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Abstract

Light is a fundamental element in nature. The observation of a large variety of physical

phenomena gives the opportunity to catch its intriguing features, which have made it a

cornerstone of modern technology. Thanks to an intense theoretical and experimental

investigation, nowadays we know that light carries energy, linear and angular momen-

tum, which can be exchanged with matter as a result of an interaction. These quantities

can be measured in an experiment and thus represent physical observables both for clas-

sical radiation and single photons, the quanta of the electromagnetic (e.m.) field.

The angular momentum (AM) of light is the main ingredient of this work. Here the

attention will be concentrated on specific physical architectures where the AM of the

e.m. radiation can be considered as the sum of two independent terms, the spin and the

orbital components, in analogy to particle systems. It will be clear later on that the

spin angular momentum (SAM) is related to the polarization of the optical beam, that

is the direction of the oscillating electric field, whereas the orbital angular momentum

(OAM) is associated with the spatial distribution of the field. Being independent, SAM

and OAM have been discovered and explored in separate contexts for many years, while

only recently it has been considered the possibility to address both quantities on the

same beam (or individual photons). The interaction between light SAM and OAM gives

rise to complex structures of the electromagnetic field, or to the so called classical en-

tanglement in the domain of single photons. This “structured light” has unique features

both in classical and quantum optics.

The research presented in this work aimed to show that combining the SAM and OAM

in light beams or single photons may be a useful tool for a variety of applications, with

particular interest to the case of architectures characterized by spin-orbit interaction.

This concept was made concrete through the design and the realization of several experi-

ments, in the framework of singular optics, foundations of quantum mechanics, quantum

information theory and quantum simulation.

In order to present clearly the main ideas developed in this research work and the results

that have been obtained, this manuscript is divided in five chapters. Chapter 1 is de-

voted to an introduction of the spin and the orbital angular momenta for a light beam, or

v



Abstract vi

single photons as well, with particular attention to the devices that allow to manipulate

these two quantities and to let them interact. In the framework of singular optics, in

Chapter 2 it is presented the idea of generating structured light and polarization singu-

larities through spin-orbit interaction in a standard Gaussian beam. In Chapter 3 it is

shown how the control of the “classical” entanglement between the SAM and the OAM

of a single photon may be exploited as a resource for fundamental tests of quantum

mechanics. In Chapter 4 we describe the encoding of qu-dits of quantum information

in the spin-orbit space of a single photon; in particular we generated and characterized

a set of three mutually unbiased bases for a six-dimensional photonic quantum system.

Chapter 5 is about the realization of a photonic platform for the simulation of a simple

quantum dynamics, the so called Quantum Walk, which has been exploited to demon-

strate a topological phase transition. We conclude the manuscript with a summary of

the obtained results and giving an overview of possible prospects.



Contents

Acknowledgements iii

Abstract v

Contents vii

1 Light beams carrying Spin and Orbital Angular Momenta 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Paraxial approximation for electromagnetic waves . . . . . . . . . . . . . . 4

1.3 The SAM space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The OAM space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Laguerre-Gauss modes of light . . . . . . . . . . . . . . . . . . . . 12

1.5 The Spin-Orbit space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Devices and techniques for controlling and measuring SAM and OAM . . 15

1.6.1 Waveplates and polarizers . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.2 Holography to prepare and detect OAM modes . . . . . . . . . . . 16

1.7 Spin-Orbit interaction: the q-plate . . . . . . . . . . . . . . . . . . . . . . 19

2 Vector beams and polarization singularities 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Vector Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 A q-plate to generate Vector Beams . . . . . . . . . . . . . . . . . . . . . 26

2.4 Polarization singularities in a optical beam . . . . . . . . . . . . . . . . . 29

2.5 Generation of polarization singular beams using a tunable q-plate . . . . 32

3 Testing the foundations of quantum mechanics 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 EPR Paradox, locality and contextuality . . . . . . . . . . . . . . . . . . . 37

3.3 Hidden variables and the Bell theorem . . . . . . . . . . . . . . . . . . . . 39

3.4 The Hardy Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Leggett Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Experimental Tests of Contextual and Non-Contextual Realism . . . . . 48

3.6.1 Demonstration of the Hardy paradox . . . . . . . . . . . . . . . . . 49

3.6.2 Experimental violation of Leggett inequalities . . . . . . . . . . . . 53

4 Realization of mutually unbiased bases for a six-dimensional photonic
quantum system 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



Contents viii

4.2 Mutually unbiased bases for six-dimensional systems . . . . . . . . . . . . 58

4.3 Quantum state tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Encoding OAM states exploiting a high fidelity holographic technique . . 63

4.5 Generation and characterization of hybrid MUBs combining SAM and
OAM of single photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Generation and characterization MUBs exploiting pure OAM modes of
single photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Simulation of quantum walks and topological phases 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Theoretical description of a quantum walk . . . . . . . . . . . . . . . . . . 74

5.3 Quantum walks using twisted photons . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Quantum walk simulation for a single photon . . . . . . . . . . . . 78

5.3.2 Quantum walk for two indistinguishable photons . . . . . . . . . . 80

5.4 Band structure and dynamics of wave packets in a QW . . . . . . . . . . 84

5.5 Verification of the band structure of a QW through the free propagation
of OAM Gaussian wave packets . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Signature of a topological phase transition in a QW: theory and experiment 91

5.6.1 A QW protocol with two distinct topological phases . . . . . . . . 93

5.6.2 Topological phases and moments analysis in a photonic QW with
twisted photons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Conclusions 101

A Jones matrices for wave plates 103

B The single photon source 106

C States forming MUBs in 2D, 3D and 6D Hilbert spaces 112

D Role of the radial modes and Gouy phases in our QW platform 114

E Test of two-photon correlation inequalities in a quantum walk 118

Bibliography 121



Chapter 1

Light beams carrying Spin and

Orbital Angular Momenta

1.1 Introduction

A physicist typically learns the basic ideas of energy and momentum for particles, as

they can be associated with simple phenomena belonging to a daily experience (playing

pool can be an appropriate example!). Similarly we may guess that such “mechanical”

properties characterize light as well. A child using a lens to focus the sunlight on a

sheet of paper observes that the latter may burn; this is due to the energy transfer from

light to the foil, as a result of absorption. Though not as dramatic, it is the same thing

happening when we feel our skin warming up after sun exposure. Comets are famous

thanks to their bright tail. This is made of frozen particles which leave the comet’s

surface because of the pressure of the sunlight: the latter carries linear momentum,

which is transferred to the particles that eventually form the tail.

Following the same strategy, we can understand the concepts of Spin Angular Momentum

(SAM) and Orbital Angular Momentum (OAM). Let us consider a particle which is

shined by a light beam; it has been demonstrated experimentally [1] that tailoring

suitably the beam features, the interaction between the light and the particle can result

in two kinds of rotation. As a gyroscope, the latter can spin around its axis, or as a

planet it can move on a circular orbit around the beam center (see 1.1, or [1], Fig. 3 for

an experimental image). The two different motions occurr when light is carrying SAM

or OAM, respectively; we will discuss later on what characterizes these states of light

and how they can be generated.

Energy and momenta of light can be introduced formally in the framework of classical

electromagnetism, described by the Maxwell theory. It is well known that light is made

1



Chapter 1 - Light beams carrying SAM and OAM 2

of an electric (~E) and a magnetic field (~B), oscillating in space and time [we omit

the explicit dependance on spatial and temporal coordinates (x,y,z,t)] according to the

fundamental Maxwell’s equations, which in free space are given by

Figure 1.1: Naive representation of the mechanical action produced by SAM and
OAM of light interacting with a particle. a) The SAM of the impinging light beam
induces a rotation of the system around its own axes, parallel to the beam propagation
direction. b) The OAM-particle interaction results in a rotation of the whole system
around the beam center. Figures from the left to the right are considered as corre-
sponding to increasing temporal frames. This image is a schematic representation of

the experimental data reported in Fig. [1] Fig. 3.

∇ · ~E = 0, (1.1)

∇ · ~B = 0, (1.2)

∇× ~E = −∂
~B

∂t
, (1.3)

∇× ~B =
1

c2

∂~E

∂t
(1.4)

where c is the vacuum speed of light. With the help of some algebra we can show that

equations 1.3 and 1.4 are equivalent to the standard wave equations for the e.m. field

∇2~E− 1

c2

∂2

∂t
~E = 0, (1.5)

∇2~B− 1

c2

∂2

∂t
~B = 0. (1.6)

When solving these equations to determine the e.m. field, we have to require that the

solutions verify Eqs.1.1 and 1.2 as well, since the latter have been used for deriving Eqs.

1.5 and 1.6. The energy density w, the linear momentum density ~p and the angular

momentum density ~j are defined in terms of the fields ~E and ~B
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w =
1

2
ε0|~E|2 +

1

2
µ−1

0 | ~B|
2, (1.7)

~p = ε0< (~E × ~B), (1.8)

~j = ε0~r× (~E × ~B). (1.9)

Here we are have introduced the complex fields ~E and ~B, whose real parts correspond

to the actual fields ~E and ~B; this is a standard approach in the electromagnetic theory

and we will keep this notation through the whole manuscript.

In a system of particles, the total angular momentum ~J can be written as ~J = ~S + ~L,

where ~L is the angular momentum of the center of mass ~xc, while ~S is the angular

momentum of the particles calculated with respect to ~xc. There have been a lot of

efforts in trying to identify internal and external angular momenta in light as well;

nevertheless, such separation is still not entirely clear and is the subject of an ongoing

research. For instance, it has been suggested that for a correct separation to hold, the

right quantity to be considered is not ~j but the angular momentum flux density, which

can be introduced starting from the conservation law for the angular momentum in e.m.

waves [2]. On the other hand, there exist a specific limit in which a clear and meaningful

separation can be obtained. It is the case of the paraxial limit of the electromagnetic

theory. In this approximation, the attention is limited to a subclass of solutions of

Maxwell’s equations 1.1-1.4 associated with light beams that, while propagating in a

specific direction, remain well confined around the propagation axis with a slow variation

of their spatial distribution. Such features are quite common; for example all beams

generated from standard laser sources satisfy such requirements. The component of the

angular momentum ~J along the propagation axis can be correctly written as

Jz = Sz + Lz (1.10)

where Sz and Lz are well defined distinct quantities and can be measured independently

[1, 3, 4]. The theoretical and experimental research described in this thesis is entirely

based on paraxial beams, so it is assumed not necessary to present all the debate existing

about the spin-orbit separation for a generic e.m. wave (as an example, you can consider

[2, 4–7] and references therein); the attention will be rather focused on paraxial beams

or, equivalently, to the paraxial approximation of quantum optics.
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1.2 Paraxial approximation for electromagnetic waves

Properties of the e.m. field may be conveniently described introducing the potentials ~A

and φ, defined by the relations

~E = −∇φ− 1

c

∂

∂t
~A (1.11)

~B = ∇× ~A (1.12)

Let us concentrate on the vector potential ~A; it can be shown that it obeys a wave

equation, similarly to ~E and ~B

∇2 ~A− 1

c2

∂2

∂t
~A = 0. (1.13)

(1.14)

Introducing the complex vector potential ~A, we can assume a harmonic temporal de-

pendance, that is ~A(x, y, z, t) = ~A(x, y, z)eiωt. In this case, the Helmotz equation is

obtained

∇2 ~A+
ω2

c2
~A = 0, (1.15)

A standard set of solutions is given by plane waves ~A = ûA0 e
−i ~k·~r, where the wave vec-

tor ~k has to satisfy the dispersion relation |~k|2 = k2 = ω2/c2. The unit vector n̂ defines

the direction of the oscillating electric field, which is usually referred as polarization.

Eq. 1.1 forces the polarization to lie in a plane transverse to the propagation direction,

that is n̂ · ~k = 0; remaining confined in such plane, the polarization can change in time

as we will show below.

Plane waves propagate along a specific direction, defined by the vector ~k, but they

are infinitely extended, so they cannot be realized in a laboratory. In order to have a

physical solution of Maxwell’s equation similar to a plane wave, we write the field as

~A = n̂u(x, y, z)ei(kz−ωt) (1.16)

where u is a complex envelope. When putting the latter expression in Eq. 1.15, we get

the equation for the envelope u

∇2u+ 2ik
∂

∂z
u = 0. (1.17)
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Requiring u to vary slowly along z, the second order derivative can be neglected

1

k2

∣∣∣∣ ∂2

∂x2
u

∣∣∣∣ ≤ 1

k

∣∣∣∣ ∂∂xu
∣∣∣∣ (1.18)

and Eq. 1.17 turns into the so called paraxial wave equation (PWE)

∂2

∂x2
u+

∂2

∂y2
u+ 2ik

∂

∂z
u = 0. (1.19)

Simple arguments can be used to show that the condition 1.18 basically corresponds to

neglecting components of the field of order k2
T /k

2 or higher, where kT is wave-vector

component in the plane orthogonal to the propagation direction.

To introduce the concepts of Spin Angular Momentum and Orbital Angular Momen-

tum, we express the vector potential ~A in cylindrical coordinates, assigning a specific

dependance on the azimuthal coordinate ϕ, compatible with the PWE 1.19:

~A = (α x̂ + β ŷ)u(r, z)eimϕei(kz−ωt) (1.20)

where α and β are complex coefficients satisfying the normalization condition |α|2 +

|β|2 = 1, and m is an integer. The energy and angular momentum densities can be

computed for fields ~E and ~B associated with this potential, using the Lorentz Gauge

condition ∇ · ~A− 1/c∂tφ = 0 and Eqs. 1.7 and 1.9. The final result is (for details about

the calculation you can refer to [8, 9]:

jz = ωε0l|u|2 − σzε0
r

2

∂

∂r
|u|2 (1.21)

w = ε0ω|u|2 (1.22)

where σz = 2=(αβ∗). Integrating these quantities over the all space, we get the impor-

tant expression

Jz
W

=
σz +m

ω
. (1.23)

The Spin Angular Momentum Sz, proportional to the quantity σz, is associated with

the polarization degree of freedom; any change of spatial distribution of field does not

alter its value. The Orbital Angular Momentum Lz, proportional to the integer m, is a

result of the field distribution over the plane perpendicular to the propagation direction,

in particular of the phase factor eimϕ, and it is not related to the polarization. So, for a

paraxial wave, SAM and OAM are well defined, independent quantities. In the domain

of quantum optics, they are associated with quantum operators Ŝz and L̂z, verifying the
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commutation relation [
Ŝz, L̂z

]
= 0. (1.24)

The associated eigenvalues are proportional to ~, which represents the elementary AM

unit that can be carried by a single photon. While for such particle the SAM may be

only ±~, the OAM spectrum is not bound and individual photons may carry m~ orbital

angular momentum, where m is an integer number. Eq. 1.24 guarantees that the SAM

and OAM are compatible observables.

1.3 The SAM space

The polarization of a light beam determines its spin angular momentum content. In

the paraxial regime, the electric field is approximatively transverse to the propagation

direction (~E ·~k ' 0) and proportional to the vector potential ~A; these conditions can be

obtained from Eqs. 1.1 and 1.11, respectively, neglecting the second order derivatives of

the field with respect to the spatial coordinates. As a consequence, in this context we

can refer to both ~A or ~E equivalently. In the most general case, the direction and the

modulus of the vector ~E(x, y) will depend on the transverse coordinates (x, y). Since we

want to focus our attention on the possible polarization states, we will not consider the

spatial dependance of the field, assuming the vector ~E to be uniform in the transverse

plane. This spatial structure is the key element for the orbital angular momentum of

light, as we will discuss below.

The electric field, orthogonal to the propagation direction, can be written as

~E = ch êh + cv êv (1.25)

where unit vectors (êh, êv) are oriented as the (x, y) axes, while (ch, cv) are complex

numbers: in such representation, the intensity of the field is given by |~E|2 = |ch|2 + |cv|2.

Being interested only in the polarization of the field, we can require its intensity to be

normalized, that is |ch|2 + |cv|2 = 1. In the future we may consider other basis, in

particular the diagonal and the circular ones. They are defined as

êa =
1√
2

(êh − êv), êd =
1√
2

(êh + êv) (1.26)

êl =
1√
2

(êh + i êv), êr =
1√
2

(êh − i êv). (1.27)

Labels h, v, a, d, l, r stand for horizontal, vertical, anti-diagonal, diagonal, left-circular

and right circular, respectively; the meaning of this notation will be clear soon. In the
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quantum regime, the polarization of a single photon is represented similarly using the

Dirac notation

|E〉 = ch |H〉+ cv |V 〉 (1.28)

Kets |H〉 and |V 〉 represent a single photon which is horizontally or vertically polarized,

respectively. In this case, state normalization requires that |ch|2 + |cv|2 = 1. Eqs. 1.25

and 1.28 are equivalent and the single particle quantum formalism of Dirac kets maybe

extended to the classical picture. In this framework, in analogy with Eq. 1.26 we define

the states associated with diagonal and circular polarizations

|A〉 =
1√
2

(
1

−1

)
(1.29)

|D〉 =
1√
2

(
1

1

)
(1.30)

|L〉 =
1√
2

(
1

i

)
(1.31)

|R〉 =
1√
2

(
1

−i

)
(1.32)

Both in classical or quantum formalism, the polarization state of a single photon is fully

determined by the pair of complex numbers (ch, cv), where only two out of four real

parameters are independent; indeed the normalization condition fixes a first constraint,

which has to be added to the consideration that the state in Eqs. 1.25 and 1.28 is

defined up to a global phase factor. It is usual to have a compact expression for the

field, introducing a 2-d complex vector

|E〉 =

(
ch

cv

)
(1.33)

Including the harmonic dependance in Eq. 1.25 or 1.33, we get the oscillating field:

~E(t) = (ch êh + cv êv)e
−iωt. (1.34)

In the previous equation, we are assuming that the relative phase α = Arg(cv/ch)

between the two components does not change in time, that is the field is a coherent

superposition of H and V polarizations; this case is not general, since partially polar-

ized states are possible when allowing α to have random oscillations. These states can

be described introducing the density operator formalism in the quantum domain (see
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Figure 1.2: Temporal evolution of the electric field in the transverse plane. In a parax-
ial and harmonic electromagnetic wave which is uniformly polarized, at every point in
the transverse plane the electric field changes in time describing an elliptical trajectory,
whose properties (orientation and eccentricity) are determined by the coefficients ch
and cv. a) In the most generic case, the polarization trajectory is an ellipse. b) When
Arg(cv/ch) = nπ, the polarization is linear. c) When cv/ch = ±i, we obtain circularly
polarized light. In all figures, we are representing the field at the origin, corresponding

to the intersection of the propagation axis and a generic transverse plane.

Sec.4.3), or equivalently using the Stokes representation that will be presented below.

The electric field ~E(t) is the the real part of Eq. 1.34; as shown in Fig 1.2, this vector

changes in time following an elliptical trajectory, usually referred to as polarization el-

lipse. In this representation, the independent parameters determining the polarization

state are the eccentricity of the orbit and its orientation; coefficients (ch, cv) can be ob-

tained directly from such quantities (up to a global phase) [10].

Two specific configurations deserve to be mentioned. When α is a multiple of π, the

polarization ellipse is squeezed into line, oriented at χ = Tan−1 (|cv/ch|) (Fig. 1.2, b)).

On the other hand, when cv/ch = ±i the polarization ellipse results into a circle (Fig.

1.2, c)). Anti-clockwise and clockwise rotations of the field are referred as Left-Circular

(LCP) and Right-Circular (RCP) polarizations, respectively. Circularly polarized e.m.

waves are relevant in the context of spin angular momentum; indeed for these states the

SAM takes its extreme values, being σz = 2=(c∗hcv) = ±1 for LCP and RCP, respec-

tively. In the quantum domain, left-circularly and right-circularly polarized photons

represent the eigenstates of the quantum operator Ŝz, and they carry a spin angular

momentum equal to ±~ along the propagation direction, respectively. In Fig. 1.3 we

report the field evolution along the propagation direction, at a given time t, for linear

and circular polarizations.

The polarization state of a light beam can be assigned either in terms of the field com-

ponents (ch, cv), or specifying the features of the polarization ellipse. We introduce now

other two possible representations: the Poincaré sphere and the Stokes parameters. The

latter are four real numbers, which are usually labelled as S0, S1, S2 and S3; they are
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related to the field components in the three different bases introduced hitherto and are

defined as follows

S0 =|cl|2 + |cr|2 = |ch|2 + |cv|2 = |ca|2 + |cd|2,

S1 =|ch|2 − |cv|2,

S2 =|cd|2 − |ca|2,

S3 =|cl|2 − |cr|2. (1.35)

The quantities |cj |2 can be measured by combining wave-plates and polarizers, plus a

Figure 1.3: Evolution of the polarization along the propagation axis. At a given time
t, we consider the electric field at different points of the z axis. a) and b) represent

linear horizontal and vertical polarizations, respectively, where the vector ~E changes
its modulus while its orientation is uniform. The reverse behavior can be observed in
panels c) and d), representing left and right circular polarizations, respectively. In this

case, ~E has a fixed modulus but changes its direction describing a helix, with a pitch
equal to the wavelength of the radiation.

standard device for the measurement of the intensity of the e.m. field. As a consequence,

the Stokes parameter can be easily measured in a simple experimental architecture.

When the light beam is fully polarized, we have that S2
0 = S2

1 + S2
2 + S2

3 . Accordingly,

can introduce the reduced Stokes parameters, defined as si = Si/S0, with i ∈ {1, 2, 3}.
If we consider a Cartesian frame where {s1, s2, s3} are the three coordinates along the

(x, y, z) axes, we can observe that all polarizations states are positioned on a spherical

surface with unit radius. This sphere is usually referred to as the Poincaré sphere.

Cartesian coordinates given by the reduced Stokes parameters can be replaced by the

polar angles (θ, φ). Referring to the circular basis (êL, êR), coefficients (cl, cr) may be

conveniently expressed in terms of (θ, φ)

|E〉 =

(
cos
(
θ
2

)
eiϕ sin

(
θ
2

)) (1.36)

Here we have defined the sphere so as to have north and south poles corresponding the

LCP and RCP, respectively. We report this Poincaré sphere in Fig. 1.4. Stokes param-

eters or the Poincaré sphere representation can be used to describe partially polarized
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states of light; since for partial polarizations 0 ≤ si ≤ 1 (S2
0 ≥ S2

1 + S2
2 + S2

3) we have to

consider all the inner points of the sphere. In this general representation, on the surface

of the sphere we find fully polarized states, whereas the origin is associated with the

state which is completely unpolarized.

As a conclusion, we remark that circularly polarized light carries a finite value of SAM

along the propagation direction, equal to ±~ per photon. Once the polarization state

is assigned, the quantity Sz may be evaluated introducing the associated operator Ŝz;

according to the different notations, it can be expressed as

Ŝz = ~ (|L〉〈L| − |R〉〈L|) (1.37)

Ŝz = ~

(
1 0

0 −1

)
(1.38)

where we have used LCP and RCP as basis vectors.

Figure 1.4: Poincaré sphere for the SAM space of light. In this representation, where
the angles (θ, φ) are defined in Eq.1.36, north and south poles correspond to |L〉 and
|R〉, respectively, while all linear polarizations are positioned on the equator of the

sphere.

1.4 The OAM space

The strategy we adopted to characterize the state of a paraxial electromagnetic wave

relies on the consideration that it is possible to have the electric field direction uniform

in the transverse plane, with a space-varying amplitude. In the previous section we
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provided a complete description of the polarization degree of freedom of the field, intro-

ducing the SAM space. We concentrate now on the spatial distribution described by the

complex envelope u(ρ, ϕ, z) and the associated Orbital Angular Momentum content.

A light beam carries OAM if its envelope depends on the azimuthal coordinate ϕ through

the phase factor eimϕ (see Eq. 1.20). The latter characterizes different sets of solutions

of the paraxial wave equation (Eq. 1.19), as for example Laguerre Gauss (LG), Bessel

and Hyper Geometric (HYGG) beams [10, 11]. Although all these beams may have a

complex structure, they are characterized by a common feature. The term eimϕ deter-

mines the geometry of the wavefronts of the field, which has a helical shape as shown

in Fig. 1.5. Points on the propagation axes z are affected by a phase singularity (where

the latter is not defined), and, as a consequence, by a vanishing field (see Fig. 1.6 for

an example). Helical wavefronts and zero-intensity on the propagation axis are general

properties of e.m. waves carrying OAM, which are referred to as helical modes of light.

Helical modes represent a complete set of states to describe the azimuthal structure of

Figure 1.5: Wavefront structure and phase distribution of helical modes of light. The
color scale for the phase plot is reported on the right of the figure. This image is
adapted from the Wikipedia page ”Orbital Angular Momentum of light”, edited by L.

Marrucci and E. Karimi.

a light beam, which is described by the OAM space. In the Dirac notation, we can refer

to these modes as |m〉. As stated below, they are orthonormal

〈m|m′〉 =

∫ 2π

0

dϕ

2π
e−i(m−m

′)ϕ = δm,m′ (1.39)

and provide the basis to express any state in the OAM space (in the previous equation

δm,m′ is the Kronecker discrete function)

|ψ〉o =

∞∑
m=−∞

cm|m〉o. (1.40)

It is worth to mention that functions eimφ provide the basis for the Discrete Fourier

Transform of the periodic coordinate ϕ; m and ϕ are conjugate variables.
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A quantum operator L̂z is associated with the component of the OAM along the prop-

agation direction; we can represent it in terms of its eigenstates |m〉:

L̂z =
∞∑

m=−∞
~m |m〉〈m| (1.41)

Helical modes and the associated OAM space describe the azimuthal structure of a

paraxial beam; for a complete characterization of these e.m. waves, we need to con-

sider the distribution of the field along the radial coordinate. For this purpose, we

may consider specific solutions of the paraxial wave equation, as for instance the set

of Laguerre-Gauss modes. We dedicate a separate section to the introduction of these

particular modes, representing probably the simplest example of light beams carrying

orbital angular momentum[3].

1.4.1 Laguerre-Gauss modes of light

In 1992 Allen and coworkers realized for the first time that LG modes carry Orbital

Angular Momentum [3]; this represented the starting point of a very productive research

area, still very active, focused on the OAM of light and its applications (see [4] for a

review). Laguerre-Gauss modes have the following expression

LGp,m(r, φ, z) = Ap,m

(
r

w(z)

)|m|
e
− r2

w(z)2L|m|p

(
2r2

w(z)2

)
e
iπr2

λR(z) eimφ e
−i(2p+|m|+1) arctan

(
z
zR

)
,

(1.42)

where the normalization constant Am,p is equal to
√

2|m|+1p!
πw(z)2 (p+|m|)! . In the expression

of LG modes, λ is the wavelength of the radiation, w(z) = w0

√
1 + (z/zR)2, R(z) =

z
[
1 + (z/zR)2

]
and zR = πw2

0/λ are the beam radius, wavefront curvature radius and

Rayleigh range, respectively, w0 being the radius at the beam waist [12]. L
|m|
p (x) are

the generalized Laguerre polynomials. Introducing dimensionless coordinates ρ = r/w0

and ζ = z/zR, these modes are given by

LGp,m = Ap,m

(
ρ√

1 + ζ2

)|m|
e
− ρ2

1+ζ2L|m|p

(
2ρ2

1 + ζ2

)
e

(
iπρ2

ζ

)
eimφ e−i(2p+|m|+1) arctan (ζ).

(1.43)

The positive integer p and the integer m are the two indices defining a LG mode,

with m being its OAM content. In Fig. 1.6 we report some example of intensity and

phase distribution for LG modes. As a final remark, we observe that these modes are
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Figure 1.6: Intensity and phase pattern of Laguerre-Gauss beams. From these plots
it is clear that the index p determines the presence of multiple rings. The zero intensity
rings correspond to the distances where the Laguerre polynomials vanish and change
their sign. This is clearly visible in the phase plots, where we can see that these rings

are marked by a π jump.

orthonormal, i.e. ∫
dx dy LG∗p,m LGp′,m′ = δm,m′δp,p′ (1.44)

1.5 The Spin-Orbit space

Paraxial e.m. waves are characterized by physical quantities which can be measured

experimentally. This is the case for the projections of the wave-vector ~k, of the OAM

and the SAM along the propagation axes, and the radial distribution of the field in the

transverse plane. States carrying a well defined value for each of these quantities, i.e.

the eigenstates of the associated operators, represent a complete set for the description

of the state of a generic paraxial light beam. In other words, the field can be written as

E(r, ϕ, z, t) = E0

∫ ∞
−∞

dk
∑
j=L,R

∞∑
p=0

∞∑
m=−∞

cj,m,p(k) e−i(ωt−kz) |j,m, p〉 (1.45)
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where the Dirac ket |L,m, p〉 (|R,m, p〉) represents Left (Right)-circularly polarized light

with spatial distribution given by the Laguerre-Gauss mode LGp,m. In the context of

this work we will be mostly interested in the state of the radiation associated with the

SAM and OAM degrees of freedom, which we describe through the SAM and OAM

spaces (Hπ, Ho), respectively. Assuming fixed the values of both kz (the wavelength)

and p (radial distribution of field), we consider the state of a light beam in the spin-

orbit space. The latter, labeled as H, is given by the direct product of SAM and OAM

subspaces

H = Hπ ⊗Ho (1.46)

and is spanned by the basis vectors

|j,m〉 = |j〉π ⊗ |m〉o, (1.47)

with j ∈ {L,R} and m ∈ Z. Neglecting the dependance through the radial and longitu-

dinal coordinates (r, z), the generic electric field will be represented as

|E〉 =
∑
j=L,R

∞∑
m=−∞

cj,m |j,m〉. (1.48)

We can observe from the latter equation that for an arbitrary e.m. wave the global state

of the field cannot be written as a product of a polarization term and an amplitude

envelope, as it was done for pedagogical reasons to introduce the concepts of SAM and

OAM (see Eq. 1.20):

|E〉 6= |E〉π ⊗ |E〉o. (1.49)

In a classical picture, this means that in the transverse plane the polarization state of

the electric field is not uniform but depends on the coordinates (r, ϕ). This concept

is deeply discussed in Ch. 2 (see for instance Fig. 2.2). When Eq. 1.48 describes the

state of a single photon, there is “entanglement” between the two degrees of freedom of

SAM and OAM. Since regarding two observable quantities of the same particle, and not

a single property for two distant partners (mathematically, the two configurations are

identical), this is sometimes referred to as “classical entanglement” [13]. The generation

of controlled entanglement between SAM and OAM is the subject of Ch. 3.

The notation we have introduced allows one to describe the state of a paraxial light

beam, with a particular focus on its SAM and OAM content; the same notation can be

used for a physical system made of a single photon as well, but may not be appropriate
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if considering multi-particles states. In this case, it is worth to use the formalism of the

Quantum Field Theory, where ~E is a quantum operator expressed in terms of creation

and annihilation operators acting on the Fock space of single photons. Considering only

the spin-orbit space, such quantum field can be written as

Ê =
∑
j

∑
m

âj,m êj e
imϕ e−iωt + H.C. (1.50)

where H.C. stands for the hermitian conjugation and (âj,m, â
†
j,m) are the annihilation

and creation operators for a bosonic particle, respectively, associated with the spin-orbit

mode |j〉π ⊗ |m〉o. They act on the Fock space, spanned by vectors |nj,m〉, representing

a state with n photons in the mode |j,m〉; here n is a positive integer. The formalism

of the Fock space, introduced here for completeness, will be used only in Ch. 5 when

describing an experiment involving a system made of two photons.

1.6 Devices and techniques for controlling and measuring

SAM and OAM

The preparation and the characterization of spin-orbit states of light rely on specific

devices which allow for controlling the two degrees of freedom in a optical beam. Given

the field as expressed in Eq. 1.48, this consists in the possibility of setting the initial

values of coefficients cj,m, changing them with a controlled dynamics, and measuring

their value. In this section we introduce the instruments and the associated techniques

to manipulate and measure SAM and OAM separately. Given the relevance for the

research work described here, we will devote a separate section to the description of the

q-plate, the device we exploit to engineer a spin-orbit coupling in the light beam.

1.6.1 Waveplates and polarizers

The control of the SAM state of a light beam is realized through wave plates and

polarizers; since these are common tools in every optics laboratory, we will introduce

them very briefly. In general, a polarizer is a slab of a material which, when crossed by a

light beam, allows only a specific linear polarization to pass, absorbing or reflecting the

other component. Considering for simplicity this allowed polarization as the horizontal

one, such polarizer will be represented by the operator

P̂H = |H〉〈H| =

(
1 0

0 0

)
(1.51)
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When rotated in the transverse plane, a polarizer gives the opportunity to generate any

linear polarization.

A wave-plate is a thin layer of a birefringent material. Considering this oriented in order

that êx and êy are two of its optic axes, the device effect results in a phase shift between

the horizontal and vertical components of the field (neglecting a global phase factor)

ŴP =

(
e−iδ/2 0

0 eiδ/2

)
(1.52)

where δ depends on the thickness of the plate, the wavelength of the radiation, and

the difference between the refractive indices relative to the two axes. Two cases are of

particular interest: we refer to these devices as quarter-wave plates (QWP) or half-wave

plates (HWP) when δ = π/2 and δ = π, respectively. Orienting suitably a set of wave

plates it is possible to implement any unitary transformation in the SAM space Hπ; the

general expression of the associated Jones matrices is given in Appendix A. Combining

QWPs and HWPs with a polarizer allows for the preparation and detection of any po-

larization state.

1.6.2 Holography to prepare and detect OAM modes

The common strategy to prepare a light beam in a OAM mode is to engineer a device

which converts the fundamental Gaussian mode, generated from the laser source, in a

beam with the helical phase eimϕ. The simplest approach would be introducing the

desired phase delay through a slab of transparent material with a non uniform thickness

d(ϕ) = mλϕ/2πn, where n is the material refractive index; such device is called Spiral

Phase Plate (SPP). Though simple, a SPP has the drawback of requiring precise control

on manufacturing the material at very small length scales, less than a micron for optical

wavelengths and standard refractive media.

The widest used technique to generate helical modes is holography. The latter allows

one to generate any optical field after shining a device called hologram with a suitable

reference beam [10]. In order to achieve this result, the interference pattern of a reference

beam and the desired optical field is recorded or computed, and reported on the holo-

gram. After the reference beam impinges on such hologram, which modulates its phase

and amplitude, the optical field is obtained. In the past, holograms were built recording

the interference pattern on a suitable material, as a photographic paper; nowadays they

are conveniently generated through a computer.

We are interested in generating OAM modes |m〉, which we assume here to be plane

waves with the factor eimϕ. In Fig. 1.7 we report the interference pattern of a reference
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Figure 1.7: Light intensity in the (x,y) plane of a superposition of a plane wave,
propagating along z, and a helical mode |m〉, whose propagation direction lies in the
(x,z) plane. In the picture, we are assuming x and y axes to correspond to the horizontal
and vertical directions, respectively. Light intensity is encoded in the gray-level scale.
As a result of the interference, the typical pitchfork pattern appear. The difference
between the number of fringes of the upper and lower part of the figure is equal to the

OAM of the mode |m〉.

plane wave eikz and an helical mode |m〉 with the same wavelength, propagating in the

(x, z) plane; the standard sinusoidal modulation, due to the different propagation direc-

tions, is modified in a fork-like shape. Pitch-fork holograms we use for the generation of

helical modes are phase holograms acting on the impinging beam introducing a phase

φ(x, y). In order to convert the reference plane wave into a mode of order m, we engineer

this phase as

φ = B(kxx+mϕ) (1.53)

where B(t) is the blazed function B(t) = Mod(t, 2π), and 1/kx defines the period of B

along the x direction. Considering the hologram positioned in z = 0, at the exit of the

latter the field will be in the state

E = eiB(t) =
∞∑

m′=−∞
c′m e

im′t =
∞∑

m′=−∞
c′m e

im′(kxx−mϕ) (1.54)

where we have expanded the periodic function B(t) in a Fourier series. In case of blazing

periodicity, it is straightforward to prove that c1 is the only non-vanishing coefficient

in the Fourier decomposition (1.54). At the exit of the hologram the beam is totally

converted in the mode |m〉, and propagates along the first diffraction order corresponding

to the direction θ1 = arctan kx/k. A scheme of the introduced protocol is represented
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in Fig. 1.8. It is important to observe that the state |m〉 prepared exploiting pitchfork

holograms does not correspond to the Laguerre Gauss mode LG0,m; indeed the prepared

state, that is LG0,0 e
imϕ, is a superposition of LG beams with different p

LG0,0 e
imϕ =

∞∑
p=0

cmp LGp,m (1.55)

Given the generic state in the OAM space, described by Eq. 1.40, it is important to

Figure 1.8: Generation and detection of helical modes using pitch-fork holograms.

determine the intensity associated with each helical mode |m〉o, that is the value |cm|2.

This is possible combining the introduced holographic technique with a device which

acts as a mode filter (the analog of a polarizer for the SAM space). A standard choice

is to use Single Mode Optical Fibers (SMF); when light is injected into the fiber, total

internal reflection allows the radiation to propagate with low losses only if the spatial

mode is that of an approximately Gaussian beam. We are making the assumption that

the beam waist w0 and the radius of the internal part of the fiber are matched. The

measurement of the intensity associated with a specific helical mode |m〉 in a complex

light beam can be thus performed using an hologram of order −m, which converts only

the helical state |m〉 into a Gaussian mode. The emerging light, propagating along the

first diffraction order, is then coupled into a SMF; at the exit of the latter, the intensity
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of the radiation is proportional to |cm|2.

Computer-Generated-Holograms (CGH) can be used to generate and detect not only

helical modes, but any spatial distribution of the field in the transverse plane. We will

discuss this generalized technique in Ch. 4.

1.7 Spin-Orbit interaction: the q-plate

The precise control of the polarization of an optical beam can be achieved exploiting the

birefringence in anisotropic materials; at the same time, the spatial distribution of the

field can be modulated through non-uniform media, such as an hologram. The combi-

nation of these properties in a material whose anisotropy is not homogeneous gives rise

to spin-orbit coupling in a light beam. Relying on this concept, a photonic device called

q-plate allows the generation of helical modes whose OAM content is conditioned by the

polarization. It consists of a slab of uniaxial liquid crystal material (LC) whose optic

axes are arranged to form a non-uniform pattern in the transverse plane. As for standard

wave plates, in a light beam crossing a LC cell the components of the field associated

with the fast and slow axes suffer a phase delay δ; the latter depends on the thickness

of the plate, the wavelength of the radiation, the ordinary and extraordinary refractive

indices of LCs and the orientation of the optic axes of the molecules with respect to the

propagation direction. In a q-plate the thickness of the cell and longitudinal orientation

of the molecules are homogeneous, so as to have a uniform δ. For the generation of a

pure OAM mode, this value has to be equal to π (HWP configuration); the action of a

HWP on circularly polarized light is simple:

ĤWP · |L〉π = |R〉π ei2α

ĤWP · |R〉π = |L〉π e−i2α (1.56)

where we have supposed the HWP rotated around the z axis of an angle α. In a q-plate,

α is arranged in a singular pattern, whose expression is given by

α(x, y) = qϕ+ α0 (1.57)

where α0 is the angle at ϕ = 0 and the integer or half integer number q is called

topological charge. The fast axis orientation is singular at the origin, while in a closed

loop around this point it rotates by an angle equal to 2qπ (see Fig. 1.9). Combining

Eq. 1.56 and Eq. 1.57 we can observe that a circularly polarized plane wave crossing a

q-plate is converted in a helical mode of order ±m, with the OAM sign depending on
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Figure 1.9: Arrangement of the optical axes in a q-plate. Panels a) - d) refer to the
following cases: a) (q = 1/2, α0 = 0), b) (q = 1, α0 = 0), c) (q = 1, α0 = π/2), d)

(q = 2, α0 = 0). This picture is adapted from Ref. [14].

the handedness of the initial polarization (see Fig. 1.10);

Q̂P δ=π · |L, 0〉 = |R, 2q〉 ei2α0

Q̂P δ=π · |R, 0〉 = |L,−2q〉 e−i2α0 (1.58)

When the input beam is in a superposition of circular polarizations, the output state will

Figure 1.10: Generation of helical modes using a q-plate. Picture adapted from the
Wikipedia page “Angular momentum of light”.

not be separable into the product of SAM and OAM independent terms. Consider for

example a horizontally polarized beam; since in the circular basis |H〉 = 1/
√

2(|L〉+|R〉),
after the q-plate the field will be in the spin-orbit state (we set α0 = 0 for simplicity)

Q̂P δ=π · |H, 0〉 =
1√
2

(|R, 2q〉+ |L,−2q〉) . (1.59)

Changing the value of q and controlling the polarization of the input beam it is possible

to engineer complex structures in the optical field.

To conclude, we consider the general case where the phase retardation δ can take any
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value in the range (0, 2π). As demonstrated in Appendix A, the action of the q-plate is

expressed as follows

Q̂P δ · |L,m0〉 = cos(δ/2)|L,m0〉+ i sin(δ/2) e−i2α0 |R,m0 + 2q〉,

Q̂P δ · |R,m0〉 = cos(δ/2)|R,m0〉+ i sin(δ/2) ei2α0 |L,m0 − 2q〉, (1.60)

where we have considered as input state not only a plane wave but a general OAM

eigenstate |m0〉. The result expressed in Eq. 1.60 can be interpreted as follows: a part

of the incoming field, proportional to cos(δ/2), is left unchanged; we refer to this as

the “unconverted” component of the beam. In the “converted” term, proportional to

sin(δ/2), the OAM is raised or lowered by 2q according to the handedness of the input

polarization. The value of the retardation δ can be finely tuned through an external

electric field applied to the faces of the plate [15], or by controlling its temperature

[16]. In Fig. 1.11 we report the data of the experimental measurements of δ of a q-

plate when varying the applied voltage. This simple procedure allows one to adjust the

plate retardation in a broad range of wavelengths, getting the value of δ suitable for the

purpose of the experiment.

Figure 1.11: Tuning the q-plate retardation δ applying an external electric field. The
figure is adapted from [17], Fig. 3.13.
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Vector beams and polarization

singularities

2.1 Introduction

A q-plate alters the polarization and the spatial distribution of a light beam, so as to

give rise to an e.m. wave where the field in general is not uniform in the transverse

plane, both in amplitude and direction. These beams are usually called Vector Beams

(VB) or, when showing a cylindrical symmetry [18], Cylindrical Vector Beams (CVB).

VBs are particular solutions of the paraxial limit of vectorial Maxwell’s equations and

have intriguing properties. The field geometry in the transverse plane can have a non

trivial topology, associated with singularities in the polarization degree of freedom, such

as C-points and L-lines, or in the phase distribution. In the context of polarization

singularities, C-points and L-lines correspond to spatial regions where the orientation

or the ellipticity of the polarization ellipse are not defined, respectively [19–21]. The

first case corresponds to circular polarization states, the second to linear polarizations.

Vector Beams are also referred to as Vector Vortex Beams (VVB) when they present

phase singularities associated with zero-intensity points, as for standard helical modes.

Among these, beams whose polarization pattern have a radial or an azimuthal distribu-

tion have unique features when sharply focused [22], and represent an example of field

structure which is invariant with respect to rotations around the propagation axis. In

the last decade CVBs have been exploited for a variety of different applications, such as

for instance single molecule imaging [23], particle acceleration [24], Raman spectroscopy

[25], particle trapping [26], material surface structuring [27, 28], alignment-free quantum

communication [29, 30]. Recently, a Möebius strip has been observed in the polarization

22
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structure of a specific VB [31]. Various approaches have been developed for the genera-

tion of such e.m. waves; active methods rely on modifying the laser sources (the cavity,

the crystal,...) generating CVBs as output mode [32–34]. On the other hand, passive

methods exploit optical devices to convert a Gaussian beam into a vectorial one [35–38].

In this chapter we discuss an experimental technique we developed to generate and

characterize CVBs using a q-plate, tailoring dynamically the beam features by suitable

control of the polarization of the input beam and the LCs phase retardation δ. Thus

we generated radial and azimuthal polarizations [39], as well as other geometries for the

field in the transverse plane, including the fundamental polarization singularities [40].

The proposed approach presents several advantages; it is simple, since it relies entirely

on the spin-orbit coupling operated by the q-plate on a uniformly polarized Gaussian

beam. The whole process occurs in a single light beam, differently from interferometric

schemes where the field components are manipulated separately and then recombined.

Finally, this method allows for fast switching in the generation of different CVBs, which

can be obtained preparing suitably the polarization state of the input beam.

2.2 Vector Beams

Vector Beams are paraxial e.m. waves whose field components have a different spatial

distribution, in any polarization basis. Referring to the circular basis, we can express

the field as:

E =

(
cL uL(r, ϕ, z)

cR uR(r, ϕ, z)

)
(2.1)

In a VB uL and uR are different solutions of the paraxial wave equation, which can

be represented conveniently as a sum of LG modes. As a simple and illustrative case

we consider (uL, uR) to be a superposition of only two helical modes, corresponding to

LG0,m and LG0,−m. Linear combinations of these two modes form a 2-dimensional (2D)

Hilbert space Hmo ; when combined with the polarization degree of freedom, the direct

product of the SAM space Hπ and the OAM subspace Hmo give rise to a four-dimensional

space Hm4 , generated by the states {|L,m〉, |L,−m〉, |R,m〉, |R,−m〉} [41, 42]. This can

be decomposed into the direct sum of two subspaces Sm and S−m, generated by vectors

{|L,−m〉, |R,m〉} and {|L,m〉, |R,−m〉}, respectively

Hm4 = Sm ⊕ S−m (2.2)

This decomposition is motivated by the different topological properties of the states

forming these two spaces, represented in Fig. 2.2 in terms of the associated Poincaré
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Figure 2.1: Poincaré spheres representation of the hybrid spaces S1 and S−1. On the
equator we find states where the polarization is linear in every point of the transverse
plane, while at the poles we have uniformly circularly polarized states. Generic points
on the spheres have elliptical polarizations, whose major axis is arranged in a topological
structure a) The S1 space contains states with topological charge η = 1; in particular,
their polarization is invariant respect to rotation around the propagation axis. b) The

S−1 space has states with η = −1.

spheres (we report the simplest case m = 1). In any plane transverse to the propagation

direction, all beams in Hm4 have a singular point located on the optical axis. The field

vanishes at these points, as a consequence of the phase singularity affecting both left and

right circular components. A topological charge η can be associated with the polarization

pattern around the singular points; it is equal to the number of full rotations of the

orientation of the field, when following a closed trajectory around the singularity. As

orientation we are considering the direction of the major axis of the polarization ellipses.

It is clear form both Fig. 2.1 and Fig. 2.2 that states in Sm and S−m have η = m and

η = −m, respectively. In particuar, in Fig. 2.2 we can observe that when m > 1,

the direction of the electric field is arranged in pictorial patterns; states with positive

charge have a structure similar to that of petals in a flower; the electric field orientation

forms spider webs instead in negatively charged optical beams [43]. The complexity of

VBs increases when considering envelopes uL and uR with a more complicated spatial

dependance, as for example including the radial degree of freedom; nevertheless, this

possibility will not be considered here. We will discuss below only the relevant case

where one of the two polarization components is in the fundamental Gaussian mode, as

this introduces C and L singular points in the field (see Sec. 2.4).

States in the subspace S1 have a particular simmetry, since a rotation around the

propagation axis leaves unchanged their polarization distribution. We can recognize

this feature in the few patterns reported in the S1 Poincaré sphere in Fig. 2.1. This
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Figure 2.2: Polarization pattern corresponding to the state 1/
√

2(|L,m〉+ |R,−m〉),
for different values of m corresponding to positive and negative topological charges.
When increasing the order of the helical modes, the orientation of polarization ellipses

varies faster along the azimuthal coordinate.

result can be demonstrated by noticing that the effect of the rotation on the Hπ and

Ho basis states results in the introduction of a phase factor proportional to the rotation

angle α: (
|L〉
|R〉

)
→

(
e+iα|L〉
e−iα|R〉

)
, |m〉 → eimα. (2.3)

Choosing m = ±1, opposite phase factors cancel each other in the product states |L,−1〉
and |R, 1〉. This symmetry has been exploited to demonstrate a quantum communication

protocol where the invariant states are used to encode a bit of quantum information;

as a striking difference with respect to standard photonic protocols, the sender and the

receiver do not need to align their transverse axis [29]. Two important examples of

rotational invariant states are the azimuthal and radial polarizations, here referred to



Chapter 2 - Vector beams and polarization singularities 26

as |r〉 and |φ〉, respectively. Their expression is

|r〉 =
1√
2

(|L,−1〉+ |R, 1〉) (2.4)

|φ〉 =
1√
2

(|L,−1〉 − |R, 1〉) (2.5)

As all other linearly polarized states, they lie on the equator of the S1 Poincaré sphere,

in points (θ, φ) = (π/2, 0) and (π/2, π), respectively. Using a single q-plate it is possible

to generate these beams in a very simple experimental architecture [39].

2.3 A q-plate to generate Vector Beams 1

A combination of wave plates and a single q-plate allows to generate all VBs in the 4-

dimensional space Hm4 = Hπ ⊗Hmo introduced in the previous section. Consider a light

beam whose polarization has been prepared in the state |θ, φ〉π, corresponding to the

point (θ, φ) on the SAM Poincaré sphere. According to Eq. 1.58, after passing through

a q-plate with δ = π the global spin-orbit state is

Q̂δ=π·
[
cos

(
θ

2

)
|L, 0〉+ sin

(
θ

2

)
e−iφ |R, 0〉

]
=

= cos

(
θ

2

)
|R, 2q〉+ sin

(
θ

2

)
e−iφ |L,−2q〉 (2.6)

where we have considered the plate orientation to be α0=0. The state reported in the

last term of Eq. 2.6 is a CVB belonging to S±m, with m = 2q. The q-plate introduces

a one to one correspondence between Hπ and S±2q; in particular, every point (θ, φ)

on the SAM sphere is mapped into the same point of the corresponding S2q Poincaré

sphere. Without changing the q-plate, states in S−2q can be obtained adding a HWP at

the end of the system, which simply transforms left into right circular polarization, and

vice-versa. In the experiment we are describing in this section, we used q-plates with

q = 1/2 and q = 1 to generate VBs, in particular radial and azimuthal polarizations. To

confirm the generation of such states, we measured the polarization pattern of the final

beam, and compared it to the theoretical predictions.

The experimental setup is described in Fig. 2.3. A 10mW average power Helium-

Neon laser beam at λ = 632.8nm, in the TEM00 spatial mode, was spatially cleaned by

focusing into a 50µm pinhole followed by a truncated lens placed at a distance equal to

its focal length. This procedure allows one to have a collimated beam with a uniform

intensity. A linear polarizer was used to have |H〉π as the initial SAM state; after

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [39]
which I coauthored.
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Figure 2.3: Experimental setup [39] . Setup to generate and analyze different po-
larization topologies generated by a q-plate. The polarization state of the input laser
beam was prepared by rotating the two half-wave plates in the QHQH set at angles
ϑ/4 and ϕ/4 to produce a corresponding rotation of (ϑ, ϕ) on the Poincaré sphere. A
combination of wave plates and a polarizer is used for polarization analysis through
projections on the states (R, L, H, V, A, D). For each state projection, the intensity
pattern was recorded by CCD camera and the signals were analyzed pixel-by-pixel to
reconstruct the polarization pattern in the beam transverse plane. Legend: 4X - mi-
croscope objective of 4X used to clean the laser mode, f - lens, Q - quarter wave plate,

H - half wave plate, PBS-polarizing beam-splitter.

that, the state |θ, φ〉π is obtained through a sequence of wave plates. The beam was

then sent into an electrically tuned q-plate, which generated a non-separable spin-orbit

state as given by Eq. 2.6. The external electric field applied to the plate was adjusted

to have optical retardation δ = π. The output beam was analyzed by point-to-point

polarization tomography; the polarization components relative to the bases (H, V), (A,

D) and (L, R) are analyzed by combining a QWP-HWP set and a linear polarizer. The

associated intensities are recorded at each pixel of a CCD camera (Sony AS-638CL),

whose sensor resolution is 120×120; the beam size has been adjusted so as to efficiently

exploit the CCD area. Examples of the recorded intensity profiles are shown in Fig. 2.4;

it can be noted that in the case of a VB (panels a) and c)), the intensities of the

different components of the field have a different spatial distribution. The polarization

distribution in the beam transverse plane is reconstructed trough a suitable algorithm

implemented using the software Mathematica, by Stephen Wolfram. For every pixel

(i, j), the Stokes parameters are computed in terms of the intensities IH(i, j), IV (i, j),

IA(i, j), ID(i, j), IL(i, j) and IR(i, j). When rotating the wave plates to project the

polarization on different basis, the beam direction may undergo a tiny alteration. To

minimize the error due to this effect, the values of the measured Stokes parameters were

averaged over a grid of 20 × 20 squares equally distributed over the image area. In

the first part of the experiment, we shined a q-plate with q=1/2 using a light beam

with horizontal, vertical and left-circular polarizations. Applying the transformation

introduced in Eq. 2.6, we can note that |L, 0〉 is turned into the helical mode with
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Figure 2.4: Intensities of the polarization components as recorded by the CCD camera
after projecting over horizontal (H), vertical (V), anti-diagonal (A), diagonal (D), left-
circular (L) and right-circular (R) polarization base states for different q-plates and
input polarizations [39]. a) and b) are for the q = 1/2-plate, and horizontal-linear a)
and left-circular b) polarization of the input beam. c) and d) are the same for the
q = 1-plate. The color scale bar shows the intensity scale (arbitrary units) in false

colors.

m = 1, with a uniform right-circular polarization. On the other hand, states |H, 0〉 and

|V, 0〉 are converted into radially and azimuthally polarized beams, respectively. The

reconstructed polarization patterns are shown in Fig. 2.5 a), b) and c), respectively.

They show a nice agreement with theoretical distributions reported in Fig. 2.1 and 2.2.

Similar results are obtained changing the topological charge to q = 1. In this case, we

obtain VBs with topological charge η = 2; in Fig. 2.5d) and e), we report the data

relative to the case with |H, 0〉 and |L, 0〉 as initial states. As discussed previously, the

case of q = 1/2-plate is particularly interesting since it allows the generation of radial and

azimuthal polarizations, obtained when the input state is |H, 0〉 or |V, 0〉, respectively.

These have a number of applications and can be used to generate uncommon beams

such as electric and magnetic needle beams, where the optical field is confined below

diffraction limits. We stress the important point that this technique allows one to

generate these peculiar states using a single optical element, the q-plate, which converts

the input beam by transmission without altering its propagation direction; moreover, it

does not need to split the beam and recombine it in a interferometer. In other methods

[36–38] the need of stable and precise alignment plays a crucial role.
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Figure 2.5: Reconstructed polarization pattern of vector beams generated by the q-
plate [39] . Highest-row panels: the transverse polarization and intensity distribution in
the near field at the exit face of the q-plate. Lower panels: the polarization and intensity
distributions in the far field beyond the q-plate. a), b), and c): polarization topological
structure generated by the q = 1/2-plate for left-circular, V-linear, and H-linear input
polarizations, respectively. d)-e): polarization topological structure generated by the
q = 1-plate for left-circular and H-linear input polarizations, respectively. a) and d)

have uniform circular polarization distributions.

2.4 Polarization singularities in a optical beam

Vector fields may have complex geometries, showing defects surrounded by patterns with

a non-trivial topology. In the case of the e.m. field in a paraxial beam, at any point (x, y)

in the transverse plane the vector ~E(x, y, t) changes in time describing an ellipse, which is

singular when it turns into a circle or a line. Indeed for circular and linear polarizations

the orientation of this trajectory and its handedness are undefined, respectively [19]. In

the transverse plane, light can be circularly polarized in isolated points (C-points), since

two conditions have to be satisfied: the two linear components of the field must have

equal modulus and their phase difference has to be ±π/2. Whereas points with linear

polarization are arranged in continuous lines, since it is necessary only to have the two

components oscillating in phase [44]. The beam propagation introduces a dynamical

evolution of the polarization singularities in the transverse plane, as a consequence of

different dynamics characterizing high order spatial modes of light [20, 40, 44, 45]. Such

scenario can be even richer when considering partially polarized light; a beautiful exam-

ple is the polarization distribution of the sunlight scattered by the atmosphere, which

presents four singular points near to the sun and anti-sun positions [46].

The classification of polarization singularities in terms of C-points and L-lines applies

to all elliptical fields. A valuable example consists in surfaces, where the ellipse as-

sociated with the Gaussian curvature degenerates in circles and lines at the so called

“umbilic points” and “parabolic lines”, respectively (see [44] and references therein for
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other physical examples).

Polarization singularities arise from the superposition of e.m. waves with different

Figure 2.6: Polarization pattern of a light beam in the state |PSB〉±1, obtained in
the transverse plane corresponding the beam waist of the LG modes.

polarization and spatial distribution [20, 44]; the structure of the local elliptical field

introduces a natural classification of C-points in terms of a topological charge η. As for

Vector Vortex Beams, the latter is defined as the number of 2π rotations of the ellipses

major axis, when following an anti-clockwise loop around the singular point. The sign

of η is positive when the rotation is anti-clockwise as well; being the orientation angle

defined modulo π, the fundamental topological charges correspond to ±1/2. The major

axis pattern around C-points with η = ±1/2 is shown in Fig. 2.6; a singularity with

η = −1/2 is called “star”, while for η = 1/2 we have two possibilities corresponding

to the same topology. Around the singular point, there can be one or three directions

where the ellipses orientation is radial [44]; accordingly, L-lines are called “lemon” or

“monstar”, respectively (see Fig. 2.7 b), c)).

A simple example of polarization singular beam (PSB) is obtained superimposing the

two Laguerre Gauss modes LG0,0 and LG0,m, coupled to orthogonal polarization states.

Considering these as circular polarizations, we can express this field as

|PSB〉m = cL êL LG0,0 + cR êR LG0,m (2.7)

In Fig. 2.6 we report the polarization pattern of |PSB〉±1, in the case in which cL = cR.

It can be observed that a single C-point is located on the propagation axis, with a

topological charge η = ±1/2, corresponding to a star and a lemon, respectively. A

single L-line, marked as a continuous black circle, separates the outer and the inner

regions characterized by opposite handedness; the latter is a general property of singular

polarization patterns [20, 44, 45].
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Figure 2.7: Comparison of the polarization pattern for the star, lemon and monstar
C-points, which are displayed in panels a), b) and c), respectively.

When expressing the field in the circular basis, we can observe that at C-points a

component of the field is vanishing; being the latter a scalar quantity, points where

it vanishes are phase vortices with a specific topological charge m. The two invariants

η and m have to satisfy the simple relation [47]

2η = m. (2.8)

Complex structures with multiple C-points arise when considering larger superpositions

Figure 2.8: Poincaré beam showing a double covering of points on the Poincaré
sphere in the transverse plane. This pattern corresponds to the state |PSB〉 =
1/
√

2(êL LG0,1 + êR LG1,0); as a difference with respect to previous cases, we are ex-
ploiting the radial index p.

of higher modes, as naturally occurring for example when a helical beam suffers double

refraction in a crystal [45].

The polarization pattern resulting from the state |PSB〉±1 shows an interesting feature.

Indeed it is possible to show that such pattern contains all possible polarization states,
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associated with different points on the transverse plane. In particular it has been demon-

strated that this mapping consists in the stereographic projection of the Poincaré sphere

onto the (x, y) plane [48]. Beams where the polarization pattern is a representation of

the whole polarization space are called Poincaré beams (PB). States defined as in Eq.

2.7 with m = 1 represent the simplest example of Poincaré beams. When including

the possibility of superimposing LG modes with different radial structures we obtain

more complex polarization patterns, as reported in Fig. 2.8 where we show a PB with

a double covering of the SAM Poincaré sphere[49].

2.5 Generation of polarization singular beams using a tun-

able q-plate 2

A q-plate alters the state of a Gaussian and uniformly circularly polarized light beam,

which is transformed as follows (Eq. 1.60):

Q̂P δ · |L, 0〉 = cos(δ/2)|L, 0〉 − i sin(δ/2) |R, 2q〉 (2.9)

where we set α0 = π/2. The output state coincides with expression 2.7, where cL =

cos(δ/2), cR = −i sin(δ/2) and m = 2q. Moreover, we are assuming states |m〉o to be

LG modes with p = 0, even though in the real experiment this is just an approximation.

We know indeed that the radial distribution of the field at the output of a q-plate is

different with respect to the one of a LG mode with p = 0, which anyway represents the

dominant contribution in the far field. Nevertheless, this does not alter the azimuthal

polarization distribution of the final beam and, as a consequence, the topology of the

generated C-points. We will discuss this minor point at the end of this section.

The experiment layout, shown in Fig. 2.9, relies on the same scheme reported in Fig. 2.3,

with the addition of a movable stage for the measurement of the polarization pattern

evolution along the propagation axis. This kind of analysis was not necessary for the

experiment involving vector beams, being their polarization pattern invariant under

beam propagation, as explained below. A laser beam generated by a He:Ne source

at λ = 632.8 nm, with 10 mW average power, is spatially cleaned in order to have a

Gaussian mode with uniform intensity. By means of a linear polarizer and a QWP, the

polarization is prepared in the state |L〉. The light beam then passes through a q-plate,

whose retardation can be tuned suitably by varying a controlled external electric field

[15]. As discussed previously, at the exit of the device the initial optical field is converted

2Some paragraphs and sentences of this section are adapted or copied verbatim from the work [40]
which I coauthored.



Chapter 2 - Vector beams and polarization singularities 33

Figure 2.9: Experimental setup [40]. A He-Ne laser beam is first spatially filtered
focusing via a microscope objective (4X) into a 50 µm pinhole; the beam is then col-
limated using a lens (f). Its polarization is then prepared in a left (right) circular
state by a polarizing beam-splitter (PBS) and a quarter-wave plate (Q). A q-plate with
tunable retardation δ then transforms the beam into a PSB. The polarization pattern
of the latter was analyzed by a quarter-wave plate, a half-wave-plate (H) and another
polarizer, followed by imaging on a CCD camera. The δ parameter of the PSB was
adjusted by electrically tuning the q-plate. In order to study the propagation dynamics
of the PSB, the CCD camera was mounted on a translation stage and moved around

the focal plane of an output lens.

Figure 2.10: Intensity and polarization distribution at the near field for beams gen-
erated with q-plates having different topological charges [40]. a) When q = −1/2, we
obtain a star at the central point. b) The lemon correspond to q = 1/2. c) When q = 1
the C-point charge is equal to 1, and the surrounding pattern has a spiraling structure.

in a PSB; its singular polarization distribution has been measured in the near and in the

far field, corresponding to the image and focal plane of a lens positioned after the q-plate,

respectively. Using the same technique reported in Sec. 2.3, we determined the Stokes

parameters in every grid made of 20×20 pixels. Three examples of the reconstructed

polarizations are reported in Fig. 2.10; tuning the plate retardation to the value δ = π/2,

we measured the near field polarization distribution when using q-plates with q=1/2,-1/2

and 1. Associated patterns have a C-point on the beam axis, with topological charge

equal to that of the plate. Then using a device with q=1/2, we adjusted the coefficients

cL and cR of Eq. 2.7 by varying δ from 0 to 3π/2, in steps of π/4. For optical retardations
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Figure 2.11: Intensity distributions and reconstructed polarization patterns of beams
generated by a q-plate with q = 1/2, for seven different optical retardations [40]. (a)
δ = 0 (or 2π), (b) δ = π/4, (c) δ = π/2, (d) δ = 3π/4, (e) δ = π, (f) δ = 5π/4, and
(g) δ = 3π/2. The corresponding L-line radii relative to the beam waist w0 are the
following: (a) undefined (b) ρ0 = 2.0w0, (c) ρ0 = 1.4w0, (d) ρ0 = 1.1w0, (e) undefined,

(f) ρ0 = 1.0w0, and (g) ρ0 = 1.5w0.

δ = 0 and δ = π, the beam has uniform polarization corresponding to states |L〉 and

|R〉, respectively. In the first case, the beam profile is Gaussian, whereas for δ = π it

has the classical doughnut shape. In intermediate cases, the beam has a C-point at its

center, with charge η = q. The value of δ determines the radius of the L-line, which

decreases when going from 0 to π; moreover, we can observe that the two regions δ < π

and δ > π are distinguished by a π rotation of the polarization pattern, as a result of a π

difference in the relative phase between coefficients cL and cR. In a second experiment,

we studied the dynamics of different PSBs with η = −1/2, +1/2 and +1 topologies under

free-air propagation, keeping the parameter δ fixed to the value π/2. To this purpose,

we moved the CCD camera along the propagation axis around the imaging-lens focal

plane. We recorded the beam polarization patterns at six different planes in the range

−zR ≤ z ≤ zR, where zR is the lens Rayleigh parameter and z = 0 corresponds to the

beam waist location. The experimental results are shown in Fig. 2.12. As it can be seen,

the polarization pattern evolves during propagation. Indeed LG00 and LG0,m modes of

Eq. (2.7) have different z dependences of their Gouy phases; the relative Gouy phase

between them is given by ψ = |m| arctan (z/z0), which in the explored region varies in

the range |m|[−π/4, π/4]. In the case m = ±1 (i.e. η = 1/2) the phase evolution leads

to a rigid rotation of the whole polarization structure by an angle equal to ψ [as shown

in Fig. 2.12 a) and b)], while when m = 2 (i.e. η = 1), the pattern dynamics consists in

the evolution from radial to spiral and then to azimuthal distributions (Fig. 2.12 c)).

Before concluding, we discuss the radial distribution of the PSB generated by the q-

plate, that we assumed to be that of a Laguerre Gauss mode with p = 0. At the exit of

the device the field, that was initially in a uniformly polarized (|L〉) Gaussian state, is

given by

Ûδ · |L〉 = HyGG−|q|
√

2,q
√

2 (ρ, d/n̄)

[
cos

(
δ

2

)
|L〉+ ei2α0 sin

(
δ

2

)
|R〉 e2iq φ

]
, (2.10)
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Figure 2.12: Reconstructed experimental polarization patterns of different PSB
beams [40]. (a) η = m/2 = +1/2, (b) η = m/2 = −1/2 and (c) η = m/2 = +1.
Patterns have been reconstructed by measuring the maps of reduced Stokes parame-
ters in six different longitudinal planes within the beam Rayleigh range, from −zR to
+zR. The corresponding rotation of polarization patterns for (a) and (b) are 90◦ and

88◦ = (30 + 30 + 28)◦, respectively.

where the operator Ûδ describes the action of a q-plate, including the alteration of the

radial profile of the impinging beam. In Eq. 2.10, HyGG−|q|
√

2,q
√

2 denotes the ampli-

tude profile of a hypergeometric-Gaussian beam [11]. The latter equation describes with

good approximation the output mode profile of a q-plate of charge q, thickness d and

average refractive index n̄ for a Gaussian input (see Ref. [50] for more details). In the

far-field, the profiles associated with the converted and un-converted terms are different.

However the HyGG term multiplied by the phase factor exp (2iqφ) can be expanded in

a series of LG modes [11] with m = 2q and different p. In the far-field, it is a good

approximation to consider only the larger term, coinciding with LG0,2q. In this case,

Eq. (2.10) is reduced to Eq. (1.60). The output state coincides with expression 2.9.



Chapter 3

Testing the foundations of

quantum mechanics

3.1 Introduction

Quantum mechanics (QM) is the physical theory we use to model all natural phenom-

ena we observe at the microscopic scale, which eventually determines the properties

of macroscopic objects. While no experimental outcome has ever contradicted its pre-

dictions, it has subtle features which have intrigued the scientific community hitherto.

In 1935, Einstein, Podolsky and Rosen (EPR) argued QM to be an incomplete the-

ory, formulating their results in terms of a famous paradox [51]. Aiming to recover the

physical realism and the theory completeness, Hidden Variable Theories (HVT) were

introduced [52–54]; they extended QM through the addition of more dynamical vari-

ables, which have a deterministic evolution, whereas we are not able to observe them

experimentally. The lack of a direct evidence of such elements seemed to determine the

impossibility to test whether HVT were plausible or not. An important breakthrough

was achieved in 1964, thanks to a theorem formulated by J. S. Bell [53]. Considering

a bipartite system, he proved that the correlations predicted by any local HVT were

limited by an upper bound, while for entangled degrees of freedom QM predictions did

not fulfill this requirement. Bell’s inequalities were tested for the first time in 1982 in

the pioneering experiment by A. Aspect, J. Dalibard and G. Roger [55]; the authors

measured the polarization of two photons emitted simultaneously in an atomic process,

showing that their correlations indeed respected QM laws, thus violating the inequalities.

In the same spirit, A. J. Leggett formulated a novel theorem in 2003, which included a

class of theories which were non-local [56]. Results of previous experiments could not be

used to test Leggett’s inequalities, which needed some extra measurements. In recent

36
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years the violation of such inequalities has been reported adopting several experimental

schemes [57–61].

We learn from Bell-like theorems that a feasible route to test the possibility of hidden

variable models is to evaluate the correlations between two degrees of freedom of a bi-

partite system; here entanglement is the main resource, because these highly correlated

systems show features which are not reproducible by HVTs. It is quite common to

identify these bipartite systems with a pair of identical particles, considering for each

of them a 2D degree of freedom, such as the polarization of a single photon. When

measuring some property of one particle of the pair, this approach allows to exploit

the locality (or relativistic causality) principle to assume that the outcome could not

depend on any operation performed simultaneously on the other party, because of the

space-like separation between these events. Nevertheless, Bell’s or Leggett’s theorems

can be investigated by means of the entanglement between two degrees of freedom of

a single particle [62]. While locality cannot be assumed anymore, we can rely on the

more general non-contextuality of the two considered observables [63]. Spin and orbital

angular momentum of single photons are perfect candidates for this kind of tests, as we

will show later on.

In this chapter we report on two experiments aiming to test contextual and non-contextual

hidden variable theories. In both cases, we exploited the non classical correlations be-

tween the SAM and the OAM of single photons whose state is suitably prepared using

wave plates and a q-plate. Non-contextual hidden variable theories (NCHVT) where

studied through the verification of the Hardy paradox, which is a particular case of a

Bell-like theorem without inequalities [64]. On the other hand, we investigated Leggett’s

inequalities to test a class of contextual hidden variable models. Before presenting the

associated results, we will discuss the main ingredients of hidden variable theories in the

framework of the non-contextuality principle; we will complete the discussion providing

a simple derivation of the Bell theorem, the Hardy paradox and introducing Leggett’s

inequalities.

3.2 EPR Paradox, locality and contextuality

Following EPR [51], the completeness of a physical theory consists in a one-to-one cor-

respondence between its elements and the so called elements of reality characterizing

the described system. An element of reality is a feature of the system that the theory

predicts deterministically. For instance, let us consider a horizontally polarized photon

passing through a polarizing beam splitter (PBS), oriented so as to transmit and re-

flect horizontal and vertical polarizations, respectively. Placing a couple of detectors at

the exit ports, we can measure the quantity S1, which is equal to ±1 according to the
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photon being transmitted or reflected, respectively. The associated quantum operator

is Ŝ1 = |H〉〈H| − |V 〉〈V |. As a consequence of the initial state preparation, we know

that repeating the experiment many times we would always obtain S1=1; thus we can

associate an element of reality with the latter quantity, since even without measuring

it we can be sure that it is equal to one. With the help of wave plates, we can use the

same PBS to measure S2, associated with the operator Ŝ2 = |D〉〈D|− |A〉〈A|; this time,

we will get S2 = ±1, where at each outcome is associated a probability equal to 1/2.

The absence of a deterministic result denies in this case the possibility to assign S2 an

element of reality. This simple example allows us to understand that in QM there exist

no states describing systems with elements of reality associated with non-commuting

operators, as for example Ŝ1 and Ŝ2. EPR argues that these systems are possible in

nature, thus claiming that quantum mechanics is an incomplete theory.

EPR paradox has been formulated in a more accessible version by Bohm [52]; he con-

sidered a pair of identical photons, whose quantum state is given by

|ψ〉 =
1√
2

(|H〉1|V 〉2 − |V 〉1|H〉2) (3.1)

where photons 1 and 2 (P1 and P2) are propagating along different directions. State of

Eq. 3.1 describes for example the polarization state of photon pairs generated through

spontaneous parametric downconversion in a nonlinear crystal. In this case, if we mea-

sure S
(1)
1 for P1, with equal probability we could get the outcome +1 or −1; nevertheless

if in a single run we get S
(1)
1 = 1, we know with probability equal to one that S

(2)
1 = −1.

Assuming that the two observables are local, the outcome of a measurement on P2

cannot be affected by the choice of the detection settings on P1; thus we can conclude

that S
(2)
1 = −1 even before the experiment and we assign it an element of reality. In

a different experiment, we could choose to measure S2 for both particles. In the new

basis, the photon pair is described by the state

|ψ〉 =
1√
2

(|A〉1|D〉2 + |D〉1|A〉2). (3.2)

Assuming the we get the outcome S
(1)
2 = 1, we again know with probability equal to one

that S
(2)
2 = −1 even without performing any further measurement. As for the previous

case, S
(2)
2 may be considered as an element of reality for the system. Here comes the

paradox, since, first of all, the elements of reality we are assigning to the system depend

on the measurement that has been performed. If these two elements are a real feature

of the system, then in QM we do not have a state to describe it. In this formulation

of the paradox, it is important to point out the role of the locality principle. If any

measurement on P1 could alter the state of the distant photon, it would not be possible

to assign elements of reality to P2, since its properties have changed with respect to the
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initial configuration.

For any pair of observables A and B, it is possible to state whether in joint measurements

a single outcome is influenced or not by the choice of the detection settings relative to

the other observable. The second case represents the non-contextuality assumption,

which generalizes the locality principle to the case where A and B are not associated

with distant objects, but for example represent different degrees of freedom of a single

particle. The non-contextuality can be invoked when the observables are compatible; in

the QM framework, this is equivalent to the requirement that

[Â, B̂] = 0 (3.3)

Considering non-contextuality in place of locality does not alter the content of Bell-like

theorems, but only the interpretation about which class of HVT they investigate.

3.3 Hidden variables and the Bell theorem

EPR concluded their famous paper stating that “the wave function does not provide a

complete description of the physical reality”, conjecturing on the other hand that this de-

scription would be possible [51]. With the aim of completing the theory, hidden variable

theories rely on the presence of deterministic variables which have a dynamical evolution

and fully characterize the state of the system. If on one hand these variables cannot

be detected experimentally, on the other we can think that the values of the observable

quantities are just the result of ensemble averages, assuming that HV have a specific

probability distribution.

In his celebrated theorem, J. S. Bell considered an explicit HV model to describe the

spin state of a spin 1/2 particle, or equivalently the polarization of a single photon [53].

When this model is extended to systems as those described by Eq. 3.1, its predictions

do not match the ones by QM and, above all, the experimental results.

Let us consider the Bell model for the polarization of single photons. Here, it is con-

venient to label a polarization state using unit vectors p̂, which individuate points on

the Poincaré sphere. In this context, we will refer to a PBS oriented along the direc-

tion â when this, combined with suitable wave plates, will transmit or reflect â and −â

polarizations, respectively. Such a PBS, plus two detectors at the exit ports, is used to

measure the quantity A, whose average value is given by

〈Â〉 = â · p̂ (3.4)

This is the content of the famous Malus law. When measuring A, the result of each

individual measurement will depend on the orientation of the apparatus and on the
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value of some hidden variables λ which are specifying the state of the system

A = A(â, λ). (3.5)

Variables λ are defined in a specific domain Λ and are characterized by a probability

distribution ρ(λ). The average value of A over the possible values of the HV is defined

as

Ā =

∫
Λ
dλ ρ(λ)A(â, λ) (3.6)

The mean values Ā and 〈Â〉 are not the same quantities, but they have to coincide if

we want the HV model to be a plausible theory; indeed we know that QM predicts

correctly all experimental outcomes reported hitherto. A possible model satisfying the

requirement Ā = 〈Â〉 is the following;

Ā(â, λ) =

1 0 ≤ λ ≤ λa

−1 λa < λ ≤ 1
λa =

p̂ · â + 1

2
(3.7)

when assuming ρ(λ) = 1 in the domain Λ. It is straightforward to prove that

Ā =

∫
Λ
dλ ρ(λ)A(â, λ) = p̂ · â (3.8)

Now we are ready to generalize the model to the case of two non-contextual observables

A and B. The correlation between the two quantities is defined as

AB =

∫
Λ
dλ ρ(λ)A(â, λ)B(b̂, λ) (3.9)

Here the non-contextuality allows us to consider A and B as depending only on their

detection settings and not on the others. Consider now two experiments; in the first,

we measure A and B along â and b̂, while in the second we measure A′ and B′ along â′

and b̂′. Being binary variables which can be equal only to ±1, A, B, A′, and B′ verify

the following equation

(A+A′)B − (A−A′)B′ = ±2 (3.10)

This equation is meaningful only if assuming the non-contextuality of the observables.

Doing the ensemble average of Eq. 3.10, and considering its absolute value, we get

∣∣AB +A′B −AB′ +A′B′
∣∣ =

∣∣∣∣∫
Λ
dλ ρ(λ)

[
(A+A′)B − (A−A′)B′

]∣∣∣∣ ≤ 2 (3.11)
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Figure 3.1: Sets of states for the maximal violation of CHSH inequalities.

Bell inequalities in the form of Eq. 3.11 were formulated by J. F. Clauser, M.A. Horne,

A. Shimony e R. A. Holt, thus they are referred to as CHSH inequalities [65]. Eq. 3.11

states that any non-contextual hidden variable theory (NCHVT) would predict an upper

bound for a suitable combination of correlations between the two degrees of freedom.

These restrictions are effectively violated when considering QM predictions for entangled

states. For instance, for the state of Eq. 3.1 the correlation between A and B is equal to

C(â, b̂) = â · b̂. (3.12)

If â, b̂, â′ and b̂′ lie on the equator of the Poincaré sphere and are equally spaced by

an angle equal to π/4 (as shown in Fig. 3.1), it is simple to show that the left term

of Eq. 3.11 becomes 2
√

2, which is clearly larger than 2. The violation of the Bell or

CHSH inequalities has been reported several times starting from the pioneering work by

A. Aspect et al. [55]. Though an experiment satisfying simultaneously all requirements

of the Bell’s theorem, closing the famous loopholes (see [66] and references therein) was

not reported yet, it is quite unlikely that a non-contextual realistic model is possible.

3.4 The Hardy Paradox 1

Bell inequalities pointed out for the first time the contrast between the predictions of

any non-contextual realistic theory and quantum mechanics. In 1993 L. Hardy ideated

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [67]
which I coauthored.
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a novel gedanken experiment [64], providing an illuminating example to show the con-

tradictions arising from this interpretation of physical reality. Hardy’s paradox is about

a set of certainty or impossibility (“all versus nothing”) statements which seems to be

contradictory in a classical interpretation, thus providing a form of “Bell’s theorem with-

out inequalities” [68]. A similar experiment was proposed by D. Greenberger, M. Horne,

and A. Zeilinger (GHZ) [69]; as a difference with respect to the latter, Hardy’s experi-

ment requires only two compatible observables (and not three) and requires only partial

entanglement (and not maximal). Relying on two-photons entanglement, several tests

of the Hardy paradox have been reported hitherto [70–76].

Let us consider two compatible degrees of freedom S1 and S2, as for example the polar-

ization of two photons. Assuming the non-contextuality principle, we agree that there

can be no relative influence between the measurement operations on different DOFs.

When referring to S1, we can either measure the quantity Σ or Σ′, while on S2 we mea-

sure Λ or Λ′. Σ and Σ′ are not compatible measurements, as the associated quantum

operators are not commuting; the same condition holds for Λ and Λ′. On the other

hand, we remark that Σ and Σ′ are compatible with Λ and Λ′.

We repeat the experiment many times, considering a large ensemble of photons prepared

in the identical initial state. For each degree of freedom, we choose at random the de-

tection settings among the possible configurations defined previously. As a result of the

experiment, we can evaluate the frequencies, and the probabilities as a consequence, of

the events associated with all possible combinations of Σ, Σ′, Λ and Λ′ being ±1. Now

we conjecture that is possible to prepare the initial state in order to get these results:

P1 : The outcome Σ = +1 and Λ = +1 never occurs, that is PΣ,Λ(+1,+1) = 0.

P2 : The outcome Σ = −1 and Λ′ = −1 never occurs, that is PΣ,Λ′(−1,−1) = 0.

P3 : The outcome Σ′ = −1 and Λ = −1 never occurs, that is PΣ′,Λ(−1,−1) = 0.

It will be proved below that for any realistic non-contextual model, these three properties

should logically imply the validity of the following fourth property:

P4 : The outcome Σ′ = −1 and Λ′ = −1 never occurs, that is PΣ′,Λ′(−1,−1) = 0

It is possible to show that quantum mechanics predictions, and real experimental out-

comes, allows us to find that, in a sizable fraction of measurements of Σ′ and Λ′, the

outcome Σ′ = −1 and Λ′ = −1 is indeed obtained, thus contradicting P4. This is

Hardy’s paradox.

The proof of P4 from P1-P3 is very simple. We can interpret Eq. P2 as follows: if we

measure Λ′ = 1, with probability equal to one we will find that Σ = +1. At the same
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time, from Eq. P3, we can deduce that if we measure Σ′ = 1, than Λ = +1. From

equation P1, we know that the outcome Λ = +1 and Σ = +1 occurs with vanishing

probability; as a consequence of the two previous statements, it is not possible to have

Λ′ = −1 and Σ′ = −1. Using Venn diagrams, we can visualize the properties we deduced

based on Eq. P1-P3. The Venn sets associated with the outcomes Σ = +1,Σ′ = −1,Λ =

+1, and Λ′ = −1 are shown in Fig. 3.2. From property P2 we infer that the event

Λ′ = −1 implies the event Σ = +1 which is represented by the fact that the Venn set

for the event Λ′ = −1 is internal to that for the event Σ = −1, as shown in Fig. 3.2.

Similarly, from P3 we infer that the event Σ′ = −1 implies the event Λ = +1, that is,

the Venn set of the event Σ′ = −1 is internal to that of the event Λ = +1. Now property

Figure 3.2: Venn diagrams for the events Σ = +1,Σ′ = −1,Λ = +1, and Λ′ = −1,
satisfying conditions P1, P2, P3. The sets Σ′ = −1 and Λ′ = −1 being internal to

disjoint sets cannot intersect, so that P4 follows immediately.

P1 implies that the Venn sets of the events Σ = +1 and Λ = +1 have no intersection, as

shown in Fig. 3.2. It is now evident from the figure that the sets of the events Σ′ = −1

and Λ′ = −1 cannot intersect as well, from which we deduce property P4.

We shall now prove that there exist physical systems where probabilities predicted by

quantum mechanics verify Eqs. P1-P3, whereas they violate Eq. P4. In agreement with

our experimental strategy, as degrees of freedom we consider single photon’s SAM and

the OAM, where for the latter we restrict our attention to the subspace generated by

the two helical modes |±1〉. As discussed in Ch. 1, in the paraxial limit SAM and OAM

represent compatible observables (see Eq. 1.24), thus they can be exploited for this kind

of tests. In this spin-orbit space, the Hardy state is expressed as

|ψ〉 = cos (γ)|L〉p| − 1〉o − sin (γ)|R〉p|1〉o, (3.13)
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where the p and o subscripts denote the polarization and OAM Hilbert spacesHp andHo,
respectively2. The entanglement in the state |ψ〉 is determined by the angle γ; separable

or maximally entangled states are obtained when γ = 0 and γ = π, respectively, while

partial entanglement is associated with intermediate values. In the following we shall

restrict γ to the range 0 < γ < π/4.

Let us now define the observables to be measured in the experiment, expressing them in

terms of the associated quantum operators. For each 2D Hilbert space, let us consider

two pairs of orthogonal states:

|+〉i = N
(√

sin γ |+ 1〉i +
√

cos γ | − 1〉i
)

|−〉i = N
(
−√cos γ |+ 1〉i +

√
sin γ | − 1〉i

)
|+′〉i = N ′

(√
cos3 γ |+ 1〉i +

√
sin3 γ | − 1〉i

)
(3.14)

|−′〉i = N ′
(
−
√

sin3 γ |+ 1〉i +
√

cos3 γ | − 1〉i
)

where N = (sin γ + cos γ)−1/2 and N ′ = (sin3 γ + cos3 γ)−1/2, and i = p, o. When i = p,

states (| + 1〉p, | − 1〉p) correspond to circular polarizations (|L〉, |R〉). The observable

operators are then defined as follows:

Σ̂ = |+〉p〈+|p − |−〉p〈−|p

Σ̂′ = |+′〉p〈+′|p − |−′〉p〈−′|p

Λ̂ = |+〉o〈+|o − |−〉o〈−|o (3.15)

Λ̂′ = |+′〉o〈+′|o − |−′〉o〈−′|o

Let us now calculate the quantum predictions for the four probabilities appearing in

properties P1–P4. They are given by expressions such as PΣ,Λ(+1,+1) = |〈+|p〈+|o|ψ〉|2

and similar ones. A simple calculation shows that the probabilities appearing in P1, P2,

P3 are indeed zero, but that the probability in P4 is given by

PΣ′,Λ′(−1,−1) = |〈−′|p〈−′|o|ψ〉|2 =

[
sin 4γ

4(cos3 γ + sin3 γ)

]2

, (3.16)

which is nonzero for the range 0 < γ < π/4 (hence, for all partially entangled states,

excluding only separable and maximally entangled ones). In particular, the probability

(3.16) is maximized for γ ≈ 24.9◦, for which PΣ′,Λ′(−1,−1) = [(1 +
√

5)/2]−5 ≈ 9%.

The experimental verification of the Hardy paradox would require the measurement of

2Please note that in this section we adopted the label p to refer to the SAM space, in place of the
greek letter π.
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vanishing probabilities; in real experiments, different kind of errors and finite instru-

mental accuracy makes this an extremely difficult task. Nevertheless we introduce an

inequality which generalizes the Hardy paradox to take into account experimental im-

perfections; a similar result was already reported by Mermin [68].

Realism of the model means that we can assign probabilities to the set of elemen-

tary events corresponding to each possible result of the measurement of the observables

Σ,Λ,Σ′,Λ′, even when they are not measured. Because each measurement can have

only the two results ±1, we have sixteen probabilities associated with each event. The

difference between a realistic statistical model and quantum mechanics stems from the

fact that, in the former, probabilities can be assigned to the elementary events, while

this is impossible in quantum mechanics in general. For example, any realistic statistical

model assigns values (eventually zero or one) to all 16 probabilities Pn (n = 1, . . . , 16)

of the four-fold joint measurements of Σ, Σ′, Λ, and Λ′, as reported in Table 3.1; this

is impossible in quantum mechanics, because the primed observables do not commute

with the unprimed ones. Besides realism, the model non-contextuality corresponds to

Σ Σ′ Λ Λ′ Σ Σ′ Λ Λ′

P1 −1 −1 −1 −1 P9 +1 −1 −1 −1
P2 −1 −1 −1 +1 P10 +1 −1 −1 +1
P3 −1 −1 +1 −1 P11 +1 −1 +1 −1
P4 −1 −1 +1 +1 P12 +1 −1 +1 +1
P5 −1 +1 −1 −1 P13 +1 +1 −1 −1
P6 −1 +1 −1 +1 P14 +1 +1 −1 +1
P7 −1 +1 +1 −1 P15 +1 +1 +1 −1
P8 −1 +1 +1 +1 P16 +1 +1 +1 +1

Table 3.1: Set of all possible values for the four observables Σ, Σ′, Λ, Λ′ and corre-
sponding symbols for the probabilities.

the assumption that the results of a measurements on a given observable are indepen-

dent of possible joint measurements carried out on other compatible observables. This

means that each probability Pn depends on the observables pertaining the system under

study and not on the context in which the measurements are performed. In particular,

the Pn cannot depend on parameters characterizing the measurement apparatus or the

environment. Non-contextuality is always assumed in classical physics and it is implicit

in the probabilities Pn in Table 3.1, independently of their actual values. From the

probabilities Pn, we may easily calculate the probabilities defining properties P1–P4,
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relevant for Hardy’s paradox. We obtain

PΣ,Λ(+1,+1) = P11 + P12 + P15 + P16

PΣ′,Λ(−1,−1) = P1 + P2 + P9 + P10

PΣ,Λ′(−1,−1) = P1 + P3 + P5 + P7

PΣ′,Λ′(−1,−1) = P1 + P3 + P9 + P11 (3.17)

Observing that all probabilities on the right of the last of Eqs. (3.17) are already present

on the right of the first three equations, we find the following inequality

PΣ′,Λ′(−1,−1) ≤ PΣ,Λ(+1,+1) + PΣ′,Λ(−1,−1)

+PΣ,Λ′(−1,−1) (3.18)

This relation should hold true in any non-contextual realistic model and is trivially sat-

isfied in the ideal noiseless case given by properties P1–P4.

3.5 Leggett Inequalities3

In 2003 A. J. Leggett formulated a new theorem providing a set of inequalities for a class

of contextual HVTs, which he named as Crypto-Contextual Hidden Variable Theories

[56]. In analogy to Bell and Hardy models, he considered a bipartite system characterized

by two degrees of freedom, that we can name X and Y . In the original paper, the SAM

(polarization) of two correlated photons was used, while again here we take X to be

the SAM and Y a 2D subspace of OAM of a single photon introduced in the previous

section. Two observers perform projective measurements on the two degrees of freedom,

using detection apparatus defined by vectors â and b̂ on the Poincaré spheres relative

to X and Y , respectively. In the crypto-contextual models, as for the Bell model, the

possible outcomes of these measurements are pre-determined (either deterministically or

stochastically) by a set of hidden variables λ, defined in a domain Λ. Due to our lack of

knowledge about these hidden variables, all measured quantities result from an average

in the hidden variable domain, weighted by the probability distribution ρ(λ) that the

system is in state λ.

In the original model proposed by Leggett [56], the hidden variables λ are defined by

assigning a specific “hidden” spin-like state û to X and v̂ to Y . This is done even if

the overall quantum state is prepared in an entangled state for which the individual

3Some paragraphs and sentences of this section are adapted or copied verbatim from the work [67]
which I coauthored.
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subsystems A and B would have no definite quantum state. The expectation values

for the observables X and Y with measurement settings â and b̂, respectively, are then

assumed to be given by the following expressions:

〈x〉λ =
∑
x

xP (x|â, b̂, λ) = û · â,

〈y〉λ =
∑
y

y P (y|â, b̂, λ) = v̂ · b̂, (3.19)

where λ = (û, v̂). The correlation C(â, b̂) between measurements performed on X and

Y are given by the expression

C(â, b̂) =

∫
Ω
dλ ρ(λ)

(∑
xy

xy P (x, y|â, b̂, λ)

)
, (3.20)

where P (x, y|a,b, λ) is a joint probability that the outcome projective measurement

on a and b are x and y, respectively. The model allows for contextuality of the two

observables X and Y, because this joint probability is in general non-separable, that

is, P (x, y|a,b, λ) 6= P (x|a, λ)P (y|b, λ). This in particular implies that each individual

measurement outcome x of the observable X may in general depend on the observable

Y settings b, and possibly even on its simultaneous outcome y, and vice versa. How-

ever, it should be noted that Eqs. (3.19) do imply a “non–signalling” condition, so that

each average value of a given observable is taken to be independent of the measurement

settings of the other observable.

For this model, C. Branciard et al. derived a simplified version of Leggett-type inequal-

ities [60], which we adopted for the experimental test of contextual realism (see next

section). This inequality involves three measurements on X along the vectors ai and six

on Y, along the vectors bi and b′i, where i = {1, 2, 3}, with the following constraints:

the three vector pairs bi,b
′
i form a same angle φ, their differences bi−b′i must be three

mutually orthogonal vectors, and their sums bi + b′i must be respectively parallel to the

ai (see Fig. 3.9). When these conditions are satisfied, Leggett’s model gives rise to the

following inequality [60]:

E3(φ) =
1

3

3∑
i=1

∣∣C(ai,bi) + C(ai,b
′
i)
∣∣

≤ 2− 2

3

∣∣∣∣sin φ2
∣∣∣∣ = L3(φ). (3.21)

Quantum mechanics, on the other hand, predicts a violation of this inequality. Indeed,

if the system is prepared in a maximally entangled state of the observables X and Y,

such as for example |Φ+〉 = (|+1〉p|−1〉o+ |−1〉p|+1〉o)/
√

2, the correlation coefficients
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predicted by quantum mechanics are given by

C(a,b)QM = −a · b = − cos (φ/2) , (3.22)

from which we obtain

EQM

3 (φ) = 2| cosφ/2|. (3.23)

This function EQM

3 (φ) is above the Leggett bound of  L3(φ) for a wide range of values of

the angle φ, as shown in Fig. 3.3.

Figure 3.3: Comparison between correlations predicted by the Leggett model and
those estimated through QM. It is possible to see that for small values of the angle φ
QM correlations are above the Leggett limit, even though the violation is not as large

as for the CHSH inequalities.

3.6 Experimental Tests of Contextual and Non-Contextual

Realism

Bell, Hardy and Leggett models consider physical systems made of two degrees of free-

dom, described in terms of identical 2D Hilbert spaces. As discussed previously, we

reproduced these systems considering the SAM and the OAM of a single photon, which

represent compatible observables in the paraxial limit. This strategy has several advan-

tages with respect to multi particle schemes, since on one hand it allows higher detection

efficiencies, while on the other the tunable generation of entanglement is much simpler;
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Figure 3.4: Poincaré sphere representation in the SAM-OAM space of light for the
states involved in the Hardy paradox [67]. (a) Graphical representation of the photon
Hardy state (3.13) for γ = 24.9◦ on the higher-order spin-orbit Poincaré sphere [41, 42].
The inset shows also the simulated transverse distribution of polarization (represented
by the small ellipses) and intensity (represented by the color brightness) for the optical
mode of such Hardy state. (b) Photon states in the Hilbert subspaces of polariza-
tion (upper row) and OAM (lower row), represented as arrows on Poincaré (Bloch)
spheres. These states define the measured observables in Hardy’s paradox test. The

mathematical expressions of these states are given in Eq.(3.14).

in our architecture, entanglement between SAM and OAM of a photon is obtained ex-

ploiting a single q-plate, whose optical retardation is tuned by means of an external

electric field.

3.6.1 Demonstration of the Hardy paradox4

To test the Hardy paradox we implemented the projective measurements defined in

Eq. 3.15 on a physical system consisting in a single photon, whose spin-orbit state is

prepared in the Hardy state (3.13). We experimentally determined the probabilities that

the photon is in one of the states associated with the projective measurements (3.15), in

order to show that for suitable values of γ our results verify Eqs. P1-P3 while violating

Eq. P4. As discussed previously the physical system here considered is described in

terms of the 4D spin-orbit Hilbert space of light; in Fig. 3.4 we provide a graphical

representation of the states given in Eq. 3.14 in terms the Poincaré spheres relative

the SAM and the 2D OAM spaces. In the same picture we report the inhomogeneous

polarization distribution charactering the partially entangled Hardy state.

The layout of the apparatus is shown in Fig. 3.5. Photon pairs generated as discussed

in Appendix B are coupled into a SMF; at the exit of the latter, a set of wave plates is

used to recover the initial polarizations, altered by propagation inside the fiber. Photons

are then split by means of PBS, according to their polarization; the V-polarized photon,

4Some paragraphs and sentences of this section are adapted or copied verbatim from the work [67]
which I coauthored.
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reflected at the PBS, is detected by a silicon avalanche photodiode (D1) and used as

trigger, whereas the H-polarized photon is used for the Hardy’s test, in the heralded

single-photon regime. In order to prepare the photonic Hardy state (3.13), we exploited

Figure 3.5: Experimental setup [67]. The SHG and SPDC stages are used to prepare
the heralded photon used in the Hardy test and its trigger companion, as explained in
the main text and in Appendix B. In the main setup, the heralded photon is prepared in
a controlled polarization state and then converted into a spin-orbit partially entangled
state by the q-plate. For carrying out the tomography of this state and the Hardy
test, the photon was then projected (filtered) with another sequence of wave plates
and a polarizer, for the polarization measurement, and by diffraction on a computer-
generated hologram (hologram patterns used for filtering specific states are shown in
the left inset) screened on a SLM, followed by spatial filtering in zero OAM mode and
photon detection. The photon counts coming from the trigger detector (D1) and the
heralded photon one (D2) were sent to a coincidence box, for recording the number of
photon coincidences occurring in a given time window. Legend: C-BOX - coincidence
box; Di - single photon detector; DM - dichroic mirror; f - lens; H - half-wave plate;
IF - bandpass interference filter; M - mirror; Q - quarter-wave plate; QP - q-plate; P -

polarizer; SLM - spatial light modulator.

the spin-orbit coupling occurring in a tuned q-plate. For this purpose, we prepared

the OAM part of the input photon in fundamental Gaussian mode, as obtained after

passing through a single-mode fiber; the SAM part was prepared so as to have an

elliptical polarization cos (γ)|R〉p − sin (γ)|L〉p5. After spin-orbit state preparation, the

photon was sent to the q-plate. Starting from the q-plate action (1.60) when δ = π, it is

easy to check that at the output of the device the Hardy state (3.13) is obtained. The

parameter γ, which defines the degree of entanglement in the final state, was adjusted

using a sequence of birefringent wave plates: a half-wave plate, with optical axis rotated

5Please note that in this section we adopted the label p to refer to the SAM space, in place of the
greek letter π.
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at the angle γ/2 from the direction of the input polarization, a quarter-wave plate, with

the axis set at π/4, and another half-wave plate at −π/8 (see Fig. 3.5).

We checked the quality of the Hardy state we prepared by carrying out a full quantum

tomography (see Sec. 4.3), based on projecting (filtering) the state on a set of mutually

unbiased bases in both polarization and OAM Hilbert spaces, and then using a standard

maximal likelihood estimator for best fit. The polarization filtering was carried out by

using a second set of birefringent wave plates followed by a polarizer. The OAM filtering

was based on a standard holographic method [77], by diffracting the photons on a set of

computer-generated holograms (optimized for fidelity [78, 79]) visualized on a SLM and

then filtering the zero OAM component within the first-order diffracted photons. Fig.

3.6 shows the experimentally reconstructed density matrix ρ̂ψ = |ψ〉〈ψ| of the generated

spin-orbit state (3.13) for γ = 0, γ = π/8, and γ = π/4.

Figure 3.6: Experimental characterization of partially entangled spin-orbit single-
photon states defined in Eq. 3.13 [67]. (a-c) Experimental reconstructed density matrix
for three different values of the entanglement parameter γ: (a) γ = 0, (b) γ = π/8, (c)
γ = π/4. The associated state fidelities are F = 0.985± 0.004, F = 0.984± 0.004, and

F = 0.956± 0.005, respectively.

For carrying out the Hardy test, we then set γ = 24.9◦ in order to maximize the proba-

bility (3.16), as explained above. While heralded photons prepared in this state are sent

in the main apparatus, we made a series of projective measurements of the observables

Sz,Σ,Σ
′ in the polarization subspace and Lz,Λ,Λ

′ in the OAM subspace. In particular,



Chapter 3 - Testing the foundations of quantum mechanics 52

the probabilities of detecting specified spin-orbit states were assessed experimentally by

counting the number of photon coincidences between the test photon and the trigger one

in a temporal window of 100 s. We first measured the probabilities of the four spin-orbit

basis states |L〉p|+ 1〉o, |L〉p| − 1〉o, |R〉p|+ 1〉o, |R〉p| − 1〉o, which are the eigenstates of

Ŝz and L̂z. The results are shown in Fig. 3.7 (a) and are in reasonable agreement with

the quantum predictions obtained from state (3.13). More precisely, while the counts

for states |L〉p| − 1〉o and |R〉p| − 1〉o were consistent with theory within experimental

uncertainties, the counts for state |R〉p|+ 1〉o were about 25% smaller than theory and

there was a 3% fraction of counts for state |L〉p| + 1〉o, which in theory should have

vanishing probability.

Next, we measured the four probabilities appearing in Eqs. P1-P4 entering Hardy’s para-

dox, by performing a projective measurement on the four states |+〉p|+〉o, |−′〉p|−〉o,
|−〉p|−′〉o, and |−′〉p|−′〉o. The experimental results are given in Fig. 3.7 (b). The count

frequency of state |−′〉p|−′〉o was found to be (7.4±0.2)% (specified errors are estimated

as standard deviations computed assuming Poissonian statistics and ignoring other pos-

sible sources of errors), against a quantum prediction of 9%. The other states presented

much smaller, but nonvanishing count frequencies: (2.1 ± 0.1)%, (0.45 ± 0.06)%, and

(1.0 ± 0.1)%, respectively for states |+〉p|+〉o, |−′〉p|−〉o, and |−〉p|−′〉o. This outcome,

probably due to an imperfect state preparation and/or to some residual cross-talk in

the OAM and polarization measurements, makes it not possible to apply the simple

all-versus-nothing reasoning presented above for Hardy’s paradox. But this is normal

for an experimental test, as no experimental result can be perfectly zero, because of the

unavoidable noise and other experimental imperfections. To take into account experi-

mental imperfections, one must replace the all-versus-nothing paradox with the Bell-like

inequality reported in Eq. 3.18. As quantum predictions do, our results reported above

violate the inequality by over seven standard deviations, thus confirming the contextual

behavior of quantum mechanics.

As a conclusion, we remark that non-contextuality in our single particle experiment

was assumed based on the observable compatibility, and not on their spatial separation.

While this is a conceptual limitation of our test, the use of a single particle demonstrated

in our approach has some other advantages. The first is that the experiment is much

simpler to implement, compared to a two-particle test. We used a heralded photon

regime, but a similar demonstration could be based on an attenuated light source, thus

making it even simpler. Simple-to-perform experiments testing the conceptual para-

doxes of quantum mechanics may have a strong educational value. A second advantage

is that the quantum detection efficiency for a single-photon detection can be made sig-

nificantly larger than for the two-photon case. This, in turn, could be exploited in the

future to carry out Hardy-like tests that are free from other assumptions, such as the
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Figure 3.7: Experimental verification of Hardy’s paradox, by using state (3.13) for
the input photon with γ = 24.9◦ [67]. (a) Coincidence count rates for the four spin-
orbit basis states. The measurement time window was of 100 s and the mean total
number of coincidences was of Ntot = 12000 ± 110, corresponding to the rate Ctot =
120.0 ± 1.1 coincidences/s. (b) Coincidence count rates for the measurement of spin-
orbit states (3.14), which define the observables Σ,Σ′,Λ, and Λ′. The ratio of the
reported coincidence rate values with Ctot gives the experimental frequencies and the

estimates of the probabilities for the photon to be in the corresponding state.

fair sampling hypothesis, or other detection-related loopholes that may undermine their

validity, similarly to the case of Bell inequalities (on this issue see for instance Ref. [66]).

3.6.2 Experimental violation of Leggett inequalities6

Leggett inequalities provide a tool for determining the impossibility of a class of non-

contextual realistic models. We tested them by measuring the quantum correlations

existing between the SAM and the OAM of a single photon, when the quantum state of

the latter has maximal entanglement between the two considered degrees of freedom.

The layout of our experimental setup is shown in Fig. 3.8. As discussed in Appendix B,

a photon pair in the polarization state |H,V 〉 is generated exploiting the SPDC process

in a nonlinear BBO crystal. Both photons were coupled in a single mode fiber; at

the exit of the latter they were spatially separated by means of a PBS, according to

their polarization. The V -polarized photon was coupled directly to an avalanche single

photon detector (D1) by an appropriate set of lenses and mirrors and was used as trigger.

6Some paragraphs and sentences of this section are adapted or copied verbatim from the work [80]
which I coauthored.
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The H-polarized photon, transmitted by the PBS, was used to perform the SAM-OAM

measurements by detecting coincidences with the trigger photon, so as to operate in a

heralded-single-photon quantum regime.

A tuned q-plate with topological charge q = 1/2 was used to prepare the spin-orbit state

of the photon, which enters the setup with horizontal polarization and in the fundamental

Gaussian spatial mode. After the q-plate, we obtained a maximally-entangled spin-orbit

state:

|H〉π|0〉o
q-plate−→ |Φ+〉 =

1√
2

(|L〉π| − 1〉o + |R〉π|+ 1〉o). (3.24)

The heralded photon prepared in the single-photon SAM-OAM entangled state |Φ+〉

Figure 3.8: Experimental apparatus used for performing the Leggett test in the SAM-
OAM Hilbert space of a single-photon [80]. See text for a detailed explanation of the
setup workings. Legend: PBS - polarizing beam splitter; hwp - half-wave plate; qwp -
quarter-wave plate; SLM - spatial light modulator; 100X - microscope objective; IF -

interference filters (10 nm bandwidth); Di - single-photon detectors.

was then sent to the detection apparatus, where its SAM and OAM values, correspond-

ing to observables X and Y, were both measured. The projective measurement on the

SAM state of the photon was singled out by means of a properly-oriented sequence of a

half-wave plate, a quarter-wave plate, and a polarizer. The orientations of the two wave

plates define the selected projection state a of the measurement, in the SAM Poincaré

sphere. Then, the OAM measurement was achieved by diffraction on a spatial light

modulator (SLM) followed by a spatial-filter system composed of a lens, a 100X mi-

croscope objective, and a pinhole having a 1 mm radius. The OAM projection state

corresponding to each vector b in the OAM Poincaré sphere of |m| = 1 was thus deter-

mined by the hologram pattern visualized on the SLM, as was computed statically by

a computer-generated-holography technique [81]. The spatial filter was used to select

only the TEM00 Gaussian component of the diffracted beam in the far-field zone. The
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selected photon, after both projections, was finally coupled to another avalanche single-

photon detector D2. The signals from the two detectors D1 and D2 were read out by a

coincidence box and a digital counter. The experimental correlation coefficients C(a,b)

Figure 3.9: The set of state projections in the SAM and OAM states used to test
the Leggett-type inequalities [80]. The SAM (polarization) states to be measured were
taken on the Poincaré sphere equator, i.e., a1 = |H〉, a2 = a3 = |D〉 = (|H〉+ |V 〉)/

√
2.

The OAM states b1 and b′1 were also taken along the equator line, at symmetrical
azimuthal angles ±φ/2 relative to a1. Similarly, b2 and b′2 were taken along the
equator line, at symmetrical angles ±φ/2 relative to a2. Finally, b3 and b′3 were taken
along a meridian line, at symmetrical polar angles ±φ/2 relative to a3 = a2. Examples
of the computer-generated holograms needed to measure these OAM states are shown in
the right inset, with χo and χs representing the polar and azimuthal angles (in degrees)

on the OAM Poincaré sphere, respectively.

between the measurements of SAM and OAM were computed as

C(a,b) =
N(a,b)+N(−a,−b)−N(a,−b)−N(−a,b)

N(a,b)+N(−a,−b)+N(a,−b)+N(−a,b)
, (3.25)

where N(a,b) are the experimental coincidence counts between the detectors D1 and

D2 when the SAM and OAM projections are set to a and b, respectively [65].

For the Leggett test, the adopted geometry of measurement settings ai, bi, and b′i is

shown in Fig. 3.9, together with some representative holograms used to measure the

OAM states.

Figure 3.10 shows the experimental E3(φ) data, as based on the measured correlation

coefficients, for an angle φ varying within the range (0◦ - 180◦), in steps of 4◦. The

experimental data (blue points) are in good agreement with the predictions of quantum

mechanics (violet dashed line), with only a small loss of visibility due to experimental

imperfections. For a specific region, i.e., 8◦ ≤ φ ≤ 52◦, we obtained a violation of the
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Figure 3.10: Experimental and theoretical values of Leggett’s function E3(φ) [80].
The blue points are the experimental data. Error bars are derived from Poissonian
statistics on the coincidence counts and correspond to one standard deviation. The
violet dashed line is the quantum mechanics prediction for the same function. The solid
red line is the Leggett’s bound L3(φ). Panel (a) shows the entire range of measurement,
φ ∈ [0, 180◦]. Panel (b) is a zoomed-in plot of the region in which a violation of the

Leggett’s bound is observed, i.e., 8◦ ≤ φ ≤ 52◦.

Leggett bound. The maximum violation is found for φ = 28◦ and it is equal to 7.4σ,

where σ is a standard deviation.



Chapter 4

Realization of mutually unbiased

bases for a six-dimensional

photonic quantum system

4.1 Introduction 1

The complementarity between different observables is a key element in quantum sciences,

as for instance in areas like quantum state reconstruction [82] and quantum key distri-

bution [83]. Quantum theory describes these observables in terms of non-commuting

hermitian operators, whose eigenstates are all pairwise unbiased. Reflecting this feature,

sets of eigenstates of complementary observables are referred to as mutually unbiased

bases (MUBs).

In high-dimensional systems, complementary observables and the corresponding MUBs

have been exploited to enhance the security in quantum cryptograpy [84], perform fun-

damental tests of quantum mechanics, such as quantum contextuality [85–87], explore

logical indeterminacy [88], and many other tasks in quantum information. For example,

new QKD protocols have been proposed in which a larger error rate can be tolerated

while preserving security [89, 90]. Moreover a different protocol extending Ekert91 [91]

by using entangled qutrits has been experimentally realized [92]. In quantum state to-

mography, MUBs play a crucial role because they correspond to the optimal choice of

the measurements to be performed in order to obtain a full reconstruction of the density

matrix. In this framework, an important problem is the determination of the maximum

number of MUBs which can be defined simultaneously for a given d-dimensional Hilbert

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [79]
which I coauthored
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space. Hitherto, this problem has been solved only for specific cases, corresponding to

d being a prime number or a power of a prime number. For these systems, d+ 1 MUBs

can be defined at the same time. On the other hand, there is a strong numerical evi-

dence that such result does not hold for generic systems, even though a mathematical

demonstration is still missing.

Different experimental approaches have been recently adopted to implement complete

sets of MUBs for state reconstruction in photonic systems. For example, the polariza-

tion of a photon pair was used to define MUBs in dimension four [93]. The orbital

angular momentum (OAM) of single photons has been used to address Hilbert spaces

with d = 2, 3, 4, 5 [94] and multiple propagation modes were combined to reach dimen-

sions d = 7, 8 [95]. Hybrid methods combining polarization and OAM were also used

to define and manipulate photonic ququarts (d = 4) [96]. However, since in d = 6 no

complete set of MUBs is known, this case has not been investigated hitherto for state

tomography and even the minimal set of three MUBs has never been demonstrated in

an experimental framework.

In this chapter we report the implementation of the minimal set of MUBs in a six-

dimensional (6D) photonic quantum system, following two different approaches. In the

first one, we considered the 6D Hilbert space as the product of a two-dimensional (2D)

and a three-dimensional (3D) space. Accordingly, these spaces can be encoded in the

polarization and the OAM degrees of freedom, respectively, if considering for the OAM

the subspace generated by helical modes |−1〉, |0〉 and |+1〉. In our second experiment,

we prepared and characterized the three 6D MUBs exploiting pure OAM states of a

single photon. To generate complex superposition of helical modes, a novel holographic

technique was developed, which allows the exact generation of arbitrary optical fields.

As a difference with respect to previous techniques, this provides a high fidelity in the

state generation, which was crucial to guarantee an effective uniform overlap between

states in different MUBs. The approach introduced in this work can be easily extended

to higher dimensional spaces, where the generation and the accurate control of maximal

sets of MUBs is a very demanding task.

4.2 Mutually unbiased bases for six-dimensional systems2

In a d-dimensional Hilbert space Hd we can consider two observables A and B. The

associated eigenstates {|ai〉} and {|bi〉}, with i ∈ {0, 1, ..., d− 1}, are two possible basis

2Some paragraphs and sentences of this section are adapted or copied verbatim from the work [79]
which I coauthored
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for Hd; they are said to be mutually unbiased if

|〈bj |ai〉|2 =
1

d
, ∀i, j ∈ {0, 1, ..., d− 1} . (4.1)

It is possible to show that such a pair of MUBs always exists; indeed let us identify

eigenstates |ai〉 with the computational basis

{|ai〉} = {|0〉, |1〉, ..., |d− 1〉} ; (4.2)

the dual basis obtained by discrete Fourier transform

|bi〉 =
1√
d

d−1∑
j=0

ω ijd |aj〉 (4.3)

is mutually unbiased to the previous one. In Eq. 4.3 ωd = exp (i2π/d), and the non-italic

i denotes the imaginary unit (not to be confused with the index i). The operators associ-

ated with these specific basis provides an algebraic complete set that fully parametrizes

the physical degree of freedom described by the Hilbert space: all other operators acting

on this space are product of powers of Â and B̂ [97].

When d = np, with n prime number and p a positive integer, d+1 MUBs can be defined

simultaneously and can be found using several methods, that is the Galois Field, the

Heisenberg-Weyl group, Hadamard matrices, etc. (for a review see [97, 98]). These sets

of MUBs are said to be complete, since as we will see below they provide the minimum

number of projective measurements for determining a quantum state in Hd. In the gen-

eral case of composite dimensions that are not prime powers, such as d = 6, 10, 12, ...,

all previous methods fail [99]. On the base of extensive numerical simulations, it has

been conjectured that complete sets of MUBs do not exist in this case [100], although

this conjecture hitherto has not been rigorously proved. A minimum number of MUBs

that is known to exist in such cases is given by pk + 1, where pk is the lowest factor in

the prime decomposition of the number d [101]. For instance, in the d = 6 case, three

MUBs can be easily constructed, but no evidence for the existence of a fourth basis that

is unbiased with the first three has ever been found.

In the remaining part of this section, we will focus our attention on a 6D Hilbert space.

For this space, three MUBs can be easily found decomposing the space in the product of

2D and 3D spaces, that is H6 = H2 ⊗H3. We know that for both subspaces a complete

set exists, made of three and four bases, respectively. We refer to the corresponding

states as |mα
i 〉 and |nβj 〉; here indices i ∈ {1, 2}, j ∈ {1, 2, 3} label different states in each

basis, while α ∈ {1, 2, 3}, β ∈ {1, 2, 3, 4} label different bases in the subspaces H2 and

H3, respectively. By combination of these states we obtain twelve bases for the global

space H6, but a maximum of three bases can be found to be mutually unbiased. A
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possible choice is given by the following three bases:

I = {|m1
i 〉 ⊗ |n1

j 〉}

II = {|m2
i 〉 ⊗ |n2

j 〉} (4.4)

III = {|m3
i 〉 ⊗ |n3

j 〉}

It can be immediately seen that any other combination obtained introducing the fourth

basis
{
|n4
j 〉
}

of H3 would not be mutually unbiased with the others, since it is missing

a different basis in H2. This set of 18 product states cannot be extended by any other

vector in H6, even if entangled states are considered [102]; moreover if a complete MUBs

set in d = 6 existed, then only one among the seven bases therein could be composed of

product states, while all others must be entangled [103].

States |mα
i 〉 and |nβj 〉 can be directly calculated as the eigenstates of the matrices reported

in Appendix C. We will provide their explicit expression when discussing our scheme to

realize these 6D MUBs in a photonic system.

4.3 Quantum state tomography

Quantum state reconstruction, or quantum state tomography (QST), consists in the

determination of the quantum state of an ensemble of many identical particles (or more

complex physical systems). In this context, MUBs are a fundamental resource since pro-

jective measurements over states belonging to a set of MUBs may represent an optimal

choice in QST. In the most generic quantum scenario, which includes the possibility of

statistical mixtures, the state of a system is described by the density operator ρ̂, which

for pure states is equal to

ρ̂ = |ψ〉〈ψ| (4.5)

Assigning a specific basis in a Hilbert space Hd, the density operator can be expressed

as a d × d complex matrix ρi,j . Associated eigenvalues λj represent the probabilities

that the system can be found in each of the corresponding eigenstates; accordingly they

are semi-positive real numbers verifying the property

0 ≤ λj ≤ 1 (4.6)

Mathematically, in order to have λj ∈ R and to verify the normalization of these prob-

abilities, the matrix ρ is required to be hermitian, while its trace has to be equal to
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one:

ρi,j = ρ∗j,i (4.7)

Tr ρ =
d−1∑
i=0

ρi,i = 1 (4.8)

As a consequence of Eqs. 4.7-4.8, among the 2 d2 real coefficients which define a density

matrix, only d2 − 1 are independent. The aim of QST is the determination of such

parameters, starting from the outcome of an ensemble of measurements.

A basic approach to QST consists in the formulation of a system of d2 − 1 equations,

where the variables to be determined are the independent coefficients in ρ. Such equa-

tions are given in terms of the results of projective measurements, operated on a set of

d2 − 1 states. As we have seen previously, only for specify dimensions this set of states

may correspond to a maximal set of MUBs. Interestingly, for these Hilbert spaces,

MUBs are an optimal choice since they provide the minimum number of states for the

required projective measurements, and at the same time they optimize the accuracy in

the estimation of the matrix parameters. When realizing projective measurements for

QST on an ensemble of identical particles, the choice of the states for projections influ-

ences the accuracy of the obtained results. Optimal strategies correspond to sampling

the Hilbert space uniformly; in this sense, MUBs can play a key role since the associated

states are distributed over the whole Hilbert space.

To make the concept of QST clear, and to introduce the technique we exploit in our ex-

periments, we provide a simple and standard example. Let us consider the polarization

of a single photon, which can be described in terms of a 2 × 2 density matrix; this can

be written in terms of the reduced Stokes parameters introduced in Sec. 1.3

ρ =
1

2

(
1 + s3 s1 − is2

s1 + is2 1− s3

)
(4.9)

Reduced Stokes parameters are three normalized real numbers, that we can use to de-

termine the three independent parameters in ρ. Nevertheless, to determine them in an

experiment, we have to measure to four quantities S0, S1, S2, S3. A fourth measurement

is needed in order to obtain matrix parameters which verify the normalization condition

Tr ρ = 1.

It is simple to understand that if we include the possibility of experimental imperfections,

it can happen that the matrix we determine from Eq. 4.9 does not verify all requirements

reported in Eqs. 4.7, 4.8. In our experiments, in order to avoid the possibility of deter-

mining “illegal” density matrices, we adopt a different strategy relying on a statistical

approach introduced by James et. al. [104]. We start by defining a triangular matrix
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T (~t), in terms of four real parameters ~t = {t1, t2, t3, t4}

T =

(
t1 0

t3 + i t4 t2

)
(4.10)

The matrix ρ obtained as

ρ =
TT †

Tr(TT †)
(4.11)

verifies Eqs. 4.6-4.8, thus it corresponds to a legal parametrization of a density matrix in

terms of parameters ~t. In order to determine these numbers, we consider the operators

M̂j = |ψj〉〈ψj |, defining projective measurements over states |ψj〉. Photons passing

through a set of wave plates and a polarizer, oriented so as to implement the projector

Mj , are sent to a detector; we label the associated photon counts as n̄j . On the other

hand, we define the expected photon counts as

nj = Tr(TT † M̂j) (4.12)

assuming for the time being a density matrix which is not normalized (Tr(TT †) 6= 1).

The probability that we get the result n̄j when measuring Mj depends on the parameters

~t, and it is proportional to

exp

[
−(n̄j − nj)2

2σ2
j

]
(4.13)

where σj is the standard deviation associated with the quantity n̄j ; typically this is

equal to
√
n̄j . The total probability of obtaining the results {n̄j}, with j = {0, 1, ..., k},

is given by

P =
1

N

k∏
j=0

exp

[
−(n̄j − nj)2

2σ2
j

]
(4.14)

where N is a normalization factor; here we are assuming that all detectors and mea-

surement settings are affected by the same detection efficiency. The parameters ~t are

determined so as to maximize the probability 4.14, which is equivalent to minimize the

likelihood function

L(~t) =
k∑
j=0

exp

[
−(n̄j − nj)2

2n̄j

]
(4.15)

The minimization of the function L(~t) is achieved by exploiting dedicated routines; in

our case, we use a standard minimization routine provided by Mathematica, by Wolfram
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Research. Once the parameters ~t are determined, the density matrix is recovered using

Eq.4.12. In order to implement this “maximum likelihood technique”, we need to per-

form k projective measurements, where we have seen that k ≥ d2. In place of MUBs,

overcomplete sets of states can be used, as we did for example in the experiment we

discuss below.

The technique we described can be generalized to Hilbert spaces of arbitrary dimensions,

by considering an adequate number of parameters tj . In real experiments, projective

measurements can be characterized by many imperfections; when these are identified,

they can be taken into account in order to get an accurate QST. A detailed pedagogical

discussion about the QST of a polarization qu-bit which takes into account experimental

imperfections can be found in Ref. [105].

4.4 Encoding OAM states exploiting a high fidelity holo-

graphic technique

Our scheme for the realization of MUBs in a 6D system relies on encoding the quantum

information in 3D or 6D OAM spaces of a single photon. To this end, we need to be able

to prepare single photon states which are superpositions of three or six helical modes,

respectively, corresponding to complex light beams. It is well known that optical beams

with an arbitrary field distribution can be generated by means of diffraction on a Spatial

Light Modulator (SLM), whose screen displays a “kinoform” introducing a specific phase

profile. In the very general case, to obtain a particular field distribution from a plane

wave, it is required a manipulation of both phase and amplitude of the impinging wave;

but how can this be achieved relying on a device that can uniquely change the phase of

a beam, as most SLMs do? Several possibilities exist, all based on tailoring the contrast

in the fringes of the kinoform, thus modulating at each point in the transverse plane the

amount of light which is diffracted at the first order. Existing methods provide good

results for many applications, but do not work properly in our case where a high fidelity

is needed in the generation of the desired state.

Given the optical field Ae
iφ

, we may consider a kinoform introducing the phase factor

[78, 79]

M = Mod

[(
φ− π I +

2πx

Λ

)
, 2π

]
I (4.16)

where Λ is the grating period and fixes the diffraction angle, while

I =
[
1 + (1/π)sinc−1(A)

]
. (4.17)
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Figure 4.1: Kinoforms for the generation of complex optical fields, as calculated us-
ing Eq. 4.16. The optical fields we have considered are superposition of helical modes,
neglecting the radial dependance. At the first diffraction order, a plane wave (or equiv-
alently a Gaussian beam) is converted into the state reported below the corresponding

hologram.

Here sinc−1 is the inverse of the sinc function sincx = sinx/x, and Mod is the func-

tion that gives the reminder from division of the first argument by the second. Exact

calculations [78] show that when a plane wave is impinging on a SLM displaying the

kinoform reported in Eq. 4.16, in the far field in the first diffraction order the field Aeiφ

is generated. This result is exact (no approximations were considered in its derivation),

thus the fidelity is in principle equal to 100%; in every experiment lower values are

obtained depending on the quality of the spatial light modulator and on its resolution,

since the theoretical analysis refers to the ideal case of infinite pixels. The price we

pay to achieve a high fidelity in the state preparation is a lower diffraction efficiency

with respect to other existing methods. In Fig. 4.1 we report some holograms calculated

for the generation of superposition of two and three helical modes, as described in the

caption of the figure.

Eq. 4.16 represents a very important result since it allows one to prepare complex OAM

states, characterized by a high fidelity; these features have been exploited recently for

the quantum simulation of wave packets dynamics in a Quantum Walk [106](see Ch. 5).

4.5 Generation and characterization of hybrid MUBs com-

bining SAM and OAM of single photons3

The first strategy we adopted to generate a 6D quantum system consisted in the hybrid

combination of a 2D space and a 3D space, corresponding to the SAM and the OAM

space of single photons. In particular, the 3D space is obtained from the superposition

of three OAM modes {| − 1〉, |0〉, |1〉}. Indeed, as discussed in Sec. 4.2, a possible route

3Some paragraphs and sentences of this section are adapted or copied verbatim from the work [79]
which I coauthored



Chapter 4 - Realization of MUBs for a six-dimensional photonic quantum system 65

to construct three MUBs in H6 is to consider products of MUBs for H2 and H3. In

the SAM space, we considered the three bases Π1 = {|H〉, |V 〉}, Π2 = {|A〉, |D〉} and

Π3 = {|L〉, |R〉}. In the OAM space, we have four MUBs, O1 = {|+ 1〉, |0〉, |− 1〉}, O2 =

{|α1〉, |α2〉, |α3〉}, O3 = {|β1〉, |β2〉, |β3〉}, and O4 = {|γ1〉, |γ2〉, |γ3〉}. States introduced

in the four OAM bases are defined as follows

|α1〉 = (| − 1〉+ |0〉+ |1〉)/
√

3

|α2〉 = (| − 1〉+ ω|0〉+ ω2|+ 1〉)/
√

3

|α3〉 = (| − 1〉+ ω2|0〉+ ω|+ 1〉)/
√

3

|β1〉 = (| − 1〉+ ω|0〉+ ω|1〉)/
√

3

|β2〉 = (| − 1〉+ ω2|0〉+ |+ 1〉)/
√

3

|β3〉 = (| − 1〉+ |0〉+ ω2|+ 1〉)/
√

3

|γ1〉 = (| − 1〉+ ω2|0〉+ ω2|1〉)/
√

3

|γ2〉 = (| − 1〉+ ω|0〉+ |+ 1〉)/
√

3

|γ3〉 = (| − 1〉+ |0〉+ ω|+ 1〉)/
√

3 (4.18)

where ω = ω3 = ei 2π/3. Combining SAM and OAM bases we obtained a set of three

MUBs for the 6D space, defined as I = Π1⊗O1, II = Π2⊗O2 and III = Π3⊗O3. The

intensity and phase profiles of the nine OAM states belonging to these three MUBs are

shown in Fig. 4.2. The preparation of SAM states is achieved by means of a set of wave

plates, which are suitably oriented. In order to tailor the OAM part, we exploited the

holographic technique introduced in Sec. 4.4. Accordingly, we calculated the kinoforms

needed to generate the nine OAM states of the first three MUBs. The resulting hologram

patterns are shown in Fig. 4.2. It can be seen that these kinoforms include only an

azimuthal dependence, since the OAM state definition ignores the radial coordinate.

This implies that the same holograms can also be used with a Gaussian input beam

instead of a plane wave and only the radial profile of the diffracted wave will be affected,

while the OAM state will remain the same. Moreover, we do not need to finely adjust

the input beam waist of the Gaussian beam.

We remark that the holograms defined by Eq. 4.16 generate ideally exact modes in the far

field, so that the expected overlap between states belonging to the same basis vanishes

identically and that between states belonging to different MUBs is 1/3 in the qutrit

space (and hence it will be 1/6 in the qusix space, after combining with polarization).

As mentioned, this is not the case for other commonly used holographic methods (see

[78, 79] for a quantitative analysis). In order to experimentally generate these hybrid

qusix states we employed the setup shown in Fig. 4.3. Relying on an architecture similar

to that introduced in Appendix B, we realized a single photon source operating in the

heralded regime (this part of the setup is not shown in the figure). Single photons
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Figure 4.2: MUBs for hybrid photonic qusix encoding. Representation of quantum
states with dimension d = 6 obtained from the direct product of a three-dimensional
subspace O of OAM and the two-dimensional space π of polarization. The three main
boxes correspond to the three MUBs. On the left side, the intensity and phase dis-
tributions of each OAM spatial mode and the corresponding generating kinoform are
shown. On the right side the polarization states are illustrated graphically by showing

the optical electric field orientation in space at a given time.

enter the setup shown in Fig. 4.3 after propagating in a single-mode fiber (SM) to filter

out all the spatial modes but the Gaussian mode TEM00, i.e., OAM state |0〉 (OAM

qutrit initialization). A set of waveplates (C) compensates the polarization after the

transmission through the fiber. The photons are then sent through a polarizing beam

splitter (PBS) (polarization qubit initialization) and, after adjusting the beam radial

size by a pair of lenses (MA), to a first reflecting spatial light modulator (SLM1) which

generates the desired OAM qutrit state. The hologram kinoform displayed on the SLM1

for each OAM state to be generated, in the first-order diffraction, is shown in Fig. 4.2.

After SLM1, a HWP and a (QWP) are used to write the polarization qubit in the
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Figure 4.3: Sketch of experimental setup for generating and testing photonic MUBs
in dimension six [79]. The polarization state is controlled by suitable sequences of wave
plates, while the OAM mode is controlled by SLMs and single-mode fibers. Legend:
SM - single-mode fiber; C - polarization compensation waveplates; HWP - half-wave
plate; QWP - quarter-wave plate; MA - radial mode adjustment lens set; SLM - spatial

light modulator; SPCM - single-photon counter module.

photon. Hence we are able to generate any hybrid qusix that is a product of a qutrit

and a qubit.

The qusix-carrying photon is then sent to the detection stage. This stage is composed of

a polarization analysis set (HWP, QWP and a PBS) and a second spatial light modulator

(SLM2) for converting in diffraction the OAM state to be detected back into a Gaussian

mode. The photon is finally coupled to a single mode fiber, to filter only this Gaussian

mode, connected to a single-photon counter module (SPCM). To eliminate the Gouy

phase-shift effects between different OAM eigenstates occurring in free propagation, an

imaging system (not shown in the figure) has been included to image the screen of SLM1

onto the SLM2. All waveplates and SLMs were computer-controlled so as to allow for a

fully automatic generation and measurement procedure. With this setup, it is possible

to perform a projective measurement upon every possible separable state of polarization

and OAM.

As a first test, we verified the MUBs properties by generating each qusix |ψi〉 among

the 18 states of the MUBs and then projecting it onto all the 18 states |ψj〉. Figure 4.4

shows the resulting measured probability distribution Pij = |〈ψj |ψi〉|2, compared to the

theoretical one P ′ij . For a quantitative comparison, we used the similarity parameter

S =
(
∑
i,j

√
PijP ′

ij)
2∑

i,j Pij
∑
i,j P

′
ij

, which is a natural generalization of the fidelity used to compare two

wavefunctions, finding S = (99.19 ± 0.04)%. As a second check of the quality of our
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Figure 4.4: Experimental analysis of hybrid qusix photonic states [79]. Probabil-
ity distribution resulting from all 18 × 18 projections of each state within the three
MUBs over all the others, comparing theoretical and experimental values. According
to theoretical predictions, we expect that the 18 × 18 matrix can be divided into nine
6× 6 blocks Amn , where the two indices m,n ∈ {I,II,III} label generation and detection
bases, respectively. Blocks that correspond to projection of one basis over itself (m = n)
should be diagonal, i.e., (Amm)i,j = δij . Other blocks, whose values represent the overlap
between states belonging to two different bases, should be flat, i.e., (Amn )i,j = 1/6, for

m 6= n.

hybrid qusix states, we reconstructed the density matrix of all the 18 states by quantum

state tomography, exploiting the maximum likelihood technique illustrated in Sec. 4.3.

Since we lack a complete set of MUBs in dimension six, we performed measurements

in all possible product states obtained combining the three MUBs of the polarization

space Π and the four MUBs in the OAM space O, for a total of 72 projections. In Table

4.1, the resulting experimental fidelities of the 18 MUBs states are reported. The overall

mean fidelity was F̄ = (98.51 ± 0.04)%. Moreover, Figure 4.5 shows the reconstructed

density matrices compared to the theoretical ones for three representative qusix states,

one for each MUB considered here.
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Figure 4.5: Quantum tomography of hybrid qusix photonic states [79]. Density
matrices associated with states of each of the three MUBs have been fully reconstructed
by projections over all the 72 states obtained by direct product of the three MUBs of
the 2D polarization space Π and the four ones of the 3D OAM subspace O. Here we
show one state for each MUB. Experimental and theoretical matrices are reported for

comparison.

4.6 Generation and characterization MUBs exploiting pure

OAM modes of single photons4

In our second experiment, we implemented qusix photonic states using pure OAM modes,

not taking into account the polarization degree of freedom. Although the hybrid ap-

proach may offer advantages for certain specific tasks [29], an encoding in OAM is in

principle suitable of extension to arbitrary dimensionality and enables the generation of

any kind of state, including the entangled ones which, for hybrid encoding, would need

a more complex experimental setup. The 6D Hilbert space is realized exploiting OAM

eigenstates as logical basis:

I = {| − 3〉, | − 2〉, | − 1〉, |1〉, |2〉, |3〉}. (4.19)

The three MUBs were still defined starting from the tensor products of a 2D and a

3D spaces, as in the hybrid case. This time the decomposition of the 6D space is not

physical, since the two spaces do not correspond to different degrees of freedom. More

details about the resulting states of the three bases I, II, III are given in Appendix C.

4Some paragraphs and sentences of this section are adapted or copied verbatim from the work [79]
which I coauthored
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Basis State Fidelity

I

|H〉|+ 1〉 0.986± 0.002
|H〉|0〉 0.982± 0.002
|H〉| − 1〉 0.986± 0.002
|V 〉|+ 1〉 0.988± 0.002
|V 〉|0〉 0.980± 0.002
|V 〉| − 1〉 0.983± 0.002

II

|A〉|α1〉 0.989± 0.001
|A〉|α2〉 0.981± 0.002
|A〉|α3〉 0.986± 0.002
|D〉|α1〉 0.989± 0.001
|D〉|α2〉 0.982± 0.002
|D〉|α3〉 0.980± 0.002

III

|L〉|β1〉 0.981± 0.002
|L〉|β2〉 0.981± 0.002
|L〉|β3〉 0.979± 0.002
|R〉|β1〉 0.977± 0.002
|R〉|β2〉 0.972± 0.002
|R〉|β3〉 0.970± 0.002

Average Fidelity 0.9851± 0.0004

Table 4.1: Experimental fidelities measured for all 18 qusix hybrid states that char-
acterize the three chosen MUBs [79].

The experimental setup used for generating and testing the states of the MUBs is the

same as in the hybrid qusix case (see Fig. 4.3), but with the polarization optics set so as to

keep a fixed polarization everywhere. The kinoform generation was based on the method

described in Sec.4.4. Figure 4.6 a) shows the intensity and phase profile of the 18 OAM

modes which form the three MUBs. In Figure 4.6 b), the theoretical and experimental

probability distributions for all combinations of state preparation and detection are

reported. The similarity between the two distributions is S = (99.06± 0.04)% while the

mean fidelity over the 18 states is F = (98.78± 0.08)%. Comparing this result with the

hybrid case, in which only OAM states in dimension 3 were generated, we find that the

fidelity of the OAM generation does not decrease rapidly with the dimensions. Hence,

the holograhic method used in this work promises to be suitable for the high-fidelity

generation of OAM photonic qudits with very large dimension d.
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Figure 4.6: Experimental analysis of pure OAM qusix [79]. a) Graphical representa-
tion of all 18 states of the three selected MUBs, in the case of pure OAM 6D encoding.
The precise definition of these states is given in in Appendix C. For each state, both the
intensity and phase patterns are shown. b) Theoretical and experimental probability
distributions for an experiment in which all the 18× 18 combinations of generated/de-

tected states belonging to the three MUBs are tested.



Chapter 5

Simulation of quantum walks and

topological phases

5.1 Introduction

A random walk (RW) represents the dynamics of a single particle which moves in a

discrete lattice; at each step of the evolution, the particle is shifted along a specific

direction that is determined according to a random process, such as the toss of a coin.

RWs and their generalization to multi-particle schemes are used to model a variety of

physical systems, or stochastic processes bearing on other disciplines such as finance,

and are a key element in computer sciences.

Quantum walks (QW) [107, 108] have emerged recently as the quantum analog of the

classical RWs, and they are becoming an important resource in several quantum sciences.

Relying on these processes, quantum algorithms [109–112] and schemes for universal

quantum computation [113–115] have been introduced. Moreover, they can be exploited

for the simulation of phenomena occurring in complex systems, such as energy transport

in chemical processes [116] or Anderson localization in disordered media [117]. In 2010,

Kitagawa et al. put forward for the first time the idea that QWs could be exploited for

the simulation of topogical phases (TP) which characterize condensed matter systems

[118], demonstrating that QWs protocols could realize all classes of TPs in 1D and 2D

systems [119]. Recently, topologically-protected bound states have been observed at the

interface between regions with different topologies [120].

The versatility of QWs as a tool for several quantum applications has fueled the search for

platforms for their experimental realization; although many schemes have been demon-

strated [121], the implementation of stable, scalable and efficient protocols is still a

demanding task. In the last decade indeed, implementations of QWs in 1D have been

72
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realized in a variety of physical systems, such as trapped ions [122, 123] or atoms [124],

nuclear-magnetic resonance (NMR) systems [125], and photons, using both bulk op-

tics [126–128] and integrated waveguides [129–131]. Remarkably, only a few photonic

simulations of multi-particle QWs have been reported, using two-photon states [117, 129–

131] or classical coherent sources [132]. Among these, photonic platforms can be distin-

guished according to the optical degrees of freedom that are considered for the encoding

of the two sub-systems characterizing a QW, that is the walker and the coin. In 2010,

Zhang et al. proposed a novel protocol based on the idea of encoding the walker and

the coin in the OAM and in the SAM of single photons [133], respectively. The scheme

relies on the presence of a q-plate at each step of the process, which realizes the shift of

the walker’s coordinate, conditioned by the coin state. The novel protocol was the first

demonstration of a QW involving inner degrees of freedom and taking place in a single

light beam, thus not requiring real space interferometers for its implementation. Other

schemes involving SAM and OAM of light have already been demonstrated [126], but

they rely on splitting and recombining the beam at each step, as for the other photonic

implementations.

In this chapter, we report the results of two different experiments regarding the realiza-

tion of quantum walks, and their application for the simulation of a quantum topological

phase transition. In the first experiment, we implemented a generalization of the scheme

proposed by Zhang et al.. In addition to the simulation of standard QWs, we consid-

ered a novel class of these processes, corresponding to the unitary evolution obtained

with a partial tuning of the q-plates, which we named hybrid QWs. Interestingly, the

optical retardation of the QP has a strong influence on the topological features of the

system. In addition, we exploited one of the advantages of this implementation, that

is the possibility of preparing the initial state of the walker in a delocalized state, as

resulting from the superposition of many lattice sites [134, 135]; as a specific demon-

stration of the usefulness of such possibility, we prepared OAM Gaussian wave packets

and observed their free evolution, which is governed by the QW band structure and the

associated dispersion relation. Finally, we demonstrated that our platform is suitable

for multi-particle walks, reporting a QW for two indistinguishable photons.

In the second experiment, we introduced a hybrid QW protocol, in which different val-

ues of the parameter δ (the q-plate optical retardation) determine the existence of two

different topological phases. Varying δ in order to induce a phase change in the sys-

tem, we investigated the transition by looking at the moments of the final probability

distribution of the walker, after a finite number of steps. Indeed we have shown that in

the large time limit (high number of steps) this moments are affected by a discontinuity

at the phase transition, which is associated with the group velocity dispersion in the

Brillouin zone. These features were observed directly in a 6-steps QW. At the same
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time, we provided a theoretical demonstration of our results, determining the analytical

expression for the first and the second order moments in the large time limit.

5.2 Theoretical description of a quantum walk1

The simplest version a QW consists of a single walker moving on a 1D lattice; this degree

of freedom is described in terms of a infinite dimensional Hilbert space Hw, spanned by

kets |x〉w, with x ∈ Z. The walker has an internal degree of freedom, usually referred

to as coin, described by a 2D Hilbert space Hc; for the latter, we consider the basis

formed by kets {| ↑〉c, | ↓〉}c (in the following, subscripts c and w will be omitted for

brevity whenever there is no risk of ambiguity). The Hilbert space H describing the

global system (walker plus coin), is the direct product of Hc and Hw. In this space, the

QW dynamics is given by the evolution operator Û0 associated with a single step of the

process; indeed, after n steps, a system prepared in the initial state |ψ0〉 will evolve to

the final state |ψn〉, given by

|ψn〉 = (Û0)n|ψ0〉. (5.1)

The positive integer n plays the role of a discrete temporal coordinate, and this type

of quantum evolution is referred to as discrete time QW. We may consider the case

where the time is a continuous variable, but the introduction of such continuous time

QWs is out of the scope of this work. The operator U0 is made of two terms; the first

is a conditional displacement, described by the operator Ŝ. Being L̂±|x〉 = |x ± 1〉
the two operators increasing or decreasing the walker’s coordinate by one lattice unit,

respectively, the operator Ŝ is defined as follows:

Ŝ = | ↑〉〈↑ | ⊗ L̂+ + | ↓〉〈↓ | ⊗ L̂− (5.2)

The state of the coin subsystem determines the direction of the displacement the walker

undergoes at each step of the process. Alternatively, the step operator can be expressed

as

Ŝ = eiŜz⊗P̂ , (5.3)

where Ŝz = | ↑〉〈↑ | − | ↓〉〈↓ | and eiP̂ a is the operator associated with the translation

in the walker space, being a the length of the displacement (a = 1 in our case) and P̂

the momentum operator. It is clear that Ŝ is not separable in a coin and a walker part,

1Some paragraphs and sentences of this section are adapted or copied verbatim from the work [106]
which I coauthored
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whereas it entangles the two degrees of freedom [134, 136]. Between consecutive steps,

the “randomness” is introduced by a unitary operator T̂ , acting on the coin DOF only;

this can be described as a matrix, that is

T =

(
a b∗

b −a∗

)
(5.4)

with a, b complex numbers such that |a|2 + |b|2 = 1. Unbiased walks are obtained when

|a| = |b|; among these, it is common to consider the Hadamard walk, corresponding

to the case a = b = 1/
√

2. The step operator is realized cascading the conditional

displacement Ŝ and the coin tossing T̂ operators, and it has the following expression:

Û0 = Ŝ · (T̂ ⊗ Îw), (5.5)

where Îw is the identity operator in Hw. The translation symmetry which affects the

process can be broken by letting the coin operator T̂ (5.4) depend on the x coordinate.

This generalization is necessary when disorder is considered, as for the investigation of

Anderson localization [117] and associated phenomena; nevertheless in this work we will

concentrate on QWs where the coin tossing operator is uniform over the whole lattice.

The basic features of QWs, and the main differences with respect to the classical RW,

can be observed by studying the dynamics of a system whose initial state is

|ψ0〉 = (α| ↑〉c + β| ↓〉c)⊗ |0〉w, (5.6)

where α and β are complex coefficients satisfying the normalization condition |α|2 + |β|2.

The state introduced in Eq. 5.6 is separable in terms of a coin and a walker term. It is

worth to mention that we are considering the case of a walker which is initially localized,

as it occupies only the site x = 0. Nevertheless, this not the general case, since quantum

mechanics allows for extended initial conditions, corresponding to delocalized initial

states obtained from the coherent superposition of many lattice sites; we will discuss

this possibility later on. After a n-steps walk, we can compute the final state as defined

in Eq. 5.1, and evaluate the probability P (x) to find the system in any position x over

the 1D lattice, regardless of the coin state. In the quantum formalism, P (x) is equal to

P (x) = |〈x, ↑ |ψn〉|2 + |〈x, ↓ |ψn〉|2 . (5.7)

In Fig. 5.1 we report the probability distributions calculated using Eq. 5.7 for three

different coin initial states (the specific expression for these states is provided in the

caption of the figure), in order to highlight the role of this feature and to mark some

differences with respect to the classical RW. For this calculation, we referred to the
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Figure 5.1: Comparison between classical and quantum probability distributions for
the walker position after a 50-step walk. The red continuous line represents the typical
Gaussian distribution for the walker position in a classical unbiased RW; it is centered
around the initial position (x = 0), and it has a width that is proportional to

√
n, being

n the number of steps of the walk; this feature is a signature of diffusive processes. The
quantum case (blue points) has marked differences; the distribution is not symmetric in
general, and such asymmetry depends on the initial state of the coin part of the system.
This can be appreciated in panels a), b) and c), corresponding to initial conditions
(see Eq. 5.6) (α, β) = (1, 0), (α, β) = (0, 1), and (α, β) = (1/

√
2) (1, i), respectively.

The reason for asymmetric distributions will be clear later on, when discussing the
band structure of QWs and the propagation of Gaussian wave packets governed by
the system dispersion relation. Independently of the coin initial state, remarkably the
standard deviation of the quantum probability distribution is proportional to n, thus

showing that a QW is a ballistic process.

case of the Hadamard walk; nevertheless, the results we obtain are generic properties

of QWs. In contrast to the probability distribution of a RW, which has a Gaussian

profile centered around the initial position x = 0, and with a variance σ2 ∝ n, in

a QW the walker wave packet spreads much faster, as the variance of its probability

distribution scales with the square of the number of steps, that is σ2 ∝ n2. Moreover

for QWs the quantity distribution P (x) is asymmetric, and its shape depends on the

initial conditions for the coin state. This shape is determined by the interferences of all

the paths followed by the multiple components of the walker wave function [137], giving

rise to the pronounced peaks appearing in Fig. 5.1. Quantum walks can be reduced

to classical random walks measuring the state of the coin at each step [107], or by

introducing a tunable decoherence during the evolution of the process [127].

5.3 Quantum walks using twisted photons2

In this section, I illustrate the main features of our photonic platform for the simulation

of QWs. After describing the layout of the experimental apparatus, I report the exper-

imental data of a QW for a single photon and for two indistinguishable photons.

In our implementation, the coin and the walker systems are encoded in the SAM and

2Some paragraphs and sentences of this section are adapted or copied verbatim from the work [106]
which I coauthored
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Figure 5.2: Conceptual scheme of the single-beam photonic quantum walk in the
space of OAM [106]. In each traversed optical stage (QW unit), the photon can move
to an OAM value m that is increased or decreased by one unit (or stay still, in the
hybrid configuration). The OAM decomposition of the photonic wavefunction at each
stage thus includes many different components, as shown in the call-outs in which
modes having different OAM values are represented by the corresponding helical (or

“twisted”) wavefronts.

the OAM of a photon, respectively. In particular, the spatial walker coordinate x is re-

placed by the OAM coordinate m, while states {| ↑〉, | ↓〉} are encoded in the polarization

states {|L〉, |R〉}:

|x〉w −→ |m〉o (5.8)

{| ↑〉c, | ↓〉c} −→ {|L〉π, |R〉π} (5.9)

The concept of a QW in OAM within a single optical beam is pictorially illustrated

in Fig. 5.2. The step operator Û0 is realized by means of linear-optical elements. In

the coin subspace, the unitary operator T̂ can be implemented by birefringent plates,

such as quarter-wave plates (QWP) and/or half-wave plates (HWP). The shift operator

Ŝ is realized by a q-plate (QP), whose properties have been discussed in Sec. 1.7. In

particular, we recall that the action of the QP results in raising or lowering the OAM

of the incoming photon according to its SAM state, while leaving the photon in the

same optical beam, that is with no deflections nor diffractions. In the actual device, the

radial profile of the photonic wave function undergoes a small alteration, which however

can be approximately neglected in our implementation (see Appendix D). As reported

in Eq. 1.60, the action of the q-plate is made of two terms. The first, proportional to

cos(δ/2), leaves the photon in its input state. The second, proportional to sin(δ/2),

implements the conditional displacement of Eq. 5.2, but also adds a flip of the coin
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state. The latter effect can be compensated by inserting an additional HWP. When

δ = π (“standard” configuration) the first term vanishes and the standard shift operator

Ŝ is obtained. When δ = 0, the evolution is trivial (the walker stands still), while for

intermediate values 0 < δ < π we have a novel kind of evolution: besides moving forward

or backward, the walker at each step is provided with a third option, that is to remain

in the same position. We refer to this as a “hybrid” configuration, since it mimics a

walk with three possible choices, although the coin is still two-dimensional. Similar to

an effective mass, the δ parameter controls the degree of mobility of the walker, ranging

from a vanishing mobility for δ = 0 to a maximal mobility (not taking into account the

effect of the coin) for δ = π.

5.3.1 Quantum walk simulation for a single photon

To demonstrate the correct behavior of the proposed platform, in our first experiment we

simulated a QW whose step operator Û0 is implemented by a sequence of a QWP, a QP,

and a HWP. The QPs have q = 1/2, so as to induce OAM shifts of ±1. Due to reflection

losses (mainly at the QP, which is not antireflection-coated), each step has a transmission

efficiency of 86% (but adding an antireflection coating could easily improve this value to

> 95%). The n-step walk is then implemented by simply cascading a sequence of QWP-

QP-HWP on the single optical axis of the system. In the implemented setup, the linear

distance d between adjacent steps is small compared to the Rayleigh range zR of the

photons, i.e. d/zR � 1 (near-field regime), so as to avoid optical effects that would alter

the nature of the simulated process ((see Appendix D)). The layout of the apparatus is

shown in Fig. 5.3. A single photon source, operating in the heralded regime, is realized

as explained in Appendix B (this part of the setup is not shown in the figure).

The photon entering the QW setup is initially prepared in a separable state |ψ0〉 =

|φ0〉c⊗|ψ0〉w. A computer-generated hologram shown on a spatial light modulator (SLM

1) can be used to prepare the walker initial state in a generic superposition of OAM states

[78, 79] in Ho, as it will be discussed below. In this experiment, we displayed a simple

grating on SLM1, so as to diffract photons without altering their spatial distribution,

that is m = 0 at the exit of the device. Then the coin is prepared in the state |φ0〉c =

α|L〉 + β|R〉, where the two complex coefficients α and β (with |α|2 + |β|2 = 1) can be

selected at will by a QWP-HWP set (apart from an unimportant global phase). After

the initial state preparation, the photon undergoes the QW evolution and, at the exit,

is analyzed in both polarization and OAM so as to determine the output probabilities.

In Figs. 5.4, 5.5 we report the experimental and predicted results relative to a 4-step

QW, for a single photon entering the walk in the localized state m = 0, with varying the

initial polarization. For each initial state of the coin, we performed the experiment both
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Figure 5.3: Experimental apparatus for single-photon QW experiments [106]. The
single photon source, realized as explained in Appendix B, allows to have heralded
single photons at the exit of the SMF represented in the figure. At the exit of the
latter, the photon goes through N identical subsequent QW steps (N = 5 in the
figure), is then analyzed in both polarization and OAM and is finally detected with
an avalanche photodiode (APD) D2, in coincidence with D1 (not shown in the figure).
Before entering the first QW step, a spatial light modulator (SLM 1) and a HWP-
QWP set are used to prepare the photon initial state in the OAM and SAM spaces,
respectively. At the exit of the last step, the polarization projection on the state |φf 〉c
is performed with a second HWP-QWP set followed by a linear polarizer (LP). The
OAM state is then analyzed by diffraction on SLM 2, followed by coupling into a SMF.
The projection state |ψf 〉w corresponding to each OAM eigenvalue m was thus fixed by
the hologram pattern displayed on SLM 2. Before detection, interferential filters (IF)
centered at 800 nm and with a bandwidth of 3.6 nm were used for spectral cleaning.
As shown in the legend, a single QW step consists of a QWP (optical axis at 45◦ from

the horizontal), a q-plate with q = 1/2 (axis at 0◦), and a HWP (axis at 0◦).

in the standard and hybrid configurations. To evaluate quantitatively the agreement

between measured and predicted probability distributions, P (m) and P ′(m), we also

computed their “similarity”, which was introduced in Sec. 4.5;

S =

(∑
m

√
P (m)P ′(m)

)2

(
∑

m P (m)
∑

m P
′(m))

. (5.10)

The values we obtained in the various cases are given in the figure captions.
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Figure 5.4: Four-step quantum walk for a single photon with localized input [106]. a-
d) Experimental results, including both intermediate and final probabilities for different
OAM states in the evolution (summed over different polarizations). The intermediate
probabilities at step n are obtained by switching off all QPs that follow that step,
that is setting δ = 0. Panels a) and b) refer to the standard case with two different
input states for the coin subsystem, (α, β) = (0, 1) and 1/

√
2(1, i), respectively. c)

and d) refer to the hybrid case with δ = 1.57, with the same initial coin-states. e-h)
Corresponding theoretical predictions. Poissonian statistical uncertainties at plus-or-
minus one standard deviation are shown as transparent-volumes in panels a-e. The
similarities between experimental and predicted final OAM distributions are (94.7 ±
0.4)%, (93.4±0.5)%, (99.7±0.1)% and (99.2±0.2)%, respectively. Panels on the same
column refer to the same configuration and initial state. The color scale reflects the

number of steps.

5.3.2 Quantum walk for two indistinguishable photons

Specific applications of quantum walks require multi-particle schemes, as for instance

the universal quantum computation protocol proposed in Ref. [115]. Moreover, although

a QW of a single photon is a quantum regime, it behaves equivalently to a classical one,

as the resulting probability distributions are identical to the intensity distributions that

would be obtained using classical (coherent) light. For this reasons, we have shown

that our scheme can efficiently simulate a multi-particle quantum walk, performing an

experiment for two indistinguishable photons, and observing quantum interferences that

cannot be reproduced classically. The layout of the setup for the simulation of a 2-

photon QW is shown in Fig. 5.6. As explained in Appendix B, both photons generated in

the SPDC process are collected in the same optical fiber, after compensating their tem-

poral and longitudinal walk-off (this part of the setup is not shown in the figure.). At the
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Figure 5.5: Further data for a four-step quantum walk [106], presented following the
same scheme adopted in Fig. 5.4. a-b) Standard case with two different input states
for the coin subsystem, (α, β) = (1,−1) and 1/

√
2(1/
√

2, 1 − i/
√

2), respectively. c-d)
Hybrid case for δ = π/2, with the coin subsystem, (α, β) = (1,−1) and 1/

√
2(1 −

i/
√

2, 1/
√

2), respectively. e-h) Corresponding theoretical predictions. i-l) Comparison
of measured and predicted final probabilities. Poissonian statistical uncertainties at
plus-or-minus one standard deviation are shown as error bars in panels (i)-(n) and
as transparent-volumes in panels (a)-(e). The similarities between experimental and
predicted OAM distributions are (89.7±0.2)%, (90.9±0.6)%, (98.9±0.1)% and (97.0±
0.4)%, respectively. Panels in the same column refer to the same configuration and

initial state.

exit of the SMF, both photons were sent through the QW step sequence. The biphoton

polarization state is prepared as described by the ket |L,R〉, by means of QWP-HWP

set. In this case we explored only the case where the walk starts in m1 = m2 = 0, thus

we removed the first SLM to improve the setup efficiency. The two photons, propagating

along the same optical axes, go through a 3 steps QW. Since the two photons cannot

be distinguished (except for the input polarization, which is however modified in the

QW process) and propagate along the same axis, at the exit of the last step we intro-

duced a 50:50 beam splitter (BS) to split them and perform independent SAM-OAM

projective measurements on the two arms. This splitting stage and the duplication of

the projection devices represent the main difference of this setup with respect to the

apparatus discussed in Fig. 5.3. This process has an efficiency of 50%, as a result of

the 1/2 probability that the two photons will exit from distinct BS ports. At the exit

of the BS, each arm is provided with a linear polarizer for the projective measurement

in the SAM space. As in the previous case, the OAM projection is performed using an
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Figure 5.6: Two-photon quantum walk apparatus [106]. At the exit of the input
SMF, a biphoton state is prepared by means of a QWP-HWP set in the state |L,R〉.
Since here we explored only the case where the walk starts in m1 = m2 = 0, the
first SLM was not needed and was removed. The two photons, propagating along the
same optical axis, go through a 3 steps QW. At the exit of the last step, a 50:50 BS
randomly separates the two photons. At the exit of the BS, each arm is provided with
a HWP and a linear polarizer for the projective measurement in the SAM space. The
OAM projection is then performed using an SLM and a SMF. For the projection on
both arms, a single SLM was used, dividing its screen into two sections and showing
independent holograms. Two interferential filters were used to filter the photon band
so as to enhance the wavelength indistinguishability of the two photons. Finally, signals

from photodiodes D1 and D2 provided the coincidence counts.

SLM and a SMF. For the projection on both arms, a single SLM was used, dividing its

screen into two sections and showing independent holograms. Before the last SMFs two

interferential filters (IF) centered at 800 nm and with a bandwidth of 3.6 nm were used

to filter the photon band so as to enhance the wavelength indistinguishability of the two

photons. Finally, signals from photodiodes D1 and D2 were analyzed using a digital

logic unit (time window 8 ns) combined with digital counters in order to get the final

coincidence counts. Before starting the main experiment, the indistinguishability of the

two photons generated in the SPDC process was optimized and verified as discussed in

Appendix B.

In Fig. 5.7, the results relative to a 3-step QW with localized OAM input m = 0 are

reported and compared with the theoretical predictions obtained for indistinguishable
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Figure 5.7: Three-step quantum walk for two identical photons [106]. In this case,
only final OAM probabilities are shown (summed over different polarizations). a-c)
Case of standard walk. a) Experimental results. Vertical bars represent estimated
joint probabilities for the OAM of the two photons. Since the two measured photons
detected after the BS splitting are physically equivalent, their counts are averaged
together, so that (m1,m2) and (m2,m1) pairs actually refer to the same piece of data.
Even values of m1 and m2 are not included, since they correspond to sites that cannot
be occupied after an odd number of steps. b) Theoretical predictions for the case of
indistinguishable photons. c) Theoretical predictions for the case of distinguishable
photons, shown to highlight the effect of two-photon interference (Hong-Ou-Mandel
effect) in the final probabilities. It can be seen that the experimental results agree better
with the theory for indistinguishable photons. d-f) Case of hybrid walk (with δ = 1.46).
d), e) and f) refer respectively to experimental data, indistinguishable photon theory
and distinguishable photon theory, as in the previous case. The QW step in these two-
photon experiments is implemented with a QP and a QWP. Again, our experiment is in
good agreement with the theory based on indistinguishable photons, proving that two-
photon interferences are successfully implemented in our experiment. The similarities
between experimental and predicted quantum distributions (IPT model) are (98.2 ±
0.4)% and (95.8 ± 0.3)% for the standard and the hybrid walk, respectively. The
similarities with the DPT model are instead 96.4% and 91.8%, respectively. The color
scale (common to all panels referring to the same case) reflects the vertical scale, to

help comparing the patterns.

photons (while taking into account the effect of the final beam splitter), hereafter labeled

as “indistinguishable-photon theory” (IPT). The two distributions show a good quanti-

tative agreement, as is confirmed by their similarities being higher than 95% (see figure

captions for details). These similarities are defined as in the single photon case, with the

index m replaced by the pair of OAM values (m1,m2). The predicted distributions for

the case of distinguishable photons (DPT) are also shown for comparison, to highlight

the role of two-particle interference in the final distributions. The similarities of the data

with the DPT distributions are significantly lower. However, the similarity is not a very
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sensitive test, as it tends to remain high even for fairly different distributions. Hence, we

also computed the “total variation distance” (TVD, defined as the sum of the absolute

values of all probability differences divided by two) for the two cases. In the standard

case, the TVD of the experimental distribution with the IPT one is (6.5 ± 0.9)%, to

be compared with the TVD of (16.5 ± 0.9)% for the DPT model. In the hybrid case,

the TVD with the IPT is (13.5 ± 0.7)%, to be compared with (21.1 ± 0.7)% for the

DPT. These values confirm that two-photon interferences are present in our experiment.

We ascribe the residual discrepancies between the observed distributions and the IPT

quantum predictions to systematic errors arising from imperfect alignment of the setup.

On the other hand, it is also possible to demonstrate a quantum behavior in the observed

distributions independently of any specific model for the photon propagation in the QW

system, so as to be insensitive to alignment imperfections or other kinds of systematic

errors. This is accomplished by testing the violation of certain characteristic inequali-

ties that constrain any possible correlation distribution obtained with two classical light

sources instead of two photons [129], or with two distinguishable photons. Indeed for

the former case, it can be proved that

Tp,q =
1

3

√
Pp,pPq,q − Pp,q < 0, (5.11)

(5.12)

where Pp,q is the joint probability distribution for the OAM values of the two photons.

For the case of distinguishable photons, we have that

Tp,q =
√
Pp,pPq,q − Pp,q < 0. (5.13)

Details about the derivation of Eqs. 5.11 and 5.13 are provided in Appendix E. The

measured distributions violate these inequalities by several standard deviations, as il-

lustrated in Fig. 5.8 for the standard QW. Further data relative to the hybrid walk are

reported in Fig. E.1. These results proves once more that the measured correlations

must be quantum and that they include the effect of multi-particle interference.

5.4 Band structure and dynamics of wave packets in a QW

In Sec. 5.2 we have introduced the theoretical formalism for the description of a quantum

walk process, providing the expression of the step operator Û0 in the position represen-

tation of the walker degree of freedom. Nevertheless, the latter can be described in

terms of the quasi-momentum k, which represents the conjugate variable with respect

to the lattice position x labeling the lattice sites, and is defined in the first Brillouin zone
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Figure 5.8: Experimental violation of correlation inequalities for two photons which
have completed the standard QW (δ = π). The data are based on the coincidences
after the final beam-splitter. (a)-(d) Violations of the inequalities given in Eq. (5.11),
constraining the correlations that would be obtained for two classical sources, incoher-
ent to each other. Each panel refers to a different pair of measured polarizations for
the two photons. These violations prove that our results can only be explained with
quantum effects. (e)-(h) Violations of the inequalities given in Eq. (5.13), constrain-
ing the correlations obtained for two distinguishable photons. Again, each panel refers
to a different pair of polarizations. These violations prove that our photons exhibit
two-particle interferences. Only positive values of the Tp,q are reported, while negative
values which fulfil the inequality are omitted. All violations are given in units of Pois-
sonian standard deviations σ, as determined from the coincidence counts. The color

scale reflects the vertical scale.

k ∈ (−π, π). The relation between the two representations is given by the discrete Fourier

transform, i.e. |k〉 = (1/
√

2π)
∑

x e
−ikx|x〉. The momentum representation provides the

framework to analyze the effective band structure of the QW system. Indeed, due to the

translational symmetry of the latter, eigenstates of the single step evolution operator

Û0 are obtained as the direct product of quasi-momentum eigenstates |k〉w in the walker

space Hw, and suitable eigenvectors |φs(k)〉c living in the coin (polarization) space Hc.
We label these eigenstates as |k, s〉 = |φs(k)〉c ⊗ |k〉w, with s ∈ {1, 2}[119, 120]. The

corresponding eigenvalues are λs(k) = e−iωs(k), where the relation between the energy

ω and the quasi-momentum k can be derived once the coin operator T̂ is assigned. The

global phase of the latter, which has no influence on the dynamics of the system, can be

adjusted so as to have det T = 1 and ω1 = −ω2; in the following, we will refer explicitly

to this case, omitting the index that labels the two energies. It is worth to mention that,

being the QW characterized by a discrete temporal coordinate, ω is actually a quasi-

energy, as it happens for the momentum k, defined in a Brillouin zone (−π, π). The
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problem of determining the coin part of the eigenstates of the system and the associated

dispersion relation can be conveniently solved introducing the following representation

for the evolution operator Û0

Û0 = Exp
{
−i Ĥe

}
(5.14)

where we have introduced the effective Hamiltonian Ĥe

Ĥe =

∫ π

−π
dk ω(k) [û(k) · σ̂]⊗ |k〉〈k|. (5.15)

Here, σ̂ = {σ̂1, σ̂2, σ̂3} is a 3D vector whose components correspond to the three Pauli

operators, while û(k) is a 3D unit vector; for every value of k ∈ (−π, π), û(k) [−û(k)] in-

dividuates the point on the Poincaré sphere corresponding to the coin eigenstate |φ1(k)〉
[|φ2(k)〉]. According to this picture, we are describing the QW as the stroboscopic simu-

lation of a system characterized by the Hamiltonian Ĥe. In momentum space, the walker

part of Û0 is diagonal, so for each value of k we can express this operator as a 2 × 2

matrix U0(k). The energy ω(k) can be simply determined as

cosω(k) =
1

2
TrU0(k) (5.16)

Now let us consider the explicit case of the Hadamard walk, which we have introduced

before. It is straightforward to see that the associated operator U0(k) can be written as

U0(k) =
i√
2

(
eik eik

e−ik −e−ik

)
(5.17)

The factor i was introduced in order to have DetU0 = 1. Using Eq. 5.16, we can

determine the quasi-energy

cosω(k) =
sin k√

2
, (5.18)

and the expressions for the components of the unit vector û(k)

u1(k) = cos k/N(k), (5.19)

u2(k) = − sin k/N(k), (5.20)

u3(k) = cos k/N(k), (5.21)
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where we have introduced a normalization factor N(k) =
√

2− sin2 k. Now, starting

from the dispersion relation ω(k), we can derive the group velocity V (k) = dω/d k;

V (k) = − cos k√
2− sin2 k

. (5.22)

From the previous equation, we can note that u1(k) = u3(k) = −V (k), whereas u2(k) =

tan (k)V (k). We will exploit these properties later on. In Fig. 5.9 we report a graph

for the dispersion relation and the group velocity dispersion. The two bands s = 1

and s = 2 are characterized by a finite energy gap, and their group velocities, defined

as Vs = dωs/dk, have the same magnitude but opposite sign, i.e. V1(k) = −V2(k).

Moreover, Vs is bound in the range (−1/
√

2, 1/
√

2), and it vanishes for k = ±π/2. The

coin eigenstates |φs(k)〉c span a great circle on the Poincaré sphere, as a result of the so-

called chiral or sublattice symmetry [119] [see Fig. 5.13a)]. The number of windings W

of the vector û(k), as k spans the entire Brillouin zone, is a topological invariant, which

can be exploited to classify the topological phases of the system. These are typically

referred to as symmetry-protected topological phases; indeed W is an invariant only

when the continuous deformations applied to the system preserve the chiral symmetry.

The role of this topological classification will be analyzed deeply in Sec. 5.6.

Figure 5.9: Band structure of the QW system [106]. a) The plot shows the dispersion
relation ωs(k) for both bands s = 1 and s = 2. A finite energy gap can be observed.
b) Dispersion of the group velocity Vs(k). It is worth noticing that when k = ±π/2,
the group velocity vanishes for both bands and, at the same time, it has the maximum
slope. We will see later on that, in the context of wave packets dynamics, for these
values of the quasi-momentum the dispersion of the group velocity will give a larger
contribution to the broadening of the initial envelope, as compared with the case of

packets propagating at finite speed.

The band structure characterizing a QW can be probed through the analysis of the free

propagation of Gaussian wave packets, which is governed by the dispersion relations for

the energy and the group velocity. Indeed, let us consider a state initially prepared as

follows

|ψ0〉 = |φ1(k0)〉 ⊗
∑
x

e−ik0xA(x)|x〉, (5.23)
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where we assume that A(x) is a Gaussian envelope centered around the position x = 0,

whereas k0 is a specific value of the quasi momentum in the Brillouin zone;

A(x) = N Exp

{
− x2

2σ2

}
(5.24)

Here σ2 is the variance of the Gaussian distribution, and the constant N is introduced for

normalization. Assuming a large value of σ, that is, a slowly varying envelope, Gaussian

wave packets (5.23) propagate along the lattice with a finite speed, given by the group

velocity Vs(k0), while the profile of the distribution undergoes only a tiny alteration

[135]. In general, for any k0, we can prepare the coin part as a superposition of the

two bands [α|φ1(k0)〉+ β|φ2(k0)〉], with {α, β} being normalized complex coefficients.

Interestingly states belonging to different bands, which correspond to orthogonal coin

eigenstates, propagate in opposite directions, i.e. V1(k0) = −V2(k0), highlighting the

strong coupling between the walker and the coin of this system. In Fig. 5.10 we plot

the probability distributions P (x) obtained from the simulation of a QW for Gaussian

wave packets. It is clear that, when the value of σ is large enough to have a slowly

varying envelope, wave packets propagate with negligible alterations. Being the whole

process ruled by the dispersion relation of the system, we can exploit these phenomena

to investigate the band structure of a QW; for instance, we can prepare these peculiar

states at the beginning of the process and reconstruct their final distribution, eventually

observing their propagation in the OAM lattice.

5.5 Verification of the band structure of a QW through

the free propagation of OAM Gaussian wave packets3

One of the advantages of the photonic simulator of QWs described in Sec. 5.3 is the

possibility to control the walker initial state, which can be prepared in any superposition

of the different lattice sites. In particular, we can realize OAM Gaussian wave packets

with a given quasi-momentum k0, and study experimentally their free evolution in the

QW system, thus probing the effective band structure and its associated topological

structure. In this context, it is worth to mention that controlling the quasi-momentum

of delocalized quantum states is crucial for carrying out quantum simulations of Bloch-

particle dynamics, as shown for instance in Ref. [138]. Using the holographic method

described in Sec. 4.4, we prepared single-photon wave packets given by |ψs0〉 = |φs(k0)〉c⊗(∑
mA(m) e−ik0m|m〉w

)
, where A(m) = A0e

−m2/2σ2
is a Gaussian envelope in OAM

space, as defined in Eqs. 5.23 and 5.24 . The associated quasi-momentum has a Gaussian

3Some paragraphs and sentences of this section are adapted or copied verbatim from the work [106]
which I coauthored
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Figure 5.10: Propagation of Gaussian wave packets in a QW system. We simulate
the QW evolution for the initial state given in Eq. 5.23. We report the probability
distribution for the walker over the lattice sites as calculated after 25 steps (red points)
and 50 steps (green points). Blue points correspond to the initial distribution. Various
panels correspond to different initial states, obtained with varying the variance of the
initial distribution and the values of the coefficients {α, β}. a-c) {α, β} = {1, 0}, k0 = 0;
the corresponding group velocity is −1/

√
2. Panels a), b) and c) refer to the case in

which σ = 1, 3, 5, respectively, as reported in the lower part of the figure. Other panels
are organized similarly. d-f) {α, β} = 1/

√
2 {1, 1}, k0 = 0. Accordingly, the wave packet

splits into two components, propagating in opposite directions. g-j) {α, β} = {1, 0},
k0 = π/2; the corresponding group velocity vanishes, and the wave packets remain
centered around the initial position. Nevertheless, in this case σ increases with the
number of steps, since the evolution is governed by the dispersion of the group velocity
[135]. Comparison between the simulation for different values of σ highlights the role
of the slowly varying envelope approximation, which was assumed to demonstrate that
wave packets propagate with no significant alterations. From these figure, we can
estimate a minimum value for σ which guarantees the validity of this approximation.

distribution centered on k0. In our case, the average quasi-momentum k0 corresponds

to the average azimuthal angle in real space for the optical field distribution within the

beam, thus represents a physical degree of freedom that can be observed directly. Few

examples of the holograms we used for this experiment are reported in Fig. 5.11. As

discussed in the previous section, when A(m) is a slowly varying envelope, these wave

packets are expected to propagate with only minimal shape variations and with a speed

given by the group velocity Vs(k0) = (dωs/dk)k=k0 .
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Figure 5.11: Holograms for the preparation of the OAM initial state before the QW
process [106]. In the pictures the phase M(x, y) (see Sec. 4.4), ranging in the interval
(0, 2π), is encoded in the grayscale level of each pixel. Panels a-c) refer to different
initial states in the OAM space. a) Localized initial state |ψ0〉w = | + 3〉w. b-c)

Delocalized Gaussian wave packets |ψ0〉w = A0

∑
m e
−ik0me−m

2/2σ2 |m〉w , with σ = 2
and k0 = 0, π/2, respectively. A0 is a normalization constant.

In Fig. 5.12, we report the experimental “real-time” (i.e., step-by-step) observation of

these propagating packets for a 5-step QW. These data refer in particular to the band

s = 1, with k0 = π and k0 = π/2, corresponding to maximum and vanishing group

velocities, respectively, with a step operator implemented by a QP plus a QWP. Next,

we proceeded to explore the whole irreducible Brillouin zone by varying the average

quasi-momentum k0 in steps of π/8 across the (0, π) range. At each value of k0, in order

to obtain a single wave packet propagation, the SAM input state must be prepared in

the eigenstate |φ1(k0)〉, corresponding to a specific elliptical polarization. As discussed

previously, SAM (or coin) eigenstates of these wave packets describe a maximum circle

in the Poincaré polarization sphere, as illustrated in Fig. 5.13a. The number of full

rotations of the vector |φ1(k)〉 on the sphere, as k varies from −π to π, is a topological

property of the QW system. In our case, we observe a single full rotation (we actually

see half a rotation, as we tested only half Brillouin zone), thus verifying the topological

class of our system. Other topological QW phases could be realized by modifying the

QW step operator Û , as discussed in Ref. [119]. We then determined the group velocity

of these wave packets by measuring the mean OAM exit value after 5 steps, as shown

in Fig. 5.13b. The whole OAM distribution for some of these points is also shown in

Figs. 5.13c-g.

Finally, the behavior of a wave packet whose coin is prepared in the superposition state

[|φ1(k0)〉+ |φ2(k0)〉] /
√

2 was also investigated. As a result of the spin-orbit coupling,

the wave packet splits into two components propagating in opposite directions, as shown

in Fig. 5.13h. In this example, the QW clearly leads to the generation of maximal

entanglement between the SAM and OAM degrees of freedom.



Chapter 5 - Simulation of QWs and topological phases 91

Figure 5.12: Wave packet propagation in a five-steps quantum walk [106]. a-b)
Experimental results, showing the step-by-step evolution of the OAM distribution of a
single photon prepared in a Gaussian wave packet with σ = 2, in the SAM band s = 1
(summed over different polarizations). Panels a) and b) correspond to the two cases
k0 = π (maximal group velocity) and k0 = π/2 (vanishing group velocity), respectively.
The latter configuration shows some spreading of the Gaussian envelope, governed by
the group-velocity dispersion. Poissonian statistical uncertainties at plus-or-minus one
standard deviation are shown as transparent-volumes. c-d) Theoretical predictions
corresponding to the same cases. At the fifth step, the similarity between experimental
and theoretical OAM distributions are (98.2 ± 0.4)% and (99.0 ± 0.2)%, respectively.

The color scale reflects the number of steps.

5.6 Signature of a topological phase transition in a QW:

theory and experiment

Topological features are responsible for fundamental phenomena in condensed matter

systems [118, 139], such as for instance the fractional and integer quantum Hall effects

or the existence of protected surface states in topological insulators. These systems are

characterized by specific values of some topological invariants, defined in terms of the

states forming the energy bands. Properties associated with these topological phases

in complex systems can be conveniently studied through the use of quantum simula-

tors [120, 138, 140, 141]; these allow for precise control of the system’s symmetries

and topological invariants, and for accurate measurements on the quantum state as
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Figure 5.13: Quantum walk wave packet dispersion properties in the Brillouin zone
[106]. a) Poincaré sphere representation of the polarization (or SAM) eigenstates |φ1(k)〉
prepared in our experiments, for different values of the quasi-momentum k in the ir-
reducible Brilluoin zone (0, π) taken in steps of π/8 (blue dots). These states lie on
a maximal circle (blue line) of the sphere. b) Mean OAM after a five-steps QW for
a single photon prepared in a Gaussian wave packet with σ = 2 and s = 1, with
different values of average quasi-momentum k0 in the range (0, π). Blue and purple
points are associated with experimental data and theoretical predictions, respectively;
Poissonian statistical uncertainties are too small to be shown in the graph. c-g) Fi-
nal OAM distributions associated with some of these cases (summed over different
polarizations). Panels refer to k0 = 0, π/4, π/2, 3π/4, π, respectively. h) OAM distribu-
tion after five-step QW for a wave packet whose coin is prepared in the superposition
state [|φ1(0)〉+ |φ2(0)〉] /

√
2. As predicted by the theory, it splits into two components

propagating in opposite directions, thus generating a maximally-entangled SAM-OAM
state. In panels c-h) Poissonian statistical uncertainties at plus-or-minus one standard
deviation are shown by error bars. The similarity between experimental and theoreti-
cal OAM distributions are (98.9 ± 0.2)%, (96.2 ± 0.4)%, (98.4 ± 0.3)%, (93.2 ± 0.6)%,

(99.1± 0.2)% and (97.3± 0.4)%, respectively.

well. The idea of using QWs as simulators of such phenomena was proposed by Kita-

gawa et al. [119], who realized that these simple quantum dynamics could realize all

topological phases of one and two dimensional systems of non interacting particles; as a

first application of this concept, the formation of topologically protected bound states

was observed in a photonic QW [120]. In this context, we developed a QW protocol

characterized by a non-trivial topology; interestingly, the value of an external parame-

ter determines the existence of two topological phases for the system, similarly to the
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“split-step” protocol of Refs. [119, 120]. In terms of Hamiltonian symmetries and topo-

logical features, the system is equivalent to the S-S-H model for electron dynamics in the

poly-acetylene chain [142]. Topological phase transitions in these systems are usually

investigated in non-uniform systems, in which localized states are observed at the edge

between the regions characterized by distinct topologies. In contrast we consider here

homogeneous open systems, where the topological phase is uniform over all the lattice.

In this case, we realized that a signature of the topological features of the QW is present

in the moments of the walker distribution. Indeed, as it will be proved below, they show

abrupt variations at the critical points.

5.6.1 A QW protocol with two distinct topological phases

Let use consider the single step operator Û0(δ) corresponding to a sequence of a QP,

followed by QWP oriented at 90◦ with respect to the horizontal direction; here δ is the

optical retardation introduced by the q-plate. In this case, the 2× 2 matrix associated

with the step operator Ûδ(k) in momentum space is given by

Uδ(k) =
1√
2

(
cos
(
δ
2

)
+ sin

(
δ
2

)
e−i k −i cos

(
δ
2

)
+ i sin

(
δ
2

)
e−i k

−i cos
(
δ
2

)
+ i sin

(
δ
2

)
ei k cos

(
δ
2

)
+ sin

(
δ
2

)
ei k

)
. (5.25)

where we are referring to the circular basis in the polarization space. Being the optical

retardation of the q-plate, δ is a periodic quantity, so we can limit our analysis to the

case δ ∈ {0, 2π}. Using Eq. 5.16, we get the dispersion relation for this system:

ωδ(k) = cos−1

(
cos
(
δ
2

)
+ sin

(
δ
2

)
cos k

√
2

)
. (5.26)

The components of the vector ûδ(k) appearing in Eq. 5.15 are given by

u1(k) = {cos (δ/2)− sin (δ/2) cos k} /N(k)

u2(k) = − sin (δ/2) sin k/N(k)

u3(k) = −u2(k) (5.27)

where the quantity N is a normalization factor

N(k) =
√

2 {1− cos2[ωδ(k)]}. (5.28)
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As for the Hadamard walk, we can observe that the ûδ(ω) is related to the group velocity

Vδ(k) = dωδ(k)/dk; in particular, we have that

u3(k) = Vδ(k). (5.29)

In Fig. 5.14 we plot the energy ωδ and group velocity Vδ as function of k in the Brillouin

Figure 5.14: Dispersion relations for the hybrid QW protocol, obtained when varying
the control parameter δ. The dispersion curves for the two bands depend on the external
parameter δ. Here we report few examples; coloured green, red and orange curves are
obtained for values of δ equal to π/4, π and 7π/4, respectively. Here we report few
examples; coloured green, red and orange curves are obtained for values of δ equal
to π/4, π and 7π/4, respectively. These few examples show a general feature of this
system, i.e. the existence of a finite energy gap between the energies of the two bands
(see panel a)) . Only at the two critical points δ = δ1 = π/2 and δ = δ2 = 3π/2
(the blue dashed lines) the gap vanishes for k = 0 and k = π, respectively, causing the

presence of a discontinuous jump in the group velocity (see panel b)).

zone. In particular, it can be noted that the dispersion relations (Fig. 5.14a) show two

gapped bands, where the energy gap depends on the parameter δ. There exist two values

for the latter, that is δ1 = π/2 and δ2 = 3π/2, where this gap vanishes at k = 0 and

k = π, respectively; at these points, the function ωδ(k) is characterized by a second order

discontinuity, and locally the dispersion becomes linear. Accordingly, the group velocity

dispersion (Fig. 5.14b) is discontinuous at δ = δ1 and δ = δ2, showing finite jumps

at the crossing of the singular points k = 0 and k = π, respectively. We may divide

the possible values of δ in two sets P0 = {0, π/2} ∪ {3π/2, 2π} and P1 = {π/2, 3π/2},
whose boundaries correspond to the points characterized by the gap closure. A simple

question arises: is there anything that makes these sets different? The answer is yes, and

in order to understand why we may consider the states |φs(k)〉, or equivalently ûδ(k),

that is the eigenstates of the coin part of the evolution operator. In Fig. 5.15 we plot

these states on the Poincaré sphere associated with the coin space Hc, when varying

k in the interval {−π, π}. First of all, it is possible to note that |φs(k)〉 lie on a great

circle of the sphere, orthogonal to the vector â = {0, sin(π/8), cos (π/8)}, which is a
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constant independent of the value of δ. This is a consequence of the chiral symmetry

which is present in the system [119], as for the Hadamard QW introduced previously.

As explained in the caption of the figure, for any value of δ we can characterize the QW

system in terms of the closed loops formed by the coin eigenstates, when varying k in

the Brillouin zone. This winding number W is a Z invariant, since in principle it can

be equal to any relative number. As discussed before, the invariance we are considering

takes into account only continuous deformations which do not alter the chiral symmetry

(symmetry-protected invariance). In Fig. 5.15 we can observe that eventually P0 and P1

are characterized by different values of W , which is equal to 0 and 1, respectively. P0 and

P1 are usually referred to as distinct topological phases, due the the topological nature

of the invariant W ; in particular, P0 is the trivial phase, while P1 is considered as the

non-trivial phase. Interestingly, this is the same topological characterization emerging

in the S-S-H model for the poly-acetylene system [119, 142]. In this framework, we

Figure 5.15: Poincaré sphere representation of the eigenstates of the coin part of
the step operator Ûδ (5.25), when varying the quasi-momentum k in the Brillouin
zone. As shown in the legend of the figure, states |φs(k)〉 are represented as points
whose dimensions are associated with the value of the quasi-momentum k. The chiral
symmetry of the system forces this states to lie on a great circle of the sphere. When
varying k form −π to π, the state |φs(k)〉 will describe a closed trajectory; for the
latter, different homotopy classes exist, characterized by the number of windings W .
In our protocol, the value of δ determines the existence of two regimes; W = 0 when
δ ∈ {0, π/2} and δ ∈ {3π/2, 2π}, whereas W = 1 when δ ∈ {π/2, 3π/2}. As discussed
in the main text, W is a topological invariant, under continuos deformation that do
not break the chiral symmetry. As a consequence, the regions W = 0 and W = 1 are

considered as distinct topological phases.

investigated the properties of the moments of the probability distribution for the walker

position P (x), with particular attention to the behavior of these quantities at the phase

transition between P0 and P1. Recalling that the j-th moment Mj = 〈x̂j〉 is defined as
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follows

Mj =
∑
x

xj P (x) (5.30)

we considered a QW for a system initially prepared in the state |ψ0〉 = |φ0〉c ⊗ |0〉w,

whose coin part is generic, while the walker term is localized in the site x = 0. For these

states, we considered the QW evolution after n steps; as already known, the dominant

term of the associated moments at the exit of the walk, proportional to nj , describes the

ballistic behavior of the process. Interestingly, we have found that this contribution has

a simple expression in terms of the group velocity of the system. In particular, for the

first and the second moments (all the others have similar properties), we proved that;

M1/n = (s2 − s3)L(δ) + o(1/n) (5.31)

M2/n
2 = L(δ) + o(1/n2) (5.32)

where s2 and s3 are the expectation values of the coin operators σ̂2 and σ̂3, calculated

with respect to the initial state |φ0〉. The quantity L(δ) appearing in Eqs. 5.31 and 5.32

has an elegant expression, given by

L(δ) =

∫ π

−π

dk

2π
[Vδ(k)]2 . (5.33)

These results can be derived conveniently by evaluating M1 and M2 in momentum

representation, where they are defined as follows:

M1 =

∫ π

−π

dk

2π
〈φ0|

(
Û †
)n
− i d

dk
Ûn|φ0〉,

M2 =

∫ π

−π

dk

2π
〈φ0|

(
Û †
)n

(−i)2 d2

dk2
Ûn|φ0〉. (5.34)

Expanding the evolution operator as

Un(k) = Exp {−i n ω(k) û(k) · σ̂}

= cos {nω(k)} I2 − i sin {nω(k)} û(k) · σ̂ (5.35)

where I2 is the identity matrix in 2D, and the components of ûδ(k) are those reported in

Eq. 5.27, it is straightforward to obtain Eqs. 5.31-5.32. Eq. 5.32 is derived without using

the explicit expressions for the quantities ωδ and ûδ. On the other hand, the general

expression for M1/n is

M1/n =

∫ π

−π

dk

2π
Vδ(k) 〈φ0| (û(k) · σ̂) |φ0〉+ o(1/n). (5.36)
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Figure 5.16: Analysis of the first and second order moments {M1,M2} of the proba-
bility distribution for the walker, after a n-steps QW. The system, initially prepared in
the state |ψ0〉 = |φ0〉c ⊗ |0〉w, undergoes a QW described by the step operator (5.25).
For every plot, purple points are obtained from a numerical simulation, when varying
δ with steps of π/16 in the range {0, 2π}; continuous blue lines represents the quan-
tity L(δ) [panels a-c)], or

√
L(δ) [panels d-f)] (see Eq. 5.37). For the simulation, we

prepared the coin in the state {s1, s2, s3} = {0, 0, 1}. Panels a-c) First order moment
M1, divided by the number of steps of the walk, as a function of the parameter δ, for
a walk of 5, 20, and 50 steps, respectively (this number is reported inside each figure).
As n increases, simulated data converge to the values predicted by Eq. 5.31. Panels
d-f) Square root of the second order moment, divided by the number of steps n. The
figures are organized as in panels a-c). In this case, we can observe that simulated data
converge much faster to the asymptotic values reported in Eq. 5.32, with a discontinuity

emerging even for a walk of few steps.

When evaluating the latter equation considering the vector ûδ(k) reported in Eq. 5.27,

and exploiting the property u3 = Vδ, we get Eq. 5.31. In the specific case of our QW

model, the integral appearing in Eq. 5.33 can be solved analytically. The procedure

to find the solution is made of two steps; first of all, it is required to pass to the new

variable t = Tan (k/2), and, accordingly, evaluate the integral between −∞ and +∞.

The corresponding integral can be solved by residue method, choosing the real axis as

integration path in the complex t-plane, closed at ±∞ by the upper half circle4; the

final result is

L(δ) =


2 sin2(δ/4) 0 < δ < π/2

1− 1/
√

2 π/2 ≤ δ ≤ 3π/2

2 cos2(δ/4) 3π/2 < δ < 2π

(5.37)

Before analyzing the properties of the quantity L(δ), it is interesting to observe that

both M1 and M2 are proportional to L, which is related to the square of the group

4This approach was devised by E. Santamato. Explicit calculations are omitted for brevity.
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velocity. While this seems to be natural for M2, it is not so obvious that the same

dependance affects the first order moment too. Moreover, M1 is strongly dependent on

the initial state of the coin part of the system, and it vanishes along the great circle

s2 = s3. Differently, M2 is a constant of the system, depending only on the external

parameter δ.

As a consequence of the discontinuity affecting the dispersion relation at the phase tran-

sition values δ1 and δ2, the function L(δ) has a similar behavior, which can be observed

in Fig. 5.16. Interesting, L is equal to a constant in the non-trivial phase P1. The link

between the moments of the walker distribution and the integral of the square of the

group velocity is the main result of our analysis, accompanied with the observation that

such quantity is discontinuous at the phase transition.

Discontinuities of physical quantities at the transition between different phases is a typi-

cal property of these kind of phenomena. In the context of topological phases associated

with chiral symmetry in 1D systems, we propose to use the moments Mj as figures of

merit of the phase change; moreover, we conjecture that other systems behave similarly,

being these features strongly related to the gap closure of the energy bands, which is

typical for such phenomena. In a QW architecture, we highlighted these features exper-

imentally, monitoring the values of the first and second order moments as the system is

driven from one phase to the other.

5.6.2 Topological phases and moments analysis in a photonic QW with

twisted photons.

In the previous chapter we have seen that two distinct topological phases are present in a

QW system whose step operator is realized using a QWP oriented at 90◦ and a QP; here

we describe the experiment we implemented to investigate moments of the probability

distribution of the walker, which are affected by abrupt variations at the phase change

when the number of steps of the walk is high.

The layout of the apparatus is shown in Fig. 5.17. As usual, the QW simulation is

operated in the heralded single-photon quantum regime (see Appendix B). The heralded

photon entering the QW setup is initially prepared in a separable state |ψ0〉 = |0〉o⊗|φ0〉π,

where |φ0〉 = α|L〉 + β|R〉; the two complex coefficients α and β (with |α|2 + |β|2 = 1)

can be selected at will by a QWP-HWP set (apart from an unimportant global phase).

The photon then undergoes the QW evolution and, at the exit, is analyzed in both

polarization and OAM so as to determine the output probabilities and the associated

moments. Letting δ vary in the range {π/8, π} with steps of π/16, we determined

the corresponding probability distribution of the walker after the 6-steps QW. In Fig.
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5.18a we report the probability distribution as measured for the initial state {α, β} =

1/
√

2 {1, 1}, in a QW with δ = 2.95. The agreement with the expected distributions is

estimated by calculating the “similarity”, as defined in Eq. 5.10. In Fig. 5.18b-c we plot

the measured values of M1/n and
√
M2/n, respectively, as a function of the parameter

δ. In good agreement with theoretical predictions, the emergence of a discontinuity at

δ = π/2 can be observed when considering
√
M2/n. Preparing the initial state of the

coin (m=0 for the walker) in two non-orthogonal polarizations (the specific states are

reported in the caption of Fig. 5.18) we verified that the value of M2 was not affected

by this choice, as expected from Eq. 5.32; on the contrary, the same is not true for M1.

In this context, we repeated the experiment for many initial states (but only for specific

values of δ), in order to highlight that M2 is constant with respect to this choice. We

prepared the initial polarization of single photons so as to correspond to specific points

along the meridian φ = 0 of the Poincaré sphere, and performed the experiment for four

values of δ (two for each topological sector, as reported in the caption of the figure).

Measured data, reported in Fig. 5.18d, match well the predicted results.

Figure 5.17: Experimental setup. Heralded single photons are produced at the input
of the setup as described in Appendix B. The trigger photon is directly sent to an
avalanche photodiode (D1) [this part is not shown in the figure] while the heralded
one, after passing trough the QW system, is analyzed in polarization and OAM and
finally detected by APD D2, in coincidence with D1. Before the QW, the photon
exiting the fiber in the OAM state m = 0 passes through a HWP-QWP set, used
for preparing the initial polarization. Then it goes through the 6-steps QW, with the
single step consisting of a q-plate and a QWP oriented at 90◦. At the exit of the QW,
a polarization projection is realized by means of a second HWP-QWP set followed by a
linear polarizer (LP). The OAM state is then analyzed by diffraction on a spatial light
modulator (SLM), followed by coupling into a SMF. Before detection, interferential
filters (IF) centered at 800 nm and with a bandwidth of 3.6 nm are used for spectral

cleaning.
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Figure 5.18: Experimental results. a) Measured (green, left) and expected (red, right)
probability distributions after a 6 steps QW of a photon initially prepared in the state
m = 0 and {α, β} = 1/

√
2 {1, 1}, when δ = 2.95. The error bars represent statistical

errors at one standard deviation, calculated assuming Poissonian fluctuations on single
counts. The similarity between the experimental and the expected distributions is
99.2 ± 0.2. b-c) Measured values of M1 and

√
M2/n, respectively, when varying δ ∈

{π/8, π} with steps of π/16, for initial states {α, β} = 1/
√

2 {1, 1} (blue dots), and
{α, β} = {0, 1} (purple dots). Dashed lines represent the expected values for the plotted
quantities, as obtained from numerical simulations. In panel b), the continuous line
represents the asymptotic limit reported in Eq. 5.32. d) Measured values of M2 when
the initial polarization corresponds to the state cos(θ/2)|L〉+ sin(θ/2)|R〉, with varying
the polar angle θ ∈ {0, π} with steps of π/22; data are collected in correspondence of

δ = π/4 (blue), δ = 3π/8 (purple), δ = 3π/4 (yellow), δ = π (green).
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Light-based technologies take advantage of the multiple degrees of freedom that char-

acterize the e.m. radiation. Among these, we considered the “angular momenta”, high-

lighting the physical distinction between the associated spin and orbital components.

Big efforts in the last century led to the development of a variety of tools to handle such

physical quantities, making them available for concrete applications. Relying on such

existing tools, in this work we devised new schemes for exploiting spin and orbital an-

gular momenta of light in several scenarios. In particular, we looked at these quantities

from two different points of view. On one hand, being related to specific features of

light, we manipulated the SAM and the OAM in order to tailor suitably the beam prop-

erties, accessing peculiar states of the e.m. field (structured light). On the other hand,

we considered the SAM and the OAM as the physical realization of quantum systems

(qu-bits and qu-dits for the SAM and the OAM, respectively). In both scenarios, we

focused our attention on the effects of a controllable coupling between the two degrees

of freedom. Most of the research described here relies on a specific device called q-plate,

that we build in our laboratories. This allows one to engineer a spin-orbit interaction in

a light beam, and, in specific cases, to generate pure OAM states.

In the domain of classical optics, we demonstrated a simple scheme which allows one to

generate vector beams, in particular those characterized by the fundamental polarization

singularities, that is the lemon and the star C-points. Remarkably, this approach is very

simple, relying only on a single q-plate and a set of wave-plates. As a difference with

respect to previous works, we gave here a first demonstration of the use of one of the

parameters which define the action of a q-plate, that is the optical retardation δ. In this

scenario, more complex states could be realized by using devices with high topological

charges, or engineering these plates so as to modulate the radial structure of the field.

In the domain of quantum optics, the interaction between SAM and OAM results in

the entanglement between the two degrees of freedom. Considering a 2D subspace of

the infinite dimensional OAM space, jointly with the 2D SAM space, we realized single

photon states characterized by tunable SAM-OAM entanglement. Non-classical corre-

lations in this kind of systems have been widely exploited to rule out hidden variable
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models, which were proposed after the EPR paradox to complete the quantum theory.

In our case, we relied on maximally entangled states to demonstrate the violation of the

so called Leggett inequalities, ruling out a possible description of the physical reality in

terms of the contextual hidden variable models considered in the Leggett’s theory. Con-

cerning non-contextual models, we used partially entangled states to demonstrate the

Hardy paradox, which highlights the contradictions arising when describing quantum

systems using deterministic variables, as in the hidden variable theories.

Spin and orbital angular momenta of light can be exploited to encode high-dimensional

quantum systems. As a specific application of this concept, we demonstrated the real-

ization of mutually unbiased bases in a 6D Hilbert space, using both combinations of

SAM qu-bits and OAM qu-trits and pure OAM qu-six.

Finally, we introduced the idea of considering the spin-orbit space of light for carrying

out quantum simulations. In particular, we focused our attention on the quantum walk,

which is a process emerged in recent years as the quantum analog of the classical ran-

dom walk. We simulated such quantum evolution in the spin-orbit space of light, for

both one and two indistinguishable photons. Taking advantage of a specific feature of

our architecture, we realized OAM Gaussian wave packets that we used to probe the

QW band structure. Among the variety of areas where QWs have been considered as

a promising resource, we focused our attention on the quantum simulation of topologi-

cal phases of non-interacting particles. In this context, we devised a new QW protocol

which shows two different topological phases, according to the value of a controllable

external parameter (interestingly, this is the q-plate retardation δ). We have shown that,

if considering the probability that the system occupies each lattice site at the exit of the

walk, the moments of the associated distribution are affected by abrupt variations at

the phase change. We developed the simple theory that describes these features, linking

the OAM distribution moments to the QW dispersion relations, and verified them in a

dedicated experiment.

Current technology allows one to extend the approach that we proposed to more com-

plex system, with the aim of studying phenomena which are typical of condensed matter

system, such as topological phases. Nevertheless, we work towards the idea of including

the radial coordinate as an extra degree of freedom of our platform. In this context,

the development of novel q-plate-like devices, able to tailor the radial structure of a

light beam (and eventually coupling it to the spin and to the orbital angular momen-

tum), would pave the way to novel applications, not only in the domain of quantum

simulations, but in all the fields that have been described in this thesis.



Appendix A

Jones matrices for wave plates

In this section we derive the expressions for the Jones matrices associated with a generic

wave plate, both in linear and circular bases, considering the possibility that the plate

is rotated with respect to the horizontal direction of the laboratory frame. First of all,

let us consider a light beam propagating along the z axis of a cartesian frame, with

the latter being oriented so as to have the x axis parallel to the optical table. In this

reference frame, we associate linear horizontal and vertical polarizations with the x and

y axes, respectively. The polarization state of a fully polarized light beam is described

in terms of a 2D complex vector (the Jones vector), that is ψ = (ch, cv)
T . Here, we

are explicitly referring to the basis of horizontal and vertical polarizations (HV); the

other two relevant bases are reported in Eq. 1.26. In particular, we consider here the

circular basis (LR), since it provides the simplest framework to express the action of

the q-plate. When the components of the Jones vector are known in the HV basis, it is

possible to determine the corresponding components in the LR basis, which are given

by (cl, cr)
T = U · (ch, cv)T . The unitary matrix U , providing the mapping between the

two bases, is expressed as follows:

U =
1√
2

(
1 −i
1 i

)
. (A.1)

We recall that if M(hv) is the Jones matrix associated with an optical device in the HV

basis, its expression in the LR basis is M(lr) = U M(hv) U
†.

A wave plate is a slab of birefringent material. In the (x, y) plane, this is characterized

by two orthogonal directions êf and ês, usually referred to as fast and slow axes, respec-

tively. In this context, let us consider the Jones vector ψ = (cf , cs) in the linear basis

corresponding to these two directions (FS). When a light beam passes through a wave

plate, fast and slow components of the polarization acquire a relative phase retardation
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Figure A.1: Reference frame associated to the fast and slow axes of a wave plate,
compared to the laboratory frames. The two are rotated with respect to each other by
and angle θ. Labels f and s are associated with the fast and slow axes of the plate,

respectively.

δ, given by

δ =
2πd(ns − nf )

λ
(A.2)

Here, d is the thickness of the plate, nf and ns are the refractive indices associated

with the fast and the slow axes, respectively, and λ is the wavelength of the light beam.

Wave plates with δ = π and δ = π/2 are referred to as half-wave plates and quarter-wave

plates, respectively. In such a representation, we can express the action of the wave plate

through the Jones matrix Lδ

Lδ =

(
e−i

δ
2 0

0 ei
δ
2

)
(A.3)

Typically fast and slow axes of a wave plate do not match the (x, y) directions of the

laboratory, whereas {êh, êv} and {êf , ês} are rotated by an angle θ, as shown in Fig.

A.1 . The expression of the Jones matrix Lδ in the laboratory frame is

Lδ(θ)h,v = R(θ)LδR(−θ) (A.4)

where the rotation matrix R(θ) is defined as

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(A.5)

The signs of the coefficients of this matrix are obtained considering the rotation de-

fined in Fig. A.1, linking (cf , cs) to (ch, cv), that is (ch, cv)
T = R(θ) · (cf , cs)T . It is
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straightforward to see that

Lδ(θ)(hv) =

(
cos (δ/2)− i sin (δ/2) cos (2θ) −i sin (δ/2) sin (2θ)

−i sin (δ/2) sin (2θ) cos (δ/2) + i sin (δ/2) cos (2θ)

)
(A.6)

As a result, in the specific cases of a HWP and a QWP we have

H(θ)(hv) = −i

(
cos (2θ) sin (2θ)

sin (2θ) − cos (2θ)

)
(A.7)

Q(θ)(hv) =
1√
2

(
1− i cos (2θ) −i sin (2θ)

−i sin (2θ) 1 + i cos (2θ)

)
(A.8)

Applying the transformation (A.1) to the expression (A.6) we obtain the Jones matrix

for a wave plate in the basis circular basis:

Lδ(θ)(rl) = U Lδ(θ)(hv) U
† =

(
cos (δ/2) i sin (δ/2) e−2iθ

i sin (δ/2) e2iθ cos (δ/2)

)
(A.9)

As for the HV basis, we give the explicit expression for the case of a HWP and a QWP

in the LR representation.

Hδ(θ)(rl) =

(
0 i e−2iθ

i e2iθ 0

)
(A.10)

Qδ(θ)(rl) =
1√
2

(
1 i e−2iθ

i e2iθ 1

)
(A.11)

We can observe that the HWP action on a circular polarization corresponds to a flip of

the handedness, with the introduction of a phase factor depending on the plate orienta-

tion. Whereas, a QWP is associated with an Hadamard matrix; its coefficients have the

same modulus, whereas the relative phases can be adjusted through the angle θ.

We can extend Eq. A.9 to the case of a q-plate, which has the peculiar feature that the

angle θ is not uniform in the (x, y) plane, whereas it has the following expression

θ(φ) = q φ+ α0 (A.12)

with q being the plate topological charge and α0 the value of θ at φ = 0, as discussed in

Sec. 1.7. The angle φ = ArcTan (y/x) is the azimuthal coordinate. Using this property,

we can immediately note that Eq. A.9 corresponds to the q-plate operator reported in

Eq. 1.60.



Appendix B

The single photon source

The preparation of single photon states is a key element in the realization of this kind

of experiments. There are multiple strategies to realize a single photon source; for

instance, a simple approach would be to attenuate a laser beam until the arrival of single

photons on the detectors can be resolved in time. Though simple, this scheme has some

drawbacks, such as the impossibility to discriminate different sources of noise, as thermal

light for instance. In our experiments, we adopt a different strategy, usually referred

to as heralded photon technique. The latter is common to all single photon based

experiments described in this thesis, and we provide here the details about this part

of the experimental setup. The heralded photon technique relies on the simultaneous

generation of two photons. After these have been separated in space, one of them

is detected by means of a single photon-counting module D1, consisting usually in a

avalanche photodiode. The other one is the “single photon” exploited as the physical

system of the experiment, which is eventually revealed by detector D2 as a result of

some projective measurements on its degrees of freedoms (SAM and OAM in our case);

among all events recorded by D1, we select only the ones occurring in coincidence with

the events detected by D2, filtering out all possible counts associated to thermal light

or some noise due to the electronics. In simple words, a photon detected at D1 acts as

trigger, heralding the presence of another photon at D2.

To realize such a kind of source, we exploit a nonlinear process called Spontaneous

Parametric Down-Conversion (SPDC) [143, 144]. The experimental apparatus is shown

in Fig. B.1. A pulsed laser beam in the fundamental TEM00 Gaussian mode is generated

by a Titanium:Sapphire source (Ti:Sa); the wavelength of the emitted radiation is 800

nm, its average power is around 700 mW, the pulse duration is 100 fs and the repetition

rate of the pulses is 82 MHz. A frequency doubled laser beam at 400 nm, 120 mW

average power, is obtained through Second Harmonic Generation (SHG) in a nonlinear

β-Barium Borate crystal (BBO), which is pumped by the fundamental beam at 800
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Figure B.1: Setup for the generation of photons pairs through Spontaneous Paramet-
ric Down-Conversion in a BBO nonlinear crystal. A 120 mw pulsed laser beam at 400
is pumping a BBO crystal (BBO1) where the SPDC process occurs). The pump beam
was obtained through SHG in another BBO crystal, shined by the fundamental beam
at 800 nm. After BBO1, a long-pass filter let only the photon pairs to be transmitted,
while blocking the residual radiation at 400 nm. A HWP and a second BBO crystal
(BBO2) are used for optimal compensation of both longitudinal and temporal walk-off,
as discussed in the main text. By means of a PBS, signal and idler photons originating
in BBO1 are spatially separated according to their polarization and then coupled into
single mode optical fibers. The V-polarized photons is directly sent to an avalanche
photodiode (D1), while the H-polarized one is sent the part of the setup mounted for

the realization of the specific single photon experiment.

nm. After SHG, the residual part of the pump is filtered out using a pair of prisms

and a short-pass filter (not shown in the picture). The SHG beam is pumping another

BBO crystal (BBO1), where the SPDC process occurs. In a quantum interpretation, the

latter basically consists in the absorption of a photon at 800 nm, and the simultaneous

generation of two photons, called signal and idler, whose energy, momentum, polarization

and spatial distribution depends on the features of the pump photon and the nonlinear

crystal. This relation is provided by the phase matching condition, which is equivalent

to the conservation of energy and momentum of light in the nonlinear process

ωp = ωs + ωi, (B.1)

~kp = ~ks + ~ki, (B.2)

where symbols p, s, i labels the pump, the signal and the idler photons, respectively.

First of all, we use narrow bandpass interferential filter, centered at 800 nm, to realize



Appendix B. The single photon source 108

a degenerate architecture

ωs = ωi =
ωp
2

(B.3)

In a type II configuration, we want the signal and the pump to share the same linear

polarization, corresponding to the extraordinary polarization of the crystal in its trans-

verse plane, whereas the idler is in the ordinary polarization state, which is orthogonal

to the previous ones. In this case, using Eq. B.3, B.2 reads

2ne(θ) n̂p = ne(θ) n̂s + no n̂i (B.4)

where θ is the relative angle between the extraordinary axes and the pump propagation

direction, while the unit vectors n̂j represent the propagation directions of the three

photons. Since the BBO is a uniaxial crystal, only the extraordinary refractive index is

depending on the orientation angle θ. For any value of the latter, there exist a set of

directions (n̂s, n̂i) which satisfy Eq. B.4. These directions describe the surface of two

different cones, associated to the signal and the idler photons, which are displaced along

the direction orthogonal to the polarization of the pump. The displacement of the cones

and their aperture are determined by the value of θ, as shown in Fig. B.2. In this

picture, we have detected single photons emitted in the SPDC process on the screen of

an Electron Multiplying CCD camera (EMCCD camera) by Andor, which is positioned

right after the BBO crystal at the exit of a long pass filter which removes the residual

pump at 400 nm (this position is highlighted in Fig. B.1). The intersection of the cones

and the screen of the camera give rise to characteristic rings. In our setup, the crystal

was oriented so as to operate in the collinear regime (Fig. B.2 b)), using an aperture

along the pump propagation direction and selecting only the intersection of the signal

and idler cones.

As a result of the SPDC process that we implemented, two photons at 800 nm are

generated simultaneously with the same momentum and orthogonal linear polarizations,

corresponding to the horizontal and vertical directions. After passing through a HWP

and a second BBO crystal (BBO 2), whose role will be discussed below, they are split

according to their polarization by means of a PBS; the vertically polarized photon is

reflected at the PBS and then coupled to a single mode optical fiber (SMF), which is

directly connected to an avalanche photodiode (D1). The horizontally polarized photon

is coupled to another SMF, which guides it to the input of the setup for the single photon

experiment. Coincidences between detection events of the trigger and the heralded

photons are counted through an electronic logic unit, characterized by a time window

equal to 8 ns; this is sufficient to discriminate photons generated by consecutive pulses

of the pump beam, whose temporal separation is equal to 12 ns. In some experiments
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reported in this thesis the two photons were split after being coupled into the same

optical fiber, which preserves the orthogonality of the corresponding polarization states;

this configuration is completely equivalent to the one that we just presented (see Fig.

3.5 for a comparison).

The setup described in Fig. B.1 is suitable for the generation of two indistinguishable

Figure B.2: Images of the SPDC rings formed by photons pairs generated in a BBO
crystal, as detected by a CCD camera. Tilting the BBO crystal we can tune the phase
matching conditions so as to change the dimensions of the rings; the latter can have no
overlap, they can be tangent or they can cross in two points, as shown in panel a), b)
and c-d), respectively. These pictures have been taken during an experiment performed
in the laboratories of the quantum photonics group in the University of Ottawa, under

the supervision of prof. Ebrahim Karimi and prof. Robert W. Boyd.

photons. As shown in Fig. B.3 a), a HWP and a second BBO crystal (BBO2), whose

thickness is half with respect to BBO1, are placed to recover the indistinguishability of

the signal and the idler photons; indeed propagation in the birefringent BBO1 introduces

a temporal delay (temporal walk-off) between the two particles, which is about 300 fs.

This quantity is estimated assuming that, on average, the SPDC occurs in the middle

of BBO1. Such delay is larger than the pulse width, so idler and signal wave packets

do not overlap anymore at the exit of the crystal. Moreover, double refraction causes

a displacement of the extraordinary photon (longitudinal walk-off), which reduces the

coupling efficiency of the photon pair in the SMF. The compensation of both temporal

and longitudinal walk-off by means of a HWP and a second BBO crystal was proposed

by Kwiat et al.[144]. The HWP is oriented at π/4, so as to exchange the polarization

between the ordinary and the extraordinary cones. Then BBO2, oriented as BBO1,

introduces a temporal and longitudinal displacement to the ordinary photon which was
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not altered by BBO1; the magnitude of such displacements is comparable with the

previous walk-off. To obtain the optimal orientation of the BBO2, we tested the temporal

indistinguishability of the photon pairs coupled into the SMF, by performing an Hong-

Ou-Mandel (HOM) test [145] in the polarization degree of freedom. As shown in Fig.

B.3 a), at the exit of the fiber the two photons, whose polarization is described by the

state |ψ〉12 = |H1, V2〉, passes through an HWP oriented at an angle θ, followed by a

PBS. At the entrance of the latter, the biphoton state is

|ψ〉12 = sin 2θ cos 2θ (|H1, H2〉 − |V1, V2〉) + cos2 2θ |H1, V2〉 − sin2 2θ |V1, H2〉) (B.5)

Here subscripts 1 and 2 label the two different photons; when these are not distinguish-

able, states ψ12 and ψ21 are physically equivalent. To test the HOM interference, we

measure the coincidence counts between detectors D1 and D2, placed at the exit ports

of the PBS. Given the state of Eq. B.5, the probability that the two photons exit from

different ports is given by:

P I12 = |〈H1, V2|ψ12〉+ 〈V1, H2|ψ12〉|2 = cos2 4θ (B.6)

Being the two particles indistinguishable, states |H1, V2〉 and |V1, H2〉 are physically

equivalent. It is easy to check that when θ = 22.5◦, the probability of a coincidence

event vanishes. If distinguishable, the probability associated to the latter event is

PD12 = |〈H1, V2|ψ12〉|2 + |〈V1, H2|ψ12〉|2 = 1− 1

2
sin2 4θ (B.7)

As a difference with respect to the indistinguishable case, PD12 = 1/2 when θ = 22.5◦.

In Fig. B.3 b) we report the recorded coincidence counts when varying θ in the range

(0◦, 46◦), with steps of 2◦. The indistinguishability of the two photons can be quantified

in terms of the visibility of interference dip; for this particular case, the latter is defined

as

V =
CM − 2Cm

CM
(B.8)

where CM and Cm represent the maximum of the minimum values in the recorded

coincidence counts, respectively. For our data, the visibility is larger than 90%, in

agreement with the standard values for two-photon sources reported in the literature

(see Ref. [146]).
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Figure B.3: Polarization Hong-Ou-Mandel interference between the two photons gen-
erated in the SPDC process, after optical compensation of the temporal walk-off. Panel
a): experimental layout for the test of the two-photons indistinguishability. Photons
pairs generated as shown in Fig. B.1 are coupled into a SMF; at the exit of the latter,
a set of HWP and QWP is exploited to compensate the polarization alteration which
both photons suffer when propagating in the fiber, which has a finite birefringence
(these wave plates are not shown in the figure). The two photons, in the polarization
state |H1, V2〉, pass through an HWP oriented at an angle θ, followed by a PBS. Trans-
mitted and reflected photons are coupled into SMFs and sent to detectors D1 and D2,
where they are detected in coincidence by means of a standard logic unit. Panel b):
coincidences counts in 5 s between D1 and D2 for optimal compensation of the pho-
tons walk-off, measured when varying θ in the interval (0, 46)◦ with steps of 2◦. The

visibility of the dip is larger than 90%.



Appendix C

States forming MUBs in 2D, 3D

and 6D Hilbert spaces

In dimension d = 2, the eigenstates of the three Pauli operators provide a complete set

of MUBs, which can be represented by the columns of the following three matrices:

π1 =

(
1 0

0 1

)
, π2 =

1√
2

(
1 1

1 −1

)
, π3 =

1√
2

(
1 1

i −i

)
. (C.1)

In d = 3, there exist four MUBs. We represent them here as the columns of the following

four matrices:

O1 =


1 0 0

0 1 0

0 0 1

 , O2 =
1√
3


1 1 1

1 ω ω2

1 ω2 ω



O3 =
1√
3


1 1 1

ω ω2 1

ω 1 ω2

 ,O4 =
1√
3


1 1 1

ω2 ω 1

ω2 1 ω

 , (C.2)

where ω = exp (i2π/3).

In d = 6, we may construct three MUBs by a direct product of the π1, π2, π3 bases and

the corresponding first three bases O1, O2, O3:

I = π1 ⊗O1, II = π2 ⊗O2, III = π3 ⊗O3. (C.3)
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These three 6D bases have the following matrix representation:

I =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(C.4)

II =
1√
6



1 1 1 1 1 1

1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω

1 1 1 −1 −1 −1

1 ω ω2 −1 −ω −ω2

1 ω2 ω −1 −ω2 −ω


(C.5)

III =
1√
6



1 1 1 1 1 1

ω ω2 1 ω ω2 1

ω 1 ω2 ω 1 ω2

i i i −i −i −i
iω iω2 i −iω −iω2 −i
iω i iω2 −iω −i −iω2


(C.6)

The 18 columns of these three matrices give the coefficients of the logical basis super-

positions defining the 18 OAM states shown in Fig. 4.6a).



Appendix D

Role of the radial modes and

Gouy phases in our QW platform1

Our QW realization relies on the encoding of the walker state in the transverse modes

of light, in particular exploiting the azimuthal degree of freedom. For simplicity, the

radial structure of the mode is not considered explicitly in our scheme. However, a

full treatment of the optical process requires one to take the radial effects into account.

Indeed, all optical devices used to manipulate the azimuthal structure and hence the

OAM of light, including the QP, unavoidably introduce some alteration of the radial

profile of the beam, particularly when subsequent free propagation is taken into account.

In this context, we choose Laguerre-Gauss (LG) modes as the basis, since they provide

a set of orthonormal solutions to the paraxial wave equation. LG modes are indexed by

an integer m and a positive integer p which determine the beam azimuthal and radial

structures, respectively. Using cylindrical coordinates r, φ, z, these modes are given by

LGp,m(r, φ, z) =

√
2|m|+1p!

πw(z)2 (p+ |m|)!

(
r

w(z)

)|m|
e
− r2

w(z)2L|`|p

(
2r2

w(z)2

)
(D.1)

× e

(
iπr2

λR(z)

)
eimφ e

i(2p+|m|+1) arctan
(
z
zR

)
(D.2)

where λ is the wavelength, w(z) = w0

√
1 + (z/zR)2, R(z) = z

[
1 + (z/zR)2

]
and

zR = πw2
0/λ are the beam radius, wavefront curvature radius and Rayleigh range,

respectively, w0 being the radius at the beam waist [12]. L
|m|
p (x) are the generalized

Laguerre polynomials.

1This appendix correspond to a section of the Supplementary Material of Ref. [106], which I coau-
thored.
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Table D.1: Power coefficients of the various p-index terms appearing in the expansion
of the beam emerging from a QP (with q = 1/2) in the LG-mode basis, assuming that

the input is an L-polarized LG mode with p = 0 and the given OAM m value.

OAM |c0|2 |c1|2 |c2|2 |c3|2

m = 0 0.785 0.098 0.036 0.019

m = 1 0.883 0.073 0.020 0.008

m = 2 0.920 0.057 0.012 0.004

m = 3 0.939 0.046 0.008 0.002

As already discussed, the QP raises or lowers the OAM content of the incoming beam,

according to its polarization state. Due to presence of the singularity at the origin, the

QP also alters the radial index of the incoming beam. The details of these calculations

are reported in Ref. [50]. Based on this analysis and assuming a low birefringence of

the liquid crystals, a tuned QP (i.e. with δ = π) transforms a circularly polarized, e.g.

left-handed, input LG0,m(r, φ, 0) beam as follows:

Q̂πLG0,m(r, z)|L,m〉 = −iHyGG|m|−|m+1|,m+1(r, z)|R,m+ 1〉, (D.3)

where LG0,m(r, 0) (without the φ variable) denotes the radial part of the LG0,m(r, φ, 0)

mode (i.e. with φ = 0), HyGGp,m(r, z) stands for the amplitude of Hypergeometric-

Gauss (HyGG) modes [11] and the azimuthal term eimφ has been replaced by the ket

|m〉. Introducing dimensionless coordinates ρ = r/w0 and ζ = z/zR, these modes are

given by

HyGGpm(ρ, ζ) = i|m|+1

√
2p+|m|+1

πΓ(p+ |m|+ 1)

Γ
(
1 + |m|+ p

2

)
Γ (|m|+ 1)

(D.4)

× ζ
p
2 (ζ + i)−(1+|m|+ p

2
)ρ|m| e

− iρ2

(ζ+i)
1F1

(
−p

2
, 1 + |m|; ρ2

ζ(ζ + i)

)
where Γ(x) is the gamma function and F1(a, b;x) is a confluent hypergeometric function.

In order to determine the radial mode alteration introduced by the QP, we can expand

the output beam in the LG modes basis, i.e. HyGG|m|−|m+1|,m+1 =
∑

p cpLGp,m+1 [11].

The expansion coefficients are given by

cp =

√
1

p!m! (p+ |m+ 1|)!

(|m+ 1|+ |m|)! Γ
(
p+ |m+1|−|m|

2

)
Γ
(
|m+1|−|m|

2

) (D.5)

Table D.1 shows the squared coefficients of this expansion for input beams possessing

different OAM values. As can be seen, the effect of the QP on the radial mode decreases

for beams having higher OAM values, so that only the p = 0 coefficient that was already

present at the input retains a large value after the QP, and one can approximately
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neglect higher-p terms. If the final detection based on coupling in a single-mode fiber

filters only this term, then the presence of the other terms only introduces a certain

amount of losses in the system. Hence, within such approximation, the p quantum

number plays essentially no role and it can be ignored (except for the Gouy phase,

which is discussed further below).

Even stronger is the argument one can use if the entire QW simulation takes place in the

optical near field. Indeed, at the pupil plane (ζ → 0) the expression for the amplitude

of HyGG and LG modes simplifies to

LGp′m′(ρ, 0) ∝ L|`|p (ρ2)ρ|m|e−ρ
2

(D.6)

HyGGpm(ρ, 0) ∝ ρp+|m|e−ρ
2
.

Combining Eq. D.3 and Eq. D.6, it is straightforward to prove that the action of a QP

placed at the pupil plane of the beam is given by

Q̂πLG0,m(ρ, 0)|L,m〉 = −iLG0,m(ρ, 0)|R,m+ 1〉. (D.7)

In other words, at the immediate output of the device, the QP ideally results only in the

increment of the OAM content, without any alteration of the radial profile. This result

remains approximately valid as long as the beam is in the near field, that is for ζ � 1,

except for a region very close to the central singularity and for some associated fringing

that occurs outside the singularity. Both these effects can be neglected for ζ � 1, as the

overlap integral of the resulting radial profile with the input Gaussian profile remains

close to unity (for example, at ζ = 0.1 this overlap is still about 0.93 for a HyGG mode

with m = 1). We exploit this property to minimize any effect due to a possible coupling

between the azimuthal and the radial degree of freedom introduced by the QP. The

setup was built in order to have all the steps of the QW in the near field of the input

photons. To achieve this, we prepared the beam of input photons to have zR > 10 m,

while the distance between the QW steps was d ≈ 10−2zR. For realizing a QW with

high number of steps, a lens system could be used to image the output of each QW unit

at the input of the next one; in this way the whole process may virtually occur at the

pupil, i.e. at ζ = 0, thus effectively canceling all radial-mode effects.

Free space propagation of photonic states carrying OAM is characterized by the pres-

ence of a phase term, usually referred to as Gouy phase, that evolves along the opti-

cal axis. Considering for example LG states of Eq. D.1, this phase factor is given by

exp [−i(2p+ |m|+ 1) arctan (z/zR)], where z is the coordinate on the optical axis with

respect to the position of the beam waist. The different phase evolution occurring for dif-

ferent values of |m| could be a significant source of errors in the QW implementation. Let
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us assume that after step n in the QW setup the state of the photon is |ψ〉 =
∑

m cm|m〉,
where for simplicity we consider only modes with p = 0. When entering the following

step, the coefficients cm will evolve to c′m = e−i2|m| arctan (d/zR)cm, where d is the distance

between two steps along the propagation axis. At the step n + 1, coefficients cm and

c′m lead to different interferences between the OAM paths, altering the features of the

QW process. In our implementation we made this effect negligible by relying on the

condition d/zR � 1: indeed, as discussed previously, in our setup we had that zR > 10

m and d ' 10 cm. Again, an alternative strategy could be based on using a lens system

to image each QP on the following one; at image planes all relative Gouy phases vanish.

Let us conclude by noting that the need to remain in the optical near field is not a

ultimate scaling limitation for our QW process implementation, as the Rayleigh range

zR can be made as large as desired by increasing the beam waist w0. The beam waist

w0 scales as the square root of zR. Hence, the overall needed resources of our QW

implementation, defined as the number of needed optical devices multiplied by their

transverse area, scales linearly in the number of steps n as long as w0 can remain

constant, while there is a crossover to the standard quadratic scaling when z0 must be

further increased.



Appendix E

Test of two-photon correlation

inequalities in a quantum walk1

Let us consider two photons entering the QW apparatus in fixed states 1 and 2. Here,

we use a notation in which the state label at input/output includes both the OAM and

the polarization. In our experiment, labels 1, 2 correspond to a vanishing OAM and L,R

polarizations. The output states p will denote the combination of the OAM value m and

horizontal or vertical linear polarizations H,V . The unitary evolution of each photon

from these input states to the final states can be described by a matrix Ul′,l, where the

first index corresponds to the input state and the second to the output one (notice that

here we are making no assumptions on this matrix, except for unitarity). Hence, the

QW evolution can be described by the following operator transformation law

â†l′ → b̂†l′ =
∑
l

Ul′,lâ
†
l (E.1)

Let us now discuss the inequalities constraining the measurable photon correlations in

two specific reference cases. Our first reference case is that of two independent classical

sources (or coherent quantum states with random relative phases) entering modes 1 and

2, in the place of single photons. The following inequality can be then proved to apply

to the intensity correlations Γp,q = 〈â†pâ†qâpâq〉, for any two given QW output modes p

and q [129, 147]:
1

3

√
Γp,pΓq,q − Γp,q < 0. (E.2)

1This appendix correspond to a section of the Supplementary Material of Ref. [106], which I coau-
thored.
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Figure E.1: Experimental violation of correlation inequalities for two photons which
have completed the hybrid QW (δ = 1.46). The data are based on the coincidences
after the final beam-splitter. (a)-(d) Violations of the inequalities given in Eq. (E.4),
constraining the correlations that would be obtained for two classical sources, incoher-
ent to each other. Each panel refers to a different pair of measured polarizations for
the two photons. These violations prove that our results can only be explained with
quantum effects. (e)-(h) Violations of the inequalities given in Eq. (E.8), constrain-
ing the correlations obtained for two distinguishable photons. Again, each panel refers
to a different pair of polarizations. These violations prove that our photons exhibit
two-particle interferences. Only positive values of the Tp,q are reported, while negative
values which fulfil the inequality are omitted. All violations are given in units of Pois-
sonian standard deviations σ, as determined from the coincidence counts. The color

scale reflects the vertical scale.

In terms of two-photon detection probabilities P̄p,q = (1 + δp,q)Γp,q, the same inequality

reads
2

3

√
P̄p,pP̄q,q − P̄p,q < 0, (E.3)

where P̄p,q stands for the probability of having state |1p, 1q〉, for p 6= q, or state |2p〉, for

p = q, after the QW but before the BS used to split the photons. After the BS, taking

into account the photon-splitting probability, the inequality is rewritten as

Tp,q =
1

3

√
Pp,pPq,q − Pp,q < 0, (E.4)

where Pp,q is now the probability of detecting in coincidence a photon in state p at one

(given) BS exit port and the other photon in state q at the other BS exit port.

Our second reference case is that of two single but distinguishable photons entering

states 1 and 2. In this case, it is easy to prove a second stronger inequality for the
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coincidence probabilities. Indeed, in this case one has

P̄p,q = |U1,pU2,q|2 + |U1,qU2,p|2 (E.5)

for p 6= q and

P̄p,p = |U1,pU2,p|2, (E.6)

where P̄p,q now stands for the probability of having one of the two distinguishable pho-

tons in state p and the other in q after the QW, before the BS. The mathematical

identity (|U1,pU2,q| − |U1,qU2,p|)2 > 0 leads directly to the following inequality:

2
√
P̄p,pP̄q,q − P̄p,q < 0. (E.7)

After the BS, this in turn is equivalent to

Tp,q =
√
Pp,pPq,q − Pp,q < 0. (E.8)

The violation of the first inequality (E.4) from our coincidence data would prove that

the photon correlations cannot be mimicked by intensity correlations of classical sources.

Panels (a-d) in Figs. 5.8 (standard QW) and E.1 (hybrid QW) show the set of violations

found in our two-photon experiments, in units of Poissonian standard deviations. In

some cases, the experimental violations are larger than 5 standard deviations, proving

that the measured correlations are quantum. As these inequalities are valid for any

possible unitary propagation of the photons, they are also independent of all possible

misalignments of our setup. Hence, the use of statistical standard deviations to assess

the violation magnitude is well justified.

The violation of the second inequality (E.8) from our data proves that the photon cor-

relations are stronger than those allowed for two distinguishable photons, owing to the

contribution of two-photon interferences. Although this is already demonstrated in some

cases by the violation of the first inequality (as the violation of the first inequality log-

ically implies the violation of the second one), this second inequality is stronger and

should be therefore violated in a larger number of cases and with a larger statistical

significance (although it requires assuming that there are two and only two photons at

input, so that a classical source is excluded a priori). Panels (e-h) in Figs. 5.8 (standard

QW) and E.1 (hybrid QW) show the observed violations. This time, certain measure-

ments violate the inequality by as much as 15 standard deviations, thus proving that

two-photon interferences play a very significant role in our experiment.
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