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Preface

My research activity has been focused on two topics very different from each other. For

this reason, the present PhD thesis consists of two volumes:

• The volume A deals with the modeling and the experimental validation of the

frequency response and the energy conversion efficiency of a synthetic jet actuator

driven by a thin piezoelectric disk.

• The volume B deals with the global dynamics of gravitational liquid sheet flows

subjected to surface tension.

Results showed in this volume have been published in the following journal/conference

papers:
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the Frequency Response of Synthetic Jets Actuators”, AIAA Journal, vol. 52, pp.

1733-1748, 2014. ISSN: 0001-1452, doi: 10.2514/1.J052674

3. M. Girfoglio, M. Chiatto, L. de Luca, “Fluid-structure coupling effects in synthetic

jet devices”, Aerotecnica Missili e Spazio, vol. 92; pp. 110-122, 2013, ISSN: 0365-

7442

4. L. de Luca, M. Girfoglio, M. Chiatto, G. Coppola, “Characterization of synthetic

jet resonant cavities”, FLINOVIA – Flow induced noise and vibration issues and

aspects, pp. 101-118, Springer International Publishing, Berlin, 2014. ISBN:

9783319097121, doi: 10.1007/978-3-319-09713-8 6

5. M. Girfoglio, M. Chiatto, L. de Luca, “Fluid-structure coupling effects in synthetic

jet devices”, In: AIDAA Napoli XXII, pp. 1-10. Napoli, 9-12 september 2013.

Italian Association of Aeronautics and Astronautics. ISBN: 9788890648427
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6. M. Girfoglio, L. de Luca, “Acoustic-structural coupling in the frequency response

of synthetic jet devices”, In: Atti del XXI Congresso Associazione Italiana di

Meccanica Teorica e Applicata, pp. 1-10. Torino, 17-20 september 2013. ISBN:

9788882391836



Abstract

The literature about synthetic jet actuators includes a very wide field of technological

applications. They can be basically used to control surface flows due to their capability of

delaying laminar and/or turbulent separation. Synthetic jet devices can be also employed

in heat transfer problems as well as to enhance mixing between fluid currents.

The overall design of the actuators needs practical modeling tools. The present work

is aimed at characterizing the frequency response of a synthetic jet actuator driven by

a thin piezoelectric disk. Previous contributions of literature are due to Gallas et al.

[1], Sharma [2], Persoons [3]. The present one is particularly inspired by the Sharma’s

model [2], directly based on fluid dynamics equations.

A lumped element mathematical model ([4],[5], [6], [7]) of the operation of a synthetic jet

actuator is both analytically and numerically investigated in order to obtain information

about the frequency response of the device. The model considers the three basic ele-

ments of the actuator: the oscillating membrane, the cavity, the orifice. The dynamics

of the diaphragm is described through the motion equation of a one-degree of freedom

forced-damped spring-mass system, while the resonant cavity and orifice components

are described by means of proper forms of the continuity and Bernoulli’s unsteady equa-

tions. Direct numerical simulation of the non-linear governing equations system has

been carried out by a home-made code written in MATLAB environment.

From the analytical viewpoint, it is found that the device behaves as a two-coupled

oscillators system; by neglecting the non-linear damping term of the acoustic oscillator

and by solving numerically the relevant eigenvalues problem, it is possible to obtain an

accurate estimate of the two resonant modes of the system; moreover, by making the

further assumption of complete absence of damping effects, simple closed-form analytical

formulas are given in order to predict the two modified peak frequencies, as functions

of the uncoupled first-mode structural and Helmholtz resonance frequencies. These

predictions are well confirmed by numerical simulations of the fully non-linear equations.
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Furthermore, a dimensionless form of the governing equations system, based on a par-

ticular choice of the reference variables, is obtained in order to achieve further insights

on the coupling degree of the two oscillators for the different flow regimes characterized

by the operating Strouhal number [8].

The model is also validated through systematic experimental tests carried out on three

devices, one with the membrane in brass and two in aluminum, having different me-

chanical and geometrical characteristics leading to an increasing coupling factor; it is

found a very strict agreement between exit flow velocity measurements and analogous

numerical data for any tested device, for different supply voltages.

Finally, a comprehensive and detailed modelling to evaluate the efficiency of energy con-

version of the device is developed. The contribution is original because the analysis is

based on the energy equations of the two coupled oscillators, the membrane and the

acoustic one, which are directly derived from the corresponding motion equations. The

modelling is validated against numerical as well as experimental investigations carried

out on the device exhibiting the strongest coupling effect. A major result is that for the

actuator under investigation the global efficiency (representing the conversion of input

Joule power to kinetic power) decreases with increasing the applied voltage. Considera-

tions are reported to relate the theoretical orifice efficiency to the practical jet efficiency

issuing in the external field.
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Chapter 1

Introduction

1.1 Synthetic jets overview

Thanks to advances in smart materials such as piezoceramics it is now possible to develop

a much more efficient method of adding energy to a flow. Synthetic jet actuators are

compact fluidic devices consisting of an oscillating surface embedded in a cavity which

can transfer linear momentum to the flow system without net mass injection. They

provide a system of periodic addition of energy to the flow. It has been demonstrated

that periodic addition of energy allows to obtain the same control efficiency as is achieved

by steady energy input, with an important improvement: the cost of unsteady methods

is less than that of steady methods. In some instances this difference reaches an order

of magnitude, as showed by Wygnaski et al. [10].

The concept of synthetic jet dates back to as early as 1950. At that time, however,

this idea was exclusively used to provide insights on the circulation effects and the

impedance of orifices (Ingrad and Labate [11]). Later on, Lebedeva et al. [12] created

a round synthetic jet with velocities of up to 10 m/s, by transmitting high amplitude

sound waves through an orifice placed at the end of a tube. In a related investigation,

Mednikov and Novitskii [13] reported the formation of a zero net mass flux jet and

average streaming velocities of up to 17 m/s by inducing a low frequency oscillatory

velocity field with a mechanical piston. Early relevant investigations on synthetic jets

as flow manipulation devices have been carried out by Smith and Glezer [14] and Smith

and Glezer [15] that investigated the interaction of synthetic jets with an external flow

near the flow boundary. They concluded that this interaction can lead to the formation

of closed recirculation flow regions and consequently to an apparent modification of

the flow boundary. On the other hand, Ziada [16] used synthetic jets to suppress the

oscillations of jet-edge and jet-slot oscillators. Over the years, synthetic jets have gained

1



Chapter 1. Introduction 2

Figure 1.1: Schematic of a synthetic jet actuator (Smith and Glezer [9])

an increased amount of attention by researchers and, recently, they have emerged as

a versatile actuation technology tool for a broad range of applications such as flow

control, heat transfer from small-size surfaces, overall enhancement of mixing between

fluid currents, generation of microthrust for propulsion or attitude control of a micro

aerial vehicle (MAV).

1.2 Formation of a synthetic jet

A synthetic jet is generated by a membrane oscillation in a relatively small cavity (Fig.

1.1), which produces a periodic cavity volume change and thus pressure variation. As

the membrane oscillates, fluid is periodically entrained into and expelled out from an

orifice connecting the cavity with the external ambient (to be controlled). During the

expulsion phase of the cycle, due to the flow separation, a vortex ring forms near the

orifice exit section which, under favorable operating conditions (Holman et al. [17]), con-

vects away towards the far field and breaks up due to the viscous dissipation eventually

”synthesizing” a turbulent jet always directed downstream (Smith and Glezer [9]).

Since the jet formation depends on the ability of the vortex ring to escape to the subse-

quent ingestion phase, following Smith and Glezer [9], a basic parameter characterizing

the jet strength is the so called stroke length L, namely the integral of the (spatially

averaged) velocity at the orifice exit over the ejection phase only of the cycle:

L =

∫ τ/2
0

U(t)dt (1.1)
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where τ is the actuation period and U(t) is the fluid velocity at the exit section. The

stroke length can also be expressed conveniently as the product L = Uτ , where U is a

proper reference velocity defined as:

U =
1

τ

∫ τ/2
0

U(t)dt (1.2)

Therefore, it is natural to expect that the jet is formed or not according to whether the

parameter L/do is greater or less than 0.16π, with do being the orifice diameter. In the

literature the parameter L/do is generally referred to as the reciprocal of the Strouhal

number (Cater and Soria [18]).

The importance of the stroke length, or of the average velocity U , lies in the fact that

to compare the performance of a synthetic jet with that of a continuous jet, it is usual

to refer to a Reynolds number based on the velocity U , i.e.:

Re =
ρUdo
µ

(1.3)

where ρ and µ are respectively the air density and the air dynamic viscosity.

The formation and evolution of synthetic jets have been the subject of a number of

experimental and numerical investigations of plane and round jets with emphasis on near

field formation, evolution and advection of the jet vortices and on scaling of the time-

averaged flow (examples of experimental investigations: plane jets (Smith and Glezer

[9], Yao et al. [19]), round jets (Cater and Soria [18], Shuster and Smith [20]); and

of numerical investigations: plane jets (Rizzetta et al. [21], Lee and Goldstein [22],

Kotapati et al. [23]).

1.3 Motivation and objectives

Although understanding of the evolution and characteristics of synthetic jets is impor-

tant in the development of its applications, the design and optimization of actuators

are equally as important. Many authors focused their attention on the development

of practical modeling tools in order to design devices able to yield suitable operating

characteristics (see Section 2.2)

It is worth noting that, although synthetic jets have been widely explored, only few

studies on the efficiency of energy conversion of synthetic jet actuators have been carried

out (see Chapter 4).
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By considering the observations above, the main objective of this thesis is to develop a

lumped-element mathematical model in order to characterize the operation of a synthetic

jet actuator driven by a thin piezoelectric disk. Furthermore, an energy balance equation

derived directly from the equations governing the dynamics of the actuator is used to

give some insights on the efficiency of energy conversion of the device so to fill this lack

of information. The analytical and numerical investigation is corroborated by a parallel

campaign of experimental tests.

1.4 Thesis layout

This thesis is presented in four chapters followed by a conclusion and an appendix. In

Chapter 1 a synthetic jets overview is given, together with the motivation and the objec-

tives of the research. Chapter 2 provides a survey of the most representative literature

related to the synthetic jets by differentiating the articles between applicative papers

and design papers. Chapter 3 describes the lumped-element modeling, together with the

comparisons of experimental, numerical, and analytical findings. In Chapter 4 the anal-

ysis of the efficiency of energy conversion of the device is reported. The appendix collects

the most relevant conference/journal papers published during the research activity.



Chapter 2

Literature review

The scientific and technical literature quotes documents dealing with synthetic jets since

no more than two decades. Nevertheless, the bulk of such a literature is remarkably thick

and includes a very wide field of applications such as flow control, heat transfer from

small-size surfaces, overall enhancement of mixing between fluid currents, generation of

microthrust for propulsion or attitude control of a micro aerial vehicle (MAV).

This chapter provides a survey of the most representative literature related to the syn-

thetic jets by differentiating the articles between applicative papers (i.e., papers devoted

to the development and description of a particular application) and design papers (i.e.,

papers oriented toward the description of the device design able to yield suitable oper-

ating characteristics).

Further details on the works published until 2011 can be found in Glezer and Amitay

[24], Zhang et al. [25], Cattafesta and Sheplak [26] and Glezer [27].

2.1 Synthetic jets: applicative papers

2.1.1 Flow control

Modern synthetic jet actuators are compact devices (Bottomley and Packwood [28];

Bhatt et al. [29]; Jabbal et al. [30]) that weigh less than more complex steady flow

control systems having similar performance characteristics. This is mainly due to the

fact that they do not require plumbing and a separate source to create the flow. This

major advantage makes synthetic jet actuators attractive fluidic devices for a broad

range of flow control applications.

5
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Synthetic jets were widely used in control of flow around a circular cylinder for the

separation delay or drag reduction. Early investigations belonging to this application

field have been published by Amitay et al. [31] and Amitay et al. [32]. Synthetic

jets were issuing from two parallel slots with the jet exit angle varied from 0◦ to 180◦.

By using the smoke visualization and surface pressure measurement in a wind tunnel,

they found that when the synthetic jets were positioned at the front stagnation point,

the interaction between the synthetic jets and the on-coming flow led to the formation

of a closed recirculation region, resulting in a further upstream motion of the front

stagnation point and in an apparent modification of the flow boundary layer on scales

that are one to two orders of magnitude larger than the characteristic length scale of the

jets themselves (the so called virtual aeroshaping effect), so the pressure distributions

around the circular cylinder has been dramatically changed. On the other hand, when

the synthetic jets were placed at the rear stagnation point with a sufficiently high exit

velocity, the recirculation region behind the circular cylinder became smaller significantly

and the separation point was delayed to near the rear stagnation point, meaning that the

flow was almost reattached. Crook et al. [33] placed the synthetic jet just upstream of the

separation point with two trip wires attached at ±40◦ from the front stagnation point

to force boundary layer transition. Surface flow visualization demonstrated that the

synthetic jet created strong entrainment surrounding the cylinder flow boundary layer,

which offered an explanation for the large vortical structures downstream of the orifice.

Bera et al. [34] and Tensi et al. [35] investigated the action of synthetic jets implemented

on a circular cylinder by using wall pressure and velocity field measurements. They

found that the synthetic jets could efficaciously delay flow separation and enable the

separation region to become much smaller and even completely disappearing, which led

to a reduction in drag. Fujisawa et al. [36] analyzed the phase-averaged characteristics

of the flow around a circular cylinder under acoustic excitation control by carrying out

particle image velocimetry (PIV) measurements. Their results indicated that a series of

discrete vortices were generated over the circular cylinder surface interacting with the

wall boundary layers, which led to the modification of the surface pressure distribution

and the delay of the separation point. More recently, Feng and Wang [37] used a synthetic

jet generated by a non-sinusoidal waveform positioned at the rear stagnation point.

The flow around the circular cylinder was measured by PIV technique and the authors

showed that increasing the ratio of the time duration of the suction cycle to the blowing

cycle, the exit velocity and entrainment effect of the synthetic jet were enhanced, flow

separation was delayed and drag reduction by up to 29% was achieved. Feng and Wang

[38], Feng et al. [39] and Feng et al. [40] indicated that the control of a synthetic jet

positioned at the rear stagnation point could also change the wake vortex shedding mode

and demonstrated that such control strategy could lead to a drag reduction. On the

other hand, when the synthetic jet ejected toward upstream from the front stagnation
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point of the cylinder, by using hydrogen bubble flow visualization technique, Wang et

al. [41] found that the flow separation could also be efficiently delayed, whilst the vortex

shedding pattern changed as well. Ma and Feng [42] positioned synthetic jets at both

the front and rear stagnation points and carried out experimental tests in order to study

and to control the vortical structures around the circular cylinder. The flow field was

measured by using PIV technique and the proper othogonal decomposition (POD) was

used to analyze the vortex dynamics. The synthetic jet was positioned at the front

stagnation point of the circular cylinder in the study of Feng and Wang [43]. On the

base of the qualitative results provided by Wang et al. [41], by using PIV and POD

techniques, they carried out quantitative measurement of the vortex dynamics to further

reveal the modification of the near wake and the mechanism underlying with synthetic

jet control.

The investigation of the interaction between a synthetic jet (or jet arrays) with a cross-

flowing boundary layer (both laminar and turbulent) has been of significant interest in

light of the applications to flow control. Mittal and Rampunggoon [44] used an incom-

pressible Navier-Stokes solver to carry out a systematic parametric study of the interac-

tion of a synthetic jet with a flat plate boundary layer for various diaphragm amplitude,

Reynolds numbers and orifice dimensions. They found that large mean recirculation

bubbles were formed in the external boundary layer only if the jet velocity was signif-

icantly higher than the cross flow velocity. Zhong et al. [45] used flow visualization to

investigate the interaction of a round synthetic jet with a flat plate laminar boundary

layer, and the evolution of the jet vortices for various Reynolds numbers, velocity ratios

and actuation frequencies. They concluded that the highly stretched hairpin vortices at-

tached to the wall produced at low Reynolds numbers and velocity ratios are likely to be

the desirable structures for effective flow separation control. In a related investigation,

by using oil flow visualization and hot wire anemometry techniques, Liddle and Wood

[46] considered streamwise symmetric and asymmetric interactions of clusters of round

synthetic jets with the boundary layer. Jabbal and Zhong [47] carried out PIV mea-

surements and concluded that trains of stretched vortex rings would be most effective

for separation control based on changes in wall shear stress within a laminar boundary

layer. Zhou and Zhong [48] carried out numerical simulation in FLUENT of circular

synthetic jets issued into a laminar boundary layer developing over a flat plane and ob-

served two types of vortical structures, depending on the injection conditions: hairpin

structures, at relatively low frequency, and tilted vortex rings at higher frequency. A

variety of induced vortices were identified and these were shown to depend on the injec-

tion frequency. Smith [49] carried out an experimental investigation of the interaction

between an array of rectangular synthetic jets and a turbulent boundary layer by using

hot wire anemometry. They concluded that when the orifice was normal to the mean
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flow direction, the boundary layer was characterized by a wake-like region, while when

the orifice was aligned with the mean flow direction, the flow structure was consistent

with the longitudinal, counter-rotating vortex pairs. Rathnasingham and Breuer [50]

used a spanwise array of synthetic jet actuators for active control of the near wall region

of a turbulent boundary layer and developed transfer functions to predict downstream

characteristics of the streamwise velocity fluctuations. Dandois and Garnier [51] used

large eddy simulation (LES) and unsteady Reynolds-averaged Navier Stokes equations

(URANS) for studying the interaction of a synthetic jet with a turbulent boundary layer

using the geometry adopted by Rumsey et al. [52]. Even though the primary objective

was to compare numerical simulations with experimental data, the authors provided de-

tailed informations about the alteration of the velocity field within the boundary layer

and the structure of the jet in the vicinity of the orifice. Lardeau and Leschziner [53]

carried out LES of the interaction between a turbulent boundary layer separating from

a rounded ramp in a duct and a pair of round synthetic jets, actuated upstream of the

nominal separation line. The global effect of the actuation is a reduction of 10–20% in

the length of the separated region and 20–40% in the thickness of the reverse-flow layer.

This reduction is mainly associated with a delay in separation.

The separation delay is vital near stall conditions where aerodynamic performance dete-

riorate rapidly. Higher lift and increased stall incidence, possibly associated to low drag,

are required to have an efficient flow control technique. Seifert et al. [54] demonstrated

that much less power is required to produce equivalent increases in the lift coefficient

for oscillatory control rather than for steady blowing techniques. Early relevant studies

related to such a topic have been proposed by Smith, [55], Amitay et al. [56] and Amitay

and Glezer [57] which used synthetic jet actuators for the control of separation over an

unconventional airfoil based on an uniformly stretched NACA 0015 airfoil. They showed

that when the actuators were typically operated at dimensionless frequencies f∗ of one

order of magnitude higher than the shedding frequency of the airfoil (f∗ = O(10), based

on the airfoil chord length and the incoming flow velocity), the boundary layer separa-

tion point on the suction side of the airfoil can be delayed by obtaining an improvement

of the airfoil aerodynamic characteristics. Smith [55] found that the stall attack angle

of the airfoil could be delayed from 5◦ to 18◦, and the lift to drag ratio also could be

increased. Amitay et al. [56] and Amitay and Glezer [57] studied the effect of f∗ on

the flow separation control around the airfoil. They showed that for f∗ < 4, the lift

to pressure drag ratio decreases with the increase of the exciting frequency while for

f∗ > 10, the lift to pressure drag ratio increases by 27% compared with that of the

unforced case and has little difference with the exciting frequency variation. When the

attack angle of the airfoil is 20◦, the angle between the centerline of the jet and the free

stream is 45◦, the momentum coefficient is 4.5 × 10−3 and f∗ = O(1), a series of small
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vortices are produced and the large separation region diminishes. With the increase of

the actuator frequency, the scale of the vortices decreases. When f∗ = O(10) , the small

scale vortices around the actuator orifice disappears and the separated shear layer fully

attaches to the airfoil. Donovan et al. [58] used the Reynolds-averaged Navier-Stokes

equations (RANS) for studying the effect of actuation on a NACA0012 airfoil at a chord

Reynolds number of 8.5×106. They obtained a significant increase in lift (29%) by using

the synthetic jet actuator in the post-stall regime. Duvigneau and Visonneau [59] solved

unsteady Reynolds-averaged Navier-Stokes (URANS) equations in order to characterize

the flow around the NACA 0015 airfoil, including a synthetic jet located at 12% of the

chord, for incidences between 12 to 24◦ and a Reynolds number of 8.95×105. An increase

of 52% of the maximum lift coefficient with respect to the baseline airfoil was achieved

in the attack angle range of 16◦ - 22◦. Therefore, the drag of the airfoil decreased a

lot after stall angle, so the lift to drag ratio could be greatly enhanced. Holman et al.

[60] experimentally studied the interaction of adjacent synthetic jets with the cross flow

developing on a NACA 0025 airfoil at an angle of attack of 12◦ and a Reynolds number

equal to 105. The authors used piezoelectric actuators varying the relative phasing and

the oscillation frequency and amplitude to control the flow separation. The authors

observed that the jet formation was not a necessary condition to achieve an effective

control. Moreover, also the relative phasing of the jets did not appear to play a sig-

nificant role in the separation delay. Wilson et al. [61] experimentally investigated the

effects of a 2D synthetic jet positioned at 30% and 65% of the chord on a NACA 0036

airfoil at a Reynolds number equal to 106. Forcing frequencies up to 120Hz were tested,

giving a maximum momentum coefficient equal to 0.0086. Hot wire measurements in

the wake of the airfoil showed a reduced portion of separated flow in the controlled con-

ditions and brought the high Reynolds shear stress layer closer the airfoil surface. Zhang

and Wang [62] studied the aerodynamic characteristics of a NACA 0015 airfoil forced

by an actuator located at 13% chord length of the airfoil, and indicated that the lift of

the airfoil increases monotonously with the momentum coefficient. Tuck and Soria [63]

controlled the flow around a NACA 0015 airfoil with the actuator located at the front

stagnation point of the airfoil, and the jet was opposite to the incoming flow. When f∗

was 1.3, the lift coefficient of the airfoil increased monotonously with the momentum

coefficient. The numerical simulations of Raju et al. [64] considered separation control

of a stalled NACA 4418 aerofoil. The simulations suggested that actuation at frequen-

cies that are close to the separation bubble frequency are most effective in diminishing

separation, while actuation at frequencies that are commensurate with the separating

shear layer tend to enhance separation. You et al. [65] used large-eddy simulation (LES)

to investigate turbulent separation over a NACA 0015 aerofoil at a Reynolds number

equal to 8.96 × 105 and showed that when the flow separates around a midchord, the

LES agrees well with the measurements of Gilarranz et al. [66], who obtained separation
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delay and a significant increase in the lift by synthetic jet actuation. High momentum

2D synthetic jet actuators have been tested experimentally focusing the investigation on

the separation delay over the airfoil NACA 0024 at high angles of attack by Lasagna et

al. [67]. At the maximum frequency (68.3 Hz) the maximum lift coefficient raised by

20% while the stall incidence increased from 16◦ to 22◦. When the attack angle of the

airfoil is 20◦ the amount of drag reduction at the maximum frequency was of the order

of 70%. However, when the flow separates near the leading edge, the same actuation is

only marginally effective. Bottomley and Packwood [28] used an array of circular syn-

thetic jets to control the flow around a NACA 0015 wing at a Reynolds number equal to

8.9 × 105 and an incidence of 14◦. The onset of flow separation was delayed, and both

the lift and drag characteristics of the wing were improved. Rathay et al. [68] used a

synthetic jets array operated at high frequency on a scaled model of a tail rudder. They

observed that by situating the array of actuators at a specific location they could im-

prove the side force on the model by up to 18%. They concluded that actuators located

at mid-span provide the greatest contribution at moderate rudder deflections, and ac-

tuators located at the root provide the greatest contribution at high rudder deflections.

Jabbal et al. [30] used an inclined configuration actuator array on an aircraft wing to

improve lift production. By experimentally studying the parameter space associated

with an array of 30 actuators they determined an optimum arrangement for installation

of the actuators to achieve a specified lift configuration.

2.1.2 Heat transfer applications

Gutmark et al. [69] published the first relevant literature work on synthetic jets used

as cooling devices. They employed synthetic jets to enhance both natural and forced

convection and concluded that the acoustically excited airflow allows to obtain an overall

heat transfer coefficient of four times larger. Mahalingam and Glezer [70] characterized

from the thermal and the design point of views a heat sink for high power dissipation

in electronics enhanced with synthetic jet impingement. The results revealed a case

temperature decrease from 71.5 to 36◦C with synthetic jets operation; furthermore, it

has been obtained a power dissipation of 20–40% higher with respect to the same heat

sink with a fan in the flow rate range of 3–5 cubic feet per minute. The experimental

investigation carried out by Chaudhari et al. [71] on the cooling of a flat plate by using

a synthetic jet generated through a circular orifice showed that the Nusselt number is

comparable with that of continuous axisymmetric jets at low Reynolds number (up to

4000), expecting it to be higher at greater values of Reynolds number. Valiorgue et al.

[72] identified two different flow regimes through defining a dimensionless critical stroke

length equal to 2.5. They found that the heat transfer rate is linearly proportional
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with the dimensionless critical stroke length up to 2.5; for higher values, it results to be

constant. Arik and Icoz [73] provided a closed form empirical correlation which allows to

predict the heat transfer coefficient as a function of Reynolds number (less than 2900),

dimensionless nozzle to plate distance (less than 20) and jet driving frequency (between

0.16 times the resonance frequency and the resonance frequency). They observed that

the heat transfer coefficient on a vertical surface increases with the driving voltage; it

has a peak at the resonance frequency and the effect of the axial distance on the heat

transfer becomes stronger as the jet driving frequency increases. Persoons et al. [74]

found, for an axisymmetric synthetic jet, a general correlation for the stagnation point

Nusselt number including the effect of all appropriate scaling parameters: Reynolds

number (ranging between 500 and 1500), jet to surface spacing (ranging between 2

and 16) and dimensionless stroke length (ranging between 2 and 40). Based on such

correlation, Persoons et al. [74] defined four heat transfer regimes, in function of the

values assumed by the stroke length to nozzle to plate ratio. The fourth regime, related to

a value greater than 2.5, shows an asymptotical behavior achieving the highest stagnation

Nusselt number values with respect to the other regimes. The flow field features of

such four heat transfer regimes were reported by McGuinn et al. [75] that carried

out high speed Particle Image Velocimetry (PIV) and single point hot wire anemometry

experiments in order to highlight the dependence of the impinging synthetic jet flow field

(and of the corresponding surface heat transfer distribution) on the dimensionless stroke

length for a wide range of nozzle-to-surface spacing (2-16) and a single Reynolds number

(1500). Some recent studies have been focused on the design of special configurations

in order to improve synthetic jet heat transfer performances in practical applications.

Rylatt and O’Donovan [76] showed that, by confining the impinging synthetic air jet, it

is possibile achieve a heat transfer enhancement of up to 36% in the stagnation region.

Chaudhari et al. [77] experimentally investigated, varying both the Reynolds number

(1000-2600) and the normalized axial distance (1-30), a particular synthetic jet device

by means of a center orifice encircled by multiple satellite orifices. Thanks to this

innovative configuration, authors obtained a maximum heat transfer coefficient which is

approximately 30% more than the one of the conventional single orifice jet. Luo et al.

[78] numerically investigated a new generation of synthetic jet actuators consisting in

two cavities sharing the same wall equipped with a single piezoelectric diaphragm and a

slide block separating the two exit slots at an appropriate distance. They demonstrated

that the device not only doubles the function of the existing synthetic jet with a single

diaphragm but also resolves the problems of pressure loading and energy inefficiency of

the existing synthetic jet. Luo et al. [79] carried out PIV measurements of such a dual

synthetic jets actuator, at Reynolds number and Strouhal number equal respectively to

2500 and 0.17, by showing that in the near field a more complex flow field characterized

by a “self-support” phenomenon between the two synthetic jets is present, while in the
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far field the two jets merge a single and more stable synthetic jet. Persoons et al. [80]

experimentally investigated a configuration constituted of two adjacent synthetic jets,

with slot orifice, which allows to direct the flow by changing the phase between the jets.

They carried out both PIV and IR thermography heat transfer measurements, at a fixed

Reynolds number (600), and dimensionless stroke length equal to 29, for different values

of phase and jet-to-surface spacing (6, 12 and 24), by obtaining a 90% enhancement of

the maximum and overall cooling rate, compared to a single jet, for a phase equal to

120◦ and a jet-to-surface spacing equal to 12. Lasance et al. [81] showed that a double

circular configuration allows to reduce the noise (Russell et al. [82]) and to improve

the heat transfer performances (Lasance et al. [83]). Greco et al. [84] experimentally

investigated the impingement heat transfer in single circular synthetic jets and twin

circular synthetic jets in phase opposition. All experiments have been performed at

Reynolds number equal to 5100 and Strouhal number equal to 0.024 varying the jet axes

distance and nozzle to plate distance. An IR camera is used as temperature transducer

for both time average and phase average heat transfer measurements. While obviously

the twin configurations produce an heat transfer enhancement due to the fact that two

jets instead of one are impinging, the interaction is found in general to have a beneficial

effect.

2.1.3 Other applications

Synthetic jets have been used for a variety of applications that ranges from mixing en-

hancement to acoustic noise reduction. Smith and Glezer [15] used synthetic jets to effect

thrust vectoring and manipulate small-scale motions in conventional air jets. Smith and

Glezer [85] and Luo et al. [86] investigated the interaction between a primary air jet and

a co-flowing synthetic jet (jet vectoring), the former experimentally, the latter numer-

ically. Thomas [87] demonstrated that synthetic jet thrusters are a viable propulsion

method for small underwater vehicles. More recently, Zelenyak et al. [88] suppressed

noise produced by turbulent steady jet by positioning 8 synthetic jet actuators in cor-

respondence of the periphery of the exit orifice and carrying out actuation at specific

frequencies. Xia and Zhong [89] showed that synthetic jets can be used to enhance

mixing of two laminar, parallel streams of water. Mahalingam et al. [90] demonstrated

that synthetic jets can be used to replace conventional cooling components with moving

parts such as fans. Montoya et al. [91] demonstrated the capability of synthetic jets to

control particle dispersion in a closed camber and to improve indoor air quality while

minimizing the energy burden on heating, ventilating, and air conditioning systems.

Bhatt et al. [29] used synthetic jets for MAV flight control.
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2.2 Synthetic jets: design papers

The overall design of synthetic jet actuators needs practical modeling tools. The first

significant lumped-element model of a piezoelectric-driven synthetic jet device is de-

scribed by Prasad [92] and Prasad et al. [93]. By resorting to the approach based on the

equivalent electric circuit, these authors developed a modeling of the electromechanical

behavior of the piezoceramic composite membrane and gave detailed relationships for

the transverse deflection of the inner and outer membrane regions in the simultaneous

presence of applied voltage and pressure load. They were able to evaluate both the

short-circuit compliance and the effective acoustic piezoelectric coefficient. Gallas et al.

[1] modeled the individual components of the actuator as elements of an equivalent elec-

tric circuit by using conjugate power variables. On the basis of practical considerations

made on the relationships found by Prasad [92], they noted that, in a lumped model,

one may use the acoustic compliance of the shim only reduced by a proper factor de-

pending on the ratio of the radius, thickness, and Young’s modulus of the piezoceramic

and shim materials. They showed a very good agreement between the predicted and

measured frequency response functions. Later on, Sharma [2] proposed a different model

directly based on the basic equations of fluid dynamics, where the oscillating membrane

is considered as a single degree- of-freedom mechanical system, while the cavity-orifice

component is described by means of proper forms of the continuity and Bernoulli’s un-

steady equations. Sharma [2] validated his model on the very same experimental data

of Gallas et al. [1]. One of the most significant experimental investigations on the fre-

quency response of a synthetic jet cavity is due to Chaudhari et al. [94], who carried out

systematic measurements about the effects of the excitation frequency on the ejection

and suction velocities, by varying the geometrical parameters of the cavity. The paper of

Krishnan and Mohseni [95] was oriented essentially to the study of the characteristics of

the flow field produced by a round synthetic jet by using detailed numerical simulations

of the turbulent Navier- Stokes equations. To validate their numerical results, they car-

ried out also interesting experimental measurements of the centerline deflection of the

membrane by evidencing its nonlinear dependence on the excitation frequency and driv-

ing voltage. Seeley et al. [96] described a simplified fluid–structure interaction model

based on the implementation of commercial Finite Element codes and proved its validity

at relatively low frequency, namely well below the Helmholtz frequency. Persoons [3]

proposed a low-order model of prediction of the frequency response of synthetic jet actu-

ators driven by electromagnetic or piezoelectric supply. Based on the equivalent circuit

approach, the model yields analytical expressions for the two resonance frequencies, as

a function of the structural and Helmholtz resonance frequencies. The investigation of

Persoons [3] is corroborated by a parallel campaign of experimental tests. Regarding the

present author, de Luca et al. [4], de Luca et al. [8], Girfoglio and de Luca [5], Girfoglio
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et al. [6] and Girfoglio et al. [7] presented a fluidic type lumped element modeling,

that has been inspired by the Sharma’s work [2], yielding the frequency response of the

resonant cavity in terms of pressure disturbances, membrane displacement and exter-

nal jet velocity. The model, validated against systematic experimental measurements,

gave also simple but accurate analytical relationships for the two resonance frequencies

characterizing the overall system response.



Chapter 3

Frequency response of

piezoelectrically driven synthetic

jet actuators

In this chapter, a lumped element mathematical model of the operation of a synthetic jet

actuator driven by a thin piezoelectric disk is both analytically and numerically inves-

tigated in order to obtain information about the frequency response of the device. The

model is validated through systematic experimental tests carried out on three devices

having different mechanical and geometrical characteristics.

It should be noted that just some results are showed; an accurate description of all

findings obtained can be found in [4], [5], [6], [7], [8] from which the treatment described

hereafter has been arisen (the references [4] and [8] are reported in Appendix).

3.1 Model formulation

The model refers to the three basic elements of the actuator: the oscillating membrane

(diaphragm or wall, constituted by a thin round metal shim on which a smaller diameter

piezo-ceramic disk is bonded), the cavity, the orifice.

The dynamics of the diaphragm is described through the motion equation of a one-degree

of freedom forced-damped spring-mass system:

mwtẍw + cwtẋw + kwxw = F − piAw (3.1)

15
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where mwt = mw + ma is the total mass (mw being the oscillating diaphragm mass,

including both the shim and the piezo element, and ma the added mass term); xw(t)

is the diaphragm position at a generic time instant t, and superscript dot stands for

time derivative; cwt = cw + ca is the total damping coefficient (cw being the structural

damping coefficient and ca is a further damping coefficient due to the interaction with the

external air); kw is the equivalent spring stiffness; F = Fo sinωt is the electrodynamic

force (communicated to the membrane by the piezo-electrical element), Fo being the

force magnitude and ω the circular frequency of the applied voltage (often the natural

or cyclic frequency f = ω/2π will be used hereafter); pi is the differential (relative to the

unperturbed external atmosphere) pressure within the cavity (internal pressure); Aw is

membrane wall area. The added mass terms are evaluated by means of the procedure

of Kinsler et al. [97], as reported by Sharma [2]. Following Sharma [2] the “pure”

mechanical damping ratio is assumed equal to 0.03.

The equivalent spring stiffness of the diaphragm can be obtained as

kw = mw(2πf̃w)2 (3.2)

where f̃w is the frequency of the principal mode of vibration of the rigidly clamped

composite disk. Although the presence of the piezoceramic element bonded to the metal

shim enhances the flexural rigidity of the membrane (and in principle the very thin layer

of glue should be taken into account as well), for standard operating conditions f̃w can be

referred to the first fundamental mode of the shim only (that is the membrane structural

element actually clamped) and calculated by using the standard formula reported in

many textbooks (among others, Kinsler et al. [97]), and used by other authors (e.g. by

Rathnasingham and Breuer [98]):

f̃w =
10.2

π
√

3

thw
d2
w

√
Ew

ρw(1− ν2
w)

(3.3)

in which thw, dw, Ew, ρw and νw are, respectively, the thickness, the diameter, the

Young’s modulus, the density and the Poisson’s ratio of the shim. Note that the op-

eration at frequencies higher than the fundamental one is not convenient because the

membrane produces little net displacement of the surrounding air.

The amplitude of the forcing Fo is obtained conveniently as

Fo =
kwdAVa
Aw

= kw∆xw (3.4)

where dA is the effective acoustic piezoelectric coefficient that represents the ratio be-

tween the cavity volume variation ∆V and the applied voltage Va, when the driving
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differential pressure p is equal to zero [93]:

dA =
∆V

Va

∣∣∣∣
p=0

(3.5)

Note that in the previous equation (3.4) the cavity volume variation ∆V = dAVa is

divided by the membrane area Aw in order to obtain the average linear membrane

displacement ∆xw (to be multiplied by kw in order to obtain Fo).

The coefficient dA could be evaluated analytically by means the distribution of the

transverse displacement of the composite diaphragm ([92], [93]). This procedure is not

practical due to the difficulty of determining the required coefficients. An alternative way

consists in determining the acoustic compliance of the membrane Cac which, through a

dual definition of dA, is given by the ratio of the volume variation ∆V to a uniformly

distributed pressure load p, in condition of electrical short-circuit [93]:

Cac =
∆V

p

∣∣∣∣
Va=0

(3.6)

Of course the evaluation of Cac would require the same difficulties. However, one can

refer to the acoustic compliance of a homogeneous circular plate (namely, having the

properties of the metal shim or those of the piezoceramic) that yields insight into the

scaling behavior of the diaphragm [1], and ultimately obtain dA by means of the rela-

tionship

dA = Cacφa (3.7)

in which φa is the electroacoustic transduction coefficient [93].

In the present work it will be made reference to the piezoceramic properties, thus

Cac =
∆V

p

∣∣∣∣
Va=0

=
πd2

pc(1− ν2
pc)

1024Epcth3
pc

(3.8)

thpc, dpc, Epc, and νpc being, respectively, the thickness, the diameter, the Young’s

modulus and the Poisson ratio of the piezoceramic.

The electroacoustic transduction coefficient φa has been considered here as a fitting

parameter of the present model (the only one) to be determined by optimizing the

agreement between numerical and experimental data. Numerical values of φa will be

reported hereafter, while showing the comparison of computer simulation and experi-

mental results.
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For future purpose it is convenient to divide Eq. (3.1) by mwt , thus obtaining

ẍw + 2ζwωwẋw + ω2
wxw = ω2

w∆xw sinωt− piAw
mwt

(3.9)

where ζw and ωw are respectively given by:

ζw =
cwt

2
√
mwtkw

(3.10)

ωw =

√
kw
mwt

(3.11)

ζw is the actual damping ratio in which both cwt and mwt take into account the motion of

the surrounding air. ωw = 2πfw represents the (first mode) structural circular frequency

of the diaphragm.

The second equation of the model is essentially the conservation of mass in the cavity

under the assumption of zero-dimensional (lumped) system. By relating the density and

pressure variations by means of an isentropic compression/expansion transformation,

the continuity equation can be formulated as

Vc
γpo

dpi
dt
−Awẋw = −AoU (3.12)

where Vc = AwH is the cavity volume (H being the cavity height), Ao is the orifice

area, γ is the specific heat ratio of air, po is the external ambient pressure and U is the

instantaneous flow velocity through the orifice.

The application of the unsteady Bernoulli’s equation between a point inside the cavity

where the flow velocity is practically null and a point, just outside the cavity, representing

the location where the pressure matches the unperturbed external ambient value, yields

the third equation of the model:

Ü +
K

le
|U |U̇ + ω2

hU =
Aw
Ao

ω2
hẋw (3.13)

in which K is the head loss coefficient, including the inviscid contribution (equal to

unity) due to the kinetic energy recovery at ambient pressure, minor (entrance/exit)

losses, as well as distributed losses due to friction inside the orifice duct. The distance

between the two points of application of the Bernoulli’s equation, i.e. the modified

(effective) length of the orifice le, is basically evaluated according to the description of

Sharma [2], namely

le/d0 = l0/d0 + ∆le (3.14)
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The choice of the values to be attributed to the head loss coefficient and to the effective

length of the orifice constitutes a key point of the model, and is very critical because it

needs detailed information about the complex unsteady flow field inside the reduced size

cavity and orifice [4]. It has been performed the numerical simulations with the basic

values of K = 1.14 and ∆le = 0.62 with the aim of optimizing the prediction capability

of the numerical code in terms of jet-flow velocity.

The so called Helmholtz frequency ωh is usually recognized to be:

ωh =

√
γA2

opo/Vc
ρaleAo

=

√
ka
Ma

(3.15)

where ka and Ma are, respectively, the equivalent stiffness of the air inside the cavity,

ka = γA2
opo/Vc, and the effective mass of the air at the orifice, Ma = ρaleAo.

For the sake of convenience, the three differential equations which describe the dynamics

of the actuator are summarized below

ẍw + 2ζwωwẋw + ω2
wxw = ω2

w∆xw sinωt− piAw
mwt

(3.16)

Vc
γpo

dpi
dt
−Awẋw = −AoU (3.17)

Ü +
K

le
|U |U̇ + ω2

hU =
Aw
Ao

ω2
hẋw (3.18)

3.2 Evaluation of the coupled natural frequencies

The behavior of the synthetic jet actuator can be described by the dynamics of two

mutually coupled oscillators: the first one, describing the membrane displacement xw,

is characterized by its uncoupled natural frequency ωw, while the second one, the acous-

tic oscillator, describing the dynamics of the mass of air at the orifice, Ma, through

its velocity U , is characterized by the its natural frequency ωh. The system of equa-

tions (3.16)-(3.18) shows that both the dynamics of the membrane and of the orifice air

mass are forced by the cavity pressure which couples them by means of the continuity

equation (3.17). An external forcing due to the supply power also acts on the membrane

dynamics. In order to investigate in more detail the coupling of the two oscillators, it is

convenient to reformulate the equations.

By taking the time derivative of Eq. (3.16), in which both the added mass and the addi-

tional damping coefficient are independent of the time, and by eliminating the pressure

derivative by means of Eq. (3.17), one obtains:
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V̈w + 2ζwωwV̇w +

(
ω2
w + ω2

wp

)
Vw −

Ao
Aw

ω2
wpU = (ω∆xw)ω2

wcosωt (3.19)

which is coupled with the Eq. (3.18). Note that another characteristic frequency ωwp is

introduced in Eq. (3.19), defined as

ωwp =

√
γA2

wpo/Vc
mw

=

√
γAwpo
mwH

(3.20)

which, according to Sharma [2], may be interpreted as the natural frequency of the

pneumatic spring made of the air enclosed within the cavity of volume Vc and of the

diaphragm mass mw. Note that the height of the cavity, H, is explicitly introduced and

Vw denotes the membrane velocity.

After introducing the positions: x1 = Vw, x2 = U , b1 = 2ζwωw, b2 = K/le, k11 =

ω2
w + ω2

wp, k12 = −Aoω2
wp/Aw, k21 = −Awω2

h/Ao, k22 = ω2
h, the following governing

system is finally written:

ẍ1 + b1ẋ1 + k11x1 + k12x2 = (ω∆xw)ω2
wcosωt (3.21)

ẍ2 + b2|x2|ẋ2 + k21x1 + k22x2 = 0 (3.22)

As shown by Eqs. (3.21)-(3.22), the coupling of the two oscillators is of elastic type.

Furthermore, a linear damping term appears in the first equation and a non-linear

damping term in the second one. Apart from the mutual influence of the two oscillators

represented by the off-diagonal terms (that scale with (dw/do)
2), one may note that the

diagonal stiffness element k11 results to be modified compared with the uncoupled case

by a factor 1 + CF , where CF is the coupling ratio defined as

CF =

(
ωwp
ωw

)2

(3.23)

CF represents the ratio of the air stiffness to the membrane stiffness; on the other

hand, by inspecting Eq. (3.19) it is evident that if CF � 1 the membrane dynamics is

de-coupled from the acoustic oscillator, with the variation of cavity pressure vanishing.

In order to evaluate the coupled natural frequencies, a study of free vibrations of the

system will be hereafter carried out; initially the non-linear damping term of the sec-

ond oscillator will be neglected and the relevant analytical treatment will be developed.

However, despite this simplification, it will be showed hereafter that the analytical pre-

dictions of the resonance frequencies, even though not corrected rigorously, are in several
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circumstances in very good agreement with data obtained by experimental measure-

ments. Of course direct numerical solutions will be also performed, by integrating the

fully non-linear governing system (3.16)-(3.18), that will show the crucial role played by

the non-linear flow damping on the amplitude of the oscillations, as is well recognized

in the literature, e.g. by Gallas et al. [1] (who attributed to it the absence of the first

resonance peak for their device of case 2), Persoons [3], Kooijman and Ouweltjes [99].

Thus, neglected the non-linear damping, by introducing the following state vector

q = {x1 x2 ẋ1 ẋ2}T (3.24)

and by reformulating the system (3.21)-(3.22) in matrix form, in the absence of forcing

(i.e. null voltage) one obtains:

{q̇} = [A] {q} (3.25)

where

[A] =


1 0 0 0

0 1 0 0

−b1 0 −k11 −k12

0 0 −k21 −k22

 (3.26)

and the natural frequencies of the mechanical system are related to the eigenvalues of the

matrix [A]. It should be noted that [A] is a 4× 4 matrix and thus has four eigenvalues;

with reference to Eq. (3.21), since the devices analyzed in the present work (that will

be described later on) satisfy the condition ζw < 1 (remember that the pure mechanical

damping ratio has been assumed equal to 0.03, and it has been noted that this value is

not substantially modified by interactions with the ambient air), the eigenvalues are two

pairs of complex conjugate quantities; the natural frequencies, f1d and f2d, are of course

given by the imaginary coefficients. For the actuators under analysis such eigenvalues

are computed numerically and will be shown in the following Table 3.1.

Moreover, to the aim of obtaining convenient closed-form analytical evaluations of the

natural frequencies, it is convenient to make the further assumption of absence of damp-

ing effects (the practical validity of such an assumption will be considered later, when

discussing the results) so as to obtain the following relationship (normalized respect to

ω2
w)

ω2
1,2

ω2
w

=
−(1 +

ω2
wp

ω2
w

+
ω2
h

ω2
w

)±
√

(1 +
ω2
wp

ω2
w

+
ω2
h

ω2
w

)2 − 4
ω2
h

ω2
w

2
(3.27)
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In conclusion, the natural coupled frequencies in the totally undamped case are given

by

f1,2 =
ωi1,2
2π

(3.28)

that yields the relationships of such frequencies as a function of the first mode structural

and Helmholtz frequencies. It is confirmed that if CF � 1 the two resonance frequencies

tend to those of the uncoupled oscillators.

In some applications a desirable operating condition is represented by a relatively high

plateau of fluid ejection velocity over a rather wide range of frequencies. This condition

can be attained by designing the devices so as to have the two frequencies ω1 and ω2 close

to each other. By inspecting the relationship (3.27) it can be verified that if ωw � ωh

then the distance between the two eigenvalues |ω2
1 − ω2

2|/ω2
h does not depends on the

cavity height H and therefore

|ω2
1 − ω2

2| '
1

H/do
(3.29)

On the contrary, if ωw � ωh, then |ω2
1 − ω2

2|/ω2
h scales with H/do, hence

|ω2
1 − ω2

2| ' const (3.30)

The numerical results presented will confirm these predictions and will show that for a

strongly coupled actuator with ωh > ωw, the jet-flow velocity is maximized for relatively

large cavity height.

In the next sections, it will be showed that the values estimated by means of the present

relationships are in good agreement with those measured experimentally as well as cal-

culated by computer direct simulations

3.3 Dimensionless form of the equations

In order to give more insight to the problem physics, it is worth recasting the governing

equations into a convenient dimensionless form. As far as the acoustic oscillator is

concerned, proper choices of the reference quantities for time, length and velocity are

the reciprocal of the operating frequency 1/ω, the cavity height H and the speed of

sound of air c, respectively. The dimensionless form of the dynamics of the acoustic

oscillator accordingly is:

St2
d2U∗

dt∗2
+ St

[
K

√
H

le
|U∗|

]
dU∗

dt∗
= V ∗w −

Ao
Aw

U∗ (3.31)
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where the Strouhal number is defined as

St =
ωH

c

√
le
H

(3.32)

It is easy to verify that the relationship holds

St =
ω

ωh

do
dw

(3.33)

The condition corresponding to St � 1 is physically relevant. Apart from the scaling

quantity represented by the factor
√
le/H, this situation represents the case of acousti-

cally thin cavity, with the traveling time of a small pressure disturbance over the distance

H being much smaller than the reference time 1/ω; in other terms, the air inside the cav-

ity behaves as an incompressible medium (i.e., the air stiffness is infinite). By inspecting

Eq. (3.31), it is evident that this equation reduces to the dimensional relationship:

AwVw = AoU (3.34)

namely, the volume rate entering the cavity as a consequence of the membrane displace-

ment equals the volume rate of air expelled through the orifice. On the other hand,

Eq. (3.16) shows that the membrane dynamics is decoupled from that of the acoustic

oscillator, with the membrane being driven by the piezo-electric forcing only. When

St� 1, once the air velocity at the orifice has been obtained from Eq. (3.34), the cavity

pressure may be evaluated by using the unsteady form of the Bernoulli’s equation.

The physical situation of St � 1 also corresponds to decoupled membrane dynamics.

In this case, however, the air stiffness is vanishing (the pressure field inside the cavity is

practically unperturbed), so that the air jet velocity U is vanishing too.

In general, the coupling effects represented by the CF parameter refer to a certain device

and may be neglected on the basis of design characteristics of the actuator, whatever

is the operating condition. On the contrary, the conditions of decoupling occurring for

St� 1 and St� 1 depend basically on the operating condition and they may occur for

any device.

The dimensionless form of the acoustic oscillator can be used also to obtain useful

information about the formation strength of the jet at the Helmholtz frequency. It should

be remembered preliminarily that, within the framework of the classic linear theory of

damped-driven harmonic oscillators, the acoustic oscillator can be defined underdamped

or overdamped according as the acoustics damping coefficient,

(
1
2K
√

H
le
|U∗|

)
, is less
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than or greater than unity. The underdamped case corresponds to the occurrence of the

resonance amplifications and therefore, if one extends such implications to the actual

non-linear case, the jet should form sharply when driven at Helmholtz frequency. The

difficulty here is that the damping coefficient is not a constant. It is straightforward to

observe that such a formation criterion can be also expressed as

K

2

|Umed|/le
ωh

< 1 (3.35)

where of course the jet velocity should refer to a proper scaling value, namely to the

average value, Umed, yielding the equivalent amount of energy dissipated in a quarter of

period by the variable damping coefficient. It is easy to verify that Umed = Umax/2, with

Umax denoting the maximum value reached in the cycle. As will be shown in the section

3.7, the numerical simulations and the analytical evaluations of the operation of the

devices under analysis show that the formation condition of Eq. (3.35) is usually fulfilled

(with K = 1.14) and therefore the jet does form at Helmholtz frequency. Of course, since

the acoustic damping coefficient depends on the jet flow velocity, the fulfillment of the

formation criterion can be verified ex-post, namely as a result of the simulation.

In the case where the jet issues from a relatively long duct, distributed major head

losses prevail on minor entrance losses. In this case the acoustic damping coefficient

(i.e., the term in square brackets of Eq. (3.31)) results to be classically 32ν/(d2
oωh),

i.e. independent of the flow velocity, where ν is the kinematic viscosity of air, and the

condition that guarantees underdamped oscillations writes:

|Umed|
doωh

<
Re

16
(3.36)

where Re is defined by Eq. (1.1). Note explicitly that in the case of distributed head

losses the acoustic damping effect is a standard linear term. By combining the above

criterion with the celebrated formation criterion of Holman et al. [17], that refers to the

generation and subsequent escape of the external vortex ring, one obtains:

0.16 <
|Umed|
doωh

<
Re

16
(3.37)

Note that Holman et al. [17] employ the average jet velocity during the expulsion stroke

defined by Eq. (1.2), thus here Umed = U = (2/π)Umax.
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The equation of motion of the membrane is made dimensionless with the aid of different

time and velocity scales, a convenient choice being 1/ωw and ω∆xw, respectively. The

non-dimensional form of such an equation is

V̈ ∗w + 2ζwV̇
∗
w + V ∗w + CF

(
V ∗w −

Ao
Aw

U∗w

)
= cosωt (3.38)

The equation (3.38) further confirms that under the condition for which CF � 1 the

membrane dynamics is decoupled from the acoustic oscillator one.

3.4 Numerical investigation

A numerical code has been written in which the governing equations system (3.16)-(3.18)

has been numerically integrated by means of a standard 4th order Runge-Kutta method

in MATLAB environment with ode45 routine. Initial conditions of xw = 0, ẋw = 0,

pi = 0, and U = 0 have been assumed for all the computations. By using a time step of

the order of 1/(200f), it has been observed that the quasi-steady oscillatory solution is

generally reached in about 20-30 cycles.

The uncertainty errors of the numerical data have been evaluated especially with respect

to variations of the values of the head loss coefficient as well as of the effective orifice

length [4].

3.5 Experimental investigation

In order to verify the analytical developments reported before, as well as to validate the

numerical code, systematic experimental tests have been carried out on three different

synthetic jet actuators designed to the purpose. The basic characteristics of such actua-

tors are summarized in Table 3.1. The actuator with the membrane in brass and the two

in aluminum are reported in Fig. 3.1, the brass one on the left, the aluminum ones on

the right. They have been designed essentially in order to obtain different values of the

coupling ratio, ranging from about zero to 1.88. The schematic of the devices is shown

in Fig. 3.2 highlighting their modular structure, which permits independent variations

of cavity diameter and height, orifice diameter, and piezoelectric diaphragm.

The brass actuator is a commercially available piezoelectric ceramic disk bonded to a

thin brass metal plate fabricated by Murata Manufactoring Co. On the contrary, the
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Figure 3.1: Pictures of the tested actuators. The brass shim is on the left, the
aluminum shims on the right.

dw H

l0

Vortex

Train

Synthetic

Jet

U

Cavity

MembranePiezo

Orifice

le
d0

Figure 3.2: Modular structure of a typical device.

aluminum membranes were built in-house by gluing a LZT piezoceramic disk (manufac-

tured by PIEZO Inc.) on a thin aluminum foil.

In Table 3.1 geometrical and mechanical properties, as well as nominal characteristic

frequencies of the tested devices, listed on the basis of the shim material, are summarized.

The frequencies reported in Table 3.1 have been calculated by means of the analytical

model illustrated before. It should be remembered that fw and fh denote the (uncoupled)

first-mode structural and Helmholtz natural frequencies, respectively, defined through

Eqs. (3.11) and (3.15), respectively; f1 and f2 are the frequencies of the two coupled

oscillators, i.e. the modified first-mode structural and Helmholtz resonance frequencies,

defined by Eq. (3.28); f1d and f2d take into account linear damping effects and arise

from the eigenvalues problem of Eqs. (3.24), (3.25) and (3.26). The coupling ratio CF

introduced by Eq. (3.23) is reported in the last line.
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As shown in Table 3.1, the nominal structural frequency of the brass devices is very close

to the value predicted by the model of the coupled oscillators, evaluated both includ-

ing damping effects (on the first oscillator) and neglecting them; in fact, it results also

f1
∼= f1d. As a general trend, on the grounds of Eq. (3.27) the coupling effect increases

the structural resonance frequency and lowers the Helmholtz resonance frequency. Fur-

thermore, the coupling ratio CF is higher as the cavity height decreases. However, since

for the aluminum 2 device the nominal structural frequency is less than the Helmholtz

one, the situation is reversed in the sense that the coupling of the oscillators lowers f1

and f1d and raises f2 and f2d.

For the brass device it results that also the Helmholtz frequency (i.e., the natural fre-

quency of the acoustic oscillator) is almost coincident with the value predicted by means

of the coupling model; furthermore, it results f2 = f2d. The quasi-coincidence between

the uncoupled natural structural and Helmholtz frequencies and the corresponding val-

ues of ω1,2, observed for the brass actuator, is much more weak for the aluminum 1 and

totally disappears for the aluminum 2 actuator which exhibits the strongest coupling

effect.

A brief description of the experimental set-up (depicted in Fig. 3.3) is reported in the

following. The devices have been electrically excited with a sine signal generated in

MATLAB environment through the routine chirp and then transmitted via a USB In-

struments DS1M12 ”Stingray” data acquisition system to a linear gain amplifier (typical

gain factor is 5); an oscilloscope has been also employed to set the voltage amplitude Va

with a higher accuracy. The frequency of the signal has been varied typically over the

range from 0 to 3000 Hz.

To the aim of detecting the frequency response of the actuators, measurements of pres-

sure disturbances produced by the motion of the membrane into the external ambient

and deflection of the (composite) membrane by means of a laser scanning vibrometer

have been made. These experimental tests are described in detail in [4].

The experimental study of the frequency response of the three devices has been com-

pleted through a further testing session where the flow exit velocity has been measured

in the external ambient at a station located on the jet axis approximately 1 orifice diam-

eter downstream of the exit section. For these measurements a standard Kanomax Mini

Pitot tube, 1/8” in diameter and 6” in length, has been employed in connection with a

Mouser/All Sensor pressure transducer, whose output signal is acquired by means of the

same DAQ unit and phase locked to the actuator excitation signal. The output signals

are phase-averaged over typically 10 periods in order to obtain an uncertainty estimate

of the jet velocity of 5%, calculated with the standard procedures of literature.
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Figure 3.3: Sketch of the experimental setup.

Plots showing the frequency response of the actuators in terms of the downstream-

directed velocity Ue measured by means of the Pitot tube, at a point one orifice diameter

downstream of the orifice exit, and therefore approximately corresponding to the saddle

point, are reported in Figs. 3.4, 3.5, 3.6. Following the basic definitions and findings of

literature (e.g., Smith and Glezer [9], Smith and Swift [100]), the saddle point velocity

is roughly 1.1 times the stroke length velocity (Eq. (1.2)). Thus, in order to compare

experimental measurements of Ue to numerical computations of the peak value Umax of

the exit velocity U , the following relationship is used: Ue ∼= (1.1/π)Umax=Umax/2.85.

Data points of Figs. 3.4, 3.5, 3.6 are compared to the corresponding numerical values

obtained by integrating numerically the complete governing equations. Typical values

of the electroacoustic transduction coefficient φa that best fit the continuous numerical

curves to the velocity measurements are 105, 133, 47.7 for brass, aluminum 1, aluminum

2 actuators, respectively. As reported previously, the numerical simulations have been

performed with the basic values of K = 1.14 and ∆le = 0.62 with the aim of optimizing

the prediction capability of the numerical code in terms of jet-flow velocity.

Table 3.2 reports the resonance frequencies calculated numerically for each device at

Va = 35 V. This table should be compared to Table 3.3 showing analogous experimental

findings in order to appreciate the data agreement. For the sake of convenience, data to

be compared are reported in bold type in both tables. Data spread is generally less than

4% except for the value of the modified structural frequency of aluminum 2 actuator,
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Figure 3.4: Numerical-experimental comparison of average exit flow velocity fre-
quency response for the brass actuator (H = 3 mm); triangles represent the experi-
mental measurements, black curves represent the numerical solution; a) Va = 35 V, b)

Va = 70 V.
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Figure 3.5: Numerical-experimental comparison of average exit flow velocity fre-
quency response for the aluminum 1 actuator (H = 3 mm); black curves represent the
numerical solution, triangles represent the experimental measures; a) Va = 25 V, b)

Va = 35 V.
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Figure 3.6: Numerical-experimental comparison of average exit flow velocity fre-
quency response for the aluminum 2 actuator (H = 4 mm); triangles represent the
experimental measures; black curves represent the numerical solution; a) Va = 35 V, b)

Va = 50 V.
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for which it appears to be about 26%. However, it should be noted that computer

simulations of Fig. 3.6 show a rather wide plateau around this peak frequency, whereas

the data spread of 26% refers exactly to the peak value.

3.6 Further numerical insights

The results illustrated in the previous section exhibit a quite satisfactory agreement

between the (fully nonlinear) numerical simulations of the frequency response of the

resonant actuators considered in this work and the experimental and analytical findings.

Thus, once the prediction capability of the numerical code has been established, it

has been used to determine many other features of frequency response, very useful for

design purposes. The maximum jet-flow exit velocity trends as functions of the operation

frequency are depicted in Figs 3.7, 3.8, 3.9 for the three tested devices and for various

dimensionless cavity heights H/do. The supply voltage Va is equal to 35V in all these

simulations.
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0
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15
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U
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]

Figure 3.7: Frequency response of average exit flow velocity for the brass actuator
at Va = 35V; red line is for H/do = 0.5, green H/do = 1, blue H/do = 1.5, black

H/do = 2.5. The straight line refers to Eq. (3.34).

For all the devices two velocity peaks corresponding to the two resonance frequencies are

clearly evident. For the brass device both the velocity peaks increase with decreasing

the cavity height, whilst for the aluminum 1 one the trend is that the velocity peak

of the structural resonance reaches a plateau for intermediate values of H/do and then

it decreases at the largest height. For the brass actuator the distance between the

two resonance frequencies slightly increases with increasing H/d0, in agreement with

experimental results of Gomes et al. [101] obtained for lo/do > 1, while for the aluminum

1 such a distance slightly decreases. Note that the experimental findings of Gomes et al.

[101] show also that the resonance frequencies distance becomes practically constant as
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Figure 3.8: Frequency response of average exit flow velocity for the aluminum 1
actuator at Va = 35V; red line is for H/do = 0.5, green H/do = 1, blue H/do = 1.5,

black H/do = 2.5. The straight line refers to Eq. (3.34).

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

f [Hz]

U
e [m

/s
]

Figure 3.9: Frequency response of average exit flow velocity for the aluminum 2
actuator at Va = 35V; red line is for H/do = 0.5, green H/do = 1, blue H/do = 1.5,

black H/do = 2.5. The straight line refers to Eq. (3.34).

H/d0 further increases, in agreement with the analytical prediction (3.30) valid in the

case of ωw � ωh.

The straight lines present in the plots of Figs 3.7, 3.8, 3.9 refer to the linear dependance

of the jet velocity upon the operating frequency given by the incompressible model

described by the Eq. (3.34). For the brass and the aluminum 1 and 2 actuators it is

clearly evident that such a simplified model closely agrees with the simulations of the

complete model at low frequencies, the frequencies range of such an agreement widening

for the smaller cavity heights, as predicted by the theory for St� 1. Note also that for

this range of frequencies the response in terms of jet velocity is the same whatever is

the cavity height, thus confirming that the membrane dynamics is decoupled from the

acoustic oscillator one. These figures show that the uncoupled behavior is recovered also
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for relatively high frequencies, i.e. St� 1, where the expected response is of vanishing

Ue, anticipated at lower frequencies for the highest cavity heights.

In order to complete the discussion about the behavior of the aluminum 2 device, note

that the two nominal Helmholtz and structural frequencies, which for this actuator

are reversed, are remarkably modified by the high coupling ratio. The jet velocity

decreases with increasing the cavity height at the structural resonance frequency, whereas

it increases with increasing H/do at the Helmholtz resonance frequency, with the result

that the maximum peak is reached at the Helmholtz frequency for the highest simulated

cavity height. This particular finding agrees with the theoretical prediction (3.29). The

quasi-coincidence of the two resonance frequencies justifies that the maximum peak is

reached for the highest cavity height.

3.7 Formation strength of the jet at Helmholtz frequency

In the sect. 3.3 the role played by the non-linear damping term on the formation

strength of the jet has been stressed theoretically. By resorting to the classic linear

theory of damped driven harmonic oscillators, the acoustic oscillator has been defined

underdamped or overdamped according as the acoustics damping coefficient, K2
|Umed|/le

ωh
,

with Umed = Umax/2, is less than or greater than unity, respectively. The underdamped

case corresponds to the occurrence of the resonance amplifications and therefore, if one

extends such implications to the present non-linear case, the jet should form sharply

when driven at Helmholtz frequency. These predictions are confirmed by numerical

simulations reported in Figs. 3.10 and 3.11, referring to the brass and the aluminum 2

actuators, respectively. For each device the membrane peak velocity, frame a), the av-

erage jet velocity, frame b), and the acoustic damping coefficient, frame c), are reported

as functions of the operating frequency, for values of the head loss coefficient (mostly

unphysical) of 0.14 (black line), 1.14 (red line), 3.14 (blue line), 5.14 (green line). Mem-

brane velocity and jet velocity are also evaluated by means of the incompressible model

of Eq. (3.34), whose behavior is reported with straight lines. Within this context the in-

compressible model represents also the static (namely for vanishing operation frequency)

reference value to be used to evaluate the amplifications of the oscillations amplitude

due to the resonance.

As far as the brass device is concerned, Fig. 3.10 a) confirms that, due to the vanishing

coupling factor, the membrane dynamics is decoupled from the acoustic oscillator. In

fact, the trends of the membrane velocity are practically independent of the head loss

coefficient, there is no resonance at the Helmholtz frequency (about 1000Hz) and the

incompressible model applies well up to frequencies not too greater than the Helmholtz
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Figure 3.10: Frequency response of the membrane peak velocity a), the average jet
velocity b), and the acoustic damping coefficient c), for the brass actuator; black line
is for K = 0.14, red K = 1.14, blue K = 3.14, green K = 5.14. The straight line refers

to Eq. (3.34).
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Figure 3.11: Frequency response of the membrane peak velocity a), the average jet
velocity b), and the acoustic damping coefficient c), for the aluminum 2 actuator; black
line is for K = 0.14, red K = 1.14, blue K = 3.14, green K = 5.14. The straight line

refers to Eq. (3.34).
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frequency. Fig. 3.10 b) shows that the acoustic oscillator is always forced by the mem-

brane one, and exhibits two resonance peaks, at Helmholtz and structural frequencies.

However, the amplification factor of the oscillations, evaluated with reference to the

static solution of Eq. (3.34), is remarkably grater than unity only for head loss coeffi-

cients equal to 1.14 and 0.14, which yield acoustic damping ratios well below 0.5 at the

Helmholtz frequency.

Fig. 3.11 shows that for the aluminum 2 device the oscillators are fully coupled, as one

expects from the relatively high coupling factor CF = 1.88. In fact, the membrane

velocity, frame a), exhibits two resonance peaks (remember that for this device the

structural resonance frequency is less than the Helmholtz one). Both velocity resonance

peaks are influenced by the non-linear damping coefficient and for values of K = 3.14

and K = 5.14 (with the corresponding values of the damping coefficient being equal to

about 0.5 and greater than 0.5, respectively) the jet velocity does not present resonance

peaks. Moreover, note that for K = 3.14 and K = 5.14 the Helmholtz resonance

frequency moves remarkably towards lower values compared with the value of the almost

undamped situation (K = 0.14).

3.8 Fully non-linear analytical solution

By introducing the following positions:

Ṽw = Vwmaxe
j(ωt+φVw ) (3.39)

Ũ = Umaxe
j(ωt+φU ) (3.40)

where Ṽw and Ũ denote the complex membrane velocity and jet velocity, respectively,

and φVw and φU are the phase angles of the corresponding quantities, and by substituting

them into Eqs. (3.21)-(3.22), it is possible to obtain the following ”modal” solutions:

jωb2|U |Umax+

(
−ω2 + k22 −

k12k21

−ω2 + jωb1 + k11

)
Umax+

jωk21∆xwω
2
w

−ω2 + jωb1 + k11
= 0 (3.41)

∆φU−Vw = φU − φVw = arctan

(
BC −AD
AC +BD

)
− arctan

(
C

D

)
(3.42)
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where

A = −b2∆xwω
2ω2

w|Umed| (3.43)

B = −∆xwω
3ω2

w + k22∆xwωω
2
w (3.44)

C = ω4 − k22ω
2 − b1b2|Umed|ω2 − k11ω

2 + k11k22 − k12k21 (3.45)

D = b2|Umed|(−ω3 + k11ω)− b1ω3 + b1k22ω (3.46)

On the basis of the discussion made in the sect. 3.3, it has been assumed Umed = Umax/2.

The ”modal” solution for the aluminum 2 device is reported in Fig. 3.12 , in blue line

and is compared to the corresponding numerical trend, in black line.

As can be seen, the numerical-analytical comparison is quite satisfactory.
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Figure 3.12: Numerical-analytical comparison of average exit flow velocity for the
aluminum 2 actuator (H = 4 mm); blue curves are analytical, black curves numerical;

a) Va = 35 V, b) Va = 50 V.



Chapter 4

Efficiency of synthetic jet

actuators

Although synthetic jets have been been so widely explored only few studies on the

synthetic jet efficiency have been carried out. One of the first works on the efficiency

of synthetic jet was undertaken by Tesar and Zhong [102] who based their definition

of efficiency on the capability of jet generation rather than on energy conversion con-

siderations. They found experimentally a constant efficiency value equal to 7.2% for

several values of Reynolds number (ranging from 4000 to 8000) and for two values of

dimensionless stroke length L/do (equal to 223.9 and 527.8). They also compared their

experimental evaluation with a numerical prediction made by using the commercial

code FLUENT, and found that this last is twice the experimental one. Subsequently

Crowther and Gomes [103] studied the system costs associated with the application of

flow control system to civil transport aircraft based on the use of electrically powered

synthetic jet actuators. They defined the efficiency of the actuator as fluid power (scaling

with the cube of the exit velocity) divided by absorbed electrical power, and analyzed

it as a function of the operating conditions and actuator geometry, which were chosen

reasonably close to those expected for industrial applications. For this reason the exper-

iments were carried out basically with a chamber depth to orifice diameter ratio equal

to 0.56 and an orifice depth to diameter ratio equal to 2.1. By resorting to the energy

balance principle, Crowther and Gomes [103] considered that the difference between

the supplied electrical power and the gained fluid power was lost because of electrical

impedance (ascribed to the piezo-electric actuator), mechanical impedance (related to

the diaphragm dynamics) and acoustic impedance (due to the fluid-acoustic coupling of

the flow within the cavity and though the orifice), however without accurately quanti-

fying each term of the balance. They showed their experimental findings in terms of a

map of the electric-fluidic conversion efficiency, where such an efficiency was reported

43
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as a function of excitation voltage amplitude (for peak-to-peak excitation voltage up to

250V) and actuation frequency (up to 4000Hz). They found that the efficiency attains

a maximum equal to about 14% and noted that it did not correspond to the condition

of maximum exit velocity because of the dielectric saturation effect affecting the com-

mercial piezo-electric patch (i.e., the piezo-element bonded to the brass shim). A more

recent work, focusing specifically on the energy conversion efficiency of synthetic jets de-

vices, was presented by Li et al. [104] who tried to express on an analytical basis every

term contributing to the energy rate balance. They argued that once the synthetic jet

has received electric energy input, due to the capacitance of the piezo-electric actuator,

a part of the energy is stored as electric potential energy while the rest of the energy

is converted to mechanical energy accompanied by energy dissipation. The mechanical

energy includes vibration of piezo-electric actuators and kinetic energy of air flow. For

piezo-electric actuators two forms of energy, i.e. strain energy and kinetic energy, are

temporarily stored by the vibrating structure. Energy dissipation (namely energy loss)

occurs in piezo-electric actuators due to the deflection dynamics, as well as in the air

flow motion (i.e., the head losses) when traversing the jet orifice. The synthetic jet

device efficiency is defined as the ratio of the kinetic power of the air flow to the input

electric energy. The authors carried out experiments on two slot synthetic jets having

orifice length of 4mm and 15mm, for two values of voltage amplitude (80V and 100V)

and actuation frequency ranging from 200Hz to 1100Hz. Li et al. [104] found that

the efficiency of energy conversion is dependent on the orifice size and on the operating

conditions (namely, voltage and frequency) showing a peak (of about 40% for the 15mm

orifice) close to the mechanical resonance frequency of the actuator. They claim that

the uncertainty of their experimental evaluation was of about 34%.

The aim of the present chapter is to assess a rigorous and comprehensive physical ap-

proach to the evaluation of the efficiency of piezo-electrically driven synthetic jet ac-

tuators, based on the rather detailed modelling of the actuator dynamics, described in

the previous chapter. The peculiarity of the present approach is that the energy bal-

ance equation, properly averaged over the actuation period, is derived directly from the

equations governing the dynamics of the actuator. The advantage is that the presence of

each term of the resulting energy balance draws its justification from the corresponding

dynamics term and, in principle, there is no need to perform experimental measurements

to evaluate the actuator efficiency at the orifice exit section. Since the physical model

described in the previous chapter has been tested and calibrated against a systematic

experimental campaign, the uncertainty of the efficiency estimation should be reduced.

The modelling is validated against numerical as well as experimental investigations car-

ried out on the aluminum 2 device.

The treatment described hereafter has been arisen by [105] (see Appendix)
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4.1 Derivation of the energy balance equation and defini-

tion of efficiency

Multiplying the equation (3.1) by the membrane velocity ẋw, yields:

dEw
dt

= Fẋw − piAwẋw − cwẋ2
w (4.1)

where Ew is the diaphragm energy defined as

Ew =
1

2
mwẋ

2
w +

1

2
kwxw

2 (4.2)

that takes into account both kinetic and elastic strain contributions.

The unsteady Bernoulli’s equation (3.13) can be expressed in the following way

Ma
dU

dt
= piAo −

1

2
KρaAoU |U | (4.3)

Similarly, the product between the equation (4.3) and the jet exit velocity U yields

dEo
dt

= piAoU −
1

2
KρaAo|U |3 (4.4)

where Eo is given by

Eo =
1

2
MaU

2 (4.5)

and represents the kinetic energy flow rate of the air mass through the orifice.

The (instantaneous) energy balance equation of the actuator system can be obtained by

summing the equations (4.1) and (4.4). Moreover, since we are interested in character-

izing the actuator behavior over an operating cycle, it is convenient to apply the time

average operator on the resulting equation, defined as

ϕ̄ =
1

τ

∫ τ
0
ϕdt (4.6)

where ϕ is the generic time-dependent variable.
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The energy balance equation averaged over an actuation cycle (i.e., over a time equal to

the period τ ) is given by

1

τ

∫ τ
0
d(Ew + Eo)︸ ︷︷ ︸

∆E

=
1

τ

∫ τ
0
Fẋwdt︸ ︷︷ ︸
P̄e

+
1

τ

∫ τ
0
pi(AoU −Awẋw)dt︸ ︷︷ ︸

P̄m

− 1

τ

∫ τ
0
cwtẋ

2
wdt︸ ︷︷ ︸

D̄s

− 1

τ

∫ τ
0

1

2
(K − 1)ρaAo|U |3dt︸ ︷︷ ︸

D̄f

− 1

τ

∫ τ
0

1

2
ρaA0|U |3dt︸ ︷︷ ︸
P̄k

(4.7)

An accurate description of the various contributions of equation (4.7) is reported here-

after:

• ∆E is the total energy variation. Note that this term is null because, for each

cycle, there is no change for Ew and Eo.

• P̄e is the electrodynamic power provided to the membrane by the applied voltage.

• P̄m is the mechanical power due to the work done by the differential pressure

pi which acts on the wall surface Aw and on the orifice surface Ao. By using the

equation (3.17), it can be shown that this term is proportional to 1
2(pi

2(τ )−pi2(0))

and, therefore, it does not give any contribution because pi assumes the same value

at the beginning and end of each cycle. One can reach the same result by observing

that the pressure work is conservative by definition.

• D̄s is the power dissipation due to the structural damping effects of the membrane.

• D̄f is the power dissipation due to the head loss of fluid dynamics type at the

orifice.

• P̄k is the kinetic power of air flow at the orifice. Note explicitly that the kinetic

power here refers by definition to the entire cycle, i.e. the suction phase included.

Then, by deleting ∆E and P̄m terms, the equation (4.7) becomes

P̄e − D̄s − D̄f − P̄k = 0 (4.8)

and, once defined the kinetic efficiency ηc as the ratio of the kinetic power of the exit

flow P̄k to the electrodynamic power P̄e, one obtains

ηk =
P̄k
P̄e

= 1−
D̄s + D̄f

P̄e
(4.9)
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It is worthwhile to stress that in practice the global efficiency of an actuator has to

quantify the amount of Joule power provided to the system P̄j that is actually converted

in P̄e. This can be done by introducing the electrodynamic transduction efficiency ηe

ηe =
P̄e
P̄j

(4.10)

Hence, finally, one can define the (global) efficiency of the actuator η as the product of

ηk by ηe

η = ηkηe =
P̄k
P̄j

(4.11)

where the external Joule power supply P̄j provided to the actuator is calculated as

P̄j =
1

τ

∫ τ
0
V Idt (4.12)

with V = Va sinωt being the applied voltage and I the electric current flowing through

the piezo-electric element.

The rate of P̄j not turned into P̄e is converted into a variation of internal energy Q̇ of the

air inside the cavity (heat generation per unit time), which is transferred in part to the

external ambient through a natural convection mechanism, and, in part, into enthalpy

flow rate of the air leaving the orifice

P̄j − P̄e = Q̇ ≡ hAe∆T + ṁcp∆T (4.13)

where h is the convective heat transfer coefficient by natural convection, Ae is the ex-

change surface (which depends on the relevant geometry of actuator), ∆T is the average-

per-cycle temperature difference between the system and the colder surrounding external

air, ṁ = ρaŪAo where Ū is the average velocity associated to the stroke length (eq. 1.2),

and cp is the specific heat coefficient at constant pressure. For the sake of simplicity it

has been assumed that the air inside the cavity is isothermal with the device case.

From equation (4.13) one obtains also

ηe = 1− Q̇

P̄j
(4.14)

4.2 Validation of the model and results

For the aluminum 2 device, the modeling developed before has been employed to es-

timate the various contributions of the energy budget equations (4.7, 4.8) by carrying
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Figure 4.1: Sketch of the experimental setup.

out direct numerical simulations of the governing equations (3.16, 3.17, 3.18). For a

proper operating frequency f , the time trends of the relevant quantities, in practice the

membrane velocity and the air velocity at the orifice exit, have been used to evaluate,

ultimately, the energy conversion efficiencies (4.9, 4.10, 4.11). The time averages here

performed refer typically to the 23th cycle.

For a given operating voltage, the evaluation of the Joule power supply (equation (4.13))

needs the knowledge of the current intensity. This has been done by means of the

theoretical relationship

It = 2πfCVa (4.15)

where It denotes the theoretical current intensity peak, and C is the electric capacitance

of the piezo-ceramic disk (furnished by the manufacturer). To verify this estimation, the

current intensity peak has been also measured directly by means of the experimental

apparatus sketched in Fig. 4.1. A waveform generator (Wavetek model 164) creates an

electrical sinusoidal signal which is amplified (by EPA 104 PIEZO System inc. unit)

and sent to the synthetic jet device. Voltage and current are acquired by a two channels

oscilloscope (Tektronix tds 2024).

In Table 4.1, experimental measurements of the electric current peak Ie are compared

to the corresponding theoretical values It. The data spread is generally less than 9%

except for Va = 50V , for which it appears to be about 13%.
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Table 4.1: Comparison of theoretical current peak with measured data (Ampere)

Va(V ) It(A) Ie(A)

25 0.038 0.036
30 0.045 0.044
35 0.052 0.054
40 0.059 0.056
45 0.066 0.060
50 0.073 0.064
55 0.079 0.074
60 0.085 0.080
65 0.093 0.086
70 0.099 0.094
75 0.106 0.104

Table 4.2: Efficiencies and dissipation terms at modified Helmholtz frequency

Va(V ) ηk(%) ηe(%) η(%) D̄f/P̄e(%) D̄s/P̄e(%)

25 79.6 90.7 72.2 11.1 9.3
30 79.8 85.4 68.1 11.2 8.7
35 79.5 79.6 63.3 11.1 8.7
40 79.3 74.8 59.3 11.1 8.8
45 80.2 69.6 55.8 11.2 7.9
50 79.6 66.8 53.2 11.1 8.1
55 81.3 64.2 52.2 11.4 7.8
60 81.7 59.1 48.3 11.4 7.2
65 80.8 58.8 47.5 11.3 7.8
70 79.7 54.6 43.5 11.2 7.7
75 80.8 51.5 44 11.3 7.8

The efficiency values computed for the tested device at the modified Helmholtz resonance

frequency (which is of 900Hz, as reported in the previous chapter) are listed in Table

4.2, together with the two power dissipation terms.

As one can observe (Table 4.2), the influence of the driving voltage is rather weak for

ηk, D̄f/P̄e and D̄s/P̄e ; conversely, ηe decreases with increasing Va, thus determining the

same trend for the global efficiency η. For the sake of completeness, to give the reader

the possibility to check the calculations, the following additional parameters have been

considered, according to the complete description of the actuator under examination

made in the previous chapter: ρa = 1.205 Kg/m3; kw = 9.48 · 104 N/m; dA = 4.01 ·
10−9 m3/V ; cwt = 2.75 Ns/m, evaluated at the frequency of 900Hz.

Hereafter it will show that the trends against voltage of the quantities shown in Table

4.2 are well fitted by simple power laws which, in turn, can be justified on the basis of

scaling theoretical considerations.
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Figure 4.2: Kinetic power at orifice exit versus voltage. Circle symbols are computed
data, continuous line represents eq. (4.16)

From the numerical integration of the governing equations it has been found that the

variations of exit kinetic power and electrodynamic power follow the following trends

P̄k ≈ Va1.8 (4.16)

P̄e ≈ Va1.8 (4.17)

as is depicted in Figs. 4.2 and 4.3, respectively, where circle symbols refer to computed

data e continuous lines refer to the analytical relationships. Therefore, being ηk given by

the ratio between two quantities both proportional to Va
1.8, it does not depend on Va.

Since one expects that D̄f has the same scaling law as P̄k, the fluid dynamic dissipation

rate D̄f/P̄e is constant too. Indeed, according to their definitions in equation (4.7), P̄k

and D̄f vary as U3
0 and P̄e as F0ẋw0 (with U0 and ẋw0 being the fluid and membrane

peak velocities, respectively), and therefore one could expect that they scale as V 3
a and

V 2
a , respectively. However, due to the complex coupling between the two oscillators, the

membrane and the acoustic one, in the presence of significant non linear damping acting

on the acoustic one, such theoretical laws are remarkably modified. Here it has been

that U0 ≈ Va
0.6 and ẋw0 ≈ Va

0.8. Since F0 scales with Va, the scaling relationships of

equations (4.16) and (4.17) are justified.

Fig. 4.4 shows that the Joule power, evaluated experimentally, increases with increasing

the voltage amplitude following a power law of the kind

P̄j ≈ Va2.3 (4.18)
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Figure 4.3: Electrodynamic power versus voltage. Circle symbols are computed data,
continuous line represents eq. (4.17)

Note that if the behavior of the piezo-ceramic element was governed perfectly by the

Ohm’s law, i.e. if the capacitance was constant, P̄j would be directly proportional to

Va
2. In effect, the relationship (4.18) tells us that the piezo-element capacitance varies

as a function of the voltage and, furthermore, that the output instantaneous current is

a distorted sine wave.

Finally, as depicted in Fig. 4.5, the behavior of the transduction coefficient ηe defined

by equation (4.10) and relating the Joule power to the electrodynamic one, taking into

account also the relationship (4.17), is well fitted by a power law of the following type

ηe ≈ Va−0.5 (4.19)

A similar trend holds for the global efficiency η (equation (4.11)).

Hereafter this section will end with some practical remarks. Remember that the kinetic

power defined by equation (4.7), and the related kinetic efficiency of equation (4.9),

refer by definition to the entire cycle, i.e. the suction phase included. In effect, in some

specific applications where, for instance, the final goal is to obtain a proper trust linked

to the downstream momentum flux, or in heat transfer situations where the goal is to

achieve a proper jet Reynolds number based on the stroke length velocity of equation

(1.2), the kinetic power should be referred to the ejection phase only and evaluated just

downstream of the so called saddle point, namely the stagnation point along the jet axis

separating, during the suction phase, the ingestion near field and the ejection far field.

Of course, an accurate evaluation of the time variation of the jet velocity at the saddle
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Figure 4.4: Measured Joule power versus voltage. Circle symbols are experimental
data, continuous line represents eq. (4.18)
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point could be made by proper measurements (e.g., by means of PIV techniques) or by

detailed CFD computations. However, according to the experimental findings of Smith

and Glezer [9], one can admit that the jet velocity peak is about the same as the air

velocity peak at the orifice; thus, under the assumption of sine temporal variation of the

jet velocity just downstream of the saddle point during the ejection phase, one could

conclude that the kinetic power is roughly speaking the half of the quantity estimated

by equation (4.7). In practice, due both to a temporal distortion of the velocity signal

from the sine trend, and to addition fluid dynamic dissipations in the external air field,

the kinetic power can lower down to about 1/3 of the quantity defined in equation (4.7).

Thus, the values of efficiency reported in Table 4.2 should be reduced by a factor ranging

from 1/2 to 1/3 accordingly. For instance, the global efficiency of 44% corresponding to

the voltage of Va = 75V would be reduced down to about 15%.

Moreover, when a numerical modelling is not available to estimate the electrodynamic

power, the electric efficiency can be evaluated through the equivalent relationship (4.14),

which requires essentially the measurement of the mass flow rate of air at the orifice, the

Joule power and the average-per-cycle temperature difference between the system and

the colder surrounding external air ∆T introduced in equation (4.13). Here equation

(4.13) has been employed within a reverse procedure to estimate ∆T . If we assume

h = 10W/m2, which is a typical value in natural convection, for the standard value of

the specific heat coefficient at constant pressure at ambient temperature, ∆T ranges

from 0.02◦C (corresponding to the lower voltage) to 0.78◦C.



Conclusions

This thesis has been aimed to yield insights on the frequency response of synthetic jet

actuators driven by piezoelectric thin elements by using a lumped-element mathematical

model. The model is fluid-dynamics based, and although its genesis is inspired by an

analogous model of previous literature, it is innovative because it needs in input just

electromechanical properties easily available from the commercial data sheet of the ma-

terials. For a certain class of devices, a numerical fitting parameter only is required,

namely the electroacoustic transduction coefficient φa, which is the ratio of the effective

acoustic piezoelectric coefficient to the acoustic compliance. From this viewpoint, the

proposed model represents a practical tool for the overall design of the actuator. Among

other quantities, the model can yield the frequency response characteristics of synthetic

jet devices in terms of membrane displacement, pressure cavity, and exit jet-flow veloc-

ity. The computer code has been validated via comparisons with both analytical and

experimental parallel investigations.

In the analytical study, the actuator has been idealized as an acoustic-mechanical system

of two-coupled oscillators, and simple but rather accurate relationships have been given

to predict the two peak frequencies, corresponding to the modified Helmholtz and first-

mode structural resonance frequencies. Scaling laws of the distance between the two

resonance frequencies as a function of the nondimensional cavity height H/do have been

yielded. It is found that the role of the coupling effects is twofold; on one hand, they

modify the nominal Helmholtz and structural resonance frequencies, and on the other

hand, they introduce crossed linear reaction terms driving mutually the oscillators. The

system suffers a nonlinear damping due to entrance head losses, which are proportional

to the head loss coefficient and inversely proportional to the effective orifice length.

The analytical investigation has been completed by inspecting the dimensionless form of

the governing equations, which introduce two characteristic parameters: the frequencies

coupling factor and the Strouhal number. The study showed that the acoustic oscillator

is always driven by the membrane dynamics, while there exist conditions under which

the membrane behavior is decoupled from the Helmholtz oscillator. The case of St� 1

is very interesting too. It physically corresponds to acoustically thin cavity and, for a
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given device, occurs at relatively low operation frequencies. In this decoupled regime it

has also been found that the behavior of the actuator is well described by the so called

incompressible model, where the air volume rate entering the cavity as a consequence of

the membrane displacement equals the air volume rate leaving the cavity through the

orifice.

To perform comparisons with numerical data, various measurement campaigns have been

carried out on three different actuators especially designed and manufactured to the

purpose. The devices make use of brass or aluminum shims and standard piezoelectric

disks driven by a sine input voltage. They have been designed essentially to achieve an

increasing coupling ratio. A digitized pitot probe has been also used to measure the jet

velocity in the external field at a location approximately coincident with the saddle-point

(i.e., about one orifice diameter downstream of the exit section).

The overall comparison among numerical and analytical as well as experimental findings

is quite satisfactory. In particular, the predictions of the peak frequencies made by using

the simple analytical relationships are confirmed by both the numerical computations

and the various measurements. For the device exhibiting the strongest coupling, a

perhaps not expected result is that the jet velocity peak occurs for the highest cavity

height. The present study has confirmed the crucial role played by the nonlinear damping

term on the acoustic (Helmholtz) oscillator of the model in reducing or suppressing the

corresponding resonance peak. The numerical code has been, in general, calibrated on

jet velocity data by using K = 1.14 and ∆le = 0.62.

A comprehensive and detailed physical modelling to evaluate the efficiency of synthetic

jet actuators, driven by piezoelectric effect. This approach is original because is based

on relevant energy equations written for both the membrane and acoustic oscillators,

which are derived from the corresponding motion equations.

It has been shown that the global efficiency, which is defined as the ratio of the useful

kinetic power to the input Joule power, can be expressed as the product of the elec-

trodynamic efficiency (defining the conversion of Joule power to electrodynamic power)

and the kinetic efficiency (defining the conversion of electrodynamic power to kinetic

energy). Both the efficiency can be also estimated in terms of the relevant dissipation

terms. In particular, the electrodynamic efficiency is related to the variation of internal

energy of air inside the cavity, or heat generation, which is dissipated towards the exter-

nal ambient both by natural convection on the walls of the actuator case, and through

the enthalpy flow rate traversing the orifice. On the contrary, the kinetic efficiency is

produced by fluid dynamics and structural dissipations.



The physical model has been validated against experimental measurements carried out

on a built-in-house device having the piezo-ceramic disk glued on an aluminum shim.

Combined numerical and experimental investigations allowed us to find that, for the

particular actuator under examination, analyzed at modified Helmholtz frequency, the

kinetic efficiency does not vary with applied voltage, whereas the electrodynamic effi-

ciency scales with the reciprocal of the voltage square root. These trends have been also

justified according to theoretical scaling laws discussed for each relevant power term.

A discussion has been made on the connection between the energy conversion efficiency at

orifice (which is the base subject of the present paper) and the corresponding efficiency

in the external jet field, estimated approximately at the stagnation point (or saddle

point) separating, during the suction phase, the ingestion near field from the ejection

far field. It has been argued that the saddle point efficiency is lower than the orifice

efficiency by a factor that can range from 1/2 to 1/3.

Finally, it has been shown that the electrodynamic efficiency can be conveniently evalu-

ated by measuring, among other standard quantities, the average-per-cycle temperature

difference between the air inside the cavity and the external ambient. In the present

application a reverse procedure allowed us to evaluate such a temperature difference,

which is limited to a maximum of almost one degree centigrade.
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The most relevant conference/journal papers published during the research activity are

hereafter collected.
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A lumped-element mathematical model of the operation of a synthetic jet actuator driven by a thin piezoelectric

disk is both analytically and numerically investigated to obtain information about the frequency response of the

device. It is shown that the actuator behaves as a two-coupled oscillator system, and simple relationships are given to

predict the two peak frequencies, corresponding to the modified Helmholtz and first-mode structural resonance

frequencies. The model is validated through experimental tests carried out on three devices having different

mechanical and geometrical characteristics, designed primarily to achieve an increasing coupling strength. A strict

agreement between overall theoretical scaling laws and numerical computations is also found.

Nomenclature

Ao = orifice area
Aw = diaphragm/membrane wall area
Cac = acoustic compliance of the diaphragm
ca = added diaphragm damping coefficient
cw = diaphragm damping coefficient
cwt = total diaphragm damping coefficient
dA = effective acoustic piezoceramic coefficient
do = orifice diameter
dpc = piezoceramic diameter
dw = diaphragm diameter
Epc = Young’s modulus of the piezoceramic
Ew = Young’s modulus of the diaphragm shim
F = force
Fo = force amplitude
f = frequency
fh = Helmholtz resonance frequency
fw = diaphragm (structural) resonance frequency
~fw = frequency of the principal mode of vibration of a rigidly

clamped disk
f1 = modified structural resonance frequency without

damping
f1d = modified structural resonance frequency with damping
f1P = modified structural resonance frequency by Persoons
f2 = modified Helmholtz resonance frequency without

damping
f2d = modifiedHelmholtz resonance frequencywith damping
f2P = modified Helmholtz resonance frequency by Persoons
H = cavity height
K = head loss coefficient
ka = air equivalent stiffness
kw = diaphragm equivalent stiffness
le = effective length of the orifice
lo = orifice length
Ma = mass of the air at the orifice
ma = added mass
mw = diaphragm mass

mwt = diaphragm total mass
p = differential pressure
pi = cavity (internal) differential pressure
po = ambient pressure
thpc = piezoceramic thickness
thw = diaphragm thickness
U = instantaneous orifice jet-flow velocity
Ue = cycle-averaged jet-flow velocity at saddle point
Umax = jet-flow velocity peak at orifice
Va = voltage amplitude
Vc = cavity volume
γ = specific heat ratio
Δle = additive constant of the effective orifice length
Δxw = average linear membrane displacement
ΔV = cavity volume variation
ζw = diaphragm damping ratio
νw = Poisson’s modulus of the diaphragm
νpc = Poisson’s modulus of the piezoceramic
ρa = air density
ρw = diaphragm density
ϕa = electroacoustic transduction coefficient
ω = 2πf, circular frequency
ωh = 2πfh
ωw = 2πfw
ωwp = frequency of the pneumatic spring
ω1;2 = 2πf1;2

I. Introduction

T HE scientific and technical literature quotes documents about
the so-called synthetic jets (whose physical principles appear

nowadayswell established andwill not be recalled hereafter) since no
more than two decades. Nevertheless, the bulk of such a literature is
remarkably thick and includes a very wide field of applications such
as flow control (perhaps the early one), heat transfer from small-size
surfaces, overall enhancement of mixing between fluid currents,
generation ofmicrothrust for propulsion or attitude control of amicro
aerial vehicle. We limit to cite here the review papers of Glezer and
Amitay [1] and Cattafesta and Sheplak [2]. The interested reader can
of course refer to the related literature. Regarding present authors,
previous contributions dealt with the direct numerical simulation of
jet vectoring, as described by Mongibello et al. [3], and a design
procedure of synthetic jet actuator to be employed as heat transfer
device, as reported by Monaco et al. [4].
Besides classifying the articles dealing with synthetic jets on the

basis of their application field, it is also helpful to differentiate them
between applicative papers (i.e., papers devoted to the development
and description of a particular application) and design papers (i.e.,
papers oriented toward the description of the device design able to
yield suitable operating characteristics). The present paper belongs to
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the second category and is aimed, in particular, at characterizing the
frequency response of a synthetic jet actuator driven by a thin lead
zirconate titanate (LZT) piezoelectric disk.
The overall design of the actuator needs practical modeling tools.

The first significant lumped-element model of a piezoelectric-driven
synthetic jet device is described by Prasad [5] and Prasad et al. [6]. By
resorting to the approach based on the equivalent electric circuit,
these authors developed a modeling of the electromechanical
behavior of the piezoceramic composite membrane and gave detailed
relationships for the transverse deflection of the inner and outer
membrane regions in the simultaneous presence of applied voltage
and pressure load. They were able to evaluate both the short-circuit
compliance and the effective acoustic piezoelectric coefficient.
Gallas et al. [7] modeled the individual components of the actuator as
elements of an equivalent electric circuit by using conjugate power
variables. On the basis of practical considerations made on the
relationships found by Prasad [5], they noted that, in a lumpedmodel,
one may use the acoustic compliance of the shim only reduced by a
proper factor depending on the ratio of the radius, thickness, and
Young’s modulus of the piezoceramic and shim materials. They
showed a very good agreement between the predicted and measured
frequency response functions. Later on, Sharma [8] proposed a
different model directly based on the basic equations of fluid
dynamics, where the oscillating membrane is considered as a single-
degree-of-freedom mechanical system, while the cavity-orifice
component is described by means of proper forms of the continuity
and Bernoulli’s unsteady equations. Sharma [8] validated his model
on the very same experimental data of Gallas et al. [7]. One of the
most significant experimental investigations on the frequency
response of a synthetic jet cavity is due to Chaudhari et al. [9], who
carried out systematic measurements about the effects of the
excitation frequency on the ejection and suction velocities, by
varying the geometrical parameters of the cavity. The paper of
Krishnan and Mohseni [10] was oriented essentially to the study of
the characteristics of the flowfield produced by a round synthetic jet
by using detailed numerical simulations of the turbulent Navier–
Stokes equations. To validate their numerical results, they carried out
also interesting experimental measurements of the centerline
deflection of the membrane by evidencing its nonlinear dependence
on the excitation frequency and driving voltage. Seeley et al. [11]
described a simplified fluid–structure interaction model based on the
implementation of commercial finite-element codes and proved its
validity at relatively low frequency, namelywell below theHelmholtz
frequency. To our knowledge, the last very significant contribution is
the recent paper of Persoons [12],who proposed a low-ordermodel of
prediction of the frequency response of synthetic jet actuators driven
by electromagnetic or piezoelectric supply. Based on the equivalent
circuit approach, the model yields analytical expressions for the two
resonance frequencies, as a function of the structural and Helmholtz
resonance frequencies. The investigation of Persoons [12] is corrob-
orated by a parallel campaign of experimental tests.
At the time, when the present authors were preparing their

manuscript, they were not aware of Persoons’s paper [12], which
undoubtedly shows very strong analogieswith the aims of the present
one. However, one has to consider that the lumped-element modeling
hereafter presented is of fluidic type, that is to say it is directly based
on the fluid-dynamics equations. Thus, one can say that the present
(in principle alternative) contribution approaches the frequency
response analysis from the same perspective as Sharma’s work [8],
whereas Persoons’s contribution [12] follows more directly the
Gallas et al. [7] perspective. As a matter of fact, the analytical
relationships for the two resonance frequencies characterizing the
overall system response (as a function of the structural andHelmholtz
resonance frequencies) presented in the present work are different
from those of Persoons [12], although both approaches yield predic-
tions generally in close agreement with numerical and experimental
findings.
This paper is outlined as follows. Section II describes the lumped-

element modeling, giving the equations for the oscillating membrane
(which is considered as a single-degree-of-freedom mechanical
system) and the cavity-orifice component (which is described by

means of proper forms of the continuity and Bernoulli’s unsteady
equations). The analytical relationships for the coupled resonance
frequencies are obtained in Sec. III. The numerical approach is
summarized in Sec. IV, while the experimental one is presented
in Sec. V, together with the description of the tested actuators.
Section VI overall reports the comparisons of experimental,
numerical, and analytical findings, and finally Sec. VII yields further
numerical insights mainly devoted to investigating the influence of
the cavity height. The conclusions are summarized in Sec. VIII.

II. Description of the Model

The model described hereafter is essentially derived from the
original paper of Sharma [8], who models the three basic elements
of the actuator: the oscillating membrane (diaphragm or wall,
constituted by a thin round metal shim on which a smaller diameter
piezoceramic disk is bonded), the cavity, and the orifice. The peculiar
contributions of the present paper will be evidenced only, with the
description of the modeling details being left to Sharma’s [8] paper.
The dynamics of the diaphragm is described through the motion

equation of a one-degree-of-freedom forced-damped spring–mass
system [8]:

mwt �xw � cwt _xw � kwxw � F − piAw (1)

where mwt � mw �ma is the total mass (with mw being the
oscillating diaphragm mass, including both the shim and the piezo
element, and ma the added mass term); xw�t� is the diaphragm
position at a generic time instant t, and superscript dot stands for time
derivative; cwt � cw � ca is the total damping coefficient (with cw
being the structural damping coefficient, and ca is a further damping
coefficient due to the interaction with the external air); kw is the
equivalent spring stiffness; F � Fo sin ωt is the electrodynamic
force (communicated to the membrane by the piezoelectrical
element), with Fo being the force magnitude and ω the circular
frequency of the applied voltage (often the natural or cyclic frequency
f � ω∕2πwill be used hereafter);pi is the differential (relative to the
unperturbed external atmosphere) pressurewithin the cavity (internal
pressure); and Aw is membrane wall area. The added mass terms are
evaluated bymeans of the procedure of Kinsler et al. [13], as reported
by Sharma [8]. Following Sharma, the “pure” mechanical damping
ratio is assumed equal to 0.03.
The equivalent spring stiffness of the diaphragm can be obtained as

kw � mw�2π ~fw�2 (2)

where ~fw is the frequency of the principal mode of vibration of a
rigidly clamped disk. Although the presence of the piezoceramic
element bonded to themetal shim enhances the flexural rigidity of the
membrane (and, in principle, the very thin layer of glue should be
taken into account as well), for standard operating conditions, ~fw can
be referred to the first fundamental mode of the shim only (that is,
the membrane structural element actually clamped) and calculated
by using the standard formula reported in many textbooks (among
others, Kinsler et al. [13]), and used by other authors (e.g., by
Rathnasingham and Breuer [14]):

~fw �
10.2

π
���
3
p thw

d2w

�����������������������
Ew

ρw�1 − ν2w�

s
(3)

in which thw, dw, Ew, ρw, and νw are, respectively, the thickness,
the diameter, Young’s modulus, the density, and Poisson’s ratio of
the shim. Note that the operation at frequencies higher than the
fundamental one is not convenient because the membrane produces
little net displacement of the surrounding air.
The amplitude of the forcing Fo is obtained conveniently as

Fo �
kwdAVa
Aw

� kwΔxw (4)
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where dA is the effective acoustic piezoelectric coefficient that
represents the ratio between the cavity volume variation ΔV and the
applied voltage Va, when the driving differential pressure p is equal
to zero [6]:

dA �
ΔV
Va

����
p�0

(5)

Note that, in the previous equation [Eq. (4)], the cavity volume
variation ΔV � dAVa is divided by the membrane area Aw to obtain
the average linear membrane displacement Δxw (to be multiplied by
kw to obtain Fo).
The coefficient dA could be evaluated analytically by means of the

distribution of the transverse displacement of the composite
diaphragm [5,6]. This procedure is not practical due to the difficulty
of determining the required coefficients. An alternative way consists
in determining the acoustic compliance of the membraneCac, which,
through a dual definition of dA, is given by the ratio of the volume
variation ΔV to a uniformly distributed pressure load p, in the
condition of an electrical short circuit [6]:

Cac �
ΔV
p

����
Va�0

(6)

Of course, the evaluation of Cac would require the same difficulties.
However, one can refer to the acoustic compliance of a homogeneous
circular plate (namely, having the properties of the metal shim or
those of the piezoceramic) that yields insight into the scaling behavior
of the diaphragm [7] and ultimately obtain dA by means of the
relationship

dA � Cacϕa (7)

in which ϕa is the electroacoustic transduction coefficient [6].
In the present work, we made reference to the piezoceramic

properties, thus

Cac �
ΔV
p

����
Va�0

�
πd2pc�1 − ν2pc�
1024Epcth

3
pc

(8)

with thpc, dpc, Epc, and νpc being, respectively, the thickness, the
diameter, Young’s modulus, and Poisson’s ratio of the piezoceramic.
The electroacoustic transduction coefficient ϕa has been consid-

ered here as a fitting parameter of the present model (the only one) to
be determined by optimizing the agreement between numerical and
experimental data. Numerical values of ϕa will be reported hereafter,
while showing the comparison of computer simulation and
experimental results.
For future purpose, it is convenient to divide Eq. (1) by mwt, thus

obtaining

�xw � 2ζwωw _xw � ω2
wxw � ω2

wΔxw sin ωt −
piAw
mwt

(9)

where ζw and ωw are respectively given by

ζw �
cwt

2
��������������
mwtkw
p (10)

ωw �
���������
kw
mwt

s
(11)

ζw is the actual damping ratio, in which both cwt and mwt take into
account the motion of the surrounding air. ωw � 2πfw represents
the (first mode) structural circular frequency of the composite
diaphragm.
The second equation of themodel is essentially the conservation of

mass in the cavity under the assumption of zero-dimensional

(lumped) system. By relating the density and pressure variations by
means of an isentropic compression/expansion transformation, the
continuity equation can be formulated as [8]

Vc
γpo

dpi
dt

− Aw _xw � −AoU (12)

where Vc � AwH is the cavity volume (H being the cavity height),
Ao is the orifice area, γ is the specific heat ratio of air,po is the external
ambient pressure, and U is the instantaneous flow velocity through
the orifice.
The application of the unsteady Bernoulli’s equation, between a

point inside the cavitywhere the flow velocity is practically null and a
point just outside the cavity representing the location where the
pressure matches the unperturbed external ambient value, yields the
third equation of the model [8]:

�U� K
le
jUj _U� ω2

hU �
Aw
Ao

ω2
h _xw (13)

in which K is the head loss coefficient, including the inviscid
contribution (equal to unity) due to the kinetic energy recovery at
ambient pressure, minor (entrance/exit) losses, and distributed losses
due to friction inside the orifice duct. The distance between the two
points of application of the Bernoulli’s equation, i.e., the modified
(effective) length of the orifice le, is basically evaluated according to
the description of Sharma [8], namely

le∕d0 � l0∕d0 � Δle (14)

Typically, we adopted Δle � 0.62. Values of the additive constant
greater than 0.62 have been also used in some computations. Further
considerations will be made when carrying out the comparison
between experimental and numerical data.
The choice of the values to be attributed to the head loss coefficient

and to the effective length of the orifice constitutes a key point of the
model, and it is very critical because it needs detailed information
about the complex unsteady flowfield inside the reduced size cavity
and orifice. Because of the very short length of the orifice the
frictional distributed losses are definitely negligible. The sharp-
edged geometry of both internal and external orifice sections would
suggest the standard value of 0.5 for the entrance loss coefficient
during both the ejection and suction phases. By following the same
reasoning the exit loss contribution should be equal to about unity.
However, the presence of the saddle point outside the cavity, located
about one diameter away from the orifice exit, and the very short
cavity heightH adopted in the prototype devices realized to validate
experimentally the present model, allows us to argue that there is
practically no dissipation at the orifice exit section; hence, the minor
exit losses will be neglected. As far as the evaluation of the
contribution of the minor entrance losses is concerned, first one
should consider that Raju et al. [15] developed a reduced-ordermodel
to evaluate the orifice pressure drop in the oscillatory flow of a
synthetic jet actuator, as a function of the Stokes number (repre-
senting the importance of unsteady versus viscous effects). They
found that, beyond a certain critical threshold of Stokes number, the
pressure loss coefficient drops by a factor of about 3. Unfortunately,
their finding cannot be applied here on a quantitative basis because
themodel of Raju et al. [15] refers to a two-dimensional slot. Another
very valuable contribution of literature is given by Persoons [12],
who furnished for both circular and slot orifices values from direct
experimental measurements and values obtained from a best-fitting
procedure tomatch computed andmeasured coefficients. For circular
geometry in the former case, he foundK � 1.14, and in the latter one,
K � 1.25. We decided to adopt the value K � 1.14 for all the
computations hereafter presented. Note further that Rathnasingham
and Breuer [14] assumed K � 1, while Sharma [8] used K � 0.78.
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The so-called Helmholtz frequencyωh is usually recognized to be

ωh �

����������������������
γA2

opo∕Vc
ρaleAo

s
�

�������
ka
Ma

s
(15)

where ka andMa are, respectively, the equivalent stiffness of the air
inside the cavity, ka � γA2

opo∕Vc, and the effectivemass of the air at
the orifice,Ma � ρaleAo.
For the sake of convenience, the three differential equations that

describe the dynamics of the actuator are summarized next:

�xw � 2ζwωw _xw � ω2
wxw � ω2

wΔxw sin ωt −
piAw
mwt

(16)

Vc
γpo

dpi
dt

− Aw _xw � −AoU (17)

�U� K
le
jUj _U� ω2

hU �
Aw
Ao

ω2
h _xw (18)

III. Evaluation of the Coupled Natural Frequencies
(Analytical Approach)

The behavior of the synthetic jet actuator can be described by
the dynamics of two mutually coupled oscillators; the first one,
describing the membrane displacement xw, is characterized by its
uncoupled natural frequency ωw, while the second one, the acoustic
oscillator, describing the dynamics of the mass of air at the orifice,
Ma, through its velocity U, is characterized by the its natural
frequency ωh. The system of Eqs. (16–18) shows that both the
dynamics of the membrane and of the orifice air mass are forced by
the cavity pressure, which couples them by means of the continuity
equation [Eq. (17)]. An external forcing due to the supply power also
acts on the membrane dynamics. To investigate in more detail the

coupling of the two oscillators, it is convenient to reformulate the
equations.
By taking the time derivative of Eq. (16), in which both the added

mass and the additional damping coefficient are independent of the
time, and by eliminating the pressure derivative bymeans of Eq. (17),
one obtains

x
: : : � 2ζwωw �x� �ω2

w � ω2
wp� _x −

Ao
Aw

ω2
wpU � ω2

wΔxwω cos ωt

(19)

which is coupled with the Eq. (18). Note that another characteristic
frequency ωwp is introduced in Eq. (19), defined as

ωwp �

�����������������������
γA2

wpo∕Vc
mwt

s
�

��������������
γAwpo
mwtH

s
(20)

which, according to Sharma [8], may be interpreted as the natural
frequency of the pneumatic springmade of the air enclosedwithin the
cavity of volume Vc and of the diaphragm mass mwt. Note that the
height of the cavity, H, is explicitly introduced.
After introducing the positions x1 � _xw, x2 � U, b1 � 2ζwωw,

b2 � K∕le, k11 � ω2
w � ω2

wp, k12 � −Aoω2
wp∕Aw, k21 � −Awω2

h∕
Ao, k22 � ω2

h, the following governing system is finally written:

�x1 � b1 _x1 � k11x1 � k12x2 � ω2
wΔxwω cos ωt (21)

�x2 � b2jx2j _x2 � k21x1 � k22x2 � 0 (22)

As shown by Eqs. (21) and (22), the coupling of the two oscillators is
of the elastic type; apart from the mutual influence of the two
oscillators represented by the off-diagonal terms (that scale with
�dw∕do�2), one may note that the diagonal stiffness element k11
results to be modified compared with the uncoupled case by a factor
1� CR, where CR is the coupling ratio, defined as

Table 1 Features of the tested devices predicted analytically

Property Brass Aluminum 1 Aluminum 2

Geometry

Shim diameter, mm 35 42 80
Shim thickness, mm 0.4 0.24 0.25
Piezoelectric diameter, mm 23 31.8 63.5
Piezoelectric thickness, mm 0.23 0.191 0.191
Cavity diameter, mm 35 42 80
Cavity height, mm 3–5 3–8 4–7–11
Orifice diameter, mm 2 2 5
Orifice length, mm 2 2 2
H∕do 1.5–2.5 1.5–4 0.8–1.4–2.2
le∕do 1 1 0.4

Shim

Young’s modulus, Pa 9.7 × 1010 7.31 × 1010 7.31 × 1010

Poisson’s modulus 0.36 0.31 0.31
Density, kg∕m3 8490 2780 2780

Piezoelectric

Young’s modulus, Pa 6.7 × 1010 6.6 × 1010 6.6 × 1010

Poisson’s modulus 0.31 0.31 0.31
Density, kg∕m3 8000 7800 7800

Frequency response

fw, Hz 2176 1376 401
f1, Hz 2256 − 2221 1632 − 1462 307 − 297 − 283
f1P, Hz 2241 − 2215 1569 − 1451 426 − 380 − 336
f1d, Hz 2255 − 2220 1632 − 1461 307 − 297 − 283
fh, Hz 1000 − 775 833 − 510 723 − 547 − 436
f2, Hz 964 − 759 702 − 480 944 − 737 − 617
f2P, Hz 971 − 760 730 − 483 680 − 577 − 520
f2d, Hz 964 − 759 702 − 480 944 − 737 − 616
CR 0.06 − 0.04 0.30 − 0.11 1.88 − 1.08 − 0.68
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CR �
�
ωwp
ωw

�
2

(23)

CR represents the ratio of the air stiffness to the membrane stiffness;
on the other hand, by inspecting Eq. (19), it is evident that, ifCR ≪ 1,
the membrane dynamics is decoupled from the acoustic oscillator,
with the variation of cavity pressure vanishing. Furthermore, a linear
damping term appears in the first equation and a nonlinear damping
term in the second one.
To evaluate the coupled natural frequencies, a study of free

vibrations of the systemwill be hereafter carried out; initially, wewill
neglect the nonlinear damping term of the second oscillator, and we
will develop the relevant analytical treatment. However, despite this
simplification, we will show hereafter that the analytical predictions
of the resonance frequencies, even though not corrected rigorously,
are in several circumstances in very good agreement with data
obtained by experimental measurements. Of course, direct numerical
solutions will be also performed, by integrating the fully nonlinear
governing system [Eqs. (16–18)], which will show the crucial role
played by the nonlinear flow damping on the amplitude of the
oscillations, as iswell recognized in the literature, e.g., byGallas et al.
[7] (who attributed to it the absence of the first resonance peak for
their device of case 2), Persoons [12], Kooijman, and Ouweltjes [16].
Thus, after neglecting the nonlinear damping, by introducing the

following state vector

q � f x1 x2 _x1 _x2 gT (24)

and by reformulating the system of Eqs. (21) and (22) in matrix form,
in the absence of forcing (i.e., null voltage), we obtain

f _qg � �A�fqg (25)

where

�A� �

2
664

1 0 0 0

0 1 0 0

−b1 0 −k11 −k12
0 0 −k21 −k22

3
775 (26)

and the natural frequencies of themechanical system are related to the
eigenvalues of the matrix �A�. It should be noted that �A� is a 4 × 4
matrix, and thus we expect to obtain four eigenvalues; with reference
to Eq. (21), because the devices analyzed in the present work satisfy
the condition ζw < 1 (remember that the pure mechanical damping
ratio has been assumed equal to 0.03, and we noted that this value is
not substantially modified by interactions with the ambient air), the
eigenvalues are two pairs of complex conjugate quantities and the
natural frequencies f1d and f2d are of course given by the imaginary
coefficients. For the actuators under analysis, such eigenvalues are
computed numerically and will be shown in the following Table 1.
Moreover, to the aim of obtaining convenient closed-form

analytical evaluations of the natural frequencies, we can make the
further assumption of absence of damping effects (the practical
validity of such an assumption will be considered later, when
discussing the results) so as to obtain the following relationship:

ω2
1;2 �

−�ω2
w � ω2

wp � ω2
h� �

������������������������������������������������������������
�ω2

w � ω2
wp � ω2

h�2 − 4ω2
hω

2
w

q
2

(27)

In conclusion, the natural coupled frequencies in the totally
undamped case are given by

f1;2 �
ωi1;2
2π

(28)

Fig. 1 Pictures of the tested actuators. The brass shim is on the left, and the aluminum shims are on the right.

U

H

Orifice

Vortex
 Train

Synthetic
    Jet

Piezo Membrane

Cavity

l0

d0

dw

le

Fig. 2 Modular structure of a typical device. Fig. 3 Sketch of the experimental setup.
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that yields the relationships of such frequencies as a function of the
first mode structural and Helmholtz frequencies. It is confirmed that,
if CR ≪ 1, the two resonance frequencies tend to those of the
uncoupled oscillators.
In some applications, a desirable operating condition is repre-

sented by a relatively high plateau of fluid ejection velocity over a
rather wide range of frequencies. This condition can be attained by
designing the devices so as to have the two frequencies ω1 and ω2

close to each other. By inspecting the relationship of Eq. (27), it can

be verified that, if ωw ≪ ωh, then the distance between the two
eigenvalues jω2

1 − ω2
2j∕ω2

h does not depend on the cavity height H,
and therefore

jω2
1 − ω2

2j ≃
1

H∕do
(29)

On the contrary, if ωw ≫ ωh, then jω2
1 − ω2

2j∕ω2
h scales with H∕do;

hence

jω2
1 − ω2

2j ≃ const (30)

The numerical results presented in Sec. VII will confirm these
predictions and will show that, for a strongly coupled actuator with
ωh > ωw, the jet-flow velocity is maximized for relatively large
cavity height.
The relationships of Eqs. (27) and (28) are to be compared to the

analogous formulas of Persoons [12] that, indeed, seem to be derived
on heuristic basis. In the next sections, it will be showed that the
values estimated by means of the present relationships are in good
agreement with those measured experimentally as well as calculated
by computer direct simulations.

IV. Numerical Approach

A numerical code has been written in which the governing
equations system [Eqs. (16–18)] has been numerically integrated
by means of a standard fourth-order Runge–Kutta method in the
MATLAB environment with the ode45 routine. Initial conditions of
xw � 0, _xw � 0, pi � 0, and U � 0 have been assumed for all the
computations, and it has been observed that the quasi-steady
oscillatory solution is generally reached in about 20–30 cycles.
The uncertainty errors of the numerical data have been evaluated

especially with respect to variations of the values of the head loss
coefficient as well as of the effective orifice length. For K varying in
the range 1 < K < 1.46, the variations of the resonance frequencies
are restricted within a maximum of 2%, while the corresponding
variations of the velocity peaks are generally of the order of 10%.
In this last case, the exit velocity can be recalibrated by means of
comparisons with experimental data (when available) by adjusting
the fitting parameter ϕa. Note that Persoons [12] assumed the
coefficient K as a fitting parameter and found deviations of 13%.
For values of the additive constant of le [Eq. (14)] ranging from

0.62 to 1.6, the peak frequencies vary within an uncertainty band of
5%, which may grow up to a maximum of 10% for relatively low

Table 2 Experimental resonance frequencies

Voltage amplitude Va, V From microphone, Hz From vibrometer, Hz

Brass (H � 3 mm)

0.8 2255 2194
1.4 2230 2186
3 — — 2194
9 2230 — —

Brass (H � 5 mm)

0.8 2379 — —

1.4 2392 — —

9 2357 — —

Aluminum 1 (H � 3 mm)

0.8 1510 1653
1.4 1500 1647
3 — — 1641
9 1489 — —

Aluminum 1 (H � 8 mm)

0.8 1443 — —

1.4 1439 — —

9 1385 — —

Aluminum 2 (H � 4 mm)

0.8 310–885 338–891
1.4 310–885 338–894
3 — — 344–891
9 332–903 — —

Aluminum 2 (H � 7 mm)

0.8 320–719 — —

1.4 325–719 — —

9 353–735 — —

Aluminum 2 (H � 11 mm)

0.8 300–601 — —

1.4 302–601 — —

9 335–620 — —
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Fig. 4 Experimental PSD monitoring of the brass actuator; Va � 0.8 V (red curve), Va � 1.4 V (blue curve), Va � 9 V (black curve): a)H � 3 mm,
and b)H � 5 mm.
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Fig. 6 Experimental PSD monitoring of the aluminum 2 actuator; Va � 0.8 V (red curve), Va � 1.4 V (blue curve), Va � 9 V (black curve):
a)H � 4 mm, b)H � 7 mm, and c)H � 11 mm.
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Fig. 5 Experimental PSD monitoring of the aluminum 1 actuator; Va � 0.8 V (red curve), Va � 1.4 V (blue curve), Va � 9 V (black curve):

a)H � 3 mm, and b)H � 8 mm.
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frequencies, while the average width of such a band is of 10% for the
peak velocities. Note that the influence of the uncertainty on le is
expected to be relatively stronger because the effective orifice length
influences directly the nominal Helmholtz’s frequency and the
nonlinear damping coefficient. Indeed, we will present numerical
simulations showing that the membrane peak displacement at the
Helmholtz’s frequency is reduced by an amount of about 50% in case
that the shorter value of le is considered in the computation.

V. Experimental Approach

Toverify the analytical developments reported before, as well as to
validate the numerical code, systematic experimental tests have been
carried out on three different synthetic jet actuators designed to the
purpose. The basic characteristics of such actuators are summarized
in Table 1. The actuator with the membrane in brass and the two in
aluminum are reported in Fig. 1, with the brass one on the left and the
aluminum ones on the right. They have been designed essentially to
obtain different values of the coupling ratio, ranging from about zero

to 1.88. The schematic of the devices is shown in Fig. 2 highlighting
their modular structure, which permits independent variations of
cavity diameter and height, orifice diameter, and piezoelectric dia-
phragm. The brass actuator is a commercially available piezoelectric
ceramic disk bonded to a thin brass metal plate fabricated by Murata
ManufacturingCo. The aluminummembraneswere built in-house by
gluing a LZT piezoceramic disk (manufactured by PIEZO Inc.) on a
thin aluminum foil.
In Table 1, geometrical and mechanical properties, as well as

nominal characteristic frequencies of the tested devices, listed on the
basis of the shimmaterial, are summarized. The frequencies reported
in Table 1 have been calculated by means of the analytical model
illustrated before. For the sake of clarity, let us remember that fw and
fh denote the (uncoupled) first-mode structural and Helmholtz
natural frequencies, respectively, defined through Eqs. (3) and (15),
respectively; f1 and f2 are the frequencies of the two coupled
oscillators, i.e., the modified first-mode structural and Helmholtz
resonance frequencies, defined by Eq. (28); f1P and f2P are the
modified frequencies evaluated by employing the Persoons formulas
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Fig. 7 Numerical–experimental comparison ofmembrane displacements for the brass actuator (withH � 3 mm); black curves represent the numerical
solution, and blue curves represent the vibrometer monitoring: a) Va � 0.8 V, b) Va � 1.4 V, and c) Va � 3 V.
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[12]; and f1d and f2d take into account linear damping effects and
arise from the eigenvalues problem of Eqs. (25) and (26). The
coupling ratio CR introduced by Eq. (23) is reported in the last line.
As shown in Table 1, the nominal structural frequency of the brass

devices is very close to the value predicted by the model of the
coupled oscillators, evaluated both including damping effects (on
the first oscillator) and neglecting them; in fact, we find also
f1 ≅ f1d. As a general trend, on the grounds of Eq. (27), the coupling
effect increases the structural resonance frequency and lowers the
Helmholtz resonance frequency. Furthermore, the coupling ratio CR
is higher as the cavity height decreases. However, because for the
aluminum 2 device the nominal structural frequency is less than the
Helmholtz one, the situation is reversed in the sense that the coupling
of the oscillators lowers f1 and f1d and raises f2 and f2d. Note that
the Persoons relationships seem do not work well for the aluminum 2
actuator, for which the Helmholtz frequency is greater than the
membrane one.
For the brass device, it results that also the Helmholtz frequency

(i.e., the natural frequency of the acoustic oscillator) is almost

coincident with the value predicted by means of the coupling model;
furthermore, we have f2 � f2d. The quasi coincidence between
the uncoupled natural structural and Helmholtz frequencies and the
corresponding values ofω1;2, observed for the brass actuator, is much
more weak for the aluminum 1 and totally disappears for the
aluminum 2 actuator, which exhibits the strongest coupling effect.
A brief description of the experimental setup (depicted in Fig. 3) is

reported in the following. The devices have been electrically excited
with a sine signal generated in MATLAB environment through the
routine chirp and then transmitted via a USB Instruments DS1M12
“Stingray” data-acquisition system to a linear-gain amplifier (typical
gain factor is 5); an oscilloscope has been also employed to set the
voltage amplitude Va with a higher accuracy. The frequency of the
signal has been varied typically over the range from 0 to 3000 Hz.
To the aim of detecting the frequency response of the actuators, the

first technique is based on the measurement of the pressure distur-
bances produced by the motion of the diaphragm into the anechoic
atmospheric environment, carried out by using a commercial digital
microphone connected to the audio board of the PC; the power
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Fig. 8 Numerical–experimental comparison of membrane displacements for the aluminum 1 actuator (with H � 3 mm); black curves represent the
numerical solution, and blue curves represent the vibrometer monitoring: a) Va � 0.8 V, b) Va � 1.4 V, and c) Va � 3 V.
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spectral density (PSD) of the pressure data has been calculated by
using a standard fast Fourier transform algorithm.
The deflection of the composite membrane has been measured as

well by means of a Polytec laser scanning vibrometer PSV400-H4
that integrates in the frequency domain the measured diaphragm
velocity to obtain the displacement.
The experimental study of the frequency response of the three

devices has been completed through a further testing session where
the flow exit velocity has been measured in the external ambient at a
station located on the jet axis approximately one orifice diameter
downstream of the exit section. For these measurements, a standard
Kanomax mini pitot tube, 1∕8 in: in diameter and 6 in. in length, has
been employed in connection with a Mouser/All Sensor pressure
transducer, whose output signal is acquired by means of the same
Data Acquisition unit and phase locked to the actuator excitation
signal. The output signals are phase-averaged over typically 10
periods to obtain an uncertainty estimate of the jet velocity of 5%,
calculated with the standard procedures of literature.

VI. Comparison of Experimental, Numerical, and
Analytical Results

The resonance peak frequencies detected through the PSDanalysis

of the microphone data are listed in Table 2, together with values

recorded by means of the vibrometer.
The influence of the supply voltage (which is kept rather low in this

kind of test) is generally weak, but it is not clear why, in the case of the

aluminum 2 device, the voltage slightly increases the resonance fre-

quencies, whereas for the other devices, the trend is reversed. It should

be noted that previous measurements made by Gomes et al. [17] for a

wider voltage range showed that the resonance frequency tends to

decrease with increasing in voltage. The spread between microphone

and vibrometer data is 9% maximum, but for the brass actuator, it is

much lower. Another general feature of these experimental data is that

the aluminum 2 device shows two resonance peaks within the fre-

quency range of testing. For the other two actuators, both microphone

and vibrometer measurements revealed the upper peak only.
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Fig. 9 Numerical–experimental comparison of membrane displacements for the aluminum 2 actuator (with H � 4 mm); black curves represent the
numerical solution, the continuous line is for Δle � 0.62, the dashed line is for Δle � 1.42, and blue curves represent the vibrometer monitoring:
a) Va � 0.8 V, b) Va � 1.4 V, and c) Va � 3 V.
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The experimental PSD findings for the brass actuator are
illustrated in Fig. 4, for cavity heights of 3 and 5mm; for each device,
data have been reported for different voltage amplitudes. It is clearly
evident that the voltage practically does not influence the peak
position, but as expected, the PSD level increases with increasing the
voltage. For H � 3 mm, a resonance peak at about 2250 Hz is well
visible, which corresponds to the first mode of structural vibration of
the system; in fact, note that this resonance frequency strictly agrees
with the analytical prediction f1 � 2256 Hz in Table 1 that, in this
case, is weakly influenced by coupling effects (fw � 2176 Hz). It is
worth to point out that the PSDplots do not show any significant peak
in correspondence of the Helmholtz frequency, namely at about
1000Hz.Note also that the presence of higher-order structural modes
is not always visible on the PSD tracings (and therefore the PSD scale
range does not include them) because the distorted shim shape
vibrating at natural frequencies higher than its fundamental produces
little net displacement of the surrounding air. The PSD trend detected

for the brass actuator of H � 5 mm is qualitatively the same.
Again, there is a satisfactory agreement between the frequencyf1 and
the corresponding experimental one of Table 2 equal to about
2379 Hz.
Data for the aluminum 1 actuator are depicted in Fig. 5. As for the

previous case, there is a good agreement between the analytical
prediction, which provides f1 � 1632 and 1462 Hz for the cavity
heights of 3 and 8 mm, respectively, and the experiments, which
give a resonance peak around 1510 and 1443 Hz, respectively. Note
that, in Table 2, the vibrometer measurements appear closer to the
theoretical predictions. In any case, the coupling effects are more
significant for this device because the structural resonance frequency
of free-oscillator is 1376 Hz. No peak is visible at the Helmholtz
frequency because of the reduced influence of the off-diagonal term
k12U of Eq. (21), which scales with �do∕dw�2, on the dynamics of
the membrane oscillator and, more importantly, of the nonlinear
damping term affecting the dynamics of the acoustic oscillator.
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Fig. 10 Numerical–experimental comparison of average exit flow velocity frequency response for the brass actuator (H � 3 mm); triangles represent
the experimental measurements, and black curves represent the numerical solution: a) Va � 35 V, and b) Va � 70 V.
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Fig. 11 Numerical–experimental comparison of average exit flow velocity frequency response for the aluminum 1 actuator (H � 3 mm); black curves
represent the numerical solution, and triangles represent the experimental measures: a) Va � 25 V, and b) Va � 35 V.

DE LUCA, GIRFOGLIO, AND COPPOLA 1743

D
ow

nl
oa

de
d 

by
 L

ui
gi

 d
e 

L
uc

a 
on

 J
an

ua
ry

 7
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

26
74

 



For the third tested device (i.e., the aluminum 2), on the contrary,
the PSD graphs of Fig. 6 show two peaks; the lower corresponds to
the strongly coupled structural frequency (ranging from about 310 to
340 Hz), while the higher one (located at about 903, 735, and 620 Hz
for cavity heights of 4, 7, and 11 mm, respectively, and voltage
amplitude Va � 9 V) corresponds to the modified frequency of the
Helmholtz oscillator. The coupling effects of this actuator are very
strong because the two nominal resonance frequencies are signifi-
cantly modified. Note also the presence of a well marked displace-
ment peak at the Helmholtz frequency, which is confirmed by
vibrometer data (when available) reported in Table 2. This peculiar

behavior is attributed to a reduced influence of the nonlinear damping
term, as will be further discussed when comparing experimental and
numerical results.
To have another basis of comparison of the dynamic response of

the three devices, in Figs. 7–9, themembrane displacements detected
by means of the laser vibrometer are compared to the corresponding
findings of direct numerical simulations, for various supply voltages
and cavity height of 3mm, for the brass and the aluminum1 actuators,
and of 4 mm, for the aluminum 2 actuator. For this last actuator,
numerical trends are shown for values of the additive constant of the
effective orifice length, introduced in Eq. (14), of 0.62 (continuous
line) and 1.42 (dashed line). These plots confirm qualitatively all the
main features of the experimental results reported previously.
Numerical data show for the first two actuators a relatively small peak
at the lower frequency (which is more evident for the aluminum 1
device, also from vibrometer data) and a reduced (in comparisonwith
experimental data) peak at the higher frequency for the aluminum 2
device. These discrepancies between experimental and numerical
values are attributed to nonlinear damping effects that, in the
numerical code, seem to be too small for the second actuator as well
as too large for the third one. This finding will be discussed further
when presenting jet velocity measurements. Remember that the
numerical code has been, in general, calibrated on jet velocity data by
using K � 1.14 and Δle � 0.62, but it is evident that Δle � 1.42
works better in predicting the membrane displacement for the
aluminum 2 device.
Plots showing the frequency response of the actuators in terms of

the downstream-directed velocityUe measured by means of the pitot
tube, at a point one orifice diameter downstream of the orifice exit,
and therefore approximately corresponding to the saddle point, are
reported in Figs. 10–12. Following the basic definitions and findings
of literature (e.g., Smith and Glezer [18] and Smith and Swift [19]),
the saddle point velocity is roughly 1.1 times the stroke length
velocityUo, namely the time average of the orifice blowing velocity
over the entire period. Thus, to compare experimental measurements
of Ue to numerical computations of the peak value Umax of the exit
velocityU, the following relationship is used: Ue ≅ �1.1∕π�Umax �
Umax∕2.85.
Note that, during this testing session, the supply voltage has been

adjusted to values of practical applications (i.e., well above the values
reported in Table 2). Data points of Figs. 10–12 are compared to the
corresponding numerical values obtained by integrating numerically
the complete governing equations. Typical values of the electro-
acoustic transduction coefficient ϕa that best fit the continuous
numerical curves to the velocitymeasurements are 105, 133, and 47.7
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Fig. 12 Numerical–experimental comparison of average exit flow velocity frequency response for the aluminum 2 actuator (H � 4 mm); triangles
represent the experimental measures, and black curves represent the numerical solution: a) Va � 35 V, and b) Va � 50 V.

Table 3 Numerical resonance frequencies at
Va � 35 V

H, mm Modified Helmholtz
frequency, Hz

Modified structural
frequency, Hz

Brass

3 960 2260
5 760 2210

Aluminum 1

3 770 1630
8 490 1480

Aluminum 2

4 900 290
7 690 320
11 570 330

Table 4 Experimental resonance frequencies
from pitot tube

Va, V Modified Helmholtz
frequency, Hz

Modified structural
frequency, Hz

Brass (H � 3 mm)

35 976 2232
70 1042 2232

Aluminum 1 (H � 3 mm)

25 781 1645
35 801 1645

Aluminum 2 (H � 4 mm)

35 892 367
50 892 367
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for brass, aluminum 1, and aluminum 2 actuators, respectively. As
reported previously, we performed the numerical simulations with
the basic values of K � 1.14 and Δle � 0.62, with the aim of
optimizing the prediction capability of the numerical code in terms of
jet-flow velocity.
Table 3 reports the resonance frequencies calculated numerically

for each device at Va � 35 V. This table should be compared to
Table 4, showing analogous experimental findings to appreciate the
data agreement. Data spread is generally less than 4%, except for the
value of themodified structural frequencyof aluminum2 actuator, for
which it appears to be about 26%. However, it should be noted that
computer simulations of Fig. 12 show a rather wide plateau around
this peak frequency, whereas the data spread of 26% refers exactly to
the peak value. Of course, for a more general comparison including
analytical, numerical, and experimental (from microphone,
vibrometer, and pitot tube) results, one should glance at Tables 1–4
simultaneously.

VII. Further Numerical Insights

The results illustrated in the previous section exhibit a quite
satisfactory agreement between the (fully nonlinear) numerical
simulations of the frequency response of the resonant actuators

considered in this work and the experimental and analytical findings.
Thus, once the prediction capability of the numerical code has been
established, it has been used to determine many other features of
frequency response, very useful for design purposes. The maximum
cavity pressure and membrane displacement and the jet-flow exit
velocity as a function of the operation frequency are depicted in
Figs. 13–15 for the three tested devices and for various cavity heights.
The supply voltage Va is equal to 35 V in all these simulations.
As a general comment, one should note that, in basic agreement

with the experimental measurements (carried out basically at lower
voltages), the membrane displacement exhibits an almost unimodal
behavior for the brass and aluminum 1 devices, especially for higher
cavity heights. The peak frequency is the structural one, weakly
modified by the coupling effects; for both actuators and forH∕do �
0.5, another smaller peak appears at the Helmholtz frequency.
Moreover, note that the membrane displacement increases with
increasing the cavity height; the cavity pressure influence on the
membrane dynamics vanishing at high cavity height. Under
the practical point of view, it is still more interesting to note that the
behavior of exit flowvelocity is different because of the occurrence of
another peak corresponding to the lower Helmholtz frequency, again
slightly modified by the coupling effects. The Helmholtz peak is
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Fig. 13 Frequency response of a) maximum membrane displacement, b) maximum cavity pressure, and c) average exit flow velocity for the brass
actuator at Va � 35 V; the red line is forH∕do � 0.5, green isH∕do � 1, blue isH∕do � 1.5, and black isH∕do � 2.5.
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lower than the structural one. For the brass device, the velocity peak
increases with decreasing the cavity height, while for the aluminum 1
one, the trend is that the velocity peak reaches a plateau for
intermediate values of H∕do, and then it decreases at the largest
height. For the brass actuator, the distance between the two resonance
frequencies slightly increases with increasing H∕d0, in agreement
with experimental results of Gomes et al. [17] obtained for lo∕do >
1, while for the aluminum 1, such a distance slightly decreases. Note
that the experimental findings of Gomes et al. [17] show also that the
resonance frequencies distance becomes practically constant as
H∕d0 increases, in agreement with our analytical prediction in the
case of ωw ≫ ωh.
The velocity peak at the Helmholtz frequency strongly depends on

the nonlinear damping term (present in the unsteady Bernoulli’s
equation), as already noted and discussed in the past by various
authors, among others Gallas et al. [7], Sharma [8], and Persoons [12].
They found that one of the two expected peak frequencies can be
missing due to the strong nonlinear damping. Additional simulations
(not reported herein) confirmed their viewpoint, showing that the
Helmholtz peak increases dramatically and overshoots the structural
one when the fluid dynamic nonlinear damping is suppressed

(i.e., K � 0). Remember also that the magnitude of this damping
term, according to the Eq. (13), depends linearly on the head
loss coefficient and is inversely proportional to the effective length of
the orifice. Another feature of these two actuators is that the cavity
pressure exhibits the same qualitative frequency response as the jet
velocity.
The aluminum 2 device behaves in a different way. First of all,

as already stressed, the two nominal Helmholtz and structural
frequencies, which for this actuator are reversed, are remarkably
modified by the high coupling ratio. The membrane displacement
decreases with increasing the cavity height at the structural resonance
frequency, whereas it increases with increasing H∕do at the
Helmholtz resonance frequency. The same behavior is exhibited by
the frequency response of the jet velocity, with the result that the
maximum peak is reached at the Helmholtz frequency for the highest
simulated cavity height. This particular finding agrees with the
theoretical prediction of Sec. III that, if ωw ≪ ωh, then the distance
between the two eigenvalues jω2

1 − ω2
2j∕ω2

h does not depends on the
cavity heightH∕do, and therefore jω2

1 − ω2
2j ≃ 1∕�H∕do�. The quasi

coincidence of the two resonance frequencies justifies that the
maximum peak is reached for the highest cavity height.
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Fig. 14 Frequency response of a) maximummembrane displacement, b) maximum cavity pressure, and c) average exit flow velocity for the aluminum 1
actuator at Va � 35 V; the red line is forH∕do � 0.5, green isH∕do � 1, blue isH∕do � 1.5, and black isH∕do � 2.5.
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VIII. Conclusions

This paper has been aimed to yield insights on the frequency
response of synthetic jet actuators driven by piezoelectric thin
elements by using a lumped-element mathematical model. The
model is fluid-dynamics based, and although its genesis is inspired by
an analogous model of previous literature, it is innovative because it
needs in input just electromechanical properties easily available from
the commercial data sheet of the materials. For a certain class of
devices, a numerical fitting parameter only is required, namely the
electroacoustic transduction coefficient ϕa, which is the ratio of the
effective acoustic piezoelectric coefficient to the acoustic compli-
ance. From this viewpoint, the proposed model represents a practical
tool for the overall design of the actuator. Among other quantities, the
model can yield the frequency response characteristics of synthetic
jet devices in terms of membrane displacement, pressure cavity,
and exit jet-flow velocity. The computer code has been validated
via comparisons with both analytical and experimental parallel
investigations.
In the analytical study, the actuator has been idealized as an

acoustic-mechanical system of two-coupled oscillators, and simple
but rather accurate relationships have been given to predict the two
peak frequencies, corresponding to the modified Helmholtz and

first-mode structural resonance frequencies. Scaling laws of the
distance between the two resonance frequencies as a function of the
nondimensional cavity height H∕do have been yielded. It is found
that the role of the coupling effects is twofold; on one hand, they
modify the nominal Helmholtz and structural resonance frequencies,
and on the other hand, they introduce crossed linear reaction terms
driving mutually the oscillators. The system suffers a nonlinear
damping due to entrance head losses, which are proportional to the
head loss coefficient and inversely proportional to the effective
orifice length.
To perform comparisons with experimental data, various measure-

ment campaigns have been carried out on three different actuators
especially designed and manufactured to the purpose. The devices
make use of brass or aluminum shims and standard piezoelectric
disks driven by a sine input voltage. They have been designed
essentially to achieve an increasing coupling ratio. The membrane
displacements have beenmonitored indirectly bymeasuring pressure
disturbances in the ambient atmosphere and directly by employing
a digital laser vibrometer. A digitized pitot probe has been also used
to measure the jet velocity in the external field at a location
approximately coincident with the saddle-point (i.e., about one
orifice diameter downstream of the exit section).
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Fig. 15 Frequency response of a) maximummembrane displacement, b) maximum cavity pressure, and c) average exit flow velocity for the aluminum 2
actuator at Va � 35 V; the red line is forH∕do � 0.5, green isH∕do � 1, blue isH∕do � 1.5, and black isH∕do � 2.5.
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In the opinion of the present authors, the overall comparison
among numerical and analytical as well as experimental findings is
quite satisfactory. In particular, the predictions of the peak fre-
quencies made by using the simple analytical relationships are
confirmed by both the numerical computations and the various
measurements. For the device exhibiting the strongest coupling, a
perhaps not expected result is that the jet velocity peak occurs for
the highest cavity height. The present study has confirmed the
crucial role played by the nonlinear damping term on the acoustic
(Helmholtz) oscillator of the model in reducing or suppressing the
corresponding resonance peak. The numerical code has been, in
general, calibrated on jet velocity data by using K � 1.14 and
Δle � 0.62, but it is evident that, for the aluminum 2 actuator, the
effective orifice length (namely, the air volume of the acoustic
oscillator) is not fully adequate for predicting correctly themembrane
displacement response. Hence, a more detailed analysis of the flow
around the orifice is strongly needed to improve the overall prediction
capabilities of the lumped-element model.
In future work, further experimental tests are planned to perform

pressure measurements inside the cavity so as to give insights on the
phase angles between internal pressure and orifice velocity, which
have not been addressed here, although numerical evaluations are
already available.
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1 Characterization of Synthetic Jet

2 Resonant Cavities

3 Luigi de Luca, Michele Girfoglio, Matteo Chiatto

4 and Gennaro Coppola

5 Abstract The acoustic properties of piezo-electric driven resonant cavities usually

6 employed to generate the so-called synthetic jets are analytically and numerically

7 investigated in order to characterize the performances of such devices. It is shown

8 that the actuator behaves as a two-coupled oscillators system and the dimensionless

9 form of the governing equations allows one to identify various particular operating

10 conditions. The theoretical predictions are validated through experimental tests

11 carried out on devices having different mechanical and geometrical characteristics,

12 designed in order to achieve an increasing coupling strength. Practical design

13 implementations are discussed as well.

14

15 1 Introduction

16 The literature concerned with the synthetic jet actuators is huge and includes a wide

17 field of applications such as flow control (perhaps the original one), heat transfer

18 from small size surfaces, overall enhancement of mixing between fluid currents,

19 generation of micro-thrust for propulsion or attitude control of Micro Aerial Vehicle

20 (MAV). We limit to cite here the review papers of Glezer and Amitay [1] and

21 Cattafesta and Sheplak [2]. Regarding present authors, previous contributions dealt

22 with the direct numerical simulation of jet vectoring, as described by Mongibello

23 et al. [3], a design procedure of synthetic jet actuator to be employed as heat transfer

24 device, as reported by Monaco et al. [4], and the formulation and the experimental

25 validation of a lumped element physical model of the operation of the actuator

26 devoted to the prediction of its frequency response, by de Luca et al. [5].
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27 The overall design of the actuator needs practical modeling tools, which are

28 generally based on reduced order, lumped element physical models. A significant

29 lumped element model of a piezoelectric-driven synthetic jet device is described by

30 Prasad [6] and Prasad et al. [7], who gave detailed relationships for the transverse

31 deflection of the inner and outer regions of the composite membrane in the simul-

32 taneous presence of applied voltage and pressure load. They resorted to the approach

33 based on the equivalent electric circuit. Following the same approach, Gallas et al.

34 [8] noted that in a lumped model one may use the acoustic compliance of the shim

35 only reduced by a proper factor depending on the ratio of the radius, thickness and

36 Young’s modulus of the piezoceramic and shim materials. Later on, Sharma [9]

37 proposed a different model directly based on the equations of fluid dynamics, where

38 the oscillating membrane is considered as a single-degree-of-freedom mechanical

39 system, while the cavity and the orifice are described by means of proper forms of

40 the continuity and Bernoulli’s unsteady equations, respectively. Sharma [9] vali-

41 dated his model on the very same experimental data of Gallas et al. [8].

42 Chaudhari et al. [10] carried out systematic measurements about the effects of

43 the excitation frequency on the ejection and suction velocities, by varying the

44 geometrical parameters of the cavity. Krishnan and Mohseni [11] studied the

45 characteristics of the flow field produced by a round synthetic jet by using detailed

46 numerical simulations of the turbulent Navier-Stokes equations. Seeley et al. [12]

47 described a simplified fluid-structure interaction model based on the implementa-

48 tion of commercial Finite Elements codes, and proved its validity at relatively low

49 frequency, namely well below the Helmholtz frequency. Persoons [13] proposed a

50 low-order model of prediction of the frequency response of synthetic jet actuators

51 driven by electromagnetic or piezoelectric supply. Based on the equivalent circuit

52 approach, its model yields analytical expressions for the two resonance frequencies,

53 as a function of the structural and Helmholtz resonance frequencies.

54 Recently de Luca et al. [5] presented a fluidic type lumped element modeling,

55 that has been inspired by the Sharma’s work [9], yielding the frequency response of

56 the resonant cavity in terms of pressure disturbances, membrane displacement and

57 external jet velocity. The model, validated against systematic experimental mea-

58 surements, gave also simple but accurate analytical relationships for the two res-

59 onance frequencies characterizing the overall system response. The present

60 contribution is a follow-up inspection of the previous investigation and is devoted

61 to gain new insights on the fluid-structure interaction occurring during the operation

62 of a typical piezoelectric-driven resonant cavity. The analysis hereafter presented is

63 based on the dimensionless form of the equations governing the behavior of the

64 two-coupled oscillators, the membrane and the Helmholtz one.

65 2 Model Formulation

66 The model described hereafter is essentially the same as the one presented by de

67 Luca et al. [5], in turn inspired by the Sharma’s work [9]. It refers to the three basic

68 elements of the actuator: the oscillating membrane (diaphragm or wall, constituted

102 L. de Luca et al.
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69 by a thin round metal shim on which a smaller diameter piezoceramic disk is

70 bonded), the cavity, the orifice.

71 For the sake of convenience, the three differential equations which describe the

72 dynamics of the actuator are summarized below

73

€xw þ 2fwxw _xw þ x2
wxw ¼ x2

wDxw sinxt "
piAw

mwt

ð1Þ

7575
Vc

cpo

dpi

dt
" Aw _xw ¼ "AoU ð2Þ

7777 €U þ
K

le
jUj _U þ x2

hU ¼
Aw

Ao

x2
h _xw ð3Þ

7979

80 The dynamics of the membrane is described through the motion equation of a one-

81 degree of freedom forced-damped spring-mass system, Eq. (1), where xw is the

82 (average) membrane displacement, t is time, pi is the cavity (internal) differential

83 pressure, mwt is the diaphragm total mass, including shim, piezo-element and air

84 added mass, xw is the natural frequency of membrane, ω is the operating frequency,

85 Dxw is the average linear membrane displacement due to the application of a certain

86 voltage to the piezo-element, Aw is the membrane surface area, fw is the diaphragm

87 damping ratio, dot denotes time derivative; the second equation of the model is the

88 conservation of mass in the cavity under the assumption of zero-dimensional

89 (lumped) system, Eq. (2). By relating the density and pressure variations by means

90 of an isentropic compression/expansion transformation, the continuity equation can

91 be formulated as above written, where Vc is the cavity volume, po is the ambient

92 pressure, γ is the specific heat ratio, U is the instantaneous orifice jet-flow velocity,

93 Ao is the orifice area; the application of the unsteady Bernoulli’s equation between a

94 point inside the cavity where the flow velocity is practically null and a point, just

95 outside the cavity, representing the location where the pressure matches the

96 unperturbed external ambient value, yields the third equation of the model, Eq. (3),

97 where xh is the natural Helmholtz frequency, K is the head loss coefficient.

98 In particular, the (first mode) structural circular frequency of the membrane is

99 given by

100

xw ¼

ffiffiffiffiffiffiffi
kw

mwt

r
ð4Þ

102102

103 and represents the uncoupled natural frequency of the membrane oscillator, where

104 kw is the equivalent spring stiffness of the membrane. This last can be obtained as

105

kw ¼ mwð2pefwÞ2 ð5Þ
107107

108 where efw is the frequency of the principal mode of vibration of a rigidly clamped

109 disk. Although the presence of the piezoceramic element bonded to the metal shim
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110 enhances the flexural rigidity of the membrane (and in principle the very thin layer

111 of glue should be taken into account as well), for standard operating conditions efw
112 can be referred to the first fundamental mode of the shim only (that is the membrane

113 structural element actually clamped) and calculated by using the standard formula

114 reported in many textbooks (de Luca et al. [5]). Here mw is the diaphragm mass

115 taking into account both shim and piezoceramic disk, but not including the dynamic

116 contribution of the air added mass.

117 The uncoupled natural frequency of the acoustic oscillator is the so called

118 Helmholtz frequency xh, which is usually recognized to be:

119

xh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA2

opo=Vc

qaleAo

s
¼

ffiffiffiffiffiffi
ka

Ma

r
ð6Þ

121121

122 where ka and Ma are, respectively, the equivalent stiffness of the air inside the

123 cavity, ka ¼ cA2
opo=Vc, and the effective mass of the air at the orifice, Ma ¼ qaleAo.

124 It is worth to stress that the membrane dynamics is forced by the acoustic

125 oscillator via the cavity pressure term as well as by the piezoelectric effect due to

126 the applied sine voltage. The amplitude of this forcing, Fo, is expressed conve-

127 niently as

128

Fo ¼
x2

wdAVa

Aw

¼ x2
wDxw ð7Þ

130130

131 where dA is the effective acoustic piezoelectric coefficient that represents the ratio

132 between the cavity volume variation DV and the applied voltage Va, when the

133 driving differential pressure is equal to zero [7]. Note that in the previous Eq. (7) the

134 cavity volume variation DV ¼ dAVa is divided by the membrane area Aw in order to

135 obtain the average linear membrane displacement Dxw (to be multiplied by kw in

136 order to obtain the driving force).

137

Dxw ¼
dAVa

Aw

ð8Þ

139139

140 The coefficient dA could be evaluated analytically by means the distribution of the

141 transverse displacement of the composite diaphragm, as made by Prasad [6] and

142 Prasad et al. [7]. This procedure is not practical due to the difficulty of determining

143 the required coefficients. An alternative way consists in determining the acoustic

144 compliance of the membrane Cac which, through a dual definition of dA, is given by

145 the ratio of the volume variation DV to a uniformly distributed pressure load p, in

146 condition of electrical short-circuit [7]. Of course the evaluation of Cac would

147 require the same difficulties. However, one can refer to the acoustic compliance of a

148 homogeneous circular plate (namely, having the properties of the piezoceramic

149 disk) that yields insight into the scaling behavior of the diaphragm, and ultimately

150 obtain dA by means of the relationship

104 L. de Luca et al.
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151 dA ¼ Cac/a ð9Þ
153153

154 in which /a is the electroacoustic transduction coefficient [7]. As introduced by de

155 Luca et al. [5], the electroacoustic transduction coefficient is assumed to be a fitting

156 parameter of the computer code.

157 In summary, the behavior of the synthetic jet actuator can be described by the

158 dynamics of two mutually coupled oscillators: the first one, describing the mem-

159 brane displacement xw, is characterized by its uncoupled natural frequency xw,

160 while the second one, acoustic oscillator, describing the dynamics of the mass of air

161 at the orifice, Ma, through its velocity U, is characterized by the its natural fre-

162 quency xh. The system of Eqs. (1–3) shows that both the dynamics of the mem-

163 brane and of the orifice air mass are forced by the cavity pressure which couples

164 them by means of the continuity Eq. (2). An external forcing due to the supply

165 power also acts on the membrane dynamics. In order to investigate in more detail

166 the coupling of the two oscillators, it is convenient to reformulate the equations.

167 By taking the time derivative of Eq. (1), and by eliminating the pressure

168 derivative by means of Eq. (2), one obtains:

169

€Vw þ 2fwxw
_Vw þ ðx

2
w þ x2

wcÞVw #
Ao

Aw

x2
wcU ¼ ðxDxwÞx

2
w cosxt ð10Þ

171171

172 which is coupled with the Eq. (3). Note that another characteristic frequency xwc is

173 introduced in Eq. (10), defined as

174

xwc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA2

wpo=Vc

mw

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

cAwpo

mwH

r

ð11Þ

176176

177 which, according to Sharma [9], may be interpreted as the natural frequency of the

178 pneumatic spring made of the air enclosed within the cavity of volume Vc and of the

179 diaphragm mass mw. Note that the height of the cavity, H, is explicitly introduced.

180 3 Dimensionless Form of the Equations

181 In order to give more insight to the problem physics, it is worth recasting the

182 governing equations into a convenient dimensionless form. As far as the acoustic

183 oscillator is concerned, proper choices of the reference quantities for time, length

184 and velocity are the reciprocal of the operating frequency 1=x, the cavity height

185 H and the speed of sound of air c, respectively. The dimensionless form of the

186 dynamics of the acoustic oscillator accordingly is:
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187

St2
d2U 

dt 2
þ St K

ffiffiffiffi

H

le

r
jU j

" #

dU 

dt 
¼ V 

w $
Ao

Aw

U ð12Þ

189189

190 where the Strouhal number is defined as

191

St ¼
xH

c

ffiffiffiffi

le

H

r

ð13Þ

193193

194 The condition corresponding to St ' 1 is physically relevant. Apart from the

195 scaling factor represented by the factor
ffiffiffiffiffiffiffiffiffiffi

le=H
p

, this situation represents the case of

196 acoustically thin cavity, the traveling time of a small pressure disturbance over the

197 distance H being much smaller than the reference time 1=x; in other terms, the air

198 inside the cavity behaves as an incompressible medium (i.e., the air stiffness is

199 infinite). By inspecting Eq. (12), it is evident that this equation reduces to the

200 dimensional relationship:

201

AwVw ¼ AoU ð14Þ
203203

204 namely, the volume rate entering the cavity as a consequence of the membrane

205 displacement equals the volume rate of air expelled through the orifice. On the other

206 hand, the Eq. (1) of the membrane dynamics shows that this last is decoupled from

207 that of the acoustic oscillator. When St ' 1, once the air velocity at the orifice has

208 been obtained from Eq. (14), the cavity pressure may be evaluated by using the

209 unsteady form of the Bernoulli’s equation.

210 The physical situation of St ( 1 also corresponds to decoupled membrane

211 dynamics. In this case, however, the air stiffness is vanishing (the pressure field

212 inside the cavity is practically unperturbed), so that the air jet velocity U is van-

213 ishing too.

214 The equation of motion of the membrane is made dimensionless with the aid of

215 different time and velocity scales, a convenient choice being 1=xw and xDxw,

216 respectively. The non-dimensional form of such an equations is

217

€V
 

w þ 2fw _V
 

w þ V 
w þ CFðV 

w $
Ao

Aw

U Þ ¼ cosxt ð15Þ

219219

220 where the coupling factor is defined as

221

CF ¼
x2

wc

x2
w

ð16Þ

223223

224 It is straightforward to observe that under the condition for which CF ' 1 (which

225 means that the air stiffness is negligible in comparison with the membrane stiffness)

226 the membrane dynamics is decoupled from the acoustic oscillator one. In this case

227 the jet velocity and the cavity pressure are determined via the continuity and the

106 L. de Luca et al.
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228 unsteady Bernoulli’s equations. Another aspect of this decoupling is that the

229 modified structural and Helmholtz’s frequencies tend to coincide with the corre-

230 sponding uncoupled frequencies, as one may verify by inspecting the relationship

231 yielding the eigenvalues of governing system under the assumption that any

232 damping effects is negligible (de Luca et al. [5]):

233

x2
1;2

x2
w

¼
!ð1 þ

x2
wc

x2
w

þ
x2

h

x2
w
Þ %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ
x2

wc

x2
w

þ
x2

h

x2
w
Þ2 ! 4

x2
h

x2
w

q

2
ð17Þ

235235

236 Following de Luca et al. [5], the modified (i.e. coupled) natural frequencies are

237

f1;2 ¼ xi1;2=ð2pÞ; ð18Þ
239239

240 xi1;2 being the imaginary coefficients of the eigenvalues.

241 4 Validation of the Theory Against Experimental

242 and Numerical Data

243 The theoretical issues developed before have been verified by means of both

244 experimental measurements as well as numerical simulations of the governing

245 Eqs. (1–3). The basic experimental validation of the physical model as well as of

246 the related computer code has been already presented in a previous paper by de

247 Luca et al. [5]. Hereafter we will refer to the coupling effects of the two oscillators

248 and to the conditions governing them. Moreover, it has to be stressed that, in

249 general, the coupling effects represented by the CF parameter refer to a certain

250 device and may be neglected on the basis of design characteristics of the actuator,

251 whatever is the operating condition. On the contrary, the conditions of decoupling

252 occurring for St & 1 and St ' 1 depend essentially on the operating condition and

253 they may occur for any device.

254 4.1 Effect of CF

255 Experimental tests have been carried out on three different synthetic jet actuators

256 (one with the membrane in brass and the other two in aluminum) designed to the

257 purpose. The basic characteristics of such actuators are summarized in Table 1.

258 They have been designed essentially in order to obtain different values of the

259 coupling factor, ranging from about 0 to 1.88. The schematic of the devices is

260 shown in Fig. 1 highlighting their modular structure, which permits independent

261 variations of cavity diameter and height, orifice diameter, and piezoelectric

262 diaphragm.
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Table 1 Features of the tested devices predicted analytically

Property Brass Aluminum 1 Aluminum 2

Geometry Shim diameter (mm) 35 42 80

Shim thickness (mm) 0.4 0.24 0.25

Piezoelectric

diameter (mm)

23 31.8 63.5

Piezoelectric

thickness (mm)

0.23 0.191 0.191

Cavity diameter (mm) 35 42 80

Cavity height (mm) 3–5 3–8 4–7–11

Orifice

diameter (mm)

2 2 5

Orifice length (mm) 2 2 2

H=do 1.5–2.5 1.5–4 0.8–1.4–2.2

le=do 1 1 0.4

Shim Young’s module (Pa) 9:7 1010 7:31 1010 7:31 1010

Poisson’s module 0.36 0.31 0.31

Density (kg/m3) 8,490 2,780 2,780

Piezoelectric Young’s module (Pa) 6:7 1010 6:6 1010 6:6 1010

Poisson’s module 0.31 0.31 0.31

Density (kg/m3) 8,000 7,800 7,800

Frequency

response

fw (Hz) 2,176 1,376 401

f1 (Hz) 2,256–2,221 1,632–1,462 307–297–283

fh (Hz) 1,000–775 833–510 723–547–436

f2 (Hz) 964–759 702–480 944–737–617

CF 0.06–0.04 0.30–0.11 1.88–1.08–0.68

Fig. 1 Sketch of a typical device
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263 The brass actuator is a commercially available piezoelectric ceramic disk bonded

264 to a thin brass metal plate fabricated by Murata Manufacturing Co. The aluminum

265 membranes were built in-house by gluing a LZT piezoceramic disk (manufactured

266 by PIEZO Inc.) on a thin aluminum foil.

267 In Table 1 geometrical and mechanical properties, as well as nominal charac-

268 teristic frequencies of the tested devices, listed on the basis of the shim material, are

269 summarized. The frequencies reported in Table 1 have been calculated by means of

270 the analytical model illustrated before. fw and fh denote the (uncoupled) first-mode

271 structural and Helmholtz natural frequencies, respectively, defined through Eqs. (4)

272 and (6), respectively; f1 and f2 are the frequencies of the two coupled oscillators, i.e.

273 the modified first-mode structural and Helmholtz resonance frequencies, defined by

274 Eq. (18); the coupling factor CF introduced by Eq. (16) is reported in the last line.

275 As a general trend, on the grounds of Eq. (17) the coupling effect increases the

276 structural resonance frequency and lowers the Helmholtz resonance frequency.

277 Furthermore, the coupling factor CF is higher as the cavity height decreases.

278 However, since for the aluminum 2 device the nominal structural frequency is less

279 than the Helmholtz one, the situation is reversed in the sense that the coupling of the

280 oscillators lowers f1 and raises f2.

281 As shown in Table 1, the nominal structural frequency of the brass devices is

282 very close to the value predicted by the model of the coupled oscillators. For the

283 brass device it results that also the Helmholtz frequency (i.e., the natural frequency

284 of the acoustic oscillator) is almost coincident with the value predicted by means of

285 the coupling model. The quasi-coincidence between the uncoupled natural struc-

286 tural and Helmholtz frequencies and the corresponding values of x1;2, observed for

287 the brass actuator, is much more weak for the aluminum 1 and totally disappears for

288 the aluminum 2 actuator which exhibits the strongest coupling effect.

289 As already pointed out before, the model has been validated against systematic

290 experimental tests whose findings have been already published in a previous paper

291 by de Luca et al. [5]. Here we limit to remember that we made measurements of

292 pressure disturbances produced by the motion of the membrane into the external

293 ambient, deflection of the (composite) membrane by means of a laser scanning

294 vibrometer, and jet exit velocity (by using a standard Pitot tube) in the external

295 ambient at a station located on the jet axis just downstream of the stagnation point

296 (the so called saddle point) separating near and far fields.

297 Plots showing the frequency response of the actuators in terms of the down-

298 stream-directed velocity Ue measured by means of the Pitot tube just downstream of

299 the saddle point (i.e. at a point one orifice diameter downstream of the orifice exit),

300 are reported in Figs. 2, 3 and 4. Following the basic definitions and findings of

301 literature (e.g., [14, 15]), the saddle point velocity is roughly 1.1 times the stroke

302 length velocity, Uo, namely the time-average of the orifice blowing velocity over

303 the entire period. Thus, in order to compare experimental measurements of Ue to

304 numerical computations of the peak value Umax of the exit velocity U, the rela-

305 tionship is used Ue ffi ð1:1=pÞUmax ¼ Umax=2:85.
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Fig. 2 Numerical-

experimental comparison of

average exit flow velocity

frequency response for the

brass actuator (H = 3 mm);

triangles represent the

experimental measurements,

black curves represent the

numerical solution;

a Va ¼ 35V, b Va ¼ 70V
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Fig. 3 Numerical-

experimental comparison of

average exit flow velocity

frequency response for the

aluminum 1 actuator

(H = 3 mm); black curves

represent the numerical

solution, triangles represent

the experimental measures;

a Va ¼ 25V, b Va ¼ 35V
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Fig. 4 Numerical-

experimental comparison of

average exit flow velocity

frequency response for the

aluminum 2 actuator

(H = 4 mm); triangles

represent the experimental

measures; black curves

represent the numerical

solution; a Va ¼ 35V,

b Va ¼ 50V
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306 Data points of Figs. 2, 3 and 4 are compared to the corresponding numerical

307 values obtained by integrating numerically the complete governing Eqs. (1–3). The

308 numerical simulations have been carried out by means of a standard fourth order

309 Runge-Kutta method in MATLAB environment with ode45 routine. Initial condi-

310 tions of xw ¼ 0, _xw ¼ 0, pi ¼ 0, and U ¼ 0 have been assumed for all the com-

311 putations; it has been observed that the quasi-steady oscillatory solution is generally

312 reached in about 20–30 cycles. Typical values of the electroacoustic transduction

313 coefficient /a that best fit the continuous numerical curves to the velocity mea-

314 surements are 105, 133, 47.7 for brass, aluminum 1, aluminum 2 actuators,

315 respectively.

316 Table 2 reports the resonance frequencies calculated numerically for each device

317 at Va ¼ 35V. This table should be compared to Table 3 showing analogous

318 experimental findings in order to appreciate the data agreement. For the sake of

319 convenience, data to be compared are reported in bold type in both tables. Data

320 spread is generally less than 4 % except for the value of the modified structural

321 frequency of aluminum 2 actuator, for which it appears to be about 26 %. However,

322 it should be noted that computer simulations of Fig. 4 show a rather wide plateau

323 around this peak frequency, whereas the the data spread of 26 % refers exactly to

324 the peak value. For a more general comparison including analytical, numerical and

325 experimental velocity results, one should glance at Tables 1, 2 and 3

326 simultaneously.

Table 2 Numerical

resonance frequencies at

Va ¼ 35V

H (mm) Modified

Helmholtz

frequency (Hz)

Modified

structural

frequency (Hz)

Brass 3 960 2,260

5 760 2,210

Aluminum

1

3 770 1,630

8 490 1,480

Aluminum

2

4 900 290

7 690 320

11 570 330

Table 3 Experimental

resonance frequencies from

Pitot tube

Va ðVÞ Modified

Helmholtz

frequency (Hz)

Modified

structural

frequency (Hz)

Brass (H =

3 mm)

35 976 2,232

70 1,042 2,232

Aluminum

1 (H =

3 mm)

25 781 1,645

35 801 1,645

Aluminum

2 (H =

4 mm)

35 892 367

50 892 367
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327 4.2 Effect of Strouhal Number

328 The effect of the Strouhal number can be appreciated by focusing the attention on

329 particular operating conditions; for a given device, in particular, the conditions of

330 St 1 and St! 1, that are achieved for relatively low and high values of oper-

331 ation frequency, respectively, will be analyzed hereafter. Of course, one has to keep

332 in mind that more in general the conditions of St 1 and St! 1 correspond to

333 situations of acoustically thin and thick resonant cavity, respectively, as before

334 observed. This effect will be analyzed numerically with particular reference to the

335 frequency response in terms of exit velocity of the three devices mentioned in the

336 previous sections.

337 The maximum jet-flow exit velocity trends as functions of the operation fre-

338 quency are depicted in Figs. 5, 6 and 7 for the three tested devices and for various

339 dimensionless cavity heights H=do. The supply voltage Va is equal to 35 V in all

340 these simulations.

341 For all the devices two velocity peaks corresponding to the two resonance

342 frequencies are clearly evident. For the brass device both the velocity peaks

343 increase with decreasing the cavity height, whilst for the aluminum 1 one the trend

344 is that the velocity peak of the structural resonance reaches a plateau for interme-

345 diate values of H=do and then it decreases at the largest height. For the brass

346 actuator the distance between the two resonance frequencies slightly increases with

347 increasing H=do, in agreement with experimental results of Gomes et al. [16]

348 obtained for lo=do [ 1, while for the aluminum 1 such a distance slightly decreases.
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Fig. 5 Frequency response of average exit flow velocity for the brass actuator at Va ¼ 35V; red

line is for H=do ¼ 0:5, green H=do ¼ 1, blue H=do ¼ 1:5, black H=do ¼ 2:5. The straight line

refers to Eq. (14)
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Fig. 6 Frequency response of average exit flow velocity for the aluminum 1 actuator at

Va ¼ 35V; red line is for H=do ¼ 0:5, green H=do ¼ 1, blue H=do ¼ 1:5, black H=do ¼ 2:5. The
straight line refers to Eq. (14)
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Fig. 7 Frequency response of average exit flow velocity for the aluminum 2 actuator at

Va ¼ 35V; red line is for H=do ¼ 0:5, green H=do ¼ 1, blue H=do ¼ 1:5, black H=do ¼ 2:5. The
straight line refers to Eq. (14)
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349 Note that the experimental findings of Gomes et al. [16] show also that the reso-

350 nance frequencies distance becomes practically constant as H=do further increases,
351 in agreement with the analytical prediction of de Luca et al. [5] valid in the case of

352 xw  xh.

353 The straight lines present in the plots of Figs. 5, 6 and 7 refer to the linear

354 dependance of the jet velocity upon the operating frequency given by the incom-

355 pressible model described by the Eq. (14). For the brass and the aluminum 1 and 2

356 actuators it is clearly evident that such a simplified model closely agrees with the

357 simulations of the complete model at low frequencies, the frequencies range of such

358 an agreement widening for the smaller cavity heights, as predicted by the theory for

359 St! 1. Note also that for this range of frequencies the response in terms of jet

360 velocity is the same whatever is the cavity height, thus confirming that the mem-

361 brane dynamics is decoupled from the acoustic oscillator one. These figures show

362 that the uncoupled behavior is recovered also for relatively high frequencies, i.e.

363 St 1, where the expected response is of vanishing Ue, anticipated at lower fre-

364 quencies for the highest cavity heights.

365 In order to complete the discussion about the behavior of the aluminum 2 device,

366 note that the two nominal Helmholtz and structural frequencies, which for this

367 actuator are reversed, are remarkably modified by the high coupling ratio. The jet

368 velocity decreases with increasing the cavity height at the structural resonance

369 frequency, whereas it increases with increasing H=do at the Helmholtz resonance

370 frequency, with the result that the maximum peak is reached at the Helmholtz

371 frequency for the highest simulated cavity height. This particular finding agrees

372 with the theoretical prediction of de Luca et al. [5] that if xw ! xh then the

373 distance between the two eigenvalues jx2
1 # x2

2j=x
2
h does not depends on the cavity

374 height H=do and therefore jx2
1 # x2

2j ’ 1=ðH=doÞ. The quasi-coincidence of the

375 two resonance frequencies justifies that the maximum peak is reached for the

376 highest cavity height.

377 5 Conclusions

378 Basic properties of resonant cavities driven by piezo-electric thin elements, typi-

379 cally employed in order to produce the so-called synthetic jets, have been analyzed

380 by means of a lumped-element physical model. The model is fluid-dynamics based

381 and, although his genesis is inspired by an analogous model of previous literature, it

382 is innovative because it needs in input just electro-mechanical properties easily

383 available from commercial data sheet of the materials. The synthetic jet devices are

384 usually employed to control fluid flows. They are also used to cool locally reduced-

385 size surfaces, as well as to enhance the mixing between fluid currents.

386 In these frameworks, the proposed model represents a practical tool for the

387 overall design of the actuator. This has been idealized as an acoustic-mechanical

388 system of two-coupled oscillators, the membrane one (i.e., the structural element)
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389 and the Helmholtz’s one (i.e., the acoustic one). Simplified, but rather accurate

390 relationships have been given in order to predict the two modified (coupled) res-

391 onance frequencies, as a function of the decoupled natural frequencies of the two

392 basic oscillators. The analytical investigation has been completed through an

393 inspection of the dimensionless form of the governing equations, which introduce

394 two characteristic parameters: the frequencies coupling factor and the Strouhal

395 number. The study showed that the acoustic oscillator is always driven by the

396 membrane dynamics, while there are conditions under which the membrane

397 behavior is decoupled from the Helmholtz oscillator.

398 The fully nonlinear governing equations have been integrated numerically in

399 MATLAB environment. In order to validate the computer code, various experi-

400 mental campaigns have been carried out on three different actuators especially

401 designed and manufactured to the purpose of obtaining an increasing coupling

402 factor. In this paper, the comparison of the frequency response predicted numeri-

403 cally against experimental findings has been presented with reference in particular

404 to the external jet velocity.

405 The theoretical and experimental results show that when the coupling factor is

406 very small the two oscillators are decoupled, in the sense that the two modified

407 resonance frequencies tend to the corresponding nominal values, yielded by sim-

408 plified but accurate relationships.

409 The case of St 1 is very interesting too. It physically corresponds to acous-

410 tically thin cavity and, for a given device, occurs at relatively low operating fre-

411 quencies. In this decoupled regime it has also been found that the behavior of the

412 actuator is well described by the so called incompressible model, where the air

413 volume rate entering the cavity as a consequence of the membrane displacement

414 equals the air volume rate leaving the cavity through the orifice.

415 A detailed numerical investigation about the influence of the cavity height has

416 been also carried out. An interesting but perhaps not expected result is that for the

417 device exhibiting the strongest coupling the jet velocity peak occurs for the highest

418 investigated cavity.
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Abstract

A comprehensive and detailed modelling to evaluate the efficiency of energy
conversion of piezo-electric actuators driving synthetic jets is developed. The
contribution is original because the analysis is based on the energy equations
of the two coupled oscillators, the membrane and the acoustic one, which are
directly derived from the corresponding motion equations. The modelling
is validated against numerical as well as experimental investigations carried
out on a home-made actuator having an aluminum shim on which the piezo-
disk is bonded. A major result is that for the actuator under investigation
the global efficiency (representing the conversion of input Joule power to
kinetic power) decreases with increasing the applied voltage. Considerations
are reported to relate the theoretical orifice efficiency to the practical jet
efficiency issuing in the external field.

Keywords:
efficiency, synthetic jet, piezo-electric

1. Introduction

Continuous and pulsed jets are nowadays quite largely used as devices for
flow control (e.g., Glezer and Amitay [1], Cattafesta and Sheplak [2]) and
heat transfer applications (e.g., Chaudhari et al. [3], Valiorgue et al. [4],
Greco et al. [5]). The continuous request for a size reduction of such systems
has led researchers to focus their efforts on the design of new technology
devices. Synthetic jet actuators well fit this need because they produce jets
with zero-net mass flux synthesized directly from the fluid system in which

Preprint submitted to Sensors and Actuators A: Physical November 13, 2014



the device itself is embedded (Smith and Glezer [6]), avoiding the need for
an external input piping and making them ideal for reduced-space and low-
weight applications. A synthetic jet is generated by a membrane oscillation
(generally driven by a piezo-ceramic element) in a relatively small cavity,
which produces a periodic cavity volume change and thus pressure variation.
As the membrane oscillates, fluid is periodically entrained into- and expelled
out from an orifice connecting the cavity with the external ambient (to be
controlled). During the expulsion phase of the cycle, due to the flow separa-
tion, a vortex ring forms near the orifice exit section which, under favorable
operating conditions (Holman et al. [7]), convects away towards the far field
and breaks up due to the viscous dissipation eventually ”synthesizing” a
turbulent jet always directed downstream (Smith and Glezer [6]).

Since the jet formation depends on the ability of the vortex ring to escape
to the subsequent ingestion phase, following Smith and Glezer [6], a basic
parameter characterizing the jet strength is the so called stroke length L̄,
namely the integral of the (spatially averaged) velocity at the orifice exit
over the ejection phase only of the cycle:

L̄ =

∫ T/2

0

U(t)dt (1)

where T is the actuation period and U(t) is the fluid velocity at the exit
section. The stroke length can also be expressed conveniently as the product
L̄ = ŪT , where Ū is a proper reference velocity defined as:

Ū =

∫ T/2

0
U(t)dt

T
(2)

Therefore, it is natural to expect that the jet is formed or not according to
whether the parameter L/do is greater or less than 0.16π, with do being the
orifice diameter. In the literature the parameter L̄/do is generally referred to
as the reciprocal of the Strouhal number (Cater and Soria [8]).

The importance of the stroke length, or of the average velocity Ū , lies in
the fact that to compare the performance of a synthetic jet with that of a
continuous jet, it is usual to refer to a Reynolds number based on the velocity
Ū , i.e.:

Re =
ρŪdo
µ

(3)
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where ρ is air density, µ is air dynamic viscosity.
Although such a topic has been so widely explored only few studies on the

synthetic jet efficiency have been carried out. One of the first works on the
efficiency of synthetic jet was undertaken by Tesar and Zhong [9] who based
their definition of efficiency on the capability of jet generation rather than
on energy conversion considerations. They found experimentally a constant
efficiency value equal to 7.2% for several values of Reynolds number (ranging
from 4000 to 8000) and for two values of dimensionless stroke length L/do
(equal to 223.9 and 527.8). They also compared their experimental evaluation
with a numerical prediction made by using the commercial code FLUENT,
and found that this last is twice the experimental one.

Subsequently Crowther and Gomes [10] studied the system costs asso-
ciated with the application of flow control system to civil transport aircraft
based on the use of electrically powered synthetic jet actuators. They defined
the efficiency of the actuator as fluid power (scaling with the cube of the exit
velocity) divided by absorbed electrical power, and analyzed it as a function
of the operating conditions and actuator geometry, which were chosen rea-
sonably close to those expected for industrial applications. For this reason
the experiments were carried out basically with a chamber depth to orifice
diameter ratio equal to 0.56 and an orifice depth to diameter ratio equal
to 2.1. By resorting to the energy balance principle, Crowther and Gomes
[10] considered that the difference between the supplied electrical power and
the gained fluid power was lost because of electrical impedance (ascribed to
the piezo-electric actuator), mechanical impedance (related to the diaphragm
dynamics) and acoustic impedance (due to the fluid-acoustic coupling of the
flow within the cavity and though the orifice), however without accurately
quantifying each term of the balance. They showed their experimental find-
ings in terms of a map of the electric-fluidic conversion efficiency, where such
an efficiency was reported as a function of excitation voltage amplitude (for
peak-to-peak excitation voltage up to 250V) and actuation frequency (up to
4000Hz). They found that the efficiency attains a maximum equal to about
14% and noted that it did not correspond to the condition of maximum exit
velocity because of the dielectric saturation effect affecting the commercial
piezo-electric patch (i.e., the piezo-element bonded to the brass shim).

A more recent work, focusing specifically on the energy conversion effi-
ciency of synthetic jets devices, was presented by Li et al. [11] who tried
to express on an analytical basis every term contributing to the energy rate
balance. They argued that once the synthetic jet has received electric en-
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ergy input, due to the capacitance of the piezo-electric actuator, a part of
the energy is stored as electric potential energy while the rest of the energy
is converted to mechanical energy accompanied by energy dissipation. The
mechanical energy includes vibration of piezo-electric actuators and kinetic
energy of air flow. For piezo-electric actuators two forms of energy, i.e. strain
energy and kinetic energy, are temporarily stored by the vibrating structure.
Energy dissipation (namely energy loss) occurs in piezo-electric actuators due
to the deflection dynamics, as well as in the air flow motion (i.e., the head
losses) when traversing the jet orifice. The synthetic jet device efficiency is
defined as the ratio of the kinetic power of the air flow to the input elec-
tric energy. The authors carried out experiments on two slot synthetic jets
having orifice length of 4mm and 15mm, for two values of voltage amplitude
(80V and 100V) and actuation frequency ranging from 200Hz to 1100Hz. Li
et al. [11] found that the efficiency of energy conversion is dependent on the
orifice size and on the operating conditions (namely, voltage and frequency)
showing a peak (of about 40% for the 15mm orifice) close to the mechanical
resonance frequency of the actuator. They claim that the uncertainty of their
experimental evaluation was of about 34%.

The aim of the present paper is to assess a rigorous and comprehen-
sive physical approach to the evaluation of the efficiency of piezo-electrically
driven synthetic jet actuators, based on a rather detailed modelling of the
actuator dynamics, already developed by two of the authors, de Luca et al.
[12], in the past. The peculiarity of the present approach is that the energy
balance equation, properly averaged over the actuation period, is derived
directly from the equations governing the dynamics of the actuator. The
advantage is that the presence of each term of the resulting energy balance
draws its justification from the corresponding dynamics term and, in prin-
ciple, there is no need to perform experimental measurements to evaluate
the actuator efficiency at the orifice exit section. Since the physical model
mentioned above has been already tested and calibrated against a systematic
experimental campaign, the uncertainty of the efficiency estimation should
be reduced.

The paper is organized as follows: section 2 reports the basic equations
governing the dynamics of the actuator, whilst section 3 is devoted to the
development of the energy balance, directly derived from the dynamics equa-
tions. The experimental validation and calibration of the proposed model are
discussed in section 4, and, finally, conclusions are drawn in section 5.
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2. Governing equations system

In this section a short description of the motion equations governing the
dynamics of a typical piezo-electrically driven synthetic jet actuator will be
given. Details regarding the physical modelling can be found in the original
paper of de Luca et al. [12]. It should be pointed out that the approach
followed by the present authors is fluid-dynamics based, and was inspired by
the previous original paper of Sharma [13].

The membrane behavior is modelled as a one-degree of freedom forced
mass-spring-damper system

mwtẍw + cwtẋw + kwxw = F − piAw (4)

wheremwt is the diaphragm total mass (including shim, piezo-element and air
added mass), xw is the membrane displacement at a generic time instant t, cwt

is the total damping coefficient (including the structural damping coefficient
and a further damping coefficient due to the interaction with the external
air), kw is the equivalent stiffness of the membrane, F is the electrodynamic
force, pi is the cavity (internal) differential pressure, Aw is the membrane
area.

The electrodynamic force F is related to the piezo-electric effect due to
the applied sine voltage and is given by

F = F0 sinωt =
kwdAVa

Aw

sinωt = kw∆xw sinωt (5)

where F0 is the forcing magnitude, dA is the effective acoustic piezo-electric
coefficient, Va is the voltage amplitude, ω = 2πf is the operating angular
frequency (with f being the natural frequency, f = 1/T ) and ∆xw is the
(average) linear ”static” displacement of the membrane due to the piezo-
electric effect.

The application of the unsteady Bernoulli’s equation between a point
inside the cavity where the flow velocity is practically null and a point, just
outside the cavity, representing the location where the pressure matches the
unperturbed external ambient value, yields

Ma
dU

dt
= piAo −

1

2
KρaAoU |U | (6)

in which Ao is the orifice area, K is the head loss coefficient, ρa is the air den-
sity, Ma = ρaleAo is the mass of air oscillating inside the orifice (Helmholtz
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oscillator), with le being the effective length of the orifice (i.e., the distance
between the two locations of application of the Bernoulli’s equation) and
U being is the instantaneous orifice jet-flow velocity, as already defined in
section 1.

The equation of evolution of the third unknown, the cavity pressure pi,
is obtained by enforcing the conservation of air mass in the cavity; by relat-
ing the density and pressure variations by means of an isentropic compres-
sion/expansion transformation, the continuity equation can be formulated in
the following way

Vc

γp0

dpi
dt

= Awẋw − AoU (7)

where Vc is the cavity volume, p0 is the ambient pressure, γ is the specific
heat ratio.

3. Derivation of the energy balance equation and definition of effi-
ciency

Multiplying the equation (4) by the membrane velocity ẋw, yields:

dEw

dt
= Fẋw − piAwẋw − cwẋ

2
w (8)

where Ew is the diaphragm energy defined as

Ew =
1

2
mwẋ

2
w +

1

2
kwxw

2 (9)

that takes into account both kinetic and elastic strain contributions.
Similarly, the product between the equation (6) and the jet exit velocity

U yields
dEo

dt
= piAoU − 1

2
KρaAo|U |3 (10)

where Eo is given by

Eo =
1

2
MaU

2 (11)

and represents the kinetic energy flow rate of the air mass through the orifice.
The (instantaneous) energy balance equation of the actuator system can

be obtained by summing the equations (8) and (10). Moreover, since we are
interested in characterizing the actuator behavior over an operating cycle, it

6



is convenient to apply the time average operator on the resulting equation,
defined as

φ̄ =
1

T

∫ T

0

φdt (12)

where φ is the generic time-dependent variable.
The energy balance equation averaged over an actuation cycle (i.e., over

a time equal to the period T ) is given by

1

T

∫ T

0

d(Ew + Eo)︸ ︷︷ ︸
∆E

=
1

T

∫ T

0

Fẋwdt︸ ︷︷ ︸
P̄e

+
1

T

∫ T

0

pi(AoU − Awẋw)dt︸ ︷︷ ︸
P̄m

− 1

T

∫ T

0

cwtẋ
2
wdt︸ ︷︷ ︸

D̄s

− 1

T

∫ T

0

1

2
(K − 1)ρaAo|U |3dt︸ ︷︷ ︸

D̄f

− 1

T

∫ T

0

1

2
ρaA0|U |3dt︸ ︷︷ ︸
P̄k

(13)

An accurate description of the various contributions of equation (13) is
reported hereafter:

• ∆E is the total energy variation. Note that this term is null because,
for each cycle, there is no change for Ew and Eo.

• P̄e is the electrodynamic power provided to the membrane by the ap-
plied voltage.

• P̄m is the mechanical power due to the work done by the differential
pressure pi which acts on the wall surface Aw and on the orifice surface
Ao. By using the equation (7), it can be shown that this term is
proportional to 1

2
(pi

2(T ) − pi
2(0)) and, therefore, it does not give any

contribution because pi assumes the same value at the beginning and
end of each cycle. One can reach the same result by observing that the
pressure work is conservative by definition.

• D̄s is the power dissipation due to the structural damping effects of the
membrane.

• D̄f is the power dissipation due to the head loss of fluid dynamics type
at the orifice.
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• P̄k is the kinetic power of air flow at the orifice. Note explicitly that
the kinetic power here refers by definition to the entire cycle, i.e. the
suction phase included. We will continue this discussion in the last
section 4.

Then, by deleting ∆E and P̄m terms, the equation (13) becomes

P̄e − D̄s − D̄f − P̄k = 0 (14)

and, once defined the kinetic efficiency ηc as the ratio of the kinetic power of
the exit flow P̄k to the electrodynamic power P̄e, one obtains

ηk =
P̄k

P̄e

= 1− D̄s + D̄f

P̄e

(15)

It is worthwhile to stress that in practice the global efficiency of an ac-
tuator has to quantify the amount of Joule power provided to the system
P̄j that is actually converted in P̄e. This can be done by introducing the
electrodynamic transduction efficiency ηe

ηe =
P̄e

P̄j

(16)

Hence, finally, one can define the (global) efficiency of the actuator η as
the product of ηk by ηe

η = ηkηe =
P̄k

P̄j

(17)

where the external Joule power supply P̄j provided to the actuator is calcu-
lated as

P̄j =
1

T

∫ T

0

V Idt (18)

with V = Va sinωt being the applied voltage and I the electric current flowing
through the piezo-electric element.

The rate of P̄j not turned into P̄e is converted into a variation of internal
energy Q̇ of the air inside the cavity (heat generation per unit time), which
is transferred in part to the external ambient through a natural convection
mechanism, and, in part, into enthalpy flow rate of the air leaving the orifice

P̄j − P̄e = Q̇ ≡ hAe∆T + ṁcp∆T (19)
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where h is the convective heat transfer coefficient by natural convection, Ae is
the exchange surface (which depends on the relevant geometry of actuator),
∆T is the average-per-cycle temperature difference between the system and
the colder surrounding external air, ṁ = ρaŪAo and we remember that Ū
is the average velocity associated to the stroke length (eq. 2), and cp is the
specific heat coefficient at constant pressure. For the sake of simplicity we
assumed that the air inside the cavity is isothermal with the device case.

From equation (19) one obtains also

ηe = 1− Q̇

P̄j

(20)

4. Validation of the model and results

For fixed values of the geometrical and electro-mechanical parameters of
a typical synthetic jet actuator, the modeling developed before has been em-
ployed to estimate the various contributions of the energy budget equations
(13, 14) by carrying out direct numerical simulations of the governing equa-
tions (4, 6, 7). For a proper operating frequency f , the time trends of the
relevant quantities, in practice the membrane velocity and the air velocity at
the orifice exit, have been used to evaluate, ultimately, the energy conversion
efficiencies (15, 16, 17). Numerical integration has been performed by means
of a standard 4th order Runge-Kutta method in MATLAB environment with
ode45 routine. Initial conditions of xw = 0, ẋw = 0, pi = 0, and U = 0 have
been assumed for all the computations and it has been observed that the
quasi-steady oscillatory solution is generally reached in about 20 cycles (de
Luca et al. [12]). The time averages here performed refer typically to the
23th cycle.

The uncertainty errors of the numerical data have been evaluated espe-
cially with respect to variations of the values of the head loss coefficient as
well as of the effective orifice length (de Luca et al. [12]). For K varying
in the range 1 < K < 1.46 the variations of the resonance frequencies are
restricted within a maximum of 2%, while the corresponding variations of
the air velocity peaks are generally of the order of 10%. The uncertainty
of data of le is reflected on the peak frequencies which vary within a corre-
sponding uncertainty band of 5% which may grow up to a maximum of 10%
for relatively low frequencies, while the average width of such a band is of
10% for the peak exit velocities.
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Figure 1: Modular structure of the actuator (de Luca et al. [12])

To validate the modeling, numerical values of efficiency have been com-
pared with measured data for a typical synthetic jet actuator, the character-
istics of which are summarized in Table 1. The membrane was built in-house
by gluing a LZT piezo-ceramic disk (manufactured by PIEZO System inc.)
on a thin aluminum foil. The schematic of the device is also shown in Fig.
1 highlighting its modular structure, which permits independent variations
of cavity diameter and height, orifice diameter, and piezo-electric diaphragm
(de Luca et al. [12]). Here we adopted the value K = 1.14 for the head loss
coefficient, while the effective length of the orifice le, was basically evaluated
according to the description of Sharma [13], namely le/d0 = l0/d0+∆le, with
∆le=0.71.

For a given operating voltage, the evaluation of the Joule power supply
(equation (18)) needs the knowledge of the current intensity. This has been
done by means of the theoretical relationship

It = 2πfCVa (21)

where It denotes the theoretical current intensity peak, and C is the elec-
tric capacitance of the piezo-ceramic disk (furnished by the manufacturer).
To verify this estimation, the current intensity peak has been also measured
directly by means of the experimental apparatus sketched in Fig. 2. A wave-
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Figure 2: Sketch of the experimental setup.
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Table 1: Features of the tested device
Property

Geometry Shim diameter (mm) 80
Shim thickness (mm) 0.25

Piezo-electric diameter (mm) 63.5
Piezo-electric thickness (mm) 0.191

Cavity diameter (mm) 80
Cavity height (mm) 4

Orifice diameter (mm) 5
Orifice length (mm) 2

Shim Young’s Module (Pa) 7.31x1010

Poisson’s Module 0.31
Density (Kg/m3) 2780

Piezo-electric Young’s Module (Pa) 6.6x1010

Poisson’s Module 0.31
Density (Kg/m3) 7800
Capacitance (nF) 265

form generator (Wavetek model 164) creates an electrical sinusoidal signal
which is amplified (by EPA 104 PIEZO System inc. unit) and sent to the
synthetic jet device. Voltage and current are acquired by a two channels
oscilloscope (Tektronix tds 2024).

In Table 2, experimental measurements of the electric current peak Ie
are compared to the corresponding theoretical values It. The data spread is
generally less than 9% except for Va = 50V , for which it appears to be about
13%.

The efficiency values computed for the tested device at the modified
Helmholtz resonance frequency (which is of 900Hz, as reported by de Luca et
al. [12]) are listed in Table 3, together with the two power dissipation terms.
Here we limit to remember that the modified Helmholtz (circular) frequency,
ωmh can be estimated to a good approximation by the relationship:

ω2
mh

ω2
w

=
−(1 + ω2

wc

ω2
w
+

ω2
h

ω2
w
) +

√
(1 + ω2

wc

ω2
w
+

ω2
h

ω2
w
)2 − 4

ω2
h

ω2
w

2
(22)

where the (first mode) structural frequency of the membrane is given by
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Table 2: Comparison of theoretical current peak with measured data (Ampere)

Va(V ) It(A) Ie(A)
25 0.038 0.036
30 0.045 0.044
35 0.052 0.054
40 0.059 0.056
45 0.066 0.060
50 0.073 0.064
55 0.079 0.074
60 0.085 0.080
65 0.093 0.086
70 0.099 0.094
75 0.106 0.104

ωw =

√
kw
mwt

, (23)

the uncoupled Helmholtz frequency is

ωh =

√
γA2

opo/Vc

ρaleAo

=

√
ka
Ma

, (24)

and the coupling frequency is defined as

ωwc =

√
γA2

wpo/Vc

mw

=

√
γAwpo
mwH

(25)

which, following Sharma [13], may be interpreted as the frequency of the
pneumatic spring made of the air enclosed within the cavity of volume Vc

and of the diaphragm mass mw. Note that the height of the cavity, H, is
explicitly introduced.

As one can observe (Table 3), the influence of the driving voltage is rather
weak for ηk, D̄f/P̄e and D̄s/P̄e ; conversely, ηe decreases with increasing Va,
thus determining the same trend for the global efficiency η. For the sake
of completeness, to give the reader the possibility to check the calculations,
the following additional parameters have been considered, according to the
complete description of the actuator under examination made by de Luca et

13



Table 3: Efficiencies and dissipation terms at modified Helmholtz frequency

Va(V ) ηk(%) ηe(%) η(%) D̄f/P̄e(%) D̄s/P̄e(%)
25 79.6 90.7 72.2 11.1 9.3
30 79.8 85.4 68.1 11.2 8.7
35 79.5 79.6 63.3 11.1 8.7
40 79.3 74.8 59.3 11.1 8.8
45 80.2 69.6 55.8 11.2 7.9
50 79.6 66.8 53.2 11.1 8.1
55 81.3 64.2 52.2 11.4 7.8
60 81.7 59.1 48.3 11.4 7.2
65 80.8 58.8 47.5 11.3 7.8
70 79.7 54.6 43.5 11.2 7.7
75 80.8 51.5 44 11.3 7.8

al. [12]: ρa = 1.205 Kg/m3; kw = 9.48 · 104 N/m; dA = 4.01 · 10−9 m3/V ;
cwt = 2.75 Ns/m, evaluated at the frequency of 900Hz.

Hereafter we will show that the trends against voltage of the quantities
shown in Table 3 are well fitted by simple power laws which, in turn, can be
justified on the basis of scaling theoretical considerations.

From the numerical integration of the governing equations we found that
the variations of exit kinetic power and electrodynamic power follow the
following trends

P̄k ≈ Va
1.8 (26)

P̄e ≈ Va
1.8 (27)

as is depicted in Figs. 3 and 4, respectively, where circle symbols refer to
computed data e continuous lines refer to the analytical relationships. There-
fore, being ηk given by the ratio between two quantities both proportional
to Va

1.8, it does not depend on Va. Since one expects that D̄f has the same
scaling law as P̄k, the fluid dynamic dissipation rate D̄f/P̄e is constant too.
Indeed, according to their definitions in equation (13), P̄k and D̄f vary as
U3
0 and P̄e as F0ẋw0 (with U0 and ẋw0 being the fluid and membrane peak

velocities, respectively), and therefore one could expect that they scale as V 3
a

and V 2
a , respectively. However, due to the complex coupling between the two

oscillators, the membrane and the acoustic one, in the presence of significant
non linear damping acting on the acoustic one, such theoretical laws are re-

14
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Figure 3: Kinetic power at orifice exit versus voltage. Circle symbols are computed data,
continuous line represents eq. (26)

markably modified, as discussed in detail by de Luca et al. [12] and de Luca
et al. [14]. Here we found that U0 ≈ Va

0.6 and ẋw0 ≈ Va
0.8. Since F0 scales

with Va, the scaling relationships of equations (26) and (27) are justified.
Fig. 5 shows that the Joule power, evaluated experimentally, increases

with increasing the voltage amplitude following a power law of the kind

P̄j ≈ Va
2.3 (28)

Note that if the behavior of the piezo-ceramic element was governed per-
fectly by the Ohm’s law, i.e. if the capacitance was constant, P̄j would be
directly proportional to Va

2. In effect, the relationship (28) tells us that the
piezo-element capacitance varies as a function of the voltage and, further-
more, that the output instantaneous current is a distorted sine wave.

Finally, as depicted in Fig. 6, the behavior of the transduction coefficient
ηe defined by equation (16) and relating the Joule power to the electrody-
namic one, taking into account also the relationship (27), is well fitted by a
power law of the following type

ηe ≈ Va
−0.5 (29)
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Figure 4: Electrodynamic power versus voltage. Circle symbols are computed data, con-
tinuous line represents eq. (27)

A similar trend holds for the global efficiency η (equation (17)).
Hereafter we will end this section with some practical remarks. Remem-

ber that the kinetic power defined by equation (13), and the related kinetic
efficiency of equation (15), refer by definition to the entire cycle, i.e. the
suction phase included. In effect, in some specific applications where, for
instance, the final goal is to obtain a proper trust linked to the downstream
momentum flux, or in heat transfer situations where the goal is to achieve a
proper jet Reynolds number based on the stroke length velocity of equation
(2), the kinetic power should be referred to the ejection phase only and eval-
uated just downstream of the so called saddle point, namely the stagnation
point along the jet axis separating, during the suction phase, the ingestion
near field and the ejection far field. Of course, an accurate evaluation of
the time variation of the jet velocity at the saddle point could be made by
proper measurements (e.g., by means of PIV techniques) or by detailed CFD
computations. However, according to the experimental findings of Smith and
Glezer [6], one can admit that the jet velocity peak is about the same as the
air velocity peak at the orifice; thus, under the assumption of sine temporal
variation of the jet velocity just downstream of the saddle point during the
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Figure 5: Measured Joule power versus voltage. Circle symbols are experimental data,
continuous line represents eq. (28)
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ejection phase, one could conclude that the kinetic power is roughly speaking
the half of the quantity estimated by equation (13). In practice, due both
to a temporal distortion of the velocity signal from the sine trend, and to
addition fluid dynamic dissipations in the external air field, the kinetic power
can lower down to about 1/3 of the quantity defined in equation (13). Thus,
the values of efficiency reported in Table 3 should be reduced by a factor
ranging from 1/2 to 1/3 accordingly. For instance, the global efficiency of
44% corresponding to the voltage of Va = 75V would be reduced down to
about 15%.

Moreover, when a numerical modelling is not available to estimate the
electrodynamic power, the electric efficiency can be evaluated through the
equivalent relationship (20), which requires essentially the measurement of
the mass flow rate of air at the orifice, the Joule power and the average-per-
cycle temperature difference between the system and the colder surrounding
external air ∆T introduced in equation (19). Here equation (19) has been
employed within a reverse procedure to estimate ∆T . If we assume h =
10W/m2, which is a typical value in natural convection, for the standard value
of the specific heat coefficient at constant pressure at ambient temperature,
∆T ranges from 0.02◦C (corresponding to the lower voltage) to 0.78◦C.

5. Conclusions

In this paper we presented a comprehensive and detailed physical mod-
elling to evaluate the efficiency of synthetic jet actuators, driven by piezo-
electric effect. To the knowledge of present authors this approach is original
because is based on relevant energy equations written for both the membrane
and acoustic oscillators, which are derived from the corresponding motion
equations.

It has been shown that the global efficiency, which is defined as the ratio
of the useful kinetic power to the input Joule power, can be expressed as the
product of the electrodynamic efficiency (defining the conversion of Joule
power to electrodynamic power) and the kinetic efficiency (defining the con-
version of electrodynamic power to kinetic energy). Both the efficiency can
be also estimated in terms of the relevant dissipation terms. In particular, the
electrodynamic efficiency is related to the variation of internal energy of air
inside the cavity, or heat generation, which is dissipated towards the external
ambient both by natural convection on the walls of the actuator case, and
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through the enthalpy flow rate traversing the orifice. On the contrary, the
kinetic efficiency is produced by fluid dynamics and structural dissipations.

The physical model has been validated against experimental measure-
ments carried out on a built-in-house device having the piezo-ceramic disk
glued on an aluminum shim. Combined numerical and experimental investi-
gations allowed us to find that, for the particular actuator under examination,
analyzed at modified Helmholtz frequency, the kinetic efficiency does not vary
with applied voltage, whereas the electrodynamic efficiency scales with the
reciprocal of the voltage square root. These trends have been also justified
according to theoretical scaling laws discussed for each relevant power term.

A discussion has been made on the connection between the energy conver-
sion efficiency at orifice (which is the base subject of the present paper) and
the corresponding efficiency in the external jet field, estimated approximately
at the stagnation point (or saddle point) separating, during the suction phase,
the ingestion near field from the ejection far field. It has been argued that
the saddle point efficiency is lower than the orifice efficiency by a factor that
can range from 1/2 to 1/3.

Finally, it has been shown that the electrodynamic efficiency can be
conveniently evaluated by measuring, among other standard quantities, the
average-per-cycle temperature difference between the air inside the cavity
and the external ambient. In the present application a reverse procedure
allowed us to evaluate such a temperature difference, which is limited to a
maximum of almost one degree centigrade.
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Preface

My research activity has been focused on two topics very different from each other. For

this reason, the present PhD thesis consists of two volumes:

• The volume A deals with the modeling and the experimental validation of the

frequency response and the energy conversion efficiency of a synthetic jet actuator

driven by a thin piezoelectric disk.

• The volume B deals with the global dynamics of gravitational liquid sheet flows

subjected to surface tension.

Results showed in this volume have been published in the following journal/conference
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tion”, Physics of Fluids, vol. 26; pp. 122109-1-122109-24, 2014. ISSN: 1070-6631,

doi: 10.1063/1.4904752

3. M. Girfoglio, F. De Rosa, G. Coppola, L. de Luca, “Global dynamics of tran-

sonic gravitational liquid sheet flows”, In: EFMC10 – European Fluid Mechanics

Conference 10. Lyngby, Copenhagen, 15-18 september 2014.

4. M. Girfoglio, F. De Rosa, G. Coppola, L. de Luca, “Global eigenmodes of free-

interface vertical liquid sheet flows”, Wit Transactions on Engineering Sciences,
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5. F. De Rosa, M. Girfoglio, G. Coppola, L. de Luca, “Global dynamics of grav-

itational liquid sheet flows”, In: AIDAA Napoli XXII, pp. 1-12. Napoli, 9-12

september 2013. Italian Association of Aeronautics and Astronautics. ISBN:

9788890648427
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Abstract

The unsteady global dynamics of a gravitational liquid sheet interacting with a one-sided

adjacent air enclosure, typically referred to as nappe oscillation, is addressed, under the

assumptions of potential flow and both in absence and in presence of surface tension

effects.

To the purpose of shedding physical insights, the investigation is carried out from both

the dynamics and the energy aspects. An interesting re-formulation of the problem

consists of recasting the nappe global behavior as a driven damped spring-mass oscillator,

where the inertial effects are linked to the liquid sheet mass and the spring is represented

by the equivalent stiffness of the air enclosure acting on the average displacement of the

compliant nappe centerline. The investigation is carried out by means of modal (i.e. time

asymptotic) linear approach, which is corroborated by direct numerical simulations of

the governing equation.

In absence of surface tension effects, the modal analysis shows that the flow system is

characterized by low-frequency and high-frequency oscillations, the former related to

the crossing time of the perturbations over the whole domain, the latter related to the

spring-mass oscillator. The low-frequency oscillations, observed in real life systems, are

produced by the (linear) combination of multiple modes. The flow system is character-

ized by short-time energy amplifications even in asymptotically stable configurations,

that are confirmed by numerical simulations and justified by energy budget considera-

tions. Strong analogies with the edge tones problem are encountered, in particular the

integer-plus-one-quarter resonance criterion is uncovered, where the basic frequency to

be multiplied by n+ 1
4 is just the one related to the spacing among the imaginary parts

of the eigenvalues.

In presence of surface tension effects, it is known that the basic nature of the global

dynamics of gravitational liquid sheet flows depends crucially on the inlet Weber number

We = ρlU
?2
in H

?
in/2σ, where ρl is the liquid density, U?in the inlet liquid velocity, H?

in the

initial thickness of the sheet, σ the air-liquid surface tension. When We > 1, the local

Weber number too, Wel = U2/c2 (with U and c =
√
σ/ρlH being the local flow and

ii



iii

capillary waves velocity, respectively), is greater than unity at each streamwise location,

so that the flow can be defined supersonic-like everywhere. WhenWe < 1, there exists an

initial region where the sheet flow is subsonic, up to the transonic location, downstream

of which the flow becomes supersonic. From the theoretical viewpoint the problem is not

straightforward, because it is known that the equation governing the evolution of small

disturbances exhibits a singularity just at the transonic station, although the solution

to the problem is not yet yielded. Thus, the present work is aimed at developing a

theoretical/numerical procedure to fill up this lack of information.

Preliminary physical insights of the sheet centerline sinuous modes show that the nappe

dynamics features the propagation of two wave fronts both directed downstream or one

downstream and the other one upstream depending on whether the flow is supersonic

or subsonic, respectively. In every situation the inlet section is considered as a perfectly

reflecting boundary. As regards the other boundary condition, in supersonic flow it is of

null centerline slope at the inlet; in subsonic regime it is imposed just at the singularity

station, by enforcing the boundedness of the sheet slope there. An additional analytical

investigation on the nature of the singularity, based on the Frobenius theory, predicts

that the flow is unconditionally stable for any We < 1 and that the disturbance time

growth rate results to be bounded above.

The findings of the eigenvalues spectral analysis confirm all the theoretical predictions

discussed above. They in turn closely agree with direct numerical simulations of the

partial differential equation governing in the space-time domain the global evolution of

the disturbances, starting from an initial gaussian-like shape, with particular attention

to transonic and high Weber number regimes.
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Chapter 1

Introduction

1.1 Motivation and objectives

The investigation of the unsteady dynamics of gravitational liquid sheet flows is of great

importance in many engineering applications. It is well known that the control of the

break up of liquid jets (both plane and annular) plays a key role in several industrial

processes, such atomization and spray processes in which high-speed flows are vaporized

in order to increase the efficiency of the combustors. Liquid sprays are used in these

processes (to inject the fuel into the burner of furnaces, turbines, internal combustion

engines, rockets, etc.) as well as in agriculture, medicine, cooling systems. At reduced

velocities, when the effect of the gravity is crucial, several technological processes require

the control of the evolution dynamics of such liquid jets, such as coating and paper-

making processes.

The basic ideas explaining the physical mechanisms leading to the jet rupture (break

up) seem well established, even though the attempt to recast such a level of knowledge

within the framework of modern approaches of fluid dynamics instability is a current

subject of research. As an example, a known experimental evidence is that the plane jet

breaks up when the flow Weber number is lowered below unity [2], though, at present

time there is no theory able to predict the actual value of Weber number of rupture.

On the other hand, other recent experimental findings [3] showed that the sheet rupture

seems do not be caused by amplification of single modal waves.

The aim of the present contribution is to investigate the global dynamics of gravitational

liquid sheet flows by taking into account the effects of the surface tension.

1
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a) b)

Figure 1.1: Qualitative depiction of the two fundamental oscillation modes of a plane
liquid sheet: a) varicose mode, b) sinuous mode.

1.2 Stability analysis: literature review

Squire [4] and Hagerty and Shea [5] have carried out early relevant works related to the

stability analysis of a liquid jet. They focused on the problem of a liquid sheet interact-

ing with an inviscid steady external gas and identified the two fundamental oscillation

modes of a plane liquid sheet; a symmetric oscillation mode (varicose mode) and an

antisymmetric oscillation mode (sinuous mode), both showed in Fig. 1.1. Furthermore,

they found that the instability was generated by aerodynamic effects, related to the

velocity difference between the air and the external gas, and that the surface tension

played a stabilizing role.

Later on, such temporal stability analysis was extended to the viscous case by [6]. They

found two different instability mechanisms: a not viscous aerodynamic instability, not

depending on the flux Reynolds number, and an instability of viscous nature, strongly

depending on the flux Reynolds number, which represented the dominant mechanism for

low flux Weber numbers (≈ 1). Conversely, for high Weber numbers (� 1), when the

aerodynamic instability is crucial, they found that the viscosity had a stabilizing effect

on the flow system, by moving the onset of the instability towards higher wave lengths.

Lin et al. [7] carried out the first relevant absolute instability analysis of a viscous liquid

sheet interacting with an inviscid gas. They found a pseudo-absolute instability for the

sinuous mode, when the Weber number is lowered below unity. An analogous behaviour

has been found by [8] who studied the impulse response for an inviscid gravitational

liquid sheet, by obtaining the same critical Weber number. In summary, the results of

such investigations have allowed to conclude that the liquid sheet is characterized by a

pseudo-absolute instability for Weber numbers less than unity, otherwise it results to be

convectively unstable. Anyway, the spatial stability analysis did not confirm the presence

of the two different peaks found by [6] by means of a temporal analysis for low Weber

numbers since the viscous mode was characterized by a too low spatial amplification.

Later on, de Luca [2] experimentally studied the break up of a gravitational liquid sheet

characterized by an uniform velocity profile in the inlet section. The author observed
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Figure 1.2: Experimental set-up used by [1] in order to visualize the flow structure

Figure 1.3: Experimental visualization of the sheet break up [2]

that the sheet was subjected to rupture exclusively for Weber numbers less than unity,

with a value depending on the non-parallelism factor. This result suggested that the

break up phenomenon was related to a global instability mechanism.

Schmid and Henningson [9] studied the global instability of a plane gravitational liquid

sheet by using a perturbative method based on the slender sheet approach, applied to a

mathematical model previously developed by [10]. They investigated the interaction with

an air cushion located on one side of the sheet by considering an isentropic transformation

of the air. By means of a non modal analysis of the low frequency modes, they found that

the flow system was unstable, in good agreement with the experimental measurements.

It is worth to stress that in [9] both viscous and surface tension effects were neglected.

In addition to the contributions cited above, a lot of experimental investigations have

been carried out in order to explain the physical mechanisms related to the sheet break

up. Fig. 1.2 shows an experimental set-up recently used to visualize the flow structure.

As depicted in Fig. 1.3, the sheet rupture is characterized by the formation of discrete

filaments which, later on, break up into drops.

1.3 Thesis layout

This thesis is presented in four chapters followed by a conclusion and an appendix.

In Chapter 1 an overview is given, together with the motivation and the objectives of
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the research. In Chapter 2 the development of the mathematical model is reported.

Chapter 3 and Chapter 4 show the most relevant results obtained in absence and in

presence of surface tension effects, respectively. The appendix collects the most relevant

conference/journal papers published during the research activity.



Chapter 2

Physical modeling

To derive a physical model for the unsteady evolution of an inviscid gravitational liquid

sheet, the assumptions of thin curtain and plug flow are adopted [10–12].

It has been considered the boundary pressure field produced by the curtain compli-

ant interface within a two-dimensional air enclosure delimited by the sheet itself, rigid

walls and a lower basin, namely it has been addressed the unsteady behavior of the

configuration generally referred to as nappe oscillation. Splashing effects are neglected.

Furthermore, the investigation will be restricted to the occurrence of one-dimensional

surface wave-patterns. One can expect that oblique waves (i.e., developing along the

spanwise direction) occur when extending the study to three-dimensional configurations,

as already found experimentally by Le Grand-Pitera et al. [1] in the case of symmetrical

semi-infinite boundary air environments.

Figure 2.1 shows the schematic of the geometrical configuration under consideration. In

the unperturbed condition the liquid flows along the vertical x-direction with a steady

velocity and two symmetrical free interfaces. The definitions of unsteady centerline

location ` and thickness h of the sheet are given, in terms of the interface positions y±,

as follows

`?(x?, t?) =
y?+(x?, t?) + y?−(x?, t?)

2
h?(x?, t?) = y?+(x?, t?)− y?−(x?, t?)

where superscripts ± refer to right and left interfaces, respectively, and t∗ is the time.

Here as elsewhere star denotes dimensional quantities. Furthermore, the general defini-

tion ϕ?±(x?, t?) = ϕ?(x?, y?±, t?) will be adopted in the following, ϕ being any of the

5
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Figure 2.1: Sketch of the model configuration

flow variables u, v and p (where u and v are the streamwise and lateral liquid velocity

components, respectively, and p is liquid pressure)

2.1 Governing equations

The starting mathematical framework is given by the two-dimensional Euler equations

in which gravity is retained, closed by the kinematic and dynamic conditions imposed

at the free interfaces.

The assumption of a thin sheet with respect to the wavelength of a disturbance allows

one to consider local plug-type velocity profiles for u and v across the nappe thickness.

To derive the governing equations the following procedure is adopted: the mass and

x -momentum balances are formulated over a generic slice of the curtain of length dx;

the y-momentum equation is integrated along the lateral coordinate y; the unsteady

quantities can be considered as the sum of a steady contribution and a fluctuation (i.e.

perturbation)

u∗ = U∗ + u
′∗ (2.1)

v∗ = V ∗ + v
′∗ (2.2)

p∗ = P ∗ + p
′∗ (2.3)

h∗ = H∗ + h
′∗ (2.4)

y∗± = Y ∗± + y
′∗± (2.5)
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where capital letters (here as elsewhere) denotes basic (steady) quantities and prime

the corresponding fluctuations. Under the assumption of small perturbations, the lin-

earized forms of the continuity, x -momentum and y-momentum equations are written,

respectively:

∂h′?

∂t?
+

∂

∂x?
(
U?h′? +H?u′?

)
= 0 (2.6)

∂u′?

∂t?
+

∂

∂x?
(
U?u′?

)
= − 1

ρl

∂p′?

∂x?
(2.7)

∂v′?

∂t?
+ U?

∂v′?

∂x?
= − 1

ρlH?

(
p′?+ − p′?−

)
(2.8)

where ρl is the liquid density.

The boundary conditions are:

v?± =
∂y?±

∂t?
+ u?±

∂y?±

∂x?
(2.9)

p?± = p?±a ∓ σ
∂2y?±

∂x?2

[
1 +

(
∂y?±

∂x?

)2
]− 3

2

(2.10)

where p?±a (x?, t?) is the local value of the external ambient pressure and σ is the surface

tension coefficient.

The difference between the boundary fluctuating pressures of eq. (2.8) can be expressed

in terms of perturbations of ambient pressure and interface locations by linearizing the

dynamic boundary condition (2.10):

p′?± = p′
?±
a ∓ σ

[
1 +

(
dY ?±

dx?

)2
]− 3

2

·
{
∂2y′?±

∂x?2
− 3

d2Y ?±

dx?2
dY ?±

dx?
∂y′?±

∂x?

1 +
(
dY ?±

dx?

)2
}

(2.11)

The result can be recast in the form:

p′?+ − p′?− = p̃′?a − 2σ
∂

∂x?

[
F ?

∂`′?

∂x?

]
(2.12)

with F ? =
[
1 + 1

4

(
dH?

dx?

)2]− 3
2
, and p̃?a = p?+a − p?−a . Note also that |Y ∗±| = H∗

2 .
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Eq. (2.8) has to be coupled with the linearized kinematic boundary condition, which

can be properly expressed in terms of the centerline deflection only:

v′? =
∂`′?

∂t?
+ U?

∂`′?

∂x?
. (2.13)

Eqs. (2.8) and (2.13) constitute a closed system for the unknown lateral velocity and

centerline perturbations, namely representing the so called skew-symmetric sinuous so-

lution of the unsteady perturbed field.

It is straightforward to observe that eqs. (2.6) and (2.7) represent, on the other hand,

the symmetric, or varicose, solution for the perturbed longitudinal velocity and sheet

thickness. In fact, the liquid pressure (which is constant in this symmetric case, i.e.

p′? = p′?+ = p′?−) can be eliminated by taking the half sum of the right hand side of eq.

(2.11) so as to obtain

p′? = p′?a −
σ

2

∂

∂x?

[
F ?

∂h′?

∂x?

]
(2.14)

where

p?a =
p?+a + p?−a

2
.

To close the two systems of coupled equations (2.6-2.7) and (2.8-2.13) expressions for

the ambient gas pressure terms p′?a and p̃′?a as functions of the perturbations of the sheet

are required.

The infinitesimal variation of the enclosure volume, resulting from the sheet fluctuation,

is given by

V ′?a =

∫ L?

0
`′?(x?)dx? − 1

2

∫ L?

0
h′?(x?)dx?

If one hypothesizes that the air within the enclosure encompasses compression/expansion

isoentropic thermodynamic transformations, it is possible to give explicit expressions for

the external pressure terms of the eqs. (2.12) and (2.14), for the two different oscillating

modes of the sheet, respectively, as follows:
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p̃′?a = γ
P ?a
V?a

∫ L?

0
`′?(x?)dx? (2.15)

p′?a =
γ

4

P ?a
V?a

∫ L?

0
h′?(x?)dx? (2.16)

where γ is the specific heat ratio, P ?a is the unperturbed gas pressure into the enclosure

and V?a = L?W ? − 1
2

∫ L?
0 H?(x?)dx? is the corresponding volume in the configuration

shown in Figure 2.1.

Substituting the above relationships of the pressure difference and of the average pres-

sure into the streamwise and lateral momentum equations (2.7, 2.8) eventually yields,

respectively:

∂u′?

∂t?
+

∂

∂x?
(
U?u′?

)
=

σ

2ρl

∂2

∂x?2

[
F ?

∂h′?

∂x?

]
(2.17)

∂v′?

∂t?
+ U?

∂v′?

∂x?
=

2σ

ρlH?

∂

∂x?

[
F ?

∂`′?

∂x?

]
− γ

ρlH?

P ?a
V?a

∫ L?

0
`′?(x?)dx? (2.18)

It is worth noting that in deriving eq. (2.17) it is implicitly assumed that the pressure

fluctuation inside the air enclosure does not vary in space, according to the model of a

lumped reaction of the cushion.

The set of two systems of coupled equations (2.6-2.17) and (2.13-2.18), already derived

in Girfoglio et al. [13] (see Appendix), can be rigorously derived by using the theory

and the methods of perturbations [14]

2.2 Non-dimensional equations and slender sheet approx-

imation

The governing equations can be conveniently made dimensionless by employing the

reference quantities

L?r = L?, `?r = H?
in,

u?r = U?in, v?r = εU?in,

t?r = L?/U?in, p?r = ρlU
?2
in
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with ε = `?r/L
?
r denoting the slenderness parameter (tiny according to the assumptions

made in deriving the model). The non-dimensional form results

∂`

∂t
+ U

∂`

∂x
= v (2.19)

∂v

∂t
+ U

∂v

∂x
=

1

WeH

∂

∂x

[
F
∂`

∂x

]
− γ

H

Pa

∫ 1
0 `(x)dx

ε
(
W ?

L? − ε
2

∫ 1
0 Hdx

) (2.20)

∂h

∂t
+

∂

∂x
(Uh+Hu) = 0 (2.21)

∂u

∂t
+

∂

∂x
(Uu) =

ε2

4We

∂2

∂x2

[
F
∂h

∂x

]
(2.22)

where We =
ρlU

?2

in H
?
in

2σ is the Weber number and F =
[
1 + ε2

4

(
dH
dx

)2]− 3
2
.

As extensively discussed in Coppola et al. [11], in the absence of viscosity, an analytical

solution for the steady (base) flow of sheet thickness and streamwise liquid velocity

can be obtained by performing a parameter-type expansion in the small ratio ε2 of the

unperturbed governing equations. At the zerotth order expansion, the following non-

dimensional Torricelli’s free-fall solution for the steady main flow results:

UH = 1 and U =
√

1 + 2Fr x (2.23)

where Fr = gL?/U?
2

in denotes the Froude number.

Accordingly, the corresponding lowest order expansion to the eqs. (2.19-2.22) leads to

the slender sheet approximation:

sinuous mode


∂`

∂t
+ U

∂`

∂x
= v (2.24)

∂v

∂t
+ U

∂v

∂x
=

1

WeH

∂2`

∂x2
− K
H

¯̀ (2.25)

varicose mode


∂h

∂t
+

∂

∂x
(Uh+Hu) = 0 (2.26)

∂u

∂t
+

∂

∂x
(Uu) = 0 (2.27)

with K = γ Pa

εW
?

L?
and

¯̀=

∫ 1

0
` dx

denoting the average sinuous deflection of the sheet.
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In summary, three independent dimensionless parameters for the problem under study

have to be considered: the Weber number We, the Froude number Fr and the equiva-

lent air stiffness K. Note explicitly that in the present analysis the air stiffness includes

simultaneously the effects of the undisturbed pressure within the enclosure, of the enclo-

sure width and of the slenderness ratio ε = H?
in/L

?, which in principle have to be taken

into account separately.

Note that eqs. (2.26-2.27) governing the evolution of the varicose modes are not able

to sustain any oscillating wave pattern in the configuration here adopted, reducing to

simple advection equations. Therefore, the attention will be focused hereinafter on the

sinuous disturbances (eqs. (2.24-2.25)) only.



Chapter 3

Nappe oscillation in absence of

surface tension

In this chapter, the nappe oscillation in absence of surface tension effects will be inves-

tigated. To the purpose of shedding physical insights, the study will examine both the

dynamics and the energy aspects. The analysis is carried out through a modal (i.e., time

asymptotic) linear approach, which is corroborated by direct numerical simulations of

the governing equations.

Note that the complete treatment, further supported by a non-modal (i.e., short-time

transient) linear approach, can be found in [12] (see Appendix), from which the results

reported hereafter are arisen.

3.1 Theoretical insight on the nappe global dynamics

The equations for sinuous disturbances (2.24-2.25), in absence of surface tension (We =

∞), became


∂`

∂t
+ U

∂`

∂x
= v (3.1)

∂v

∂t
+ U

∂v

∂x
= −K

H
¯̀ (3.2)

Due to the hyperbolic nature of the governing equations, they are equipped with two

boundary conditions prescribed at the inlet location, x = 0, namely, `(0) = v(0) = 0.

12
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In order to give more physical insight on the fluid system under study, the equations

for sinuous disturbances (focus of the present analysis) can be properly rearranged by

taking into account integral quantities depending on the sheet extension as a whole.

Hereafter it will be seen that it is globally modeled as a lumped one-degree-of-freedom

spring-mass system, in which the role of the spring is played by the air into the enclosure

and the mass is that of the liquid sheet itself.

Let’s start to reconsider the system of equations (3.1-3.2) in terms of a single second

order partial integro-differential equation

D2`

Dt2
= −K

H
¯̀ (3.3)

where D
Dt is the substantial derivative. Such an equation governs the linear inviscid

evolution of a generic disturbance subjected to an integral reaction term. The role played

by the air stiffness K ≥ 0 is crucial in characterizing the dynamics of the self-sustained

wave-patterns evolving into the curtain. If K = 0 the equation is trivial, reducing to the

simple advection equation with variable mean velocity given by eq. (2.23). Then, if no

input is introduced at the left boundary, after a finite time any solution vanishes, with

the disturbance being continually expelled at the outlet of the domain.

Conversely, the presence of the reaction term in the form of an integral changes things

in such a way that the temporal evolution of the disturbance is by no means identically

null after a finite time. As it will be shown in the subsequent investigations, depending

on the stiffness of the air chamber adjacent to the sheet, the system dynamics exhibits

different features in terms of both stability properties and energy time evolution.

After expressing the substantial derivative in explicit form, integrating eq. (3.3) over

the whole length of the sheet yields:

d2

dt2

[∫ 1

0
H` dx

]
+K ¯̀= −∂`

∂t

∣∣∣∣
1

− v1 (3.4)

where the boundary conditions at the inlet location, `(0) = 0 and v(0) = 0, have been

considered, and quantities at the outlet boundary are denoted with the subscript 1. This

notation will be used hereafter for all the quantities at the right boundary.

The integral at left hand side of eq. (3.4) can be conveniently expressed as:∫ 1

0
H(x)`(x) dx = H̄ ¯̀+

∫ 1

0
H ′(x)`′(x) dx (3.5)

where H ′(x) and `′(x) into the covariance term on the right side of the above equation

represent the local deviations of sheet thickness and centreline position from their average
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values, H̄ and ¯̀, respectively, and with the following position being also made:

H̄ =

∫ 1

0
H dx.

The adopted hypotheses of small sheet thickness and perturbations assure that the

covariance term is small so that it can be neglected into eq. (3.5) and the analogy with

an elastic oscillator holds, as it appears hereafter:

H̄
d2 ¯̀

dt2
+K ¯̀= −

(
2
∂`

∂t

∣∣∣∣
1

+ U
∂`

∂x

∣∣∣∣
1

)
(3.6)

where H̄ denotes the mass of the liquid sheet and K is the equivalent spring stiffness of

the enclosure air, whilst the righthand side has been written by considering eq. (3.1).

It’s worth noting that in absence of gravity effects (i.e. parallel flow) eq. (3.6) is obtained

without any approximation from eq. (3.4) and the above analogy is exact. Then, the

righthand side of eq. (3.6) can be further manipulated in order to extract a damping

term, that is to say:

H̄
d2 ¯̀

dt2
+ 2

d¯̀

dt
+K ¯̀= −2

d

dt

∫ 1

0
x
∂`

∂x
dx− U ∂`

∂x

∣∣∣∣
1︸ ︷︷ ︸

fi

(3.7)

where fi represents the self-induced forcing acting on the elastic oscillator.

In summary, the global dynamics of the nappe consists of the mutual interaction of the

centerline local deflection with the compliant air chamber which behaves as a spring

acting on the average sheet deflection. Eq. (3.3) shows that the local deflection is forced

by the global reaction term of the spring, whilst the dynamics of the global spring-mass

oscillator is driven by a combination of local sheet displacement values, as described by

eq. (3.7). In the following part of the chapter, it will be correlated such a mutual forcing

to special features of the eigenvalues spectrum; the spectrum uncovers the natural mode

(possibly unstable) of the spring-mass system and the peculiar oscillating behavior of

the nappe described not just by single modes, but by the superposition of a number

of modes to be ascribed essentially to Eq. (3.3) and physically connected to another

characteristic frequency linked to the typical crossing (or falling) time.

Here it is useful to introduce the following ansatz: the system is stable if the crossing

time is less than the period of the spring-mass oscillator, T . In the opposite situation

the self-forcing establishes, leading to instability. Of course, since the oscillator works in

the driven regime, the oscillation period does not correspond to the natural frequency

of oscillation and in general it cannot be determined in analytical closed form. It should

be stressed that this ansatz includes the gravity effects, in the sense that in the presence
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of gravity effects a shorter crossing time is expected, as well as a higher K threshold

of instability. Such predictions will be confirmed by the subsequent spectral analysis.

In analogy with the classic acoustic phenomenon of edge tones, it will be showed that

resonance occurs at frequencies one-plus-one-fourth times the instability onset frequency.

It is worth to remember that the edge tones phenomenon refers to the acoustic tones

produced when a jet of air strikes a wedge shaped edge, whereas resonance occurs at

frequencies one-integer-plus-one-quarter times the frequency given by the ratio of the

jet velocity to the distance between the jet exit section and the wedge apex. In other

physical terms, Curle [15] explained that the jet wavelength w and the edge to nozzle

distance d are related by the relationship d = (n+ 1/4)w, where n is an integer.

3.2 Disturbance energy evolution

In order to investigate some features of the solutions of eqs. (3.3) and (3.7), it is useful to

examine the mechanisms of perturbation growth (or decay) by considering also the time

behavior of the system’s energy E. For sinuous disturbances the energy balance equation

can be easily derived by multiplying eq. (3.2) by the lateral velocity fluctuation v, and

then by integrating it over the whole volume (per unit length in transversal direction)

of the sheet, thus obtaining:

dEk

dt
+
v21
2

= −
(
K ¯̀
) ∫ 1

0
v dx (3.8)

where the kinetic energy Ek is defined as

Ek =
1

2

∫ 1

0
Hv2 dx (3.9)

and the energy terms are made dimensionless with respect to the reference energy E?r =

ρl`
?
rL

?
rv
?2
r .

Apart from the presence of the convective exchange term of kinetic energy at the lower

end of the domain, the righthand side of eq. (3.8) shows that a single mechanism

contributes to the rate of change of kinetic energy, that is to say the pressure (i.e., the

term in between the parentheses) work per unit time exchanged during the isentropic

compression/expansion of the air enclosure. By looking at the analogy with the elastic

oscillator, one expects that the pressure work has a time oscillating trend driven by

the frequency of the self-induced forcing acting on the spring-mass model (3.7); since

the pressure work can assume both positive and negative values, no conclusion may be

drawn about the large time asymptotic behavior.
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It is worthwhile to further rearrange Eq. (3.8) by eliminating the lateral velocity v with

the aid of eq. (3.1), where the convective term is integrated by parts. The result is:

dE

dt
+
v21
2

= −K ¯̀U1`1 +K ¯̀
∫ 1

0

dU

dx
` dx (3.10)

with E = Ek + Ee, where the elastic energy of the enclosure air is

Ee =
1

2
K ¯̀2. (3.11)

By making considerations analogous to those already discussed for eq. (3.5), eq. (3.10)

can be written as
dE

dt
+
v21
2

= −K ¯̀U1`1 +K ¯̀2
(
dU

dx

)
(3.12)

where (
dU

dx

)
= Fr · tcross (3.13)

tcross being the marching time needed by the perturbation to cross the entire domain.

Note that −K ¯̀U1`1 represents the convective exchange of elastic energy at the outlet

(namely, the work flux related to the pressure), whilst the term K ¯̀2
(
dU
dx

)
can be inter-

preted as a production of disturbances total energy extracted from the stretching (i.e.

non parallel) basic flow. Since the basic flow, driven by the gravity field, accelerates

along the streamwise direction, this last term is always positive (it is null if Fr = 0),

contributing to increase the disturbance energy. As observed before for the kinetic en-

ergy, one cannot infer any conclusions about the asymptotic behavior of the total energy;

nevertheless, due to the positive gravitational production term, one can expect a short

time growth also in asymptotically stable situations. It will be seen that this is possible

even when the gravitation effects are negligible.

Furthermore, a close-up inspection of the term −K ¯̀U1`1 allows one to predict, in no-

gravity configurations, asymptotic stability depending on the phase lag φ existing be-

tween the signals ¯̀ and `1: a perfect phase synchronization (φ =0) leads the system’s

energy to asymptotically decrease from its initial value; when the signals have a phase

lag 0 < φ ≤ π the temporal behavior of the system’s energy assumes an oscillating,

nonmonotonic trend and the phase quadrature (φ = π
2 ) among ¯̀, `1 spots the critical

threshold for the large time stability interval (0 < φ < π
2 ), while no conclusions can be

inferred for a phase lag π
2 < φ ≤ π. Once again, when gravity effects are retained it is

not possible to predict the system’s energy trend over the long times through the phase

lag φ, because asymptotic growing or decaying behaviors depend on whether the pro-

duction term overwhelms the kinetic and elastic convective exchanges. These theoretical
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Figure 3.1: Spatio-temporal evolution of ` and v disturbances in absence of gravita-
tional effects for K = 18.
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Figure 3.2: Spatio-temporal evolution of ` and v disturbances in absence of gravita-
tional effects for K = 30.

predictions will be confirmed hereafter by means of both direct numerical simulations

and linear stability analysis.

3.3 Spatio-temporal characteristics via direct numerical

simulations

The time evolution of an initially localized disturbance for spotted values of the chamber

stiffness inducing totally different asymptotic behaviors of the system will be analyzed;

both the case when gravity is neglected and retained will be examined by means of direct

numerical simulation of the governing equation (3.3).

Let’s start to analyze the simplified condition of parallel main flow, in which gravity is

neglected. The spatio-temporal representation of numerically computed solutions to eq.

(3.3), in terms of centreline deflection ` and lateral velocity v, evaluated for K values
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Figure 3.3: Temporal evolution of the disturbance energy (a), pressure work (b) and
normalized outlet Ee convective exchange (c), for K = 18 and Fr =0

inducing a different asymptotic behavior of the energy norm, are reported in Figures 3.1

and 3.2. The initial condition of the simulations is constituted by a compact support

function satisfying the prescribed boundary conditions, i.e. a Gaussian-like pulse for the

perturbed centreline deflection `, localized near the upper boundary; no perturbation in

lateral velocity fluctuation v is considered here.

As can be observed from the simulations, the centreline pulse, initially localized near

the upper boundary, travels without significantly modifying its own structure until it

reaches the opposite boundary. However, immediately the velocity disturbance is forced

to assume non-null finite values, with a non-zero integral average over the domain. This

is due to the momentum equation (3.2), in which the transport of v is governed by the

global reaction of the air enclosure, which depends in turn by the centreline fluctuation

`. For relatively small K values the ` transport equation, eq. (3.1), behaves practically

as a pure advection model, with the forcing (represented by the lateral velocity v)

becoming insignificant, as can be clearly observed in simulations of Figure 3.1, carried

out for a K value close to the marginally stable critical value in absence of gravity. A

different scenario is found as K increases, due to the enhancing of the mutual influence

of the disturbances that induces the original pulse to lose its compact support while

it travels towards the outlet boundary. Such a deviation from its original structure

becomes increasingly important as K increases giving rise to a wave-packet generation,
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Figure 3.4: Temporal evolution of the disturbance energy (a), pressure work (b) and
normalized outlet Ee convective exchange (c), for K = 58.87 and Fr = 0

placed behind the Gaussian bump, the structure of which is enhanced with increasing air

stiffness parameter. More remarkable, numerical simulations show that after the initial

transient, whose duration, t = 1, represents the marching time at constant velocity of

the pulse disturbance over the entire domain, a continuous generation of new pulses,

affecting the entire length of the sheet, is induced due to the action of the air chamber

over the compliant sheet. The continuous triggering of pulses gives rise to an asymptotic

regime where the time-depending behavior of the perturbation experiences an oscillating

trend with a constant period that is determined by the parameter K, in both stable and

unstable situations.

Such typical transient behaviors can be better appreciated in Figures 3.3-3.4, referring

to stable and unstable cases, respectively, in the absence of gravity, and in Figures 3.5-

3.6, corresponding to stable and unstable, respectively, gravitational cases. Each figure

depicts the time variation of total energy of the disturbance, including the kinetic and

elastic components, in frame (a); the pressure work per unit time introduced at the

righthand side of eq. (3.8), in frame (b); the contribution to the rate of change of the

total energy yielded by the convective exchange of elastic energy at the outlet in eq.

(3.12), scaled by the constant −KU1, together with the single trends of ¯̀ and `1, in

frame (c). All energy terms are scaled with respect to the initial elastic energy Ee of

the original pulse.
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Figure 3.5: Temporal evolution of the disturbance energy (a), its time derivative (b)
and normalized outlet Ee convective exchange (c), for K = 58.87 and Fr = 20

In both cases of Fr = 0, Figures 3.3 and 3.4 show that, after an initial transient where the

total energy does not exhibit any short time amplification, all the energy contributions

follow a perfectly regular time oscillating trend. The period τ of such oscillations matches

that of the pressure work exchanged with the air chamber, represented in frame (b) of

the figures, as well as that of the convective exchange of elastic energy (thick line) in
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Figure 3.6: Temporal evolution of the disturbance energy (a), its time derivative (b)
and normalized outlet Ee convective exchange (c), for K = 160 and Fr = 20
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Figure 3.7: Temporal evolution of ¯̀ and self-induced forcing fi for (a) K = 18, (b)
K = 58.87 and (c) K = 100.

frame (c). Of course the period shown in figures is half of that of the nappe centerline

displacement T . Note also that in the unstable case ¯̀ and `1 are almost in phase

opposition, coherently with findings suggested in the previous section, while in the stable

one they are close to the phase quadrature. The gravitational cases with Fr = 20 of

Figures 3.5-3.6 (where, for the sake of convenience, the dimensionless time t∗ over the

crossing time is introduced) feature basically the same characteristic results. Note that

the value of K ≈59, here stable, represented an unstable situation in the absence of

gravity, in agreement with the theoretical prediction that when gravity is relevant the

falling time is reduced and the instability threshold, T = tcross, moves K towards higher

values. However, although gravity plays an asymptotic stabilizing role, Figures 3.5 and

3.6 clearly show that the total energy exhibits a short time growth due to the production

term present at righthand side of eq. (3.12).

Other considerations about the asymptotic behavior of the system can be also inferred

from the dynamical point of view, specifically by bearing in mind the lumped system

of eq. (3.7). The self-induced forcing fi is implicitly dependent on the value of the

parameter K; in general, it is found that it amplifies or decays asymptotically in time

depending on whether the disturbances total energy amplifies or decays. Although it is

not possible to determine in closed form the time trend of fi as a function of K, similar
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to the standard driven damped spring-mass oscillators, the phase lag between forcing

and system response depends on the relative values of forcing frequency and oscillator

natural frequency. Here, for the simplified case of no gravity, from eq. (3.7) one can de-

duce that the natural frequency is λN =
√
K − 1. Depending on the assumed frequency

of fi with respect to λN three different scenarios are possible. Figure 3.7 shows a com-

parison between the time evolution of the average sheet displacement ¯̀, i.e. the spring

displacement, and the forcing fi, i.e. the right hand side of eq. (3.7). In the frame (a),

corresponding to the stable configuration for K=18, it can be observed that, after the

initial transient, ¯̀and fi are almost in phase opposition, because the spring-mass motion

is forced at a frequency (about equal to 6.19) greater than its natural frequency (λN ≈
4.12). This is a general behavior, found for all the stable values of K. Furthermore,

the oscillation period T of fi is exactly twice the oscillation period τ of the system’s

energy, as can be observed by comparing the inset of frame (a) and Figure 3.3a. The

asymptotical stabilization of the system can be explained, from a dynamical point of

view, by considering the effect of a continuously reducing forcing acting on a damped

system. On the contrary, frames (b) and (c) correspond to unstable configurations. As

will be clarified by the subsequent stability analysis, unstable configurations offer dif-

ferent scenarios in which, as K increases, the driving term fi can result in phase, phase

quadrature and phase opposition with respect to the spring displacement ¯̀ (e.g., see

Figure 3.12b). This is clearly confirmed in simulations of Figure 3.7 showing, in frame

(b), the phase quadrature between ¯̀ and fi corresponding to the resonance condition

for K=58.87 and, in frame (c), the circumstance that ¯̀ and its forcing term are almost

in phase, with the frequency of fi being lower than the natural one (λN ≈ 9.95). Of

course, also in unstable configurations the system’s energy oscillates with a period ex-

actly matching the semi-period of the self-induced forcing, as can be observed for the

resonance case depicted in Figures 3.4a and 3.7b.

3.4 Spectral stability analysis

A comprehensive methodology to analyze the problem governed by eq. (3.3) consists of

formulating a boundary value eigenvalues problem. The standard approach to obtain

global solutions consists of separating the variables and assuming the following form of

the disturbance: `(x, t) = ˆ̀(x) · eλt. This leads to the eigenvalue problem:

λ2 ˆ̀+ (2λU + Fr)D ˆ̀+ U2D2 ˆ̀= −K
H

ˆ̀̄ (3.14)

with D denoting spatial derivative along x direction, ˆ̀ the eigenfunction and λ the

complex eigenvalue.
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3.4.1 Analytical approach in no-gravity case

In the special case of no-gravity, Fr = 0, it is straightforward to obtain the characteristic

eigenvalue equation in closed form. By integrating the above equation over the whole

length of the nappe and by employing the relevant boundary conditions, ˆ̀
0 = D ˆ̀

0 = 0,

one obtains that the average sheet deflection is a linear combination of ˆ̀
1 and D ˆ̀

1:

ˆ̀̄= −2λˆ̀(1) +D ˆ̀(1)

λ2 +K (3.15)

and hence:

D2 ˆ̀+ 2λD ˆ̀+ λ2 ˆ̀=
2λˆ̀(1) +D ˆ̀(1)

1 + λ2

K
.

Integrating the above equation produces:

ˆ̀=
K ˆ̀̄

λ2

[
(1 + λx) e−λx − 1

]
and, as a consequence of eq. (3.1),

v̂ =
K ˆ̀̄

λ

[
(1 + λx) e−λx − 1

]
−K ˆ̀̄xe−λx

from which, by taking into account eq. (3.15), eigenvalues λ can be obtained as complex

solutions of the characteristic eigenvalue equation

K
K + λ2

[(
2

λ
+ 1

)
e−λ − 2

λ

]
+ 1 = 0 (3.16)

which, in agreement with a previous statement, does not admit a solution for K = 0.

Apart from the trivial solution λ = 0, which is not an eigenvalue, eq. (3.16) does not ad-

mit any real solution for K > 0, in agreement with the physical considerations requiring

that the disturbance has always an oscillating nature due to the driving mechanism of

the air chamber. Conversely, complex solutions of eq. (3.16) lie, in the complex plane,

along a single branch since the 2nd order partial differential equation (3.3) admits just

a single characteristic along which disturbances propagate, namely dx
dt = U .

A straightforward manipulation of eq. (3.16), consisting in separating its real and imag-

inary parts, yields the critical value Kcr of the air cushion stiffness corresponding to the

transition from stable to unstable configurations. Frequencies of the marginally stable

disturbances (λr = 0) can be graphically obtained by searching for the contact points
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(–) for K = (19.74; 78.96; 177.65).

among the functions arising from the complex manipulation of eq. (3.16):
cosλi = 1− λi

2
sinλi

cosλi = 2
sinλi
λi

+
λ2i
K − 1

(3.17)

Solutions depend on the value of the K parameter, however the first contact point

(corresponding to K = 19.74) represents a triple point since there is a change in the

stability for the solutions of the model equation. Note that the frequency of the first

couple of marginally stable modes corresponds to a period matching the required crossing

time tcross so that the disturbances can be expelled into the sheet basin, in agreement

with the ansatz of section 3.1.

3.4.2 Numerical approach

In the general case the eigenvalue problem (3.14) can be conveniently reformulated

starting from eqs. (3.1-3.2) and enforcing the global temporal modes position, so as to

recast the governing equations into the following compact matrical form

λ

(
ˆ̀

v̂

)
= A

(
ˆ̀

v̂

)
(3.18)

where the spatial operator is

A ≡


−U · D −I

−K
H

∫ 1

0
dx −U · D


with I denoting the identity operator.
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Figure 3.9: Spectra obtained by varying gravity effects [Fr=0 (·), Fr=10 (+) and
Fr=20 (o)] for (a) K = 100, (b) K = 4 · 104 and (c) K = 106.

For values of Fr 6= 0 (and K > 0), eigenvalues and eigenfunctions are numerically com-

puted by means of a Chebyshev collocation method, with both differential and integral

terms being spectrally accurate. Figure 3.9 depicts the spectra obtained for various

Froude numbers, evaluated for three typical values of stiffness of the air chamber induc-

ing different shapes of distribution of the eigenvalues in the complex plane. The spectra

are generally constituted of two symmetric branches with respect to the imaginary axis,

each made of infinitely many eigenvalues, whose spreading rate is continuously varying

with the gravity effect. The shape of the branches depends on the value assumed by the

parameter K and results to be of three different possible configurations over the entire

semi-infinite interval of positive K values. The major characteristic of the spectra, what-

ever the equivalent stiffness K, is that each branch exhibits eigenvalues almost equally

spaced in imaginary parts. Thus, two characteristic frequencies can be recognized, one

related to the constant spacing of imaginary parts ∆λi and the other one to the imag-

inary part of the leading (i.e. most unstable) modes pair. The latter corresponds to

the frequency at which the damped spring-mass system (3.7) oscillates driven by the
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self-induced forcing fi, whilst the former is related to the crossing time

tcross =

∫ 1

0

dx√
1 + 2Fr x

(3.19)

so that, by varying the Froude number, it always results in ∆λi ≈ 2π
tcross

.

The different configurations assumed by the spectrum as K is varied are strictly linked

to the frequency assumed by the leading mode pair which, in turn, is correlated to

the oscillation frequency of the spring-mass oscillator (3.7). For stiffness values of the

enclosure air small enough (e.g., see frame (a) of Figure 3.9) the leading mode pair is also

the lowest frequency eigenvalues pair of the spectrum; asK increases, the frequency of the

fluid oscillator (3.7) increases accordingly and the leading modes shift outwards to higher

frequencies, giving rise to a cascade of ”inner” eigenvalue pairs having lower frequency

in the neighborhood of the imaginary axis, as displayed in the typical configuration of

frame (b); finally, for even higher K values the oscillation frequency of the spring-mass

system can result greater than the numerically computable highest frequency of the

spectrum, leading to the shape depicted in frame (c).

As expected, gravity certainly plays a role in determining the shape of the spectrum

for a given stiffness K. This is clearly showed in Figure 3.10 in which, for the same air

chamber stiffness value as Figure 3.9c, the spectra computed for three different Froude

numbers are reported. The initial parabola shaped spectrum represented also in Figure

3.9c changes as Fr increases and becomes analogous in shape to those of Figure 3.9b, so

that a typical configuration can be similarly obtained by properly choosing the couple of

parameters Fr and K. The reason for this characteristic behavior lies in the mutual role

played by gravity and stiffness in influencing the oscillation frequency of the righthand

side of eq. (3.7). As the Froude number increases, the crossing time tcross reduces

correspondingly; the spacing ∆λi among the eigenvalues increases so that the oscillation

period T of the spring-mass system results rapidly higher than the maximum period

included into the spectrum computed at the lowest Froude number. As a consequence,

the corresponding frequency, initially higher than that of most unstable modes at Fr =

10, appears into the ”spreading” part of the spectra evaluated at higher Froude numbers,

and moves inward as Fr goes up.

The overall stabilizing role played by gravity is clearly confirmed in each frame of Figure

3.9 and Figure 3.10. As the Froude number increases the entire spectrum spreads in the

complex plane moving the bulk of its eigenvalues towards even more stable regions. We

stress once again that this is a consequence of the reduction of the crossing time acting

as a stabilizing effect competing against the forcing mechanism due to the air chamber,

according to the ansatz of section 3.1.
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Figure 3.10: Spectra obtained by varying gravity effects [Fr=10 (·), Fr=100 (+) and
Fr=500 (o)] for K = 106.

(a) (b)

Figure 3.11: Color maps of modal global behavior for a selected range of Froude
number and K values. (a) is growth rate, (b) is frequency. White regions in frame (a)

correspond to stable configurations.

Figure 3.11 shows a map of the modal stability/instability regions associated with the

leading mode complex pair of the spectrum, obtained for a selected range of K values

and by varying the Froude number from no-gravity case to sufficiently high gravity

effects. Growth rates of disturbances are depicted in frame (a), where the color regions

represent iso-level positive growth-rates (with stable configurations spotted by blank

regions), while in frame (b) the corresponding frequencies of the fluid oscillator (3.7) are

reported (the white lines represent the marginal modal curves).

The stabilizing effect induced by gravity on the asymptotic behavior of the system,

driven by the leading mode, is clearly illustrated in Figure 3.11. The stability region

in frame (a), already existing in the no-gravity case for values of K < 19.74 (e.g. see

Figure 3.8) broadens as described by the marginal stability curve roughly following the

trend given by K = 26
√
Fr + 0.6Fr. However, note that for higher K values a further

stable region occurs, which assumes a wedge-shaped conformation at its lower side and
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Figure 3.12: Parametric trend with K of a) growth-rate and b) frequency of the
leading mode pair, evaluated at Fr = 0. Dashed line in frame (b) represents the

natural frequency variation of the lumped system (3.7).
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Figure 3.13: Parametric trend with Fr of a) growth rate and b) frequency of the
leading mode pair, evaluated at K = 1000.

exhibits for higher Fr values the same trend as the marginal curve underlying. This

typical behavior reproduces cyclically as K grows within the range of (K, F r) values

inspected (not shown herein). Thus, the map of growth-rate presents a periodic series

of wedge-shaped stability regions as K increases, whose edges continuously shift towards

higher Froude numbers. Figure 3.11b shows that in general the oscillation frequency of

the leading mode increases with increasing Froude numbers. Moreover, a discontinuous

trend with K is observed at any fixed Fr due to the jump of the leading mode pair of

the spectrum, giving rise to the characteristic onion structure depicted in Figure 3.11b.

Such a typical modal behavior with K and Fr can be better appreciated by looking

at Figures 3.12 and 3.13, showing parametric curves obtained by sectioning the maps

of Figure 3.11 at fixed Fr and K, respectively. Frames (a) and (b) of Figure 3.12 ex-

hibit growth rate and frequency evolutions with K when gravity is neglected. Note, in
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Figure 3.14: Deviation with Froude number of the oscillation period T of the spring-
mass system corresponding to the critical transition configurations (·) from the analyt-

ical predictions (o) of eq. (4.41).

particular, that the frequency plot (b) is piecewise discontinuous due to the presence

of additional leading modes in the spectrum at discrete values of K. The dashed line

also present in plot (b) refers to the natural frequency variation of the lumped system

(3.7). The thin dashed segment in plot (a) marks the marginal value K=19.74 of null

growth rate, to which the frequency of λi=6.28 corresponds. In other terms, in the ab-

sence of gravity, the frequency of the marginal mode is related to the falling time, thus

confirming the ansatz of section 3.1. Note also that this is not a resonance frequency,

whose values are given by the intersections of the dashed line with the piecewise discon-

tinuous line of Figure 3.12(b). As can be seen inspecting the plot (b), the first value

of the resonance frequency is found to be 7.61, with 7.61/6.28=1.21, thus uncovering

the one-plus-one-quarter criterion of the edge tones problem to a good accuracy. Fur-

thermore, all other higher values are evenly spaced by 6.28. This very interesting result

uncovers the theoretical considerations of Schwartz [16] and the experimental findings

of Sato et al. [17], which in turn resemble a major characteristic of the edge tone phe-

nomenon [15]. In fact, the possible resonance frequencies are given by the relationship

2π(n+ 1
4), where n is an integer. At the same time Figure 3.13 reports the growth-rate

(frame a) and frequency (frame b) trends obtained by varying the Froude number for the

highest K value depicted in Figure 3.11. The unusual parabolic trend of Figure 3.12a,

assumed by the growth-rate of each leading mode pair before being overwhelmed by the

adjoining eigenvalue, is basically confirmed in the presence of gravity together with the

stretching of the range of a single leading mode as Froude number goes up. Conversely,

although gravity enhances the growth-rate of the unstable modes, it plays a stabilizing

role because it moves the marginal K values upwards. Furthermore, the frequency curves

of Figure 3.13b, as Fr grows, move along segments having different slopes associated

with each leading mode and the corresponding jumps in frequency follow a spreading

trend consistent with the frequency associated to the crossing time, ∆λi, whose negative
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amplitude is a result of the parametric behavior shown in Figure 3.10.

It should be pointed out that the perfect agreement found at Fr = 0 between the fre-

quency of the marginally stable leading mode pair and the one linked to the spacing ∆λi

is slightly lost in the presence of gravity, with an increasing discrepancy as the gravi-

tational influence becomes more relevant. This can be observed in Figure 3.14 showing

the analytical trend with the Froude number of tcross together with the numerically com-

puted period T of the spring-mass oscillator, associated with the leading mode. In the

presence of a spatially developing base flow, the neutral stability criterion is fulfilled for

oscillation periods T smaller than the corresponding crossing time tcross .



Chapter 4

Surface tension effects

In this chapter, the effects of surface tension on the global dynamics of nappe oscillation

will be investigated.

The introduction of the local Weber number, based on the local liquid velocity U(x) and

local sheet thickness H(x) (eq. 2.23)

Wel =
ρlU(x)2H(x)

2σ
(4.1)

i.e. also,

Wel =
U2(x)

c2(x)
(4.2)

where

c(x) =

√
2σ

ρlH(x)
(4.3)

with c being the wave velocity of sinuous disturbances (de Luca and Costa [18]), al-

lows one to affirm that if We > 1, then Wel > 1 at each location, and the flow can

be considered supersonic-like for the wave-patterns evolution. On the contrary, if the

inlet Weber number is less than unit (i.e., subsonic), since the local Weber number is

increasing along the downstream direction, a transonic location inside the sheet sepa-

rates an initially subsonic region from a downstream supersonic region. Note that the

relationship holds too

31
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Wel = We
H∗in
H(x)

= We
U(x)

U∗in
(4.4)

Since the experimental evidence is that generally the sheet can break up for We < 1, the

analysis of the transonic flow regime (i.e., initially subsonic) is a crucial topic. From the

theoretical viewpoint the problem is not straightforward, because the governing equation

exhibits a singularity just at the transonic station (where Wel = 1), as documented also

by the previous literature (Finnicum et al. [19], Weinstein et al. [20], Ramos [21, 22]). All

these authors evidence and analyze the nature of the singularity, although no one solved

definitely the time-dependent equations governing the shape of the subsonic nappe. The

present chapter is aimed at developing a theoretical/numerical procedure to fill up this

lack of information.

Note that the treatment reported hereafter can be found in [23].

4.1 Overall insight on the nappe dynamics

In order to give more physical insight on the fluid system under study, the equations

for sinuous disturbances (focus of the present analysis) can be properly rearranged by

taking into account integral quantities depending on the sheet extension as a whole. As

already showed in the previous chapter, it is globally modeled as a lumped one-degree-

of-freedom spring-mass system, in which the role of the spring is played by the air into

the enclosure and the mass is that of the liquid sheet itself.

Let’s start to reconsider the system of equations (2.24-2.25) in terms of a single second

order integro-differential equation

D2`

Dt2
− U

We

∂2`

∂x2
= −K

H
¯̀ (4.5)

where D
Dt is the substantial derivative. Such an equation governs the linear inviscid

evolution of a generic disturbance subjected to the integral reaction term of the right

hand side. The role played by the air stiffness K ≥ 0 is crucial in characterizing the

dynamics of the self-sustained wave-patterns evolving into the curtain. If K = 0 the

equation is trivial, reducing to the simple wave equation with velocity ±
√
U/We relative

to that of the basic flow U , basically equipped with a perfectly reflecting boundary

condition at inlet, `(0) = 0, and free-outflow condition at outlet. In the fixed reference

frame the wave velocity is
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U ±
√

U

We
(4.6)

which can also be recast in the form

U

(
1±

√
1

Wel

)
(4.7)

On the other hand, it is straightforward to verify that in the absence of reaction the

wave equation admits solutions of the kind

` = Aeik(x−at) (4.8)

where a = U
(

1±
√

1
Wel

)
, k is any real wavenumber and A is a constant.

Particular attention has to be paid to enforce the boundary conditions depending on

whether the inlet Weber number is supersonic or subsonic. In fact, in the first case

two boundary conditions are prescribed at the inlet location, x = 0, namely `(0) = 0

and ∂`
∂x(0) = 0 (which in turn means v(0) = 0), whilst in the latter case the condition,

`(0) = 0, has to be retained at the inlet section, and another one has to be considered at a

downstream location. It will be discussed that the second condition, indeed, is employed

to remove the singularity of the equation and is enforced just at the singularity location.

In the absence of the reaction term, one has to expect that any compact support dis-

turbance introduced in the field splits in two parts: in supersonic conditions the one

traveling on the left direction, after reflection at the inlet boundary, is eventually ex-

pelled through the right boundary as the other one, initially travelling on the right

direction, does too; in subsonic local conditions both perturbations produced by the ini-

tial splitting travel towards the outlet and are expelled. Thus, if no input is introduced

at the left boundary, after a finite time any solution vanishes, with the disturbance being

continually expelled at the outlet of the domain. Conversely, the presence of the reaction

term in the form of an integral changes things in such a way that the temporal evolution

of the disturbance is by no means identically null after a finite time. As will be shown

in the subsequent investigations, depending on the stiffness of the air chamber adjacent

to the sheet, the system dynamics exhibits different features in terms of both stability

properties and energy time evolution.

A major conjecture is that, due to the perfect reflecting character of the left boundary, at

very large times the upstream characteristics is nihil potent in the sense any disturbance

propagating towards the left direction will be only reflected and thus its asymptotic
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behavior will be the same as that the disturbances propagating on the right direction. In

summary, one has to expect two-branches spectra in supersonic cases and just one branch

in subsonic cases. Moreover, bearing in mind the ansatz stated in the section 3.1, i.e.

the system is stable if the crossing time of a disturbance over the entire domain length is

less than the period of the spring-mass oscillator, another conjecture is that the subsonic

case is generally less stable than the supersonic one, both tending to the behavior in

the absence of surface tension when We number tends to infinity. As found by previous

contributions (Schmid & Henningson [9], de Rosa et al. [12]), the integral reaction

term contributes to separate the single modes in such a way that the corresponding

eigenvalues of the spectrum have different real coefficient (and almost evenly spaced

imaginary coefficients, with the distance among them corresponding to the crossing

time). Under this aspect, the reaction term acts similarly to the boundary damping

term of the example n. 4 of Trefethen [24]. The result is that at large times one has

to expect the emergence of an unstable o less stable single mode which corresponds,

as will be seen hereafter, to the response of the system behaving as a forced-damped

oscillator. Of course, since the oscillator works in the driven regime, the oscillation period

does not correspond to the natural frequency of oscillation and in general it cannot be

determined in analytical closed form. It should be stressed that this ansatz includes the

gravity effects, in the sense that in the presence of gravity effects a shorter crossing time

is expected, as well as a higher K threshold of instability. Moreover, surface tension

should have a stabilizing influence in subsonic situations (the downstream travelling

modes are faster), while one can expect that the upstream directed modes of supersonic

conditions are less stable. In transonic regime, when passing from subsonic to supersonic

conditions, the slower branch of the spectrum is expected to appear abruptly, whilst the

faster branch should be continuous. Such predictions will be confirmed by the subsequent

spectral analysis, which will be further corroborated by direct numerical simulations.

After expressing the substantial derivative in explicit form, integrating eq. (4.5) over

the whole length of the sheet yields:

H̄
d2 ¯̀

dt2
+ 2

d¯̀

dt
+K ¯̀= −2

d

dt

∫ 1

0
x
∂`

∂x
dx−

[(
U − 1

We

)
∂`

∂x

]1
0︸ ︷︷ ︸

fi

(4.9)

where fi represents the self-induced forcing acting on the elastic oscillator and the bound-

ary condition at the inlet location, `(0) = 0, has been considered. Eq. (4.9) exhibits

a strict analogy with the motion equation of an elastic oscillator, where H̄ denotes the

mass of the liquid sheet and K is the equivalent spring stiffness of the enclosure air. A

proper manipulation allowed one to extract a damping term. Of course, in supersonic

regime it results
∂`

∂x

∣∣∣∣
0

= 0.
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In summary, the global dynamics of the nappe consists of the mutual interaction of the

centerline local deflection with the compliant air chamber which behaves as a spring

acting on the average sheet deflection. Eq. (4.5) shows that the local deflection is forced

by the global reaction term of the spring, whilst the dynamics of the global spring-mass

oscillator is driven by a combination of local sheet displacement values, as described by

eq. (4.9). In the following part of the chapter it will be correlated such a mutual forcing

to special features of the eigenvalues spectrum; the spectrum uncovers the natural mode

(possibly unstable) of the spring-mass system and the peculiar oscillating behavior of

the nappe described not just by single modes, but by the superposition of a number

of modes to be ascribed essentially to Eq. (4.5) and physically connected to another

characteristic frequency linked to the typical crossing (or falling) time.

4.2 Disturbance energy evolution

In order to investigate some features of the solutions of eqs. (4.5) and (4.9), it is useful to

examine the mechanisms of perturbation growth (or decay) by considering also the time

behavior of the system’s energy E. For sinuous disturbances the energy balance equation

can be derived by multiplying eq. (2.25) by the lateral velocity fluctuation v, and then

by integrating it over the whole volume (per unit length in transversal direction) of the

sheet. Eliminating the lateral velocity v with the aid of eq. (2.24), where the convective

term is integrated by parts, as made in the previous chapter, one can obtain:

d

dt
(Ek + Eσ + Ee) +

v2

2

∣∣∣∣1
0

+
1

2We

(
∂`

∂x

)2 ∣∣∣∣1
0

= −K ¯̀U1`1 +
1

We
v
∂`

∂x

∣∣∣∣1
0

+ (4.10)

+K ¯̀
∫ 1

0

dU

dx
` dx− 1

2We

∫ 1

0

∂U

∂x

(
∂`

∂x

)2

dx (4.11)

where the kinetic energy Ek, the surface tension energy Eσ, and the elastic energy Ee

of the enclosure air are defined respectively as

Ek =
1

2

∫ 1

0
Hv2 dx (4.12)

Eσ =
1

2We

∫ 1

0

(
∂`

∂x

)2

dx (4.13)

Ee =
1

2
K ¯̀2. (4.14)
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and the energy terms are made dimensionless with respect to the reference energy E?r =

ρl`
?
rL

?
rv
?2
r .

Of course the sum under derivative at left hand side of eq. (4.11) represents the total

energy defined as

E = Ek + Eσ + Ee (4.15)

By making considerations analogous to those already discussed in the previous chapter

to evaluate the averaged value of a product of small quantities (the sheet thickness slope

and perturbations are small), the energy balance can be written as

dE

dt
+
v2

2

∣∣∣∣1
0

+
1

2We

(
∂`

∂x

)2 ∣∣∣∣1
0

= −K ¯̀U1`1 +
1

We
v
∂`

∂x

∣∣∣∣1
0

+K ¯̀2
(
dU

dx

)
− 1

2We

(
d`

dx

)2(dU
dx

)
(4.16)

where it holds also

(
dU

dx

)
= Fr · tcross (4.17)

with tcross being the marching time needed by the perturbation to cross the entire do-

main.

Note that v2

2

∣∣∣∣1
0

and 1
2We

(
∂`
∂x

)2 ∣∣∣∣1
0

represent the convective exchange terms of kinetic and

surface tension energy, respectively, at the ends of the domain; −K ¯̀U1`1 and 1
Wev

∂`
∂x

∣∣∣∣1
0

are the convective exchange of elastic energy at the outlet (namely, the work flux related

to the pressure) and the analogous work flux related to the surface tension, respectively;

K ¯̀2
(
dU
dx

)
and − 1

2We

(
d`
dx

)2(dU
dx

)
can be interpreted as two production terms of distur-

bances total energy extracted from the stretching (i.e. non parallel) basic flow, the

former directly related to the pressure field inside the chamber, the latter to the surface

tension. Since the basic flow, driven by the gravity field, accelerates along the stream-

wise direction, the production term due to the external pressure is always positive, whilst

that due to the surface tension is always negative. As already observed in the previous

chapter, one cannot infer any conclusions about the asymptotic behavior of the total

energy; nevertheless, due to the positive gravity production term, one can expect a short

time growth also in asymptotically stable situations and this is possible even when the

gravitational effects are negligible. On the contrary, surface tension plays in any case
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a stabilizing role (some numerical results obtained via direct numerical simulations are

showed in [25], see Appendix).

These theoretical predictions will be confirmed hereafter by means of the linear stability

analysis.

4.3 Linear stability analysis

A comprehensive methodology to analyze the asymptotic global behavior of the nappe

dynamics consists of formulating a boundary value eigenvalues problem. This can be

conveniently carried out starting from eqs. (2.24-2.25) and enforcing the global temporal

modes position, i.e. by separating the variables and assuming the following form of

the disturbances: `(x, t) = ˆ̀(x) · eλt and v(x, t) = v̂(x) · eλt, where ˆ̀ and v̂ are the

eigenfunction and λ is the complex eigenvalue. This permits one to recast the governing

equations into the following compact matrical form

λ

(
ˆ̀

v̂

)
= A

(
ˆ̀

v̂

)
(4.18)

where the spatial operator is

A ≡


−U · D −I

U
We · D2 − K

H

∫ 1

0
dx −U · D


with I denoting the identity operator, and D and D2 the first and the second spatial

derivatives, respectively.

Eigenvalues and eigenfunctions are numerically computed by means of a Chebyshev

collocation method in MATLAB environment, with both differential and integral terms

being spectrally accurate.

As already anticipated before, for inlet supersonic conditions, We > 1, the two boundary

conditions are both imposed at inlet section, i.e.

ˆ̀(0) = 0 (4.19)

∂ ˆ̀

∂x

∣∣∣∣
0

= 0 (4.20)
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On the contrary, for inlet subsonic conditions, We < 1, due to the upstream directed

wave characteristic velocity U−a, the perfectly reflecting conditions ˆ̀(0) = 0 only can be

retained at the inlet boundary. On the other hand, as will be seen hereafter, for subsonic

inlet at large times the eigenvalues equation becomes singular and just the condition to

remove this singularity constitutes the required second boundary condition.

4.3.1 Singularity treatment

To highlight the presence of a singularity in the equation governing sinuous disturbances

in subsonic flow conditions let us to reconsider the system of equations (2.24-2.25),

where the kinematic condition is employed to substitute the lateral velocity v into the

y-momentum balance equation. It is found

∂

∂x

[(
U − 1

We

)
∂`

∂x

]
+ 2

∂

∂x

(
∂`

∂t

)
+

1

U

∂2`

∂t2
= −K ¯̀ (4.21)

Enforcing the global temporal modes position yields the eigenvalue relationship

d

dx

[(
U − 1

We

)
dˆ̀

dx

]
+ 2λ

dˆ̀

dx
+ λ2

1

U
ˆ̀= −K ¯̀ (4.22)

This is a Sturm-Liouville like eigenvalue integro-differential equation. It is singular since

the second order term coefficient vanishes at the location where the flow, accelerating

due to gravity, reaches a critical U velocity equating 1/We. This singularity has been

removed by developing the following procedure.

Integrating eq. (4.21) from the inlet location to the generic location x and resolving for
∂`
∂x , yields

∂`

∂x
=

−Kx¯̀− 2∂`∂t − ∂2

∂t2

∫ 1
0

`
U dx+

(
1− 1

We

)
∂`
∂x

∣∣∣∣
0

U − 1
We

(4.23)

Eliminating in a convenient way ∂`
∂t from the third addend of the numerator of the above

equation by making use of the kinematic boundary condition, gives an expression for

the local slope of the sheet centerline, which depends, in addition to the other terms, on

the slope value at the inlet location.
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∂`

∂x
=

−Kx¯̀− ∂`
∂t − ∂

∂t

∫ 1
0
v
U dx+

(
1− 1

We

)
∂`
∂x

∣∣∣∣
0

U − 1
We

(4.24)

It has been already stated that in supersonic conditions, since the perturbations do

not travel upstream, it is generally assumed ∂`
∂x

∣∣∣∣
0

= 0, as observed also experimentally

by Finnicum et al. [19] in the steady state situation. On the other hands, note that

in supersonic regime the denominator never vanishes in any location. Things change

dramatically in subsonic regime since at the critical station where the local Weber numer

is unit, the denominator of eq. (4.24) vanishes. Since for inlet Weber numbers weakly

less than unit the sheet can survive without rupture, one can hypothesize that the sheet

assumes an initial slope such as to eliminate this singularity (Finnicum et al. [19]). The

idea is to evaluate the initial slope ∂`
∂x

∣∣∣∣
0

= 0 which nullifies the numerator of eq. (4.24)

and to substitute it into the equation itself, so as to obtain an undetermined ratio. It is

found

∂`

∂x

∣∣∣∣
0

=
Kxs ¯̀+ ∂`

∂t (xs) + ∂
∂t

∫ xs
0

v
U dx

1− 1
We

(4.25)

and the relationship of the slope at any generic station x assumes the form

∂`

∂x
=
K(xs − x)¯̀+ ∂`

∂t (xs)− ∂`
∂t (x)− ∂

∂t

∫ x
xs

v
U dx

U − 1
We

(4.26)

where xs is the location where U = 1
We , namely where Wel = 1, given by

xs =
1−We2

2FrWe2
(4.27)

Applying De L’Hopital’s rule allows one to calculate the singular limit as

∂`

∂x

∣∣∣∣
xs

=

−K ¯̀− ∂
∂t

[
∂`
∂x

∣∣∣∣
xs

]
−We∂v∂t

∣∣∣∣
xs

FrWe
(4.28)

or else, considering the asymptotic large time behavior of the eigenfunctions

∂ ˆ̀

∂x

∣∣∣∣
xs

=
−K ¯̂

`− λWe · v̂(xs)

λ+ FrWe
. (4.29)
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In summary, for subsonic flow inlet, the boundary conditions to be enforced in solving

the eigenvalue problem are expressed by eq. (4.29) together with ˆ̀(0) = 0.

An analytical study of the singularity has been developed in order to provide further

insights on the modal behaviour of the system. Just some theoretical considerations

useful to predict and confirm numerical results will be stressed although, as it will be

seen, a complete analytical solution can be obtained, at least for certain values of the

governing dimensionless parameters We and Fr. For our purposes, it will be neglected

the pressure term in the equation (4.22), the presence of which does not influence the

singularity features. Therefore, it will be made reference to the following equation (the

first derivative which appears in the equation (4.22) has been developed)

U

(
U − 1

We

)
︸ ︷︷ ︸

P

d2 ˆ̀

dx2
+ (2Uλ+ 1)︸ ︷︷ ︸

Q

dˆ̀

dx
+ λ2︸︷︷︸

R

ˆ̀= 0 (4.30)

It is easy verify that the following conditions are satisfied:

P (xs) = 0 (4.31)

lim
x→xs

(x− xs)
Q

P
=

4We+ 1

Fr
(finite) (4.32)

lim
x→xs

(x− xs)2
R

P
= 0 (finite) (4.33)

Therefore, the singular abscissa can be classified as a regular singular point [26]. Ac-

cording to the basic Frobenius theory [27], the solution of the equation (4.30) around

the singularity location can be expressed in the following way

ˆ̀(x, s) = (x− xs)α
∞∑
n=0

an(x− xs)n (4.34)

Substituting the position above in the equation (4.30) and imposing the equality between

similar terms, one obtains (for n = 0) the following indicial equation

a0

[
1

We
α(α− 1) +

(
1

We
+

2

We2
λ

)
α

]
= 0 (4.35)
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By taking into account that a0 6= 0 by definition [27], the equation (4.35) yields

α1 = 0 α2 = − 2λ

WeFr
(4.36)

Since |α1 − α2| = 2λ
WeFr is not an integer or null (by observing the formula structure it

results to be a reasonable hypothesis), the solution is given by the linear combination of

two Frobenius series [27]

ˆ̀(x, s) = C1

∞∑
n=0

an,1(x− xs)n + C2(x− xs)−
2λ

WeFr

∞∑
n=0

an,2(x− xs)n (4.37)

where C1 and C2 are two constants to be determined in function of the boundary con-

ditions. Note that, being α1 = 0, the first Frobenius series reduces to a standard power

series expansion (Taylor series).

It is worth to analyze the convergence properties of the series expansion (4.37). The

equation (4.30) shows another regular singular point at U = 0 (x̄ = − 1
2Fr ). Accord-

ing to [27], the radius of convergence of series (4.37) is greater than or equal to the

distance between xs and the nearest singular point (x̄). Therefore, the series expan-

sion (4.37) converges to the eigenvalues problem (4.30) solution at least at each station

x ∈
]
− 1

2Fr ,− 1
2Fr + 1

We2Fr

[
Note that the physical domain extends from 0 to 1; therefore, it is possible to affirm

that for − 1
2Fr + 1

We2Fr
> 1 and, so, for

We <

√
2

2Fr + 1
(4.38)

the series (4.37) represents, in principle, the analytical solution of the singular eigenvalues

problem (4.30). Unfortunately, the calculation of the series expansion coefficients results

to be very costly. On the other hand, note that for Fr = 1 (the numerical results

showed in the next sections will make reference to this value which represents the typical

experimental order of magnitude), the constraint showed by the equation (4.38) becomes

We < 0.816; the investigation of such values of We is not useful because, as just said

previously, the sheet can survive without rupture for We weakly less than unit.

Of course, the singular location x̄ = − 1
2Fr is not physically interesting because it is

located outside the sheet domain for each Fr and, therefore, it does not need special

treatments.
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By referring to the expansion (4.37), the boundedness condition of dˆ̀

dx in xs can be

formulated in the following way

lim
x→xs

(x− xs)n−1−
2λ

WeFr <∞ ∀n (4.39)

which yields

λr < −
WeFr

2
(4.40)

It is possible to conclude that, in transonic regime, not only the spectrum is uncondi-

tionally stable for each We and Fr but it is subjected to a constraint on the maxim

growth rate achievable; in other words, the growth rate results to be upper-bounded. As

it will seen in the following sections, the numerical results will confirm this prediction.

4.3.2 Direct numerical simulation

To corroborate the asymptotic modal analysis, direct numerical simulations of the gov-

erning equations system (2.24-2.25) have been also carried out, by means of a Crank-

Nicholson finite-difference scheme, for various values of the control parameters. The

initial condition is constituted by a compact support function satisfying the prescribed

boundary conditions, namely a Gaussian-like pulse for the perturbed centerline of nappe,

properly localized upstream or downstream of the singularity station depending on the

flow regime nature, subsonic or supersonic, respectively. No perturbation in lateral ve-

locity fluctuation v is considered here. Among the various possibilities analysed during

the numerical tests, the most convenient numerical procedure appeared that based on

the direct integration of the system of equations (2.24-2.25). Bearing in mind the wave

nature of the expected solution, formally it has been imposed just the reflecting con-

dition, `(0) = 0, on eq. (2.24), the free-outflow condition at the right boundary being

self-guaranteed. It should be stressed that, as a consequence, at the inlet station the

equation (2.24) is implicitly enforced as v = U ∂`
∂x . No particular treatment has been

added for the specific subsonic or supersonic regimes.

It will be showed, in particular, that the direct numerical simulation of the spatio-

temporal partial-derivative equations did not need any special trick for the presence

of the singularity in subsonic regime. The comparison between the large time solution

arising from the simulation usually agrees perfectly with the corresponding eigenfunction

emerging from the modal analysis.
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4.4 Analysis of transonic regime

Fig. 4.1 compares spectra obtained in subsonic (We = 0.98) and supersonic (We =

1.02) regimes for Fr=1 and various typical values of the air stiffness K. It should be

preliminarily noted that, as expected, the subsonic regimes (forWe = 0.98 it corresponds

xs = 0.021) are characterized by one-branch only (associated to the faster travelling wave

with velocity U +
√

U
We), constituted by two symmetrical parts. For the highest value

of K = 106 each of the two symmetrical parts of the branch exhibits an outer cusp-

point maximum, as well as local maxima represented by the inner pair of eigenvalues.

For the other values of K the branches follow a characteristic hyperbola-shape. All the

situations reported in Fig. 4.1(a) are stable and note also that, as already extensively

discussed in the previous chapter, according to the damped spring-mass model driven

by the self-induced forcing fi of eq. (4.9), the frequency of the less stable eigenvalue

scales with
√
K (of course in driven regime it coincides with that of the forcing term).

Another characteristic frequency is related to the constant spacing of imaginary parts

∆λi of eigenvalues which is related to the crossing time [13]

tcross =

∫ 1

0

dx

U ±
√

U
We

(4.41)

so that, by varying Froude and Weber numbers, it always results in ∆λi ≈ 2π
tcross

. A

further finding is the confirmation of the wave travelling feature of the solution; as will

be discussed in a more quantitative detail later on, for each value of K here analyzed

the wave velocity satisfies the relationship

U + a =
λi

2πk
(4.42)

with λi indicating the disturbance circular frequency (i.e., the imaginary coefficient of

eigenvalue) and k the wavenumber, which can be evaluated inspecting the eigenfunctions.

This strict comparison will be carried out hereafter and will be also corroborated by

direct numerical simulations.

Fig. 4.1(b) reports three spectra for We = 1.02 and the same values of K as the previous

Fig. 4.1(a) referring to a Weber number only slightly less than 1.02. Thus, the analysis

of the two spectra yields a picture of the things when traversing the transonic region.

The major feature of the present spectra is that, from one hand one notes the presence

of a type of branch representing the parametric continuation of the analogous branch

found for We = 0.98, from the other a new nucleus of eigenvalues having growth rate
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weakly less than zero clearly arises. The new nucleus of eigenvalues is to be ascribed

to the travelling waves with velocity U −
√

U
We and to their interference with another

group of low frequency eigenvalues associated to the faster waves with velocity U+
√

U
We .

This last finding can be better appreciated looking at Figs. 4.2(a) and (b), depicting

the close-up views of the previous Figs. 4.1(a) and (b), respectively.

Fig. 4.2(a) shows a detail of the lowest frequency eigenvalues calculated for We = 0.98

(but not less stable eigenvalues for K = 106), whilst Fig. 4.2(b) refers to the less stable

supersonic (We = 1.02) eigenvalues, showing in a great detail the interference of modes.

This interference appears rather weak for K = 102 since the external branches, fast

modes, are the continuation of those present for We = 0.98 and coherently are slightly

less stable (λrmax = −0.59) than the subsonic case (λrmax = −0.62). The inner branches

are to be attributed to slow modes. The situation is more complex for higher K because

of the absence of clear fast modes; on the contrary, for both K = 104 and 106 the leading

modes appear to be slow modes. In summary, fast eigenmodes U + a are continuous in

transonic regime for K = 102, whilst in any case slow eigenmodes U−a appear abruptly.

Note that, for We = 0.98, for any K, the growth rate of the less stable eigenvalue is less

than −WeFr
2 = 0.49 (represented by the black straight line), according to the analytical

prediction provided by eq. (4.40)

The previous findings featuring eigenvalues spectra are further highlighted by the shapes

of the relevant eigenfunctions, for instance those presented in Fig. 4.3 for K = 102, in

Fig. 4.4 for K = 104, in Fig. 4.5 for K = 106. For all the plots it is Fr = 1 and frame (a)

and (b) refer to subsonic (We = 0.98) and supersonic (We = 1.02) regimes, respectively.

Since the corresponding spectrum of Fig. 4.2(a) shows that the imaginary part of the

leading mode is λi = 13.22, while from the eigenmode shape of Fig. 4.3 (a) one can read

a characteristic wavenumber of about k = 0.77 (note that for this particular case the

estimation of the wavenumber is particularly critical), a wave travelling velocity of λi
2πk =

2.73 can be deduced, which is in quite good agreement with the theoretical prediction

of U + a=U +
√

U
We = 2.62. It should be pointed out that in this last relationship

it has been referred to the mean flow velocity U , namely the flow velocity evaluated

at the domain midpoint x = 0.5. The accuracy of this kind of comparison has been

checked for a wide range of values of the governing parameters, and for instance verified

by looking at Figs. 4.4 (a) and 4.5 (a). Of course the evaluation of the wavenumber is

more accurate with increasing the value of the air equivalent stiffness. The results are

that k is slightly greater than 7 for K = 104 and slightly greater than 74 for K = 106. It

is worth to point out that this values scale with each other by a factor of order ten which

is to be expected if one consider that the leading frequency λi scales by the same factor,

which is roughly equal to the square root of K. Moreover, note that the eigenmodes
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computed via the present spectral analysis well agree also with the large time direct

simulations of perturbed interface shapes and that the same wave travelling velocity has

been estimated by following the spatio-temporal evolution of a fixed wave point, e.g. a

crest. In any case, the precise comparison among spectral analysis and direct numerical

simulation will be discussed hereafter.

Figs. 4.3(b), Fig. 4.4(b) and Fig. 4.5(b) depict the leading mode shapes for the usual

three tested K values and a We number of 1.02, i.e. slightly supersonic. Thus, the

comparison between every (a) and (b) frames of these figures gives a picture of typical

findings obtained when traversing the transonic regime. The major result is that whilst

for K = 102 the leading modes of subsonic (We = 0.98) and supersonic (We = 1.02)

regimes are both of fast type, for the higher K values the leading mode switches from

the fast to the slow mode. The agreement of the wave travelling velocity estimated via

spectral analysis and numerical simulation is not, however, strictly satisfactory. Whilst

for K = 102 the former method gives a value of about 2.72 to be compared with 2.59

obtained with the latter one, for both the higher K values the spectral analysis yields

0.14 against 0.24 of the direct simulation.

4.5 Details of direct numerical simulations

As asserted before, it has been made also systematic numerical simulations of the large

time spatio-temporal evolution of the interface deflection during its transient, starting

from an initial instant when a particular perturbation, typically a gaussian-like bump,

was imposed to the interface shape. Generally it has not been considered any initial

disturbance on the lateral velocity perturbation v. The frames reported in Fig. 4.6 refer

to the evolution computed for the subsonic case of We = 0.82 with K = 104, and to a

bump disturbance initially located at x = 0.1, therefore located in the subsonic region

0 < x < xs, here resulting xs = 0.24 (eq.(4.27)). Note also, however, that other simula-

tions, not shown herein, revealed that the asymptotic deflection eventually reached by

the sheet is not influenced by the initial position of the disturbance. The frames reported

in Fig. 4.6 show an initial bump splitting into two parts, one travelling rightwards and

being rapidly expelled, the other one travelling leftwards with the expected velocities.

The reflection of the left part on the inlet boundary at x = 0 generates the temporary

establishment of a low wavenumber mode which is rapidly characterized by the appear-

ance of shorter wavelength ripples. At large times a travelling wave, exhibiting an almost

regular structure with a wavenumber of about k = 7, eventually establishes.
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A comparison of large time sheet centerline deflections between eigenmodes (frames

(a)) and direct numerical simulations (frames (b)) is reported in Figs. 4.7, 4.8, 4.9,

corresponding to K equal to 100, 104, 106, respectively.

The above comparisons appear quite satisfactory. In particular, one has to stress the

perfect agreement of the two solutions near the singularity station xs = 0.24, which

confirms that the procedure of treatment of the singularity worked successfully in the

spectral analysis. Furthermore, from these plots one can retrieve the same kind of

information about the nature of the leading modes emerging at large times, as previously

discussed in detail as far as the transonic regime is concerned.

4.6 Insight on supersonic regime

It is relevant to conclude the presentation of the results by yielding a look at the scenarios

emerging in the fully supersonic regimes. Fig. 4.10 depicts eigenvalues spectra obtained

for Fr = 1 and K = 104 and for various Weber numbers increasing from the subsonic

value of We = 0.82 to the supersonic one of We = 2.5. The continuity of the spectrum

morphology when traversing the transonic regime is once again clearly depicted from

these plots, which show also that starting fromWe = 1.43 the leading mode of supersonic

regime is definitely the fast one having travelling velocity U + a.

A major peculiarity of the trends of the leading modes in the near supersonic field is the

occurrence of characteristic high frequency ripples due to the interference of modes; such

ripples structures are typically present with increasing the Weber number, as the leading

mode evolves from a very low wavenumber to a moderate wavenumber compatible with

the expected spring-mass frequency λi = O
√
K and fast travelling wave velocity U + a.

The ripples disappear starting from about We = 3.5. Typical ripples structures are

presented in plots of Fig. 4.11, illustrating both the leading mode shape (frame (a)) and

its direct simulation (frame (b)). The numerical simulations show that the ripples form

due to the bits among the faster modes that go back downstream the lower modes.

It is also very interesting to compare the spectra obtained for the subsonic regime of

We = 0.98, hence near the threshold of the transonic value, and for very high supersonic

Weber numbers, tending to infinity and simulating the absence of surface tension, as

illustrated in Fig. 4.12.

The comparison shows clearly that the leading mode frequency in the two cases here

considered is practically the same, namely λi ∼= 118. However, while the subsonic regime

features an evident stability, the supersonic one without effects of surface tension is

remarkably unstable, since, as deeply discussed by De Rosa et al. [12] and in the previous
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chapter, in latter case the falling time exceeds the mass-spring period of oscillation. Since

for a given frequency, the wavenumber of the leading mode is inversely proportional to

the wave velocity, such a characteristic is expected in comparing the large time behaviors

of nappe centerline deflection, and indeed it is visible in Fig. 4.13 where frame (a) refers

to the subsonic case and frame (b) to the no surface tension supersonic one. Note

that the supersonic wavenumber, k ∼= 13.29, is about twice the subsonic wavenumber,

k ∼= 7.18, according to the circumstance that the average wave velocity is about U =
√

2

in the former case, and about U = 2.62 in the latter one.
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Figure 4.1: Spectra for Fr = 1 and selected K values. (a) We = 0.98, (b) We = 1.02.
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Figure 4.2: Less stable eigenvalues of spectra for Fr = 1 and selected K values. The
black straight line in the frame (a) represents the theoretical boundary showed by eq.

(4.40). (a) We = 0.98, (b) We = 1.02.
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Figure 4.3: Leading eigenfunctions for Fr = 1 and K = 102. (a) We = 0.98, (b)
We = 1.02.
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Figure 4.4: Leading eigenfunctions for Fr = 1 and K = 104. (a) We = 0.98, (b)
We = 1.02.
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Figure 4.5: Leading eigenfunctions for Fr = 1 and K = 106. (a) We = 0.98, (b)
We = 1.02.
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Figure 4.6: Frames related to the numerical simulation for We = 0.82, Fr = 1 and
K = 104.



Chapter 4. Surface tension effects 54

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

ℓ̂

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

v̂

x

(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

−7

ℓ̂

0 0.2 0.4 0.6 0.8 1
−2

0

2

4
x 10

−6

v̂

x

(b)

Figure 4.7: Comparison of eigenmode (a) and numerical simulation (b) for We = 0.82,
Fr = 1 and K = 102.
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Figure 4.8: Comparison of eigenmode (a) and numerical simulation (b) for We = 0.82,
Fr = 1 and K = 104.



Chapter 4. Surface tension effects 56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5
x 10

−4

ℓ̂

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

x

v̂

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.03

−0.02

−0.01

0

0.01

ℓ̂

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

v̂

x

(b)

Figure 4.9: Comparison of eigenmode (a) and numerical simulation (b) for We = 0.82,
Fr = 1 and K = 106.
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Figure 4.11: Leading eigenmodes (a) and direct simulations of large time behavior
(b) for We = 2.5 and Fr = 1 and K = 104.
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Figure 4.12: Comparison of spectra for We = 0.98 and We = 106; in both cases,
Fr = 1 and K = 104.
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Figure 4.13: Direct simulations of large time behavior of leading eigenmodes for
Fr = 1 and K = 104. (a) We = 0.98, (b) We = 106.



Conclusions

The dynamic behavior of nappe oscillation has been revisited with reference to a physical

model in which a thin liquid sheet interacts with an one-sided closed air chamber. The

mutual influence of the air within the enclosure with the compliant nappe interface

can produce self-induced forcing whose features have been widely investigated. The

analysis has been carried out by developing a simplified inviscid one-dimensional physical

model that arises, in the context of a linearized formulation of free-interface convection

dominated systems, by assuming a coordinate-type expansion for the flow variables.

The present contribution represents a step ahead in the knowledge of the phenomenon in

two ways: first, it analyzes more in detail the spectrum of the frequencies of the system,

and indicates that the oscillations of low frequency are related to the quasi-constant

spacing of the imaginary parts of the eigenvalues (already known); it also identifies

clearly that the high frequency oscillations have to be related to a global spring-mass

oscillator model whose mass is that of the liquid sheet and the equivalent stiffnessK of the

spring is that of the air inside the enclosure, which experiences compression/expansion

thermodynamic transformations.

The investigation has been carried out by means of both a modal (i.e., time asymptotic)

linear approach, which is corroborated by direct numerical simulations of the governing

equation. With the aim of yielding various physical insights, the analysis has been

carried out from both a dynamics and energy perspective.

In absence of surfaces tension effects, a major result is the determination of the instability

onset based on the ansatz, fully confirmed by the numerical analysis, that the system is

stable if the crossing time of a perturbation over the whole length of the domain is shorter

than the period of the spring-mass oscillator. In the opposite situation the self-forcing

establishes itself, leading to instability. It should be stressed that this ansatz includes

the gravity effects, in the sense that in the presence of gravity a shorter crossing time

is expected, and, accordingly, a higher K threshold of instability. Since the oscillator

works in the driven regime, the oscillation period does not correspond to the natural

frequency of oscillation and, in general, it cannot be determined in analytical closed
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form. Moreover, in analogy with the acoustic phenomenon of edge tones, it is found

that resonance occurs at frequencies one integer-plus-one-fourth times the instability

onset frequency, where the basic frequency to be multiplied by n + 1
4 is just the one

related to the spacing among the imaginary parts of the eigenvalues.

In presence of surface tension effects, the unsteady dynamics can be described by means

of a typical 2nd order partial differential equation of hyperbolic type, showing two dis-

tinct characteristic curves. A relevant procedure has been employed in order to remove

the singularity showed by the integro-differential operator for We < 1. An additional

analytical investigation on the nature of the singularity, based on the Frobenius theory,

predicts that the flow is unconditionally stable for any We < 1 and that the distur-

bance time growth rate results to be bounded above. The major feature showed by a

typical spectrum for We > 1 is that, from one hand one notes the presence of a type

of branch representing the parametric continuation of the analogous branch found for

We < 1 (associated to the faster waves) from the other a new nucleus of eigenvalues

having growth rate weakly less than zero clearly arises (associated to the lower waves).

The comparison of large time sheet centerline defections between eigenmodes and direct

numerical simulations appears quite satisfactory. A major peculiarity of the trends of

the leading modes in the near supersonic field is the occurrence of characteristic high

frequency ripples due to the interference of modes. The comparison between the spectra

obtained for We < 1 and for very high supersonic Weber numbers, tending to infin-

ity and simulating the absence of surface tension, shows clearly that the leading mode

frequency is practically the same.
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Global dynamics analysis of nappe oscillation
Fortunato De Rosa,a) Michele Girfoglio,b) and Luigi de Lucac)

Department of Industrial Engineering, Aerospace Sector, Università di Napoli “Federico II”,
Naples, Italy

(Received 24 June 2014; accepted 5 December 2014; published online 29 December 2014)

The unsteady global dynamics of a gravitational liquid sheet interacting with a one-
sided adjacent air enclosure, typically referred to as nappe oscillation, is addressed,
under the assumptions of potential flow and absence of surface tension effects. To the
purpose of shedding physical insights, the investigation examines both the dynamics
and the energy aspects. An interesting re-formulation of the problem consists of
recasting the nappe global behavior as a driven damped spring-mass oscillator, where
the inertial effects are linked to the liquid sheet mass and the spring is represented
by the equivalent stiffness of the air enclosure acting on the average displacement
of the compliant nappe centerline. The investigation is carried out through a modal
(i.e., time asymptotic) and a non-modal (i.e., short-time transient) linear approach,
which are corroborated by direct numerical simulations of the governing equation.
The modal analysis shows that the flow system is characterized by low-frequency
and high-frequency oscillations, the former related to the crossing time of the
perturbations over the whole domain and the latter related to the spring-mass oscil-
lator. The low-frequency oscillations, observed in real life systems, are produced
by the (linear) combination of multiple modes. The non-normality of the operator
is responsible for short-time energy amplifications even in asymptotically stable
configurations, which are confirmed by numerical simulations and justified by energy
budget considerations. Strong analogies with the edge-tone problem are encoun-
tered; in particular, the integer-plus-one-quarter resonance criterion is uncovered,
where the basic frequency to be multiplied by n + 1

4 is just the one related to the
spacing among the imaginary parts of the eigenvalues. C 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4904752]

I. INTRODUCTION

It is well known that a thin water sheet (curtain), flowing freely from a top opening, gives
rise to strong low-frequency periodic oscillations when interacting with an air enclosure acting as
a resonator. Such a behavior, commonly referred to as the nappe oscillation phenomenon,1 is most
pronounced as the volume of air is closed and arises from a mutually induced mechanism among
the oscillations of the curtain and the pressure fluctuations in the air enclosure adjacent to one side
of the sheet, with the other one being an unperturbed ambient.2 The flow of waterfalls, naturally
outpoured or generated by the overflow of water over long crests of dams or weirs, represents a
typical example of such a configuration. The noise produced by the oscillation of the waterfall
can be radiated far away from the source and may cause problems such as vibrations in door or
windowpanes in buildings nearby, and even, structural damages to the dam itself.

Theoretically, the physical problem represents a typical configuration of a spatially developing
fluid system able to sustain a variety of wave-patterns. Although the spatio-temporal evolution of
planar free-falling liquid sheet flows has been widely discussed, mainly in the context of linear
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c)deluca@unina.it
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stability analysis,3–6 little attention has been paid to modeling the global coupling between advec-
tion and reaction effects (where the term global refers to the system as a whole) when the curtain
interacts with a closed air chamber. Among previous experimental contributions about the nappe
oscillation, most noticeable are the works of Sato and coauthors,7,8 who found a strong correlation
among the oscillation frequency of the water sheet and the pressure fluctuation in the air chamber
behind it. They also performed a theoretical analysis to examine the modal stability of the sheet
vibration by means of a complex eigenvalue problem, and compared the frequency at which unsta-
ble modes occur with the characteristic frequency of a one-degree-of-freedom spring-mass system,
with the air into the enclosure being considered as a spring and the water sheet being modeled as
a mass. However, the characteristic frequency of the most unstable mode is from 10- to 20-times
larger than the frequency experimentally observed in visualizing the nappe oscillation phenomenon.
Even the shape of the associate eigenfunction is completely different that characterizes the unsteady
oscillating behavior of the nappe.

Le Grand-Piteira et al.9 report theoretical as well as experimental findings on the characteristics
of the global dynamics of liquid sheets, but their work is concerned with a different context, i.e., the
case of symmetrical semi-infinite boundary air environments.

The nappe oscillation phenomenon has been theoretically addressed by Schmid and Henning-
son,10 who formulated the linearized physical model governing the spatio-temporal evolution of
disturbances in the form of an integro-differential system of equations over a finite length domain.
Within the framework of the linear non-modal stability theory, they found time-periodic oscilla-
tions of the amplification of the disturbance energy, and correlated the period of such oscillations
to the quasi-constant spacing among the imaginary part of the eigenvalues. They concluded that
the phenomenon under study is governed not by a single mode but by the (linear) interaction of
many (stable) modes. Such a global feature of the spectrum closely agrees with the low-frequency
oscillations typically observed during the nappe oscillation. Since the role played by viscosity and
surface tension should be important in stabilizing the spectrum, as argued by the authors them-
selves, they limited the analysis to some significant stable modes, focusing their interest on the
global oscillations; no connection with parameters associated with single modes was inspected.

In the present work, the nappe oscillation problem is revisited from the linear global viewpoint.
The entire eigenvalues spectrum is deeply analyzed, focusing on its unstable part (representing the
single-mode sheet behavior, previously evidenced in the literature through the spring-mass model)
and on the constant imaginary-spacing of stable eigenvalues (representing the global sheet behavior,
previously evidenced through the nappe oscillation frequency). The spring-mass model describes
the dynamics of the average displacement of the sheet centerline over its total length; we will show
that such a dynamics is forced by the local dynamics of the lower end of the sheet. The study is
based on a simplified one-dimensional unsteady model, already derived in the different context of
the modeling of slender liquid sheets by means of a series expansion in the slenderness parameter
for the unknown flow quantities.4,11 The model is closed with the specification of the external pres-
sure field, representing the reaction of an air enclosure located on one side of the sheet. The problem
is investigated theoretically, by employing both modal and non-modal analysis, and numerically,
by means of direct numerical simulation of the unsteady equations. In order to ascertain the basic
physical mechanisms governing the phenomenon, the dynamics analysis is also corroborated by a
parallel energy analysis, resorting to the so called energy budget methodology.

An interesting physical finding is the strong analogy between the present problem and that of
the edge-tones (i.e., the acoustic tones produced when a jet of air strikes a wedge shaped edge),
which regards a simple relationship for determining the dimensionless resonance frequencies,
namely, the integer-plus-one-quarter criterion of Curle.12

II. THE PHYSICAL MODEL

To derive a physical model for the unsteady evolution of an inviscid gravitational liquid sheet,
the assumptions of plug flow and thin curtain will be adopted.13,14 The surface tension effects are
neglected because most of the features of the present fluid system are not strictly related to the
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FIG. 1. Sketch of the model configuration.

surface tension, and also because in various real configurations, the convective effects prevail over
those of the surface tension.

Although in principle, self-sustained periodic oscillations can be observed also in aerated air
pockets,15 here, we consider the pressure disturbances produced by the curtain compliant interface
within a two-dimensional air enclosure delimited by the sheet itself, rigid walls, and a lower basin.
Splashing effects are neglected. It has to be noticed that, in real situations such as that of a waterfall,
the air cavity is not perfectly sealed, so that the present two-dimensional analysis well applies to
physical situations with large aspect ratio values. Furthermore, the investigation will be restricted
to the occurrence of one-dimensional surface wave-patterns. One can expect that oblique waves
(i.e., developing along the spanwise direction) occur when extending the study to three-dimensional
configurations, as already found experimentally by Le Grand-Piteira et al.9 in the case of symmet-
rical semi-infinite boundary air environments.

Figure 1 shows the schematic of the geometrical configuration under consideration. In the
unperturbed condition, the liquid flows along the vertical x-direction with a steady velocity and two
symmetrical free interfaces. The expressions of centerline location ℓ and thickness h of the sheet are
given, in terms of the interface positions y±, as follows:

ℓ⋆(x⋆, t⋆) = y⋆+(x⋆, t⋆) + y⋆−(x⋆, t⋆)
2

,

h⋆(x⋆, t⋆) = y⋆+(x⋆, t⋆) − y⋆−(x⋆, t⋆),
where superscripts ± refer to right and left interface, respectively, and t∗ is the time. Here, as
elsewhere, star denotes dimensional quantities.

A. Governing equations

The starting mathematical framework is given by the two-dimensional Euler equations in which
gravity is retained, closed by the kinematic and dynamic conditions imposed at the free interfaces

p⋆± = p⋆±a ,

v⋆± =
∂ y⋆±

∂t⋆
+ u⋆±∂ y

⋆±

∂x⋆
.
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In the above equations, p⋆±a (x⋆, t⋆) is the local value of the external ambient pressure and the general
definition ϕ⋆±(x⋆, t⋆) = ϕ⋆(x⋆, y⋆±, t⋆) has been adopted, ϕ being any of the flow variables u, v , and
p (where u and v are the streamwise and lateral velocity components, respectively).

The assumption of a thin sheet with respect to the wavelength of a disturbance allows us
to reduce the problem to a one-dimensional unsteady formulation. Following Mehring and Sirig-
nano,13 a coordinate-type expansion in the lateral direction y , for all the flow variables involved, is
introduced. Such a perturbative approach is valid for y⋆ ∈ (y⋆−, y⋆+) and hence, the inequality

|y⋆ − ℓ⋆(x⋆, t⋆)| ≤ h⋆(x⋆, t⋆)
2

(1)

holds. By adapting the procedure employed in Girfoglio et al.,16 the lowest order set of equations
governing the unsteady evolution of the sheet is derived by retaining the zero-th order approxima-
tion for the momentum and continuity equations, coupled with interface conditions at first order;
that is,

∂h⋆

∂t⋆
+
∂(u⋆h⋆)
∂x⋆

= 0, (2)

∂ℓ⋆

∂t⋆
+ u⋆ ∂ℓ

⋆

∂x⋆
− v⋆ = 0, (3)

∂u⋆

∂t⋆
+ u⋆∂u⋆

∂x⋆
= g − 1

ρl


∂p⋆a
∂x⋆
−

p⋆a
h⋆

∂ℓ⋆

∂x⋆


, (4)

∂v⋆

∂t⋆
+ u⋆∂v

⋆

∂x⋆
= − 1

ρlh⋆
p ⋆

a , (5)

where ρl is the liquid density and any velocity component u⋆, v⋆ has to be considered as the
zero-th order approximation of the power-series expansion in the small parameter (y⋆ − ℓ⋆). In the
momentum equations (4) and (5), the usual positions have also been made

p ⋆
a = p⋆+a − p⋆−a , p⋆a =

p⋆+a + p⋆−a

2
.

Under the assumption of small perturbations, the linearized set of equations is obtained by
assuming symmetry conditions for the base problem14

∂ℓ′⋆

∂t⋆
+U⋆∂ℓ

′⋆

∂x⋆
− v ′⋆ = 0, (6)

∂v ′⋆

∂t⋆
+U⋆∂v

′⋆

∂x⋆
= − 1

ρlH⋆
p ′⋆a , (7)

∂h′⋆

∂t⋆
+

∂

∂x⋆
�
U⋆h′⋆ + H⋆u′⋆

�
= 0, (8)

∂u′⋆

∂t⋆
+

∂

∂x⋆
�
U⋆u′⋆

�
= − 1

ρl

∂p′⋆a
∂x⋆

(9)

with capital letters denoting basic (steady) quantities and primes the corresponding fluctuations.
Note that Eqs. (6) and (7) govern the evolution of the so called sinuous modes (involving lateral
velocity disturbance and displacement of the sheet centerline), while Eqs. (8) and (9) govern the so
called varicose modes, involving vertical velocity disturbance and sheet thickness variation.

As extensively discussed in Coppola et al.,14 in the absence of viscosity and surface tension,
the steady solution of sheet thickness and streamwise liquid velocity is given by the analytical
Torricelli’s free-fall solution

U⋆ =


U⋆2

in + 2gx⋆, H⋆ =
U⋆

inH⋆
in

U⋆
, (10)

where U⋆
in and H⋆

in are the liquid velocity and the sheet thickness at the inlet section. To close the
two systems of coupled equations (6) and (7) and (8) and (9), just an expression for the ambient gas
pressure terms (p′⋆a , p′⋆a ) as functions of the deflection of the sheet is required.
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B. Ambient gas pressure model and non-dimensional equations

By considering relation (1) for perturbed quantities, the infinitesimal variation of the enclosure
volume, resulting from the sheet fluctuation, is given by

V ′⋆a =

 L⋆

0
ℓ′⋆(x⋆)dx⋆ − 1

2

 L⋆

0
h′⋆(x⋆)dx⋆.

If we hypothesize that the air within the enclosure encompasses compression/expansion isoentropic
thermodynamic transformations, we are able to give explicit expressions for the external pressure
terms of Eqs. (7) and (9), for the two different oscillating modes of the sheet, respectively, as
follows:

p′⋆a = γ
P⋆

a

V⋆
a

 L⋆

0
ℓ′⋆(x⋆)dx⋆, (11)

p′⋆a =
γ

4
P⋆

a

V⋆
a

 L⋆

0
h′⋆(x⋆)dx⋆, (12)

where γ is the specific heat ratio, P⋆
a is the unperturbed gas pressure into the enclosure, and V⋆

a

= L⋆W⋆ − 1
2

 L⋆

0 H⋆(x⋆)dx⋆ is the corresponding volume in the configuration shown in Figure 1.
By employing the reference quantities

L⋆
r = L⋆, ℓ⋆r = H⋆

in,

u⋆
r = U⋆

in, v⋆r = εU⋆
in,

t⋆r = L⋆/U⋆
in, p⋆r = ρlU⋆2

in

with ε = ℓ⋆r /L⋆
r denoting the slenderness parameter (tiny according to the assumptions made in

deriving the model), the set of equations (6)–(9) is conveniently rewritten in non-dimensional form
(by taking into account explicitly the fluctuations of the ambient pressure (11) and (12)) as follows:

sinuous mode




∂ℓ

∂t
+U

∂ℓ

∂x
= v,

∂v

∂t
+U

∂v

∂x
= −K

H
ℓ̄,

(13)

(14)

varicose mode




∂h
∂t
+

∂

∂x
(Uh + Hu) = 0,

∂u
∂t
+

∂

∂x
(Uu) = 0,

(15)

(16)

where

K = γ
Pa

ε
(
W⋆

L⋆ − ε
2

 1
0 Hdx

) (17)

is the equivalent stiffness of the enclosure air, and

ℓ̄ =

 1

0
ℓ dx (18)

denotes the average sinuous deflection of the sheet.
Accordingly, Eq. (10) for base solution takes the following non-dimensional form:

UH = 1 and U =
√

1 + 2Fr x, (19)

where Fr = gL⋆/U⋆2

in denotes the Froude number.
In summary, just two independent dimensionless parameters for the problem under study have

to be considered: the Froude number Fr and the equivalent air stiffness K . Note explicitly that in
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the present analysis, the air stiffness includes simultaneously the effects of the undisturbed pressure
within the enclosure, of the enclosure width and of the slenderness ratio ε = H⋆

in/L⋆, which in
principle have to be taken into account separately.

Note that Eqs. (15) and (16) governing the evolution of the varicose modes are not able to
sustain any oscillating wave-pattern in the configuration here adopted, reducing to simple advec-
tion equations. Therefore, the attention will be focused hereinafter on the sinuous disturbances
(Eqs. (13) and (14)), through a modal and non-modal theoretical approach. In this last case, due to
the hyperbolic nature of the governing equations, they are equipped with two boundary conditions
prescribed at the inlet location, x = 0, namely, ℓ(0) = 0 and v(0) = 0.

III. THEORETICAL INSIGHT ON THE NAPPE GLOBAL DYNAMICS

In order to give more physical insight on the fluid system under study, the equations for sinuous
disturbances (focus of the present analysis) can be properly rearranged by taking into account inte-
gral quantities depending on the sheet extension as a whole. Hereafter, we will see that it is globally
modeled as a lumped one-degree-of-freedom spring-mass system, in which the role of the spring is
played by the air into the enclosure and the mass is that of the liquid sheet itself.

Let us start to reconsider the system of equations (13) and (14) in terms of a single second order
partial integro-differential equation

D2ℓ

Dt2 = −
K
H
ℓ̄, (20)

where D
Dt

is the substantial derivative. Such an equation governs the linear inviscid evolution of
a generic disturbance subjected to an integral reaction term. The role played by the air stiffness
K ≥ 0 is crucial in characterizing the dynamics of the self-sustained wave-patterns evolving into
the curtain. IfK = 0, the equation is trivial, reducing to the simple advection equation with variable
mean velocity given by Eq. (19). Then, if no input is introduced at the left boundary, after a finite
time any solution vanishes, with the disturbance being continually expelled at the outlet of the
domain. Conversely, the presence of the reaction term in the form of an integral changes things in
such a way that the temporal evolution of the disturbance is by no means identically null after a
finite time. As it will be shown in the subsequent investigations, depending on the stiffness of the
air chamber adjacent to the sheet, the system dynamics exhibits different features in terms of both
stability properties and energy time evolution.

After expressing the substantial derivative in explicit form, integrating Eq. (20) over the whole
length of the sheet yields

d2

dt2

 1

0
Hℓ dx


+K ℓ̄ = −∂ℓ

∂t
����1
− v1, (21)

where the boundary conditions at the inlet location, ℓ(0) = 0 and v(0) = 0, have been considered,
and quantities at the outlet boundary are denoted with the subscript 1. This notation will be used
hereafter for all the quantities at the right boundary.

The integral at left hand side of Eq. (21) can be conveniently expressed as 1

0
H(x)ℓ(x) dx = H̄ ℓ̄ +

 1

0
H ′(x)ℓ′(x) dx, (22)

where H ′(x) and ℓ′(x) into the covariance term on the right side of the above equation represent
the local deviations of sheet thickness and centreline position from their average values, H̄ and ℓ̄,
respectively, and with the following position being also made:

H̄ =
 1

0
H dx.

The adopted hypotheses of small sheet thickness and perturbations assure that the covariance
term is small so that it can be neglected into Eq. (22) and the analogy with an elastic oscillator
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holds, as it appears hereafter

H̄
d2ℓ̄

dt2 +K ℓ̄ = −
(
2
∂ℓ

∂t
����1
+U

∂ℓ

∂x
����1

)
, (23)

where H̄ denotes the mass of the liquid sheet and K is the equivalent spring stiffness of the enclo-
sure air, whilst the right hand side has been written by considering Eq. (13). It’s worth noting that
in absence of gravity effects (i.e., parallel flow), Eq. (23) is obtained without any approximation
from Eq. (21) and the above analogy is exact. Then, the right hand side of Eq. (23) can be further
manipulated in order to extract a damping term, that is to say

H̄
d2ℓ̄

dt2 + 2
dℓ̄
dt
+K ℓ̄ = −2

d
dt

 1

0
x
∂ℓ

∂x
dx −U

∂ℓ

∂x
����1                                                          

fi

, (24)

where f i represents the self-induced forcing acting on the elastic oscillator.
In summary, the global dynamics of the nappe consists of the mutual interaction of the center-

line local deflection with the compliant air chamber which behaves as a spring acting on the average
sheet deflection. Equation (20) shows that the local deflection is forced by the global reaction term
of the spring, whilst the dynamics of the global spring-mass oscillator is driven by a combination
of local sheet displacement values, as described by Eq. (24). In the following part of the paper, we
will correlate such a mutual forcing to special features of the eigenvalues spectrum; the spectrum
uncovers the natural mode (possibly unstable) of the spring-mass system and the peculiar oscillating
behavior of the nappe described not just by single modes but by the superposition of a number
of modes to be ascribed essentially to Eq. (20) and physically connected to another characteristic
frequency linked to the typical crossing (or falling) time.

Here, we would like to introduce the following ansatz: the system is stable if the crossing time
is less than the period of the spring-mass oscillator, T . In the opposite situation, the self-forcing
establishes, leading to instability. Of course, since the oscillator works in the driven regime, the
oscillation period does not correspond to the natural frequency of oscillation and in general, it
cannot be determined in analytical closed form. It should be stressed that this ansatz includes
the gravity effects, in the sense that in the presence of gravity effects, a shorter crossing time is
expected, as well as a higher K threshold of instability. Such predictions will be confirmed by
the subsequent spectral analysis. In analogy with the classic acoustic phenomenon of edge tones,
we will uncover that resonance occurs at frequencies one-plus-one-fourth times the instability
onset frequency. Let us remember that the edge tones phenomenon refers to the acoustic tones
produced when a jet of air strikes a wedge shaped edge, whereas resonance occurs at frequencies
one-integer-plus-one-quarter times the frequency given by the ratio of the jet velocity to the distance
between the jet exit section and the wedge apex. In other physical terms, Curle12 explained that the
jet wavelength w and the edge to nozzle distance d are related by the relationship d = (n + 1/4)w,
where n is an integer.

IV. DISTURBANCE ENERGY EVOLUTION

In order to investigate some features of the solutions of Eqs. (20) and (24), it is useful to
examine the mechanisms of perturbation growth (or decay) by considering also the time behavior of
the system’s energy E. For sinuous disturbances, the energy balance equation can be easily derived
by multiplying Eq. (14) by the lateral velocity fluctuation v , and then by integrating it over the
whole volume (per unit length in transversal direction) of the sheet, thus obtaining

dEk

dt
+
v2

1

2
= −

�
K ℓ̄

�  1

0
v dx, (25)
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where the kinetic energy Ek is defined as

Ek =
1
2

 1

0
Hv2 dx (26)

and the energy terms are made dimensionless with respect to the reference energy E⋆
r = ρlℓ

⋆
r L⋆

r v
⋆2
r .

Apart from the presence of the convective exchange term of kinetic energy at the lower end of
the domain, the right hand side of Eq. (25) shows that a single mechanism contributes to the rate
of change of kinetic energy, that is to say the pressure (i.e., the term in between the parentheses)
work per unit time exchanged during the isentropic compression/expansion of the air enclosure.
By looking at the analogy with the elastic oscillator, one expects that the pressure work has a
time oscillating trend driven by the frequency of the self-induced forcing acting on the spring-mass
model (24); since the pressure work can assume both positive and negative values, no conclusion
may be drawn about the large time asymptotic behavior.

It is worthwhile to further rearrange Eq. (25) by eliminating the lateral velocity v with the aid of
Eq. (13), where the convective term is integrated by parts. The result is

dE
dt
+
v2

1

2
= −K ℓ̄U1ℓ1 +K ℓ̄

 1

0

dU
dx

ℓ dx (27)

with E = Ek + Ee, where the elastic energy of the enclosure air is

Ee =
1
2
K ℓ̄2. (28)

By making considerations analogous to those already discussed for Eq. (22), Eq. (27) can be
written as

dE
dt
+
v2

1

2
= −K ℓ̄U1ℓ1 +K ℓ̄

2
(

dU
dx

)
, (29)

where (
dU
dx

)
= Fr · tcross, (30)

tcross being the marching time needed by the perturbation to cross the entire domain.
Note that −K ℓ̄U1ℓ1 represents the convective exchange of elastic energy at the outlet (namely,

the work flux related to the pressure), whilst the term K ℓ̄2�
dU
dx

�
can be interpreted as a production

of disturbances total energy extracted from the stretching (i.e., non-parallel) basic flow. Since the
basic flow, driven by the gravity field, accelerates along the streamwise direction, this last term is
always positive (it is null if Fr = 0), contributing to increase the disturbance energy. As observed
before for the kinetic energy, one cannot infer any conclusions about the asymptotic behavior of the
total energy; nevertheless, due to the positive gravitational production term, one can expect a short
time growth also in asymptotically stable situations. We will see that this is possible even when the
gravitation effects are negligible.

Furthermore, a close-up inspection of the term −K ℓ̄U1ℓ1 allows one to predict, in no-gravity
configurations, asymptotic stability depending on the phase lag φ existing between the signals ℓ̄ and
ℓ1: a perfect phase synchronization (φ = 0) leads the system’s energy to asymptotically decrease
from its initial value; when the signals have a phase lag 0 < φ ≤ π, the temporal behavior of the
system’s energy assumes an oscillating, nonmonotonic trend and the phase quadrature (φ = π

2 )
among ℓ̄, ℓ1 spots the critical threshold for the large time stability interval (0 < φ < π

2 ), while
no conclusions can be inferred for a phase lag π

2 < φ ≤ π. Once again, when gravity effects are
retained, it is not possible to predict the system’s energy trend over the long times through the
phase lag φ, because asymptotic growing or decaying behaviors depend on whether the production
term overwhelms the kinetic and elastic convective exchanges. These theoretical predictions will be
confirmed hereafter by means of both direct numerical simulations and linear stability analysis.
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FIG. 2. Spatio-temporal evolution of ℓ and v disturbances in absence of gravitational effects for K = 18.

V. SPATIO-TEMPORAL CHARACTERISTICS VIA DIRECT NUMERICAL SIMULATIONS

The time evolution of an initially localized disturbance for spotted values of the chamber stiff-
ness inducing totally different asymptotic behaviors of the system will be analyzed; both the case
when gravity is neglected and retained will be examined by means of direct numerical simulation of
governing equation (20).

Let us start to analyze the simplified condition of parallel main flow, in which gravity is
neglected. The spatio-temporal representation of numerically computed solutions to Eq. (20), in
terms of centreline deflection ℓ and lateral velocity v , evaluated for K values inducing a different
asymptotic behavior of the energy norm, are reported in Figures 2 and 3. The initial condition of
the simulations is constituted by a compact support function satisfying the prescribed boundary
conditions, i.e., a Gaussian-like pulse for the perturbed centreline deflection ℓ, localized near the
upper boundary; no perturbation in lateral velocity fluctuation v is considered here.

As can be observed from the simulations, the centreline pulse, initially localized near the upper
boundary, travels without significantly modifying its own structure until it reaches the opposite
boundary. However, immediately the velocity disturbance is forced to assume non-null finite values,
with a non-zero integral average over the domain. This is due to momentum equation (14), in which
the transport of v is governed by the global reaction of the air enclosure, which depends in turn
by the centreline fluctuation ℓ. For relatively small K values, the ℓ transport equation, Eq. (13),
behaves practically as a pure advection model, with the forcing (represented by the lateral velocity
v) becoming insignificant, as can be clearly observed in simulations of Figure 2, carried out for a
K value close to the marginally stable critical value in absence of gravity. A different scenario is
found as K increases, due to the enhancing of the mutual influence of the disturbances that induces
the original pulse to lose its compact support while it travels towards the outlet boundary. Such a
deviation from its original structure becomes increasingly important as K increases giving rise to
a wave-packet generation, placed behind the Gaussian bump, the structure of which is enhanced
with increasing air stiffness parameter. More remarkable, numerical simulations show that after

FIG. 3. Spatio-temporal evolution of ℓ and v disturbances in absence of gravitational effects for K = 30.
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FIG. 4. Temporal evolution of the disturbance energy (a), pressure work (b), and normalized outlet Ee convective exchange
(c), for K = 18 and Fr = 0.

the initial transient, whose duration, t = 1, represents the marching time at constant velocity of
the pulse disturbance over the entire domain, a continuous generation of new pulses, affecting the
entire length of the sheet, is induced due to the action of the air chamber over the compliant sheet.
The continuous triggering of pulses gives rise to an asymptotic regime where the time-depending
behavior of the perturbation experiences an oscillating trend with a constant period that is deter-
mined by the parameterK , in both stable and unstable situations.

Such typical transient behaviors can be better appreciated in Figures 4 and 5, referring to stable
and unstable cases, respectively, in the absence of gravity, and in Figures 6 and 7, corresponding to
stable and unstable, respectively, gravitational cases. Each figure depicts the time variation of total
energy of the disturbance, including the kinetic and elastic components, in frame (a); the pressure
work per unit time introduced at the right hand side of Eq. (25), in frame (b); the contribution to the
rate of change of the total energy yielded by the convective exchange of elastic energy at the outlet
in Eq. (29), scaled by the constant −KU1, together with the single trends of ℓ̄ and ℓ1, in frame (c).
All energy terms are scaled with respect to the initial elastic energy Ee of the original pulse.

In both cases of Fr = 0, Figures 4 and 5 show that, after an initial transient where the total
energy does not exhibit any short time amplification, all the energy contributions follow a perfectly
regular time oscillating trend. The period τ of such oscillations matches that of the pressure work
exchanged with the air chamber, represented in frame (b) of the figures, as well as that of the
convective exchange of elastic energy (thick line) in frame (c). Of course the period shown in fig-
ures is half of that of the nappe centerline displacement T . Note also that in the unstable case, ℓ̄ and
ℓ1 are almost in phase opposition, coherently with findings suggested in Sec. IV, while in the stable
one, they are close to the phase quadrature. The gravitational cases with Fr = 20 of Figures 6 and 7
(where, for the sake of convenience, the dimensionless time t∗ over the crossing time is introduced)
feature basically the same characteristic results. Note that the value of K ≈59, here stable, repre-
sented an unstable situation in the absence of gravity, in agreement with the theoretical prediction
that when gravity is relevant, the falling time is reduced and the instability threshold, T = tcross,
moves K towards higher values. However, although gravity plays an asymptotic stabilizing role,
Figures 6 and 7 clearly show that the total energy exhibits a short time growth due to the production
term present at right hand side of Eq. (29).
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FIG. 5. Temporal evolution of the disturbance energy (a), pressure work (b), and normalized outlet Ee convective exchange
(c), for K = 58.87 and Fr = 0.

Other considerations about the asymptotic behavior of the system can be also inferred from
the dynamical point of view, specifically by bearing in mind the lumped system of Eq. (24). The
self-induced forcing f i is implicitly dependent on the value of the parameter K ; in general, we
found that it amplifies or decays asymptotically in time depending on whether the disturbances’
total energy amplifies or decays. Although it is not possible to determine in closed form, the time

FIG. 6. Temporal evolution of the disturbance energy (a), its time derivative (b), and normalized outlet Ee convective
exchange (c), for K = 58.87 and Fr = 20.
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FIG. 7. Temporal evolution of the disturbance energy (a), its time derivative (b), and normalized outlet Ee convective
exchange (c), for K = 160 and Fr = 20.

trend of f i as a function of K , similar to the standard driven damped spring-mass oscillators, the
phase lag between forcing and system response depends on the relative values of forcing frequency
and oscillator natural frequency. Here, for the simplified case of no gravity, from Eq. (24), one
can deduce that the natural frequency is λN =

√
K − 1. Depending on the assumed frequency of f i

with respect to λN three different scenarios are possible. Figure 8 shows a comparison between the

FIG. 8. Temporal evolution of ℓ̄ and self-induced forcing fi for (a) K = 18, (b) K = 58.87, and (c) K = 100.
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FIG. 9. Functions plot (a) cos λi (red solid line), (b) 1 − λi
2 sin λi (black dashed line), and (c) 2 sin λi

λi
+

λ2
i
K − 1 (black solid

line) for K = (19.74; 78.96; 177.65).

time evolution of the average sheet displacement ℓ̄, i.e., the spring displacement, and the forcing f i,
i.e., the right hand side of Eq. (24). In the frame (a), corresponding to the stable configuration for
K = 18, it can be observed that, after the initial transient, ℓ̄ and f i are almost in phase opposition,
because the spring-mass motion is forced at a frequency (about equal to 6.19) greater than its natural
frequency (λN ≈ 4.12). This is a general behavior found for all the stable values of K . Furthermore,
the oscillation period T of f i is exactly twice the oscillation period τ of the system’s energy, as
can be observed by comparing the inset of frame (a) and Figure 4(a). The asymptotical stabilization
of the system can be explained, from a dynamical point of view, by considering the effect of a
continuously reducing forcing acting on a damped system. On the contrary, frames (b) and (c) corre-
spond to unstable configurations. As will be clarified by the subsequent stability analysis, unstable
configurations offer different scenarios in which, as K increases, the driving term f i can result in
phase, phase quadrature, and phase opposition with respect to the spring displacement ℓ̄. This is
clearly confirmed in simulations of Figure 8 showing, in frame (b), the phase quadrature between ℓ̄
and f i corresponding to the resonance condition for K = 58.87 and, in frame (c), the circumstance
that ℓ̄ and its forcing term are almost in phase, with the frequency of f i being lower than the natural
one (λN ≈ 9.95). Of course, also in unstable configurations, the system’s energy oscillates with a
period exactly matching the semi-period of the self-induced forcing, as can be observed for the
resonance case depicted in Figures 5(a) and 8(b).

VI. SPECTRAL STABILITY ANALYSIS

A comprehensive methodology to analyze the problem governed by Eq. (20) consists of formu-
lating a boundary value eigenvalues problem. The standard approach to obtain global solutions
consists of separating the variables and assuming the following form of the disturbance: ℓ(x, t)
= ℓ̂(x) · eλt. This leads to the eigenvalue problem

λ2ℓ̂ + (2λU + Fr) Dℓ̂ +U2D2ℓ̂ = −K
H

ˆ̄ℓ (31)

with D denoting spatial derivative along x direction, ℓ̂ the eigenfunction, and λ the complex eigen-
value.

A. Analytical approach in no-gravity case

In the special case of no-gravity, Fr = 0, it is straightforward to obtain the characteristic eigen-
value equation in closed form. By integrating the above equation over the whole length of the nappe
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and by employing the relevant boundary conditions, ℓ̂0 = Dℓ̂0 = 0, one obtains that the average
sheet deflection is a linear combination of ℓ̂1 and Dℓ̂1

ˆ̄ℓ = −2λℓ̂(1) + Dℓ̂(1)
λ2 +K

(32)

and hence,

D2ℓ̂ + 2λDℓ̂ + λ2ℓ̂ =
2λℓ̂(1) + Dℓ̂(1)

1 + λ2

K

.

Integrating the above equation produces

ℓ̂ =
K ˆ̄ℓ
λ2

�(1 + λx) e−λx − 1
�

and, as a consequence of Eq. (13),

v̂ =
K ˆ̄ℓ
λ

�(1 + λx) e−λx − 1
�
− K ˆ̄ℓxe−λx

from which, by taking into account Eq. (32), eigenvalues λ can be obtained as complex solutions of
the characteristic eigenvalue equation

K
K + λ2

(
2
λ
+ 1

)
e−λ − 2

λ


+ 1 = 0 (33)

which, in agreement with a previous statement, does not admit a solution forK = 0.
Apart from the trivial solution λ = 0, which is not an eigenvalue, Eq. (33) does not admit any

real solution forK > 0, in agreement with the physical considerations requiring that the disturbance
has always an oscillating nature due to the driving mechanism of the air chamber. Conversely, com-
plex solutions of Eq. (33) lie, in the complex plane, along a single branch since the 2nd order partial
differential equation (20) admits just a single characteristic along which disturbances propagate,
namely, dx

dt
= U .

A straightforward manipulation of Eq. (33), consisting in separating its real and imaginary
parts, yields the critical value Kcr of the air cushion stiffness corresponding to the transition from
stable to unstable configurations. Frequencies of the marginally stable disturbances (λr = 0) can
be graphically obtained by searching for the contact points among the functions arising from the
complex manipulation of Eq. (33)




cos λi = 1 − λi

2
sin λi,

cos λi = 2
sin λi

λi
+

λ2
i

K
− 1.

(34)

Solutions depend on the value of theK parameter, however, the first contact point (corresponding to
K = 19.74) represents a triple point since there is a change in the stability for the solutions of the
model equation (see Fig. 9). Note that the frequency of the first couple of marginally stable modes
corresponds to a period matching the required crossing time tcross so that the disturbances can be
expelled into the sheet basin, in agreement with the ansatz of Sec. III.

B. Numerical approach

In the general case, eigenvalue problem (31) can be conveniently reformulated starting from
Eqs. (13) and (14) and enforcing the global temporal modes position, so as to recast the governing
equations into the following compact matrical form:

λ *
,

ℓ̂

v̂
+
-
= A *

,

ℓ̂

v̂
+
-
, (35)
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FIG. 10. Spectra obtained by varying gravity effects [Fr = 0 (·), Fr = 10 (+), and Fr = 20 (o)] for (a) K = 100, (b) K
= 4 × 104, and (c) K = 106.

where the spatial operator is

A ≡
*.....
,

−U · D −I

−K
H

 1

0
dx −U · D

+/////
-

with I denoting the identity operator.
For values of Fr , 0 (and K > 0), eigenvalues and eigenfunctions are numerically computed

by means of a Chebyshev collocation method, with both differential and integral terms being spec-
trally accurate. Figure 10 depicts the spectra obtained for various Froude numbers, evaluated for
three typical values of stiffness of the air chamber inducing different shapes of distribution of the
eigenvalues in the complex plane. The spectra are generally constituted of two symmetric branches
with respect to the imaginary axis, each made of infinitely many eigenvalues, whose spreading rate
is continuously varying with the gravity effect. The shape of the branches depends on the value
assumed by the parameter K and results to be of three different possible configurations over the
entire semi-infinite interval of positive K values. The major characteristic of the spectra, what-
ever the equivalent stiffness K , is that each branch exhibits eigenvalues almost equally spaced in
imaginary parts. Thus, two characteristic frequencies can be recognized, one related to the constant
spacing of imaginary parts ∆λi and the other one to the imaginary part of the leading (i.e., most
unstable) modes pair. The latter corresponds to the frequency at which damped spring-mass system
(24) oscillates driven by the self-induced forcing f i, whilst the former is related to the crossing
time
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FIG. 11. Spectra obtained by varying gravity effects [Fr = 10 (·), Fr = 100 (+), and Fr = 500 (o)] for K = 106.

tcross =

 1

0

dx
√

1 + 2Fr x
(36)

so that, by varying the Froude number, it always results in ∆λi ≈ 2π
tcross

.
The different configurations assumed by the spectrum as K is varied are strictly linked to

the frequency assumed by the leading mode pair which, in turn, is correlated to the oscillation
frequency of spring-mass oscillator (24). For stiffness values of the enclosure air small enough
(e.g., see frame (a) of Figure 10), the leading mode pair is also the lowest frequency eigenvalues
pair of the spectrum; as K increases, the frequency of fluid oscillator (24) increases accordingly
and the leading modes shift outwards to higher frequencies, giving rise to a cascade of “inner”
eigenvalue pairs having lower frequency in the neighborhood of the imaginary axis, as displayed in
the typical configuration of frame (b); finally, for even higher K values, the oscillation frequency of
the spring-mass system can result greater than the numerically computable highest frequency of the
spectrum, leading to the shape depicted in frame (c).

As expected, gravity certainly plays a role in determining the shape of the spectrum for a given
stiffness K . This is clearly showed in Figure 11 in which, for the same air chamber stiffness value
as Figure 10(c), the spectra computed for three different Froude numbers are reported. The initial
parabola shaped spectrum represented also in Figure 10(c) changes as Fr increases and becomes
analogous in shape to those of Figure 10(b), so that a typical configuration can be similarly ob-
tained by properly choosing the couple of parameters Fr and K . The reason for this characteristic
behavior lies in the mutual role played by gravity and stiffness in influencing the oscillation fre-
quency of the right hand side of Eq. (24). As the Froude number increases, the crossing time tcross

reduces correspondingly; the spacing ∆λi among the eigenvalues increases so that the oscillation
period T of the spring-mass system results rapidly higher than the maximum period included into
the spectrum computed at the lowest Froude number. As a consequence, the corresponding fre-
quency, initially higher than that of most unstable modes at Fr = 10, appears into the “spreading”
part of the spectra evaluated at higher Froude numbers, and moves inward as Fr goes up.

The overall stabilizing role played by gravity is clearly confirmed in each frame of Figure 10
and Figure 11. As the Froude number increases, the entire spectrum spreads in the complex plane
moving the bulk of its eigenvalues towards even more stable regions. We stress once again that
this is a consequence of the reduction of the crossing time acting as a stabilizing effect competing
against the forcing mechanism due to the air chamber, according to the ansatz of Sec. III.

Figure 12 shows a map of the modal stability/instability regions associated with the leading
mode complex pair of the spectrum, obtained for a selected range of K values and by varying the
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FIG. 12. Color maps of modal global behavior for a selected range of Froude number and K values. (a) is growth rate and
(b) is frequency. White regions in frame (a) correspond to stable configurations.

Froude number from no-gravity case to sufficiently high gravity effects. Growth rates of distur-
bances are depicted in frame (a), where the color regions represent iso-level positive growth-rates
(with stable configurations spotted by blank regions), while in frame (b), the corresponding frequen-
cies of the fluid oscillator (24) are reported (the white lines represent the marginal modal curves).

The stabilizing effect induced by gravity on the asymptotic behavior of the system, driven
by the leading mode, is clearly illustrated in Figure 12. The stability region in frame (a), already
existing in the no-gravity case for values of K < 19.74 (e.g., see Figure 9), broadens as described
by the marginal stability curve roughly following the trend given by K = 26

√
Fr + 0.6Fr . How-

ever, note that for higher K values, a further stable region occurs, which assumes a wedge-shaped
conformation at its lower side and exhibits for higher Fr values the same trend as the marginal
curve underlying. This typical behavior reproduces cyclically as K grows within the range of
(K ,Fr) values inspected (not shown herein). Thus, the map of growth-rate presents a periodic series
of wedge-shaped stability regions as K increases, whose edges continuously shift towards higher
Froude numbers. Figure 12(b) shows that in general, the oscillation frequency of the leading mode
increases with increasing Froude numbers. Moreover, a discontinuous trend with K is observed
at any fixed Fr due to the jump of the leading mode pair of the spectrum, giving rise to the
characteristic onion structure depicted in Figure 12(b).

Such a typical modal behavior with K and Fr can be better appreciated by looking at
Figures 13 and 14, showing parametric curves obtained by sectioning the maps of Figure 12 at
fixed Fr and K , respectively. Frames (a) and (b) of Figure 13 exhibit growth rate and frequency

FIG. 13. Parametric trend with K of (a) growth-rate and (b) frequency of the leading mode pair, evaluated at Fr = 0.
Dashed line in frame (b) represents the natural frequency variation of lumped system (24).
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FIG. 14. Parametric trend with Fr of (a) growth rate and (b) frequency of the leading mode pair, evaluated at K = 1000.

evolutions with K when gravity is neglected. Note, in particular, that the frequency plot (b) is
piecewise discontinuous due to the presence of additional leading modes in the spectrum at discrete
values of K . The dashed line also present in plot (b) refers to the natural frequency variation of
lumped system (24). The thin dashed segment in plot (a) marks the marginal value K = 19.74 of
null growth rate, to which the frequency of λi = 6.28 corresponds. In other terms, in the absence
of gravity, the frequency of the marginal mode is related to the falling time, thus confirming the
ansatz of Sec. III. Note also that this is not a resonance frequency, whose values are given by
the intersections of the dashed line with the piecewise discontinuous line of Fig. 13(b). As can be
seen inspecting the plot (b), the first value of the resonance frequency is found to be 7.61, with
7.61/6.28 = 1.21, thus uncovering the one-plus-one-quarter criterion of the edge tones problem
to a good accuracy. Furthermore, all other higher values are evenly spaced by 6.28. This very
interesting result uncovers the theoretical considerations of Schwartz1 and the experimental findings
of Sato et al.,7 which in turn resemble a major characteristic of the edge tone phenomenon.12 In fact,
the possible resonance frequencies are given by the relationship 2π(n + 1

4 ), where n is an integer.
At the same time, Figure 14 reports the growth-rate (frame (a)) and frequency (frame (b)) trends
obtained by varying the Froude number for the highest K value depicted in Figure 12. The unusual
parabolic trend of Fig. 13(a), assumed by the growth-rate of each leading mode pair before being
overwhelmed by the adjoining eigenvalue, is basically confirmed in the presence of gravity together
with the stretching of the range of a single leading mode as Froude number goes up. Conversely,
although gravity enhances the growth-rate of the unstable modes, it plays a stabilizing role because
it moves the marginal K values upwards. Furthermore, the frequency curves of Figure 14(b), as
Fr grows, move along segments having different slopes associated with each leading mode and the
corresponding jumps in frequency follow a spreading trend consistent with the frequency associated
to the crossing time, ∆λi, whose negative amplitude is a result of the parametric behavior shown in
Figure 11.

It should be pointed out that the perfect agreement found at Fr = 0 between the frequency of
the marginally stable leading mode pair and the one linked to the spacing ∆λi is slightly lost in
the presence of gravity, with an increasing discrepancy as the gravitational influence becomes more
relevant. This can be observed in Figure 15 showing the analytical trend with the Froude number
of tcross together with the numerically computed period T of the spring-mass oscillator, associated
with the leading mode. In the presence of a spatially developing base flow, the neutral stability
criterion is fulfilled for oscillation periods T smaller than the corresponding crossing time tcross.

VII. NON-MODAL ANALYSIS

In Sec. V, we reported that the direct numerical simulations, referring to an initial Gaussian-
like pulse of the perturbed centerline deflection ℓ show that, in the presence of gravity, the total
and kinetic energies exhibit transient amplifications even in situations when the flow system is
asymptotically stable. Here, we aim to prove that such a circumstance is a robust feature of the
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FIG. 15. Deviation with Froude number of the oscillation period T of the spring-mass system corresponding to the critical
transition configurations (·) from the analytical predictions (o) of Eq. (36).

governing operator of model equation (20) linked to its non-normal character. In fact, we will show
that transient amplifications of the disturbance energy can occur also in the absence of gravity. This
is not in contrast to the previous findings of the numerical simulations, and it can be explained
by considering that the standard procedure to evaluate the short-time trend of energy is based
on searching the optimal disturbances, namely, the disturbances producing at each time-point the
maximum amplification. In order to do this, we refer to a standard mathematical framework of the
analysis of non-normal operators.17–20

The starting point is the reformulation of the initial-boundary value problem of Eqs. (13) and
(14) in the Hilbert subspace SN whose basis is constituted of the first N eigenfunctions satisfying
the prescribed boundary and initial conditions.19 If the temporal evolution problem is restated in the
compact form

∂q̃
∂t
= Aq̃,

where the vector q̃(x, t) contains the disturbance flow variables (ℓ̃, ṽ), expanded in the basis defined
above, then, the temporal evolution process results governed accordingly by the system

da
dt
= σa

with σ diagonal matrix of the first N eigenvalues and a vector of the expansion coefficients of the
solution in the eigenfunctions basis.

In order to evaluate the norm of the disturbance energy, the inner product involving the energies
defined by Eqs. (26) and (28) is adopted

E(t) = ∥q̃∥2
E =

1
2

 1

0
H (ṽ · ṽ∗) dx +

1
2
K ¯̃ℓ · ¯̃ℓ∗, (37)

where ∗ denotes the complex conjugate and the first and second terms on the right hand side refer,
respectively, to the kinetic and elastic energy contributions. Following,18 the scalar products are
expressed in terms of the expansion coefficients by means of the use of the Hermitian matrix M of
the inner products Mi j = (q̃i, q̃j) between the eigenfunctions and the associated norm in SN results

∥q̃∥E = ∥Fa∥2

with F given by the M = F∗F decomposition.
If the operator A is normal then, M is the identity matrix, the eigenfunctions basis of A being

orthogonal. On the contrary, if the operator A is non-normal, the diagonalization of the operator is
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not unitary and the spectral analysis alone is not able to accurately describe the temporal evolution
of the system, which has to be carried out by taking into account the transient behavior as well in a
full initial value analysis.

To ascertain the non-normal character of the governing operator A, an analysis of its pseu-
dospectra and numerical range was performed. It is worth remembering that ϵ-pseudospectra of A,
for each ϵ > 0, spot in the complex plane the isolevel curves of the resolvent norm ∥A − zI∥−1

= ϵ−1, with z ∈ C, and for non-normal operators, the value of such a norm can be significantly
greater than 1/dist (z,σ(A)) corresponding to its value for normal operators. The numerical range
is generally considered a useful tool to inspect the short-time growth in the energy norm of A
according to the Hille-Yosida theorem, relating the initial energy rate of change to its maximum
real coordinate, namely, the numerical abscissa. In effect, for a non-normal operator, the numerical
abscissa lies in the positive real Gauss half-plane.20

The effect of the energy exchanges between fluid and air enclosure (e.g., refer to Eq. (29))
can be collected, regardless of the initial condition, into a single function, generally referred to as
growth function

G(t) = sup
q̃(x,0),0

∥q̃(x, t)∥2
E

∥q̃(x, 0)∥2
E

= ∥eAt∥2
E. (38)

The growth function G(t) represents, for each time t, the highest energy amplification of a perturba-
tion optimized over all possible initial conditions q̃(x,0) and it is hence the envelope of the energy
evolution of all initial conditions with unit norm. The initial condition that attains the maximum
gain in energy is commonly referred to as optimal perturbation. Here, the transient growth function
G(t) is computed via the eigenmode expansion method in which the spectral discretization, also
employed for the computation of eigenvalues, is used. The energy norm is evaluated by means of
a standard 2-norm, while the corresponding optimal perturbation is calculated via a Singular Value
Decomposition (SVD) procedure of the transformed matrix exponential of gain function (38).

The non-normal character of the present governing operator can be recognized by observing
the ϵ-pseudospectrum lines corresponding to selected values of K and Fr parameters, shown in
Figure 16. A parametric trend in the Froude number is reported in frames (a)–(c), whilst a corre-
sponding trend in the K parameter is provided in frames (d)–(f). ϵ-pseudospectra in frames (a)–(c)
clearly show that an increase in the Froude number induces a strong non-normality whose strength
extends basically on the left of the spectrum. The influence of the Fr number on the non-normality
intensity is confirmed by the numerical range whose boundary lies even more deeply in the right
complex half-plane as Fr goes up. A similar qualitative behavior can be observed in the frames
(d)–(f) where the ϵ-pseudospectra show a less marked departure of the operator from the normality
as the stiffness parameter K is increased. Although the heart of non-normality remains to the left
of the spectrum, it extends more significantly on the right. The boundaries of the numerical range
confirm that the level of non-normality increases with increasingK .

Typical short-time trends of the growth function G as functions of K and Fr are depicted in
Figure 17; with the aim of better showing these trends, in this framework, we refer to all stable
configurations. Each frame of the figure reports the time scale t∗ conveniently scaled with respect
to the crossing time tcross, in such a way that the range 0 < t∗ < 2 represents, for all the cases,
the time needed by disturbances to cross twice the entire length of the sheet. In apparent contra-
diction with the trends previously obtained in terms of ϵ-pseudospectra and numerical range, the
frame (a) shows that G(t∗) peak decreases with increasing Fr . However, by looking at the inset of
Figure 17(a), in which the growth functions at very short times are greatly zoomed, it is clear that
the Hille-Yosida theorem is confirmed. Then, the result that G(t∗) peak decreases with increasing
Fr is due to the circumstance that the disturbances are expelled from the sheet outlet even more
rapidly as Fr increases; the production term due to gravity, at the right hand side of Eq. (29), is
overwhelmed by the negative convective total energy exchange at the outlet.

The effect of non-modal amplification of the disturbance energy can be examined also by in-
specting the growth function over large times, as reported in Figure 18. The asymptotically unstable
case depicted in Figure 18(a) shows that transient amplifications can generally occur also in the
absence of gravity, but this is not in contrast with the findings of Figures 4(a) and 5(a) because these
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FIG. 16. Iso-contour lines of ϵ-Pseudospectrum (–) and numerical range (- -) for selected spectra (red dots) of the linearized
operator A for various K at fixed Fr = 100 and various Fr at fixed K = 2000. From outside to inside, the curves correspond
to ϵ = [10, 100.8, 100.6, 100.4, 100.2, 1, 10−0.2, 10−0.4, 10−0.6, 10−0.8, 10−1]. (a) K = 2000 and Fr = 0, (b) K = 2000 and
Fr = 100, (c) K = 2000 and Fr = 200, (d) K = 10 and Fr = 100, (e) K = 500 and Fr = 100, and (f) K = 1000 and
Fr = 100.

latter refer to a specific initial condition, namely, Gaussian-like centerline perturbation and null
lateral velocity, whilst the present results correspond to maximum (i.e., optimized over all the initial
conditions) gain (38). A further look at Figure 18(a) allows us to appreciate the simultaneous pres-
ence of high-frequency oscillations due to the spring-mass interaction (namely, due to single-mode
dynamics), as well as low-frequency oscillations related to the crossing time (namely, due to multi-
modal dynamics). At long times, the leading mode pair becomes dominant and the energy optimal
amplification oscillates at high frequency only, around an average value growing exponentially with

FIG. 17. Short-time transient growth energy trends for selected values of parameters Fr and K . (a) K = 900 and (b) Fr

= 100.
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FIG. 18. Large time evolution of growth function G: (a) unstable case; (b) stable case. (a) K = 700 and Fr = 0 and (b)
k = 800 and Fr = 100.

growth rate equal to the real part of the leading eigenvalue. Figure 18(b) features the same basic
behavior for a stable case. However, here, the interaction between single-mode and multimodal
dynamics is more complex altering at short times the oscillations of both high- and low-frequency;
as shown in the picture, the former are initially related to the averaged frequency of the first two
eigenmodes having an almost coincident imaginary part, the latter can establish clearly only after
about 5-6 crossing times. The interested reader can delve into the complex synchronization of
single-mode and multimodal dynamics by referring to the paper of Coppola and de Luca.21

It seems interesting to show the comparison of typical spatial shapes of single most unstable
eigenmodes with spatial shapes of optimal perturbations, in terms of both centerline nappe displace-
ment and lateral velocity. Note that for the considered cases of Figures 19 and 20, the behavior

FIG. 19. Leading eigenmode (spring-mass eigenfunction) (a) and optimal perturbation (b) of ℓ (continuous line) and v

(dashed line) perturbations, for K = 100 and Fr = 0. Case referring to the spectrum displayed in Figure 10(a)(·).

FIG. 20. Leading (spring-mass) eigenmode (a) and optimal perturbation (b) of ℓ (continuous line) and v (dashed line)
perturbations, for K = 4 · 104 and Fr = 20. Case referring to the spectrum displayed in Figure 10(b)(o).
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of the most unstable eigenmodes of ℓ and v exhibits the same spatial oscillation frequency as the
corresponding optimal perturbation shapes, both in the presence and in the absence of gravity.
Optimal perturbations are computed at a time corresponding roughly to a few tcross, i.e., when the
exponential asymptotic regime is attained.

VIII. CONCLUSIONS

The dynamic behavior of nappe oscillation has been revisited with reference to a physical
model in which a thin liquid sheet interacts with a one-sided closed air chamber. The mutual influ-
ence of the air within the enclosure with the compliant nappe interface can produce self-induced
forcing whose features have been widely investigated.

The analysis has been carried out by developing a simplified (inviscid, without surface tension
effects) one-dimensional physical model that arises, in the context of a linearized formulation of
free-interface convection dominated systems, by assuming a coordinate-type expansion for the flow
variables.

The present contribution represents a step ahead in the knowledge of the phenomenon in two
ways: first, it analyzes more in detail the spectrum of the frequencies of the system, and indicates
that the oscillations of low frequency are related to the quasi-constant spacing of the imaginary parts
of the eigenvalues (already known); it also identifies clearly that the high frequency oscillations
have to be related to a global spring-mass oscillator model whose mass is that of the liquid sheet
and the equivalent stiffness K of the spring is that of the air inside the enclosure, which experiences
compression/expansion thermodynamic transformations. Second, an analogy is provided between
the nappe oscillation problem and the edge tone problem, i.e., the acoustic tones produced when a
jet of air strikes a wedge shaped edge.

The investigation has been carried out by means of both a modal (i.e., time asymptotic) and
a non-modal (i.e., short-time transient) linear approaches, which are corroborated by direct numer-
ical simulations of the governing equation. With the aim of yielding various physical insights, the
analysis has been carried out from both a dynamics and energy perspective.

A major result is the determination of the instability onset based on the ansatz, fully confirmed
by the numerical analysis, that the system is stable if the crossing time of a perturbation over the
whole length of the domain is shorter than the period of the spring-mass oscillator. In the opposite
situation, the self-forcing establishes itself, leading to instability. It should be stressed that this
ansatz includes the gravity effects, in the sense that in the presence of gravity, a shorter crossing
time is expected, and, accordingly, a higher K threshold of instability. Since the oscillator works in
the driven regime, the oscillation period does not correspond to the natural frequency of oscillation
and, in general, it cannot be determined in analytical closed form.

Moreover, in analogy with the acoustic phenomenon of edge tones, it is found that resonance
occurs at frequencies one integer-plus-one-fourth times the instability onset frequency, where the
basic frequency to be multiplied by n + 1

4 is just the one related to the spacing among the imaginary
parts of the eigenvalues. Complete maps of asymptotic growth rate and frequency in the parameters
space Fr,K have been computed, showing in detail the characteristic multimodal nature of the
nappe flow. Of course, the oscillation frequency observed in real life configurations depends on a
selection mechanism, not considered here because beyond the scope of the paper.
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Abstract

The global dynamics of unsteady free-interface vertical liquid sheet flows is

studied, where the dynamics is termed global because it refers to the whole fluid

system. The formal development of a proper mathematical model is presented

initially, which accounts for pressure disturbances produced by the compliant

interface in an air enclosure adjacent to the sheet. The linear spectral analysis

(here restricted to sinuous disturbances only) shows that the surface tension

is globally stabilizing, the spectrum exhibiting two typical branches related to

the two characteristics curves of the governing equations. This basic finding is

confirmed by means of both computations of the optimal amplifications (i.e. the

greatest amplifications over all initial perturbations) of the relevant system energy

and direct numerical simulations of the spatio-temporal evolution of an initial

disturbance having the form of an interface Gaussian perturbation.

1 Introduction

Vertical liquid sheets are often used in industrial processes, classical examples

being coating technology and paper making. In most of these applications the

control of the global characteristics of the sheet is of great importance for the

final quality of the product. The ability in suppressing undesired oscillations or

nonuniformity in the steady configuration of the sheet, for example, usually reflects

in a good quality of the fluid layer deposited under a moving substrate.

The modeling of the falling liquid sheet and of its interactions with the external

ambient gas has been considered in various circumstances in the past, mainly

within the context of linear stability analysis (cf. for example [1–4]). In these

previous contributions the analysis of the system behaviour is usually conducted
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locally, while few studies have been developed for the global characteristics of

the curtain when it strongly interacts with the external ambient gas [5, 6]. In this

paper, a simple model for the deflection of the liquid sheet is initially derived under

the assumptions of thin thickness and small initial perturbations. This model is

then closed with the specification of the pressure field outside the sheet, which

represents here the reaction of an air enclosure located on one side of the sheet.

The equations are then studied theoretically, by employing both modal and non

modal analysis, and numerically by a direct numerical simulation of the unsteady

(linear) equations governing the evolution of disturbances.

2 The model

2.1 Governing equations

In order to derive a mathematical model for the unsteady evolution of a free-

falling liquid curtain, we will refer to the sketch depicted in Fig. 1. Although in

principle various types of interactions with the external gaseous ambient can be

considered, hereafter the pressure disturbances produced by the curtain compliant

interface within a two-dimensional air enclosure delimited by the curtain itself,

rigid walls and a lower basin, will be analyzed. Viscous and splashing effects

are neglected. The governing equations are the standard two-dimensional inviscid

Euler equations in which gravity is retained. Kinematic and dynamic boundary

conditions at the liquid-air interfaces are:

v± =
∂y±

∂t
+ u±

∂y±

∂x
(1)

p± = p±a ∓ σ
∂2y±

∂x2

[
1 +

(
∂y±

∂x

)2
]−3/2

(2)

where σ is the surface tension coefficient, y−(x, t) and y+(x, t) are the equations

of the left and right boundaries of the sheet, respectively, p−a (x, t) and p+a (x, t)
are the local values of the external (gas) pressure and the general definition

ϕ±(x, t) = ϕ(x, y±, t) has been employed, ϕ being one of the variables u, v and

p (where u and v are the streamwise and lateral velocity components, respectively,

and p is pressure).

Let us define the quantities ỹ and y as the thickness and the location of sheet

centerline:

ỹ(x, t) = y+(x, t) − y−(x, t) (3)

y(x, t) =
y+(x, t) + y−(x, t)

2
. (4)

Following Mehring and Sirignano [7], a perturbative approach (in which the

thickness of the sheet ỹ is considered as the small parameter) is adopted, i.e. each
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Figure 1: Geometrical configuration under consideration.

dependent variable ϕ is expressed as a power series in terms of (y − y):

ϕ = ϕ0(x, t) + ϕ1(x, t) [y − y] + ϕ2(x, t) [y − y]
2
. . .

Such power series expansions are valid for y ∈ (y−, y+) and hence the inequality

|y − y(x, t)| ≤ ỹ/2 holds. By adapting the procedure employed in [7], the

following set of equations for the lowest order terms in the expansion is derived:

∂ỹ

∂t
+

∂(u0ỹ)

∂x
= 0 (5)

∂y

∂t
+ u0

∂y

∂x
= v0 (6)

∂u0

∂t
+ u0

∂u0

∂x
= g − 1

ρl

[
∂pa0
∂x

− pa0
ỹ

∂y

∂x

]

+
σ

2ρl

∂

∂x

[(
f+ + f−

2

)
∂2ỹ

∂x2

]
+ · · ·+ σ

2ρl

∂

∂x

[
(f+ − f−)

∂2y

∂x2

]

− σ

ρlỹ

∂y

∂x

[
(f+ + f−)

∂2y

∂x2
+

(f+ − f−)

2

∂2ỹ

∂x2

]
(7)

∂v0
∂t

+ u0
∂v0
∂x

= − 1

ρlỹ
p̃a0 +

σ

ρlỹ

[
(f+ + f−)

∂2y

∂x2
+

(f+ − f−)

2

∂2ỹ

∂x2

]
(8)

where

f± =

[
1 +

(
∂y

∂x

)2

± ∂y

∂x

∂ỹ

∂x
+

1

4

(
∂ỹ

∂x

)2
]−3/2

(9)
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and ρl is the liquid density. As usual the following positions are made:

p̃a0 = p+a0 − p−a0, pa0 =
p+a0 + p−a0

2
(10)

in which p±a0 are the first order approximation of a power-series expansion in the

variable (y − y) of the (still undefined) ambient gas pressures p±a . The boxed

terms appearing in equations (7) and (8) are due to the developing nature of the

flow under consideration (due to gravity) and were not considered in the original

treatment of Mehring and Sirignano [7].

2.2 Base flow and linearized perturbation equations

The generic flow variable ϕ will be hereafter decomposed as the sum of a

stationary (base) contribution and the perturbation:

ϕ0(x, t) = Φ(x) + ϕ(x, t). (11)

Symmetry considerations give the following form for the base flow variables,

denoted by capital symbols [8]:

U = U(x), H = H(x), (12)

V = 0, Y = 0, P̃a0 = 0, ∂P a0/∂x = 0 (13)

F̃ = 0, F = F =

[
1 +

1

4

(
∂H

∂x

)2
]−3/2

. (14)

By substituting these position in the nonlinear governing system (5–8) one obtains

the following equations for the base flow variables:

UH = UinHin = const. (15)

U
∂U

∂x
= g +

σ

2ρl

∂

∂x

{
F
∂2H

∂x2

}
(16)

where Uin and Hin are, respectively, the average streamwise velocity and the sheet

thickness at the inlet. These equations have been already derived in the context of

steady flows and have been extensively studied in [8].

The linearized equations for the perturbation quantities u, v, ℓ and h (l referring

to the centerline location of the sheet and h to its thickness) are:

∂h

∂t
+

∂

∂x
(Uh+ uH) = 0 (17)

∂ℓ

∂t
+ U

∂ℓ

∂x
= v (18)

∂u

∂t
+

∂ (Uu)

∂x
= − 1

ρl

∂p

∂x
+

σ

2ρl

∂2

∂x2

(
F
∂h

∂x

)
(19)

∂v

∂t
+ U

∂v

∂x
= − p̃

ρlH
+

2σ

ρlH

∂

∂x

(
F
∂ℓ

∂x

)
(20)
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Note that the set of equations (17–20) shows two separated systems for the

variables h, u (equations (17) and (19)) and v, ℓ (equations (18) and (20)). These

two systems will result decoupled if one can show that the values of p̃ and p
(relative to the ambient gas pressure perturbation) depend respectively on v, ℓ and

on u, h. By following a standard terminology we will employ the term varicose

with reference to disturbances involving variations in the thickness h and in

the streamwise velocity u, and the term sinuous with reference to disturbances

involving variations in the centerline position of the sheet ℓ and in the transverse

velocity v.

2.3 Ambient gas pressure model

As depicted in Fig. 1, the present model of the external pressure field subjected

to perturbation refers to the air enclosure located on one side of the curtain.

This type of perturbation, which is induced by a compliant displacement of the

sheet interface, was already analyzed by Schmid and Henningson [5], but they did

not include surface tension effects. Assuming isentropic transformation of the air

within the enclosure and behaviour of perfect gas, yields:

p̃ = − γPa0

LW −
∫ L

0
H
2 dx

∫ L

0

ℓ dx (21)

p =
γPa0

LW −
∫ L

0
H
2 dx

∫ L

0

h

2
dx (22)

where γ is the heat specific ratio, L the curtain length and W the transverse

dimension of the air enclosure. For varicose disturbances, as shown by equations

(19) and (22) the contribution related to the pressure term is null because p does

not depend on x.

2.4 Non-dimensional equations and slender-sheet approximation

The equation of motion (15-16) and (17–20) can be conveniently re-written in

non-dimensional form by employing the reference quantities:

Lr = U2
in/g, ℓr = Hin, ur = Uin, (23)

tr = Lr/Uin = Uin/g, (24)

vr = ℓr/tr = εUin, pr = ρlgHin = ερlU
2
in (25)

where ε = Hin/Lr = Hing/U
2
in is the slenderness parameter (reciprocal of Froude

number). The equations (18) and (20) for sinuous disturbances, for example,

reduce to:
∂ℓ∗

∂t∗
+ U∗

∂ℓ∗

∂x∗
= v∗ (26)
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∂v∗

∂t∗
+ U∗

∂v∗

∂x∗
=

1

WeH∗

∂

∂x∗

(
F ∗

∂ℓ∗

∂x∗

)
−

γ

H∗

P ∗a0

L∗W ∗ − ε
∫ L∗

0
H∗

2 dx∗

∫ L∗

0

ℓ∗ dx∗ (27)

where We = ρlU
2
inHin/2σ is the Weber number, and F ∗ is:

F ∗ =

[
1 +

1

4
ε2
(
∂H∗

∂x∗

)2
]−3/2

, (28)

stars denoting nondimensional quantities. By adopting a power series expansion in

the small parameter ε2, for the base flow variables, and an expansion in ε for the

perturbation quantities,

U∗ = U∗0 + ε2U∗1 + ε4U∗2 + . . . v∗ = v∗0 + εv∗1 + ε2v∗2 + . . .

H∗ = H∗

0 + ε2H∗

1 + ε4H∗

2 + . . . ℓ∗ = ℓ∗0 + εℓ∗1 + ε2ℓ∗2 + . . .

the lowest order approximation for the base flow gives the non-dimensional version

of the classic free-fall Torricelli’s solution

U∗0 =
√
1 + 2x∗, H∗

0 =
1√

1 + 2x∗
. (29)

The sinuous perturbation equations, at zeroth order, are:

∂ℓ∗0
∂t∗

+ U∗0
∂ℓ∗0
∂x∗

= v∗0 (30)

∂v∗0
∂t∗

+ U∗0
∂v∗0
∂x∗

=
1

WeH∗
0

∂2ℓ∗0
∂x∗2

− k

H∗
0

∫ L∗

0

ℓ∗0 dx
∗ (31)

where k = γP ∗0 /L
∗W ∗.

3 Analysis of sinuous disturbances

In the present paper we will restrict our study to sinuous disturbances only, that

will be analyzed both by determining their global eigenfunctions and by carrying

out direct numerical simulations of the governing equations.

3.1 Linear global eigenfunctions

Global temporal modes are introduced by the following positions: ℓ∗0(x
∗, t∗) =

L∗0(x
∗)eiωt∗ and v∗0(x

∗, t∗) = V ∗0 (x
∗)eiωt∗ . By substituting them in the governing
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Figure 2: Spectrum for We =∞ and L∗ = 6.25.

equations (30)-(31) we obtain




I −U∗0D

−U∗0D
1

WeH∗
0

D2 − k

H∗
0

∫ L∗

0
dx∗




(
L∗0

V ∗0

)
= iω

(
L∗0

V ∗0

)
(32)

where D, D2 and I are first derivative, second derivative and identity operators,

respectively. The boundary conditions are L∗0(0) = V ∗0 (0) = 0. A Chebychev

spectral collocation method has been used in order to solve the eigenvalues

problem.

As usual in this kind of problems, once defined the meaningful energy of the

system, it is convenient to find the optimal amplification of the energy, i.e. the

greatest amplifications for all the possible initial conditions (the so-called growth

function G(t) [9]). For sinuous disturbances, the energy is defined as:

E(t) =

∫ L∗

0

H∗

0v
∗

0
2 dx∗ +

1

We

∫ L∗

0

(
∂ℓ∗0
∂x∗

)2

dx∗ (33)

that takes into account both kinetic and surface tension contributions.

Two typical spectra obtained in the cases of absence of surface tension, We =
∞, and We = 2, both for L∗ = 6.25, are depicted in Figs. 2 and 3, respectively.

Note that the former case corresponds to the situation analyzed previously by

Schmid and Henningson [5]. In the presence of surface tension the spectrum

preserves the symmetry properties, but the unstable modes of high frequency

ωr disappear, due to the stabilizing effects of the surface tension. Moreover, the

presence of two distinct symmetrical branches is also evident, which is justified

on the grounds of the hyperbolic character of the governing equations system.

Neglecting the external pressure contribution, this last can be recast in a single
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Figure 3: Spectrum for We = 2 and L∗ = 6.25; the red branch refers to the slower

characteristic, the blue branch to the faster one.

equation in terms of ℓ∗0

U∗0

(
U∗0 −

1

We

)
∂2ℓ∗0
∂x∗2

+ 2U∗0
∂2ℓ∗0

∂x∗∂t∗
+

∂2ℓ∗0
∂t∗2

+
∂ℓ∗0
∂x∗

= 0 (34)

Equation (34) is a 2nd order hyperbolic partial differential equation having two

real and distinct characteristics given by (as an useful reference, see also [4]):

dx∗

dt∗
= U∗0 ±

√
1

WeU∗0
(35)

Therefore, the two branches of the spectrum correspond to the two characteristics

along which disturbances propagate; in order to support further this observation,

the fall times (i.e. the times needed in order the sheet perturbation crosses the entire

domain) related to the two characteristics,

T
(1,2)
fall =

∫ L∗

0

dx∗

U∗0 ±
√

1
WeU∗

0

(36)

have been evaluated (T
(1)
fall = 1.80, T

(2)
fall = 5.38) and related to the almost constant

spacing between two subsequent eigenvalues belonging to the same branch

measured along the ωr axis (∆ω
(1)
r and ∆ω

(2)
r ). It is found that this spacing agrees

closely to free-fall frequency f
(1,2)
fall = 2π/T

(1,2)
fall . This behaviour was expected,

because of some general results on the relation between the global spectrum

morphology and oscillations timescales in linear evolutionary models [10]

Fig. 4(a) and (b) show that optimal global amplifications of energy calculated

by considering separately eigenfunctions related to two branches of the spectrum

exhibit an energy transient growth characterized by time-periodic oscillations with
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Figure 4: Optimal energy amplifications for We = 2 and L∗ = 6.25; a) spectrum

red branch only; b) spectrum blue branch only; c) overall.

very low peak values. The total gain curve is plotted in Fig. 4(c) where one can

observe a very strong transient amplification because of coupling effects between

the two branches of eigenvalues.

3.2 Direct numerical simulation

In order to validate in another way the results shown in the previous section,

direct numerical simulations of the system (30-31), in the absence of the pressure

term, have been carried out by using a 4th order finite difference scheme for the

discretization of spatial differential operators. For the temporal integration a semi-

implicit theta-method scheme has been employed. The spatio-temporal evolution

of the initial disturbance constituted by a Gaussian peak for ℓ∗0, located near the

origin, is reported in Fig. 5. Note that the initial packet splits while travelling down

the sheet according to the different speeds of the two characteristics along with

disturbances propagate.

4 Conclusions

The unsteady global dynamics behavior of a free-interface vertical liquid sheet

flow has been studied, where such a behavior has been defined global because

it refers to the entire fluid system as a whole. The first part of the paper dealt

with the formal development of a proper mathematical model, which accounts of

a particular kind of disturbances in the external gaseous ambient, constituted by

an enclosure limited by solid walls, a bottom liquid basin and one of the two sheet

interfaces.

A major finding is that the fluid system is stabilized by the surface tension.

Moreover, since the unsteady dynamics can be described by means of a typical
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Figure 5: Spatio-temporal evolution of the initial disturbance for We = 2 and

L∗ = 1.

2nd order partial differential equation of hyperbolic type, showing two distinct

characteristic curves, the eigenvalues spectrum is typically characterized by two

branches, each of them corresponding to disturbances eigenfunctions propagating

along the two characteristic curves.

Another very interesting result is that both spectrum branches highlight

a practically constant spacing among the values of their real parts, such a

spacing being intimately connected to the fall times of the sheet perturbations

over the height of the gas ambient enclosure. This result, which is typical of

other convection-dominated dynamics systems, is confirmed under other two

viewpoints.

A first comparison basis was offered by direct numerical simulations of

the governing equations, that showed, among other features, how the initial

disturbance imposed to the flow field under the form an interface Gaussian

perturbation, evolved in the spatio-temporal framework by splitting itself into two

wave-packets travelling at the expected speeds. In addition, a parallel investigation

has been carried out in order to compute time trends of optimal amplifications

of the significant system energy (accounting of both kinetic and surface tension

contributions), where the term optimal refer to the greatest energy amplification

over all initial perturbations. Both comparisons showed results in very close

agreement with the spectral analysis performed in the initial part of the paper.
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ABSTRACT
Unsteady free-interface vertical liquid sheet flows are studied from the global viewpoint, where
the dynamics is termed global because it refers to the whole fluid system. The development of a
proper mathematical model is presented initially, which accounts of pressure disturbances pro-
duced by the compliant interface in an air enclosure adjacent to the sheet. Our study has been
restricted to the sinuous (unsymmetric) solution of the linearized set of equations. It is found
that, in absence of surface tension, the optimal disturbance energy exhibits a transient growth
characterized by high frequency and low frequency time-periodic oscillations; physical consid-
erations are developed in order to estimate the relevant periods. In presence of surface tension,
the low frequency oscillations disappear and the optimal disturbance energy goes quickly to
zero, after exhibiting an initial reduced peak. In order to give insight on the physical relevance
of such behaviours, an equation of energy budget is also derived which is used to estimate the
contribution of the various physical effects evaluated via direct numerical simulation of the
linearized model.

Keywords: liquid sheet flow, non modal amplification, energy budget

1 INTRODUCTION

In various industrial applications the control of the global characteristics of liquid sheet flows
is of great importance for the final quality of the product. Vertical liquid sheets are often used
in technological processes, classical examples being coating technology and papermaking. The
ability in suppressing undesired ocillations or nonuniformity in the steady configuration of the
sheet, for example, usually reflects in a good quality of the fluid layer deposited under a moving
substrate.
The modeling of the falling liquid sheet and of its interactions with the external ambient gas
has been considered in various papers in the past, mainly within the context of linear stability
analysis (cfr. for example [1], [2], [3], [4]). In these previous contributions the analysis of the
system behaviour is usually conducted locally, while few studies have been developed for the
global characteristics of the curtain when it strongly interacts with the external ambient gas ([5],
[6]). In this paper, a simple model for the deflection of the liquid sheet is initially derived under
the assumptions of thin thickness and small initial perturbations. This model is then closed with
the specification of the pressure field outside the sheet, which represents here the reaction of
an air enclosure located on one side of the sheet. The equations are then studied numerically
by a direct numerical simulation of the unsteady (linear) equations governing the evolution of
disturbances.

1
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Figure 1: Geometrical configuration under consideration

2 THE MODEL

2.1 The governing equations

In order to derive a mathematical model for the unsteady evolution of a free-falling liquid cur-
tain, we will refer to the sketch depicted in Figure 1. Although in principle various types of
interactions with the external gaseous ambient can be considered, hereafter the pressure dis-
turbances produced by the curtain compliant interface within a two-dimensional air enclosure
delimited by the curtain itself, rigid walls and a lower basin, will be analyzed. Viscous and
splashing effects are neglected. The governing equations are the standard two-dimensional
inviscid Euler equations in which gravity is retained. Kinematic and dynamic boundary condi-
tions at the liquid-air interfaces are:

v± =
∂y±

∂ t
+u±

∂y±

∂x
(1)

p± = p±a ∓σ
∂ 2y±

∂x2

[
1+
(

∂y±

∂x

)2
]−3/2

(2)

where σ is the surface tension coefficient, y−(x, t) and y+(x, t) are the locations of the left
and right boundaries of the sheet, respectively, p−a (x, t) and p+a (x, t) are the local values of the
external (gas) pressure and the general definition ϕ±(x, t) = ϕ(x,y±, t) has been employed, ϕ

being one of the variables u,v and p (where u and v are the streamwise and lateral velocity
components, respectively, and p is pressure).
Let us define the quantities ỹ and y as the thickness and the location of sheet centerline:

ỹ(x, t) = y+(x, t)− y−(x, t) (3)

y(x, t) =
y+(x, t)+ y−(x, t)

2
. (4)

Following Mehering and Sirignano [7], a perturbative approach (in which the thickness of the
sheet ỹ is considered as the small parameter) is adopted, i.e. each dependent variable ϕ is
expressed as a power series in terms of (y− y):

ϕ = ϕ0(x, t)+ϕ1(x, t) [y− y]+ϕ2(x, t) [y− y]2 . . .

2



Such power series expansions are valid for y ∈ (y−,y+) and hence the inequality |y− y(x, t)| ≤
ỹ/2 holds.
By adapting the procedure employed in [7], the following set of equations for the lowest order
terms in the expansion is derived:

∂ ỹ
∂ t

+
∂ (u0ỹ)

∂x
= 0 (5)

∂y
∂ t

+u0
∂y
∂x

= v0 (6)

∂u0

∂ t
+u0

∂u0

∂x
= g− 1

ρl

[
∂ pa0
∂x
− pa0

ỹ
∂y
∂x

]
+

σ

2ρl

∂

∂x

[(
f++ f−

2

)
∂ 2ỹ
∂x2

]
+ ...

...+
σ

2ρl

∂

∂x

[
( f+− f−)

∂ 2y
∂x2

]
− σ

ρl ỹ
∂y
∂x

[
( f++ f−)

∂ 2y
∂x2 +

( f+− f−)
2

∂ 2ỹ
∂x2

]
(7)

∂v0

∂ t
+u0

∂v0

∂x
= − 1

ρl ỹ
p̃a0 +

σ

ρl ỹ

[
( f++ f−)

∂ 2y
∂x2 +

( f+− f−)
2

∂ 2ỹ
∂x2

]
(8)

where

f± =

[
1+
(

∂y
∂x

)2

± ∂y
∂x

∂ ỹ
∂x

+
1
4

(
∂ ỹ
∂x

)2
]−3/2

(9)

and ρl is the liquid density. As usual the following positions are made:

p̃a0 = p+a0− p−a0, pa0 =
p+a0 + p−a0

2
(10)

in which p±a0 are the first order approximation of a power-series expansion in the variable (y−y)
of the (still undefined) ambient gas pressures p±a . The boxed terms appearing in equations (7)
and (8) are due to the developing nature of the flow under consideration (due to gravity and
external pressure) and were not considered in the original treatment of Mehring and Sirignano
[7].

2.2 Base flow and linearized perturbation equations

The generic flow variable ϕ will be hereafter decomposed as the sum of a stationary (base)
contribution and the perturbation:

ϕ0(x, t) = Φ(x)+ϕ(x, t). (11)

Symmetry considerations give the following form for the base flow variables, denoted by capital
symbols [8]:

U =U(x), H = H(x), (12)

V = 0, Y = 0, P̃a0 = 0, ∂Pa0/∂x = 0 (13)

F̃ = 0, F = F =

[
1+

1
4

(
∂H
∂x

)2
]−3/2

. (14)

By substituting these position in the nonlinear governing system (5–8) one obtains the following
equations for the base flow variables:

UH =UinHin = const. (15)

U
∂U
∂x

= g+
σ

2ρl

∂

∂x

{
F

∂ 2H
∂x2

}
(16)
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where Uin and Hin are, respectively, the average streamwise velocity and the sheet thickness at
the inlet. These equations have been already derived in the context of steady flows and have
been extensively studied in [8].
The linearized equations for the perturbation quantities u,v, ` and h (l referring to the centerline
location of the sheet and h to its thickness) are:

∂h
∂ t

+
∂

∂x
(Uh+uH) = 0 (17)

∂`

∂ t
+U

∂`

∂x
= v (18)

∂u
∂ t

+
∂ (Uu)

∂x
=− 1

ρl

∂ p
∂x

+
σ

2ρl

∂ 2

∂x2

(
F

∂h
∂x

)
(19)

∂v
∂ t

+U
∂v
∂x

=− p̃
ρlH

+
2σ

ρlH
∂

∂x

(
F

∂`

∂x

)
(20)

Note that the set of equations (17–20) shows two separated systems for the variables h,u (equa-
tions (17) and (19)) and v, ` (equations (18) and (20)). These two systems will result decoupled
if one can show that the values of p̃ and p (relative to the ambient gas pressure perturbation)
depend respectively on v, ` and on u,h. By following a standard terminology we will employ the
term varicose with reference to disturbances involving variations in the thickness h and in the
streamwise velocity u, and the term sinuous with reference to disturbances involving variations
in the centerline position of the sheet ` and in the transverse velocity v.

2.3 Ambient gas pressure model

As depicted in Fig.1, the model of the fluctuating external pressure field, with which the sheet
interacts, refers to the air enclosure located on one side of the curtain. This type of perturbation,
which is induced by a compliant displacement of the sheet interface, was already analyzed by
Schmid and Henningson [5], but they did not include surface tension effects.
By assuming both a perfect gas model and an isentropic transformation for the state of the air
within the enclosure, yields:

p̃ =− γPa0

LW −
∫ L

0
H
2 dx

∫ L

0
`dx (21)

p =
γPa0

LW −
∫ L

0
H
2 dx

∫ L

0

h
2

dx (22)

where γ is the heat specific ratio, L the curtain length and W the transverse dimension of the
air enclosure. For varicose disturbances, as shown by equations (19) and (22) the contribution
related to the pressure term is null because p does not depend on x.

2.4 Non-dimensional equations and slender-sheet approximation

The equation of motion (15-16) and (17–20) can be conveniently re-written in non-dimensional
form by employing the reference quantities:

Lr =U2
in/g, `r = Hin, ur =Uin, (23)
tr = Lr/Uin =Uin/g, (24)

vr = `r/tr = εUin, pr = ρlgHin = ερlU2
in (25)

where ε = Hin/Lr = Hing/U2
in is the slenderness parameter (reciprocal of Froude number).
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The equations (18) and (20) for sinuous disturbances, for example, reduce to:

∂`∗

∂ t∗
+U∗

∂`∗

∂x∗
= v∗ (26)

∂v∗

∂ t∗
+U∗

∂v∗

∂x∗
=

1
WeH∗

∂

∂x∗

(
F∗

∂`∗

∂x∗

)
− γ

H∗
P∗a0

L∗W ∗− ε
∫ L∗

0
H∗
2 dx∗

∫ L∗

0
`∗ dx∗ (27)

where We = ρlU2
inHin/2σ is the Weber number, and F∗ is:

F∗ =

[
1+

1
4

ε
2
(

∂H∗

∂x∗

)2
]−3/2

, (28)

stars denoting nondimensional quantities.
By adopting a power series expansion in the small parameter ε2, for the base flow variables,
and an expansion in ε for the perturbation quantities,

U∗ =U∗0 + ε
2U∗1 + ε

4U∗2 + . . . v∗ = v∗0 + εv∗1 + ε
2v∗2 + . . .

H∗ = H∗0 + ε
2H∗1 + ε

4H∗2 + . . . `∗ = `∗0 + ε`∗1 + ε
2`∗2 + . . .

the lowest order approximation for the base flow gives the non-dimensional version of the clas-
sic free-fall Torricelli’s solution

U∗0 =
√

1+2x∗, H∗0 =
1√

1+2x∗
. (29)

The sinuous perturbation equations, at zeroth order, are:

∂`∗0
∂ t∗

+U∗0
∂`∗0
∂x∗

= v∗0 (30)

∂v∗0
∂ t∗

+U∗0
∂v∗0
∂x∗

=
1

WeH∗0

∂ 2`∗0
∂x∗2

− k
H∗0

∫ L∗

0
`∗0 dx∗ (31)

where k = γP∗0 /L∗W ∗.

2.5 Derivation of the energy budget equation for sinuous disturbances

By multiplying the equation (31) by v∗0, integrating over the sheet volume and applying the
integration by parts, one obtains:

dE
dt∗

=−v∗0
2∣∣L∗

0︸ ︷︷ ︸
dE1

− 1
We

U∗0

(
∂`∗0
∂x∗

)2 ∣∣∣∣L∗
0︸ ︷︷ ︸

dE2

+
2

We
∂`∗0
∂x∗

v∗0

∣∣∣∣L∗
0︸ ︷︷ ︸

dE3

− 1
We

∫ L∗

0

∂U∗0
∂x∗

(
∂`∗0
∂x∗

)2

︸ ︷︷ ︸
dE4

−2k
∫ L∗

0
v∗0

(∫ L∗

0
`∗0 dx∗

)
dx∗︸ ︷︷ ︸

dE5

, (32)

where E is the flow system energy defined as:

E =
∫ L∗

0
H∗0 v∗0

2 dx∗+
1

We

∫ L∗

0

(
∂`∗0
∂x∗

)2

dx∗ (33)

that takes into account both kinetic and surface tension contributions, and that formally is made
dimensionless by means of the reference energy 1

2ρl`rLrv2
r .

The various contributions to the rate of change of energy in (32) have the following physical
meaning:
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i. dE1 is the inlet-outlet convective exchange of kinetic energy

ii. dE2 is the inlet-outlet convective exchange of surface tension energy

iii. dE3 is a term derived from the integration by parts of the work done by the surface tension

iv. dE4 is an energy production term due to the interaction of the disturbances field with the
strain of the base flow (due to gravity)

v. dE5 is the pressure work per unit time exchanged during the isentropic compression/expansion
of the air enclosure

It should be noted that, while the dE5 term can represent a rate of energy ceased to or ex-
tracted from the system during the compression or expansion of the air enclosure, respectively,
the production term dE4 is always negative, denoting a continuous energy transfer from the
perturbation toward the base field.

3 ANALYSIS OF SINUOUS DISTURBANCES

In the present paper we will restrict our study to sinuous disturbances only, that will be ana-
lyzed by carrying out direct numerical simulations of the governing equations (30)-(31) and by
analyzing the time behaviour of the terms of the energy budget equation (32).

By introducing the following positions, ξ =
∂`∗0
∂ t∗

and η =
∂`∗0
∂x∗

, it is possible to reformulate the
system (30-31) in a more convenient way:[

M U∗0
O M

](
ξ

η

)
=

−U∗0 D −I +U∗0

(
U∗0 −

1
We

)
D− kU∗0

∫ L∗
0 D−1 dx∗

D O

(ξ

η

)
(34)

where I, O, M and D are the identity, null, temporal derivative and spatial derivative operators,
respectively. The boundary conditions assumed here are ξ (0) = η(0) = 0. The second raw of

the system (34) represents the explicit enforcement of the Schwartz equality
∂ 2`∗0

∂ t∗∂x∗
=

∂ 2`∗0
∂x∗∂ t∗

[9].
A Chebychev spectral collocation method has been used for the discretization of the spatial
differential operators. For the temporal integration a semi-implicit ϑ -method scheme has been
employed. The initial disturbance is constituted by the optimal global disturbance, i.e. the
disturbance that maximizes the amplifications of the system energy for all the possible initial
conditions, the so-called growth function G(t). This last has been computed by following the
methodologies described in [10].
The comparison between the temporal evolution of the energy optimal amplification and the
temporal rate of change of the energy computed via direct numerical simulation is depicted
in Figures 2 and 3 for the cases of absence of surface tension, We = ∞, and We = 2, respec-
tively, and L∗ = 5. The parameter k defined after equation (31) is kept equal to 576 in all the
computations.
The case We = ∞ is characterized by low frequency oscillations of optimal energy amplification
(pulses of energy reproducing at regular time periods) and high frequency oscillations within
each pulse. It is also evident that the pulse peaks exhibit a decreasing time behaviour due to
the fact that only eigenfunctions associated to stable modes have been taken into account. In
other terms, from this aspect, the flow system appears to be asymptotically stable, although the
whole spectrum contains an unstable branch. The low frequency oscillations are produced by a
continuous forcing (self-induced by the global dynamics) that triggers a new pulse on the left
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Figure 2: Optimal energy amplification E and direct numerical simulation of dE/dt∗ for We = ∞ and L∗ = 5
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Figure 3: Optimal energy amplification E and direct numerical simulation of dE/dt∗ for We = 2 and L∗ = 5
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Figure 4: Energy budget terms and dE/dt∗ for We = ∞ and L∗ = 5

boundary when the previous pulse is being expelled from the right one. The period of such a
behaviour is strictly related to the fall time of the sheet ([11], [12]). The high frequency oscil-
lations, on the contrary, are due to the interaction of the compressed/expanded air cushion with
the compliant sheet interface, acting like a mass (the liquid sheet) - spring (the air enclosure)
system.
When the surface tension is present (We = 2 in Figure 3) the entire spectrum is stable and
one pulse of energy amplification is only present, which decays asymptotically in time. This
occurrence may be explained by considering that the asymptotic stable nature of the system
prevents the triggering of a subsequent pulse when the first one is expelled.

Figures 4 reports, for We = ∞, a detailed view of the time variation of the second pulse of
dE
dt∗

showed in the previous Figure 2, together with the corresponding trends of dE1 and dE5 (the
other terms being of course null in this case). It is clearly evident that the energy amplifica-
tion is essentially caused by the work done per unit time by the enclosure pressure, dE5. In
correspondence of the expulsion of the pulse the outlet convective exchange of kinetic energy
yields a negative contribution (the analogous inlet contribution vanishes because of the imposed
boundary condition).

The period of the high frequency oscillations of
dE
dt∗

(namely of the pressure work) can be
estimated by considering that the flow system can be globally modeled as a lumped one-degree
of freedom spring-mass system, where the equivalent elastic constant of the spring (the air
cushion) is

keq =
γP∗a0L∗

W ∗
(35)

whilst the equivalent mass (of the liquid) is given by

meq =
∫ L∗

0
H∗0 dx∗ (36)
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Figure 5: Energy budget terms for We = 2 and L∗ = 5

The oscillation period can be evaluated accordingly as

Tp = 2π

√
meq

keq
= 0.08 (37)

which is in strict agreement with the numerical computations of Figure 4.
In Figure 5, the relevant energy budget terms are depicted, for We = 2; the outlet convective
exchanges of kinetic and surface tension energies have been conveniently substituted by their
sum dE1,2 which, as for We = ∞, exhibits a negative peak when the disturbance comes out from
the domain; dE5 exhibits only an oscillation cycle because of stabilizing effects caused by the
surface tension; dE4 acts as an energy destruction term that is transferred from the disturbance
to the base flow.
In order to further appreciate the role played by the various terms of the energy balance, some
specific simulations have been carried out for We = 2 in the absence of external pressure, where
the initial shape of the perturbed interface is a gaussian pulse located at the inlet boundary.
Figure 6 shows the time evolution of system energy as well as its rate of change, while Figure 7
depicts the various contributions to the budget. It should be considered that in the presence
of the surface tension the initial packet splits while travelling down the sheet according to the
different speeds of the two characteristic curves along with disturbances propagate [12]. The
played rule by the term dE4 is crucial in this case; it causes the initial decay rate showed by the
energy trend of Figure 6. All the other terms evaluated at the exit boundary exhibit two peaks
when each of two packets is expelled; this behaviour can be explained by interpreting the time
variations of such terms as lagrangian variations of the slope of the gaussian shape of the pulse
evaluated by an observer located at the exit boundary, while the pulse is travelling outwards.
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Figure 6: Gaussian disturbance energy and its derivative for We = 2 and L∗ = 5
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4 CONCLUDING REMARKS

The unsteady global dynamics behavior of a free-interface vertical liquid sheet flow has been
studied, where such a behavior has been defined global because it refers to the entire fluid
system as a whole. The first part of the paper dealt with the formal development of a proper
mathematical model, which accounts of a particular kind of disturbances in the external gaseous
ambient, constituted by an enclosure limited by solid walls, a bottom liquid basin and one of
the two sheet interfaces.
When the surface tension is absent (We = ∞) the time trend of the flow system energy exhibits
low frequency and high frequency oscillations. The first ones are due to the continuous trig-
gering of a new disturbance pulse at the inlet boundary, while the latter ones are related to the
interaction of the air enclosure with the liquid sheet, acting as a spring-mass lumped system.
The surface tension (case of We= 2) shows a stabilizing effect that is responsible of the presence
of only one energy peak of the energy amplification.
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