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Chapter 1

Introduction

In this thesis a selection concept of Nash equilibria of a two–stage game

with vertical separation and partially observed actions is investigated. The

structure of this game is similar to the structure of a classic multi–leader

multi–follower game, a generalization of the Stackelberg game introduced

in [91] for a duopoly model: the leaders — in the first stage — and the

followers — in the second stage — choose simultaneously an action. So,

two kinds of competition arise in this situation, each in a separate stage:

between the leaders in the first stage and between the followers in the second

stage. The main difference with the classic multi–leader multi–follower game

is that the action chosen by each leader is not observed by all followers. In

particular, it is assumed that the action taken by a leader is observed only

by one follower, that is there is an exclusivity between a single leader and

a single follower. The exclusivity is also embodied in the model assuming

that the action of any leader does not affect the payoffs to other players

but the exclusive follower. These assumptions bring to an extensive form

game without proper subgames and all the previous results for multi–leader

multi–follower games with observed actions are no longer applicable in our

context.

Many real–world situations can be modeled as a two–stage game with

vertical separation and partially observed actions. An example is in games
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of multilateral vertical contracts, as in Pagnozzi and Piccolo [70]: competing

manufacturers (the leaders) delegate retail decisions to exclusive retailers (the

followers), offering a private contract. In this case the two kinds of competi-

tion can be interpreted as interbrand competition among the manufacturers,

who are the producers of a substitute good, and intrabrand competition

among the retailers, who are the dealers of the good to the final consumers.

The action of delegation is known in Industrial Organization literature as ver-

tical separation. Studies on vertical separation in an oligopolistic framework

show that the incentive conflicts derived from a vertical separation between

a manufacturer and external retailers can be used to leaders’ advantage (see,

for example, Bonanno and Vickers [8], Rey and Stiglitz [72], McAfee and

Schwartz [59], Dobson and Waterson [23], Pagnozzi and Piccolo [70]). Fur-

thermore, many papers in the field of multilateral vertical contracting are

interested in the consequences of private contracting between manufactur-

ers and retailers (Rey and Tirole [73], O’Brien and Shaffer [68], McAfee and

Schwartz [59], Caillaud et al. [14], Pagnozzi and Piccolo [70],. . . ). The fact

that the contract is private could represent situations in which commitment

is difficult because of the possibility of private renegotiation or of secret dis-

count, as pointed out in McAfee and Schwartz [59].

In the light of the previous motivations, the thesis generalizes a multi–

leader multi–follower two–stage game that follows the interaction scheme

described previously. This game will be called two–stage game with verti-

cal separation and partially observed actions (or else for short, two–stage

game with vertical separation), in analogy with the industrial organization

literature. Possibly discontinuous payoff functions are considered and it is

assumed that each leader’s payoff function could also depend explicitly on

his exclusive follower’s optimal value function (that is the payoff function of

the follower when he is reacting optimally to any given action of his corre-

sponding leader). This assumption can be viewed as an altruistic/spiteful

behaviour, depending on the way the optimal value function of a follower

affects his leader’s payoff. It is compatible with the fact that if a follower is
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an exclusive retailer of the good produced by the leader, the latter can take

into account the profit of his retailer (possibly in a percentage term) when he

has to decide which strategy to play. Moreover, in engineering applications,

the class of problems that can be modeled in this way are the so–called pa-

rameter design problem and the resource allocation problem for decentralized

systems (Shimizu and Ishizuka [81], Shimizu et al. [82],. . . ).

On the one hand a two–stage game with vertical separation is a particular

type of multi–leader multi–follower problem, on the other hand the partial

unobservability of the actions is a novelty in this type of models and makes

an ineffective refinement the concept of subgame perfect Nash equilibrium

because of the absence of proper subgames. Moreover, the concept of perfect

Bayesian equilibrium could be not useful in that it does not prescribe limi-

tations on the beliefs out of the equilibrium path. So, one way to overcome

multiplicity of equilibria is to restrict attention only to specific beliefs that

each follower has about the strategy chosen by the rival leaders. Taking into

account the specificity of the structure, the case of passive beliefs is consid-

ered, in line with the economic literature from which the model comes from.

Passive beliefs are quite a common assumption mainly in the multilateral

vertical contracting (see Crémer and Riordan [18], Hart et al. [31], O’Brien

and Shaffer [68], McAfee and Schwartz [59], Pagnozzi and Piccolo [70]) but

also in games of electoral competition (see Gavazza and Lizzeri [27]) and

consumer search literature (see Bar-Isaac et al. [3],. . . ), as pointed out in

Eguia et al. [24].

The aim of this thesis is to investigate the existence of equilibria under

passive beliefs of a two–stage game with vertical separation under conditions

of minimal character, mainly when the optimal reaction of any follower is

single–valued. Chapter 4 is entirely devoted to the analysis of these results.

An equilibrium under passive beliefs is proved to correspond to a fixed point

of particular set–valued maps related to the sets of solutions of parametric

Bilevel Optimization problems. Therefore, the existence for an equilibrium

under passive beliefs is guaranteed once the existence of fixed points of the
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considered set–valued map is proved. Given the peculiar structure of such

set–valued maps, the fixed point theorems that fit well in these situations

generally satisfy two main conditions: the closedness of the considered set–

valued maps and the convexity of their values.

Previous results (Loridan and Morgan [50], Morgan [62], Lignola and Morgan

[45]) help to find conditions of minimal character that ensure the closedness

of the set–valued map we examine and the continuity of the optimal value

functions of the followers.

Answer to the second issue requires more effort; also for multi–leader multi–

follower games with observed actions this condition represents a main prob-

lem for both theoretical and computational approaches. Chapter 2 and Chap-

ter 3 are mainly devoted to answer to these questions.

More precisely, Chapter 2 deals with Generalized Concave and Set–Valued

Analysis and related Optimization problems. Besides the notion of quasicon-

cavity, the notion of pseudoconcavity is presented in a generalized version,

for possibly discontinuous functions, in terms of Dini derivatives (see Diew-

ert [21]). Then, some results on the concavity and the generalized concavity

of composite functions are recalled, since a central problem when proving

existence results for multi–leader multi–follower games is to find conditions

that guarantee the quasiconcavity of the leaders’ payoffs which are expressed

as composite functions. Furthermore, basic notions of Set–Valued Analysis,

including semicontinuity and convexity of set–valued maps and their appli-

cations, are recalled. Moreover, properties of the optimal value function and

the so–called optimal solutions set–valued map are emphasized. Finally, a

brief review on the Stackelberg problems is presented, in particular when

any follower’s reaction is single–valued.

In Chapter 3, following Ceparano and Quartieri [16], new results on the

concavity and the isotonicity of an optimal reaction function are proved. The

concavity and isotonicity of the optimal reactions of the followers are used

for proving in Chapter 4 the existence of an equilibrium under passive beliefs

for a special class of two–stage games with vertical separation and partially
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observed actions. Furthermore, a fixed point theorem for set–valued maps,

used in Chapter 4, is proved.

Chapter 4 deals with the analysis of two–stage games with vertical sepa-

ration and partially observed actions. Once the definition of an equilibrium

for such a game is provided and existence of Nash equilibria is obtained for

possibly discontinuous payoff functions, the problem of multiplicity of equi-

libria is illustrated through an example in the context of multilateral vertical

contracting. This motivates the introduction of selections of Nash equilibria

based on the beliefs that each follower has about the action chosen by the

other leaders. So, a solution concept based on passive beliefs is defined when

the optimal reaction of any follower is single–valued and it is shown that

in the above–mentioned example it leads to the selection of a unique Nash

equilibrium.

When the optimal reaction of any follower is a linear function, a first exis-

tence result is given together with sufficient conditions on the data in order

to obtain such property.

With the aim of obtaining existence of equilibria without the condition of

linearity, particular classes of two–stage games with vertical separation are

considered.

First, the optimal reaction of any leader is assumed to be single–valued; ex-

istence is obtained without concavity assumptions.

When the action sets of the followers are subsets of R, existence is proved

assuming concavity of the optimal reaction of any follower and sufficient con-

ditions for the concavity of the optimal reactions are given.

When the action sets of both leaders and followers are subsets of R and the

payoff function of any leader does not depend directly on his own action,

existence is proved assuming the isotonicity of the optimal reaction of any

follower. Sufficient conditions for the isotonicity of the optimal reactions are

provided.

Finally, an existence result is proved when the optimal reaction of any fol-

lower is not single–valued but the payoff function of any leader depends on the
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action of the corresponding follower only through the optimal value function.

In the Appendix basic concepts and results on Euclidean spaces, Real and

Concave Analysis used in the thesis are recalled.

Important properties of the set of the solutions, in particular, closedness

and stability with respect to perturbations on the data, could be also inves-

tigated. These, together with applications to other economic models and the

extension of the results to other types of beliefs, are the purposes of future

studies.
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Chapter 2

Preliminary tools

The scope of this thesis is to give existence results for a selection of Nash

equilibria for a multi–leader multi–follower game with vertical separation.

The precise description of such a game will be given in Chapter 4; here it

is worth mentioning that the definition of a solution for this game involves

parametric Bilevel Optimization problems. Thus, in this chapter we recall

some mathematical tools that fit for the purpose. In particular, in the first

section basic notions and preliminary results on Generalized Concave Anal-

ysis are recalled.

In Section 2.2 basic notions of Set–Valued Analysis, including upper and

lower semicontinuity and their applications, are recalled.

In Section 2.3 some results on the so–called optimal value function and on

the optimal solutions set–valued map are given. In the last section a brief

review of works on leader–follower interactions is presented. In line with the

purpose of this thesis, we mainly report results where the optimal reaction

of any follower is single–valued. This chapter is the starting point for the

analysis of Chapter 3.

The reader is referred to the Appendix for basic notions on Euclidean

spaces and Real and Concave Analysis.

Note that all notions are given in R
n but they would be also valid in a

more general context.
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The material in this chapter is based mainly on Berge [6], Mangasarian

[57], Avriel et al. [2], Aubin and Frankowska [1], Kyparisis and Fiacco [40, 41],

Loridan and Morgan [49, 50], Lignola and Morgan [45, 44, 46], Rockafellar

[75], Cambini and Martein [15], Bazaraa et al. [5].

2.1 Generalized Concave Analysis

Concave functions are very useful for applications in economics, since a local

maximum point for a concave function is also a global one and also since a

point that satisfies the first–order necessary conditions of a concave differen-

tiable function is a global maximum point of the function.

Nonetheless, in many applications it is sufficient to handle with convex

upper level sets, where we recall that an upper level set at height α, with

α ∈ R (also called upper contour set at height α) of a real–valued function

f defined on a set X ⊆ R
n is the set Λα = {x ∈ X : f(x) ≥ α}. The

following notion exploits this property within the field of Generalized Concave

Analysis.

Definition 2.1.1 ([2] Definition 3.1)

Let X be a convex subset of R
n. An (extended) real–valued function f

defined on X is said to be quasiconcave on X if its upper level sets Λα at

height α are convex sets, for any α ∈ R; f is said to be quasiconvex if −f is

quasiconcave.

A very useful characterization of quasiconcavity is given in the next the-

orem.

Theorem 2.1.2 ([2] Theorem 3.1). Let f be a real–valued function defined

on a convex subset X of Rn. Then, f is quasiconcave if and only

f(λx+ (1− λ)y) ≥ min{f(x), f(y)},

for any x, y ∈ X and, for any λ ∈ [0, 1].
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2.1 Generalized Concave Analysis

From an application of the definition of quasiconcavity it follows:

Proposition 2.1.3 ([15] Theorem 2.2.4). Let f be a real–valued function

defined on a convex set X ⊆ R
n. Let B be the set of the set of the global

maximum points of f on X, that is B = Argmaxx∈X f(x). If f is quasicon-

cave on X then B is a convex set.

Differently from what happens for concave functions, the sum of qua-

siconcave functions is not necessarily quasiconcave. For example, consider

X = [0,+∞[ and f and g defined by f(x) = −x2 and g(x) = x3 for any

x ∈ X. Both functions are quasiconcave on X but f + g is not quasiconcave

on X. Moreover, even if f is linear and g is quasiconcave the sum is not

necessarily quasiconcave. Consider, for example, f(x) = −x and g(x) = ex.

A function that is both quasiconcave and quasiconvex is said to be quasi-

monotonic.

Remark 2.1.4 As pointed out in [2], for real–valued functions defined on R

the notion of monotonicity and quasimonotonicity are equivalent.

Proposition 2.1.5 ([2] Theorem 3.11). Let f be a differentiable real–valued

function defined on the open convex set X ⊆ R
n. Then f is quasiconcave if

and only if the following implication holds:

x1, x2,∈ X f(x2) ≥ f(x1) implies 〈∇f(x1), (x2 − x1)〉 ≥ 0.

Definition 2.1.6 ([2] Definition 3.8)

A real–valued function f defined on a convex set X ⊆ R
n is said to be strictly

quasiconcave if

f(λx1 + (1− λ)x2) > min{f(x1), f(x2)},

for any x1, x2 ∈ X, with x1 6= x2 and λ ∈]0, 1[; f is said to be strictly

quasiconvex if −f is strictly quasiconcave.
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A (strictly) concave function is also (strictly) quasiconcave. The reverse

is not true. In fact, consider the real–valued function f defined on R by

f(x) = ex: f is (strictly) quasiconcave on R but it is not (strictly) concave

on R.

A strictly quasiconcave function is quasiconcave. In general, the reverse

is not true: a function which is constant over an interval in its domain of

definition is quasiconcave but not strictly quasiconcave. The examples above

can also be used to show that there is not an inclusion relationship between

the class of strictly quasiconcave functions and the class of concave functions.

Definition 2.1.7 ([2] Definition 3.10)

A convex set X ⊆ R
n is said to be strictly convex if for any two points

x1, x2 ∈ X on its boundary and for any λ ∈]0, 1[ the point xλ = λx1+(1−λ)x2

is an interior point of X.

A necessary condition for strict quasiconcavity on R
n is given by the

following definition.

Proposition 2.1.8 ([2] Proposition 3.28). Let f be a continuous function

defined on R
n. If f is strictly quasiconcave then its upper level sets are

strictly convex.

The reverse of the above proposition is not true, as shown in Example 3.3

in [2].

The importance of the strict quasiconcavity in optimization is due to the

following property:

Proposition 2.1.9 ([2] Proposition 3.29). A strictly quasiconcave function

f defined on the convex set X ⊆ R
n attains its maximum on X at no more

than one point.

Another notion related to quasiconcavity is the following:

Definition 2.1.10 ([2] Definition 3.11)

A real–valued function f defined on a convex set X ⊆ R
n is said to be
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2.1 Generalized Concave Analysis

semistrictly quasiconcave if

f(x2) > f(x1) implies f(λx1 + (1− λ)x2) > f(x1).

for any x1, x2 ∈ X and any λ ∈]0, 1[; f is said to be semistrictly quasiconvex

if −f is semistrictly quasiconcave.

Note that we use the definition given in Avriel et al. [2]. This definition

differs from the one given by Mangasarian in [57] who calls strict quasicon-

cavity what Avriel calls semistrict quasiconcavity.

A strictly quasiconcave function is characterized by:

f(x2) ≥ f(x1) implies f(λx1 + (1− λ)x2) > f(x1)

for any x1, x2 ∈ and any λ ∈]0, 1[. Then, every strictly quasiconcave function

is semistrictly quasiconcave.

A semistrictly quasiconcave function is not necessarily quasiconcave as

we can easily see in the following example.

Example 2.1.1 Let f be defined on R by:

f(x) =







1 if x 6= 0

0 if x = 0.
(2.1)

This function is semistrictly quasiconcave on R but not quasiconcave on R

and hence f is also not strictly quasiconcave. ⋄

Nevertheless, we have:

Proposition 2.1.11 ( [34] or [2] Proposition 3.30). If f is an upper semi-

continuous semistrictly quasiconcave function on a convex set X ⊆ R
n, then

it is also quasiconcave on X.

If f is upper semicontinuous, semistrict quasiconcavity is stronger than

quasiconcavity, as we can see in the following example.
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Example 2.1.2 Let f be a real–valued function defined on [0, 1] by:

f(x) =







0 if x ∈ [0, 1]

x− 1 if x ∈]1, 2].

f is a continuous quasiconcave function but it is not semistrictly quasicon-

cave. ⋄

The semistrict quasiconcavity does not guarantee the uniqueness of the

optimal solution of an optimization problem. Nevertheless, an important

property is expressed in the following proposition.

Proposition 2.1.12 ([2] Theorem 3.37). Let f be a continuous quasiconcave

real–valued function defined on a convex set X ⊆ R
n. Then f is semistrictly

quasiconcave on X if and only if every local maximum point x̄ of f on X is

a global maximum point of f on X.

Another way to generalize the concept of concavity is provided by the

concept of pseudoconcave function.

Definition 2.1.13 ([2] Definition 3.13)

Let f be a differentiable real–valued function defined on an open convex set

X ⊆ R
n. Then f is said to be pseudoconcave on X if:

x1, x2 ∈ X and f(x1) > f(x2) implies 〈∇f(x2), (x1 − x2)〉 > 0; (2.2)

f is said to be strictly pseudoconcave on X if:

x1, x2 ∈ X with x1 6= x2 and f(x1) ≥ f(x2) implies 〈∇f(x2), (x1−x2)〉 > 0;

f is said to be (strictly) pseudoconvex on X if −f is (strictly) pseudoconcave

on X.

A strictly pseudoconcave function is pseudoconcave. The reverse is not

true. Indeed, a constant function is pseudoconcave but not strictly pseudo-

concave.

14



2.1 Generalized Concave Analysis

Proposition 2.1.14 ([57] Theorem 9.3.5). Let f be a differentiable real–

valued function defined on an open convex set X ⊆ R
n. If f is pseudoconcave

on X then f is semistrictly quasiconcave on X and hence also quasiconcave

on X. The converse is not true.

Proposition 2.1.15 ([15] Theorem 3.2.12). Let f be a differentiable real–

valued function defined on an open convex set X ⊆ R
n. If f is strictly

pseudoconcave on X then f is strictly quasiconcave on X. The converse is

not true.

Then, from Proposition 2.1.9, a strictly pseudoconcave function has at

most one maximum point.

Finally, there is no an inclusion relation between the class of pseudoconcave

functions and the class of strictly quasiconcave functions. Indeed, a constant

function over an open convex subset of Rn is pseudoconcave but not necessar-

ily strictly quasiconcave. Vice versa, if we consider the function f(x) = x3 on

R, f is strictly pseudoconcave but not pseudoconcave (condition (2.2) does

not hold if x2 = 0)[15].

Furthermore, it holds:

Proposition 2.1.16 ([2] Theorem 3.39). Let f be a differentiable real–valued

function defined on an open convex set X ⊆ R
n. If f is (strictly) pseudo-

concave on X and ∇f(x̄) = 0 for some x̄ ∈ X, then x̄ is a (unique) global

maximum point of f on X.

When f is not differentiable, we consider a generalization of pseudocon-

cavity due to Diewert [21] which uses the so–called Dini Derivative.

Let us first recall the definition of Dini derivatives of a function.

Definition 2.1.17 ([22])

Let f be a real–valued function defined on a convex set X ⊆ R
n. Recall that

R = R ∪ {−∞} ∪ {+∞}. The right–hand upper Dini derivative D+f(x, u)

of f at x ∈ X in the direction u ∈ X is defined by:

D+f(x; u) = lim sup
h→0+

f(x+ hu)− f(x)

h
,

15



2. Preliminary tools

provided that x+ hu ∈ X. Note that D+f(x, u) can be infinite.

Analogously, the right–hand lower Dini derivative of f at x ∈ X in the

direction u ∈ X is:

D+f(x; u) = lim inf
h→0+

f(x+ hu)− f(x)

h
,

provided that x+hu ∈ X; the left–hand upper Dini derivative of f at x ∈ X

in the direction u ∈ X is:

D−f(x; u) = lim sup
h→0−

f(x+ hu)− f(x)

h
,

provided that x+ hu ∈ X; the left-hand lower Dini derivative of f at x ∈ X

in the direction u ∈ X is:

D−f(x; u) = lim inf
h→0−

f(x+ hu)− f(x)

h

provided that x + hu ∈ X, where the lim inf and lim sup are defined as in

(A.5) and (A.6) in the Appendix.

If the function f is defined on X ⊆ R, we indicate the right–hand upper

Dini derivative with D+f(x) = lim suph→0+
f(x+h)−f(x)

h
(without specifying

the direction).

Let X ⊆ R and Y ⊆ R
m be convex sets. If g is a real–valued function

defined onX×Y , we denote withD−g(·, y) the left-hand lower Dini derivative

of the function g(·, y) defined on X, for any y ∈ Y . Therefore

D−g(·, y)(x) = lim inf
h→0−

g(x+ h, y)− g(x, y)

h
. (2.3)

for any y ∈ Y .

A detailed investigation of the Dini derivative with applications to opti-

mization problems can be found in [28]. Let us report a result that will be

useful in the future:

Lemma 2.1.18 ([28] Theorem 1.13). Let f be an upper semicontinuous real–

valued function defined on an interval [a, b] ⊆ R. If D+f(t) ≥ 0 (D+f(t) >

0) for any t ∈ [a, b[ then f is nondecreasing (strictly increasing) on [a, b[.
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2.1 Generalized Concave Analysis

Now, we can recall the concept of pseudoconcavity in terms of the Dini

derivative.

Definition 2.1.19 ([21])

A function f defined on a convex set X ⊆ R
n is said to be pseudoconcave in

terms of the upper Dini derivative (in short D–pseudoconcave) if

x, y ∈ X, f(x) < f(y) implies D+f(x; y − x) > 0;

a function is strictly D–pseudoconcave if

x, y ∈ X, f(x) ≤ f(y) implies D+f(x; y − x) > 0;

f is said to be (strictly) D–pseudoconvex if the function g = −f is (strictly)

D–pseudoconcave.

Then, if f is a real–valued function defined on I ⊆ R, f is strictly D–

pseudoconcave if and only if






x, y ∈ I, x < y and f(x) ≤ f(y) implies D+f(x) > 0

x, y ∈ I, x < y and f(x) ≥ f(y) implies D−f(y) < 0.
(2.4)

A relation between D–pseudoconcavity and quasiconcavity is given in [29].

Recall the following definition.

Definition 2.1.20 ([29])

A real–valued function f defined on a convex set X ⊂ R
n is said to be

radially upper semicontinuous on X (also known as upper semicontinuous on

the segments) if the function φ defined by:

φ(t) = f(tx+ (1− t)y)

is upper semicontinuous on [0, 1], for any x, y ∈ X.

Then, it holds:
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Proposition 2.1.21 ([29] Theorem 3.5). Let f be a real–valued function

defined on a convex set X ⊆ R
n. If f is radially upper semicontinuous and

D–pseudoconcave on X, then f is quasiconcave on X.

Other results on connections between the class of quasiconcave functions

and the class of D–pseudoconcave functions can be found in [32].

A strict D–pseudoconcave function has at most one global maximum

point. Indeed, the following proposition holds.

Proposition 2.1.22. Let f be a real–valued strictly D–pseudoconcave func-

tion defined on a convex set X ⊆ R
n. Then, f attains its maximum on X at

no more than one point.

Proof. Let x̄, ¯̄x ∈ Argmaxx∈X f(x) with x̄ 6= ¯̄x. From the definition of strict

D–pseudoconcavity of f we have

lim sup
t→0+

f(x̄+ t(¯̄x− x̄))− f(x̄)

t
> 0,

that is, there exists a sequence (tk)k that converges to 0+ and k̄ ∈ N such

that tk ∈]0, 1[ and

f(x̄+ tk(¯̄x− x̄))− f(x̄)

tk
> 0, for any k > k̄. (2.5)

From the convexity of X it follows that x̄+ tk(¯̄x− x̄) ∈ X.

So, f(x̄ + tk(¯̄x− x̄)) > f(x̄), for some k, in contradiction with the fact that

x̄ is a maximum point of f on X. ⋄

In order to prove existence results for multi–leader multi–follower games,

a central problem is to find conditions that guarantee the quasiconcavity of

leaders’ payoff functions which are expressed as composite functions. Hence,

we conclude the section recalling some results on the concavity and the gen-

eralized concavity of composite functions.

Proposition 2.1.23 ([2] Proposition 2.16). Let φ1, . . . , φm be concave (con-

vex) real–valued functions defined on a convex set X ⊆ R
n and f be a
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concave real–valued componentwise nondecreasing (nonincreasing) function

defined on a concave set Y ⊆ R
m. Assume that Y contains the range of

(φ1, . . . , φm). Then the composite function f̃ = f(φ1, . . . , φm) is concave on

X.

Proof. We prove the concave case, the convex case could be obtained analo-

gously. Let φi be concave onX, for any i = 1, . . . ,m. Then for any x1, x2 ∈ X

and λ ∈]0, 1[ we have

φi(λx1 + (1− λ)x2) ≥ λφi(x1) + (1− λ)φi(x2), (2.6)

for any i = 1, . . . ,m. Since f is concave and componentwise nondecreasing,

using (2.6) we have:

f̃(λx1 + (1− λ)x2) = f(φ1(λx1 + (1− λ)x2), . . . , φm(λx1 + (1− λ)x2))

≥ f(λφ1(x1) + (1− λ)φ1(x2), . . . , λφm(x1) + (1− λ)φm(x2))

≥ λf(φ1(x1), . . . , φm(x1)) + (1− λ)f(φ1(x2), . . . , φm(x2))

= λf̃(x1) + (1− λ)f̃(x2),

that is f̃ is concave on X. ⋄

An analogous result can be proved if f is quasiconcave:

Proposition 2.1.24 ([2] Proposition 5.3). Let φ1, . . . , φm be concave (con-

vex) real–valued functions defined on a convex set X ⊆ R
n and f be a qua-

siconcave real–valued componentwise nondecreasing (nonincreasing) function

defined on a convex set Y ⊆ R
m. Assume that Y contains the range of

(φ1, . . . , φm). Then the composite function f̃ = f(φ1, . . . , φm) is quasicon-

cave on X.

Proof. We prove the concave case, the convex case could be obtained analo-

gously. Let x1, x2 ∈ X and λ ∈]0, 1[. By definition:

φi(λx1 + (1− λ)x2) ≥ λφi(x1) + (1− λ)φi(x2),
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for any i = 1, . . . ,m. If f is componentwise nondecreasing and quasiconcave

we have:

f̃(λx1 + (1− λ)x2) = f(φ1(λx1 + (1− λ)x2), . . . , φm(λx1 + (1− λ)x2))

≥ f(λφ1(x1) + (1− λ)φ1(x2), . . . , λφm(x1) + (1− λ)φm(x2))

≥ min{f(φ1(x1), . . . , φm(x1)), f(φ1(x2), . . . , φm(x2))}

= min{f̃(x1), f̃(x2)},

that is f̃ is quasiconcave on X. ⋄

If m > 1, the previous proposition cannot be weakened assuming some φi

quasiconcave. Indeed, if f is defined on R
2 by f(y1, y2) = y1 + y2, we know

that the sum of two quasiconcave functions could be not quasiconcave, as

shown previously.

We can generalize the result in Proposition 2.1.24 when we compose a

quasiconcave function with both concave and convex functions. The proof is

straightforward.

Proposition 2.1.25 ([2] Proposition 5.4). Let φ1, . . . , φm1 be concave real–

valued functions defined on a convex set X ⊆ R
n and ψ1, . . . , ψm2 be convex

real–valued functions defined on X. Let Y be a convex subset of R
m, with

m = m1 +m2. Denote (y1, . . . , yi−1, yi+1, . . . , ym) with y−i and the set {yi ∈

R : (yi, y−i) ∈ Y } with Yy−i
. Let f be a quasiconcave real–valued function such

that f(·, y−i) is nondecreasing on Yy−i
, for any i = 1, . . . ,m1, and f(·, y−i) is

nonincreasing on Yy−i
, for any i = m1 + 1, . . . ,m. Assume that Y contains

the range of (φ1, . . . , φm1 , ψ1, . . . , ψm2).

Then the composite function f̃ = f(φ1, . . . , φm1 , ψ1, . . . , ψm2) is quasiconcave

on X.

When m = 1 in Proposition 2.1.24 we can weaken the hypothesis on both

f and φ.

Proposition 2.1.26 ([2] Proposition 3.2). Let φ be a quasiconcave function

real–valued function defined on a convex set X ⊆ R
n and f be a nondecreasing
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real–valued function defined on a convex set Y ⊆ R. Assume that Y contains

the range of φ. Then, the composite function f̃ = f ◦ φ is quasiconcave on

X.

Proof. Let x1, x2 ∈ X and λ ∈]0, 1[. By definition:

φ(λx1 + (1− λ)x2) ≥ min {φ(x1), φ(x2)}.

If f is nondecreasing on Y we have:

f(φ(λx1 + (1− λ)x2)) ≥ f(min {φ(x1), φ(x2)})

= min {f(φ(x1)), f(φ(x1))},

that is f ◦ φ is quasiconcave on X. ⋄

Finally, we consider the case in which the functions (φi)
m
i=1 are linear.

Proposition 2.1.27. Let X be a subset of R
n and Yi be a convex subset

of R
ri, for i = 1, . . . ,m. Let ψi be a linear function from X to Yi, for

i = 1, . . . ,m, and let φi be a concave real–valued function defined on X, for

i = 1, . . . , q. Let Z be a convex subset of Rq and Y =
∏m

i=1 Yi×Z and assume

that Y contains the range of (ψ1, . . . , ψm, φ1, . . . , φq). If f is a quasiconcave

real–valued function on Y and f(ψ1, . . . , ψm, ·, . . . , ·) is componentwise non-

decreasing on Z, then the composite function f̃ = f(ψ1, . . . , ψm, φ1, . . . , φq)

is quasiconcave on X.

Proof. Let x1, x2 ∈ X and λ ∈]0, 1[. Let xλ = λx1 + (1 − λ)x2. Assume

for the sake of simplicity, that m = q = 1. Using the linearity of ψ1, the

quasiconcavity of φ1 and the nondecreasingness of f(ψ1, ·) on Z, we obtain:

f̃(xλ) = f(ψ1(xλ), φ1(xλ)) = f(λψ1(x1) + (1− λψ1(x2)), φ1(xλ))

≥ f(λψ1(x1) + (1− λ)ψ1(x2), λφ1(x1) + (1− λ)φ1(x2))

≥ min{f(ψ1(x1), φ1(x1)), f(ψ1(x2), φ1(x1))},

where the last inequality follows from the quasiconcavity of f . Then f̃ is

quasiconcave. ⋄
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2.2 Set–Valued Analysis

In this section on Set–Valued Maps we recall some notions that have many

applications in theoretical economics.

This section is based, mainly, on Berge [6], Aubin and Frankowska [1],

Ok [69]. In the first part of the section we recall the definitions of limits of

sets as formulated by Painlevé–Kuratowski [39]. The second part is devoted

to basic notions of Set–Valued Analysis.

Let H be a subset of Rn and (Hk)k be a sequence of subsets of Rn.

Definition 2.2.1 ([1] Definition 1.1.1)

The set

Lim sup
k→+∞

Hk = {x ∈ X : lim inf
k→+∞

d(x,Hk) = 0} (2.7)

is said to be the upper limit (in the sense of Kuratowski) of the sequence

(Hk)k, where d(x,H) = infy∈H d(x, y), is the distance from a point x ∈ R
n

to the set H and d is the Euclidean metric.

Equivalently, Lim supk→+∞Hk is the set of cluster points of sequences

(xk)k in (Hk)k, that is:

Lim sup
k→+∞

Hk = {x ∈ X : there exists a sequence (xk)k∈N1
, with N1 ⊆ N

countably infinite, converging to x s.t. xk ∈ Hk for any k ∈ N1}.

Definition 2.2.2 ([1] Definition 1.1.1)

The set

Lim inf
k→+∞

Hk = {x ∈ X : lim
k→+∞

d(x,Hk) = 0} (2.8)

is the lower limit (in the sense of Kuratowski) of the sequence (Hk)k.

Equivalently, Lim infk→+∞Hk is the set of limits of sequences (xk)k in
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(Hk)k, that is:

Lim inf
k→+∞

Hk{x ∈ X : ∃ (xk)k converging to x s.t. xk ∈ Hk for k large}.

(2.9)

So, both the lower and the upper limits are closed sets and Lim infk→+∞Hk ⊆

Lim supk→+∞Kk.

Definition 2.2.3 ([1] Definition 1.1.1)

A subsetH is said to be the limit (in the sense of Kuratowski) of the sequence

(Hk)k if

H = Lim inf
k→+∞

Hk = Lim sup
k→+∞

Hk.

Example 2.2.1 Consider the sequence (Hk)k of subsets of R
2 defined,

for every k in N, by:

Hk =







{

1
k

}

× [−1, 0] if n is odd,
{

1
k

}

× [0, 1] if n is even.

Then, Lim infk→+∞Hk = {(0, 0)} and Lim supk→+∞Hk = {0} × [−1, 1]

(see [1]). ⋄

From now on in this section we will denote with X and Y two subsets of

R
n and R

m, respectively.

A set–valued map F : X ⇒ Y , also called correspondence, multifunction, or

point to set map, is a map such that F (x) is a subset of Y , for any x ∈ X.

The set F (x) is called image or value of F at x.

A set–valued map F is strict if all images are not empty. The domain of F

is the set DomF = {x ∈ X : F (x) 6= ∅}.

The image of F is the set ImF =
⋃

x∈X F (x).

For any S ⊆ X, the image of S under F is the set F (S) =
⋃

x∈S F (x).

The graph of F is the set GraphF = {(x, y) ∈ X × Y : y ∈ F (x)}.
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Graph(F )

x

F (x)

Figure 2.1: Graph of set–valued map F .

An example of a set–valued map is in Figure 2.1.

A set–valued map F : X ⇒ Y is said to be closed, or F has the closed

graph property, if GraphF is closed in the product space X × Y , that is if

Lim sup
k→+∞

F (xk) ⊆ F (x),

for any x ∈ X and for any sequence (xk)k converging to x in X.

Analogously, F is said to be open graph if GraphF is open.

The set–valued map F is said to be closed–valued (resp. open–valued) if

F (x) is said to be closed (resp. open) subset of Y , for any x ∈ X; F is said

to be compact–valued if F (x) is compact, for any x ∈ X.

If F is a closed set–valued map, then F is closed–valued; the vice versa

is not always true.

Now, let Z and Y be convex subsets of Rn and R
m, respectively. A set–

valued map F : Z ⇒ T is said to be convex if GraphF is a convex subset

of Rn × R
m, or, equivalently, if for each x, y ∈ Z, and for each λ ∈]0, 1[ we

have:

λF (x) + (1− λ)F (y) ⊆ F (λx+ (1− λ)y).

F is said to be convex–valued if the set F (x) is convex, for any x ∈ Z.

Definition 2.2.4

The set–valued map F : Z ⇒ T is said to be quasiconvex (see [41]) on a

convex set Z ⊆ R
n if F−1(M) is a convex subset of Rn for any convex subset

M of Rm, where F−1(M) = {x ∈ R
m : F (x) ∩M 6= ∅} is the inverse image

of M by F .
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A convex set–valued map is quasiconvex, the converse is not true, as

shown in the following example.

Example 2.2.2 Consider the set–valued map F : Z = [0, 1] ⇒ T = [0, 1]

defined for any x ∈ Z by:

F (x) =



















{0}, if x ∈ [0, 1
2
[;

[0, 1], if x = 1
2
;

{1}, if x ∈]1
2
, 1];

F is quasiconvex on Z but not convex. ⋄

Each function f from a set X to a set Y can be seen as a particular

set–valued map F from X to Y defined by F (x) = {f(x)}, for any x ∈ X.

On the other hand, if F : X ⇒ Y is single–valued for any x ∈ X, it can be

defined the function f : X → Y such that f(x) ∈ F (x) for any x ∈ X.

Remark 2.2.5 Let us emphasize that, if T is a convex subset of R and F is

a quasiconvex single–valued map then, considered as a function, it is both a

quasiconvex and a quasiconcave function. So, if F , considered as a set–valued

map, is quasiconvex and also single–valued, then, considered as a function,

it is quasimonotone.

The two concepts of semicontinuity for set–valued maps that we will use in

the following were introduced independently by Kuratowski and Bouligand in

1932. Both concepts of semicontinuity for set–valued maps are an extension

of the notion of continuity for functions.

Definition 2.2.6 ([1] Definition 1.4.1)

The set–valued function F is said to be upper semicontinuous at x ∈ DomF

if, for any sequence (xk)k converging to x in X and for any open set O of Y

such that F (x) ⊆ O we have F (xk) ⊆ O for k large.

F is said to be upper semicontinuous if it is upper semicontinuous at x, for
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any x ∈ DomF .

Assume that F is a single–valued map. Then F is upper semicontinuous

on X if and only if, considered as function, it is continuous on X.

Proposition 2.2.7 ([69]). Let F be a set–valued map from X to Y . Assume

that for any sequence (xk)k in X and (yk)k in Y such that yk ∈ F (xk), for all

k ∈ N, there exists a subsequence (yk)k∈N1
, with N1 ⊆ N countably infinite,

converging to a point y ∈ F (x). Then F is upper semicontinuous at x ∈ X.

If F is compact–valued, then the converse is also true.

Furthermore, the closed graph property is related, but not equivalent, to

the property of upper semicontinuity.

Example 2.2.3 Consider, for example, the set–valued map:

F (x) =







{0} if x = 0,

{ 1
x
} if x > 0.

F is a closed but not an upper semicontinuous set–valued map. ⋄

Graph(F )

Figure 2.2: Graph of a set–valued map F upper semicontinuous which is not

closed.

Conversely, the upper semicontinuity is not sufficient to ensure the closed

graph property. Nevertheless, the relation between closedness and upper

semicontinuity is given in the following proposition.
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Proposition 2.2.8 ([1] Proposition 1.4.8). Assume that F : X ⇒ Y is a

set–valued map. Then the following statements hold:

(i) If F is closed and Y is compact, then F is upper semicontinuous.

(ii) If F is an upper semicontinuous closed–valued map, then F is closed.

Then, if Y is compact and F is closed–valued, we have that F is closed

if and only if F is upper semicontinuous.

Definition 2.2.9 ([1] Definition 1.4.2)

A set–valued map F is lower semicontinuous at x ∈ Dom(F ) if for any

sequence (xk)k converging to x in X we have

F (x) ⊆ Lim inf
k→+∞

F (xk),

that is for any sequence of elements (xk)k in Dom(F ) that converges to x in

X and for any y ∈ F (x), there exists a sequence of elements (yk)k converging

to y such that yk ∈ F (xk) for k large.

F is lower semicontinuous if F is lower semicontinuous at x, for any

x ∈ Dom(F ).

If F is a single–valued map, then F is a lower semicontinuous map if and

only if, considered as function, it is continuous. So, for a single–valued map

the concepts of lower semicontinuity and upper semicontinuity coincide.

This is not longer true for set–valued maps, as we can see in the examples

in Figure 2.3 – 2.4 – 2.5.

Definition 2.2.10 ([1] Definition 1.4.3)

A set–valued map F is continuous at x ∈ X if it is upper and lower semicon-

tinuous at x ∈ X. A set–valued map F is continuous on X if it is continuous

at x ∈ X, for any x ∈ X.

In the following, we recall well–known theorems of Set–Valued Analysis.

The last theorem of the section is the Kakutani’s Theorem, a fixed–point

theorem that has a wide range of applications in economic problems.
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Graph(F )

x

F (x)

Figure 2.3: Graph of

a set–valued map upper

(but not lower) semi–

continuous at x.

Graph(F )

x

F (x)

Figure 2.4: Graph of a

set–valued map lower (but

not upper) semicontinu-

ous at x.

Graph(F )

x

F (x)

Figure 2.5: Graph of a set–valued map neither lower nor upper semicontin-

uous at x.

Proposition 2.2.11 (Border [9] Michael selection Theorem). Let X be a

compact subset of Rn and F : X ⇒ R
m be a lower semicontinuous set–valued

map with closed and convex values. Then, there is a continuous function

f : X → R
m such that f(x) ∈ F (x) for any x ∈ X.

Proposition 2.2.12 ([9] von Neumann’s Approximation Lemma). Let X be

a compact subset of R
n and Y be a convex subset of R

m. Let F : X ⇒ Y

be an upper semicontinuous set–valued map with nonempty compact convex

values. Then, for any ǫ > 0 there exists a continuous function fǫ such that

Graph fǫ ⊆ Uǫ(GraphF ), where Uǫ(GraphF ) = ∪(x,y)∈GraphFB((x, y); ǫ).

Definition 2.2.13

A point x∗ ∈ X is said to be a fixed point on X of a set–valued map
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F : X ⇒ X if x∗ ∈ F (x∗).

Graphically, if X = R, the set of the fixed points of a set–valued map

corresponds to the intersection between the graph of F and the 45◦ line in

the space R
2, as in Figure 2.6.

45◦

Graph(F )

Figure 2.6: Set of fixed points of F

Theorem 2.2.14 ([33] Kakutani’s Fixed Point Theorem). Let X be a non-

empty, convex, compact subset of Rn and F : X ⇒ X be a set–valued map.

Let F be convex–valued and closed. Then, there exists at least a fixed point

of F on X.

2.3 Parametric Optimization

Let X and Y be subsets of Rn and R
m, respectively. Let f be a real–valued

function defined on X × Y and F be a set–valued map from X to Y . The

function defined for any x ∈ X by:

v(x) = sup
y∈F (x)

f(x, y) (2.10)

is called optimal value function (or marginal function) and it will play an

important role in Chapter 4. Furthermore, the set–valued map B from X to
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Y defined for any x ∈ X by:

B(x) = Argmax
y∈F (x)

f(x, y), (2.11)

that is called optimal solutions set–valued map, is a very useful concept in an

economic setting. For example, in Game Theory it corresponds to the best

response of a player and the analysis of its properties is central in order to

prove the existence of an equilibrium of a game. In case in which B(x) is a

singleton, for any x ∈ X, we call it optimal solution function (or else optimal

reaction).

Remark 2.3.1 When F is compact–valued and f(x, ·) is upper semicontinu-

ous on Y , for any x ∈ X, we have B(x) 6= ∅ and v(x) = maxy∈F (x) f(x, y).

In the first part of this section let us summarize some properties about the

continuity of the optimal value function. The first result is the well–known

theorem due to Berge that gives also information on the optimal solutions

set–valued map.

Theorem 2.3.2 (Berge’s Theorem (see, for example, Border [9])). Let X

and Y be two subsets of R
n and R

m, respectively. Let F be a compact–

valued map from X to Y and f be a real–valued continuous function defined

on GraphF . If F is continuous at x̄ ∈ X then the optimal value function v

defined in (2.10) is continuous at x̄ and the optimal solutions set–valued map

B defined in (2.11) is nonempty compact–valued and upper semicontinuous

at x̄.

A generalized version of Berge’s Theorem that uses conditions of minimal

character in order to obtain the continuity of v is investigated in Lignola and

Morgan [45]. In the next propositions we we limit ourself to the case in which

the constraint of the optimization problem is constant, that is F (x) = Y for

any x ∈ X. Then, the optimal value function and the optimal solutions

set–valued map are defined for any x ∈ X by:

v̄(x) = sup
y∈Y

f(x, y), (2.12)
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and

B(x) = Argmax
y∈Y

f(x, y). (2.13)

Proposition 2.3.3 ([45] Proposition 3.1.1). Let X and Y be subsets of Rn

and R
m, respectively, and f be a real–valued function defined on X×Y . The

optimal value function v̄ defined in (2.12) is lower semicontinuous at x̄ ∈ X

if and only if for any y ∈ Y and for any sequence (xk)k converging to x̄ in

X there exists a sequence (yk)k such that:

lim inf
k→+∞

f(xk, yk) ≥ f(x̄, y).

Furthermore:

Proposition 2.3.4 ([45] Proposition 4.1.1). Let X and Y be subsets of Rn

and R
m, respectively, and f be a real–valued function defined on X × Y . If

Y is compact and f is upper semicontinuous at (x̄, y), for any y ∈ Y , then

the optimal value function v̄ defined in (2.12) is sequentially upper semicon-

tinuous at x̄.

Furthermore, for the optimal solutions set–valued map we have:

Proposition 2.3.5 (Loridan and Morgan [51] Proposition 4.1). Let X and

Y be subsets of R
n and R

m, respectively, and f be a real–valued function

defined on X × Y . If Y is compact and:

(i) f is upper semicontinuous on X × Y ,

(ii) for any (x, y) ∈ X × Y , for any sequence (xk)k converging to x ∈ X,

there exists a sequence (yk)k in Y such that:

lim inf
k→+∞

f(xk, yk) ≥ f(x, y)

then the optimal solutions set–valued map B defined in (2.13) is closed.

Now, let us recall some results on convexity and concavity of the opti-

mal value function. They are investigated in Kyparisis and Fiacco [40] and

Rockafellar [74], among others.
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Proposition 2.3.6 ([74, 40]). Let X and Y be convex subsets of Rn and R
m,

respectively. If f is real–valued concave function on X ×Y , then the optimal

value function v̄ defined in defined in (2.12) is concave on X.

Proof. It is a well known result. For the sake of completeness we recall the

proof. Let x1, x2 ∈ X such that v̄(xi) > −∞, for i = 1, 2, and λ ∈]0, 1[.

Then

v̄(λx1 + (1− λ)x2) ≥ f(λx1 + (1− λ)x2, y) for any y ∈ Y. (2.14)

Assume, preliminarily, that both v̄(x1) and v̄(x2) are finite.

By definition of supremum, for any ǫ > 0 there exists yi ∈ Y such that

f(xi, yi) > v̄(xi)− ǫ, (2.15)

for i = 1, 2. Then

λf(x1, y1) + (1− λ)f(x2, y2) > λv̄(x1) + (1− λ)v̄(x2)− ǫ.

Thus, let y = λy1 + (1− λ)y2 in (2.14). From the concavity of f we have:

v̄(λx1 + (1− λ)x2) > λv̄(x1) + (1− λ)v̄(x2)− ǫ.

Taking the limit when ǫ goes to 0 we have the thesis.

Assume, now that, for example, v̄(x1) is infinite and v̄(x2) is finite. Then,

also v̄(λx1 + (1 − λ)x2) will be infinite. Indeed, for any M > 0 there exists

y1 ∈ Y such that f(x1, y1) > M and for any ǫ > 0 there exists y2 ∈ Y such

that f(x2, y2) > v̄(x2)−
ǫ

1−λ
. Again, from the concavity of f we have:

v̄(λx1 + (1− λ)x2) > λM + (1− λ)v̄(x2)− ǫ.

Taking the limit for ǫ that goes to 0 and M that goes to +∞, we have

v̄(λx1 + (1− λ)x2) = +∞.

Analogously if both v̄(x1) and v̄(x2) are infinite. ⋄

Proposition 2.3.7 ([40] Proposition 3.5). Let X and Y be convex subset of

R
n and R

m, respectively. If f is a real–valued convex function on X, then

the optimal value function v̄ is convex on X.
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Proof. It follows from Proposition A.3.4 (viii) in the Appendix. ⋄

Let us conclude the section with some results on the quasiconcavity of the

optimal value function and on the quasiconvexity of the optimal solutions

set–valued map that will be used in the Bilevel Optimization problems in

Chapter 4.

Proposition 2.3.8 (Kyparisis and Fiacco [41] Proposition 2.9). Let X and

Y be convex subsets of R
n and R

m, respectively. Let f be a real–valued

function defined on Y and F be a set–valued map from X to Y . If f is upper

semicontinuous and quasiconcave on the set F (X) and F is compact–valued

and quasiconvex on X then the optimal value function v defined in (2.10) is

quasiconcave on X.

Proof. Let α ∈ R and consider the upper level set Λα = {x ∈ X : v(x) ≥ α}.

Let x1, x2 ∈ Λα and λ ∈]0, 1[. Then v(x1) ≥ α and v(x2) ≥ α, that is

maxy∈F (xi) f(y) ≥ α, for i = 1, 2, where we have applied the considerations

in Remark 2.3.1. So, there exists yi ∈ F (xi) such that f(xi) ≥ α, for i =

1, 2. Denoted by [y1, y2] the line segment between y1 and y2, we have that 1

x1, x2 ∈ F−1([y1, y2]). Therefore, from the quasiconvexity of F , we have that

xλ = λx1+(1−λ)x2 ∈ F−1([y1, y2]), that is there exists yλ ∈ [y1, y2] such that

yλ ∈ F (xλ). f is quasiconcave on Y , thus f(yλ) ≥ min{f(y1), f(y2)} ≥ α.

Then maxy∈F (xλ) f(y) ≥ α, that is v(xλ) ≥ α and xλ ∈ Λα. ⋄

In the following propositions, results on the optimal solutions set–valued

map are proved when the constraint of the optimization problem F is con-

stant, that is F (x) = Y for any x ∈ X.

Proposition 2.3.9. Let X and Y be convex subsets of R. Assume that

B, the optimal solutions set–valued map from X to Y defined in (2.13), is

nonempty single–valued. If B, considered as a function, is monotone then,

considered as a set–valued map, it is quasiconvex.

Proof. Suppose B(x) = {b(x)}, and assume, without loss of generality, that

b is a nondecreasing function. Let M be a convex subset of Y . Let x1, x2 ∈
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b−1(M), that is b(x1), b(x2) ∈ M . Let λ ∈]0, 1[ and suppose that x1 < x2.

Then λx1+(1−λ)x2 ∈]x1, x2[. So, we have b(λx1+(1−λ)x2) ∈ [b(x1), b(x2)],

that is b(λx1 + (1− λ)x2) ∈M , given the convexity of M . ⋄

Proposition 2.3.10. Let X and Y be convex subsets of R
n and R

m, re-

spectively, and let f be a real–valued function defined on X × Y . Let B be

the optimal solutions set–valued map defined in (2.13) and assume that B is

nonempty–valued. If f is concave on X × Y and f(·, y) is convex on X, for

any y ∈ Y , then B is a convex set–valued map on X.

Proof. Let y1 ∈ B(x1), y2 ∈ B(x2) and λ ∈]0, 1[. From the concavity of f

and from the definition of B(x) we have:

f(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≥ λf(x1, y1) + (1− λ)f(x2, y2)

≥ λf(x1, y) + (1− λ)f(x2, y) for any y ∈ Y.

That is, from the convexity of f(·, y) on X:

f(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≥ f(λx1 + (1− λ)x2, y) for any y ∈ Y ;

that is λy1 + (1 − λ)y2 ∈ B(λx1 + (1 − λ)x2) and B is a convex set–valued

map. ⋄

Next corollary follows directly from Proposition 2.3.10.

Corollary 2.3.11. Let X and Y be convex subsets of Rn and R
m, respec-

tively, and let f be a real–valued function defined on X × Y . If f is con-

cave on X × Y , f(·, y) is convex on X, for each y ∈ Y , and the problem

maxy∈Y f(x, y) has a unique solution b(x), for any x ∈ X, then the function

b is linear on X.

2.4 Stackelberg Games

In this section a brief review on Stackelberg games is presented. This kind

of game was introduced by von Stackelberg in [91], where a duopoly model

34



2.4 Stackelberg Games

was presented: two firms compete in quantities, the one who moves first (the

leader) chooses an action and the other (the follower) replies taking into

account the action of the leader that he observes.

Stackelberg games have been widely examined in literature from many

points of views, in particular in Simaan and Cruz Jr [83], Simaan and Cruz

Jr [84] and Basar and Olsder [4]. For basic introductions, in case of one–

leader one–follower games, see also, for example, Tirole [86], Fudenberg and

Tirole [26], Mas-Colell et al. [58]. In this following subsection, in line with the

scope of the thesis, we consider mainly the case of uniqueness of the optimal

reaction of the follower.

Moreover, although the games we investigate are multi–leader multi–

follower games, results concerning one–leader one–follower games will be

useful for our purpose, as we will see in Chapter 4.

2.4.1 One–leader one–follower

A Stackelberg game is an extensive game between two players: the leader L

and the follower F . Let us denote with X (respectively Y ) the action set

and with l : X × Y → R (resp. f : X × Y → R) the payoff function of L

(resp. F ). A strategy for the follower F is a complete contingent plan that

specifies an action in every possible distinguishable circumstance in which

the follower might be called upon to move. So, given the interaction scheme

explained before, a strategy for F is a function s from X to Y . Let S be the

set of the strategies of the follower, that is S = XY . A classic equilibrium

concept in Game Theory for extensive form games is the concept of subgame

perfect Nash equilibrium (introduced by Selten [78]):

Definition 2.4.1

A couple (x̄, s̄) ∈ X × S is a subgame perfect Nash equilibrium of the Stack-

elberg game presented above if it satisfies the following conditions:

(i) x̄ ∈ Argminx∈X l(x, s̄(x)), i.e. x̄ solves the problem minx∈X f(x, s̄(x));

(ii) s̄(x) ∈ Argminy∈Y f(x, y), for any x ∈ X.
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Basically, in order to find a subgame perfect Nash equilibrium, the fol-

lower determines an optimal choice for each situation he might face (that is

for each choice of the leader) and, then, the leader chooses an optimal action

working backward and taking into account the reaction of the follower. Let

us notice that in case there exists at least an action of the leader for which the

follower has more than one optimal reaction, the leader could be not able to

correctly anticipate what action the follower will play. Then, the predictive

power of the Stackelberg model may fall. We briefly discuss this case at the

end of this section.

Now assume in this section, unless otherwise specified, that the follower’s

reaction is single–valued, that is:

(I) for any x ∈ X, the problem miny∈Y f(x, y) has a unique solution.

Then, a Stackelberg problem, also called Bilevel Optimization problem

(see, for example, Morgan [62], Colson et al. [17]), can be formalized as

follows:

S



















find x̄ ∈ X that solves minx∈X l(x, s̄(x))

where, for any x ∈ X, s̄(x) is the solution of

P(x) : miny∈Y f(x, y).

(2.16)

The function s̄ is called the reaction function of the follower and the

action x̄ is called Stackelberg solution of S.

Existence of solutions and well-posedness of the Stackelberg problem de-

fined in (2.16) are investigated in [62], where well-posed means that a solu-

tion to the problem S exists, and is unique and any method which constructs

“minimizing sequence” (in some sense to define) automatically allows to ap-

proach a solution ([62, p.307]). Let us report a result that will be used in

Chapter 4.

Proposition 2.4.2 ([62] Corollary 5.1). Under the following assumptions:

(i) X and Y are two sequentially compact spaces;
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(ii) l and f are sequentially lower semicontinuous on X × Y ;

(iii) for any (x, y) ∈ X × Y , for any sequence (xn)n converging to x in X,

there exists a sequence (yn)n in Y such that lim supn→+∞ f(xn, yn) ≤

f(x, y);

there exists a Stackelberg solution to S.

In Loridan and Morgan [49, 50] a general approximation of the Stack-

elberg problem defined in (2.16) by a sequence of Stackelberg problems is

considered. Such a technique, as motivated in [49], is useful for various rea-

sons: on the one hand it offers some results about stability and continuous

dependence of the optimal solutions under perturbations on the data of the

problem; on the other hand it can be used to approximate the problem by

using a sequence of problems that can be easier to solve with respect to the

original problem and that converge to it in some sense. As the authors say,

the main purpose is to give a general framework, for a stability analysis of

Stackelberg problems under data perturbations, using appropriate notions

of convergence (see [50]). They also assume that the follower’s optimization

problem (lower level) has a unique solution.

Starting from the problem defined in (2.16), they consider the following

sequence of Stackelberg problems Sn, for n ∈ N:

Sn



















find x̄n ∈ X that solves minx∈X ln(x, s̄n(x))

where, for any x ∈ X, s̄n(x) is the (unique) solution of

Pn(x) : miny∈Y fn(x, y),

(2.17)

where ln and fn are extended real–valued functions defined on X × Y , for

every n ∈ N.

The main results, that will be useful in the next chapters, are summarized

in the next two propositions.

Proposition 2.4.3 ([50] Proposition 3.1). If the two conditions hold:

(i) X and Y are two sequentially compact spaces;
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(ii) for any (x, y) ∈ X×Y , for any sequence ((xn, yn))n converging to (x, y)

in X × Y , we have lim infn→+∞ fn(xn, yn) ≥ f(x, y);

(iii) for any (x, y) ∈ X × Y , for any sequence (xn)n converging to x in X,

there exists a sequence (yn)n in Y such that lim supn→+∞ fn(xn, yn) ≤

f(x, y);

then, for any sequence (xn)n converging to x in X, we have

lim
n→+∞

s̄n(xn) = s̄(x) and lim
n→+∞

fn(xn, s̄n(xn)) = f(x, s̄(x)).

Furthermore, denoted the set {x̄n ∈ X : ln(x̄n, s̄n(x̄n)) = infx∈X ln(x, s̄n(x))}

with Nn and the set {x̄ ∈ X : l(x̄, s̄(x̄)) = infx∈X l(x, s̄(x))} with N , they

prove the following proposition:

Proposition 2.4.4 ([50] Proposition 3.2). Under the assumptions in Propo-

sition 2.4.3 and the following:

(i) for any (x, y) ∈ X×Y , for any sequence ((xn, yn))n converging to (x, y)

in X × Y , we have lim infn→+∞ ln(xn, yn) ≥ l(x, y);

(ii) for any x ∈ X, there exists a sequence (xn)n converging to x in X, such

that, for any y ∈ Y and for any sequence (yn)n converging to y ∈ Y ,

we have lim supn→+∞ ln(xn, yn) ≤ l(x, y);

then lim supNn ⊆ N .

The last result means that each cluster point of a sequence of solutions

to the approximate problems is a solution to problem S.

Let us emphasize that assumptions (ii) and (iii) in Proposition 2.4.3 and

assumptions (i) and (ii) in Proposition 2.4.4 are weaker than continuous

convergence of fn and ln to f and l, respectively, as illustrated in Remark 2.2

in [50].

Other interesting issues about a Stackelberg game concern the descrip-

tion of necessary and sufficient conditions for optimality and algorithms that

solve Bilevel Optimization problems. See, for example, Shimizu and Ishizuka

[81], Vicente and Calamai [88], Luo et al. [54], Dempe [19], Colson et al. [17]
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where bibliographic reviews can be found.

In case of nonuniqueness of the follower’s problem there could be differ-

ent ways to define a “rational” response of the follower. So, different models

can be defined, depending on the way the leader “approaches” the follower’s

problem. In the pessimistic approach the leader is assumed to provide himself

against the possible worst choice of the follower. This approach leads to the

definition of the so–called weak Stackelberg problem also called pessimistic

Bilevel Optimization problem (Leitmann [43], Breton et al. [12], Morgan [62],

Lignola and Morgan [48], Dempe et al. [20],. . . ).

In the optimistic approach the leader is assumed to be able to force the fol-

lower to choose the best strategy for himself. In this case we obtain the

so–called strong Stackelberg problem (Leitmann [43], Breton et al. [12],. . . )

also called optimistic Bilevel Optimization problem, but other models can

be defined such as the so–called intermediate Stackelberg problems (Mallozzi

and Morgan [55], Lignola and Morgan [48],. . . ). Let us emphasize that the

predicted choice for the leader can be different for each different approach,

as illustrated in Morgan and Patrone [63]. Existence of a solution to a weak

Stackelberg problem and continuous dependence on the data could be not

guaranteed, even under very mild assumptions. Strong Stackelberg problem

is easier for what concerns the existence of solutions but it does not display

continuous dependence on the data of the problem. Using approximate so-

lutions to the follower’s problem help to overcome this drawback, even for

more than one follower, as it can be also found in Loridan and Morgan [51,

52], Lignola and Morgan [47, 46], Morgan and Raucci [64, 66, 65], Mallozzi

and Morgan [56].

In Chapter 4 we mainly limit ourself to the case of single–valued followers’

reactions.

2.4.2 M–leaders N–followers

Now, we briefly present some papers on multi–leader multi–follower games.
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Denote with Li, for i = 1, . . . ,M , the leaders and with Fi, for i = 1 . . . , N ,

the followers. Let us denote with Xi the action set of leader Li, for i =

1, . . . ,M , and with Yi the action set of follower Fi, for i = 1, . . . , N . Let

X =
∏M

i=1Xi and Y =
∏N

i=1 Yi and denote with li : X × Y → R the payoff

function of Li, for i = 1, . . . ,M , and with fi : X×Y → R the payoff function

of Fi, for i = 1, . . . , N . A strategy for follower Fi is a function si : X → Yi.

Let Si be the set of the strategies of Fi and let S =
∏N

i=1 Si.

A subgame begins after the choice of any action profile x = (x1 . . . , xM) ∈ X

of the leaders and in any subgame only the followers are involved and play

simultaneously. Let N be the set–valued map from X to Y such that N (x) is

the set of Nash equilibria of the subgame that begins after the action profile

x = (x1, . . . , xM) of the leaders.

Definition 2.4.5

A strategy profile (x̄, s̄) = (x̄1, . . . , x̄M , s̄1, . . . , s̄N) ∈ X × S is a subgame

perfect Nash equilibrium of the multi–leader multi–follower game if it satisfies

the following conditions:

(i) x̄ is a Nash equilibrium of the game Γs̄ = {(Li)
M
i=1; (Xi)

M
i=1; (l

s̄
i )

M
i=1};

(ii) s̄(x) ∈ N (x), for any x ∈ X;

where ls̄i is the function defined by ls̄i (x1, . . . , xM) = li(x1, . . . , xM , s̄1, . . . , s̄N),

for any x ∈ X.

As in the case of one follower, the predictive power of the Stackelberg

model may fall if N is not single–valued.

Let us first consider a Stackelberg game in which one leader compete

with N followers. In this simplified model, the leader solves an Optimization

problem.

In oligopolistic models, when the payoff functions of the players corre-

spond to the profits (note that in Definition 2.4.5 we deal with a maximization

problem), a leader can correctly anticipate the reaction of the followers even if

the aggregate reaction R of the followers is single–valued, where R is defined
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for any action x of the leader by R(x) = {
∑N

i=1 ȳi : (ȳ1, . . . , ȳN) ∈ N (x)}.

In Sherali et al. [80] a model of quantity competition between firms is

investigated: first, the leader announces his output and then the followers,

simultaneously, announce their respective production levels. The existence

and the uniqueness of the subgame perfect Nash equilibrium when the aggre-

gate reaction R is single–valued is proved together with sufficient conditions

on the data in order to obtain such property. Moreover, they investigate the

properties of the aggregate reaction of the Cournot firms and they find an

algorithm to determine such a solution.

An oligopolistic problem where the inverse demand function can be set–

valued is presented in Flåm et al. [25]. A way to face this problem is to take

as market price for every quantity the maximum price compatible with that

quantity. An existence result is given, under appropriate hypotheses on the

inverse demand function.

In Morgan and Raucci [64, 65, 66] existence theorems and convergence

results for games with one leader and two followers are proved, under suffi-

cient conditions of minimal character.

Multi–leader multi–follower games have not been widely investigated in

the literature, maybe for the difficulties that may arise, although they have

many real–world applications (see for example Pang and Fukushima [71]).

A first example of a multi–leader multi–follower game in an oligopolistic

context can be found in Sherali [79], where an extension of the model in [80]

is presented when a few leader–firms supply a homogeneous good noncoop-

eratively. In the paper it is assumed that the actions taken by the leaders are

observable in the lower level by any follower. The authors prove the existence

of an equilibrium, assuming that the aggregate reaction of the followers is

single–valued and, considered as a function, is convex.

In [71] a 2–leader multi–follower noncooperative game is investigated and

it is assumed that the actions taken by the leaders are observable by any

follower. The set–valued map N defined above is not assumed to be single–
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valued and the authors use an optimistic approach:

Definition 2.4.6 ([71])

A strategy profile (x∗1, x
∗
2) ∈ X is said to be a L/F Nash equilibrium if

there exist two action profiles of the followers y∗,1, y∗,2 ∈ N (x∗1, x
∗
2) such that

(x∗1, y
∗,1) is an optimal solution of leader L1’s problem and (x∗2, y

∗,2) is an

optimal solution of leader L2’s problem, being the problem of leader Li, for

i = 1, 2, defined by:

min li(xi, x
∗
3−i, y

i)

subject to x1 ∈ Xi

and yi ∈ N (xi, x
∗
3−i).

Then, when N is not single–valued, in the above definition any leader

can have different anticipations of the reaction of the followers. The main

problem is the lack of convexity of the set N (x1, x2). For this reason they

introduce a new class of models, the so–called remedial models, that are

noncooperative multi–leader multi–follower games with convexified strategy

sets. For that convexified multi–leader multi–follower game they show an ex-

istence result. The drawback is that there is not a unique way to convexify.

A remedial model is associated to any different convexification: “The reme-

dial models are not all desirable; while they always have equilibria, a careful

choice of a remedial model leads to a sensible equilibrium solution, whereas

a not-so-careful choice could lead to an equilibrium solution where the lead-

ers have entirely different expectations on the follower’s behavior”. Finally,

applications in oligopolistic competition on the electricity power markets are

considered.

In Kulkarni and Shanbhag [38] there is another recent example of multi–

leader multi–follower interaction, that is formulated similarly to [71]. The

authors also assume that the actions taken by the leaders are observable in

the second stage by any follower. They propose two different approaches

to overcome the problem of the lack of convexity of the lower level prob-
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lem. In the first they introduce a new class of multi–leader multi–follower

games in which the leaders’ payoff functions exhibit a particular structure,

the so–called quasipotential games. The other approach is based on a mod-

ified formulation of the multi–leader multi–follower game in which in the

original problem they add a particular shared constraint. They show that

if the payoff function of any leader admits a potential function, then there

exists an equilibrium of the original game. Then, in both the approaches

they relate the equilibrium of the game to the solution of an appropriate

optimization problem.

When the action of a leader is not observed by all the followers, the

situation is completely different. As we will see in Chapter 4, a problem that

may arise is the multiplicity of Nash equilibria. Unfortunately, the concept of

subgame perfect equilibrium coincides with the concept of Nash equilibrium

since there are no proper subgames. Then, a selection criterion that can be

used is the so–called perfect Bayesian equilibrium(see [26]), that prescribes

beliefs on the information sets of the followers. Unfortunately, such a game

may also have multiple perfect Bayesian equilibria. So, in the literature

particular restrictions on beliefs are considered.

The example of multi–leader multi–follower interaction in multilateral

vertical contracting given in Pagnozzi and Piccolo [70] will provide a moti-

vating example for the analysis in Chapter 4. It will be discussed in more

details in Section 4.1.

Finally, in the very recent working paper Eguia et al. [24] is addressed

the question of the existence of a selection criterion for a multi–leader multi–

follower game in which players in the second stage are imperfectly informed

on the actions played in the first stage. The authors define a new selection

criterion that is tested by experiments in game with multilateral vertical

contracting and in game of electoral competition. The selection used in [24]

is based on the idea that the equilibrium action profile most likely to emerge

is the action profile that can be supported in equilibrium by a larger set
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of different equilibrium beliefs. The criterion, however, does not select the

specific beliefs that accompany these strategy profiles in equilibrium. This

approach differs from the one in Chapter 4 in which we consider, as said, a

perfect Bayesian equilibrium with particular type of beliefs.
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Chapter 3

Some new results in Generalized

Convexity Analysis and in

Parametric Optimization

In this chapter we introduce new results that will be used in Chapter 4 in

order to prove existence theorems for a multi–leader multi–follower game

with vertical separation under passive beliefs. As we will see, one of the

main problems for the existence of this kind of equilibrium is related to the

quasiconcavity of some composite functions. From Proposition 2.1.24, we

know that if we compose a quasiconcave function with m concave functions

we will obtain a quasiconcave function. One of these m functions in the

problem in Chapter 4 is the optimal solution function defined in 2.13. So,

in the first section we give a new concavity result on the optimal solution

function of a parametric optimization problem.

Another interesting problem concerns the isotonicity of the optimal solution

function. This problem is widely studied in the literature and it is related to

the concept of supermodularity of the functions involved in the optimization

problem. For a detailed discussion a reader can be referred, for example,

to Milgrom and Shannon [61], Topkis [87]. The property of isotonicity is

also central in the theory of supermodular games (see, for example, Bulow
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et al. [13], Milgrom and Roberts [60], Vives [89]), where the best responses

exhibit strategic complementarity, i.e. increasing best responses. For these

classes of games existence results are proved using the Tarski Fixed Point

Theorem (Tarski et al. [85]), in a lattice–theoretic context. A new result

that guarantees the isotonicity of the optimal solution function when the

strategy space is a real interval is given in the first section.

Both the announced results are used in Ceparano and Quartieri [16] to prove

uniqueness of Nash equilibrium.

In Section 3.2 we present two generalizations of Cellina Fixed Point Theorem

which will be used in Chapter 4 in order to prove existence of equilibria

under passive beliefs of particular classes of two–stage games with vertical

separation.

3.1 Concavity and isotonicity of the optimal so-

lution function

In this section, following [16], we present new results on concavity and iso-

tonicity of the optimal solutions function.

Let X and Y be nonempty convex subsets of Rn and R, respectively, and

let f be a real–valued function defined on X × Y . We denote with Df the

function from X × int(Y ) to R defined by

Df (x, y) = D−f(x, ·)(y), (3.1)

where, for any x ∈ X, D−f(x, ·) is the left–hand lower Dini derivative of the

function f(x, ·), defined in (2.3).

Theorem 3.1.1. Let X be a nonempty convex subset of R
n and let Y be

a proper compact real interval. Let f be a real–valued function defined on

X×Y . Assume that the function f(x, ·) is upper semicontinuous and strictly

D–pseudoconcave on Y , for any x ∈ X. Let Df be as in (3.1) and b be the op-

timal solutions function from X to Y defined by {b(x)} = Argmaxy∈Y f(x, y),
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3.1 Concavity and isotonicity of the optimal solution function

for any x ∈ X. Assume that Df is quasiconcave on X × Y . Then, the set

X = {x ∈ X : b(x) > minY } is convex and the function b is concave on X.

Proof. Let us first observe that, from proposition A.2.5 and 2.1.22, f attains

its maximum at a unique point, for any x ∈ X, then b is a function on X.

Suppose that there are t, z ∈ X with t 6= z. Let

ξ = b(t); ζ = b(z).

Then min {ξ, ζ} > minY .

Let λ ∈]0, 1[ and put x = λt+ (1− λ)z. We have to prove that

minY < υ = λξ + (1− λ)ζ ≤ b(x) = υ. (3.2)

If min {ξ, ζ} < maxY , suppose, to the contrary, that

υ < υ.

First of all we have minY ≤ υ < υ < maxY .

From the strict D–pseudoconcavity of f and from the fact that f(x, ·) is

maximized at υ, we have that

D−f(x, ·)(υ) < 0. (3.3)

Furthermore, f(t, ·) is maximized at ξ, that is f(t, ξ) ≥ f(t, y), for any y ∈ Y .

So, for any y < ξ we have that

f(t, y)− f(t, ξ)

y − ξ
≥ 0,

that is

D−f(t, ·)(ξ) ≥ 0; and, analogously D−f(z, ·)(ζ) ≥ 0. (3.4)

Then, from (3.1), we have min{Df (ξ, t),Df (ζ, z)} ≥ 0. Therefore, (ξ, t)

and (ζ, z) belong to the upper level set at height 0 of the quasiconcave func-

tion Df and then also Df (ῡ, x) ≥ 0, that is D−f(x, ·)(ῡ) ≥ 0 in contradiction

with (3.3).
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If min {ξ, ζ} = maxY , that is ξ = ζ = υ = maxY , from the definition of

maximum point and from the strict D–pseudoconcavity of f , we have

D+f(t, ·)(y) > 0, D+f(z, ·)(y) > 0 for all y ∈ int(Y ).

By Lemma 2.1.18 we have that f(t, ·) and f(z, ·) are increasing on int(Y );

then:

D−f(t, ·)(y) ≥ 0; D−f(z, ·)(y) ≥ 0 for all y ∈ int(Y ).

Consequently, by the quasiconcavity of Df on X× int(Y ), we must have that

D−f(x, ·)(y) ≥ 0 for all y ∈ int(Y ). (3.5)

Therefore υ = maxY = υ = b(x) by the strict D–pseudoconcavity of f(x, ·).

Indeed, if υ < maxY from (3.5) we can find some y > υ such that we have

f(x, y) ≤ f(x, υ) and D−f(x, ·)(y) ≥ 0 that is in contradiction with the

definition of a strictly D–pseudoconcave function. ⋄

Corollary 3.1.2. In addition to the assumptions in Theorem 3.1.1, let y =

minY and D+f(x, ·)(y) > 0, for all x ∈ X. Then b is concave on X.

Proof. Let x ∈ X. Directly from the definition, if D+f(x, ·)(y) > 0 there

exists some y > y such that

f(y)− f(y)

y − y
> 0,

which implies that f(y) > f(y). So f cannot attain its maximum in y. ⋄

Now, we will present a result on the isotonicity of the solution of a para-

metric optimization problem. Let us recall the following definition.

Definition 3.1.3 (Gratzer [30])

A real–valued function g defined on a set X ⊆ R
n is called isotone (or

order–preserving) if x ≤X y implies f(x) ≤ f(y), for any x, y ∈ X, where

≤X is the usual partial order relation on X (that is if x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ X, then x ≤ y if xi ≤ yi, for all i = 1, . . . , n).
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3.2 Fixed point theorems

Proposition 3.1.4. Let X be a nonempty subset of Rn and Y be a proper real

interval closed on the left. Let f be a real–valued function defined on X × Y

such that f(x, ·) is upper semicontinuous and strictly D–pseudoconcave on

Y , for every x ∈ X. Defined Df as in (3.1), let Df (·, y) be isotone on X, for

all y ∈ Y . Then, the optimal solutions function b is isotone.

Proof. Take any t and z in X such that t 6= z and ti ≤ zi for all i = 1, . . . ,m.

If b(t) = minY then

b(t) ≤ b(z).

Henceforth suppose b(t) > minY . By the strict D–pseudoconcavity of f in

its second argument (and by the definition of b) we have that

D+f(t, ·)(y) > 0 for all y ∈ [minY, b(t)[,

and consequently, by Lemma 2.1.18, f(t, ·) is increasing on ] minY, b(t)[, that

is:

D−f(t, ·)(y) ≥ 0 for all y ∈]0, b(t)[.

Hence, from the isotonicity of Df (·, y), we have:

D−f(z, ·)(y) ≥ 0 for all y ∈]0, b(t)[. (3.6)

Therefore, (3.6) and the strict D–pseudoconcavity of f in its second argument

imply that

b(t) ≤ b(z).

Indeed, if b(z) < b(t), from (3.6), it follows that D−f(z, ·)(y) ≥ 0 for some

y ∈]b(z), b(t)[ in contradiction with the strict D–pseudoconcavity of f(z, ·)

on int(Y ).

Therefore, b is an isotone function. ⋄

3.2 Fixed point theorems

Let us conclude this chapter proving two fixed point theorems that are a

generalization of the following fixed point theorem.
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Theorem 3.2.1 ([9] Cellina Fixed Point Theorem). Let X be a nonempty

compact convex subset of Rn and Y be a compact convex subset of Rm. Let N

be a set–valued map from X to X and G be a closed set–valued map defined

from X to Y with nonempty compact convex values. Let f be a continuous

function defined on X × Y to X such that for any x ∈ X

N(x) = {f(x, y) : y ∈ G(x)}.

Then, N has a fixed point on X, i.e. there exists x∗ ∈ X satisfying x∗ ∈

N(x∗).

Now, let X ⊆ R
n and Y ⊆ R

m, let G be a set–valued map from X to Y

and F be a set–valued map from X × Y to X. A natural extension of the

Cellina Fixed Point Theorem is to determine when the set–valued map M

from X to X defined by M(x) = ∪y∈G(x)F (x, y) = {x ∈ F (x, y) : y ∈ G(x)}

has a fixed point on X.

Two results have been obtained. The first uses the Michael selection

Theorem (Proposition 2.2.11) but it requires the lower semicontinuity of the

set–valued map F . The second is based on the Von Neumann’s Approxima-

tion Lemma and requires the upper semicontinuity of F .

Theorem 3.2.2. Let X be a nonempty compact convex subset of Rn and Y

be a compact convex subset of Rm. let M be a set–valued map from X to X,

G be a closed set–valued map from X to Y with nonempty compact convex

values and F be a lower semicontinuous set–valued map from X × Y to X

with nonempty closed convex values. Then, the set–valued map on X defined

by:

M(x) = ∪y∈G(x)F (x, y) (3.7)

has a fixed point on X, i.e. there exists x∗ ∈ X satisfying x∗ ∈M(x∗).

Proof. It is a consequence of Theorem 3.2.1 and of the Michael Selection

Theorem (Proposition 2.2.11).

Indeed, if F is lower semicontinuous, there exists a continuous function

f : X×Y → X such that f(x, y) ∈ F (x, y), for any (x, y) ∈ X×Y . Consider
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3.2 Fixed point theorems

the set–valued mapM ′(x) = {f(x, y) : y ∈ G(x)}. From Theorem 3.2.1, there

exists a point x∗ ∈ X such that x∗ ∈M ′(x∗), that is x∗ = f(x∗, y) ⊆ F (x∗, y),

for some y ∈ G(x); that is x∗ is a fixed point of M on X. ⋄

A problem with the above theorem arises if one wants to prove existence of

a selection (of Nash equilibria) for a two–stage game under vertical separation

via Theorem 3.2.2. Indeed, an equilibrium of such a game can be stated as

a fixed point of a set–valued map defined as M in (3.7) where F will be the

optimal solutions set–valued map of the lower level problem. In this case,

requiring the lower semicontinuity of F may be a too strong assumption

(see, for example, Loridan and Morgan [53]). Next theorem gives sufficient

conditions easier to verify.

Theorem 3.2.3. Let X be a nonempty compact convex subset of Rn and Y

be a compact convex subset of Rm. Let M be a set–valued map from X to X,

G be a closed set–valued map from X to Y with nonempty compact convex

values and F be a closed set–valued map from X × Y to X with nonempty

convex compact values. Then the set–valued map defined on X by:

M(x) = ∪y∈G(x)F (x, y)

has a fixed point on X, i.e. there exists x∗ ∈ X satisfying x∗ ∈M(x∗).

Proof. From Proposition 2.2.8(i) we have that F is an upper semicontinu-

ous set–valued map. So, from the von Neumann’s Approximation Lemma

(Proposition 2.2.12) for any ǫ > 0 there exists a continuous function fǫ such

that

Graph fǫ ⊆ Uǫ(GraphF ). (3.8)

Consider the set–valued function Mǫ : X ⇒ X defined by:

Mǫ(x) = {fǫ(x, y) : y ∈ G(x)},

for any x ∈ X. From Theorem 3.2.1 Mǫ has a fixed point, for any ǫ > 0.

Consider the sequence (ǫk)k =
(

1
k

)

k
and let x̄k ∈ Mǫk(x̄k), for any k ∈ N.
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Then, there exists ȳk ∈ G(x̄k) such that x̄k = fǫk(x̄k, ȳk) or, equivalently,

(x̄k, ȳk, x̄k) ∈ Graph fǫk , for any k ∈ N. From the compactness of X and

Y , there exists a subsequence (x̄k, ȳk)k∈K1
, with K1 ⊆ N countably infinite,

that converges to (x∗, y∗) in X × Y . So, from the closedness of G, we have

y∗ ∈ G(x∗). We claim that x∗ ∈ F (x∗, y∗).

In fact, from (3.8), for any k ∈ K1 there exists a point (xk, yk, zk) ∈ GraphF

such that d((x̄k, ȳk, x̄k), (xk, yk, zk)) <
1
k
.

Moreover, GraphF ⊆ X × Y ×X is a closed subset of a compact set, that

is GraphF is compact. Hence, there exists a subsequence (xk, yk, zk)k∈K2
,

with K2 ⊆ K1 countably infinite, and a point (x̃, ỹ, z̃) ∈ GraphF such that

(xk, yk, zk) converges to (x̃, ỹ, z̃). Using the triangular inequality, for any

k ∈ K2 we have:

d((x̄k, ȳk, x̄k), (x̃, ỹ, z̃)) < d((x̄k, ȳk, x̄k), (xk, yk, zk))

+ d((xk, yk, zk), (x̃, ỹ, z̃))

<
1

k
+ d((xk, yk, zk), (x̃, ỹ, z̃)).

Taking the limit, we have d((x∗, y∗, x∗), (x̃, ỹ, z̃)) = 0, being the distance

continuous, that is x∗ = x̃ = z̃ and y∗ = ỹ. Thus (x∗, y∗, x∗) ∈ GraphF , so

x∗ ∈M(x∗) and x∗ is a fixed point of M on X.

⋄
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Chapter 4

Selection of equilibria for

two-stage possibly discontinuous

games with vertical separation:

existence results

In this chapter we prove some existence results for a selection of Nash equilib-

ria of a two–stage game with vertical separation. This particular interaction

scheme is inspired by an economic problem, developed by Pagnozzi and Pic-

colo [70], in which two competing manufacturers delegate retail decisions to

independent retailers (such a situation is called vertical separation) and each

producer has to decide a wholesale price (the contract) that their exclusive

retailers have to pay assuming that each retailer sells the good produced by

only one manufacturer. The case in which the contract is private (that is each

retailer observes only the wholesale price chosen by his manufacturer) brings

to an extensive form game without proper subgames. Then, the concept of

subgame perfect equilibrium, that is usually used for two–stage games, do

not allow to select among Nash equilibria (that can be infinitely many). So,

Pagnozzi and Piccolo consider solution concepts depending on conjectures

(or beliefs) that each retailer has about the contract offered to the other re-
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tailer. Starting from this problem, we analyze in a more general context this

kind of interaction that, by analogy, we will call vertical separation.

First, in Section 4.1 we consider an example of oligopoly with vertical

separation and private contract and we show that the associate normal form

game has an infinite number of Nash equilibria. This motivates the intro-

duction of selections of Nash equilibria based on the beliefs that each retailer

has about the contract offered to the other retailer. We consider the case

of passive beliefs (or market–by–market conjectures) assumed also, for ex-

ample, in Crémer and Riordan [18], Hart et al. [31], McAfee and Schwartz

[59], Laffont and Martimort [42], Gavazza and Lizzeri [27], Bar-Isaac et al.

[3], Pagnozzi and Piccolo [70] and we show that in the example it brings to

the selection of a unique Nash equilibrium. Then, in Section 4.2 we give

the formal definitions of a two–stage game with vertical separation in a gen-

eral context and in Section 4.3 we examine the existence of Nash Equilibria

of this game. In Section 4.4, when the optimal reactions of the followers

are single–valued, we present a solution concept for a general multi–leader

multi–follower game with vertical separation based on passive beliefs which

corresponds to a selection in the set of Nash equilibria. For this solution

concept we prove existence results using conditions of minimal character for

possibly discontinuous functions. A first existence result is given when the

optimal reaction of any follower is a linear function. Conditions on data are

given in order to obtain the linearity of the optimal reactions of the followers.

With the aim of obtaining existence of equilibria without the condition of

linearity, In Section 4.5 we prove existence results for particular classes of

two–stage games with vertical separation, via characterizations of the con-

cept of equilibrium under passive beliefs. More in detail, when the optimal

reaction of the leader is single–valued we prove an existence result without

concavity assumptions.

Another particular class of problem is the one in which the action sets of the

followers are subsets of R. In this case we prove an existence result using

the concavity of the optimal reactions of the followers. Sufficient conditions
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for the concavity of the optimal reactions are given as application of Theo-

rem 3.1.1. Furthermore, if also the action sets of the leaders are subsets of R

and the payoff of the leaders do not depend directly from their actions, we

prove an existence result using the isotonicity of the the optimal reactions of

the followers.

Finally, we consider the case in which the optimal reactions of the followers

are not single–valued and the payoff of any leader depends on the action of

the corresponding follower only through the optimal value function.

4.1 Vertical Separation in competitive markets

with private contracts: an illustrative ex-

ample

First, as in Pagnozzi and Piccolo [70], we consider a delegation problem, in

which two competing manufacturers (the leaders), producers of substitute

goods, choose vertical separation as their organizational structure, that is

the producers delegate the sale of the good they produce through an exclu-

sive retailer. The manufacturers offer a contract to the retailers that decide

in a competitive setting the retail price after observing the contract. The

contract is private so each retailer observes only the contract offered by his

corresponding manufacturer. The situation is modeled as a two–stage game

in the following way:

Stage 1 any manufacturerMi offers a contract ai that specifies the condition

of the delegation to retailer Ri,

Stage 2 all Ri choose, simultaneously, the downstream market price bi.

A strategy for Mi, i = 1, 2, specifies the contract ai that is offered to retailer

Ri. A strategy for Ri corresponds to a downstream market price for every

contract the retailer can observe, that is a function from the space of the

contracts to the set of possible prices. A solution concept considered in [70]
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is based on the fact that, under private contract, the market price chosen by a

retailer depends on his beliefs about the contract offered to the rival retailer.

The authors combine a backward induction framework and the compatibility

with these beliefs in a way that is illustrated forward. In particular, they

considered a kind of beliefs — called passive beliefs — that is plausible in

the context of two competing vertical separate structures.

Passive beliefs, also known as market–by–market conjecture(Hart et al. [31]),

means that if a retailer observes a contract different from the one he expects

in equilibrium then he believes that the rival retailer still observes the cor-

responding equilibrium contract; so, under passive beliefs, each retailer does

not revise his beliefs about the contract offered to the rival retailer, even if

his corresponding manufacturer is deviating. In other words, if a∗i and a∗j are

the equilibrium strategies for Mi and Mj, where i, j = 1, 2 and j 6= i, and

if Ri observes a contract different from a∗i , then Ri believes that Mj is still

offering the contract a∗j . So, under passive beliefs, a manufacturer’s strategy

does not influence the strategy of the rival retailer nor his conjecture about

these strategies. In order to better illustrate the interest of the model pre-

sented in [70], we formalize now a simplified version.

Suppose that, for i = 1, 2, all manufacturers Mi offer a contract that is the

wholesale price (for unit of good) ai to the corresponding retailer Ri. Let

bi the retail price chosen by retailer Ri. Denoted with Ai (resp. Bi) the

set of the wholesale price (resp. retailer price), we assume Ai = R
+ (resp.

Bi = R
+). For i, j = 1, 2 and i 6= j, denote with Di(bi, bj) the market de-

mand function for the good produced by Mi if the retail price is bi and the

other retailer chooses a price bj. Let the profit functions be given by the

functions:

li(ai, bi, bj) = Di(bi, bj)ai,

fi(ai, bi, bj) = Di(bi, bj)(bi − ai).

In order to determine the set of Nash equilibria of the corresponding two–

stage game consider the associate normal form game. Since each leader has

only one information set, each leader’s strategy set is the set Ai. For i = 1, 2,
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the strategy set of the follower Ri is the space Si = ABi

i of functions βi from

Ai to Bi (βi : Ai → Bi). Therefore, the strategy profile (a∗1, a
∗
2, β

∗
1 , β

∗
2) is a

Nash Equilibrium (Nash et al. [67]) of the two–stage game previously defined

if, for i = 1, 2 and j 6= i:

a∗i ∈ Argmax
ai∈Ai

li(ai, β
∗
i (ai), β

∗
j (a

∗
j)) (4.1a)

β∗
i ∈ Argmax

βi∈Si

fi(a
∗
i , βi(a

∗
i ), β

∗
j (a

∗
j)). (4.1b)

Equation (4.1b) can be simplified observing that the only dependence of

the maximizing function from the variable βi is through the value that βi

assumes in a∗i . Denoting

b∗i = β∗
i (a

∗
i ), for i = 1, 2,

the system in (4.1) is satisfied if:

a∗i ∈ Argmax
ai∈Ai

li(ai, β
∗
i (ai), b

∗
j) (4.2a)

β∗
i s.t. b∗i ∈ Argmax

bi∈Bi

fi(a
∗
i , bi, b

∗
j). (4.2b)

Consider the special case in which the demand function is linear in both

retail prices (See, for example, Vives [90]) and in particular

Di(bi, bj) = 1− 2bi + bj. (4.3)

Imposing the first order necessary and sufficient conditions (fi(a
∗
i , ·, b

∗
j)

is concave on R
+) for the follower Ri, we obtain that b∗i has to satisfy the

following variational inequality:

(1 + 2a∗i + b∗i − 4b∗i )(bi − b∗i ) ≤ 0, for any bi ≥ 0. (4.4)

But, b∗i cannot be zero. Indeed, we should have 1 + 2a∗i + b∗j ≤ 0 in contra-

diction with the fact that Ai = Bj = R
+. So b∗i > 0. Then, (4.4) is satisfied

for any bi ≥ 0 if and only if 1 + 2a∗i + b∗j − 4b∗i = 0, that is b∗i =
1
4
+

a∗i
2
+

b∗j
4
.

Therefore, b∗i is given by:

b∗i =
1

3
+

8

15
a∗i +

2

15
a∗j . (4.5)
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• For example, one can verify that the strategy profile given by

š =

(

2

5
,
2

5
, β̌1, β̌2

)

s.t. β̌i(ai) =







3
5

if ai =
2
5
,

ν otherwise,
(4.6)

is a Nash equilibrium of the game when ν > 18
25

. Note that β̌i is discon-

tinuous on Ai, i = 1, 2.

In fact:

- the strategies β̌i of Ri, i = 1, 2, satisfy condition (4.5) for a∗i = a∗j = 2

5
, j 6= i;

- the strategy of Mi, i = 1, 2, satisfies (4.2a), being the payoff of Mi when the

other players play in accordance with š:

ľi(ai) =







4

25
if ai =

2

5
,

(

8

5
− 2ν

)

ai otherwise.

So, a∗i = 2

5
is the unique solution of the problem in (4.2a) if and only if

8

5
− 2ν < 4

25
, that is ν > 18

25
.

• Another Nash equilibria, such that the strategies of all the retailers

are continuous functions in the relative manufacturer strategy, is the

strategy profile:

(

2

5
,
2

5
, β̃1, β̃2

)

, s.t. β̃i(ai) =
2

5
+
ai
2

(4.7)

- β̃i solves (4.5) when a∗i = a∗j = 2

5
, i, j = 1, 2 and j 6= i.

- (4.2a). We have:

l̄i(ai) = li(ai, β̃i(ai), β̃j(
2

5
)) =

4

5
ai − a2i

that assumes its maximum value for ai =
2

5
.

As this simple example shows, it is possible that we have an infinity of

equilibria. We cannot refine using the concept of subgame perfect equilibrium

because the two–stage game has no proper subgames. So, we consider a

selection criterion that use the concept of passive beliefs that is a particular

type of perfect Bayesian equilibrium, as we will see in the next section.
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As emphasized in McAfee and Schwartz [59], the concept of passive beliefs

is invoked implicitly or explicitly by many authors (see, for example, Crémer

and Riordan [18], Hart et al. [31], O’Brien and Shaffer [68], McAfee and

Schwartz [59], Laffont and Martimort [42], Gavazza and Lizzeri [27], Bar-

Isaac et al. [3]).

Definition 4.1.1

A strategy profile (a∗1, a
∗
2, β

∗
1 , β

∗
2) is an equilibrium with passive beliefs of the

two–stage game previously defined if

(i) for i, j = 1, 2 and j 6= i, the strategy of Ri is a optimal reaction to

the strategy ai of Mi, assuming that leader Mj always chooses the

equilibrium strategy; that is, for any ai, β
∗
i (ai) is the solution of the

maximization problem:

Argmax
bi∈Bi

fi(ai, bi, b
∗
j). (4.8)

(ii) The strategy a∗i maximizes the payoff function of Mi assuming that Ri

replies in accordance with β∗
i and that Mj always chooses the equilib-

rium strategy; that is:

a∗i ∈ Argmax
ai∈Ai

[

li(ai, β
∗
i (ai), b

∗
j)
]

.

Going back to the example, the maximization problem in (4.8) admits a

unique solution β∗
i (ai) given by:

βi(ai) =
1

4
+

1

4
b∗j +

1

2
ai, (4.9)

for any ai ∈ Ai. Then, substituting (4.9) into the leader’s problem, we have:

a∗i ∈ Argmax
ai

[(

1

2
+
b∗j
2

)

ai − a21

]

,

that is:

a∗i =
1

4
+
b∗j
4
. (4.10)
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The system:










































a∗1 =
1

4
+
b∗2
4

a∗2 =
1

4
+
b∗1
4

b∗1 =
1

4
+

1

4
b∗2 +

1

2
a∗1

b∗2 =
1

4
+

1

4
b∗1 +

1

2
a∗2.

has a unique solution (a∗1, a
∗
2, b

∗
1, b

∗
2) = (2/5, 2/5, 3/5, 3/5) and the unique

equilibrium with passive beliefs is the strategy profile

(

2

5
,
2

5
, β∗

1 , β
∗
2

)

, with β∗
i (ai) =

2

5
+
ai
2
, for i = 1, 2. (4.11)

In the previous example, the assumption of passive beliefs allows to refine

the Nash equilibria concept of the two–stage game with continuous action

spaces when the two–stage game has no proper subgame.

4.2 General two–stage games with vertical sep-

aration

First, in order to extend the concept considered in Section 4.1, we define a

general two–stage game Γ with vertical separation in which at any stage a

finite number of agents competes. In the first stage k players, called leaders

Li, i = 1, . . . , k, choose simultaneously an action ai in Ai, nonempty subset

of the finite–dimensional Euclidean space R
ni ; in the second stage k players,

called followers Fi i = 1, . . . , k, choose simultaneously an action bi in the set

Bi, nonempty subset of the finite–dimensional Euclidean space R
mi . Let us

denote A =
∏k

i=1Ai and A−i =
∏k

r=1
r 6=i

Ar. An element of A−i is denoted by
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4.2 General two–stage games with vertical separation

a−i = (a1, . . . , ai−1, ai+1, . . . , ak). Analogously, we adopt the same notations

for the sets associated to the follower’s problem.

In a two–stage game with observed actions at the end of the first stage

any player observes the action chosen by all the leaders. Such games are

also called games of almost–perfect information (see Fudenberg and Tirole

[26]) meaning that there is imperfect information if there are agents that play

simultaneously within a stage. So the followers know all the past history at

the moment they have to play: an action of a follower may depend on the

actions taken by all the leaders. Differently, we will consider a two–stage

game in which the actions taken by any leader is not observable by all the

followers in stage two. First, let us specify the definition of some crucial

concepts.

Definition 4.2.1

A two–stage game is said to be with partially observed actions if the action

chosen by each leader Li is observed only by the corresponding follower Fi,

for i = 1, . . . , k.

So, in the case of partially observed actions, each follower’s choice de-

pends only on the action chosen by his corresponding leader, that is a follower

has as many information sets as the number of actions of his corresponding

leader. Then, a strategy of follower Fi is a function βi from Ai to Bi, that is

βi ∈ Si = (Bi)
Ai . Let S =

∏k
i=1 Si be the set of all (pure) strategy profiles

of the followers.

Definition 4.2.2

A two–stage game is said to be with vertical separation if the action of any

leader Li affects only the payoff of Li and Fi, for i = 1, . . . , k.

Vertical separation expresses the idea that a leader can have an exclusive

follower. So, for the remainder of the chapter we will consider a game with

vertical separation and partially observed action. For sake of brevity, we just
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call it a two–stage game with vertical separation.

Furthermore, we assume that the leaders’ payoff functions can depend

explicitly on the follower optimal value function, that is the optimal payoff

of the follower when he is reacting optimally to any given action of his cor-

responding leader. This can be viewed as an altruistic/spiteful behaviour,

depending on the way the optimal value function of a follower affects his

leader’s payoff. This assumption is compatible with the fact that if a fol-

lower is an exclusive retailer of the good produced by the leader, the latter

can take into account the profit of his retailer (possibly in a percentage term)

when he has to decide about the strategy to play. Moreover, in an engineer-

ing context, the class of problems that can be modeled in this way are the

so–called parameter design problem and the resource allocation problem for

decentralized systems (Shimizu and Ishizuka [81], Shimizu et al. [82]): a cen-

tral system (the leader) decides about the value of a parameter which is

assigned to a subsystem or regional systems (the followers) and optimizes

the central objective function which depends from the value of optimized

subsystems’ performances ([81]).

The objective of each player is to maximize his own payoff function, taking

into account that it depends also on the strategies of the other players. The

payoff function of follower Fi is a real–valued function fi defined on Ai ×B.

Let vi the optimal value function defined of follower Fi defined on Ai × B−i

by:

vi(ai, b−i) = sup
bi∈Bi

fi(ai, bi, b−i) (4.12)

For the sake of simplicity, we assume that vi(ai, b−i) is finite, for any (ai, b−i) ∈

Ai×B−i. For any i = 1, . . . , k, leader Li’s payoff when he plays the action ai ∈

Ai, given an action profile (bi, b−i) of the followers, is li(ai, bi, b−i, vi(ai, b−i)).

Then, the payoff function of leader Li is a function li from the set Ai×B×R

to R.

When each player has only the choice between two actions the game can be

represented by the extensive form given in Figure 4.1.

Now, let (a, β) = (a1, . . . , ak, β1, . . . , βk) ∈ A × S. Denote with β(a) the
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L1

b12 b22 b12 b22 b12 b22 b12 b22b12 b22 b12 b22 b12 b22 b12 b22

b11 b21 b11 b21 b11 b21 b11 b21

a12 a22 a12 a22

a11 a21

F2

F2

F1 F1

L2

l11

l12

f1
1

f1
2













































l21

l22

f2
1

f2
2













































l31

l32

f3
1

f3
2













































l41

l42

f4
1

f4
2













































l11

l52

f1
1

f5
2













































l21

l62

f2
1

f6
2













































l31

l72

f3
1

f7
2













































l41

l82

f4
1

f8
2













































l51

l12

f5
1

f1
2













































l61

l22

f6
1

f2
2













































l71

l32

f7
1

f3
2













































l81

l42

f8
1

f4
2













































l51

l52

f5
1

f5
2













































l61

l62

f6
1

f6
2













































l71

l72

f7
1

f7
2













































l81

l82

f8
1

f8
2













































Figure 4.1: Representation of the extensive form game with a finite set of

actions in all the information sets

action profile (β1(a1), . . . , βk(ak)) and denote with β−i(a−i) the action profile

(β1(a1), . . . , βi−1(ai−1), βi+1(ai+1), . . . , βk(ak)). The payoff functions in the

associate normal form game are:

l̂i(a, β) = li(ai, β(a), vi(ai, β−i(a−i))), for leader Li,

f̂i(a, β) = fi(ai, β(a)), for follower Fi,
(4.13)

for i = 1, . . . , k. Let Γ be the normal form of the two–stage game with

vertical separation

Γ = {(Li)i=1,...,k , (Fi)i=1,...,k ; (Ai)i=1,...,k , (Si)i=1,...,k ; (l̂i)i=1,...,k, (f̂i)i=1,...,k}.

(4.14)

Then, applying the well–known concept of Nash equilibrium ([67]) to game

Γ, we have:

Definition 4.2.3

A Nash equilibrium of the game Γ is a 2k-tuple (a∗, β∗) ∈ A × S satisfying,
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4. Selection of equilibria for two-stage games with vertical separation: existence results

for any i = 1, . . . , k, the following inequalities:

l̂i(a
∗, β∗) ≥ l̂i(ai, a

∗
−i, β

∗) for any ai ∈ Ai (4.15a)

f̂i(a
∗, β∗) ≥ f̂i(a

∗, βi, β
∗
−i) for any βi ∈ Si. (4.15b)

Let i = 1, . . . , k. From (4.13), conditions (4.15) are equivalent to

li(a
∗
i , β

∗
i (a

∗
i ), β

∗
−i(a

∗
−i), vi(a

∗
i , β

∗
−i(a

∗
−i))) ≥

li(ai, β
∗
i (ai), β

∗
−i(a

∗
−i), vi(ai, β

∗
−i(a

∗
−i))) for any ai ∈ Ai (4.16a)

and

fi(a
∗
i , β

∗
i (a

∗
i ), β

∗
−i(a

∗
−i)) ≥ fi(a

∗
i , βi(a

∗
i ), β

∗
−i(a

∗
−i)) for any βi ∈ Si;

where the last condition is satisfied if:

fi(a
∗
i , β

∗
i (a

∗
i ), β

∗
−i(a

∗
−i)) ≥ fi(a

∗
i , bi, β

∗
−i(a

∗
−i)) for any bi ∈ Bi. (4.16b)

Conditions (4.16) could generate an infinity of equilibria, provided that an

equilibrium exists. So, let us first give an existence result for a Nash equilib-

rium of the game Γ.

4.3 Existence of Nash Equilibria

Let us observe that the existence of a Nash equilibrium of the game

Γ = {(Li)i=1,...,k , (Fi)i=1,...,k ; (Ai)i=1,...,k , (Si)i=1,...,k ; (l̂i)i=1,...,k, (f̂i)i=1,...,k}

is ensured when there exists an equilibrium of the game

Γ′ = {(Li)i=1,...,k , (Fi)i=1,...,k ; (Ai)i=1,...,k , (Bi)i=1,...,k ; (li)i=1,...,k , (fi)i=1,...,k}.

Indeed, let (ā, b̄) = (ā1, . . . , āk, b̄1, . . . , b̄k) be a Nash equilibrium of Γ′ and

let (ā, β̄) = (ā1, . . . , āk, β̄1, . . . , β̄k) such that β̄i(ai) = b̄i, for any ai ∈ Ai,
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for i = 1, . . . , k. Rewriting conditions (4.16) for (ā, β̄) we obtain the two

conditions:

li(āi, b̄i, b̄−i, vi(āi, b̄−i)) ≥ li(ai, b̄i, b̄−i, vi(ai, b̄−i)) for any ai ∈ Ai

fi(āi, b̄i, b̄−i) ≥ fi(āi, bi, b̄−i) for any bi ∈ Bi,

that are satisfied being (ā, b̄) a Nash equilibrium of Γ′. Then, (ā, β̄) is a Nash

equilibrium of Γ.

Sufficient conditions for the existence of an equilibrium of Γ′ are given in

the following theorem.

Theorem 4.3.1. Assume, for i = 1, . . . , k:

(ALi
1) Ai is a nonempty compact convex subset of Rni;

(ALi
2) li is a real–valued upper semicontinuous function on Ai × B ×R;

(ALi
3) for any (ai, bi, b−i, t) ∈ Ai×B×R, for any sequence ((bi,n, b−i,n, tn))n

converging to (bi, b−i, t) in Bi×B−i×R, there exists a sequence (ǎi,n)n in Ai

such that:

lim inf
n→∞

li(ǎi,n, bi,n, b−i,n, tn) ≥ li(ai, bi, b−i, t);

(ALi
4) li(·, b, ·) is concave on Ai × R for any b ∈ B and li(ai, b, ·) is

nondecreasing on R, for any (ai, b) ∈ Ai × B;

(AFi
1) Bi is a nonempty compact convex subset of a R

mi;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;

(AFi
3) for any (ai, bi, b−i) ∈ Ai × B, for any sequence (ai,n, b−i,n)n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such

that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i);

(AFi
4) fi(ai, ·, b−i) is concave, for any (ai, b−i) ∈ Ai × B−i;

Then there exists a Nash equilibrium of Γ′ and, therefore, an equilibrium

of Γ.
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Proof. Let i = 1, . . . , k. Given a strategy profile (a, b), we define the set–

valued map B̃i as the optimal reaction of follower Fi, that is:

B̃i(ai, b−i) = Argmax
bi∈Bi

fi(ai, bi, b−i) (4.17)

for any (ai, b−i) ∈ Ai×B−i and the set–valued map C̃i as the optimal reaction

of leader Li, that is:

C̃i(b) = Argmax
ai∈Ai

li(ai, bi, b−i, vi(ai, b−i))

for any b ∈ B.

• From (AFi
1) and (AFi

2), we have that B̃i is nonempty–valued and the

optimal value function vi is defined on Ai × B−i.

• The optimal reaction of follower Fi is a closed set–valued map as a con-

sequence of Proposition 2.3.5. For the sake of completeness, let us detail

here the proof.

Let (ai, b−i) ∈ Ai × B−i and let ((ai,n, b−i,n))n a sequence converging to

(ai, b−i) in Ai × B−i. Let b̄i ∈ Lim supn→+∞ B̃i(ai,n, b−i,n). Then, there

exists a subsequence (b̄i,n)n∈N1 , with N1 ⊆ N countably infinite, such that

b̄i,n ∈ B̃i(ai,n, b−i,n) for any n ∈ N1 and such that limn→+∞
n∈N1

b̄i,n = b̄i.

We claim that b̄i ∈ B̃i(ai, b−i). Indeed, let bi ∈ Bi. From (AFi
3) we have

that there exists a sequence (b̂i,n)n such that

lim inf
n→+∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i). (4.18)

Using (AFi
2) with the subsequence

(

b̄i,n
)

n
we have:

lim sup
n→+∞
n∈N1

fi(ai,n, b̄i,n, b−i,n) ≤ fi(ai, b̄i, b−i). (4.19)

Furthermore, from the definition of B̃i we get:

fi(ai,n, b̄i,n, b−i,n) ≥ fi(ai,n, b̂i,n, b−i,n) for any n ∈ N1. (4.20)

Thus, from (4.18)–(4.20) we have fi(ai, bi, b−i) ≤ fi(ai, b̄i, b−i) for all bi ∈

Bi; that is b̄i ∈ Bi.
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• vi is a continuous function on Ai × B−i. It is a consequence of Proposi-

tion 2.3.3– 2.3.4. For the sake of completeness, we report here the proof.

Let (ai, b−i) ∈ Ai×B−i and a sequence ((ai,n, b−i,n))n converging to (ai, b−i)

in Ai × B−i. From the definition of maximum, for any ǫ > 0 there exists

bǫi ∈ Bi such that

fi(ai, b
ǫ
i , b−i) ≥ vi(ai, b−i)− ǫ.

From (AFi
3), there exists a sequence

(

bǫi,n
)

n
in Bi such that

lim inf
n→+∞

fi(ai,n, b
ǫ
i,n, b−i,n) ≥ fi(ai, b

ǫ
i , b−i).

Therefore, using the fact that vi(ai,n, b−i,n) ≥ fi(ai,n, b
ǫ
i,n, b−i,n) for any n ∈

N, we obtain that, for any ǫ > 0, lim infn→+∞ vi(ai,n, b−i,n) ≥ vi(ai, b−i)−ǫ,

that is, taking the limit on ǫ:

lim inf
n→+∞

vi(ai,n, b−i,n) ≥ vi(ai, b−i); (4.21)

that is, the sequence (vi(ai,n, b−i,n))n is bounded from below. Then, there

exists a subsequence (vi(ai,n, b−i,n))n∈N1
such that N1 ⊆ N countably infi-

nite and

lim
n→+∞
n∈N1

vi(ai,n, b−i,n) = v∗i ∈ R ∪ {+∞}. (4.22)

From the fact that B̃i is nonempty valued, there exists a sequence (b̃i,n)n∈N1

such that b̃i ∈ B̃i(ai,n, b−i,n), for any n ∈ N1, that is

fi(ai,n, b̃i,n, b−i,n) = vi(ai,n, b−i,n), for any n ∈ N1. (4.23)

From the compactness of Bi there exists a subsequence (b̃i,n)n∈N2 , with

N2 ⊆ N1 countably infinite, such that b̃i,n converges to a point b̃i in Bi.

Hence, b̃i ∈ Lim supn→+∞ B̃i(ai,n, b−i,n) and, from the closedness of B̃i, it

follows that b̃i ∈ B̃i(ai, b−i), that is:

fi(ai, b̃i, b−i) = vi(ai, b−i). (4.24)

Therefore, from (AFi
2), we have

lim sup
n→+∞
n∈N2

fi(ai,n, b̃i,n, b−i,n) ≤ fi(ai, b̃i, b−i)
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that is, using (4.23)–(4.24):

lim sup
n→+∞
n∈N2

vi(ai,n, b−i,n) ≤ vi(ai, b−i).

So, from (4.22), we have

v∗i ≤ vi(ai, b−i),

that is v∗i ∈ R.

Conversely, from (4.22) and the fact that

lim inf
n→+∞
n∈N2

vi(ai,n, b−,n) ≥ lim inf
n→+∞

vi(ai,n, b−,n),

we obtain v∗i ≥ vi(ai, b−i), that is

v∗i = vi(ai, b−i). (4.25)

Condition (4.25) is true for any converging subsequence of (vi(ai,n, b−i,n))n,

then it holds for the entire sequence, that is

lim
n→+∞

vi(ai,n, b−i,n) = vi(ai, b−i)

that is vi is a continuous function.

• B̃i is convex–valued. Indeed, it follows from (AFi
4) and Proposition 2.1.3.

• The function ľi defined on Ai × B by:

ľi(ai, bi, b−i) = li(ai, bi, b−i, vi(ai, b−i)), (4.26)

is upper semicontinuous on Ai×Bi×B−i as a consequence of (ALi
2) and

the continuity of vi on Ai × B−i previously proved. So, from (ALi
1), we

deduce that C̃i is nonempty–valued. Furthermore, from the continuity of

vi on Ai × B−i and (ALi
3), we have that for any (ai, b) ∈ Ai × B and for

any sequence (bi,n)n converging to bi there exists a sequence (ai,n)n such

that

lim inf
n→+∞

ľi(ai,n, bi,n, b−i,n) ≥ ľi(ai, bi, b−i).

Then, replicating the proof in the first point, we have that C̃i is a closed

set–valued map.
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• C̃i is convex–valued. Indeed, from Theorem 2.3.6 the function vi(·, b−i) is

concave on Ai. Then, from Proposition 2.1.25 we have ľi quasiconcave on

Ai and, from Proposition 2.1.3, C̃i(b−i) is a convex set.

• Finally, the set–valued map D defined on A× B by

D(a1, . . . , ak, b1, . . . , bk) =
k
∏

i=1

Ci(b1 . . . , bk)×
k
∏

i=1

B̃i(ai, b−i)

satisfies the hypothesis of Kakutani Fixed Point Theorem (Theorem 2.2.14).

So, there exists a fixed point of D on A× B, that is an equilibrium of Γ′.

⋄

Remark 4.3.2 Let i = 1, . . . , k. If fi is a continuous function, then assump-

tions (AFi
2), (AFi

3) are satisfied. The vice versa is not true, as illustrated

in the following example. The same arguments hold for leaders’ payoff func-

tions.

Example 4.3.1 Let Ai = Bi = [0, 1], for i = 1, 2. Let fi be a real–valued

function defined on [0, 1]3 by:

fi(ai, bi, bj) =































−[b2i + 1 + aibj] if ai ∈]0, 1], bi ∈ [0, 1] \ {ai
4
+

bj+1

4
},

0 if ai = 0, bi ∈ [0,
bj+1

4
[,

1− 1
2
bi if ai = 0, bi ∈]

bj+1

4
, 1],

2 if ai ∈ [0, 1], bi =
ai
4
+

bj+1

4

with i, j = 1, 2, j 6= i. fi is not continuous but it satisfies (AFi
2)–(AFi

3).

(AFi
2) - Let ai = 0, bi ∈ [0,

bj+1

4
[, bj ∈ [0, 1] and let ((ai,n, bi,n, bj,n))n a se-

quence in [0, 1]3 converging to (ai, bi, bj). Then, any converging subsequence

of (fi(ai,n, bi,n, bj,n))n can converge only to −(b2i +1) or to 0 = f((ai, bi, bj)).

- Let ai = 0, bi ∈] bj+1

4
, 1], b2 ∈ [0, 1] and let ((ai,n, bi,n, bj,n))n a sequence

in [0, 1]3 converging to (ai, bi, bj). Then, any converging subsequence of

(fi(ai,n, bi,n, bj,n))n can converge only to −(b2i+1) or to 1− 1

2
bi = f((ai, bi, bj)).
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- Let ai = 0, bi =
bj+1

4
, bj ∈ [0, 1] and let ((ai,n, bi,n, bj,n))n a sequence

in [0, 1]3 converging to (ai, bi, bj). Then, any converging subsequence of

(fi(ai,n, bi,n, bj,n))n can converge to −(b2i+1), 0, 1− 1

2
bj , or to 2 = f((ai, bi, bj)).

- Let ai ∈]0, 1], bi =
ai

4
+

bj+1

4
, bj ∈ [0, 1] and let ((ai,n, bi,n, bj,n))n a sequence

in [0, 1]3 converging to (ai, bi, bj). Then, any converging subsequence of

(fi(ai,n, bi,n, bj,n))n can converge only to −(b2i+1+aibj) or to 2 = f((ai, bi, bj)).

In any case (AFi
2) is satisfied.

(AFi
3) Let (ai, bi, bj) ∈ [0, 1]3 and let ((ai,n, bj,n))n a sequence converging to (ai, bj) in

[0, 1]2. Then, taken bi,n =
ai,n

4
+

bj,n+1

4
, for any n ∈ N, we have that

lim inf
n→+∞

fi(ai,n, bi,n, bj,n) = fi(ai, bi, bj);

that is (AFi
3) holds with the equality sign.

⋄

Remark 4.3.3 Let i = 1, . . . , k. When li does not depend from vi, Theo-

rem 4.3.1 still holds if we require the quasiconcavity of fi(ai, ·, b−i), for any

(ai, b−i) ∈ Ai × B−i, instead of assumption (AFi
4). Moreover, assumption

(ALi
4) can be weaken requiring li(·, b) quasiconcave on Ai, for any b ∈ B.

In order to reduce the set of Nash equilibria, we will consider in the next

section a selection criterion generalizing the concept considered in Section 4.1.

4.4 Equilibria under passive beliefs: definition

and existence result

As anticipated, the unique subgame of the two–stage game with vertical

separation presented in Section 4.2 is the whole game, so the set of subgame

perfect Nash equilibria coincides with the set of Nash equilibria. A method

for selecting among the Nash equilibria is suggested by the concept of perfect

Bayesian equilibrium (see for example Fudenberg and Tirole [26] or Mas-

Colell et al. [58]). Let us extend the definition of perfect Bayesian equilibrium
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4.4 Equilibria under passive beliefs: definition and existence result

given in [58] for a multi–stage game with partially observed actions when the

sets of actions of the players have cardinality infinite.

Note that we aim to give a definition that is independent from the specific

extensive form representation of the two–stage game. Let Pi be the set of

all the probability measures on A−i, for i = 1, . . . , k.

Definition 4.4.1

A system of beliefs of Fi is a family of probability measures µi = (µai
i )ai∈Ai

in Pi where µai
i represents the beliefs that Fi has about the actions chosen

by leaders L−i after observing an action ai of leader Li.

A system of beliefs is a profile µ = (µ1, . . . , µk), such that µi is a system of

beliefs of Fi, for any i = 1, . . . , k.

The expected payoff (see, for example, Billingsley [7]) of follower Fi, if

he plays the action bi as response to the observed action ai of Li and to the

strategy profile β−i ∈ S−i of followers F−i, given the system of beliefs µi of

Fi, is:

fµi

i (ai, bi, β−i) =

∫

A−i

fi(ai, bi, β−i(a−i)) dµ
ai
i (a−i). (4.27)

So, we can give the following definition.

Definition 4.4.2

A strategy profile s∗ = (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) with the system of beliefs

µ = (µ1, . . . , µk) is a perfect Bayesian equilibrium of the two–stage game

with vertical separation if, for any i = 1, . . . , k:

(i) any follower Fi is playing optimally, assuming that he is in the second

stage and he has the system of beliefs µi; that is we have:

fµi

i (ai, β
∗
i (ai), β

∗
−i) = max

bi∈Bi

fµi

i (ai, bi, β
∗
−i) for any ai ∈ Ai;

(ii) the leader’s equilibrium action is such that:

ľi(a
∗
i , β

∗
i (a

∗
i ), β

∗
−i(a

∗
−i)) = max

ai∈Ai

ľi(ai, β
∗
i (ai), β

∗
−i(a

∗
−i)),
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where ľi is defined as in (4.26);

(iii) the system of beliefs µ satisfies the following consistency hypothesis:

µ
a∗i
i (a−i) =







1, if a−i = a∗−i,

0, otherwise.
(4.28)

The consistency requirement corresponds to the requirement (ii) in the

definition of weak perfect Bayesian equilibrium in [58, Definition 9.C.3] and

it ensures that the followers’ beliefs are compatible with the equilibrium

strategy profile along the equilibrium path, that is the followers have correct

beliefs in equilibrium. Then, a perfect Bayesian equilibrium is a Nash equi-

librium. Furthermore, the compatibility requirement does not impose any

restriction out of the equilibrium path. So, the concept of perfect Bayesian

equilibrium may be not sufficient to select among all Nash equilibria. For

this reason we restrict our attention only on the equilibria that are supported

by the system of beliefs called passive beliefs. A follower of a two–stage game

with vertical separation has passive beliefs about the action chosen by the

leaders L−i if, when he observes an action of leader Li different from the

one he expects in equilibrium, he does not revise his beliefs about the ac-

tion offered to the rival follower even if his corresponding leader is deviating.

That is, given an equilibrium strategy profile a∗ = (a∗i , a
∗
−i) of leaders, if Fi

observes an action different from a∗i , he believes that the other leaders are

still playing a∗−i. Formally:

Definition 4.4.3

The strategy profile (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) is an equilibrium under passive

beliefs of a two–stage game with vertical separation if it is a perfect Bayesian

equilibrium with the system of beliefs µ = (µ1, . . . , µk) defined by:

µai
i (a−i) =







1, if a−i = a∗−i

0, otherwise,

for any ai ∈ Ai, for any i = 1 . . . , k; that is µai
i is a unit mass at a∗−i, for any
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4.4 Equilibria under passive beliefs: definition and existence result

ai ∈ Ai, for i = 1, . . . , k.

Then, a system of passive beliefs for player Fi is independent on the action

a−i of leaders L−i.

Since condition (4.27) in case of passive beliefs is equivalent to:

fµi

i (ai, bi, β−i) = fi(ai, bi, β−i(a
∗
−i)), (4.29)

that is, the strategies of the followers F−i affect the payoff of follower Fi only

through the actions they choose as response to their leaders’ equilibrium

strategies, a strategy profile s∗ = (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) is an equilibrium

under passive beliefs of the two–stage game with vertical separation if for

any i = 1, . . . , k:

(i) the strategy β∗
i of Fi solves:

fi(ai, β
∗
i (a

∗
i ), β

∗
−i(a

∗
−i)) = max

bi∈Bi

fi(ai, bi, β
∗
−i(a

∗
−i)) for any ai ∈ Ai;

(ii) the action a∗i of Li solves:

ľi(a
∗
i , β

∗
i (a

∗
i ), β

∗
−i(a

∗
−i)) = max

ai∈Ai

ľi(ai, β
∗
i (ai), β

∗
−i(a

∗
−i)),

where ľi is defined in (4.26).

In Figure 4.2 is represented the interaction scheme between 2 leaders and

2 followers with vertical separation under passive beliefs.

Taken as given the action of the other followers, leader Li and the correspond-

ing follower Fi act as a team that solves a parametric Bilevel Optimization

problem. In other words, the strategic interaction is between the two teams.

Then, taken as given the action b−i in B−i of followers F−i, a possible

strategy profile for team Li–Fi is a couple that maximizes payoff functions

of both Li and Fi taking into account the hierarchical structure between Li

and Fi. As in (4.17), denote with B̃i(ai, b−i) the follower reaction set to
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b2

L1

F1

b1

b1

L2

F2

b2

Figure 4.2: Interaction scheme in passive beliefs

the action ai ∈ Ai of leader Li, for any fixed b−i in B−i. That is B̃i(ai, b−i)

is the set of solutions to the optimization problem:

Pi(ai, b−i)







find bi ∈ Bi such that

fi(ai, bi, b−i) = maxb′i∈Bi
fi(ai, b

′
i, b−i).

(4.30)

In the following, for any i = 1, . . . , k, a very useful condition will be:

(Ii) for any (ai, b−i) ∈ Ai × B−i, the reaction set B̃i(ai, b−i) of Fi is a

singleton, that is

B̃i(ai, b−i) = {b̃i(ai, b−i)}. (4.31)

Sufficient conditions for assumption (Ii) are given, for example, by:

Lemma 4.4.4. Let i = 1, . . . , k. Assume that (AFi
1) and (AFi

2) hold and

fi(ai, ·, b−i) is a strictly D–pseudoconcave function on Bi. Then Pi(ai, b−i)

has a unique solution.

Proof. See Proposition 2.1.22 and Theorem A.2.5. ⋄

Then, we can define the function l̃i from Ai × B−i to R by:

l̃i(ai, b−i) = li(ai, b̃i(ai, b−i), b−i, vi(ai, b−i)). (4.32)

So, the problem of leader Li is described by:

Si(b−i)







find ai ∈ Ai such that

l̃i(ai, b−i) = maxa′i∈Ai
l̃i(a

′
i, b−i).

(4.33)
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Definition 4.4.5

A strategy profile (a∗, β∗) = (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) is an equilibrium under

passive beliefs of the two–stage game with vertical separation if it solves, for

i = 1, . . . , k, the problems:

a∗i solves S(b∗−i) (4.34a)

and

β∗
i (ai) = b̃i(ai, b

∗
−i) for any ai ∈ Ai. (4.34b)

where

b∗−i = β∗
−i(a

∗
−i). (4.34c)

In an equivalent way, we can describe a vertical separated equilibrium as

a fixed point of an appropriate set–valued map.

Let Xi = Ai × Bi, X−i = A−i × B−i and X = A× B. Define the set–valued

map Mi from B−i to Ai such that

Mi(b−i) = Argmax
ai∈Ai

l̃i(ai, b−i), (4.35)

for any b−i ∈ B−i. Define the set–valued map Ni from X−i to Xi such that

Ni(x−i) = Ni(a−i, b−i) = {(ai, bi) ∈ Xi : ai ∈Mi(b−i), bi = b̃i(ai, b−i)},

(4.36)

for any x−i = (a−i, b−i) ∈ X−i, and the set–valued map

N : X ⇒ X, (4.37)

such that N(x) =
∏k

i=1Ni(x−i), for any x ∈ X.

It follows that:

Lemma 4.4.6. Any fixed point of N on X can be associated to an equilibrium

under passive beliefs of the two–stage game Γ with vertical separation, and

vice versa.
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Proof. Let (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) be an equilibrium under passive beliefs.

Then, β∗
i (ai) = b̃i(ai, b

∗
−i) for any ai ∈ Ai and, denoted β∗

i (a
∗
i ) by b∗i , we

have that x∗ = (a∗1, . . . , a
∗
k, b

∗
1, . . . , b

∗
k) is a fixed point of N on X, that is

x∗ ∈ N(x∗).

Vice versa, if (a∗1, . . . , a
∗
k, b

∗
1, . . . , b

∗
k) is a fixed point of N on X, then one

can easily verify that the strategy profile (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) such that

β∗
i (ai) = b̃i(ai, β

∗
−i(a

∗
i )), for any ai ∈ Ai and i = 1 . . . , k is an equilibrium

under passive beliefs of Γ. ⋄

Let us study the properties of the set–valued map N .

First, we prove that b̃i is a continuous function.

Proposition 4.4.7. Let i = 1, . . . , k. Assume (Ii), (AFi
2)–(AFi

3) and

(AFi
5) Bi is a nonempty compact subset of Rmi.

Then, b̃i and vi are continuous functions on Ai × B−i.

Proof. In the proof of Theorem 4.3.1 it is proved that if (ai,n, b−i,n) converges

to (ai, b−i) in Ai × B−i then b̃i, considered as a set–valued map, is closed.

This property, together with the compactness of Bi, gives the continuity of

b̃i (Proposition 2.2.8–(i)).

The continuity of the optimal value function vi is proved in Theorem 4.3.1. ⋄

Now, we prove that N(x) is nonempty and closed, for any x ∈ X.

Proposition 4.4.8. Let i = 1, . . . , k. Assume (Ii), (AFi
5) and

(ALi
5) Ai is a nonempty compact subset of Rni;

(ALi
6) li(·, ·, b−i, ·) is upper semicontinuous on Ai × Bi × R, for any

b−i ∈ B−i;

(AFi
6) fi(·, ·, b−i) is upper semicontinuous on Ai ×Bi, for any b−i ∈ B−i;
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(AFi
7) for any (ai, bi) ∈ Ai × Bi, for any sequence (ai,n)n converging to

ai in Ai, there exists a sequence (b̂i,n)n in Bi such that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i) ≥ fi(ai, bi, b−i),

for any b−i ∈ B−i.

Then, Ni(x−i) defined in (4.36) is nonempty, for any x−i ∈ X−i.

Proof. It can be proved using Proposition 2.4.2. For the sake of completeness

let us prove it directly.

Let i = 1, . . . , k and x−i = (a−i, b−i) ∈ X. Let us observe that substituting

assumptions (AFi
2)–(AFi

3) in Proposition 4.4.7 with weaker assumptions

(AFi
6)–(AFi

7) and replicating the proof we can prove that b̃i(·, b−i) and

vi(·, b−i) are continuous on Ai.

Let (ai,n)n be a sequence converging to ai. From assumption (ALi
6) and

from the continuity of b̃i(·, b−i) and vi(·, b−i) we have:

lim sup
n→+∞

l̃i(ai,n, b−i) = lim sup
n→+∞

li(ai,n, b̃i(ai,n, b−i), b−i, vi(ai,n, b−i))

≤ li(ai, b̃i(ai, b−i), b−i, vi(ai, b−i)) = l̃i(ai, b−i), (4.38)

that is l̃i(·, b−i) is upper semicontinuous on Ai. Then, Mi(b−i) is nonempty

since Ai is compact. So, Ni(x−i) is nonempty. ⋄

In the next proposition we prove that any set–valued map Ni is closed.

Proposition 4.4.9. Let i = 1, . . . , k. Assume (Ii), (ALi
2), (ALi

5),

(AFi
2), (AFi

3), (AFi
5), and

(ALi
7) li(ai, ·, ·, ·) is lower semicontinuous on Bi × B−i × R, for any

ai ∈ Ai.

Then, the set–valued map Ni is closed.

Proof. Let b−i ∈ B−i and let (b−i,n)n be a sequence converging to b−i in B−i.

Let āi ∈ Lim supn→+∞Mi(b−i,n). By definition, there exists a set K1 ⊆ N
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countably infinite and a sequence (āi,n)n∈K1
such that āi,n ∈Mi(b−i,n) for all

n ∈ K1 and such that āi,n converges to āi.

Let a′i be in Ai. From (ALi
7) and from the continuity of b̃i(a

′
i, ·) and vi(a

′
i, ·)

on B−i, we have

l̃i(a
′
i, b−i) ≤ lim inf

n→+∞
l̃i(a

′
i, b−i,n). (4.39)

On the other hand, from the upper semicontinuity of li and the continuity of

both b̃i and vi, we have:

lim sup
n→+∞
n∈K1

l̃i(āi,n, b−i,n) ≤ l̃i(āi, b−i). (4.40)

But āi,n ∈Mi(b−i,n) for any n ∈ K1. Then, we have

l̃i(āi,n, b−i,n) ≥ li(zi, b−i,n) for any zi ∈ Ai. (4.41)

Putting zi = a′i in (4.41), from (4.39) and (4.40) we obtain

l̃i(a
′
i, b−i) = lim

n→+∞
l̃i(a

′
i, b−i,n) = lim sup

n→+∞
n∈K1

l̃i(a
′
i, b−i,n)

≤ lim sup
n→+∞
n∈K1

l̃i(āi,n, b−i,n) ≤ l̃i(āi, b−i),
(4.42)

that is āi is in Mi(b−i). Thus, it is proved that

Lim sup
n→+∞

Mi(b−i,n) ⊆Mi(b−i), (4.43)

that is Mi is a closed set–valued map. Then, from the continuity of b̃i, we

obtain that Ni, is a closed set–valued map. ⋄

Remark 4.4.10 If li and fi are continuous in Ai × Bi, then the assumptions

on the payoff functions in Proposition 4.4.9 are satisfied. Vice versa there

are functions that satisfy the hypothesis in Proposition 4.4.9 that are not

continuous. An example for the problem of the followers is in Example 4.3.1.

In the following example we discuss the problem of the leaders.
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Example 4.4.1 Let Ai = Bi = [0, 1], for i = 1, 2. Let li be a real–valued

function defined on [0, 1]3 ×R by:

li(ai, bi, bj, t) =







(bi + bj − ai + t)2 if ai ∈]0, 1],

(bi + bj + t)2 + 1 if ai = 0.

with i, j = 1, 2, j 6= i. li is not continuous but it satisfies (ALi
2)–(ALi

7)

(ALi
2) li is discontinuous at any point (ai, bi, bj , t) ∈ {0}×[0, 1]2×R. Then, let bi, bj , t ∈

[0, 1]2×R and (ai,n, bi,n, bj,n, tn)n be a sequence converging to (0, bi, bj , t) in [0, 1]3×

R. Any converging subsequence of (fi(ai,n, bi,n, bj,n, tn))n converges to (bi+bj+ t)2

or to (bi + bj + t)2 + 1 = f(0, bi, bj). Then, li is upper semicontinuous on [0, 1]3.

(ALi
7) It is straightforward.

⋄

The next theorem gives a sufficient condition for the existence of an equi-

librium under passive beliefs.

Theorem 4.4.11. Assume, for i = 1, . . . , k:

(Ii) the reaction set B̃i(ai, b−i) of Fi is a singleton, that is B̃i(ai, b−i) =

{b̃i(ai, b−i)}, for any (ai, b−i) ∈ Ai × B−i;

(ALi
1) Ai is a nonempty compact convex subset of Rni;

(ALi
2) li is a real–valued upper semicontinuous function on Ai × B ×R;

(ALi
7) li(ai, ·, ·, ·) is lower semicontinuous on Bi × B−i × R, for any

ai ∈ Ai;

(AFi
1) Bi is a nonempty compact convex subset of Rmi;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;

(AFi
3) for any (ai, bi, b−i) ∈ Ai ×B, for any sequence ((ai,n, b−i,n))n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such
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that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i).

Furthermore, assume that

(A 1) the set valued function N is convex–valued.

Then, there exists an equilibrium under passive beliefs of the two–stage

game Γ with vertical separation.

Proof. The set–valued map N satisfies the hypothesis of Kakutani Fixed

Point Theorem (Theorem 2.2.14). Indeed, from Proposition 4.4.8 and as-

sumption (A 1), N is nonempty convex–valued and, from Proposition 4.4.9,

N is closed. Then, from Lemma 4.4.6 we have the thesis. ⋄

The main problem for the existence of an equilibrium under passive beliefs

is associated to the possible lack of convexity of the values of the set–valued

map N . The next proposition gives sufficient conditions for the convexity of

the values of N .

Proposition 4.4.12. Let i = 1, . . . , k. Let Ai and Bi be convex subset of

R
ni and R

mi, respectively. Assume (Ii) and:

(ALi
8) li(·, ·, b−i, ·) is quasiconcave on Ai×Bi×R, for any b−i ∈ B−i and

li(ai, bi, b−i, ·) is nondecreasing (nonincreasing) on R;

(AFi
8) b̃i(·, b−i) is linear on Ai, for any b−i ∈ B−i, and the optimal value

function vi(·, b−i) is concave (convex) on Ai, for any b−i ∈ B−i.

Then the set–valued map Ni is convex–valued.

Proof. Let x−i ∈ X−i and (a′i, b
′
i), (a

′′
i , b

′′
i ) ∈ Ni(x−i). By definition, we have

a′i, a
′′
i ∈ Mi(b−i) and b′i = b̃i(a

′
i, b−i), b

′′
i = b̃i(a

′′
i , b−i). Let λ ∈]0, 1[. From

the linearity of b̃i(·, b−i) on Ai it follows that λb′i + (1− λ)b′′i = b̃i(λa
′
i + (1−

λ)a′′i , b−i).

Furthermore, from Proposition 2.1.27 we have that l̃i(·, b−i) is quasiconcave
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4.4 Equilibria under passive beliefs: definition and existence result

on Ai. So, from Proposition 2.1.3, we have λa′i+(1−λ)a′′i ∈Mi(b−i). Finally,

from the linearity of b̃i(·, b−i), we have that Ni(x−i) is a convex set. Then,

N is a convex–valued map. ⋄

A sufficient condition in order to have b̃i linear and vi concave is given

by:

Proposition 4.4.13. Let i = 1, . . . , k. Let Ai and Bi be strictly convex

(resp. convex) subset of Rni and R
mi, respectively. Assume (Ii) and:

(AFi
9) fi(·, ·, b−i) is concave on int(Ai)× int(Bi) (resp. Ai ×Bi), for any

b−i ∈ B−i, and fi(·, bi, b−i) is convex on Ai, for any (bi, b−i) ∈ Bi × B−i.

Then, b̃i(·, b−i) is linear on Ai and vi(·, b−i) is concave on Ai, for any b−i ∈

B−i, that is (AFi
8) is verified.

Proof. We prove only the case in which fi is concave on int(Ai)× int(Bi) and

Ai, Bi are strictly convex. The other case is straightforward.

Let b−i ∈ B−i, a
′
i, a

′′
i ∈ Ai and λ ∈]0, 1[. Observe that λa′i+(1−λ) a′′i ∈ int(Ai)

and λb̃i(a
′
i, b−i) + (1− λ)b̃i(a

′′
i , b−i) ∈ int(Bi), for any λ ∈]0, 1[, being Ai and

Bi strictly convex sets.

Then, from the concavity of fi on int(Ai)×int(Bi) and from the definition

of b̃i we have:

fi(λa
′
i + (1− λ)a′′i , λb̃i(a

′
i, b−i) + (1− λ)b̃i(a

′′
i , b−i), b−i) ≥

≥ λfi(a
′
i, b̃i(a

′
i, b−i), b−i) + (1− λ)fi(a

′′
i , b̃i(a

′′
i , b−i), b−i)

≥ λfi(a
′
i, bi, b−i) + (1− λ)fi(a

′′
i , bi, b−i) for any bi ∈ Bi.

That is, from the convexity of fi(·, bi) on Ai:

fi(λa
′
i + (1− λ)a′′i , λb̃i(a

′
i, b−i) + (1− λ)b̃i(a

′′
i , b−i), b−i) ≥

fi(λa
′
i + (1− λ)a′′i , bi, b−i) for any bi ∈ Bi;

and then λb̃i(a
′
i, b−i) + (1− λ)b̃i(a

′′
i , b−i) = b̃i(λa

′
i + (1− λ)a′′i , b−i), that is b̃i

is linear on Ai.
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The concavity of vi(·, b−i) follows from Proposition 2.3.6 if we observe again

that if Ai (Bi) is a strictly convex set each combination of points of Ai (Bi)

is in the interior of the set. ⋄

Example 4.4.2 We present an example where both leaders’ and followers’

payoff functions that satisfy all the conditions required for the existence of

an equilibrium under passive beliefs.

Let Ai = Bi = Bj = [0, 1] and

fi(ai, bi, bj) =







(1− bj
2
)(ai − bji ) + 2 if bi 6= 0

3 + aibj otherwise.

for i, j = 1, 2 and j 6= i.

Then fi satisfies (AFi
2), (AFi

3) and (AFi
9) (being Ai a strictly convex

subset of R).

Indeed:

(AFi
2) f is discontinuous at any point (ai, bi, bj) ∈ [0, 1]× {0} × [0, 1]. So, let (ai, bj) ∈

[0, 1]2 and (ai,n, bi,n, bj,n)n be a sequence that converges to (ai, 0, bj) in [0, 1]3.

Any subsequence of (fi(ai,n, bi,n, bj,n))n can converge only to 3+aibj or (1− bj
2
)ai+2.

Then (AFi
2) is satisfied being fi(ai, 0, bj) = 3 + aibj > (1 − bj

2
)ai + 2, for any

(ai, bj) ∈ [0, 1]2.

(AFi
3) Let (ai, bj) ∈ [0, 1]2 and (ai,n, bj,n)n be a sequence that converges to (ai, bj) in

[0, 1]2. Take bi,n = 0, for any n ∈ N. Then fi(ai,n, 0, bj,n) = 3 + ai,nbj,n that

converges to 3 + aibj . Hence, condition in (AFi
3) holds with the equality sign.

(AFi
9) It is quite immediate if we observe that Ai, Bi are strictly convex subsets of R,

the discontinuity is on the boundary and fi(·, ·, bj) is concave on ]0, 1[2, for any bj .

Moreover,

li(ai, bi, bj) =



















b2j(1− a2i ) if ai 6= 0,

1 + bi + bj + t if ai = 0, t ≥ 0,

1 + bi + bj otherwise,

satisfies (ALi
2), (ALi

7) and and (ALi
8).
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(ALi
2) li is discontinuous is discontinuous at any point (ai, bi, bj , t) ∈ {0} × [0, 1]2 ×R.

So, let (bi, bj , t) ∈ [0, 1]2 ×R and (ai,n, bi,n, bj,n, tn)n be a sequence that converges

to (0, bi, bj , t) in [0, 1]3 × R. If t > 0, a subsequence of (li(ai,n, bi,n, bj,n, tn))n
can converge only to b2j (1 − a2i ) or to 1 + bi + bj + t. If t ≤ 0, a subsequence of

(li(ai,n, bi,n, bj,n, tn))n can converge only to b2j (1−a2i ) or to 1+bi+bj . In both cases

(ALi
2) is satisfied, being b2j (1− a2i ) < li(0, bi, bj , t), for any (bi, bj , t) ∈ [0, 1]2 ×R.

(ALi
7) It is straightforward.

(ALi
8) let bj ∈ [0, 1]. Denoted with Λα the upper level set at height α of li(·, ·, bj , ·),

that is Λα = {(ai, bi, t) : li(ai, bi, bj , t) ≥ α}, we have:

Λα =



































[0, 1]× [0, 1R]×R if α < 0

[0,
√

1− α
b2
j

]× [0, 1]×R if 0 ≤ α < b2j

{0} × [0, 1]×R if b2j ≤ α ≤ 1 + bj

{(0, bi, t) : t+ bi ≥ α− 1− bj , t ≥ 0, bi ∈ [0, 1]} if α > 1 + bj

(4.44)

that are convex sets, for any α.

⋄

With the characterization of an equilibrium under passive beliefs given

in Lemma 4.4.6, the hypothesis of linearity of b̃i is necessary to prove an

existence result. So, the scope of the next section is to reformulate the

problem in order to find weaker conditions for the existence of an equilibrium

under passive beliefs.

4.5 Particular cases: existence results under

weaker conditions

In this section we consider particular classes of two–stage games with vertical

separation. For each one of these classes we give a characterization of the

concept of equilibrium under passive beliefs that simplifies the analysis of the

existence of equilibria.
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4. Selection of equilibria for two-stage games with vertical separation: existence results

First, when the solution of any leader’s problem is a singleton for any action

profile b−i of the followers F−i, we prove an existence result without concavity

assumptions.

Then, we assume that the followers’ actions spaces are subsets of R. Exis-

tence results are proved assuming that the optimal reaction of any follower

is first concave and then isotone.

In the last case we consider the situation in which the problem of any fol-

lower may have more than one solution but the payoff function of any leader

depends on the action of the corresponding follower only through the optimal

value function.

4.5.1 In case of uniqueness of the leader’s optimal reac-

tion

Let b̃i be the optimal reaction of the follower Fi defined in (4.31). In this

section we assume that Mi defined in (4.35) is a single–valued map.

More precisely, assume for any i = 1, . . . , k:

(Ii) the reaction set B̃i(ai, b−i) = Argmaxbi∈Bi
fi(ai, bi, b−i) of Fi is a sin-

gleton, that is B̃i(ai, b−i) = {b̃i(ai, b−i)}, for any (ai, b−i) ∈ Ai × B−i;

(Ji) Mi(b−i) = Argmaxai∈Ai
l̃i(ai, b̃i(ai, b−i), b−i, vi(ai, b−i)) is a singleton,

that is Mi(b−i) = {āi(b−i)}, for any b−i ∈ B−i.

Define the following vector function

b̄(b) = (b̃1(ā1(b−1), b−1), . . . , b̃k(āk(b−k), b−k)), (4.45)

for any b ∈ B, where the i-th component of b̄ corresponds to the optimal

reaction of the follower Fi to the optimal reaction of the leader Li given the

parameter b−i.

Lemma 4.5.1. Any fixed point of b̄ on B can be associated to an equilibrium

under passive beliefs of the two–stage game Γ with vertical separation, and

vice versa.
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Proof. Let b∗ = (b∗1, . . . , b
∗
k) be a fixed point of b̄ on B. Then, accord-

ing to the definition, we have b∗i = b̃i(āi(b
∗
−i), b

∗
−i), for i = 1, . . . , k. So,

taken a∗i = āi(b
∗
−i), the strategy profile (a∗1, . . . , a

∗
k, β1

∗, . . . , β∗
k) is an equilib-

rium under passive beliefs, where β∗
i is a function from Ai to Bi such that

βi
∗(ai) = b̃i(ai, b

∗
−i) for any ai ∈ Ai and i = 1, . . . , k.

Vice versa, one can easily verify that if (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) is an equilib-

rium under passive beliefs, then (β∗
1(a

∗
i ), . . . , β

∗
k(a

∗
k)) is a fixed point of b̄ on

B. ⋄

Now, let us give a preliminary result on the function āi.

Proposition 4.5.2. Let i = 1, . . . , k. Assume (Ii), (Ji), (ALi
2), (ALi

5),

(ALi
7), (AFi

2), (AFi
3), (AFi

5). Then the function āi is continuous on

B−i.

Proof. From Proposition 4.4.7, b̃i is continuous on Ai × B−i and, from the

proof of Proposition 4.4.9, Mi is a closed single–valued map. This fact,

together with the compactness of Ai, gives the thesis. ⋄

Finally, we can state:

Theorem 4.5.3. Assume, for i = 1, . . . , k:

(Ii) the reaction set B̃i(ai, b−i) of Fi is a singleton, that is B̃i(ai, b−i) =

{b̃i(ai, b−i)}, for any (ai, b−i) ∈ Ai × B−i;

(Ji) Mi(b−i) is a singleton, that is Mi(b−i) = {āi(b−i)}, for any b−i ∈ B−i;

(ALi
1) Ai is a nonempty compact convex subset of Rni;

(ALi
2) li is a real–valued upper semicontinuous function on Ai × B ×R;

(ALi
7) li(ai, ·, ·, ·) is lower semicontinuous on Bi × B−i × R, for any

ai ∈ Ai;

(AFi
1) Bi is a nonempty compact convex subset of Rmi;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;
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4. Selection of equilibria for two-stage games with vertical separation: existence results

(AFi
3) for any (ai, bi, b−i) ∈ Ai ×B, for any sequence ((ai,n, b−i,n))n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such

that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i).

Then, there exists an equilibrium under passive beliefs of the two–stage

game Γ with vertical separation.

Proof. The function b̄ satisfies the hypothesis of the Brouwer Theorem (The-

orem A.2.2 in the Appendix). Indeed, from propositions 4.4.7 and 4.5.2, b̄ is

continuous on B, with B compact and convex, so there exists a fixed point of

b̄ on B. Then, from Lemma 4.5.1, there exists an equilibrium under passive

beliefs of the two–stage game with vertical separation. ⋄

4.5.2 In case of nonuniqueness of the leader’s optimal

reaction

Assume that (Ii) is satified for any i = 1, . . . , k, where:

(Ii) the reaction set B̃i(ai, b−i) = Argmaxbi∈Bi
fi(ai, bi, b−i) of Fi is a sin-

gleton, that is B̃i(ai, b−i) = {b̃i(ai, b−i)}, for any (ai, b−i) ∈ Ai × B−i.

Let Mi be the set–valued map from B−i to Ai defined in (4.35); that is

Mi(b−i) = Argmax
ai∈Ai

li(ai, b̃i(ai, b−i), b−i, vi(ai, b−i)),

for any b−i ∈ B−i and for i = 1, . . . , k.

We define the set–valued map Ei from B−i to Bi such that:

Ei(b−i) = {b̃i(ai, b−i) | ai ∈Mi(b−i)}. (4.46)

Let

E(b) =
k
∏

i=1

Ei(b−i). (4.47)
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Lemma 4.5.4. Any fixed point of the set valued–map E on B can be asso-

ciated to an equilibrium under passive beliefs of the two–stage game Γ with

vertical separation, and vice versa.

Proof. Let b∗ = (b∗1, . . . , b
∗
k) be a fixed point of E on B. According to

the definition of E, there exists a∗i ∈ Mi(b
∗
−i) such that b∗i = b̃i(a

∗
i , b

∗
−i),

for i = 1, . . . , k. Then, the strategy profile (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k), where

β∗
i (ai) = b̃i(ai, b

∗
−i) for any ai ∈ Ai, for i = 1, . . . , k, is a vertical separated

equilibrium under passive beliefs. Vice versa, if (a∗1, . . . , a
∗
k, β

∗
1 , . . . , β

∗
k) is a

vertical separated equilibrium under passive beliefs, then one can easily verify

that (β∗
1(a

∗
i ), . . . , β

∗
k(a

∗
k)) is a fixed point of E on B. ⋄

The next proposition shows that if Mi is a convex–valued and closed

set–valued map then there exists an equilibrium under passive beliefs of Γ.

Proposition 4.5.5. Let i = 1, . . . , k. Assume, for i = 1, . . . , k, (Ii), (ALi
1),

(ALi
2), (ALi

7), (AFi
1)–(AFi

3). If Mi is convex–valued, for any i =

1, . . . , k, then the set–valued map E has a fixed point on B.

Proof. It is a direct consequence of Theorem 3.2.1. Indeed, from Proposi-

tion 4.4.7 we have that b̃i is continuous on Ai×B−i, for i = 1, . . . , k. So, also

the function b̃ : A× B → B defined by b̃(a, b) = (b̃1(a1, b−1), . . . , b̃k(ak, b−k))

is continuous on A × B. From a result in Proposition 4.4.9, we have that

Mi is a closed set–valued map and, being Ai compact, it is also compact–

valued, for i = 1, . . . , k. Defined the set–valued map M : B ⇒ A as M(b) =
∏k

i=1Mi(b−i), we obtain thatM is closed and with nonempty compact convex

values. So, we have the thesis if we observe that:

E(b) = {b′ ∈ B : b′i ∈ Ei(b−i), for i = 1, . . . , k}

= {b′ ∈ B : ∃ai ∈Mi(b−i) s.t. b′i = b̃i(ai, b−i), for i = 1, . . . , k}

= {b̃(a, b) : a ∈M(b)}.

⋄
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So, in the following we consider explicit classes of problems and we inves-

tigate conditions under which Mi is convex–valued.

Assume in this section that the actions sets of the followers are subsets

of R.

Proposition 4.5.6. Let i = 1, . . . , k. Assume that (Ii) is satisfied. Let Ai

be a nonempty compact convex subset of Rni and Bi be a nonempty compact

convex subset of R. Let b−i ∈ B−i and assume that li(·, ·, b−i, ·) is quasi-

concave on Ai × Bi × R and li(ai, ·, b−i, ·) is componentwise nondecreasing

(nonincreasing) on Bi×R. Moreover, assume that b̃i(·, b−i) and vi(·, b−i) are

concave (convex) on Ai.

Then, the function l̃i(·, b−i) defined in (4.32) is quasiconcave on Ai and

Mi(b−i) is a convex set.

Proof. The quasiconcavity of l̃i(·, b−i) follows from Proposition 2.1.27. Then,

from Proposition 2.1.3, Mi(b−i) is convex. ⋄

By application of the new result Theorem 3.1.1, the following theorem

gives an existence result using the concavity of b̃i(·, b−i).

Theorem 4.5.7. Assume, for i = 1, . . . , k:

(ALi
1) Ai is a nonempty compact convex subset of Rni;

(ALi
2) li is a real–valued upper semicontinuous function on Ai × B× R;

(ALi
7) li(ai, ·, ·, ·) is lower semicontinuous on Bi × B−i × R, for any

ai ∈ Ai;

(ALi
9) li(·, ·, b−i, ·) is quasiconcave on Ai × Bi × R, for any b−i ∈ B−i;

li(ai, ·, b−i, ·) is componentwise nondecreasing on Bi × R, for any (ai, b−i) ∈

Ai × B−i;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;

(AFi
3) for any (ai, bi, b−i) ∈ Ai ×B, for any sequence ((ai,n, b−i,n))n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such
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that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i);

(AFi
10) Bi is a nonempty compact interval of R;

(AFi
11) fi(·, ·, b−i) is concave on Ai × B−i, for any b−i ∈ B−i;

(AFi
12)






























fi(ai, ·, b−i) is strictly D–pseudoconcave on Bi,

for any (ai, b−i) ∈ int(Ai)× B−i;

Dfi(·, ·, b−i) is quasiconcave on Ai × Bi for any b−i ∈ B−i;

D+fi(ai, ·, b−i)(minBi) > 0, for any ai ∈ Ai.

Then, there exists an equilibrium under passive beliefs of the two–stage

game Γ with vertical separation.

Proof. First, observe that assumption (Ii) on the uniqueness of values of B̃i

is not necessary. Indeed, it follows from Proposition 2.1.22.

Then, the result follows from Proposition 4.5.5 and the fact that, by applica-

tion of Proposition 2.1.24, Mi is convex–valued. Indeed, from Theorem 3.1.1,

we have that b̃i(·, b−i) is concave on Ai, for any b−i ∈ B−i. From Proposi-

tion 2.3.6 we have that vi(·, b−i) is concave on Ai, for any b−i ∈ B−i.

Then, from Proposition 4.5.6 we have the thesis.

⋄

Remark 4.5.8 As shown in Proposition 2.14, the assumption (AFi
11) is suf-

ficient for the concavity of the optimal value function vi(·, b−i) on Ai. If the

sets Ai and Bi are strictly convex, we can have the concavity of vi(·, b−i) if

we require fi(·, ·, b−i) concave on int(Ai)× int(Bi), as in Proposition 4.4.13.

We can obtain an alternative existence theorem changing assumptions

(ALi
9) and (AFi

11).
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Theorem 4.5.9. Assume, for i = 1, . . . , k:

(ALi
1) Ai is a nonempty compact convex subset of Rni;

(ALi
2) li is a real–valued upper semicontinuous function on Ai × B× R;

(ALi
7) li(ai, ·, ·, ·) is lower semicontinuous on Bi × B−i × R, for any

ai ∈ Ai;

(ALi
10) li(·, ·, b−i, ·) is quasiconcave on Ai × Bi × R, for any b−i ∈ B−i;

li(ai, ·, b−i, t) is nondecreasing on Bi, for any (ai, b−i, t) ∈ Ai × B−i × R

and li(ai, bi, b−i, ·) is nonincreasing on R, for any (ai, bi, b−i) ∈ Ai × B;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;

(AFi
3) for any (ai, bi, b−i) ∈ Ai ×B, for any sequence ((ai,n, b−i,n))n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such

that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i);

(AFi
10) Bi is a nonempty compact interval of R;

(AFi
12)































fi(ai, ·, b−i) is strictly D–pseudoconcave on Bi,

for any (ai, b−i) ∈ int(Ai)× B−i;

Dfi(·, ·, b−i) is quasiconcave on Ai × Bi for any b−i ∈ B−i,

D+fi(ai, ·, b−i)(minBi) > 0, for any ai ∈ Ai;

(AFi
13) fi(·, bi, b−i) is convex on Ai, for any (bi, b−i) ∈ B.

Then, there exists an equilibrium under passive beliefs of the two–stage

game Γ with vertical separation.

Proof. It is similar to the proof of Theorem 4.5.7. The only difference is that

from Proposition 2.3.7, vi(·, b−i) is convex on Ai, for any b−i ∈ B−i. Then

the result follows from Proposition 2.1.25. ⋄
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Remark 4.5.10 Note that condition (AFi
13) is not incompatible with (AFi

12).

Indeed, a function f : I ⊆ R → R may be both strictly D–pseudoconcave

and convex on I. Consider, for example, the exponential function f(x) = ex.

Example 4.5.1 In the following we give an example of follower’s payoff

function which satisfies the assumption in Theorem 4.5.7. Let Ai = Bi =

Bj = [0, 1] and

fi(ai, bi, bj) =







−b2i + 2bi if bi ≤
1
2
(1− ai+bj

2
)2

−(ai + bj)bi otherwise.

for i, j = 1, 2 and j 6= i. Then, f satisfies assumptions (AFi
2), (AFi

3) and

(AFi
12).

(AFi
2) for any (ai, bi, bj) such that bi >

1

2
(
ai+bj

2
−1)2 or bi <

1

2
(
ai+bj

2
−1)2 it is obvious.

Let bi =
1

2
(
ai+bj

2
− 1)2 and ((ai,n, bi,n, bj,n))n a sequence converging to (ai, bi, bj).

Then if there exists a set of index N1 ⊆ N with cardinality infinite such that

bi,n ≤ 1

2
(
ai,n+bj,n

2
−1)2, then fi(ai,n, bi,n, bj,n) = −b2i,n+2bi,n, for each n ∈ N1 that is

limn→+∞

n∈N1

f(ai,n, bi,n, bj,n) = f(ai, bi, bj); otherwise lim supn→+∞
f(ai,n, bi,n, bj,n) <

f(ai, bi, bj).

(AFi
3) Let (ai, bi, bj) and ((ai,n, bj,n))n a sequence converging to (ai, bj). Again, it is

sufficient to discuss only the case bi = 1

2
(
ai+bj

2
− 1)2. So, let bi = 1

2
(
ai+bj

2
− 1)2

and take bi,n = 1

2
(
ai,n+bj,n

2
− 1)2 ∈ [0, 1

2
]. Then, fi(ai,n, bi,n, bj,n) = −b2i,n + 2bi,n

for each n ∈ N and limn→+∞ fi(ai,n, bi,n, bj,n) = −b2i + 2bi = fi(ai, bi, bj).

(AFi
12)

D
+

1 fi(ai, bi, bj) =



















−2bi + 2 if 0 ≤ bi <
1

2
(1− ai+bj

2
)2,

−∞ if bi =
1

2
(1− ai+bj

2
)2,

−(ai + bj) if 1

2
(1− ai+bj

2
)2 < bi < 1.

D−

1 fi(ai, bi, bj) =







−2bi + 2 if 0 < bi ≤
1

2
(1− ai+bj

2
)2,

−(ai + bj) if bi >
1

2
(1− ai+bj

2
)2.

(4.48)

Let (ai, bj) ∈ Ai × Bj . Let b̄i, b̃i ∈ Bi and assume, for sake of simplicity, b̄i < b̃i.

If b̃i ≤
1

2
(1 − ai+bj

2
)2, then fi(ai, b̄i, bj) < fi(ai, b̃i, bj) and D

+

1 fi(ai, b̄i, bj) > 0. If

b̃i >
1

2
(1− ai+bj

2
)2 then fi(ai, b̄i, bj) > fi(ai, b̃i, bj) and D−

1 fi(ai, b̃i, bj) < 0, that is

fi strictly D–pseudoconcave on Bi, for each (ai, bj) ∈ Ai ×Bj .
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From (4.48), it follows that D
−

1 fi(ai, bi, bj) is quasiconcave on Bi. Instead of (AFi
11),

fi(·, bi, bj) is convex on Ai, as required in Remark 4.5.8. ⋄

Moreover, consider the case in which the payoff function of a leader de-

pends only on the strategies of the followers, that is, for i = 1, . . . , k:

(Ki) the payoff function li of Li is defined on Bi × B−i.

Furthermore, suppose that the actions sets of both leaders and followers

are subsets of R. In this simplified case, mild assumptions guaranties that

an equilibrium exists.

Theorem 4.5.11. Assume, for i = 1, . . . , k:

(ALi
11) Ai is a nonempty compact convex subset of R;

(ALi
12) li is a real–valued continuous function on Bi × B−i;

(ALi
13) li(·, b−i) is quasiconcave on Bi, for any b−i ∈ B−i;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;

(AFi
3) for any (ai, bi, b−i) ∈ Ai ×B, for any sequence ((ai,n, b−i,n))n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such

that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i);

(AFi
10) Bi is a nonempty compact interval of R;

(AFi
14) fi(ai, ·, bi) is strictly D–pseudoconcave on Bi, for any (ai, b−i) ∈

Ai × B−i and Dfi(·, bi, b−i) is isotone on Ai, for all b ∈ B;

Then, there exists an equilibrium under passive beliefs of the two–stage

game Γ with vertical separation.

Proof. As in Theorem 4.5.7, assumption (Ii) on the uniqueness of values of B̃i

is not necessary. From Proposition 3.1.4 we have that the function b̃i(·, b−i)
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is nondecreasing on Ai, for any b−i ∈ B−i. Then, from Proposition 2.3.9 it

follows that b̃i, considered as a set–valued map, is quasiconvex. Thus, from

Proposition 2.3.8, we obtain that l̃i is a quasiconcave function on Bi. So, Mi

is convex–valued. Then, from Proposition 4.5.5, we have the thesis. ⋄

4.5.3 In case of nonuniqueness of the follower’s optimal

reaction

In the last part of this chapter we do not require the assumption (Ii) about

the uniqueness of solutions to followers’ parametric Optimization problems

but we consider the case in which the payoff function of any leader depends

on the action of the corresponding follower only through the optimal value

function, that is we have li(ai, b−i, vi(ai, b−i)).

So, in this section we assume for i = 1, . . . , k:

(Hi) the payoff function li of Li is defined on Ai × B−i ×R.

In this case we can extend in a natural way the characterization given in

the previous subsection when the optimal reaction B̃i defined on Ai × B−i

by B̃i(ai, b−i) = Argmaxbi∈Bi
fi(ai, bi, b−i) is not single–valued.

For any i = 1, . . . , k we define the set–valued map Ei from B−i to Bi by:

Ei(b−i) = ∪ai∈Mi(b−i)B̃i(ai, b−i),

where Mi(b−i) = Argmaxai∈Ai
li(ai, b−i, vi(ai, b−i)). So, with the same argu-

ments given before, an equilibrium under passive beliefs is associated to a

fixed point of the set–valued map

E =
k
∏

i=1

Ei, (4.49)

and vice versa.

In the following theorem we prove an existence result using Theorem 3.2.3,

a new fixed point theorem proved in Section 3.2.
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Theorem 4.5.12. Assume, for i = 1, . . . , k:

(ALi
1) Ai is a nonempty compact convex subset of Rni;

(ALi
14) li is a real–valued upper semicontinuous function on Ai×B−i×R;

(ALi
15) li(ai, ·, ·) is lower semicontinuous on B−i ×R, for any ai ∈ Ai;

(ALi
16) li(·, b−i, ·) is quasiconcave on Ai × R, for any b−i ∈ B−i and

li(ai, b−i, ·) is nondecreasing on R, for any (ai, b−i) ∈ Ai × B−i;

(AFi
1) Bi is a nonempty compact convex subset of Rmi;

(AFi
2) fi is a real–valued upper semicontinuous function on Ai × B;

(AFi
3) for any (ai, bi, b−i) ∈ Ai ×B, for any sequence ((ai,n, b−i,n))n con-

verging to (ai, b−i) in Ai × B−i, there exists a sequence (b̂i,n)n in Bi such

that:

lim inf
n→∞

fi(ai,n, b̂i,n, b−i,n) ≥ fi(ai, bi, b−i);

(AFi
11) fi(·, ·, b−i) is concave on Ai × B−i, for any b−i ∈ B−i;

Then, there exists an equilibrium under passive beliefs of the two–stage

game Γ with vertical separation.

Proof. From a result in Theorem 4.3.1 we have that B̃i is a closed set–valued

map and the optimal value function vi is continuous on Ai×B−i. Define the

set–valued map B̃ : A × B ⇒ B such that B̃(a, b) =
∏k

i=1 B̃i(ai, b−i). Then,

B̃ is a closed set–valued map. With the same arguments used in the proof of

Proposition 4.4.9 we obtain that the set–valued map Mi is closed. Then the

set–valued map M defined by M(b) =
∏k

i=1Mi(b−i), for any b ∈ B, is closed.

From Proposition 2.3.6, vi(·, b−i) is concave on Ai, for any b−i ∈ B−i. From

Proposition 2.1.27, it follows that l̃i(·, b−i) is quasiconcave on Ai, for any b−i ∈

B−i, for i = 1, . . . , k, that is M is convex–valued. Then, from Theorem 3.2.3,

we obtain that the set–valued map E defined in (4.49) has a fixed point on

B. Then there exists an equilibrium under passive beliefs of Γ. ⋄
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Appendix A

Basic Preliminaries

In this appendix we recall basic concepts and results on Euclidean spaces

and Real and Concave analysis that are used in this thesis. All the material

in this chapter is based mainly on Berge [6], Kelley and Namioka [36], Kelley

[35], Mangasarian [57], Bourbaki [10, 11], Klein [37], Rudin [77, 76].Cambini

and Martein [15].

A.1 The Euclidean Space R
n

Having in mind applications to economic problems, we will restrict our at-

tention to finite dimension spaces. In particular, we limit the attention to

the space R
n, where with R we indicate the set of real numbers.

The set Rn can be endowed with the addition operator +: Rn×R
n
⇒ R

n

defined by

x+ y = (x1 + y1, . . . , xn + yn).

Denoted with · the function · : R×R
n
⇒ R

n such that for any a ∈ R and

x ∈ R
n:

a·x = (a · x1, . . . , a · xn)

R
n with these two operations is a vector space (or else linear space) on R.

Let us denote with 〈·, ·〉 a function defined on R
n×R

n to R, called inner

scalar product, defined by 〈x, y〉 =
∑n

i=1 xiyi, for any x, y ∈ R
n.
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A. Basic Preliminaries

Denoted with d the real–valued function defined on R
n × R

n such that

d(x, y) = (〈x − y, x − y〉)1/2, d is called Euclidean distance. The Euclidean

distance satisfies the following properties:

(i) d(x, y) = d(y, x);

(ii) (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z);

(iii) d(x, y) = 0 if and only if x = y;

for all points x, y, z ∈ R
n.

The function ‖·‖ : Rn → R defined by ‖x‖ = (〈x, x〉)1/2 = d(x, x) is called

Euclidean norm. The norm function satisfies the following properties:

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

(ii) ‖a · x‖ = |a|‖x‖,

(iii) ‖x‖ = 0 if and only if x = 0,

for all x, y ∈ R
n and a ∈ R. A real coordinate space together with this

Euclidean structure is called Euclidean space.

The open ball of radius r > 0 and centered in x0 ∈ R
n is the subset of

R
n defined by:

B(x0; r) = {x ∈ R
n : d(x, x0) < r}. (A.1)

Given E ⊆ R
n and ǫ > 0, we define the set:

Uǫ(E) = ∪x∈EB(x; ǫ). (A.2)

Let E ⊆ R
n and x ∈ R

n. We denote by

d(x,E) = inf
y∈E

d(x, y) (A.3)

the distance from the point x to the set E and, also, if F ⊆ R
n we define the

distance between the two sets E and F as

d(E,F ) = inf
x∈E

d(x, F ). (A.4)

A set A ⊆ R
n is said to be open if for any x ∈ A there exists an open ball

B(x; r) centered in x such that B(x; r) ⊆ A. The sets R
n and ∅ are open
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sets. Furthermore, the union of members of an arbitrary family of open sets

is open and the intersection of a finite family of open sets is open.

A subset U of Rn is a neighborhood of a point x ∈ R
n if U contains an open

set that contains x. A set X is open if and only if it contains a neighborhood

of any of its point.

A subset C of Rn is closed if its complement Rn \C is open, where R
n \C

is the set of all elements of Rn that are not in C. The sets R
n and ∅ are

closed sets. Furthermore, the union of a finite number of closed sets is closed

an the intersection of the members of an arbitrary family of closed sets is

closed.

A point x is an accumulation point (or cluster point) of a set E ⊆ R
n if every

neighborhood of x contains points of E besides x.

A subset of Rn is closed if and only if it contains the set of its accumulation

points.

The closure of a set E ⊆ R
n, denoted with E, is the union of the set and

the set of its accumulation points. So, for any E ⊆ R
n, we have E ⊆ E and

C closed ⇔ C = C.

Equivalently, the closure of E is the intersection of the members of the family

of all closed sets containing E.

A point x of a set E ⊆ R
n is an interior point of E if E is a neighborhood

of x; the set of all the interior points of E is the interior of E and it is denoted

by int(E). So, for any E ⊆ R
n, we have E ⊇ int(E) and

A open ⇔ A = int(A).

Equivalently, the interior of E is the union of the members of the family of

all open sets contained in E.

The set of the points of E which are interior to neither E nor Rn \E are

in the boundary of E, denoted by ∂E.

A set is closed if and only if it contains its boundary; it is open if and

only if it is disjoint from its boundary.
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A sequence of points of Rn is a function x̃ : N → R
n. Placing xn = x̃(n),

we denote the sequence with (xn)n. Let (xn)n be a sequence in R
n and N1

be a countably infinite subset of N. Then, the sequence (xn)n∈N1
is said to

be a subsequence of (xn)n.

A sequence (xn)n converges to a point x in R
n if for any neighborhood

U of x there exists a n0 ∈ N
+ such that

xn ∈ U, for any n > n0.

Equivalently, sequence (xn)n in R
n converges to a point x in X if for every

ǫ > 0 there exists a n̄ ∈ N such that, for every n ∈ N, d(xn, x) < ǫ, that is

the sequence of real numbers (d(xn, x))n converges to zero.

Any sequence (xn)n converging in R
n has a unique limit. The limit of a

convergent sequence (xn)n in R
n coincides with the limit of any subsequence

extract from (xn)n.

Convergence in the product space is called coordinatewise convergence: a se-

quence ((xn, yn))n converges to (x, y) in R
n×R

m if and only if (xn)n converges

to x in R
n and (yn)n converges to y in R

m.

Let (xn)n∈N be a sequence of real numbers. Let E be the set defined as:

E = {x ∈ R : ∃ (xn)n∈N1
, with N1 countably infinite , s. t. lim

n→+∞
n∈N1

xn = x}

. We define the upper limit lim supn→+∞ xn of (xn)n∈N as:

lim sup
n→+∞

xn = supE, (A.5)

where with supE we denote the supremum of E, that is x̄ = supE, if x̄ ≥ x,

for any x ∈ E, and for any ǫ > 0 there exists a x ∈ E such that x ≥ x̄− ǫ (x̃

is said to be the maximum of E, that is x̃ = maxE, if x̃ ∈ E and x̃ ≥ y, for

any y ∈ E).

In analogous way, we define the lower limit lim infn→+∞ xn of (xn)n∈N as:

lim inf
n→+∞

xn = inf E, (A.6)
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where with inf E we denote the infimum of E, that is x̄ = inf E, if x̄ ≤ y,

for any y ∈ E, and for any ǫ > 0 there exists a x ∈ E such that x ≤ x̄+ ǫ (x̃

is said to be the minimum of E, that is x̃ = minE, if x̃ ∈ E and x̃ ≤ y, for

any y ∈ E).

It can be proved that the following characterization holds:

Proposition A.1.1. Let (xn)n be a sequence of real numbers. Then x̄ is the

upper limit of (xn)n if and only if the following properties hold:

(i) for any ǫ > 0 there exists an n̄ > 0 such that xn < x̄+ ǫ for any n ≥ n̄;

(ii) for any ǫ > 0 and n ∈ N, there exists an integer k > n such that

xk > x̄− ǫ.

Analogously for the lower limit.

For every sequence of real numbers (xn)n the following properties are

satisfied:

(i) lim infn→+∞ xn ≤ lim supn→+∞ xn;

(ii) lim supn→+∞ (−xn) = − lim infn→+∞ xn;

(iii) (xn) converges if and only if:

lim inf
n→+∞

xn = lim sup
n→+∞

xn = lim
n→+∞

xn;

(iv) if (yn) is a sequence of real numbers we have:

lim sup
n→+∞

(xn + yn) ≤ lim sup
n→+∞

xn + lim sup
n→+∞

yn

lim inf
n→+∞

(xn + yn) ≥ lim inf
n→+∞

xn + lim inf
n→+∞

xn.

If E ⊆ R
n, a point x is an accumulation point for E if and only if there

exists a sequence (xn)n of points in E converging to x. Then, a subset C of

X is closed if and only if the limit of any converging sequence (xn) of points

of C is in C; that is if (xn)n is a sequence in C that converges to x then

x ∈ C.
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A subset K of Rn is compact if any cover by open set has a finite subcover,

that is, for every arbitrary collection of open sets (Ui)i∈I such that K ⊆

∪i∈IUi, there exists a finite set J ⊆ I such that K ⊆ ∪j∈JUj.

If K is compact, then it can be shown that every infinite subset of K has

an accumulation point.

Let K be a compact subset of Rn and C a closed subset of K. Then C

is compact.

A set K is sequentially compact if any sequence of points in K has a

subsequence which converges to a point in K.

In R
n the notions of compactness and sequential compactness are equiv-

alent.

The product of compact subsets of Euclidean spaces is compact sets.

A subset X of Rn is said to be bounded if there exists a r > 0 and x ∈ R
n

such that X ⊆ B(x; r).

A subset X of Rn is a compact set if it is a closed and bounded set.

A.2 On Continuous and Semicontinuous Func-

tions

Let X and Y be subset of R
n and R

m, respectively. Then a function f

from X to Y (f : X → Y ) is continuous at a point x of X if the inverse

image of any neighborhood of f(x) is a neighborhood of x. The function f

is continuous if f is continuous at any point x in X, or, equivalently, if and

only if the inverse of any open subset A of Y is a open subset of X, that is

if f−1(A) = {x ∈ X : f(x) ∈ A} is open.

Equivalently, the continuity property can be stated in sequential terms.

Proposition A.2.1. Let X and Y be subsets of Rn and R
m, respectively. A

function f : X → Y is continuous at x ∈ X if for any sequence (xn)n in X

converging to x, the sequence (f(xn))n converges to f(x) in Y .

Let X and Y be subsets of Rn and R
m, respectively, and f be a function
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defined on the product space X × Y to Z ⊆ R
r. Then f is continuous at x

(resp. y) if for any y ∈ Y (resp. x ∈ X) the function f(·, y) (resp. f(x, ·)),

whose value at x (resp. y) is f(x, y) , is continuous at x (resp. y). If f is

continuous on the product space, then f is continuous both in x and y, but

the converse is no longer true. For example, consider the function f defined

on R
2 such that f(x, y) = xy

x2+y2
for any (x, y) 6= (0, 0) and f(0, 0) = 0.

The graph of a function f : X → Y is the subset of X × Y of all pairs

(x, f(x)) such that x ∈ X:

Graph f = {(x, y) ∈ X × Y : y = f(x)}.

Let X and Y be subsets of R
n and R

m, respectively, and f : X → Y

be continuous. Then, Graph f is a closed subset of R
n × R

m. The vice

versa is not always true. For example consider the function defined on R by

f(x) =







1
x
, if x 6= 0,

0, otherwise.

Let us report a result on continuous functions that will be used in Chap-

ter 4.

Theorem A.2.2 (Brouwer Fixed Point Theorem). Let f be a continuous

function from a nonempty compact convex set X ⊆ R
n to itself. Then f has

a fixed point, that there exists a point x∗ ∈ X such that x∗ = f(x∗).

A function f from X ⊆ R
m to R is also said to be a real–valued function.

A function f from X ⊆ R
m to R, where R = R ∪ {−∞} ∪ {+∞}, is said to

be an extended real–valued function.

The Euclidean norm, the Euclidean distance and the inner scalar product

are real–valued continuous functions.

A real–valued function f is continuous at x ∈ X if and only if the two

conditions holds:

(i) for any ǫ > 0 there exists a δ > 0 such that for all y ∈ X such that

d(x, y) < δ we have f(x)− f(y) < ǫ;
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(ii) for any ǫ > 0 there exists a δ > 0 such that for all y ∈ X such that

d(x, y) < δ we have f(x)− f(y) > −ǫ;

Requiring only one of the above conditions at a time we obtain two con-

cepts weaker than continuity that are called in literature lower and upper

semicontinuity.

More precisely:

Definition A.2.3

A real–valued function f defined on X ⊆ R
n is upper semicontinuous at

x ∈ X if for any ǫ > 0 there exists a δ > 0 such that, for any y ∈ X such that

d(x, y) < δ we have f(x)− f(y) < ǫ. The function f is upper semicontinuous

if f is upper semicontinuous at every point of X.

A real–valued function g defined on X ⊆ R
n is lower semicontinuous at

x ∈ X if −g is upper semicontinuous at x, that is if for any ǫ > 0 there exists

a δ > 0 such that, for any y ∈ X such that d(x, y) < δ we have f(x)−f(y) >

−ǫ; g is lower semicontinuous in X if −g is upper semicontinuous.

So, a function f is continuous if and only if it is upper and lower semi-

continuous.

The notion of semicontinuity can be formulated in a sequential way, using

the upper and the lower limit.

Figure A.1: A lower

semi–continuous

function on R

Figure A.2: An up-

per semi–continuous

function on R

Figure A.3: A neither

upper nor lower semi–

continuous function

on R
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Figure A.4: f(x) =

{

x if x 6= 1
1/2 if x = 1

is a lower semi–continuous function

on R

Figure A.5: f(x) =

{

x2 if x 6= 0
1/2 if x = 0

is a upper semi–continuous function

on R

Proposition A.2.4. A real–valued function f defined on X ⊆ R
n is upper

semicontinuous (resp. lower semicontinuous) at x if for any sequence (xn)n

in X converging to x in X, we have:

lim sup
n→+∞

f(xn) ≤ f(x)

(

resp. lim inf
n→+∞

f(xn) ≥ f(x)

)

.

Let f be a real–valued function defined on X ⊆ R. Then, f is bounded

from below (resp. bounded from above) if there exists a number α such that

f(x) ≥ α (resp. f(x) ≤ α) for any x ∈ X. The number α is said to be an

upper bound (resp. lower bound) of f on X.

If there exists a lower bound (resp. upper bound) ᾱ of f on X such that

for any ǫ > 0 there exists an element x ∈ X such that f(x) ≤ ᾱ + ǫ (resp.

f(x) ≥ ᾱ− ǫ), then ᾱ is said to be the infimum (resp. supremum) of f on X

and we write ᾱ = infx∈X f(x) (resp. ᾱ = supx∈X f(x)). If the function f is

not bounded from below (resp. from above) then infx∈X f(x) = −∞ (resp.

supx∈X f(x) = +∞).

Let f be a real–valued function defined on X ⊆ R
n. If there exists an

x̄ ∈ X such that f(x̄) ≤ f(x) (resp. f(x̄) ≥ f(x)), for any x ∈ X then x̄ is

said to be a global minimum point (resp. global maximum point) of f on X
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and f(x̄) is said to be the minimum value, or else for short minimum, (resp.

maximum value) of f on X. We write:

f(x̄) = min
x∈X

f(x) (resp. f(x̄) = max
x∈X

f(x)) (A.7)

and

x̄ ∈ Argmin
x∈X

f(x) (resp. x̄ ∈ Argmax
x∈X

f(x)). (A.8)

Let us emphasize that not every real–valued function has a minimum

(resp. maximum) point. Moreover, a minimum (resp. maximum) value, if

it exists, must be finite and coincide with the infimum (resp. supremum) of

the function.

Furthermore, a point x̄ ∈ X is said to be a local minimum point (resp.

local maximum point) for f on X if there exists a open ball B(x̄; r) such that

f(x̄) ≤ f(x) (resp. f(x̄) ≥ f(x)), for any x ∈ B(x̄; r) ∩X.

A global minimum point is also a local one, the vice versa is not true.

Semicontinuous functions are useful in optimization for the existence of

a minimum and a maximum value. That is:

Theorem A.2.5 (Generalized Weierstrass Theorem). A lower (resp. upper)

semicontinuous function f defined on a nonempty compact set X ⊆ R
n has

a minimum (resp. maximum); that is, there exists x̄ ∈ X such that, for any

x ∈ X, f(x̄) ≤ f(x) (resp. f(x̄) ≥ f(x)).

Differentiable real–valued functions

Let f be a real–valued function defined on an open set X ⊆ R
n. The i–th

partial derivative at x̄ ∈ X is:

∂f

xi
(x̄) = lim

t→+∞

f(x̄+ tei)− f(x̄)

t

if the limit exists, where ei is the n–tuple that has all components equal

to zero, except the i–th that is equal to 1. Assuming that all the partial

derivatives exist at x ∈ X, then the gradient of f at x̄ is the n-tuple ∇f(x̄) =
(

∂f
x1
(x̄), . . . , ∂f

xn
(x̄)

)

.
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The function f is said to be differentiable at x̄ ∈ X if there exists a linear

function A : X → R such that

lim
h→o
h∈Rn

‖f(x̄+ h)− f(x̄) + A(h)‖

‖h‖
= 0

A function f is differentiable on X if it is differentiable at x, for any x ∈ X.

A.3 On Concave Functions

Convexity and concavity of a function play an important role in economic

problems, in particular in problems that are formulated in terms of optimiza-

tion tools.

Definition A.3.1

A subset X of Rn is said to be convex if λx + (1− λ)y ∈ X, for any x, y in

X and for any λ ∈ [0, 1]; that is the closed line segment joining two points

of X is included in X.

Definition A.3.2

Let X be a convex subset of R
n. A real–valued function (resp. extended

real–valued function) f defined on X is said to be concave if for any x, y in

X (resp. x, y ∈ X such that f(x) > −∞, f(y) > −∞) and any λ ∈ [0, 1]

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y). (A.9)

A real–valued function (resp. extended real–valued function) f defined on X

is said to be strictly concave if for any x, y in X (resp. x, y ∈ X such that

f(x) > −∞, f(y) > −∞) with x 6= y and any λ ∈]0, 1[

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y). (A.10)

(A.11)
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A real–valued function f , defined on X, is convex (resp. strictly convex ) in

S if −f is concave (resp. strictly concave) in S.

An extended real–valued function f , defined on X, is convex (resp. strictly

convex ) in S if −f is concave (resp. strictly concave) in S.

Definition A.3.3

A real–valued function f : X ⊆ R
n → R such that f(x) = 〈a, x〉 + α, where

a ∈ R
n and α ∈ R, is a linear affine function. It is both convex and concave.

Let us summarize some properties.

Proposition A.3.4. Let f be a real–valued function defined on a convex set

X ⊆ R
n. Then, the following results hold:

(i) If f is concave then every local maximum point for f on X is a global

maximum point of f on X.

(ii) If f is concave then the set Argmaxx∈X f(x) = {x̄ ∈ X : f(x̄) =

maxx∈X f(x)} is convex.

(iii) Let x̄ be a global maximum point of f on X. If f is strictly concave,

then x̄ is the unique global maximum point.

(iv) f is concave (resp. convex) if and only if the hypograph

hyp(f) = {(x, y) ∈ X × Y ×R : f(x) ≥ y} (A.12)

(resp. epigraph epi(f) = {(x, y) ∈ X × Y ×R : f(x) ≤ y}) is a convex

subset of Rn+1.

(v) f is concave if and only if for any x1, x2 ∈ X the function φ(t) =

f(tx1 + (1− t)x2) is concave on the segment [0, 1].

(vi) If X is open and f is concave on X, then f is continuous on X.

(vii) If f is a concave function and λ ≥ 0, then the function λf is also a

concave function. If f1 and f2 are concave functions defined on X, then

the function f1 + f2 is also concave.
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(viii) Let (fi)i∈I be a collection of concave functions defined on X, with I

finite or infinite. Let

f̃(x) = inf
i∈I

fi(x)

for any x ∈ X. Then, the function f̃ is concave on X.

X

Figure A.6: The hypograph of a con-

cave function

Λα

α

Figure A.7: The upper level set Λα

of a concave function

Corollary A.3.5. If f is concave on a convex set X ⊆ R
n, then, the set

Λα = {x ∈ R
n : f(x) ≥ α} called upper level set at height α (or else upper

contour set at height α) is convex, for any real number α.

If f is convex on X, then, the set Γα = {z ∈ R
n : f(x) ≤ α} called lower

level set at height α (or else lower contour set at height α) is convex, for

any real number α.

The last corollary give a necessary, but not sufficient condition for con-

cavity, as we see in Figure A.8, in which is represented the graph of a concave

function with convex lower level sets.

A differentiable function satisfies the following property:

Proposition A.3.6. Let f be a differentiable real–valued function defined on

an open convex set X ⊆ R
n. Then f is concave on X if and only if

f(x2)− f(x1) ≤ 〈∇f(x1), x2 − x1〉 for any x1, x2 ∈ X. (A.13)

107



A. Basic Preliminaries

α

Λα

Figure A.8: Each lower contour set of f is convex but f is not a convex

function

f is strictly concave if and only if the inequality in A.13 is strict for x1 6= x2.

As pointed out in [57], the above proposition can be interpreted geo-

metrically saying that for a differentiable concave function the linearization

f(x̄) + 〈∇f(x̄)(x− x̄)〉 at x̄ never underestimates f(x) for any x ∈ X.

Proposition A.3.7. Let f be a real–valued differentiable function on an

open convex set X ⊆ R
n. Then f is concave on X if and only if for any

x1, x2 ∈ X we have

〈∇f(x2)−∇f(x1), x2 − x1〉 ≤ 0; (A.14)

that is the operator ∇f is monotone on X, where a n-dimensional function g

defined on X ⊆ R
n is said to be monotone on X if 〈g(x2)−g(x1), x2−x1)〉 ≤ 0

for all x1, x2 ∈ X. f is strictly concave if and only if the inequality in A.14

is strict for x1 6= x2.

Finally, the following theorem states that for a concave function the first–

order necessary conditions for optimality are also sufficient:

Theorem A.3.8. Let f a differentiable concave function defined on a convex

set X ⊆ R. If ∇f(x∗) = 0 at a point x∗ ∈ X, then x∗ is a global maximum

point of f on X.
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