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Introduction 

The classical goal of tissue engineering is the production of functional 

tissues to substitute or restore in vivo a damaged tissue or its function. 

However the clinical applications of 3D tissue model, is not the only purpose 

for realizing in vitro functional 3D tissue equivalent. Indeed compared to 

conventional 2D cell cultures, that lack of adequate extracellular matrix [1] 

3D in vitro models offer the possibility to study different mechanisms 

involved in many diseases, as drug screening platforms and have a great 

potential on reducing, in some cases, experiments performed on animals 

[2]. Although several strategies have been developed, the realization of 

high-fidelity tissue mimicking the structures and functions of the native 

tissues still remain a major challenge. Traditional tissue engineering 

strategies typically employ a “top-down” approach,  in which cells are 

seeded on a biodegradable polymeric scaffold [3-5]. In top-down 

approaches, the cells are expected to populate the scaffold and create the 

appropriate extracellular matrix (ECM) and microarchitecture often with the 

aid of perfusion, growth factors [6, 7] and/or mechanical stimulation [8]. 

Top-down approaches often have difficulty in recreating the intricate 

microstructural features of tissues. Subsequently, from an engineering point 

of view, it was proposed to build tissues by assembling blocks mimicking 

those units in a “bottom-up” or “modular approach” [9-12]. This approach 
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brings versatility and scalability to the fabrication of in vitro tissue models. 

The fabrication of those tissue models necessitates of tools to create an 

initial architecture and to systematically manipulate their microenvironments 

in space and time [10]. One of the major challenges of “bottom-up” tissue 

engineering is to assemble modular tissues with specific micro architectures 

into macroscale engineered tissues, without changing  the microarchitecture 

and cellular behavior of modular tissues [6]. In this scenario, the modular 

tissue engineering is emerging as new paradigm for the in vitro fabrication 

of 3D biological structures. Several kinds of micromodules were performed, 

but systems composed by an aggregate of cells, or cells embedded in an 

exogenous matrices, still represent an approximation of the real tissues. 

Thus, the fabrication of engineered micromodules  able to control the 

synthesis and the assembly  of an endogenous ECM, represents a 

formidable task. In this direction, our group developed a new class of tissue 

micromodules, named micro tissue precursor (TP), which led to the 

formation of a completely endogenous 3D tissue [7, 13], this technique is 

applicable to several kinds of cells, in order to obtain several kind of tissues. 

How the process conditions and micro-scaffold degradation rate modulated 

the synthesis and the assembly of the newly-formed ECM in the final 3D 

tissue have been previously demonstrated [13].  

In the first chapter of this work we proposed tp as a new class of bio-ink for 
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organ printing strategy and demonstrate that they evolve during culture time 

and strongly influence the morphology of the final printed tissue. We argue 

that the initial composition of the ECM present in the TP change with tp 

“age” and affects the maturation of the ECM in the final 3D tissue.  We 

focused our attention on crucial aspects such as fusion capability, degree of 

maturation and mechanical properties of its ECM, as well as the evolution of 

oxygen consumption kinetic parameters. Finally we demonstrated the 

capability of tp to be printed in unusual shapes meeting one of the need of 

organ printing strategy to overcome shape limitation and to obtain functional 

and complex tissues. 

In the second chapter we proposed a model of TOC (tissue on chip) by 

inserted TP in a microfluidic platform, designed in order to induce flow 

perfusion of the TP. This micro-perfusion bioreactor, can be performed  in 

order to evaluate the effect of flow rate and biochemical factors on the 

tissue development. By using this system together with TP, it is possible in 

“short time” optimize the fluid dynamics parameters and bio-chemicals 

concentration inside the medium and evaluating  the effect of external 

factors on the collagen assembly, cells viability and metalloproteinase 

synthesis. These capabilities made it an important tool for studying cause-

effect relation, in particular how each single factor influences the tissue 

characteristics.  
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In the third chapter it is explored the possibility to realize TP by using 

bronchial fibroblast in order to obtain “lung-stroma” on which build up 

bronchial epithelium. We found  that TP not only synthesize their own 

ECM, but that they organize it leading to a final tissue having a morphology 

very similar to native lung stroma.  By seeding bronchial epithelial cells on 

this lung stroma, they differentiate and recreate the complete airway 

epithelium in air-liquid condition. Finally, by exploiting the knowledge of our 

group to recreate a human skin model, we evaluate its capability to 

maintains exogenous hair viability during the time, in terms of elongation 

capability and anagen phase of hair follicle maintenance. We realized a 

human skin model that, better than other competitors, is a good 

environment for the exogenous hair. This is a starting step in order to obtain 

a complete model that itself recapitulate all the hair follicle structures. 
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Chapter 1 

1.1 Introduction 

In the field of tissue engineering, the reconstruction of organs and tissues 

for use as living replacement parts in the body and as pharmacokinetic 

models is a major challenge [14]. To achieve this goal, cells must be grown 

in an environment similar to that found in living tissues [15]. Many types of 

cells in vivo interact with other cells and with extracellular matrices (ECMs) 

within three-dimensional (3D) structures [16]. The cell–cell and cell–ECM 

interactions provide mechanical and biochemical cues that can influence 

cellular function and differentiation [14]. Therefore, 3D cell culture models 

combining cells and ECMs should be used to mimic and analyze the cellular 

functions of living tissues [16]. However, it is difficult to mimic dense and 

complex cellular morphologies in living tissues using conventional 3D 

cellular constructs produced using large biodegradable scaffolds [14-16]. 

Actually, these materials cannot represent the complexity of natural 

extracellular matrices (ECMs) and thus are inadequate to recreate a 

microenvironment with cell–cell connections and three-dimensional (3D) 

cellular organization that are typical of living tissues [17]. A potential 

solution would be to produce composite printable microcarriers (MCs) [7, 

13]. The MCs are particles designed to promote attachment and survival of 

adherent cells, due to their small size they offer a very high specific surface 
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area for cell proliferation [13]. Tissues are so fabricated in the form of 

micromodules, obtained by either cellular spheroids (fig. 1) [18, 19]  

Figure 1 Spheroid based tissue printing;  Diagram of digital dispensing of spheroids in fluids (a);  
Tissue spheroids in loaded micro-pipette before dispensing (bi) and during (bii); Scheme for the 
bio-assembly of tubular tissue construct (c);  Assembled ring like structure and tissue fusion 
process Labeled spheroids showing absence of cell mixing during the fusion process (di). 
Sequential steps during tissue fusion process (dii)  adapted from [18]. 

 

or cell-laden microscaffold technology [13]. Different kinds of micromodules 

can be then arranged in a defined spatial arrangement, and their fusion led 

to the formation of a 3D structure resembling the modular nature of the 

native tissues [18].  For instances, by positioning in a defined spatial 

coordinates cellular spheroids made by smooth muscle cells and 

endothelial cells respectively, it has been obtained a 3D toroidal-shaped 
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biological structures, resembling the organization of a blood vessel [20]. 

Cellular spheroids can be easily printed and organized in a 3D arrangement 

with a high spatial resolution but due to the absence of an ECM, the cells in 

the final 3D tissue are mainly engaged in cell-cell interactions.  

Figure 2 Formation of millimeter-scale 3D tissue architectures by molding monodisperse cell 
beads. Method used to produce the 3D tissue architectures using monodisperse cell beads (a); A 
microscopy image of the doll-shaped PDMS mold chamber reveals 3D tissue formation (b); 
Microscopy images of NIH 3T3 cell beads immediately after stacking (c,d). Cavities (indicated 
with yellow arrows) among the cell beads are observed at this time point (0 h). Microscopy 
images of NIH 3T3 cell beads, 17 h after stacking (e,f). Adapted from [18] 

  

Collagen gel in the form of bead, wire, or plug has been used to realize 

tissues micromodules populated by fibroblasts, neurons [7, 13, 21], or by 

co-cultuirng cardiac cells and endothelial cells [6]. Once packed, such 

micromodules were able to fuse and to generate macroscopic monotypic or 

heterotypic tissue-like structures. Microgel of complex shapes have been 

also fabricated by stereolithography and photopolymerization generating 

micromodules made by cell-sedeed poly(ethylene glycol) microgels 
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organized in “key and lock” fashion. In the systems described so far, the 

mechanism that led to the fusion of the tissue micromodules comprised 

mainly cell-cell contacts, or microgel-microgel interactions occurring via 

multiphase liquid-liquid [22] interactions or in situ post polymerization [23]. 

Although the obtained 3D structures recapitulate the architecture of the 

native tissues, an assemblage of cells or cell embedded in exogenous 

biopolymers mainly composed them. Many studies report the role that the 

ECM plays in both in vivo and in vitro [24-26]. The response of a living 

tissue to any perturbations is mediated by the cross-talk existing among 

cells and their own ECM [27]. In parallel, different works, investigating on 

the role of the ECM composition in vitro,  demonstrated that as the 

composition of the exogenous matrices approached that of the native 

tissues, the corresponding engineered tissues had more reliable response 

to external stimuli [28-30]. Bio-printing is an innovative technology that 

allows for the generation of organized 3D tissue constructs deposition 

process of cells seeded microcarries [31]. A crucial aspect of bio-printing is 

that the printing process must be cytocompatible [32]; bioinks are critical 

components in biofabrication, as they should possess the right rheological 

parameters required for the printing process and simultaneously offer an 

optimal environment for cell survival, proliferation, migration and 

biosynthetic activity [32]. The bio-ink can be molded into a designed silicone 

chamber to form the macroscopic 3D tissue structures; finally, the 
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fabricated tissue can be released from the mold, preserving the desired 

shape [33]. The advantages of this method are that we can: i) prevent 

tissue necrosis during tissue formation; ii) reconstruct 3D tissues with 

uniform cell density because the cell density of each cell bead can be 

tuned; and iii) easily overcoming tissue shapes to achieve geometrical 

control of the final printed tissue. In this chapter we show a new class of 

bio-ink, able to print tissues with endogenous ECM. We focused our 

attention regards the evolution of the bio-ink during the time, and how its 

“age” can influence the finals characteristics of the printed tissue in terms of 

fusion capability, metabolic activities, collagen synthesis stiffness and 

distribution. 

 

1.2 Material and methods 

1.2.1 Microscaffold production 

 

Gelatin porous microbeads (GPMs) have been prepared according to a 

modified double emulsion technique (O/W/O). Gelatin (type B Sigma Aldrich 

Chemical Company, Bloom 225, Mw=l 76654 Dalton) was dissolved into 10 

ml of water containing TWEEN 85 (6% w/v) (Sigma Aldrich Chemical 

Company). The solution was kept at 40°C. Toluene containing SPAN 85 

(3% w/v) (Sigma Aldrich Chemical Company) was continuously added to 
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the aqueous gelatin solution (8% w/v) to obtain primary oil in water 

emulsion. Beads of gelatin containing droplets of toluene were produced 

through the addition of excess toluene (30 ml) that allowed for a double 

emulsion (O/W/O). The resulting microspheres were filtered and washed 

with acetone and then dried at room temperature. Microspheres were 

separated selectively by using commercial sieves (Sieves IG/3-EXP, 

Retsch, Germany). GPMs with 75-150 m size range were recovered and 

further processed. GPMs have been stabilized by means of chemical 

treatment with glyceraldehyde (GAL), in order to make them stable in 

aqueous environment at body temperature. In particular, GPMs were 

dispersed into an acetone/water solution containing 4% of GAL and mixed 

at 4°C for 24 h. Then microspheres were filtered and washed with acetone 

and dried at room temperature. Before their use in cell culture dry GPM 

were sterilized by absolute ethanol sub-immersion for 24h. After that, in 

order to remove ethanol completely, several washings in calcium-free and 

magnesium-free phosphate-buffered saline (PBS) were performed. Before 

cell seeding PBS was removed and replaced with the culture medium.   
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1.2.2 Cell expansion 

 

Human dermal fibroblasts (neonatal HDF 106-05n ECACC)  were sub-

cultured onto 150 mm
2
 Petri dishes in culture medium (Eagle’s BSS 

Minimum Essential Medium containing 20% fetal bovine serum, 100 g/mL 

L-glutamine,100 U/mL penicillin/streptomycin, and 0,1 mM Non Essential 

Amino Acids). Cells were maintained at 37°C in humidified atmosphere 

containing 5% CO2. HDF of passages 4-7 were used. 

 

1.2.3 Bio-ink engineering 

 

HD-TP culture  

To realize the HD-TP, spinner flask bioreactor was inoculated with 

105cell*ml-1 and 2mg*ml-1 of microbeads, corresponding to an initial ratio of 

10 cells per bead. The culture suspension was stirred intermittently at 30 

rpm (5 min stirring and 30 min static incubation) for the first 6h post-

inoculation to allow adhesion, and then continuously stirred at 30 rpm up to 

28 days. The growth medium was replenished on the first day and every 2 

days until the end of experiments. From the day 4, 50 g/ml of ascorbic acid 

(l-ascorbic acid Sigma A-5960) were added and freshly added at each 

medium change.  
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Cell proliferation on HD-TP 

At culture day 1, 3, 7, 14, 21 and 28, aliquots of 1ml were collected from 

spinner culture. Then, 3 aliquots of 300 l each was transferred to a cell 

culture dish (w/2 mm grid Nunc) and the number of HD-TPs were counted 

by visual inspection under microscope. After that, the each microcarriers 

suspension was placed in the 1,5ml eppendorf tube, gently washed twice 

with PBS, and then treated with trypsin solution (Lonza 17-161E 37°C 5 

min) to allow cell detachment and harvesting. Finally, the detached cells 

were counted using an hemocytometer and the cell per HD-TP ratio was 

evaluated. 

 

1.2.4 HD-TP morphology 

 

Immunofluorescence and mutiphoton imaging  

Aliquot of 1 ml aliquots were collected at day 1, 3, 7, 14, 21 and 28 from the 

spinner culture and the HD-TP were stained with phalloidin 

tetramethylrhodamine B isothiocyanate (Sigma-Aldrich) and SYTOX® 

Green (INVITROGEN) for cell cytoskeleton and cell nuclei detecting 

respectively. Briefly, for both analyses, the HD-TP were fixed with 4% 

paraformaldehyde for 20 min at room temperature, rinsed twice with PBS 

buffer, and incubated with PBS-BSA 0.5% to block unspecific binding. In 
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particular the samples were incubated with SYTOX® Green stock solution 

(10 mg/mL in dimethyl sulfoxide) diluted in PBS (1/500 v/v) for 10 min at 

37°C, and after rinsing in PBS, they were stained with phalloidin for 30 min 

at room temperature. After that, the stained HD-TP were imaged under 

multichanneled Leica TCS SP5 II coupled with a Multiphoton Microscope 

where the NIR femtosecond laser beam was derived from a tunable 

compact mode-locked titanium: sapphire laser (Chamaleon Compact OPO-

Vis, Coherent). Two channels were used for confocal imaging of cell nuclei 

(ex = 500 nm / em = 520-530 nm) and cytoskeleton (ex = 573 nm/ em = 

588-598 nm ) respectively. Two-photon excited fluorescence (ex= 840nm) 

was used in another channel to induce second harmonic generation (SHG) 

of unstained neo-synthesized collagen structures by collecting the emission 

wavelength in the range em = 420±5 nm. 

 

Histology 

For histological analysis, 1 ml of HD-TP suspension was fixed in a solution 

of 10% neutral buffered formalin for 24 h, dehydrated in an incremental 

series of alcohol (75%, 85%, 95% and 100%, and 100% again, each step 

20 min at room temperature) treated with xylene and then embedded in 

paraffin. Successively, the samples were sectioned at a thickness of 6µm, 

and stained with hematoxylin and eosin. The sections were mounted with 
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Histomount Mounting Solution (INVITROGEN) on coverslips and the 

morphological features of constructs were observed with a light microscope 

(Olympus, BX53).  

 

1.2.5 Dynamic interaction among HD-TPs 

HD-TP Aggregation  

To evaluate the aggregation capability, aliquots of HD-TP were collected 

at each time point (days 3, 7, 14, 21 and 28), and placed under microscope 

(Olympus CK X41). The acquired images were processed by using imageJ 

software: after transforming in binary images thresholding,, by means 

analyze particles plugin it was measured the area distribution of the HD-

TP. 100 HD-TPs were analized at each time point . Data were reported 

as mean value±SD. 

 

Multi particles tracking 

Custom made multiple particle tracking microrheology apparatus was used 

to probe the local mechanics of the neo-synthesized ECM macromolecule 

on the surface of the HD-TP by monitoring and tracking the motion of 

particles embedded in the samples. Fluorescent polystyrene  particles (100 

nm Polyscience) were shot on the HD-TPs using a ballistic gun (Bio-Rad, 

Hercules, CA). Helium gas at 2200 psi was used to force a macrocarrier 
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disk coated with particles to crash into a stopping screen. The force of 

collision was transferred to the particles, causing their dissociation from the 

macrocarrier and the bombardment of HD-TPs. Then, the samples were 

placed in a microscope stage-incubator at controlled temperature and CO2 

(37 °C and 5%, respectively). Movies of embedded particles were recorded 

via a gated intensified high-speed camera (Lambert Instruments, Roden, 

The Netherlands) mounted on an inverted epifluorescence microscope 

(Olympus IX70, Olympus, Melville, NY) at 100x magnification. The 

displacements of particle centroids were monitored by a time-lapse 

acquisition of 6 s at a rate of 50 frames per second. Movies of particles 

were analyzed by a ourself-developed algorithm in Matlab (Matlab 6). It 

detects each position in every frame by intensity measurements and links 

this point detection into trajectories, basing on the principle that the closest 

positions in successive frames belong to the same particle (proximity 

principle). Once obtained the trajectories, mean square displacements 

(MSD) described by the equation 1: 

 

< ∆r2(τ) >=< [x(t − τ) − x(t)]2 + [y(t − τ) − y(t)]2 >                    (1) 

 

was obtained. In the equation 1 < > means time average, τ is the time 

scale and t the elapsed time. 
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The MSD provide information about the mechanical properties of 

intracellular and extracellular environments. Indeed, it was demonstrated 

that the MSD amplitude is inversely related to the rheological properties of 

living cells [34]. Here we compared MSD to have information about the 

evolution of structural and mechanical organization of ECM deposited and 

assembled on surfaces of the HD-TP during the culture period.  

 

1.2.6 collagen fraction quantification 

SHG images from HD-TP were analyzed by using imagej software in order 

to quantify the collagen fraction. The portion of the HD-TP not occupied by 

the microscaffolds was considered as the space occupied by the newly 

synthesized ECM (ECM space). The ECM space was dived in collagen 

portion and non-collagen portion. The former appears as bright pixel due to 

SHG signal, the latter as dark pixel. We define “collagen fraction” the ratio 

between bright pixels to total pixels (dark plus gray).  

 

1.2.7 Oxygen consumption kinetics measurements 

In order to evaluate the oxygen consumption kinetics of the HD-TP along 

culture time (days 0, 3, 7, 14, 21, 28) a small amount of microtissues were 

spilled from the spinner flask at each time point and placed in 3 different 

vials of frosted glass. The vials were filled with fresh culture medium and 
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then placed in an incubator and kept at 37°C, under gentle agitation. The 

vials where than closed in order to avoid oxygen exchange with the 

surrounding environment. By means of an optical detector (OXY-4 

PreSens) it was measured the oxygen concentration of the medium in the 

vials. The partial pressure was converted in oxygen concentration (C) by 

means of Henry’s law (5*10-4 atm/ molar fraction). As control the same 

measurements were performed in three vials containing only medium and 

maintained in the same conditions. At the end of the experiment the HD-

TP were enzymatically treated and the cell number was counted in order 

to obtain cell density in the medium (). By performing centered time 

derivative of the oxygen concentration curve, is possible to obtain the 

consumption velocity (V). By plotting V vs C a Michelis-Menten law kinetic is 

obtained. In order to evaluate the kinetics parameters, a linearization of the 

kinetics curve was performed by plotting V-1 and C-1; the intercept with y 

axis is  Vmax
-1, and the intercept of x axis is -Km

-1 

 

1.2.8 Realization and characterization of 3D tissue 

HD-μTP packing and culturing.  

HD-μTP suspension was transferred from the spinner flask to the a 

maturation chamber and casted in cylindrically shaped mold 1 mm in 

thickness and 5 mm in diameter. The maturation chamber was kept under 
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controlled dynamic culture conditions to allow bio-fusion of the HD-μTPs as 

previously described. The maturation process had a duration of 2 week 

generating 3D-Tissue having the dimension of the initial cylindrical mould. 

This procedure was repeated at each time point of the HD-TP culture 

(days 3, 7, 14, 21 and 28) in order to have 3D-Tissues generated by HD-

TP having different properties and age. 

 

Evaluation of the newly-formed collagen assembling kinetics  

After two weeks of culture maturation chamber was opened and the 3D-

Tissues were fixed in a solution of 10% neutral buffered formalin for 24 h. 

After the fixation and dehydration procedure the 3D-Tissues was embedded 

in paraffin to be sectioned transversally to the circular surface. In order to 

characterize the ECM morphology and composition, histological analysis on 

transverse sections of biohybrid, was performed along the biohybrid’s 

thickness. Transverse sections  7m thick, were stained using Masson’s 

trichrome (Sigma Aldrich) and Picro Sirius Red (Sigma Aldrich) following 

standard procedure and analyzed by an optical microscope (BX53; 

Olympus). The samples stained with Picro Sirius red were observed by 

using a polarized microscope. Polarized light images of samples stained 

with Picrosirius Red alone were acquired with an inverted microscope 

(BX53; Olympus) with a digital camera (Olympus DP 21). A linear polarizer 
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was placed between the light source and the specimen, while the analyzer 

was installed in the light path between the specimen and the camera. The 

color of collagen fibers stained with picrosirius red and viewed with 

polarized light depends upon fiber thickness; as fiber thickness increases, 

the color changes from green to red [35, 36]. To quantitatively determine 

the proportion of different colored collagen fibers, we resolved each image 

into its hue, saturation and value (HSV) components by applying the 

software’s “color threshold” function. Only the hue component was retained 

and a histogram of hue frequency was obtained from the resolved 8-bit hue 

images, which contain 256 colors. We used the following hue definitions; 

red 0-51, green 52-120. The number of pixels within each hue range was 

determined and expressed as a percentage of the total number of collagen 

pixels, which in turn was expressed as a percentage of the total number of 

pixels in the image. Since the aim of imaging analysis was to investigate the 

evolution of endogenous ECM composition, it was necessary to exclude by 

region of interest (ROI) the areas occupied by the microscaffold when it was 

still present.  

 

Evaluation of the newly-formed collagen distribution 

The degree of assembling of collagen network was evaluated by analyzing 

the intensity of SHG signal [37, 38]. The analysis was performed within the 
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3D-Tissue space, where the SHG was present, by distinguishing two 

different zone: i) TP-bulk, indicating the newly deposited collagen within 

the HD-TP space; (ii) TP-interstices indicating the newly deposited 

collagen between the HD-TP interstices. All SHG images were subjected 

to noise subtraction and the average intensity in the two different zones was 

evaluated as described by the equation 2:  
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where:  is the average intensity, Ii is the intensity corresponding to the Pi   

pixel while the index i runs in the gray value interval: from 1 (less intensity) 

to 255 (more intensity). The intensity is proportional to the degree of 

assembly of the newly synthesized collagen [37, 38]. 

 

1.2.9 Engineered bio-ink printing 

 

“Symbolic” mold for “symbolic” printed shape were carved onto a 

Poly(methyl methacrylate) (PMMA, Goodfellow) using micromilling machine 

(Minitech CNC Mini-Mill). Four shapse were realized: triangle, cross, circle, 

square (1mm in thickness, 2 mm in width and 4 mm in length for each side 
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and circle diameter). In order to obtain a uniform distribution of the bio-ink 

during the printing process, the HD-tps were loaded glass pasteur to 

guarantee the alignment of the HD-tps; the Pasteur was connected to a 

syringe pump in order to have a constant flow rate and a consequent 

uniform spill of the HD-tps. During the filling procedure the “symbolic” mold 

were accommodated on a moving stage to guarantee X and Y moving, and 

connected with a vacuum pump to assure that no bubbles were in 

maturation space. Completed the printing process the “symbolic” mold were 

placed on the bottom of a spinner flask and completely surrounded of 

culture medium for two weeks. The spinners was operated at 60rpm and 

the medium was exchanged every three days. The maturation lasted 2 

weeks.  

 

1.2.10 Characterization of symbolic shape  

Using optimized bio-ink (14 days), same symbolic shape were printed; line 

shape (1 mm in thickness, 2 mm in width and 9 mm in length); Geometrical 

shapes (1mm in thickness, 2 mm in width and 4 mm in length for each side 

and circle diameter). All the symbolic shapes were stained with SYTOX® 

Green (INVITROGEN) for cell nuclei detecting. Briefly, the printed tissues 

were fixed with 4% paraformaldehyde for 20 min at room temperature, 

rinsed twice with PBS buffer, and incubated with PBS-BSA 0.5% to block 



33 
 

unspecific binding. In particular the samples were incubated with SYTOX® 

Green stock solution (10 mg/mL in dimethyl sulfoxide) diluted in PBS (1/500 

v/v) for 10 min at 37°C, and after rinsing in PBS. The  printed tissue were 

imaged under multichanneled Leica TCS SP5 II coupled with a Multiphoton 

Microscope where the NIR femtosecond laser beam was derived from a 

tunable compact mode-locked titanium: sapphire laser (Chamaleon 

Compact OPO-Vis, Coherent). Two-photon excited fluorescence (ex = 

840nm) was used to induce second harmonic generation (SHG) of 

unstained neo-synthesized collagen structures by collecting the emission 

wavelength in the range em = 420±5 nm. The second channel was used for 

confocal imaging of cell nuclei (ex = 504 nm / em = 520-530 nm). The third 

channel was set to visualize the elastin auto-fluorescent signal (ex = 740 

nm / em = 480-600 nm).    

 

1.3 Results 

1.3.1 TP Evolution: cell proliferation aggregation and 

remodeling 

 

The tps evolution during 28 days were evaluated, in figure 14 are reported 

the time evolution of cells and ECM organization. At day 3-7 of spinner 

culture, the cells colonized mainly the external surface of the microbeads 



34 
 

(a-b), while during third and fourth week, cells invasion and ECM synthesis 

occurred also in the bulk of the HD-TP forming a micrometric tissues 

completely made-up of cell embedded in their own ECM (c-d). The number 

of cells per tp grows exponentially during two first weeks, starting from 10 

cells per microbeads until to 2*103 cells per microtissue; moreover between 

14th and 28th day the duplication rate drastically decrease and no statistical 

difference were detected.  

 
Figure 3 tp evolution during culture time: nuclei ad actina distribution (a-d) and growth 

curve 

 

 



35 
 

The figure 4 shows the aggregation capability of the tps in dynamic 

condition (a-d); the graph quantifies the areas evolution, the value start from 

5*104 m2 and increase of four time until 2*105 m2 in correspondence of 

two weeks. Starting from third week the tps lose this intrinsic 

characteristic, and the values of the areas decrease. This trend is due to the 

contribution of two several factors: contraction, and less of fusion capability. 

During the early time point the contribution of the fusion overbear the 

contraction, while later of two weeks the contraction itself exceeded the 

micro tissues fusion. The value of MSD at =1 s was reported. MSD 

analyses showed that there was a significant reduction of distance traveled 

by particles  from day 7 to day 14, and a successive stabilization of MSD 

value until day 28. In active systems, such as HD-TPs, in which 

remodeling processes of both cytoskeleton and ECM network,  the violation 

of generalized Stokes-Einstein equation prevents the direct correlation 

between MSDs and viscoelastic moduli. Nevertheless, it was demonstrated 

that also when active processes are present, the MSD amplitude is 

inversely proportional to the stiffness of explored microenvironment [34]. 

Thus, we suggest that the reduced motion of particles observed at 14 days 

is associated to an increased structuration and stiffening of cytoskeleton 

and more abundant and organized extracellular matrix. 
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Figure 4 tp evolution during culture time: H/E staining, scale bar 200 m (a-d;) aggregation and 

diffusion coefficient  

 

 

1.3.2TP Evolution: metabolic and biosynthetic activity 

 

The cells are embedded in own extracellular matrix, that evolves and 

changes the characteristics of the final tissue. Figure 5 shows the collagen 

evolution during culture time (a-d), the graph of collagen fraction shows an 

increase of collagen I and III signals inside the extracellular matrix; the 

signal at 3th day (picture not shown) isn’t detectable, the percent of 

collagen increase from 7th day to 14th day of more than ten times and 

reaches a plateau value of about 50% for all other time points. The oxygen 
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rate consumption, describe the demand of nutrients related with tps age; in 

the first time point was measured the maximum value of 2.1*10-8, two time 

highest of 7 days point. Just from 2 weeks the initial value let down of an 

order of magnitude, value confirmed at three and four weeks; this parabolic 

trend, concerning the collagen evolution, show two several phases of the 

cellular activity: biosynthetic phase (3-7 day) and maturation phase (14-21-

28 days). During the biosynthetic phase the cells are engaged to synthesize 

new collagen, while during the maturation phase the cells reassemble the 

collagen previously synthesized in reticulate collagen.   

 
Figure 5 tp collagen evolution (a-d) and quantification; maximum oxygen rate consumption. 
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1.3.3 TP age on final 3D tissue printed 

 

The final 3D characteristics changes in relationship to tps age, in terms of 

collagen fraction, architecture and distribution. The biohybrids, build up 

starting from several tps age, show a compact structure in all cases, as 

shown from trichrome masson ( figure 6 a-e). The picrosirius red (figure 6 f-

l) demonstrate a consistently variation in terms of architecture and 

distribution of the ECM; in particular until 14th day the resultants biohybrids 

are characterized from an uniform ECM structure, whereas the final 3D 

build up whit 21th  28th days tps appear a discontinuity inside the interstices 

amongst tps themselves, clear evidence of the incapacity of the long time 

tps to close the gap in the ECM between singles tps. The fraction of 

immature collagen shows the capability of the tps to synthetize new 

collagen in bioibrids realized starting from tp of 14 days, the value during 

the first two weeks increase of four times; in the next time point the value 

decrease until 1.2%. Though the collagen of mature fraction increase 

growth of ten times during culture time, the lowest value of immature 

collagen elucidate why the gaps aren’t covered. 
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Figure 6 effects of tp age on the final 3D printed tissue; masson tricrome (a-e), picrosirius red (f-

l), immature and mature collagen quantification; scale bar 200 m 

 

1.3.4 Collagen distribution in the 3D printed tissue  

 

Figure 7 shows SHG collagen signals (a-e) inside the 3D printed tissues. 

This kind of signal confirm the results of figure 6 in which is possible to note 

the formation of the discontinuity zones inside the ECM.  The graph shows 

the intensity of the collagen signal, inside the and between the tps. The 

collagen concentration inside the tps get on during the second week 

starting from a value of 10 pixel/pixel to 30 pixel/pixel  and it fluctuates 
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around maximum value for the three weeks more. The characterization of 

the collagen in the interstice show an increasing trend until 14th day, in 

which the value is 15 pixel/pixel, and a decrease in the next weeks where it 

back to the initial values of 8-10 pixel/pixel. This evidence shows an 

incapability of the 21th and 28th days tps to bridging the gap during the 

fusion process.  

 

 
Figure 7 collagen distribution (a-e) acquired by second harmonic generation in the 3D printed 

tissue, and quantification 
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1.3.5 Characterization of symbolic shape  

The image 8 shows the printed tissue with “symbolic” shape as above 

descripted, by using this technique is possible to overcoming the shape 

limits. The fluorescent signal display an homogenous cells distribution 

without discontinuity zone. Furthermore the SHG reconstruction shows that 

the final result is a complete tissue composed by cells and own extra 

cellular matrix, with collagen and elastin, and not only a macro-metric 

cellular aggregate. 
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Figure 8 Symbolic printed shape; nuclei staining, collgen and elastin MP exitation. 
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1.4 Discussion 
 

Tissue and organ functions are strongly regulated by the cross talk between 

cells and its own ECM [39]. As a consequence engineered tissues, that 

aims to be an in vitro functional replica of the corresponding native one, 

must reproduce the dynamic environment in which the cells are naturally 

embedded. In this scenario, we realized engineered functional tissue 

micromodules for in vitro bio-printing applications, which provide the 

fabrication of endogenous 3D tissue equivalents in different shapes. HD-

TP were obtained by culturing human fibroblast within custom made 

gelatin porous microbeads [7, 13]. Microcarriers made of native polymers 

such collagen and gelatin representing a good choice in supporting the 

proliferation of anchorage dependent cells through favorable cell-matrix 

interactions [40, 41], the cell cultured in porous microcarriers, could be 

addressed in synthesizing their own ECM, generating endogenous 

microtissues that worked as micromodules (or bio-ink) for bottom-up tissue 

engineering [7, 13]. In general tissue micromodules are commonly designed 

with regard to its initial cell density, shape [6],  size distribution [42], 

capability to induce stem cell differentiation [43] and fusion mechanisms 

[44]. All this parameters have been shown to affect the final 3D tissue in 

terms of cell distribution and viability, furnishing partial evidences 

concerning 3D tissue formation in terms of ECM production and 
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organization. During the dynamic culture cell density per HD-TP increased 

reaching a plateau at day 14 in agreement with similar studies [13]. The 

SHG signal detected from day 7 to day 28, indicated that cells within the 

HD-TP were engaged in the collagen production and assembling. The HD-

TP were surrounded by a rim of tissue that induced their aggregation via 

cell-cell and ECM-ECM contact, as demonstrated by the increasing of the 

average area occurring until day 14. On the other hand, starting from day 

14, HD-TP started to shrink. In this time frame the contraction induced by 

the cell traction, was the predominant process with regard to the fusion 

capability, leading to a reduction of the average size of the HD-TP. The 

depression of fusion capability was ascribed to the stiffening of the ECM on 

the surface of the HD-TP depressing the HD-TP fusion capability. Indeed, 

the HD-TP fusion was a process mediated by both cell-cell-cell and ECM-

ECM interaction. The growing collagen polymeric network, worked as glue 

between adjacent HD-TP and the reduced mobility of the collagen 

network, detected by the MPT analyses, indicated that its “sticking” 

capability decreased as culture time increased. Along the culture time we 

observed that HD-TP manifested two different biological regimes. From 

day 3 to day 14 (biosynthetic phase), cell density and collagen amount 

increased, then they remained constant from day 14 to day 28 (maturation 

phase). During the biosynthetic phase the cells were engaged in synthesize 
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new collagen and in concert, the metabolic request was higher than in the 

maturation phase. From day 14 till day 28, the cells number remained 

constant as well as the amount of collagen and cells were mainly devoted in 

assembling the collagen previously synthesized, lowering their metabolic 

request was. This was in agreement with other works reporting that cell 

depressed their metabolic request as the number of cell-ECM interaction 

increased [45]. In order to assess the role of HD-TP properties on the final 

3D tissue we fabricated 3D structures by using as bio-ink HD-TP from 

different days of culture. The histological section of the 3D tissues, revealed 

that regardless to HD-TP age, all macroscopic 3D printed tissues were 

viable, compact and newly formed ECM was present through the whole 

thickness. In contrast, 3D tissue obtained starting from cell-beads, cell-

laden microgel and cell aggregates were mainly composed by cell 

embedded in exogenous biopolymers or cell spatially arranged in a 3D 

architecture [14]. In other scientific reports, it has been proved the 

realization of dermal-like structures by using cell-populated microbeads as 

bio-ink [21], although it was found a high density of viable cells along the 

tissue thickness, but no ECM were detected. PSR and SHG imaging 

allowed to elucidate that by using HD-TP from day 3, 7 and 14, the 

resultant 3D tissues were characterized by an uniform ECM structure, 

whereas the heterogeneity in 3D tissues was exacerbated when HD-TP 



46 
 

came from day 21 and day 28. This was due to HD-TP hyper-maturation at 

later culture time, resulting in less-communicating micromodules, in 

agreement with the reduced fusion capability observed in the suspension 

culture. The optimal bio-ink was the HD-TP at day 14 possessing the 

following features:  (i) optimal size to be printed (150-200 m in diameter); 

(ii) higher fusion capability; (iii) lower oxygen request; (iv) uniform ECM 

maturation in the 3D tissues. The engineered HD-TP represents an 

innovative bio-ink to be used in modular tissue engineering proving that 

building-up 3D tissue formed by endogenous ECM is feasible. Because the 

presence of endogenous ECM it we propose a more reliable model than the 

cellular spheroids and cell-laden micromodules, HD-TP can be realized in 

starting from different cell lines and printed allowing the realization of 

different structures tissue that can be used in human body on chip 

applications.   
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Chapter 2 

Microfluidic device as screening system 

for 3D-tissue culture conditions 
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Chapter 2 

2.1 Introduction 
 

The classical cells culture conditions do not closely mimic the in vivo 

microenvironment due to the absence of the fluid flow and shear stresses 

[46]. Also, these cultures are less suited to provide a dynamically controlled 

flow of cell nutrients and stimuli and, additionally, the accumulation of waste 

leads to a pH drift in a static culture [47]. Other drawbacks of the classical 

cell culture systems are the long growth times needed for cells to 

differentiate into functional cells and the dependence on external signal 

detection systems that require manual withdrawing and manipulation of 

samples [46]. Furthermore, crucial it becomes the choice of the bioreactor;    

Figure 9 spinner flask bioreactor 

 

One of the simplest bioreactor designs is the spinner flask (fig 9), the 
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convective forces generated by the magnetic stir bar mitigate the nutrient 

concentration gradients at the surface of the scaffolds [48, 49]. Spinner 

flasks have also been successfully used for seeding cells on scaffolds with 

well-controlled cell densities.  Another kind of bioreactor that improves mass 

transfer at the interior of three-dimensional scaffolds is the flow perfusion 

bioreactor (fig 10).  

 

Figure 10 perfusion bioreactor 
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This type of bioreactor uses a pump to perfuse medium continuously 

through the interconnected porous network of the seeded scaffold [50-52]. 

The fluid path must be confined so as to ensure the flow path is through the 

scaffold, rather than around the edges. Bioreactors that employ the latter 

flow path, exchanging medium within the porous confines of the scaffold 

interior. The perfusion bioreactor offers enhanced transport of nutrients 

because it allows medium to be transported through the interconnected 

pores of the scaffolds [52]. The amount of shear stress experienced by cells 

cultured in a flow perfusion system can be varied simply by varying the flow 

rates through the system. The main drawbacks of this kind of bioreactors 

are related to the dimension; big size means great number of cells, great 

amount of products for cell culture, wide outdoor, and process expense. In 

order to overcoming this kind of problems, in research, micrometric device 

increasingly are spreading; microfluidic device are able to recreate the 

same conditions of the macroscopic bioreactor, by reducing trial times and 

costs. Great interest has focused on transferring various micro-physiological 

organ models, onto microfluidic platforms to enable better control over 

physical and biochemical factors in cell microenvironment [53, 54]. Recent 

developments in microfabrication and microfluidic technologies provided the 

tools to create advanced cell culture systems, aiming to provide in vivo-like 

cellular microenvironments (fig 11). The small culture volumes within these 

devices consume much less cells as well as culture and analytical reagents.  
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Figure 11 microfluidic device 

 

They allow control of micro-environmental parameters, such as cell–cell and 

cell–matrix interactions [44, 53]. Additionally, the tissue-to-fluid ratio within 

these devices can be adjusted to mimic the physiological ratios [54]. 

Perfusion-based media supply allows delivery and removal of soluble 

molecules in the cell microenvironment and controlled application of shear 

stresses by the fluid flow [55]. A clear advantage of using organ-on-a-chip 

systems is the control of the fluid flow in physiologically-relevant 

dimensions, which makes it possible to regulate nutrient and drug 

concentrations at the level of single cells or small cell clusters [53]. 

Likewise, microfluidic perfusion culture allows novel experiments for 

controlling the microenvironment, which affects cellular phenotypes [47]. 

Laminar flow in microfluidic systems enables the controlled application of 

shear stress, and the delivery of multiple laminar streams of different 
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soluble molecules at the cellular or subcellular levels [56]. Conversely, 

microfluidic perfusion culture can effect a defined, artificial 

microenvironment by continuously controlling the supply and removal of 

soluble factors [56]. Such defined environments are unobtainable in static 

culture, where the background of soluble factors and nutrients changes 

constantly over time [57]. Furthermore, microfluidic perfusion culture allows 

the possibility of continuous non-recirculating culture that would be 

impractical at the macro-scale due to reagent volumes [58]. There is also a 

need for effective integration between microfluidic perfusion culture systems 

and ultrasensitive analytical micro-assays to enable higher-throughput 

extraction of the biological data required in many applications  [56]. An 

understanding of the constraints imposed at each stage of performing 

microfluidic perfusion culture (e.g. microfluidic system fabrication, cell 

culture and assay) will enable one to design and operate a microfluidic 

perfusion culture system more effectively. In this work we realized a 

perfusion bioreactor on micrometric scale as tool to optimize culture 

condition; this model can be successfully used as “fast screening platform” 

in order to evaluate the each kind of stimulus-response in tissues. 
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2.2 Material and methods 

2.2.1 Microscaffold production 
 

Gelatin porous microbeads (GPMs) have been prepared according to a 

modified double emulsion technique (O/W/O). Gelatin (type B Sigma Aldrich 

Chemical Company, Bloom 225, Mw=l 76654 Dalton) was dissolved into 10 

ml of water containing TWEEN 85 (6% w/v) (Sigma Aldrich Chemical 

Company). The solution was kept at 40°C. Toluene containing SPAN 85 

(3% w/v) (Sigma Aldrich Chemical Company) was continuously added to 

the aqueous gelatin solution (8% w/v) to obtain primary oil in water 

emulsion. Beads of gelatin containing droplets of toluene were produced 

through the addition of excess toluene (30 ml) that allowed for a double 

emulsion (O/W/O). The resulting microspheres were filtered and washed 

with acetone and then dried at room temperature. Microspheres were 

separated selectively by using commercial sieves (Sieves IG/3-EXP, 

Retsch, Germany). GPMs with 75-150 m size range were recovered and 

further processed. GPMs have been stabilized by means of chemical 

treatment with glyceraldehyde (GAL), in order to make them stable in 

aqueous environment at body temperature. In particular, GPMs were 

dispersed into an acetone/water solution containing 4% of GAL and mixed 

at 4°C for 24 h. Then microspheres were filtered and washed with acetone 
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and dried at room temperature. Before their use in cell culture dry GPM 

were sterilized by absolute ethanol sub-immersion for 24h. After that, in 

order to remove ethanol completely, several washings in calcium-free and 

magnesium-free phosphate-buffered saline (PBS) were performed. Before 

cell seeding PBS was removed and replaced with the culture medium.   

 

2.2.2 Cell expansion 

Human dermal fibroblasts (neonatal HDF 106-05n ECACC)  were sub-

cultured onto 150 mm
2
 Petri dishes in culture medium (Eagle’s BSS 

Minimum Essential Medium containing 20% fetal bovine serum, 100 g/mL 

L-glutamine,100 U/mL penicillin/streptomycin, and 0,1 mM Non Essential 

Amino Acids). Cells were maintained at 37°C in humidified atmosphere 

containing 5% CO2. HDF of passages 4-7 were used. 

 

2.2.3 HD-TP culture  

To realize the human dermal micro tissue (HD-TP), spinner flask 

bioreactor was inoculated with 105cell*ml-1 and 2mg*ml-1 of microbeads, 

corresponding to 10 cells per bead. The culture suspension was stirred 

intermittently at 30 rpm (5 min stirring and 30 min static incubation) for the 

first 6h post-inoculation for cell adhesion, and then continuously agitated at 

30 rpm up to 28 days. The growth medium was replenished on the first day 
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and every 2 days until the end of experiments. From the day 4th, 50g/ml of 

ascorbic acid (l-ascorbic acid Sigma A-5960) were added and freshly added 

at each medium change.  

 

2.2.4 Device realization 

 

The device was carved onto a Poly(methyl methacrylate) (PMMA, 

Goodfellow) slab of 1.2 mm of thickness using micromilling machine 

(Minitech CNC Mini-Mill). The design was performed in order to obtain an 

inlet channel (20 mm, 0.4 mm, 0.5mm of length width height respectively),a 

central chamber of (1.4 mm, 0.6 mm, 0.5 mm of length, width, height 

respectively), and an outlet channel of (20 mm, 0.4 mm, 0.5mm of length, 

width, height respectively), a loading channel (6.8 mm, 0.5 mm, 0.5mm of 

length, width, height respectively) was carved on the top of the chamber. 

Along the inlet and outlet channels were designed two circular shapes of 

5.5 mm of diameter with function of accommodation for oxygen optical. The 

carved layer were bounded with a second layer of PMMA by ethanol 

immersion (15 min) and heat treatment (65° C for 1h).     
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Figure 12 Device configuration 

 

Figure 13 perfusion chamber zoom 
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2.2.5 Theoretical optimal flow rate calculation 

 

The theoretical optimal flow rate was estimated by imposing the balance 

between the residence time (tR) of oxygen inside the chamber, and the time 

required to cells to consumption it (tC), as expressed in the equations 3-5:  

tR = tC                                                                                          (3) 

𝑡𝑅 = 
𝐿

𝑣
                                                                                        (4) 

𝑡𝐶=
𝑉𝑚𝑎𝑥 𝑁𝑐𝑒𝑙𝑙𝑠

𝐶
                                                                                    (5) 

where t is the time expressed in sec; L is the length of the chamber, 𝑣 is the 

flow velocity,    is the maximum consumption rate of oxygen of the 

fibroblast;  is the number of cells; C is the oxygen concentration 

expressed in M.  Q[0] means that the ratio between tc and tR is one, Q[-1] 

means that the ratio is 0.1, and Q[1] means that the ration is ten. The 

effectively flow rete values are 1 l/min, 0.1 l/min and 10 l/min 

respectively. 
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2.2.6 Oxygen consumption rate and profile inside the 

chamber  

 

In order to evaluate the oxygen consumption kinetics of the HD-TP along 

culture time (days 0, 3, 7, 14, 21, 28) a small amount of microtissues were 

spilled from the spinner flask at each time point and placed in 3 different 

vials of frosted glass. The vials were filled with fresh culture medium and 

then placed in an incubator and kept at 37°C, under gentle agitation. The 

vials where than closed in order to avoid oxygen exchange with the 

surrounding environment. By means of an optical detector (OXY-4 

PreSens) it was measured the oxygen concentration of the medium in the 

vials. The partial pressure was converted in oxygen concentration (C) by 

means of Henry’s law. As control the same measurements were performed 

in three vials containing only medium and maintained in the same 

conditions. At the end of the experiment the HD-TP were enzymatically 

treated and the cell number was counted in order to obtain cell density in 

the medium (). By performing centered time derivative of the oxygen 

concentration curve, is possible to obtain the consumption velocity (V). By 

plotting V vs C a Michelis-Menten law kinetic is obtained. In order to 

evaluate the kinetics parameters, a linearization of the kinetics curve was 

performed by plotting V-1 and C-1; the intercept with y axis is Vmax-1, and 

the intercept of x axis is -Km-1. The oxygen consumption profile inside the 
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chamber was measured by using optical detector (OXY-4 PreSens), 

upstream and downstream of the cells chamber during 5h of trial. Starting 

from the  “in” and “out” experimental oxygen values, obtained as below 

described,  the computational fluid dynamic study (CFD) was performed by 

using Comsol Multiphysics vers 3.5. In particular, fixed the cells number 

(105 cell/ml) and the kinetic parameters (Vmax= 10-16 mol*s/cells; KM=10-6 

mol/m3), 1 l/min,  0.1 l/min and 10 l/min were set  as flow rate conditions 

respectively. 

 

2.2.7 Live/dead assay 

 

In order to selectively stain live and dead cells for each flow rate, a 

LIVE/DEAD® Cell Viability solution (life technologies) were used, according 

to the manufacturer instruction. The HD-tp inside the device chamber were 

stained and placed on the confocal LSM710 Zeiss stage; the images were 

acquired by using two excitation/emission channels: ex= 494 nm,  em= 

512-523 nm (green channel: live cells) and ex= 528 nm, em= 612-623 nm 

(red channel: dead cells). The number of cells within the chamber was 

obtained by using the plug in analyze particle in the software imagej. The 

fraction of the live cells () in each section was evaluated by using the 

following equation: 
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         (6) 

 

 

2.2.8 Collagen observation and quantification  

 

The  HD-TP were imaged under multichanneled Leica TCS SP5 II coupled 

with a Multiphoton Microscope where the NIR femtosecond laser beam was 

derived from a tunable compact mode-locked titanium: sapphire laser 

(Chamaleon Compact OPO-Vis, Coherent). Two-photon excited 

fluorescence (λex = 840nm) was used to induce second harmonic 

generation (SHG) of unstained neo-synthesized collagen structures by 

collecting the emission wavelength in the range em = 420±5 nm. For each 

flow rate, SHG images from HD-TP were analyzed by using imagej 

software.  The degree of assembling of collagen network was evaluated by 

analyzing the intensity of SHG signal. The analysis was performed within 

the ECM space, all SHG images were subjected to noise subtraction and 

the intensity was evaluated as described by the equation (7):  
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where:  is the average intensity, is the intensity corresponding to the    

pixel while the index i runs in the gray value interval: from 1 (less intensity) 

to 255 (more intensity). The intensity is proportional to the degree of 

assembly of the newly synthesized collagen [37, 38]. Fixed the optimal flow 

rate, three different concentration of ascorbic acid were tested: 0g/ml and 

50 g/ml and 100 g/ml.  

 

2.2.9 Immunofluorescence on HD-TP and quantification 

The HD-TP were fixed with 4% paraformaldehyde for 20 min at room 

temperature, rinsed twice with PBS buffer, and incubated for 2h at RT with 

PBS, BSA 5% and tryton 0.1% to block unspecific binding. Rinse again with 

PBS and incubated with mmp1 antibody (abcam) diluited 1:300 overnight at 

4°C. Cover with the secondary antibody ALEXA FLUO 546 diluted 1:1000 at 

RT for 1h. After rising with PBS the samples were stained by 4',6-diamidin-

2-fenilindolo (DAPI) 1:10000 for 10 minutes at RT  the samples were 

observed with LSM710 Zeiss confocal microscopy. The quantification signal 

was performed by dividing the number of red pixels for the cells number, by 

using the following equation: 
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N

p
v i i 

255

1                                  (8)                                                                           

 

where pi is the number of pixel and N is the number of the cells. The 

number of pixels and the number of cells are obtained by imagej software 

routine: histogram and analyze particles tools are respectively used for the 

analysis.    

 

2.3 Results 

2.3.1 Features of the device design  

 

The newly designed device presented here is able to simulate a perfusion 

bioreactor in micrometric scale in order to evaluate the better culture 

condition both from fluid-dynamic and biochemical point of view. Indeed this 

system may support several cases of study in order to test the effect of flow 

rates, to test substance (growth factors, biochemical, etc.)  exposure, and 

evaluating the correlated extracellular matrix rearrangements. The 

innovative design is able to perform on line analysis without effecting on the 
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cells viability, proliferation and metabolic activity; all these characteristics  

integrate the set of the advantages related to microfluidic device.  

 

2.3.2 Oxygen consumption rate and profile inside the 

chamber 

 

The oxygen rate consumption, describe the demand of nutrients related 

with tps age; in the first time point was measured the maximum value of 

2.1*10-8, two time highest of 7 days point. Just from 2 weeks the initial value 

let down of an order of magnitude, value confirmed for all trial time points. 

This trend suggest the possibility to use tissue precursor between seven 

and fourteen days in order to obtain HD-tp with low metabolic demand. 

The oxygen profiles inside the chamber, evaluated in three different flow 

rate conditions named Q[0] (i), Q[1] (ii) and Q[-1] (iii) as described in the 

section 1.3.5, show how for (i) and (iii) conditions the flow rate are able to 

guarantee a relevant nutrient transport and exogenous substances 

exchange along the maturation chamber to the HD-tps; the measured 

values are 22.13% ± 2.47% and 92.79% ± 1.30% respectively. Moreover in 

(ii) condition, the oxygen transport doesn’t happens for all the chamber 

length, giving as output value always zero. This suggest that this flow rate 

generates a stress condition for the cultured tissue. 
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Figure 14 oxygen consumption rate measured during culture time 
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Figure 15 simulation of oxygen profile inside the chamber for three several flow rate conditions: 

Q[0]; Q[1]; Q[-1]; oxygen concentration along length device. 

 

2.3.3 Cells viability VS flow rate 

 

The cells vitality inside the chamber during four days of culture time, show 

how the flow rate influence the cellular proliferation. In particular, this 

results, coupled with the oxygen consumption profiles, further clarify that the 

for Q[0] and Q[1] flow rates conditions allow the duplication, indeed the total 

number of cells is around double respect to the initial value . In lower  flow 

rate, the total number of live cells enhance of the 40%, this is due to the 
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lower number of live cells able to duplicate themselves. The % of dead cells 

increase during culture time until 30%, while is approximately constant at 

Q[0] and Q[1].  

 

Figure 16 total cells number; live dead fraction VS flow rate at 0 days (a-f) and 4 days (g-n); 

fraction of live/dead cells quantification 

 

2.3.4 MMP-1 profile 

 

The metallopretainase one synthesis shows the HD-tp answer to hypoxic 

condition; the trend for Q[0] and Q[1] flow rate is constant during culture 

time. Moreover for the Q[-1] flow rate condition the value increase respect 
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to the initial value of about 40%, and statistical difference were detected 

between this culture condition and the other flow rates. This result confirm 

that the HD-tps, cultured with Q[-1] flow rate, are under stress condition, 

and due to it, they secrete more MMP-1per cell. This increase leads to a 

collagen reorganization, as figure 10 shows.  

 

Figure 17 MMP-1 synthesis VS flow rate; MMP-1 in red, nuclei in blue, quantification of the red 

signal per cell 

 

2.3.5 SHG intensity VS flow rate 

 

The SHG signal intensity is an index of the collagen assembling; higher 

value corresponds to the assembled collagen, while lower value is due to 

neo synthetized collagen [37, 38]. The SHG intensity VS Q[-1] flow rate 
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shows how the signal decrease confirming the global suffering status of the 

HD-tp. The Q[1] flow rate, although from the oxygen profile and cells 

viability point of view seem to be a good culture condition, it isn’t for 

collagen assembling. In particular the intensity value remains constant, 

clear evidence that the newly collagen is secreted but washed out. Only for 

Q[0] condition the value increase of about 50%, so we can deduce that this 

is the best flow rate in terms of cells viability, oxygen exchange, MMP-1 

synthesis, and collagen assembling. 

Figure 18 volumetric collagen intensity VS flow rate  
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2.3.6 SHG intensity VS ascorbic acid concentration 

 

The ascorbic acid addition to the culture medium increase the proliferative 

rate and stimulate the synthesis and the secretion of appropriate ECM 

components, in particular collagen [59-61]. Fixed the optimal flow rate, 

several ascorbic acid concentration were tested: 0g/ml, 50 g/ml and 

100g/ml. In the first case study (0 g/ml) the intensity value increase of 

about 50% during four days of culture time, while in case of  50 g/ml the 

acquired signal is higher of two times respect to the initial value, and the 

difference is statistically significance (p<0.0001). For the higher 

concentration (100 g/ml) the collagen signal decrease, this is due to 

cytotoxicity that ascorbic acid show to the equal or greater concentration of 

100 g/ml [61-63]. 
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Figure 19 Volumetric collagen intensity VS ascorbic acid concentration  

 

2.4 Discussion 

In this work we demonstrated the capability to create a perfusion micro-

chamber in order to simulate a bioreactor in micrometric scale. In this 

system we can test, in short time (1 week), both physical and biochemical 

parameters, in order to establish the better culture condition. The primary  

advantage of this screening platform is related to the great number of on-

line acquisition; this allows to do a large number of studies in only one 

experiment, indeed can be evaluated together several aspects of the culture 
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conditions (flow rate, nutrient transport, collagen assembling). Starting from 

a measured oxygen consumption rate of the HD-tp during culture time, is 

possible to calculate the time need to the cells for a total oxygen 

consumption inside the chamber. By comparing this characteristic  time with 

the residence time of the oxygen in the chamber, it  is possible to deduce 

the optimal theoretical flow rate (Q[0]), test it or other flow rate conditions, 

for example  flow rate ten time higher (Q[1]) and flow rate ten time lower      

(Q[-1]), and quickly experimentally verify  the good performance for the final 

tissue structure point of view. Concerning the oxygen profile inside the 

chamber,  the results show two efficient conditions Q[0] and Q[1], due to a 

prevalence of the diffusive and convective transport through the chamber 

respect to the cellular consumption; while for Q[-1] flow rate the diffusion 

and the convection are negligible respect to the consumption term.  The 

total number of cells on the 3D increase, but in   Q[-1] the duplication rate is 

lower due to an enhance of dead cells; this stress condition brings to a 

MMP-1 synthesis rise too that reflect itself in a reduction of collagen 

assembling degree. The collagen assembling is a crux in order to select the 

better culture condition, indeed only Q[0] leads to an increase of it, while 

Q[1] doesn’t allow the assembling, certainly due to the wash out 

phenomena. Just selected the better flow rate in terms of oxygen exchange, 

cells vitality, MMP-1 synthesis and collagen assembling, can be tested 

biochemical factors too, in our case ascorbic acid, and the concentration 
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effects. This possibility gives the great advantage to better understand how 

each factor influences the tissue answer and the extracellular matrix 

reorganization to external stimuli.  The cellular fate is mediated by 

biochemical signaling, that act as a start for cascade signaling [64], to direct 

the  cells towards the differentiation, ECM synthesis and remodeling, etc. 

By using this innovative micrometric testing platform, is possible to perform 

a short time experiment able to answer to several kind of questions; this 

device allows to perform on-line analysis, and  this nondestructive 

characteristic, its versatility, is the plus respect to the others macrometric 

bioreactors.  
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Chapter 3 

3D airway epithelium equivalent  
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Chapter 3 

3.1 Introduction 
 

Cellular culture in a monolayer system is a basic biological procedure for 

investigation of the pathogenesis of diseases [65]. Isolated cells can only 

simulate a small part of the body’s complexity and often lose their 

morphology and functional properties [1]. It is well known that cells need an 

appropriate matrix as an optimal cell support to develop their typical 

differentiated phenotype in vitro [66]. There has been significant success in 

producing artificial skin by combining dermal fibroblasts in contracted 

collagen gels with human keratinocytes [67, 68], and in creating three-

dimensional (3D) cultures reproducing some of the characteristics of a 

cornea by combining keratinocytes with corneal epithelial cells. Both of 

these systems exhibit a stratified squamous epithelium [69]. There has only 

been very limited success in producing artificial tissues using other types of 

epithelium such as bronchial epithelium [69], though others have reported 

organotypic cultures containing both human lung fibroblast cell lines and 

either primary or immortalized human bronchial epithelial cells (HBECs) 

[70]. We therefore designed this study to evaluate the feasibility of an in 

vitro model of bronchial mucosa produced by bottom-up tissue engineering, 

examining the effect of collagen concentration and arrangement, the role of 
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the stroma on the phenotype of primary HBECs in a 3D culture 

environment. The airway epithelium is pseudostratified, features leakier 

tight junctions and a smaller surface area than the alveolar epithelium, and 

is protected by a mucociliary clearance mechanism [71, 72]. To usefully 

predict the fate of compounds delivered to the lung, a model of the airway 

epithelium should reflect the drug transport characteristics and metabolic 

activity encountered in vivo. In vitro models of human tissues that are 

biomimetic and closely represent the functional properties of their 

respective tissues could enable better understanding of disease processes, 

hence providing more physiologically relevant platforms for identification of 

targets for therapy as well as testing the efficacy and safety of new drug 

leads [73]. Using such in vitro models in drug discovery cycle could in turn 

substantially reduce the number of drug leads that need to be taken forward 

to preclinical studies and, therefore, reducing the number of animals 

required for such experiments [74]. The respiratory system is constantly 

exposed to potentially harmful particles, allergens, and  pathogens. 

Epithelial cells are the predominant cell type in contact with the air and as 

such the airway epithelium forms the first line of defense against airborne 

insults [75]. Epithelial cells are structurally arranged to form a continuous 

layer and are joined via protein junctions to create a paracellular barrier to 

shield interstitial tissue from the airway [74]. As well as a physical barrier, 

the epithelium forms a chemical barrier via cellular secretions, for example, 
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mucus that entraps infiltrating particles. The use of commercially available 

two-dimensional (2D) platforms upon which epithelial cells can be cultured 

at the air−liquid interface (ALI) is widely practiced. The use of a 3D tissue 

equivalent is favorable over 2D cell culture providing more in-vivo-like 

morphology, function, and intercellular interactions enabling greater 

resemblance to physiological conditions. The literature models are all made 

of exogenous collagen and HDF [69] , or using lung fibroblasts seeded in 

exogenous collagen, or  polyethylene terephthalate scaffold (PET) 

scaffold[1, 74]. 
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Figure 20 Schematic figure showing different steps of fabrication and configuration of the 3D 
tissue engineered airway epithelium. Calu-3 epithelial cells are seeded onto one PET scaffold and 
MRC-5 fibroblasts are seeded onto a second, separate scaffold (A). Following 72 h culture,  
scaffolds are combined by layering the epithelial scaffold monolayer on top of the fibroblast 
scaffold layer to form the coculture model. Cells are subsequently cultured for 2 weeks at the ALI 
to allow for differentiation of the epithelial cells, including establishment of tight junctions (B). 
Monocyte-derived DCs are seeded onto separate PET scaffolds and then inserted into the 
coculture model. The upper epithelial scaffold is temporally lifted away from the lower MRC-5 
fibroblast layer so that the separate third scaffold containing dendritic cells may be placed on-
top of the MRC-5 scaffold layer (C). The Calu-3 layer is placed on-top of the DC scaffold layer, 
resulting in the DC layer sandwiched between the epithelial and fibroblast scaffold layers to form 
the triculture model (D). adapted from [77] 
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Figure 21 Development of the organotypic culture. Normal human bronchial epithelium contains 
ciliated columnar cells, mucous-producing goblet cells, and basal cells (A). To produce a bronchial 
‘‘submucosa’’ in vitro, fibroblasts were combined with type I collagen, allowed to gel (B, top), 
then the gel was released from the dish and allowed to contract over a period of 4–7 days (B, 
bottom). Bronchial epithelial cells were then seeded onto the top of the gels and allowed to 
attach for 4 hr to create the organotypic culture. Cultures were submerged for 4 days, then 
placed into a 6-well insert which was fed from beneath by media placed into well below the 
insert (C), thereby leaving the upper surface of the tissue emerged from the media. Triplicate 
cultures were placed into each insert. Cultures were fed every other day, and harvested at 
various time points in culture. Adapted from [72] 
 

 

Such models have some limits, including the absence of an endogenous 

matrix environment, which plays an important role in intercellular 

communications [1]. Our model possesses endogenous ECM able to 
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organize themselves as in vivo lung tissue; it is reasonable cellular and 

structural representation of the airway epithelium and is amenable to in situ 

monitoring, and as such, it presents an invaluable tool for academic and 

pharmaceutical research within the fields of lung biology, disease modeling, 

and drug discovery and delivery. 

 

3.2 Material and methods 

 

3.2.1 Microscaffold production 

 

Gelatin porous microbeads (GPMs) have been prepared according to a 

modified double emulsion technique (O/W/O). Gelatin (type B Sigma Aldrich 

Chemical Company, Bloom 225, Mw=l 76654 Dalton) was dissolved into 10 

ml of water containing TWEEN 85 (6% w/v) (Sigma Aldrich Chemical 

Company). The solution was kept at 40°C. Toluene containing SPAN 85 

(3% w/v) (Sigma Aldrich Chemical Company) was continuously added to 

the aqueous gelatin solution (8% w/v) to obtain primary oil in water 

emulsion. Beads of gelatin containing droplets of toluene were produced 

through the addition of excess toluene (30 ml) that allowed for a double 

emulsion (O/W/O). The resulting microspheres were filtered and washed 

with acetone and then dried at room temperature. Microspheres were 

separated selectively by using commercial sieves (Sieves IG/3-EXP, 
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Retsch, Germany). GPMs with 75-150 m size range were recovered and 

further processed. GPMs have been stabilized by means of chemical 

treatment with glyceraldehyde (GAL), in order to make them stable in 

aqueous environment at body temperature. In particular, GPMs were 

dispersed into an acetone/water solution containing 4% of GAL and mixed 

at 4°C for 24 h. Then microspheres were filtered and washed with acetone 

and dried at room temperature. Before their use in cell culture dry GPM 

were sterilized by absolute ethanol sub-immersion for 24h. After that, in 

order to remove ethanol completely, several washings in calcium-free and 

magnesium-free phosphate-buffered saline (PBS) were performed. Before 

cell seeding PBS was removed and replaced with the culture medium.   

 

 

3.2.2 Cell expansion 

Normal human lung fibroblast (Lonza)  were sub-cultured onto 150 mm
2
 

Petri dishes in culture medium (Eagle’s BSS Minimum Essential Medium 

containing 20% fetal bovine serum, 100 g/mL L-glutamine,100 U/mL 

penicillin/streptomycin, and 0,1 mM Non Essential Amino Acids). Cells were 

maintained at 37°C in humidified atmosphere containing 5% CO2. NHLF of 

passages 4-7 were used. 
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3.2.3 HL-TP culture  

To realize the HL-TP, spinner flask bioreactor was inoculated with 

105cell*ml-1 and 2mg*ml-1 of microbeads, corresponding to 10 cells per 

bead. The culture suspension was stirred intermittently at 30 rpm (5 min 

stirring and 30 min static incubation) for the first 6h post-inoculation for cell 

adhesion, and then continuously agitated at 30 rpm up to 28 days. The 

growth medium was replenished on the first day and every 2 days until the 

end of experiments. From the day 4th, 50g/ml of ascorbic acid (l-ascorbic 

acid Sigma A-5960) were added and freshly added at each medium 

change.  

 

3.2.4 Realization of 3D human lung equivalent 

 

Tissue precursors obtained as described in 3.2.3 section, have been 

injected in maturation chamber to allow their molding in disc-shaped 

construct (1 mm in thickness, 5 mm in diameter). During the filling 

procedure the mold were connected with a vacuum pump to assure that no 

bubbles were in maturation space. Completed the filling process, the mold 

were closed by grids and placed on the bottom of a spinner flask and 

completely surrounded of culture medium for two weeks. The spinners was 

operated at 60rpm and the medium was exchanged every three days. After 
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4 weeks of culture, under dynamic conditions, the bio-hybrid obtained has 

been removed from the maturation chamber and seeded with Normal 

human bronchial epithelial cells in order to obtain the epithelial layer. 

 

3.2.5 Realization of human bronchial epithelium  

 

The 3D stroma equivalent for bronchial epithelium was accommodate on 

transwell insert (corning), coated by 20µl of human fibronectin solution 

(Sigma Aldrich) to final concentration of 50 µg/ml and let dry to air for 45 

minutes at room temperature. Wash the NHBE cells with PBS/EDTA 0.01M, 

trypsinize NHBE colonies with trypsin/EDTA for 5 min at 37°C to obtain a 

single cell suspension. Centrifuge at 1200 rpm for 5 min, gently resuspend 

high density cells in fresh medium, seed 200,000 cells/3D equivalent and 

incubate at 37°C for 60 min. In order to stimulate the cell proliferation, 

during the first three days  the 3D bronchial epithelium equivalent were 

cultured in submerged condition, while to favorite the differentiation during 

second and third week were cultured in air liquid interface condition. For 

submerged culture the BEGM (LONZA)  was added both on the top and on 

the bottom of the transwell, while for air liquid interface condition the BEGM 

was mixed with DMEM (LONZA) 1:1 and added only on the bottom of the 

polycarbonate membrane. 
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3.2.6 Immunofluorescence, mutiphoton imaging and 

histology on HL-TP  
 

Aliquot of 1 ml aliquots were collected at day 1, 3, 7, 14, 21 and 28 from the 

spinner culture and the HD-TP were stained with phalloidin 

tetramethylrhodamine B isothiocyanate (Sigma-Aldrich) and SYTOX® 

Green (INVITROGEN) for cell cytoskeleton and cell nuclei detecting 

respectively. Briefly, for both analyses, the HL-TP were fixed with 4% 

paraformaldehyde for 20 min at room temperature, rinsed twice with PBS 

buffer, and incubated with PBS-BSA 0.5% to block unspecific binding. In 

particular the samples were incubated with SYTOX® Green stock solution 

(10 mg/mL in dimethyl sulfoxide) diluted in PBS (1/500 v/v) for 10 min at 

37°C, and after rinsing in PBS, they were stained with phalloidin for 30 min 

at room temperature. After that, the stained HL-TP were imaged under 

multichanneled Leica TCS SP5 II coupled with a Multiphoton Microscope 

where the NIR femtosecond laser beam was derived from a tunable 

compact mode-locked titanium: sapphire laser (Chamaleon Compact OPO-

Vis, Coherent). Two channels were used for confocal imaging of cell nuclei 

(ex = 500 nm / em = 520-530 nm) and cytoskeleton (ex = 573 nm/ em = 

588-598 nm ) respectively. Two-photon excited fluorescence (ex= 840nm) 

was used in another channel to induce second harmonic generation (SHG) 

of unstained neo-synthesized collagen structures by collecting the emission 
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wavelength in the range em = 420±5 nm. For histological analysis, 1 ml of 

HL-TP suspension was fixed in a solution of 10% neutral buffered formalin 

for 24 h, dehydrated in an incremental series of alcohol (75%, 85%, 95% 

and 100%, and 100% again, each step 20 min at room temperature) treated 

with xylene and then embedded in paraffin. Successively, the samples were 

sectioned at a thickness of 6µm, and stained with hematoxylin and eosin.  

The sections were mounted with Histomount Mounting Solution 

(INVITROGEN) on coverslips and the morphological features of constructs 

were observed with a light microscope (Olympus, BX53). Furthermore, 

deparaffined 6 m sections were  immune-stained by using keratin 14, P63, 

collagen I and IV, ZO-1 were performed using keratin 14 polyclonal 

antibody (diluition 1:1000; Covance), Anti-p63 monoclonal antibody 

(diluition 1:50; abcam), Anti-collagen I monoclonal antibody (diluition 1:500; 

abcam), Anti-collagen IV monoclonal antibody (diluition 1:500; abcam) and 

Anti-ZO-1 polyclonal antibody respectively as primary antibody and Alexa 

fluor 488, Alexa fluor 546 and Alexa fluor 568 respectively as secondary 

antibody. 
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3.2.7 Scanning Electron microscopy 

 

The samples were observed using a scanning electron microscopy (FESEM 

UtraPlus Zeiss), dehydrated by gradually increasing the ethanol 

concentration (75%, 85%, 95% and 100%, for 20 min at room temperature) 

a placed in CDP critical point dryer. Subsequently they  were place on 

conductive stub, metalized by Cressington 208HR High Resolution Sputter 

Coater with a 5nm of Au and observed by using a voltage of 7KV. 

 

3.3 Results 

3.3.1 HL-TP Evolution: cell proliferation and biosynthetic 

activity 

 

The tps evolution were evaluated during 28 days; as shown in figure 22 

the number of cells per tp grows during all the investigated temporal 

window, starting from 10 cells per microbead until to 310 cells per 

microbead, and  the duplication rate remains constant.    
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Figure 22 growth curve of NHLF per bead during culture time 

 

The figure 23 assesses the presence of a viable neo-tissue that evolves 

and changes itself in terms of fusion capability and number of cells (a-e). 

The cells are able to colonize the space between each bead, and they 

colonize both the external surface and within the microbeads pores (l-o). 

The cells are embedded in own extracellular matrix, that evolves and 

changes the characteristics of the final tissue (f-i). The collagen signal 

inside the HL-TP increase consistently during culture time, making 

themselves, although in micrometric scale, complete tissue with own 
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organization and structure.     

 

 

 

Figure 23 HL- tp evolution during culture time: H/E staining during (a-e), SHG collagen signal (f-i) 

nuclei ad actina distribution (l-o) 

 

3.3.2 Morphological analysis of human lung equivalent 

 

The image 24 shows the differences between our 3D lung model, the 3D 

dermis model and lung structures in vivo, both in macroscopic and 

ultrastructural point of view. The histological image of lung (24g) shows a 
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classical sponge structure; in our model this kind of structure is repeated, in 

contrast with the human skin equivalent. The lung fibroblasts are completely 

immerse in own extracellular matrix, the presence of collagen  suggest  that 

the cells not only proliferated but also work correctly, by secreting and 

remodeling collagen. Moreover the close interdependence of matrix 

remodeling, mechanical properties and shape retention is fundamental to 

preserve the integrity in soft tissue. In this 3D structure the  collagen isn’t 

organized in parallels fibrils as detectable in human dermis equivalent, but 

the ECM is able to recreate the sponge structure such as the human lung in 

vivo. The immunofluorescence analysis show the collagen I (25a) and 

collagen IV (25b) signals. The presence of this two types of collagen allows 

the correct differentiation of the epithelium [76] 
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Figure 24 comparation of human skin equivalent, airway epithelium equivalent and lung 

structure; H/E staining (a-d-g), SEM (b-e-h) and MP (c-f-i) image 

 

Figure 25 immunofluorescence analysis of histological section with thick 5 µm of human lung 

equivalent; Collagen I in green (a) and Collagen IV in red (b); scale ba 50 m 
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3.3.3 Morphological analysis of 3D human bronchial 

epithelium equivalent  

 

The normal human bronchial epithelial cells grow directly on 3D, during the 

submerged condition the proliferation is favorite, while in air-liquid interface 

condition overbear the differentiation. The resultant epithelium 

demonstrates a greater degree of tissue architecture and organization; both 

ciliate and goblet cells colonize the more external layer. The image 26a and 

b shows well delimited cells, the dashed lines underline the cellular borders 

of a ciliate cell surrounded of goblet cells (a) and goblet cell surrounded of 

ciliate cells (b). Ciliate cell zoom (c) shows the uniform distribution of the 

cilia on all the cell surface, and their characteristic tuft like structure (d), 

indeed, such as in in vivo bronchial epithelium, the cilia growth non in 

parallel structures, but in small groups of few units [77]. In figure 26e and f 

the epithelium stratification and tight junction were shown; in particular 

bronchial epithelium is thin and characterized from just some cellular layers 

[78], the more external one is very tight, in order to have the barrier function 

[79, 80] and it is confirmed by very frequent cellular junction.  
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Figure 26  Scanning electron microscopy (SEM) top view of bronchial epithelium, ciliate and 

goblet cells (a-b), cilia structures (d-e),  transmission electron microscopy (TEM) section of 

bronchial epithelium stratification (e)  and tight junction (f).  scale bar: 1 m (a-c) 100 nm (d), 2 

m (e), 200 nm (f). 

 

In the figure 27a are shown K14/P63; the red signal of K14  is expressed 

even after air-liquid interface conditions, in the basal layer, the 

transcriptional factor p63 is expressed in high proliferative epithelial cells in 

order to have the normal epithelial turn-over. In 27b the signal of ZO-1, tight 

junction marker, demonstrates the barrier function of the epithelium. 
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Figure 27 immunofluorescence analysis of histological section with thick 5 µm of human 
bronchial epithelium; Keratine 14 in red and P63 in green (a); ZO-1 (b) 

 

3.4 Discussion 

In this work we report a full thickness model of lung made up of lung 

fibroblast embedded in own ECM and bronchial epithelial cells. These 

epithelia contain columnar cells, secretory goblet cells and non-secretory 

ciliated epithelial cells [75, 78]. Our model replicates many of the 

morphological and functional characteristics of the human bronchial 

epithelium and it is capable of forming a more physiologically relevant 

representation of lung tissue than culturing cells alone or in 2D systems. 

The 3D lung model presented in this study successfully supports the culture 

of multiple cell types, and structurally resemble the native lung ECM. The 

fibroblasts were well organized in the extracellular matrix, and the epithelial 

cells proliferated and differentiated to produce a pseudostratified structure. 

The epithelial cells control the proliferation of bronchial fibroblasts grown in 

a 3-dimensional model [1];  this supports the hypothesis that the tissue 



93 
 

environment and cell contact are key factors in reproducing in vitro the 

cascade of events that occur in vivo. There have been several previous 

reports describing the co-culture of lung fibroblasts and human bronchial 

epithelial cells in 3D type-I collagen gels [76, 81]. However, these published 

models used collagen concentrations that varied widely from 0.715 mg/ml to 

2.5 mg/ml [76]. The collagen concentration and composition affected the 

phenotype of bronchial epithelial cells in 3D culture; on the 1 mg/ml type-I 

collagen gels, epithelia became stratified compared to HBECs that were 

cultured on coated Millicell_inserts [76]. The addition of type-IV collagen 

generated epithelia that were thicker than when the gels consisted of type-I 

collagen alone; furthermore, there was a significant positive correlation 

between collagen concentration and the epithelium thickness [76, 82, 83].  

In our model, the endogenous ECM play a key role for well epithelium 

differentiation, indeed both type-I collagen and of type-IV collagen were 

detected. The exploration of a 3D bronchial tissue model suggest that it 

presents an invaluable tool for academic and pharmaceutical research in 

understanding how epithelial and stromal interactions regulate lung 

homeostasis and disease, for drug discovery and delivery with the potential 

of reducing the need for some animal experimentation in this area. In 

conclusion, using tissue engineering technology, we produced well-

organized normal bronchial mucosa tissues.  
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Chapter 4 

Human skin equivalent maintains exogenous hair 

viability and functionality 
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Chapter 4 

4.1 Introduction 

 

The classical tissue engineering approach to produce viable in vitro tissues 

by seeding cells into preformed, porous, and biodegradable scaffolds 

presents several shortcomings, mainly due to the difficulty in reproducing 

adequate micro-environmental conditions in a three-dimensional (3D) thick 

structure [5]. Therefore, devising new biomimetic techniques for generating 

engineered tissues with micrometer-scale resolution is of great scientific 

interest. Microfabrication technologies have been applied to cell culture 

techniques in the effort to better direct tissue formation and function [84]. As 

a result, self-assembling of micrometer-scale tissues in order to create the 

native microarchitecture of natural tissues is a promising approach for the 

fabrication of functional complex tissue constructs [6, 85]. Skin substitutes 

can be used in various fields of skin biology, pharmacotoxicology, cellular 

and molecular biology studies and also as a replacement for human skin in 

clinical applications. They are designed (1) to provide a mechanical barrier 

against infection and fluid loss (burn patients), (2) to close wounds (diabetic 

ulcers), and (3) to replace animal models for dermopharmaceutical testing 

[86, 87]. The skin is the largest organ in mammals and serves as a 

protective barrier at the interface between the human body and the 
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surrounding environment. It guards the underlying organs and protects the 

body against pathogens and microorganisms. Accordingly, it is directly 

exposed to potentially harmful microbial, thermal, mechanical and chemical 

influences. In the past 25 years, great efforts have been made to create 

substitutes that mimic human skin. In skin tissue engineering, various 

biological and synthetic materials are combined with in vitro-cultured cells to 

generate functional tissues (Fig. 28). However, besides their use as in vivo 

grafts, recently, other applications have emerged for skin substitutes as in 

vitro test systems [89]. Many types of skin substitutes have been developed 

by different groups [90-92], and they are commercially available as reported 

in figure 29  These skin substitutes can be classified in two types. The first 

type consists of keratinocytes seeded on a synthetic or collagen carrier 

simulating only the human epidermis (epidermal substitutes). The second 

type consists additionally of a dermal layer of human fibroblasts embedded 

in various kinds of scaffolds (full-thickness skin substitutes).  
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Figure 28 schematic illustration of principles of skin tissue engineering. Primary  eratinocytes and 

fibroblasts are isolated from human donor tissues, which are then in vitro expanded prior 

seeding onto suitable scaffold materials/matrices. For a full-thickness skin equivalent, the 

fibroblasts and the matrix are initially used to establish the dermal part. The keratinocytes are 

seeded afterwards on the top of the dermis to ultimately form the epidermal part of the skin 

substitute. The in vitro-engineered skin can serve as skin graft or can be used as human-cell 

based in vitro test system. Adapted from [92] 

 



98 
 

 

Figure 29 Commercially available skin substitutes 

 

In our group the process in order to recreate an human skin equivalent well 

stratified has been developed.  The keratinocytes growth directly on 3D 

dermis equivalent; during the submerged condition their proliferation is 
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favorite, while in air-liquid interface condition overbear the differentiation. As 

shown in figure 30, the resultant epithelium demonstrates a greater degree 

of tissue architecture and organization (a-c), in particular is possible to 

distinguish 3 layers: basal layer (cuboidal cell shape), spinous and 

granulose layer (elongate cell shape) corneal layer (the absence of the 

cellular nuclei that indicate the keratinization of the cells). Moreover, the 

very important aspect of this human skin model is the presence of  

keratinocytes inclusions in the dermis (d-f), this event remembers the 

embryonal hair follicles development [93]. The keratinocytes inclusions 

(placode) of the embryonic epidermis was surrounded by a fibroblasts 

condensation [94]. Reciprocal signaling between the condensate and the 

placode leads to proliferation of the overlying epithelium and downward 

extension of the new follicle into the dermis [95]. Such epithelial cyst like 

inclusions present in dermal portion contained keratinocytes; the 

condensate changes its shape, starting from a spheroidal aggregate it 

polarize during the time. This cysts in terms of shape and organization can 

be considerate an hair bulb precursor. We hypothesized that the 

microenviroment that we are able to recreate, represents an optimal soil in 

which hair follicle-like structure can be recapitulated. As consequence in 

this chapter we use the conclusions of the previous work [93] as starting 

point to evaluate the capability of our model to recreate a suitable 

environment for exogenous hair maintenance.  
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Figure 30 histological analysis of cross section of human skin equivalent with endogenous 

dermis. (A, B,C) hematoxylin and eosin staining and introction of basal layer was indicated by 

black arrow ; (D,E,F) Masson trichromic staining. Adapted from [97]. 

 

 

4.2 Materials and Methods 

 

4.2.1 Microscaffold production 

 

Gelatin porous microbeads (GPMs) have been prepared according to 

a modified double emulsion technique (O/W/O). Gelatin (type B Sigma 

Aldrich Chemical Company, Bloom 225, Mw=l 76654 Dalton) was 

dissolved into 10 ml of water. Beads of gelatin containing droplets of 

toluene were produced through the addition of excess toluene (30 ml) 

that allowed for a double emulsion (O/W/O). The resulting 



101 
 

microspheres were filtered and washed with acetone and then dried at 

room temperature. Microspheres were separated selectively by using 

commercial sieves (Sieves IG/3-EXP, Retsch, Germany). GPMs with 

75-150 m size range were recovered and further processed. GPMs 

have been stabilized by means of chemical treatment with 

glyceraldehyde (GAL), in order to make them stable in aqueous 

environment at body temperature. In particular, GPMs were dispersed 

into an acetone/water solution containing 4% of GAL and mixed at 4°C 

for 24 h. Then microspheres were filtered and washed with acetone 

and dried at room temperature. Before their use in cell culture dry 

GPM were sterilized by absolute ethanol sub-immersion for 24h. After 

that, in order to remove ethanol completely, several washings in 

calcium-free and magnesium-free phosphate-buffered saline (PBS) 

were performed. Before cell seeding PBS was removed and replaced 

with the culture medium.   

 

4.2.2 Cell expansion 

Human dermal fibroblasts (neonatal HDF 106-05n ECACC)  were sub-

cultured onto 150 mm2 Petri dishes in culture medium (Eagle’s BSS 

Minimum Essential Medium containing 20% fetal bovine serum, 100 

g/mL L-glutamine,100 U/mL penicillin/streptomycin, and 0,1 mM Non 
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Essential Amino Acids). Cells were maintained at 37°C in humidified 

atmosphere containing 5% CO2. HDF of passages 4-7 were used 

 

4.2.3 HD-TP culture  

To realize the HD-TP, spinner flask bioreactor was inoculated with 

105cell*ml-1 and 2mg*ml-1 of microbeads, corresponding to 10 cells per 

bead. The culture suspension was stirred intermittently at 30 rpm (5 

min stirring and 30 min static incubation) for the first 6h post-

inoculation for cell adhesion, and then continuously agitated at 30 rpm 

up to 28 days. The growth medium was replenished on the first day 

and every 2 days until the end of experiments. From the day 4th, 

50g/ml of ascorbic acid (l-ascorbic acid Sigma A-5960) were added 

and freshly added at each medium change.  

 

4.2.4 Hair follicle extraction 

 

Human hair were obtained from scalp with terminal hair follicles in anagen 

phase of the hair growth cycle. Individual hair follicles are isolated by using 

a fine tweezers in order to draw out the hair follicles via clasping the 

protruding upper hair follicle. Each hair follicle was observed with 

stereomicroscope, only hair follicles depicting the morphology of anagen 
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hair follicles were collected, any damaged follicles or follicles with 

morphologic features of non-growing catagen or telogen hair follicles were 

discarded. The isolated hair follicles are collected in quick succession into 

cell culture dish for 24h into EMEM (lonza) containing 20% fetal bovine 

serum, 100 mg/mL L-glutamine,100 U/mL penicillin/streptomycin, and 0,1 

mM Non Essential Amino Acids, 25 mg/mL amphotericin b 5 g/mL 

gentamicin, and placed in incubator. 

 
 

4.2.5 Realization of 3D Human dermis equivalent with hair  

 

Tissue precursors obtained as described in 3.2.3 section, have been 

injected in maturation chamber to allow their molding in disc-shaped 

construct (1 mm in thickness, 5 mm in diameter), filled the mold same hair 

follicles were placed inside the mold using a PMMA grid with holes of 500 

m and distance between two centers of 1 mm.  After 4 weeks of culture, 

under dynamic conditions, the bio-hybrid obtained has been removed from 

the maturation chamber and seeded with keratinocytes in order to obtain 

the epithelial layer. 
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Figure 31 hair follicle cycle (a); hair implantation inside the maturation chamber (b) and 3D 

dermis equivalent with hair after two weesk of maturation time (c) 

 

4.2.6 Keratinocyte extraction from foreskin  

 

Skin sample derived from reduction surgery with the informed consent of 

the patient. Rinse the biopsy 3 times with PBS, remove fat from the bottom 

side, rinse with PBS again, till the PBS stays clear. Cut skin into strips of 

about 3mm width, incubate it with Dispase solution (2U/mL; about 5-10 ml 

for 6cm² of skin) over night for 16h to 18h at 4°C. Remove the Dispase 

solution and rinse with PBS, separate epidermis from dermis with tweezers, 

store both parts separately in two petri dishes. Wash epidermal parts with 

PBS and transfer pieces into the tube, incubate with Trypsin/EDTA for 5 min 

at 37°C. In order to stop the enzymatic reaction add 1 mL FBS. Resuspend 

the solution for 5 min in order to separate cell clusters and strain solution by 

using a 100m filter. After centrifugation (5 min 1200 rpm) the solution was 
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suspended  in fresh culture medium (KBM + supplementary mix lonza) and 

seed to recommended density of 8*10³ cells per cm². 

 

4.2.7 Realization of human skin equivalent  

 

The 3D dermis equivalent was accommodate on transwell insert (corning), 

coated by 20µl of human fibronectin solution (Sigma Aldrich) to final 

concentration of 50 µg/ml and let dry to air for 45 minutes at room 

temperature. Wash the keratinocyte with PBS/EDTA 0.01M, trypsinize 

keratinocyte colonies with trypsin/EDTA for 5 min at 37°C to obtain a single 

cell suspension. Centrifuge at 1200 rpm for 5 min, gently resuspend high 

density keratinocytes in fresh medium, seed 200,000 cells/dermis 

equivalent and incubate at 37°C for 60 min. In order to stimulate the cell 

proliferation, during the first week  the 3D skin equivalent were cultured in 

submerged condition, while to favorite the differentiation during second and 

third week were cultured in air liquid interface condition. For submerged 

culture the KGM was added both on the top and on the bottom of the 

transwell, while for air liquid interface condition the KGM medium without 

EGF and PTB but with CaCl2 concentration of 1.88 mM  was added only on 

the bottom of the polycarbonate membrane. 
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Figure 32 schematic procedure for human skin equivalent realization 

 

4.2.8 Immunofluorescence, mutiphoton imaging and 
histology on biohybrids  
 

For all the analyses, the biohibrids were fixed with 4% paraformaldehyde for 

20 min at room temperature, rinsed twice with PBS buffer, After that, the 

simples were imaged under multichanneled Leica TCS SP5 II coupled with 

a Multiphoton Microscope where the NIR femtosecond laser beam was 

derived from a tunable compact mode-locked titanium: sapphire laser 

(Chamaleon Compact OPO-Vis, Coherent). Two-photon excited 

fluorescence (ex= 840nm) was used to induce second harmonic generation 

(SHG) of unstained neo-synthesized collagen structures by collecting the 

emission wavelength in the range em = 420±5 nm. For histological analysis, 

the biohibrids ware fixed in a solution of 10% neutral buffered formalin for 

24 h, dehydrated in an incremental series of alcohol (75%, 85%, 95% and 
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100%, and 100% again, each step 20 min at room temperature) treated with 

xylene and then embedded in paraffin. Successively, the samples were 

sectioned at a thickness of 6µm, and stained with hematoxylin and eosin 

and masson tricrome. The sections were mounted with Histomount 

Mounting Solution (INVITROGEN) on coverslips and the morphological 

features of constructs were observed with a light microscope (Olympus, 

BX53). Furthermore, deparaffined 6 m sections were  immune-stained by 

using CD133 and  Versican; they were performed using Anti-CD 133 

monoclonal antibody (diluition 1:500; Miltenyi Biotec), Anti-versican 

polyclonal antibody (diluition 1:500; Abcam), respectively as primary 

antibody and Alexa fluor 488 and Alexa fluor 568 respectively as secondary 

antibody. 

 

4.2.9 Hair elongation measurement 

 

Hair elongation measurement were been performed in four condition: Only 

medium, fibroblast conditioned medium, collagen + fibroblast, Biohybrid. For 

all the experimental configurations the hairs were extracted as described in 

the section 3.2.4, and placed in sterilizing solution for 24h, and starting from 

the second day the total number of hairs were divided per four experimental 

configurations. The first and second groups have been placed in a low 
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attachment petri dish (corning) covered with freshly and fibroblast 

preconditioned EMEM (lonza) containing 20% fetal bovine serum, 100 

mg/mL L-glutamine,100 U/mL penicillin/streptomycin, and 0,1 mM Non 

Essential Amino Acids respectively. The third and fourth groups were 

placed in a cellularised (400000 cells/ml) rat tail collagen (2.4 mg/ml IBIDI), 

3D dermis equivalent respectively. All the samples were monitored during 

17 days and the medium was exchanged every 3 days; the images were 

acquired by stereomicroscope (OLYMPUS SZ) and the hairs length were 

measured by imagej software using analyze particle plugin.   
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4.3 Results 

4.3.1 Morphological analysis of dermis equivalent 

 

The image 33 shows a cross section of 4% biohybrid. The histological 

images (a-b-d-e) concerning human dermis equivalent show  the collagen 

(in blue) along the whole thickness of the sample (1mm), no necrotic region 

are visible and the microbeads are not more present. The fibroblasts are 

completely immerse in own extracellular matrix and the elongated nuclear 

morphology underlines the good condition of the cells. It is interesting to 

highlight that after 4 weeks of culture time the tissue is completely made-up 

of endogenous ECM. The presence of collagen (c-f),  suggest  that the cells 

not only proliferated but also work correctly, like in vivo dermal fibroblasts 

by secreting and remodeling collagen. Moreover the close interdependence 

of matrix remodeling, mechanical properties and shape retention is 

fundamental to preserve the integrity in soft tissue [96].   
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Figure 33 H/E staining (a-b) and masson trichrome staining (d-e) of biohybrid with 4 weeks of 

maturation;  scale bar 200 m (a-d)and 50 m (d-e); collagen signal cquired by SHG MP 

microscopy (c) and SEM image (f) 
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4.3.2 Hair elongation 

 

The images 35 show the hair elongation in our in vitro model, in particular at 

t0 the exogenous hair was placed into biohybrid and no external hair shaft is 

visible. Just after two days of culture few microns of external shaft are 

visible, and a consistent elongation persists for 17 days still. The graph 

reports the hair elongation tested in four several condition: fresh medium (I), 

conditioned medium (II), exogenous collagen with cells (III) and biohybrid 

(IV). During the first two days, for all the culture condition the elongation 

values presents the same values of about 6%; while in the next time points 

the results drastically change. For the  (I) condition the final hair shaft is of 

about 10% more of the initial value, with a consistent decrease of the 

elongation rate; same trend is seen in the (II) experiment, with a final 

elongation percent of 11%. The collagen and cells (III) reaches the 15% 

more of the initial length, showing the same trend of (I) and (II) from rate 

elongation point of view. The better results were obtained into the biohybrid, 

in which the final elongation is of about 35%, showing a constant elongation 

rate during culture time. 
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Figure 34 hair elongation during maturation time; quantification of hair elongation in fresh 

medium, condizionated medium, exogenous collagen and cells, biohybrid 

 

The figure 36 shows the dermis equivalent with implanted exogenous hair 

(a), the h/e staining (b-c) shows the complete model of human skin 

equivalent whit implanted exogenous hair; the exogenous hair is ECM 

surrounded, and the model is able to sustain the external shaft portion. The 

hair bulbs (d-f) keep their structure, DP cells are well visible both in 

immune-staining Versican signal and in H/E staining  on the bottom of the 

bulb. The inner and outer sheaths made of keratinocytes layers are 

preserved during the trials time (d-f). 
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Figure 35 biohybrid with exogenous hair (a); H/E staining of  human skin equivalent with hair 
implantation (b-c); imminofluorescence analysis of hair follicle, Versican in green and CD133 in 

red; H/E staining of  exogenous hair bulb (e-f); scale bar 1mm (a), 200 m (b), 50 m (c-f) 

 

 

4.4 Discussion 

The goal of this study is to develop skin substitutes with greater homology 

to native skin, in terms of dermis layer, extra cellular matrix, epidermal 

differentiated layer, and hair follicles. The dermis part is totally made of 

fibroblast and own ECM [13], the keratinocytes are seeded directly on the 

dermis part, and they are able to differentiate in all the three layers, basal 

layer, spinous and granulose layer, corneal layer [97, 98]. The hair follicle 

morphogenesis is mediated by the crosstalk between mesenchymal cells 



114 
 

(fibroblasts) and epithelial cells (keratinocytes) [99-103], this kind of 

interaction is an essential feature of hair follicle formation. In our complete 

model the crosstalk between fibroblasts and keratinocytes leads to a cysts 

like formation that can be considerate as hair follicle precursors. Moreover, 

in order to obtain a complete hair follicle structure (inner and outer sheaths, 

hair shaft), a lot of biochemical stimuli are needed, growth factors, 

cytokines, hormones and other factors too [104]. This great number of 

stimuli, could be the explanation why in our human skin equivalent just hair 

follicle precursors are visible, indeed in literature many works overcome this 

problem by the in vivo implantation [105-107]. The  introduction of anagen 

hairs in our 3D human skin equivalent, demonstrates the relevance of the 

endogenous ECM. The mature hair follicles are able to growth in several 

kind of conditions, fresh medium, conditioned medium, in exogenous ECM 

and fibroblasts [108-110]; we demonstrate that inside the biohybrid they find 

an environment much more similar to the in vivo skin, indeed they keep on 

the own elongation capability during time; the DP cells signal confirms that 

they remain undifferentiated, and so able to recreate a new follicle . In the 

hair follicles, after a variable period of time, anagen phase end, follicle 

growth stop, and catagen phase begins [111]; the first sign of regression in 

the catagen follicle is the withdrawal of papilla cells from the basement 

membrane [104]. The implanted hairs in human skin equivalent model, are 

all in anagen phase (dauration of 2-7 years [104]); if it was possible to 
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extend the experiment until to a complete hair cycle, the DP  cells migration 

and the restart of the cycle will happen inside the 3D model; this could lead 

to an hair follicle regeneration just in our human skin equivalent. Following 

this not confirmed hypothesis, thanks to surrounding environment, we could 

recreate a complete hair follicle inside the 3D model, by using a complete 

hair follicle  as vector for the DP cells. The goal of this work is validate the 

endogenous ECM, synthetized, assembled and remodeled by cells, which, 

in turns, are regulated and controlled by ECM. This better environment is 

able to recreate an “in vivo like” tissue conditions, that accommodate the 

crosstalk between several cellular lines, and support the exogenous hair 

elongation, and, in future, the complete hair regeneration. 
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Conclusion 

The results described in this thesis work, show a process able to obtains 

bioengineered micro tissues with endogenous ECM, that can be used as 

functional units both in micrometric and macrometric scale. This new class 

of tp can be queried in order to study the effects of drugs or external 

stimuli on the equivalent tissue; they can be printed in different shape, 

overcoming the shape limits related to of preformed scaffold, thanks to 

versatility of the bottom-up process. This printing process leads to an ECM 

deposition and remodeling, that make the realized tissues very similar to 

native organs. The endogenous ECM allows a great degree of organization 

and is possible to recreate in vitro the complexity of native tissue, in terms 

of epithelium stratification, structures reconstruction etc. This technique is 

applicable to several kind of cell lines, in order to obtain several kind of 

tissues, each one with its specific characteristic and morphology; whereby, 

the final 3D tissue equivalent, represent an important tool for researcher in 

order to better understand the biology of the tissues.  
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