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Abstract 

The biorefinery is a system that uses as feedstocks biomasses and recover from these 

energy, fuel and chemicals. There are many processes considered in the biorefinery 

system, but in this thesis the biorefinery that uses as feedstock oil, in particular dedicated 

crops and waste vegetable oils were considered.  

In the first part of this thesis the biodiesel production process was studied.  

One possible route to produce biodiesel from waste oils (carachetrized by high 

concentrations of Free Fatty Acids, FFAs), is the use of a two steps process: an 

esterification reaction of FFAs with glycerol and a successive transesterification reaction 

with methanol of the whole mixture using a basic catalyst.  

In this thesis the esterification step of FFAs with glycerol, in presence of a new acid 

heterogeneous catalyst based on sulfonated polymers with enhanced temperature 

resistance, was studied. The use of this type of catalyst has the advantage of using a 

relatively high temperature favouring the reaction by stripping of water formed during 

the esterification  

The use of an acid catalyst that is able to tranesesterify the glycerides and to esterify the 

FFAs is onther way to obtained biodiesel from waste or non edible oils.  

In this thesis the reactions of contemporany esterification  of FFAs and tranesterification  

of glycerides  were studied using new homogeneous or supported homogneous  Zn(II) 

catalysts and a NbO2/SiO2  heterogeneous catalyst. The second part of this thesis was 

devoted to study of new catalysts for chlorination reaction of glycerol recovered from 

biodiesel production process.The behavior of three series of homologous catalysts, 

chloroacetic acid series (acetic acid, monochloroacetic, dichloroacetic and trichloroacetic 

acid), glycolic acid series (glycolic acid, di‐glycolic acid and thio‐glycolic acid) and 

amminoacid series (glutamic acid, aspartic acid and cysteine), were investigated for their 

activity and selectivity to produce dichlorohydrins, important intermediates for 

epichlorohydrin production. In the present study we  explored also a completely new 

class of catalysts for glycerol chlorination, represented by acyl chlorides, never reported 

in the literature. The catalysts studied are acetyl chloride, propanoyl chloride, adypoyl 

chloride, butandioil di-chloride,  propandioil di-chloride and phenylacetyl chloride and 

more precisely it is reported a comparison between the acyl chlorides respect to 
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corresponding carboxylic acid. The influence of some reaction parameters are studied as 

for example the effects of the pressure on activity and selectivity. Finally I use acyl 

chloride in stoichiometric amount in order to open new opportunities for chlorination 

process of glycerol with hydrochloric acid performed in situ . 
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1. Biorefinery 

With the term “Biorefinery” we considered all the process that use bio-based feedstock 

to create biofuel (e.g. biodiesel and bioethanol), bio-energy (heat and power) and bio-

based chemicals and materials (e.g. succinic acid and polylactic acid). The objective of a 

biorefinery is to optimize the use of resources and minimize wastes, together 

maximizing benefits and profitability. The processes that are included in the term 

biorefinery are many and include biological, chemical and thermal. 

To produce bio-based products can be used various feedstock. However, at present there 

is no feedstock or process that would make these a clear alternative to fossil-based 

products. There are many options available, each with advantages and disadvantages. 

Two categories of feedstock dominate research: first and second generation. First-

generation products are product from edible biomass such as starch-rich or oily plants. 

Second-generation products use biomass consisting of the residual non-food parts of 

current crops or other non-food sources, such as perennial grasses or algae. These are 

widely seen as possessing a significantly higher potential to replace fossil-based 

products. 

The most common biomass feedstock are provided from different sectors as for example 

agriculture (dedicate crops and residues), industries (process residues and leftovers), 

households (municipal solid waste and wastewater), aquaculture (algae) and forestry. 

However the most common biomasses are the following: 

- Vegetable Oils: this raw materials is mainly used for biodiesel production by 

transesterification.  There are two categories of vegetable oils, namely, oils 

from dedicated crops and waste vegetable oils. For the first category the 

examples of dedicated crops are the palm, soybean, rapeseed and sunflowers 

seeds crops. The use of waste vegetable oils, as for example cooking oil or 

animal fat, is an effective method of recycling wastes. 

- Micro-algae: this raw materials are a large and diverse group of unicellular 

photo- and hetero-trophic organisms. These organisms have attracted much 

attention in recent years due to their potential value as a renewable energy 

source. Focus has been on storage lipids in the form of triacylglycerols, which 
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can be used to synthesize biodiesel via transesterification. The remaining 

carbohydrate content can also be converted to bioethanol via fermentation. 

They are safe, biodegradable and need not compete with arable land. 

- Sugar: for this feedstock the most common crops are sugar cane or sugar beet 

that have high amount of saccharose. This component can be easily

from raw materials and after this process 

bio-based chemicals. From those feedstock the sugar can

the economical point of view and both the environmental point of view.

- Lignocellulosic Biomass: this raw material comprising all the plant material 

composed of cellulose, hemicellulose and lignin. This type of raw mate

difficult to convert into usable output because

hemicelluloses and lignin that surrounds cellulose has to be broken

which is a highly energy intensive process

In the following figure is reported an outline of the changes that lea

formation of bioproducts from biomass. 

Figure 1.  Processes in biorefinery. 
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Biorefineries of the future will incorporate the production of fuels, energy and value

added chemicals, via the processing of biomass, into a single site

In Figure 2 was reported the worldwide distribution of the 

 

Figure 2. Biorefinery distribution in the world
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production increased in the past years and so did 

the amount of residues generated during its production [2]. Europe is still the biggest  
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Figure 3. Biodiesel world production capacity broken down by region 
 

 

Usually the feedstocks used for biodiesel production

plant material (as soybean oil, rapeseed/canola

and animal by products (tallow). 

 

 

Figure 4.  Biomasses for biodiesel production 
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environmentally friendly biodiesel feedstocks are used cooking oil and waste grease. 

According to the EPA's Renewable Fuel Standards Program Regulatory Impact 

Analysis, released in February 2010, biodiesel produced from waste grease results in an 

86% reduction in greenhouse gases, compared to petro-diesel [5,6]. The biodiesel from 

refined vegetable oils is obtained by transesterification of triglycerides with a primary 

alcohol (usually methanol) catalyzed by basic homogeneous catalysts (KOH, NaOH, 

CH3OH),but  these catalysts cannot be used with the waste or non refined oils that are 

characterized by a high concentration of Free Fatty Acids (FFA). In general the classical 

process can be performed at high yield with a raw material with less than 1 % of FFA 

[7].   

The problem could be solved using homogenous bronsted acid catalyst which can 

catalyze both esterification of FFA and transesterification of triglycerides [8], however 

the reaction rate of transesterification is low and great amount of spent catalyst have to 

be recovered and treated [9]. The reaction of biodiesel production is shown in the 

following figure (Fig. 5) where we can see that by transesterification reaction of fat or 

vegetable oils we obtain a fatty acid methyl ester (FAME), which is biodiesel and 

glycerol (10 wt %). 

 

 

Figure 5. Biodiesel production reaction.  

 

 

A more useful approach is the use of an heterogeneous acid catalyst however in general 

in this case high reaction temperatures are necessary and consequently also high 

pressures [10-13].  Solid materials capable of simultaneous FFA esterification and 

triglycerides transesterification under mild conditions still present a major challenge for 

catalytic scientists [13]. 

The problem of high FFA concentration can be resolved by refining the raw material. 
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FFA can be removed by caustic treatment or by distillation form the raw material, 

however for FFA concentration higher than 5% the loss in the final product and the cost 

of operation is too high [14, 15].  

A very often used solution is to reduce FFA contained in the oil firstly by esterification 

with methanol to FAME by using an acid catalyst and then the transesterification of 

residual glycerides is performed, as usual, by using an alkaline catalyst [10,16]. 

 

 

 

Figure 6. Esterification reaction with methanol. 

 

However this solution cannot be used for very high concentration of FFA (> 20%), as a 

matter of fact in this case the presence of chemical equilibrium gives high problem to 

achieve a FFA concentration less than 1 % [14]. 

In case of very high FFA concentration, it is possible use the glycerolysis. FFAs 

contained in the oil are firstly esterified with glycerol to glycerides at high temperature 

under vacuum: and then the transesterification of glycerides is performed, as usual, by 

using an alkaline catalyst [14, 16].  

 

 

 

 

Figure 7. Esterification reaction with glycerol. 

 

 

In general a modern biodiesel factory should have the possibility to treat any type of raw 

material and the integration of the previously described processes can give this result.  A 

possible scheme of integration is reported in Fig. 1. 
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Figure 8.  Integrated Biodiesel Plant. 

 

 

In this type of integrated biodiesel plant it is possible to treat all types of feedstock for 

biodiesel production without pretreatment.  

The co-product formed by transesterification reacti

concurrently with the biodiesel industry. For this

dedicated to glycerol that is contemporary the co

and an important feedstock for biorefinery.  
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this product and the aim of most researchers is to find a new use of glycerol to produce 

chemicals with high value.The glycerol derived from biodiesel production could 

represents  high purity glycerol and it is a very important industrial feedstock. Its 

applications are found in food, cosmetic, pharmaceutical and tobacco industries. 

However, crude glycerol derived from biodiesel production possesses very low 

economic value because of the impurities. Further refining of the crude glycerol will 

depend on the economy of production scale and/or the availability of a glycerol 

purification facility. Larger scale biodiesel producers refine their crude glycerol and sell 

it to markets in other industries. It is generally treated and refined through filtration, 

chemicals additions, and fractional vacuum distillation to yield various commercial 

grades. If it is used in food and cosmetic application, further purifications are needed 

such as bleaching, deodoring, and ion exchange to remove impurities in traces. Purifying 

it to that stage, however, is costly and generally out of the range of economic feasibility 

for the small to medium size plants. Glycerol is material of outstanding utility in many 

application areas. The key of glycerol’s technical versatility is a unique combination of 

physical and chemical properties, compatibility with many other substances and easy 

handling. Glycerol is also virtually nontoxic to human health and to the environment. 

Physically, glycerol is a water-soluble, clear, almost colorless, odorless, viscous, 

hygroscopic liquid with a high boiling point. Chemically, glycerol is a trihydric alcohol, 

capable of being reacted as an alcohol yet stable under most conditions. With such an 

uncommon blend of properties, glycerol finds application among a broad variety of end 

uses. In some of these, glycerol is the material of choice because of its physical 

characteristics, while other uses rely on glycerol chemical properties.  

Glycerol, when used in combination with other compounds yields other useful products 

[17-19]. The glycerol produced from biodiesel processes is important feedstock for 

biorefineries because it isn’t pure glycerol and the economic cost to purify it for 

pharmaceutical or cosmetic is high. Usually glycerol is used in many sectors. The 

following figure (Fig. 9) shows a summary of the possible uses of glycerol. 



14 

 

Figure 9. Glycerol uses [17]. 

 

The opportunities for glycerol consumption are many, and

the main reactions that use glycerol to produce chemicals

- Oxidation: the glycerol can be oxidized
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- Dehydration: this process transforms glycerol in acrolein, an important 

chemical intermediate for many synthesis as for example and it is possible to 

obtain this conversion in presence of many catalysts [23]. Some authors 

reported the acrolein synthesis in sub- and supercritical water condition, in this 

way they study the use of zinc sulfate as catalyst and they was investigate the 

influence of  process parameters (temperature, pressure, residence time, zinc 

sulfate concentration). Another process that started from dehydration of 

glycerol is the production of the 3-hydroxypropionaldehyde that is synthetized 

by a one-step enzymatic catalysis  that use usually the following genera of 

bacteria: Bacillus, Klebsiella (Aerobacter), Citrobacter, Enterobacter, 

Clostridium, and Lactobacillus . 

- Halogenation: studies of glycerol halogenation have focused on production of 

α,γ-DCH an intermediate in epichlorohydrin synthesis[24]. Epichlorohydrin is 

one among several new opportunities that have been recognized as a feasible 

use of large scale, low cost glycerol, and exemplifies a more general trend of an 

expanding use of natural polyols for the manufacture of commodity chemicals. 

Epichlorohydrin is an important raw material for the production of polymers 

such as epoxide resins, synthetic elastomers, and sizing agents for the 

papermaking industry. 

- Etherification: the etherification reaction of glycerol is a important conversion 

to obtain a mixture of di- and tri-isobutyl ethers (GTBE) that is a good additive 

for diesel (both fossil and biodiesel) and also for gasoline as an octane booster. 

In diesel and biodiesel (7.5 wt %), it will lead to a reduction in the emissions of 

particulates, NOx, and unburned hydrocarbons. Moreover, blending diesel or 

biodiesel with GTBE also reduces the viscosity, cloud point, and pour point, but 

it reduces the calorific power somewhat [18]. 

- Esterification: another important use of glycerol is as feedstock for 

esterification reaction. From this process we can  obtain monoglycerides, and 

polyglycerols which have numerous applications in foods, cosmetics and 

detergent industries. Glycerol monoesters (monoglycerides) can be obtained 

from glycerol esterification with fatty acids or from glycerol transesterification 

with fatty methyl esters in the presence of homogeneous catalysts. Such 

reactions give naturally a mixture of mono, di and triesters (40, 50,10%) and a 
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great amount of salts and by-products [25]. A molecular distillation as well as 

various purification and decoloration steps are necessary to get high purity 

products especially monoglycerides. From this reaction we can also obtain 

diglycerides and triglycerides, important compounds due to their versatile 

applications as biofuel additives. Those compounds are obtained in a selective 

manner using heterogeneous catalysts [26]. 

- Pyrolysis: this process is conducted to produce value added products such as 

hydrogen or syngas and medium heating value gas from waste glycerol using 

pyrolysis and steam gasification processes. The thermal degradation of glycerol 

can lead to a large number of substances, depending on the catalysts used for 

the process. Some authors [27,28] tested the performance of bifunctional 

catalysts MOx-Al2O3-PO4 (containing different acid sites and different oxides of 

transition metals (M)) in the degradation of glycerol. The higher the acidity, the 

higher the selectivity for acrolein in the following order: W, Mo, Cu, V, Fe, Cr, 

Ce . Moreover, catalysts containing Mn, Cr and Fe favor the formation of 

oxidation products with breakage of the C-C bonds. The main reaction products 

were acrolein and acetol (hydroxyacetone). In lower amounts were detected 

acetaldehyde, propionaldehyde, allyl alcohol, acrylic acid, propionic acid, 

acetone, carbon monoxide, carbon dioxide, phenol and other cyclic compounds 

C6.  
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1. Introduction 

In this chapter the attention is focused on biodiesel (basically a mixture of fatty esters) as 

renewable fuel. Topics covered in this chapter

characteristics, properties and performance, complementary 

synthesis routes (e.g. transesterification and 

manufacturing (e.g. homogeneous or solid acids) and industrial pr

First of all the market potential for biodiesel is actually defi

market size of the petroleum diesel. In the last years, in Europe, the market of biodiesel 

is changed and in figure 1 is reported a distribution of this biofuel consumption in the 

Europe [1]. 

 

Figure 1. European Biodiesel Consumption.  

This market is constantly changing, also if it is possible to note that in Italy there is more 

than 10% of European consumption. 

There are some differences in composition between 

the performances are similar and  the most important are reported in the following table 

(Table 1) [1]. 
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Table 1. Comparison between petroleum diesel and biodiesel  [1] 

Property Petroleum Diesel Biodiesel 

Fuel Composition 

C10-C21 

(Hydrocarbons) 

 

C12-C22 

(Fatty acid methyl 

esters) 

Kinetic Viscosity, 

mm2/s (at 40°C) 
1.3-4.1 1.9-4.6 

Specific gravity, Kg/L 0.85 0.88 

Boiling point, °C 188-343 182-338 

Flash point, °C 60-80 100-170 

Cloud point, °C -15 to 5 -3 to 12 

Pour point, °C -35 to -15 -15 to 10 

Cetane number 

(ignition quality) 
40-55 48-65 

 

From this comparison you can see that some characteristic properties are better in 

biodiesel than in petroleum diesel, for example the cetane number.  Biodiesel not only 

has a higher cetane number than petroleum diesel, but also a higher flash point meaning 

better and safer performance [1]. 

2. Transesterification Reaction  

The most common way to produce biodiesel is by transesterification of triglycerides of 

different types of oils (vegetable oils, animal fat or waste cooking-oils from the food 

industry) using alcohol, in presence of an acid or a basic catalyst. Vegetable oils are 

composed of triglycerides of fatty acids (a mixture of linear fatty acids, with an average 



23 

 

number of 18 carbon atoms, and containing in the chain mainly one, but also two or 

three or none double bonds). The alcohol used for transesterification reaction is usually 

methanol. The use of methanol is advantageous as it can quickly react with triglycerides 

(polar and shortest chain alcohol) and is a relatively inexpensive alcohol, while the same 

reaction using ethanol has as drawback that the produced ethyl esters are less stable and 

a carbon residue is observed after reaction. The general scheme of the transesterification 

reaction is reported in Figure 2, where R’, R’’ and R’’’ are various fatty acid chains. 

 

 

Figure 2. Transesterification reaction of oils. 

 

The trans-esterification reaction is actually more complex, proceeding with the 

formation of di-glycerides and mono-glycerides as intermediates [2] as reported in the 

following figure (figure 3). 

 

 

Figure 3. Reaction Scheme of transesterification reaction. 
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Glycerol is obtained as a by-product of the trans-esterification, typically about 10 %wt of 

the total amount of FAME. 

The reaction is catalyzed by basic or acid catalysts and the catalytic reaction can be in 

homogeneous or heterogeneous phase. The reaction time can be also reduced by 

increasing the liquid–liquid interfacial area by various process intensification techniques 

(e.g. static mixers, micro-channels reactors, microwaves assisted reactors, ultrasound 

assisted reactors, rotating/spinning tube reactors and centrifugal contactors). 

Finally, after the synthesis of fatty acid methyl esters they are necessary some other 

steps: the catalyst can be neutralized, the salts can be removed, the alcohol recovered and 

recycled, as well as glycerol and biodiesel can be purified [3]. 

 

3. Catalysts for biodiesel synthesis  

3.1 Homogeneous catalysts  

The traditional process is based on the use of a homogeneous basic catalyst, as for 

examples potassium hydroxide (KOH), sodium hydroxide (NaOH), sodium methoxide 

(NaOCH3), and sodium ethoxide (NaOCH2CH3). The reaction temperature is very low, 

about 60 ◦C and the reaction is carried out at atmospheric pressure. The reaction can be 

promoted also by acid catalysts but with much lower activity. In basic catalyzed reaction 

a clear feedstock is required, in fact the free fatty acids concentration must be low. It 

should be under 0.5 wt %. If an oil is used that contains much free fatty acids such as 

oleic acid, saponification occurs. 

The high activity of homogeneous basic catalyst is related to the much favorable reaction 

mechanism in which the carbonyl group of a triglyceride, diglyceride or monoglyceride 

is subjected to a nucleophilic attack from a catalytically active specie RO− [5]. CH3O−  

is the catalytically active specie and after the attack to a carbonyl group a tetrahedral 

intermediate is formed that break down into a fatty ester molecule and a di, mono or 

glyceroxide anion [5]. At last, the proton transfer from CH3OH to one of the glyceroxide 

anions restores the CH3O− specie. In the literature are reported many papers on 

homogeneous catalysts alternative to the alkaline catalysts. 
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Also liquid amine-based catalysts were also studied for transesterification of oils [6]. 

Four what concerned the amines study are been considering the following compounds: 

diethylamine (DEA), dimethylethanol amine (DMAE), tetramethyldiaminoethane 

(TEMED), and tertramethylammonium hydroxide (TMAH) (as 25% in methanol). The 

highest conversion of 98% was achieved with TMAH as a catalyst at 65°C in 90 

minutes. In these cases, a large amount (13%) of liquid amine catalysts is required for 

the transesterification.  

The use of basic homogenous catalysts is limited from many disadvantages, the main is 

linked with the high sensitivity to FFAs and water. A solution could be the use of  acid 

catalysts.  

Metal complexes [6] of the type M(3-hydroxy-2-methyl-4-pyrone)2(H2O)2, where M = 

Sn, Zn, Pb, and Hg, have been used for soybean oil methanolysis under homogeneous 

conditions. Sn and Zn complexes showed great activities for this reaction, achieving 

yields of up to 90% and 40%, respectively, in 3 h, using a molar ratio of 400:100:1 

(methanol: oil: catalyst), without emulsion formation. 

Di Serio et al. have reported a work using acetates and stearates of Ca, Ba, Mg, Cd, Mn, 

Pb, Zn, Co and Ni as catalysts at 200 ◦C [7]. They observed that the activity of the 

different metals are related to the Lewis acid character of the metal and there is an 

optimal value of this acidity for promoting the transesterification reaction. The best 

catalyst was the stearates of Cd, Mn and Pb. 

 

3.2  Heterogeneous catalysts 

With the use of homogeneous catalysts we have a high reaction rate but this process has 

many disadvantages. The most important is that the product must be neutralized after the 

reaction, and from this process we have many salts. 

For this reasons for what concerning the transesterification reaction there is a 

development of new heterogeneous catalysts, both of basic heterogeneous catalysts and 

acid heterogeneous catalysts. 
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In the literature have been reported different works and reviews about the heterogeneous 

basic catalysts. Some authors suggested a systematic approach for the classification of 

these [8-15]; this authors considered the following classification: single metal oxides, 

mixed metal oxides, zeolites, supported metal halides and hydrotalcites. For the single 

metal oxides, CaO [16-23] and MgO [10, 24–27] are the most used and many papers 

have been devoted to these catalysts. From the comparison of the different single oxides 

catalysts as: La2O3, MgO, ZnO and CeO2, Bancquart et al. [24] concluded that the basic 

strength of the active sites on the surface are determinant in promoting the 

transesterification reaction, therefore, they observed that activities were in the order: 

La2O3 > MgO>> ZnO≈CeO2. As a consequence, different attempts have been made to 

increase the surface basicity of the oxides by chemical treatment [22], or using mixed 

oxides and in some cases super basic solids have been obtained [25,28,29], characterized 

by high activity. The use of mixed oxides or supporting an oxide on another one has also 

the scope of preventing the leaching, thanks to the strong interaction between the two 

oxides, or to introduce a bi-functionality that increases the resistance to fatty acids and 

moisture [9,29]. The solubility of CaO in methanol, for example, has been evaluated by 

Granados et al. [18] corresponding to 0.035 wt%. Granados et al. have studied in detail 

the leaching aspects of CaO [30]. Albuquerque et al. [31] studied the behavior of CaO 

supported on, respectively, MCM-41 and SBA-15. CaO supported on SBA-15 has given 

good results for both activity and stability. 

Other important class of catalysts reported in the literature are the mixed oxides.  Good 

results have been reported good results with the use of Al2O3–SnO2 [32], Al2O3–ZnO 

[32], MgO–La2O3 [33]. Other mixtures containing an alkaline earth oxide (mainly CaO) 

or rare earth metal (La) and a transition metal oxide (Ti, Mn, Fe, Zr, Ce) have been 

proposed [34]. In other cases CaO was simply supported on SiO2,Al2O3, MgO or ZnO 

for increasing the mechanical strength of the catalyst and the resistance to leaching 

[35,37]. Some zeolites have been used as catalysts for biodiesel synthesys, despite the 

fact that triglycerides molecules cannot enter inside the zeolitic cavities. In particular 

zeolite X, ETS-10 have been tested after the exchange with K
+
 and Cs

+
 [38,39]. Other 

catalysts as: KF, KI, K2CO3 and KNO3 on Al2O3 have shown good initial 

performances but are subjected more or less to deactivation and leaching [11,40–43]. A 

ferromagnetic catalyst KF/CaO–Fe3O4 has been tested by Hu et al. [44] showing 



27 

 

satisfactory activity and stability. Moreover, this catalyst can easily be recovered thanks 

to the magnetic properties. A high activity has been found for catalysts containing rare 

earth oxides and their mixtures, in particular La2O3 [45]. Many papers have been 

published on the use of Mg–Al hydrotalcites [10,46–53]. Hydrotalcites are very 

attractive catalysts, because, show high activities, are resistant to the presence of water 

and FFA [10,54] and give not place to leaching [10,50,54–56]. Recently, a commercial 

hydrotalcite has been used for a long time in a continuous reactor and has shown a slow 

deactivation due to fouling. This type of catalysts, therefore, is not suitable for unrefined 

oils and can advantageously substitutes the homogeneous alkaline catalysts KOH, NaOH 

and related alkoxides.  

In conclusion often the results reported from different authors are different, especially 

for the reaction temperature that goes from 60 to 220 ◦C. This results suggest that 

heterogeneous basic catalysts are frequently subjected to leaching effect [14] and in 

many cases it is difficult to discriminate between the catalytic contribution of the 

homogeneous and heterogeneous reaction. 

A list of basic heterogeneous catalysts, proposed in the literature, and reported in a 

review [4] is summarized in Table 2.  

Other class of heterogeneous catalysts reported in the literature are the acid 

heterogeneous catalysts. The low activity of the acid catalysts with respect to the basic 

ones is due to the different reaction mechanism. In the case of the reaction promoted by 

basic catalysts, the first step of the mechanism is the nucleophilic attack of CH3O
−
 on 

the carbonium atom of the carbonyl group [13], while, in the case of an acid catalyst, an 

electrophilic attack on the oxygen of the carbonyl is the first step followed by a second 

slower step of a nucleophilic attack of the alcohol on the carbon [13]. However, 

considering that Bronsted acid sites promote both esterification and transesterification 

many different heterogeneous acid catalysts have been studied in the literature. 

Acid exchange resins cannot be used for promoting transesterification, because, are not 

stable at the required temperatures (about 200 ◦C). Therefore, many solid acid catalysts 

have been studied in the literature for promoting transesterification, in particular 

superacidic: tungstated and sulfated zirconia [57–63] have been tested. 
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Table 2. Basic heterogeneous catalysts reported in the literature. 

Catalyst Time 

(minutes) 

Temperature 

(°C) 

Yield 

(%) 

Ref. 

MgO/SBA-15 300 250 96 [64] 

K2CO3/MgO 120 70 99 [65] 

MgO–MgAl2O4 600 65 57 [66] 

MgO–La2O3 140 25 100 [33] 

MgO–ZrO2 30 65 100 [67] 

CaO 120 65 98 [17] 

Ca(OCH3)2 180 65 98 [68] 

CaO/SiO2 (SBA-15) 300 60 95 [31] 

Li/CaO 180 60 100 [21] 

La2O3/CaO  60 60 94.3 [29] 

CaO/ZnO 60 60 94.2 [69] 

CaMg(CO3)2 180 60 99.9 [70] 

MgO/CaO - 60 92 [71] 

CaZrO3 360 60 88 [72] 

CaO-CeO2 120 85 97 [73] 

SrO 30 65 95 [74] 

Mg–Al HTA 240 65 90.5 [51, 64] 

Li–Al HTA 60 65 83 [75] 

La2O3 - 200 97.5 [24] 

Eu2O3/Al2O3 480 70 63.2 [28] 

ETS-10 zeolite 1440 120 95 [38] 

Anionic resins 60 50 80 [76] 

KAlSiO4 doped with 

Li (2.3%) 

2 120 100 [77] 

 

Sulfated zirconia, for its strong Bronsted acidity resulted very active in promoting the 

esterification reaction and moderately active in promoting transesterification. 

Unfortunately, this catalyst gives place to a fast deactivation as a consequence of sulfur 

leaching. Tungstated zirconia is less active but more stable. Other catalysts reported in 
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the literature are: sulfated TiO2 [78], sulfated SnO2 [79,80], aluminum hydrogen sulfate 

[81]. Some of the mentioned catalyst are opportunely modified by adding other oxide 

like for example La2O3 or supporting them with the scope to increase activity and 

stability. Also different heteropoly acids (HPA) have been proposed as catalyst for both 

esterification and transesterification. At last, some Lewis acid catalysts in the form of 

metal oxides like Zr, Ti, Sn and Nb or mixtures have been proposed. In particular, 

TiO2/SiO2 obtained by grafting titanium alkoxide on the silica surface seems promising 

[82,83]. Using this catalyst, it has been shown that Lewis acid sites of medium strength 

are the main responsible of the transesterification activity [82,83]. However, Lewis acid 

catalysts seem more active than the Bronsted acid ones but are also more susceptible to 

poisoning for the presence of water and FFA. Many papers have recently been published 

describing the use of modified mesostructured supports as MCM-41 [84,86–89] and 

SBA-15 [85,90–93]. MCM-41 has been used for supporting both basic (CaO, K2O) [87, 

88] and acid catalysts as Nb2O5 [86], WO3/ZrO2 [84], sulfated zirconia [89]. SBA-15 has 

been employed for supporting: ZrO2 [90], Al2O3 [91], heteropoly acids (HPA) [160], 

Ta2O5 [161], sulfonic acids [85]. Moreover, also acid catalysts are often subjected to 

leaching effect [14]. A list of acid heterogeneous catalysts, proposed in the literature, and 

reported in a review  [4] is sumarized in Table 3. 
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Table 3. Acid heterogeneous catalysts reported in the literature. 

Catalyst Time 

(minutes) 

Temperature 

(°C) 

Yield 

(%) 

Ref. 

ZrO2 60 200 64.5 [78] 

SO4
2−

/TiO2 60 120 40 [80] 

SO4
2−

/SnO2 180 180 65 [80] 

SO4
2−

/SnO2 + Fe3O4 480 60 90 [94] 

SO4
2−

/SnO2–SiO2 180 180 80 [80] 

SO4
2−

/SnO2–Al2O3 180 180 80 [80] 

SO4
2−

/ZrO2–TiO2/La
3+

 300 60 95 [95] 

ZrO2/Al2O3 - 250 97 [96] 

WO3/ZrO2 300 200 97 [97] 

TiO2/ZrO2 - 250 95 [96] 

ZnO/Al2O3 90 200 85 [98] 

WO3/ZrO2/Al2O3 - 250 90 [96] 

WO3/ZrO2/MCM-41 150 200 85 [81] 

H3PW12O40/ZrO2 600 200 77 [99] 

H3PW12O40/Ta2O5 1440 65 60 [100] 

Cs2.5H0.5PW12O40 60 65 96 [101] 

MnO–TiO 20 260 87-92 [102] 

VOPO4 60 150 80 [103] 

Sulfonic/SiO2 300 150 60 [104] 

Sulfonic acid/SBA-15 480 180 96 [85] 

Fe–Zn double cyanide 

complexes 

480 170 99 [105-107] 

Nb2O5-MCM-41 240 200 95 [86] 
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4. Esterification reaction 

Today the use of waste and non edible oils for biodiesel production is a realty. This raw 

materials have to be refined, the use of catalytic reactions is one of 

reduce the content of FFA. Two principal reaction

methanol or with glycerol.  

In the following figure (Fig.4) were reported the free fatty acid composition of the 

common feedstocks for biodiesel production [

acid components: palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2) and 

linolenic (18:3). 

 

 Figure 4. Free fatty acid composition. 

 

The esterification reaction can be catalyzed by both Br

of a proton or a Lewis acid leads to a more reactive electrophil

nucleophilic attack of the alcohol. The reaction is an equilibrium reaction and the 

presence of water reduces the yield of ester. The B

esterification of FFA because they are more active and more resistant to water 

deactivation [109]. 
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4.1 Homogeneous Catalysis 

The most used homogenous catalyst is the sulfuric acid (1-3% w/w) and the used 

temperature reaction condition are mild (40-95°C) [108]. This acid show high acid 

strength and can be found in high concentration without the addition of large amount of 

water because this acid it is used as concentrated acid. To favor the reaction an excesses 

of methanol is used. The molar ratio methanol/FFA is crucial for optimizing the ester 

yield [108]. For example, Chai et al showed that the optimal reaction conditions for a 

cooking oil containing 5% of FFA (methanol-to-FFA molar ratio of 40:1) are different 

from that for an acid oil containing 15-35% of FFA (methanol-to-FFA molar ratio of 

20:1) [110]. This author showed that the optimal methanol-to-FFA molar ratio was 40:1.  

To avoid the problem of water formation and of the necessity to use high methanol/FFA 

molar ratio Stacy et al. proposed the use of bubble column as reactor [111]. The reactor 

operate at 120°C and atmospheric pressure, in this situation methanol vaporizes and 

remove the formed water [112].  The proposed system have good performance also with 

pure FFA. For example, 95% of pure oleic acid is esterified in 60 minutes, using 0.1% 

w/w of sulfuric acid as catalyst and 4:1 methanol/FFA molar ratio [112]. 

However, the use of homogeneous acid catalyst involves  many drawbacks: problem 

with plant corrosion, the necessity to neutralize the acid catalyst before the 

transesterification,  increase the problem of product purification for reducing the traces 

of sulfur that can derive from the acid catalyst [113]. 

4.2  Heterogeneous Catalysis 

The first heterogeneous process for FFA esterification with an heterogeneous catalyst 

was proposed by Jeromin et al. [114].  They proposed the use of solid ion (cation) 

exchange resins as catalyst. 94 % of FFA of a not refined coconut oil (acid number 10%) 

was converted using Lewatit® SPC 118 BG ion exchange resin as catalyst in a packed 

bed reactor with a residence time of 1.2 h at 64°C and a volumetric ratio oil/methanol 5.  

From this starting point, mainly in last 10 year, the importance of pretreatment is 

increased together with the interest in the biodiesel production from waste and not 
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refined oil, a lot of different heterogeneous catalysts have been proposed in the literature 

[108,109,115,116]. 

We can recognize two class of catalyst: sulfonic acid-functionalized solids—both ion-

exchange organic resins and inorganic supports—and inorganic metal-oxide based 

superacids [108,116]. However, until now only technologies based on the use of strong 

cation-exchange resin are commercialized [117, 118]. 

The reason for this situation is that the performances of strong cation-exchange resin are 

satisfactory for the industrial application (in terms of activity and stability) and their cost 

is much lower in respect to the other proposed catalyst. 

Strong cation exchange resins are commonly obtained from styrene and various levels of 

the cross-linking agent divinyl benzene (DVB), which controls the porosity of the 

particles. They are supplied as beads that can have either a dense internal structure with 

no discrete pores (gel resins, also called microporous resins) or a porous, 

multichannelled structure (macroporous or macroreticular resins). After the 

polymerization the acid functionality are introduced by sulfonation [119]. 

The activity of the cation exchange resins depends on the sulfonation grade (H
+
 meq/g) 

but also from their structure. For this reason for example, different kinetic parameters in 

FFA esterification where determined for different resins that were characterized by 

similar acidity but different amount of DVB and consequently different chain cross-

linking  [120-123]. 

The gel (microporous) type resins have shown a greater activity than the macroporous 

ones [123].  

Because their higher activity the gel type resins are the most used resins for FFA 

esterification in industrial plants [117,118]. 

This behaviour can be explained considering that the cation resin give place to a strong 

swelling in the presence of a polar solvent. The swelling phenomena increase the 

accessibility to acid sites inside the resin to the fatty acids, increasing in such way the 

conversion rate. In general the increase in DVB content in the resin reduces the swelling 

phenomena, reducing the accessibility of FFA to acid sites.  

The activity depends strongly by the weight percent of used methanol [124]. For 

examples Jeřábek et al reported that in the case of microporous resin (DB20) the 

conversion increase with the concentration of methanol until the reaching of a plateau 

around 20% wt of methanol, while in the case of macroreticular resin the conversion 
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increase with the methanol concentration achieving a maximum around  10% of 

methanol [124].    

In the case of gel resin the dry structure hasn’t pores and so it is inaccessible to reactants 

(for this reason at low methanol concentration we don’t obverse conversion for methanol 

concentration below 5% wt,  with the increase of the solvent concentration we have an 

increase of the swelling with a consequent increase in conversion rate, until a the 

achievement of an activity plateau for methanol concentration  greater of 20% that is 

also the concentration at which the maximum of swelling is obtained.   

The macro-reticular  resins, on the contrary, have swelling-indipendent pores that are 

open also in the dry material. For this reason the activity of macro-reticular resins have 

activity also at low methanol concentration, however their activity is lower than that of 

gel type resin because not all mass of resin is swellable. In the case of macro-reticular 

resin for concentration of methanol higher than 10% a decrease in reaction rate is 

observed. This phenomena has been explained by Jeřábek et al [124] considering that at 

low methanol concentration the concentration of sulfonic groups that don’t have reacted 

with methanol is lower than in the case of high methanol concentration.  

The main poisons for the ion-exchange resin are the cations that can be dissolved in the 

waste oils [125, 126], even if the catalyst can be regenerated by treatment with mineral 

acid solutions. To solve this problem a pretreatment of raw material is necessary. The 

more diffuse solution in the industrial plants is the use of metals adsorption column 

before the esterification reactor [16].  

4.3 Glycerolysis reaction 

An alternative method, used to pre-treat the raw material with high FFA concentration, is 

to make the esterification with glycerol (glycerolysis or re-esterification reaction), at 

higher temperatures, continuously removing the produced water for shifting the 

equilibrium to the right [111,127,128]. In this way, higher conversions are obtained in a 

shorter time. In the second step, the neutral product can be submitted to 

transesterification, in the usual way, by using an alkaline catalyst.  
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4.3.1  Homogeneous catalysts 

The reaction is carried out at high temperature (T>180°C) under vacuum of with stream 

of inert gas to remove the formed water. However the high temperature is necessary also 

to favor the mutual solubility of glycerol and FFA and increase the reaction rate.  

In the case of not catalyzed reaction the reaction rate decrease strongly at low FFA 

concentration. This behavior is justified by the fact that the acid groups of FFA act as 

Bronsted catalyst in the reaction. To reduce the reaction time a catalyst can be used.  

The use of sulfuric acid is avoid because it produces the formation of great amount of 

byproduct, also acrylaldheyde derived by the dehydratetion of glycerol has been found in 

the distilled water [129]. More useful are the Lewis acids that, in this case, because the 

low content of water in the reaction environment (it is continually removed during the 

reaction) aren’t deactivated by water.   

Starting from the pioneering work of Feuge et al [130] that studied the behavior of 

several salts and oxides that found that the best catalysts were ZnCl2, SnCl2 and SnCl4, 

nowadays the most used catalysts resulted salts of Sn or Zn [131]. Also Titanium and 

Tin alkoxides have been proposed as catalyst for FFA glycerolysis reaction [130].  

The effect of the catalyst is the strong reduction of reaction time even with low 

concentration, for example the acidity of an soap-stock containing 50% wt of FFA after 

50 minutes of reaction at 220°C is reduced to 35 mg/KOH in absence of catalyst while in 

the same reaction arrive to 4.6 mg KOH/g by using 0.2% wt of Zn (zinc acetate) [132]. 

Also metal Zn can be used and its performances are similar to that of Zn salts [132]. 

These results can be explained considering that FFA can react with metallic Zn with the 

consequent formation of carboxylic Zn salts. So also in the case of metallic Zn we are 

using an homogenous catalysis.  

4.3.2  Heterogeneous catalysts 

On the contrary in the case of heterogeneous catalysts only Bronsted acid catalysts have 

been proposed [110-115]. It is clear that by using heterogeneous catalysts there is not the 

necessity to neutralize the catalyst between the first and second step and the catalyst can 

be reused without any problem and moreover it is easier to develop a continuous 

process.  
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At this purpose, the authors described the use of dodecamolybdophosphoric acid 

encaged in USY zeolite, as catalyst for the esterification of glycerol with acetic acid to 

obtain monoacetin, diacetin and triacetin.  In the literature is reported the esterification 

of carboxylic acids with alcohols in a batch reactor using acid zeolites as catalyst. 

Bossaert et al. [111] and Diaz et al. [112] have studied the esterification reaction of 

glycerol with fatty acid using siliceous mesoporous materials (silica gel, MCM-41, 

HMS) functionalized with Bronsted  propylsulfonic acid groups. Takagaki et al [113] 

used carbon material prepared from D-glucose as a precursor of a solid acid catalyst. 

Sulfonation of incompletely carbonized D-glucose results in amorphous carbon 

consisting of small polycyclic aromatic carbon sheets with high density of SO3H groups. 

The carbon material exhibits remarkable catalytic performance for the esterification of 

higher fatty acids. This can be attributed to high density of SO3H groups with strong 

acidity in the material. 
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1. Introduction 

The esterification reaction with methanol of oils or fats containing free fatty acids (FFA) 

can be performed for a direct biodiesel production. This is a pre-treatment step, requiring 

an acid catalyst, in the framework of a conventional transesterification process, this last 

promoted by an alkaline homogeneous catalyst (NaOH, KOH or related methoxides). 

The esterification of FFAs with methanol is currently carried out in the presence of 

strong Brønsted acid catalysts such as sulfuric acid or p-toluenesulfonic acid [1-4]. 

When the acid catalyst is homogeneous, before starting the second transesterification 

step we need to neutralize the acid catalyst. 

Moreover, it is not easy to remove totally from the final product the sulphur derived 

from the used catalyst.   Therefore, such homogeneous acids are not environmentally 

benign and their use is a costly operation. For this reason heterogeneous catalysts like 

sulfonic resin or acid oxides seem more attractive [5,6]. However, in order to have a 

satisfactory rate of reaction we need to adopt temperatures in the range 100-200°C but 

because the boiling point of methanol is 65°C the consequence is the necessity to operate 

at relatively high pressures [7]. Moreover, water formed during the reaction cannot be 

eliminated and the final conversion is limited because an unfavourable equilibrium is 

reached. An alternative method, suggested in recently published patents [8], is to make 

the esterification with glycerol, at higher temperatures, continuously removing the 

produced water for shifting the equilibrium to the right. In this way, higher conversions 

are obtained in a shorter time. In the second step, the neutral product can be submitted to 

transesterification, in the usual way, by using an alkaline catalyst. In the mentioned 

patents, some examples are reported in which only homogeneous catalysts are used. 

However, for the same esterification reaction, other authors reported the use of 

heterogeneous catalysts [9-15].  

The carbon material exhibits remarkable catalytic performance for the esterification of 

higher fatty acids. This can be attributed to high density of SO3H groups with strong 

acidity in the material. Wang et al [14] described the esterification of free fatty acids 

(FFAs) of waste cooking oil (WCO) with crude glycerol in the presence of the solid 

superacid SO4
2-

/ZrO2–Al2O3. This reaction lowers the acidity of WCO before biodiesel 

production. Waldinger et al [15] reported the use of Lipases, that display high 
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regioselectivities and broad substrate tolerance, as catalysts for the efficient esterification 

of glycerol under the conditions of irreversible acyl transfer. A variety of unsaturated 

fatty acids, such as oleic, linoleic, erucic, ricinoleic, hydroxystearic and coriolic acid, 

were used for this purpose.  

In this thesis , we have studied the performances of some different heterogeneous 

catalysts in promoting the esterification of oleic acid with glycerol. In particular, we 

have tested the behaviour of respectively: Amberlyst-15, Nafion, and new type of 

temperature resistant acid resins (200-220°). The temperature resistant acid resins are 

Sulfonated  Multiblock Copolymers Syndiotactic Polystyrene-co-1,4-cis-Polybutadiene. 

These acid resins have shown very interesting performances in the described reaction, in 

comparison with both the other heterogeneous catalysts and sulphuric acid. Moreover, 

they can be used at temperatures much higher than the conventional commercially 

available sulphonic resins. This has a beneficial effect on the reaction rate and on the 

possibility of shifting the equilibrium by continuously removing produced water from 

the reaction environment. Therefore, we have further deepened the behaviour of these 

thermal resistant resins also considering the reusability of the catalyst. 

2. Experimental Section  

Two heterogeneous commercially available catalysts (Amberlist-15 and Nafion R50 

(Aldrich)) and two non-commercial catalysts (Sulfonated Multiblock Copolymers 

Syndiotactic Polystyrene-co-1,4-cis-Polybutadiene (sPSB-SA)) have been studied. 

sPSB-SA1 catalyst is a not reticulated co-polymer, while sPSB-SA2 is the same polymer 

reticulated. 

2.1 General procedure and Materials.  

The manipulation of air and moisture sensitive compounds was performed under 

nitrogen atmosphere using standard Schlenk techniques and a MBraun glovebox. 

Toluene (Carlo Erba, 99.5%) was used as received or dried over calcium chloride, 

refluxed over sodium for 48 h and distilled under nitrogen atmosphere before use in 

moisture and oxygen sensitive reactions. Multiblock copolymers syndiotactic 

polystyrene-co-1,4-cis-polybutadiene (sPSB) were synthesized according to literature 
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procedure [16]. Thiolacetic acid (TAA; 96%, Sigma-Aldrich), benzophenone (BZP; 

≥99%, Sigma-Aldrich), formic acid (98%, Carlo Erba), hydrogen peroxide (35 wt% in 

water, Carlo Erba), potassium bromide (Sigma-Aldrich), dimethylsulfoxide-d6 (DMSO-

d6; Euriso-top), and 1,1,2,2-tetrachloethane-d2 (TCDE; Euriso-top) were used as 

received. 

2.2 Measurements and Characterizations.  

NMR spectra were recorded on AVANCE Bruker spectrometers: the chemical shifts are 

referred to TMS, as external reference, using the residual protio signal of the deuterated 

solvents. Elemental analysis was carried out on a CHNS Thermo Scientific Flash EA 

1112 equipped with a thermal conductivity detector. FTIR spectra were recorded on a 

Bruker Vertex 70 spectrometer equipped with deuterated triglycine sulfate detector and a 

Ge/KBr beam splitter. The FTIR spectra were performed in solution or on film by 

casting. DSC analysis was carried out on a TA Instrument DSC 2920 calorimeter 

(heating rate = 10 °C/min) and the thermogravimetric FTIR analysis (TGA−IR) on a 

Netzsch TG 209 F1 (heating rate = 10 °C/min) coupled to a Bruker Vertex 70 FTIR 

spectrometer by means of a PTFE transfer line and a FTIR gas cell thermostated at 

200°C. The acquisition run consists of 30 scans in 28 s, with a resolution of 2 cm
−1

 and a 

delay of 2 seconds between the runs. Wide angle powder x-ray diffraction (WAXD) 

spectra were obtained, in reflection, with an automatic Bruker D8 powder diffractometer 

using the nickel-filtered Cu Kα radiation. The polymer samples were irradiated at 365 

nm and power of 100 W in a Ultraviolet incubator Bio-Link BLX (Vilber Lourmat). 

2.3 Protocol for sulfonation of sPSB copolymers.  

1.20 g (0.47g, 8.65·10-3 molB) of a multiblock copolymer sPSB55 (55 mol% of 

butadiene), were treated with 200 mL of toluene (6.0 gsPSB/LToluene) in a two-neck 500mL 

round bottom flask under vigorous stirring at room temperature for 72 hours. The 

resulting slurry was then heated at 80 °C for 1 hour where a polymer gel was formed. 

The flask was allowed to cool at 50 °C, and benzophenone (0.013g, 7.21·10
-5

 mol; 

molB/molBZP = 1:120) and thiolacetic acid (0.70mL, 8.65·10
-3

mol; molB / molTAA = 1:1) 

were added in the order. The flask was irradiated at 365 nm and power of 100 W in an 
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Table 1. Properties of used resins 

Resin Acidity  

(eq/g) 

Max Temp.  

(°C) 

Amberslyst 15 4.5 120 

Nafion R50 0.8 190 

sPSB-SA1 5.4 200 

sPSB-SA2 4.3 200 

 

UV incubator for 4h. The reaction was monitored by coagulation of 5 mL of the polymer 

slurry in a plenty of methanol. The polymer was recovered by filtration, dried in vacuum 

and analyzed by 
1
H-NMR to check the degree of functionalization. Formic acid (8.2mL; 

0216 mol; molB/molHCOOH = 1:25) was added to the polymer slurry resulting from the 

thioacetylation step at 70 °C. Hydrogen peroxide (3.75 mL, 4.33·10
-2

 mol; 35 wt% in 

water; molB/molH2O2 = 1:5) was slowly added to the polymer solution in 1 h. The flask 

was then allowed to cool at room temperature and 300 mL of acetonitrile were added 

followed by solvent distillation by a rotary evaporator at 35 °C, avoiding the complete 

drying of the polymer. Additional 200mL of acetonitrile were added and the solvent was 

distilled off until the formation of a reddish-brown polymer gel. Further addition of a 

plenty of acetonitrile affords the precipitation of the polymer permitting an easily 

recovery by filtration. The recovered polymer was placed on a PTFE sheet and dried in 

vacuum at room temperature for 48 hours. The almost complete drying was 

accomplished by heating the polymer on a hot plate in air at 120°C of 3h. Reticulated 

sPSB-SA were obtained reducing the thioacetylation degree by lowering the molar ratio 

thiolacetic acid/alkene to 0.95, in order to preserve alkene units in polymer backbone, 

that were directly crosslinked in the second reaction step. 

The main characteristics of all the tested resins catalysts are reported in Tab. 1. 
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2.4 Catalytic Tests 

Some experiments, were carried out without catalyst to evaluate the contribution of the 

un-catalyzed reaction. Moreover, also experiments using sulphuric acid as catalyst were 

performed in order to compare the activity of the heterogeneous catalysts with the one of 

a conventional homogeneous esterification catalyst.  

The reagents used for catalytic tests were glycerol (Fluka, 99%) and oleic acid (Aldrich, 

90%). The esterification experiments were carried out using a glass reactor with a 

volume of 150 mL equipped with a magnetically driven stirrer heated in an oil bath 

under atmospheric pressure. A nitrogen steady flow was passed over the reaction 

mixture through one flask opening for stripping the water formed during the 

esterification. Removed water was collected in a graduated glass vessel, and the volume 

of water collected along the time was used to monitor the esterification progress. The 

reaction temperature was controlled by using a thermometer immersed in the reactant 

mixture. The system was initially charged with the desired amount of oleic acid or of a 

mixture of neutral oil and oleic acid and heated until a pre-fixed temperature, then, 

glycerol and catalyst were added. This time instant corresponds to the initial time of the 

reaction. The reaction was conducted for times between 3 and 24 hours. The reaction 

temperature range explored was 120°C-180°C. During each run, small samples of liquid 

phase were withdrawn; in this way, the evolution with time of the mixture acidity was 

monitored for different reaction times. A molar ratio oleic acid/glycerol of 1.3/1 

mols/mols was used and the amount of loaded catalyst was between 0.25 and 1 wt %. 

The withdrawn samples of the reaction mixture were analyzed by a standard acid–base 

titration procedure for the evaluation of the free residual acidity [ASTM D4662-98 

standard]. The final compositions of the obtained products were determined by gas-

chromatographic analysis [UNI 10946:2001]. 

3. Results and discussion 

The sPSB copolymers are stereo and regio regular polymers with a multiblock 

microstructure, where segments of syndiotactic polystyrene (sPS) are alternating to 

segments of prevalently 1,4-cis-polybutadiene (molar ratio 1,4-cis-PB/1,2-PB ≈ 0.85). 

sPSB with a styrene molar fraction greater than about 0.4 are semi-crystalline and the 



51 

 

segments of sPS (Tg = 105°C, Tm = 250°C) provide to the copolymer high thermal, 

mechanical and chemical resistance. The sPSB copolymers present the same complex 

crystalline morphologies of the sPS homopolymer, for which were described 5 

crystalline forms, two of which (δ and ε) are nanoporous and highly permeable to low 

molecular weight molecules[17] .Moreover these copolymers presents a phase separated 

morphologies were domains of the two kinds of polymers are mutually segregated, 

whose dimensions are depending on the composition[16]. These properties suggested 

that sPSB copolymers could be good candidate as substrate for the synthesis of 

sulfonated polymers by selective functionalization of the butadiene segments, preserving 

the properties of the syndiotactic polystyrene. Actually a multiblock sulfonated 

copolymer comprising hydrophobic (semi-crystalline and permeable) and hydrophilic 

segments could show interesting properties in chemical and morphological terms, with 

possible applications as surfactant, in membrane science and catalysis. 

The process for the sulfonation of the sPSB copolymers comprises two steps depicted in 

Figure 1.  

 

 

Figure 1. Synthetic strategy for sulfonation of sPSB copolymers. 
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In the first reaction the butadiene units were saturated by radical addition of thiolacetic 

acid, promoted by benzophenone and UV irradiation. In the same reactor, the thioacetyl 

groups were consecutively oxidized by in situ generated peracid by addition of formic 

acid and hydrogen peroxide. Formally, the overall process consists of an addition of an 

hydrogen atom and a sulfonic acid group to the alkene functionality of the butadiene 

units, leaving unaffected the styrene units. 

The characterization of the sPSB−SA copolymers was accomplished by nuclear 

magnetic spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR) and 

wide angle x-ray diffraction (WAXD). In the 1H NMR spectrum (Figure 2a) of a 

sPSB−SA copolymer (44 mol% sulfonic acid functionalized) the signals of the methine 

and the methylene bearing the sulfonic acid moiety, respectively generated by the 

sulfonation of the 1,4 and of the 1,2 butadiene units, were found respectively at 2.38 and 

2.62 ppm, in agreement with literature reported value for alkyl-sulfonated polymers[18]. 

The FTIR analysis also confirmed the polymer functionalization, revealing the typical 

vibrations of the sulfonic acid groups (Figure 2b)[19]. In spite of the low styrene content 

of this copolymer, it was found in the δ-toluene clatrate crystalline form of the sPS [17] 

(see WAXD pattern in Figure 2c), confirming that the developed process preserves the 

sPS crystallinity.  

The scanning calorimetry (DSC) and thermogravimetric analysis coupled with infrared 

spectroscopy (TGA-IR) (Figure 3). This trio of techniques reveals that the sPSB−SA 

shows a bimodal thermal desulfonation, likely due to the double nature of the sulfonic 

acid group (Figure 3b). The first desulfonation peak at 176°C was attributed to the 

decomposition of theprimary sulfonic acid group located onto the 1,2 vinyl unit, whereas 

the main peak at 235°C was ascribed to the desulfonation of the predominant sulfonated 

1,4 butadiene units. 
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Figure 2. Characterization of sPSB−SA (entry 1, Table 1): a) 1H NMR spectrum 

(TCDE/DMSO, v/v = 3:1); b) FTIR spectrum; c) WAXD pattern. 
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Figure 3. Thermal behaviour of sPSB−SA (entry 1, Table 1): a) DSC (black curve) and 

TGA (red dashed curve) traces; b) SO2 gas evolution profile during thermal 

decomposition, detected by TGA-IR analysis. 

The results of a first set of experimental runs carried out at 120°C (which is maximum 

possible operative temperature for Amberlyst-15) are reported in Fig. 4. Only the 

sulphuric acid and the sPSB-SA1 resin showed quite the same high conversion (>90%) 

at 120°C, the other tested catalysts giving the same FFA conversion of the blank run.  

The low activity of Nafion R50 could be justified with the low content of acid group, 

while the strong difference in the activity between sPSB-SA1 and Amberlyst 15, being 

the acidity of the resins quite similar, point out that also strong difference in resin 

microstructure should be present. This aspect will be the object of a future paper. 

Moreover, the specific activity of the sPSB-SA resins (referred to the acid equivalent) is 

higher than that of sulphuric acid: the conversions of FFA obtained at 120°C after 3 h, 

using the same equivalent of acid groups (1.157*10-3 eq), whit H2SO4 as catalysts was  

14% while with sPcP-1 was 25%. 

 



55 

 

 

 

Figure 4. Conversion of FFA after 4h of reaction time for the different studied catalysts 

(1% w/w) at 120°C 

 

 

Figure 5. FFA conversion v/s reaction time at 180°C and 120°C using 0.25% w/w 

sPSB-SA1 as catalyst. 
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Figure 6.  FFA Conversion v/s reaction time obtained at 180°C. Catalyst: 1% w/w of 

fresh and used sPSB-SA2 

 

Because the high thermal stability of sPSB-SA resins sPSB

180°C obtaining a high increase in the reaction rate. In fig. 

conversion of FFA along the time for two runs performed 

catalyst at 180°C and 120°C, respectively is reported.

The introduction of crosslinks in the resin reduces the overall ac

Tab.1) and consequently its activity. After 1 h of reaction, at 180°C, using 1% of catalyst 

sPSB-SA1 a conversion of 95% was obtained, while, with sPSB

condition, a conversion of 80 % was achieved. However, as sPSB

shape and can easily be separated from the products, it has been used to test the 

resistance to the deactivation. 

The sPSB-SA2 was used three times for 4h at 180 °C. After each reaction, the catalyst 

was separated from the reaction mixture by filtration. It was the

and dried a 60°C. Recovered catalyst was then mixed with a fresh batch of oleic acid and 

glycerol for the next run. A slight reduction of the activity can be seen, this effect could 

be attributed to the decomposition of the primary sulfonic acid group located onto the 

1,2 vinyl unit or to  a loss of the catalyst. However, the results are very encouraging but 

 

 

FFA Conversion v/s reaction time obtained at 180°C. Catalyst: 1% w/w of 

SA resins sPSB-SA2 has been used also at 

n the reaction rate. In fig. 5 the evolution of the 

he time for two runs performed using 0.25% of sPSB-SA1 as 

catalyst at 180°C and 120°C, respectively is reported. 

The introduction of crosslinks in the resin reduces the overall acidity of the resin (see 

consequently its activity. After 1 h of reaction, at 180°C, using 1% of catalyst 

SA1 a conversion of 95% was obtained, while, with sPSB-SA2, in the same 

condition, a conversion of 80 % was achieved. However, as sPSB-SA2 has more stable 

shape and can easily be separated from the products, it has been used to test the 

4h at 180 °C. After each reaction, the catalyst 

ure by filtration. It was then washed with ethanol 

and dried a 60°C. Recovered catalyst was then mixed with a fresh batch of oleic acid and 

glycerol for the next run. A slight reduction of the activity can be seen, this effect could 

composition of the primary sulfonic acid group located onto the 

1,2 vinyl unit or to  a loss of the catalyst. However, the results are very encouraging but 
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to have more realistic data on the life of the catalyst, a minipilot plant is being designed 

to perform continuous runs.   

4. Conclusion 

A new acid resin, stable at high temperature, has been synthesized. This Syndiotactic 

Polystyrene-co-1,4-cis-Polybutadiene resin has shown high activity in esterification 

reaction and a good resistance to the deactivation. The aspect of the final product, in 

comparison with the homogeneous catalyst (H2SO4) was reported in the following figure 

(figure 7).  The obtained results are very promising and further study will be done to 

define its microstructure and to test the performance of the resin in a continuous reactor. 

 

 

Figure 7. Final product using homogeneous (left) and heterogeneous (right) catalyst. 
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Chapter 4 -Niobia supported on silica 

as a catalyst for Biodiesel production 
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1.  Introduction 

One of the most reliable ways to treat raw materials containing high concentration of 

FFA is the use of an acid catalyst which can promote both the esterification of FFA and 

transesterification of triglycerides [1]. 

In this sense, homogenous Brönsted acid catalysts (such as sulphuric, sulfonics, 

phosphoric and hydrochloric acids) [2] and Lewis acid catalysts [1,3,4] have been 

proposed to catalyze both the esterification and transesterification reactions in biodiesel 

production, but their use foresees high costs of the process due to the plant maintenance 

and/or product purification and/or waste catalyst disposal. Heterogeneous acid catalysts 

represents a great challenge that could allows to overcome the above mentioned 

drawbacks [5,6]. It must be pointed out that Brönsted acid catalysts are mainly active in 

promoting esterification reaction, while Lewis acid catalysts are more active in 

transesterification [7]. Therefore, both acid sites of suitable strength should be present on 

the surface of an ideal heterogeneous catalyst [7].  

Moreover, it must be taken into account a possible deactivation of catalysts, which could 

be due to (i) the leaching of active phase (ii) the fouling of the surface or (iii) the 

poisoning of the active sites. Consequently, the development of suitable regeneration 

methods is a key point in the search of very active solid acid catalysts to be used in a 

new technology for biodiesel production [8].  

Several heterogeneous acid catalysts have been proposed in the recent literature for 

biodiesel production: mixed metal oxides, sulphonated resins, sulphated metal oxides, 

heteropolyacids, vanadyl phosphate and many others [7,9]. 

In particular, niobium-based materials, previously employed as useful acid catalysts for 

many catalytic reactions [10,11], have also yielded promising results in biodiesel 

production. Thus, Portilho et al., for example, claimed the use of niobic acid treated with 

a phosphoric acid solution and niobium oxide supported on alumina as efficient catalysts 

for the transesterification of canola oil with methanol or ethanol [12]. García-Sancho et 

al showed that biodiesel can be produced via methanolysis of sunflower oil in the 

presence of a MCM-41 silica containing niobium oxide [13]. This mesoporous 

niobosilicate can be used even in the presence of oleic acid (2.2 wt%) and water (0.4 

wt%) without losing activity [13]. On the other hand, niobic acid (hydrated niobium 

oxide, Nb2O5
.
nH2O) has already been proposed as catalyst for the esterification of FFA 
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with methanol or ethanol [14,15]. Niobia supported on silica [16] and on silica-alumina 

[17] has been used as catalysts for the esterification of acetic acid with alcohols. 

Niobium–silicon mixed oxide nanocomposites, prepared by a sol–gel method, showed 

the presence of active sites for transesterification of triglycerides and esterification of 

FFA [18].  

In the present chapter the performance of niobia supported by impregnation on silica in 

biodiesel production from soybean oil containing a high FFA concentration (a waste oil 

model) has been deeply investigated. The catalytic behavior has also been determined in 

a continuous tubular reactor in order to evaluate the suitability of this catalyst for the 

development of an industrial process. 

2. Experimental 

2.1 Catalysts synthesis 

The supported Nb2O5 catalysts with different loading (3-12% Nb2O5) were prepared by 

dry impregnation of niobium oxalate [19], obtained from niobium pentoxide [20], on a 

commercial silica (Engelhard). The commercial silica sample is of spherical shape (mean 

diameter= 3-5 mm). The catalysts have been prepared by impregnation of both the 

pellets and of the powder obtained by grinding in a mortar the commercial silica (powder 

diameter <100  µm). After impregnation, the catalysts were dried at 60°C for 10 h and 

calcined at 900°C for 6 h. The denominations of all the catalysts used in the catalytic 

tests with their compositions are reported in Table 1 

 

 

 

 

 

 

 

 



62 

 

Table 1: Niobia content and surface area of the catalysts and  the support 

(xNbSi, powder; 12NbSi(I), pellets)  

 

Support/Catalyst wt % 

Nb2O5 

Surf. Area (m
2
/g) 

SiO2 - 291 

SiO2 (calcined at 900°C) - 285 

3NbSi 3 - 

5NbSi 5 - 

12NbSi 12 266 

12NbSi(I) 12 250 

 

 

2.2 Catalysts characterization 

Textural analyses were carried out by using a Thermoquest  Sorptomatic 1990 

Instrument (Fisons Instrument) by determining the nitrogen adsorption-desorption 

isotherms at 77 K. The samples were thermally pre-treated under vacuum overnight up 

to 473 K (heating rate = 1 K/min). Specific surface area (SBET) were determined by using 

the BET method. 

Powder X-ray diffraction (XRD) patterns were obtained using a Philips powder 

diffractometer. The scans were collected in the range 5–80° (2θ) using Cu Kα radiation 

with a rate of 0.01◦ (2θ/s). TheX-ray tube operated at 40 kV and 25 mA. 

X-ray photoelectron (XPS) studies were performed with a Physical Electronics PHI 5700 

spectrometer equipped with a hemispherical electron analyzer (model 80-365B) and a 

Mg Kα (1253.6 eV) X-ray source. High resolution spectra were recorded at 45° take-off-

angle in the constant pass energy mode at 29.35 eV. Charge referencing was done 

against adventitious carbon (C1s at 284.8 eV). The pressure in the analysis chamber was 

kept lower than 5 x 10
-6

 Pa. A PHI ACCESS ESCA-V6.0 F software package was used 

for acquisition and data analysis. A Shirley-type background was subtracted from the 

signals. All recorded spectra were always fitted using Gaussian-Lorentzian curves to 

more accurately determine the binding energy of the different element core levels. 
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Confocal Raman microscope (Jasco, NRS-3100) was used to obtain Raman spectra. The 

647–nm line of an water cooled Kr+ laser (Coherent), 800 mW, was injected into an 

integrated Olympus microscope and focused to a spot size of approximately 2 µm by a 

100x objective. A holographic notch filter was used to reject the excitation laser line. 

Raman scattering was collected by a peltier-cooled 1024· 128 pixel CCD photon 

detector (Andor DU401BVI). For most systems, it takes 60 s to collect a complete data 

set. 

The surface acidity of the 12NbSi catalyst was evaluated by Temperature Programmed 

Desorption of NH3 (NH3-TPD), which hasbeen conducted using the Thermo Finnigan 

TPD/R/O 1100 . Before the NH3-TPD measurement, the powdered catalyst (0.1–0.2 g) 

was outgassed in a flow of pure helium (20 cm
3
/min), at different treatment temperature 

(600, 300 and 50 °C) for 30 min. Then, the sample was cooled at 40°C and saturated 

with a stream of 10% NH3 in He (20 cm
3
/min) for about 30 min. Afterward, the catalyst 

was purged in a helium flow until a constant baseline was attained. The ammonia 

desorption was determined in the temperature range of 40–500 °C with a linear heating 

rate of 10 °C min
−1

 in a flow of He (10 cm
3
/min). Desorbed NH3 was detected by a 

Thermal Conductivity Detector (TCD). The eventual presence of water in the evolving 

gases was removed by a trap containing anhydrous magnesium perchlorate, located 

between the detector and the reactor.  

The measurement of acid strength of the 12NbSi catalyst was also done by the Hammett 

indicators (Neutral red, pKa= 6.8; Butter yellow, pKa= 3.3; Benzeneazodiphenylamine, 

pKa= 1.5; Dicinnamalacetone, pKa= -3; Benzalacetophenone, pKa= -5.6).The 

measurements were done on samples freshly dried at 300°C before carrying out the 

indicator tests, and handled in a dry box. Moreover, the tests were also performed on the 

sample after contacting with the air for 72 h, with the aim to verify the effect of the 

humidity adsorption on the surface acidity.  

The acidity of the 12NbSi catalyst was also investigated by using pyridine adsorption 

coupled to FTIR spectroscopy. The spectra were recorded on a Shimadzu Fourier 

Transform Infrared Instrument (FTIR8300). Self supported wafers were placed in a 

vacuum cell greaseless stopcocks and CaF2 windows. 

Before pyridine adsorption, the 12NbSi sample was thermally treated at 300°C in air for 

2 h, followed by evacuation at 10
-2

 Pa for 2h at the same temperature. Following this 

pretreatment, the wafer was cooled to room temperature and a spectrum was recorded as 
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reference. In a second set of experiments, the pretreatment was excluded to verify the 

effect of the dehydration on the surface acidity. 

2.3 Catalytic tests 

The screening of the catalysts was performed using a series of 5

vial reactors reported in the following figure (figure 1)

Figure 1. Vial reactors and oven.  

 

The reactants, soybean oil or acid soybean oil

(0.88 g), and a defined amount of the catalyst (0.1 g) were introduced in each reactor. 

The reactors were introduced in a ventilated oven which initial temperature was fixed at 

50°C for 14 min, and then increased at a rate of 20°C/min until it reached

temperature, 180°C, which was kept for 1 h. At the end, the reactors were quenched in a 

cold bath. Blank runs (without catalyst) were also done to evaluate any contribution of 

the non-catalytic reaction.  

The most active catalyst was also tested under the same experimental conditions used by 

García-Sancho et al. [13] with a MCM

(methanol/sunflower oil molar ratio= 12, Cat= 5 wt%, T=200°C, t= 4 h). 

One of the most interesting aspects concerning the use of h

absence of soluble homogeneous species in the reaction medium [

filtration, the concentration of niobium in solution was determined by using the UV

visible standard procedure [22] with the purpose to me

On the other hand, to achieve information on the catalyst life in the industrial reaction 

conditions, some runs have been performed at 220 °C in a laboratory continuous 

 

reference. In a second set of experiments, the pretreatment was excluded to verify the 

effect of the dehydration on the surface acidity.  

ening of the catalysts was performed using a series of 5–6 small stainless steel 

reported in the following figure (figure 1).  

 

soybean oil or acid soybean oil (FFA =10%, w/w) (2 g) and methanol 

(0.88 g), and a defined amount of the catalyst (0.1 g) were introduced in each reactor. 

The reactors were introduced in a ventilated oven which initial temperature was fixed at 

50°C for 14 min, and then increased at a rate of 20°C/min until it reached the reaction 

C, which was kept for 1 h. At the end, the reactors were quenched in a 

Blank runs (without catalyst) were also done to evaluate any contribution of 

ted under the same experimental conditions used by 

with a MCM-41 silica containing niobium oxide 

(methanol/sunflower oil molar ratio= 12, Cat= 5 wt%, T=200°C, t= 4 h).  

One of the most interesting aspects concerning the use of heterogeneous catalysts is the 

absence of soluble homogeneous species in the reaction medium [21].  After catalyst 

concentration of niobium in solution was determined by using the UV-

] with the purpose to measure the eventual leaching. 

On the other hand, to achieve information on the catalyst life in the industrial reaction 

conditions, some runs have been performed at 220 °C in a laboratory continuous 
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micropilot plant using the best catalytic system

2). 

 

Figure 2.Continuous micropilot plant. 

 

The reaction system consisted of a stainless steel packed bed reactor of 30 cm of length 

and d=1/2 inch. A weighted amount of the 12NbSi catalyst, as pellets (12NbSi(I), 30 g), 

was charged in the reactor. The measured void fraction was of 0.66. The reaction was 

carried out at constant pressure of 60 bars by using a back

Two different runs were performed: using silica pellets (reference test, run 0) and with 

12NbSi (I) catalyst pellets (run 1).  

The soybean oil or the acid soybean oil (FFA = 10%) flow rate was fixed at 2.6 ml/min 

while for methanol 5.3 ml/min was used. Samples of the outlet reaction mixture were 

withdrawn at different times on stream. The FAME (

determined by using the HNMR technique (Bruker 200 MHz) measuring the area of the 

H
1

NMR signal related to methoxylic and methylenic groups 

[23]: 

 

����� 	 100 �
/�
��/�

 

 

where (A1) and (A2) are the area of H-NMR signal related to methoxylic and methylenic 

groups, respectively. 

 

micropilot plant using the best catalytic system reported in the following figure (figure 

 

The reaction system consisted of a stainless steel packed bed reactor of 30 cm of length 

and d=1/2 inch. A weighted amount of the 12NbSi catalyst, as pellets (12NbSi(I), 30 g), 

as charged in the reactor. The measured void fraction was of 0.66. The reaction was 

carried out at constant pressure of 60 bars by using a back-pressure regulator.  

Two different runs were performed: using silica pellets (reference test, run 0) and with 

The soybean oil or the acid soybean oil (FFA = 10%) flow rate was fixed at 2.6 ml/min 

while for methanol 5.3 ml/min was used. Samples of the outlet reaction mixture were 

The FAME (fatty acid methyl esters) yields were 

determined by using the HNMR technique (Bruker 200 MHz) measuring the area of the 

signal related to methoxylic and methylenic groups using the following equation 

NMR signal related to methoxylic and methylenic 
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FFA concentration is determined by measuring the residual FFA concentration by 

titration (wFFA)  [24].  

The free fatty acid (FFA) conversion (λFFA) was calculated using the following equation: 

 

100
0

0

FFA

FFAFFA
FFA

w

ww −
=λ

 

The conversion of glyceride groups (λGly) (due to the transesterification reaction) can be 

calculated using the following equation [1]: 

 

 

Were: 

PMoil = molecular weight of soybean oil, [g/mol] 

PMOA= molecular weight of oleic acid, [g/mol] 

w
0

FFA = initial FFA concentration,          [% w/w] 

The stability of the catalyst was verified by determining, after 100 h on stream, the 

content of niobium on the discharged catalyst was determined by ICP-MS (Inductively 

Coupled Plasma Mass Spectrometry). 

3. Results and Discussion  

3.1 Preliminary Catalytic Screening  

First of all, since at high temperatures the stainless steel internal surface of the vials 

could catalyze the transesterification and esterification reactions, different runs without 

catalyst were performed at 180 °C using acid oil as reagent, obtaining FAME yields in 

the range 7-10% and a FFA conversion of 15-20%.  

The influence of the amount of niobia on the catalytic activity has been studied and the 

obtained results are reported in Figure 3. 
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Figure 3:  The conversion of triglycerides (

(FFA =10% w/w) obtained with Nb2O5 supported on silica catalysts. Reaction time= 1 h, 

reaction temperature = 180°C, catalyst = 0.1 g, 

 

As it can be seen, by increasing the amount of supported niobia a significant increment 

of the FFA conversion was obtained. Calcined silica exhibits a very low activity (the 

obtained conversion is in the range of the blank runs). However, the activity improves 

significantly (35% of FFA conversion) in the case of 3NbSi which possesses the lowest 

Nb2O5 loading (3%). A further increase of the amount of supported niobium oxide does 

not lead to an important amelioration of the catalytic activity, with FFA conversions of 

42% and 48% for 5NbSi (5% Nb2O5) and 12NbSi (12% Nb2O5), respectively. 

On the other hand, the transesterification activity (glyceride group conversion) is 

relatively low and it is barely affected by the niobia loading, under these experimental 

conditions. 

The leaching tests were carried out for each catalyst, confirming the stability of this 

family of supported niobia catalysts, since the presence of Nb in the filtered solution was

not evidenced by UV-Vis analysis. The best catalyst (12NbSi) was also tested in the 

same condition used by García-Sancho et al. with a MCM

0
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(λGly) and FFA (λFFA )of acid soybean oil 

supported on silica catalysts. Reaction time= 1 h, 

, catalyst = 0.1 g, acid soybean oil = 2 g, methanol =0.88 g.  

As it can be seen, by increasing the amount of supported niobia a significant increment 

of the FFA conversion was obtained. Calcined silica exhibits a very low activity (the 

sion is in the range of the blank runs). However, the activity improves 

significantly (35% of FFA conversion) in the case of 3NbSi which possesses the lowest 

loading (3%). A further increase of the amount of supported niobium oxide does 

n important amelioration of the catalytic activity, with FFA conversions of 

) and 12NbSi (12% Nb2O5), respectively.  

On the other hand, the transesterification activity (glyceride group conversion) is 

barely affected by the niobia loading, under these experimental 

The leaching tests were carried out for each catalyst, confirming the stability of this 

family of supported niobia catalysts, since the presence of Nb in the filtered solution was 

The best catalyst (12NbSi) was also tested in the 

Sancho et al. with a MCM-41 silica containing niobia 

5NbSi 12NbSi 



68 

 

(methanol/sunflower oil molar ratio= 12, Cat= 5 wt%, T=200°C, t= 4h) [13]. The 

obtained result (70% FAME yield) was lower than that obtained with a niobia supported 

on a MCM-41 silica catalyst with a 8% Nb2O5 (87% FAME yield). However, the cost of 

the MCM-41 silica synthesis is higher than that of a commercial silica and, for an 

industrial application, the use of the latter type of silica as support is favored (if the 

catalyst stability is proven also for a long reaction time). Moreover, the catalytic results 

pointed out that the 12NbSi catalyst has good activity also in transesterification reaction 

when the temperature is increased until 200°C. This is in agreement with data reported 

by García-Sancho et al. [13], who found an important amelioration of the 

transesterification activity, by using the MCM-41 silica containing niobia, increasing the 

temperature from 175°C to 200°C. 

3. 2 Catalyst Characterizations  

The textural characteristics of the most active catalyst (12NbSi) were determined from 

the N2 adsorption-desorption isotherms at -196°C. The adsorption of niobia on silica has 

little effect on the specific surface area (see Tab. 1) and no crystalline phases could be 

determined by XRD, even for the catalyst with the highest niobia loading, 12NbSi (see 

Fig.4), in agreement with the literature data [25,26].  

 

Figure 4: Powder XRD pattern of the 12NbSi catalyst. 
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This fact reveals that niobium is well dispersed on the silica surface.  

Xray photoelectron spectroscopy has been used to get insights into the surface nature of 

catalysts. The XPS data are summarized in Table 2. The Si 2p signal is symmetrical and 

appears at binding energy (BE) values of 103.2–103.8 eV, typical of Si in silica.The O 

1s region only shows a single and almost symmetric peak at BE: 532.6–533.5 eV,close 

to the value observed for a silica (533.1 eV), whereas bulk Nb2O5 displays this peak at 

lower BE (530.2 eV), thus corroborating the absence of segregated Nb2O5 particles on 

the external surface of the siliceous support, as can be also deduced from the highest 

surface Si/Nb molar ratio in comparison with the corresponding bulk values (Table 2). 

On the other hand, the two components of the Nb 3d doublet appear at 206.3–206.9 eV 

(3d5/2) and 208.8–209.6eV (3d3/2) when commercial silica is used as support, whereas 

this doublet is observed at higher BE in the case of MCM-41-based materials. However, 

in both cases, these BE values have been reported for Nb(V) in an oxidic environment. 

On the other hand, the surface Si/Nb atomic ratio values are higher than the 

corresponding bulk ones (Table 2), which is a consequence of the presence of niobia into 

the pores, thus difficult to detect by this XPS technique. After reaction, these ratio 

increases due to the covering of the active sites by organic species, as can be inferred 

from the surface carbon analysis, which yields values as high as 43 and 61% for the 

spent 12NbSi and MCM-8Nb, respectively. 

The surface acidity of the 12NbSi catalyst has been evaluated by temperature 

programmed desorption of adsorbed NH3 (see Fig. 5). Before NH3 adsorption, the 

catalyst was pretreated at 600°C. Surprisingly, the 12NbSi catalyst didn’t show any 

desorption peak. These data are in contrast with the highest esterification activity found 

with this 12NbSi catalyst. For this reason, the TPD analysis was repeated after pre-

treating at lower temperature (300°C and 50°C) (see Fig. 5), and acid sites were now 

detected, decreasing with the increase of the pretreatment temperature.  
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Table 2. XPS data (binding energies and Si/Nb atomic ratios) of catalysts. 

Catalyst 
Si 2p 

(eV) 

O 1s 

(eV) 

Nb 3d 

(eV) 

Surface Si/Nb  

atomic ratio 

Bulk Si/Nb  

atomic ratio 

5NbSi_rt 103.8 533.2 
206.4 (3d5/2) 

209.0 (3d3/2) 
271 42.1 

12NbSi_rt 103.8 533.2 
206.3 

208.8 
48.9 16.3 

12NbSi_300  104.1 533.5 
206.4 

209.0 
183.5 16.3 

12NbSi_300 

_spent 
103.3 532.7 

206.9 

209.6 
267 16.3 

MCM-Nb8_rt 103.6 533.0 
208.0 

210.6 
51.2 22.7 

MCM-

Nb8_spent 
103.2 532.7 

207,7 

210.4 
73.4 22.7 

 

 

 

Figure 5: NH3-TPD profiles for the 12NbSi catalyst pretreated at 600°C, 300°C and 

50°C. 
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Shirai et al. found for a niobia/silica catalyst that, after pretreatment at high temperature, 

the Brönsted acid sites disappeared, while the Lewis acid sites are independent from the 

pretreatment temperature [16]. 

This fact has been confirmed by FTIR analysis of adsorbed pyridine (Fig. 6). The 

12NbSi catalyst, pretreated at 300°C overnight under vacuum, only showed at 25°C the 

vibration modes associated to pyridine adsorbed on Lewis acid sites at 1445 cm
-1

 and 

1600–1610 cm
-1

 [16,25,27]. However, the acid sites are very weak, since these bands 

were not observed after evacuation at 150°C. 
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Figure 6: FTIR spectrum of adsorbed pyridine of the 12NbSi catalyst (pretreated at 

300°C overnight under vacuum) at 25°C.  

 

However, the formation of stronger acid sites after exposure to the air moisture has been 

confirmed by the use of Hammett indicators. The 12NbSi catalyst, previously dried at 

300°C and handled in a dry box, didn't show any acidity. When the catalyst was put at 

ambient condition, after 2 h, the acid strength was determined with Hammett indicator   

(-5.6 < pKa< -3). 

In order to elucidate the structure-activity relationships, Raman spectroscopy has been 

used to characterize the 12NbSi catalyst, and the spectra were collected at ambient 

condition and wet (sample was wet and then the spectrum was registered without 

dehydration), and were compared with that of Nb2O5 as reference (Fig. 7). 



72 

 

 

Figure 7. Raman spectra of the 12NbSi catalyst, at ambient condition and 

wet(wet12NbSi), Nb2O5 and SiO2.  

 

It has been reported that regular tetrahedral NbO

frequencies appearing in the 790–830 cm
−1

 region, distorted NbO

700 cm
−1

 region and highly distorted octahedral NbO

850–1000 cm
−1

 region [28]. A Raman feature at 995 cm

the spectra of 12NbSi and wet 12NbSi, can be related to the symmetric stretching 

vibration modes associated to terminal mono

belonging to the H-Nb2O5 structure [29-32]. By comparison with the Nb

995 cm
-1

 should correspond to the bulk Nb

vibration bands around 630 cm
-1

 can be associated with polymerized surface metal oxide 

species (M-O-M and -O-M-O- vibrations) [

 

 
. Raman spectra of the 12NbSi catalyst, at ambient condition and 

ral NbO4 structures are associated to Raman 

region, distorted NbO6 octahedra in the 500–

region and highly distorted octahedral NbO6 structures give rise to bands in the 

]. A Raman feature at 995 cm
–1

 and 938-934 cm
-1

, observed in 

NbSi, can be related to the symmetric stretching 

vibration modes associated to terminal mono-oxo Nb=O bonds of NbO6 octahedra 

]. By comparison with the Nb2O5, the signal at 

lk Nb2O5 species [33]. On the other hand, the 

can be associated with polymerized surface metal oxide 

vibrations) [33]. Ultimately, the Raman technique 
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confirms the presence of small Nb2O5 particles, not detected by XRD, on samples with 

high niobium content on silica [34]. 

Although the Raman spectra of 12NbSi and wet 12NbSi are similar, they aren't identical 

as evidence the different relative intensities of the Raman signals at 995 cm
-1

 and 730 

cm
-1

.  

The characteristic bands at 995 cm
-1

 and 940 cm
-1

 of Nb=0 species that are associated to 

Lewis acid sites [34] are still present on the wet 12NbSi catalyst; however, the formation 

of more Nb-OH groups cannot be excluded because the change of spectra in the region 

of distorted octahedral NbO6 structures (500-700 cm
-1

 ).   

The previous data confirm the well established observation that the molecular structure 

of niobia supported on silica is influenced by the hydration degree [32,34]. 

On the other hand, when the niobia/silica catalyst is immersed in aqueous solution, 

Brönsted acid sites are predominantly generated by coordination of the water molecules 

to Lewis acid sites [25].  

3.3 Effect of pretreatment on catalytic activity 

As it has been previously mentioned, pretreatment conditions affect greatly on the 

catalyst acidity. In order to evaluate its influence on the catalytic activity, different runs 

have been done with the catalyst dried at 300°C and handled in a dry box, and the 

catalyst remained in contact with atmosphere for 2 h (Fig.8).   

The dry 12NbSi catalyst exhibits a high activity in the transesterification reaction (λGLY= 

48 %) and a low activity in the esterification reaction (λFFA= 20 %), whereas the 

behavior of the wet sample is inverse: the activity in the esterification process (λFFA= 50 

%) is higher than that of the transesterification  reaction (λGLY= 5 %), and they are 

similar to that reported in Fig. 1 for the 12NbSi catalyst. 

These results agree well with those derived from the characterization and data previously 

reported on the relative activity of Lewis and Brönsted acid sites [7,35,36]: the Lewis 

acid sites present on dried catalysts favor the transesterification reaction while the 

esterification process is more favored by Brönsted acid sites, formed after exposure to 

the atmosphere. 
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Figure 8:  The conversion of glyceride groups 

soybean oil (FFA =10% w/w) obtained with the

dried at 300°C; 12NbSi (2 h) = exposed to atmosphere for 2 h; (Reaction time= 1 

h, reaction temperature = 180°C, catalyst = 0.1 g,  acid soybean oil = 2 g, methanol 

=0.88 g) 

3.4 Continuous runs 

Using the silica pellets (30 g) as catalyst (run 0) (Methanol 5.6 cm

cm
3
/min (FFA =  9.5 % w/w), T=220°C), a conversion of 20

with a total FAME yield of 25-30 %. 

The results obtained with pellets of the 12 NbSi catalyst, under similar experimental 

conditions (run 1), are reported in Fig.9. 

The results were very interesting since this 12NbSi catalyst was very active in both 

esterification (FFA conversion = 95-90%) and transesterification reactions (FAME yield 

= 80-90%), and the activity remained constant for more than 100 h on stream. 
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conversion of glyceride groups (λGly) and of FFA  (λFFA )of acid 

with the12NbSi catalyst. 12NbSi dry = 

h) = exposed to atmosphere for 2 h; (Reaction time= 1 

h, reaction temperature = 180°C, catalyst = 0.1 g,  acid soybean oil = 2 g, methanol 

Using the silica pellets (30 g) as catalyst (run 0) (Methanol 5.6 cm
3
/min; acid oil 2.6 

/min (FFA =  9.5 % w/w), T=220°C), a conversion of 20-30% of FFA was obtained 

The results obtained with pellets of the 12 NbSi catalyst, under similar experimental 

sults were very interesting since this 12NbSi catalyst was very active in both 

90%) and transesterification reactions (FAME yield 

90%), and the activity remained constant for more than 100 h on stream.  

12NbSi (2h)
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Figure 9- FFA conversion and FAME yield obtained in continuous run 1. Methanol 5.3 

cm
3
/min; acid oil 2.6 cm

3
/min (FFA =  10 % w/w); T=220°C; Cat. 12NbSi.  

 

However, in order to verify the stability of the catalyst, the niobium content on 

discharged catalyst was determined by ICP-MS. Unfortunately, a leaching phenomena 

was discovered, because the niobia content in the spent catalyst was 3%-5% instead of 

12%. 

Nevertheless, this niobia content in the catalyst is enough active (see data reported in 

Fig. 1) and, from the conversion data in the continuous run, the leaching cannot be 

inferred (probably the conversions are near the equilibrium values).  

The obtained results confirms that the leaching is one of the most strong problem in 

heterogeneous catalysis for biodiesel production [21]. 
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4. Conclusions 

The distribution of strength and nature of acid sites on niobia supported on silica is 

strongly dependent on the environment in contact with the catalyst. When the catalyst is 

dried, Lewis acid sites are mainly present, whereas the contact with atmosphere favors 

the reaction with the humidity and the formation of Brönsted acid sites of moderate 

strength (-5.6 < pKa ≤-3). 

Niobia supported on silica is active in both esterification of FFA and transesterification 

of triglycerides, with no loss of activity in the continuous run for 100 h. However, the 

characterization of the used catalyst revealed the slow leaching of niobia, which reduces 

its potential of industrial application in biodiesel production, if this problem will be not 

solved. 
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Chapter 5 -

Homogeneous/Heterogenized zinc 

catalysts for biodiesel production 
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1. Introduction 

For synthesis of Biodiesel from waste oils containing high concentration of FFAs,  the 

attention has been recently focused on Lewis acid catalysts, i.e. metal salts which are 

able to promote simultaneously esterification and trans-esterification [1–14]. Extensive 

studies [15] carried out on homogeneous Zn, Co, Pb, Mn, Ca, and Mg catalysts have 

clearly demonstrated that the intrinsic acidity of the metal center plays a crucial effect on 

its activity. In this case, the main drawback ensues from the corrosive action of the 

Lewis acids. A solution can be the heterogenization of the metal complexes, which also 

favors their separation and recycling. Given this premise, our laboratory has recently 

[16-18] designed effective homogeneous Zn(II) catalysts containing modular nitrogen 

ligands I in Fig. 1.  

 

 

 

 

Figure 1. General formula of type I complexes (X= Cl, MeCO2, CF3CO2, CF3SO3). 

 

 

The catalysts were successfully used in the trans-esterification of soybean oil in 

homogeneous conditions, and the presence of the functional group R on the pyridine 

portion allowed to identify the stereoelectronic features which enhance the performance 

of the catalysts. The additional hydroxyl was instead introduced as a potential anchoring 

function, in order to make the catalysts suitable for a successive heterogenization. 

Aiming to demonstrate the feasibility of this strategy, in chapter we report two 

successful approaches for immobilizing catalysts of type I, their use in FAMEs' 
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production starting from both neutral and acid oils, and the attempts to separate and re-

cycle the active species.  

Two immobilized catalytic systems were designed: 

a) soluble catalysts based on polymers (i.e. dendrimers [19]), that are separable by using 

ultrafiltration techniques. 

b) a catalyst supported on a solidmatrix (i.e. silica),which can be easily 

recovered by filtration of the reaction mixture. 

2. Experimental section 

2.1 General considerations 

All reagents were purchased from Sigma-Aldrich and used without further purification. 

The silica AEROLIST (surface area, 150 m2/g) was activated by heating in oven at 300 

°C for 5 h. Complex II was described elsewhere [16]. The complexes were characterized 

by NMR spectroscopy, using Varian VXR 200 and Varian Gemini 200 spectrometers. 

1H NMR data were reported in ppm and the shifts were referenced to the resonance of 

the residual protons of the solvent (CD3)2SO (2.55 ppm). Abbreviations used in NMR 

data: s, singlet; d, doublet; t, triplet; m, multiplet; and br, broad. The Zn content in the 

supported catalyst was determined by ICP (inductively coupled plasma) analysis on an 

Aurora M90 Bruker spectrometer. 

2.2 Synthesis of dendrimeric complexes [Zn(OAc)2Gx], x = 0–3 

PAMAM-G0-3 (polyamineamides)were used for the construction of the grafted catalysts 

(Scheme 1 shows PAMAM-G2). This choice was motivated by the following 

considerations: 

1) the presence of appropriate terminal functions (-NH2) useful for the synthesis of 

imino ligands. 

2) molecular weights compatible with the ultrafiltration step. 

3) the high solubility in methanol, which consents its use as both solvent and reactant in 

the trans-esterification reaction, thus avoiding mixtures of solvents. 
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The synthesis of the complexes was conducted in a single step, by mixing in methanol 

stoichiometric amounts of 2-pyridinecarboxaldehyde and the appropriate PAMAM, in 

the presence of zinc acetate (the functionalized PAMAM ligands are indicated with the 

label Gx, as in Scheme 3 for [Zn(AcO)2G2]). 

2-Pyridinecarboxaldehyde (0.107 g, 1.00 mmol) and solid Zn(OAc)2 (0.182 g, 1.00 

mmol) were added to a solution of PAMAM-GX (1.00/n mmol; n= \NH2 groups) in 3 

mL of methanol. The solution was stirred for 1 h at room temperature. The yellow 

product was precipitated by adding diethyl ether, filtered off and dried under a vacuum. 

The characterization was carried out by NMR spectroscopy. The presence of a singlet at 

δ8.5 testifies the formation of the imino CH=N bonds, and the integration of suitable 

peaks demonstrated that all the -NH2 groups were functionalized and involved in 

coordination. The thermal stability of the dendrimeric complexes was tested byTGA–

TDA analysis under nitrogen atmosphere. All the samples showed the same behavior 

and only a low weight reduction in the temperature range 30–180 °C (5%) was observed. 

The weight loss can be attributed to the loss of adsorbed water. 
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Scheme 1. Synthesis of [Zn(AcO)2G
2
]. 
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2.3 Catalysis with the dendrimeric complexes 

The activity of the complexes was investigated in the transesterification of neutral 

soybean oil. A mixture of methanol, oil and catalyst was stirred in a batch glass reactor 

in the same experimental conditions described in a work [16]. Soybean oil (4.00 g), 

methanol (1.76 g) and [Zn(OAc)2Gx] (0.12 mmol based on Zn) were introduced in a 

batch glass reactor. The temperature of the oil bath was initially fixed at 50 °C and then 

increased at a rate of 10 °C/min until it reached 150 °C. After 1 h there action was 

quenched, cooling rapidly the reactor. The reaction mixture was place in an Amicon® 

stirred cell and methanol was added. Ultra filtration was carried out for 30 min at a 

pressure of 3 bar. The catalyst was separated and re-used for other catalytic cycles. The 

reaction mixture was analyzed by NMR spectroscopy [17]. 

The reuslts for the corresponding homogeneous catalysts  are reported in (Table 1).  

 

The dimension of the PAMAM support plays a modest effect on the catalytic activity: at 

the same temperature FAMEs yields deviated a few percentage units from G0 through 

G3. This can be explained by assuming that all the zinc centers are available for the 

substrate, due to their superficial exposure. 

 

The mechanism hypothesized for the reaction is likely similar to that established in the 

case of the corresponding mononuclear homogeneous systems, which is described in 

detail elsewhere [2]. 

The highest activity was found for [Zn(OAc)2G2], which promoted a 90.1% conversion 

at 150 °C (TOF=98 h
−1

). As expected, the temperature had a marked influence: a 

decrease of only 40 °C lowered the yield of about 80%. However, it should be 

emphasized that the performance at 150 °C is quite satisfactory when compared with that 

of the corresponding homogeneous acetate complexes of type I, which in the same 

condition showed TOFs up to 57 h
−1

 [16]. In all cases, except for [Zn(OAc)2G0], the 

formation of a solid dark residue was observed, due to partial decomposition of the 

complex. Nevertheless, reuse of catalysts [Zn(OAc)2G2] and [Zn(OAc)2G0] was 

attempted, because the former showed the highest activity, and the latter did not 

apparently decompose during the reaction. The catalysts were ultrafiltered by using a 

membrane with a cut-off of 1000 Da. After ultrafiltration, the permeate containing the 
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reaction mixture was analyzed to evaluate the catalytic activity, while the recovered 

catalyst was used for a new cycle. The results are shown in Table 2. In both cases a 

decrease in activity was observed, which was more pronounced for [Zn(OAc)2G2]. 

 

Table 1. Transesterification
a
 of soybean oil with dendrimeric complexes 

Entry Catalyst MW T (°C) FAME 

yield (%) 

1 [Zn(OAc)2G0] 1608.93 150 86.6 

2 [Zn(OAc)2G0]  130 50.7 

3 [Zn(OAc)2G0]  110 7.7 

4 [Zn(OAc)2G1] 3610.35 150 88.2 

5 [Zn(OAc)2G1]  130 45.5 

6 [Zn(OAc)2G1]  110 9.8 

7 [Zn(OAc)2G2] 7617.18 150 90.1 

8 [Zn(OAc)2G2]  130 59.5 

9 [Zn(OAc)2G2]  110 11.6 

10 [Zn(OAc)2G3] 15616.82 150 85.4 

11 [Zn(OAc)2G3]  130 42.6 

12 [Zn(OAc)2G3]  110 5.4 

a. Reaction conditions: soybean oil, 4g; methanol, 1.76g; catalyst, 0.12 mmol 

(based on Zn); reaction time, 1h. 

 

 

 

Table 2. Recycles in transesterification 
a 
of soybean oil with dendrimeric complexes. 

Entry Catalyst 1
st
 run 

b
 2

nd
 run 

b
 3

rd
 run 

b
 

1 [Zn(OAc)2G0] 86.6 % 76.9 % 50.0 % 

2 [Zn(OAc)2G2] 90.1 % 57.5 % 6.2 % 

a. Reaction conditions: soybean oil, 4g; methanol, 1.76g; catalyst, 0.12 mmol 

(based on Zn); reaction time, 1h. 

b. Conversion. 
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As a general comment, it should be noted that the results reported in Table 2 represent 

the average of multiple tests. In all cases it was observed that the formation of the dark 

precipitate, although the yield was not reproducible. This aspect, combined with the fact 

that its collection is difficult, allowed only to verify the presence of zinc, through a 

qualitative assay for its recognition. In the case of [Zn(OAc)2G0], the non-observation of 

a macroscopic precipitate cannot exclude a similar formation of metal clusters, which 

removes metal from the catalyst. 

2.4 Catalyst supported on silica 

The strategy for homogeneously involves linkage of complex II to silica (the synthesis is 

described elsewere [16]), by reacting the superficial -OH groups with the -Si(OEt)3 

groups of the pendant reported in the following figure (Fig.2) 

 

 

 

 

Figure 2. General formula of type II complex. 

 

 

 

For the synthisis, to a solution of complex II (0.37 g) in 70 mL of dry toluene SiO (1.05 

g) was added. The mixture was stirred for 20 h under reflux. The solid was then 

separated, washed with dichloromethane for 16 h in a Soxhlet apparatus and dried under 

a vacuum. The ICP analysis revealed the presence of 2.3% in weight of Zn. 
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Scheme 2. Strategy for the heterogenization of catalyst II. 

 

As expected, the easy separation of the resulting powder sup-II from the reaction 

medium allowed its re-use in several catalytic runs. The system was tested in the trans-

esterification of soybean oil, both neutral (FFA < 1%) and suitably acidified by addition 

of oleic acid (5.08% and 9.07% w/w). These substrates were prepared by weighing, and 

the percentages were also verified by titration with KOH. 

Soybean oil (11.2 g), methanol (5.00 g) and supported catalyst(0.56 g) were stirred (rate 

500 rpm) in a Parr Instrument® steel reactor. The temperature in the reactor was 

increased from room temperature to 150 °C in 35 min. After 2 h the reactor was cooled 

and the reaction mixture was separated from the catalyst and analyzed. Soybean oil and 

methanol were added to the residual catalyst for successive runs. The FAME yields were 

determined by NMR spectroscopy [17] and the residual FFA concentration by titration 

[18]. 

 

After each catalytic run, the reactor was rapidly cooled and, after the removal of the 

reaction mixture, fresh methanol and oil were again added to the residual catalyst. 

Reaction conditions, conversion and residual acidity are given in Table 3. 
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Table 3. Recycles in transesterification
a
 of soybean oil with sup-II 

Entry Run Initial 

acidity (%) 

FAME yield 

(%) 

Residual 

acidity (%) 

1 1
st
 <0.1 31.1 - 

2 2
nd

 <0.1 33.8 - 

3 3
rd

 <0.1 28.0 - 

4 4
th

 <0.1 17.7 - 

5 5
th

 <0.1 13.2 - 

6 1
st
 5.08 39.7 1.8 

7 2
nd

 5.08 36.9 2.0 

8 3
rd

 5.08 27.0 2.6 

9 4
th

 5.08 25.7 2.5 

10 5
th

 5.08 24.8 3.0 

11 1
st
 9.07 43.3 2.1 

12 2
nd

 9.07 41.7 3.3 

13 3
rd

 9.07 35.2 3.6 

14 4
th

 9.07 30.3 4.3 

15 5
th

 9.07 28.2 4.4 

a. Reaction conditions: soybean oil, 11.2g; methanol, 5.0g; catalyst, 0.20 mmol 

(based on Zn); reaction time, 2h. 

 

The activity observed for the neutral oil (entry 1, TOF = 28 h
−1

) is higher than that for 

the corresponding homogeneous counterpart II (TOF = 15 h
−1

 [16]), and can be 

considered as satisfactory, given the heterogeneous nature of the catalyst. Notably, the 

activity remained almost constant for the first three catalytic cycles and then decreased. 

It should be noted that this effect cannot be attributed to leaching of zinc, as the metal 

content after the fifth run was found to be identical to the initial value (ICP analysis = 23 

mg Zn/g of solid). 

The introduction of FFA aimed to verify the stability and the activity of the catalyst 

under conditions more similar to those of waste oils. Conversions were even higher than 

in the case of the neutral oil. However, a non-negligible contribution due to the acidic 

nature of the substrate must be also taken into account. In fact, the conversions without 
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catalyst were 6% and 17%, respectively for 5.08% and 9.07% w/w acidic contents. If 

this contribution is simply subtracted from the overall yields, the activity of the catalyst 

toward the different substrates can be assumed to be similar. 

Also in the case of the acid oils, conversion remained constant within the first catalytic 

cycles, and then decreased. A reduction in the acidity of the substrate was also observed, 

which gradually was less evident in subsequent catalytic runs. This testifies that the 

supported catalyst displays a significant activity even in the esterification of FFA. 

 

3.  Conclusion 

In this chapter have been described two efficient strategies for immobilizing catalysts 

based on Zn(II). Both the homogeneous catalysts supported on silica and the dendrimeric 

species have proven the capability of promoting the trans-esterification of neutral and 

acid soybean oil. Further studies will be dedicated to improving the robustness of the 

catalysts for enhancing their activity and durability. 
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1. Introduction 

Biodiesel production has strongly increased in the last years as one of the possible 

substitutes of diesel from petroleum. As known, crude glycerol is an important by–

product of  biodiesel synthesis corresponding to about 10% wt of the produced biodiesel 

[1-10]. Clearly, by increasing the biodiesel production also the availability of glycerol 

increases and its price consequently goes down more and more.  

For these reasons strong effort are doining for finding new application of glycerol (see 

chapter 1). In this chapter, we focused our attention to the glycerol hydrochlorination 

process for producing chlorohydrins. The strong industrial interest for this production 

route is confirmed by the fact that recently some big companies have announced plans to 

commercialize their technology to manufacture epichlorohydrin starting from glycerol 

[11-22]. Studies of glycerol hydrochlorination have focused mainly on the production of 

1,3-di-chloro-2-propanol (1,3-DCH) an intermediate in epichlorohydrin synthesis. The 

production of epichlorohydrin occurs through the following reaction steps: 

       (1) 

(2) 

 

Instead of NaOH also Ca(OH)2 can be used. 

Epichlorohydrin is an important raw material for the production of some polymers such 

as epoxide resins, synthetic elastomers, and sizing agents for the papermaking industry.  

Starting from glycerol the reaction proceeds through a first hydrochlorination reaction, 

primarily forming 1-chloro-2,3-propanediol (1-MCH) and water along with small 

amounts of the isomer 2-chloro-1,3-propanediol (2-MCH) (mono-chlorohydrins). This is 

followed by a second hydrochlorination step from which 1,3-DCH is obtained as main 

product together with modest amounts of 1,2-chloro-3-propanol (1,2-DCH). Different 

carboxylic acids can be used  as catalysts. The hydrochlorination of glycerol is very 

selective in giving  1,3-DCH. On the contrary, starting from propene and following the 
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traditional technology, a mixture of 1,3-DCH and 1,2- DCH  (30:70%) is obtained. This 

is an important advantage of the process via glycerol, because, 1,3-DCH is much more 

reactive than 1,2-DCH and consequently  the plants for obtaining epychlorohydrin, in 

this case, are much smaller in size and hence less expensive.  

In this chapter, the activity and selectivity shown by different carboxylic acids used as 

catalysts in promoting the reaction and the effect of the catalyst concentration have been 

examined and compared; then, the reaction mechanisms suggested in the literature and 

the importance of using gaseous hydrochloric acid and the role of both the HCl pressure 

and the temperature on the reaction rate have been examined and discussed. Comparison 

of the new process via glycerol for producing epichlorohydrin  with the traditional 

process via propene.  

The process for the synthesis of epichlorohydrin is a rather old process. The classical 

process starts from propene and through a first step, consisting in a high temperature 

chlorination, allyl chloride is obtained [23]; subsequently, allyl chloride with 

hypochlorous acid gives place to glycerol dichlorohydrins isomers and finally the 

reaction of the glycerol dichlorohydrins with sodium hydroxide or calcium hydroxide, 

leads to epichlorohydrin. The main reactions involved in the epichlorohydrin synthesis
 

[23] are shown in Figure 1. As it can be seen, from the second step of this process a 

mixture of dichlohydrins is obtained, more precisely the reaction product is a mixture 

composed of 70% of 1,2-DCH and 30% of 1,3-DCH. As already mentioned, the 

reactivity of 1,2-DCH, the most abundant component, is much lower. This gives place to 

the following disadvantages: an increase of the reactor size (reactive distillation column) 

to obtain a satisfactory conversion of the less reactive reactant and  the formation of 

undesired by-product as a consequence of the long residence time [24,25]. This process 

has also the disadvantages of  an abundant use of  chlorine. The availability of great 

amounts, at low cost, of glycerol stimulated the development of alternative processes 

based on the use of this substance as raw material instead of propene. It must be 

recognized that the process based on glycerol hydrochlorination, to obtain chlorohydrins, 

was known from a long time [26-33]. The old process involved the reaction of  glycerol 

with aqueous hydrochloric acid at high concentration, using acetic acid as catalyst. The 

reaction was performed  at 80-100°C.The process based on the use of aqueous HCl is 
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affected by many drawbacks, such as: (i) The reaction is slow because of the abundant 

water present in the system coming from both  the aqueous hydrochloric acid and the 

water produced by the reaction. (ii) The difficult separation of the dichlorohydrins from 

the reaction mixture. (iii) Acetic acid, used as catalyst, can be lost from the reaction 

mixture by evaporation, since its relatively low boiling point (117 ° C). The 

disadvantages listed above discouraged the possibility of further studies in this direction. 

On the contrary, new studies have been directed towards processes using gaseous 

hydrochloric acid instead of aqueous solutions and new catalysts, less volatile than acetic 

acid, such as carboxylic acids of higher molecular weight.In this way, it is possible to 

keep constant the concentration of the catalyst inside the reactor during the reaction [10-

12]. 

 

 

 

Figure 1 – Reaction scheme for the traditional process via propene. 

 

The use of organic acids less volatile than acetic acid allows to operate at higher 

temperatures thus increasing significantly the reaction rate. The use of gaseous HCl 
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allows also an easier recover of the produced dichlorohydrins from the reaction mixture, 

because, 1,3-DCH and 1,2-DCH are both more volatile than the unreacted glycerol and 

the intermediates monochlorohydrins 1-MCH and 2-MCH. Gaseous HCl can be fed to 

the reaction system either pure or diluted with an inert gas [10-12].  The process for 

producing dichlorohydrins, according to this method, is performed starting from pure or 

crude glycerol, as a byproduct of biodiesel production, treated with gaseous hydrochloric 

acid, in the presence of a carboxylic acid. 

The pressure of HCl has a positive effect on both reaction rate and selectivity toward 1,3 

DCH, and usually is kept in the range 1-10 bars. The complete conversions of glycerol, 

however, involves a reaction time that is dependent on the pressure of HCl, the adopted 

temperature and the catalyst concentration. This time varies from 2 to 24 hours 

according to the adopted operative conditions. However, different patents [34-41] and 

publications [10-12,42-49] appeared in the literature on this subject in the recent years 

starting from 2005. In particular, Santacesaria et al. [10-12], on the basis of experimental 

observations, suggested the reaction scheme reported in Figure 2. As it can be seen, 

glycerol reacts with HCl in two steps giving place in the first step to monochlorohydrins 

and then to dichlorohydrins in the second one. It is interesting to point out that very few 

amounts of  2-DCH and 1,2-DCH are obtained and if the reaction time is long enough 

1,3-DCH is obtained with very high yields (85-95%).  

 

 

 

Figure 2 – Overall reaction scheme from glycerol to epichlorohydrin proposed by 

Santacesaria et al.
 
[10-12,24,25] 
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At last, both 1,2 and 1,3 di-chlorohydrins gives place to epichlorohydrins. This last 

reaction is promoted by a basic environment, that is, by contacting di-chlorohydrins with 

an aqueous solution of Ca(OH)2 or NaOH.  

Some patents have also been published in the literature in which an inert organic solvent 

is used, non-miscible with water and in which dichlorohydrins are soluble. In this type of 

process the reaction is performed at temperatures below the boiling point of the mixture, 

usually less than 110 °C [28]. 

2. Catalysts proposed. 

As already seen in the scheme reported in the previous chapter (Fig. 2),  the reaction 

between glycerol and gaseous HCl gives place in a first step to monochlohydrins (mainly 

1-MCH and small amounts of 2-MCH). Subsequently, hydrochlorination proceeds and 

the dichlorohydrins (mainly 1,3-DCH and small amounts of 1,2-DCH) are produced. In 

Table 1, some physico-chemical properties of the chlorinated derivatives of glycerol and 

of glycerol itself are reported. In the same Table are also reported some properties of 

acetic acid that is the most commonly employed catalyst.  

As mentioned before, glycerol hydrochlorination is catalysed by carboxylic acids, in 

particular by acetic acid. But this catalyst has the main disadvantage of a relatively low 

boiling point (117°C) which is near to the temperature normally adopted for this 

reaction.  

 

Table 1-Properties of the components involved in the glycerol hydrochlorination 

reaction [8]. 

Glycerol 

derivates 

Molecular 

mass 

(g/mol) 

Density 

(g/ m³) 

Refractive 

index 

Solubility in 

water at 

25°C 

Boiling 

point 

Glycerol 92.09 1.261 1.475 Soluble 290 

α-MCH 110.54 1.320 1.480 Soluble 213 

β-MCH 110.54 1.322 - High - 

α,γ-DCH 128.99 1.364 1.483 15.6 174 

α,β-DCH 128.99 1.360 - 12.7 182 

Acetic Acid 60.05 1,050 - Soluble 117°C 
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As a consequence a loss of catalyst by evaporation from the reaction environment can 

occur. 

The catalytic performances of acetic acid are reported by different authors sometimes 

also in comparison with other carboxylic acids. Tesser et al. [12], for example, have used 

acetic acid as a catalyst with a concentration of 8 mol%, by operating in a hastelloy 

semibatch stirred reactor at 5.5 bar and 100°C. In these conditions, acetic acid gives 

place to a good performance, more precisely, after 4 hours of reaction, glycerol was 

completely converted mainly to  1,3-DCH (89.37%mol). Also B.M. Bell et al. [42] used 

acetic acid as catalyst. They have studied the reaction at 7.6 bars and 110 °C with 5 

mol% of acetic acid obtaining a total conversion of glycerol after less than 4h of 

reaction. The mixture of the reaction products contained about 93 mol% of 

dichlorohydrins, and  6 mol% of monochlorohydrins. In this case,  at the end of the 

reaction, 2-MCH had a concentration higher than 1-MCH, this because, 2-MCH is much 

less reactive to further chlorination than 1-MCH, therefore, the amount of 2-MCH (5-

6%) formed in the initial phase of the reaction does not further change along the time. 

Also W.J. Kruper et al. [39] have studied the hydrochlorination reaction of glycerol with 

gaseous hydrochloric acid in the presence of acetic acid as catalyst. The test was 

conducted at 5.6 bars and 93°C for 90 minutes. After this time, the obtained reaction 

products were: 1,3-DCH (92.6 mole%) and 1,2-DCH (1.7 mole%); also both mono-

chlorohydrins were observed (4.4 mole%) and unreacted glycerol (1.0 mole %). These 

results were obtained by using a purified commercial glycerol. W.J. Kruper et al. [39] 

have also studied the possibility to conduct the chlorination reaction, with gaseous HCl, 

in the presence of acetic acid as catalyst, but using crude glycerol as the one coming 

directly from biodiesel plants. The test was conducted at 8.3 bar and 120°C for 90 

minutes. The reaction products, discharged from the reactor, was a  liquid with a 

suspension of a white solid. After filtration the filtrate was analyzed by GC, and  the 

products where 1,3-DCH (95.3 wt%), 1,2-DCH (2.6 wt%) , 2-acetoxy-1,3-

dichloropropane (0.7 wt%), 1-acetoxy-2,3-dichloropropane (0.1 wt%) and 

acetoxychloropropanols (0.87 wt%). Luo et al. [57] have studied the formation of 

dichlorohydrins from glycerol and HCl, in the presence of acetic acid as catalyst, but 

using an aqueous solution of hydrochloric acid. They conducted the reaction in a well 

stirred batch reactor of 500 cm
3
 reactor. The authors evaluated the trend with time of 

reagent and products concentrations and observed that glycerol decreased reaching a 
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minimum after  about 100 minutes, while, 1-MCH increased reaching a maximum at the 

same time and then reacted by forming mainly 1,3 DCH and therefore decreased. After 

100 minutes the concentration of glycerol remained low but constant. In all the described 

cases, the observed behavior, characterized by a maximum of mono-chlorohydrins 

concentration, clearly means that mono-chlorohydrins are intermediates of the di -

chlorohydrins formation, confirming the reaction scheme of Fig. 2. 

A recent patent [37] proposed for the hydrochlorination the use of a reactor column 

consisting in a vertical cylinder with an external recirculation of the liquid reaction 

mixture. The column was filled with glycerol (97.5%), water (0.5%) and acetic acid as 

catalyst (2%); such mixture was re-circulated with a flow rate of 5.0 Kg/h. Gaseous HCl 

was fed from the bottom of the reactor column with a flow rate of 4.6 Kg/h. In the 

external recirculation line a vacuum rectification column had been inserted, downstream 

to the reactor, from which a stream composed by a mixture of di-chlorohydrins, water 

formed during the reaction, and unreacted hydrochloric acid were separated with a flow 

rate of 9.3 kg/h. The distillation residue is then recycled to the reactor. Finally, a purge 

of the residue of the distillation products, containing unwanted by-products, was 

collected in a tank for waste disposal. Krafft et al. have reported, in another recent patent 

[34], the use of glacial acetic acid as catalyst. The authors used glycerol and acetic acid 

(10 mole%) with gaseous hydrochloric acid at 110°C. They used, for 2h, a HCl flow rate 

of 5.2 mol/h, then for additional 100 minutes a flow rate of 3.8 mol/h and finally for 317 

minutes a flow rate 1.3 mol/h. They obtained, in this way, a glycerol conversion of 

99.1% and 1,3 DCH resulted, also in this case, the main product. (> 75 mole %). Also 

Siano et al. [36] reported in their patent the use of acetic acid as catalyst. The test was 

carried out at 100°C by flowing, at atmospheric pressure, gaseous HCl in the reaction 

environment. A second addition of catalyst during the reaction, has been made to 

compensate for the loss of catalyst caused by the stripping effect of HCl during the 

reaction. The duration of the reaction was 5 hours but already in the first hour it was 

observed a high rate of 1,3-DCH formation. After two hours of reaction the conversion 

of glycerol was almost complete, but the amount of 1,3-DCH  formed was 20 mole%, 

while, after five hours of reaction the amount of  formed 1,3-DCH was about 70 mole%. 

The advantage of operating in a flowing stream of gaseous HCl is related to the high 

volatility of 1.3 DCH in that conditions that allows to recover this product by 

condensation from the flowing stream. However, as mentioned before, acetic acid is 
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subjected to some drawbacks such as the catalyst loss by evaporation during the reaction, 

limiting the reaction temperature to less than 100-110°C. In order to overcome these 

problems many researchers have investigated the possibility to find new catalysts to 

substitute  acetic acid. Siano et al. [36], for example, studied the use of malonic acid as a 

possible catalyst and compared its performance with the one of acetic acid. This catalyst 

was studied under different operating conditions (flowing stream of HCl and total reflux) 

and at different temperatures. More precisely, the tests were conducted at temperatures 

ranging from 80°C to 110°C and from the results it was observed that the yield in 1,3-

DCH, after three hours of reaction, increased by increasing the temperature, reaching at 

110 °C a maximum of about 57 wt%. The same authors [36] have also tested levulinic 

acid, operating at 100°C under total reflux, with 8 mole % of catalyst and a flowing 

stream of HCl of 50NL/h. In these conditions, after 3 hours of reaction, the conversion of 

glycerol was almost complete, but the yield in 1,3-DCH was slightly above 30 mole % 

being 1-MCH the main product (60 mole %). Also citric acid was found to be a good 

catalyst of glycerol chlorination [36]. It was used again at a concentration of 8 mole %, 

temperature of 100°C and a flowing stream of HCl of 50NL/h, for 3 hours. After 3 hours 

of reaction the residual glycerol was slightly above 5 mole %, and the yield in 1-MCH 

was greater than 70 mole %. This shows that this catalyst is more selective toward 1-

MCH, being the second step of chlorination very slow. The same authors, used also 

succinic acid and propionic acid, as possible catalysts. The operative conditions were the 

same of the previous tests. Using succinic acid it has been observed almost complete 

conversion of glycerol in 150 minutes of reaction and the collected 1,3-DCH was more 

than 30 mole %. Propionic acid, has shown an activity comparable with acetic acid and 

after 3 hours of reaction, a complete conversion of glycerol and a yield in 1,3-DCH of 41 

mole%. The same results have been reported in more details by Tesser et al. [10-12]. 

Schreck et al. [35] in their patent have tested a lot of catalysts. Among these the most 

active, showing a glycerol conversion  greater than 90 mole % in 4 hours, resulted: 

hexanoic acid, 4-trimethylammoniumbutyric acid, 4-dimethylbutyric acid, 4-

aminobutyric acid, glycine, glycolic acid, lactic acid, 4-aminophenylacetic acid, 4 -

hydroxyphenylacetic acid, 4-methilvaleric acid, heptanoic acid, epsilon-caprolactone and 

gamma-Butyrrolactone. Therefore, all these catalysts have activities comparable to the 

activity of acetic acid, but not all are so selective to 1,3-DCH.  
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Some carboxylic acids, characterized by high boiling point, such as adipic and caprylic 

acid have been proposed as catalysts by Krafft et al. [34]. In this case, it was observed, 

working at 120°C, with HCl in solution, a conversion of glycerol above 95% using 

caprilyc acid as catalyst with a selectivity to 1-MCH of 57.2 % and to 1,3-DCH of 39.7 

%. Working at 130 °C, with azeotropic HCl in solution, a conversion of glycerol above 

95% was obtained, using caprilyc acid (96.7 %) and adipic acid (99.4 %), but  a very 

high selectivity to 1,3-DCH was obtained  in the presence of adipic acid (82.3 %) greater 

than caprilyc acid (60.3 %). 

Tesser et al. [12] tested different carboxylic acids, too. All catalysts were tested at 

100°C, in conditions of total reflux except for HCl, with a stream of HCl of 24g/min and 

with a catalyst concentration of 8 mole%, as reported in Table 2. Among the catalysts 

tested the most active resulted: acetic, malonic, propionic, succinic, citric and levulinic 

acid. In conclusion, it has been shown by several authors that there are many different 

catalysts having high boiling that can advantageously replace acetic acid. It is interesting 

to point out that some carboxylic acids are very selective towards mono-chlorohydrins, 

in particular 1-MCH, as explained in a recent patent by Di Serio et al. [41]. These 

authors reported the use of dicarboxylic or hydroxycarboxylic acids as catalysts. All tests 

were carried out also in this case under reflux using a vertical condenser. The reaction 

was carried out for 3 hours, at 100°C, using a catalyst concentration of 8 mols %. From 

the obtained results it can be seen that maleic and fumaric acids show a similar catalytic 

behavior, with a conversion of glycerol slightly above 90 mols % with an almost total 

selectivity to 1-MCH. 

Also tartaric and oxalic acids, after 3 hours at 100°C, using a catalyst concentration of 8 

mole %,  have shown a selectivity near to 100 % towards 1-MCH, although the 

conversion of glycerol was not total (about 70 mol%). 

As before mentioned some catalysts promote selectively the first hydrochlorination step, 

mainly toward the formation of 1-MCH, while, dichlorohydrins start to be formed only 

after the complete conversion of glycerol. Clearly, the hydrochlorination mechanism for 

these type of catalysts would be different as it will be discussed later. For concluding, an 

attempt could be made to classify the efficiency of the different catalysts tested by 

considering the influence of: (i) the length and branching of the alkyl chain of the 

monocarboxylic acids; (ii) the presence near to the carboxylic group of different 

functional groups; (iii) the presence in the molecules of more than one carboxylic group 
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(di-, tri-carboxylic). These aspects will be considered and discussed in more detail in a 

next chapter devoted to the reaction mechanism. However, we can summarize here the 

most important experimental observations: (i) some catalysts are active in glycerol 

hydrochlorination but promoting only the first step to mono-chlorohydrins, while, others 

promote both the successive hydrochlorination steps to respectively mono and di-

chlorohydrins; (ii) some dicarboxylic acids like adipic acid are more active than 

monocarboxylic ones provided that the alkyl chain between the two carboxylic acid is 

not too short to give place to steric hindrance effect or too long to decrease its solubility 

in glycerol. 

At last, we have seen that in some cases catalysts different from carboxylic acids have 

been used with satisfactory results. However, the used compounds are probably reactive 

substances that gives place in situ to the true catalyst and normally are all organic 

substances. On the contrary, Lee et al. [44] investigated, for the same reaction, some 

inorganic compounds as catalyst. They studied, first of all, the behavior of a commercial 

polyoxometallate catalyst H3PW12O40. This catalyst was used after a thermal pre-

treatment at 300 ° C for 2h. The reaction between glycerol and HCl solution was carried 

out, at 100 ° C, for times between 5 and 30 hours. H3PW12O40 showed a total conversion 

of glycerol in all the experimental runs and the main products formed were di-

chlorohydrins. However, small amounts of acrolein, dichloropropane, propanediol, and 

dichloroethane were obtained as by-products. The authors [44] attributed the total 

conversion of glycerol and the high selectivity to DCH to the fact that the Brönsted acid 

sites of the catalyst are particularly active in promoting the glycerol chlorination 

reaction. The same authors [45] have studied the reaction using many other commercial 

heteropolyacids catalysts such as: H3PMo12-XWXO40 (X = 0–12), H4SiMo12-XWXO40 (X = 

0–12), H3+XPW12-XVXO40 (X = 0–3), and H3+XPMo12-XVXO40 (X = 0–3).  All catalysts, 

were tested after a thermal treatment at 300 °C for 2h. H3PMo12-XWXO40 (X = 0–12) and 

H4SiMo12-XWXO40 (X = 0–12) showed 100% conversion of glycerol. Even in these 

cases, mono-chlorohydrins are intermediate products formed in a great amount but, 

again small amounts of acrolein, dichloropropane, propanediol, and dichloroethane were 

obtained as byproducts.  

Considering that the tungsten-containing HPA are more acidic than the molybdenum-

containing HPA catalysts [46-50], it can be inferred that the acid property of HPA 

catalysts plays a very important role in determining the selectivity to  DCH. For 
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example, H3PMo12-XWXO40 (X = 0–12) showed a higher selectivity to DCH than 

H4SiMo12-XWXO40 (X = 0–12), this can be explained by the fact that the catalyst 

containing phosphorus as heteroatom is even more acidic than the corresponding HPA 

with silicon. H3+XPW12-XVXO40 (X = 0–3), and H3+XPMo12-XVXO40 (X = 0–3) showed 

both 100% conversion of glycerol in the reaction. The reactions was carried out in a 

liquid-phase batch rector (200 ml),12.6 g of glycerol (reactant), 78.9 g of aqueous HCl 

solution (37 wt%, chlorination agent), 20 g of H2O (reaction medium), and 15 g of HPA 

catalyst were charged into a batch reactor. After the homogeneous solution was heated to 

110°C with vigorous stirring (450 rpm), nitrogen was fed into the reactor to keep the 

reaction pressure at 10 bar. The catalytic reaction was carried out at 110°C for 20 h with 

vigorous stirring [45]. In both HPA catalysts, containing vanadium, the selectivity to 

DCH decreases as the amount of vanadium is increased. However, H3+xPW12-xVxO40 (x = 

0–3) catalysts showed a selectivity for DCH higher than H3+xPMo12-xVxO40 (x = 0–3) at 

the same level of vanadium substitution. The above results can be attributed to the acidic 

property of HPA substituted catalysts decreasing in the order: tungsten-containing 

HPA>molybdenum containing HPA>vanadium-containing HPA. The above results 

strongly support the observation that the acid property of HPA catalysts plays a key role 

in determining the selectivity for DCH. The more acidic is the HPA catalyst the more 

active is the catalyst toward the formation of DCH from glycerol. Song et al. [51] have 

studied the effect of the operating conditions on the production of DCH. They studied, 

for example, the influence of the stirring rate on the formation of DCH in the presence of 

H3PW12O40 as catalyst. The obtained results showed that stirring rate is very important 

for an efficient formation of DCH in this solvent-free gas (hydrochloric acid)-liquid 

(glycerol/chlorohydrins) system. However, the selectivity to DCH was almost constant at 

the highest stirring rates (≥600 RPM), suggesting that mass transfer between glycerol 

and hydrochloric acid gas could become a key factors in this reaction system. For this 

reason, the authors have made all the reaction experiments at 900 RPM in order to avoid 

any mass transfer limitation. Another important aspect is the reaction temperature. The 

authors [51] studied the effect of the reaction temperature on the formation of DCH from 

glycerol and gaseous hydrochloric acid. In all the experimental runs, performed at 

different temperatures, conversion of glycerol was 100% but selectivity to DCH 

gradually increased by increasing the reaction temperature until reaching a constant 

value of about. 98%, above 150°C, while, selectivity to MCH gradually decreased by 
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increasing the reaction temperature. It is interesting to note that trichlorohydrins (TCH), 

a chlorination product of DCH, was formed in a very small amount only at very high 

reaction temperature. The dependence of product selectivity on the reaction pressure 

showed the same trend as those of the reaction temperature. In other words, selectivity to 

DCH increased by increasing both pressure and temperature. The same authors
51

 

reported also that adding a substance that absorbs water, such as silica gel, the reaction 

favorably moves toward the formation of DCH [51,52]. This means that water has a 

negative effect on glycerol chlorination. At last, the same authors [51], using H3PW12O40 

as a catalyst model controlled the effect of the amount of catalyst on the formation DCH 

and noted that the selectivity to DCH was continuously increased by increasing the 

catalyst amount. In conclusion, the strong Brönsted acid sites of H3PW12O40 catalyst 

favorably contribute to glycerol chlorination to obtain 1,3-DCH. 

 

3.  Reaction scheme, reaction mechanism and kinetics 

3.1 Hydrochlorination reaction mechanism 

The glycerol hydrochlorination is a reaction investigated from a long time but only 

recently some different mechanisms have been proposed. As the reaction takes place in 

the presence of a carboxylic acid as catalyst, Santacesaria et al. [10-12] have 

hypothesized, in agreement with the previous literature [53-54], that in the presence of a 

strong acid environment, due to HCl, the reaction occurs through an initial esterification.  

The reaction mechanism proposed by Tesser et al. [10] is represented schematically in 

Figure 3. 
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Figure 3- Glycerol hydrochlorination reaction mechanism suggested by Tesser et al. 

[10-12] 

 

The first step of the scheme of Figure 3 is a nucleophilic addition in which one glycerol 

hydroxyl attacks the protonated carbonyl group. The first step is then followed by the 

formation of an oxonium group and subsequently by the addition of a chloride ion that 

leads to the formation of a monochlorohydrin. The last step is a nucleophilic substitution 

SN2 and occurs mainly in the alpha position that is much more favored with respect to 

the beta position. According to the proposed mechanism the product obtained in a larger 

amount is always 1-MCH. In conclusion, according to the authors the overall reaction is 

in practice a nucleophilic substitution of a carboxylic group with a chloride ion. It is well 

known that carboxylic groups are leaving groups better than the hydroxyl groups. For 
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this reason, carboxylic acids are good catalysts for this reaction, because, in acid 

environment, easily form esters  and can then be substituted by chlorine more easily than 

the hydroxyl groups. But the acidity of the carboxylic acids cannot be too strong to avoid 

that the corresponding esters are too stable for completing the reaction. As a matter of 

fact, by comparing the results reported in the last four example reported at the bottom of 

Table 2, it is possible to observe that acetic acid is much more active and selective than 

monochloroacetic acid and the activities and selectivities decrease more and more for 

respectively di-chloro and tri-chloro acetic acids. A useful parameter to be considered in 

the mentioned cases is the pKa. As it can be seen, pKa gradually decreases by 

introducing more chlorine in the acetic acid molecule, that is, mono, di and tri-

chloroacetic have a gradually increased acidity with respect to acetic acid and this is 

detrimental for the hydrochlorination reaction. Probably, this is due to the increased 

stability of the corresponding ester.  

The reaction mechanism described above is in agreement with the experimental evidence 

that the amount of 1-MCH that is formed is always greater than the amount of 2-MCH. 

Moreover, 2-MCH does not further reacts to give 1,2-DCH. The absence of two vicinal 

OH groups, in the case of 2-MCH, probably prevents the formation of the intermediate 

oxonium so hindering the second chlorination reaction. On the contrary, the 1-MCH can 

undergo a further chlorination with a mechanism similar to that shown above forming 

mainly 1,3-DCH accompanied by small quantities of 1,2-DCH. The reaction scheme 

suggested by Tesser et al. [10] on the basis of the experimental observation is: 

 

 

Figure 4- Scheme of the hydrochlorination reactions (see Santacesaria et al. [10-12]) 

 

The first step of the reaction, that is, the formation of an ester between glycerol and the 

carboxylic acid used as catalyst is surely an equilibrium reaction more or less shifted to 

Gly

1-MCH

2-MCH

1,3-DCH

2,3-DCH

1

2
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the right. The successive hydrochlorination requires again the formation of an ester 

between a monochlorohydrin and the carboxylic acid and obviously also this reaction is 

an equilibrium reaction. Tesser et al.
 
[10-12] have suggested that when the constant of 

the first equilibrium step of esterification is much greater than the second one only the 

first reaction can occur, while, the second one is prevented, because, all the loaded 

catalyst is involved in the most favorable equilibrium until the concentration of the main 

reactant glycerol becomes very low. In conclusion, the reaction mechanism remains the 

same of Fig. 3 or 4 but the following esterification reactions can have different 

equilibrium constants:  

 

1

1  +  catalyst      ester   +  water
Keq

glycerol →←   (3) 

2

21   +  catalyst      ester   +  water
Keq

MCH →− ←   (4) 

 

If Keq1 ≈Keq2 the formation of mono and dichlorohydrins follows a reaction-in-series 

mechanism according to that proposed. On the contrary, if Keq1»Keq2 the catalyst gives 

mainly monochlorohydrin because the catalyst gives mainly the ester1 as intermediate. 

However, also a strong difference in the two direct kinetic constants or a significant 

influence of the HCl mass transfer limitation, in the initial period of the reaction, can 

contribute in determining the selectivity to MCH shown by some catalysts. However, it 

is then interesting to observe that catalysts having pKa ≥4 are normally selective to 

dichlorohydrin, while, the catalysts with pKa in the range 1.2-3 are more selective to 

monochlorohydrins. At last, the selectivity to monochlorohydrins shown by different 

catalysts [41]
 

open a perspective to the industrial production of 1-MCH and 

consequently also to the production of glycidol that both could become building blocks 

for other interesting synthesis. 

Other two different alternative mechanisms have been proposed in the literature [42,55-

59]. Bell et al. [42] suggested a mechanism, derived from an old paper [55], in which 

esterification is again the first step but, after the ester formation they suggest the 

formation of a tautomeric cyclic molecule that in the acid environment is converted to an 

acetoxonium cationic ring which is destabilized by a chloride ion and gives place to 
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monochlorohydrins after the hydrolysis of the corresponding ester, as it can be seen in 

the scheme of Figure 5.  

 

 

Figure 5. Mechanism of glycerol hydrochlorination catalyzed by carboxylic acids, 

according to Bell et al. [42,55].   

 

The further chlorination step would occur with the same mechanism and gives place 

mainly to 1,3-DCH. This mechanism is intriguing but, as it has been seen, requires a 

final hydrolysis for closing the catalytic cycle, that is, according to this mechanism, the 

presence of water would be important for favoring the last indispensable reaction step. 

On the contrary, it has been demonstrated that aqueous HCl is less active than gaseous 

anhydrous HCl and that the presence of water negatively affects both the reaction rate 

and the yields [56]. 
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Luo et al. [57, 58] and Lim et al. [59] both studied the kinetics of glycerol 

hydrochlorination using aqueous HCl (37% b. w.) and assumed a mechanism similar to 

the one proposed by Tesser et al. [10] but not considering any possible intermediate 

specie with the exclusion of the esters, that is, they considered only the double sequence 

esterification-chlorination applying a second order kinetic law to all the occurring 

reactions and a pseudo-steady state condition to the esters compounds.  

This mechanism can be considered a direct bimolecular nucleophilic substitution SN2 in 

which Cl
-
 anion substitute in one step RCOO

-
 in the ester molecule (Figure 6): 

 

                             

Figure 6 – A bimolecular SN2 mechanism 

 

Moreover, the chlorination reactions of Fig. 4 (reaction 1 and 3) were considered 

irreversible.  From their kinetic runs it can be observed that the presence of water has a 

detrimental effect on the reaction rate as recently confirmed by Dmitriev et al. [56]. 

Xiuquan Ling etal. [60] proposed a reaction scheme slightly different from the one 

proposed by Tesser et al. [10] reported in Fig. 4. Assuming as reversible only the 

reaction 3. They studied the kinetics of glycerol chlorination in the presence of different 

catalysts such as: acetic, propionic, malonic, succinic and adipic and studied in particular 

the behavior of adipic acid. The authors collected the experimental data by using the 

GC-MS analysis method. Although these authors announced in the work the proposal of 

a new mechanism they interpreted all their experimental data with pseudo-first order 

kinetic laws and the reaction scheme has been presented as reaction mechanism. 

More recently, Salmi et al. [61] reinterpreted data from Tesser et al. [10] and their own 

experimental results with a more general and detailed mechanism in which all the 

possible intermediate species are considered. Intermediates species considered are: E1 

(first ester between glycerol and catalyst, E2 second ester between MCH and catalyst, I1
+
 

first ionic intermediate (protonated E1), I2
+
 second ionic intermediate (protonated E2).  

The proposed mechanism is the same of Fig. 2 but the kinetic approach is based on the 

                                                          CH2  CH2 

  HO                CH  O       H+ 

   O  C 

          H     O            R 

Cl
- 

                                   CH2  CH2 

  HO             CH                Cl OH 

   O              C 

           H              O             R 
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quasi-steady state hypothesis applied to the four mentioned intermediate species. The 

authors applied their model to the runs performed by Tesser et al. [10] in the presence of 

malonic acid and to their runs made in the presence of acetic acid. 

4.  Reactors and Processes 

Until now three companies (DOW Chemicals, Solvay EPICEROL Technology and 

CONSER SpA ECH-EF=Eco Friendly)) have developed their own process for producing 

di-chlorohydrins from glycerol and HCl, using different catalysts (different carboxylic 

acids or mixture of them) [23] and some plants have recently been constructed or are still 

under construction in China (Solvay, DOW Chemicals, CONSER SpA), Thailand 

(Solvay) and Korea (Dow Chemicals). All these plants need as unit operations: (i) a well 

mixed gas-liquid reactor, in which glycerol, containing the catalyst in an opportune 

concentration, is contacted with gaseous HCl (under moderate pressure 1-10 bars) at the 

reaction temperature (100-120°C); (ii) a heat exchanger to remove the reaction heat 

being the reaction moderately exothermic. The heat exchanger can also be located inside 

the reactor; (iii) a stripping unit, to separate the unreacted HCl and eventually also the 

water produced as a consequence of the occurred hydrochlorination reactions; (iv) the 

separation units having the scope of recovering pure di-chlorohydrins as feedstock for 

the successive step of epichlorohydrin synthesis. Di-chlorohydrins are much more 

volatile than mono-chlorohydrins and glycerol and a distillation column is probably 

enough for this separation. The residue of the column will contain monochlorohydrins, 

small amounts of glycerol and the catalyst (a carboxylic acid) if its boiling point is high, 

otherwise, catalyst must be separated before, for example in the stripping unit. The 

residue can be recycled at the gas-liquid reactor. Some undesired by products can be 

formed and a purge is probably necessary. On the basis of the list of the previously 

described unit operations a simplified scheme (Figure 7) of general validity can be 

sketched. 

The operation units of this scheme are all conventional systems not requiring particular 

mention with the exclusion of the reactor unit requiring: (i) a system providing a large 

gas-liquid interface area to avoid HCl mass transfer limitation; (ii) a good heat exchange 

to eliminate the reaction heat maintaining the desired temperature; (iii) a good mixing 

system to warrant a good dispersion of the gas in the liquid phase and a uniform 
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composition. There are some different solutions that can be adopted to satisfy the 

mentioned requisites. A large gas-liquid interface area can be realized by using for 

example: a falling film reactor with gaseous HCl flowing in countercurrent, a spray 

tower loop reactor, a Venturi loop reactor, a bubble tray column, a perforated plate 

column. 

 

 

Figure 7. A simplified scheme of glycerol hydrochlorination 

 

The simplest and economical solution would be a bubble column. Clearly, the optimal 

choice is related to the reaction conditions, that is, temperature, pressure and catalyst 

concentration, determining the reaction rate and therefore the HCl consumption. 

However, the choice is complicated by the corrosiveness of HCl in the presence of water 

that is formed as by product of the reaction. It is well known, that few materials are 

compatible whit HCl in the presence of moisture (for example: Glass, Hastelloy, Teflon, 

enameled steel), therefore, some of the mentioned possibility could be realized with 

difficulty. The problem of the compatibility of the materials with moisturized HCl is 

important also for the stripping unit and very probably a neutralization is necessary after 

this unit to eliminate any trace of this reagent before the separation by distillation of the 

di-chlorohydrins. Finally, it is important to point out that the process via glycerol has an 

important advantage with respect to the process via propene, because, the 

hydrochlorination reaction is highly selective toward the formation of 1,3-DCH. To 

better emphasize the mentioned advantage a simulation has been made by Santacesaria 

et al. [11] for comparing the yields of the two processes. A reactive distillation column 

HCl+water 

Glycerol 

HCl 

HCl 

DCH

MCHs+Glycerol+Catalystst 
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has been simulated with a commercial process simulation package (Chemcad 5.2) for 

two different feeding streams:  the first stream was a mixture with the traditional 

composition (1,3-/1,2-, 30/70%) coming from  a via propene process, while, the second 

one was constituted by pure 1,3-dichlorohydrin. The simulation of the epichlorohydrin 

reactive column has been performed by introducing the kinetic expression and 

parameters taken from Carra` et al. [24]  by using the model published by Carrà et al. 

[25].  In both cases the reactive column has been simulated by assuming: total pressure, 

1 bar; reboiler heat duty, 17000 kcal/h; 15 theoretical plates; liquid holdup, 0.02 L/stage. 

The comparison between the two different feeds to the column, is reported in Figure 8, 

where, epichlorohydrin yields are plotted as a function of the reflux ratio adopted in the 

reactive column. The yield is the ratio between the distilled epichlorohydrin and the fed 

dichlorohydrins. As it can be seen, a higher epichlorohydrin yield is always obtained 

also at low reflux ratios with a feed that is constituted by pure 1,3-dichlorohydrin. 

Moreover, in order to obtain a satisfactory yield in epichlorohydrin by feeding a 30/70% 

mixture a very high reflux ratio must be used with obviour greater consumption of 

energy. 

 

 

 
Figure 9. Comparison between the epichlorohydrin yields of two different feeds plotted 

as a function of the reflux ratio adopted in the reactive column [25]. 
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1. Introduction 

In this chapter it is considered the possible conversion of glycerol into useful products by 

halogenation reaction : (1,3-chloro-2-propanol (α,γ-DCH), 1,2-chloro-3-propanol (α,β-

DCH), 1-chloro-2,3-propanediol (α-MCH),  and 2-chloro-1,3-propanediol (β-MCH) 

using different classes of catalysts: (1) alogenated carboxylic acid;(2) glycolic acids and 

aminoacids; (3) acyl chloride.  

Also the influence of some experimental variables on the activity and selectivity of the 

glycerol chlorination reaction have been studied, such as the amount of the catalysts and 

the influence of HCl pressure. 

2. Experimental part 

The experiments of chlorination have been carried out in a 300 cm
3
 hastelloy steel 

reactor equipped with a magnetically driven stirrer that has been supplied by Parr 

Instrument and allows to work at a maximum of 25 bars.  Glycerol and catalyst are 

initially loaded into the reactor. Then, the reactor is closed and heated to the desired 

temperature. When the desired temperature was reached, HCl is sent to the reactor 

keeping constant the overall pressure and reading the volumetric-flow rate that 

compensate the hydrochloric acid consumption by the reaction. During each 

experimental run, samples are periodically withdrawn, in order to have the evolution of 

the reaction products during the time. After 4 h of reaction the hydrochloric acid in 

excess is flushed by N2 through traps containing NaOH solutions, the stirring is stopped, 

and the system is brought back to room temperature. A scheme of the fed-batch reactor 

is reported in Figure 1. 

2.1 Chemical and Catalysts 

2.1.1 First homologous series: monochloro-, dichloro- and 

trichloroacetic acids. 

In this first part of this work, it is studied in detail the activity and selectivity of some 

class of catalysts, and more precisely in the first time three series of omologous 
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carboxylic acid have been studied. At this purpose, we have investigated the behavior of 

a homologous chlorinated series of catalysts, such as: acetic, monochloroacetic, 

dichloroacetic and trichloroacetic acid, focusing in particular the attention on both 

activity and selectivity shown by each catalyst. 

 

 

Figure 1.Gas-liquid reactor using in chlorination reactions. 1- Jacketed reactor made di 

Hastelloy, approximated capacity 300 ml; 2- cylinder of hydrochloric acid; 3- valve for 

samples withdrawal of the reaction mix; 4- magnetic stirrer; 5- Reader temperature; 6- 

manometer; 7- system for suppressing the excess HCl (two Drechsel bottles, arranged in 

series, which contain a solution of sodium hydroxide).  

 

A kinetic model, based on a reliable mechanism, developed in a previous work [1] but 

implemented for the HCl gas-liquid partition has been used for interpreting all the 

kinetic runs. Then, the obtained kinetic constants have been elaborated by using the Taft 

equation in the attempt to correlate chemical structure of the catalyst and the activity. All 

the properties of the used catalysts, set for the experimental runs are listed in Table 1. 

For what concerns the comparison of the studied catalysts, a summary of the catalytic 

tests performed is reported in Table 2.  
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  Table 1. Used Catalysts: Properties  

Catalyst Molar mass 

(gmol-1) 

Boiling 

Point (°C) 

Acidity 

(pKa) 

Acetic Acid 

(AA) 

60.05 118-119 4.79 

Monochloroacetic 

Acid 

(MCA) 

94.50 189 2.86 

Dichloroacetic 

Acid 

(DCA) 

128.94 194 1.25 

Trichloroacetic 

Acid 

(TCA) 

163.39 197 0.77 

 

 

 

Table 2. Experimental Runs: operative conditions 

Run Catalyst Catalyst 

content 

(% mol) 

Glycerol 

(g) 

Stirring 

(rpm) 

Temperature 

 (°C) 

Pressure 

(bar) 

1 AA 8.0 150 1200 100 5.5 

2 MCA 8.0 150 1200 100 5.5 

3 DCA 8.0 150 1200 100 5.5 

4 TCA 8.0 150 1200 100 5.5 

5 MCA 8.0 150 1200 100 2.0 

6 MCA 8.0 150 1200 100 9.0 
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The results, expressed in terms of products distribution after 4 hours of reaction time are 

reported in Table 3 for the runs performed at constant pressure of 5.5 bars (see Table 2).  

 
Table 3 - Experimental Run: Products distribution after 4 hours of reaction (mol %) 

 

Catalyst α- MCH β- MCH α,γ- DCH α,β- DCH glycerol 

AA 0.70 7.66 89.37 2.85 0 

MCA 69.98 6.37 10.09 0.33 13.46 

DCA 41.94 4.71 1.99 0 51.98 

TCA 26.64 3.08 1.47 0 69.43 

 

As it is possible to observe, pKa of the catalysts seems to have a strong influence on the 

reaction rate. We have for the activity that AA>MCA>DCA>TCA, while, the 

corresponding pKa are: 4.75>2.85>1.48>0.7. In conclusion glycerol conversion 

decreases by increasing the chlorine atoms numbers in the catalyst. This fact can be 

better observed by considering the experimental data trends reported in Figure 2, where 

the cumulative consumption of HCl monitored during the experimental runs is reported.
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Figure 2 -Cumulative consumption of hydrochloric acid for the experimental runs 

performed with different homogeneous catalysts at the same total pressure of 5.5 bars. 

The experimental data trends confirm that acetic acid is much more active than MCA, 

DCA and TCA. 

For what concerns, the influence of the pressure on activity and the selectivity we have 

focused our attention on MCA, being this catalyst more active then DCA and TCA and 

having a lower volatility with respect to AA. At this purpose, some runs have been 

performed, working at different pressures, by using MCA as catalyst and monitoring 

both the glycerol conversion and the selectivity to mono- and di-chlorhydrins. In  

Figures 3 it can be seen that an increase in the HCl pressure leads to a markedly increase 

in glycerol conversion. 
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Figure 3 – Glycerol conversion as a function of time for runs 2, 5 and 6 of Table 2   

for MCA catalyst. 
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In Fig. 4, it can be seen that the selectivity to monochlorohydrins decreases with 

pressure, while, on the contrary selectivity to dichlorhydrins increases as it can be seen 

in Fig. 5. 
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Figure 4 - Selectivity to monochlorohydrins as a function of time for runs 2, 5 and 6 of 

Table 2 for MCA catalyst. 
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Figura 5 - Selectivity to dichlorohydrins as a function of time for runs 2, 5 and 6 of 

Table 2 for MCA catalyst. 

Moreover, Figure 2, shows that in the first part of the reaction the hydrochloric acid 

consumption is higher, because there are present two separated effects that are: (i) the 

HCl migration from the gaseous to the liquid phase, (ii) the reaction rate effect. Then the 

consumption slowly declines for MCA, DCA and TCA with a smaller slope and a 

smooth decrease of the HCl consumption proceeds through the rest of the experimental 

run. The high rate of HCl consumption observed in the initial part of the runs suggest 

that in some cases gas-liquid mass transfer could be operative. For describing mass 

transfer rates HCl solubility data in the reaction environment are necessary. These data 

are necessary also because HCl concentration appears in the kinetic laws. Solubility data 

of this type are not available in the literature and experimental data have been collected 

by us. 
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2.2 Mass transfer and HCl solubility 

First of all, the solubility tests have been experimentally performed by imposing aHCl 

pressure on the mixture of the chosen composition recording, from time to time, the HCl 

flow-rate. The experimental results are reported in Figure 6 in terms of cumulative 

consumption, while, in Tab. 4 are reported all the experimental conditions for the 

mentioned runs. 

 

Table 4 – Solubility tests: experimental conditions. Xi is the molar fraction referred to                 

the component i. 

Run Pressure (bar] XGly
mol

 XH2O
mol

 Xα
mol

 

S-1 2.0 1 0 0 

S-2 5.5 1 0 0 

S-3 5.5 0.33 0.33 0.33 

 

Then HCl solubility at 100 °C was estimated by calculation adopting the PSRK state 

equation and using CHEMCAD v.6.3. From these calculations it is possible to obtain 

estimated values for the HCl equilibria concentrations in the liquid phase. These values 

are reported in Table 5, for the different pure compounds present in the reaction media. 

 

 

 

Table 5 - HCl solubility concentration in the different compounds present in the reaction 

media. 

 

 Value [mol/cm
3
] 

KHCl
W

 0.01127 

KHCl
Gly

 0.01291 

KHCl
αβ

 0.00671 

KHCl
α
 0.01008 

KHCl
αγ

 0.00676 
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The solubility in a multicomponent reaction mixture can be calculated as the sum 

between the product of the molar fraction of the i component for the related solubility 

contributions. 

 

���������� 	 ∑ �� ∙ ��� 
�       (1) 

 

In this way, the Henry’s constant can be calculated as it follows: 

 

!�� 	 "# $%� �&'
(        (2) 

 

 

With P the reactor’s pressure. 

The values obtained with this predictive approach resulted always higher than the 

experimental ones. Therefore, the solubility function reported in (1) has been multiplied 

by a factor γ, that have been regressed on the experimental data for each solubility run 

This factor correct the discrepancy between experimental solubility and PSRK 

prediction. The simulations of the experimental runs after the introduction of the 

corrective γ factor are reported in Figure 6, while the values of γ obtained by regression 

analysis are reported in Table 6.  
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Figure 6 – Solubility tests: dots represent the experimental data, lines the simulations 

curves. 

 

 

Table 6 – Solubility tests: regressed parameters. 

Run γ 

1 0.266 

2 0.201 

3 0.308 

 

 

A further confirmation of the validity of this approach has been made on different 

systems available in the literature [2] considering the solubilities of HCl in respectively 

methanol, ethanol and water.  

In Table 7 are compared the experimental solubility data and the values estimated with 

the PSRK equation. As it can be seen, also in those cases solubilities from PSRK 

equation are always overestimated and this justify the introduction of the corrective 

factor γ. 
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Table 7– Calculated and experimental solubilities (*) of some known substances. 

Substances Temperature (°C] Experimental 

[17] 

Calculated with 

PSRK 

Ethanol 0 838 1165 

 20 756 926 

Methanol 0 1092 2647 

 20 877 1578 

H2O 0 829 1554 

 20 724 1259 

  (*) Solubilities expressed in g of HCl/1000 g of solvent 

 

For what concerns the mass-transfer rate expression, we have adopted the double-film 

theory developed by Whitman assuming, as a first approximation, that no resistance to 

mass transfer is given by the gas-side film. In this way, it is possible to write a mass-

transfer rate expression for HCl in the liquid film as it follows: 

)��  	 * ∙ + ∙ ,-!.�/∗ − -!.�/2  	  3 ∙ ,-!.�/∗ − -!.�/2-	/ 4��/,54� ∙ 4�6/(3) 

 

Where, -!.�/∗ represent the equilibrium concentration at the gas-liquid interphase 

evaluated as: 

 

-!.�/∗ 	 !�� ∙ 7       (4) 

2.3 Property-structure study 

In order to correlate the activity of the used catalysts with the related chemical structure, 

a first attempt has been made by considering the dependence of the kinetic constants, 

obtained by mathematical regression analysis on the fed-batch experimental runs, 

reported in Table 8, with the pKa values [3]. In this way, a rough linear dependence as it 

can be seen in Figure 7. 
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Table 8 – List of the parameters obtained by mathematical regression analysis on the 

experimental data. 

Run k1* k2* k3* k4* k-1* k-3* β** 

1 17022 1793.67 20332.70 645.14 1.76E-06 5.74E-07 3.00 

2 2896.72 223.40 422.87 12.99 1.82E-07 5.55E-07 2.99 

3 986.59 102.79 143.08 1.93E-05 1.40E-06 5.75E-07 3.25 

4 509.43 57.95 129.61 1.13E-04 1.14E-07 5.72E-07 2.38 

5 2896.72 223.40 422.87 12.99 1.82E-07 5.55E-07 0.025 

*Expressed in [[cm
3
/mol]

2
 min

-1
] 

** Expressed in [min
-1

] 
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Figure 7 – Plot of the kinetic constant against the pKa of each catalyst. 

 

Following on this analysis, we have tried to deepen the calculations by using the 

generalized Taft equation [2,4-7] provided by the following relation: 

log ;k= k>
? @ 	 ρ∗ ∙ σ∗ + δ ∙ EF      (5) 
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The original approach of Taft equation, considers a property-structure study on the 

reagents of a chemical reaction. In our work, this equation has been applied to the 

investigated catalysts, considering that the catalyst is very probably involved in the 

reactions forming esters with glycerol and monochlorohydrin. The carboxilic group is a 

better leaving group than hydroxil and this is probably the intimate mechanism of this 

reaction. The Taft equation allows to calculate two contributes relative to the reactivity 

of the adopted catalyst, that are respectively ρ* and δ.  These two contributes represent 

the sensitivity to both the electronic nature of the substituents (ρ*), and  the steric effect 

(δ). To apply this approach, it is necessary to know both the σ* and Es values of the 

various substituents introduced in the acetic acid, this last assumed as a reference 

molecule. These values can be taken from the literature [7]. These two contributions 

represent respectively the polar and the steric substituent constants.It is now possible to 

apply the Taft equation (5), by determining through a simultaneous fitting on the kinetic 

constants reported in Table 8, the values of δ and ρ*. The obtained values are reported in 

Table 9.  

Table 9- Taft values δ and ρ* 

 δ ρ* 

k1 -0.21786 -0.76789 

k2 -0.44228 -0.93646 

k3 -1.08825 -1.78066 

 

In Fig. 9 and 10 it is possible to appreciate the linear trends obtained for both the steric 

and polar contribution of the Taft equation. These plots clearly show that both polar and 

steric effect are important in all the hydrochlorination occurring reactions. This 

represents an improvement in respect to consider pKa as unique factor influencing 

activity and selectivity in the mentioned reactions. 
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Figure 9 – Taft’s equation steric contribution diagram for the different used catalysts. 

 

0.5 1.0 1.5 2.0 2.5 3.0

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

 k
1

 k
2

 k
3

lo
g

(k
i/k

0
)-

δ
∗
Ε

s

σ
∗

 

Figure 10 – Taft’s equation polar contribution diagram for the different used catalysts. 
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3. Kinetic interpretation of the experimental runs 

The collected experimental data have been interpreted with a gas-liquid kinetic model 

that is able to describe all the physical and chemical phenomena that occurs during the 

reaction. In particular, a gas-liquid fed-batch reactor scheme has been considered, by 

taking into account both the HCl mass transfer from the gas to the liquid phase and the 

reaction rates of the reaction network. 

We have considered the following reaction scheme:  

1] Gly  +HCl↔  α 

2] Gly  +HCl→  β 

3] α   +  HCl↔  α,γ 

4] α   +  HCl→  α,β 

 

For this reaction set it is possible to write the following kinetic rate laws, all expressed in 

mol/(cm
3
·min]. 

r
 	 k
 ⋅ -Cat/ ∙ -Gly/ ∙ -HCl/ − kO
 ⋅ -Cat/ ∙ -H�O/ ∙ -α/   (6) 

r� 	 k� ∙ -Cat/ ∙ -Gly/ ∙ -HCl/      (7) 

r� 	 k� ⋅ -Cat/ ∙ -Gly/ ∙ -α/ − kO� ⋅ -Cat/ ∙ -H�O/ ∙ -α, γ/   (8) 

rT 	 kT ⋅ -Cat/ ∙ -Gly/ ∙ -α/      (9) 

In order to describe the evolution with the time of each chemical compound, it is then 

possible to write the mass balance as it follows: 

 

4��UV +55�4��+�UW 	 4��UV ,XU+5�UW + �X+6VYUXXUW − V+4Z�UW/ -	/ 4�� ∙ 4�6O
 

 (10) 

 

Starting from this balance equation, it is possible to write the following differential 

equations for respectively the liquid and the gas phase. 

 

Liquid phase 

[\]^_
[& 	 −X
 ∙ à − bc '        (11) 



134 

 

[\d
[& 	 ,+X
 + X� + XT2 ∙ à − be      (12) 

[\d,f
[& 	 +X� ∙ à − be,g       (13) 

[\h
[& 	 +X� ∙ à − bi       (14) 

[\d,h
[& 	 +XT ∙ à − be,i       (15) 

[\jkl
[& 	 ,+X
 + X� + X� + XT2 ∙ à − b�km     (16) 

[\jn^
[& 	 ,−X
 − X� − X� − XT2 ∙ à + )�� ∙ à − b��     (17) 

Gas phase 

[\jn^opq

[& 	 b�� 
rs − )�� ∙ à      (18) 

Where Fi represents the molar flow-rate related to the component i, necessary to consider 

the sampling amount (each run is characterized by 2 samples of respectively 20 cm
3
). 

While FHCl
IN

 represents the inlet gaseous HCl molar flow-rate calculated as it follows: 

b�� 
rs 	 �( ∙ ,7"�t − 7tmt2      (19) 

Where P
SET

 represents the set point pressure experimentally imposed, while P
TOT

 is total 

pressure of the system calculated considering the atmosphere in the reactor as an ideal 

gas constituted by pure HCl, whose value can be calculated as it follows: 

 

7tmt 	 \jn^opq∙a∙t
u]vw        (20) 

Here, V
GAS

 is the volume of the gas head space expressed in cm
3
. 

The experimental runs have been submitted to mathematical regression analysis, 

determining, on the experimental data, both the kinetic and mass transfer constants, for 

all the involved reactions.  

The model is able to describe properly all the collected experimental data. The first four 

runs are characterized by a relatively high β value, this fact represents an indication that 

the gas-liquid mass transfer has not a limiting effect for these runs. Moreover, Runs 5 
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differs from the others for the β value, because, very probably this is the only 

experimental run performed at 2.0 bar. Furthermore, as it is possible to observe in Table 

8, the reverse kinetic constants of reactions 1 and 3 can be considered negligible. For this 

reason, all the reactions occurring in the reaction network can be considered irreversible. 

A further interesting effect that can be pointed out by observing the kinetic constants, is 

related to the selectivity of each catalyst to give mono- and di- chlorohydrin. In fact by 

comparing the k1/k2 ratios for all the catalytic systems MCA resulted much more 

selective to α-mono-chlorohydrin with respect to the other catalysts. Moreover, k3/k4 

ratios show that all catalysts are selective to give 1,3-di-chlorohydrin instead of 1,2-di-

chlorohydrin.  

4. Conclusions 

In this chapter, starting from acetic acid catalyst as reference molecule, the effect of 

introducing one, two or three chlorine atoms in the molecule on the activity and 

selectivity in glycerol hydrochlorination reaction has been investigated. In particular, we 

observed that pKa of the catalyst has an important role in defining activity and 

selectivity. For a good activity and selectivity to 1,3-di-chlorohydrin a pKa in the range 

between 4-5 seems the optimal choice. Acetic acid has this characteristic but is not the 

ideal catalyst because has a high volatility in the reaction conditions. It is important 

therefore to find less volatile catalysts maintaining high both activity and selectivity. 

According to our experience on many different catalysts, the criterium of the choice 

based only on the pKa value is not sufficient for predicting the catalyst behavior. An 

improvement is represented by the Taft equation approach. It has been shown by 

applying the Taft equation to the homologous series: acetic, mono chloroacetic, dichloro 

acetic, trichloro acetic acids that both the polar and steric effect are important in 

determining the catalyst behavior in terms of activity and selectivity. For what consernig 

this study has also been evaluated the HCl solubilities in the reaction environment by 

adopting an experimental plus predictive mixed approach.  

It has been verified that PSRK equation gives always overestimated values of HCl 

solubility and a corrective factor has been determined.  At last, a mathematical model 

has been developed and successfully applied to the fed-batch runs, describing with a 
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good approximation all the experimental data. By using this gas-liquid kinetic model, it 

was possible to determinate the kinetic parameters, usefully employed to perform the 

property-structure study based on the use of the Taft equation.  
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1. Introduction 

In chapter 8the work carried out by employing, in the glycerol chlorination reaction, two 

sets of homologous catalysts, (in particular a series of aminoacids and a series of 

glycolic acids) is described. The main scope of the work was to compare their activity in 

chlorination and to acquire a scientific insight about the effect of the presence of 

different functional groups in the catalyst molecule on its activity and on products 

distribution, more precisely the selectivity to monochlorohydrins (MCHs) and to 

dichlorohydrins (DCHs). 

For this purpose, the tests have been performed under the same conditions of 

temperature, pressure and stirring speed, i.e. T= 100°C, P= 4.5 barg, catalyst 

concentration = 8mol % with respect to glycerol, reaction time = 4h, stirring rate=1000 

rpm. 

For each run, liquid phase samples have been withdrawn, respectively at 1, 3 and 4 h, in 

order to evaluate concentration-time profiles. These samples, previously neutralized with 

an excess of sodium bicarbonate, were analyzed at the gas chromatograph, obtaining in 

such a way the glycerol conversion and the chlorinated products distribution. 

At the end of the run, after 4h of the reaction, HCl in excess is eliminated from the 

system by bubbling in traps containing NaOH. Stirring is then stopped and the system is 

cooled to room temperature. 

2. Chemical and Catalysts 

2.1 Experimental Runs  

The catalysts tested in the series of glycolic acids are, respectively: glycolic acid (GA), 

thioglycolic acid (TGA) and diglycolic acid (DGA); in the series of amino acids, the 

following catalyst have been selected for testing in the target reaction: cysteine (CYS), 

aspartic acid (ASPA) and glutamic acid (GLUA). 

All the reagents used for the experimental runs have been purchased from Sigma Aldrich 

at the highest level of purity available (glycerol anhydrous >99.0% and catalyst >99.0%) 
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and were used as received without further purification. Gaseous hydrochloric acid has 

been purchased from Air Liquide Italy (99.8% vol). 

In Tab. 1, an overview of all the performed experiments is reported, together with the 

experimental conditions and the amounts of reactants loaded in the reactor. 

 

Table 1. Experimental conditions for all runs. 

Run Catalyst Wcat (g) WGly (g) T (°C) P (barg) pKa 

1 ASPA 17.30 150 100 4.5 3.90 

2 GLUA 19.13 150 100 4.5 4.07 

3 CYS 15.75 150 100 4.5 8.37 

4 GA 9.89 150 100 4.5 3.83 

5 DGA 17.43 150 100 4.5 2.90 

6 TGA 11.98 150 100 4.5 3.73 

7 GLUA 4.80 150 100 4.5 4.07 

8 GLUA 9.60 150 100 4.5 4.07 

9 GLUA 19.13 150 100 1.0 4.07 

10 GLUA 19.13 150 100 8.0 4.07 

11 AA 7.8 150 100 8.0 4.79 

 

A first comparison between all the catalysts can be made in terms of products 

distribution after 4 h of reaction time, as reported in Tab. 2 for the experimental runs 

performed at constant pressure of 4.5 barg and temperature of 100 °C. 

From the data reported in Tab. 2 and Fig. 1 related to the first set of catalysts (amino 

acids), it can be observed that a total conversion of glycerol is reached, in the adopted 

conditions, only by using glutamic acid. The results of glycolic acids as catalysts are 

reported in Tab. 2 and fig. 2. 

 

 

 

 

 

 



141 

 

Table 2. Experimental Runs: product distribution after 4 h of reaction (mol %), 

T=100°C, catalyst 8% mol – amino acids series and glycolic acids series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

        

 

 

 

         

         

         

         

         

Run  Cat α-

MCH 

β-

MCH 

α,γ-

DCH 

α,β-

DCH 

Gly MCHs  

selectivity 

DCHs  

Selectivity 

1  ASPA 69.1 6.6 13.4 0.4 10.5 84.6 15.4 

2 GLUA 22.2 4.3 72.3 1.2 0 26.5 73.5 

3 CYS 50.1 5.3 3.4 0.2 41.0 93.9 6.1 

4 GA 48.4 5.2 45.4 1.0 0 53.6 46.4 

5 DGA 57.4 0.7 40.8 1.1 0 58.1 41.9 

6 TGA 32.4 5.6 60.6 1.4 0 38.0 62.0 

11 AA 0.6 7.5 89.3 2.6 0 8.4 91.6 
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Figure  1. Products distribution and glycerol consumption for catalysts GLUA, ASPA 

and CYS (P=4.5 barg, T=100°C, cat. conc. 8% mol] 
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Figure 2. Products distribution and glycerol consumption for catalysts GA, DGA and 

TGA (P=4.5 barg, T=100°C, cat. conc. 8% mol 
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This catalyst has also shown a relatively high selectivity to α,γ-DCH, resulting in 

performances quite similar to acetic acid, but with the advantage of a very low volatility 

(melting point 199°C, soluble in the reaction mixture]. It is also possible to observe that 

ASPA and GLUA, characterized by only two carboxylic groups and by similar pKa 

value, have shown higher activity than CYS. For what concerns selectivity, ASPA and 

CYS are more selective to monochlorohydrins production, while dicholorohydrins are 

the main products when GLUA is used as catalyst.  

It is possible to appreciate that all the catalysts in this set have shown a complete 

conversion of glycerol. In every case, a mixture of mainly α-MCH and α,γ-DCH has 

been obtained, but thioglycolic acid produces much more dichlorohydrins than 

monochlorohydrins. 

From this first catalysts screening, it can be concluded that glutamic acid has shown the 

best performances, both in terms of activity and selectivity to the desired products, 

which are dichlorohydrins. For this reason, this catalyst has been deeply studied by 

performing other tests with the aim to investigate the effect of hydrochloric acid pressure 

(runs 9-10 in Tab.1) and catalyst concentration (runs 7-8 in Tab.1).  

The results obtained from the mentioned tests are reported in the Tab.3 and Fig. 3 and 4 

Table 3. Experimental Runs: product distribution after 4 h of  reaction (mol %) – 

Glutamic acid at different pressures and atdifferent concentrations of catalyst 

 

 

The tests reported in Tab.3 have been carried out respectively at different pressures and 

different amounts of Glutamic acid. More precisely tests 2, 7, 8 have been performed at 

Run  α-MCH β-MCH α,γ-DCH α,β-DCH Gly MCHs  

selectivity 

DCHs  

selectivity 

7 64,2 6,4 28,7 0,7 0 70.6 29.4 

8 51,3 7,0 40,7 1,0 0 58.3 41.7 

2 22.2 4.3 72.3 1.2 0 26.5 73.5 

9 74,2 6,2 12,7 0,4 6,5 86.0 14.0 

10 7,9 8,1 81, 6 2,4 0 16.0 84.0 
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constant pressure, by using respectively 2, 4 and 8 mol% of catalyst, while the tests 2, 9, 

10 at constant catalyst concentration (8% mol

HCl pressure. 

As it can be seen in Fig. 3, the increase of HCl pressure

activity and the selectivity of the reaction. In fact, at 1 barg a complete conversion of 

glycerol was not reached, even after 4 hours of reaction, while at 4.5 barg the glycerol is 

completely converted and the selectivity to dichlorohydrins is rather high. A further 

increase of pressure to 8 barg, results in a further increase of selectivity, reaching 84 mol 

% of α,γ-DCH.  The observed behavior can be explained by considering that an increase 

of pressure leads to an increase in HCl solubility.

 

Figure  3. Products distribution (mol %] after 4 h of reaction using GLUA (8% mol

T=100°C, at different pressures. 

 
The effect of catalyst concentration has been also studied by adopting a medium

pressure of 4.5 barg and 100 °C, while the amount of catalyst (GLUA

as reported in Tab. 1 (runs 2-7-8). The corresponding obtained results are shown in Fig. 

3. 
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constant pressure, by using respectively 2, 4 and 8 mol% of catalyst, while the tests 2, 9, 

10 at constant catalyst concentration (8% mol) respectively at 4.5, 1.0 and 8.0 barg of 

, the increase of HCl pressure has a positive effect on both the 

activity and the selectivity of the reaction. In fact, at 1 barg a complete conversion of 

glycerol was not reached, even after 4 hours of reaction, while at 4.5 barg the glycerol is 

y to dichlorohydrins is rather high. A further 

increase of pressure to 8 barg, results in a further increase of selectivity, reaching 84 mol 

DCH.  The observed behavior can be explained by considering that an increase 

ase in HCl solubility. 

 

after 4 h of reaction using GLUA (8% mol],  

The effect of catalyst concentration has been also studied by adopting a medium-level 

and 100 °C, while the amount of catalyst (GLUA) has been varied 

. The corresponding obtained results are shown in Fig. 

4.5 bar 8 bar

α,γ-DCH Gly
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Figure 4.  Products distribution (mol %

P=4.5 barg, T=100°C, at different concentrations of catalyst.

 

 
 

In this case we can observe that by passing from 2 to 8 mol.% of catalyst, the selectivity 

has been gradually shifted from monochlorohydrins to dichlorohydrins as can be 

expected from the reaction sequence. n all the tests of this group, unlike the tests carried 

out at different pressures, it can be noted that there is never a glycerol residue; in every 

case, monochlorohydrins and dichlorohydrins are the only detected compounds, indeed.

2.2 Kinetics and modelling 

All the collected experimental data have been simulated by means of a gas

model that has been already reported elsewhere in details [

reactions can be assumed as reversible, previous investigation have demonstrated that 

only the formation of α-monochlorohydrin and 

equilibrium behavior [2-6]. Notwithstanding this aspect, the kinetic constants of the 

reverse reactions are quite low (see Table 4) and, very likely, are negligible. 
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Products distribution (mol %) after 4 h of reaction using GLUA,  

T=100°C, at different concentrations of catalyst. 

In this case we can observe that by passing from 2 to 8 mol.% of catalyst, the selectivity 

has been gradually shifted from monochlorohydrins to dichlorohydrins as can be 

n all the tests of this group, unlike the tests carried 

out at different pressures, it can be noted that there is never a glycerol residue; in every 

ns and dichlorohydrins are the only detected compounds, indeed. 

All the collected experimental data have been simulated by means of a gas-liquid kinetic 

model that has been already reported elsewhere in details [1]. Even if all the involved 

reversible, previous investigation have demonstrated that 

monochlorohydrin and α,γ-dichlorohydrin have a weak 

]. Notwithstanding this aspect, the kinetic constants of the 

and, very likely, are negligible.  

4% mol 8% mol

α,γ-DCH Gly
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Table 4. Kinetic and mass transfer parameters obtained by mathematical regression 

analysis (k are in (cm
3
/mol]

2
/min, β in min

-1
]. 

 

The constants for β-monochlorohydrin and α,β-dichlorohydrin production are lower of 

some order of magnitude, so completely excluded from the present model. In conclusion, 

the model has been developed by assuming that the formation of β-monochlorohydrin 

and α,β-dichlorohydrin are considered irreversible reactions, while the other chlorination 

steps have been considered reversible. In this way, it is possible to write the following 

simplified reaction scheme with related reaction rate expressions, all expressed in 

[mol/(L·min)].  

 

Gly + HCl           α-MCH + H2O 

r1=[CAT]·( k1·[Gly]·[HCl]-k-1·[H2O]·[α-MCH])  (1) 

Gly + HCl                      β-MCH + H2O   

r2=[CAT]·( k2·[Gly]·[HCl])    (2) 

α-MCH + HCl                    α,γ-DCH + H2O 

r3=[CAT]·( k3·[α-MCH]·[HCl]-k-1·[H2O]·[α,γ-DCH]) (3) 

α-MCH + HCl               α,β-DCH + H2O  

       

       

       

       

 ASPA GLUA CYS GA DGA TGA 

k1 1.56E+04 3.47E+04 1.61E+03 2.71E+04 1.95E+04 0.98E+05 

k2 1.14E+03 1.91E+03 1.62E+02 1.78E+03 8.20E+02 6.41E+03 

k3 1.69E+03 6.72E+03 2.65E+02 2.28E+03 2.69E+03 5.37E+03 

k4 2.59E+00 8.28E-01 9.81E-01 6.56E-01 1.38E+00 9.20E-01 

k-1 1.44E-05 6.05E-13 3.19E-06 2.61E-12 5.17E-06 1.06E-05 

β 0.0211 0.0534 0.0458 0.0682 0.0390 0.0501 
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r4=[CAT]·( k4·[α-MCH]·[HCl])    (4) 

As simplifying assumption, the reverse of reaction (3) has the same kinetic constant of 

reaction (1). With this approach the model contains less adjustable parameters. 

Moreover, it has been verified that the use of different reverse rate constants does not 

improve significantly the fitting of experimental data and the two obtained constants (k-1 

and k-3) have practically the same value.   

In order to describe the evolution with the time of each chemical compound, it is 

possible to write the mass balance as it follows. 

  ∑ ∑ −+=⋅ mmk

i

m FJr
dt

dn

V

1
   (5) 

Where nm
i
 stands for moles of the m-th chemical specie, i for the phase (gas or liquid], V 

is the reaction volume, rk the reaction rate expression, Jm the volumetric mass transfer 

rate and Fm the contribution of the sample withdrawn from the system. Therefore, for 

what concerns the gas-liquid HCl mass transfer, the Whitman two films theory has been 

adopted, by imposing the following mass transfer rate expression. 

JHCl=kL·a·([HCl]*-[HCl]) = β·([HCl]*-[HCl]) [=] mol/(L·min)  (6) 

 

The mass transfer coefficient β is considered as an additional adjustable parameter, while 

the solubility has been calculated by using the UNIFAC model (see [1] for details). In 

this way, by solving the ODE (Ordinary Differential Equation) system (5) it is possible 

to obtain, by mathematical regression analysis on the collected experimental data, the 
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kinetic constants reported in Tab. 4 and the parity plot  reported in Fig. 5

 

Figure 5. Parity plot for all catalysts studied in this chapter. 

 

As it can be appreciated from these diagrams, the fitting can be considered satisfactory. 

By observing the profiles reported in Fig.6 and Fig. 7 it is possible to observe that the 

model is able to describe quite correctly also the runs made at different pressure and 

different catalyst concentration. 
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Figure 6. α,γ-DCH production and glycerol consumption for the runs at different 

pressures. 

 

Figure 7. α,γ-DCH production and glycerol consumption for the runs at different 

catalyst concentrations. 

 

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

8 barg

4,5 barg

1 barg

1 barg

4,5 barg

X
j [

m
o

l.
%

]

Time[minutes]

α,γ-DCH

 Gly 

 α,γ-DCH

 Gly 

 α,γ-DCH

Gly 

8 barg

0 20 40 60 80 100 120 140 160 180 200 220 240

0

20

40

60

80

100

8mol.%

4mol.%

2mol.%

2mol.%

4mol.%

8mol.%

α,γ-DCH

 Gly 

 α,γ-DCH

 Gly 

 α,γ-DCH

Gly 

X
j [

m
o

l.
%

]

Time [minutes]



151 

 

 

For what concerns gas-liquid mass transfer coefficient β, the values obtained (reported in 

Tab.4] are all of the same order of magnitude with an average value of 5.42·10-2 min-1 

that results lower than the average value obtained in our previous work (about 3 min-1) 

[1] for different catalysts. This difference in gas-liquid mass transfer behaviour can be 

justified by considering that the catalysts investigated in the present work are much more 

active, so a more limiting value of β can be considered reasonable.        

A further interesting consideration can be pointed out by observing the kinetic constants 

obtained by mathematical regression. These constants are related to the activity and 

selectivity of the studied catalysts and this effect can be better appreciated if we consider 

their ratios as reported in Tab.5.  

The ratio k1/k2 indicates that all the tested catalysts are very selective toward the 

production of α-MCH with respect to β-MCH in the first chlorination step. This 

represent a significant advantage because high concentration of β-MCH involves serious 

separation problems from α-MCH in industrial plants and in our case we have always 

observed β-MCH molar concentrations lower than acetic acid (see Tab.2). A very 

similar, even more pronounced behaviour, can be appreciated for the ratio k3/k4 that 

emphasizes for all the catalysts the high selectivity toward α,γ-DCH with respect to α,β-

DCH.  

 

Table  5. Ratios between the kinetic constants obtained by mathematical regression on 

the experimental runs performed by using different catalysts. (*) reactivity index 

expressed as ratio between kinetic constant of i-th catalyst and that of glutamic acid 

Run k1/k2 k3/k4 k1i/k1GLUA(*) k3i/k3GLUA(*) 

1 13.68 652.5 0.4496 0.2515 

2 18.17 8115.9 1.0000 1.0000 

3 9.94 270.1 0.0464 0.0394 

4 15.22 3475.6 0.7810 0.3393 

5 23.78 1949.3 0.5620 0.4003 

6 15.32 3.41E+8 2.8301 0.8001 
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In Tab.5 are also reported two reactivity indexes referred to glutamic acid, expressed as 

ratio between kinetic constant of the generic catalyst and that of glutamic acid, for the 

first and the second chlorination respectively (reactions 1 and 3). From these ratios, it is 

evident that in the first chlorination reaction, TGA catalyst is the most active while for 

the second chlorination glutamic acid resulted the best.   

 

 

3. Conclusions 

The amino acids catalysts have shown a good activity and selectivity. thar are  strongly 

depends on the pKa value and the molecular structure. By comparing their performances, 

ASPA and GLUA catalysts, which contain two carboxylic groups and have a similar 

pKa values, show higher activity in glycerol conversion than CYS, that is characterized 

by a higher pKa and by only one carboxylic group. However, the difference in terms of 

total carboxylic groups is not sufficient to justify the catalytic behaviour of GLUA and 

CYS. In particular, at this purpose we can compare runs 3 and 8 (Tab.2, 3) that were 

conducted with the same carboxylic groups concentration. In run 3 (CYS) glycerol 

residue after 4h of reaction is about 40% while a total conversion was obtained in run 8 

(GLUA).  

By using amino acids as catalyst, it has been demonstrated that catalyst pKa plays an 

important role on the selectivity, as in ref. [5]. In fact, even if ASPA has a pKa slightly 

lower than GLUA, the selectivities to MCHs and DCHs are strongly affected: ASPA 

showed a relatively high selectivity to MCHs while GLUA has a high selectivity to 

DCHs.  

The series of glycolic acids seems characterized by higher catalytic activity with respect 

to amino acids, giving place, for all the tested catalysts, to a total conversion of glycerol 

in the same reaction conditions. For this series, different selectivities to MCHs and 

DCHs have been observed. Their values are not closely related to the pKa of the 

corresponding catalysts, as occurred for the previous series of homologues. 
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Finally, a reliable kinetic model has been applied to the description of isothermal fed-

batch runs and a good agreement between experimental data and model prediction has 

been obtained in all cases 
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Chapter 9-A new class of catalysts: 

Acyl Chlorides 
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1. Introduction  

In the present cahpter  present the results on a completely new class of catalysts for 

glycerol chlorination, represented by acyl chlorides, never reported in the literature 

before the patent [1].  

The catalysts studied in this work are acetyl chloride, propanoyl chloride, adypoyl 

chloride, butandioil di-chloride, propandioil di-chloride and phenylacetyl chloride and 

more precisely it is reported a comparison between the acyl chlorides respect to 

corresponding carboxylic acid. The influence of some reaction parameters are studied as 

for example the effects of the pressure on activity and selectivity. In this chapter we 

studied also the possibility of using crude glycerol coming from the biodiesel 

production.  

2. Experimental Section 

The reagents used for the experimental runs were all purchased from Sigma Aldrich at 

the highest  purity (glycerol anhydrous > 99.0% and catalyst > 99.0%) and used as 

received without further purification. The hydrochloric acid has been purchased from Sol 

spa (>99.8 vol. %).  

As reported in previous works [2,1] all experimental runs were carried out in a 300 cm3 

hastelloy steel reactor and the system was described elsewhere in more details  [2].  

Glycerol and catalyst were loaded into the reactor and this was rapidly closed. In this 

case we do not eliminate the air in the reactor, with a vacuum pump, to avoid removing 

also the hydrochloric acid which may be formed from the reaction between acyl chloride 

and glycerol. In this way after the reactor was closed and the reaction mixture was 

heated up to the reaction temperature, HCl was fed into the reactor from an external 

cylinder. 
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2.1  Experimental runs 

All tests were carried out, for 4 hours of reaction, in the same conditions of temperature, 

stirring speed  and catalyst concentration (T=100°C, stirring speed= 1000 rpm, catalyst 

concentration= 8mol%) ; the tests were carried out at different pressures. 

During the runs some samples were taken, more precisely at 30 minutes, 1, 2, 3, 4 hours. 

These samples, after neutralization with an excess of sodium bicarbonate, were analyzed 

on a gas chromatograph to measure the glycerol conversion and chlorinated products 

distribution. At the end of the run, after 4 h of reaction, the HCl in excess was discharged 

from the system by bubbling into a neutralizing trap containing NaOH. Stirring was then 

stopped and the system was cooled to room temperature. The GC column used for the 

analysis was a CHROMPACK CPWax, with a stationary phase of 100% 

polyethylene‐glycol, length of 30 m, I.D. of 0.25 mm and film thickness of 0.25 µm. The 

GC was equipped with a FID detector and helium was used as carrier gas. The other 

parameters were: injector temperature = 250 °C, detector temperature = 280 °C, 

temperature program = 1 min at 40 °C, heating rate 20 °C/min to 100 °C then 40 °C/min 

up to 200 °C, finally hold for 10 min. The withdrawn sample was first diluted with 

methanol in a volumetric ratio of 1:30 and 1 µL of the resulting solution was injected 

into the GC. The quantitative analysis was expressed as mole percent normalized with 

respect to the sum of known components. 

The catalysts studied in this work were carboxylic acids with the corresponding acyl 

chlorides with the scope to show the comparison between them for both activity and 

selectivity. The catalysts studied were acetic acid, acetyl chloride, propionic acid, 

propanoyl chloride, adipic acid, adypoyl chloride, succinic acid, succinyl chloride, 

malonic acid, malonyl chloride, phenylacetyl chloride. In the table 1 the properties of the 

used catalysts are reported. 

All tests were carried out with the use of the acyl chlorides and in comparison with the 

corresponding carboxylic acid. Comparing the results obtained, in the same operating 

conditions, the initial measured reaction rate are higher in every case when chloride are 

used as catalysts. In table 2 the results obtained used the catalyst previously listed are 

reported. The temperature and  the stirring rate of the runs reported in the Table 2 were 

the same for all tests, 100°C, 1000 rpm and 4h of overall reaction time, respectively. 
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Table 1. Physical properties of the used catalysts  

Catalyst Molar mass 

(g mol-1) 

Boiling point 

(°C) 

Acidity 

(pKa) 

Acetic  Acid 60.05 118-119 4.79 

Acetyl chloride 78.49 52 - 

Propionic acid 74.08 114 4.87 

Propanoyl chloride 92.52 77-80 - 

Adipic acid 146.14 337.5 4.43 

5.41 

Adypoyl chloride 183.03 105-107 - 

Succinic acid 118.09 235 4.2 

5.6 

Succinyl chloride 154.98 190 - 

Malonic acid 104.06 - 2.83 

5.69 

Malonyl chloride 140.95 53-55 - 

Phenylacetyl 

chloride 

154.59 94-95 - 
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Table 2. Experimental run: operative conditions and glycerol conversion after 1 h of 

reaction (mol %) 

Run Catalyst Pressure 

(bar) 

Catalyst 

(% mol) 

Gly conversion after 1h 

of reaction      (% mol) 

1 

Acetic  Acid 4.5 8 84.2 

2 Acetyl Chloride 4.5 8 100 

3 Acetyl Chloride 10 8 100 

4 Acetyl Chloride 4.5 2 87.9 

5 Acetyl Chloride 4.5 4 100 

6 Propionic Acid 4.5 8 81.9 

7 Propanoyl Chloride 4.5 8 100 

8 Adipic Acid 4.5 8 100 

9 Adypoyl Chloride 4.5 8 100 

10 Succinic Acid 4.5 8 86.3 

11 Succinyl Chloride 4.5 8 100 

12 Malonic Acid 4.5 8 81.9 

13 Malonyl Chloride 4.5 8 95 

14 Phenylacetyl 

Chloride 

4.5 8 100 

 

Only for the run 11 and run 14 it was possible to observe after 30 minutes the presence 

of residual glycerol, more precisely for the run 11 the residual glycerol after 30 minutes 
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was 7.3 mol % and for the run 14 the glycerol was 10.9 mol%. For the others runs (2, 3, 

5, 7, 8, 9) also after 30 minutes of reaction  the glycerol conversion was total. 

In the figure 1 was reported, a first comparison between acetyl chloride and acetic acid. 

Using these catalysts the glycerol completely disappears in a much shorter  time and the 

final yield in α,γ-dichlorohydrin is higher than in the presence of acetic acid as catalyst. 
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Figure 1: Comparison between the performances obtained by using, as catalysts, acetic 

acid (--□--, --○--) and acetyl chloride (--▲--, --▼--). 

Observing the values of final yields we have found that higher selectivity to 

dichlorohydrins can be obtained in a considerably shorter reaction time.  

In this chapter we studied also the influence of HCl pressure on the reaction rate, when 

an acetyl chloride is used as catalyst. By doubling approximately the HCl pressure from 

4.5 bars to 10.0 bars, all the glycerol was converted in less than 15 minutes, while, the 

maximum yield of α,γ-dichlorohydrin is reached in about 30 minutes. On the contrary, in 

the run performed at 4.5 bars using acetyl chloride as catalyst (run 2), the glycerol was 

completely converted after 60 minutes. A run performed in the same condition in the 
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presence of acetic acid as catalyst (run 1) requires more than 180 minutes for a total 

conversion of glycerol. In figure 2 was reported this comparison. 

 

0 50 100 150 200 250

0

20

40

60

80

100

C
o

m
p

o
s
it
io

n
 m

o
l 
%

time (minutes)

 α,γ−dichlorohydrin

 α,γ−dichlorohydrin

 α−monochlorohydrin

 α−monochlorohydrin

 

Figure 2. Effect of pressure: comparison between the performances obtained by using, as  

catalysts, acetyl chloride at 4.5 bars(--▲--, --▼--) and acetyl chloride at 10 bars (--□--, -

-○--) 

For the acetyl chloride we studied also the influence of catalyst concentration. The 

concentration used for the comparison were 2, 4 and 8 % by mole. By reducing the 

catalyst concentration the reaction rate decrease but not very much, because in all cases 

glycerol was converted in less than 60 minutes. On the contrary α-monochlorohydrin 

concentration was 18.8 % mol after 60 minutes for the run performed with 8% mol of 

acetyl chloride, 43.1 % mol using 4 % mol of catalyst and finally 78.2 % mol for 2% of 

catalyst. The time to reach the maximum yield was longer for the run performed with 2 

%mol of catalyst while was similar for the run performed with 4 and 8 % mol of catalyst 

respectively. 

The influence of an inorganic salt, such as NaCl, has also been studied on activity and 

selectivity (to dichlorohydrins) using acetyl chloride as a catalyst. Usually the salt 
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content in crude glycerol, from biodiesel production via homogeneous alkaline catalysts, 

ranged from 5% to 7%. In this way, using an amount of salt 8 wt%, we wanted to 

simulate crude glycerol coming from other industrial processes like biodiesel production. 

This study showed that the results obtained using NaCl, both in activity and in 

selectivity, are very similar to those obtained by performing the same reaction without 

NaCl. This aspect could represents a potential advantage, from an industrial point of 

view, because it opens the possibility for use as a feedstock of crude glycerol from the 

biodiesel plants without having to expensive additional purification operations. 

Also in this case the chlorination reaction of glycerol with hydrochloric acid was carried 

out at 100 °C and 4.5 barg and in the figure 3 was reported the comparison using acetyl 

chloride as catalyst with NaCl and without NaCl. 
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Figure 3. Effect of NaCl: comparison between the performances obtained by using, as 

catalysts, acetyl chloride(--▲--, --▼--) and acetyl chloride with NaCl (--□--, --○--) 

The results obtained for the synthesis of chlorohydrins, and in particular of all products 

obtained  in the presence of acyl chlorides as catalysts are summarized  in the table 3. 
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Table 3. Experimental run: products distribution after 4h of reaction (mol %) 

Run Catalyst α-MCH β- MCH α,γ- DCH α,β- DCH 

1 Acetic  Acid 23.6 7.0 52.6 1.6 

2 Acetyl Chloride 18.8 4.9 74.0 2.3 

3 Acetyl Chloride 0 8.8 86.1 5.1 

4 Acetyl Chloride 78.7 9.2 0 0 

5 Acetyl Chloride 43.1 4.9 50.8 1.2 

6 Propionic Acid 51.3 5.3 23.2 2.1 

7 Propanoyl Chloride 14.1 7.1 75.9 2.9 

8 Adipic Acid 27.0 7.0 64.0 2.0 

9 Adypoyl Chloride 0.9 3.6 92.8 2.7 

10 Succinic Acid 33.2 9.0 40.3 3.8 

11 Succinyl Chloride 26.6 8.2 62.9 2.3 

12 Malonic Acid 66.3 7.4 8.6 0.2 

13 Malonyl Chloride 40.2 7.6 46.2 1.0 

14 Phenylacetyl 

Chloride 

37.1 7.8 53.5 1.6 

 

Run 6 and run 7 (Table 3) were a comparison of the performance obtained in the same 

operative conditions by respectively propanoic acid and propanoyl chloride. In this 
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casethis comparison confirms the superiority as catalyst of acyl chloride respect to the 

corresponding carboxylic acid. For this catalysts the final yield of α,γ- dichlorohydrin, 

after 4h of reaction, is higher, 93.6 mol% for the propanoyl chloride and 92.5 mol% for 

the propionic acid. The glycerol, instead, whit propanoyl chloride as catalyst was 

completely converted in less than 30 minutes, while, whit propionic acid requires about 

3h. 

Using adipic acid and corresponding acyl chloride (run 8 and run 9 table 3), esandioil di-

chloride, the kinetic advantage to use the acyl chloride was more evident in this case. By 

using esandioil di-chloride as catalyst a yield of 92.8 mol% of α,γ- dichlorohydrin was 

obtained in about 60 minutes, while, using adipic acid a similar quantity of α,γ- 

dichlorohydrin was obtained after 180 minutes of reaction. Also in this case it was 

confermed that acyl chloride were more active as catalysts than the corresponding 

carboxylic acid. In particular, the presence of two acyl chloride groups in the same 

molecule enhances the catalytic effect. 

In the run 10 and run 11 (table 3) were reported the performances of succinic acid and 

the butandioil di-chloride. Also in this case it was possible to observe a superiority of the 

catalyst butandioil di-chloride respect to the succinic acid. For succinic acid the time 

necessary to convert totally the glycerol was 180 minutes, while, also in this case in 

presence of butandioil di-chloride the time was less than 60 minutes.  

By using malonic acid and propandioil di-chloride (run 12 and 13) it was possible to 

observe  than in this case propandioil di-chloride was less efficient than the other aacyl 

chloride previously reported but it was more active than malonic acid confirming the 

superiority of the acyl chloride to respect to corresponding carboxylic acids. 

In the following figure (Fig.4) is reported a comparison between all catalysts used in this 

part of work. In all cases it is possible to note that the acyl chlorides are more active than 

corresponding acid. 
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Figure 4. Comparison between all catalysts used after 1h of reaction. 

The adipic acid chloride (Esandioil di-chloride), contemporary is the most active catalyst 

and the most selective to form dichlorohydrin. 

3. A new process for chlorination reaction of glycerol: Acyl 

Chloride to produce HCl 

3.1 Introduction 

In this part of the thesis work, the attention has been focused on the use of acyl 

chlorides. These compounds are used in the same molar concentration respect to glycerol 

and they give place to higher activity and selectivity respect to the traditional catalysts 

based on carboxylic acids [4]. 

We have studied the catalytic performance of these compounds and it has been observed 

surprisingly that they can give place to the desired reaction product, α,γ-dichlorohydrin, 

without the necessityto feed hydrochloric acid; this gas, however, is formed in situ by the 

reaction between glycerol and acyl chloride. 
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From the reaction between acyl chloride and glycerol, the catalytically active species, the 

ester, and HCl areformed. 

Then, the hydrochloric acid reacts with the ester to give the reaction product and the 

carboxylic acid as a byproduct rather than water as in the traditional process. Carboxylic 

acid is a good catalyst for this reaction and for this reason the reaction proceeds quickly 

with good selectivity, while it is known that water has a negative effect on the reaction 

rate. Carboxylic acid, which is formed as a byproduct, can be separated, purified and 

then reused with obvious economic advantages. 

 

 

 

 

HCl reacts with esters to produce: 
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In order to obtain mainly α, γ- dichlorohydrin, a stoichiometric ratio of glycerol/acyl 

chloride = 1/2 has been used. In these conditions it is possible to achieve a high reaction 

rate that characterizes the catalytic action already observed by using chlorides as 

catalysts.  

3.2 Experimental runs 

The aim of this part of work is the study of a new process to producechlorohydrins, 

starting from glycerol and acyl chloride without feedingHCl. The acyl chlorides, in 

stoichiometric ratio, are both reagents and catalysts. 

The reaction between acyl chloride, of general formula RCOCl,and glycerol is very fast 

at room temperature and at 100-120°C is almost instantaneous. For this reason, if we put 

in contact directly the two reactants, the pressure in the reactor increases considerably 

due to the instantaneous production of HCl. 

It is therefore appropriate to gradually add a reagent to another (preferably feeding the 

acid chloride to glycerol]. 

In this way,pressure keeps a moderate value and constant value, in our case about 4-6 

bars; the pressure value can be also adjusted by varying the feeding time, by adjusting 

the acid chloride flow rate. 

Then, the process can be conducted in a semi-continuous reactor, with continuous 

feeding of the acyl chloride to the reactor as it is consumed. The process can also be 

conducted in a continuous reactor, with continuous feed of glycerol and acyl chloride. 

The reaction temperature may be kept between 100 and 175°C.In the present work the 

acyl chloride previously reported as catalysts are used. 
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As reaction test in the laboratory, I used acetyl chloride as reference. The acetyl chloride 

is fed with an hplc pump in a stirred reactor in which has been previously loaded 

glycerol. Also in this case samples were collected at different times in order to follow the 

time evolution of the distribution of the reaction products. 

The results obtained from the reaction between glycerol and acetyl chloride are reported 

as it follows (Tab. 4 and Tab.5).  

In the first example, glycerol (100g)  is loaded in the reactor and the acetyl choride is fed 

by hplc pump with a flow of 1 ml/min for 154 minutes, but the reaction time is 4 hours. 

In this operative conditions, the reactor pressure is the pressure generated from HCl 

formation reaction and the consumption to produce chlorohydrins. 

As the pressure in the reactor is constant, the reaction proceeds but when the pressure 

increased the reaction is stopped. 

In the following table are reported the results obtained using acetyl chloride with a flow 

of 1 ml/min; in this case the pressure in the reactor is about 7 barg and the results 

confirmed that at the end of chloride alimentation the reaction is completed. 

 

Table 4. Results after 180 and 240 minutes of reaction (mol % distribution) 

Time α-MCH β- MCH α,γ- DCH α,β- DCH Glycerol 

0 0 0 0 0 100 

180 1.8 8.2 81.4 8.6 0 

240 0.5 5.9 82.3 11.3 0 

 

In the second test, glycerol (100g)  is loaded in to reactor and the acetyl choride is fed by 

hplc pump with a flow of 2 ml/min for 80 minutes, but the reaction time is 4 hours. In 

this operative conditions the reactor pressure is the pressure generated from HCl 

formation reaction is faster than the previous but the final value is 6 barg instead of 7 

barg. 

In the table 5 are reported the results obtained using acetyl chloride with a flow of 2 

ml/min. 
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Table 5. Results after 180 and 240 minutes of reaction (mol % distribution) 

Time α-MCH β- MCH α,γ- DCH α,β- DCH Glycerol 

0 0 0 0 0 100 

180 0 4.0 91.9 4.1 0 

240 0 3.7 92.3 4.0 0 

 

This test demonstrate that it is possible to reduce the time of reaction changing the 

operative conditions as amount of glycerol, feed rate of acyl chloride or reaction 

temperature. 

4. Conclusions 

From all results reported it is possible to conclude that the acyl chlorides are much more 

active as catalyst than the corresponding carboxylic acids. The use of the acyl chloride in 

place of the corresponding acid leads to an improvement both in the activity and in the 

selectivity in α,γ-dichlohidrins. This results are  probabily due to the enhanced reaction 

rate of intermediate esters formation, which in this case is practically immediate. 

A further effect was noticed by studying the influence of the presence of NaCl in the 

reaction mixture, on the distribution of the reaction products; this compound promotes 

the reaction and this opens the possibility to the use of crude glycerol, coming from 

biodiesel plants, as raw material for this process.  

Other factor that positively affect the reaction rate was the catalyst concentration. 

This kinetic advantage, of acyl chlorides with respect to carboxylic acids, is further 

accentuated by increasing the partial pressure of HCl. 

Finally acyl chlorides in stoichiometric amount have been studied in order to open new 

opportunities for chlorination process of glycerol with hydrochloric acid performed in 

situ and also in this case the activity and selectivity to DCHs is high. 
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Conclusions 

The aim of this PhD thesis was the study of catalytic processes in biorefinery and  in 

particular the biorefinery that uses as feedstock waste vegetable oils.  

The biodiesel production process was studied in the first part of this PhD work.  

For what concerns the pretreatment, the use of a new acid resin (syndiotactic 

polystyrene-co-1,4-cis-polybutadiene resin) stable at high temperature, has been studied. 

This has shown high activity in esterification reaction and a good resistance to the 

deactivation. The obtained results are very promising and further study will be done to 

define its microstructure and to test the performance of the resin in a continuous reactor.  

For the direct use of waste oils, niobia supported on silica has been studied. This catalyst 

is active in both esterification of FFA and transesterification of triglycerides, with no 

loss of activity in the continuous run for 100 h. However, the characterization of the used 

catalyst revealed the slow leaching of niobia, which reduces its potential of industrial 

application in biodiesel production, if this problem will be not solved.  

Finally, a new catalysts based on Zn(II) have been studied, in particular using  a 

homogeneous catalyst supported on silica or the dendrimeric species it is possible to note 

high activity in  both esterification of FFA and transesterification of triglycerides. 

Further studies will be dedicated to improving the robustness of the catalysts for 

enhancing their activity and durability. 

The second part of this thesis was devoted to study of  new catalysts for chlorination 

reaction of glycerol recovered from biodiesel production process.  The behavior of three 

series of homologous catalysts, chloroacetic acid series (acetic acid, monochloroacetic, 

dichloroacetic and trichloroacetic acid), glycolic acid series (glycolic acid, di‐glycolic 

acid and thio‐glycolic acid) and amminoacid series (glutamic acid, aspartic acid and 

cysteine), were investigated for their activity and selectivity to produce dichlorohydrins, 

important intermediates for epichlorohydrin production. For what concerns the first 

series of catalysts the acetic acid catalyst is the reference molecule; in this case the effect 

of introducing one, two or three chlorine atoms in the molecule on the activity and 

selectivity in glycerol hydrochlorination reaction has been investigated. In particular, we 

observed that pKa of the catalyst has an important role in defining activity and 

selectivity. The homologue series of acetic, mono-, di- and tri-chloroacetic acid give 

interesting results in terms of selectivity: acetic acid resulted selective in the production 
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of 1,3-dichlorohydrin while chloro-substituted acids have produced a mixture of mono- 

and dichlorohydrins. For this set of catalyst a decreasing activity has been observed in 

the order acetic>monochloro>dichloro> trichloroacetic acid. A kinetic model has been 

applied to the description of isothermal fed-batch runs obtaining a good agreement. 

By comparing their performances, aspartic acid (ASPA) and glutamic acid (GLUA) 

catalysts, show higher activity in glycerol conversion than cysteine (CYS). ASPA 

showed a relatively high selectivity to monochlorohydrins (MCHs) while GLUA has a 

high selectivity to dichlorohydrins (DCHs). However, the difference in terms of total 

carboxylic groups is not sufficient to justify the catalytic behaviour of GLUA and CYS.  

The series of glycolic acids seems characterized by higher catalytic activity with respect 

to amino acids, giving place, for all the tested catalysts, to a total conversion of glycerol 

in the same reaction conditions. For this series, different selectivities to MCHs and 

DCHs have been observed instead.  

In the present study we  explored also a completely new class of catalysts for glycerol 

chlorination, represented by acyl chlorides, never reported in the literature. From all 

results reported it is possible to conclude that the acyl chlorides are much more active as 

catalyst than the corresponding carboxylic acids. The use of the acyl chloride in place of 

the corresponding acid leads to an improvement both in the activity and in the selectivity 

in α,γ-dichlohidrins. This result is  probabily due to the enhanced reaction rate of 

intermediate esters formation, which in this case is practically immediate. A further 

positive effect was noticed by studying the influence of catalyst concentration and partial 

pressure of HCl. Finally acyl chlorides in stoichiometric amount have been studied in 

order to open new opportunities for chlorination process of glycerol with hydrochloric 

acid performed in situ and also in this case the activity and selectivity to DCHs is high. 
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List of symbols and acronyms 

FFA   Free Fatty Acids 

MCH   Monochlorohydrin 

DCH   Dichlorohydrin 

-R   Fatty acids chains  

FAME   Fatty acids methyl esters  

DEA   Diethylamine 

DMAE   Dimethylethanol amine 

TEMED   Tetramethyldiaminoethane 

TMAH   Tetramethylammonium hydroxide 

DVB   Divinylbenzene 

WCO   Waste cooking oil 

sPSB-SA Sulfonated multiblock copolymers syndiotactic polystyrene-

co-1,4-cis-polybutadiene 

sPSB Multiblock copolymers syndiotactic polystyrene-co-1,4-cis-

polybutadiene 

TAA   Thiolacetic acid 

BZP   Benzopenone 

DMSO-d6  Dimethylsulfoxide-d6 

TCDE   1,1,2,2-tetrachloroethane-d2 

λ   Conversion 

5NbSi   Catalyst with 5% by wt of Nb2O5 

12NbSi   Catalyst with 12% by wt of Nb2O5 

PAMAM   Poly(amidoamine] 

HPA   Heteropolyacids 

α-   Cl in position 1 

β-   Cl in position 2 

α,β-   Cl in position 1,2 

α,γ-   Cl in position 1,3 

AA   Acetic acid 

MCA   Monochloroacetic acid 



173 

 

DCA   Dichloroacetic acid 

TCA   Trichloroacetic acid 

KHCl
j
   HCl solubility in the j compound [mol/cm

3
] 

γ   Solubility correction factor 

JHCl Mass transfer rate for HCl in the aquous film 

[mol/(cm3*min]] 

β   Mass transfer rate constant [min
-1

] 

[J]   Concentration of the J component [mol/cm
3
] 

[HCl]   HCl film concentration [mol/cm
3
] 

ri   Kinetic rate [mol/(cm
3
*min]] 

nj   Moles of the j component [mol] 

xj   Molar fraction of the j component [-] 

Ji   Mass transfer flux of component i, [mol/min] 

Fj Rectangular-pulse function molar flow-rate of the j 

component [mol/min] 

FHCl
IN

   Molar HCl flow-rate [mol/min] 

P   Pressure [bar] 

V   Volume [cm
3
] 

T   Temperature [°C] 

ASPA    Aspartic acid 

GLUA    Glutamic acid 

CYS    Cystein 

GA    Glycolic acid 

DGA    Diglycolic acid 

TGA    Thioglycolic acid 

Cat   Generic catalyst 

Gly    Glycerol 

RPM   Stirring rate, [rpm] 

w   Weight, [g] 

 

 


