025 0.041 0.002 
November 0.024 1.469 0.148 
December 0.151 0.508 0.001 

        

        
 

Given a statistic limit of 9.488 at the 5% significance level (see Xu et al. 

[2001]), it is evident that for each basin the null hypothesis of Poisson 

distributed occurrences during each month cannot be rejected. The non-

homogeneous Poisson point process is therefore acceptable for describing 

the storm occurrences. Nevertheless, as above introduced, the slight 

differences in the mean number of rainfall events between months allow the 

author to assume the input process to be stationary. 
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One major comment is needed about the comparison of the two effective 

peaks estimation procedures. As it is possible to realize also by a graphical 

analysis of Fig. 4.5 and 4.6, the mean number of significant rainfall events 

per year obtained by the MA procedure is considerably higher than that 

resulting from the FPOT procedure, for each of the case studies. The values 

reported in Tab. 4.5 confirm this consideration. 

 

Tab. 4.6. Mean number of rainfall events per year: comparison between MA and 

FPOT procedures 

        

Series (a) (b) (c) 

Procedures Mean annual rainfall events 

FPOT 17.5 13.1 16.0 

MA 39.4 17.9 46.7 

        
 

In particular, the mean number of events per year obtained by the FPOT 

approach confirms the results of Claps and Laio [2005], who reported a 

rough estimate of about 5-20 peaks per year for each of the numerous 

analyzed runoff series. However, the main point consists in the fact that 

authors themselves admitted that such estimation could result in a 

underestimation of the actual number of effective rainfall events, suggesting 

a clue of the inadequacy of the Poisson independent model in the correct 

reproduction of the effective rainfall behavior. The mean number of events 

per year obtained by the MA procedure, instead, seems to be much more 

compatible with the actual number of events. As a matter of fact, taking the 

Alento River as an example, several regional studies undertaken on the 
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Italian territory on several uniform compartments (from a hydrological point 

of view) seem to confirm the result. In particular, using the Extreme Value-I 

(EV-I) distribution for statistical analysis of rainfall heights‟ annual maxima 

in intervals of different duration (in the area where the Alento basin is 

located), a mean number of events per year equal to 37 was evaluated [Di 

Nunno, 1981]. Furthermore, adopting the Two-Component Extreme Value 

(TCEV) distribution [Rossi et al., 1984] for the analysis of instantaneous 

discharges annual maxima at Casalvelino station (Alento River), a mean 

number of flood events per year equal to 44 was estimated [Rossi and 

Villani, 1995]. 

Starting from these considerations, the author considered the MA procedure 

more efficient, compared to the FPOT approach, thanks to its ability to 

provide a more realistic pulses sequence in terms of mean annual number of 

events. It is worth underlying that, on the contrary, a comparison between 

FPOT and MA procedures in terms of the mean annual intensity of rainfall 

events would be meaningless. Indeed, while the FPOT approach derives the 

peak sequence only by means of operation on the recorded runoff series, the 

MA procedure provides a sequence, through minimization of Eq. (3.32), 

strictly dependent on the values of the estimated parameters of the TF. 

Furthermore, given that TFs estimates obtained in this work are considerably 

different from those provided by Murrone et al. [1997], concerning the 

Alento River, and Claps and Laio [2005], concerning the Scrivia and 

Bormida rivers, a comparison between pulses sequence in terms of intensity 

would be practically useless. 

Eventually, a first way to ascertain, on the one hand, the validity of the 

response function form adopted in the calibration approach, and, on the other 

hand, the efficiency of the selected MA procedure for the determination of 

the effective peaks series, is to provide the reader with a graphical 
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comparison between recorded and reconstructed series (Fig. 4.7). The latter 

one, in particular, was obtained, for each case study series, through the 

convolution (see Eq. 3.34) between the known response function and the 

corresponding input sequence. From a quick graphical analysis of the 

proposed comparison, it is possible to observe the almost perfect 

superimposition of the peak occurrences time between reconstructed and 

recorded series, in addition to a practical coincidence between corresponding 

discharge values. 
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Fig. 4.7. Recorded and reconstructed runoff series comparison – (a) Alento; (b) 
Scrivia; (c) Bormida 

 



Section 4. Application and testing 

 

99 

 

4.4.1.2. PWNE model parameters estimation 

 

Once selected the MA procedure by Xu et al. [2001] for the estimation of the 

significant values of peak rainfall events, given the consideration of 

Subsection 4.4.1.1, the PWNE model of effective rainfall was estimated by 

the adoption of the method of moments formula of Eqs. (3.31). In particular, 

as mentioned in Section 3, starting from the series of significant rainfall 

pulses, the parameter  , of the Poisson distribution of the occurrences, and 

the parameter  , of the exponential distribution of the intensities, were 

estimated on 13 different seasons of      days each, wherein they are 

supposed to remain constant. In such a way, the intention of the author was 

that of preserving, in the simulated streamflow series, the first-order moment 

season variability. Indeed, it is worth underlying that, as stated by some 

recent worthy contribution about spectral calibration problems (see, e.g., 

Montanari and Toth [2007]), the PSD of a realization of a stochastic process 

does not convey any information about the mean value of the process itself. 

As a consequence, in almost all technical papers dealing with spectral 

calibration procedures, the authors tend to preserve the mean of the runoff 

process through the assumption of zero mean of the model error     , which 

corresponds to imposing the equality for the mean values of observed and 

simulated data [Montanari and Toth, 2007]. However, such a framework can 

be easily followed when some information about the input (rainfall, 

evapotranspiration etc.) processes are available. When, on the contrary, no 

information is obtainable on the input process, the effective rainfall model 

parameters estimation becomes fundamental to assure the correct 

reproduction of the first moment of the recorded series. As a consequence, 

the season length  , for the estimation of PWNE parameters   and  , was set 

to 28 days because it was considered the optimal value for the correct 
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reproduction of the seasonal variability of the recorded series first order 

moment. 

Starting from these premises, the parameters estimates of the PWNE model, 

for each case study series, are provided in the following Tab. 4.6. 

 

Tab. 4.7. PWNE model parameters estimates 

              

Series (a) (b) (c) 

Season 
# 

λ         

[1/d] 
1/β    

[m3/s] 
λ         

[1/d] 
1/β    

[m3/s] 
λ         

[1/d] 
1/β    

[m3/s] 

              
1 0.109 165.9 0.054 269.5 0.174 114.7 

2 0.067 154.8 0.045 258.8 0.038 1281.8 
3 0.086 99.1 0.067 450.4 0.061 824.3 

4 0.058 102.5 0.056 386.2 0.063 762.6 
5 0.059 43.5 0.048 467.2 0.094 483.8 

6 0.024 50.9 0.011 93.9 0.013 635.3 
7 0.075 6.5 0.010 106.0 0.034 41.0 

8 0.023 17.9 0.010 100.1 0.027 123.2 
9 0.091 6.0 0.014 391.3 0.020 256.3 

10 0.033 36.3 0.031 766.8 0.037 631.7 
11 0.029 129.1 0.073 642.5 0.061 389.8 

12 0.090 136.0 0.073 486.4 0.058 1198.8 
13 0.142 124.1 0.062 589.4 0.056 1055.4 
              
              

 

The universal random variable generator, described in Subsection 3.6, was 

thus applied for the generation of synthetic rainfall series, whose statistical 

distribution was that of Eqs. (3.29) and (3.30), which were then numerically 

convoluted with the discrete time response function of the watershed to 

generate synthetic streamflow series. For further details on the simulation 

analysis, the interested reader may refer to Subsection 3.6. 
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4.4.2. Comparison of main statistical features between recorded and 

synthetic streamflow series  

 

4.4.2.1. Introduction 

 

In the present subsection the author will provide the reader with some 

interesting comparisons between the generated streamflow series, according 

to the procedure exposed in the previous subsections, and the recorded ones, 

in order to ascertain the applicability and efficiency of the proposed 

frequency-domain calibration procedure. Even though already depicted in 

Section 3, it is worth underlying now that, for each case study series, the 

generation of 1000 streamflow series of length, in days,           was 

undertaken, where 364 is the number of days in a year, considering 13 

seasons of 28 days each, and      is the number of years of the simulation, 

assumed in order to double the length of the recorded streamflow series, in 

terms of years,     . However, before the execution of the statistical 

analysis, the first      years of the synthetic runoff series were removed, in 

order to make generated series independent on the initial conditions of the 

simulation. 

Concerning statistical analysis, it is widely known that the real value of a 

stochastic model must be judged from its capacity of correctly reproducing 

the statistical properties of recorded series from which its parameters have 

been assessed. As a consequence, as already mentioned at the end of Section 

3, the quality of the obtained solution (i.e. TF parameter estimates) was 

evaluated in terms of its ability to: 

a) reproduce the first three moments, averaged on the different months, of 

the recorded series probability distribution; 
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b) return an average flow volume, in a period of length equal to     , similar 

to that corresponding to the recorded series; 

c) guarantee a satisfying reproduction of flow duration curves; 

d) reproduce minimum and maximum values, averaged on different 

aggregation scales, of the recorded series. 

 

4.4.2.2. Comparison of mean statistics 

 

The first validation test, useful to assess the real efficacy of the estimated 

watershed response function, concerns the comparison of the moments of the 

observed and generated flows, averaged on the different months of the year. 

In particular, the author focused on the comparison of the first three 

moments of the distribution of the streamflow variable   (i.e. mean, standard 

deviation and skewness coefficient), whose estimators are provided, 

respectively, in the following formulas: 
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where   is the number of elements in the considered sample and    is the ith 

element of the sample. 

The graphical comparison of the aforementioned moments is provided in the 

following Fig. 4.8, where upper and lower confidence limits are also 

provided by adding and subtracting the standard deviation value to the 

corresponding statistic estimate. 
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Fig. 4.8. Comparison of mean statistics of daily flows for each calendar month 

between recorded (solid black line) and generated series (solid red line); confidence 

intervals ±σ are shown in dashed line – (a) Alento; (b) Scrivia; (c) Bormida 

 

For each of the case study time series, it can be noticed that the overall trend 

of the monthly averaged historical moments is quite well preserved by the 

generated series. In particular, the best performance concerns the 

reproduction of the monthly mean flow values, which confirms the 

efficiency of the selected model of effective rainfall. Furthermore, also the 

standard deviation and the skewness coefficient overall trends are quite well 

preserved. In particular, the former generally presents a negative bias in 

correspondence with the tail of the statistics, while both the central and the 

extreme portion of the synthetic skewness trends are characterized by a 

positive and negative error. Nevertheless, all the synthetic trends are 

included in the respective confidence interval represented by the dashed 

lines in Fig. 4.8. 
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However, in future advances of the calibration procedure here proposed, it 

will be attempted to considerably reduce the error in the reproduction of the 

mean monthly second order moment, since it is fundamental in simulation 

analysis aimed at the reproduction of the correct discharge trend within a 

month. The reader should think, for instance, to a typical water resource 

management problem of an artificial reservoir. As a matter of fact, in this 

case, in order to define the best rule for the management of water volumes 

stored in the reservoir during the year, it is fundamental the availability of a 

stochastic model for the correct reproduction of the streamflow process 

within the year. In particular, the shorter is the aggregation scale within 

which the model is able to reproduce the streamflow variability, the more 

detailed will be the estimated reservoir scheduling. 

 

The second validation test, in terms of mean statistics, concerns the 

comparison of the total historical flow volume, that corresponds to the 

recorded streamflow series of length     , with the average of the 1000 total 

flow volumes corresponding to the simulated runoff series of the same 

length (Tab. 4.7 provides the comparison for each case study series). The 

importance of this test is intuitive, given the evident necessity of a correct 

reproduction of this statistic in water resources management problems on a 

over-year time scale. 
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Tab. 4.8. Recorded and mean synthetic flow volumes comparison for each case 

study series 

    
 

  

Series Rec. flow vol. [m3] Mean synt. flow vol.  [m3] % error 

(a) 2.24 x 109 2.32 x 109 -3.6 

(b) 6.61 x 109 7.01 x 109 -6.0 

(c) 9.07 x 109 9.61 x 109 -5.9 

        

 

Tab. 4.7 demonstrates the capacity of the identified watershed models to 

properly reproduce, with an acceptable error, the total flow volume on a 

period of length equal to     . In particular, for each of the watersheds, the 

slightly overestimation of the recorded flow volume was probably due to the 

uncertainty both in the effective rainfall model parameters estimations and in 

the subsequent rainfall series synthetic generation. 

 

4.4.2.3. Comparison of flow-duration curves 

 

The flow-duration curve is a cumulative frequency curve that shows the 

percent of time during which specified discharges were equalled or exceeded 

during a given period. It combines in one curve the flow characteristics of a 

stream throughout the range of discharge, without regard to the sequence of 

occurrence. To prepare a flow-duration curve, the mean daily, weekly, or 

monthly flows during a given period are arranged according to their 

magnitude, and the percent of time during which the flow variable equals or 

exceeds the specified values is computed. The curve, drawn to average the 

plotted points of specified discharges versus the percent of time during 

which they were equalled or exceeded, thus represents an average for the 
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period considered rather than the distribution of flow within a single year 

[Searcy, 1959]. 

It is widely recognized the utility of flow-duration curves in several 

applications. In particular, in this thesis, they were adopted to properly 

compare the observed and synthetic cumulative distribution functions of the 

streamflow process, of which flow-duration curves can be considered an 

appropriate representation. 

Estimation of flow-duration curves was undertaken by the adoption of the 

procedure, described by Claps et al. [2005], described in the following lines. 

Concerning the observed discharge series, the historical dataset of size  , 

where   is the length of the series in days, was sorted in descending order 

and an empirical frequency of occurrence, equal to      
 

   
 was assigned 

to the ith order statistics in the sample, that is       (    ). The same 

procedure was followed for the whole generated runoff series, given by 

merging the 1000 synthetic series, each of length  , in an unique generated 

series. As a result, the size  ̅ of the synthetic series was much larger than  . 

Hence, the empirical frequency of occurrence was estimated as      
 

 ̅  
 

and the jth order statistics in the sample was evaluated as     
    (    ), 

where the apex   is used to distinguish synthetic streamflow data from 

recorded ones. Eventually, the flow-duration curves were given by the      

and      values, on the abscissa, plotted versus, respectively,      and     
  on 

the ordinate. The graphical comparison between recorded and synthetic 

series flow-duration curves is provided in the following figure, for each case 

study watershed. It is worth noticing that, in order to allow the representation 

of the frequency axis in terms of number of days in the year, it is only 

needed to multiply by 365 the frequency of occurrence values on the 

abscissa 
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Fig. 4.9. Comparison between flow-duration curves of recorded (solid line) and 

simulated (dotted line) series – (a) Alento; (b) Scrivia; (c) Bormida 

 

Figs. 4.9a-c clearly show the considerable result obtained in terms of 

matching of the global trend of the recorded runoff series flow-duration 

curves for the Alento and Bormida rivers, both for the lower (less frequent 

and, thus, more relevant flow events) and the upper (more frequent discharge 

values) tails of the frequency distribution. A certain difference, instead, can 

be noticed between the two curves concerning the Scrivia River (Fig. 4.9b). 

In particular, a low underestimation of the highest flow values (i.e. the rarest 

events) and a moderate overestimation of the lowest discharges (i.e. the 

runoff during long dry periods) is revealed. Such a difference could be 

addressed to the absence, in the time response function identified for the 

Scrivia watershed, of a strong impulsive contribution. As a matter of fact, 

given the results shown in Tab. 4.2, while for the Alento and Bormida rivers 

this component is respectively equal to about the 16% and 12% of the total 
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discharge, for the Scrivia River the direct runoff is only the 2% of the total. 

This substantial difference can particularly affect the capacity of the 

calibrated response function of properly reproducing both the dry periods 

runoff values and the rarest events. In particular, in presence of response 

functions similar to that of the Scrivia River, when a high intensity effective 

rainfall event is generated by the universal random variable generator 

described in Section 3, the resulting runoff value will not be characterized by 

a relevant magnitude, since the absence of a considerable impulsive 

contribution results in the fact that only a small portion of the effective 

rainfall feeds the runoff process. At the same time, given that the greatest 

amount of rainfall contribution feeds the over-month and over-year storage 

capacities of the watershed, the direct consequence will be an overestimation 

of more frequent (i.e. with minor intensity) flow values, since they are 

affected by that amount of previous intense rainfall events that have been 

preliminary stored in the several watershed capacities, and, after, slowly 

released to the river. Such an interesting result would suggest the adoption of 

a different response function form for the Scrivia River, in order to 

differently model the surface runoff. For instance, the Dirac delta function 

could be substituted by 2 or 3 identical linear reservoirs, obtaining a 

response function able to release in a wider time interval the quick runoff 

contribution [see, for reference, Boyle, 2000]. However, in this direction 

further investigation need to be pursued to improve the overall capacity of 

the proposed approach to properly fit the upper and lower tails of the 

recorded flow-duration curves. 

The different performances, of the proposed calibration approach, in the 

reproduction of the cumulative distribution functions of the recorded 

streamflow processes, could result in troublesome limitations to the adoption 

of the methodology in water resources management problems. Indeed, for 
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instance, the management of an artificial reservoir at a short time-scale 

would require the ability of the stochastic model, for the generation of 

synthetic streamflow series, of correctly reproducing the high frequency 

values, given their importance in the definition of a short time-scale 

scheduling of the reservoir. However, it is also true that, as already shown in 

Tab. 4.7, all the calibrated response function are able to correctly reproduce, 

with a limited error, the global flow-volume in the recording period, 

suggesting the model ability in reproducing the real flow regime on an 

extended period. Such a result is not contrasting with the flow-duration 

curve of the Scrivia River (Fig. 4.9b), since the underestimation of the high 

frequency discharge values and the overestimation of the low frequency ones 

results in a global trade-off in terms of flow-volume, providing the results 

shown in Tab. 4.7. 

 

4.4.2.4. Reproduction of minimum flow values over fixed durations 

 

As already said, one of the main applications of streamflow processes 

stochastic models is the possibility to generate synthetic streamflow series to 

cope with a wide variety of water resources problems. In particular, one of 

the most popular class of problems, to which synthetic models have been 

usually applied, deals with water resources planning and management, e.g. 

the determination of the best artificial reservoir operating rule curve within a 

year or in a multi-year framework. As already stated, it is intuitive that, in 

this type of applications, stochastic models have to be able to correctly 

reproduce the main distribution properties of the recorded series from which 

they have been calibrated. In previous subsections, indeed, several validation 

tests have been provided, comparing recorded and generated series in terms 

of, in particular, the first three moments of the distribution, the global flow-
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volume over a given period and flow-duration curves. All these tests showed 

satisfying results. However, it is worth underlying that, in almost all 

practical problems to which a stochastic streamflow model can be applied, 

the proper reproduction, in statistical terms, of minimum flow values would 

be a significant characteristic of the adopted model. For this reason, in the 

present subsection, the graphical comparison between recorded and 

simulated mean minimum flows, averaged over different durations, is 

provided. 

For the sake of repeatability, the author will firstly describe how to estimate 

mean minimum flow values, given a series of mean daily flows of      

values. Defined a certain duration   (in days), a new series is obtained by 

averaging the   groups of flows, each characterized by   daily flow values, 

obtained by dividing the historic sequence in        ⁄  portions. The 

minimum value of the series thus obtained is the mean minimum flow value 

for the fixed duration  . The same procedure needs to be followed both for 

recorded and synthetic series (that in the present work are 1000 for each case 

study river). In this latter case, in particular, once repeated, for the a fixed 

duration    the previous procedure for each of the generated series, the mean 

minimum flow to be compared to that corresponding to the recorded series, 

for the same duration  , is evaluated by averaging the 1000 mean minimum 

values obtained by the synthetic series. Fig. 4.10 shows results for each case 

study watershed. 
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Fig. 4.10. Comparison of minimum mean discharges, averaged over different 

durations, between recorded (circle points) and synthetic (cross points) series with ± 

2σ confidence limits (dotted points) – (a) Alento; (b) Scrivia; (c) Bormida 

 

From a first graphical analysis of Fig. 4.10, one should notice that, for each 

case study, the recorded and generated series trends are both included within 

the    confidence bands (following Murrone et al. [1997]). In particular, the 

best performance is that obtained for the Alento riverflow series, where an 

almost perfect superimposition of recorded and generated mean minimum 

flow values was obtained for each duration from 1 to 30 days. However, 

within the same case study, it has to be noticed the poorest results, if 

compared to those obtained for the other durations, are those pertinent to the 

shortest durations (from 1 to 4 days). The author connects this result to the 

adopted effective rainfall model (the so-called PWNE model) that, most 

likely, is not able to properly reproduce shortest-time statistical features 

given the limitation in the number of its parameters.  
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Considerably different results were instead achieved concerning the Scrivia 

(Fig. 4.10b) and Bormida (Fig. 4.10c) case study rivers. In the former case, 

indeed, it is possible to notice a certain increasing overall trend, for the 

synthetic streamflow series, in the mean minimum values from lowest to 

highest durations. On the contrary, the same trend is not recognizable for the 

recorded series, where, instead, the mean minimum flow value remains 

almost constant. This result is easily explicable by means of a detailed 

analysis of the Scrivia recorded streamflow series. As a matter of fact, from 

the corresponding 14 recording years, it is possible to notice a particularly 

long and anomalous dry period (that is, with a mean daily flow value minor 

than 0.5    ⁄ ) from the second half of July to the first half of October, of 

the thirteenth year of the recorded sequence. As obvious, given that the 

parameters of the PWNE model, of the effective rainfall, had been estimated 

as mean values on each month of the year, they were not able to take into 

consideration of such an atypical occurrence, determining the evident 

difference in the global trend shown in Fig. 4.10b. 

A considerable different situation concerns, instead, the Bormida River case 

study. As a matter of fact, Fig. 4.10c clearly shows an underestimation of the 

mean minimum flow values of the recorded series by the generated ones, for 

each duration  . Nevertheless, the overall increasing trend is quite similar to 

that of the historical sequence. However, it is evident the inability of the 

model in reproducing the considerable “peaks”, of the mean minimum flow 

values, for some of the considered averaging durations, given that, as 

confirmed also by Fig. 4.10a-b, the model is only able to reproduce a regular 

increasing path of the minimum values over fixed durations. Such a limit is 

to be related to the aforementioned estimation procedure of the parameters of 

the PWNE model of the effective rainfall. As a matter of fact, the estimation 

of the couple of parameters   and   on 13 “season”, each of 28 days of 
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length, does not allow the correct reproduction of those particular 

streamflow events that can result in the “peaks” provided by Fig. 4.10c. 

Hence, synthetically, results obtained by the comparison of mean minimum 

flows, averaged over different durations, between historical and generated 

series, provide that the calibrated model is able to satisfactory reproduce the 

recorded series path if two conditions are verified (see Fig. 4.10a concerning 

the Alento River): 

- the absence, in the historical sequence, of singular long dry periods, which 

could be considered anomalous if compared to the standard dry periods; 

- the absence of singular streamflow events, whose high intensity of the 

rainfall events, from which it originates, could be barely reproduced by the 

mean estimates of the parameter of the adopted model for the effective 

rainfall reproduction. 

In order to overcome these limitations, the author is confident that the 

adoption of a more complex models for the reproduction of the effective 

rainfall phenomenon (e.g., the five-parameters Neyman-Scott cluster model) 

can be decisive. However, further analysis will be necessary in the 

immediate future to confirm this idea. 
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5. Conclusions 

5.1. Thesis summary 

 

In this thesis, a frequency-domain calibration procedure of SN-based models 

for streamflow modeling has been studied. It is now worthwhile to review 

the most important results and considerations achieved in the different 

sections of the thesis. 

 

Section 2 has been devoted to provide the reader with a comprehensive and 

synthetic review of the techniques, available in the technical literature, 

aimed at the calibration of CT model. The first part of the section has been 

addressed to the definition of the major advantages of the application of a 

CT identification framework compared to a DT one, resulting in the general 

convenience of the former class of approaches. Subsequently, in a first 

subsection, a short survey of time-domain methods for the identification of 

CT models has been provided, while in a successive subsection the class of 

frequency-domain identification procedures has been dealt with. Finally, the 

two main advantages of the latter class of methods have been discussed, that 

can be summarized as: 
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(a) the possibility to replace large data sets, usually necessary in a time-

domain framework, with a limited number of frequency-domain information 

on input and output signals; 

(b) the possibility of combining data collected from different experiments 

that, on the contrary, is not easily possible in time-domain data procedures. 

 

Section 3 has focused on that class of CT models known as Shot Noise (SN). 

In particular, in a first subsection, a comprehensive survey of the literature 

contributions to the topic has been provided, recognizing the model ability in 

the reproduction of short time scale discharge series, due to its aptitude to 

properly reproduce the presence of peaks and recessions, characteristic of 

daily discharge time series. Furthermore, a detailed mathematical description 

of SN processes, and relative properties, has been addressed. Particular 

attention has been paid to their spectral properties, which allow one to avoid 

the adoption of input processes data (e.g., rainfall series, evapotranspiration 

series etc.) in the calibration procedure presented in this thesis, which can be 

sees as the main contribution of the whole work, especially if compared to 

previous identification approach of SN models in the frequency domain. 

Furthermore, after an overview on classical time-domain calibration 

procedures, the proposed spectral-domain calibration method has been 

presented. The objective response function, to be identified, is given by the 

linear combination of three parallel linear reservoirs, each with a different 

storage coefficient (representing the several groundwater contributions), and 

a fast surface runoff contribution. In order to estimate the response function 

parameters, the given procedure consists in a least-square fitting of the 

streamflow process PSD, through the squared module of the model TF, with 

unknown parameters. The form of the watershed response function has been 

thus provided, in order to allow proper definition of the unknown 
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parameters. Moreover, some details on the available techniques for the 

estimation of the output process PSD have been provided, focusing, in 

particular, on the selected maximum entropy (or all-poles) approximation. 

The last part of Section 3 has dealt with the description of the PWNE model 

for the modeling of effective rainfalls. In particular, method of moments 

formulas for the estimation of its two parameters have been provided. 

Moreover, a description of the methods, available in the scientific literature, 

for the assessment of the effective pulses sequence has been addressed. 

Particular attention has been paid to the description of the so-called FPOT 

and MA procedures. 

 

Eventually, the application and testing of the proposed calibration procedure 

have been addressed in Section 4. A detailed description of the three selected 

riverflow time series has been provided in a first subsection, highlighting the 

differences, in terms of climatic features, among the corresponding 

watersheds. In particular, two rivers associated to watersheds mostly 

influenced by the climate of the Alps (Scrivia and Bormida) and one 

characterized by a maritime rainfall regime (Alento) have been selected. 

Thus, once provided some details on the multidimensional minimization 

approach selected for the least-square minimization of the cost function (i.e. 

the so-called Powell‟s method), estimations of the parameters value have 

been provided, together with the graphical result of the streamflow process 

PSD through the squared module of the TF. 

Subsequently, in order to allow the overall quality of the obtained response 

function, a simulation analysis, consisting in the generation of 1000 

synthetic streamflow series for each case study watershed, has been needed. 

For this purpose, the selection of the most suitable technique for the 

assessment of the sequences of effective rainfall pulses has been necessary. 
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Concerning this point, a detailed comparison, in terms of reproduction of the 

statistical features of the effective rainfall phenomenon, between the 

aforementioned FPOT and MA procedures has been undertaken. Obtained 

results have suggested the general convenience in the adoption of the latter 

approach, especially thanks to its capacity in the reproduction of the correct 

number of peak events per year. 

Finally, statistical analysis on the generated series have been executed and 

reported in the last subsections of Section 4, in order to assess the overall 

quality of the obtained calibrations. In particular, the following synthetic 

results have been reported. 

The estimated response functions have shown a certain effectiveness in the 

reproduction of the overall trend of the first three moments of the 

distribution, of the recorded streamflow series, averaged over the different 

months of the year. In particular, only a slight negative bias in the 

reproduction of the tails of the standard deviation of the distribution has been 

noticed, for all the case study series. Furthermore, the capacity in the 

reproduction of the total flow-volume in a certain period of observation has 

been evaluated. Results, provided in Section 4, have clearly shown a 

maximum overestimation equal to 6% of the total flow-volume, confirming 

the relevance, of the calibrated response function, in water resources 

management problems. 

Moreover, other two statistical tests have been undertaken on the generated 

series. Firstly, Section 4 reports the comparison between recorded and 

generated series flow-duration curves, considered as an expression of their 

cumulative distribution functions. As clearly shown, the overall trend of the 

curve is quite well reproduced for all the three case studies. However, 

concerning the Scrivia River, a moderate underestimation (overestimation) 

of lowest (highest) frequency values is shown. Such a result has been 
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addressed to the presence, in the estimated response function, of a small 

direct runoff contribution, if compared to other groundwater components, 

which could suggest the adoption of a different modeling, in the response 

function form, of the direct runoff (e.g., by means of one or a cascade of 

identical linear reservoir). 

At last, the capacity in the reproduction of minimum mean flow values, 

averaged over different durations (from 1 to 30 days), has been investigated. 

Remarkable results have been obtained for the Alento River, while some 

problems have arisen from the Scrivia and Bormida. As a matter of fact, in 

the former case, the model has not been able to “read” the presence, in the 

historical series, of an anomalous long dry period (which results in a 

constant trend of minimum mean flow values over different durations). 

While, concerning the Bormida River, even though the overall increasing 

trend has been correctly reproduced, the estimated solution has resulted 

unsuitable for the reproduction of the “peaks” in the minimum mean 

discharges, especially for the highest duration values. Both Scrivia and 

Bormida rivers unsatisfactory results have been related to the effective 

rainfall model estimation technique adopted in the thesis, which estimates 

the two parameter values of the PWNE model as mean values over 13 

periods of 28 days each, in order to preserve the seasonal variability of the 

input process. 

 

5.2. Further developments 

 

Several aspects of the proposed work can be object of future developments 

to improve the quality of the presented calibration approach. 

A first considerable contribution could concern the form of the response 

function, and thus of the corresponding TF, adopted in the frequency-domain 
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fitting of the streamflow process PSD. Indeed, as deeply outlined in Section 

4, the poor results, in the reproduction of the historical flow-duration curve 

for the Scrivia River, are especially due to the absence of a strong direct 

runoff contribution. As a consequence, the adoption of a different response 

function form (e.g., with the direct runoff modeled by means of a cascade of 

2 or 3 identical linear reservoirs) would result in different parameters 

estimate and, probably, in a better reproduction of the historical flow-

duration curve. 

A second relevant, and probably more effective, development could deal 

with the application of an alternative model for the effective rainfall process 

modeling. Indeed, as outlined in the previous subsection, some of the 

differences between recorded and simulated runoff series have been 

addressed to the implicit limitations in the adoption of the PWNE model. As 

a consequence, it appears that the adoption of a more complex model, 

characterized by a greater number of parameters (e.g., the five parameters-

Neyman-Scott model with exponential instantaneous pulses, within a shot-

noise model of daily streamflows), could result in a better reproduction of 

the real dynamics of the effective rainfall process, thus allowing the better 

fitting of the streamflow process statistics. 

Eventually, the intention of the author is to adopt the know-how acquired for 

the development of the present thesis to the resolution of problems 

concerning the frequency-domain calibration of hydrologic models, not only 

in a SN framework. 
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Appendix 

The aim of the present brief appendix is to clarify some fundamental issues 

to allow the reader a comprehensive understanding of some basilar concepts 

addressed in this thesis. 

In the technical literature, a large variety of models is available for the 

description of rainfall-runoff transformations, each one suitable for the 

resolution of a particular class of hydrologic issue. Moreover, several 

authors attempted to classify rainfall-runoff models [e.g., Todini, 1988], 

even in absence of an universal criterion of classification. Among them, 

however, each existing classification recognizes the importance of the so-

called lumped-conceptual models. Conceptual models are those determined 

by the arrangement of a small number of elements, each characterizing the 

simple representation of a physical relationship [Dooge, 1959]. Lumped 

models, instead, refer to the fact that the model parameters are averaged on 

the entire watershed [Troutman, 1985]. Among lumped-conceptual models, a 

great interest has always been received by the so-called Linear 

Compartmental Systems (LCSs) [Jacquez, 1985], given by the parallel 

and/or cascade connection of a certain number of linear reservoirs, i.e. 

subsystems characterized by a negative exponential impulse response. Some 

applications of this category of models within stochastic streamflows 
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generation problems are provided by Murrone et al. [1997], Boyle [2000] 

and Claps et al. [2005]. These models are usually characterized by two main 

properties: 

- linearity: that is, the response of the model to a linear combination of two 

valid inputs is equal to the linear combination of the single response of the 

model to each input; 

- time invariance: that is, the model parameters remain constant with the 

time. 

The validity of the given properties leads to the definition of the so-called 

Linear Time Invariant (LTI) models, that can be synthetically defined as 

those systems where at any time instant   the current value of the output 

process,     , can be obtained as a linear combination of present and past 

input process,     , values [Priestly, 1981, Section 1]. According to this 

assumption, in the case of LTI models, the relationship between input and 

output signals can be expressed in the following form: 

 

     ∫              
 

 
 (A.1) 

 

where the function     , known as impulse response function, describes the 

form of the output of the system when the input is an unit impulse function 

(that is a function which take a very large value at just one time point, is 

almost zero everywhere else, and has an unit area) centred at the origin 

[Priestly, 1981, Section 1]. 

From the definition (A.1), the Transfer Function (TF), of the LTI system, is 

a complex valued function obtained by the bilateral Laplace transform, 

 {    }, of the impulse response function [Kailath et al., 2000, Chapter 6]: 
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      {    }  ∫           
 

  
 (A.2) 

 

where        (with   the imaginary unit), known as complex or Laplace 

variable, defines the complex plane (i.e. the existence domain of the TF, 

characterized by a x, or real-axis,  , and a y, or imaginary-axis,   , also 

known as frequency,  , axis). 

Given the TF form (A.2), the corresponding frequency response,      , is 

obtainable by the restriction of the Laplace domain to the points belonging to 

its positive-imaginary semi-axis (thus substituting    for   in the TF 

expression, setting the real part of the complex variable to zero) [Sourdille 

and O'Dwyer, 2004]. Hence, the frequency response function can be defined 

as the Fourier transform of the impulse response function [Jenkins and 

Watts, 1968, Subsection 2.3]. It is worth noticing that, in many identification 

problems, it is convenient to refer to the rational form of the frequency 

response, given by the following expression: 

 

      
     

     
 

∑         
   

∑         
   

 (A.3) 

 

where   and   are, respectively, numerator and denominator of the 

frequency response, defined as a function of the two polynomials of real 

parameters    and   . In particular, if these latter are coprime, i.e. they have 

no factors in common, the roots of   and   are called, respectively, zeros 

and poles of the system (also known as singularities of the TF) [Kailath et 

al., 2000, Chapter 6]. 

The two aforementioned functions,      and      , are fundamental in the 

analysis of LTI systems. As a matter of fact, if one assumes that the input 

     consists of a sum of harmonic functions with different frequencies  , 
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the output from the LTI system will similarly consists of a sum of harmonic 

functions with exactly the same frequencies. At each frequency, however, 

the harmonic functions result scaled in amplitude by a certain factor      

(known as gain or magnitude function) and shifted in phase by an amount 

     (called phase angle function) [Jenkins and Watts, 1968, Subsection 

2.3]. The TF of Eq. (A.2), or equivalently the corresponding frequency 

response function of Eq. (A.3), simply provides how, for each  , the 

amplitude (and phase) of an input harmonic signal of that frequency is 

transformed into the amplitude (and phase) of the corresponding output 

wave [Priestly, 1981, Section 1]. 

In system identification theory, it is conventional to plot the gain function 

    , expressed in decibel (that is, multiplying by 20 the decimal logarithm 

of the considered amount), against the logarithm of the frequency  , and the 

phase function      against the logarithm of the frequency. These 

diagrams, known as Bode plots, allow one to graphically understand the 

behaviour of the system in terms of transformations of both gain and phase 

angle features of the harmonics that characterize the input signal     , and 

their aspect is determined by the combination of poles and zeros of the TF in 

terms both of their typology (real or complex conjugate) and of their sign 

(positive or negative) (for a comprehensive description of Bode plots and 

their utility in system identification theory, refer to Bolzern et al. [2004, 

Subsection 6.6.1]). Furthermore, some interesting examples of Bode plots, 

for different types of TFs with different combinations of its poles and zeros 

values, are provided by Jenkins and Watts [1968, Subsection 2.3]. 
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