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Abstract

Given the pervasiveness and extremely critical nature of activities performed by cyber-

physical systems (CPSs), a better integration of security into the core architecture of the

system is required in order to design and deploy survivable and secure infrastructures. The

major challenges of modeling, designing and securing CPSs arise from the intrinsic hetero-

geneity, the geographical scale and the uncertainty regarding sensors readings, status and

trustworthiness. These fundamental system properties of CPSs require to address security

in ways more closely tied to the physical application and through a design that supports the

inclusion of security within the application architecture.

This thesis addresses challenges in both design and security of cyber-physical systems

and its contribution is threefold. First, it proposes compositional and multiformalism mod-

eling approaches for the design and validation of large scale monitoring infrastructures.

The proposed approach is intended to integrate and model the interaction between dif-

ferent embedded nodes and between the environment and embedded nodes. The main

limitation of state of art solution to modeling and simulating monitoring infrastructure,

arise from their specificity: they are able to give a number of details on a particular aspect.

Most of them are specifically intended to model a system part: such as network simulators,

software simulators and hardware platform simulators. On the other hand, compositional

and multiformalism modeling approaches allow the adoption of the best suiting modeling

formalism at different levels of system abstraction and provide a concrete scalable mean to

perform early performance evaluation and what-if analysis to ease the design process. They

have been adopted in this thesis with regard to CPS’s monitoring infrastructure modeling

and simulation.

Second, it proposes two ways to advance the software and hardware security for CPSs



monitoring infrastructures. Todays approaches to secure the monitoring infrastructure

are based on lightweight hardening techniques, in order not to stress the limited resources

of wireless sensor nodes and this may limit their strength. Moreover, security seems to be

approached as a feature that is not considered from the early stages of design and conse-

quently is not intrinsically integrated within the embedded nodes architecture. On the other

hand, this thesis proposes mechanisms for software and hardware security that are closely

tied to the embedded architecture. As regards the software security, in this thesis efforts have

been done to make security Adaptation Techniques (AT) applicable for embedded sensor

nodes. Mechanisms based on AT consider security in a proactive way; the system is modified

over time in order to reduce vulnerability exposure and disrupt attackers reconnaissance

efforts. To make it possible to exploit the advantages of AT at the monitor infrastructure

level, a novel node’s software reconfiguration framework is presented. The feasibility of

the proposed mechanism is shown for battery-supplied wireless sensor nodes through the

demonstration of how to alter the network topology, exploit software diversity and react to

threats. As regards the advances to the hardware security of the monitoring infrastructure,

the thesis presents a special purpose hardware architecture specifically intended to address

CPSs’ physical security challenges through the adoption of TPM-based (Trusted Platform

Module) architectures. An architecture based on FPGA is proposed and it is shown how it

can provide secure primitives to asses the hardware and software integrity, as well as offering

cryptographic operation.

Finally, the thesis focuses on improving the processing infrastructure security. Efforts

aimed at protecting CPSs should not only focus on the monitoring infrastructure even if it

seems the weakest point. The processing infrastructure is generally composed of several

networked systems. In this field a number of state of art solution are applicable. This thesis

investigates the adoption of novel security adaptation techniques in order to overcame the

limitation of static hardening techniques that are generally applied to networked systems.

The focus will be on disrupting attacks that are intended to identify the CPS processing

infrastructure’s network architecture. The thesis will address this challenge by looking at

security from a control prospective. Again it will exploit adaptation techniques but with

the final goal of disrupting reconnaissance attack targeting CPS’s back-end infrastructures.

The thesis proposes a graph-based algorithmic solution to manipulate attacker’s view of

processing systems. This formalization is then used to design a deception based defense to

defeating operating system and services fingerprinting. Experimental results show that the

proposed approach can efficiently and effectively deceive attackers.
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Introduction

1 Context and Motivation

The proliferation of low-powered wireless networks of embedded sensors has promoted

the development of new applications at the interface between the real world and its digital

manifestation [6]. This advance in technology enabled for pervasive wireless sensor and

actuators and modified the way in which monitoring and control systems are deployed. Ex-

amples of such systems can be found in areas as diverse as aerospace, automotive, chemical

processes, civil infrastructure, power plants, health-care, manufacturing and transportation.

Cyber–physical systems (CPSs) are integrations of computation and physical processes.

Networks of embedded computers monitor and control the physical processes, usually with

feedback loops where physical processes affect computations and vice versa. Figure i.1

depicts the main decomposition of a CPS architecture. The physical infrastructure is moni-

tored and controlled through a wireless/wired sensor and actuators network. The embedded

nodes and the network constitute the monitoring infrastructure. In their design and deploy-

ment, several architectural parameters can be tuned in order to satisfy functional and non

functional requirements, such as embedded nodes’ hardware architecture and resources,

the kind of operating system (real-time or event-driven), the tasks being performed by

each node and the way in which they exchange data. The collected information are usually

aggregated and sent to the processing infrastructure where networks of general-purpose

computers are used to evaluate the information and if necessary take corrective actions.

The design of such systems, therefore, requires understanding the joint dynamics of com-

puters, software, networks, and physical processes. It is this study of joint dynamics that

sets this discipline apart. When studying CPS, certain key problems emerge that are rare in

1



1 Context and Motivation
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Figure i.1 Cyber-physical system infrastructures

general-purpose computing [29, 59]. For example, real world physical processes are compo-

sitions of many parallel (concurrent) processes. Measuring and controlling the dynamics of

these processes by orchestrating actions that influence the processes are the main tasks of

embedded systems. Those systems sense the world through a number of dedicated sensors

and, enforce the mission logic by means of different actuators. Consequently, concurrency

is intrinsic in CPSs. Many of the technical challenges in designing and analyzing embedded

software stem from the need to bridge an inherently sequential semantics (in computation

and software) with an intrinsically concurrent physical world [29].

Despite significant inroads into CPS technology in recent years, we do not yet have a

mature science to support systems engineering of high-confidence CPS (in terms of reliabil-

ity, availability and security), and the consequences are profound. Traditional analysis tools

are unable to cope with the full complexity of CPS or adequately predict system behavior.

For example, minor events that trip the current electric power grid – an ad hoc system – can

escalate with surprising speed into widespread power failures. This scenario exemplifies

the lack of appropriate science and technology to conceptualize and design for the deep

interdependencies among engineered systems and the natural world. The challenges and

opportunities for CPS are thus significant and far-reaching. New relationships between the

cyber and physical components require new architectural models that redefine form and

function. They integrate the continuous and discrete, compounded by the uncertainty of

open environments. Traditional real-time performance guarantees are insufficient for CPS

when systems are large and spatially, temporally, or hierarchically distributed in configura-

2



1 Context and Motivation

tions that may rapidly change. With the greater autonomy and cooperation possible with

CPS, greater assurances of safety, security, scalability, and reliability are demanded, placing

a high premium on open interfaces, modularity, interoperability, and verification [58].

Furthermore, the geographic distribution of the devices opens to both design and se-

curity challenges. From a design point of view, it is required to model and validate het-

erogeneous large scale systems in a reasonable time and with the necessary amount of

details. From a security point of view, new kind of threats are present: the unattended

nature allows an attacker to physically capture nodes and learn secret key material, or to

intercept or inject messages; the hierarchical nature of sensor networks and their route

maintenance protocols permit the attacker to determine where the most critical nodes are

placed [6].

Given the pervasiveness and extremely critical nature of activities performed by cyber-

physical systems, being able to design and deploy survivable and secure infrastructures

requires a better integration of security into the core design of the system. The characteristics

of CPSs force us to look at security in ways more closely tied to the physical application.

Security for such systems need to be considered architecturally, not as a separate “security

architecture”, but as a secure architecture for the deployment of such applications [59]. The

tight coupling between monitoring infrastructure and the physical environment, opens to

the existence of communication channels not typically considered which are required to

be secured. An attacker does not need to break into control infrastructure to affect such a

system; she could cause a coordinated series of physical actions that are sensed and which

cause the system to respond in an unexpected manner. Defenders protecting CPSs from this

kind of attack, are required to have a deep knowledge of both the system and its physical

context, which is not the typical case for general-purpose computer security.

This security-context challenge is even more critical if one considers that cyber-physical

systems are often unattended and geographically dispersed. Such distribution increases

the difficulty of ensuring physical security and physically reset, or reload the software on a

compromised device. As stated in [59], security requires a fundamental integration in a way

that will permeate the basic design and structure of the application itself. Security solutions

must be tied in part to resilience of the application in spite of such compromise, rather

than focus solely on preventing compromise of component in the first place. Bearing this in

mind, security mechanisms should cope with compromise of some infrastructure entities

in order to not escalate to a total loss of security. Rather than providing all-or-nothing guar-

antees about privacy and security, there is a need for providing probabilistic guarantees

with respect to compromise [6].

The goal of this thesis is to addresses challenges in both the design and the security of

cyber-physical systems. To this aim, the effort made to advance the cyber-physical system

state of art will be presented regarding how novel modeling techniques can ease and support

3



2 Open Issues

the design process and how security adaptation techniques can be included in both the

monitoring and processing CPS’s infrastructure.

2 Open Issues

Several attempts have been made towards the definition of proper methodologies and tools

supporting the design of CPSs in order to avoid resource waste and optimize performance.

These large monitoring infrastructures require novel techniques due to their intrinsic hetero-

geneity and complexity which stresses all existing modeling language and frameworks [29].

A model of a CPS comprises models of physical processes as well as models of the software,

computation platforms, and networks. The feedback loop between physical processes and

computations encompasses sensors, actuators, physical dynamics, computation, software

scheduling, and networks with contention and communication delays. Modeling such

systems with reasonable fidelity is challenging, requiring inclusion of control engineering,

software engineering, sensor networks, etc. Additionally, the models typically involve a

large number of heterogeneous components, the composition semantics becomes central

[29]. Since the design space can easily become very huge, the designer must be provided

with methodologies and supporting tools in the choice of best configurations and thus a

quick evaluation of different configurations is necessary. Being able to conduct what-if

analysis and early measurements is fundamental in order to have confidence in the physical

realization of the design and explore solution space. If one only focuses on modelling and

simulating the monitoring infrastructure, a number of tools and models are available. Most

of them have the goal to simulate with high details a specific system part or algorithm (such

as network simulators for medium contention or micro-controllers power consumption

models). A state of art CPS model or simulator capable of integrating and composing all

the interdependent system parts is still not prominent. One of this thesis contribution

will be the proposal of compositional and multiformalism models to design monitoring

infrastructures.

Focusing on the security design other open issues arise. Existing literature has proposed

the use of computationally inexpensive cryptographic techniques to handle message confi-

dentiality and authenticity in monitoring infrastructures [6] based on wireless embedded

nodes. The difficulty of ensuring confidentiality and authenticity is not, however, due solely

to the energy constraints imposed on sensors. Todays approaches to security are based on

reactive mechanisms: after a threat detection a corrective action is performed. Detection

systems are useful in many cases but false alarms and missed detections are impossible to

avoid because identifying malicious logic is an undecidable problem [16]. Indeed, security

is one of the main open challenges to face; available security solutions are not able to cope

with new attack scenarios and proactive measures to protect embedded nodes are needed.

4



3 Thesis Contribution

Techniques aimed at continuously changing a system configuration, recently referred to

as Moving Target Defense (MTD) or Adaptation Techniques (AT), are emerging to improve

the security level provided by the system but their feasibility in resource constrained en-

vironment should be studied and evaluated. By applying these techniques to embedded

nodes they will be able to show a different and non predictable facade to attackers in terms

of different OS, different software modules, different communication protocols and secu-

rity mechanisms. Reconfiguration mechanisms for wireless sensor networks were primary

conceived to reconfigure a network and restart it after a failure or a design change, an open

challenge is to analyze their suitability for security purposes.

Still focusing on monitoring infrastructure security, assessing the hardware and soft-

ware integrity of its elements is a challenging issue. The sensor network is comprised of

many small computing devices, each of which is subject to physical capture. Any cryp-

tosystem must therefore tolerate the compromise of sensors and their keys. However, the

compromise of some nodes need not result in a total loss of security. Rather than providing

all-or-nothing guarantees about privacy or security, there is a need for providing probabilis-

tic guarantees with respect to compromise [6]. Physical security should be considered at

the beginning of embedded devices development in order to harden the architecture of

embedded nodes. New hardware and software solutions are needed to establish distributed

trust and perform cryptographic operations in a trustworthy manner.

Efforts aimed at improving security of cyber-physical systems should not focus only

on the monitoring infrastructure. Even though the monitoring infrastructure seems the

weakest point due to not so mature technological solutions, advances are still to do in the

protection of the processing infrastructure. The system used in the control and process-

ing of CPSs are similar, in their form, to general-purpose computing architectures. When

system configurations are static, attackers will always be able, given enough time, to acquire

accurate knowledge about the target system, which enables them to engineer effective

attacks. To address this problem adaptive techniques should be enforced to dynamically

change some aspects of a system’s configuration in order to introduce uncertainty for the

attacker. Efficient and effective ways to steer attackers away from critical resources and

disrupt attackers reconnaissance efforts are still an open challenge.

3 Thesis Contribution

This dissertation works on three directions to address design and security challenges in

the context of cyber-physical systems. More specifically, this thesis contributes to the

state-of-the-art on CPS by

■ Defining modelling approaches to designing monitoring infrastructures:

A solution to the challenge of modelling and simulating large scale monitoring in-
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frastructures is proposed through the adoption of compositional and multiformal

models. Their ability to scale and to provide the required amount of details is shown

and the advantage for designer is discussed in terms of how them allow to conduct

what-if analysis and early measurements in order to have confidence in the physical

realization of the design and explore solution space.

■ Improving hardware and software security of monitoring infrastructures:

Most of the efforts for security of the sensing networks have been focused on hard-

ening the communication infrastructure, this is not enough. The thesis proposes

the adoption of novel security adaptation techniques to gain advantage of proactive

security mechanisms. These techniques have been proved effective in other context of

information technology but their adoption in a constrained resource domain, such as

embedded sensor nodes, have not been exhaustively investigated. The proposal and

implementation of a reconfiguration framework, specifically designed for embedded

nodes, is here presented as well as results that proves its applicability and efficacy.

Moreover, the thesis advances the CPS’s physical security state of art the by presenting

a special purpose hardware architecture through the adoption of TPM-based (Trusted

Platform Module) architectures. An architecture based on FPGA is proposed and it

is shown how it can provide secure primitives to asses the hardware and software

integrity, as well as offering cryptographic operation allowing the implementation of

trusted infrastructures.

■ Proposing novel Adaptation Techniques to securing the processing infrastructure:

Even though the monitoring infrastructure seems the weakest point due to not so

mature technological solutions, advances are still to do in the protection of the pro-

cessing infrastructure. The thesis addresses this challenge by analyzing how adaptive

techniques can be enforced to dynamically change aspects of a networked-system’s

configuration in order to introduce uncertainty for the attacker. Adaptation Tech-

niques can offer defenses to different kind of attacks. The thesis focuses on attacks

aimed at discovering the processing infrastructure architecture and disrupting re-

connaissance attack targeting CPS’ back-end infrastructures. The thesis proposes a

graph-based algorithmic solution to manipulate attacker’s view of processing systems.

This formalization is then used to design and implement a deception based defense

to defeating operating system and services fingerprinting.

This thesis includes materials from the following research papers, already published in

peer-reviewed conferences and journals or submitted for review:

■ Valentina Casola, Ermanno Battista, Stefano Marrone, Roberto Nardone, Nicola Maz-

zocca “A Compositional Modelling Approach for Large Sensor Networks Design”

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Com-

puting (3PGCIC-2013) - Year: 2013
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3 Thesis Contribution

■ Ermanno Battista, Valentina Casola, Stefano Marrone, Nicola Mazzocca, Roberto Nar-

done, Valeria Vittorini “An integrated lifetime and network quality model of large

WSNs” IEEE 2013 International Workshop on Measurements and Networking (IEEE

M&N 2013) - Year: 2013

■ Ermanno Battista, Valentina Casola, Antonino Mazzeo, Nicola Mazzocca “SIREN: a

feasible moving target defence framework for securing resource-constrained em-

bedded nodes” IJCCBS - International Journal of Critical Computer-Based Systems,

Vol. 4, No. 4, pp.374–392 - Year: 2013

■ Massimiliano Albanese, Ermanno Battista, Sushil Jajodia, Valentina Casola “A Graph-

Based Approach to Deceive Attackers by Virtualizing a System’s Attack Surface”

Communications and Network Security (CNS), 2014 International Conference on -

Year 2014

■ Ermanno Battista, Mario Barbareschi, Antonino Mazzeo, Sridhar Venkatesan “Advanc-

ing WSN Physical Security Adopting TPM-based Architectures” IICPS 2014, colo-

cated with the 15th IEEE International Conference on Information Reuse and Integra-

tion - Year: 2014

■ Massimiliano Albanese, Ermanno Battista, Sushil Jajodia “A Deception Based Ap-

proach for Defeating OS and Service Fingerprinting” Under Review: Journal of Com-

puter Networks, ComNet (Elsevier) - Year: 2014

The thesis is organized as follows. Part I address challenges relative to the design of moni-

toring infrastructures. After introducing the limitation of current modeling and simulation

solutions, a compositional modelling approach is presented in Chapter I.2, advantages and

achievable results are presented. The compositional model is then refined and extended, in

Chapter I.3, through the definition of a more sophisticated multiformalism composition to

overcome limitations, proper of the CPS domain, in the modeling of interaction between

sensing nodes and network.

Part II focuses on the protection of the monitoring infrastructure. After introducing cur-

rent approaches to securing monitoring infrastructures, Chapter II.2 shows the applicability

of Moving Target Defense and Adaptation Techniques to improve the software security of

embedded nodes deployed within the sensing infrastructure. On the other hand, Chap-

ter II.3 focuses on how to improve the hardware and physical node security through the

adoption of novel Trusted Platform Module (TPM). An FPGA TPM-based architecture is here

discussed.

The thesis moves to the protection of processing infrastructures in Part III. After in-

troducing reconnaissance attacks targeting CPS back-end infrastructure a novel control

prospective is used to propose a graph-based approach to manipulate attacker view and

their perception of a system’s attack surface. An attack model is presented and will be used

as reference through the following chapters. In Chapter III.2 the proposed formalization
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is discussed through the use of a motivating example. In Chapter III.3 the formalization is

then used to propose and approach to defeat attackers fingerprinting effort through decep-

tion. To defeat operating systems and services fingerprinting the system outgoing traffic is

manipulated in order to resemble traffic generated by a host with a different configuration.

Experimental results of the implementation will show its efficiency and effectiveness.

The dissertation concludes with final remarks, the indication of the lesson learned and

future research directions.
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PART I

Modeling Approaches for Monitoring Infrastructures Design



CHAPTER I.1

Introduction and Background

The availability of small low-cost devices has allowed the widespread diffusion of sensor

networks as mean to control large areas in a very high number of applications and led to the

definition of the foundation of a CPS infrastructure: the physical sensing network. Their

adoption domain, and where the interests of both industry and academia usually meet,

can space from monitoring of large structures and areas as in civil engineering, marine or

agricultural monitoring and even power grids [2]. In such cases the dimension of the moni-

toring infrastructure can be huge in both number of the nodes and distance between nodes

themselves. Such feature opens for several problems, one of the most industry-sensitive

is the definition of proper design methodologies able to define physical and technological

parameters in order to fulfill both functional and non-functional requirements. To have a

deep characterization of a CPS design, it is required to move beyond the classical funda-

mental models of computation and physics. CPSs require new models and theories that

unify perspectives, capable of expressing the interacting dynamics of the computational

and physical components of a system in a dynamic environment. A unified science would

support composition, bridge the computational versus physical notions of time and space,

cope with uncertainty, and enable cyber-physical systems to inter-operate and evolve [58].

The CPS design space can easily become hard to explore due to the number of variable

involved and their dependencies. Only limiting to the possible network topologies, a slight

difference in the network configuration can determine a great variation of non-functional

requirements such as performance, security and dependability [2, 18, 19, 67].

Moreover, designers ask for a way to evaluate different node distributions as they influence
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network connectivity and sensing coverage. They are interested in evaluating network life-

time and in general operational reliability. Once they defined the nodes dislocation, the

network needs to be tuned in order to load balance and efficiently allocate energy resources.

For this purpose, it is useful to simulate and analyse network communication, identify

critical paths and measure performances in terms of latencies and packet loss rates. If one

of these parameters does not satisfy a specification, the designer can explore a different

solution for example adding nodes/base-stations, changing the network topology or varying

the battery allocation.

To overcome this intrinsic complexity, the designer must be provided with methodolo-

gies and supporting tools in the choice of best configurations and thus a quick evaluation

of different configurations is necessary. Traditional techniques rely on network simulators:

in recent years surveys about sensor network simulators have been published (see [3, 48]

in the field of Wireless Sensor Networks - WSNs). Several simulators have been compared

detecting three main categories: architecture specific , architecture independent and problem

specific solutions. The first approach can be very effective if the designer knows a-priori the

specific sensor node to use since such simulators are customized to a specific architecture

(examples are TOSSIM [72] and JProwler [76]). The second kind of simulators is architec-

ture generic since they aim at being easily customizable according to the specific needs

(Castalia [60] and COOJA [24]) while such simulators seem to suffer from the scalability and

performance point of view. In the third category, they belong all the simulators that can be

customized to a specific application or to a specific environmental condition.

On the other hand, model-based approaches have been proven to be very effective in

several contexts: the most important benefit in the introduction of these approaches is

the capability to have early measures in order to tune the design and explore solutions

space. This capability derives from the higher level abstraction of the real system that

model-based approaches have. Petri Nets have been used in energy consumption evalu-

ation in [70] and in [26] with a Fluid Stochastic Petri Nets model; authors in [15] focus on

performance evaluation of protocols while the problem of finding an optimal solution in

the design of a WSN is addressed in [14] where both a Markov Decision Well-Formed Petri

Net and a Stochastic Activity Network (SAN) models are used. Hybrid approaches, based

both on traditional simulators and on formal modeling, are also present in the literature [30].

Another formalism that has been successfully used in WSN modeling is: Markovian Agents

Models (MAMs) as in [37].

Notwithstanding, in order to make formal modelling more industry appealing, these

approaches should not only have comfortable high level modelling languages but they

should also allow the customization of formal models according to the specific architecture

and the composition of several submodels into a larger one. This last characteristic enables

(sub)model reuse allowing the construction of a library of sub-models that can be easily
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composed to evaluate design variants and also enable the evaluation of heterogeneous

networks [20].

In this thesis, and in publications [11, 13], it is shown how compositional and multi-

formalism modelling approaches are suitable for easing the design of CPS’s monitoring

infrastructures. Multiformalism is a modeling techniques dealing with the integration/-

composition between sub-models expressed by different formalisms, also based on different

modeling paradigms ([28, 50, 74, 77]). The divide-and-conquer approach is applied at analy-

sis level as it will be better explained in the next Chapters. First, the model architecture and

the composition of relevant sub-models is shown. After, showing the decomposition and

validating the sub-model interfaces, it will be shown how to exploit the advantages of using

a multiformalism approach, that is choosing the best suiting formalism at different levels of

abstraction: (i) one can use a low-level formalism able to capture and model architectural

and behavioral features when modeling at node level and (ii) use a formalism that may

express complex topology and relations among nodes when focusing on large networks. The

proposed approach exploits multiformalism by means of SAN as a “low-level” formalism

and MAMs to combine simplified models of single nodes at network level. These formalisms

also best suit the necessity of having efficient analysis process since MAMs allow fast analysis

of large model by means of numerical solution of ordinary differential equations [37].

12



CHAPTER I.2

A compositional modeling framework

This chapter presents a modelling methodology for the construction of formal models in the

design of sensor networks. The approach has been published in [13] and is here presented

by introducing a “generic” reference model of a monitoring infrastructure (sensor network):

such model is necessary in order to define model components and their interfaces. The generic

model is then implemented by defining “concrete” SAN sub-models conforming to the

defined sub-model interfaces. In particular the model is intended to support design phase

by providing a valid tool to define both topology and sensor nodes features and parameter

configuration in order to have an efficient, reliable and cost effective monitoring network.

In fact, the main requirements whose fulfillment is aimed to be supported, are related to

some configuration and deployment choices that should be taken during the design phase;

i.e:

■ maximum admissible sampling frequency;

■ minimum number of nodes needed to cover a large area;

■ nodes configuration and network topology;

■ node mission time (according to energy capabilities and maintenance policies);

■ communication quality indexes (such as Packet Error Rate).

I.2.1 A “generic” modelling framework

This Section describes the modelling approach to support the sensor network design, defin-

ing a “generic” modelling framework for the analysis of sensor networks. The approach
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I.2.1 A “generic” modelling framework

exploits the usage of formal models, allowing to create the overall model of the system under

analysis in a well-structured way. A component-based view of the system is applied through

the divide-et-impera technique: the overall system model is decomposed recursively into

sub-models until reaching an atomic sub-model. The effectiveness of this approach has

been showed in [55] where a “generic” modelling framework has been defined, and then

implemented into a “concrete” model exploiting the flexibility of the SAN formalism.

The analysis of a monitoring infrastructure requires to consider the entire application

field, modelling four different aspects: Nodes, Network, Faults, Phenomenon. This decompo-

sition has allowed the design of a four-module framework, sufficiently general to model any

sensor network (both wired and wireless). The modelling framework has been developed

following the approach used in [64] and is represented in Figure I.2.1.

Nodes PhenomenonFaults

Network

Figure I.2.1 Modelling framework

Each module shares some information about nodes (such as node position, communi-

cations ranges, etc.) and communicates with others through defined interfaces, that are

described in next Subsections. As already said, the proposed framework has been intended

to help in the design of real world sensor networks, for this reason one need to model the

application and environmental field where nodes are deployed and different phenomena

are observed. The field is structured in a 3D-grid (Figure I.2.2) and the application field is

structured in a set of subregions - obtained starting from the axis origin (O) with sufficiently

small steps of∆x ,∆y and∆z . Each subregion is indexed through its coordinates on the three

axis (x, y, z), hence the subregion SRi , j ,k is the small portion of the application field which is

located at coordinates i , j ,k respectively on the x, y, z −axi s. The subregions can be consid-

ered independent from the application field, in the sense that a particular subregion is a

spatial area which can include terrain, underground, water, etc. The introduced modeling

approximation is proportional to the step lengths ∆x , ∆y and ∆z . In next paragraphs details

about the four modules are given, a description of the framework then follows.

Phenomenon: This module is dedicated to represent the evolution of all physical phenom-

ena of interest, within the application field. Wide fields could be modeled with different

stochastic processes; an area is defined as a set of subregions characterized by the same

stochastic process. For this reason, each area and each phenomenon will require the devel-
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I.2.1 A “generic” modelling framework

Figure I.2.2 Application fields Subregions

opment of a specific formal model representing the phenomenon evolution in that spatial

area. The Phenomenon module produces, as output, the evolution of physical phenomena

over time so that the Nodes module (representing sensing network nodes) can take it as

input: hence sensor nodes deployed in the same area will read the same input data value.

Faults: This module deals with the modeling of faults affecting nodes. In particular, de-

pendability models can be here integrated. In a sensor network, nodes are failure prone

and can work in degraded modes: this module represents the evolution between nominal

and degraded modes according to component failure rate. The Faults module produces

in output information about working modes of all nodes; this output is read by the Nodes

module, which has to consider received information for node operations modeling.

Network: This module is responsible for the implementation of network communications.

Starting from information about nodes, this module realizes message transfers from sender

to recipient nodes. It models message collisions and acknowledgments, if needed, as well

as channel noises. The features here modeled are not included in the node module for a

simpler modeling and understanding. Furthermore, this module is required to cope with

broadcast and dynamical routing strategies implemented by nodes. The Network module

takes in input, from Nodes module, messages from sender nodes and produces, in output,

messages for recipient nodes.

Nodes: This module allows to represent physical nodes of the network (i.e. sensing nodes,

forwarders and sinks). Each node receives messages from the network and, according to

header and body, reacts with proper actions: it can forward the message to another node, it

can start/stop sampling operations, it can send stored samples to the sink node, etc. Obvi-

ously this module interacts with all others. In particular, node performance is affected by

working mode information received by the Faults module (e.g. a node in nominal operation
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mode, i.e. not affected by faults, requires about 1 ms to send a message while, in case of a

fault, it can require even 2.5 ms); node performance can be affected by the value sampled,

too1.

I.2.2 A real system model

This Section analyses performances of a real sensor network scenario used by an Italian

company, the STRAGO SpA, to monitor mass-movement. Specification and parameters

gathered from one of their operative installations with about 50 nodes have been used.The

network is built with: (i) a control entity called sink, (ii) forwarder nodes capable of forward-

ing messages and (iii) sampling nodes which actually measure physical phenomena. This

type of WSNs has a simplified network management and centralized control. For instance,

routing is managed by storing the full path into each message header. Moreover, the access

to the channel is not bound and eventual “retry and retransmissions” are handled at appli-

cation level and absent by default. Usually, a sampling node computes sampling operations

at a given frequency, properly obtained by the sink within a start sampling message. Then,

the node collects twenty-four samples and sends them back to the sink into a single reply

message (this parameter, named aggregation level, can be changed and it is usually chosen

according to the monitoring application).

Network

NETWORK_MODEL

Nodes

PhenomenonFaults

SINK_MODEL

Send Receive

NODE_MODEL

Receive Send CmdH Sampl

Figure I.2.3 Model Architecture

This system is modelled using the framework defined in the previous Section; at this

aim different sub-models have been implemented, each of them is encapsulated in one

framework module and has a set of well-defined interfaces that properly match module

interfaces. In detail, Figure I.2.3 depicts the sub-models which need to be developed for

1Some power-saving mechanisms can change the node’s sampling frequency according to the variance of the
phenomenon under monitoring.
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I.2.2 A real system model

this system, it gives sub-models location inside the modelling framework and interface

connections (with different colors).

The Nodes module requires the realization of two models, one contemplating sink nodes

and the other sampling and forwarder nodes: the sink_model and the node_model. The

sink_model has been structured in two parts, one dealing with sending and the other with

receiving operations. The node_model has been structured into four portions: besides

the send and receive sub-models, sampling operations and command handling shall be

modelled. For simplicity of discussion, in next experiments no models are used for the

Faults and Phenomenon modules. The Nodes module, even if it implements the interfaces

towards these two modules, reads nominal and constant values. At last, the Network module

requires the development of a network_model, which implement message passing between

nodes. The implementation of the system has been realized using the Stochastic Activity

Network (SAN) formalism [69]. This choice is due to the great flexibility and modeling power

given by SAN models; furthermore, its adoption has allowed to directly map the designed

component-based architecture into “atomic” models.

I.2.2.1 A SAN-based implementation

The implementation of the system has been realized using the Stochastic Activity Net-

work (SAN) formalism [69]. This choice is due to the great flexibility and modeling power

given by SAN models; furthermore, its adoption has allowed to directly map the designed

component-based architecture into “atomic” models. In the following, each atomic model

is described in details while all component interfaces have been realized sharing extended

places; these places contain complex data structures where atomic models read and write

shared information.

SINK_MODEL: This atomic model represents a base-station in the WSN infrastructure

(Figure I.2.4). It is responsible for initiating all nodes sampling activities and for receiv-

ing measured samples.These two activities (sending and receiving messages) have been

modeled with two SAN sub-models, respectively Send and Receive. Basically, the sink node

creates a start sampling message for each node in the network which includes information

about: (i) the sampling frequency ( fS ) and (ii) a routing path according to the underlying

network topology. Details about the generation of start messages are omitted for the sake of

brevity. Once the start message is built, it is ready for being delivered. The Send sub-model

is reported in Figure I.2.4-A. The input gate SendMessage is activated on new message gener-

ation. The SendDelay timed activity fires after the actual transfer time, it is computed by

dividing the real message size by the transmission rate. The output gate OG updates the

number of pending outgoing messages (incrementing the tokens in numOutMess place)

and updates the information in outMess to pass the new message’s identifier to the network
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I.2.2 A real system model

model. Then the sink is immediately ready to send a new message. The couple outMess

and numOutMess places implement the outgoing interface between the sink_model and

net_model. In Figure I.2.4, interfaces are represented according to the colors adopted in

the general model architecture. In Figure I.2.4-B the Receive sub-model is reported. The

Send

Receive

A

B

Figure I.2.4 SINK_MODEL implementation

Received input gate is active if a valid message is present in the node’s input interface (inMess

extended place). The inMess extended place implements the ingoing interface between

sink_model and network_model. The Received input function updates the delay time of

the RecvDelay timed activity and for this reason the “IA1-P2” sequence is inserted before

RecvDelay. The output gate OG2 reads the message body, computes the message trans-

mission delay and updates the number of received messages by incrementing NumRecv’s

tokens.

NODE_MODEL: This atomic model represents a sampling or a forwarder node in the

WSN infrastructure. When a node receives a start sampling message, it enables the sampling

process and, according to the aggregation level, samples are sent back using the inverse

path. Moreover, it is able to forward messages in order to participate to the multi-hop

routing protocol. The Receive sub-model structure is equal to the Sink’s one, it is in Figure

I.2.5-A. The only difference is in the OG2 output gate where the message header is checked

to distinguish between messages to forward and messages to process. If the message needs

to be processed, it is checked if it is a start message and, in this case, the isReceivedSTART

place is properly set to enable the sampling process. On the other hand, if the message has

to be forwarded, its identifier is moved in the msgToForward extended place. If the node

is already forwarding a message and another one arrives, the latter is discarded. In this

sub-model, in case of power consumption analysis, on each message reception, the battery

level can be properly decremented according to the consumption rate.

In Figure I.2.5-B the command handler (CmdH) sub-model is represented, it handles start

messages. The setS1 activity is enabled by ReceivedSTART when isReceivedSTART contains a

token (see Figure I.2.5-A). Once enabled, the set_S1 output gate retrieves information from
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Sampl

Send

Receive

CmdH

A

B

C

D

Figure I.2.5 NODE_MODEL implementation

the start message about the sampling frequency (samplingFrequency place is updated) and

the reply path is stored in the ReplyPath extended place.

In Figure I.2.5-C the sampling sub-model is reported. Once a start message is handled

the SampleAndSend input gate is activated and the timed activity S1 can fire according to

the sampling frequency. The output gate OG counts the number of samples (NumSamples

place) and, when sending threshold is reached, it generates a message for sink. This message

contains an array of samples and its size is set to the actual number of bits including message

header, body and tail. The identifier of the message generated is stored in messageToSend

extended place in order to exchange data with the sending sub-model.

In Figure I.2.5-D is reported the SAN model to send/forward a message. The SendMessage

input gate is active when a message has to be forwarded (msgToForward extended place

of Figure I.2.5-A) or a new message is being generated by the node itself (messageToSend

extended place of Figure I.2.5-C). According to the actual operation, the transmission time

is set by modifying the firing rate of SendDelay timed activity. Then the OG4 output gate

decrement the battery level, increments the number of pending outgoing messages (nu-

mOutMess) and updates the identifier in outMess to signal the network model of which

message this node is trying to send. Even in these figures, the same convention on interfaces

have been adopted.

NETWORK_MODEL: This atomic model implements the simplified network model pro-

posed in the system. Its basic feature is to fetch outgoing messages and to deliver them to

the input interface of the right node, as illustrated in Figure I.2.6. It uses global variables,
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shared among different atomic model, to count the number of pending outgoing messages.

It implements the transmission by means of the inMess and outMess interfaces. In details,

Figure I.2.6 NETWORK_MODEL implementation

inMess and outMess contain pointers to the current message in the input/output interface

of each node in the network. In the same way paths and messagesInfo are arrays used to

respectively store the route of each message and the message’s body itself. The input gate

IG1 fires if the mark of numOutMess differs from zero. The IG1 input function polls the

outgoing interfaces to find the message to be processed and prepares for the operations

that are performed by OG1. So, it saves the current hop in current extended place and the

identifier of the message currently processed in the ToSend extended place. The output

gate OG1, knowing each message’s path and the current routing hop, finds the next hop.

At this point if the ingoing interface of the addressee is vacant, the message is delivered by

updating pointers in inMess. Otherwise the message is marked as collided and the counter

of lost messages (discarded place) is incremented.

I.2.3 Evaluation of a Strago S.p.A. Case Study

In this Section experimental results for the analysis and design of a sensor network are

reported. The performance of different network deployments are evaluated in terms of

number of nodes, connection topologies and sampling frequencies ( fS ). Different scenarios

and network topologies are illustrated and design principles that can derive from the analysis

done are discussed.

I.2.3.1 Balanced tree with depth of 1

In the first experiment, a simple topology where each node is directly connected to the sink,

is considered. To perform the experimentation, different configurations have been evaluated

by changing the number of total connected nodes and the sampling frequency. The model

is initialized with five nodes and a sink, then the number of nodes is increased with a step

of five nodes per time. Figure I.2.7 outlines the loss trends against number of nodes with
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Figure I.2.7 Percentage of Loss for a tree with depth of 1

different fS . As one can notice the absence of buffering and collision avoidance to access

the channel leads to high loss rate both with the increase of nodes and with the increase in

the frequency of sending. We evaluated the number of messages received by the sink and

discovered that it saturates around 4100 messages (98400 samples); as a consequence with

fS equals to 640Hz the number of received messages leveled off with more than ten nodes,

explaining the high loss rate measured for this curve.

I.2.3.2 Balanced tree with depth of 2

A two hops balanced tree topology is here considered. Each leaf is a node and every five

nodes are connected to a forwarder. Each forwarder is connected to the sink. Figure I.2.8

reports loss rates with the same computational load of the first experiment (maximum of 50

leafs - second level - nodes). Initially, the network consists of five nodes, one forwarder and

the sink. Then five nodes per time as long as their forwarder are added. In this way, the last

x-axis point (50 nodes) refers to a topology of ten forwarders and fifty leaf nodes. Also in this

case a saturation effect affects the network starting from ten nodes sampling at 640Hz.

Comparing the loss trends of Figures I.2.7 and I.2.8, one can discovered that the 1-hop

and 2-hop topologies have almost the same performance in many conditions. In particular,

with a 2-hop topology and for low-frequencies, some improvements are visible in networks

with more than 30 nodes and the lost message percentage decrements of about 13,5%.

With medium and higher frequencies there is a even less significant improvement: with

medium frequencies and 25 nodes, the maximum gain (in terms of difference in lost message

percentage) is about 10%, while with high frequencies and with 40 nodes the maximum gain

obtained is only 5%.
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Figure I.2.8 Percentage of Loss for a tree with depth of 2

I.2.3.3 Balanced tree with depth of 3

In this experiment, the depth of the topology tree is increased. This topology has two

forwarding levels organized as follows. Each 5 leaf nodes are connected to a 2nd level

forwarder. Two 2nd level forwarders are connected to a 1st level forwarder and every one

of them is connected to the sink. As before, the start is a topology of 5 leaf nodes and then

arrived to 50 leaf nodes by adding 5 leaf nodes per time with corresponding forwarders. This

topology works generally better than the others as even if the delay of receiving a message is

higher, the sink node starts to saturate after 35 nodes with the maximum sampling frequency.
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Figure I.2.9 Percentage of Loss for a tree with depth of 3

By comparing the loss trends of Figures I.2.7, I.2.8 and I.2.9, one can see that the perfor-

mance of a 3-hop topology are better of both previous cases, for every fS . In particular, at low

and medium frequencies there is a lost message percentage gain of respectively 22% (with

50 nodes) and 18% (with 25 nodes). The results are even better for higher performances:
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I.2.3 Evaluation of a Strago S.p.A. Case Study

the 3-hop is 25% better than the 2-hop topology with 35 nodes, and the 3-hop is 32% better

than the 1-hop topology with 20 nodes.

I.2.3.4 Unbalanced tree

For a better assessment of the effects of the depth of tree, in the last experiment the fifty node

topology is gradually unbalanced. The aim of this evaluation is to measure the variations of

the loss rate and the delay increment.

Sink Fwd

50 - m nodes m nodes

Figure I.2.10 Unbalanced tree

Referring to Figure I.2.10, for the initial condition all the nodes are directly connected

to the sink (m = 0, this is the case of one hop communication). Then five nodes per time

(mi+1 = mi +5) move from 1-hop, to a 2-hop connection through the forwarder.
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I.2.3 Evaluation of a Strago S.p.A. Case Study

Packet loss trends are reported in Figure I.2.11a, note that on the x-axis there are the nodes

directly connected to the forwarder and not the leaf nodes as in the previous plots so, for

N=0 this is the case of the 1-hop topology and for N=50 the case of a 2-hop topology but

with 50 leafs connected to the only forwarder. The important result is that for every fS the

lost message trends have a slight negative slope with values in agreement with those for

1-hop and 2-hop, putting in evidence that a second level improves the general quality of the

network but degrades the response time.

Finally, the plot in Figure I.2.11b traces the average delay to send a message to the sink. It

went up whit an almost constant rate as long as the number of 2-hop connected nodes

becomes predominant. The last point on the graph (N=50, 2-hop) has a value slightly more

than twice the initial value (N=0, 1-hop) because the size of a packet in 2-hop is greater.
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CHAPTER I.3

A multiformalism modeling approach

Many different parameters should be taken in consideration while designing and deploying a

wireless sensor networks and monitoring infrastructures. In the previous Chapter a “general”

modelling framework to support the design of large sensor networks has been presented

and a real system has been modelled through the adoption of the SAN model. The goal of

this Chapter is to advance this modelling framework by showing how network and node

models can interact to better represent the nature of cyber-physical systems.

The main idea behind this work is that the distributed nature of the application does not

allow to separate a system model into a hierarchy of “completely independent” sub-models.

The real world hypotheses at the base of this considerations are that the network’s quality

and lifetime of an entire WSN depends on single node energy consumption as well as the

rate at which messages are exchanged in the network. On the other hand, the energy

consumption of a single node depends on the sampling period, the architecture of the node

and the quantity of messages the node must forward: this last variable recursively depends

on the topology of the network. In order to cope with the different aspects of both nodes and

network, a multiformal model is proposed and its effectiveness is discussed. Multiformalism

approaches allows choosing the best suiting formalism at different levels of abstraction: (i)
one can use a low-level formalism able to capture and model architectural and behavioral

features when modeling at node level and (ii) use a formalism that may express complex

topology and relations among nodes when focusing on large networks.
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I.3.1 A multiformalism process

I.3.1 A multiformalism process

In order to cope with the different abstraction requirements of both nodes and network, a

multiformal model is proposed, its structure is depicted in Figure I.3.1. It is composed by

two sub-models: the Node Model and the Network Model. A Node Model is characterized

by three kinds of input parameters: architectural, application and radio. The architectural

parameters are in charge to model the hardware-related inner behavour of the node (e.g.

the latency of the sampling activity); such parameters are almost constant since they are

hard to be customized by the user and they change only between different revisons of the

node family (e.g. Telos revA and revB [57]). The application parameters can be changed

by means of software configurations: one of the most important is the sampling period by

which the sensor node acquires data from the envinroment. The third class of parameters is

constituted by the radio messages that are received from the other nodes: the frequency at

which such messages are received is important since these messages should be forwarded

to other nodes consuming node resources (energy and time). Since the dependency of this

parameter from the network, it is calculated as the analysis results of the Network Model

(radio rx profile).

The Network Model captures the aspects of spatial-aware interactions between nodes in

order to combine simplified models of single nodes. The Network Model allows the modeler

to specify the topology of the network by defining the spatial distribution of the nodes inside

the monitored area. Moreover the behaviour of the single nodes inside the network can be

specified by describing the probability of a node to run out of battery (power-consumption

profile) and the rates at which each single node transmitts messages to other nodes (radio tx

profile). These values are the analysis outcomes of the Node Model analysis.

Two formalisms are used: Stochastic Activity Networks (SAN) for the Node Model and

Markovian Agents Model (MAM) for the Network Model. A brief introduction is required

for MAMs [37]. MAM is an emerging formalisms where each Markovian Agent (MA) can be

Node

Model

Network

Model

radio RX profile

power-consumtion profile

radio TX profile

node architecture

application

topology

maintenance scheduling

Figure I.3.1 The overall multiformalism model
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I.3.2 Models of WSN nodes and network

modeled by means of discrete Markov chain. The MA communicates with the environment

and with the other MA’s by sending messages that can be received (perceived) by the other

agents. The MA’s are distributed in a finite geographical area according to a given spatial

density and their interaction is defined by a perception function that depends on the spatial

distribution.

The editing and analysis of both sub-models can be assisted by proper tools according

to the SAN and the MA formalism: notwithstanding the analysis of the global model is

in charge of the WSN designer. The designer should manually explore the DSE by trying

different topology and application configuration in order to maximize network quality and

lifetime: future works would automate such analysis.

I.3.2 Models of WSN nodes and network

This Section shows how the overall model described so far has been instantiated on the

specific architecture of the TelosB node [57].

TelosB model using SAN: The Node Model has been realized according to a component-

based view of the node architecture: this approach consists in composing different models,

each one concerning with a specific aspect of WSN’s node behavior (e.g. sampling, process-

ing, sending, etc.). In the previous Chapter, a not publicly available architecture was used

as reference, here instead the model is based on the architecture of TelosB[57] commercial

nodes. Figure I.3.2 depicts the structure of the sub-models (rounded rectangles): which

exchanges information through interfaces (small rectangles). The sub-models reflect
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Figure I.3.2 TelosB model structure

the hardware internal organization of the TelosB node except for the software model: the

MicroController Unit (MCU) model, the ADC model, the temperature & humidity sensing
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I.3.2 Models of WSN nodes and network

model, the light sensing model and the radio model.

The software model is able to generate sampling requests (to on-board sensors) and to

process samples; furthermore it is able to generate/manage messages working in coopera-

tion with the radio model. All these actions are conducted producing issues and consuming

events, which are exchanged with the MCU model through the homonymous interfaces.

The radio model implement the message exchanging mechanism: this model, receiving

control signals from the MCU model, is able to represent the sending and receiving opera-

tions conducted by each sensor node.

Since the Radio, the temperature & humidity and the ADC represent hardware com-

ponents, the corresponding models implement the data/control/state communication

abstraction: each sub-model shares three interfaces with the MCU which represent the

communication points; the data interface (from the component to the MCU model) is

mono-directional with the exception of the radio model which needs a bidirectional con-

nection since messages can be sent and received by the sensor node. The Light model

does not have the state interface since it reproduces an analog component. In addition, the

control interface should not be implemented but it have been introduced to increase the

solving efficiency (avoiding the generation of tokens when no light sampling operations are

needed).

Figure I.3.3 Temperature & Humidity sensing model

As a reference, the temperature & humidity SAN model is described (Figure I.3.3). The

temperature & humidity model represents the on-board sensors in charge of the sampling

of these phenomena (Sensirion SHT11). Samples produced by this model are directly pro-

cessed by the MCU model since this component is equipped with an integrated Analog/Dig-

ital Converter; the same behavior is represented by the corresponding model.

The three interfaces (data, control and state) have been implemented using extended

places, which encapsulate complex structures able to store all the necessary informations.

More in detail, when the “start sampling” command is received by the component, IG11

and IG12 check if a temperature or a humidity sample has been requested respectively.

The idle place is necessary to store information about the operativeness of the component:

if it is in an idle state, idle place is marked and the component needs an extra startup

delay (TempStartup and HumStartup transitions) before the sampling action, this delay
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I.3.2 Models of WSN nodes and network

is 0 otherwise. As in the real component, the model is able to store one next sampling

operation: if a temperature sample request is occurred then a token is stored in the nextT

place, otherwise a token is generated in the nextH place. The sampling is enabled by

the firing of the IA1 or IA2 transitions, which are enabled by the input gates (IG21 and

IG22): which check if another sampling operation is active and if a data is ready but not yet

processed by the MCU. At the end, after a sampling action, data are stored in the sensorData

place, while signals to the MCU are sent using the sensorState place.

The ADC model represents the Analog/Digital Converter, internal to the MCU. This

model takes as input analog signals and produces digital samples which can be processed

from the MCU. This component is connected with the light model which is able to reproduce

the sampling of the light phenomenon.

The MCU model reproduce the behavior of the microcontroller: it processes issues

coming from the software giving corresponding control signals to the hardware component,

and manages packets received by the network and samples generated by sensors generating

events for the software model.

Network model using Markovian Agents: The MAM has been described with the same

formalism adopted in [37]. Two agent classes (node and sink) and one message type (m)

have been identified. Figure I.3.4 depicts the MAM for the node class. The states are drawn

as circles. A local transition is represented by a solid line and labeled with its transition rate.

An induced transition is shown by a dashed line, the label is the message type which forces it

to occur. The MAM has four states: (0) No Radio node is ready to perform a radio operation,

(1) Down node is no longer operative due to failure or battery depletion, (2) Receive node is

receiving a message and (3) Send node is sending a message.

No Radio

(0)

Down

(2)

Send

(3)

Receive

(1)

m
m

Figure I.3.4 Markovian Agent Class of the Node
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I.3.2 Models of WSN nodes and network

The initial steady state is No Radio(0). At a constant rate λS an agent can start a sending

operation arriving in Send(3). A send is completed with rate λC and a message (of class m) is

generated. This message can be received or ignored by other MAs according to the perception

function um(·). A a simple um(v, v̄) is adopted which is function of agents position in the

space.

um(v, v̄) =
0 di st (v, v̄) > TH

1 di st (v, v̄) ≤ TH

Upon message arrival (um(v, v̄) = 1) the agent moves form No Radio(0) to Receive(1) state.

The agent, with rate λN FW , does not forward the massage and returns in No Radio(0), on

the other hand it forwards the message with rate λFW and arrives in Send(3). In each of the

states described above the agent can fail with rate λF moving to Down(2). The agent can

return in No Radio(0) with the repair rate λREP .

The sink agent class Markovian model is similar to the one presented above except for

the absence of the Send (3) state. For the sake of simplicity an hypothesis is introduced:

it is supposed that the most relevant part of the traffic is flowing from nodes to the sink

(monitoring application) and for this reason it is possible to not consider the traffic directed

in the opposite direction.

Models Interaction Figure I.3.5 details the parameters exchanged by the two models.

With reference to Figure I.3.1, some of the SAN model results describing both the battery

discharge and the radio transmission profiles are needed by the MA network model in order

to be analyzed. Such parameters and their meanings are described above. On the other

hand, MA model produces for each agent a radio receiving profile that is represented by

the state sojourn times at steady state π: in particular π0 is the mean sojourn time in No

Radio state, π1 is the mean sojourn time in Receive state. These two values are used by the

SAN model to compute the rate of incoming messages. In general each node of the network

is characterized by a tuple of the v = (λF , λS , λM , λN FW , λFW , π0, π1) parameters. Thus a

network on n sensors is characterized by a vector of V = (v0, ..., vn) arrays of parameters.

The interaction between these two models is clearly recursive: some considerations must

be done on the solution process of the global model. The propose is a two phases iterative

process that, starting from an initial solution, aims at finding a fixed point of V . In such case,

fixed point iteration methods could be applied: first, an initial value V0 = (v0
0 , ..., vn

0 ) is set;

then SAN models and MA model are analyzed to calculate V1 = (v0
1 , ..., vn

1 ). The iterations

stop when a fixed point is reached: initially all the SAN models of the n nodes are fed with the

same values thus a single execution of the SAN model analysis is enough. As the fixed point

iteration run (say at the generic k − th iteration), v i
k starts to differentiate from v j

k where

i , j ∈ {1, ..., n} and i ̸= j since, under the effect of the network topology, the MA contributions
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I.3.3 Experimental Results

Network Model

Node Model

Figure I.3.5 Parameter exchange between the models.

of the different agents inside the model change in different ways the behaviors of the SAN

model of each node. Thus more than one SAN model simulation is needed.

The formal assurance of the existence and the uniqueness of such a fixed point solution

and the assessment of the proposed solution process are currently ongoing research works.

Moreover other approaches can be exploited as Genetic Algorithms or Particle Swarm

Optimization.

I.3.3 Experimental Results

In this Section experimental results are reported in order to validate the node model and

analyze the network quality.

Node validation The testbed is composed of real TelosB sensor nodes in order to tune the

node model parameters. In particular, the startup, sampling and processing delays have

been modeled as Gaussian random variables whose parameters are reported in Table I.3.1.

The behavior of different nodes is analyzed while varying the temperature and humidity

sampling frequencies.

Parameter Average Variance

Temp&Hum sensor startup delay 10.5 ms 0.25 ms
Temperature sampling delay 234 ms 12.25 ms

Humidity sampling delay 68.5 ms 12.25 ms

Table I.3.1 SAN parameters for Temperature and Humidity Sensor

Repeated measures have been conducted on different TelosB nodes in order to gather infor-

mation on the percentage of processed requests while varying the sensor sampling period.

gThe nodes were configured with a TinyOS operating system and no radio interaction. The

performed measures go from the minimum sampling period (higher frequencies [57]) to a
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I.3.3 Experimental Results

sufficient long one when all requests are served. Each time the on-board application issues

a read request, the timestamp is marked and stored in memory. In case the corresponding

sample is generated, the arrival time is saved, too. After a predefined number of requests

the collected timestamps are sent to a computer through a serial connection.

The following plots show the accuracy of the proposed SAN model against real nodes be-

haviour. As one can see in Figure I.3.6a and in Figure I.3.6b the model well fits the mean

value of the percentage of processed requests for both the humidity and temperature sen-

sors, actually all values are inside the gray area which is limited by the min and max values

obtained from real TelosB.
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Figure I.3.6 Validation of Sensors
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I.3.3 Experimental Results

In Figures I.3.7a and I.3.7b sensor delays are reported (including sensor startup and sensing),

these values are measured at different instant of times (randomly chosen) and performed

on different TelosB nodes. Consider the three consecutive requests at 610, 640 and 670 ms in

Figure I.3.7a1. The plot report for each request the min and max values obtained on TelosB

and the node results. The 1st and 2nd requests are accomplished by both real node and

Node Model. The sample delay is longer for the second request due to buffering. Indeed

both real and model nodes serve one request at time and can buffer only one more. This

is the reason why the 3r d request (670 ms) is discarded. It is important to notice that the
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Figure I.3.7 Sensors Timing

delay of consecutive request is not constant. The former is served immediately but lasts

1Same considerations hold for Figure I.3.7b at 1912, 2014 and 2116 ms
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I.3.3 Experimental Results

longer due to startup operations, on the other hand the latter waits to be served (buffered)

but his actual service time is shorter. Even in this case, the results are interesting as they

show how well the model fits the real node behavior.

Network analysis: The network behavior is evaluated focusing on the effective packet

delivery ratio (PDR) and average lifetime. In order to do so the network characteristics

have been simplified in terms of fixed link and fixed PDR. Figure I.3.8 depicts the network

configuration. In this scenario each node generates a message as soon as the sampling

operation completes (with 30s sampling period), furthermore nodes 2, 4, 7, 10 forward all

the traffic they receive.

The parameters used during simulations are reported in Table I.3.2. Some nodes have been

simulated with diverse configurations in terms of different Battery and different MTTR. For

each case the average mean time to battery depletion among all nodes is computed and the

network throughput evaluated as the number of packet the sink can receive (network PDR)

under the assumption that the sink is not prone to failure.

Parameter Description Value

Duty Cycle Percentage of time the node is active 30%
Active Current consumption while the node is active 3 mA

Idle Current consumption while the node is sleeping 0.015 mA
Radio_TX Current consumption to send 21.7 mA
Radio_RX Current consumption to receive 22.8 mA

Packet_Time Time to send/receive a packet 0.008 s
Battery Battery capacity 1500mAh
MTTR Mean time to repair a node 1 day

Table I.3.2 Simulation parameters
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Figure I.3.9 reports the simulation results. The PDR values are weighted on the maximum

network delivery capacity calculated in the absence of failures. For each configuration the

first bar represents the effect on PDR due to faulty links; as one can notice this value is

independent of the configuration because the parameters which change are not related

to the network. The second bar, in each group, takes into account the effect of node’s

availability. As expected the PDR is affected by both battery capacity and mean time to

repair: a large battery capacity increases the nodes availability and consequently the number

of packets the network delivers. On the other hand a long mean time to repair causes a loss

of throughput (lower PDR).
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CHAPTER I.4

Summary

In this part of the thesis, it has been presented how a model of a CPS comprises models of

physical processes as well as models of the software, computation platforms, and networks.

Moreover, it has been shown how to address the feedback loop between physical processes

and communication infrastructure.

Modeling such systems with reasonable fidelity is challenging due to the large number of

heterogeneous components; the composition semantics becomes central. Since the design

space can easily become very huge, the designer must be provided with methodologies and

supporting tools in the choice of best configurations and thus a quick evaluation of different

configurations is necessary. The modelling approach hereby presented is an advance to the

relative state of art in the direction of easing the design process. The contribution of the

compositional and multiformal approach is twofold. A comprehensive and detailed model

of sensing infrastructure embedded node has been presented: even if the architecture

of the model is quite generic and can be adapted to several kinds of nodes, it has been

proven to be consistent to real world architectures by comparing simulation results with

real world measurements for both the cases of Strago SpA architecture and commercial

TelosB. Moreover, it has been show that Markovian Agent Model can be very useful in the

detection of quality/reliability bottleneck of the network and on the definition of proper and

cost effective maintenance policies. The formal assurance of the existence and uniqueness

of a fixed point solution for the recursive dependencies is still an ongoing work. For the

tests conducted it was possible to converge with a reasonable confidence in three to four

recursions. Even though, the number of sensor nodes has been limited to the tens so as to
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validate the model easily, the results collected so far confirm that this approach supports

designers in the choice of different parameters by means of what-if analysis and early

measurements to fine tune the monitoring infrastructures variables (such as sampling

period, number of nodes, battery allocation, node dislocation). A future research plan is to

extend the simplified phenomenon model in order to be spatially aware and represent in

a better way real world physical processes. Moreover, the Markovian Agent model will be

extended so as to threat different message types in order to improve the network model and

reducing the gap with real applications.
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PART II

Design a Secure Monitoring Infrastructure



CHAPTER II.1

Introduction and Background

Nowadays, networks of embedded nodes can accomplish a wide number of tasks. In spite of

their resource constraints (namely elaboration capabilities, memory space, power-supply)

many applications and new services have been effectively deployed in different domains.

Due to their capabilities, it seems very promising to use such distributed and heterogeneous

devices to design CPS’s monitoring infrastructures. Unfortunately, the unattended deploy-

ment, lightweight protocols and data sharing lead to new risk scenarios that cannot be faced

with traditional security mechanisms. This is the case of monitoring infrastructures, where

different types of embedded systems are connected to the physical infrastructure and their

data are sent to and elaborated by the processing infrastructure. The interaction among

these layers is so tight that attacking the physical layer can produce the same negative

effects of attacking the processing one. The geographic distribution of the devices allows

an attacker to physically capture nodes and learn secret key material, to intercept or inject

messages; the hierarchical nature of sensor networks and their route maintenance protocols

permit the attacker to determine where the critical nodes are placed[6].

Security threats range from the authentication of the device, to the confidentiality,

trustworthiness and integrity of sensed data. Existing literature has proposed the use of

computationally inexpensive cryptographic techniques to handle message confidentiality

and authenticity in wireless connected monitoring infrastructures [6]. Due to the possibility

of node’s physical capture, any cryptosystem must therefore tolerate the compromise of

sensors and their keys. However, the compromise of some nodes need not result in a

total loss of security. Rather than providing all-or-nothing guarantees about privacy or
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security, there is a need for providing probabilistic guarantees with respect to compromise

[6, 16]. Techniques for detecting tampering, and validating the inputs provided by sensors is

important to prevent these control inputs to the cyber-physical system from being recruited

by adversaries (e.g. bot-nets)[59]. Moreover, for a sensor value to have meaning, the context

is needed for interpretation, such as where, when and by who it has been sensed. Conversely,

if these information about a reading are known, it may be possible for an adversary to infer

a great deal about other readings nearby. Therefore, designers must be aware of these

metadata and the role they play in security. Furthermore, due to data aggregation and

hierarchical topologies, the distribution of information among the network is not uniform.

Therefore, attacking a leaf node in a tree-structured network gains little influence (for

disruption or denial of service) or information (for eavesdropping); attacking a node near

the root gains significant influence and information about the aggregate value[6, 16, 59].

Security mechanisms should be able to hide and obfuscate the network topology.

The difficulty of ensuring confidentiality and authenticity is not, however, due solely to the

energy constraints imposed on sensors. Todays approaches to security are based on reactive

mechanisms: after a threat detection a corrective action is performed. Detection systems

are useful in many cases but false alarms and missed detections are impossible to avoid

because identifying malicious logic is an undecidable problem [16].

To overcame limitation of currently available solution and to address others security

challenges it has been decided to investigate solutions based on reconfiguration approaches

and special hardware architectures for sensor nodes.

Adaptation Techniqies and Reconfiguration approaches The theme of security through

reconfiguration, although intuitive, was only recently formally addressed in the Moving

Target Defence (MTD) and Adaptation Techniques (AT) concepts [34, 43, 44]. The main

idea of those solutions is to dynamically modify the attack surface to increment attackers’

uncertainty. As stated in [35]: “Moving Target Defense enables us to create, analyze, evaluate,

and deploy mechanisms and strategies that are diverse and that continually shift and change

over time to increase complexity and cost for attackers, limit the exposure of vulnerabilities

and opportunities for attack, and increase system resiliency". By applying AT and MTD tech-

niques to embedded nodes they will be able to show a different and non predictable facade

to attackers in terms of different OS, different software modules, different communication

protocols and security mechanisms. This will help to engineer solution aimed at offering:

(i) context obfuscation, (ii) secure data aggregation, (iii) resiliency and survivability, (iv)
topology obfuscation, (v) trust and (vi) key management. As for security evaluation, few

quantitative approaches exist in the literature to evaluate the augmented security provided

by MTDs as it depends on many security attributes and reconfiguration frequency. Authors

in [17] carried out a number of experiments by simulating attack scenarios where an at-
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tacker is able to gather partial information on the adopted cryptosystem and attempts a

brute force attack. They evaluated the effectiveness of a moving target defense approach by

measuring the probability of successfully completing an attack, furthermore they evaluated

how reconfiguration dramatically decreases such probability when varying reconfiguration

frequency for different security mechanisms. Different reconfiguration mechanisms can be

enforced to change embedded systems surface but they are highly coupled with the specific

target technology. For this reason it has been decided to focus the attention on Wireless

Sensor Networks (WSN) technologies for cyber-physical systems monitoring infrastructures.

Following discussions will refer to this specific case.

Reconfiguration mechanisms for WSN were primary conceived to reconfigure a network

and restart it after a failure or a design change, but not for security purposes. In the literature,

some security and reconfiguration mechanisms are available [18, 19, 56, 80]. Unfortunately

they tend not to be efficient in: time, security and energy consumption.

In order to engineer proper reconfiguration schemes and configurable properties of a net-

work, in the following Chapters, the reconfiguration grain for generic networks of embedded

nodes is first identified. Moreover, different reconfiguration mechanisms and design issues

that one need to address to effectively implement AT for WSN are discussed. To this extent

a framework, called SIREN, is proposed to provide a secure and efficient reconfiguration

mechanism. Its suitability for AT will be shown: it is able to quickly restart any monitoring

application with new security features in order to shift and alter its attack surface. Indeed,

with SIREN one is able to prevent and mitigate a large set of attacks based on eavesdropping

and sniffing of communication channels but the evaluation that will be presented is intend

to prove the feasibility of the proposed framework to enable the adoption of adaptation

techniques and moving target defenses.

Special Hardware Architectures for sensor nodes Cyber Physical Systems typically oper-

ate unattended in hostile outdoor environments. A lot of effort has has been made to protect

the communication between sensing nodes and the processing infrastructure. However,

with regards to physical protection of a node, assessing the integrity and trustworthiness of

its hardware/software is still an open and challenging issue. Systems that lack of physical

protection for either the software or the hardware, may put sensitive application, data and

the integrity of the overall system at risk.

Physical security should be considered at the beginning of embedded devices develop-

ment in order to efficiently and effectively secure the architecture of embedded nodes. So as

to propose a solution to physical threats, in the following Chapters, a new node architecture

is discussed and evaluated. The architecture makes use of Trusted Platform Module (TPM)

to perform cryptographic operations in a trustworthy manner. The Trusted Platform Module

(TPM) is a specification for a secure cryptoprocessor defined by in the ISO/IEC 11889 of
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the Trusted Computing Group (TCG) [36]. This specification defines the components and

operations which a cryptoprocessor has to implement in order to build a chain of trust. It

builds a chain of trust which enforces a trustworthiness relationship among the node’s com-

ponents. Given this capability, the node will function only if all the hardware and software

configurations have been verified by means of cryptographic operations. Moreover, using

tamper resistant hardware it will ensure that the cryptographic keys equipped in the node

do not leave a secure perimeter. A prototype is presented making use of FPGA technology.
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CHAPTER II.2

Adaptation Techniques to Secure Resource Constrained

Embedded Nodes

Many physical infrastructures are monitored through a wide range of embedded systems

such as special purpose sensors and actuators. They can be easily and dynamically con-

nected to gather different information about the status of the system [73]. Modern tech-

nologies made easy to connect and disconnect more nodes into the network, to configure

and deploy new applications or to monitor different phenomena but the capabilities of a

sensor device are limited. Moreover, they could be targeted by a plenty of attacks and their

protection is non trivial. One of the main open issues in the deployment of such distributed

embedded systems is related to the security and performance of the cyber-physical layer

[22, 56, 83]. Traditional computer security approaches tend to be resource greedy, the lit-

erature focused on how to re-engineer them and on proposing ad hoc solutions. These

solutions try to balance the trade-off between security and performance but, as a general

rule, none of them can be considered definitive and “truly secure”, especially if it is enforced

for a long period of time.

Reducing the “exposed time” of a security mechanism to attacks, reduces the proba-

bility of performing a successful attack [44]. Furthermore a system reconfiguration takes

advantages of software diversity, different cryptosystem and security key renewal process.

In this thesis and in publication [12] a framework for SecurIty Reconfiguration of Embedded

Nodes (SIREN) is discussed. It will be shown how SIREN makes possible to adopt Moving

Target and Adaptation Techniques security strategies to the case of embedded nodes and
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II.2.1 Adaptation Techniques and Moving Target Defense in embedded sensor nodes

how to exploit their intrinsic advantages in terms of security level provided. SIREN is made

of a centralized component, deployed in the processing infrastructure to control reconfigu-

ration strategies, and a node-level (monitoring infrastructure) component to enforce the

reconfiguration. Some modules of TinyOS (one of the most widely used OS for sensor nodes)

have been extended in order to enable a selective and efficient application reconfiguration.

In particular, it is able to selectively reconfigure each single node according to different

administration policies and to react to triggers that can initiate the reconfiguration process.

The suitability of SIREN for Adaptation Techniques will be discussed and illustrated with

a set of experiments to evaluate the impact of the approach on node performances and

resources in terms of reconfiguration delay, memory footprint and battery consumption.

II.2.1 Adaptation Techniques and Moving Target Defense in em-

bedded sensor nodes

Security and reconfiguration mechanisms are strictly dependent on the technology and

system architecture. Different reconfiguration mechanisms can be implemented according

to the available components and different reconfiguration strategies can be enforced. For

this reason, following discussions will explicitly target Wireless Sensor Networks (WSN)

technologies for cyber-physical systems monitoring infrastructures. At this aim two steps

have been followed. The first step has been developing and adapting different security

mechanisms to protect the communication among embedded nodes and cope with perfor-

mance issues; these mechanisms will be part of the node configuration and each of them

will expose a different “surface” to an attacker. The second step consisted in providing

reconfiguration capabilities to all nodes in the network in order to switch their configuration

and security features or, telling it in another way, to change their “attack surface” [44].

Before introducing the reconfiguration architecture, next subsection discuss and illus-

trate some solutions to secure and to reconfigure nodes that are already available in the

literature but, at current time, present some limits and constraints that make them not

immediately applicable in real scenarios.

II.2.1.1 Security and reconfiguration techniques in embedded sensor nodes

Security mechanisms, to protect data in embedded nodes, require proper security protocols

since hardware and software constraints limit the adoption of cryptographic techniques

used in other contexts.

Two main well-known mechanisms are available: in Symmetric Key Cryptography a

unique secret shared key is used for both encrypting and decrypting messages, while in

Public Key Cryptography each node manages a couple of keys. On one hand, symmetric
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II.2.1 Adaptation Techniques and Moving Target Defense in embedded sensor nodes

schemes are very attractive for their energy, memory and performance efficiency and many

approaches are available for WSN (TinySec [47], MiniSec [52] and SNEP [63]), but they only

fulfill confidentiality requirements, while not considering other security issues such as node

authentication and data integrity. They are prone to a number of cryptoanalisys and brute

force attacks. Furthermore, the key agreement phase seems to be critic and the adoption

of a pre-loaded symmetric key is not a security desirable requirement. On the other hand,

the use of asymmetric schemes in WSN has been usually considered as “nearly impossible”

because of their great impact on energy and computational resources and the requirement

of an infrastructure for key management. However, RSA algorithm [66] and, above all Elliptic

Curve Cryptography (ECC) [21], are among the most adopted public key algorithms for the

security of embedded systems.

All these protocols are subject to a number of different attacks and the longer is the

exposition time, the higher is the probability of successfully completing an attack. No matter

how secure a mechanism is [18], from the MTD point of view, the interesting fact is that these

two mechanisms offer two different attack surfaces to an attacker and the reconfiguration

approach provides a higher security level [44]. For example, to improve the overall security

provided by the system, one can switch among different crypto libraries or different keys

giving an attacker less time to perform the attack.

With the aim to provide reconfiguration capabilities to wireless sensor networks, some

reconfiguration solutions were addressed in literature:

Image Replacement: this technique replaces the whole software stack running on a node.

A framework, which uses this approach in WSN, is Deluge [41]. It replaces the binary

image receiving a new application over radio channel (over-the-air reprogramming).

Deluge is the most widely used reconfiguration framework for WSN. The most of

the effort is given to implement an efficient and reliable protocol by which one can

transfer new images of an application. For example, the differential code updates

solution tries to reduce the size of data sent to a mote [46, 62].

Virtual Machine: this solution uses a code interpreter running on nodes to switch among

different applications. One implementation for WSN is Maté [51] which is a bytecode

interpreter that runs as a middlewares on top of TinyOS.

Modular Replacement: this technique proposes a partial reconfiguration of nodes, it aims

to overcome the monolithic architecture of some reconfiguration approach but it is

not available for many embedded devices.

On the other hand, to achieve certain MTD’s objectives for embedded nodes, some re-

quirements are needed. First of all it is necessary to have secure, flexible and dynamic

reconfiguration mechanisms and the reconfiguration should not waste the limited resources

available on nodes and should ensure the continuity of the monitoring application. Un-
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II.2.2 Modeling what is reconfigurable in WSN’s architecture

fortunately, according to the above requirements, the analyzed solutions are not directly

suitable for MTD as they:

■ do not provide a secure dissemination scheme;

■ do not provide a selective node reconfiguration;

■ are very time and battery consuming.

Regarding the dissemination scheme, Deluge offers unsafe interface to reprogram a node.

Indeed there are no authentication and authorization phases when receiving a command.

Interfaces are public and every one can establish a communication with a node. Moreover,

during the dissemination phase, the attacker can pretend to be the legitimate node and

subsequently receive the complete binary image. Also the attacker could disrupt image

transmission with jamming attacks, causing excessive battery consumption that could

breakdown the nodes. Dutta et al., in [33], present a way to secure the Deluge’s dissemination

protocol but a plenty of attacks are still feasible and discussed by the authors. Furthermore,

Deluge only allows to configure the entire network with a single application at a time

(homogeneous network). This limitation makes hard to fully exploit advantages of moving

target defense and adaptation techniques. On the other hand, through a selective node

reconfiguration one can control each single node and achieve asymmetric uncertainty for

attackers by showing a number of different views of the network.

The results of this analysis is that available reconfiguration mechanisms present feasibil-

ity issues to be adopted for AT purposes and subsequently it has been decided to purpose

a new framework. Next section formalizes the possible reconfiguration actions (switching

functions) while the following ones will illustrate details about the architecture.

II.2.2 Modeling what is reconfigurable in WSN’s architecture

In this section, a set-based formalism is introduced to determine the possible reconfigura-

tion solutions before proposing the WSN mechanism. The introduction of these general

definitions is very useful, in fact many concepts and issues will remain valid even for different

node technologies (e.g. WSN, FPGA and Smartphones).

The basic idea is that a network is defined by its nodes’ and edges’ sets. A node represents

a processing unit and an edge is the communication link between a pair of nodes. Moreover,

a node is described by its architectural stack (from the hardware layer up to the application

interfaces). Thus, the definition of network and node as the composition of reconfigurable

elements defined over finite sets. First of all, the concept of general network is defined: it is a

set of nodes and suitable communication links between them. The composition of those

links is used to define different network topologies that are called network configurations. As

regards nodes, they are represented by hardware resources, operative systems, application
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task and supported security mechanisms. Thus, the definition of the general node concept

that represents the set of all possible kinds of node.

Definition (General Network): a general network (GN) is a triple 〈V , E , P 〉 where,

■ V = {v1, v2, . . . , vN } - Is the node set. Its cardinality is N .

■ E = {
ei j /i ̸= j ; iϵ[1 . . . N ]; jϵ[1 . . . N ];

}
- Is the set of possible links. Hence ei j is an

ordered pair defined on V ×V . If the edge ei j exists and belongs to E the vi node can

directly communicate with v j over the ei j link.

■ P = {
p1, p2, . . . , pK

}
- Is the protocol set which defines the admissible communi-

cation protocols. A communication protocol is a set of standards to implement a

communication.

Definition (General Node): a general node (gn) is a collection of admissible parameters

which constitute the layered architecture of an embedded node 〈A , S , L , O , T 〉 where,

■ A - is the set of application interfaces to interconnect applications distributed across

multiple nodes, such as application level APIs.

■ S - is the set of security mechanism to protect a node.

■ L - is the set of core application which a node can execute.

■ O - is the set of operating systems supported by the node’s hardware.

■ T - is the set of hardware resources (hardware architecture) which defines the physical

environment and capabilities, such as micro-controllers, radio chips or sensors.

The composition of different components abstracts the real behavior of a node and of the

network. Starting from a General Network or a General Node it is possible to choose an

element for each set; these instances are respectively called network/node configuration.

Definition (Network Configuration): given a GN, a network configuration is an instance of

GN. Hence a network configuration (NC) is an element ci of the Network Configurations Set

CN which is defined by a subset of the Cartesian product CN ⊆ {V ×E ×P }.

It is important to notice that, CN is not strictly equal to the Cartesian product because

not all the combination in V × E ×P are suitable for a configuration. For instance, if

V = {v1, v2, . . . , v5} and a NC involves only nodes {v1, v2, v3}, a suitable combination must

be defined using only links between these three nodes. Furthermore, it is also possible to

vary the configuration by modifying the network topology over time with a configuration

switching. It abstracts the switching to a new available network configuration.

fCN
: ci ϵCN → c j ϵCN

As an example, Figure II.2.1 shows different topologies of a WSN; as illustrated, it is possible

to move from a star topology to a hierarchical topology using a fCN
which changes the

active links.

Definition (Node Configuration): given a generic node, a node configuration is the set of

instances from each node parameters sets. A node configuration (nc) is an element cni
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Figure II.2.1 Abstraction of Network and Node Configuration

of the Node Configurations Set Cn which is defined by a subset of the Cartesian product

Cn ⊆ {T ×S ×L ×O ×A }.

Note that even in this case, Cn it not strictly equal to the Cartesian product because not

all the combination in T ×S ×L ×O ×A are suitable configurations. In the same way as

described for a NC, it is possible to define a function for the node configuration switching:

fCn : ci ϵCn → c j ϵC n

Figure II.2.1 also illustrates different node’s architectures, in particular the node architec-

tural stack is illustrated, where each component is defined and it is typical of a WSN node

configuration.

It is important to underline that a configuration achieves certain performance, relia-

bility and security requirements, so switching between different configurations enables to

dynamically improve security and meet several goals but many design and implementation

issues may arise. They may depend on the running application and its status, on resource

availability, on the security level to provide and on available configurations. For these reason

a framework to address these issues has been designed, it has a centralized approach that

control the network and the node reconfiguration strategy.

Figure II.2.2 illustrates the working principle of two node configuration switching func-

tions; in particular, Figure II.2.2a refers to application level reconfiguration, where the API

layer (A ) or a part of the application task (L ) are substituted without varying the other

stack’s elements. This mechanism is easily implementable by using an application scheduler

which executes the right application logic to apply a certain configuration. Another feasible

reconfiguration is to change even the operating system (O ) or the entire software stack:

Figure II.2.2b illustrates this kind of reconfiguration. This switching mechanism is able to
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Figure II.2.2 Examples of Configuration Switching Functions

replace all the software layers starting from the operating system up until the API interface

layer (A , L , S , O ). A persistent layer of low level software, like a bootloader, is able to

reconfigure the application tiers performing a node reboot. Whenever one want to move

from the configuration cni ϵCn to cn j ϵCn he/she have to go through the reset configuration

(node reboots) cnr ϵCn , following the path: cni → cnr → cn j . In both cases, a persistent layer

is needed to preserve the node state and the running application state; this can be achieved

in different ways. In Application Switching scenario it is assumed that all the applications

share global variables or they can rely on OS persistence mechanisms to share the state

and application wide variables. In Image Switching, the node state is saved on the external

memory before the reset and restored through bootloader initialization actions.

Next sections will illustrate and detail a the proposed reconfiguration framework for commer-

cial embedded nodes (such as micaz [25] and telosb [57] motes) and discuss the feasibility

of the approach by evaluating the impact of reconfiguration on:

■ the interval of time the node will be not responding because under reconfiguration;

■ the resource consumption (memory and battery).

II.2.3 SIREN Architecture

In this section the SecurIty Reconfiguration for Embedded Nodes architecture is described. It

is designed considering the WSN constraints and it is intended to offer a fully automated

mechanism to dynamically reconfigure wireless nodes and limiting the exposure of vul-

nerabilities. It is able to reach a fine grain control enabling to selectively configure each

mote in the network ( fCn ). SIREN relies on centralized component in the network to control

reconfiguration strategies and a node-level component to enforce the reconfiguration. In

particular, the node-level components have been designed for TinyOS operating system

enabling to switch between configurations (cni ).

Being the primary goal to shift and alter the attack surface by moving from a cryp-

tosystem to another and changing the format and protocol of exchanged messages, two
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different configurations with two security libraries have been considered (Figure II.2.3):

TinyPairing[80] and WM-ECC[56] to provide different security levels [18]. The TinyPairing

libraries use node identities to evaluate a common key to be adopted in an Elliptic Curve

Cryptography (ECC) based encryption scheme [80]. WM-ECC libraries enable Public Key

Cryptosystems in WSN so two communicating nodes can achieve the same secret key with-

out physically exchanging it across the network. For simplicity, these configurations only

differ for the communication API (message format) and the security library.
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TinyOS, the most used operating system in WSN domain, lacks of reconfiguration sup-

port. It is compiled as a monolithic program, so that the application logic and the operating

system are melted into a unique entity. In this way they are statically compiled and opti-

mized, but there are no replaceable modules. Both Application and Image Switching can be

implemented in TinyOS, nevertheless, trying to mitigate or prevent the widest number of

attacks, it has been decided to implement and evaluate the Image switching strategy that is

more complex to realize but it provides a higher level of diversity.

The basic idea is that each node can be equipped with a set of different binary images

(configurations cni ), loaded into external flash memory, which are called built-in software

images. A built-in image contains all the components to configure and run a node appli-

cation apart from the bootloader. Each image implements a different cryptosystem and

provides a different communication interface; the attacker’s system view is changed by

switching among the available binary images. In this way, not only different security proto-

cols and communication interfaces are presented to attackers during the network’s lifetime,

but it also becomes harder for them to exploit software vulnerabilities.

The SIREN architecture involves both node-side components and control-side compo-

nents. As names suggest, a node-side component is deployed within an embedded node, on

the other hand control-side component is used to deploy and manage the WSN and reside

on a workstation. The node-side component is designed to offer an high level API interface

to enable selective reconfiguration in TinyOS operating system. The control-side enforces a
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reconfiguration by sending a command to select which of the built-in binary images have to

be executed. It has been implemented in Java and offers a user-friendly interface to deal

with event detection, network management and reconfiguration. In the next subsections,

details of these components are illustrated.

II.2.3.1 SIREN Architecture: control-side

The base station, usually provided with a consistent source of energy and able to communi-

cate with all the network nodes, is used to control the network. It triggers a reconfiguration

command to all nodes of the network or to a selected one, the command is sent in unicast

as the framework is able to perform a fine grain control of all nodes in the network. In this

way it is possible to vary the topology of the network, to modify the application of a single

node and to allow multiple heterogeneous communication to coexist in the network. The

control-side architecture has two macro components:

■ Deployment component: it is the set of tools used to initialize a mote and to configure

it with built-in application images.

■ Reconfiguration component: is the software capable of monitoring the WSN and

enforcing a reconfiguration. It enables an administrator to have a high level view of

the WSN and to control each node.

The Deployment component is made of a set of scripts by which configuring each node

belonging to the WSN. The core component is the mote-manager. Basically, it allows to

manage the binary images loaded into mote’s external flash memory. It is used during

the deployment phase and it interacts with motes only through serial interface and deals

with mote’s external flash memory management. The mote-manager is used to store the

built-in application binary images into the mote’s external flash. When a mote needs to be

deployed, an operator connects a dormant mote to the workstation and flashes, just once,

the operating system plus a management commands handler into the mote. Now the node

can be configured with a set of built-in applications. At the configuration completion, the

monitoring application is executed and the node is ready.

After a deployment, one can reconfigure each single node. A centralized Reconfiguration

component has been implemented. It is capable of maintaining information about the

network history and the current state of the network. It alerts when some security border

condition is reached. For instance, when an application is running for a long time and

consequently there is a high probability that the cryptosystem could be broken by brute

force attacks, the framework triggers an alert.

Figure II.2.4 describes the interaction among reconfiguration framework’s components. The

Event Handler is designed to deal with a wide range of events, as an example (i) reaching

the maximum execution time for an application, (ii) increased rate of battery discharge,
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(iii) non-reachability of a node. When an event is detected (phase 1) it is forwarded to

the Decision Point (phase 2). It collects information about the network state (phase 3

and 4) and according to an administrator policy coordinates the Enforcing Engine (phase

5). The Enforcing Engine is the component designed to initiate a node reconfiguration.

It communicates with each nodes (phase 6) that have to be reconfigured by sending an

encrypted reconfiguration command and uses a base station to interface the WSN.

II.2.3.2 SIREN Architecture: node-level implementation details

As regards the internal node structure, available reconfiguration techniques have been

improved so as to address the security and selection issues discussed in the previous sections.

The Image Switching approach required a considerable implementation effort due to the

lack of built in solution in TinyOS. SIREN implements this capability basing on three main

components:
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Figure II.2.5 Mote-side Components

■ Bootloader component: it provides the set of mechanisms to program a node with a

built-in software image. Images contain OS, Application Logic and communication

API.

■ Reconfiguration components: to prepare the mote to be reconfigured and save infor-

mation to restore the node and application execution state after a reconfiguration.
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■ Management mote-side component: it enables the mote to communicate with and

receive commands from a control-side workstation.

The Bootloader component is TOSBoot [40] and it is derived from the Deluge T2 Framework.

It is able to read a software image form external flash memory and reconfigure the mote’s

microcontroller software. The Reconfiguration components uses the ReProg interface to

accept inputs from application dependent logic, such as TinyOS modules, and starts a

reconfiguration by interacting with the Bootloader. It offers a dedicated API to configure a

reconfiguration process. The configuration includes the starting address of the binary image

which resides in external memory and the node’s network identifier. In this way the selected

binary image defines new software configuration (elements of A , S , L , O sets) and the

node identifier enables network reconfiguration. ReProg implements indirect information

passing through EEPROM to interact with the Bootloader and save some state information.

Using this interface, a TinyOS application can simply include the ReProg component and

implement any possible reconfiguration policy. For instance, to implement the centralized

management approach, an handler logic is implemented and deals with incoming control

messages from the base station and added into the handler’s implementation a call to

the ReProg interface specifying the binary image to reprogram the mote with. The ReProg

component is also able to modify the node identifier (in TinyOS it corresponds to the node

network address), in this way it is possible to easily vary the network topology (and mitigate

different types of attacks). There also is a component dealing with logic names resolution:the

Storage Manager. It provides a storage map by which one can obtain the physical address of

a program image starting from its logical name (identifier).

Figure II.2.6 illustrates the interaction among components during reconfiguration. Assume

that a reconfiguration command has been sent by the base station and a node receives it.

The command packet is delivered to the application layer (1), it is decrypted and verified

(2). The configuration information is extracted (3) and the storage manager component

resolves the software image starting address in external memory (4). The resolved address is

used to fire the reconfiguration process: this is done by invoking the ReProg component and

passing the external memory address of the application with which one want to reprogram

the mote with (5). Now the reconfiguration feasibility is checked by measuring the battery

energy. If a sufficient amount of energy is present the reconfiguration can take place. All

the information needed by the bootloader to reconfigure the mote and/or to preserve the

node and application execution state is written into a static location in EEPROM (6). In this

way the bootloader knows where to fetch the new application starting address and reads the

node’s network identifier. Moreover, all the variables to be restored after the reconfiguration

are saved in another EEPROM location. On completion, the function to reboot the mote

is called. Subsequently, the microcontroller boots up and, according to the information

stored in EEPROM, reconfigures the node. According to the enforced ECC libraries, the
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Figure II.2.6 Reconfiguration mote’s data flow

application tasks restart and a new set of cryptographic keys are negotiated among the

involved neighbours.

II.2.4 Evaluation of the approach

In this section, experiments to demonstrate the feasibility of the approach and evaluate

the overall performance of the proposed moving surface strategy are reported. The goal

is to evaluate the architecture performance on a specific target technology. The reference

architecture is Telos Rev.B platform which is built on the TI MSP430 microcontroller with

10KB RAM, 48KB ROM and 1MB external flash, an integrated on board antenna, a 16-bit

data bus and integrated temperature, light and humidity sensors. A simple testbed has

been considered where a basestation can communicate with a single node in a single hop;

the basestation and the remote mote are placed at a fixed distance and in a controlled

environment in order to limit network interferences. The monitoring application used in

the experiments is able to access to different sensors and to provide message signing and

encryption/decryption with two different secure configurations based on TinyPairing and

WM-ECC libraries.

To illustrate the feasibility of the approach, different experiments have been carried out to

directly compare SIREN with Deluge’s reconfiguration approach. In particular, the evalua-
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tion regards the impact of reconfiguration on the interval of time the node will be down and

the resource consumption:

■ the dissemination and reprogramming time;

■ static memory footprint;

■ energy consumption;

The results of the first experiment confirm what expected, and regards comparing the

performance between Deluge dissemination and reprogramming times against SIREN re-

programming time. As said, SIREN supports pre-loading of different images on a mote

so the heavy time spent by Deluge to disseminate the images is not wasted in the SIREN

framework. A basestation forwards messages between the workstation and the WSN’s mote.

Indeed, Deluge dissemination time is dependent on number of hops to cross before deliver-

ing the image to all nodes [41] so, the chosen testbed with only one hop, represents the best

configuration for Deluge (higher performance). Furthermore, Deluge’s time-to-completion

depends on image size that involves the number of pages to disseminate (in its basic im-

plementation each page is 1104 byte). So, the comparison has been carried out on Deluge’s

best case against SIREN. Our testbed is opportune for Deluge characteristics standing to

the charts presented in [41]. Figure II.2.7 reports numerical results. The time needed

10000

20000

30000

40000

50000

60000

70000

80000

T
im
e
(m
s)

15000 20000 25000 30000 35000 40000

Application (Bytes)

SIREN

Deluge

Figure II.2.7 Deluge and SIREN dissemination and reprogramming time

to reconfigure a node with applications of different sizes has been measured. To provide

significant data an automatic reconfiguration of each application has been done fifteen

times. The plot reports average values (the variance is less than five percent) and one can

easily relate the reconfiguration time to the number of bytes that must be programmed. As

expected, by avoiding the image dissemination, SIREN performance are slightly affected by

the image size. If the analysis had not considered Deluge’s best case, as in the Deluge secure

dissemination approach [33], his performance are even worse due to page size increment

and the need to complete integrity checks on each page before forwarding them to other

nodes. As for the reprogramming time itself, there are no significant differences between

the two frameworks as they use the same TinyOS bootloader component (TOSBoot).
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Moreover a measure of the required time to reconfigure a node with both the WM-ECC

application and TinyPairing is here reported. The node has been configures so as to equip

both applications into mote’s external flash memory. An application enabled with SIREN

reconfiguration capabilities was also installed on the nodes to perform the reconfiguration

task. Each application have been reconfigured fifteen times. The reconfiguration time is

almost constant; the SIREN average time for the WM-ECC application takes 4982 ms and

with TinyPairing it takes 5111 ms, applications size are about 45KB. This result is incompara-

ble with the Deluge approach as it takes about 72 seconds to disseminate and reprogram a

generic application of about 40KB (see Figure II.2.7).

On the other hand, to enable SIREN, one need to pre-load all configurations on board

of each node and the total amount of memory available may represent a limitation on the

approach. The second experiment evaluated the memory footprint of the two frameworks.

The memory footprint is here reported for: each application with a security library on its

own, each framework on its own, and each framework with the secure applications (as

WM-ECC footprint plus SIREN footprint); results are reported in Table II.2.1. It is important

to notice that the space needed by the framework with the secure applications is not the

rough sum of single application’s footprints due to operating system module aliasing: aliased

modules are included only once.

Application ROM bytes RAM bytes

WM-ECC 22302 1813
TinyPairing 25294 933

SIREN 27198 1144
Deluge 38882 1644

WM-ECC + SIREN 42022 2402
TinyPairing + SIREN 45214 1524
WM-ECC + Deluge gt. 48000 (!)

TinyPairing + Deluge gt. 48000 (!)

Table II.2.1 Memory Footprints

The Deluge’s footprint is evaluated by measuring the GoldenImage application, which is

delivered with Deluge library. This application includes the network module to implement

reception and dissemination of configuration (over the air reprogramming). Due to Deluge

footprint, when combining it with a security library (both WM-ECC and TinyPairing), the

resulting application is greater than maximum ROM memory space available in Telos B

mote (48KB), making Deluge not suitable for complex security applications.

Battery consumption is another key factor to demonstrate the feasibility of the proposed

framework. Indeed, it is known from the literature and WSN nodes data-sheets that the

most power is spent during message transmission and reception. As a direct consequence,
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II.2.4 Evaluation of the approach

the Deluge dissemination approach is not suitable for the MTD especially if one thinks to

high reconfiguration frequencies. The energy consumption estimation has been carried out

by measuring the battery depletion using the on board analog-to-digital converter. In the

last experiment, it has been evaluated how many consecutive reconfigurations are possible

before node unavailability (complete battery consumption).

2.83

2.835

2.84

2.845

2.85

2.855

2.86

2.865

2.87

V
o
lt

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75

Number of Reconfigurations

Slope = -0.0002219802

Offset = 2.8559990986

R  = 0.96107344562

Figure II.2.8 SIREN energy consumption

In Figure II.2.8, the battery level is plotted; at the beginning, with a new battery pack, the

voltage is around 2.8V then, for increasing number of reconfiguration accomplished. The

fitting curve shows that the consumption trend is similar to a linear trend. Evaluating the

coefficient of determination R2, one can predict future outcomes on the basis of measured

data; R2 is about 0.96 and and so the real data fits well the linear trend in the range of

2.8V. This information can be used by a system designer to define the reconfiguration

strategies and get how many reconfiguration tasks could be issued during a mission (WSN

mission-time).

To conclude, the experimental results showed how SIREN offers good performance

from all point of views. Indeed, the possibility to preload different applications on board

lets the reprogramming approach be more efficient and secure than others. Thanks to its

architecture, it is possible to really enforce Security Adaptation and Moving Target Defense

at monitoring infrastructure level of a cyber-physical system.
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CHAPTER II.3

Advancing WSN Physical Security Adopting a TPM-based

Architecture

Cyber-physical systems are usually distributed system deployed in broad areas and remotely

managed as shown so far. This Chapter focuses on node physical protection and proposes

and hardware solution that can be coupled with the software framework presented in the

previous Chapter. Being able to provide physical security is a major concern because due to

the nature of CPSs, the sensing and actuating infrastructure typically operate unattended

or physical surveillance may be impractical as a consequence of geographic distribution.

Embedded nodes are subject to a hostile outdoor environment and are highly susceptible to

physical attacks [61]. Being exposed to this kind of attack is extremely dangerous as a savvy

attacker may be able to extract cryptographic keys from the memory, alter the software

running in the sensor node and subsequently, inject malicious traffic into the network.

Systems that lack of physical protection for the software and the hardware, may put sensitive

application, data and the integrity of the overall system at risk. Physical security should

be considered at the beginning of embedded devices development in order to harden the

architecture of embedded nodes. A lot of effort has been made to secure communication

among nodes, [12, 19]. On the other hand, this Chapter focuses on ways to mitigate physical

attacks by re-designing embedded node’s architecture to ensure software and hardware

integrity. In order to discuss and present a feasible architecture further discussion will refer

to an FPGA node implementation as nowadays technology, thanks to power efficiency and

low cost, allows to adopt FPGA as hardware core for nodes architectures [9]. The architecture
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II.3.1 Trusted Platform Module and its adoption for CPS’s monitoring infrastructures

being presented is based on Xilixn Zynq 7000 FPGA/SoC family and will provide secure

primitives to asses the hardware and software integrity as well as offering cryptographic

operation accordingly to the Trusted Platform Module (TPM) standard that is discussed in

the next section.

II.3.1 Trusted Platform Module and its adoption for CPS’s mon-

itoring infrastructures

The Trusted Platform Module (TPM) is a specification for a secure cryptoprocessor defined

by in the ISO/IEC 11889 of the Trusted Computing Group (TCG) [36]. This specification

defines the components and operations which a cryptoprocessor has to implement in order

to build a chain of trust. A chain of trust is a trust relationship between entities that is

established by validating each component of hardware and software from the bottom up

to the top. It is intended to ensure that only trusted software and hardware can be used.

According to the specifications, the root of the chain of trust has to be designed as secure

and tamper resistant hardware platform. Figure II.3.1 abstracts the functions and modules

embedded into a TPM.
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Figure II.3.1 Trusted Platform Module

The TPM offers cryptographic facilities based on an endorsement key (referred in the future

as master key) or on another trusted key derived from it (obtained through Key Derivation

Function). The master key is embedded into a OTP memory1 at the moment of its manufac-

ture and cannot be read outside the TPM. Using TPM, one can trust all the cryptographic

operations that are performed within the platform, such as Random Number Generation,

1OTP: One Time Programmable Memory
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II.3.1 Trusted Platform Module and its adoption for CPS’s monitoring infrastructures

Hashing, Key Generation and Encryption/Decryption. Some of the functions of a TPM

include:

■ creating a hash summary of a system hardware/software configuration. This offers a

mechanism to assess if the hardware or software has been changed after deployment.

■ encrypting data using the endorsement key or other temporary keys generated using

the TPM facilities.

■ storing a limited amount of data into a tamper resistant memory.

In the context of WSN domain, TPM can be useful to mitigate some threats to a node’s

physical security.

Node Theft A node can be physically compromised. However, it cannot be re-programmed

or manipulated in a way that it is undetectable by a remote verifier.

Software Theft It is not possible to extract the node’s software image; it is encrypted and

signed with a key directly derived from the master key.

Privacy of the data Data can be easily encrypted or decrypted using the AES/RSA engine

and the keys stored into the TPM anti-tamper memory. The TPM allows the generation

of multiple session keys, enabling to easily change the cryptographic keys during the

node life-cycle.

Cloning Node cloning is not possible because it is not feasible to extract the keys. Moreover,

even in the extreme case of an attacker knowing a key, it is not possible to inject it into

the TPM.

Alteration Adopting a hash summary of the node configuration, it is possible to recognize

changes made to the node hardware and software. These security checks are generally

made before the node start up. If a component or the software is altered, the hash

verification will fail and the system will stop its execution.

Integrity

Check

Data

Encryption

Key

Protection

Secure

Storage

Node Theft ×
Software Theft ×

Privacy Violation × ×
Node Cloning × ×

Alteration × × × ×

Table II.3.1 Threat coverage matrix using TPM protection mechanisms

Table II.3.1 reports how TPM features (columns) cover the threats (rows) discussed

above. As for the integrity check, the TPM can assure the platform integrity: together

with the boot phase, the TPM forms a root of trust and it can check, by using its internal
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II.3.2 Implementing a TPM-enabled node using FPGA

Platform Configuration Registers (PCRs), if platform components have been altered. The

application running on the node can exploit the TPM crypto-facilities to provide integrity,

confidentiality and authentication in a trusted chain. The crypto-keys are only used inside

a secure perimeter and generated using the TPM key generator: the generated keys are

stored securely and they never leave the TMP chip. As for the secure storage, some platform

information can be securely stored within the secure perimeter of the TMP. For instance the

memory pages hashes can be stored and checked periodically in order to avoid memory

alteration.

Most of the literature discusses how TPM facilities can be used to ensure trustworthy

relationship between nodes, how to implement remote attestation and study key estab-

lishment and management between nodes, the focus is on how to exploit TPM advantages

but not on how to design an architecture enabled with its facilities. Authors in [81] pro-

vide an algorithm for addressing privacy issues in WSN exploiting the features of Trusted

Computing. They focus on the case of a heterogeneous and hierarchical network. The

nodes are grouped and each group has a cluster head equipped with trusted computing

technology. Their goal is to achieve user query privacy by means of remote attestation and

trust relationship between cluster heads. They neither present a practical architecture nor

discuss the benefits of adopting TPM for node security. Authors in [49] show a lightweight

attestation mechanism to check the status of cluster heads. The basic idea is that a cluster

node can verify the integrity of cluster heads using the TPM as a trust anchor.

The design and implementation of a trusted sensor node with enhanced security facili-

ties is discussed in [39]. Authors present trustedFleck, a proprietary node implementation

which uses a TPM chip to extend the capabilities of a standard wireless sensor node. They fo-

cus on describing the advantages introduced by the architecture for enforcing messages and

system integrity, confidentiality and authenticity. Moreover, they compare their approach

with a software implementation of cryptographic operation such as TinyECC. They also

describe examples of using trustedFleck for symmetric key management, secure software

updates and remote attestation.

The thesis goal, as well as publication [10], differs from [39] in the sense that the discus-

sion regards the feasibility of implementing a wireless sensor node enabled with an FPGA

implementation of TPM, not a TPM chip.

II.3.2 Implementing a TPM-enabled node using FPGA

Since the TPM specification requires a secure hardware perimeter to securely store/generate

the keys and to compute the crypto functions. The Xilixn Zynq 7000 FPGA/SoC family

can be a perfect starting point to meet these requirements. Zynq architecture is a System

on Programmable Chip, based on the ARM family. The processing system (PS) is static
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Figure II.3.2 Overview of Zynq internal architecture

(not programmed on FPGA) and can operate independently from the FPGA programmable

logic (PL). The core of the PS is an ARM dual-core Cortex A9 with 32/32 KB I/D caches, 512

KB L2 cache and 256 KByte On-Chip Memory (OCM). Some peripherals are available to

the processor, including standard serial buses (such as USB device OTG, SPI, UART, etc.),

memory controllers (DDR3, NAND, NOR, etc.), cryptographic accelerators (AES and SHA),

high throughput interfaces to the PL and the Device Configuration (DevC) . The DevC

peripheral allows the processor to load full/partial bitstreams to the FPGA programmable

logic.

The Zynq hardware natively supports the deployment of secure systems. Embedded

hardware blocks offer decryption engines, authentication, keys storage and unique device

identity. These blocks reside in a secure hardware perimeter in order to guarantee the anti-

tampering property, trustworthiness and integrity to protect the system from the power-up

and throughout its life cycle. The chip provides two kinds of secure storage which can be

used to burn the master key: BBRAM and eFUSE. Both register arrays can host a 256 bits

AES key; however the former is a volatile memory and needs a backup battery to keep the

key when the power supply is disconnected. In both the solutions, there is no way to read

the keys once they are written. In fact all the on chip memories (OCM, L1 and L2 caches,

PL configuration memory, BBRAM and eFUSE) reside within the security perimeter of the

FPGA [68].
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Figure II.3.2 illustrates the Zynq internal organization along with the secure perimeters (in

dotted rectangles). As Zynq does not provide any encryption module (but only a decryption

one), an AES 256 bits accelerator with only encryption feature has been added into the

programmable logic.

Next subsection discuss the boot process on the Zynq with regards on how it implements

the trusted chain.

II.3.2.1 Building the chain of trust on Zynq architecture

As described in [68], secure booting commences by configuring the processing system

(Figure II.3.3b). The ARM processor starts executing the code residing in the on-chip ROM.

This code is provided by Xilinx and can not be modified. It performs a simple initialization

of the L1 cache and the bus system; also it contains low-level drivers to be able to retrieve

the user defined software from one of the external memories. While secure booting, if the

key source specified in the eFUSE and the key source specified in the boot header do not

match or if the there is an illegal boot mode, the device will transit into a secure lock down

state. This ensures that a successful boot implies that the chip is in a secure state. Then, the

First Stage Boot Loader (FSBL) partition header is parsed in order to retrieve the location of

the boot code and the actual boot configuration. These information can be stored in two

modes: (i) encryption disabled, (ii) encryption enabled. In the first case, the code can be

directly executed without the needing of a decryption operation (insecure boot).

In the latter case, the FSBL is passed to the AES/SHA engine before being loaded into the

on-chip SRAM. The data is then decrypted, authenticated, and stored in the on-chip RAM.

The processor then will continue with the boot operations. The FSBL has to load: (i) the

bitstream, which will configure the PL with the user peripherals and custom modules, and

(ii) the user application. In the secure mode, bitstream and each software partition is

encrypted with AES and signed by means of RSA. Enciphered bitstreams can be loaded into

the PL by using the DevC (Device Configuration). The decrypted bitstream is directly pushed

into the PL configuration memory, it will never be read if the eFUSE registers are configured

in the write-only mode. As for the software, once the partitions are verified and ready to be

loaded, the allocation process takes place. Where to load the .text and .data areas depends

on the memory design specified in the linker script. In case these areas are loaded into the

OCM, the security properties are automatically inherited and guaranteed trough the whole

life-cycle. Otherwise, if they are loaded into memories outside the secure perimeter, such as

external DDR RAM, it is necessary to adopt an application level mechanism to ensure data

integrity during the application life-cycle.

63



II.3.3 Security considerations about the Chain of Trust

Chain of Trust

Boot

FSBL:
First Stage 
Bootloader

Bitstream:
configures the Programmable Logic (FPGA)

Application:
the Standalone Software

(a) Chain Of Trust

TPM

Boot ROM First Stage 
Boot Loader Bitstream Application

verify verify verify trusted
primitives

1 2 3 4

(b) TPM adoption

Figure II.3.3 TPM and Chain Of Trust

Figure II.3.3a reports the chain of trust: using the TPM primitives, an application run-

ning on the processing system can dynamically configure the PL with partial bitstreams,

preserving the chain of trust (Figure II.3.3b).

II.3.3 Security considerations about the Chain of Trust

The Zynq family has an embedded security mechanism implemented to protect the system

during the boot process. In fact, if one of the boot cryptographic function fails, the system

immediately reaches a stable state of lock down, only a reset operation can reinitialize the

node and perform again its verification (Figure II.3.4a). Moreover, the Zynq allows the

disabling of write access to critical system control registers and to key controller registers

[79]. It is a common practice to lock the state of the system through the First Stage Boot

Loader: the lock-down approach improves overall system security by prohibiting the running

software from modifying critical system registers (authorization).

It is important to remember that the design and development of such architecture must

be security-aware. Figure II.3.4b contains the development/deployment process of a Zynq-

based system and highlights the security domains in which each operation has to take place.

First, the master key is generated and injected into the eFUSE register. Then, the First Stage

Boot Loader, the bitstream and the software are merged in order to create a system image.

This image is then encrypted and signed (by means of RSA) using the generated key. The

encrypted image is then loaded into one of the Zynq memories and the system is ready to
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Figure II.3.4 Trusted environment and secure boot

boot. The above steps must take place in a secure and trusted environment to avoid key

leakage (e.g. USB and JTAG are unsecured channels). Also, all systems and components

involved in this process have to be audited in order to be sure that no sniffers or other

malicious components have been injected. Once the system is configured, it is ready for

deployment in an unsafe environment.

With regard to temporary session keys, they can be stored in either of the two secure

perimeters: the OCM or directly inside the AES block. In both cases, the key can be dynami-

cally changed rewriting the OCM memory or through Self Dynamic Partially Reconfiguration

to update the AES block in PL. Through this mechanisms for keys protection, it is also possi-

ble to improve the security of remote hardware and software reconfiguration. For instance,

this proposal guarantees a tamper resistant storage for different node configurations. In this

way, it is possible to extend mechanisms such as [12] (presented in the previous Chapter), in

order to ensure physical security and making more feasible to implement effective moving

target defense techniques for embedded node.
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II.3.4 Performance

II.3.4 Performance

This section reports the results of an experimental campaign that was conducted to compare

a non-secure system to a TPM-enabled one, the evaluation focuses on the latency introduced

by the approach for:

■ boot time against software image footprint;

■ time to transmit and receive ciphered data packets against packet size2.
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Figure II.3.5 Performance Results

2In the test environment the packet loss is about 2.3%
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To measure the boot time, an external controller has been used. It automatically shuts down

and restarts the Zynq board. As soon as the Zynq system starts-up, it signals the controller

through a dedicated interrupt line. This allowed us to perform repeated measures of the

boot time. Figure II.3.5a presents the percentage of delta difference between the time to

boot a non-secure system and the time to boot its secure version as a function of increasing

software image size. It can be seen that the latency introduced by the secure boot is really

small and is contained between 1.5% and 1.8%. Figure II.3.5b shows the round trip time for

the communication among two nodes with increasing packet size. As one can notice, the

performance degradation due to the encryption/decryption process is negligible for packet

sizes less than 128 byte. Also as the packet size increases, the cryptographic operations

only have a small affect on the performance: for the worst case of a 1024 bytes payload, the

delay introduced is of 6.44%. This shows the advantages of a special purpose hardware to

implement cryptographically secured communication among wireless sensor nodes.
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CHAPTER II.4

Summary

In this part of the thesis, mechanisms to effectively and efficiently improve security and

resiliency of a CPS’s monitoring infrastructure have been presented and discussed with

regard to the challenging case of wireless sensor networks. Both the proposed solutions

focused on integrating security into the core architecture design, as opposed to hardening a

design after its deployment.

In Chapter II.2 a software level mechanism has been presented in order to make it

possible to exploits the advantages of novel security through adaptation techniques such

as moving target defense. To augment software security for wireless embedded nodes one

need to cope with different security constraints. Moving Target Defense as well as security

through adaptation and reconfiguration seems very promising. Chapter II.2 analyzed

different security solutions and reconfiguration mechanisms for WSN and, more in general,

for embedded devices. It has been shown how different reconfiguration strategies may be

implemented to enhance security and address limitation of current approaches. At this

aim, a reconfiguration framework has been proposed and it has been demonstrated how

it overcomes the limits of available reconfiguration tools in order to make reconfiguration

feasible for security purposes. The evaluation of the framework was focused on feasibility

and performance points of view. Even though, the reconfiguration implies a certain interval

of unavailability of a node, it has been shown that this time can be negligible for certain kind

of monitoring applications. Moreover, the designer has been provided with the necessary

information to implement reconfiguration plans by estimating the cost in terms of resources

required. On the other hand, the quantification in terms of security level benefit deriving
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from the adoption of Moving Target Defense and security reconfiguration is still an open

issue. Efforts to quantitatively estimated the security improvement are a future and ongoing

work.

Chapter II.3 proposed an architecture with advanced security capabilities through a

special purpose hardware implemented in FPGA technology. As regards physical security for

embedded nodes, Chapter II.3 described an efficient and effective approach to defeat and

mitigate physical attacks to the sensing infrastructure of Cyber Physical Systems. Attacks

whose goal is to alter, tamper or extract information by directly probing an embedded node,

will have to deal with a new security layer which protects both the node’s hardware and

can offer guarantees about software genuineness. Disrupting physical attacks makes the

injection of malicious traffic, as well as the information leakage, more difficult or even

unfeasible. To this end, an FPGA-based hardware architecture has been presented. It is

compliant with the TPM standard and offers security primitives to asses node integrity and

perform efficient AES encryption through hardware support.

It is important to notice that the two proposed solutions can be merged in order to

exploit advantages of both physical and adaptive security. This fusion is an ongoing work

to make it possible to efficiently and securely reconfigure the entire embedded node stack

with the SIREN approach.
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PART III

Securing the Processing Infrastructure



CHAPTER III.1

Introduction and Background

Today’s approach to cyber defense is governed by slow and deliberative processes such as

security patch deployment, testing, episodic penetration exercises, and human-in-the-loop

monitoring of security events. This is also the case of CPS’s processing infrastructures.

Adversaries can greatly benefit from this situation, and can continuously and systematically

probe target networks with the confidence that those networks will change slowly if at all.

Cyber attacks are typically preceded by a reconnaissance phase in which adversaries aim

at collecting valuable information about the target system, including network topology,

service dependencies, and unpatched vulnerabilities. As most system configurations are

static – hosts, networks, software, and services do not reconfigure, adapt, or regenerate

except in deterministic ways to support maintenance and uptime requirements – it is only a

matter of time for attackers to acquire accurate knowledge about the target system. This

will eventually enable them to engineer reliable exploits and pre-plan their attacks. Self

interested attackers will spend a great effort into discovering and analyzing CPSs’ processing

infrastructures, due to their critical nature in controlling and monitoring environment,

industrial process and power grids. To this aim they are interested into identifying which are

the components of the processing infrastructure, which operating systems are being used,

which services are offered by networked devices and how these systems are connected one

to the other.

Specifically, operating system fingerprinting aims at determining the operating system

of a remote host in either a passive way, through sniffing and traffic analysis, or an active

way, through probing. Similarly, service fingerprinting aims at determining what services
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are running on a remote host. To address this problem, many adaptive techniques have

been devised to dynamically change some aspects of a system’s configuration in order

to introduce uncertainty for the attacker. Significant work has been done in the area of

Adaptation Techniques (AT) and Adaptive Cyber Defense (ACD), which includes concepts

such as Moving Target Defense (MTD), as well as artificial diversity and bio-inspired defenses,

to the extent they involve system adaptation for security and resiliency purposes. Essentially,

a number of techniques have been proposed to dynamically change a system’s attack surface

by periodically reconfiguring some aspects of the system. In [54], a system’s attack surface

has been defined as the “subset of the system’s resources (methods, channels, and data)

that can be potentially used by an attacker to launch an attack”. Intuitively, dynamically

reconfiguring a system is expected to introduce uncertainty for the attacker and increase

the cost of the reconnaissance effort. However, one of the major drawbacks of current

approaches is that they force the defender to periodically reconfigure the system, and this

may introduce a costly overhead for legitimate users, as well as the potential for Denial of

Service conditions. Additionally, most of the existing techniques are proactive in nature or

do not adequately consider the attacker’s behavior.

Adaptation Techniques for networked systems As already said in Chapter II.2, Moving

Target Defense (MTD) defines mechanisms and strategies to increase complexity and costs

for attackers [35]. MTD approaches aiming at selectively altering a system’s attack surface

usually involve reconfiguring the system in order to make attacks’ preconditions impossible

or unstable.

Dunlop et al. [32] propose a mechanism to dynamically hide addresses of IPv6 packets to

achieve anonymity. This is done by adding virtual network interface controllers and sharing

a secret among all the hosts in the network. In [31], Duan et al. present a proactive Random

Route Mutation technique to randomly change the route of network flows to defend against

eavesdropping and DoS attacks. In their implementation, they use OpenFlow Switches

and a centralized controller to define the route of each flow. Jafarian et al. [42] use an IP

virtualization scheme based on virtual DNS entries and Software Defined Networks. Their

goal is to hide network assets from scanners. In Chapter 8 of [45], an approach based on

diverse virtual servers is presented. Each server is configured with a set of software stacks,

and a rotational scheme is employed for substituting different software stacks for any given

request. This creates a dynamic and uncertain attack surface.

These solutions tend to change the system in order to modify its external attack surface. On

the other hand, the external view of the system is usually inferred by the attackers based

on the results of probing and scanning tools. Starting from this observation, the approach

presented in this thesis consists in modifying system responses to probes in order to expose

an external view of the system that is significantly different from the actual attack surface,
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without altering the system itself.

Reconnaissance tools, such as nmap or Xprobe2, are able to identify a service or an op-

erating system by exploiting the protocol’s ambiguities analyzing packets that can reveal

implementation specific details about the host [53, 78]. Network protocol fingerprinting

refers to the process of identifying specific feature of a network protocol implementation by

analyzing its input/output behavior [71]. These features may reveal specific information

such as protocol version, vendor information and configurations. Reconnaissance tools

store known system’s features and compare them against the scan responses in order to

match a fingerprint. Watson et al. [78] adopted protocol scrubbers in order to remove TCP

protocol ambiguities. They used a fingerprint scrubber to restrict an attacker’s ability to

determine the operating system of a protected host. Moreover, some proof-of-concept

software and kernel patches have been proposed to alter a system fingerprint [27], such as

IP Personality and Stealth Patch.

Honeypots have been traditionally used to try to divert attackers away from critical re-

sources. Even though the approach here proposed and honeypots share same goal, they are

significantly different: honeypot-based solutions introduce vulnerable machines in order to

either capture the attacker [1] or collect information for forensic purpose [23], the proposal,

instead, does not alter the system at all. The aim is to divert attackers by manipulating their

view of the target system and forcing them to plan attacks based on incorrect or inaccurate

knowledge. As such, these attacks will likely fail.

To the best of my knowledge, this thesis and publication [4] are the first to propose an

adaptive mechanism for changing the attacker’s view of a system’s attack surface without

reconfiguring the system itself. To this aim, Chapter III.2 advances the state of the art in

adaptive defense by looking at the problem from a control perspective and proposing a

graph-based approach to manipulate the attacker’s view of a system’s attack surface. To

achieve this objective, the notion of system view and distance between views is formalized.

A principled approach is then defined to manipulate responses to attacker’s probes so as to

induce an external view of the system that satisfies certain properties. In particular, it is pro-

posed an efficient algorithmic solutions to different classes of problems, namely (i) inducing

an external view that is at a minimum distance from the internal view while minimizing the

cost for the defender; (ii) inducing an external view that maximizes the distance from the

internal view, given an upper bound on the admissible cost for the defender. Experiments

conducted on a prototypal implementation of the proposed algorithms confirm that the

approach is efficient and effective in steering the attackers away from critical resources.

The results and formalization of Chapter III.2 are then used as a reference for Chap-

ter III.3 where a practical approach to defeat an attacker’s fingerprinting effort through

deception is proposed. To defeat OS fingerprinting, the outgoing traffic is manipulated so

that it resembles traffic generated by a host with a different operating system. Similarly, to
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defeat service fingerprinting, services banner are modified by intercepting and manipulat-

ing certain packets before they leave the host or network. Details on how to achieve these

results are presented and experimental results show that the approach can efficiently and

effectively deceive an attacker.
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CHAPTER III.2

Manipulating the Attacker’s View to defend the Processing

Infrastructure

This Chapter aims at advancing the state of the art in adaptive defense by looking at the

problem from a control perspective and proposing a graph-based approach to manipulate

the attacker’s perception of a cyber-physical system processing infrastructure’s attack sur-

face. To achieve this objective,the notion of system view as well as the notion of distance

between views is firstly formalized. The formalization refers to the attacker’s view of the

system as the external view and to the defender’s view as the internal view. A system’s attack

surface can then be thought of as the subset of the internal view that would be exposed to

potential attackers when no deceptive strategy is adopted. Starting from this definitions, a

principled yet practical approach is defined to manipulate responses to attacker’s probes

so as to induce an external view of the system that satisfies certain properties. In partic-

ular, here is proposed an efficient algorithmic solutions to different classes of problems,

namely (i) inducing an external view that is at a minimum distance from the internal view

while minimizing the cost for the defender; (ii) inducing an external view that maximizes

the distance from the internal one, given an upper bound on the admissible cost for the

defender.

Figure III.2.1 shows how standard and Adaptive Cyber Defense (ACD-based) controllers

can be adopted in order to alter the attacker’s perception of the attack surface. State of

the art solutions aim at dynamically reconfiguring the system in order to create a moving

target for the attacker as it has been shown in Chapter II.2 with regards to monitoring
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III.2.1 Attacker Reconnaissance of a target system

infrastructures. Both internal and external system variables are used to monitor the system’s

state and enforce a moving target objective through an ad-hoc controller. On the other hand,

the approach here proposed aims at transparently altering the attacker’s perception. The

attacker’s knowledge of the system is inferred from the system’s observable variables (e.g.,

ports, packets, web-pages content, DNS records). In order to gather additional information,

the attacker probes the system. The proposed ACD controller identifies such probes and

controls the information exposed through the system’s observable variables by crafting

adequate probe responses to bias the attacker’s view of the system.

Standard
Controller

+ + Attacker

ACD
Controller

System

Observable
Variables

Observable
Behavior
Probes

Control Signals
Probe 

Responses

Proposed Solution

Figure III.2.1 Control Prospective

There are two key advantages comparing to traditional approaches: (i) one can introduce

uncertainty for the attackers without actually changing the system’s configuration, thus

minimizing the overhead; (ii) one can deceive the attackers and steer them away from critical

resources rather than simply introducing uncertainty and forcing them to use a random

attack strategy. The Section relative to the evaluation of the approach, on a prototypal

implementation of the proposed algorithms, confirms that this approach is efficient and

effective in steering the attackers away from critical resources.

III.2.1 Attacker Reconnaissance of a target system

This section defines a threat and attacker reference model in order to set the scope of further

discussions. The adversary is assumed external and attempting to infer a detailed map of

the target network. The threat model assumes that the attacker will use reconnaissance

tools such as nmap [53] to discover active hosts in the network. The information attackers

aim at discovering includes operating systems, exposed services and their version, network

layout and routing information. They will then leverage this knowledge to plan and execute

attacks aimed at exploiting exposed services. It is also assumed that the attacker will use an
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III.2.1 Attacker Reconnaissance of a target system
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Figure III.2.2 Attacker’s strategy flow chart

OS fingerprint technique based on sending valid and invalid IP packets and studying the

respective responses without resorting to analysis based on timing. Moreover, the service

fingerprinting is limited to the case of TCP probes, as it is the case for common probing

tools.

The attacker strategy is depicted in Figure III.2.2. The goal of an attacker is to launch an

effective exploit against one of the hosts in the target network. With this exploitation the

attacker will gain sufficient privileges to proceed in further analysis of the network. Multiple

stages of this attack strategy (marked with a red cross in the figure) can be defeated using

the proposed approach. For instance, it will be possible to expose services with no publicly

available exploits. On the other hand, for a given service,it will also be possible to expose

exploitable vulnerabilities which do not correspond to the actual vulnerabilities of that

service.

III.2.1.1 Motivating Example

As a reference example the infrastructure in Figure III.2.3 is considered. It represents the

IT infrastructure of a general CPS’s processing infrastructure. Some data and reports may

be publicly available throughout a public website hosted in the DMZ. The business logic

and critical services are implemented in the Intranet and some of these are required to be
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III.2.1 Attacker Reconnaissance of a target system

accessible throughout the Internet in order to allow other branches to gather and process

data as well as perform queries.
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Figure III.2.3 Running Example and System Architecture

The defender goal is to modify the attacker’s view of the system and its attack surface. In

order to do so, only the system dependent information exposed by protocol ambiguities

are modified. By adopting protocol and fingerprint scrubbers, like the one presented in

the next Chapter and [27, 78], it is possible to alter and filter all the outgoing traffic. Using

these techniques and a graph-based strategy to generate different views of the system

by repeatedly applying view manipulation primitives, attackers are deceived to induce a

different view of the system, such as the one in Figure III.2.4.
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Figure III.2.4 Mutated System Architecture
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Figure III.2.4 depicts a manipulated service with a different color/texture – compared to

Figure III.2.3 – of the machine where it is deployed. A change of an operating system is

represented by a different letter on the top right corner of each machine. In this example,

applying several manipulation steps to the internal view, one moves from a flat infrastructure,

where all the servers have the same operating system, to a view in which each operating

system is different from the real one and the others. In the same way, all the services under

control are mutated. For instance the database server fingerprint is altered so as it will be

recognized as an implementation from a different vendor. As for the public web server, it

will resemble two web servers in a load balancing configuration. To do so the strategy is

to mutate, with a certain frequency, both the OS and service fingerprints as well as modify

packet level parameters. In this way, one can give an attacker the idea that more than one

server is active and the requests are routed between them.

III.2.2 View Model and Problem Statements

In order to achieve the goal of inducing an attacker’s view of the system’s attack surface

that is measurably different from the internal view, it is first required to formalize the

notion of view, as well as the notion of manipulation primitive and distance between views

(Section III.2.2.1).

III.2.2.1 View Model

In the following, a system is assumed as a set S = {s1, s2, . . . , sn} of devices (e.g., hosts, fire-

walls), and useΨ to denote the set of services that can be offered by hosts in S. The defender’s

and attacker’s knowledge of the system is represented by views, as defined below.

Definition 1 (System’s View) Given a system S, a view of S is a triple V = (So ,C ,ν), where

So ⊆ S is a set of observable devices, C ⊆ So ×So represents connectivity between elements in

So , and ν : So → 2Ψ is a function that maps hosts in So to a set of services.

Intuitively, a view represents knowledge of a subset of the system’s devices and includes

information about the topology as well information about services offered by reachable

hosts1.

1A more complete definition of view could incorporate information about service dependencies and vulnera-
bilities, similarly to what proposed in [5].
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Definition 2 (Manipulation Primitive) Given a system S and a set V of views of S, a manip-

ulation primitive is a function π : V → V that transforms a view V ′ ∈ V into a view V ′′ ∈ V .

LetΠ denote a family of such functions. For each π ∈Π, the following properties must hold.

(∀V ′,V ′′ ∈ V
)

V ′′ =π(
V ′) ̸=V ′ (III.2.1)

(∀V ∈ V ) (∄〈π1,π2, ...,πm〉 ∈Πm |π1 (π2 (...πm (V ) ...)) =π (V )) (III.2.2)

Intuitively, a manipulation primitive is an atomic transformation that can be applied to a

view to obtain a different view.

Example 1 A possible manipulation primitive is πOSB (V ′). This primitive transforms a view

V ′ into a view V ′′ by changing the operating system fingerprint of a selected host2. Figure

III.2.5 is a graphical representation of the effect of this primitive on the system’s view. This

primitive can be implemented as defined in [27, 78].

Define OS
FingerprintA

DMZ

V'

B

DMZ

V''

⇡OSB

Figure III.2.5 Example of Manipulation Primitive

Definition 3 (View Manipulation Graph) Given a system S, a set V of views of S, and a

family Π of manipulation primitives, a view manipulation graph for S is a directed graph

G = (V ′,E ,ℓ), where

■ V ′ ⊆ V is a set of views of S;

■ E ⊆ V ×V is a set of edges;

■ ℓ : E → Π is a function that associates with each edge (V ′,V ′′) ∈ E a manipulation

primitive π ∈Π such that V ′′ =π(V ′).

The node representing the internal view has no incoming edges. All other nodes represent

possible external views.

2Each primitive may have a set of specific parameters, which are omit for the sake of notation simplicity.
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V

Internal Attack Surface External View

V1 V2

V3 V4 V5⇡FTPv3.5⇡WEBv2.2

⇡MAILv1.5

⇡OSA

⇡OSB

Figure III.2.6 Example of View Manipulation Graph3

Example 2 Figure III.2.6 shows an example of View Manipulation Graph. As one can notice,

starting from the internal view V , multiple external views can be derived. After applying any

π ∈Π, a new view is generated. By analyzing the graph, one can enumerate all the possible

ways to generate external views starting from the internal view V of a system S.

Definition 4 (Distance) Given a system S and a set V of views of S, a distance over V is a

function δ : V ×V →R such that, ∀V ′,V ′′,V ′′′ ∈ V , the following properties hold:

δ
(
V ′,V ′′)≥ 0 (III.2.3)

δ
(
V ′,V ′′)= 0 ⇐⇒ V ′ =V ′′ (III.2.4)

δ
(
V ′,V ′′)= δ(

V ′′,V ′) (III.2.5)

δ
(
V ′,V ′′′)≤ δ(

V ′,V ′′)+δ(
V ′′,V ′′′) (III.2.6)

Example 3 The distance can be measured by evaluating the number of elements that change

between views. To do so, first consider the difference in the number of hosts between the two

views. Then, for each host that is present in both the views, add one if the OS’s fingerprint

differs and add one if the service’s fingerprint changes, that is:

δ
(
V ′,V ′′)= ∣∣V ′

#host s −V ′′
#host s

∣∣+ ∑
h∈Host sV ′∩V ′′

(1OS +1Ser vi ce )

More sophisticated distance measures can be defined, but this is beyond the scope of this

thesis.

3π’s subscripts denotes generic primitives π ∈Π.
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Definition 5 (Path Set) Given a view manipulation graph G, the path set PG for G is the set

of all possible paths (sequence of edges) in G. The k-th path, of length mk , in PG is denoted

with pk = 〈πi1 ,πi2 . . . ,πimk
〉4.

Example 4 Consider the View Manipulation Graph G in Figure III.2.6. In this case, the set of

all possible paths is:

PG =



p1 = 〈πOS A 〉, p2 = 〈πM AI Lv1.5〉,
p3 = 〈πOS A ,πM AI Lv1.5〉, p4 = 〈πOSB 〉,

p5 = 〈πW EBv2.2〉, p6 = 〈πF T Pv3.5〉,
p7 = 〈πOSB ,πW EBv2.2〉, p8 = 〈πW EBv2.2 ,πF T Pv3.5〉,

p9 = 〈πOSB ,πW EBv2.2 ,πF T Pv3.5〉


The notation Va

pk→Vb is used to refer to a path pk originating from Va and ending in Vb . For

instance in Figure III.2.6, the path which goes from V to V5 is V
p9→V5 = 〈πOSB ,πW EBv2.2 ,πF T Pv3.5〉.

Definition 6 (Cost Function) Given a path set PG , a cost function fc is a function fc : PG →R

that associate a cost to each path in PG . The following properties must hold.

fc (〈πi 〉) ≥ 0 (III.2.7)

fc

(
〈πi j ,πi j+1〉

)
≥ mi n

[
fc

(
πi j

)
, fc

(
πi j+1

)]
(III.2.8)

fc

(
〈πi j ,πi j+1〉

)
≤ fc

(
πi j

)
+ fc

(
πi j+1

)
(III.2.9)

Example 5 To better explain the meaning of equations III.2.8 and III.2.9, consider the case of

adding a server to a view (p1) and then defining its operating system fingerprint (p2). The

cost associated to this operation is less or equal to applying (p1) and than (p2) because it is

possible to directly add a server with a certain OS fingerprint. For the same reason it is right

consider the cost greater than the minimum of the two.

If Equation III.2.9 holds strictly, then fc is said to be an additive cost function.

III.2.2.2 Problems Statement

Here the two main problems that will be addressed are formalized.

Problem 1: Given a view manipulation graph G , the internal view Vi and a distance thresh-

old d ∈R, find an external view Vd and a path Vi
pd→Vd which minimizes fc

(
pd

)
subject to

δ (Vi ,Vd ) ≥ d .

4πi denotes a generic π ∈Π and the number in the subscript denotes the position in the path.
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III.2.3 An Algorithmic solution to Identify Views

Problem 2: Given a view manipulation graph G , the internal view Vi and a budget b ∈R, find

an external view Vb and a path Vi
pb→Vb which maximizes δ (Vi ,Vb) subject to fc

(
pb

)≤ b.

III.2.3 An Algorithmic solution to Identify Views

In this section, the algorithms used to solve the problems defined in Section III.2.2.2 are

presented. For both problems it has been decided to adopt a top-k heuristic approach. The

algorithms start from the internal view and proceed with the state space exploration by

iteratively traversing the most promising outgoing edges until a termination condition is

reached. To limit the exponential explosion of the search space only the k-most promising

edges are traversed. To quantify the benefit in traversing a given edge, one can define a

benefit score as the ratio between the distance between the corresponding views and the

cost for achieving that distance. For each node in the graph, only the k outgoing edges with

the highest values of the benefit score are traversed.

TopK-Distance (Problem 1) To solve this problem, the first step is to generate the view

manipulation graph and then process it with the top-k algorithm. For efficiency purposes,

it is possible to only generate a sub-graph Gd of the complete view manipulation graph G ,

such that generation along a given path stops as soon as the distance from the internal view

becomes equal to or larger than the minimum required distance d (problem constraint).

One can limit the graph generation up to this point because any additional edge in the graph

will increase the cost of the solution and so it will not be included in the optimal path.

Algorithm 1 (GenerateGraph) describes how to generate the sub-graph up to the distance

d . The algorithm adopts a queue (Q) to store the vertices to be processed. At each iteration

of the while loop (Line 3), a vertex v is popped from the queue and the maximum distance

from the internal view (O) is updated (Line 4). The constant MAX_INDEGREE (Line

5) is used to test a node that has been fully processed. When the in-degree is equal to

MAX_INDEGREE the node has been linked to all the other nodes which have only one

element in the configuration that differs. In this case, there are no new vertices to generate

from this node. To compute MAX_INDEGREE one just need the set C of all admissible

configurations per host:

M AX _I N DEGREE = ∑
h∈Host s

#con f i g ur ati onPer Hosth −1

On Line 6 a set of v ’s predecessors is retrieved from the graph.

The CREATE_COMBINATIONS (Line 7) function generates all possible combinations of

configurations that can be created from v and have only one configuration element which

differs form v ’s configuration. Both v and pr edecessor s are excluded from the returned
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array. The function GET_ONE_CHANGE_VERTICES (Line 11) returns an array of all

the vertices whose configuration differs just for one element from the vertex given as input.

Those vertices need to be linked with the vertex v (Lines 12-14). Lines 15-17 check if the

maximum distance of the graph has been reached. If this is not the case, the new generated

vertex is pushed into the queue to be examined.

Algorithm 1 GenerateGraph(d)

Input: O = Internal Attack Surface; C = Set of Admissible Configurations per host; d =
minimum required distance;

Output: Gd = sub-graph up to distance d
1: //Initialization: Q is the queue of vertices to process (initially empty); Gd initially empty.

2: maxDi st ance = 0; Gd .addVertex(O); O →Q;
3: while Q ̸= Empt y do
4: v ←Q; maxDi st ance = MAX(maxDi st ance, DISTANCE(O,v));
5: if v .indegree < M AX _I N DEGREE then
6: predecessors = Gd .GET _PREDEC ESSORS(v)
7: newVertices = CREATE_COMBINATIONS(v ,predecessors,C )
8: for all v v ∈ newVertices do
9: Gd .addVertex(v v)

10: Gd .addDirectedEdge(v , v v , COST(v,vv), DISTANCE(v,vv));
//Add an edge from v to v v

11: verticesToLink = GET_ONE_CHANGE_VERTICES(Gd , v v)
12: for all v tl ∈ verticesToLink do
13: Gd .addBidirectionalEdge(v , v v , COST(vv,vtl), DISTANCE(vv,vtl)); //Add a bidi-

rectional edge between v v and v tl
14: end for
15: if maxDi st ance ≤ d then
16: v v →Q
17: end if
18: end for
19: end if
20: end while

Once the sub-graph has been generated the top-k analysis can start so as to solve the prob-

lem. Algorithm 2 (TopK-Distance) is recursive and implements the top-k analysis on the

generated sub-graph. The symbol v is used to denote the vertex under evaluation in each

recursive call.

Line 1 creates an empty list to store all the path discovered from v . Line 2 is one of the two

termination conditions. It checks if the current distance is greater than equal to d or no

other nodes can be reached. The second term of the condition in the if statement takes

into account both the case of a node with no outgoing edges and the case of a node whose

successors are also its predecessors. Edges directed to predecessors are not considered in
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order to construct a loop-free path.

In case the termination condition is satisfied, a solution has been found and a path can be

constructed starting from v (the leaf) up to O by closing the recursion stack. Line 3 creates

an empty path and adds v as the leaf of this path. Subsequently, the path list is updated and

returned.

On Line 6 all the outgoing edges originating from v are sorted by decreasing benefit (dis-

tance/cost). Then on Lines 7-13 the top-k analysis takes place. For each of the best k

destinations, TopK-Distance is recursively invoked. The result of this evaluation is a list of

paths. The vertex v is then set as the origin of each of these paths (Lines 10-12). Line 14

contains the last termination condition where the updated path list is returned.

Algorithm 2 TopK-Distance

Input: G = graph; v = vertex to evaluate; k; d = minimum distance to reach;
cc = current cost; cd = current distance;

Output: List of Paths (Solutions)
1: pathLi st = {}
2: if cd ≥ d OR v .successors-(v .successors ∩ v .predecessors) = ; then
3: p = empt yPath; p.addVertex(v); pathLi st ← p;
4: return pathLi st
5: end if
6: SORT(v .outgoingEdgesList); numToEval = MIN(k, v .outgoingEdgesCount);
7: for n ≤ numToEval do
8: v v = v .outgoingEdgesList[n].getDestination()
9: eval = TopK-Distance(G , v v , k, d , UPDATE(cc), UPDATE(cd))

10: for all Path p ∈ eval do
11: p.addVertex(v);

p.addDirectedEdge(v , v v , DISTANCE(v , v v), COST(v , v v));
//Add an edge from v to v v

12: end for
13: end for
14: return pathLi st

TopK-Budget (Problem 2)

Algorithm 3 (TopK-Budget) implements both graph generation and exploration in order to

improve time efficiency in the resolution of budget problems. It is very reasonable that the

defender will invest a big budget, subsequently it will be very likely that a solution will be far

deep in the graph.

The approach is to generate the graph only in the k-most profitable directions in order

to limit as much as possible graph generation. This algorithm uses a queue to store the

examined path that may be a solution. Line 5 retrieves the path p under examination
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from the queue and, from this, its leaf v is then retrieved in order to further generate the

graph (Lines 6-17). The generation process is similar to the one described in Algorithm 1

(GenerateGraph).

Then, the algorithm tries to estimate how good are the solutions it may find going further

in the exploration through v . The estimation is based on v ’s benefit score and the maximum

benefit score of v ’s successors. The estimation provides an insight knowledge about the

solution it may discover going further in the exploration through v . On Line 18, all the

successors of v (generated or linked at this stage) have been computed. The estimation is

done by the function ESTIMATE which returns the maximum benefit value v ’s successors

(v v). The estimation, the successor v v and the path under examination p are then added to

a list (Lines 20-21).

On Line 24 the list is sorted by decreasing estimation value. Line 25 checks if there is

no further exploration to perform. In this case the path under examination is added to the

solutions list. Otherwise (Lines 28-31) new paths are generated from p. Each of the path

is p plus a new leaf node that is in the top-k successors of v . All the new generated paths

are then pushed into the queue for further examination. When the queue will be empty the

complete list of solutions is returned.
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Algorithm 3 TopK-Budget

Input: O = Internal Attack Surface; C = Set of Admissible Configurations per host; b =
budget;

Output: List of Paths (Solutions)
1: //Initialization: Q is the queue of paths to process (initially empty);

sol uti ons = {}; G is a graph and contains O
2: pathO →Q //pathO is a trivial path containing just the internal attack surface
3: while Q ̸= Empt y do
4: toE xpl or eDat aHolder = {}
5: p ←Q; v = p.getLeaf();
6: if v .indegree < M AX _I N DEGREE then
7: predecessors = G .GET _PREDEC ESSORS(v)
8: newVertices = CREATE_COMBINATIONS(v ,predecessors,C )
9: for all v v ∈ newVertices do

10: G .addVertex(v v)
11: G .addDirectedEdge(v , v v , COST(v,vv), DISTANCE(v,vv));

//Add an edge from v to v v
12: verticesToLink = GET_ONE_CHANGE_VERTICES(G , v v)
13: for all v tl ∈ verticesToLink do
14: G .addBidirectionalEdge(v , v v , COST(vv,vtl), DISTANCE(vv,vtl)); //Add a bidi-

rectional edge between v v and v tl
15: end for
16: end for
17: end if
18: for all v v : v .get_direct_successors() do
19: if NOT v .isPrecedessor(v v) AND NOT p.contains(v v)

AND (p.totalCost+COST(v,vv)≤ b) then
20: estimation = DISTANCE(v,vv)/COST(v,vv) + ESTIMATE(v v , p, C )
21: toE xpl or eDat aHolder ← [v v , p, estimation]
22: end if
23: end for
24: SORT(toE xpl or eDat aHolder );

numToEval = MIN(k, toE xpl or eDat aHolder .size);
25: if numToEval = 0 then
26: sol uti ons ← p
27: end if
28: for n leq numToEval do
29: newPath = toE xpl or eDat aHolder [n].p; newPath.addAsLeaf(v v)
30: newPath →Q
31: end for
32: end while
33: return sol uti ons
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III.2.4 Experimental Evaluation

This section reports some experimental results to validate the proposed algorithmic ap-

proach to the problems of Section III.2.2.2. The performance of the algorithms have been

evaluated in terms of processing time and approximation ratio for different numbers of

hosts and numbers of different admissible configurations for each host. All the results

reported in this section are averaged over multiple graphs with the same number of hosts

and configurations for each node but different costs and distances among the vertices.

III.2.4.1 Evaluation of TopK-Distance
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Figure III.2.7 TopK-Distance – Processing time vs. Number of hosts

As expected, the processing time increases when the number of configurations per nodes

increases. Figure III.2.7 shows the processing time trends for the case of k = 7 and a required

minimum distance d = 5. The processing time is practically linear in the number of hosts

for the case of three configurations per host but, as soon as the number of configurations

increases, it becomes polynomial as shown for the case of five configurations per host.

Figure III.2.8 shows the processing time vs. graph size for different values of k. The graph

size is intended as the number of nodes that have a distance from the internal view that is

less than or equals to d .

Comparing the trends for k = 3,4,5 one can notice that the algorithm is polynomial for

k = 3 and linear for k = 4,5. This can be explained by the fact that for k = 3 it is necessary to

explore the graph more deeply than in the case of k = 4,5. Moreover, considering values of k

bigger than five, the trend is again polynomial due to the fact that the algorithms starts to
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Figure III.2.8 TopK-Distance – Processing time vs. Graph size

explore the graph more broadly. Indeed, as it will be shown shortly, relatively small values of

k provide a good trade-off between approximation ratio and processing time, therefore this

result is extremely valuable.
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Figure III.2.9 TopK-Distance – Average processing time vs. k

To better visualize the relationship between processing time and k, Figure III.2.9 plots the

average time to process different families of graphs against k. The trend can be approximated
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by a polynomial function and the minimum is for k = 2÷3. For k greater than 4, the Average

Time to process the graph will increase almost linearly. Moreover, the approximation ratio

achieved by the algorithm has been evaluated. To compute the approximation ratio the cost

of the algorithm’s solution is divided by the optimal cost. In order to compute the optimal

solution a function exhaustively measured the shortest path (in term of costs) from the

internal attack surface to all the solutions with a distance greater than the minimum required

d , and sorted those results by increasing cost. The optimal solution has the maximum

distance and the minimum cost. When the algorithm could not find a solution (none of

the discovered paths has a distance greater than the minimum required d), an infinite

approximation has been assigned.
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Figure III.2.10 TopK-Distance – Approximation Ratio vs. k

Figure III.2.10 shows how the ratio changes when k increases in the case of a fixed number

of configurations per node (5 configurations per node) and for increasing number of hosts.

It is clear that the approximation ratio improves when k increases. Relatively low values of k

(k = 3÷6) are sufficient to achieve a reasonably good approximation ratio in a time-efficient

manner. Finally, it has been measured the number of solutions found by the algorithm for

increasing values of k.

Figure III.2.11 shows how the number of discovered solutions increases while k increase.

The plot refers to the case of a fixed number of configurations per node (5 configurations

per node) and for different number of hosts.
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Figure III.2.11 TopK-Distance – Number of Solutions vs. k

III.2.4.2 Evaluation of TopK-Budget
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Figure III.2.12 TopK-Budget – Processing time vs. Number of hosts

As done for the previous case, measurements show that, as expected, the processing time

increases when the number of configurations per nodes increases. Figure III.2.12 shows

the processing time trends for the case of k = 2 and a budget b = 18. The processing time is

practically linear in the number of hosts for the case of three configurations per host. In this

case the minimum time (six hosts) is ∼150ms and the maximum time (10 hosts) ∼3500ms.

When the number of configurations increases the time rapidly increases due to the time

spent in the generation of the graph.
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Figure III.2.13 TopK-Budget – Processing time vs. Graph size

Figure III.2.13, shows a scatter plot of average processing times against increasing graph

size. This chart suggests that, in practice, processing time is linear in the size of the graph

for small values of k.
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Figure III.2.14 TopK-Budget – Average processing time vs. k

Similarly, Figure III.2.14 shows how processing time increases when k increases and for

a fixed value of budget (b = 18) and different graph families. The trend is approximated

by a polynomial function and tends to saturate for values of k ≥ 6. This can be explained
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by the fact that with higher values of k most of the time is spend in the graph generation

and starting from k = 6 it is generated almost completely. Even in this case the important

result is that low values of k have a linear time, moreover, for these values, the algorithm can

achieve a good approximation ratio.

0,8	
  

1	
  

1,2	
  

1,4	
  

1,6	
  

1,8	
  

2	
  

K=1	
   K=2	
   K=3	
   K=4	
   K=5	
   K=6	
   K=7	
   K=8	
  

A
pp

ro
xi

m
at

io
n 

ra
tio
!

6	
  hosts	
   7	
  hosts	
   8	
  hosts	
  

Figure III.2.15 TopK-Budget – Approximation Ratio vs. k

Figure III.2.15 shows how the ratio changes when k increases in the case of a fixed number

of configurations per node (5 configurations per node) and for increasing number of hosts.

The approximation ratio is good even for k = 1, but to obtain a more accurate solution it will

be better to use k = 2,3. Greater values of k will be less good in terms of time-efficiency.
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Figure III.2.16 TopK-Budget – Number of solutions vs. k
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To compute the approximation ratio the optimal distance is divided by distance of the

algorithm’s solution. In order to compute the optimal solution a function exhaustively

measured the shortest path (in term of distances) from the internal attack surface to all

the solutions in a given graph. Due to the fact that it would be unfeasible to generate an

exhaustive graph, the function generates a sub-graph up to a maximum number of nodes.

Then the paths are ordered for decreasing values of distance and saved the cost needed

to reach the solution. Then the algorithm is started with a budget equal to the saved cost.

Finally, it has been measured the number of solutions found by the algorithm for increasing

values of k (Figure III.2.16). The important result is that for values of k greater than four, the

number of solutions increases linearly.
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CHAPTER III.3

Steering Attackers away from resources using Fingerprint

Deception

As it has already been discussed in the previous Chapter, attackers aim at collecting valu-

able information about the target system, including information about network topology,

service dependencies, operating systems and unpatched vulnerabilities, in order to to engi-

neer effective attacks against CPS’s processing infrastructures and more in general against

networked infrastructures. The previous Chapter discussed the problem of disrupting an

attacker’s reconnaissance efforts from a control perspective and proposed a graph-based

approach to design a different view of the system so as to manipulate the attacker’s per-

ception of a system’s attack surface. The idea behind this approach is that if one is able to

alter the information used by attackers to fingerprint a system while maintaining the offered

services unmodified for legitimate user, it will be possible to shift the attack surface (virtual

attack surface) without actually modifying the system (real attack surface). A system’s attack

surface has been defined as the “subset of the system’s resources (methods, channels, and

data) that can be potentially used by an attacker to launch an attack” [54]. Dynamically

altering or shifting a system’s attack surface has proven to be an effective strategy to thwart

or significantly delay attacks. However, this type of approaches can potentially introduce

significant overhead for the defender [43, 44].

This Chapter goes beyond simply introducing uncertainty for the attacker, and propose

an approach to deceive potential intruders into making incorrect inferences about impor-

tant system characteristics, including operating systems and active services. Differently
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from many existing techniques, the proposed approach does so without changing the actual

configuration of the system. In fact, it mainly consists in manipulating outgoing traffic such

that, not only important details about operating systems and services are not revealed, but

the traffic also resembles traffic generated by hosts and networks with different character-

istics. Experiments conducted on a prototypal implementation show that the overhead

introduced by the proposed approach is negligible, thus making this solution completely

transparent to legitimate users. At the same time, by analyzing the results of attacker’s tool

while the approach is enforced it will be shown that it can effectively deceive the attackers,

and steer them away from critical resources one wish to protect.

III.3.1 Reconnaissance and Fingerprinting

Most of the attacker’s reconnaissance effort ,to identify systems hardware and software

architectures, resort to fingerprinting tools. Those tools are able to identify the nature of

a system by analyzing different aspects of his behavior, such as how it responds to certain

requests, if it shows banner informations or fine-prints, if it exposes certain services and also

how he responds under different loads. Authors in [75] categorize fingerprinting approaches

in:

Classical Fingerprinting Even without resorting to stealth techniques of any kind, hosts

will often announce their OS to anyone making a connection to them through welcome

banners or header information. For example, when connecting to a host via the standard

Telnet protocol the OS version is often sent to the client as part of a welcome message. FTP

will also often provide this information either as a welcome banner or if prompted via a SYST

command. HTTP can also be used by connecting to the host and initiating a simple GET /

HTTP/1.0 query. If the Simple Network Management Protocol (SNMP) service is present

on the machine (UDP/161), it is often left with the default public community name, which

will allow remote detailed querying of the service and hence host. Other services that send

back free useful information include IMAP, POP2, POP3, SMTP, SSH, NNTP and FINGER. A

slightly more subtle approach is to use the anonymous ftp account (if supported), download

a public binary required for ftp to function (eg /bin/ls) and examine it to determine what

platform it was built for. A more primitive approach is to port scan the machine using

any of the common port scanners freely available (eg Nessus, SAINT, nmap) and examine

the returned list of listening ports for patterns common to a particular OS. Note that this

approach is only effective against less secure hosts; particularly earlier Windows servers and

those that do not implement accepted basic computer security concepts.

Active IP Packet Fingerprinting This is the predominant form of identifying operating

system implementations, provoking the target into eliciting a response and analyzing it
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carefully. A huge amount of information can be gleaned about the response to a carefully

crafted network packet. The three common IP packet types (ICMP, TCP, UDP) are all used

in this technique and various valid (and invalid) packets are sent to the host to refine the

guess of the OS. The information used are from IP Header and TCP Header. Particularly,

for TCP Options, interestingly it is not just the number of options a stack supports that can

identify it, but also the order in which the options are returned, more details will be given in

Section III.3.2.

Passive IP Packet Fingerprinting Passive fingerprinting is where a sniffer is set up on a

network and passively collects/analyses packets in the flow of information between hosts.

The techniques employed to identify the source OS are usually a subset of those utilized by

Active IP packet fingerprinting, as these tools obviously monitor predominantly legitimate

traffic, and hence cannot introduce anomalous packets. Nevertheless, substantial tools can

be built using this technology.

Fingerprinting Through Service (Daemon) Querying Services that appear on a port-scan

list can be further queried to produce identifying information. One notable tool is Amap,

which proudly proclaims to send a trigger packet to an unknown port and again compares

the response to a database of fingerprint packets. It makes little assumptions as to con-

vention and, as such, claims to be able to detect daemons listening on non-standard ports.

It is worth noting that this approach relies heavily on a direct match of the default appli-

cation daemon to the underlying OS as you are inferring the nature of the OS rather than

specifically testing it.

III.3.2 Technical Background

Operating System (OS) fingerprinting is the practice of determining the operating system

of a remote host on a network. This may be accomplished either passively – by sniffing

and analyzing network packets traveling between hosts – or actively – by sending carefully

crafted packets to the target host and analyzing the responses [75].

Active fingerprinting approaches are typically more sophisticated than passive finger-

printing. In the simplest scenario, the attacker does not resort to stealth techniques and

gathers information about the OS by trying to connect to the host. For instance, while estab-

lishing a connection via the standard Telnet or SSH protocol, the OS version is often sent to

the client as part of a welcome message. Moreover, some FTP server implementations allow

to retrieve this information through the SYST command.

In general, active fingerprinting techniques trigger the target into sending one or more

responses, which are then analyzed by the attacker to infer the type and version of the OS

installed on the remote host. Carefully crafted ICMP, TCP and UDP packets are sent to the
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Operating System IP Initial TTL TCP Window Size

Linux Kernel 2.4/2.6 64 5,840

Windows XP 128 65,535

Windows 7 128 8,192

Table III.3.1 OS-dependent IP and TCP parameters

target in order to observe how it responds to both valid and invalid packets. For instance, in

the case of TCP probes, features that can be used to distinguish between different operating

systems include: (i) the order in which the TCP Options are formatted and (ii) the total

length of TCP Options. Additionally, the IP header may reveal some information about the

nature of the OS.

Conversely, passive fingerprinting consists in using a packet sniffer to passively collect

and analyze packets traveling between hosts. A simple passive method consists in inspecting

the Time To Live (TTL) field in the IP header and the TCP Window Size of the SYN or SYN+ACK

packet in a TCP session. The values of both the initial TTL and the TCP Window Size depend

on the specific OS implementation, as shown in Table III.3.1. One reason for this is that

RFC specifications define intervals of values and recommended values, but do not mandate

specific values. For instance, RFC 1700 recommends to initialize TTL to 64. Of course,

relying only on the TTL value is not sufficient to determine the OS because, given the nature

of this parameter, the TTL decreases as a packet traverses the network, and inferring the

correct initial TTL may not always be possible.

Many different fingerprinting tools are available today. To better assess the impact of

the approach presented in this thesis, a taxonomy to classify existing fingerprinting tools

based on the different approaches they implement has been defined. Figure III.3.1 shows

the proposed taxonomy. Given the variety of existing tools, it is practically impossible to

develop a single technique that would defeat all of them. However, the proposed approach

is effective against the most widely fingerprinting used tools. The tools that are explicitly

targeted in this work are shown in boldface, whereas other tools that are at least partially

impacted by the deception techniques are shown with a colored background.

III.3.3 Fingerprintg Tools and Mechanisms

Nmap Nmap OS fingerprinting works by sending up to 16 TCP, UDP, and ICMP probes to

known open and closed ports on the target host [53]. These probes are specially designed

to exploit the differences in the way different operating systems implement aspects of the

protocols where standard specifications leave some degree of freedom to developers. After

98



III.3.3 Fingerprintg Tools and Mechanisms

OS 
Fingerprinting

Passive

Active

Network Traffic 
Analysis

Application Level

TCP/IP Stack

p0f

Banner Grubbing
Handshaking

TCP Responses

ICMP Responses

ISN Analysis
Time Analysis

Nessus
nmap
amap
amap
nmap
sinfp3

nmap
Xprobe
nmap

cron-os

Xprobe

sinfp3

Figure III.3.1 Taxonomy of OS fingerprinting tools

sending probes, Nmap listens for responses. Dozens of attributes in those responses are

analyzed and combined to generate a fingerprint.

A series of 6 TCP probes is sent to generate 4 test response lines used for gathering infor-

mation about sequence number generation. Then an ICMP test follows. This test involves

sending two ICMP echo request packets to the target. The results of these two probes are

combined. Then 6 TCP tests follow. The last test is an UDP packet sent to a closed port. The

character “C” (0x43) is repeated 300 times in the data field. If the port is truly closed and

there is no firewall in place, Nmap expects to receive an ICMP port unreachable message.

Limitations: The probes are well known, so they can be identified and filtered. The Nmap

approach is flawed by design [8]. If the target is behind multiple filtering devices, each with

a different configuration policy, the attacker may end up with a signature that is built using

responses generated by different systems. For instance, assume the first filtering device –

instead of the true target – answers to TCP SYN+ACK packets with TCP RST+ACK and also

spoofs the IP address of the true target: the attacker will then derive a signature that is built

with some packets sent by the true target and other packets sent by different systems.

SinFP3 The development of SinFP was prompted by the need to reliably identify a remote

host’s operating system under worst-case network conditions [8]. Worst-case network

conditions can be assumed to be characterized by the following facts: (i) only one TCP port

is open; (ii) traffic to all other TCP and UDP ports is dropped by filtering devices; (iii) stateful

inspection is enabled on the open port; and (iv) filtering devices with packet normalization

are in place. In this scenario, only standard probe packets that use the TCP protocol can

reach the target and elicit a response packet.

SinFP uses three probes: the first probe P1 is a standard packet generated by the connect()

system call, the second probe P2 is the same as P1 but with different TCP Options, and the
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third probe P3 has no TCP Options and has the TCP SYN and ACK flags set. The first two

probes elicit two TCP SYN+ACK responses from the target. The third probe has the objective

of triggering the target into sending a TCP RST+ACK response. After the three probes have

been sent and the three replies have been received, a signature is built from the analysis

of the response packets. Then, a signature matching algorithm searches in a database for

a corresponding operating system fingerprint. The analysis of the responses considers

both IPv4 headers1 and TCP headers. With respect to IPv4 headers, the following fields are

analyzed [8]:

■ TTL: Some systems may use different initial TTL values for different types of packets.

Specifically, the initial TTL for a TCP SYN+ACK may be different from the initial TTL

for a TCP RST+ACK. Therefore, the difference between the TTL values of the responses

to probes P2 and P3 can be used in the computation of the fingerprint.

■ ID: The ID of the request is compared to the ID of the response. In the computation

of the fingerprint, the following cases are considered: (i) the response’s ID is 0; (ii)
the response’s ID is the same as the request’s ID; (iii) the response’s ID is obtained by

adding 1 to the request’s ID.

■ Don’t Fragment bit: Fingerprint computation considers whether the response has the

Don’t Fragment bit set or not.

With respect to TCP headers, the following fields are analyzed [8]:

■ Sequence number: The TCP sequence number of the request is compared with the

sequence number of the response. In the computation of the fingerprint, the following

cases are considered: (i) the response’s sequence number is 0; (ii) the response’s

sequence number is the same as the request’s sequence number; (iii) the response’s

sequence number is obtained by adding 1 to the request’s sequence number.

■ Acknowledgment number: The same analysis as for the sequence number is applied.

■ TCP flags and TCP window size: They are used as part of the signature.

■ TCP Options: They are also used as part of the signature. Specifically, if either the MSS

(Maximum Segment Size) value or the Window Scale value are specified they are used

to create their own signature’s elements.

An example of SinFP report against a Windows 7 target is reported in Figure III.3.2. The

packets exchanged during the scan are shown in Figure III.3.3.

Limitations: When there are too few TCP Options in P2’s response, the signature’s entropy

becomes weak [8]. In fact, TCP Options are the most discriminant characteristics that

compose a signature. That is because virtually no two systems implement exactly the

same TCP Options, nor in the same order. Thus, when only the MSS option is in the TCP

header, the risk of misidentification is high. SinFP also suffers from the same limitation of

1It also supports IPv6.
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. . .
score 100: Windows: Microsoft: Windows: Vista (RC1)
score 100: Windows: Microsoft: Windows: Server 2008
score 100: Windows: Microsoft: Windows: 7 (Ultimate)
score 100: Windows: Microsoft: Windows: Vista
. . .

Figure III.3.2 SinFP report against a Windows 7 host
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[SYN+ACK] Seq:0; Ack: 1; Win: 14600; MSS: 1460; 

[SYN] Seq:0; Win: 5840; MSS: 1460; 

[SYN+ACK] Seq:0; Ack: 1; Win: 14480; MSS: 1460; 
SAckPerm; Timestamp; WScale: 8 

[SYN] Seq:0; Win: 5840; MSS: 1460; Timestamp;
SAckPerm

Web Server:80SinFP

1st Probe

Response

Figure III.3.3 Packets exchanged during a SinFP scan

all knowledge-based fingerprinting tools. Their capability to identify a system is limited by

the existence of a corresponding fingerprint in the database.

Xprobe Xprobe2 is an active operating system fingerprinting tool with a different approach

to OS fingerprinting. Xprobe2 relies on fuzzy signature matching and probabilistic guesses.

Limitations: It appears that Xprobe2 is not maintained anymore, with the last version

released in 2005. As a consequence, it can only be used to scan outdated legacy sys-

tems. Tested against a Ubuntu 12.04 machine (Kernel version 3.02), it returns Running

OS: "Linux Kernel 2.4.22" (Guess probability: 100%). Tested against a Win-

dows 7 machine (with no firewall), it returns Running OS: "Microsoft Windows 2003

Server Standard Edition" (Guess probability: 93%).

p0f p0f (v3) is a tool that utilizes an array of sophisticated, purely passive traffic finger-

printing mechanisms to identify the players behind any incidental TCP/IP communication

[82]. Its fingerprint contains:

1. ver: IP protocol version.

2. ittl: Initial TTL used by the OS.

3. olen: Length of IPv4 options or IPv6 extension headers.

4. mss: Maximum Segment Size (MSS), if specified in TCP Options.
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5. wsize: Window Size, expressed as a fixed value or a multiple of MSS, of MTU, or of

some random integer.

6. scale: Window Scaling factor, if specified in TCP Options.

7. olayout: Comma-delimited layout and ordering of TCP Options, if any. Supported

values: explicit end of options, no-op option, maximum segment size, window scaling,

selective ACK permitted, timestamp.

8. quirks: Comma-delimited properties observed in IP or TCP headers.

9. pclass: Payload size.

Limitation: The initial TTL value is often difficult to determine since the TTL value of a

sniffed packet will vary depending on where it is captured. The sending host will set the TTL

value to the OS’s default initial TTL value, but this value will then be decremented by one for

every router the packet traverses on its way to the destination IP address. An observed IP

packet with a TTL value of 57 can therefore be expected to be a packet with an initial TTL of

64 that has done 7 hops before it was captured. Additionally, this tool also suffers from the

TCP Options entropy issue described for SinFP.

amap Amap [65] is an application-level service fingerprinting tool that probes services

running on a remote server on a given port to identify the specific application that is listening

on that port. Its purpose is to identify services that are not running on standard ports. Amap

has a list of “triggers” which include binary as well as text handshake messages. Amap has

been used as an indirect OS fingerprinting tool, meaning that it could infer the OS type from

the services it is running [75]. It is worth noting that this approach relies heavily on a direct

match between the default application daemon and the underlying OS as it is inferring the

nature of the OS rather than specifically testing it.

Limitation: Amap is not very stealthy [75]: 11 parallel connections sending an unexpected

message at the application protocol level are surely recorded in the application log file,

provided that the application maintains a good logging level. Apart from logging at the

application level, it is difficult to detect an Amap probe since it uses the OS system calls to

the TCP/IP stack and therefore no signature can be found at the level of the TCP, UDP or IP

packets. Nevertheless, it is still possible to write IDS rules that are able to detect probes.

Nessus Nessus provides a comprehensive analysis of a target, including information about

its OS and vulnerabilities. Nessus does not implement its own OS fingerprint mechanism

but relies on the output of several different tools. It is interesting to study how Nessus

performs the OS detection because each of the methods being used can also be adopted

independently by an attacker. For instance, an attacker can perform a scan through nmap

or Nessus, identify the open ports and then use SinFP or other scripts to infer the operating

system listening on a specific port. In the following † is used to denote a method that is

likely to be adopted by an attacker who is targeting a system behind firewall and aims at
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discovering the target OS fingerprint. Tenable Research introduced a highly accurate form

of operating system identification [38]. This method combines the outputs of various other

plugins that execute separate techniques to guess or identify a remote operating system.

Specifically, this process takes inputs from the following other scripts, each reporting its

own OS guessing:

■ os_fingerprint_ftp† Uses the remote FTP banner to attempt to identify the underlying

operating system.

■ os_fingerprint_html† Uses the HTML content returned by certain HTTP requests to

fingerprint the remote OS.

■ os_fingerprint_http† Uses the remote web server signature to infer the version of the

Windows or Linux distribution running on the remote host.

■ os_fingerprint_mdns†If an mDNS server is present, will perform a highly accurate

identification of Apple OS X systems.

■ os_fingerprint_msrprcIdentifies the remote version and service pack of Windows by

making certain MSRPC requests against the remote Windows box.

■ os_fingerprint_ntp Queries the Network Time Protocol daemon to perform a highly

accurate OS guess.

■ os_fingerprint_sinfp† Implements the SinFP TCP/IP fingerprinting algorithm. Only

requires one open port to fingerprint an OS.

■ os_fingerprint_smb Identifies the remote Windows OS based on a query to SMB.

■ os_fingerprint_snmp If credentials are available to perform an SNMP query, data from

the ‘sysDesc’ parameter is reported.

■ os_fingerprint_ssh† Attempts to identify the remote OS from the SSH banner.

■ os_fingerprint_telnet† Attempts to identify the remote OS from the Telnet banner.

■ os_fingerprint_uname If SSH credentials of the remote UNIX hosts are provided, the

results of ‘uname -a’ are obtained.

■ os_fingerprint_linux_distro If SSH credentials of the remote Linux host are provided,

the specific release is obtained.

■ os_fingerprint_xprobe† Attempts to identify the OS type and version by sending more

or less incorrect ICMP requests using the techniques outlined in [7].

Each of these plugins reports a confidence level for their scan results. An example of Nessus

output for OS identification is reported in Figure III.3.4.

Limitation: Nessus’s approach to fingerprinting can be very effective when used during a

“credentialed” scan. Otherwise, it will report partial information and in some cases it will

not use all the plugins it is equipped with. In the case one is targeting a host behind firewall

and NAT translates port 22 to a server and port 80 to another, the Nessus result is likely to

report only the OS information that has been gathered through the os_fingerprint_ssh plugin.

Moreover, in case the os_fingerprint_sinfp plugin is used, only the first entry of SinFP’s result,
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The remote host is running Linux Kernel 2.4
Confidence Level : 70
Method : SinFP

The remote host is running Linux Kernel 2.6
Confidence Level : 60
Method : ICMP

Figure III.3.4 Nessus OS identification report

which has a confidence level greater than 70%, is reported. For instance, due to the fact that

Windows 2008 Server, Windows Vista and Windows 7 share the same fingerprint, a Windows

2008 Server can be misidentified as a window Vista host (see Figure III.3.2).

Nessus’s approach to identify vulnerabilities is strictly dependent on service banners and

welcome messages. Generally, Nessus merely checks if the service’s version present in the

service’s banner belongs to a certain interval. For instance, if a vulnerability is know to be

present in a service up until version 2.0, it is really simple to make Nessus generate false

negatives by exposing a fake service banner claiming that the service version is higher than

2.0.

III.3.4 An approach to defeat fingerprinting efforts

With respect to OS fingerprinting, this thesis proposal to deceive attackers relies on mod-

ifying outgoing traffic in a way that such traffic resembles traffic generated by a different

protocol stack implementation. As pointed out in Section III.3.2, protocol specifications

may leave some degrees of freedom to developers. The choices that a developer makes with

respect to (i) default values (e.g., initial TTL, size of the TCP window), (ii) length of TCP

Options, or (iii) order of the TCP Options may reveal the nature of the operating system or

even the type of device (e.g., firewall, switch, router, printer or general purpose machine).

All the information required to impersonate a certain operating system or device can be

extracted from the SinFP’s signature database. All the outgoing packets that may reveal

relevant information about the OS are modified to reflect the deceptive signature, as shown

in Figure III.3.5. The most critical step in this process is the manipulation of the TCP Options.

In order to present the attacker with a deceptive signature, not only it is needed to modify

some parameters, but also to reorder the options and correctly place no-operation2 to

obtain the right options length. The TCP Options format can be inferred from the signature.

Modifying the Options length requires to adjust the total length field in the IP header, the

Offset value in the TCP header and subsequently adjust the sequence numbers. On the

2As specified in RFC 793, this option code may be used between options, for example, to align the beginning of
a subsequent option on a word boundary.
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Figure III.3.5 Manipulation of outgoing traffic to reflect deceptive signatures

bright side, it has been noticed that the majority of commonly used operating systems share

the same length for TCP Options. See Section III.3.6.2 for some examples of deceptions that

can be created with this method even considering the case of different TCP Options lengths.

With respect to service fingerprinting, one should consider the following two cases: (i)
the service banner can be modified through configuration files, and (ii) the service banner

is hard-coded into the service executable. Being able to modify the packet carrying the

identifying information before it leaves the host (or the network) enables to successfully

address both scenarios. Moreover, even if services are under direct control, it is preferred

to alter service banners in a completely transparent way. Our long term goal is to develop

a network appliance that can be deployed at the network boundary and which is able to

transparently manipulate services and operating system fingerprints.

It is worth noting that, when the original service banner is replaced with a deceptive banner

of a different length, it is needed to: (i) adjust the size of the packet based on the difference

in length between the two banners, (ii) modify the total length field in the IP header, (iii)
modify the sequence numbers in order to be consistent with the actual amount of bytes

sent, and (iv) correctly handle the case of fragmented packets, which requires to reassemble

a packet before modifying it.

However, this approach is not applicable to all categories of services. Services that

actively use the banner information during the connection process (such as SSH) require us

to use a non-transparent approach. For instance, the SSH protocol actively uses the banner

information while generating hashes in the connection phase. The banner format is:
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“SSH-protocolversion-softwareversioncomments\r\n".

Even though this approach can deceive tools like nmap and amap, modifying the banner

will cause legitimate user to receive termination messages from the server3 such as: (i) Bad

packet length or (ii) Hash Mismatch.

In summary, defeating passive tools requires to modify all outgoing packets, whereas

defeating active tools only requires to alter those packets that are likely to be part of an

attacker’s probes.

III.3.5 Solution Implementation

The implemented solution is based on a kernel module that uses the Netfilter POST_ROUTING

(Figure III.3.6) hook to process and modify relevant information in the IP header, TCP header

and TCP payload. Netfilter is a packet handling engine introduced in Linux Kernel 2.4. It

enables the implementation of handlers to redirect, reject or alter incoming and outgoing

packets. Netfilter can be extended with hooks. A hook is a function handler that allows

specific kernel modules to register callback functions within the kernel’s network stack. A

registered callback function is then called back for every packet that traverses the net filter

stack. The decision is to use the POST_ROUTING hook because it allows to alter the packets

just before they are finally sent out.

Ethernet Interfaces

PREROUTING

INPUT OUTPUT

POSTROUTING

Routing 
Decision

Local 
Processes

incoming packets outgoing packets

FORWARD Routing 
Decision

forwarded packets

Figure III.3.6 Netfilter packet handling and hooks

3Errors occurs only during the connection phase, and altering the banner will not affect previously established
connections.
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Specifically, it has been implemented an operating system fingerprint module to modify

the responses to the SinFP’s probes and a service fingerprint module to modify banner

information for specific services.

III.3.5.1 Operating system fingerprint module

The hook function checks if the packet is a response to the first SinFP’s probe (P1): an

ACK+SYN packet with a length of 44 bytes. If this is the case, the packet is altered in order to

mimic a particular operating system (more details are provided later), otherwise the module

checks whether the packet is an ACK+SYN with a length 60 bytes. This packet is used in

most TCP connections and may be a response to the second SinFP’s probe (P2). If so, the

packet is modified accordingly, based on the target OS fingerprint.

Additionally, it has been verified that this approach can deceive the p0f tool if the kernel

module modifies the TTL value of all IP packets and the window size value of all TCP packets.

During the packet manipulation stage, the module tracks whether any of the following has

been altered: the IP Header, the TCP header, the length of TCP Options, the TCP payload or

its size. Based on this information, it will:

■ modify the IP Total length value, if the size of the TCP payload has changed;

■ recompute the TCP Offset value in the TCP header and the IP Total length, if the length

of the TCP Options has changed;

■ recompute the TCP checksum, if the TCP header and/or the TCP payload have been

altered;

■ recompute the IP checksum, if the IP header has been altered.

In order to modify the responses such that they appear to have been generated by a specific

OS, a script has been created. It (i) extracts the required characteristics of the responses to

the first and second probe from SinFP’s signature database, and (ii) generates the C code

necessary to alter the responses. The script determines how the following policies should be

set up:

■ ID policy: the ID could be a fixed value different from zero, zero or a random number.

■ Don’t fragment bit policy: the DF bit can be enabled or disabled.

■ Sequence Number policy: the sequence number can be zero or not altered.

■ Ack Number policy: the ack number can be zero or not altered.

■ TCP Flags policy: the TCP flags value is copied from the signature.

■ TCP Window Size policy: the Window size is copied from the signature.

■ TCP MSS Option policy: the MSS value is copied from the signature.

■ TCP WScale Option policy: the WScale is copied from the signature.

■ TCP Options policy: the TCP Options layout is copied from the signature.
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The generated code is then compiled in order to build the actual kernel module. The scheme

of the resulting kernel module is presented in Listing III.3.14.It is assumed that all the set

and get functions are able to access the packet and track if the IP or TCP header have been

modified.

1 if(ip ->protocol == TCP && ip ->len == 44 && tcp ->ack == 1 && tcp ->syn == 1)
2 {
3 // Probably 1st sinfp3 ’s probe Response
4 set_id ();
5 set_df_bit ();
6 set_ttl ();
7

8 set_tcp_window ();
9 set_tcp_flags ();

10 set_tcp_sequence ();
11 set_tcp_ack ();
12

13 if(new_option_len != option_len)
14 {
15 modify_packet_size (); // expands or shrinks
16 // packet and updates IP Lenght and Offset
17 }
18

19 set_tcp_options(MSS , WScale , Option_Layout);
20 }
21 else if(ip ->protocol == TCP && ip->len == 60 && tcp ->ack == 1 && tcp ->syn == 1)
22 {
23 // Probably 2nd sinfp3 ’s probe Response
24

25 // Extract the timestamp value from the packet and save it for re -injecting
26 //it in the right position later
27 timestamp = get_tcp_timestamp ();
28

29 set_id ();
30 set_df_bit ();
31 set_ittl ();
32 set_tcp_window ();
33 set_tcp_flags ();
34 set_tcp_sequence ();
35 set_tcp_ack ();
36

37 if(new_option_len != option_len)
38 {
39 modify_packet_size (); // expands or shrinks
40 // packet and updates IP Lenght and Offset
41 }
42 set_tcp_options(timestamp , MSS , WScale , Option_Layout);
43 }
44

45 if(tcpHeader_modified)
46 {
47 tcp ->check = 0;
48 tcp ->check = tcp_csum ();
49 }

4The code dealing with sequence numbers adjustment is omitted.
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50

51 if(ipHeader_modified)
52 {
53 ip->check = 0;
54 ip->check = ip_csum ();
55 }

Listing III.3.1 OS deception kernel module

III.3.5.2 Service Fingerprint Module

In order to alter the service fingerprint, one should modify the banner sent by the application

either at the time of establishing a connection or in the header of each application-level

protocol data unit. Packets matching the service source port one wants to protect are

analyzed. If a packet contains data, the banner string is searched and subsequently replaced.

When replacing the banner, the packet size can vary: the packet is then resized according to

the specific case. Listing III.3.2 shows the sample pseudo-code for the case of an Apache

Server5.

1 #define FAKE_APACHE_BANNER "Apache /1.1.23"
2 ...
3 if (ntohs(tcph ->source) == 80 && len > 0)
4 {
5 // Pointers where to store the start and end address of the Apache Banner String

for substitution
6 char *b = NULL , *l = NULL;
7

8 // Pointer to the TCP payload
9 char *p= (char *)((char *)tcph+(uint)(tcph ->doff *4));

10

11 b = strstr(p, "\r\nServer:"); // String Search
12 if (b != NULL) l = strstr( ((char *)b + 10), "\r\n");
13

14 if (b != NULL && l != NULL)
15 {
16 //b points to \r\nServer: x, so we add 10 to move to the beginning of x
17 uint8_t signature_len = l - (b + 10);
18

19 if (signature_len != (sizeof(FAKE_APACHE_BANNER) -1))
20 {
21 resize_packet ();
22 }
23 copy(b + 10, FAKE_APACHE_BANNER ,sizeof(FAKE_APACHE_BANNER) -1);
24 }
25 ...
26 }

Listing III.3.2 Service deception kernel module

5For the sake of conciseness, the code for checksum recomputation is omitted.
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III.3.6 Evaluation

III.3.6.1 Legitimate User Perspective

In the first set of experiments, the approach is evaluated from the point of view of legitimate

users interacting with the system being defended. The goal is to make manipulation of

outgoing traffic completely transparent to users from both a functional and a performance

perspective. To this end, performance tests with the Apache Benchmark are run in order to

asses the server’s ability to process 20,000 requests, with a maximum of 200 simultaneous

active users. The results are shown in Figure III.3.7.
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Figure III.3.7 Apache Benchmark

The tests here performed involved different system configuration scenarios: (i) the

behavior of the system is not altered (Original); (ii) the kernel module to alter the OS

fingerprint and deceive only active fingerprinting tools is enabled (Sinfp3); (iii) the kernel

module to alter the service fingerprint is enabled (Apache); (iv) both modules from scenarios

(ii) and (iii) are enabled (Sinfp3+Apache); (v) the kernel module to alter the OS fingerprint

and deceive both active and passive fingerprinting tools is enabled (Sinfp3+p0f); and (vi)
both modules from scenarios (iii) and (v) are enabled.

The performance degradation for scenario (ii) is negligible, as only two packets need to

be altered for each connection. On the other hand, when the OS fingerprint kernel module

alters all the outgoing packets (scenario (v) above), there is a slight delay in the response time

due to the greater number of packets that need to be altered. When the Service Fingerprint

Kernel Module is enabled (scenario (iii) above), the response time increases due to the string

comparison operations performed to identify and replace the banner information. It is
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clear from Figure III.3.7 that the Service Fingerprint Kernel Module has the largest impact

on the performance of the system. However, even in the worst scenario, the performance

degradation is limited.
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Figure III.3.8 FTP Transfer Rate (500 MB file)

Using the same scenarios, also the overhead introduced by the kernel modules on large

data transfers has been tested. The evaluation consists in uploading a 500MB file to an FTP

server. Most packets will not be altered, but the if statements in the kernel modules need to

be evaluated, thus adding some overhead, which will eventually affect the net transfer rate.

Moreover, as it will discussed in Section III.3.6.3 some alteration may affect the protocol

performance. As one can see from Figure III.3.8, the more conditions need to be evaluated

the greater the effect on performance is going to be.

III.3.6.2 Attacker Perspective

In the second set of experiments, the approach is evaluated from the point of view of an

attacker trying to determine the operating system of a remote host or the type of services

running on it.
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Without Deception With Deception

Device Type General Purpose 85% General Purpose 65%

OS Ubuntu 12.04 85%6 Windows Vista 65%7

Info 13

15

60% True Positives;

13.33%: False Positives;

26.67%: Induced Info

Low 0 0

Medium 0 2 (100%: False Positives)

High 0 2 (100%: False Positives)

Critical 0 0

Table III.3.2 Results of Nessus scans

Nessus In order to test how the approach can deceive an attacker using Nessus, the system

has been audited with and without the deceptive Kernel Module enabled. Table III.3.2 shows

the results of the respective Nessus scans. The original system is a fully patched Ubuntu

12.04 server and has no known vulnerabilities. When no deception is used, the system is

correctly identified, and all the information derived by Nessus is accurate.

Next, both OS and service fingerprinting are deceived by exposing a Windows 7/Vista

OS fingerprint and an Apache 2.2.1 service fingerprint. When the deception mechanism

is enabled, the OS is misidentified accordingly. Moreover, deceiving service fingerprinting

leads to the false positives in the identification of vulnerabilities.

Fingerprinting Tools Table III.3.3 reports the results of scans performed with different

fingerprinting tools. As one can see, the approach is able to effectively deceive several

fingerprinting tools. For instance, it is able to alter the perception of the target system even

when the attacker uses either nmap or Xprobe++, which adopt a different probing scheme.

Unconventional Fingerprints By intelligently crafting responses to SinFP probes it is

possible to force attackers into misclassifying a remote host as any of a broad variety of

networked assets. For instance, a conventional Linux-based Server can be fingerprinted

as a network switch, an ADSL gateway or even a printer. Of course these unconventional

fingerprints will force the attackers to derive an inconsistent map of the target network:

it is really unlikely that a company web server is hosted on a Laserjet Printer. Even if one

6Method HTTP
7Method SinFP
8ID=0; Windows=1460;
9ID=0; Windows=1460; WScale = 2
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aaaaaaaa
Deception

Tool
Sinfp3 p0f nmap Xprobe++

None
Linux 3.0.x-3.2.x (94%)

Linux 2.4.x-2.6.x (73%)
Linux 3.x Linux 2.6.x-3.x Linux 2.4.19-28 (94%)

Windows Server

2008

Server 2008/Vista/7 (100%)

FreeBSD 7.0-9.0 (73%)
Windows 7/8 Unknown Linux 2.4.26 (78%)

Firewall Fortigate Firewall Fortigate 100%) Unknown Unknown Linux 2.4.23 (94%)

NetBSD 5.0.2 NetBSD 5.0.2 (98%) Unknown Unknown Linux 2.4.21 (92%)

Windows Server

2008 (Partial8)

Server 2008/Vista/7 (98%)

FreeBSD 7.0-9.0 (73%)
Windows 7/8 Unknown Linux 2.4.26 (81%)

Windows Server

2008 (Partial9)
Server 2008/Vista/7 (88%) Unknown Unknown Linux 2.4.14 (81%)

Table III.3.3 OS Fingerprinting Tools Deception

forces a consistent network map (think to the case of a network switch listening on the ssh

port) he/she may encounter some difficulties in being convincing. The problem is that most

of the fingerprinting tools does not have fingerprints for the same non-general-purpose

devices. In this case with unconventional fingerprints will be known for some tools and

unknown for others.

As an example, here is show how one can successfully create SinFP deceptions for different

network monitoring appliances, firewalls and printers. A partial SinFP output for the case of

an HP Officejet 7200 Printer is reported in Figure III.3.9, whereas Figure III.3.10 illustrates

the steps involved in forcing the attacker to believe that the target device is a printer.

...
score: 100: Printer: HP Officejet 7200
score: 100: Printer: HP Officejet Pro L7600
score: 73: Appliance: APC AP9319
...

Figure III.3.9 HP Officejet 7200 Printer

Firewall

DMZ

Sinfp3 Probes

Attacker

1

2

3Responses4

5 Sinfp3 Result

Figure III.3.10 SinFP Printer Deception
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III.3.6 Evaluation

III.3.6.3 Drawbacks

Altering some parameters of the TCP header can affect the connection performances, when

legitimate users actively use the protocol based on the modified parameters. In such cases,

the proposed mechanism is not completely transparent, and drawbacks include those listed

in the following.

Maximum Segment Size (MSS) This parameter defines the largest unit of data that can

be received by the destination of the TCP segment. Modifying this value makes the host to

announce a different limit for its capabilities. Consider two hosts hA and hB , where hB is

the host being altered. hA sends a SYN packet with an MSS of 1,460 and hB responds with

a SYN/ACK that has an MSS of 1,480. hA will not send any packets with a segment larger

than 1,480 bytes to hB . Note that hA is not required to send segments of exactly 1,480 but

it is required not to exceed this limit. For the same reason, it is not possible to advertise a

larger value than what hosts are able to handle.

Window and Windows Scale Factor These two parameters affect the TCP flow control,

which regulates the amount of data a source can send before receiving an acknowledgment

from the destination. A sliding window is used to make transmissions more efficient and

control the flow so that the destination is not overwhelmed with data. The TCP Window

scale factor is used to scale the window size by a power of 2. The window size may vary

during the data transfer while the scale factor is determined once at the time of establishing

a connection. Modifying the window size can alter the throughput: if the window is smaller

than the available bandwidth multiplied by the latency then the sender will send a full

window of data and then sit and wait for the receiver to acknowledge the data. This results

in lower performance.

Selective ACK Selective acknowledgment allows the sender to have a better idea of which

segments are actually lost and which have arrived out of order. If one disables the SACK

permitted option for a host that supports it, he/she may limit the performances depending

on the capabilities of the counterpart.
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CHAPTER III.4

Summary

In this part of the thesis, the adoption of security adaptation techniques has been discussed

for the case of CPS’s processing infrastructure and more in general for the case of networked

systems. With the aim of disrupting attacker’s effort to engineer effective attacks, a deception

mechanism has been presented. In Chapter III.2, the problem of disrupting an attacker’s

reconnaissance efforts has been looked from a control perspective and it has been proposed

a graph-based approach to manipulate the attacker’s view of a system’s attack surface. In

order to achieve this objective, the notion of system view and distance between views have

been formalized. Then it has been defined a principled approach to manipulate responses

to attacker’s probes so as to induce an external view of the system that satisfies certain

properties. In particular, it has been proposed an efficient algorithmic solutions to different

classes of problems, namely (i) inducing an external view that is at a minimum distance

from the internal view while minimizing the cost for the defender; (ii) inducing an external

view that maximizes the distance from the internal view, given an upper bound on the

admissible cost for the defender. Experiments conducted on a prototypal implementation

of the proposed algorithms have confirmed that the approach is efficient and effective in

steering the attackers away from critical resources. As part of future research plans, we

will further investigate the notion of distance between views, and will define analytical

approaches to quantify the uncertainty introduced for the attacker as well as the ability of

this approach to deceive attackers. It is possible that future works will try to address the

problem through game theory approaches.
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Basing on the proposed formalization, Chapter III.3 describes a solution to implement

the deception mechanism and designs a Linux kernel module able to alter system responses

to attacker’s probe. As all cyber attacks are typically preceded by a reconnaissance phase in

which attackers aim at collecting critical information about the target system, disrupting

this phase of an attack may be extremely effective in thwarting or at least delaying the attack.

Specifically, the aim of the presented solution is defeating operating system fingerprinting

and service fingerprinting, which are respectively used to determine the operating system

of a remote host and the type of services running on it. With respect to OS fingerprinting,

the approach consists in modifying outgoing traffic so that it resembles traffic generated

by a host with a different operating system. As for service fingerprinting, the approach

consists in modifying the service banner by intercepting packets before they leave the host

or network. Experiments, aimed at verifying the effectiveness of the approach, tested a

prototypal implementation against real reconnaissance tools used by attacker’s and have

shown that the approach is effective and introduces only a negligible overhead for defenders

and legitimate users. The principal difference between the proposed approach and state

of art solutions is the transparency. The legitimate user and the servers are not aware that

this security mechanism is in place and it does not require modification to the network

architecture or the adoption of software defined networks that is typical of moving target

defenses and adaptation techniques.
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Conclusion

This thesis described the advances to the state of art in the design of a secure Cyber-Physical

System with respect to three main contribution: (i) the proposal of a multiformalism model-

ing framework for the design and validation of large scale monitoring infrastructures, (ii)
the proposal and prototyping of new security mechanisms to protect both the software and

hardware of embedded nodes used to monitor physical processes, and (iii) an improve-

ment to the processing infrastructure security through the enforcement of defenses against

reconnaissance attacks.

As regards the definition of modelling approaches to design monitoring infrastructures,

a solution to the challenge of modelling and simulating large scale monitoring infrastruc-

tures has been proposed through the adoption of compositional and multiformal models.

This approach ability to scale and to provide the required amount of details has been shown

through examples validated with real world data and its advantage for designers has been

discussed in terms of how they are allowed to conduct what-if analysis and early measure-

ments in the design phase. The discussion specifically focused on the challenging case of

monitoring infrastructures deployed through wireless sensor embedded nodes. In this do-

main, the contribution of the proposed compositional and multiformal approach is twofold.

A comprehensive and detailed model of sensing infrastructure embedded node has been

presented: even if the architecture of the model is quite generic and can be adapted to

several kinds of nodes, it has been proven to be consistent to real world architectures by

comparing simulation results with real world measurements for both the cases of Strago

S.p.A. architecture and commercial TelosB. Moreover, it has been show that Markovian Agent

Model can be very useful in the detection of quality/reliability bottleneck of the network

and on the definition of proper and cost effective maintenance policies.
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As regards advances for in software and hardware security monitoring infrastructures,

the thesis prosed, prototyped and evaluated the adoption of novel security mechanisms.

Focusing on software level mechanisms, adaptation techniques have been exploited to

gain advantage of proactive security mechanisms. The idea behind these techniques is to

alter the system during its lifetime in order to introduce uncertainty for attackers and limit

vulnerability exposure. Adaptation Techniques have been proven effective in other context

of information technology but their adoption in a constrained resource domain, such as

embedded sensor nodes, have not been exhaustively investigated. This thesis proposed and

implemented a reconfiguration framework, specifically designed for embedded nodes, and

its evaluation proved its applicability and efficacy in the CPS’s monitoring infrastructure

context.

Focusing on hardware level security mechanisms, advances to embedded nodes physical

protection have been presented with regard to the implementation of a FPGA-based sensing

node architecture. The node architecture has been detailed and it has been shown how it

can provide secure primitives to asses the hardware and software integrity as well as offering

cryptographic operation allowing the implementation of trusted infrastructures. The main

component in the node architecture is the Trusted-Platform Module which can enforce a

chain of trust through the hardware and software of a node. Disrupting physical attacks

makes the injection of malicious traffic, as well as the information leakage, more difficult or

even unfeasible. Moreover, being able to trust a node computation and detect if it has been

tampered, improves the overall sensing network security.

Even though the monitoring infrastructure seems the weakest point due to not so ma-

ture technological solutions, advances are still to do in the protection of the processing

infrastructure. In the last Part, the thesis has addresses this challenge by analyzing how

adaptive techniques can be enforced to dynamically change aspects of a networked-system’s

configuration in order to introduce uncertainty for the attacker. Has it has been shown

also for the case of monitoring infrastructures, Adaptation Techniques can offer defenses

to different kind of attacks. As regards CPS’s processing infrastructure security, the thesis

focused on attacks aimed at discovering the processing infrastructure architecture and how

AT can disrupt reconnaissance attack targeting CPS’ back-ends. It has been proposed a

graph-based algorithmic solution to manipulate attacker’s view of processing systems. This

formalization has been then used to design and implement a deception based defense to de-

feating networked systems reconnaissance. Specifically, the aim of the presented solution is

defeating operating system fingerprinting and service fingerprinting, which are respectively

used to determine the operating system of a remote host and the type of services running on

it. With respect to OS fingerprinting, the approach consists in modifying outgoing traffic so

that it resembles traffic generated by a host with a different operating system. As for service

fingerprinting, the approach consists in modifying the service banner by intercepting pack-
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ets before they leave the host or network. Experiments have been discussed and verified the

effectiveness of the approach. A prototypal implementation of the defense mechanisms has

been enforced against real reconnaissance tools used by attacker’s and it has been shown

effective and able to introduce only a negligible overhead for defenders and legitimate users.

Future research effort will be focused on advancing the proposed hardware and software

prototypes to a higher level of engineering as well as evaluating the adoption of other

proactive security solution to defend cyber-physical systems.
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List of Acronyms

Abbreviations

ACD Adaptive Cyber Defense

ADC Analog to Digital Converter

AT Adaptation Techniques

CPS Cyber–physical systems

DevC Device Configuration

ECC Elliptic Curve Cryptography

FPGA Field-Programmable Gate Array

FSBL First Stage Boot Loader

MA Markovian Agent

MAM Markovian Agents Models

MCU Microcontroller

MSS Maximum Segment Size

MTD Moving Target Defense

OCM On-Chip Memory

OS Operating System

PCR Platform Configuration Register

PDR Packet Delivery Ratio

PL Programmable Logic (FPGA)

PS Processing System (FPGA)

SAN Stochastic Activity Network

SIREN SecurIty Reconfiguration for Embedded

Nodes

TCG Trusted Computing Group

TPM Trusted Platform Module

TTL Time To Live

WSN Wireless Sensor Network
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