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General introduction 

 

Vitamin K1 

Vitamin K1 or phylloquinone (2-methyl-3-phenyl-1,4-naphthoquinone) (Figure 

1) is a natural vitamin contained in vegetables, composed by an hydrophilic 

naphthoquinone group, and an hydrophobic tail (Gonnet M. et al., 2010). It comes as a 

yellowish oil, somewhat viscous, soluble in fats and oils, in ethyl ether, benzene, 

chloroform, and insoluble in water. Vitamin K1 is the form of vitamin K mostly present 

in the diet. In the presence of light and atmospheric oxygen it may decompose, while it 

is heat resistant and does not undergo any processing up to 150 ° C.  

 

 

Figure 1. Structure of  vitamin K1. 

  

 

This molecule was discovered in 1929 by Henrik Dam who identified it as an 

anti-hemorrhagic factor (Da Silva et al., 2012); he studied the metabolism of the 

cholesterin in chickens maintained on a diet devoid of vitamin C, and he ascertained, 

after a certain time, the occurrence of a hemorrhagic syndrome (Dam H. et al., 1938).  

During his studies he was able to verify that, by administering to chickens in experiment 

some green leaves, this hemorrhagic syndrome disappeared completely. Subsequently, 

Dam and Schnheyder, concluded by stating that there is a new fat-soluble vitamin 

necessary to ensure the normal process of blood clotting in chicks; this vitamin was 
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called vitamin K or vitamin of the coagulation. Following McKee, Binkley, Mc 

Corquodale and Daisy isolated from the alfalfa plant a vitamin K, indicated with the 

number 1 (vitamin K1), to differentiate it from that obtained from the rotting fish meal 

(vitamin K2), (McKee R.W. et al., 1939 ). Almquist and Klose have explained that the 

active group of vitamin K (Figure 2), is the 2-methyl-1,4-naphthoquinone (Almquist 

H.J. et al., 1935). 

 

 

Figure 2. Active group of the vitamin K1. 

 

Vitamin K is contained both in plants as in animals; in particular it is found in 

large quantities in some microorganisms. In plants it is contained mainly in the green 

leaves, and to a lesser extent also in fruits, tubers and seeds. The plant that contains this 

vitamin in excess is the alfalfa (a special variety of medical grass), then followed by the 

chestnut leaves, spinach, cabbage, cauliflower, nettle, pine and fir. Finally, many 

bacteria contain fairly large quantities of vitamin K, such as the E. Coli, Bacillus 

subtilis, Staphylococcus Aureus and many others; intestinal bacteria are also capable of 

producing vitamin K. Vitamin K has property antihemorrhagic; in fact, it acts as a co-

enzyme of a carboxylase responsible for the carboxylation of glutamate residues. The 

carboxylation of these residues in prothrombin allows their complexation with calcium 

ions and the consequential activation of the same, followed by the coagulation cascade 

of events, which has as consequence the block of hemorrhagic phenomena (Gonnet M. 

et al., 2010). Several studies indicate that vitamin K is needed for the synthesis of 

osteocalcin, an important factor that contributes to the bone mineralization (De Orsi D. 

et al., 2008). 
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Effects of vitamin K1 on the skin 

Topical application of vitamin K1 has been proven to be effective for the 

prevention of vascular events due to aging, for the suppression of pigmentation 

phenomena and for the resolution of bruising (Lou et al., 1999; Elson and Nacht, 1999). 

Phylloquinone was able to facilitate the removal of extravascular blood from the skin 

(Shah et al., 2002) thus determining its effectiveness in accelerating the resorption of 

bruises, as well as in countering any changes in the skin due to irradiation with laser 

beams (Lou et al., 1999; Elson and Nacht, 1999; Leu et al., 2010). Vitamin K1 has 

antioxidant activity and has a vasoprotective action probably due to its chemical 

structure similar to that of ubiquinone (Da Silva et al., 2012). However, because of its 

quinoid structure, the activity of the vitamin K1 could be greatly reduced by oxidation 

upon exposure to air or light (Gonnet M. et al., 2010).  

Recently, it was found that creams containing vitamin K1 are very useful in the 

prevention of acneiform reactions affecting the skin following treatment with cetuximab 

in patients with metastatic colorectal cancer (Ocvirk et al., 2010). Cetuximab is a 

monoclonal antibody directed against the epidermal growth factor receptor (EGFR), 

which works by blocking the autophosphorylation and receptor-mediated signaling 

induced by endogenous ligands. EGFR is highly expressed in keratinocytes, sweat cells 

and sebaceous glands present in the epithelium of the hair follicles, and it appears to be 

important for the normal functions of the skin. It has been shown that the use of skin-

EGFR inhibitors involves a series of reactions in the skin (about 80% of patients), 

among which the most common are acneiform reactions that appear frequently at the 

level of the head, neck, and trunk. 

Other less frequent reactions are itching, dry skin, flaking and hypertrichosis 

(Segaeret et al., 2005; Van Custem et al., 2009). Recent studies have shown that the 

degree of acneiform reaction is greatly reduced in those regions of the body that are 

treated, prophylactically, with a cream containing vitamin K1. It has been shown that 

vitamin K1 activates EGFR, counteracting the inhibition induced by the use of Erbitux® 

(Tan E. et al., 2009; Li Th. et al., 2009). The action of vitamin K1 was associated with 

the up-regulation of phosphorylated EGFR, thereby reducing the adverse effects caused 

by the use of Erbitux (Tan E. et al., 2009; Li Th. et al., 2009). Topical application of 
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vitamin K1 was for this reason effective in ensuring a better quality of life of the 

patient, without dose reduction or discontinuation of the drug. (Ocvirk et al., 2010; 

Tomková et al., 2011).  

 

Nanotechnologies in drug delivery 

According with the US National Nanotechnology Intiative, Nanotechnologies 

can be defined as "all the materials and systems whose structures and components 

exhibit significant new physical, chemical and biological properties due to their 

nanoscale dimensions". Therefore, the term nanomedicine, means the union of two 

interdisciplinary fields, nanotechnology and medicine, representing a social and 

economic potential without precedent. For example, compared to conventional therapy 

in the treatment of cancer where the basic approach is to remove the diseased cells 

before the destruction of the healthy cells, the nanomedicine allows the use of 

sophisticated approaches to identify and kill or repair specific cells by the nanocarriers 

that can selectively directing diagnostic and /or therapeutic agents. An objective in this 

field is the design of molecular aggregates that have new dynamic and functional 

properties, desirable for applications in medicine. From a general point of view, the use 

of nanotechnology in medicine is aimed to overcome biological barriers, intended in the 

broad sense of the term. Thus, nanotechnology-based approaches can be designed to 

overcome biopharmaceutical issues at different levels, i.e. poor site- or cell-selectivity 

of drugs, drug instability in biological fluids, low cell uptake, low crossing of cellular 

barriers such as the blood brain barrier or the skin.  

 

Nanotechnologies for topical use 

Liposomes  

The development of nanocarriers "specialized" in crossing the skin provided new 

possibilities for the development of formulations for topical use. Liposomes are self-

assembling colloidal structures consisting of phospholipids, amphiphilic molecules that 

are arranged in a way that to create a  phospholipid bilayer, concentrically arranged and 
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highly ordered. The constitution of the double layer is due to the nature of the 

liposomes; in fact, the amphiphilic molecules, if dispersed in an excess of water, will be 

oriented to form a double layer in which the polar and hydrophilic portions of the 

molecules will be in contact with the aqueous external environment (or internal), while 

the hydrophobic and apolar portions will remain intimately in contact with each other. 

Liposomes can be classified by the amount of lamellar vesicles (uni-, oligo- and multi-

lamellar vesicles), size (small, intermediate or large) and the method of preparation (ie, 

reverse phase, evaporation of solvent or ethanol injection method). The unilamellar 

vesicles are formed from a single lipid membrane and generally have an average 

diameter between 50 and 250 nm. They contained a large aqueous compartment and are 

preferred for the encapsulation of hydrophilic molecules. The multi-lamellar vesicles, 

are constituted by more concentric lipid bilayers arranged concentrically (onion type) 

and have a mean diameter of between 1-5 m. The structure of liposomes was 

developed in 1961 by Alec Bangham, (Bangham A, 1995; Gulati et al. 1998). By using in 

vitro models of plasma membranes, Alec Bangham showed the potential offered by 

these carriers in the pharmaceutical field. Liposomes were used since the early years in 

various fields such as diagnostics, immunomodulation, genetics, engineering and 

chemotherapy (Gregoriadis G.,1991). The biocompatibility of this lipid-based systems, 

thanks to the use of natural phospholipids, represented one of the major advantages of  

liposomes. Moreover, as delivery systems they are very versatile because they can 

encapsulate both hydrophilic and lipophilic molecules. The former are arranged in the 

lipid bilayer, while the latter can be entrapped within the aqueous core. Finally, also the 

amphiphilic molecules can be encapsulated; in this case the hydrophilic part being 

arranged in the aqueous medium and hydrophobic one placing in contact with the lipid 

constituents of the lamellae. The use of delivery systems such as liposomes have no 

restrictions of use for the different routes of administration and can easily be employed 

for topical, parenteral, oral, and pulmonary; for example, extremely lipophilic 

molecules can be administered without the requirement of surfactants, adjuvants or co-

solvents that may be toxic. The physical-chemical nature of the drug and its therapeutic 

use strongly influence the choice of lipids to be used for the composition of the 

liposomal membrane.  

The use of liposomes as carriers for topical therapy was introduced by 
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Gulasekharam and Mezei in 1980 (Mezei, 1980). They showed that the use of a lotion 

containing liposomes allowed to obtain levels of triamcinolone acetonide 4 or 5 times 

higher than those obtainable with conventional formulations containing the same drug 

concentrations. Similar results were also observed for progesterone and for econazole 

(Mezei, 1980). From these and other studies emerged that liposomes could be useful for 

the administration of several drugs to the skin (Ferreira et al., 2004; Puglia et al., 2004; 

Ramon et al., 2005; Kitagawa and Kasamaki, 2006). However, the lipid composition, 

the method of preparation and the thermodynamic characteristics of the bilayer of the 

liposomes, may considerably influence the drug penetration into the skin (Bouwstra and 

Honeywell-Nguyen, 2002; EI Maghraby et al., 2006).Other physico-chemical 

properties, such as size, charge and lamellarity can affect, even if to a lesser extent, the 

effectiveness of liposomes as carriers for administration of drugs to the skin. (Yu and 

Liao, 1996; Katahira et al., 1999; Ogiso et al., 2001; Liu et al., 2004; Manosroi et al, 

2004; Choi and Maibach, 2005; Sinico et al., 2005). Mazei and Gulasekharm, (1980), 

found that intact and large vesicles, can penetrate the skin up to the dermis and failing to 

get into the capillaries, they formed a subcutaneous deposit system of drug. It was hard 

to believe that a large number of large lipid vesicles can penetrate the stratum corneum 

(El Maghraby et al., 2006). The explanation for this phenomenon could be provided by 

the presence of unilamellar, and not multilamellar, vesicles in the dermis initially 

applied on the skin. The authors proposed that liposomes can penetrate the epidermis 

losing their outer covering; alternatively, the enhanced drug penetration has been 

attributed to the surfactant activity of the liposome-forming lipids on the skin. In 

practice, they may act as enhancers penetration, loosening the lipid structure of the 

stratum corneum, promoting the alteration of the skin and, as consequence, the passage 

of the drugs (Kirjavainen et al., 1999a), although the greater interaction between the 

lipid of vesicles and those of the skin strongly depended on the lipid composition of the 

liposomes (Kirjavainen et al., 1996). This may explain the fact that the transport in the 

dermis of liposomes composed of lipids is much more pronounced than the transport of 

vesicles composed of phospholipids (Hofland et al., 1995; Korting et al., 1995; 

Zellmeret et al., 1995). Although liposomes have been successfully used to increase the 

accumulation of several drugs in the skin, there are also many cases of failure (Yu and 

Liao, 1996; Deo et al., 1997; Liu et al., 2004). This can probably be justified by the fact 
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that the liposomes did not cross the skin, but they remained confined to the outermost 

layer of the epidermis (Kirjavainen et al., 1996). Many research investigated the 

possibility to develop new types of carriers able to enhance the accumulation in the skin 

of encapsulated drugs or to promote the transdermal passage and therefore the 

absorption at the systemic level.  

 

Transfersomes  

Several studies have been aimed at improving the capacity of the nanocarriers to 

transport drugs into the deeper layers of the skin. Among these,  ultraflexible liposomes, 

also named Transfersomes®,were designed by the research group of prof. Cevc (Cevc 

G. and  Blume, 1992). Transfersomes are vesicles composed of phospholipids and a 

single chain surfactant such as sodium cholate or deoxycholate, Span 80 and Tween 80, 

which served as "edge activator", destabilizing the lipid bilayer and giving more 

flexibility to the carrier if compared with liposomes.( Cevc G. and Blume G., 2001; N. 

Bavarsad et al., 2012; Gillet A. et al., 2009). These nanocarriers being highly 

deformable are able to penetrate through the pores of the stratum corneum with a 

diameter ten times lower compared to their size; moreover, when applied on the skin 

under non-occlusive conditions, they could penetrate through the skin without altering 

their characteristics (Cevc G., 1996; El Maghraby G.M. et al., 2000a-b;  Cevc G. and 

Blume G., 2001; Trotta M. et al 2004; Honeywell-Nguyen P.L et al.,2004). Because of 

the high elasticity of their membrane, these vesicles could penetrate inside the pores 

even when they were of large size, for example 200-300 nm (Vijaya R. et al., 2011; 

Mishra D. et al., 2007; Garg T. et al., 2008). Many studies have shown that these 

ultraflexible liposomes were able to promote the passage of drugs to the skin in vitro (El 

Maghraby et al., 1999, 2001a; Trotta et al., 2002, 2004, Boinpally et al., 2003) and to 

penetrate the intact skin in vivo, carrying high amounts of drug (Cevc and Blume 2001, 

2003, 2004) with an efficiency comparable to a subcutaneous injection (Cevc et al., 

1995, 1998, Paul et al., 1995; Cevc, 2003). 
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Ethosomes 

Ethosomes lipid-based vesicles were developed for the first time by the research 

group of Touitou (Touitou E., 1996; Touitou E et al.,1998; Touitou E et al., .2000). 

These vectors have proved very promising for administration of drugs with different 

nature on the skin, due to their properties to improve the passage of the encapsulated 

molecules through the barrier of the stratum corneum. (Touitou et al., 1997; Touitou et 

al., 2000a; Dayan e Touitou, 2000; Ainbinder e Touitou 2005; Paolino et al., 2005). 

Ethosomes were lipid carriers constituted by phospholipids, ethanol (concentration 

ranging from 20 to 45%) and water (Touitou et al., 2000a ; Elsayed, M.M. et al.,  

2007a). A number of studies have been performed to evaluate the effect of ethanol on 

the chemical and physical properties of vesicles. (Dayan e Touitou, 2000; Touitou et al., 

2000a; Lopez-Pinto et al., 2005; Elsayed et al., 2007). Another important feature was 

the size of ethosomes lower than conventional liposomes (Dayan and Touitou, 2000). 

This has been attributed to the incorporation of high concentrations of ethanol which 

confers a net negative charge to the surface of liposomes, with consequent reduction in 

the vesicle size. Finally, the presence of ethanol also increases the solubility of several 

lipophilic active compound in the internal cavity of the vesicles. (Touitou E. et al., 

2000a; Lopez-Pinto et al., 2005; Touitou E., 1996; Touitou E.,  et al., 1998; Ahad A. et 

al., 2013. Scognamiglio I. et al., 2013). In different studies, ethosomes were able to 

promote the passage of drugs into the skin both under occlusive or not occlusive 

conditions (Dayan e Touitou, 2000; Ainbinder e Touitou, 2005; Lopez-Pinto et al., 

2005; Paolino et al., 2005; Elsayed et al., 2007). The effectiveness of ethanol in 

enhancing the permeation of molecules through the skin is well known; however, 

preliminary studies compared the permeation of drugs in hydroalcoholic solutions or 

delivered through these carriers have shown that the increase of diffusion through the 

skin obtained by the use of ethosomes is significantly higher in comparison with the use 

of an hydroethanolic solution alone. Therefore it was suggested a synergistic effect 

between the ethanol, the vesicles and the lipids of the skin and several mechanisms have 

been proposed to justify the efficient penetration and permeation of molecules 

encapsulated in ethosomes through the skin (Touitou et al., 2000a). For example, the 

multilamellar membrane of the stratum corneum, is densely packed and highly ordered 

at physiological temperature; ethanol could interact with the polar regions of the lipid 
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molecules, increasing the fluidity, and this involve an increase in membrane 

permeability; in addition, ethanol could confer a greater fluidity to the phospholipid 

bilayers which allowed to obtain vesicles with a more flexible structure in order to 

allow and facilitate their passage through the interstices of the stratum corneum (Berner 

B. et al., 1995). Furthermore, the release of the drugs into the deeper layers of the skin 

and their transdermal delivery could be the result of the fusion between ethosomes and 

the lipids of the skin (Elsayed et al., 2006). In conclusion, due to the above 

characteristics mentioned above, ethosomes improve the permeation through the skin of 

both hydrophilic and lipophilic molecules. (Touitou E.  et al., 2000a;  Touitou E. et al.,  

2000b; Godin B. et al., 2003). 

 

Nanoemulsions  

In the last years, the nanoemulsions have been the subject of several studies that 

have evaluated the possibility of using these dispersed systems for the delivery of 

therapeutic agents and new hydrophobic chemical entities. With the term 

"nanoemulsion" referred to a nanodispersion of two immiscible liquids such as oil and 

water, which were thermodynamically stable for the use of surfactant molecules that 

arrange at the interface of the two phases. Nanoemulsions differ from emulsions for the 

size and shape of the dispersed particles in the continuous phase; in particular, 

nanoemulsions are characterized by particles of 20-300 nm. (Anton N. and Vandamme 

T.F, 2009; Bhavna  Dhawan et al.,  2014 Solans C., 1999). The small size of the 

dispersed particles make the nanoemulsions a thermodynamically stable system, while 

avoiding the occurrence of phenomena of alteration of the system, i.e. aggregation, 

flocculation and coalescence (Wen-Chien Lu et al., 2014).  

In recent years, the micro and nano-emulsions gain a growing interest as a 

vehicle of active substances through the skin. The highest attention was paid to the oil-

in-water nanoemulsions, which offered the possibility of dispersing the hydrophobic 

compounds in the oil phase, thus allowing to be dispersed in an aqueous medium and to 

increase their bioavailability in vivo. (Shafiq S. et al., 2007). Nanoemulsions can be 

designed with a high stability of the system for long time periods, low cost and easy 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Shafiq%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17127045
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preparation. Moreover, it has been shown the ability of these systems to modify the 

penetration of a drug through the skin layers. (Shakeel F. et al.,  2007; 2008; 2009). In 

fact, nanoemulsions could incorporate and carry the active substances through cell 

membranes (Huang Q. et al., 2010). It has been shown that the nanoemulsions 

facilitated the penetration of therapeutic agents into the skin and through it by 

increasing the concentration gradient of the drug in the various skin layers and altered 

the functionality of the skin barrier due to the presence of surfactants, which act as edge 

activators (Kreilgaard M., 2002a/b; A. Soottitantawat et al., 2005; Sateesh K. et al., 

2007). Due to their advantages, the nanoemulsions were widely proposed for topical 

and transdermal delivery of antifungal and anti-inflammatory drugs, such as ketoprofen 

and meloxicam; however, it is important to emphasize that the size of the dispersed 

particles represented a crucial factor that could significantly influence the efficiency of 

the permeation of the active ingredients through the skin ( Youenang Piemi M.P. et al., 

1999;  Yuan Y. et al., 2006;  S. Hoeller et al., 2009;  Sakeena M.H.F. et al., 2010; 

Zheng W.W. et al., 2010; Sonavane G. et al., 2008).  
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Aim of the work  

 

 The research activity has been focused on the study of new strategies for the 

dermal and transdermal administration of pharmacologically active molecules. In 

particular, the study was aimed to develop formulations based on nanocarriers for the 

administration of vitamin K1 (phylloquinone) in aerosol form on the skin. Recently, it 

was found that creams containing vitamin K1 was very useful in the prevention of 

acneiform reactions affecting the skin in patients receiving cetuximab for the treatment 

of metastatic colorectal cancer. (Ocvirk Janja et al., 2010, Tomková et al., 2011). 

Different semisolid formulations containing vitamin K1, namely Rencoval®, 

VigorSkinK1® and VigorSkinK1 Plus®, are already present on the market. The purpose 

of this study was therefore to develop alternative strategies for the administration of 

vitamin K1 on the skin, overcoming the drawbacks associated with the use, for more 

administration in a day, of fatty formulations. Therefore, innovative aqueous 

formulations to be administered on the skin by aerosol, thus avoiding the use of 

semisolid preparations, have been designed and developed in this work. To nebulize the 

developed formulations, a patented device (Eautè), portable and pocket with battery was 

used. In the development of vitamin K1-containing formulation  alternative to the 

lipophilic formulations currently on the market, the possibility to increase the 

accumulation of vitamin in the epidermis and dermis was also taken into account. The 

formulative strategies used in this work start from previous published findings on lipid-

based nanocarriers, such as liposomes, already used to administer different drugs on the 

skin. Then, the possibility to develop transfersomes and ethosomes to increase, 

compared to liposome-based formulations, the vitamin accumulation into the skin was 

investigated. Finally, the possibility to use lipid-free nanoemulsions, to propose 

formulative approaches less expensive for future commercial development, has been 

investigated. Thus, during all the experimental work, special attention was paid on the 

development of formulations suitable to be transferred to the industry (technological 

transfer). Thus, once designed the different formulations, their optimization has been 

aimed to combine high encapsulation of active compound, absent o low release of the 
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encapsulated molecule during storage, long shelf-life, as well as increased accumulation 

into the skin.  

This PhD work has been carried out in collaboration with the Xenus s.r.l. in the 

respect of a confidential agreement between the PhD student, the University Tutor prof. 

Giuseppe De Rosa and the scientific responsible of the company dr. Michele Pitaro, 

some experimental details of this work have been omitted in this thesis.  
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Abstract  

 

Vitamin K1 (VK1) is a very lipophilic and photosensitive molecule contained in 

some vegetables. Recently, the use of VK1 on the skin has been proposed for different 

pharmaceutical or cosmeceutical applications. In this study, an innovative strategy for 

the administration of VK1 on the skin was proposed. In particular, to overcome the 

drawbacks associated with a VK1-containing fatty ointment available on the market, an 

aqueous formulation suitable to be administered by nebulization was developed. The 

use of liposomes encapsulating VK1 could represent a valid approach to overcome the 

issues due to the lipophilicity of VK1. Thus, different liposomal formulations, with 

different VK1 concentrations, were prepared and characterized in terms of size, zeta 

potential, VK1 encapsulation into liposomes, and stability of the formulations during 

storage. After a first phase of screening, the selected formulation was tested by a 

portable device for nebulization. No alteration of the vesicle characteristics following 

the liposome supplied through the nebulizer was found. Then, in a second phase, the 

possibility to add stabilizers, namely antimicrobic agents, antioxidants and a 

hydrogenated phospholipid, was evaluated.  

Finally, permeation studies were carried out on pig-excised skin in Franz cells. 

In these tests, the VK1 permeation into the skin obtained with the newly developed 

formulations and with a marketed VK1-containing ointment were compared. An 

enhanced VK1 accumulation into the skin was found with all the liposomes 

formulations developed especially if administrated in the nebulized form. In conclusion, 

the newly developed formulations could be a valid alternative to the products available 

on the market today to administer VK1 on the skin. In particular, the use of liposomes 

could facilitate the multiple administrations per day by aerosol, but also increase, 

compared to a semi-solid preparation, the accumulation of VK1 into the epidermis and 

dermis. 

Keywords: Vitamin K1, liposomes, liposome stability, liposome nebulization, 

Franz cells.  
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Introduction  

 

Vitamin K1 (VK1) or 2-methyl-3-fitil-1,4-naphthoquinone (or phylloquinone) is 

a vitamin contained in different plants, especially as leaf vegetables and in smaller 

quantities also in fruits, tubers and seeds (Pace E., 1949).  Although VK1 is well known 

as anti-hemorrhagic factor, other pharmacological activities and potential therapeutic or 

cosmeceutical uses are emerging in the last years. Due to its chemical structure similar 

to the ubiquinone, VK1 was found to act as an antioxidant agent (Da Silva A.L. et al., 

2012). VK1 has been proposed to prevent vascular events due to aging, by suppressing 

the skin pigmentation and leading to resolution of bruising as well as countering 

changes in the skin after irradiation with laser beams (Lou W.W. et al., 1995; Elson 

M.L. et al., 1999; Leu S. et al., 2010). Finally, it has been shown that the topical 

application of VK1 is able to facilitate the removal of extravascular blood from the skin 

(Shah N.S. et al., 2012). In the last years, creams containing VK1 have been proposed 

to prevent side effects on the skin in patients with metastatic tumors of the colon and 

rectum, treated with cetuximab (Erbitux®), a monoclonal antibody directed against the 

epidermal growth factor receptor (EGFR), (Ocvirk J. et al., 2012). Indeed, the use of 

EGFR skin inhibitors involves a set of reactions in the skin (ca. 80% of patients), among 

which the most common are acneiform reactions that appear frequently at the level of 

the head, neck and trunk (Segaert S. et al., 2005; Van Cutsem E. et al., 2009). Recent 

studies showed that the degree of these acneiform reactions is strongly reduced in those 

regions of the body that are prophylactically treated with a cream containing VK1. This 

effect has been attributed to the capability of VK1 to activate the EGFR by up-

regulation of EGFR phosphorylation, thus counteracting the cetuximab-induced 

inhibition of this receptor (Tan E. H. et al., 2009; Li T. H. et al., 2009). The topical 

application of VK1 is, for this reason, effective in ensuring a better quality of life of the 

patient, with no dose reduction or discontinuation of the therapy (Ocvirk J. et al., 2010; 

Tomková H. et al., 2011). 

However, VK1 is yellow viscous oil, soluble in organic solvent and insoluble in 

water. The high lipophilicity of the VK1 requires fat ointments (e.g. Rencoval K1® 

,VigorSkin K1®) making its multiple daily administrations on the skin poorly compliant, 

http://www.ncbi.nlm.nih.gov/pubmed?term=da%20Silva%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=22672012
http://www.ncbi.nlm.nih.gov/pubmed?term=Lou%20WW%5BAuthor%5D&cauthor=true&cauthor_uid=10594627
http://www.ncbi.nlm.nih.gov/pubmed?term=Leu%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20412090
http://www.ncbi.nlm.nih.gov/pubmed?term=Shah%20NS%5BAuthor%5D&cauthor=true&cauthor_uid=12140470
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20Cutsem%20E%5BAuthor%5D&cauthor=true&cauthor_uid=19339720
http://www.ncbi.nlm.nih.gov/pubmed?term=Tomkov%C3%A1%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22035385
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especially in summer. In the light of these observations, the develop%ment of a 

formulation designed for a more practical and frequent administration of the VK1 on the 

skin, could be very useful allowing a prophylactic use of this vitamin with a higher 

patient compliance.  

In last two decades, a growing number of studies have been dedicated to the use 

of nanotechnology-based approaches for topical administration of drugs. The use of 

colloidal systems, such as liposomes, can allow to increase the drug accumulation into 

the skin, depending on the type of drug as well as on the characteristics of the 

nanocarrier (Ferreira et al., 2004; Puglia C. et al., 2004; Ramón E et al., 2005; 

Kitagawa S. et al., 2006; Gokce EH  et al., 2012; Hamishehkar H.  et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Puglia%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15482636
http://www.ncbi.nlm.nih.gov/pubmed?term=Gokce%20EH%5BAuthor%5D&cauthor=true&cauthor_uid=23055723
http://www.ncbi.nlm.nih.gov/pubmed?term=Hamishehkar%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23252629
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Aim of the work 

 

The aim of this study was to develop a new aqueous formulation containing 

VK1 suitable to be administered by aerosol (by a portable device) on the skin. In 

particular, we investigated if a formulation based on liposomes could be used to 

overcome the low water solubility of VK1. Thus, in a first step, different formulations 

were prepared and characterized to select liposomes encapsulating VK1 with the 

optimal technological characteristics, in terms of size, VK1 encapsulation and stability 

in different storage conditions. Then, the possibility to nebulize the liposomal 

suspension, without alteration of the vesicles, was evaluated. In a second step, the 

composition of the vesicle bilayer was optimized in order to obtain a more stable 

liposomes formulation. Finally, VK1 accumulation and permeation into and through the 

skin were investigated on Franz cells by using ear porcine skin 
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Materials and Methods 

 

Materials 

Vitamin K1 (VK1), α-tocopherol (αTOC) and iron thiocyanate (FeSCN3) were 

purchased by Sigma (USA). HPLC grade methanol (CH3OH) and acetonitrile (CH3CN), 

analytical grade chloroform (CHCl3) and ethanol (CH3CH2OH) were obtained from 

Carlo Erba Reagents (Italy). Benzalkonium chloride was provided by Farmalabor 

(Italy); soy phosphatidylcholine (SPC) and soy phosphatidylcholine hydrogenated were 

a kind gift by Lipoid GmbH (Switzerland). 

 

Preparation of liposomes 

The preparation of liposomes was performed by hydration of a lipid film 

followed by extrusion. Briefly, an organic solution (CHCl3/CH3OH 2:1) containing SPC 

was dried in a round-bottom glass flask by a rotary evaporator (4010 Laborota digital, 

Heidolph, Schwabach, Germany) under a nitrogen atmosphere for about 20 min at 110 

RPM and at a temperature of 30 °C. Only in the case of liposomes containing, 

hydrogenated soy phosphatidylcholine (LVB-HYDRO), the temperature of the rotary 

evaporator was set at 40°C. When present, VK1 and αTOC were added at the organic 

solution at different concentrations.  

The obtained lipid films were then rehydrated, in the presence of glass beads, 

with a phosphate buffer solution (PBS) having pH of 7.4 or water of an aqueous 

solution 0.01% p/v of benzalkonium chloride. The resulting suspension was repeatedly 

passed through polycarbonate membranes (5 times for each membrane) of decreasing 

porosity (0.4, 0.2, 0.1 μm) by using a thermobarrel extruder (Northern Lipids Inc., 

Canada). Finally the liposomes were purified by molecular exclusion chromatography 

(SEC) with a Sephadex G-50-50, to remove the non-encapsulated VK1. For each 

preparation three batches were prepared. 
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Liposome size and zeta potential  

Dimensional analysis was performed by photon correlation spectroscopy (PCS). 

For each sample, an aliquot of about 20μl was diluted in filtered water and analyzed by 

N5 (Beckman Coulter, USA). The average diameter and the size distribution of each 

formulation were determined. The results were expressed as liposome mean diameter 

(nm) and polydispersity index (PI). 

The zeta potential (ZP) of liposomes was performed by the Zetasizer Nano Z 

(Malvern, UK). Briefly, an aliquot of each sample (20μl) was diluted in filtered water 

and analyzed. The results were calculated by the average of the measurements obtained 

from three batches of the same formulation. 

 

Determination of lipids concentration 

The concentration of lipids present into the liposome suspension after 

preparation was determined using the Stewart assay (Stewart J. C. M., 1959). Briefly, an 

aliquot of the liposome suspension was added to a two-phase system, consisting of an 

aqueous ammonium iron-thiocyanate solution (0.1N) and chloroform. The 

concentration of SPC was obtained by measure of the absorbance at 485 nm into the 

organic layer by UV-vis spectrophotometer (UV - VIS 1204 , SHIMADZU, Japan), by 

comparison with a calibration curve (R2= 0.999) with standard SPC samples with a 

concentration ranging from 0.005 to 0.04 mg/ml.  

 

VK1 encapsulation into the liposomes 

The amount of VK1 encapsulated into the liposomes was determined by high 

performance liquid chromatography (HPLC). For the analysis, a Shimadzu HPLC 

system (Shimadzu) consisting on LC-10AD pump, a Rheodyne injection valve 7725i, 

equipped with a detector SPV-10A UV-vis (λ set at 333 nm) and a system controller 

(Shimadzu) SCL-10A VP connected to a computer, was also used. The analysis was 

performed on a Luna C8 column (250 x 4.6 mm, 5 um) (Phenomenex, USA) under 
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isocratic conditions and using CH3OH as mobile phase at a flow of 1 ml/min. The 

acquisition of the chromatograms was carried out using the software Class VP 

Client/Server 7.2.1 (Shimadzu). The analysis in HPLC showed a chromatographic peak 

associated with the VK1 at a retention time of about 7 minutes. The amount of VK1 was 

calculated by comparison with a calibration curve (R2= 0.999) with standard VK1 

samples with a concentration ranging from 50 to 0.5 µg/ml. To determine the amount of 

VK1 encapsulated in liposomes, the suspension was diluted (1:100) with CH3OH to 

allow the dissolution of the vesicles and the consequent release of VK1. The samples 

were then centrifuged for 30 min at 13,000 RPM  (Mirko 20, Hettich, Germany) and 

then the supernatant was analyzed by HPLC. The results have been expressed as actual 

loading, calculated as µg of VK1 per mg of SPC. The results are the mean of measures 

made on three different batches.  

 

Stability studies 

Physical stability of liposomes was evaluated after different time frames on the 

formulations prepared at growing VK1 concentrations. Briefly, after preparation, each 

batch was stored at 4°C and at predetermined intervals, about 10 μl of the suspension 

was diluted in filtered distilled water and analyzed by PCS, as reported above.  

The VK1 release from the liposome, at 4°C was determined on the formulations 

prepared at growing VK1 concentrations. Briefly, at predetermined intervals an aliquot, 

about 1 ml, of the suspension was purified by SEC. Then, the purified liposomes were 

analyzed in terms of VK1 content by HPLC, as reported above. The formulations of 

liposomes encapsulating VK1 were also tested in different storage conditions. In 

particular, liposomes were incubated at different temperatures, namely 4, 25 and 40°C, 

in refrigerant (Hotpoint, Ariston, Italy) or in a laboratory oven (STF-F52Lt, Falc 

Instrument, Italy). All samples were held under nitrogen atmosphere and protecting 

them from the light. In the case of sample stored at 25 °C, samples exposed to the sun 

light were also prepared. At predetermined intervals, the samples were analyzed in 

terms of physical appearance, odor, liposome size, VK1 content. Liposome size and 

VK1 content were determined by PCS and HPLC, respectively, as described above. For 
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each formulation, the results have been obtained as mean of three different batches (n = 

3). The liposomes were also characterized before and after nebulization. To nebulize the 

liposome suspension, a portable nebulizer (Eauté) kindly provided by Xenus, was used. 

Briefly, about 1 ml of the liposome suspension, previously characterized for size and 

VK1 encapsulation, was loaded into the device and nebulized by collecting the aerosol 

in a 20 ml glass vial. The collected suspension was then analyzed in terms of vesicle 

size and VK1 encapsulation. 

 

Skin penetration experiments 

The penetration of VK1 in the skin and its transdermal delivery were assessed 

with porcine ear skin. The porcine ears were kindly provided by a local slaughterhouse 

(Vendor Carni, Italy). All the experiments were performed on frozen-thawed skin used 

within 6 months. Full-thickness skin was removed from the dorsal side of the freshly 

excised pig ear, stored at 20 °C and used within 6 months. On the day of the 

experiment, punches were cut out and hairs cut with scissors, as already reported by 

other authors (Gillet A., 2011). The outer skin surface (stratum corneum) and the inner 

region (dermis) were used for the experiments. After drying, the skin was cut into 

circles of 3 cm of diameter. For permeation experiments the skin was mounted in a 

Franz diffusion cells (Microglass Heim, Italy). Briefly, the porcine skin was mounted on 

the receptor compartment of a Franz diffusion cell assembly with the stratum corneum 

(SC) side facing upwards into the donor compartment. Seven milliliters of 3:7 (v/v) 

ethanol-pH 7.4 PBS was used as the receptor medium. A measured amount of 

liposomes containing VK1 was poured or nebulized into the donor compartment. 

Alternatively, a weighted amount of VigorSkinK1® cream was added into the donor 

compartment in contact with the excised skin. The concentration of all samples was 

adjusted to achieve same VK1 amount (1mg) in the donor compartment. The available 

diffusion area between compartments was 0.6 cm2. The Franz cells were mounted on a 

H+P Variomag Labortechnik Telesystem (Germany) placed in a thermostatic bath 

Haake DC30 (Thermo Electron Corporation, Germany). The experiments were carried 

out at a stirring rate of 600 rpm and temperature of 37 °C. At predetermined time 

frames, 700 μl of the receptor phase were withdrawn and replaced with the same 
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amount of fresh medium. The amount of VK1 in the withdrawn samples was 

determined by HPLC. At the end of the experiments skin surface were thoroughly 

washed with distilled water to remove the excess formulation. Epidermis and dermis 

were then separated by heating and then placed in separate eppendorfs. VK1 

accumulated into the skin was quantified as previously reported (Da Silva A., 2012; 

Lopes L.B. et al., 2007), with modifications. Briefly, the VK1 accumulated in epidermis 

or dermis was extracted with 1 ml of CH3CN for 5 times by bath sonicator (Branson 

3510) for 30 minutes. The CH3CN phase was filtered using 0.45 μm membranes and the 

resulting filtrate analyzed by HPLC to determine the VK1 content. The amount of VK1 

accumulated in the different layers of the skin was calculated as ratio between amount 

(ng) of VK1/ weight (mg) of epidermis or dermis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lopes%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=17900879
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Results  

 

Characterization of the vesicles containing VK1  

Liposomes were proposed for their capability to encapsulate hydrophobic 

molecules, such as VK1, and to form homogeneous colloidal dispersion in water. In the 

first phase of the work, three different liposomal formulations with increasing initial 

concentrations of VK1 were prepared and characterized in terms of size, VK1 

encapsulation, physical stability and VK1 release during storage in different conditions. 
In Table 1, the developed formulations, as well as their characteristics in terms of mean 

diameter, PI, and ZP, are reported.  

 

 

 

 

Table1: Characteristics of the formulations LV, LVA, LVB, LVC. 

 

 

 

All the formulations shown a mean diameter  < 150 nm. In particular, the 

formulation LV prepared without VK1 had a mean diameter of about 148.6 nm, that 

was higher compared to liposomes LVA and LVB (131.1 and 115.2 respectively). In the 

case of the formulation prepared with the higher concentration of VK1, liposomes 

diameter was similar to LV (147.0 nm). The differences in VK1 concentration 

encapsulated  into liposomes did not influence size distribution (IP) of the vesicles that 

Formulation 
Theoretical VK1 

content 
(μg VK1/mg SPC) 

Mean diameter 
(nm ± SD) PI ± SD ZP ± SD 

Actual VK1 
encapsulation 

(μg VK1/mg SPC ± SD) 

LV - 148.6 ± 6.2 0.104 ± 0.044 0.32 ± 0.40 - 

LVA 2.5 131.1 ± 13.2 0.118 ± 0.031 -3.52 ± 2.10 3.4 ± 0.3 

LVB 25 115.2 ± 7.2 0.135 ± 0.004 -3.43 ± 2.11 32.8 ± 8.1 

LVC 125 147.0 ± 15.3 0.144 ± 0.018 -2.03 ± 0.46 154.0 ± 3.0 
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was in all cases  < 0.2 and specifically 0.104, 0.118, 0.135, 0.144 for LV, LVA, LVB, 

LVC, respectively. Only in the case of LV the value of ZP was neutral (0.32), while  

liposomes containing VK1 had a negative ZP that was not influenced by the VK1 

concentration.  

  The amount of VK1 encapsulated into liposomes was determined by HPLC. As 

shown from the results, in all cases VK1 encapsulation was higher than the theoretical 

one. In particular, LVA had an actual loading of  3.4 μg VK1/mg SPC while for LVB 

and LVC VK1 encapsulation was 32.8 e 154.0 μg VK1/mg SPC. It is worthy of note 

that in all the three preparations, HPLC analysis of the liposome content showed only 

one chromatographic peak, attributed to the VK1, suggesting that the phylloquinone 

was not altered during the preparation (Figure 1).  

 

 

 
   Figure 1 Exemple of chromatogram of VK1 extracted by LVB . 

Note: The peak with the retention time of 7.3 minutes was attributed to native vitamin K1. 
 

 

In the second step of the study, the stability of the developed formulations 

following storage at 4°C in absence of light was evaluated. The results are summarized 

in table 2.  
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Blank liposomes did not showed significant alteration of the mean size and PI, 

following 150 days of storage at 4°C. Liposomes prepared with the lowest amount of 

VK1 (LVA) did not show significant change in mean size during storage, while VK1 

loading was gradually reduced during storage. In particular, about 10% of the VK1 

initially loaded into liposomes was lost during the first week of storage. In the following 

two months, VK1 loading of LVA did not significantly change; finally, a further and 

significant decrease of VK1 loading (to about 57% of the VK1 initial loading) was 

observed following 150 days of storage. In the case of LVB, about 5% of the VK1 was 

leaked from liposomes after the first 7 days of storage; a further and significant VK1 

release from liposomes was also observed following 70 days of storage with a total 

VK1 release of about 30%; interestingly, the VK1 content of LVB did not significantly 

changed following further storage until 150 days. Moreover, the formulations LVA and 

LVB did not present any organoleptic alteration during storage. Different results were 

found for the formulation LVC, for which, agglomerates were visible in the suspension 

before 70 days of storage; moreover, a characteristic odor was reported for this 

formulation. 

Thus, taking into account the obtained results, we considered that the 

formulation LVB had the best characteristics in terms of VK1 encapsulation and 

stability during storage to be used in the following step of the work.  

 

Stability studies 

The stability of the formulation LVB was investigated in different conditions of 

storage according to ICH guidelines (International Conference on Harmonization of 

Technical Requirements for Registration of Pharmaceuticals for Human Use). Thus, a 

visual inspection to check the presence of agglomerate, colouring of the suspension, and 

organoleptic evaluation of the samples, were carried out at different time frames. In the 

different storage conditions, at the predetermined intervals of time, samples were 

characterized in terms of vesicle size and VK1 actual loading.  In particular, any 

changes in terms of stability of the formulations stored at 25 °C, 40°C, and in the 
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presence of light, were studied. The results of the visual and organoleptic analysis are 

summarized in table 3. 

 

 

 

Table 3: Visual and organoleptic analysis of the formulation LVB stored in different conditions.  

 

 

 

Liposome incubation at 40 ºC resulted in development of a pronounced 

characteristic odor after 30 days, while the presence of aggregation in the suspension 

was observed at longer time frames (i.e. 70 days). The development of a characteristic 

odor was significantly delayed and attenuated in samples stored at 25 °C (see table 3). 

Finally, in samples stored at 25 °C under the light, a marked odor was reported after the 

first 30 days, although not associated to the presence of aggregate. For all the samples, 

the storage under nitrogen atmosphere did not result in any influence of the suspension 

stability (data not shown). The same samples were also characterized in terms of 

liposome size and VK1 leakage during the storage (see table 4).  

 

 

Storage  After preparation After 30 days After 70 days 

 Aspect Odor Colour Aspect Odor Colour Aspect Odor Colour 

4°C Uniform Absent Milky Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Slight odor Milky Uniform Slight  
odor Milky 

40°C Uniform Absent Milky Uniform Marked odor Milky Suspended 
material 

Strong 
odor Milky 

Light at 
25°C Uniform Absent Milky Uniform Strong odor Milky Uniform Strong 

odor Milky 
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In agreement with the visual and organoleptic analysis, the samples stored at 

40°C showed a marked increase of mean diameter and PI, suggesting the presence of 

aggregates into the suspension. For this reason, samples stored at 40°C did not undergo 

further characterization. In the case of liposomes stored in presence of light, only a 

moderate increase of the vesicle size was found, once more in agreement with previous 

observations (see table 3). It is worthy of note that, in sample exposed to the light, a 

reduction of the initially actual loading of VK1 (about 50%) was found. Moreover, 

HPLC analysis revealed additional chromatographic peaks (figure 2), with a retention 

time shorter, compared to that of native VK1. The additional compounds (with a main 

peak with retention time at 5.4) found in the HPLC analysis could be reasonably 

attributed to the transformation of the VK1 in its derivatives. This additional 

chromatographic peak was not found in the case of samples stored at 40°C in absence of 

light. On the other hand, in samples stored at high temperature, liposomes aggregation 

and enhanced VK1 release could occur. 

 

 

 

 
Figure 2 Chromatogram of sample extracted by LVB following storage under light. 

Note: The peak with the retention time of 7.3 minutes was attributed to native vitamin K1. 

 

 

In a second  phase of the formulative study other two excipients were included 

in the formulation.  Firstly, αTOC (10 µg/mg SPC) and benzalkonium chloride (0.01%) 
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were added in the organic solution containing the lipids and in the aqueous solution, 

respectively. αTOC was used to prevent the oxidation of lipids present in the bilayer, 

(Fukuzawa K, 2008). Benzalkonium chloride was added as antimicrobial preservative. 

This formulation, named  LVB-TOC-BC1 was prepared with the same procedure used 

for LVB but an aqueous phase containing benzalkonium chloride was used as hydration 

phase of the lipid film. The results of the visual and organoleptic analysis of LVB-TOC-

BC1 upon storage in different conditions, are summarized in Table 5.  As shown, the 

formulation resulted altered after 30 days of storage at high temperature with presence 

of aggregates in the suspension, with development of a marked odor. Also samples 

stored at 25 °C were characterized by a slight odor, while the formulation appeared 

uniform.  

 

 

Table 5: Visual and organoleptic analysis of the formulation LVB-TOC-BC1 stored in different 

conditions. 

 

 

In table 6, the liposomes characteristics in terms of size, VK1 encapsulation, and 

storage under different conditions are summarized.  LVB-TOC-BC1 characteristics 

were very similar to that observed for LVB; in fact,  liposomes had a mean diameter of  

about 113.9 nm after preparation and a IP  < 0.2 that did not significantly changed 

during storage at 4 °C. The actual  loading of VK1 was of about 40 μg VK1/mg SPC 

and was reduced of about 20% after 30 days. The results obtained from the organoleptic 

Storage condition After preparation After 30 days 

 Aspect Odor Colour Aspect Odor Colour 

4°C  Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Slight odor Milky 

40°C Uniform Absent Milky Uniform Marked odor Milky 

Light at 25°C Uniform Absent Milky Uniform Slight odor  Milky 
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analyses were confirmed by the results of liposomes characterization. In fact, after 30 

days of storage at 40 °C, the mean diameter and the PI of the vesicles were high, about 

549 nm and 0.54 respectively, and the measure of the VK1 was not possible confirming 

the alteration of the formulation. On the contrary, the alteration of the formulations 

stored at the temperature of  25 °C and in presence of light was not found in the 

liposome analyses.   

In the following step of the study, the concentration of αTOC in the formulation 

was reduced in order to improve liposomes stability. Thus, liposomes with αTOC (2.5 

µg/mg SPC) and benzalkonium chloride (0.01%) were prepared as described above.  

 

 

 

Table 6: Characteristics of the formulation LVB-TOC-BC1. Legend: UD: undetectable. 

 

 

The characteristics of LVB-TOC-BC2 liposomes were not significantly different 

than LVB. In details, after preparation, liposomes have a mean diameter of about 110 

nm with a PI of about 0.12. These characteristics did not significantly change following 

storage of the formulation at the temperature of 4°C  (table 7). Moreover, LVB-TOC-

BC2 liposomes had an actual loading similar to LVB, i.e. about 33 μg/mg SPC, that was 

reduced to about 25 μg/mg SPC after the first 7 days of storage at 4°C. Interestingly, 

further leakage of VK1 was not observed following storage at 4°C for more than 2 

months. 

  Storage 
conditions After preparation After 30 days 

 

Mean 

diameter 

(nm± SD) 

PI± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

Mean 

diameter 

(nm± SD) 

PI± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

4°C 

139.1 ± 0.74 0.13 ± 0.00 40.72 ± 0.67 

123.2 ± 1.3 0.13 ± 0.00 33.20 ± 1.3 

25°C 135.4 ± 2.2 0.08 ± 0.00 33.41 ± 3.9 

40°C 549.1 ± 48.2 0.54 ± 0.00 UD 

Light at 25°C 133.3 ± 2.07 0.09 ± 0.00 25.11 ± 8.2 
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Finally, the formulation LVB-TOC-BC2 was analysed in different conditions of 

temperature and light exposure. The results of the visual inspection and organoleptic 

analysis are reported in table 8, while in table 9 the liposomes characteristics in terms of 

size and VK1 encapsulation are summarized. LVB-TOC-BC2 showed a similar 

behavior compared to LVB, with presence of aggregation at 40°C and appearance of a 

characteristic and pronounced odor following liposome exposure to the light. Moreover, 

aggregation was not found in the suspension following liposome storage at 25 °C for 70 

days.  

 

 
 

 

Table 8: Visual and organoleptic analysis of the formulation LVB-TOC-BC2 stored in different 

conditions. 

 

 

 

Table 9: Characteristics of the formulation LVB-TOC-BC2. Legend: UD: undetectable. 

 

Storage 
condition After preparation After 70 days 

 Aspect Odor Colour Aspect Odor Colour 

4°C Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Absent Milky 

40°C Uniform Absent Milky Suspended material Strong odor Milky 

Light at 25°C Uniform Absent Milky Uniform Strong odor Yellowish 

Storage 
conditions 

After preparation After 70 days 

Mean 
diameter 

(nm ± SD) 

PI± SD 
Actual VK1 

encapsulation 
(μg/mg SPC±SD) 

Mean 
diameter 

(nm ± SD) 

PI± SD 
Actual VK1 

encapsulation 
(μg/mg SPC±SD) 

4°C 

106.2 ± 1.6 0.091 ± 0.004 31.92 ± 6.5 

114.1 ± 1.19 0.114 ± 0.007 37.99 ± 2.40 

25°C 113.2 ± 1.45 0.111 ± 0.008 31.10 ± 5.32 

40°C 588.3 ± 2.33 0.689 ± 0.03 UD 

Light at  25°C 270.7 ± 30.62 1.053 ± 0.82 34.17 ± 6.37 
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Finally, the possibility to dispense the formulation LVB-TOC-BC2 in form of 

aerosol, for example with a portable device for nebulization, was investigated. Physical 

characteristics of liposomes were checked before and after the nebulization. The aerosol 

produced by nebulization of LVB-TOC-BC2 is shown in figure 3, while liposome 

characteristics before and after supply through the device are reported in table 10. 

 

Figure 3. Nebulization of the formulation LVB-TOC-BC2 by a portable device. 

 

Formulation 

Mean diameter  

(nm ± SD) 

BN 

 

PI ± SD 

BN 

Mean diameter  

(nm ± SD) 

AN 

 

PI± SD 

AN 

LVB-TOC-BC2 117.6± 2.57 0.133 ± 0.003 120.8± 2.21 0.137± 0.002 

 

BN: before nebulization; AN: after nebulization. 
 

Table 10: Mean diameter and polidispersity index before and after nebulization of the formulation LVB-

TOC-BC2. 

 

Any alteration of liposome size and VK1 encapsulation was observed following 

nebulization, suggesting that the vesicles maintain their integrity when supplied in form 

of aerosol.  

A third phase of the study was focused on the substitution of the soy 

phosphatidilcoline, used for the previous formulations, with the hydrogenated soy 

phosphatidilcoline, in order to obtain a formulation more stable during storage. In table 

11, the characteristic of liposomes and the stability studies of LVB-HYDRO are 

summarized.  
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As shown in table 11, the mean diameter of this liposomes formulation did not 

change after 9 months of storage of LVB-HYDRO at 4°C; in fact, the average diameter 

of liposomes after preparation was about 135.2 nm and remained unaffected after 9 

months (137.9 nm).  The value of the PI also remained < 0.2 during storage, while a 

VK1 loss of about 40 % after 9 months of storage of the formulation at  4°C was found. 

The results of the stability studies have evidenced that LVB-HYDRO was very stable 

compared to the previous developed formulations; indeed the organoleptic analyses did 

not shown any alteration in term of aspect of the formulation that remained uniform 

after 9 months of storage at 25 and 40 °C. It is worthy of note that a slight odor was 

reported in the case of the formulations stored at 40 and 25°C. The characterization 

analyses evidenced that after 9 months of storage of LVB-HYDRO at 25 °C the mean 

diameter and the PI slightly increased (194.9 nm and 0.3); after the same time frame, 

about the 60% of the initially encapsulated VK1 was observed (30.48 μg/mg SPC-

HYDRO). The storage of LVB-HYDRO at higher temperature did not result in any 

significant alteration of the vesicles size; as reported, the mean diameter as well as the 

PI value liposomes remained unaffected (also more stable than in the case of liposomes 

stored at 25°C). On the other hand, the VK1 concentration strongly decreased from 

about 80.61 to 25.30 μg/mg SPC-HYDRO with a VK1 loss of about 69%.       

 

Ex vivo experiments  

The formulation LVB-TOC-BC2 was used for the ex-vivo studies using Franz 

cells. LVB-TOC-BC2 was used as such or nebulized through the medical device Nano 

Estté. VK1 permeation through the skin or accumulation into epidermis/dermis was 

compared with that obtained, in the same experimental conditions, with VigorSkink1®, 

a marketed cream containing VK1. Finally, to investigate if the excipients added in the 

formulation LVB, especially αTOC, influence VK1 delivery into and through the skin, 

LVB liposomes were also investigated in the skin penetration experiments. Ex vivo tests 

were carried out using Franz cells as describe above (Ferderber et al. J. Liposome 

Research 2009). The amount of VK1 accumulated into the epidermis and dermis are 

reported in figure 4A and B, respectively.  
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Figure 4A: Accumulation of VK1 in epidermis. Legend: VigorSkinK1®:  LVB-TOC-BC2: liposomes 

containing VK1, TOC and benzalkonium chloride, administrated as such in the donor compartment. 

LVB-TOC-BC2-NEB: liposomes containing VK1, TOC and benzalkonium chloride, administrated in 

form of aerosol in the donor compartment.  

 

 

In the case of skin samples treated with VigorSkink1®, VK1 accumulation in 

epidermis was very low (about 6.03 ± 4.68 ng/mg of epidermis). The amount of VK1 

accumulated into the epidermis was significantly higher in the case of skin samples 

placed in contact with the liposomal-containing formulation (about 26.15 ± 5.53 ng/mg 

of epidermis for LVB-TOC-BC2), especially when the LVB-TOC-BC2 was applied on 

the skin by nebulization (35.16 ± 10.95 ng/mg of epidermis). The difference between 

liposome-based formulation and the marketed cream, was more evident in the case of 

the dermis, where any VK1 accumulation was found in the case of skin treated with 

VigorSkinK1® (Figure 4B). 
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Figure 4B: Accumulation of VK1 in dermis. Legend: LVB-TOC-BC2: liposomes containing VK1, 

TOC and benzalkonium chloride, administrated as such in the donor compartment. LVB-TOC-BC2-

NEB: liposomes containing VK1, TOC and benzalkonium chloride, administrated in form of aerosol in 

the donor compartment.  

 

In fact, significant VK1 accumulation was found in dermis in the case of skin 

treated with both LVB-TOC-BC2 as such (47.8 ± 0.1  ng/mg of dermis) or nebulized 

(55.7 ± 1.89 ng/mg  of dermis). In the case of LVB, the amount of VK1 in the epidermis 

was comparable to which observed with VigorSkinK1® ; moreover, also LVB improved 

VK1 accumulation in the dermis even if less than LVB-TOC-BC2. Finally, for all 

samples, VK1 permeation through the skin was not observed.  

Finally, in figure 5A and B the accumulation of VK1 found into the epidermis 

and dermis treated with LVB-HYDRO are reported. As shown in figure 5A, in the skin 

treated with LVB-HYDRO as such or in the aerosol form, the amount of VK1 

accumulated into the epidermis was lower than in the case of  LVB-TOC-BC2, namely 

about 22.44 and 27.58   ng VK1/mg of epidermis respectively for LVB-HYDRO and 

LVB-HYDRO-NEB. Also in the case of the accumulation of VK1 found in the dermis 

(figure 5B) the use of LVB-HYDRO as such or nebulized led to an accumulation of 

VK1 lower if compared to LVB-TOC-BC2. In particular, accumulated VK1 was about 
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32.60 and 46.58  ng VK1/mg of dermis respectively for LVB-HYDRO and LVB-

HYDRO-NEB. 

 

 

 

 

 

Figure 5A: Accumulation of VK1 in epidermis. Legend: LVB-TOC-BC2: liposomes containing VK1, 
TOC and benzalkonium chloride, administrated as such in the donor compartment. LVB-TOC-BC2: 
liposomes containing VK1, TOC and benzalkonium chloride, administrated in form of aerosol in the 
donor compartment. LVB-HYDRO : liposomes containing soy phosphatidilcoline hydrogenated and  
VK1, administrated as such in the donor compartment . LVB-HYDRO-NEB: liposomes containing soy 
phosphatidilcoline hydrogenated and  VK1, administrated in form of aerosol in the donor compartment. 
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Figure 5B: Accumulation of VK1 into the dermis. Legend: LVB-TOC-BC2: liposomes containing VK1, 
TOC and benzalkonium chloride, administrated as such in the donor compartment. LVB-TOC-BC2: 
liposomes containing VK1, TOC and benzalkonium chloride, administrated in form of aerosol in the 
donor compartment. LVB-HYDRO : liposomes containing soy phosphatidilcoline hydrogenated and  
VK1, administrated as such in the donor compartment . LVB-HYDRO-NEB: liposomes containing soy 
phosphatidilcoline hydrogenated and  VK1, administrated in form of aerosol in the donor compartment. 
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Discussion  

 

The study was focused on the development of a new formulations for the topical 

application of VK1. In particular, the aim of the work was to design and develop an 

aqueous formulation, able to overcome the unpleasant feeling due to the use of a fat 

ointment on the skin, especially when used more times for a day. Moreover, to facilitate 

the administration of the VK1 on the skin, a formulation with a low viscosity, suitable 

to be nebulized in a portable device, was developed. In order to meet all these 

requirements, a formulation based on nanosized lipid vesicles, i.e. liposomes, was 

designed. Liposomes were proposed for their capability to encapsulate hydrophobic 

molecules, such as VK1, and to form homogeneous colloidal dispersion in water. To 

administrate the developed formulations in form of aerosol, a portable device nebulizer 

was used.   

In the first phase of the work, three different liposomal formulations with 

increasing initial concentrations of VK1 were prepared and characterized in order to 

select the most suitable formulation in terms of diameter of vesicles, VK1 encapsulation 

and physical stability of the colloidal dispersion overtime and in stress condition. All 

the formulations were prepared with the same procedure, namely by the  hydration of a 

lipid film followed by extrusion.. The developed formulations had a low mean diameter 

(in the range 150-100 nm), a narrow size distribution (<0.2), high VK1 encapsulation 

and good physical stability during storage. In addition, the presence of different 

concentrations of VK1 in the preparation did not significantly influence the mean 

diameter, as well as the size distribution with only a very slight influence on the 

liposome zeta potential. 

The amount of VK1 encapsulated into liposomes was determined by HPLC 

analysis. For each formulation, the actual VK1 encapsulation was higher than the 

theoretical one. These finding could be explained with a lipid loss that was higher than 

the vitamin loss. This could be realistic if we hypothesized that the inclusion of VK1 

into the lipid bilayer could result in the formation of vitamin-rich domains immiscible 

with the phospholipid bulk, according with other previously reported studies (Ortiz A. 



46 
 

et al., 1999). It is worthy of note that in all the three preparations, HPLC analysis of the 

liposome content showed only one chromatographic peak, attributed to the VK1, 

suggesting that the phylloquinone was not altered during the preparation. From the 

analyses carried out at predetermined time frame after storage of the formulation at 4 

ºC, LVB showed the best characteristics in terms of VK1 encapsulation and stability 

while, LVC prepared with the higher concentration of VK1, was very instable as 

described above. Taking into account these results, it is possible to conclude that VK1 

influence the physical stability of liposomes as well as the release of VK1 during the 

storage, depending on its concentration. It has been reported that VK1 can influence the 

properties of phospholipid bilayers by broadening and shifting the lipid transitions to 

lower temperature. Moreover, the formation of vitamin-rich domains, immiscible with 

the bulk phospholipids has been reported  (Ortiz A. et al., 1999). These observations are 

in line with the results of this formulative study. In particular, the formation of these 

vitamin-rich domains could be favored when using high VK1 loading (formulation 

LVC). VK1 can be released from these domains and, consequently, cause an easier 

alteration of the  bilayers of the vesicles, as testified by the development of unpleasant 

odor and the presence of aggregates, probably caused by a lipids alteration (e.g. 

peroxidation). Thus, we considered that the formulation LVB had the best 

characteristics in terms of VK1 encapsulation and stability during storage to be used in 

the following step of the work.  

According with the ICH guidelines, stability studies with LVB were carried out; 

the aim of this part of the work was to evaluate how environmental factors, such as 

temperature and light exposure, can affect the product quality, thus establishing a shelf 

life for the drug product and recommending storage conditions. As described in the 

results, the formulation LVB was stored at different temperatures and some 

formulations were exposed to the light. From our results, we can hypothesize that, 

depending on the storage conditions, i.e. 40°C or light exposure, different mechanisms 

could be responsible of the sample alteration observed for LVB. In details, light 

exposure could result in the VK1 alteration, as evident by appearance of additional 

chromatographic peak. On the other hand, in samples stored at high temperature, 

liposome aggregation and enhanced VK1 release could occur. This physical instability 

of vesicles should be due to the presence of VK1 that could affect the bilayer 
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characteristics, as hypothesized above. In fact, blank liposomes were found to be stable, 

at the same temperature and for the same time frames. Thus, VK1 encapsulation into the 

liposomes should affect physical characteristics of the bilayer, making vesicles more 

unstable and enhancing VK1 release, following incubation at high temperature. Finally, 

it is worthy of note that a higher VK1 actual loading can be observed after storage of 

liposomes, especially at 40°C. Changes in the SPC and VK1 concentrations during 

storage in a liposome suspension should be due to different reasons. Actually, in the 

case of the VK1, as hypothesized above, a reduction of the concentration into the 

liposomes could be due to its release from the vesicle or to chemical alteration of the 

vitamin. In the case of SPC, a reduced content into the liposome suspension should be 

mainly ascribed to lipid hydrolysis. It is well known that high temperature favor lipid 

degradation, that can be minimized at low temperature ( Pietzyk B. et al., 2000; Grit M. 

et al., 1993).  In agreement with this, we found that, in the case of liposomes stored at 

high temperature, a decrease of the lipid concentration was found in samples stored at 

high temperature, with a consequent increased of the vitamin/lipid ratio (actual loading). 

Subsequently, we tried to optimize the stability of LVB; in particular, αTOC was 

used to prevent the oxidation of lipids present in the bilayer (Fukuzawa et al., 2008) 

while, benzalkonium chloride was added as antimicrobial preservative. Two 

formulations named LVB-TOC-BC1 and LVB-TOC-BC2 with two different amounts of 

αTOC were developed and characterized as for LVB. The stability studies have 

evidenced that LVB-TOC-BC1 was unstable after 30 days of storage at high 

temperature and in samples stored at 25 °C some signs of alteration compared after only 

30 days of storage. On the contrary, in the case of LVB-TOC-BC2, liposomes showed a 

similar behavior compared to LVB, with presence of aggregation at 40°C and 

appearance of a characteristic and pronounced odor following liposome exposure to the 

light. Moreover, aggregation was not found in the suspension following liposome 

storage at 25 °C for 70 days, suggesting that phospholipid oxidation could play a role in 

the suspension instability found at high temperature. Tests conducted with the 

formulation before and after nebulization demonstrated that the passage through the 

device did not affect the integrity of the vesicles confirming that LVB-TOC-BC2 was 

able to be administrated in form of aerosol. 
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In the third part of the study the natural lipid, soy phosphatidilcoline was 

replaced with a semisynthetic lipid, the hydrogened soy phosphatidilcoline. While SPC 

used in the previous formulations had double bonds on the hydrophobic tail, 

hydrogenated phosphatidilcoline is characterized by fully saturated fatty acids. The 

introduction of sully saturated lipids in the formulation, was made to prevent liposome 

alteration, attributed to the oxidative processes of the phospholipids. The 

characterization of LVB-HYDRO confirmed this hypothesis, showing that the 

formulation remained stable until 6 months of storage at high temperatures.    

Several studies in literature have already described the capability of liposomes to 

improve the accumulation of different molecules into the skin (Ortiz A. et al., 1999).   

Different advantages concerning the use of liposomes for the drug administration on the 

skin, have been described (Pierre M.B. et al., 2011). Enhanced VK1 accumulation into 

the skin has already been described by using a nanodispersed monoolein-based 

formulation (Lopes L.B. et al., 2007) From a general point of view, liposomes can 

improve local drug concentration, by interacting with similar lipids of the skin (Pierre 

M.B. et al., 2011). The role of phospholipids as penetration enhancers, especially when 

containing unsaturated fatty acids, is well known. Phospholipids, such as SPC, can be 

easily incorporated within the viable cells via intercellular lipids of the outer layer of the 

skin; this can disrupt the lamellar structure stratum corneum with consequent increased 

fluidity and altered permeability (Ogiso T., 1995; Yokomizo Y., 1996). Thus, the use of 

SPC in dermatological formulations can results in enhanced diffusion of drug, 

especially lipophilic drugs, in the lipid domains and increased transport through the 

skin. While the use of a hydrophilic excipient, such as benzalkonium chloride, is 

expected to have no effect on the VK1 delivery into the skin (data not shown), the use 

of αTOC in the formulation dramatically increased the VK1 accumulation into 

epidermis and dermis. αTOC into the liposomes has already been associated to SPC as 

penetration enhancer (Lee W.C., 2010). αTOC, when encapsulated into the liposomes, 

have been found not only in the stratum corneum, but also in the underlying skin 

(Baschong W., 2001). Once into the skin, αTOC could synergistically act with SPC by 

altering the structure of the stratum corneum, thus enhancing the VK1 diffusion and 

accumulation into the epidermis and dermis. Interestingly, when including αTOC into a 

liposome formulation, an increased biocompatibility of liposomes on human fibroblast 

http://www.ncbi.nlm.nih.gov/pubmed?term=Pierre%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=21805180
http://www.ncbi.nlm.nih.gov/pubmed?term=Pierre%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=21805180
http://www.ncbi.nlm.nih.gov/pubmed?term=Pierre%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=21805180
http://www.ncbi.nlm.nih.gov/pubmed?term=Ogiso%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8926585
http://www.ncbi.nlm.nih.gov/pubmed?term=Baschong%20W%5BAuthor%5D&cauthor=true&cauthor_uid=11413495


49 
 

has also been reported (Berrocal M.C., 2000). Finally, it is worthy of note that VK1, if 

systemically release at high concentrations, could alter the synthesis of coagulation 

factors. In this study, VK1 permeation through the skin was not found, suggesting a 

negligible systemic effect with this formulation. 
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Conclusions 

 

In this study the possibility to develop a formulation for the administration of a 

highly lipophilic VK1 on the skin by nebulization was investigated. Liposomes can be 

valid tool to overcome the lipophilicity of VK1, forming a stable aqueous dispersion 

that can be administered on the skin in form of aerosol by means of a portable nebulizer 

without alteration of vesicle characteristics. Liposomes containing VK1 are stable if 

stored at 4°C in absence of light. Finally, the use of liposomes, as such or administered 

by nebulization, resulted in an enhanced VK1 accumulation into epidermis and dermis, 

when compared with a marketed fat VK1-containing cream. Our results suggest that the 

newly developed formulations can be considered a valid alternative to fat ointments for 

the administration of VK1 on the skin. This strategy for VK1 administration can be 

especially useful in the prevention of acneiform reactions against the skin following 

treatment with cetuximab in patients with metastatic tumors of the colon and rectum. 
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Chapter 2 

 

 

 

 

 

 

 

Nanovectors to enhance the accumulation of vitamin K1 into the skin. 
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Abstract  

 

In this part of the study lipid-based nanocarriers, namely liposomes, 

transfersomes and ethosomes  for topical administration of VK1 were designed and 

developed. In the design of the formulations, special attention was paid to selection of 

preparation method very cheap and easy to perform. For each formulation, the 

possibility to administer these formulation in the aerosol form was also evaluated . The 

formulations developed were stable in different storage conditions for about 60 days 

and the deformability of transfersomes and ethosomes bilayers were strongly higher 

compared to liposomes one. In addition, the nebulization of transfersomes and 

ethosomes increased the accumulation of VK1 into the deeper skin layers without 

affecting the organization of the main components of the skin. and the different 

advantages offered by these kind of nanocarriers were discussed. 

 

Keywords: Vitamin K1, transfersomes, ethosomes, Franz Cells, nebulization.  
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Introduction  

 

The skin is an interesting route of administration of drugs, alternative to 

intravenous.  In fact, it would appear to offer significant advantages such as, more stable 

plasma drug levels, exceeding the first-pass metabolism, and finally, a good compliance 

(Williams, 2003). However, the skin represent a natural barrier that hamper the 

permeation of many drugs (El Maghraby et al., 2001b). In the last two decades, a 

growing number of studies have been dedicated to the use of nanotechnology-based 

approaches to promote the accumulation of drugs into the skin or, sometimes, the 

transdermal delivery of drugs.  The success of this approach is demonstrated by the 

number of products based on nanotechnology for topical administration that are today 

on the market or in clinical trials (Pierre M.B., 2011; Elsayed, M.M. et al., 2007 a e b). 

Although some studies suggested the use of liposomes for transdermal delivery of 

certain drugs (Yu and Liao, 1996; Deo et al., 1997; Liu et al., 2004), their capability to 

promote drug permeation through the skin or the accumulation in the deepest layers of 

the skin has been questioned, suggesting that liposome remain confined in the outermost 

layer of the skin. Thus, new generations of carriers for dermal administration of drugs 

have been proposed. Among these, a new type of lipid vesicles named ultraflexible 

liposomes or Transfersome® were firstly described by the research group of professor 

Gregor Cevc (Blume and Cevc, 1992). Transfersomes, characterized by a high degree of 

deformability due to the presence of an edge activator, can promote penetrate the intact 

skin carrying high amounts of actives in its deeper layers (El Maghraby et al., 1999, 

2001a; Trotta et al., 2002, 2004; Boinpally et al., 2003; Cevc and Blume 2001, 2003, 

2004).  A further innovation in this field is certainly represented by the ethosomes, 

developed by Touitou and collaborators (US Patent N° 5,540,934, 1996). These vesicle, 

have been described as “soft” vesicles, composed of lipids, water and high 

concentration of ethanol. They are characterized by a high efficiency transdermal 

delivery of drugs with different nature. The skin permeation enhancement effect of 

ethosomes could be attributed to a different processes and, in particular, to the dual 

fluidizing effect of ethanol firstly on the phospholipids vesicles as well as on the lipids 

of the stratum corneum; the consequence is an easy penetration of these malleable 
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vesicles between the disturbed stratum corneum lipid bilayers (Touitou et al., 1997, 

2000a; Dayan and Touitou, 2000; Ainbinder and Touitou 2005; Pauline et al., 2005). 
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Aim of the work 

 

The aim of the work described in this chapter was to study formulations able to 

optimize the accumulation of VK1 in epidermis and dermis. In Chapter 1, a new 

aqueous formulation based on liposomes encapsulating VK1 (LVB-TOC-BC2) was 

designed. This study demonstrated that LVB-TOC-BC2 was able to improve VK1 

accumulation into the skin in comparison with the marketed product Vigorskin K1®. 

Moreover, the nebulization of this formulation enhanced the accumulation of  the active 

compound into the epidermis and the dermis. The goal  of this part of the work was to 

develop formulations based on lipid-carriers, encapsulating VK1 such as 

transfersomes® (Trans) and ethosomes (Etho) to promote and improve the 

accumulation and the penetration of VK1 into/trough the skin. All the formulations 

were characterized in terms of size, VK1 encapsulation, physical stability and VK1 

release during storage in different conditions. The deformability properties of the 

vesicles were also tested. In line with the scope of the previous chapter, we verified if 

the developed formulations were suitable to be administered on the skin by 

nebulization. Finally, the ability of different  vesicles carriers to allow VK1 

accumulation and permeation of VK1 into and through the skin was investigated in 

Franz diffusion cells, using ear porcine skin following incubation with different 

nanocarriers. 
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Materials and methods  

 

Materials  

VK1, α-tocopherol (αTOC), sodium cholate (SC), Sephadex G-50-50 and iron 

thiocyanate (FeSCN3) were purchased from Sigma-Aldrich (St Louis, MO, USA). High-

performance liquid chromatography (HPLC)-grade methanol (CH3OH) and acetonitrile 

(CH3CN), analytical grade chloroform (CHCl3) and ethanol (CH3CH2OH or EtOH) 

were obtained from Carlo Erba Reagents (Cornaredo, Italy). Soy phosphatidylcholine 

(SPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(carboxyfluorescein-

ammonium salt) (PE-CF) were kindly gifted by Lipoid GmbH (Steinhausen, 

Switzerland).  

 

Preparation of VK1-encapsulating Liposomes, Transfersomes and Ethosomes. 

Liposomes (Lipo) were obtained as follows according to the ethanol injection 

method ( Batzri et al. 2003). SPC ( 10 mg/ml), VK1 (1 mg/ml) and αTOC (0.1 mg/ml) 

were dissolved in ethanol. The organic solution was slowly injected into a 10 ml vial 

containing distilled and 0.22 m filtered water until an EtOH/H2O ratio of 1:6 v/v; the 

obtained suspension was stirred at 1400 rpm for 15 minutes. To facilitate the removal of 

ethanol, the organic solvent was evaporated by rotary evaporation under reduced 

pressure at 37 °C. Finally, the liposomes were purified by molecular exclusion 

chromatography with a Sephadex G-50-50 (Sigma-Aldrich) to remove the non-

encapsulated VK1. All the steps of the preparation were carried out avoiding exposure 

of VK1 to the light. The formulation was prepared in triplicate. 

Transfersomes (Trans) were prepared by the thin lipid film hydration method as 

previously reported (Scognamiglio et al., 2012). Briefly, SPC (50 mg/ml) and SC (10 

mg/ml), were dissolved in a mixture of chloroform/methanol (2:1 v/v) while VK1 (1 

mg/ml) and αTOC (0.1 mg/ml) were dissolved in CHCl3 .The organic solution was dried 

in a round-bottom glass flask by a rotary evaporator (4010 Laborota digital; Heidolph, 
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Schwabach, Germany) under a nitrogen atmosphere for about 20 minutes at 110 rpm 

and at a temperature of 40°C. The resulting film was then hydrated with distilled and 

filtered water by agitation on vortex in presence of glass beads. The resulting 

suspension was then extruded using a thermobarrel extruder system (Northern Lipids 

Inc., Burnaby, BC, Canada) passing the suspension under nitrogen through 

polycarbonate membrane (Nucleopore Track Membrane 25 mm, Whatman, Brentford, 

UK) with decreasing pore size (from 0.4 to 0.1 µm). The unencapsulated VK1 was 

removed by molecular exclusion chromatography by passing the nanocarrier suspension 

through Sephadex G-50-50 column. All the steps of the preparation were carried out 

avoiding exposure of VK1 to the light. The formulation was prepared in triplicate. 

Ethosomes formulations were prepared according to the method described by 

Touitou et al. (2000), with modifications. Briefly, SPC (10 mg/ml), αTOC (0,1 mg/ml) 

and VK1 (1 mg/ml) were dissolved in ethanol. The resulting organic solution of lipids, 

αTOC and VK1 was added slowly and in constant mixing at 700 rpm to a 10 ml vial 

containing distilled and filtered water. Mixing was continued for an additional 5 

minutes. The concentration of the organic solvent in the final formulation was 30%. 

This formulation was named Etho1. Alternatively, before purification, the suspension 

was extruded using a thermobarrel extruder system, passing the suspension under 

nitrogen through polycarbonate membrane with decreasing pore size (from 0.4 to 0.1 

µm). For all the ethosomes-based formulations, the unencapsulated VK1 was removed 

by molecular exclusion chromatography by passing the nanocarrier suspension through 

Sephadex G-50-50 column. All the steps of the preparations were carried out avoiding 

exposure of VK1 to the light. Each formulation was prepared in triplicate. 

 

Mean diameter and size distribution of the nanocarriers 

Dimensional analysis was performed by photon correlation spectroscopy (PCS). 

For each sample, an aliquot of approximately 20 μL was diluted in filtered water and 

analyzed by PCS (N5; Beckman Coulter, Brea, CA, USA). The average diameter and 

the size distribution of each formulation were determined. The results were expressed as 

liposome mean diameter in nanometers and polydispersity index (PI).  
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Zeta potential of the nanocarriers 

The zeta potential (ZP) of liposomes was performed by the ZetasizerNano Z 

(Malvern Instruments, Worcestershire, UK). Briefly, an aliquot of each sample (20 μL) 

was diluted in filtered water and analyzed. The results were calculated by the average of 

the measurements obtained from three batches of the same formulation.  

 

Determination of lipid concentration 

The concentration of lipids present in the suspensions after preparation was 

determined using the Stewart assay (Stewart et al., 1959). Briefly, an aliquot of the 

suspension was added to a two-phase system consisting of an aqueous ammonium 

ferrothiocyanate solution or iron thiocyanate solution (0.1 N) and CHCl3. The 

concentration of SPC was obtained by measuring the absorbance at 485 nm into the 

organic layer with an ultraviolet–visible spectrophotometer (UV VIS 1204; Shimadzu 

Corporation, Kyoto, Japan). Quantification of SPC was carried out by means of a 

calibration curve (r2=0.999) with standard SPC samples at concentrations ranging from 

0.005–0.04 mg/mL. 

 

VK1 encapsulation into the nanocarriers 

The amount of VK1 entrapped in the nanocarriers was determined by HPLC. For 

the analysis, a Shimadzu HPLC system, consisting of an LC-10AD pump and a 

Rheodyne injection valve 7725i, equipped with an SPV-10A ultraviolet–visible detector 

(λ set at 333 nm), and a SCL-10AVP system controller (Shimadzu) connected to a 

computer. The analysis was performed on a Luna C8 column (250×4.6 mm, 5 mm; 

Phenomenex, Torrance, CA, USA) under isocratic conditions and using CH3OH as 

mobile phase at a flow of 1 mL/minute. The acquisition of the chromatograms was 

carried out using Class VP Client/Server software (v 7.2.1; Shimadzu Scientific 
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Instruments, Columbia, MD, USA). The analysis in HPLC showed a chromatographic 

peak associated with the VK1 at a retention time of about 7 minutes. The amount of 

VK1 was calculated by means of a calibration curve (r2=0.999) with standard VK1 

samples at concentrations ranging from 50–0.5 μg/mL. To determine the amount of 

VK1 encapsulated in liposomes, the suspension was diluted (1:100) with CH3OH to 

allow the dissolution of the vesicles and the consequent release of VK1. The samples 

were then centrifuged for 30 minutes at 13,000 rpm (MIKRO 20; Hettich, Tuttlingen, 

Germany) and then the supernatant was analyzed by HPLC. The results are expressed as 

actual loading, calculated as μg of VK1 per mg of SPC. The results are the mean of 

measures made on three different batches. 

 

Deformation index of the nanocarriers 

The deformability of lipids vesicles was determinated by the extrusion method. 

Briefly , liposomes, transfersomes and ethosomes were extruded trough a polycarbonate 

membrane of 50 nm at the pressure of 1 MPa using a thermobarrel extruder system 

(Northern Lipids Inc., Burnaby, BC, Canada). The deformability of the nanocarriers 

was expressed as deformation index (DI) trough the equation 1: 

 

 

DI = J (d0/p)k (1/|d1 − d0|) 

 

where J is the quantity of suspension recovered after extrusion, d0 and d1 are the 

mean diameters of the nanocarriers before and after extrusion, k is an amplification 

factor and p is the pore size of the extruder membrane (Mura et al., 2009). 
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Stability studies 

Physical stability of the nanocarriers was evaluated after different time frames 

on the formulations prepared using increasing VK1 concentrations. Briefly, after 

preparation, each batch was stored at 4°C and, at predetermined intervals, approxi-

mately 10 μL of the suspension was diluted in filtered distilled water and analyzed by 

PCS, as reported above. 

The VK1 release from the nanocarriers at 4°C was determined in the different 

VK1 formulations. Briefly, at predetermined intervals, an aliquot of approximately 1 

mL of the suspension was purified by molecular exclusion chromatography. Then, the 

purified nanocarriers were analyzed in terms of VK1 content by HPLC, as reported 

previously. The formulations encapsulating VK1 were also tested in different storage 

conditions. In particular, nanocarriers were incubated at different temperatures, namely 

4°C, 25°C, and 40°C, in a refrigerator (Indesit Company SpA, Fabriano, Italy) or in a 

laboratory oven (STF-F52Lt; Falc Instruments, Treviglio, Italy). During this test, all 

samples were protected from light. At predetermined intervals, the samples were 

analyzed in terms of physical appearance, odor, vesicles size, and VK1 content. 

Vesicles size and VK1 content were determined by PCS and HPLC, respectively, as 

described previously. For each formulation, the results were obtained as the means of 

three different batches (n=3). The carriers were also characterized before and after 

nebulization. To nebulize the suspensions, a portable nebulizer (Eauté, Xenus, Rome, 

Italy), kindly provided by Xenus (Rome, Italy), was used. Briefly, approximately 1 mL 

of the nanocarrier suspension, previously characterized for size and VK1 encapsulation, 

was loaded into the device and nebulized by collecting the aerosol in a 20 mL glass vial. 

The collected suspension was then analyzed in terms of size and VK1 encapsulation. 

The results are the mean of measures made on three different batches. 

 

Skin penetration experiments 

The penetration of VK1 into the skin and its transdermal delivery were assessed 

using porcine ear skin. The porcine ears were kindly provided by a local slaughterhouse 
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(Vendor Carni, Montefredane, Italy). Full-thickness skin was removed from the dorsal 

side of the freshly excised pig ear, stored at –20°C and thawed within 6 months for the 

experiments. On the day of the experiment, punches were cut out and hairs cut with 

scissors, as reported previously by other authors (Gillet A et al., 2011). The outer skin 

surface (stratum corneum) and the inner region (dermis) were used for the experiments. 

After drying, the skin was cut into circles of 3 cm diameter. For permeation 

experiments, the skin was mounted in the Microglass Heim Franz diffusion cells. 

Briefly, the porcine skin was mounted on the receptor compartment of a Franz diffusion 

cell assembly with the stratum corneum side facing upwards into the donor 

compartment. Seven milliliters of 3:7 (v/v) CH3CH2OH:pH 7.4 PBS was used as the 

receptor medium. A measured amount of transfersomes or ethosomes containing VK1 

were poured or nebulized into the donor compartment. The concentration of all samples 

was adjusted to achieve the same VK1 amount (1 mg) in the donor compartment. The 

available diffusion area between compartments was 0.6 cm2. The Franz cells were 

mounted on a H+P Labortechnik Variomag Telesystem (Munchen, Germany) and 

placed in a thermostatic bath (Haake DC30; Thermo Fisher Scientific, Waltham, MA, 

USA). The experiments were carried out at a stirring rate of 600 rpm and temperature of 

37°C. At predetermined time frames, 700 μL of the receptor phase were withdrawn and 

replaced with the same amount of fresh medium. The amount of VK1 in the withdrawn 

samples was determined by HPLC. At the end of the experiments, skin surfaces were 

thoroughly washed with distilled water to remove the excess of formulation. Epidermis 

and dermis were then separated by heating and then placed in separate eppendorfs. 

Finally, the VK1 accumulated in epidermis or dermis was extracted with 1 mL of 

CH3CN by bath sonication (Branson 3510) five times for 30 minutes. The CH3CN 

phase was filtered using 0.45 μm membranes, and the resulting filtrate was analyzed by 

HPLC to determine the VK1 content. The amount of VK1 accumulated in the different 

layers of the skin was calculated as the ratio of amount of VK1 (ng) to weight of 

epidermis or dermis (mg), (Da Silva A., 2012; Lopes L.B. et al., 2007). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lopes%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=17900879
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Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) 

At the end of the penetration experiments (see above), the pig skin was 

dismounted and frozen at -20°C. Before use, the sample was thawed at room 

temperature and the spectra were collected over the wavenumber 4000–450 cm–1 region 

by a Bruker Alpha-P spectrometer (128 scans; 4 cm−1 resolution), equipped with an 

attenuated total reflection diamond crystal accessory (Bruker Optics Inc., Germany). 

The raw data were elaborated by ATR correction (OPUS software, Bruker Optics Inc., 

Germany) and analysed by Origin Pro (OriginLab, US). The band maxima were 

assigned by second derivative. Fourier self-deconvolution (FSD) of the overlapping 

band components (hidden peaks) were resolved by the second-order derivative with 

respect to the wavelength after smoothing with a nine-point Savitsky−Golay function. 

Deconvolution was performed using Gaussian line shape. A nonlinear least-square 

method was used to take the reconstituted curve as close as possible to the original 

deconvoluted spectra. The fitting results were further evaluated by examining the 

residual from the differences between the fitted and the original curve and accepted 

when the regression coefficient was higher than 0.999.  

 

Statistical analyses 

All experiments were carried out at least in triplicate and the results are 

expressed as mean ± standard deviation. The comparison of the samples was performed 

by one-way ANOVA followed by Bonferroni-Holm post-analyses (Daniel’s XL 

Toolbox 6.53 for Excel). The level of significance was taken at p<0.05. 

 

Confocal laser scanning microscopy (CLSM) experiments 

The lipophilic fluorescent probe PE-CF was added (2% w/w of the total lipids) 

in the organic phases during the preparation of the  vesicles to prepare fluorescently 

labeled nanocarriers. Subsequently, fluorescent vesicles were applied onto excised 

porcine skin mounted on Franz Cells in the same conditions previously described. After 
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24 h of treatment the skin samples were washed and frozen at -80 °C.  The cross-

sectional tissue samples of skin treated with PE-CF-nanocarriers were prepared using a 

cryomicrotome (CM1850, Leica Microsystems GmbH, Wetzlar, Germany). Sections of 

skin of 30 µm thickness were cut with a cryostat microtome longitudinally to the skin 

strata to investigate the fluorescent probe distribution in the different skin strata. 

Analyses were carried out using confocal laser scanning microscopy (CLSM) (LSM 510 

Zeiss confocal inverted microscope). A 5× objective lens (Zeiss) and an Argon laser 

were used (λ ex = 488 nm). Fluorescence images of skin samples were obtained after 

CLSM calibration and the fluorescent signal detected in skin cross-sections was 

converted to normalized concentration by verifying that the coincidence between 

fluorescence ratio and concentration ratio. The concentration was normalized with 

respect to the maximum concentration detected across stratum corneum axis. Likewise, 

the non-dimensional length was defined as x = x/L, where x is the stratum corneum 

abscissa and L is the depth of stratum corneum. The final profiles were averaged on at 

least 20 profiles. 
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Results 

 

 
Characterization of the vesicles containing VK1  

This study was focused on the development of formulations based on different 

types of nano-sized lipid vesicles, i.e. liposomes, transfersomes and ethosomes to 

investigate their effect on VK1 accumulation into the skin and on transdermal VK1 

delivery. All the formulations were characterized in terms of size, ZP, soon after 

preparation and upon storage at 4 ◦C. The results are reported in Table 1. In the case of 

liposomes, the mean diameter was about 138.4 nm soon after preparation, without any 

significant change after 60 days; after 6 month of storage, a slightly increase of the 

liposome mean diameter was found, namely 146.7 nm. However, it is worthy of note 

that the SD after 60 days is quite large, about 20 nm, suggesting that the increase of the 

mean diameter after 6 months could also be considered not significant. The PI of these 

carriers was 0.2 after preparation and remained unaffected after 6 months of storage at 4 
◦C. Liposomes showed a negative ZP of about -13 mV without any significant 

differences during storage. Transfersomes showed a lower mean diameter, about 89.7 

nm, without significant differences following storage at 4 ◦C; in fact after 60 days the 

diameter of the vesicles was 93.6 and remained very stable  (95.3 nm) after 6 months. 

On the contrary, the Trans PI increased from 0.1 to 0.2 after 60 months as well as the 

ZP that was always negative but increased of about 10 mV after 6 months of storage. In 

the case of ethosomes the different methods of preparation significantly affected 

ethosomes size distribution. In fact, Etho2 had a low mean diameter of about 86.9 nm 

soon after preparation, while  the same vesicles prepared without the extrusion step 

(Etho1) had a mean diameter of about 112.1 nm. For both the formulations but 

especially for Etho1, the mean diameter increased after 60 days of storage at 4 ◦C (97.1 

and 143.1 nm for Etho1 and Etho2 respectively) but did not changed until 6 months. 

Furthermore, Etho2 and Etho1, showed a low PI of about  0.1, without any significant 

difference during storage. Finally, the ZP was always negative and comparable after 

6months of storage at 4 ◦C.  
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Formulation 

 
After preparation After 60 days After 6 mounth 

 
Mean 

diameter 
(nm ± SD) 

PI ± SD PZ ± SD 
Mean 

diameter 
(nm ± SD) 

PI ± SD PZ ± SD 
Mean 

diameter 
(nm ± SD) 

PI ± SD PZ ± SD 

Lipo 138.4 ± 0.77 0.230 ± 0.0 -13.5 ± 4.1 138.0 ± 19.9 0.240 ± 0.0 -11.4 ± 6.1 146.7 ± 15.5 0.256 ± 0.0 -13.0 ± 0.5 

Trans 89.7 ± 6.0 0.149 ± 0.0 -12.3 ± 2.0 93.6 ± 3.8 0.203 ± 0.0 -16.5 ± 1.0 95.3 ± 4.4 0.210 ± 0.0 -22.6 ± 5.4 

Etho1 112.1 ± 5.8 0.102 ± 0.0 -18.3 ± 1.6 143.1 ± 8.0 0.109 ± 0.1 -20.4 ± 3.7 143.9 ± 3.4 0.113 ± 0.0 -16.2 ± 1.6 

Etho2 86.9 ± 2.4 0.113 ± 0.0 -12.5 ± 2.6 97.1 ± 5.5 0.118 ± 0.1 -18.3 ± 3.5 99.8 ± 7.4 0.118 ± 0.0 -16.3 ± 0.5 

 

Table  1. Characteristics of the formulations. 

 

 
  To verify if the formulations were suitable to be administered on the skin in 

form of aerosol, the developed suspensions containing the different nanocarriers were 

nebulized through a portable device. The technological characteristics of the 

nanocarriers were checked before and after nebulization. An image of aerosol produced 

by nebulization of liposomes, but representative of all the formulations, is shown in 

Figure 1. 

 

 

 
 

Figure 1.  Nebulization of the formulation by a portable device. 

 

 

The characteristics of liposomes, ethosomes and transfersomes before and after 

nebulization through the device are reported in Table 2.  For all the considered 
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formulations, any significant alteration of samples size was observed following 

nebulization. 

 

Formulation 

Mean diameter 

 (nm ± SD) 

BN 

 

PI ± SD 

BN 

Mean diameter 

 (nm ± SD) 

AN 

 

PI ± SD 

AN 

Lipo 139.5 ± 3.5 0.2 ± 0.2 140.8 ± 4.8 0.2 ± 0.1 

Trans 86.7 ± 5.4 0.1 ± 0.2 87.4 ± 6.8 0.3 ± 0.1 

Etho1 113.85 ± 0.9 0.1 ± 0.00 117.55 ± 5.86 0.1 ± 0.00 

Etho2 92.7 ± 1.80 0.1 ± 0.03 95.7 ± 3.14 0.1 ± 0.01 

 

BN: before nebulization; AN: after nebulization. 

Table 2. Mean diameter and polydispersity index before and after nebulization of the formulations. 

 

 

 

In the following step of the work, the ability of the nanocarriers to pass through 

a polycarbonate membrane with a pore diameter of 50 nm, smaller than the vesicle size, 

was investigated. In this experiment, deformability of transfersomes and ethosomes was 

compared with that of liposomes, which were considered the control. This experiment 

should provide useful information on how the surfactant, i.e SC, and the ethanol used to 

prepare the vesicles, could affect the deformability of the vesicles, that could, in turn, 

facilitate the vesicle penetration into the skin. As shown in Table 3, liposomes presented 

a very low DI  (about 29), with a strong reduction of the mean diameter of the vesicles 

if compared to the others formulations. In fact, in this case, the passage of the liposomes 

formulation trough the 50 nm membrane used for the test, led to a significate 

modification of the mean diameter of the vesicles that was reduced from about 148.6 

nm to 99.3 nm. The deformability of transfersomes (about 290.3) was ten times higher 

if compared with that of liposomes. Compared with liposomes DI, also for Etho1 and 

Etho2 the DI was higher, namely about 79.6 and 171.4, respectively.  

 From the results summarized in Table 3, the deformability of these nanocarriers 

increased in the following order:  Control < Etho1< Etho2< Trans. 
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Formulation 

Mean diameter 

 (nm ± SD) 

BE 

Mean diameter 

 (nm ± SD) 

AE 

DI 

 Lipo 148.6 ± 3.5 99.3 ± 3.7 29.9 ± 2.5 

Trans 85.3 ± 17.4 75.13 ±  9.8 290.3 ± 15.2 

Etho1 117.3 ±  11.1 87.48 ± 5.5 79.6 ± 7.2 

Etho2 92.73 ± 3.2 81.13 ± 2.1 171.4 ± 8.3 

 
BE: before extrusion; AE: after extrusion. 

Table 3. Determination of deformation index (DI) of vesicular suspensions 

 

 

 
 

The amount of VK1 encapsulated into liposomes, transfersomes and ethosomes 

was determined by HPLC analysis and the results showed only one chromatographic 

peak, attributed to the VK1, suggesting that the phylloquinone was not altered during 

the preparation (data not shown). The VK1 actual loading of the different formulations 

is reported in Table 4. For each formulation, the actual VK1 encapsulation was higher 

than the theoretical one. In particular, in the case of Lipo, VK1 actual loading after 

preparation was about 214.6 µg/mg SPC. However, after 60 days of storage at 4°C a 

decrease of about 30 % was observed. Unexpectedly, a slight increase of the VK1/SPC 

ratio was observed after 6 months of storage (183.4 µg VK1/mg SPC). Concerning 

Trans, the VK1 actual loading was about 47.94 µg VK1/mg SPC and this value 

remained unaffected upon storage at 4°C. In the case of Etho2, only a slight and 

progressive decrease of the VK1 actual loading was found until 6 months of storage of 

the formulation at 4°C; in particular, the actual loading of VK1 was 211,7 µg VK1/mg 

SPC after preparation  and 191 µg VK1/mg SPC after 6 months. Also in the case of 

Etho1, characterized by a VK1 actual loading lower than Etho2 after preparation (173.0 

µg VK1/mg SPC), a slight and progressive decrease of the VK1 content into the 

vesicles during storage was observed. 
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  After preparation After 60 days After 6 months 

Formulations 
Theoretical 

Loading 
(μgVK1/mg SPC) 

 
Actual Loading 

(μgVK1/mg SPC ± S.D.) 

 
Actual loading 

(μgVK1/mg SPC ± S.D.) 

 
Actual Loading 

(μgVK1/mg SPC ± S.D.) 

Lipo 100 214.6 ± 0.1 152.0 ± 0.09 183.4 ± 0.02 

Trans 20 47.94 ± 0.01 46.2 ± 0.1 45.7 ± 0.02 

Etho-1 100 173.0 ± 0.01 165.7 ± 0.05 162.4 ± 0.03 

Etho-2 100 211.7 ± 0.08 209.3 ± 0.07 191.0 ± 0.00 

 
Table 4. VK1 encapsulation in the nanocarriers. 

 

 

 

 

 

Stability studies 

In the previous part of the study, VK1 was found to be altered following light 

exposure (see Chapter 1). Thus, the stability of the developed formulations during 

storage at different temperature (4 °C, 25°C and 40°C) was evaluated in absence of 

light. Visual inspections, organoleptic evaluation and characterization in terms of size 

and VK1 leakage during storage of the samples were carried out at different time 

frames. The results of the visual and organoleptic analysis are reported in Table 5. As 

shown from the results, for all the formulations stored at 25°C a marked odor was 

reported after the first 60 days, although not associated to the presence of aggregates. 

Moreover, all the formulations incubated at 40°C also developed a pronounced 

characteristic odor, associated to the presence of visible aggregates after 60 days. In 

addition, the color of the suspensions stored at temperatures higher than 4 °C changed 

from a milky to a more yellowish one. 
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Formulation 
Storage 

condition 
After preparation After 60 days 

  Aspect Odor Colour Aspect Odor Colour 

Lipo 

4°C Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Strong odor Yellowish 

40°C Uniform Absent Milky Suspended 
material Strong odor Yellowish 

Trans 

4°C Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Strong odor Yellowish 

40°C Uniform Absent Milky Suspended 
material Strong odor Yellowish 

Etho-1 

4°C Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Strong odor Yellowish 

40°C Uniform Absent Milky Suspended 
material Strong odor Yellowish 

Etho-2 

4°C Uniform Absent Milky Uniform Absent Milky 

25°C Uniform Absent Milky Uniform Strong odor Yellowish 

40°C Uniform Absent Milky Suspended 
material Strong odor Yellowish 

 
Table 5. Visual and organoleptic analysis of the formulations stored in different conditions. 

 

 

 

 

 

Afterwards, Lipo, Trans, Etho1 and Etho2 were also characterized in terms of 

size and VK1 leakage during storage. As shown in Table 6, and in agreement with the 

visual and organoleptic analysis, liposomes stored at 40°C for 60 days, showed a 

marked increase of mean diameter (from about 136.8 nm to about 334.0 nm) and PI 

(from 0.2 to 0.5), confirming the presence of aggregates into the suspension. In 

addition, the VK1 actual loading strongly decreased of about 57% following alteration 

of the vesicles. In the case of Trans a marked increase of the mean diameter was not 

found (Table 7); however, an increase of the PI up to the value of 0.3, as well as a 

higher VK1 actual loading, were observed.  
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Storage After preparation After 60 days 

 

Mean 

diameter 

(nm ± SD) 

PI ± SD PZ ± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

Mean 

diameter 

(nm± SD) 

PI 

± SD 

PZ 

± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

4 °C 

136.8 ± 1.7 0.2 ± 0.1 -13.5 ± 4.17 183.4 ± 0.1 

139.13 ± 12.5 0.2 ± 0.0 -11.4 ± 6.1 123.7 ± 4.9 

25 °C 175.8 ± 18 0.2 ±  0.1 -12.0 ± 2.4 132.7 ± 6.3 

40 °C 334.0 ± 15.0 0.5 ± 0.2 -32.5 ± 3.6 78.8 ± 13 

 

 
Table 6. Stability of Liposomes stored at different temperatures and in absence of light. 

 

 

 

Storage After preparation After 60 days 

 

Mean 

diameter 

(nm± SD) 

PI ± SD PZ ± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

Mean 

diameter 

(nm± SD) 

PI ± SD PZ ± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

4 °C 

84.0 ± 3.8 0.1 ± 0.03 -14.5 ± 1.6 47.31 ± 0.01 

85.4 ± 3.2 0.1 ± 0.0 -12.7 ± 10.4 25.4 ± 0.1 

25 °C 89.6 ± 7.9 0.1 ± 0.0 -4.1 ± 1.2 36.8 ± 0.0 

40 °C 126.5 ± 15.2 0.3 ± 0.1 -11.5 ± 1.0 113.6 ± 0.2 

 

 
Table 7. Stability of Transfersomes. 

 

 

As shown in the Table 8 and 9, and in agreement with the visual and 

organoleptic analysis, ethosomes stored at 40°C for 60 days, showed a marked increase 

of mean diameter; in particular in the case of Etho1 the mean diameter increased from 

about 101 nm to about 277.1 nm and PI from 0.2 to 0.5 confirming the presence of 

aggregation of the suspension. In addition, the VK1 actual loading decreased of about 

20%. In the case of the formulation Etho2, after storage at high temperature the mean 

diameter increased up to 284.8 nm and the actual loading was strongly reduced (about 

60%). When Etho1 and Etho2 were stored at 25 °C, the vesicles size  significantly 

increased; the alteration of Etho1 vesicles was also associated to a significant increase 

of VK1 actual loading, that is a clear sign of a lipid loss. On the contrary, for Etho2 this 
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phenomena was not observed. Therefore, all the formulation developed did not undergo 

further characterizations under these storage conditions, i.e. 40 and 25°C. It’s worthy of 

note that, in all the samples stored at the temperature of 4 °C,  any effect on the 

suspension stability was found. 

 

 

Storage After preparation After 60 days 

 

Mean 

diameter 

(nm± SD) 

PI 

± SD 

PZ 

± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

Mean 

diameter 

(nm± SD) 

PI 

± SD 

PZ 

± SD 

Actual VK1 

encapsulation 

(μg/mg SPC ± SD) 

4 °C 

101 ± 1.9 0.1 ± 0.1 
 

-12.3 ± 2.6 
 

 
108.1 ± 0.1 

 

133.5 ± 2.8 0.1 ± 0.08 -15.0 ± 1.0 
 

82.91 ± 0.7 
 

25 °C 126.4 ± 7.2 0.2 ± 0.07 -19.0 ± 2.2 358.9 ± 0.2 

40 °C 277.1 ± 4.4 0.5 ± 0.06 -33.0 ± 3.1 90.3 ± 0.0 

 

 
Table 8. Stability of Etho1 stored at different temperatures and in absence of light. 

 

 

 

 

 

 

 

 

Table 9. Stability of Etho2 stored at different temperatures and in absence of light. 

Storage  After preparation After 60 days 

 
Mean 

diameter 
(nm± SD) 

PI ± SD PZ ± SD 
Actual VK1 

encapsulation 
(μg/mg SPC ± SD) 

Mean 
diameter 
(nm± SD) 

PI ± SD PZ ± SD 
Actual VK1 

encapsulation 
(μg/mg SPC ± SD) 

4 °C 

84.4 ± 3.7 0.1 ± 0.0 -10.0 ± 3.9 125.5 ± 0.1 

91.8 ± 3.1 0.2 ± 0.1 -13.6 ± 0.4 108.6 ± 6.8 

25 °C 107.2 ± 5.1 0.1 ± 0.1 -19.0 ± 3.1 78.6 ± 17.2 

40 °C 284.8 ± 12.5 0.2 ± 0.2 -24.3± 9.5 50.8 ± 35.2 



72 
 

Ex vivo experiments 

 

The accumulation/permeation of VK1 in/through the porcine skin were 

investigated on Franz cells. In the receptor compartment, VK1-encapsulating 

nanocarriers were used as such or nebulized through the medical device Eauté. In 

Figure 2, the amount of VK1 found in the epidermis following 24 h of skin incubation 

with the different formulation is shown. 

 

 
 

 
Figure 2. Accumulation of VK1 in epidermis. Legend: Lipo: liposomes containing VK1, administrated as 
such in the donor compartment. Lipo-NEB: liposomes containing VK1,  administrated in form of aerosol 
in the donor compartment. Etho1: ethosomes containing VK1, administrated as such in the donor 
compartment. Etho1-NEB: ethosomes containing VK1,  administrated in form of aerosol in the donor 
compartment. Etho-2: ethosomes containing VK1, administrated as such in the donor compartment. Etho-
2-NEB: ethosomes containing VK1,  administrated in form of aerosol in the donor compartment. Trans: 
transfersomes containing VK1, administrated as such in the donor compartment. Trans-NEB: 
transfersomes containing VK1,  administrated in form of aerosol in the donor compartment. 
 
 

 

The amount of VK1 accumulated into the epidermis was about 16, 11, 17 and 19 ng/mg 

of epidermis with Lipo, Etho1, Etho2 and Trans respectively. In the case of Lipo the 

nebulization of the formulation slightly  increased the accumulation of VK1 (about 25 

ng/mg of epidermis). On the contrary the use of the nebulized form of Etho1 did not 
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significantly affect the VK1 accumulation (13.4 ng/mg of epidermis) that remained very 

similar to that obtained in the skin treated with the same formulation used as such. On 

the contrary, in the case of Trans, and Etho2, the nebulization of suspension slightly  

reduced the VK1 accumulation in the epidermis, if compared with the formulations 

tested ad such (11.43 and 13.3  ng/mg of epidermis for Trans-NEB and Etho2-NEB, 

respectively).  

The amount of VK1 found into the dermis is shown in Figure 3. The use of 

ethosomes or transfersomes led to an increase of the VK1 accumulated into the deeper 

layers of the skin, compared with Lipo. In particular, we found that Etho1 and Etho2 led 

to strong increase of VK1 accumulation compared to Lipo (51.3 and 40.8 vs 24.6 ng/mg 

of dermis, respectively). In the case of Trans administered as solution, a higher 

improvement of the VK1 accumulation into dermis was found (60.3  ng/mg of dermis). 

The use of the nanocarriers by nebulization on the skin significantly affected the VK1 

accumulation in the dermis. In particular, the nebulization of Lipo led to a decrease of 

VK1 in the dermis of about 25%, compared with the same formulation administered as 

liquid; in all the other cases, the aerosol form improved the accumulation of VK1. In 

particular, Etho1-NEB and Trans-NEB led to an increase of amount of VK1 

accumulated into the dermis that was higher than the 50% compared with Etho1 and 

Trans.  
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Figure 3. Accumulation of VK1 into the dermis. Legend: Lipo: liposomes containing VK1, administrated 
as such in the donor compartment. Lipo-NEB: liposomes containing VK1,  administrated in form of 
aerosol in the donor compartment. Etho1: ethosomes containing VK1, administrated as such in the donor 
compartment. Etho1-NEB: ethosomes containing VK1,  administrated in form of aerosol in the donor 
compartment. Etho2: ethosomes containing VK1, administrated as such in the donor compartment. 
Etho2-NEB: ethosomes containing VK1,  administrated in form of aerosol in the donor compartment. 
Trans: transfersomes containing VK1, administrated as such in the donor compartment. Trans-NEB: 
transfersomes containing VK1,  administrated in form of aerosol in the donor compartment. 
 

 

 

No permeation rate was observed with conventional liposomes encapsulating 

VK1 during 24h of incubation (data not shown). On the contrary, in the case of 

transfersomes and ethosomes, an enhanced permeation rate was observed, dependently 

on the formulation and on the mode of administration (as such or in nebulized form). As 

reported in Figure 4, when using Trans, VK1 penetrated gradually and linearly with 

about 64% of the total VK1 administered permeated after 24h of incubation. On the 

other hand, in the case of Etho1, the penetration of VK1 increased with the time 

reaching the 100%  in the receiving cell after 24 h. A lower permeation rate was found 

for Etho2; in particular, VK1 permeation was observed after just 30 minutes, but about 

37% of the applied dosage penetrated in the receptor compartment after 24 h of 

incubation.  
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Figure 4. Permeation of Etho-1, Etho-2 and Trans .Legend: Etho1: ethosomes containing VK1 
administrated as such in the donor compartment, Etho2: ethosomes containing VK1 administrated as such 
in the donor compartment, Trans: transfersomes containing VK1 administrated as such in the donor 
compartment.  

 
 

 

 

Permeation profile of VK1 obtained with the formulations tested in the nebulized form 

is reported in Figure 5. When trans was applied in the aerosol form on the skin, the 

permeation profile of VK1 was completely different if compared to Trans; in particular, 

a low permeation profile was found, reaching only about 6% after 24 h. Also, in the 

case of Etho1-NEB the permeation profile was lower, if compared with Etho1; 

however, in this case, a relatively high VK1 permeation rate was found (about 67% 

after incubation for 24h).  Finally, the use of Etho2-NEB brought to a VK1 permeation 

profile very similar to that obtained with Etho2 (33% and 36% of VK1 penetrated after 

24h).    

 

0% 

20% 

40% 

60% 

80% 

100% 

120% 

30 1h 2h 4h 6h 24h 

ETHO-2 

ETHO-1 

TRANS 



76 
 

 
 

Figure 5. Permeation of Etho-1-neb, Etho-2-neb and Transf-neb. Legend: Etho1-NEB: ethosomes 
containing VK1 and administrated in form of aerosol in the donor compartment. Etho2-NEB: ethosomes 
containing VK1 and  administrated in form of aerosol in the donor compartment. Trasf-NEB: 
transfersomes containing VK1 and administrated in form of aerosol in the donor compartment. 
 

 

 

 

ATR FTIR spectroscopy 

The possible effects of the treatment with the lipidic vesicles on the organization 

of the major constituents of the stratum corneum was assessed by ATR-FTIR 

spectroscopy, using the spectrum of untreated human epidermis mounted on Franz cell 

for 24 h.  Possible alterations of spatial organization of lipidic lamellae were verified by 

analysing CHx stretching region (2988-2828 cm-1). As reported in Table 10, the second 

derivative of this region evidenced four different peaks of which the asymmetric 

(asymCH2) and symmetric (symCH2) stretching bands centered at about 2920 and 2850 

cm-1 are the most relevant. Generally speaking, the treatment with the different type of 

vesicles, namely liposomes, ethosomes and transferosomes, does not determined any 

significant shift of these two bands (ANOVA, symCH2: p=0.083; symCH2: p=0.051) 

suggesting that their penetration does not affect the conformation of the stratum 

corneum lipids( see table 10). 
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Table 10 - Assignments and peak position of diagnostic bands of lipidic components of stratum corneum. 

 

 

 

The deconvolution of CHx) region (Figure 6a) permitted to calculate the ratio 

between the maximum intensity of asymCH2 and symCH2 (H2920/2850), which is 

considered a measure of lateral interactions between acyl chains in the stratum corneum, 

and the area of the peak assigned to symCH2(A2850) (Karande et al., 2005). The 

treatment of pig skin with the tested formulations determined a decrease of 

H2920/2850values (ANOVA, p= 0.023) concomitant to an increase of A2850 values and 

these variations resulted significant also when subjected to the post hoc analyses ( see 

table 10).  

 

 

Sample symCH2 asymCH2 H2920/2850 FWHM 

Untreated 2851,91 ± 1,09 2924,61 ± 0,00 10,561 ± 0,45 11,37 ± 1,25 

Lipo 2853,63 ± 0,14 2925,11 ± 0,71 4,885 ± 0,00 10,18 ± 0,00 

Lipo-VK1 2853,73 ± 0,00 2924,61 ± 0,00 5,058 ± 0,78 11,21 ± 1,18 

Etho 2853,73 ± 0,00 2924,61 ± 0,00 4,542 ± 0,60 11,56 ± 0,38 

Etho-VK1 2853,73 ± 0,00 2925,32 ± 1,00 6,965 ± 1,21 11,33 ± 0,50 

Trans 2853,73 ± 0,00 2925,32 ± 1,00 4,851 ± 0,31 11,18 ± 0,28 

Trans-VK1 2853,99 ± 0,37 2926,65 ± 0,88 5,338 ± 0,47 10,69 ± 0,21 
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Figure 6. – Typical deconvolution bands of ATR-FTIR spectra in the (a) CHx stretching band and (b) 
Amide I regions. The original spectrum is depicted in black, the deconvoluted peaks are represented by 
the blue lines, red lines indicate the sum of deconvoluted spectrum.  

 

The increase of the A2850 values can be justified considering that the penetration 

of the vesicles into the stratum corneum determined an enrichment of the lipidic 

components in the bilayer. The secondary effect of the vesicle partition within the 

stratum corneum is the formation of a more ordered structure measured by the 

significant decrease of the H2920/2850 values with respect to the control. The lack of 

significant modifications of the lipidic lamellae structure of stratum corneum due to the 

treatment with the different types of vesicle is further confirmed by the lack of 

modifications of the methylene scissoring bandin the 1480-1430 cm-1 region. The lipids 

of stratum corneum can be packed in two different conformations hexagonal or 

orthorhombic and the CH2 scissoring band width calculated from the second derivative 

of the spectrum (full width at 50% peak height, FWHM,  see Table 10) is considered 

diagnostic of the extent of the two lipid phases in the stratum corneum (Damien et al., 

2010). In all cases, FWHM values were close to 12.0 cm-1indicating that lipids are 

organized in the most stable orthorhombic conformation (Damien et al., 2010). The 

other interesting band of the stratum corneum usually investigated for assessing the 

effect of permeant on the stratum corneum barrer properties is the peak assigned to the 

C=O stretching of the amide (Amide I) (Karande et al., 2005), which is the result of 

contributes of keratin conformations and presence of ceramides (Cilurzo et al., 2014). 

The deconvolution of this peak (Figure 6b) revealed the presence of five hidden peaks 
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assigned to the different conformation of keratins and the presence of ceramides (Table 

11). Again, the treatment with the different formulations did not alter the ratios among 

the different hidden peaks expressed as percentages of the calculated areas. In 

conclusion, an enrichment of the lipidic component within the stratum corneum was 

noticed independently of the type of formulation/vesicle. The penetration vesicle does 

not affect the organization of the main components of the stratum corneum. 

 

 

 

Wavenumber Assignment 
Area of the deconvoluted hidden peak (%) 

Blank Lipo Lipo-VK1 Etho Etho-VK1 Trans Trans-VK1 

1609 CER 8,36 ± 0,37 7,95 ± 0,03 7,68 ± 0,30 8,08 ± 0,46 7,76 ± 0,07 7,68 ± 0,19 7,88 ± 0,33 

1627 -sheet 35,96 ± 2,22 36,48 ± 0,02 36,95 ± 0,66 36,39 ± 1,10 37,17 ± 0,12 36,70 ± 1,47 36,76 ± 1,10 

1650 random coil 31,08 ± 3,66 30,24 ± 0,04 30,19 ± 1,01 28,41 ± 1,40 29,40 ± 0,61 29,30 ± 1,13 31,40 ± 0,96 

1659 -elices 18,00 ± 1,77 18,60 ± 0,03 18,71 ± 0,08 20,20 ± 1,76 18,95 ± 0,51 19,56 ± 0,14 17,39 ± 1,32 

1682 -turn 6,60 ± 0,04 6,73 ± 0,06 6,97 ± 0,58 6,92 ± 0,27 6,73 ± 0,05 6,76 ± 0,28 6,57 ± 0,42 

 

Table11 – Typical deconvolution bands of ATR-FTIR spectra in the (a) CHx stretching band and (b) 
Amide I regions. The original spectrum is depicted in black, the deconvoluted peaks are represented by 
the blue lines, red lines indicate the sum of deconvoluted spectrum.  
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CLSM experiments 

Representative CLSM images of pig SC are shown in Figure 7.  

 

 

 

 

 

 

 

 

 

Figure 7: CLSM images of skin trated with liposomes, ethosomes and transfersomes. 

 

In all cases, fluorescence acquisitions show that the fluorescence is prevalently 

localized in the external stratum corneum, while the signal rapidly decreases when 

going across the skin. From these images, a clear difference on fluorescence distribution 

between skin treated with liposomes and skin treated with the other two vesicle types 

can be observed. In particular, the case of transfersomes and ethosomes, although still 

limited to the outer layer of the stratum corneum, fluorescence appear distributed on a 

more extended surface. However, to quantify differences among fluorescence 

distribution into the skin section treated with the different fluorescently labeled 

nanocarriers, the analysis of fluorescence distribution profile was carried out. In figure 

10, the fluorescence intensity versus the skin depth is reported. In the figure, we observe 

a  fluorescence profile that decrease very rapidly for skin treated with all the 

formulations. However, a more rapid decrease of the fluorescence profiles is observed 

in the skin treated with liposomes, while the initial slope of the profiles is clearly lower 

Liposomes Ethosomes Transfersomes 
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for ethosomes and transferosomes (Figures 8). From these data is not possible to 

observe a net difference between the fluorescence profile into the skin treated with 

ethosomes and transfersomes. 
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Figure 8: Concentration  profile at 24 h of liposomes, ethosomes and transfersomes. 
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Discussion 

 

The main goal of this part of the work was the development of aqueous 

formulations for topical administration of  VK1 that could optimize the VK1 

penetration into the skin. However, in line with the general scope of this experimental 

study, we developed aqueous formulations based on nanocarriers suitable to be 

administered on the skin by nebulization, in order to be proposed as an alternative to 

marketed formulations, e.g. Vigorskin®. For this reason, two types of vesicular systems, 

i.e. VK1-containing transfersomes and ethosomes were developed. Different studies 

demonstrated that transfersomes (Cevc, G., 1996) and ethosomes (Touitou E. et al., 

2000) are able to improve the accumulation of actives into different layers of the skin 

and the penetration trough the skin.  In the first part of the study, formulations based on 

transfersomes and ethosomes encapsulating VK1 were developed and characterized. For 

comparison purpose, a formulation based on liposomes encapsulating the VK1 was also 

prepared. It is worthy of note that, compared with the experimental procedures reported 

in the chapter 1, here liposomes were prepared by ethanol-injection method. A such 

method was chosen because, if compared to the “hydration of a lipid thin layer followed 

by extrusion” method previously used, is cheaper and certainly more suitable to undergo 

a scale-up process for future large scale production.  

For all the nanocarriers, the technological characteristics of the vesicles before 

and after nebulization were investigated to verify the possibility to be administered in 

form of aerosol. Finally, the capability of these nano-sized lipid vesicles to enhance the 

accumulation or the permeation of VK1 into/trough the skin was evaluated. A first 

ethosomal formulation Etho1 has been prepared by the method typically used to prepare 

ethosomes and firstly described by Touitou (Touitou et al., 2000; Touitou E., US Patent 

N° 5,540,934, 1996; Dayan e Touitou, 2000); however, to investigate the effect of the 

size on the vesicle properties, ethosomes were also prepared by extrusion to obtain a 

smaller vesicle size. Finally, transfersomes were prepared as previously described 

(Scognamiglio et al., 2012). All the prepared formulations had a mean diameter < 150 

nm, although the extrusion-sized ethosomes and the transfersomes were characterized 

by a mean size significantly lower compared to the other ethosomal formulation 
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(Etho1). All the prepared formulations presented a narrow size distribution as suggested 

by a polydisperisity index < 0.2. Moreover, all the vesicles were characterized by a high 

actual VK1 encapsulation, expressed as g VK1/mg SPC, which was higher than the 

theoretical one; this suggested a significant lipid loss occurring during the vesicles 

preparation that was higher than the vitamin loss. This hypothesis can be supported by 

formation of vitamin-rich domains immiscible with the phospholipid bulk, as suggested 

in Chapter 1 and as previously hypothesized by our group and by other authors  (Lopes 

LB, 2007; Campani et al., 2014). Moreover, in all the formulations, VK1 actual loading 

did not significantly change following storage at 4°C for 6 months. In order to propose 

these formulations for commercial development, the vesicle stability is certainly a 

crucial point to investigate. For all the formulations, mean diameter and size distribution 

did not changed following 6 months of storage at 4 °C. Moreover, no alteration of 

vesicles size, as well as of VK1 encapsulation, was observed following vesicles 

nebulization, suggesting the possibility to administer these formulations on the skin by 

nebulization, for example by the portable device Eauté. Previous studies demonstrated 

that the nebulization can alter ultraflexible vesicles, especially in the case of large mean 

diameters (Elhissi A.M.A. et al., 2012). However, in the case the reduced size of the 

developed nanovectors could justify their stability following the nebulization. 

Transfersomes and ethosomes have been proposed to deliver active molecules on the 

skin for their high deformability, compared to conventional liposomes (Cevc G. and 

Blume G., 2001; Touitou E., US Patent N° 5,540,934, 1996). The high deformability of 

these nanocarriers should make these vesicles the best candidate to delivery drugs also 

in the deepest layer of the skin (Cevc G., 1996; Godin B. et al., 2003). In our test on the 

vesicle deformability, conventional liposomes were considered the control. In this 

study, Trans showed the highest deformability, with a DI 10 times higher than that 

found in the case of liposomes. Also ethosomes DI was higher than liposomes DI, but 

with differences depending on the ethosome preparation method. In particular, Etho1 

and Etho2 had a DI 2 and 5 times higher than liposome DI, respectively. These findings 

suggested the high deformability of transfersome-based formulation, reasonably due to 

the presence of an edge activator. In the case of ethosomes, DI value was lower for 

formulations characterized by a higher mean diameter. The deformability of ethosomes 

has been attributed to the presence of ethanol into the vesicles; thus, the sizing step used 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lopes%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=17900879
http://www.ncbi.nlm.nih.gov/pubmed?term=Lopes%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=17900879
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in the case of Etho2 and carried out by extrusion could lead to a partial loss of ethanol 

with consequent lower vesicle deformability.  

In a second part of the study described in this chapter, the stability of the 

developed formulation was investigated in different conditions of storage according to 

ICH guidelines (International Conference on Harmonization of Technical Requirements 

for Registration of Pharmaceuticals for Human Use). We found that all the formulations 

were stable (no organoleptic, visible alteration or particle aggregation) up to 6 months 

of storage at the temperature of 4 °C. The same formulations showed visible 

aggregation after 60 days of storage at 40°C, but not at 25°C. On the other hand, a 

pronounced characteristic and marked odor was reported for samples stored at both 

25°C and 40°C. In agreement with the visual and organoleptic analysis, the samples 

stored at 40°C showed a marked increase of mean diameter and PI, suggesting the 

presence of aggregates into the suspension; in the same conditions a reduction of VK1 

actual loading was found, especially at the highest storage temperature. Vesicle 

instability could be ascribed to the lipid degradation, which can be enhanced when 

increasing the storage temperature (Pietzyk B et al., 2000, Grit M. et al., 1993). VK1 

analysis by HPLC did not show the appearance of further chromatographic peaks, 

suggesting that the reduced VK1 actual loading should be due to the release of the 

encapsulated vitamin, and not to its degradation at 40 or 25°C. Taken together, these 

results suggest that these formulations could be proposed for further studies but 

considering a storage at 4°C of the final product.  

Transfersomes and ethosomes have been largely proposed to enhance the 

accumulation in to thee skin and the transdermal delivery of drugs and active molecules. 

In fact, the presence of an “edge activator” or use of ethanol may enhance the 

deformability of the lipid bilayer (Cevc G., 1996; Godin B. et al., 2003). Moreover, in 

the case of ethosomes, the presence of ethanol also could act as penetration enhancer 

(Rao G.C., et al., 2008. Fang Y.P. et al., 2008). Thus, the accumulation/permeation of 

VK1 into/through the skin when delivered by transfersomes or ethosomes was 

investigated and compared with that obtained with conventional liposomes. In the ex-

vivo experiments, both the ethosomes and transfersomes changed the VK1 accumulation 

in the skin, which, however, was different in the epidermis and dermis. The ATR FTIR 
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spectroscopy analysis evidenced an enrichment of the lipidic component within the 

stratum corneum independently of the type of formulation/vesicle used to treat the skin. 

Moreover, organization of the main components of the stratum corneum did not 

significantly changed following skin treatment with the different vesicles. Moreover, in 

these experimental conditions, any significant difference was found between skin 

samples treated with the different vesicles. These data suggest that vesicles do not 

change the lipid organization of the skin, while they can enrich the lipid composition of 

the outmost layer of the skin. Thus, it is possible hypothesize that the vesicles used in 

this study fuse with the stratum corneum where the lipids remain confined, while the 

VK1 is free to diffuse toward the deeper layer of the skin. CLSM studies, carried out by 

using fluorescently labelled lipids, confirmed that lipid components of the vesicles 

remain mainly located in the outer layers of the skin, although, in the case of ethosomes 

and transfersomes a more deep penetration was observed. Thus it is possible 

hypothesise that while liposomes only fuse with the stratum corneum, ethosomes and 

transfersomes, due to the ethanol and to the sodium colate, are able to penetrate more 

deeply into the epidermis where they disassemble leaving the VK1 the possibility to 

diffuse into the skin. In the case of ethosomes, if compared with liposomes, VK1 

accumulation was increased into the dermis, with VK1 permeation into the acceptor 

compartment. The highest VK1 accumulation into the dermis was found with the 

formulation Etho1, suggesting that the highest deformability as well as a highest ethanol 

content (due to the absence of the extrusion step) could have a crucial role. An 

enhancement of VK1 accumulation/permeation into/through the skin was also observed 

with transfersomes. In these vesicles, vesicle permeation through the skin has been 

reported (Cevc et al., 1998).  

Surprisingly, in the case of the formulation Etho1 and Trans, nebulization on the 

skin resulted in a dramatic enhancement of the VK1 accumulation into the dermis. 

However, in this study, nebulization did not show to change the technological 

characteristics of vesicles. It has been reported that ultraflexible vesicles are suitable to 

the nebulization, but also more susceptible to the alteration, and this effect has been 

attributed to the presence of the surfactant or ethanol (Elhissi A.M.A. et al., 2012). In 

this case, due to the very low diameter of the vesicles, the aerosolization does not 

destroy the carrier but could certainly “force” the deformation of the vesicles, that 
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could, in turn, favour the penetration into the outer layer of the skin. This hypothesis is 

supported by our findings in which we found that only in the case of the formulations 

Trans and Etho1, characterized by the highest deformability index, the nebulization led 

to a dramatic increase of VK1 accumulation into the skin. Further studies are necessary 

to support these hypothesis and to investigate the relation between the nebulization and 

enhanced performace of the developed formulation.  
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Conclusions 

 

In this chapter, we investigated the possibility to prepare “elastic” vesicles 

(transfersomes) and ethanol-containing vesicles to increase VK1 accumulation into the 

skin. Different formulations of liposomes, transfersomes and ethosomes encapsulating 

VK1 for a topical administration by a nebulizer were designed and characterized. 

Firstly, we demonstrated that all these carriers are very stable at the temperature of  4°C 

for at least 6 months. Moreover, from the ex-vivo experiments the use of transfersomes 

and ethosomes, especially in the nebulized form, enhanced the accumulation  of VK1 

into the skin. Moreover, especially in the case of transfersomes, VK1 permeation 

through the skin was also observed. In conclusion, since the developed formulations 

were designed to be nebulized and to deliver an active compound on the skin, for a local 

effect in the deepest skin layers, transfersomes probably represented the formulation 

that, if administered in form of aerosol, could offer a good compromise between a high 

penetration into the skin and a limited permeation through it.   
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Chapter 3 

 

 

 

 

 

 

 

Development of nanoemulsions for topical delivery of vitamin K1. 
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Abstract  

 

In this third chapter, a new formulation to administer VK1 on the skin by 

nebulization is described. In particular, the work here described was focused on the 

development of a formulation with lower production cost, compared to the systems 

described in the previous chapters. Thus, a lipid-free aqueous formulation was designed. 

In particular, we developed a protocol by which nanoemulsions spontaneously form 

with a low-energy method. The developed nanoemulsions were stable during long time 

frames and can be nebulized. Finally, the developed VK1-containing nanoemulsions 

were tested on Franz Cells, showing an increased VK1 accumulation into the skin.  

Keywords: Vitamin K1, nanoemulsions, Franz cell, low-energy methods. 
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Introduction  

 

Emulsion-based delivery systems and in the particular nanoemulsions, represent 

a promising tool for the topical and transdermal administrations of drugs. 

nanoemulsions proposed for drug delivery were constituted by a fine oil/water 

dispersion with droplets having a size ranging from 100-600 nm (Nakajima et al., 1993; 

Nakajima, 1997).  From a general point of view, oil-in-water nanoemulsions consist of 

two phases: an organic phase composed of an homogeneous oily solution and an 

aqueous phase. These systems are also often characterized by the presence of a 

hydrophilic surfactant and water–miscible solvent. These o/w nanoemulsions have 

found increasing use as delivery systems to encapsulate lipophilic bioactive components 

in cosmetic, personal care, functional food and pharmaceutical products (Saberi et al., 

2012). Indeed, these formulations offer many advantages for the delivery of active 

compound into the skin (Sonneville-Aubrun et al., 2004); in fact, the presence of a 

surfactant (generally at a concentration in the range 3–10%), the large surface area of 

the internal oily phase, the low surface tension of the whole system as well as of the 

O/W interface, allow to enhance penetration of actives agents. Moreover, the small size 

of the droplets allows them to deposit uniformly on skin and facilitate the penetration of 

actives trough the skin layers; for all these reasons, nanoemulsions could be proposed to 

deliver active molecules onto the skin, as alternative to lipid-delivery systems such as 

liposomes and other vesicle-based systems (Bouchemal et al., 2004). 

 Nanoemulsions can be produced using different techniques usually classified 

as high-energy methods and low-energy methods. High-energy methods employ  

expensive equipments, such as high pressure valve homogenizers, microfluidizers, and 

sonicators (Mc Clements D.J. et al., 2011; Tadros et al., 2004). These mechanical 

devices are capable to disperse the oil into the aqueous phase in form of nano-droplets. 

On the other hand, the so-called “low-energy” methods included several approaches 

such as spontaneous emulsification, phase inversion temperature (PIT), and phase 

inversion composition (PIC) methods (Anton N. et al., 2008). Compared to the high-

energy methods, the use of low-energy methods had some advantages in terms of scale-

up and industrial transfer, since no expensive equipments are require. In addition, the 
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possibility to used non-aggressive features, can make these systems suitable to the 

delivery of labile molecule (Anton N. et al., 2009). 
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Aim of the work 

 

In this study, we investigated the possibility to develop nanoemulsions 

containing VK1 using the low-energy method.  The aim of this work was to produce a 

formulation for the administration of VK1 in the aerosol form using a very simply 

method that could represent a valid alternative in terms of cost of production compared 

to lipid-vesicles described in previous chapters. So, we prepared nanoemulsions by a 

spontaneous emulsification approach at room temperature using simple stirring and 

avoiding the use of expensive homogenization equipment. The influence of the physical 

properties of the oily phase, the surfactant nature and the effect of the oily phase/water 

phase ratio on the characteristics of the emulsion were studied in the first part of the 

work. Then, stability studies were carried out to establish the optimal storage conditions 

for the developed system. Finally, the possibility to administer VK1-containing 

nanoemulsions by nebulization and the capability of these formulations to facilitate 

VK1 accumulation into the skin layers were evaluated.   
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Materials and methods  

 

Materials  

 Vitamin K1 (VK1) and α-tocopherol (αTOC) and were purchased from Sigma-

Aldrich (St Louis, MO, USA). Analytical grade chloroform (CHCl3) and ethanol 

(CH3CH2OH or EtOH) were obtained from Carlo Erba Reagents (Cornaredo, Italy).  

Polyoxyethilen-20-sorbitan-monooleate (tween 80) was provided by Farmalabor (Italy) 

and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(carboxyfluorescein-ammonium 

salt) (PE CF) was kindly gifted by Lipoid GmbH (Steinhausen, Switzerland). 

 

Preparation of nanoemulsions 

The preparation of nanoemulsions (NEs) was performed using the procedure 

based on spontaneous emulsification, previously described by Anton et al. (Anton et al., 

2009), with some modifications. Briefly, the oil phase composed of αTOC and VK1 was 

mixed with the surfactant (tween 80) and the organic solvent (EtOH) with a vortex. 

Subsequently, the organic phase was added slowly into an aqueous phase placed under 

magnetic stirring at 700 rpm. The addition of the organic phase was performed using a 

syringe pump at the speed of 50µl/min  (NE-300 “just infusion”TM, new era pump 

system Inc., NY USA). Each sample was further stirred for 5 min at 1400 rpm. NEs 

were rapidly formed. Unless otherwise stated, the experiments were carried out using 

standardized conditions, namely 10 % (w/w) oily phase, 64 % (w/w) aqueous phase,  

surfactant 10 % (w/w). 

 

Nanoemulsions size and zeta potential  

Dimensional analysis was performed by photon correlation spectroscopy (PCS). 

For each sample, an aliquot of about 20μl was diluted in filtered water and analyzed by 

N5 (Beckman Coulter, USA). The average diameter and the size distribution of each 
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formulation were determined. The results were expressed as NEs mean diameter (nm) 

and polydispersity index (PI). 

The zeta potential of NEs was performed by the Zetasizer Nano Z (Malvern, 

UK). Briefly, an aliquot of each sample (20μl) was diluted in filtered water and 

analyzed. The results were calculated by the average of the measurements obtained 

from three batches of the same formulation. 

 

Stability studies 

Physical stability of NEs was evaluated after different time frames on the 

formulations prepared at growing VK1 concentrations. Briefly, after preparation, each 

batch was stored at 4°C and at predetermined intervals, about 10 μl of the suspension 

was diluted in filtered distilled water and analysed by PCS, as reported above.  

The formulations were tested in different storage conditions. In particular, NEs 

were incubated at different temperatures, namely 4, 25 and 40°C, in refrigerant 

(Hotpoint, Ariston, Italy) or in a laboratory oven (STF-F52Lt, Falc Instrument, Italy). 

All samples were held under nitrogen atmosphere and protecting them from the light. At 

predetermined intervals, the samples were analyzed in terms of physical appearance, 

odor, NEs size. NEs size was determined by PCS, as described above. For each 

formulation, the results were the mean of three different batches (n = 3).  

 

NEs nebulization 

NEs were also characterized before and after nebulization. To nebulize the 

formulations, a portable nebulizer (Eauté) kindly provided by Xenus, was used. Briefly, 

about 1 ml of the the suspension, previously characterized for size, was loaded into the 

device and nebulized by collecting the aerosol in a 20 ml glass vial. The collected 

suspension was then analyzed in terms of size. 
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Skin penetration experiments 

The penetration of VK1 in the skin and its transdermal delivery were assessed 

with porcine ear skin. The porcine ears were kindly provided by a local slaughterhouse 

(Vendor Carni, Italy). All the experiments were performed on frozen-thawed skin used 

within 6 months. Full-thickness skin was removed from the dorsal side of the freshly 

excised pig ear, stored at 20 °C and used within 6 months. On the day of the 

experiment, punches were cut out and hairs cut with scissors, as already reported by 

other authors (Gillet A et al., 2011). The outer skin surface (stratum corneum) and the 

inner region (dermis) were used for the experiments. After drying, the skin was cut into 

circles of 3 cm of diameter. For permeation experiments the skin was mounted in a 

Franz diffusion cells (Microglass Heim, Italy). Briefly, the porcine skin was mounted on 

the receptor compartment of a Franz diffusion cell assembly with the stratum corneum 

(SC) side facing upwards into the donor compartment. Seven milliliters of 3:7 (v/v) 

ethanol-pH 7.4 PBS was used as the receptor medium. A measured amount of 

nanoemulsion containing VK1 was poured or nebulized into the donor compartment. 

Alternatively, a weighted amount of VigorSkinK1® cream was added into the donor 

compartment in contact with the excised skin. The concentration of all samples was 

adjusted to achieve same VK1 amount (1mg) in the donor compartment. The available 

diffusion area between compartments was 0.6 cm2. The Franz cells were mounted on a 

H+P Variomag Labortechnik Telesystem (Germany) placed in a thermostatic bath 

Haake DC30 (Thermo Electron Corporation, Germany). The experiments were carried 

out at a stirring rate of 600 rpm and temperature of 37 °C. At predetermined time 

frames, 700 μl of the receptor phase were withdrawn and replaced with the same 

amount of fresh medium. The amount of VK1 in the withdrawn samples was 

determined by HPLC. At the end of the experiments skin surface were thoroughly 

washed with distilled water to remove the excess formulation. Epidermis and dermis 

were then separated by heating and then placed in separate eppendorfs. Finally, the VK1 

accumulated in epidermis or dermis was extracted with 1 ml of CH3CN for 5 times by 

bath sonicator (Branson 3510) for 30 minutes. The CH3CN phase was filtered using 

0.45 μm membranes and the resulting filtrate analyzed by HPLC to determine the VK1 

content. The amount of VK1 accumulated in the different layers of the skin was 

calculated as ratio between amount (ng) of VK1/ weight (mg) of epidermis or dermis, 
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Da Silva A 2012; Lopes LB et al., 2007). 

 

Confocal laser scanning microscopy (CLSM) experiments 

The lipophilic fluorescent probe PE-CF was added (2% w/w of the total NEs) in 

the organic phases to prepare fluorescently labeled NEs. Subsequently, fluorescent NEs 

were applied onto excised porcine skin mounted on Franz Cells in the same conditions 

previously described. After 24 h of treatment the skin samples were washed and frozen 

at -80 °C.  The cross-sectional tissue samples of skin treated with PE-CF-NEs were 

prepared using a cryomicrotome (CM1850, Leica Microsystems GmbH, Wetzlar, 

Germany). Sections of skin of 30 µm thickness were cut with a cryostat microtome 

longitudinally to the skin strata to investigate the fluorescent probe distribution in the 

different skin strata. Analyses were carried out using confocal laser scanning 

microscopy (CLSM) (LSM 510 Zeiss confocal inverted microscope). A 5× objective 

lens (Zeiss) and an Argon laser were used (λ ex = 488 nm). Fluorescence images of skin 

samples were obtained after CLSM calibration and the fluorescent signal detected in 

skin cross-sections was converted to normalized concentration by verifying that the 

coincidence between fluorescence ratio and concentration ratio. The concentration was 

normalized with respect to the maximum concentration detected across stratum 

corneum axis. Likewise, the non-dimensional length was defined as x = x/L, where x is 

the stratum corneum abscissa and L is the depth of stratum corneum. The final profiles 

were averaged on at least 20 profiles. 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lopes%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=17900879
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Results 

 

Effect of nanoemulsions composition on particle size 

The first phase of the work was aimed to investigate the influence of the NEs 

composition on the size of droplets obtained by spontaneous emulsification. In 

particular, different surfactant-emulsion ratios (SERs) were tested, maintaining the oily 

phase/aqueous phase (αTOC) ratio at 10% wt. The results of this first part of the 

formulative work are summarized in Table 1.  

 

 
Formulation 

 
% SER 

 
O (%) 

 
S (%) 

 
W (%) 

 
EtOH (%) 

 
Diameter 

(nm) 
 

 
IP 

 
ZP (mV) 

NE1 1 10 1 73 16 UD UD -34,906 

NE2 5 10 5 69 16 250,4 0,973 -25,11 

NE3 10 10 10 64 16 209 0,107 -18,598 

NE4 12 10 12 62 16 263 0,239 -17,984 

NE5 20 10 20 54 16 100,57 0,538 -15,082 

 

 Table 1: Different types of nanoemulsions designed. Legend: SER: surfactant/emulsion ratio; O: oily 
phase; S: surfactant; W:water, UD: undetectable.  
 

 

NEs were obtained for all the surfactant/emulsion ratio, with the exception of the 

formulation NE1. In fact, using a low concentration of surfactant (1%), the mean 

diameter of the droplets was very high as well as the value of the PI was highest than 1. 

Thus, when the percentage of the surfactant was increased, the mean diameter was 

reduced. In particular a decrease from 250.4 nm in the case of the NE2 until to 100.57 

nm for the formulation NE5 was observed. Moreover, only in the case of the 

formulation NE3 and NE4, a low PI (0.107 and 0.239, respectively) were obtained. In 

fact, for the formulation NE2 and NE5, the distribution of the droplets remained higher 

(0.973 and 0.538, respectively).  The ZP of the NEs was always negative, but it 

decrease at increasing surfactant concentrations. In particular, for the formulations from 

NE1 to NE5, a ZP of -34.906, -25.11, -18.59, -17.984, and -15.082 mV were observed, 
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respectively. From the obtained results, the formulation NE3 was the NE with a good 

compromise between a small mean diameter and a narrow size distribution of the 

droplets; for this reason, NE3 was selected for the next steps of the study. Due to its 

lipophilicity, VK1 was added in the oil phase of the NE. In particular, in order to 

maintain the total oil phase at 10 % w/w, the amount of α-TOC was reduced and 

replaced with an equal amount of VK1.  

 In the second part of the study, different NEs with increasing concentration of 

the active compound were developed. The different VK1-containing nanoemulsions 

(NEs-VK1) developed are shown in table 2. All the NEs developed had a mean 

diameter, after preparation, ranging from about 200 to 250 nm; in particular, in the case 

of NEs prepared without the inclusion of the active compound, the diameter of the 

droplets was lower (about 201.2 nm) compared with NEs-VK1. It is worthy of note that, 

although the presence of VK1 in the formulations led to an increase of the droplets size, 

a direct correlation between the amount of VK1 used and the effect on the droplet mean 

diameter was not found (see table 2). The addition of VK1 in the formulations also 

affected the PI, with an increase from 0.14 to 0.23-0.25, which was independent on the 

amount of VK1 used. Finally, the ZP was negative and very similar for all the 

formulations (-14.6, -15.6, -13.7, and -13.4 for NEs, NEs-VK1 5%, NEs-VK1 3%, and 

NEs-VK1 1%, respectively). After 30 days of storage at 4 ºC, all the VK1-containing 

formulations did not show any significant differences in terms of mean diameter of the 

droplets, PI and ZP; these characteristics of the nanoemulsions did not significantly 

changed also after 3 months of storage at 4°C.  

 

 

 

 

 

 



99 
 

A
fte

r 
3 

m
on

th
s 

Z
P 

± 
SD

 
(m

V
) 

-1
1.

0 
± 

3.
57

 

-1
5.

36
 ±

 1
.9

5 

-1
4.

4 
± 

2.
08

 

-1
4.

0 
± 

1.
79

 

 

T
ab

le
 2

. C
ha

ra
ct

er
is

tic
s o

f t
he

 V
K

1-
co

nt
ai

ni
ng

 n
an

oe
m

ul
si

on
s. 

 

PI
 ±

 S
D

 

0.
17

 ±
 0

.2
1 

0.
32

 ±
 0

.0
1 

0.
25

 ±
 0

.0
2 

0.
25

 ±
 0

.0
5 

M
ea

n 
di

am
et

er
 

(n
m

± 
SD

) 

21
1 

± 
3.

35
 

21
9.

5 
± 

4.
8 

26
0.

2 
± 

4.
52

 

25
8.

0 
± 

9.
5 

A
fte

r 
30

 d
ay

s 

Z
P 

± 
SD

 
(m

V
) 

-1
1.

9 
± 

2.
26

 

-1
4.

8 
± 

3.
84

 

-1
5.

2 
± 

0.
01

 

-1
4.

6 
± 

0.
83

 

PI
 ±

 S
D

 

0.
22

 ±
 0

.1
3 

0.
30

 ±
 0

.0
2 

0.
25

 ±
 0

.0
1 

0.
25

 ±
 0

.0
1 

M
ea

n 
di

am
et

er
 

(n
m

± 
SD

) 

20
0 

± 
 8

.9
 

21
7.

3 
± 

8.
2 

26
0.

3 
± 

3.
0 

25
8.

9 
± 

6.
3 

A
fte

r 
pr

ep
ar

at
io

n 

Z
P 

± 
SD

 
(m

V
) 

-1
4.

6 
± 

2.
4 

-1
5.

6 
± 

1.
4 

-1
3.

7 
± 

2.
7 

-1
3.

4 
± 

0.
2 

PI
 ±

 S
D

 

0.
14

 ±
 0

.0
3 

0.
24

 ±
 0

.1
6 

0.
23

 ±
 0

.0
1 

0.
25

 ±
 0

.0
4 

M
ea

n 
di

am
et

er
 

(n
m

± 
SD

) 

20
1.

2 
± 

5.
5 

22
2 

± 
13

.5
 

26
5.

4 
± 

4.
2 

24
6.

9 
± 

1.
9 

 

V
K

1 
%

 - 5 3 1 

 

Fo
rm

ul
at

io
n 

N
Es

 

N
Es

-V
K

1 
5%

 

N
Es

-V
K

1 
3%

 

N
Es

 -V
K

1 
1%

 

 



100 
 

Taking into account that the NEs-VK1 was designed to be administrated as 

aerosol, using a portable device, the possibility to nebulize these nanoemulsions were 

checked. In particular, the diameter of the droplets before and after the passage through  

the device was studied. The results evidenced that all the formulations could be 

administrated in the nebulized form since the technological characteristics of all NEs 

did not significantly change following aerosolization (Table 3).   

 

 
BN: before nebulization; AN: after nebulization. 

Table 3. Mean diameter and polidispersity index before and after nebulization of the NEs. 

 

 

Stability studies  

 

 In our previous formulative studies, the stability of the developed formulations 

following storage of the samples in different conditions in the absence of light was 

evaluated (see Chapter 1 and 2).  In this part of the study, the stability of the NEs-VK1 

was evaluated in the same conditions previously used, namely at the temperatures of 4 

°C, 25°C and 40°C in absence of light. Visual inspections, organoleptic evaluation and 

characterization in terms of mean diameter, PI and ZP during storage of the samples 

were carried out at different time frames. The results of the organoleptic analyses are 

reported in Table 4. 

 

 

 

Formulation 

Mean diameter 

(nm ± SD) 

BN 

PI ± SD 

BN 

ZP ± SD 
(mV) 

BN 

Mean diameter 

(nm ± SD) 

AN 

PI ± SD 

AN 

ZP ± SD 
(mV) 

BN 

NEsVK1 5% 226.0 ± 5.4 0.23 ± 0.02 -13.9 ± 0.07 233.2 ± 0.2 0.26 ± 0.02 -15.4 ± 0.1 

NEs-VK1 3% 257.5 ± 0.3 0.22 ± 0.05 -13.1 ±0.10 259.4 ± 4.1 0.19 ± 0.14 -16.6 ± 1.7 

NEs -VK1 1% 239.0 ±6.5 0.25 ±0.00 -12.8 ± 0.4 241.0 ± 9.4 0.22 ± 0.03 -18.6 ± 1.7 
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Table 4. Organoleptic analyses of NEs-VK1. 

 

 

The results carried out from the visual inspection and the organoleptic 

evaluations demonstrated that all the nanoemulsions containing VK1 were stable at all 

the storage conditions (Table 4). In particular, any alteration in terms of colour, odor 

and presence of aggregates were found after 3 months of storage of the samples at the 

temperature of 4 °C but also at higher temperatures (storage at 25 and 40 °C). 

Furthermore, in Table 5, the characterizations of these NEs-VK1 are reported.  

In the case of storage of NEs-VK1 5% at the temperature of 4 °C, the size of 

the droplets and the values of PI and ZP did not shown any variation; in addition, after 3 

months of storage of the samples at 25 °C the mean diameter and the PI increased of 

about 10% and 30%, respectively. On the contrary, after 3 months of storage of NEs-

VK1 5% at 40 °C, only an increase of about 26% of the mean diameter of the droplets 

after 30 days of storage was observed; this value of mean diameter remained stable after 

3 months of storage. The PI and ZP remained unchanged during storage.  Concerning 

NEs-VK1 3%, the storage of 4 and 25°C did not lead any significant change of the 

formulation characteristics. On the contrary, after 3 months of storage of NEs-VK1 3% 

at 40 °C, an increase of about 20% of the diameter of the droplets was observed but not 

Formul

ation 

Storage 

condition 
After preparation After 30 days After 3 months 

  Aspect Odor Colour Aspect Odor Colour Aspect Odor Colour 

NEs-
VK1 5% 

4 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

 25 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

 40 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

NEs -
VK1 3% 

4 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

 25 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

 40 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

NEs -
VK1 1% 

4 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

 25 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 

 40 °C Uniform Absent Yellowish Uniform Absent Yellowish Uniform Absent Yellowish 
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correlated with an enhancement of the PI. Finally, in the case of NEs-VK1 1%  after 30 

days of storage of the formulation at 4°C a slight increased of the mean diameter, from 

232.2 to 253.9 nm, was observed; after that any further increase was found in the 

formulation until 3 months of storage. Instead, after storage of the formulation at higher 

temperature, the increase of the mean diameter of NEs was of about 11% and 24% 

respectively in samples stored at 25 and 40 °C, which remained then stable for further 2 

months of storage. Moreover, any variation in PI and ZP was not observed.  

 

 
Table 5. Stability studies of NEs-VK1. 

 

 

 

Ex vivo experiments 

The VK1 accumulation/permeation into/through the skin treated with the NEs-

VK1 was investigated in ex-vivo experiments using Franz cells. These experiments 

demonstrated that the use of NEs can be successfully used as alternative to the vesicle-

based systems described in the previous chapters. Further information on this part of the 

Formulation Storage After preparation After 30 days After 3 months 

  
Mean 

diameter 
(nm±SD) 

 
PI ± SD 

 
PZ± SD 

Mean 
diameter 
(nm±SD) 

 
PI ± SD 

 
PZ ±  SD 

Mean 
diameter 
(nm±SD) 

 
PI ± SD 

 
 

PZ ± SD 
 

NEs-VK1 
5% 

4 C° 

215.7±2.33 0.23±0.02 -14.14±0.29 

214.9 ± 7.63 0.26 ± 0.04 -17.44±0.12 219± 4.80 0.32 ± 0.0 -14.8 ± 2.6 

25 C° 227.3 ± 3.74 0.31 ± 0.03 -16.87±0.15 238.3±4.10 0.32 ± 0.01 -14.8± 2.91 

40 C° 288 ± 8.48 0.20 ± 0.11 -13.79±0.11 283± 21.2 0.39 ± 0.05 -14.44±0.60 

NEs -VK1 
3% 

4 C° 

254.8±10.74 0.28±0.09 -14.89±2.68 

255 ± 3.46 0.302 ± 0.07 -14.73±0.68 260.3±4.69 0.30 ± 0.10 -14.79±0.75 

25 C° 260.35±5.72 0.255 ± 0.09 -14.43±0.176 262.15±5.72 0.25 ± 0.1 -14.43±0.17 

40 C° 318.2 ± 2.47 0.296±0.097 -13.43±0.25 358± 14.1 0.29 ± 0.00 -11.5±1.42 

NEs- VK1 
1% 

4 C° 

232.2±18.7 0.254±0.07 -14.00±1.01 

253.9±6.15 0.241±0.05 -14.37±0.44 254.1 ± 3.95 0.24±0.00 -13.9±1.51 

25 C° 260.6±6.15 0.23±0.165 -14.74±0.20 260.6 ± 6.15 0.23±0.16 -14.7±0.20 

40 C° 304.2±9.04 0.238±0.166 -13.65±0.84 342.3 ± 11.8 0.25±0.14 -12.77±1.11 
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experimental work have been omitted. Confidential treatment has been requested with 

respect to the omitted portions.  

 

CLSM experiments 

Representative CLSM images of pig stratum corneum and dermis are shown in 

Figure. 1.  

 

 

 

 

Figure 1: CLMS image of skin treated with nanoemulsions. 

 

 

Fluorescence acquisitions show that the fluorescence is prevalently localized in 

the external stratum corneum region, while the signal rapidly decreases when going 

across stratum corneum sections. However, to underline the fluorescence distribution 

into the skin section treated with NEs, the analysis of fluorescence distribution profile 

was carried out. In figure 2, the fluorescence intensity versus the skin depth is reported. 
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In the figure, we observed a  fluorescence profile that decrease very rapidly for skin 

treated with  NE formulation.  

 

 

Figure 2: Concentration  profile at 24 h of NE. 
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Discussion  

 

Nanoemulsions have been successfully proposed to deliver active compounds 

on/into the skin. Among the different production techniques, the low-energy methods 

offer different advantages such as an easy production, as well as low equipment and 

operation costs (Anton N. et al., 2008). In this study, an isothermal low-energy method 

was used to spontaneously produce oil-in-water nanoemulsions for the topical 

administration of VK1. In particular, the formulative study was focused on the 

development of spontaneous nanoemulsions composed by α-TOC and K1 as oil phase, 

tween 80 as surfactant and water. In the first phase of the work, we carried out a 

formulative study to produce nanemulsions by spontaneous emulsification, in which we 

examined the influence of the ratio between the different component, mainly of the 

surfactant concentration, on the size of the NE droplets. The 10% w/w of tween 80 was 

found be the concentration suitable to give a good compromise between a stable 

emulsion with low size of the droples as well as with a narrow size distribution. More in 

detail, the increase of the surfactant-to-emulsion ratios (SER) from 1 to 20% led to a 

strong decrease of the droplet size, namely from large aggregates >1mm (undetectable 

in our experimental setting) to 100.5 nm. This phenomena could be attributed to an 

increased adsorption of surfactant molecules to the oil–water interface leading to a 

decrease in the interfacial tension, which facilitates the formation of smaller droplets as 

previously reported by other authors (Lamaallam et al.,  2005). The polydispersity index 

did not follow the same trend of the mean diameter; in fact, value of PI decreased with 

increasing tween 80 concentration from 1 to 10%, while this value increased for further 

increase of the surfactant concentration. These results demonstrate the possibility to 

obtain NEs using the spontaneous emulsification method even at relatively low 

surfactant concentrations and at room temperature without the use of any high-energy 

equipment, which may be important for commercial development of these systems 

(Anton N. et al., 2008). Moreover, starting from the selected formulation, VK1-enriched 

NEs were developed; due to the high lipophilicity of VK1, the latter was added into the 

oil phase, replacing an equal amount of α-TOC, thus without changes in the total 

percentage of the oil phase. Thus, in the following step, VK1 was added in the NE at 
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different concentrations and its effects of the NE characteristics were investigated. 

Although the addition of VK1 led to an increase of the mean diameter of NEs, it was 

possible to obtain different NEs containing different amount of VK1 with a diameter of 

the droplets lower than 250 nm, a low PI and a negative ZP; moreover, all these NEs-

VK1 were very stable during the storage at 4 ºC at different time frame (until 6 months).  

Starting from the assumption that this work was focus on the development of a 

formulation to propose for commercial development, special attention was paid to the 

physical stability of the system to guarantee a long shelf-life. So the influence of storage 

time and the temperature on the stability of NEs-VK1 was examined. From the stability 

studies emerged that, although all NEs-VK1 were stable at the temperature of 4º C, little 

changes occurred in NEs-VK1 5% and NEs-VK1 1 % after storage at 25 and 40 º C. 

Only in the case of NEs-VK1 3%, the formulation showed a good stability also at room 

temperature with an increase of the droplets size of only 4% after 3 months and values 

of ZP and PI comparable during the time. From data obtained in this study, it is possible 

to conclude that VK1 concentration has only a weak effect of the NE stability. 

Moreover, the NEs were stable during the storage at 25 and 40°C, with only negligible 

changes of the NE technological characteristics. If we compare the stability of NEs at 

25 and 40°C, with that obtained with liposomes, ethosomes and transfersomes (see 

previous chapters), it is possible to conclude that the phospholipids, used to prepared the 

vesicles, are reasonably responsible of the weak vesicle stability when increasing the 

storage temperature. Indeed, the use of phospholipid-free systems, e.g. NE, can allow to 

overcome the storage stability issues, thus providing formulation with a potential longer 

shelf-life.  Ex vivo experiments also demonstrated the possibility to promote the VK1 

accumulation into the skin by using NEs. Further details of these experiments have been 

omitted in the respect of a confidentiality agreement on this work.  
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Conclusions  

 

In this chapter, VK1-containing NEs were designed and developed. The 

preparation protocol was designed to easily and economically prepare nanoemulsions 

avoiding the use of high-energy methods. The developed NEs had good proprieties in 

term of size of the droplets, stability over the time at different storage temperatures. The 

NEs investigated in this work could be proposed as the best option for the commercial 

development of a liquid and aqueous formulation for topical delivery of VK1. This is 

mainly due to the highest stability of the system. The further strength of this formulation 

is the absence of high energy agitation or extrusion step associated to the absence of 

expensive excipients (i.e. phospholipids), that make it certainly more suitable for a large 

scale cost-effective production.  
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