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I am among those who think that science has 
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not only a technician: he is also a child 
placed before natural phenomena which 
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Abstract 
 
The common grapevine, Vitis vinifera subsp. sativa L. (2n=6x=38) is one of the major fruit 

crops worldwide in terms of economic value and cultivated area. In the panorama of Italian 

viticulture and oenology, Campania region is characterized by a rich biodiversity, which 

include a distinctive number of varieties including very ancient ones (more than one hundred 

years old). This biodiversity need to be preserved to protect producers and consumers from 

food frauds and on the counterpart is an essential genetic resource for breeding and grapevine 

exploitation. The recent complete sequencing of grape genome represents an essential step 

forward for structural and functional genomics studies. In this contest, one major objective 

was pursued, in the frame of the project SALVE (Safeguarding of the plant biodiversity of 

Campania) funded by Campania region, to investigate the molecular basis of Campania grape 

germplasm. Microsatellite and retrotransposon-based markers have been used in a large 

collection of 62 grapevines and homonymies and synonymies were found, reinforcing the 

knowledge that molecular evaluations can provide further insights into genetic structure and 

differentiation of Vitis germplasm accumulated during centuries of cultivation and selection. 

Indeed, Procidana and Coglionara are grapes cultivated and sampled on the Ischia Island and 

identified as synonymous in this study. In our effort, we were able to identify 19 grape-

specific alleles, which represent useful tools for many purposes such as traceability in 

germplasm, typicity preservation and varietal identification. Within the collection analyzed, 

Aglianico del Taburno is a model for astringency and the strong resveratrol content confer 

high positive nutriceutical properties to their grapes and wines. For this reason, a 

transcriptomic analysis of key genes of the phenyl-propanoid pathway was carried out in 

different tissues of the berry during the fruit maturation. This study was correlated with the 

chemical analysis of total phenols, flavans, anthocyanins and tannins detected in skin and 

berry using a spectrophotometric assay. Anthocyanin analysis revealed the highest amount of 

these molecules in ripening berry skin and the lowest in seed. Correlating the transcriptomic 

and chemical data, the key-genes able to control production of poly-phenolic compounds in 

berry tissues have been determined. Poly-phenolic compounds are key-molecules of 

grapevine defense and in particular of PTI (PAMP-Triggered Immunity). Indeed, they are 

produced as defense compounds after pathogen recognition. Nowadays, much has been 

written about defense mechanisms and chitin perception in Arabidopsis, but little is known in 

grapevine. Considering powdery mildew as the most destructive disease of grapevines world-

wide, an intense structural and functional study of PTI-involved grape genes has been 
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conducted. Grapevines are highly resistant to many the powdery mildew of other species, 

called non-adapted (e.g. E. cichoracearum). Using Arabidopsis as model species, we 

identified and functionally studied the grape genes involved in the perception of chitin in the 

epidermal cells apoplast, as LysM-RLK, and in the intracellular signal transduction. Our 

findings suggest that three candidates, VvLYK1, VvLYK2 and VvLYK3, can play a different 

role in chitin signaling in V. vinifera. We demonstrated that a total resistance to powdery 

mildew was re-established in the A. thaliana cerk1 mutant only by VvLYK1, but not by 

VvLYK2 and VvLYK3. Further experiments also suggested an inactive VvLYK2 gene and an 

active but unknown function of VvLYK3. Regarding the signal transduction pathways, we 

found VvMAPK3 and VvMAPK6 to be not involved in biotic response, since they both did not 

show expression differences in powdery mildew infection and chitin treatment time courses. 

The transcriptomic data generated in this study allowed us to identify VvWRKY24 as the 

positive regulation factor of grape defense to powdery mildew, but excluded VvWRKY16. 

Indeed, the VvWRKY24 had the strongest up-regulation in response to powdery mildew 

infection and chitin treatment. To better understand the possible interactions between two or 

more genes and regulatory mechanisms, an over-expression and silencing transformation in 

Shiraz have been conducted. The transformations conducted gave rise to few positive 

embryos after ten months from co-cultivation with Agrobacterium. This result is strictly 

correlated with the known recalcitrance of grapevine to transformation. As far as we know, 

this represents the first complete structural and functional genomics study in grapevine aimed 

to the identification of the major genes involved in chitin perception and signal transduction. 
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1. General introduction 
 
1.1 Origin and evolution of the cultivated grape, Vitis vinifera 
 

Grapevine (Vitis vinifera L.) represents one of the major crop species on a world-wide scale, 

with a world production approaching 67 million of tons (46.3% in Europe) and a harvested 

area of over 6.9 million hectars (Faostat, 2013). The cultivated grapevine belongs to the genus 

Vitis (2n = 38 chromosomes) or Muscadinia (2n = 40 chromosomes), within the family 

Vitaceae, which contains approximately 1000 species assigned to 17 genera. The etymology 

of the name Vitaceae comes from Latin (viere =to attach) and is referred to grapevine 

behavior as woody lianas able to climb with their leaf-opposed tendrils. The genus Vitis 

occurs predominantly in the temperate and subtropical climate zones of the Northern 

Hemisphere (Mullins et al., 1992; Wan et al., 2008). This genus probably comprises 60-70 

species (plus up to 30 fossil species and 15 doubtful species) spread mostly throughout Asia 

(~ 40 species) and North America (~ 20 species) (Alleweldt and Possingham, 1988; Wan et 

al., 2008). The genus is often divided into two major groups: the American group and the 

Eurasian group. The American group contains between 8 and 34 species, of which several 

have become economically important as wine or juice grapes, as Vitis labrusca, V. aestivalis, 

V. riparia, V. rupestris and V. berlandieri. The Eurasian group hold approximately 40 known 

species originated from different areas, like V. vinifera (origin in southern Caucasus), V. 

sylvestris (central Asia and Mediterranean region), V. amurensis (north-eastern China and 

Russian Siberia) and V. coignetiae (Japan). The Eurasian specie V. vinifera L. has become the 

world’s leading fruit crop grown in almost 90 countries for wine and juice production or as 

fresh table grapes or dried grapes (raisins) giving rise to the overwhelming majority of 

cultivated grape varieties. The origin of viticulture should be temporarily located along with 

the origin of agriculture, however the capacity of humans in transforming grape in wine, 

oenological sciences, have been proved recently with the discover of the oldest winery in the 

world (6,100-year-old), the Areni-1 winery. This archeological site was unearthed in 2007 in 

the Areni-1 cave complex in the village of Areni in the Vayots Dzor province of the Republic 

of Armenia by a team of Armenian and Irish archaeologists (Figure 1). This winery is 

geographically closed to the southern Caucasus, the site of origin of domesticated grapevines 

2000 years before.  
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Figure 1. Jars for fermentation found in the Areni-1 winery in 2007. 

After Caucasus and Georgia, other signs of the viti-viniculture itinerary have been discovered 

in Egypt, like seeds, jars and fermentation traces stored in the grave of the king Scorpion the 

First (3150 a.C). Other traces were the viticulture and winemaking scenes depicted on the 

walls of the private tombs from the Old Kingdom (2575-2150 BC) until the Graeco-Roman 

Period (332 BC-395), the scenes showing that the elaboration process was very similar to the 

traditional European method (Guasch-Jané, 2008). Figure 2 represents a scene of grape 

harvesting and wine making found in the tomb of Nakht at Sheikh Adb’l-Qurna, Western 

Thebes (The Irep en kemet project).  

	  
Figure 2. Viticulture and winemaking scene discovered in the tomb of Nakht at Sheikh Adb’l-Qurna, 
Western Thebes.  

Egyptians already had the habit of storing small jars for one or less liter of wine, labeled with 

the production region, year and winemaker. Historically, the Greeks have even been involved 

in the first appearance of wine in ancient Egypt and embraced the production aspect as a way 



	  
5	  

	  

to expand and create economic growth throughout the region. Greeks improved their 

knowledge about winemaking science and modified the oenological process increasing sugars 

(raisins) or decreasing acidity (anticipated harvesting). Greek wine was widely known and 

exported throughout the Mediterranean using amphorae with Greek styling and art. An 

immense impact on the development of viticulture and oenology was also given by the 

Roman Empire. In that time, wine was an integral part of the Roman diet and winemaking 

became a precise business. Essentially all of the major wine-producing regions of Western 

Europe today were established during the Roman Imperial era. 

The use of this crop from more than 8000 years until today generates a high biodiversity. To 

better understand and make order in grape diffusion and differentiation various terms have 

been developed, as varieties, cultivars, accessions, clones, biotypes and autochthonous 

varieties. Cultivated grapevines of sufficiently similar vegetative and reproductive appearance 

are usually called “grape varieties” by growers and “cultivars” by botanists. On the 

counterpart wild grapes are achieved in American and French catalogues, thought assignment 

of a unique identifier, called accession number; it means that wild species can be also called 

accessions. Because grapevines are heterozygous across a large number of chromosome 

positions or locus in their genomes, each seed may give rise to a cultivar with distinct 

characteristics (Thomas and Scott, 1993). For cultivar characterization, ampelography (Greek 

ampelos = vine, graphos = description), namely the study of the botanical description, 

identification, and classification of plants belonging to the genus Vitis, have been used for 

long time and is still essential for viticulturists. The advent of DNA fingerprinting has led to 

its adoption for the identification of selections in grape collections and is increasingly being 

used to uncover the historical origins and genetic relationships of grapevines. Today, an 

estimated 10,000 grape cultivars are being grown commercially, although DNA fingerprinting 

suggests that a more accurate figure may be approximately 5000 (This et al., 2006). Many 

cultivated grapes are closely related to one another, and many are known by several synonyms 

(different names for the same cultivar) or homonyms (identical name for different cultivars). 

Most current cultivars are not products of deliberate breeding efforts but are the results of 

continuous selection over many centuries of groups of grapevines that were spontaneously 

generated by mutation and intra-specific crosses via sexual reproduction and via somatic 

hybridization. It has been demonstrated that some genetic mutations affect important 

grapevine traits, as growth habit, leaf shape, disease resistance, cluster architecture, berry 

color, and other quality attributes (Bessis, 2007). For instance, dark-skinned (i.e., 

anthocyanin-accumulating) fruit is the “default” version in the Vitaceae, and it appears that 
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virtually all V. vinifera cultivars with green-yellow fruit (so called white cultivars) have a 

single common ancestor that arose from mutations of two neighboring genes of an original 

dark-fruited grapevine (Cadle-Davidson and Owens, 2008; This et al., 2007; Walker et al., 

2007). Due to vegetative propagation, some traits arise from somatic mutations rather than 

during sexual reproduction and may be propagated both vegetatively and by seeds and result 

in individual plants of the same cultivar having slightly different genotypes and sometimes 

phenotypes (Franks et al., 2002; This et al., 2006). This genotypic diversity, which 

accumulates over time, is termed clonal variation (Mullins et al., 1992; Riaz et al., 2002). 

Today, clones, also called biotypes, exist for most major grape cultivars, and their success is 

based on the ability of some clones to perform differently in diverse environments (terroir). 

The privileged position of the Italian territory in the Mediterranean area contributes to a 

various environment spread all over the peninsula. This Italian characteristic is the origin of a 

high range of vines and wines from table grapes to dessert wines which put Italy in pole 

position for grape production worldwide. In 2013 have been registered a production of 8.1 

millions of tons, an increasing of 2 millions of tons then 2012 (Faostat, 2013). The Italian 

viticulture is also characterized by the highest number of DOP (Protected Designation of 

Origin) and IGP (Protected Geographical Indication) varieties in Europe (Figure 3). Those 

acronyms were introduced in Italy in 1963 to protect the naming of wines' original locations 

and classify wine quality. According to the EU definition, DOP products are "produced, 

processed and prepared in a given geographical area, using recognized know-how". Their 

quality and properties are significantly or exclusively determined by their environment, in 

both natural and human factors. In Italy, the DOP wines can be sub-classified in DOC 

(Denominazione di Origine Controllata) and DOCG (Denominazione di Origine Controllata e 

Garantita). The EU definition of an IGP product is one closely linked to the geographical area 

in which it is produced, processed or prepared, and which has specific qualities attributable to 

that geographical area. For example, according to the regulating decree of 30 November 2011 

(Gazzetta del 20 dicembre 2011 nº 295), wines produced with Aglianico del Taburno grapes 

cultivated in one of the twelve areas of Benevento reported in the decree (Apollosa, Bonea, 

Campoli del Monte Taburno, Castelpoto, Foglianise, Montesarchio, Paupisi, Torrecuso, 

Ponte, Cautano, Vitulano and Tocco Caudio) can be sell as DOCG wines, on the counterparts 

if the same genotypes is grown in different Campania areas must be used only to make IGP 

wines. 
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Figure 3. Numbers of DOP and IGP wines registered in European countries. (Source: E-Bacchus). 

Each Italian region shows a variable collection of autochthonous cultivars. This term refers to 

grape varieties that are almost exclusively the result of natural cross-breeding in a particular 

growing area, and have a long history in that area; their best quality is given only in the local 

pedoclimactic conditions. Nowadays, autochthonous grape varieties are increasingly 

appreciated as true resources of a region and as the basis for unique wines reflecting their 

incomparable terroir. A map of peculiar DOC wines produced in Italy is reported in Figure 4. 

Most of them are entirely produced with regional autochthonous varieties. The only 

problematic correlated with Italian grape biodiversity is the correct classification and so 

preservation of these genetic resources. The scientific community is working hard to solve 

this problem using the available ampelographic and molecular tools and collecting the results 

obtained in free-access websites, as the Italian Vitis Data Base (http://www.Vitisdb.it/), the 

European Vitis Database (http://www.eu-Vitis.de/index.php) and the Vitis International 

Variety Catalogue (www.vivc.de/). 
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Figure 4. Italian wine map: per each region the name and berry color of DOC grape varieties is shown. A different 
region color indicates wine production (See Legend). Source: Wine Folly. 

 

 

 



	  
9	  

	  

1.2 V. vinifera reproductive biology 
 

Grapevines grown from seeds, like other woody perennials, have a vegetative phase of several 

years before they reach their reproductive phase and become able to produce fruit. By 

contrast, vines grown from cuttings are able to fruit in the first growing season under optimal 

conditions. Perennial woody species require two consecutive growing seasons for flower and 

fruit production because buds formed in the first year give rise to shoots carrying fruit in the 

second year. Reproductive growth is very similar in the different Vitis species and begins with 

flower formation, which can be divided in inflorescence induction, flower initiation and 

flower differentiation. During this stage, the formation of inflorescence and flower meristems 

are seasonally separated, respectively summer-fall-winter and spring. Approximately two 

weeks after the formation of ovules and five to ten weeks after bud-break, anthesis marks the 

beginning of bloom, exposing the male and female floral organs for pollination. In contrast to 

their wild relatives and the few cultivars with female flowers, cultivated grapevines are 

typically self-pollinated, whereby pollen originates from the flower’s own anthers. The pollen 

grains absorb water from the moist stigma, germinate and form a pollen tube, which carries 

two fused sperm cells. Those cells penetrate the stigma and deliver its package of 

chromosomes into the egg inside the ovule for double fertilization. The resulting diploid 

embryo and (initially) triploid endosperm together form the daughter generation, whereas all 

other berry tissues are part of the maternal plant. After pollination, the fruit start development 

from berry set stage until maturation. The harvested fruits are mature berries showing a 

heterogeneous color in the fruit cluster, usually white, pink or black. For a visualization of the 

phenological stages described below bud swelling, bud opening, inflorescence, flower and 

fruit development of a white berry variety are represented in Figure 5. 

	  
Figure 5. Grapevine phenological stages. (Source: the SQM Company) 
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These biological bases of grape breeding are still under investigations to speed up the 

acquisition of new biological information and improve experimental approaches. As genetic 

system, grapevine is not easy as Arabidopsis or rice; it requires large growing facilities and 

experimental fields and their generation time varies between two and five years depending on 

genotype and growing conditions. In addition, grapevine genotypes are highly heterozygous 

and the relevance of near-homozygous lines was not considered till recently because of the 

need to generate a high quality reference sequence (Jaillon et al., 2007) as well as more 

efficient genetic systems (Boss and Thomas, 2002). 

 

1.3 Grapevine breeding and management in the –omics era 

 
The today -omics sciences’ knowledge about Vitis sp. can incredibly speed up grape breeding 

programs, which have been started along with the origin of viticulture. Indeed, the first form 

of breeding put down roots with the natural and human selection of wild species and their 

domestication, and evolved in breeding programs focused on development of a new variety. 

The breeder’s ideotype can be different, but in sensu largo in grape is a clone, a grapevine or a 

rootstock carrying desirable traits, as better quality, higher yield or greater resistance to biotic 

or abiotic stress. V. vinifera is a dioecious allogamous obligate specie highly eterozygous. The 

self-fertilization is not contemplated due to inbreeding depression inducing sterile hybrids in 

the F2 or F3 generation. The best breeding program in grape is the backcross with a parent to 

maintain a high level of heterozygosity. In the past, different strategies have been tested on 

grape especially in the post-phylloxera era (after 1860) to obtain a resistant hybrid able to 

produce a good quality wine, but breeders are still working on it. 

The vegetative breeding is based on clonal or mass selection (either positive or negative) of 

clones carrying genic or chromosome mutations. In this case the mutations are generated 

artificially or naturally in buds apical cells and can structurally be classified in global or 

chimerical. The global mutations occur in all dividing cells, while chimerical ones occur in 

one or few cells of the apical meristems giving rise to a mutant sector. Chimeras are of several 

types, mericlinal, sectorial or periclinal, but the last one is of some interest in viticulture. In a 

periclinal chimera, mutation is restricted to derivatives of the L1 histogenic layer and such 

plants can show mutations in different tissues. An example of periclinal mutations in grape is 

seen in the cultivars Pinot meunier, Pinot blanc and Pinot gris (Figure 6). They are all mutant 

of Pinot noir, the Pinot blanc and Pinot gris show variations in berry colors, while Pinot 



	  
11	  

	  

meunier is distinguishable in having tomentose (densely covered with trichomes) shoot tips 

and expanding leaves (Skene et al., 1983).  

 
Figure 6. Leaves and clusters of three periclinal mutants of Pinot noir: Pinot Meunier, Pinot Gris and Pinot Blanc. 

Other examples can be reported in Malvasia Rosa, the pink berry colored Malvasia di Candia 

aromatica, in Concord apirena, the seedless version of Concord and Early Cardinal, the 

Cardinal grape with an earlier berry ripening. These kinds of mutations are correlated to 

single gene or multiple genes, also called chromosomal mutations. Classic examples of 

polygenic mutations are Muscat Cannon Hall and Leopold III, which are tetraploid genotypes 

of Zibibbo (Moscato di Alessandria) and Alphonse Lavallée, respectively.  

Cross-breeding is the most common and longer used breeding method in plants. In grapevine, 

various intraspecific hybridization programs (cross between varieties of the same species) 

have been carried out worldwide getting new genotypes still used in viticulture. Few 

examples of genotypes obtained using different cross strategies are reports: 

~ Simple cross (A x B):  

- Italia obtained from Bicane x Moscato d’Amburgo (table grape, Alberto 

Pirovano, 1911); 

- Ruby Cabernet obtained from Carignane x Cabernet Sauvignon (wine 

grape, Dr Harold Olmo, 1936); 

- Cardinal is a cross of the Flame Seedless (or Flame Tokay) and Ribier 

(table grape, Snyder and Harmon, 1939); 

- Incrocio Manzoni 6.0.13 or Manzoni bianco obtained from Riesling nano x 

Pinot blanc (wine grape, Luigi Manzoni, 1930). 
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~ Complex cross (A x B) x C: 

- Carnelian and Centurion cross of (Carignan x Cabernet Sauvignon) x 

Grenache (wine grape, Dr Harold Olmo, 1972 and 1975); 

- Gloria cross-developed at the Geilweilerhof Institute, Germany between 

Silvaner x Müller-Thurgau. 

~ Complex cross (A x B) x (C x D): 

- Bacchus cross between (Sylvaner x Riesling renano) x Müller-Thurgau 

(wine grape, Peter Mori, 1933); 

- Matilde cross between Italia and Cardinal (table grape, Paolo Manzo, 

1962). 

~ Backcross (A x B) x A or (A x B) x B: 

- Mariensteiner obtained from (Silvaner x Riesling) x Riesling (wine grape 

Wurtzberg Institute, Germany, 1971). 

 

The cross-breeding was intensively increased by French scientists, nurserymen and 

winegrowers in the last half of the 19th century when phylloxera and American fungal 

diseases began to decimate the vineyards of France and later those of all grape growing 

European countries. Governmental programs were initiated in France to import germplasm 

from America and to initiate breeding programs to combine fungus- and phylloxera resistance 

with the high wine quality of V. vinifera (Alleweldt and Possingham, 1987). These efforts 

proved to be partially successful as dying vineyards were gradually replanted with hybrids of 

French and American Vitis species and with V. vinifera cultivars grafted on to phylloxera-

tolerant rootstocks. Today, the original own-rooted grape vineyards have largely been 

replaced by grafted vines Therefore, at the beginning of XX century, grafted vines were more 

expensive and needed more fields work. For this reason various interspecific breeding 

programs were developed. The first products were the ‘direct producers’ hybrids (DPH), 

plants coming from the inter-specific cross between phylloxera-resistant American plants, and 

the European one, being able to directly produce grapes for juice (Galet, 1998). Othello is a 

hybrid obtained from Clinton (V. labrusca x V. riparia) x Black Hamburg, that was used in 

post-phylloxera fields. The general condemnation of interspecific hybrids was due to 

sensitiveness to European limy soil, inadequate resistance to phylloxera and primarily 

undesirable flavor compounds introduced from American Vitis species. The DPH wines were 

unfamiliar and were not widely accepted, although these hybrids were cultivated on more than 

400 000 h, due to their high productivity. In 1934 and in 1955 all these hybrids were 
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prohibited in France. This led to a drastic change of strategy in France resulting in the use of 

Muscadinia since 1975 (Bouquet, 1980; Merdinoglu et al., 2003). 

In the last decades, biotechnologies and genetic engineering offer scientists an incredible 

amount of information and new techniques useful for breeding improvement. Plant 

protoplasts (naked plant cells lacking cell walls) are valuable tools for somatic hybridization 

by protoplast fusion, and genetic transformation allowing the introduction of DNA or viruses 

into grapevine plant cells by either electroporation (Valat et al., 2006) or polyethylene glycol 

(PEG) treatment (Jardak-Jamoussi et al., 2002). Compared to other plants, grapevine 

protoplasts are recalcitrant to propagation and regeneration possibly due to special features of 

oxidative metabolism (Papadakis et al., 2005). Transient transformation of grapevine 

protoplasts was reported by Jardak-Jamoussi et al. (2002) who incubated protoplasts in the 

presence of PEG and the plasmid pB1426 carrying the uidA and nptII genes, but no 

transformed tissues or organ were regenerated. Plants regeneration from grapevine protoplasts 

has been reported only once using embryogenic cultures as donor tissue (Reustle et al., 1995; 

Bouquet et al., 2008). Another suitable tissue for genetic transformations approaches is given 

by undifferentiated cell suspensions (Torregrosa et al., 2002). However, stable transformation 

can be difficult to induce in both tissues due to regeneration recalcitrance. Direct organ 

transient transformation could be an alternative technique to avoid protoplasts or cell 

suspensions. The most promising methods of plant transient expression use Virus-induced 

Gene Silencing (VIGS) for repressing a gene (Robertson, 2004) or over expressing a gene 

using agro infiltration (Kampila et al., 1997). These methods have been investigated in 

grapevine, but not any protocols have been published. 

Genetic engineering of grapevine is based on two limiting factors: the complexity of the 

grapevine transformation procedure and the low transformation efficiency. Therefore, detailed 

protocols have been published by Kikkert et al. (2005) for biolistic transformation and by 

Bouquet et al. (2006) for Agrobacterium mediated transformation. This protocol have been 

also used from Chaïb and collaborators (2010) to check the efficiency of a new breeding 

system based on two grape Vvgai1 mutants, the microvines with reduced stature 

(VvGAI1/Vvgai1) and picovines of very small stature (Vvgai1/Vvgai1) (Figure 7). 
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Figure 7. From left to right, phenotypes of picovine (Vvgai1/Vvgai1), microvine 

(VvGAI1/Vvgai1) and wild-type (VvGAI1/VvGAI1) young plants. 
 

The Vvgai1 mutant allele confers a dwarf stature, short generation cycles and continuous 

flowering. In a hypothetical breeding programm, the picovine genotype can be crossed with a 

Vitis spp. accelerating the strategy from two years to six months. Furthermore, 50% of F1 

generation is immediately selectable due to them small size. The microvine is a step forward 

in molecular breeding providing a model system for rapid genetic studies of grapevine by 

changing the perennial long life cycle of the plant to one with features and advantages similar 

to an annual plant. 

The molecular approaches are also essential for internationally accepted grapevine 

identification and to investigate the genetic inter- and intra-varietal variability (Meneghetti et 

al., 2012). Different molecular markers have been used on V. vinifera in several studies to 

distinguish among cultivars and clones, such as random amplified polymorphic DNA (Herrera 

et al., 2002; Karatas et al., 2010), inter-microsatellites (ISSR) (Tamhankar et al., 2008), 

single nucleotide polymorphism (SNP) (Owens et al., 2003, Troggio et al., 2007, 2008), 

specific sequence amplified polymorphism (S-SAP) (Labra et al., 2004), inter-retrotransposon 

amplified polymorphism (IRAP) and retrotransposone microsatellite amplified polymorphism 

(Pelsey et al., 2002; D’Onofrio et al., 2009), methylsensitive amplified length polymorphism 

(M-SAP) (Imazio et al., 2002), chloroplast DNA polymorphisms (Arroy-Garcia et al., 2006; 

Hunt et al. 2010), S-SAP (Wegscheider et al., 2009), single-strand conformation 

polymorphism (SSCP) (Degirmenci Karatab et al., 2010). Among all the marker used, 

microsatellites or Simple Sequence Repeat (SSR) markers, have become molecular markers 
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of choice, since they offer some advantages over the other molecular markers, including 

codominant inheritance, hypervariability, and high cross-species transferability. Once they 

have been developed, they are easy to use and the data can be readily compared among 

laboratories. Additionally, since the pioneering work of Thomas et al. (1994), many studies 

based on the inheritance of highly polymorphic nuclear microsatellite (nSSR) markers have 

been performed to identify misnaming and clarify the parentage of several cultivars (Sefc et 

al., 2009; Maul et al., 2012). SSR markers are useful to detect cultivar pedigree. A peculiar 

example of incorrect pedigree documentation is the case of Müller-Thurgau, also called 

Riesling-Sylvaner. The cultivar was believed to originate from a cross, which Prof. Hermann 

Müller, born in the Thurgau province in Switzerland, carried out around 1890 between 

Riesling and Sylvaner. However, SSR studies confirmed Rielsing as a parent, but showed that 

Sylvaner is not related to Müller-Thurgau (Sefc et al., 1998; Thomas et al., 1994). Dettweiler 

and collaborators (2000) identified Madeleine Royal as the real parent of this hybrid. Another 

useful class of markers is single nucleotide polymorphisms (SNP). Myles et al. (2011) 

demonstrated that SNPs are powerful tools for confirmation or invalidation of some breeders’ 

data and uncovering parentages for traditional cultivars.  

As previously introduced, large grapevine collections are available especially in Europe 

(http://www.bioversityinternational.org/). The correct administration of these collections is 

the starting point to exploit grape genetic resources and to identify certain genotypes 

conferring interesting traits for breeding. The difficulties in management of large size 

collections (M-core) imply the identification of genetic core collections (G-cores) able to 

represent with a minimum of repetitiveness, the genetic diversity of a crop species and its 

wild relatives (Frankel, 1984). In grapevine various G-cores have been developed using 

molecular markers (Cabezas et al., 2011; Emanuelli et al., 2013; Le Cunff et al. 2008). Le 

Cunff et al. (2008) analyzed 2.262 unique genotypes with 20 SSR markers to construct 

genetic core collections. Subsets of 92 cultivars represent 100% of total SSR diversity and 

most single nucleotide polymorphism (SNP) diversity in three reference genes. Thus, the 

approach showed clearly that core collections can effectively be used for SNP discovery and 

are representative of the whole collection (Le Cunff et al., 2008). Another demonstration of 

usefulness of G-cores was carried out from Emanuelli and his collaborators (2013), who 

investigated 22 SSR loci and 384 SNPs in 2273 in 2273 accessions of domesticated grapevine 

V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, inter-specific hybrid 

cultivars and rootstocks. G-cores with 58 (362 alleles) and 110 (plus 52 rare alleles) 

individuals were developed using the M-method not the random sampling. These results 
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showed that only a small number of accessions are needed to retain the most frequent alleles 

as well as the whole allelic diversity (8% and 15% of cultivated grapevines in G-58 and G-

110, respectively). The high level of heterozygosity in grapevine leads the capture of all the 

genetic diversity with such a small number of individuals. Nowadays, SNP genotyping 

platforms based on BeadArray technology (Illumina, San Diego, CA, USA), GeneChip 

(Affymetrix, Santa Clara, CA, USA) and SNPlex™ genotyping system (Applied Biosystems, 

Foster City, CA, USA) are available resulting flexible systems that allow for wide 

combinations of numbers of SNPs to be simultaneously interrogated (from 48 to hundreds of 

thousands) (Di Gaspero and Cattonaro, 2010). Those types of platforms and the molecular 

marker technologies represent a peculiar step forward in high-throughput genotyping (HT-

genotyping), which is generally coupled with high-throughput phenotyping (HT-phenotyping) 

in breeding programs. Recent advances in next-generation sequencing (NGS) and HT-

genotyping promise a substantial acceleration of the breeding process. In Figure 8 is reported 

a schematic representation of a grapevine breeding program to introduce disease resistances 

using traditional and Marker-assisted (MAS) selection. The first year after the breeding, the 

susceptible genotypes are removed and the selected plants are transferred in vineyards. The 

development of a new cultivar can be carried out in 25-30 years with classical breeding and in 

10-15 years with MAS selection. A reduction of the breeding time of up to 10 years is 

conceivable using MAS, which can be used to make decisions earlier and perform targeted 

backcross breeding programs by marker-assisted backcrossing (MABC).  

 
Figure 8. Comparison of the schedule of selection steps in a breeding program using classical breeding 
and MAS. The number of plants generated is reported under the black arrows. 
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Those breeding procedures can be facilitated and revolutionized through whole-genome 

strategies, which utilize full genome sequencing and genome-wide molecular markers to 

effectively address various genomic factors through a representative or complete set of 

genetic resources. Breeding will greatly benefit from the growing amount of information that 

genomics, physiology and biochemistry will convey to grapevine. Modern biotechnology has 

advanced to the point where the development of highly reproducible genetic engineering 

protocols now allows the identification and screening of grapevine-derived genes for 

introducing desirable traits, particularly disease resistance. 

 

1.4 Grapevine and its genome 
 

The availability of the complete genome offered new possibilities for grape cultivars 

characterization through assessment of molecular markers, which can help answering 

questions about grape diversity, evolution and domestication events. Understanding the 

genetic and molecular basis of existent natural genetic variation within the genus Vitis will 

provide the information and tools for the genetic improvement required to cope with new 

threats (e.g. new pathogens or pests) while maintaining specific berry composition (Martinez-

Zapatero et al., 2010). Fortunately, this challenge has currently been met by a set of new 

opportunities that derive from the rapid development of molecular biology technologies and 

their application to grapevine and other interacting organisms. As a consequence, in the last 

decade, there has been a rapid increase in the genomic resources that are available for 

grapevine research (This et al., 2006; Troggio et al. 2007). On August, 26th 2006 a great step 

forward in grapevine biology was achieved through the publication of the first draft of the 

grapevine genome by the French-Italian Consortium (Jaillon et al., 2007), followed a few 

months later, by the publication of a second genome draft by the Institute of S. Michele all’ 

Adige (Velasco et al., 2007). The sequencing of the grapevine genome represented the fourth 

genome of the flowering plants, the second one among wood plants and the first one 

concerning fruit producing plants. The French-Italian sequencing was obtained by the 

selection of the PN40024 line, a particular clone characterised by a high degree of 

homozygosity (approximately 84%) and obtained through multiple auto-fecundation cycles in 

order to by-pass the high heterozygosis that characterise grapevine. The 475 Mb genome is 

organized in 19 chromosomes and 26.346 gene predictions have been identified. The genome 

sequence obtained by the ENTAV 115 clone, which is the Pinot noir line used by IASMA for 

their sequencing, is slightly larger, with a size for the haploid genome estimated at 504.6 Mb 
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and a total number of 29.585 gene predictions 

(http://genomics.research.iasma.it/gb2/gbrowse/grape).The genome available on line has been 

updated recently from an 8X to a 12X coverage of the genome sequence and a 12X assembly 

(www.genoscope.cns.fr/esterne/GenomeBrowser/Vitis). The gene structure predictions of 8X 

and 12X assemblies contain different types of subsequence predictions, including genes, 

mRNAs, UTRs, introns, exons, and inter-genic sequences. For the 8X genomic sequence the 

methods for gene prediction were edited using the GAZE software (Jaillon et al., 2007). For 

the 12X prediction two versions are available the 12Xv0 version, performed with the GAZE 

software by the Genoscope in Evry, France, and the 12Xv1 version, which is the result of the 

union of v0 and a gene prediction performed with JIGSAW software at the CRIBI in Padova, 

Italy (Forcato C., 2010). The v1 prediction is available at http://genomes.cribi.unipd.it/ and 

was used to design the latest available gene expression microarray for grapevine, based on 

NimbleGen technology, which is the whole-genome array for grapevine. 40% of grape 

genome composition is made up of transposable elements (TEs), mostly localized within 

intronic spaces. Looking at proteome, grapevine shows an expansion of gene families with 

aromatic features. In particular, stilbene synthase and terpene synthase families show an 

higher gene copy number than in other species. Those gene families are involved in synthesis 

of resveratrol, known for the beneficial effects on human health and terpenes, components of 

resins and aromas, respectively. Furthermore, a high number of resistance genes have been 

identified. The resulting proteins contain a nucleotide binding site (NBS) and a leucine-rich 

repeat (LRR) responsible for recognition specificity. They are organized in clusters and their 

heterogeneity seems to function in genome evolution as the basic material for the generation 

of new resistance specificities (Velasco et al., 2007). 

 

1.5 Resistance and susceptible traits to European grapevine disease 
 

One of most important challenges in plant breeding is improving resistance to diseases that 

threaten grapevine worldwide. The ever-growing world population, changing pathogen 

populations and fungicide resistance issues have increased the urgency of this task. The 

severity of diseases depends on weather conditions (it can varies from year to year), on the 

presence of inoculum (history of the disease) and on the susceptibility of the vines. This 

means that a disease can be devastating one year and insignificant the next. Grapes are a crop 

susceptible to many diseases; however, the degree of susceptibility varies depending on the 

variety and on the disease. The major grape diseases in Europe are downy mildew 
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(Plasmopara viticola Berk.), powdery mildew (E. necator), grey mold (Botrytis cinerea 

Pers.), anthracnose (Elsinoe ampelina), fruit rot (Rhizopus stolonifer Ehrenb. Fr. Lind) and 

crown gall (Agrobacterium tumefaciens). Downy mildew, powdery mildew, grey mould, fruit 

rot and anthracnose are caused by fungi that attack the berries, reducing yield and quality. 

Crown gall is caused by a bacterium and can kill the plant. Also insects can be very dangerous 

for grape, an example is the grape phylloxera (Daktulosphaira vitifoliae) incurable in Europe. 

For an effective pest management program the first step is the correct identification of the 

disease. One of the most important fungal diseases in viticulture worldwide is powdery 

mildew, caused by the ascomycete Uncinula necator (syn. E. necator), an obligate biotrophic 

parasite. Symptoms appear as greyish powdery or dusty patches of fungus growth on the 

upper side of the leaves and on other green parts of the vines, leading to a decrease in 

photosynthetic activity. In infected clusters, berries turn hard, brown, are smaller than 

uninfected ones, and may split open. Besides direct loss of yield, infected berries fail to 

properly mature and significantly alter wine quality (Calonnec et al. 2004). Almost no V. 

vinifera cultivar is immune to U. necator, but other grapevine species such as V. labrusca, V. 

aestivalis or V. berlandieri as well as Muscadinia rotundifolia possess various levels of 

resistance (Mullins et al. 1992). In order to introduce resistances into the gene pool of V. 

vinifera various resistance traits have been investigated. Breeders generated F1-plants, the 

‘direct producers’ hybrids (DPH), by inter-specific crosses, but the hybrids resulted with poor 

and unacceptable wine quality. The increasing knowledge about molecular markers and the 

availability of grape genome enable the marker-assisted selection (MAS), introgression and 

pyramiding of resistance loci throughout the breeding process. The starting points is the 

positional cloning based on available genetic maps with tightly linked markers for important 

trait loci, mostly resistance genes. Nowadays, a wide range of relevant traits have been 

identified and mapped along the 19 chromosomes. In table 1 all the resistance loci discovered 

in grape cultivars are reported together with associated markers, chromosomal localization 

and references (Adam-Blondon et al., 2011).  
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Table 1. List of the resistance loci discovered in grape cultivars. Per each locus, name, resistance trait, associated 
marker name and position in the genome and reference are reported. 

Name Resistance trait Associated marker Genome Position 
[Chr/Mb] Reference 

PdR1 Pierce’s disease VMCNg3h8; VVln64; 
UDV095 

14/25.3; 14/26.6; 
14/26.1 Riaz et al., 2006; 2008 

Rdv1 D. vitifoliae Gf139; VMC8e6 13/21.9; 13/22.5 Zhang et al., 2009 
Rpv1 P. viticola VMC72; VVIb32 12/-; 12/10.3 Merdinoglu et al., 2003 
Rpv3 P. viticola UDV112; VVIn16 18/-; 18/23.4 Welter et al., 2007 
Rpv4 P. viticola VMC7h3; VMCNg2e2.1 4/4.7; 4/5.2 Welter et al., 2007 

Ren1 E. necator UDV-020; VMC9h4-2; 
VMCNg4e10-1 13/-; 13/18.4; 13/18.4 Hoffman et al., 2008 

Ren3 E. necator UDV15b; Vvlv67 15/7.1; 15/10.9 Welter et al., 2007 
Run1 E. necator VMC8g9; VMC4f3.1 12/20.4; 12/13.1 Barker et al, 2005 
sdI Seedlessness VMC7f2; VMC6f11 18/26.9; 18/23.2 Cabezas et al., 2006 

 

To date, there are few examples of single dominant R genes that have proven to be durable in 

the field, one of them is the Run1 locus. Indeed, Run1 seems to be effective against all 

powdery mildew isolates in France and Australia. However, this may be caused by the 

combined action of more than one R gene located at the Run1 locus, that was obtained from 

M. rotundifolia cultivar G52, a cross between the two M. rotundifolia cultivars Thomas and 

Hope (Detjen, 1919). If both cultivars have contributed different R genes to the Run1 locus, it 

remains to be determined whether they would provide resistance to different powdery mildew 

isolates. On the other hand, if the powdery mildew resistance at the Run1 locus is only 

conferred by a single R gene then this has important implications for the deployment of this 

resistance gene within the vineyard (Dry et al., 2010). 

An alternative strategy to pathogens resistance is the re-establishing of the basal immunity as 

in the case of non-adapted species unable to suppress basal immune responses failing to enter 

the epidermal cell. An example is given in the case of V. vinifera cv. Cabernet Sauvignon, in 

which inoculations with the adapted powdery mildew species E. necator results in rates of 

successful penetration (as determined by the presence of haustoria in epidermal cells) of over 

90% within 48 h, whereas inoculation with the non-adapted cucurbit powdery mildew species 

E. cichoracearum under the same conditions, results in rates of successful penetration of < 

15% (Feechan et al., 2013). In modern resistance breeding, effectors are emerging as tools to 

accelerate and improve the identification, functional characterization, and deployment of 

resistance genes. Since genome-wide catalogues of effectors have become available for 
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various pathogens. Effector-assisted breeding has been shown to be successful for various 

crops and the “effectoromics” has contributed to classical resistance breeding as well as for 

genetically modified approaches. 

Another class of gene involved in powdery mildew resistance have been considered after the 

first tests in barley, the susceptible genes, in particular the MILDEW RESISTANCE LOCUS 

O (mlo) locus. The Mlo proteins mediate powdery mildew susceptibility in the model plant 

species Arabidopsis and the crop plants barley and tomato. This mlo locus is recessive and 

differs from race-specific incompatibility to single pathogen strains because it confers a broad 

spectrum resistance to almost all known isolates of the fungal pathogen, the mlo resistance 

alleles have been obtained by mutagen treatment of any tested barley susceptible wild-type 

(Mlo) variety, and the resistance is apparently durable in the field despite extensive cultivation 

in Europe (Büschges et al., 1997). In grapevine, three members of the Mlo family (VvMLO3, 

VvMLO4 and VvMLO17), which are Arabidopsis orthologous were found to be specifically 

induced at the transcriptional level during infection by grapevine powdery mildew (Feechan 

et al., 2008), suggesting that these VvMLO proteins may have a role in modulating antifungal 

defense responses in grapevine. However, the mechanism by which mlo suppresses PTI to 

facilitate penetration of adapted powdery mildew species on selected plant hosts is still not 

understood (Feechan et al., 2013). 
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Chapter 2 

 
Grapevine biodiversity in Campania region: its investigation 

through molecular and transcriptomic markers 
 

2.1 Introduction 
The common grapevine, Vitis vinifera subsp. sativa L. (2n=6x=38) is one of the major fruit 

crops worldwide in terms of economic value and cultivated area. Literal, archaeological and 

paleo-botanical resources have been essential tools to understand the spreading of viticulture 

in Europe and in particular in Italy and France, starting from the Caucasian area (Ergul et al., 

2011). Nowadays, more than 450 varieties are registered in Italy (Mipaaf, 2012), with some 

grapevines being cultivated only in Campania region (Southern Italy). In the panorama of 

Italian viticulture and oenology, Campania region is characterized by a distinctive number of 

ecotypes and ancient grapes (more than one hundred years old). This peculiar condition is the 

consequence of historical, social, geographical and cultural elements, such as the region 

orography, the fragmentation of land tenures, the soil volcanic origin and the traditional 

cutting asexual propagation coupled with cultivation of different varieties in a single vineyard. 

These aspects make the Campania grapes some of the world’s finest wines, characterized by a 

particularly heterogeneous collection of varieties, some of which have been growing here 

since the first half of the 19th century. This biodiversity includes registered varieties, ancient 

grapes and autochthonous biotypes carefully preserved from genetic erosion and particularly 

useful as genetic resources in breeding programs. Using the National Register of Varieties 

(Mipaaf, 2012), the varieties registered in Campania have been reported in Table 1 along with 

their berry color, synonymous and number of registered clones. 

Table 1. Grapevine varieties registered in Campania region. For each grapevine 
name, berry color, synonymous and number of clones registered are reported. 

Variety Berry color Synonymous # registered 
clones 

Aglianico Black Glianica, Glianico, Ellenica, 
Ellenico 19 

Aglianicone Black - 0 
Asprinio White - 0 
Bellone White - 0 
Biancolella White Janculillo, Janculella 0 
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Bombino Nero Black Bombino, Bonvino 1 
Bombino Bianco White Ottenese, Bombino, Bonvino 3 
Casavecchia Black - 0 
Catalanesca White - 0 
Cesanese Black Cesanese Comune 1 
Ciliegiolo Black Morettone 4 
Coda di Volpe White - 0 
Falanghina White - 3 
Fiano White - 6 
Forastera White Forestiera, Furastiera 0 
Ginestra White - 0 
Greco White - 6 

Greco Nero Black Greco, Maglioccone, Gregu 
Nieddu 4 

Guarnaccia White - 0 
Malvasia Black Malvasier, Roter Malvasier 0 
Malvasia White Verdana, Iuvarella, Malvasia 1 
Montonico White Muontonico, Mantonico 1 
Olivella nera Black - 0 
Pallagrello 
bianco White - 0 

Pallagrello nero Black - 0 
Pepella White - 0 

Piedirosso Black 
Piede di Colombo, Piede di 
palumbo, Per E palummo, 
palombina 

4 

Procanico White   
S.Lunardo White Don Lunardo 0 
Sciascinoso Black - 0 
Verdeca White Pampanuto 3 

 

In a large panorama of genotypes, an efficient characterization system is important to avoid 

cases of synonymy (identical genotypes but different names) and homonymy (same names but 

different genotypes), to definite population structures, trace plant products and protect 

breeders’ rights. The oldest grape discrimination technique is the ampelography (Aµπελος, 

“vine” and γραφος, “writing”), which is the science of phenotypically distinguishing 

grapevines. The authoritative ampelographic reference is the Précis d’Ampélographie 

Pratique (Galet, 1952), translated into English as A Practical Ampelography: Grapevine 

Identification (Galet, 1979), which features leaves, fruits and other traits for most 

domesticated and many wild vines. This technique can result elaborate and time-consuming. 

Moreover, it has been reported that morphological characterization is often inaccurate for the 

discrimination of closely related cultivars because of confounding environmental and 

developmental factors and control by epistatic and pleiotropic gene effects (Dodig et al., 
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2010; López et al., 2009) In contrast, DNA based molecular markers can overcome many of 

the limitations of phenotypic-based diversity analysis and provide a more direct measure of 

genetic variability (Gutpa et al., 1999). Among the most interesting markers used for this 

purpose, the microsatellites (simple sequence repeats, SSR) are popular for their 

reproducibility, co-dominant nature, polymorphism, hyper-variability and high cross-species 

transferability (This et al., 2004). They have been adopted as the standard markers for 

germplasm management in many plant species (Varshney et al., 2005). Also in grape they 

have become markers of choice for compilation, standardization and exchange of information 

concerning germplasm collections (This et al., 2004; Ibáñez et al., 2009; Cipriani et al., 2010; 

Emanuelli et al., 2013). In this contest, Laucou and collaborators (2011), analyzing 4.370 

grape accessions, defined a minimal set of nine SSR primers proved to be discriminatory with 

a reduced probability of false identity. These primers have been already successfully 

employed by Bacilieri et al. (2013) to genotype several V. vinifera accessions, supporting 

archeological and historical data on grapevine domestication in Europe and Asia. Bergamini 

et al. (2012), amplifying a selected number of microsatellite loci in over 2000 accessions of 

the Italian grapevine “Sangiovese”, demonstrated the presence of an ancient variety 

(‘Negrodolce’, believed to have been lost) in its pedigree. More precise information can be 

provided combining SSR with other molecular markers. In this regard, retrotransposon-based 

markers can be particularly interesting in that their use, combined with SSR, have been 

proved to allow the coverage of both inter- and intra-genic DNA (Laucou et al., 2011; 

Ziarovska et al., 2012; Carcamo et al., 2010). Retrotransposons are characterized by their 

capability to translocate and change their genomic location, whereby they generate 

transposition polymorphism. They consist in elements, hundreds to thousands of nucleotides 

long. The long terminal repeats (LTRs) that bind to a complete retrotransposon contain ends 

that are highly conserved in a given family of elements (Moisy et al., 2008). In grape, 

retrotransposons seem suitable additional markers also for their abundance in the genome 

(Shimamura et al., 1997), their presence in many copies (Varshney et al., 2005) and their 

ability to track an insertion event and its subsequent vertical radiation through either pedigree 

or phylogeny analysis (Kalendar et al., 2011). REMAP (REtrotransposon-Microsatellite 

Amplified Polymorphism) and IRAP (Inter-Retrotransposon Amplified Polymorphism) 

markers are cheap to establish and assay, easy to perform and reproduce (Kobayashi et al., 

2004). In V. vinifera three retro-elements are known, Gret1, Vine-1 and Tvv1 (Verriés et al., 

2000; This et al., 2007). Currently, only Gret1 has been fully sequenced and it is known to be 

associated with mutations causing most white-fruited V. vinifera genotypes due to its insertion 
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into the promoter of VvMybA1, the transcription factor controlling the final step in 

anthocyanin biosynthesis during ripening (This et al., 2007). Pereira et al. (2005) 

demonstrated that Gret1 is useful as molecular marker and it may play an important role in 

the expression of phenotypes that characterize a cultivar. REMAP have been used for genetic 

diversity assessment of various crops such as rice (Branco et al., 2007), wheat (Georgi et al., 

2010) and banana (Teo et al., 2005; Nair et al., 2005). IRAP have been employed in 

germplasm studies in barley (Bradley et al., 2010), tobacco (Xiao et al., 2006) and grape 

(D’Onofrio et al., 2010). 

Among all the Campania varieties, Aglianico shows the highest number of clones; it is 

probably due to his oenological importance in the wine market worldwide (Figure 1). Indeed, 

recently (6th June 2013) Eric Asimov, the wine writer for the New York Times, described 

Aglianico as one of Americans favourite red Italian grapes, going on to say that he finds 

wines made from the grape "delicious, structured, and age-worthy." 

	  

Figure 1. Grape clusters of Aglianico del Taburno. 
Aglianico is a later-maturing grape and is characterized by a high content of total flavonols 

and anthocyanins, showing a notable presence of quercetin-3-O-glucoside, malvidin-3-O-

glucoside and petunidin-3-O-glucoside. The strong antioxidant activity and the high 

resveratrol content confer high positive nutriceutical properties to these grapes and wines (De 

Nisco et al., 2013). Moreover, the high content of polyphenols mainly tannins, may confer to 

the wine a harsh and astringent character. Rinaldi et al. (2014) carried out a preliminary 

characterization of proanthocyanidins of seeds and skins of Aglianico grape cultivar and 

compared it with international cultivar as Merlot and Cabernet Sauvignon; the results showed 

that Aglianico is a model for astringency. As the knowledge of the phenolic composition at 

each grape time involved in winemaking is essential to choose the optimal harvest time and to 

perform successful oenological practices, likewise, the understanding of the genetic control of 
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phenylpropanoids by synthesis during ripening is crucial to establish the quality of berry and 

the consequent structure of wine. An exhaustive overview of the phenyl-propanoid pathway in 

grapevine is represented in Figure 2, in which each compound formed starting by chalcone, 

intermediate molecules and each key genes are reported (Dixon et al., 2013). This pathway 

involves a high number of enzymes in the various branches; them activities are highly 

regulated from transcription factors and/or in response to different developmental and 

environmental triggers. There is also evidence that the enzymes involved in flavonoid 

metabolism might be acting as membrane-associated multi-enzyme complexes, which have 

implications on overall efficiency, specificity, and regulation of the pathway (Jaakola et al., 

2002). The amino acid phenylalanine is produced via the shikimate pathway, converted and 

enzymatically coupled with the carboxylated acetyl-CoA (malonyl-CoA) to be the starting 

molecule for all phenolic compounds synthesize, as proanthocyanidins, anthocyanins and 

flavonoids. The phenylalanine ammonia-lyase (PAL) catalyzes the first step in 

phenylpropanoid metabolism in which phenylalanine undergoes deamination to yield trans-

cinnamic acid and ammonia. The cinnamic acid is hydroxylated to 4-coumarate (also known 

as p-coumarate) from a cytochrome P450-dependent mono-oxygenase, the cinnamate 4-

hydroxylase (C4H). At this point a tyrosine molecule is used from the 4-coumarate:CoA 

ligase (4CL) to catalyze the ATP-dependent formation of the CoA thioester 4-coumaroyl 

CoA, which brings to formation of chalcones by chalcone synthase (CHS) activities. This is 

the starting point for the formation of the majority of flavonoids, of which the basic molecular 

structure is represented in a box of the Figure 2. The chalcone isomerase (CHI) catalyzes the 

synthesis of flavanones, the flavanone 3-hydroxylase (F3H), flavonoid 3’-hydroxylase (F3’H) 

and flavonoid 3’-5’-hydroxylase (F3’5’H) induce the formation of flavonols and the 

dihydroflavonol reductase (DFR) brings to production of leucoanthocyanidins. Afterwards the 

activity of different enzymes as anthocyanidin reductase (ANR) and anthocyanidin synthase 

(ANS) joined with modifications as glycosylation, methylation, acylation, polymerization and 

oxidation, caused the development of anthocyadinins, anthocyanins and proanthocyanidins 

(condensed tannins). All of these compounds are commonly detected in grapes and wine, in 

particular proanthocyanidins are responsible of the astringency in red wines, the anthocyanins 

influence the berry skin color and the flavonoids protect berries from UV-B light exposition 

(Koes et al., 1994). 
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Figure 2. Scheme for the biosynthesis of flavonoids, with emphasis on anthocyanins and condensed 
tannins. The numbering scheme for the majority of flavonoids described in the present article is shown 
in the box, second line right. Abbreviations for enzymes are: ANR, anthocyanidin reductase; ANS, 
anthocyanidin synthase; AS, aurone synthase; C4H, cinnamate 4-hydroxylase; CHI, chalcone 
isomerase; 4CL, 4-coumarate coenzyme A ligase; CHR,	  chalcone reductase; CHS, chalcone synthase; 
DFR, dihydroflavonol reductase; F3H, flavanone 3-hydroxylase; F3’H, flavonoid 3’-hydroxylase; 
F3’5’H, flavonoid 3’-5’-hydroxylase; FLS, flavonol synthase; HID, 2-hydroxyisoflavanone 
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dehydratase; IFS, 2- hydroxyisoflavanone synthase; LAR, leucoanthocyanidin reductase; PAL, L-
phenylalanine ammonia-lyase; TAL, L-tyrosine ammonia-lyase. 

The outline of the anthocyanin biosynthesis pathway in Figure 2 describes a linear 

pathway that begins with phenylalanine and malonyl- CoA and results in the production of 

stilbenes, flavoinoids and glycosylated anthocyanins. These molecules are a group of 

naturally occurring phenolic compounds that are responsible for the coloration of fruits, 

vegetables, and flowers. They have also many beneficial effects for humans including the 

reduction in the incidence of coronary heart disease, enhancement of visual acuity, 

maintenance of normal vascular activity, as well as anti-carcinogenic, anti-mutagenic, anti-

inflammatory, and anti-oxidative properties (Gosh et al., 2007). In plant, anthocyanin 

accumulation includes a complex phyto-chemical cocktail, usually correlated to tissue color 

and plant immunity. The toxicity, and so antibiotic activity, of anthocyanin is activated only 

as a consequence of a mechanical damage, as pathogen penetration or insect chewing, 

resulting in their breakdown and aglycons liberation. This mechanism is a plant defense 

adopted to avoid damage to own vitally active cells. Wegener and Jansen (2013) 

demonstrated the correlation between antioxidants, such as anthocyanin, and abiotic stress in 

potato. After wounding, the control tubers of three breeding clones revealed an increase in 

peroxidase enzyme (POD) activity in two years; in particular a purple clone displayed a clear 

rise in enzyme activity after wounding, despite a relatively high POD level in its fresh tissue. 

This fact may underline the role of POD, involved in resistance expression, within wound 

stress responses. 

 

2.1.1 Aim of the research 

Italy is one of the biggest grapevine producers with more than 450 varieties registered, 

most of them used in winemaking. In the panorama of Italian viticulture and oenology, 

Campania region is characterized by a vigorous biodiversity, which include a distinctive 

number of ecotypes and various ancient grapes (more than one hundred years old). This 

biodiversity reflect the ancient heritage of Campania vineyards and a great respect for 

traditions. While substantial genetic diversity has been maintained since domestication of 

Vitis vinifera, there has been very limited exploitation of this diversities especially about the 

phenolic compounds that influence the wine structure and their regulation in response to 

abiotic and biotic stress, as pathogens. In this contest have been developed the main purposes 

of these research focusing the attention on the exploitation of the cited biodiversity and using 
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it to increase the genetic basis knowledge of phenolic compounds production. The main goals 

are the following: (a) fingerprinting of grapevines grown in Campania region using 

codominant and dominant markers and search of confidential alleles useful in traceability 

studies; (b) investigation of the expression profile of 15 key-genes of phenyl-propanoid 

pathway in the most commercialized wine grape of Campania region, Aglianico del Taburno, 

across five developmental stages and three different berry tissues and chemical quantitative 

estimation of anthocyanin, tannin and total polyphenols in berry skin and seeds; (c) study of 

the effect of wounding stress on anthocyanin accumulation in Aglianico del Taburno leaves. 

 

2.2 Materials and methods 
 

2.2.1 Plant material 

SR and retrotransposone-based analysis were carried out on sixty-two grape cultivars sampled 

from even producing areas of Campania region. The list showing all analyzed cultivars and 

respective growing areas is given in Table 2. 

 

Table 2. Local and reference grapevines analyzed with molecular markers. For each of them the code 
used in population structure analysis, local name, berry color, use, origin and sampling area are 
reported. 

Code Grapevine Berry 
color 

Geographic origin, 
province, state 

Sampling area, 
city, province Use 

1 Abbuoto Black Lazio  Latina Wine 
2 Aglianico bianco White Campania  Paternopoli , Avellino Wine 
3 Aglianico del Vulture Black Campania  Pietradefusi , Avellino Wine 
4 Aglianico del Taburno Black Campania  Pietradefusi , Avellino Wine 
5 Aglianico Taurasi Black Campania  Pietradefusi , Avellino Wine 
6 Agostinella White Campania  Castelvenere , Benevento Wine 
7 Arilla White Sicily  Eboli, Salerno Wine 
8 Arilla White Sicily  Ischia, Naples Wine 
9 Barbera Black Piemonte  Ischia, Naples Wine 

10 Barbera del Sannio Black Campania  Castelvenere , Benevento Wine 
11 Barbera del Sannio Black Campania  Pietradefusi , Avellino Wine 
12 Cacamosca White Campania  Eboli, Salerno Wine 
13 Cacamosca White Campania  Ischia, Naples Wine 
14 Cannamelo Black Campania  Eboli, Salerno Wine 
15 Cardinal Red North America Pietradefusi , Avellino Table grape 
16 Catalanesca White Campania  Eboli, Salerno Wine 
17 Chardonnay White France Pietradefusi , Avellino Wine 
18 Coda di Volpe bianca White Campania  Pietradefusi , Avellino Wine 
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19 Coda di Volpe nera Black Campania  Paternopoli , Avellino Wine 
20 Coglionara White Campania  Ischia, Naples Wine 
21 Don Lunardo White Campania  Ischia, Naples Wine 
22 Falanghina beneventana White Campania  Pietradefusi , Avellino Wine 
23 Fiano di Avellino White Campania  Pietradefusi , Avellino Wine 
24 Ginestrello White Campania  Amalfi, Salerno Wine 
25 Greco di Tufo White Greece Pietradefusi , Avellino Wine 
26 Guarnaccia Black Campania  Ischia, Naples Wine 
27 Guarnaccia Black Campania  Eboli, Salerno Wine 
28 Lambrusco Salamino Black Emlia-Romagna  Pietradefusi , Avellino Wine 
29 Lambrusco Maestri Black Emlia-Romagna  Pietradefusi , Avellino Wine 
30 Livella Black Campania  Ischia, Naples Wine 
31 Livella Black Campania  Eboli, Salerno Wine 
32 Malaga White Spain Amalfi, Salerno Wine 
33 Mennavacca White Campania  Pietradefusi , Avellino Wine 
34 Merlot Black France Pietradefusi , Avellino Wine 
35 Montepulciano Black Abruzzo  Pietradefusi , Avellino Wine 
36 Montuonico White Calabria  Pietradefusi , Avellino Wine 
37 Moscatello White Apulia  Ischia, Naples Wine 
38 Moscato bianco White Italy Pietradefusi , Avellino Table grape 
39 Moscato d’Amburgo Black Italy Pietradefusi , Avellino Wine 
40 Nocella White Campania  Ischia, Naples Wine 
41 Olivella Black Lazio  Eboli, Salerno Wine 
42 Passolara White Campania  Eboli, Salerno Wine 
43 Pellecchiona Black Campania  Amalfi, Salerno Wine 
44 Piedirosso Black Campania  Pietradefusi , Avellino Wine 
45 Pizzutello bianco White Lazio  Pietradefusi , Avellino Table grape 
46 Pizzutello nero Black Lazio  Pietradefusi , Avellino Table grape 
47 Procidana White Campania  Ischia, Naples Wine 
48 Regina White Lazio  Pietradefusi , Avellino Table grape 
49 Rosè Red Campania  Paternopoli , Avellino Wine 
50 Rovello Black Campania  Eboli, Salerno Wine 
51 Royal White Campania  Pietradefusi , Avellino Table grape 
52 Sanginella Black Campania  Ischia, Naples Wine 
53 Sangiovese Black Emlia-Romagna  Pietradefusi , Avellino Wine 
54 Sciascinoso Black Campania  Pietradefusi , Avellino Wine 
55 Serpentaro Black Campania  Amalfi, Salerno Wine 
56 Sommarello Black Apulia  Pietradefusi , Avellino Wine 
57 Suppezza Black Campania  Eboli, Salerno Wine 
58 Tintore Black Campania  Eboli, Salerno Wine 
59 Trebbiano White Tuscany  Pietradefusi , Avellino Wine 
60 Uva chiena White Campania  Ischia, Naples Wine 

61 Uva fragola whitea White America Pietradefusi , Avellino Table grape 

62 Uva fragola blacka Black America Pietradefusi , Avellino Table grape 
a It belongs to cultivar “Isabella”, an hybrid between V. labrusca and an unidentified V. vinifera subsp. vinifera variety (Munson, 1909) 
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The expression analysis was performed on V. vinifera cv Aglianico del Taburno, clone 

Ampelos TEA 22 grafted on rootstock 1103 Paulsen – V. berlandieri x V. rupestris – clone 

ISV 1. Samples were collected from a 7-year-old vineyard (41°13’43.00’’ N, 14°33’37.56’’ 

E, 145 slm, Castelvenere, Benevento Province, Italy) during the 2012 growing season. 

 

2.2.2 Sample collection 

For molecular marker analysis, young leaves of all genotypes were collected in the field and 

immediately frozen in liquid nitrogen. For expression and chemical analysis of poly-phenol 

compounds, Aglianico del Taburno berries were collected at five developmental time points 

and immediately frozen in liquid nitrogen. The first stage (15 days after flowering [DAF]; 

Eichhorn-Lorenz System [E-L] 29) corresponded to the fruit set, when young berries are 

enlarging (>3 mm diameter); the second stage (35 DAF; E-L 32) was the post-fruit set, when 

berries start touching (>7 mm diameter); the third stage (70 DAF; E-L 35) was the veraison, 

when berries begin to change colour and enlarge; the fourth stage (84 DAF; E-L 36) 

corresponded to the mid-ripening stage; and the final stage (115 DAF; E-L 38) represented 

complete ripening. Starting from the veraison stage, berries were manually dissected into 

skin, pulp and seeds starting from frozen berries. Three biological replicates were sampled. 

Aglianico del Taburno cuttings were collected and maintained in greenhouse for further 

collection of material. 

 

2.2.3 Microsatellite analysis 

 Total genomic DNA was extracted from young leaves using the Qiagen Plant DNeasy 

Maxi Kit (Qiagen, Valencia, CA, USA), following the manufacturer’s procedure. 

Microsatellite analysis was carried out with 20 nuclear and 10 chloroplast markers. They were 

chosen from six sources: eight (VVMD7, VVlb01, Vvlh54, Vvln16, VVIp60, VVIq52, 

VVMD25 and VVMD5) from Laucou et al. (2011), eight (VrZAG series) from Sefc et al. 

(1999), three (VVS series) from Thomas et al. (1993), nine (CCMP series) from Weising et 

al. (1998), VVIC05 from Merdinoglu et al. (2005) and ccSSR5 from Chung et al. (2003). All 

SSRs characteristics are reported in Supplementary Table 2. PCR reactions were performed in 

a 20 µL volume containing 1× reaction buffer with 1.6 mM MgCl2, 0.2 mM of each dNTP, 30 

pM FAM-labelled forward SSR primer and reverse SSR primer, 1 unit of goTaq polymerase 

(Promega, Madison, WI, USA) and 30 ng of genomic DNA. Amplification consisted of 5 
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cycles at 94°C for 45 sec, Ta°C + 5 for 60 sec, 72°C for 30 sec; 30 cycles at 94°C for 45 sec, 

Ta°C for 60 sec, 72°C for 30 sec with the annealing temperature reduced by 1°C per cycle 

(touchdown PCR), then one elongation cycle at 72°C for 20 min. Amplicons were separated 

with the ABI PRISM® 3130 DNA Analyzer system (Life Technologies, Carlsbad, California, 

USA). Size calibration was performed with the molecular weight ladder GenScan® 500 

ROXTM Size Standard (Life Technologies, Carlsbad, California, USA). SSR alleles were 

detected and scored by using Peak Scanner® software (Applied Biosystems, Foster City, 

California, USA). The results validation was carried out with two biological replications and 

PCR reactions were performed in triplicate. The allele’s sizes were normalized using SSR 

data reported in the Vitis International Variety Catalogue (http://www.vivc.de/). 

 

2.2.4 Retrotransposon-based genotyping  

 For REMAP and IRAP marker amplification, four primers were chosen: two were 

designed on the Gret1 LTR regions, (5’-LTR: 5’-CGAGTTTGTGTAGATTACAC-3’, and 

3’-LTR: 5’-GCATTTAGAAGGATTTAGCTT-3’), and two on microsatellite repeats 

(Microsat-GA [ (GA)9 C] and Microsat-CT [ (CT)9G]). We set up four REMAP markers 

combining LTR primers with microsatellite primers and one IRAP marker amplifying with 

both LTR primers as described in Pereira et al. 2011. PCRs were performed in a 20 µl 

reaction mixture containing 20 ng of genomic DNA as previously reported (Kalendar et al., 

1999). PCR products were separated in a 2% agarose gel electrophoresis at 50V for 30 min, 

70V for 30 min and 100V for 3 h. Bands were detected by GelRedTM Nucleic Acid Gel Stain 

(Biotium, Hayward, California, USA). For image acquisition and identification of band size, 

the Quantity One® 1-D Analysis Software (Bio-Rad Laboratories, Hercules, California, USA) 

was used. Results were confirmed with three technical replicates. 

 

2.2.5 Molecular Markers Data Analysis 

The statistical software GenAlex 6.5 (Peakall et al., 2006) was used for data analysis. 

To estimate the degree of polymorphism, the number of alleles per locus for single-locus 

markers (SSR) and the number of bands per primer combination for multi-locus markers 

(REMAP and IRAP) were calculated. The statistical parameters useful for genetic diversity 

analysis were the expected heterozygosity (He= 1 − ∑pi2, where pi is the frequency of the ith 

allele) (Nei et al., 1972), the fixation index (F = 1/1 − Ho/He) (Wright et al., 1951), the 

Shannon’s Informative Index (I = -1* Sum (pi * Ln (pi)) (Shannon et al., 1949), the Power of 

Discrimination (PD= 1 - ∑C, where C = pi * {[ (N*pi) – 1]/N – 1}), the probability of 
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identity (PI = [1 − ∑pi4 + ∑ (2pipj)2, where pi and pj are the frequency of the ith and jth 

alleles, respectively) (Peatkau et al., 1995). For the chloroplast microsatellite data the Gene 

Diversity equation was adapted to haploid data (He= 1 − ∑pi2, where pi is the frequency of 

the ithhaplotype) (Castro et al., 2012). Because the chloroplast genome is uniparentally 

inherited and thus not recombining, it was treated as one locus and the different haplotypes 

were treated as alleles. We also identified marker-specific and genotype-specific alleles, 

called private alleles. These are alleles found in a single genotype among the complete 

collection of genotypes studied. 

A genetic distance matrix was calculated by using the Dice coefficient (Dice et al., 

1945). Phylogenetic clustering trees were constructed by unweighted pair group method with 

arithmetic mean (UPGMA) (Sneath et al., 1973) using MEGA 5 software (Tamura et al., 

2011). Clusters robustness was tested by bootstrap resampling (n=1000) with the software 

package WINBOOT (Yap et al., 1996). To confirm the accuracy of clustering, we conducted 

a Bayesian analysis using the software STRUCTURE 2.3.1 (Pritchard et al., 2000). For this 

analysis we used the admixture model (because of the grape mating system and biology), 

correlating allele frequencies twenty times for each K (number of populations assumed), with 

a burn-in of 500.000 interactions followed by 750.000 interactions MCMC (Markov Chain 

Monte Carlo). The most likely number of clusters was chosen using the ∆K method, as 

described in (Evanno et al., 2005). Pearson correlation between matrices of genetic and 

geographic distances, as well as between genetic distance matrices for SSR and 

retrotransposon-based markers, was calculated using the statistical tool XLSTAT 2013.2.05 

(Addinsoft, Paris, France). Significance was evaluated by Mantel test (Mantel et al., 1967). 

 

2.2.6 Gene expression analysis 

Total RNA was isolated from 40 mg of ground leaves using the Spectrum™ Plant Total RNA 

kit (Sigma-Aldrich, St. Louis, USA) following the manufacturer’s protocol with some 

modifications. Quantity and quality of the isolated RNA was measured using the NanoDrop 

ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE) and Qubit 2.0 fluorometer 

(Life Technologies, Carlsbad, CA). For cDNA synthesis, 100 ng of each RNA sample was 

reverse transcripted using the SuperScript® III cDNA Synthesis Kit (Invitrogen, Carlsbad, 

CA) following the manufacturer’s protocol. Before use in Real-Time PCR experiments, 

cDNA reactions were diluted 5-fold to 200 µL with UltraPure DNase/RNase-Free Distilled 

Water (Lonza Group, Basel, Switzerland). Expression analysis was conducted by real-time 

PCR analysis using a SYBR Green method on a 7900HT Fast Real-Time PCR System 
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(Applied Biosystems, Foster City, CA. USA). Each 15 µL PCR reaction contained 330 nM of 

each primer, 2 µL of diluted cDNA and 7.5 µl of Sybr Green Mix (Applied Biosystems, 

Foster City, CA, USA). The SDS 2.3 and RQ Manager 1.2 softwares (both Applied 

Biosystems, Foster City, CA, USA) were used for data elaboration. The primer pairs used in 

the quantitative analysis are reported in Table 3.  

 

Table 3. List of primers used in expression analysis of the phenyl-propanoid pathway. For each 
primer, genes, sequences, amplicons length, reference and GenBank accession number are 
reported. 

Genes Primers sequence 
 (forward/reverse) 

Amplicon 
lenght (bp) Reference 

GenBank 
accession 
number 

PAL TCTGGTGGAAGGAATCCAAG/ 
CAAAGTGCCACCAGGTAGGT 230 Ageorges 

et al., 2006 GU585850 

F3’H ATTCGCCACCCTGAAATGAT/ 
AGCCGTTGATCTCACAGCTC 196 Castellarin 

et al., 2006 GU585856 

F3’5’H GAAGTTCGACTGGTTATTAACAAAGAT/ 
AGGAGGAGTGCTTTAATGTTGGTA 156 Castellarin 

et al., 2007 GU585857 

LDOX AGGGAAGGGAAAACAAGTAG/ 
ACTCTTTGGGGATTGACTGG 109 Jeong et 

al., 2004 GU585861 

UFGT GGGATGGTAATGGCTGTGG/ 
ACATGGGTGGAGAGTGAGTT 152 Jeong et 

al., 2004 GU585862 

LAR1 AAATGAACTCGCATCTGTGT/ 
CTGTGGGATGATGTTTTCTC 109 Fujita et 

al., 2007 GU585865 

ANR GCTGCTGTTACCATCAATCA/ 
GCAGGATAGCCCCAAGTAGG 113 Fujita et 

al., 2007 GU585867 

C4H ATCCACCGCCACAACCAT/ 
GGCCAGAATTATAGCGCAGAA    

4CL CTGCCGCTGTTCCACATATACTC/ 
CCAATCTCGAACTTCTGCATCA 198 Lijavetzky 

et al. 2008 AF002257 

FLS4 AGGCACACTTTTCCCACGTT/ 
ACCCCCTACGAACCCAGAAG 99 Kobayashi 

et al., 2011 AB092591 

FLS5 GCATGTCATGGGCTGTGTTT/ 
ACTTGGCAGGGTTTGGTTCA 99 Kobayashi 

et al., 2011 AB213566, 

DFR ACCTGGATGACCTCTGCAATG/ 
CAATCGTGGGAGGAGCAAAT 84 Kobayashi 

et al., 2011 X75964 

LAR2 TCAAGCAGCAGCCGAGAAG/ 
CGAGAGAAGTGGCGGTGATC 99 Kobayashi 

et al., 2011 XM_002273879 

MybPA1 TTGACGGGGTTGACTTCTTC/ 
GAGTAGTGATTCGGCGAAGG 188 Terrier et 

al., 2008 CAJ90831 

MybPA2 CCAAGATGAAGAGATGGGAGA/ 
AAAGATGCCAGTGTCTTGAGC    

β-Tubulin TGAACCACTTGATCTCTGCGGACTA/ 
CAGCTTGCGGAGGTCTGAGT 86 Reid et al., 

2006 EC922104 

 

The expression of each target gene was normalized with the expression level of the 

housekeeping gene (β-Tubulin) and the ΔCt values were calculated using the Livak method 

calibrating each gene expression against the ΔCt values obtained in the fruit set. For each 
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gene and all the different tissues, fold change values were calculated using this formula 2ΔΔCt. 

The down-expression values were indicated by results ranging from 0 to 1, while over-

expression values were over 1. Heatmap graphs were carried out using the phenyl-propanoid 

pathway as background and reporting the fold change values in a colorimetric scale ranging 

from blue (-3) to red (7). 

 

2.2.7 Polyphenols chemical analysis 

The analyses were carried out with Prof. Luigi Moio and Dr. Alessandra Rinaldi at the 

Department of Agriculture of the University of Naples “Federico II” (division of Vine and 

Wine, Avellino). For three developmental stages of Aglianico del Taburno (veraison, mid-

ripening and ripening), twenty berries were collected and immediately frozen in liquid 

nitrogen. Skin and seeds were separated and grounded using mortar and pestle. The 

polyphenols compounds were extracted using the protocol reported in Lorrain et al. (2011). 

Afterwards, monomers, oligomers and polymers of proanthocyanidin were separated and 

lyophilized (Sun et al., 1998). A sonication step was performed on 1 g/L of extracted 

solutions after a protein precipitation assay developed by Harbertson and collaborators 

(2002), consisting in a precipitation step with BSA and a following detection of phenol 

compounds by a UV-VIS spectrophotometer.  

 

2.2.8 Wounding treatment 

Aglianico del Taburno young leaves were detached from greenhouse vines and sterilized 

under laminar hood with a solution 1:1 Amuchina and autoclaved MilliQ Water for 5 minutes. 

Three washing steps were performed using autoclaved MilliQ water. The sterilized leaves 

were dried for one hour and separated in three biological replicates. Using a sterilized cookie 

cutter, discs of 2 cm diameter were punched from leaves avoiding central ribs. The punching 

of discs was considered as a wounding treatment. Control discs corresponded to an 

unwounded leaf straight detached from a healthy vine (Vine control) and to sterilized 

unpunched leaves (0 h). The punched discs, at least five for sample, were collected 1, 2, 4, 6 

and 24 h after treatment. The expression level of nine genes involved in the phenyl-propanoid 

pathway was investigated following the same procedure previously described. Four of them 

are candidate genes of the stilbene synthase family, VvSTS6, VvSTS16, VvSTS36 and 

VvSTS22, and two of them are transcription factors (VvMyB14 and VvMyB15). Their 

amplification was set up as reported in Vannozzi (2012).  
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2.3 Results 
 

2.3.1 SSR analysis 

SSR used in this study allowed the differentiation of 62 grapevine accessions. We 

detected 183 alleles with size ranging from 62 bp (CCMP8) to 331 bp (VVIp60) and an 

average of 12.35 alleles per locus for nuclear microsatellites (Table 4) and 3.6 for chloroplast 

microsatellites (Table 2). For nSSR, He, F, I and PD mean values were 0.794, 0.258, 1.927 

and 0.806, respectively. He was significantly higher than 0.5 for 80% of markers and F value 

was negative for one marker, VrZAG21, and higher then 0.85 for six markers. F negative 

values indicate an excess of heterozygotes and values above zero an excess of homozygotes. 

This suggested that many apparent homozygotes are likely to be heterozygotes with one 

amplified and one null allele, as suggested by Pelsy et al. (2007). The Shannon’s index was 

greatly higher than two in nine loci (VrZAG62, VrZAG79, VrZAG112, VVIC05, VVS2, 

VVS5, Vvlp60, VVMD25 and VVMD5), with five of them sharing a high PD value (>0.86) 

(Table 4). For cpSSR, the Gene Diversity values ranged from 0.031 (Ccmp7) to 0.716 

(Ccmp10) and the Shannon’s Index was between 0.082 (Ccmp7) and 1.391 (Ccmp10) (Table 

5). 
Table 4. Genetic parameters of 30 nuclear and cytoplasmatic microsatellites used to differentiate 
62 grape varieties. Numbers in bold indicate statistic significant values. 

Locus Allele size 
range, bp 

Alleles per 
locus, no 

Expected 
heterozygosity 

Fixation 
index 

Shannon’s 
Index 

Power of 
discrimination 

VrZAG79 104-180 12 0.700 0.332 1.534 0,715 
VrZAG12 138-172 10 0.739 0.586 1.608 0,754 
VrZAG21 178-214 14 0.776 -0.060 1.816 0,787 
VrZAG29 102-116 7 0.491 0.573 1.048 0,493 
VrZAG47 148-182 11 0.841 0.463 1.976 0,852 
VrZAG62 185-213 10 0.838 0.173 2.007 0,852 
VrZAG79 226-262 15 0.874 0.114 2.306 0,852 

VrZAG112 220-262 17 0.882 0.177 2.373 0,888 
VVIC05 142-169 14 0.823 0.334 2.047 0,895 

VVMD27 173-203 10 0.846 0.161 1.980 0,836 
VVS2 120-156 13 0.853 0.017 2.187 0,864 
VVS4 154-176 9 0.671 0.158 1.345 0,686 
VVS5 85-157 17 0.829 0.455 2.191 0,847 

VVIb01 288-304 8 0.794 0.248 1.723 0,808 
VVIh54 144-186 14 0.798 0.313 1.944 0,813 
VVIn16 139-175 10 0.676 0.356 1.555 0,680 
VVIp60 303-331 20 0.911 0.097 2.633 0,925 
VVIq52 75-89 8 0.771 0.415 1.657 0,786 

VVMD25 232-264 15 0.881 0.140 2.335 0,895 
VVMD5 223-249 13 0.883 0.105 2.279 0,897 

 average 12.35 0.794 0.258 1.927 0.806 
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Table 5. Genetic parameters of 10 cytoplasmatic microsatellites used to 
differentiate 62 grape varieties. 

Locus Allele size 
range, bp 

Alleles per 
locus, no Gene diversity Shannon’s Index 

CCMP1 123-127 4 0.432 0.811 
CCMP2 207-208 4 0.091 0.191 
CCMP3 100-106 2 0.471 0.917 
CCMP4 117-127 4 0.470 0.887 
CCMP5 99-102 4 0.675 1.186 
CCMP6 106-109 4 0.482 0.876 
CCMP7 142-144 2 0.031 0.082 
CCMP8 62-86 3 0.282 0.610 

CCMP10 104-112 5 0.716 1.391 
ccSSR5 250-258 4 0.582 1.099 

 average 3.6 0.423 0.805 
 

Allele frequencies (Af) were useful to distinguish common alleles (Af>0.5) and specific 

alleles (Af<0.1). Out of 47 marker-specific alleles identified, 19 were present in only one 

genotype, and were, therefore, named private alleles. VrZAG21 and VVIp60 revealed the 

highest number private alleles (4). Private alleles were detected in 14 grapes: 4 in 

‘‘Catalanesca’’, 2 in ‘‘Mennavacca’’, and ‘‘Sommarello’’ and ‘‘Pellecchione’’ and 1 in 

‘‘Coda di Volpe Bianca’’, ‘‘Ginestrello’’, ‘‘Rose’’, ‘‘Malaga’’, ‘‘Coda di Volpe Nera’’, 

‘‘Montepulciano’’, ‘‘Sanginella’’, ‘‘Abbuoto’’, ‘‘Piedirosso’’, ‘‘Aglianico del Taburno’’, 

‘‘Serpentaro’’, ‘‘Arilla Ischia’’ and ‘‘Pellecchione’’(Table 6).  
Table 6. Locus specific alleles identified in 24 SSR loci. Private alleles and the 
corresponding genotypes are reported in bold and brackets, respectively. 

SSR locus Allele (genotype) 
Nuclear VrZAG7 112, 152, 158, 170 

 VrZAG12 140 (Mennavacca), 158 

 VrZAG21 178, 188 (Mennavacca), 196 - 204 (Catalanesca), 
212 (Coda di Volpe nera) 

 VrZAG47 148, 152, 164 
 VrZAG79 226 (Pellecchione) 
 VrZAG112 220 (Ginestrello), 222 (Rose’), 238 
 VVIC05 144, 150, 164 
 VVMD27 185 
 VVS2 138, 146 (Catalanesca) 
 VVS4 154, 160, 163 (Malaga), 172 
 VVS5 129, 133 (Coda di Volpe bianca), 139, 153 
 VVIh54 144, 152, 156, 180 (Catalanesca) 
 VVIn16 139, 147 

 VVIp60 313 (Montepulciano), 314- 328 (Sommarello), 329 
(Sanginella) 

 VVIq52 87 (Abbuoto) 
 VVMD25 232, 254 
 VVMD5 243 (Piedirosso) 

Plastidial ccmp8 62 (Aglianico del Taburno) 
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Variety distribution in the UPGMA dendrogram was organized in five major clusters 

(Figure 3). Two of them contained few grapevines: Cluster IV included two genotypes “Uva 

Fragola Bianca” and “Uva Fragola Nera” and Cluster V included only one genotype, 

“Catalanesca”. Thirty grapevines were included in Cluster I, seven in Cluster II and twenty 

two in Cluster III. Clustering robustness of some nodes was supported by bootstrap values 

higher than 70%. Based on our molecular data (phylogenetic classification and microsatellite 

allele mismatches), it was possible to distinguish cases of synonymy (cultivars having more 

than one name) and homonymy (different cultivars mentioned under the same name) in the 

entire group of cultivars. For example, “Procidana” showed a genetic constitution similar to 

“Coglionara”. They are both grapevines mainly cultivated in the island of Ischia and based on 

our data they resulted synonymous. In must be noticed that synonymous cases are likely 

originated by mutation rather than sexual reproduction. Therefore they share a common 

genetic origin but a different ampelographic classification. We also fund cultivars identically 

coded but molecularly different to each other. For instance, the two “Barbera del Sannio” 

biotypes sampled in Castelvenere and Pietradefusi clustered apart to the one sampled in 

Ischia, highlighting their genetic diversity. Similarly, the two “Livella” genotypes sampled in 

Ischia and Eboli did not group together, as well as the two “Cacamosca” genotypes, both 

sampled in the same location. 
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Figure 3. Dendrogram of 62 grape genotypes obtained using UPGMA cluster analysis of SSR marker data. Bootstrap values 

higher than 70% are indicated at nodes. 
 

The number of subpopulations was inferred by the model-based Bayesian clustering 

procedure. The ∆k method is based on the rate of change in the log probability of data 

between successive K values and is a good estimator of the number of clusters (K) (Pritchard 

et al., 2000). ∆k values ranged from 0.1 (9 populations assumed) to 42.98 (3 populations 

assumed) (Figure 3) and suggested three (K = 3) as optimal number of population sampled. 

The three populations were divided in bar plots and labelled as A, B and C (Figure 4). 

Comparing Bayesian and phylogenetic analyses, we associated population A to Cluster II and 

a Cluster I’s sub-cluster, population B to Cluster III and population C to Cluster IV, V and a 

second Cluster I’s sub-cluster. The bar plot graph (Figure 4), based on STRUCTURE 

analysis, showed similar clusterization of UPGMA dendrogram. 
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Figure 1. Optimal Δk deduced with a Bayesian analysis of microsatellite 

(SSR) and retrotransposon-based markers (REMAP) data. The graph shows 

a clear peak at the true value of K (number of populations assumed). 
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2.3.2 Retrotransposon-based genotyping  

 The Gret1 LTR element amplification revealed a unique multilocus pattern for each 

accession. This is due to the retrotransposons integration ability in either orientation, as head-

to-head, head-to-tail and tail-to-tail. Our analysis with retrotransposon-based markers was 

performed with 5 primer combinations, generating a total of 44 bands, of which 90% were 

polymorphic (data not shown). Primer combinations amplifying the highest and lowest 

number of bands were 5’LTR/ (CT)9G (13 bands) and 3’LTR/ (CT)9G (4 bands), respectively. 

The He value was higher than 0.3 in 5’LTR/ (CT)9G and in 5’LTR/3’LTR. These primer 

combinations shared also the highest I value (Table 4). Among REMAP patterns, three 

private bands were identified: two with the 5’LTR/ (GA)9C combination in “Moscatello” and 

“Sangiovese” and one with 3’LTR/ (GA)9C combination in “Pizzutello bianco”. The IRAP 

patterns revealed one private allele in “Cacamosca Ischia”. All genotypes were clusterized in 

eleven groups thought UPGMA analysis (Figure 5). Cluster IV was the largest one with 15 

genotypes, while Clusters VI, VII, VIII, IX, X and XI were the smallest, with an average of 

three genotypes each and a minimum of one genotype in Cluster XI. The estimated 

membership of each individual in each cluster was compared with the Bayesian analysis. 

Using the REMAP and IRAP dataset, the highest ∆K value was 13.69 in the eighth K (Figure 

2). Eight different bar plot colours explained the groups (Figure 3). The populations were 

explained by eight distinctive bar plots differentiated by different grey gradations (Figure 3). 

Six Bayesian populations assorted the same genotypes grouped in the UPGMA clusters: 

Population B was comparable with the Cluster II, C with Cluster II, D with Cluster V, A with 

Cluster VIII, E with Cluster IX and G with Cluster X. 
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Figure 3. Dendrogram of 62 grape genotypes obtained using UPGMA cluster analysis of IRAP and 
REMAP marker data. Bootstrap values higher than 70% are indicated at nodes 

 

2.3.3 Phenyl-propanoid pathway genes expression analysis 

To investigate the genetic regulation of tannins, anthocyanins and flavonoids in Aglianico del 

Taburno, the transcript level of genes involved in the phenyl-propanoid pathway was 

monitored using a quantitative RT-PCR in whole berry, berry skin and seeds. For dissertation 

clarity, the pathway was divided in three parts, namely early, middle and late pathways; each 

of them is composed by a group, in particular the genes PAL, C4H, 4CL, F3’H and F3’5’H 

were grouped in the early-pathway; the middle-pathway was formed by FLS4, FLS5, DFR, 

LDOX and UFGT, ANR, LAR1 and LAR2 were included in the late-pathway. The 

transcriptional factors MybPA1 and MybPA2 were taken separately.  

The selection of reference genes to normalize the cDNA represents a critical step in any 

quantitative RT-PCR analysis. In this analysis, β-Tubulin (TUB), β-actin and elongation factor 
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were tested as housekeeping genes. The expression of β-Tubulin was the most stable among 

the three candidates in different tissues and therefore was selected as reference gene. 

The expression values obtained from the whole berry in the three parts of the phenyl-

propanoid pathway are reported in Figure 6 as binary logarithm of the fold change value. 

Among the set of genes analyzed no genes were up-regulated in all steps of berry 

development. By contrast PAL, ANR, LAR2 and MybPA2 showed a down-expression during 

all developmental stages. The lowest expression have been detected during ripening for the 

gene PAL (-9.4), post-fruit-set for the gene LAR2 (-7.8) and mid-ripening for the genes ANR (-

7.8) and MybPA2 (-7.9). Among them, PAL was the only gene showing a gradual decrease of 

expression from post-fruit set to ripening. The other genes showed an uneven expression 

across the ripening times. Indeed, 4CL, F3’H, DFR and MybPA1 were down-expressed in the 

first three developmental stages; increasing their expression in ripening time with an over 

expression of 1.3, 3.5, 3 and 3.4, respectively. The highest expression value was detected for 

UFGT, which showed an increasing of expression from veraison (-2.2) to ripening(14.7). 

F3’5’H and LDOX were over-expressed only in mid-ripening (2.7 and 1.3, respectively) and 

in ripening (4.9 and 3.9, respectively). Regarding C4H, FLS5 and LAR1 we observed down-

expression in only one developmental stage (veraison for C4H and FLS5 and mid-ripening for 

LAR1). 

 
Figure 4. Expression values of genes involved in the early, middle and late pathway of phenyl-propanoid analyzed in four 
developmental stages: Post-fruit set, veraison, mid-ripening and ripening in the whole berry. 

Gene expression data were graphically represented through heatmap for helping to 

immediately make sense of the expression level differences across developmental stages for 

each phenyl-propanoid gene analyzed, both in skin and seeds (Figure 7 and 8). Different 

colors were assigned to different expression value (from -3 (blue) to red +7 (red)) so that 

genes with similar or vastly different expression levels are easily visible. The analysis carried 

out on skin berries showed that the highest expression was identified in the middle pathway 
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specifically in mid-ripening stage for F3’5’H (5), FLS5 (0.6) and UFGT (5.1) and ripening 

time for DFR (0.9), LDOX (2.9) and LAR1 (1.5). Other five genes showed a down-expression 

in both stages with minimum values at mid-ripening for C4H (-1.9), FLS4 (-0.4) and ANR 

(0.8) and ripening for LAR2 (-1.2) and MybPA2 (-3). The remaining genes reveal a down-

expression in the first stage, PAL (-1.1), 4CL (-0.4), F3’H (-1.9) and MybPA1 (-0.1), and an 

over-expression in the ripening time, PAL (0.4), 4CL (0.6), F3’H (0.7) and MybPA1 (0.4). 

 
Figure 7. Heat Map representation of expression level (colorimetric scale) of phenyl-propanoid genes in seeds. Each gene 
expression is shown in three boxes corresponded to the three developmental time studied, veraison (V), mid-ripening (M) and 
ripening (R). 

The phenyl-propanoid pathway expression course were investigated also in seeds. The data 

were reported in a Heat Map (Figure 8). Compared to the data obtained in the whole berries 

and in the skin, in seeds nearly all genes showed an over-expression in the ripening stage, 

except for LAR1 which is down-expressed with a value of -1.4. The expression values at 

ripening time ranged from 0.1 (PAL, UFGT) to 6.6 (FLS4) and were mostly grouped in the 

middle and late pathways. 
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Figure 8. Heat Map representation of expression level (colorimetric scale) of phenyl-propanoid genes in seeds. Each gene 
expression is shown in three boxes corresponded to the three developmental time studied, veraison (V), mid-ripening (M) and 
ripening (R). 

2.3.4 Phenyl-propanoid chemical analysis 

A quantitative analysis of phenol compounds in skin and seeds during three developmental 

stages (veraison, mid-ripening and ripening) was carried out. The results of total phenols, 

flavans, Folin–Ciocalteu Index (FCI), tannins and anthocyanins are reported in Table 7. In 

skin analysis, the highest total phenols content were obtained at veraison (7 mg/g) and the 

lowest at ripening (573 µg/g). The spectrophotometric analysis allowed the identification of 

three fractions per each compound, monomers, oligomers and polymers. The amount of 

phenol compounds seemed to decrease exponentially from veraison to ripening, especially in 

polymers which represent the most abundant extracted fraction. In seeds, the total phenol 

were much higher than skin (65 mg/g in veraison and 40 mg/g in ripening); the higher total 

phenol fraction in skin was represented by monomers. Tannins were highly identified in skin 

as polymers, with values ranging from 2.4 mg/g (ripening) to 4.3 mg/g (mid-ripening). By 

contrast, monomers varied from 10 µg/g (mid-ripening) to 32 µg/g (ripening). 
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In seeds, the amount of oligomers were higher than monomers and polymers; indeed, the 

mg/g of monomers in the three developmental stages were 16, 17 and 11 respectively 

compared to the 4, 1 and 2 of monomers and the 8, 4 and 5 of polymers. Anthocyanins were 

estimated only in skin, since they lack in seeds. As expected, they were mostly identified as 

polymers only in mid-ripening and ripening; the amount of anthocyanins polymers were 968 

µg/g in mid-ripening and 772 µg/g in ripening. 

 

2.3.5 Wounding treatment 

The Aglianico del Taburno was used also to set up an experiment of wounding stress carried 

out on young leaves in sterile conditions. The time course was analyzed with a relative Real-

Time method using five genes involved in phenyl-propanoid pathway (PAL, 4CL, C4H, 

Myb14 and Myb15) and four candidate genes of stilbene synthase (VvSTS6, VvSTS16, 

VvSTS22 and VvSTS36) as reported in Vannozzi A. (2012). The results are reported in binary 

logarithm of fold change in Figure 9. The genes PAL, 4CL and C4H showed a variable 

expression along the time course. In particular PAL and C4H were highly over expressed 24 

hours after wounding with a 2.9 and 2.2 fold change, respectively. Four genes (4CL, 

VvMyB15, VvSTS22 and VvSTS36) were down expressed during the whole treatment. Among 

them VvSTS36 showed the minimum expression value with -3.5 fold change at 24 hours post 

treatment. The two transcription factors, VvMyB14 and VvMyB15, showed an opposite 

behavior. VvMyB14 was over-expressed, while VvMyB15 was not. This confirmed an 

expected result useful to confirm the validity of the treatment and the induction of the 

wounding stress. Among the stilbene synthase candidate genes, only VvSTS16 and VvSTS6 

was over-expressed, with the highest value of 4.1 at 1 hour post treatment in VvSTS16. 

 
Figure 9. Expression values of nine genes involved in phenyl-propanoid pathway and plant immunity during a wounding 
stress time course of 1, 2, 4, 6 and 24 hours. 
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2.4 Discussion 
 

The genetic diversity of 62 grape accessions including 38 autochthonous grapevines from 

Campania was investigated using SSR and retrotransposon-based molecular markers. The 

gene pool of cultivated grapes has significant amounts of genetic variation, which needs to be 

characterized to increase knowledge on the available genetic resources. To provide further 

insights into the genetic structure and differentiation within and among grapevine samples, 

the analysis of the same genotypes with different techniques is likely the best approach 

(Bacilieri et al., 2013). Therefore, in this study we combined SSR with REMAP and IRAP 

markers. Based on their different nature, they can detect similar diversity patterns, but with 

differences in sensitivity. Marker sensitivity is intended as the capability of distinguishing 

inter and intra specific variability. Through SSR analysis it is possible to investigate inter-

specific variability and identify genetically different varieties (Laucou et al., 2011). On the 

other hand, transposon-based markers can investigate intra-specific variability and identify 

different accessions within the same species (Pelsy et al., 2007). Our results showed that five 

markers (VrZAG79, VrZAG112, VVS2, VVMD25 and VVMD5) should be recommended 

for the rapid and unambiguous identification of grapes from Campania region as they proved 

to be the most discriminating loci, with PD values ranging between 0.852 and 0.897 and 

Shannon’s Index values from 2.187 and 2.373. This confirms findings by Costantini et al. 

(2005), Zoghlami et al. (2009) and Laucou et al. (2011), who reported and used the same set 

of microsatellite in grape genotyping studies. With an average value of 9.9 alleles per locus, 

our microsatellite results are consistent with those of Santana et al. (2008), who found an 

average of 8.7 alleles per locus studying 65 grape accessions. It is interesting to note that out 

of 30 markers used, only 6 showed a FI value higher than 0.6 (Table 1) suggesting that 80% 

of the microsatellite markers used are highly heterozygous. Our data were consistent with 

reports by Sant’Ana et al. (2012), Lopes et al. (1999) and Riahi et al. (2012), who confirmed 

the high individual heterozygosity due to breeding programs applied to improve quality and 

productivity. Through statistical and phylogenetic analysis, synonymies, homonymies and 

unique genotyping cases were identified. The three “Aglianico” biotypes (“Taburno”, 

“Taurasi” and “Vulture”) analyzed in this study confirmed the findings of Muccillo et al. 

(2013); suggesting that “Aglianico Taurasi” and “Aglianico Taburno” biotypes are closer than 

the “Aglianico Vulture”. One genotype, “Catalanesca”, resulted unique and highly 

heterozygous and also produced the highest number of private alleles. “Uva Fragola Nera” 

and “Uva Fragola Bianca”, called also “Isabella” (Robinson et al., 2012), are the only two 
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Vitis labrusca genotypes in the grapevine collection analyzed; it clarified the clustering on 

their own in Cluster IV. In SSR dendrogram grouping all the native grapes of Ischia along 

with grapes sampled in the Ischia area were grouped in Cluster III (Fig.1); this is explained by 

the presence of ancient genes correlated to the low rate of crossing occurring in the island of 

Ischia. Several studies reported the successful use of combined dominant and co-dominant 

markers for grapevine clone identification (Moisy et al., 2008, Ocanã et al., 2013). 

Microsatellites are usually the most frequently used genetic markers in intra-specific Vitis 

studies (Laucou et al., 2011), while retrotransposon-based markers, classified as epigenetic 

markers, result the best for intra-species studies or rather to distinguish clones generated by 

vegetative propagation. For this reason, the genetic diversity of our 62 grapevines was 

investigated also using four REMAP and one IRAP markers designed on the gypsy-type 

retroelement Gret1. The chosen methods have the characteristics of using fewer primers but 

providing sufficiently high polymorphisms to allow detection of inter-varietal diversity and 

heterotic groups, as already demonstrated in apricot (Yuying et al., 2011), bread wheat (Nasri 

et al., 2013) and alfalfa (Mandoulakani et al., 2010). We identified 44 different bands with 

five markers in a profile complexity ranging from 4 to 13 bands per marker. This is 

comparable with findings by Carcamo et al. (2010), who detected a significant lower number 

of bands in 28 clones of grapevine “Tempranillo”. This result could be related to a point 

mutation occurring in the primer sequence. Relatively few bands were obtained also in other 

grape studies (Pereira et al., 2005; D’Onofrio et al., 2010). As far as we know, this is the first 

time this technique has been used to produce complex multi-locus profiles. Because of the 

nature of these markers, they could be successfully employed to build a cultivar identification 

diagram (CID). This is an open diagram successfully used in different plant species, as 

grapevine (Zhao et al., 2013) and Ginkgo (Li et al., 2013). It can be very helpful for genetic 

resource conservation and utilization and plant variety protection. The complete set of 

REMAP and IRAP markers was able to distinguish different biotypes of the same genotype as 

“Aglianico” or “Barbera del Sannio” series, but not the same genotype sampled in different 

areas like “Arilla Ischia” and “Arilla Eboli” or “Guarnaccia Ischia” and “Guarnaccia Eboli”. 

This confirms the capability of these markers to discriminate the grape accessions but not 

structured sub-groups. Even if specific sequences have been identified, these molecular data 

cover only part of the grapevine genome, meaning that even when all the DNA sequences we 

analyzed look totally identical, it might turn out that genetic differences are present in other 

part of the genome and they might be more widespread than we believe. Indeed, the 

accessions sharing the same SSR/REMAP profile must be evaluated further before being 
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eliminated from standard grapevine collections, because they might not be redundant at all. 

Our molecular findings represent a peculiar starting point for whole-genome profiling of 

varieties native of Campania region.  

The chosen genotype for gene expression analysis is Aglianico del Taburno, one of the three 

main biotypes of Aglianico grape cultivar (Taburno, Vulture and Taurasi) and the main 

variety used in the production of Taburno DOCG (Denominazione di Origine Controllata e 

Garantita) wines. It is well known not only for the excellent wine it produces, but also for its 

phenotypic plasticity (the capacity of a given genotype to render different phenotypes under 

different environment conditions) and its ability to adapt to different environments and 

managements of vine vigor (Rinaldi et al., 2014). The characteristic high content of total 

flavonols and anthocyanins in Aglianico made it the perfect candidate for the present study. A 

complete characterization of Aglianico del Taburno could be an interesting starting point to 

introduce this grapevine in the world market and preserve it as an elite product. As true for the 

molecular characterization, the expression profile analysis can create a pattern of results able 

to identify the uniqueness of this genotype especially if the chosen genes are involved in 

phenol production and if the analysis is made on fruit tissues. Molecule production in plant 

tissues can be regulated at different levels, transcriptional post transcriptional and 

translational. Focusing on transcriptional regulation, key genes expression of the poly-

phenolic pathway has been investigated during five developmental stages. The first stage (15 

days after flowering [DAF]) corresponds to the fruit set, when young berries are enlarging (>3 

mm diameter); the second stage (35 DAF) is the post-fruit set, when berries (>7 mm diameter) 

start touching; the third stage (70 DAF) is the veraison, when berries begin to change color 

and enlarge; the fourth stage (84 DAF) corresponds to the mid-ripening stage; and the final 

stage (115 DAF) represents complete ripening. The pathway considered can be divided in 

three parts, called Early, Middle and Late pathways; each of them is characterized by a group 

of genes used in this analysis. The genes PAL, C4H, 4CL, F3’H and F3’5’H are grouped in 

the early-pathway, the middle-pathway is formed by FLS4, FLS5, DFR, LDOX and UFGT 

and the rest of the genes (ANR, LAR1, LAR2, MybPA1 and MybPA2) represent the late-

pathway. All the analyzed genes showed expression values strictly correlated with the 

developmental stage. Indeed some phenol compounds, as anthocyanins were not produced in 

berry until veraison and their production can be tissue specific, especially in red berry grapes. 

Among the all gene studied, PAL (Phenylalanine Ammonia Lyase) exhibits a gradational 

decrease of expression from fruit set to ripening confirming his role as entry point into the 

pathway. PAL catalyses the non-oxidative deamination of phenylalanine to trans-cinnamic 
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acid and ammonia. It has been demonstrated that increased activity of PAL is correlated with 

increased production of phenyl-propanoid and levels of PAL activity vary with developmental 

stage, cell and tissue differentiation, and exposure to different stress stimuli (Bagal et al., 

2012). Together with 4CL and C4H, PAL activity is highly correlated with the total contents 

of phenolic acids. For this reason, the exponential decrease of expression of PAL during grape 

berry development may trigger the decrease of total phenolic compounds in berry skin and 

seeds. Another gene closely related to the developmental stages is the UFGT (UDP-glucose: 

Flavonoid 3-O-glucosyl transferase), which is committed to anthocyanin synthesis. UFGT 

catalyses the glucosylation of anthocyanidins into stable colored anthocyanins. Its expression 

levels in middle ripening and ripening were higher in the whole berry (12.3, 14.7) and in the 

skin (5.1, 4.3) then in the seeds (-0.2, 0.1). Furthermore, the chemical analysis show an 

incredibly increase of anthocyanins content in skin (412 µg/g) compared to seed content (0) 

during ripening time. Our expression and chemical data confirmed the results obtained from 

Castellarin and Di Gaspero (2007), who demonstrate that the anthocyanin content in skin is 

dependent on the expression level of UFGT. Another gene that is involved in anthocyanin 

production is F3’5’H (Flavonoid 3’, 5’-hydroxylase). This gene is highly expressed in 

maturation stages from veraison to ripening in the whole berry and in the skin, but down-

expressed in seeds. Jeong and collaborators (2004) demonstrated the over-expression of this 

gene in the ripening time of Cabernet Sauvignon berries confirming our results. In the phenyl-

propanoid pathway, besides UFGT there are two additional enzymes that have been 

demonstrated to be involved in anthocyanin production: DFR (Dihydroflavonol 4-Reductase) 

and LDOX (Leucoanthocyanidin Dioxygenase). DFR diverts the substrate from flavonols 

formation to the anthocyanin and proanthocyanidin pathway, while LDOX is involved in 

anthocyanin biosynthesis and catalyses the conversion of colorless leucoanthocyanidin to 

colored anthocyanidin. DFR expression has been shown to be spatially and developmentally 

regulated, organ-specific, and induced the accumulation of anthocyanin in different plant 

tissues (Zhang et al. 2008). Similarly, the expression of the LDOX gene has been detected in 

different organs of Shiraz grapevine, such as leaves, roots, seeds, flowers, berry skin, and 

flesh (Boss et al. 1996a, b). In fact, those genes are over-expressed in all tissues during 

middle ripening and ripening but with variable levels. Proanthocyanidins (PAs), or condensed 

tannins, are flavonoid polymers synthesized from leucoanthocyanidin reductase (LAR1 and 

LAR2) and anthocyanidin reductase (ANR), two specific enzymes for the formation of flavan-

3-ols, respectively (+)- (gallo)catechin and (-)-epi (gallo)catechin. We found that the 

expression values of these genes were higher in seeds than in skin and this result was 
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confirmed by chemical analysis. Interesting data were obtained with the two homologous 

genes LAR1 and LAR2, that showed an opposite expression level in all tissues and stages. Our 

findings concerning the predominant amount of polymeric tannins in skin rather than seeds 

are in agreement reported by Vivas et al. (2004). In seed chemical analysis, tannin monomers 

decreased drastically along with berries ripening (90%). This seemed to be correlated with 

tannin oxidation and structural modifications of phenol molecules as consequence of protein, 

carbohydrates and other poly-phenolics interactions (Kennedy et al., 2000). MybPA1 and 

MybPA2 are two transcription factors that regulate the expression of phenyl-propanoid 

pathway genes, in particular ANR and LAR. In grapevine it has been reported that the 

expression levels of MybPA1, ANR and LAR1 are correlated and that they are highly increased 

following veraison (Bogs et al. 2007). Another transcriptomic study of those genes in 

grapevine has been described from Terrier and collaborators (2009); they demonstrated a 

tissue-specific expression of MybPA1 and MybPA2 in young leaves and berries skin. 

Compared with these studies, similar results were observed in our tests. Indeed, the 

expression of MybPA2, ANR and LAR2 was correlated in all tissues and developmental stages; 

also MybPA1 and LAR1 were co-expressed in the whole experiment. The findings of our 

expression data on MybPA1 and MybPA2 suggest that these transcription factors regulate 

different genes of the same family. However further research is required to understand the 

positive or negative nature of this transcriptomic regulation. Additional plant secondary 

metabolites investigated in this study were flavonols, classified as proanthocyanidins. They 

are commonly associated to the antioxidant and nutriceutical properties of wine and grape 

juice products. Their expression is regulated from flavonols synthase 4 (FLS4) and 5 (FLS5) 

and can be tissue specific. Fujita et al. (2005) demonstrated that the biosynthesis of flavonols 

possesses a control system different from that of anthocyanins. Indeed, the expression levels 

of UFGT and F3’5’H were different from that of FLS4 and FLS5. These genes seem to be 

highly expressed in seeds and the data were confirmed by chemical analysis, that showed 

higher levels of flavonols in seed (55 mg/g) rather than skin (4 mg/g). In detail, the great part 

of seed flavonols were represented by monomers and oligomers. This is an interesting finding 

since it has been demonstrated that monomeric and oligomeric flavanols (MOF) are involved 

in cardiovascular disease prevention and have ontioxidant properties. Their mechanism of 

action is still under investigation (Weseler et al., 2011). The first attempts to analyze the 

phenyl-propanoid pathway in grapevine were able to identify only few genes that tended to 

modulate dramatically during berry development and ripening. An example is given in Terrier 

et al (2001) and da Silva et al. (2005), that demonstrated that genes ancoding cinnamyl-
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alcohol dehydrogenase (CAD), caffeic acido O-methyltransferase (COMT), chalcone-

flavanone isomerase (CHI), chalcoene synhtase (CHS) and leucoanthocyanidin dioxygenase 

(LDOX) were the only genes expressed during early berry development and at veraison. By 

contrast, our data showed an over-expression of LDOX only in the late berry development 

stages. These gene was strictly specific to skin tissues together with F3’5’H and UFGT. On 

the counterpart, some genes (FLS4, FLS5, LAR2 and ANR) were found to be specific to seed 

tissue. Recent studies demonstrate that the phenyl-propanoid metabolism is under strict 

transcriptional control, indeed two transcription factors (VvMybPA1 and VvMybPA2) were put 

in the set of genes chosen for the transcriptional analysis. Water et al. (2005) found 11 

secondary metabolism cDNAs, like PAL, 4CL, CHS, F3’H and ANR, that were up regulated 

during the herbaceous stage of Shiraz berry development but non from berry skin that were 

up-regulated during ripening. Terrier et al. (2005) identified approximately 20 

developmentally modulated phenylpropanoid pathway genes in Shiraz berries, but only five 

of these were involved in ripening and suddenly induced at the very beginning of berry 

colouration (as FLA4, FLS5) and two genes involved in anthocyanin synthesis (as UFGT). 

The remaining transcripts (PAL, CHS, CHI, F3’H, DFR, F3’5’H and LDOX) were expressed 

predominantly during early development and later at ripening, confirming a bimodal pattern 

of transcript accumulation as initially described by Boss et al. (1996a) for the flavonoid 

pathway genes. This profile prevides an explanation for the asynchronous accumulation of 

proanthocyanidins and anthocyanins in the berries of red cultivars. Nowadays, an interesting 

phenomenon not intensely studied, is the increasing of phenolic compounds in response to 

wounding stress. A stress or an injury to a plant cell will trigger two types of responses in 

phenolic metabolism (Rhodes and Wooltorton, 1978). The first response is the oxidation of 

the existing phenolic compounds as a result of rupture of the cell membrane; this causes the 

phenolics to combine with the oxidative enzyme systems. The other response involves the 

synthesis of monomeric or polymeric phenolics to repair the wounding damage. These second 

responses are caused by changes in phenylalanine ammonia lyase activity. In this study the 

expression levels of PAL, 4CL and C4H were investigated in a wounding stress time course of 

Aglianico del Taburno leaves. At one day post treatment, an over-expression of PAL and C4H 

was registered with an increase of 5 and 2 fold change unites, respectively. These data 

confirm the findings of Surjadinata et al. (2012), albeit with slight differences. They 

demonstrated that wounded carrots could be promoted as an inexpensive rich source of 

phenolic antioxidants for the regular human uptake simply increasing wounding stress 

intensity. The phenolic amount and the PAL enzyme activity were identified and an increase 
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of PAL activity (200%) was registered at four hours after wounding in three different carrot 

cultivars. These findings of increased antioxidant activity with wounding stress have been 

demonstrated only in few plants: lettuce leaves (Kang and Saltveit, 2002), purple-flesh potato 

(Reyes et al., 2003) and in a variety of fresh vegetables (Reyes et al., 2007).  

Another molecule highly accumulated in plant cells in response to abiotic stress is the 

stilbenes, which represent a relatively small group of phenyl-propanoid compounds. In peanut 

and grapevine the accumulation of stilbenes have been correlated with an increased 

transcription of both STS genes and upstream enzymes in the phenyl-propanoid pathway such 

as PAL and C4H (Lanz et al., 1990; Bais et al., 2000). A peculiar role in phenyl-propanoid 

regulation is covered from the transcription factors, in particular the R2R3-MYB transcription 

factors, responsible for the regulation of flavonols, lignin and anthocyanin metabolism 

(Boudet 2007). The R2R3-MYB TF group is the largest MYB sub-family in plants (Du et al., 

2009) with the grapevine genome estimated to contain 108 R2R3-MYB members (Matus et 

al., 2008). Hӧll et al. (2013) demonstrated that two R2R3-MYB accessions displayed similar 

expression patterns to the inducible VvSTS genes. These two accessions were previously 

designated VvMyB14 and VvMyB15 by Matus et al. (2008) based on their homology to the A. 

thaliana MYB14 gene. Along with the transcription factors, four stilbene synthase candidates 

were chosen from the 36 identified in Hӧll et al. (2013) and used in our expression analysis. 

The strong difference between VvMyB14 and VvMyB15 expression is due to the treatment 

used. Indeed, the induction of VvMyB15 seemed to be restricted to UV-C treatment, while 

VvMyB14 showed a dramatic increase in the expression upon all treatments in grapevine (Hӧll 

et al. 2013). Our results confirmed data indicating a consistent over expression of VvMyB14 

during the all treatment, while VvMyB15 did not show any significant expression. These data 

can be correlated with the over-expression of VvSTS6 and VvSTS16 and the down-expression 

of VvSTS22 and VvSTS36. 

 

2.5 Conclusions 

In conclusion, we have used and integrated two marker systems to detect genetic diversity and 

population structure in V. vinifera cultivars from a relatively small area. Using two 

appropriate techniques we were able to classify this heterogeneous group on origin and spread 

with microsatellite markers or on vegetative propagation with retrotransposon-based markers. 

Data suggested that a vast genetic variability is still present in grape germplasm. Homonymies 
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and synonymies were found, reinforcing the knowledge that molecular evaluations can 

provide further insights into genetic structure and differentiation of Vitis germplasm 

accumulated during centuries of cultivation and selection. These molecular data are a 

powerful tool to preserve the Campania grape biodiversity and protect producers and 

consumers from food frauds. The grape collection established during this PhD research 

project represent part of the material carried out during the regional project SALVE 

(Safeguarding of the plant biodiversity of Campania), which considers the use of molecular 

markers for the identification, selection and conservation of autochthonous plant genetic 

resources in the agricultural system of the Campania region. Among the collection, Aglianico 

del Taburno	  is a model for astringency and the strong resveratrol content confer high positive 

nutriceutical properties to their grapes and wines. For this reason, a transcriptomic analysis of 

key genes of the phenyl-propanoid pathway were carried out in whole berries, skin and seeds 

during the maturation and in leaves after wounding treatment. The results obtained in 

different tissues, seeds and skin, make us able to classify a tissue specificity of the analyzed 

genes. The expression study was correlated with the amount of total phenols, flavans, 

anthocyanins and tannins detected in skin and berry using a spectrophotometric assay. The 

gene expression study suggested that tannins are produced to defend grape before maturity 

from predation, indeed astringent tannins declined with fruit parts ripening. Overlapping the 

transcriptomic and chemical data, anthocyanins are highly synthetized at ripening in skin 

tissues and are completed absent in seeds. Finally, wounding stress was found to induce an 

increase of antioxidant compounds and we speculate that their expression might be regulated 

by VvMyB14, a transcription factor. 
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Chapter 3 
 
Investigation of grapevine basal immunity 
 
3.1 Introduction 
 
3.1.1 The plant immune system 
 
Protection of plants against infectious microorganisms depends on both passive and active 

defense mechanisms. Broadly speaking, passive defense mechanisms are those that are 

present before contact with the pathogen, while active defense mechanisms are activated only 

after pathogen recognition. In detail, to gain access to the nutrients or replication machinery 

available within the host cell, pathogens must first breach the natural barriers presented by 

healthy plants, the passive defense. These barriers may be physical (e.g. wax, cuticle, cell 

wall, stomatal aperture, lenticels, etc.) or chemical (e.g. inhospitable pH, inhibitory 

compounds, phytoanticipins, or the lack of stimulatory compounds needed for pathogen 

development). Sometimes, the aggressiveness of pathogens is directly related to the activity of 

them cutinolytic enzymes and to plant cell wall thickness and position (pathogens prefer 

young leaves). The current understanding of plant defense was described by Bent and Mackey 

(2007). This model is nicknamed the new “Central Dogma” of plant pathology (Figure 1). 

The more ancient, primary plant immune response is referred to PTI (PAMP-Triggered 

Immunity) and is based upon the recognition of conserved components of microbial surfaces 

termed PAMPs (Pathogen Associated Molecular Pattern), alternatively known as elicitors. 

The recognition is made up by specialized molecules, the PRRs (Pattern-Recognition 

Receptors), which can switch on the PTI response inducing cytoskeleton rearrangements, 

callose deposition and the induction of antimicrobial compounds. The PTI response usually 

terms with the resistance of plant to the pathogen attack, as in the case of Vitis vinifera with 

the non-adapted powdery mildews (Figure1, box 1). However, certain microbes become 

“adapted” pathogens of particular plant species by evolving virulence factors, called effectors, 

which actively suppress parts of the host general defense response (Figure 1, box 2). For 

instance, E. necator appears to be the only powdery mildew species which has become 

adapted to V. vinifera . The initial stages of the plant-pathogen ‘arms race’ starts with the 

plant immunity defense evolution (Figure 1, box 3). It consists in the restoring of the host 

species resistance status through specific resistance (R) genes. Commonly, the result of 

defense activation involving R genes is the programmed cell death (PCD), termed a 

hypersensitive response (HR), which prevents the pathogen from obtaining nutrients and 
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completing its life cycle (Mur et al., 2008). The pathogen can be able to evolve further and 

escapes detection by the R protein by modifying or eliminating the effectors that triggers 

those defenses (Figure 1, box 4). PTI is effective against most pathogens and generally 

operates in all individuals of a plant species since both PRRs and their corresponding PAMPs 

are highly conserved in plants and (potential) pathogens, respectively. In contrast, ETI 

(Effector-Triggered Immunity) in most cases is only effective against one or a few strains of a 

particular pathogen that possesses an Avr (Avirulence) protein recognized by an R protein 

(Dry et al., 2009). ETI is also less stable and may be overcome by pathogens in a short period 

of time (e.g. many resistant cultivars last only 5-10 years in field). As a consequence of the 

co-evolutionary arms race between plants and pathogens, both the R gene and Avr gene loci 

are highly polymorphic. In the next paragraph the state-of-art of the current knowledge of the 

elicitors, PRRs and R genes involved in the interaction plant-microbe in grapevine is given. 

 
Figure 5. The new “Central Dogma” of plant pathology (Bent and Mackey, 2007). 
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3.1.2 Elicitors, effectors and R genes in grapevine 
Over the course of the last few decades, there has been a great increase in the economic 

competitiveness of grape production. The competitive challenge is associated with the need to 

maintain quality and productivity, as well as adapt production to new geographical areas. 

Climate changes, the advent of new diseases and the increasing market demand have led to a 

remarkable boost in studies related to the grape physiology and pathology of this species 

(Wang et al., 2014). In particular much attention has been payed on the better understanding 

of defense mechanisms to either increase resistance or decrease susceptibility in V. vinifera. 

Nowadays, a lot is known about the ETI, but not much about PTI. In the PTI scenario, 

PAMPs constitute abundant, conserved structures typical of whole classes of pathogens. 

These structures, known as elicitors of cultivar-‐non-specific defenses, have been identified 

both for bacteria, such as lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-

Tu), cold shock protein (CSP), peptidoglycan (PGN) and Harpin (HrpZ) (Meyer et al., 2001; 

Newman et al., 2002; Zeidler et al., 2004; Furukawa et al., 2014; Felix and Boller, 2003; Erbs 

et al., 2008) and for fungi, such as chitin and ergosterol (Wan et al., 2008a; Granado et al., 

1995). Focussing on grapevine, grey mould (Botrytis cinerea Pers.), powdery mildew (E. 

necator), downy mildew (P. viticola Berk.), fruit rot (Rhizopus stolonifer Ehrenb. Fr. Lind) 

and some Aspergilli spp. are some of the main fungi that attack the grapevine and lead to the 

production of defense molecules, like phitoalexins (from the Greek phyton=plant and 

alexein=to defend). The elicitors able to induce tolerance in grape epidermal cells after B. 

cinerea or P. viticola attacks have been identified and they are oligosaccharides and glucans, 

such as α -1,4-cellodextrins (Aziz et al., 2007), cyclodextrins (Bru et al., 2006), laminarin 

extracted from algae (Aziz et al., 2003), β-1,3-glucan sulfate (Trouvelot et al., 2008), botrycin 

and cinerein (Repka et al., 2001, 2002, 2006). Besides saccaride molecules, also lipids are 

known to act as elicitors in plants. Among all, ergosterol is the most described one in 

grapevine. This sterol was described as an inducer of a specific set of defense-related genes 

and associated signal transduction pathways (Kasparovsky et al., 2004; Lochman and Mikes 

2006, Rossard et al., 2006). In addition have been reported that some enzymes of the stilbene 

biosynthesis pathway are highly induced in grapevine by ergosterol treatment, most probably 

through the activation of WRKY transcription factors (Gomès et al., 2003, Laquitaine et al., 

2006; Marchive et al., 2007). Other typical fungal elicitors are chitin and its fragments, chitin 

oligosaccharides or N-acetylchitooligosaccharides. It has been shown that they elicit a variety 

of plant defense reactions such as the stimulation of phenylalanine ammonia lyase (PAL), 
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peroxidase and lipoxigenase activities, as well as the accumulation of phytoalexins (Aziz et 

al., 2007). The putative specific receptors of chitin remain to be identified. 

Some pathogens, however, have evolved and acquired mechanisms to escape PTI via 

effectors, causing effector-triggered susceptibility (ETS), that is assumed to allow pathogens 

to grow and multiply in a potentially hostile plant environment (Alfano and Collmer, 2004; 

Chisholm et al., 2006; Jones and Dangl, 2006). However, the host contains a back up 

detection system governed by R genes for races and biotypes of a pathogen species. 

Avirulence genes (Avr) encode for specific effectors that interacts with and recognized by 

specific cognate receptors (R genes) situated either in the intracellular space or at the plasma 

membrane of host plants in accordance with Flor’s gene-for-gene hypothesis (Flor, 1956). 

These effectors induce an ETI response. A number of avirulence genes have been identified in 

plant pathogenic bacteria, although their gene products are yet to be characterised. The 

majority of characterized plant R genes can be grouped into 5 classes (Ellis et al., 2000, Dangl 

and Jones 2001) encoding for: (i) cytoplasmic serine/threonine kinases (Figure 2A); (ii) 

extracellular leucine-rich repeats (LRRs) proteins anchored to a trans-membrane domain 

(Figure 2B); (iii) receptor-like kinases (RLKs) with an extracellular LRR and an intracellular 

serine/threonine kinase (Figure 2C), (iv) proteins with an N-terminal transmembrane anchor 

and a cytoplasmic coiled-coil (CC) domain (Figure 2D) genes; and (v) proteins with a 

nucleotide binding site (NBS), and a LRR domain in their C-terminus (NBS-LRR proteins, 

Figure 2E). That latter class of R genes can be sub-divided in two sub-classes based on their 

N-terminal domain (Bai et al., 2002), which can either be a toll/interleukine-1 receptor (TIR-

NBS-LRR, specific to dicotyledonous species) or a coiled-coil domain (CC-NBS-LRR, 

present in all angiosperms). 
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Figure 6. The majority of characterized plant R genes 

NBS-LRR genes are the most largely represented R-genes in plant genomes. Grapevine is no 

exception and in a survey of the grape cv. Pinot Noir draft genome (Velasco et al., 2007) 233 

genes encoding for proteins containing both NBS and LRR domains were detected. Among 

them, 84 genes belong to the CC-NBS-LRR subfamily while the TIR-NBS- LRR subfamily 

includes 37 genes. A complete inventory of defense-related RLKs genes is not easy to make, 

because these proteins are also implicated in a wide range of developmentally related 

signaling pathways (Shiu and Bleecker 2001). Nevertheless, 53 genes encoding putative RLKs 

have been identified in grapevine and are arranged in clusters in plant genomes (Di Gaspero 

and Cipriani 2003). In grapevine, for example TIR-NBS-LRR gene clusters are preferentially 

located on linkage group (LG) 18, CC-NBS-LRR gene clusters on LG 9 and 14 and truncated 

NBS-LRR on LG 12 and 13 (Velasco et al., 2007, Moroldo et al., 2008). The LG 14 scored the 

highest number of RLK coding genes (Moroldo et al., 2008). 

In agreement with the role of R genes in plant innate immunity, several receptor-encoding 

genes were mapped in V. vinifera. The Run1 locus (Resistant to Uncinula necator 1), 

originating from M. rotundifolia (Pauquet et al., 2001) confers resistance to powdery mildew 

and has a counterpart in the Vitis genome physically located on LG 12 (Barker et al., 2005). 

Additional loci for powdery mildew resistance have been also reported on LG 15 and 14 in 

Vitis hybrids (Dalbo et al., 2001, Fischer et al., 2004). Quantitative trait loci for downy 

mildew resistance have been mapped with SSR markers to the distal part of LG 18 (Fischer et 

al., 2004), and in the middle of LG 7 (Grando et al., 2003) in Vitis resistant accessions, 

nearby regions where NBS-LRR genes are clustered. Another major determinant responsible 
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for resistance to P. viticola has been identified on LG 12 (Merdinoglu et al., 2003). In 

conjunction with the knowledge of the grape genome sequence, the availability of linkage 

maps based on transferable molecular markers (reviewed by Doligez et al., 2006) will 

constitute valuable tools for pathogen resistance breeding in premium Vitis cultivars.  

 

3.1.3 The most economically important grapevine disease: Powdery mildew 
Powdery mildew afflicts vineyards worldwide. It is caused by the ascomycete fungus E. 

necator, which originates from North America. In the XIX century, American grapevines 

were introduced in Europe giving to this pathogen the possibility of spreading in the all 

European countries contributing to destroy the autochthonous grapevines (Gadoury and 

Pearson, 1991). Indeed, V. vinifera evolving in isolation from E. necator is highly susceptible 

to powdery mildew, while many non-vinifera grape species, endemic to North America, 

display varying levels of resistance (Pearson and Gadoury, 1992).  

Powdery mildew, also called oidium, is a polycyclic disease caused by the gamic (E. necator) 

and the agamic (Oidium tuckeri Berk.) form of the fungus. The primary inoculum process 

begins with an ascogonium (female) and antheridium (male) joining to produce an offspring 

at the end of summer. This offspring, a young cleistothecium, is used to infect immediately or 

overwinter the host (Figure 3). 

 
Figure 7. Cleistothecium of E. necator. 

Cleistothecia are formed primarily on foliage, but also on berries, rachises or shoots (Pearson 

and Gadoury, 1987). They contain at least six asci each of them produce from four to eight 

spore mother cells of the fungus (ascospores). The long appendages radiating from the 

ascocarp are hooked at the end; the cleistothecium is the persistent (overwintering) stage of 

the fungus. Morphologically mature cleistothecia are dispersed during rain events to either the 

bark of the vine or to the soil (Gadoury and Pearson, 1988). They may also be dispersed by 
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extreme high winds (Grove, 2004). After overwintering, they start off a new cycle of disease 

in the new growing season. Indeed, when the environmental conditions are right (typically in 

spring) the cleistothecium ruptures the structure to release ascospores and initiate new 

infections representing the asexual reproduction or secondary infection. The ascospores land 

on a healthy tissue and produce the first mycelium hyphae. In the infected cells, the hyphea 

generate agamic spores, conidia, which are responsible of the secondary infections recurrent 

during summer time. The pathogenicity of E. necator is based on the capacity of its hyphae to 

penetrate the host epidermal cells. The hyphae are 4-5 mm in diameter, hyaline and 

superficial with multilobed appressoria at regular intervals. A penetration hypha pierces the 

cuticle and epidermal cell wall and is subtended by a globose haustorium, which envaginates 

the epidermal cell membrane. After haustorium formation, conidiophores are formed 

perpendicularly to the epidermis. Each conidiophores produce a single spore or conidia and 

chains of conidia may accumulate (Gadoury et al., 2012) (Figure 4). 

 

 
Figure 8. E. necator conidia, conidiophores and 
haustoria. 

The pathogenic specialization in E. necator is the differential ability of isolates to infect a host 

species (Gadoury et al., 2012). It was found on V. rotundifolia, a powdery mildew resistant 

grape. Out of 38 isolates, 10 were able to form colonies (Frenkel et al., 2010). The race 

specificity is similar to the pathogenic specialization, but is conferred by single resistance 
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genes (R genes), it has been proven in several other host plants (Coffey et al., 2006; Leus et 

al., 2006; Sacristán et al., 2009). Two breeding populations of V. vinifera were shown to 

segregate for powdery mildew R genes introgressed from wild Vitis species. Progeny were 

screened with diverse isolates collected by Frenkel et al. (2010), and individual isolates were 

differentiated in their ability to overcome the R genes. The isolates that overcame each 

resistance were collected from the same host species as the source of resistance. This raises 

the question of whether the pathogenic specialization observed previously was a result of the 

action of single R genes present in only some genotypes of a species, or to more complex non 

host barriers of all host genotypes of a given species. Another specialization of Erysiphe spp. 

is based on the plant host, indeed each Erysiphe species is specialized for one or few 

susceptible hosts. For example, E. necator is the grape powdery mildew, meaning that it can 

infect only grape species. If a E. necator conidia would land on potato leaves, the host 

immune system will fight and destroy the fungus. However, when E.necator land on grape 

leaves, the possibilities are various due to the fungus pathogenic specialization; on V. vinifera 

the infection occurs, on V. rotundifolia it does not. E. cichoracearum is the powdery mildew 

adapted for Arabidopsis, pumpkin, melon and squash, and successfully activate the plant 

immune defense in grapevine.  

 

3.1.4 Functional genomics strategies to investigate grapevine defense to 

powdery mildew 
Powdery mildew caused by the biotrophic E. necator is the most widespread and destructive 

disease of grapevines world-wide. However, grapevines are highly resistant to many powdery 

mildew of other species, called non-adapted (e.g E. cichoracearum). The first defense line is a 

PTI based on PAMPs recognition by surface or intracellular receptors (PRRs). In the model 

plant species, A. thaliana, the PRR cerk1 (Chitin Elicitor Receptor Kinase 1) recognises the 

chitin component of fungal cell walls (Figure 5). 
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Figure 5. A schematic view of current understanding of PTI responses. Pathogen-derived 
molecules, bacterial flagellin and EF-Tu (Elongation factor Tu) and fungal chitin, are 
recognized by cognate PRRs, fls2 (flagellin-sensitive 2), efr (EF-Tu receptor) and cerk1, 
respectively. This recognition drives infected host plant cells to reprogram by changing the 
gene expression patterns through the MAP kinase cascade. (Kwon, 2010) 

cerk1 is a plasma membrane receptor-like kinase protein with three LysM motifs (LysM 

RLK) in the extracellular domain which are responsible for chitin recognition. The immune 

response triggered by cerk1 leads to the secretion of cell wall appositions called papillae at the 

site of attempted fungal penetration effectively blocking fungal ingress. The Arabidopsis 

defense pathway represented in Figure 6 starts with the perception of chitin by cerk1, 

followed by activation of the MPK pathway, leading to the activation of a variety of 

transcription factors, as WRKYs, and, ultimately, the induction of genes involved in pathogen 

defense (Wan et al., 2014). Recently, Sánchez-Vallet et al. (2015) defined this mechanism as 

the chitin-triggered immunity, confirming that this carbohydrate plays a central role in plant- 

fungus interactions. The bioinformatics resources for the grapevine species has expanded in 

the past few years, with a variety of tools created for post-genomics era applications 

(Grimplet et al., 2011). Most notably, the genomes of the heterozygous variety Pinot Noir and 

a near homozygous Pinot Noir derived inbred (PN40024) have been sequenced (Velasco et 

al., 2007; Jaillon et al., 2007). The sequencing and the assembly of the latter have been 

updated recently from 8X to 12X coverage. This new assembly is accompanied by the gene 

structure predictions, which included all the features associated to them, such as mRNAs, 

UTRs, introns, exons, and inter-genic spaces (Grimplet et al., 2012). The predicted sequence 

of genes of interest can be downloaded and studied for functional analyses. This type of 
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studies can be carried out searching grapevine homologs of known and characterized genes in 

other plant species, like Arabidopsis.  

 

3.1.5 Aim of the research 
Our current knowledge of the interactions between grapevine and powdery mildew at the 

plant cell wall level and how this affects downstream signaling is still limited. The aim of the 

present research was gain new insights into mechanisms by which grapevines resists infection 

by the non-adapted powdery mildew, investigating both grape chitin perception and signal 

transduction pathways. Towards this goal, we in silico sought these genes putatively involved 

in the perception of chitin at the epidermal cell apoplast level through the characterization of 

the grape homologs genes, which are AtCERK1 homologs. We cloned these homologs in A. 

thaliana cerk1 mutant to get functional complementation and determine their role in the 

defense response of grapevine against non-adapted powdery mildew species. Using a similar 

in silico approach, signal transduction investigations were performed and grapevine MAPK 

and WRKY candidates were identified. To better understand the role of these genes in 

grapevine defense activation after chitin recognition, expression analyses in chitin spray and 

powdery mildew infection time courses were carried out. The different levels of expression at 

each time point are powerful indices of candidate genes behavior after fungus attack or fungal 

elicitor treatment. 

 

 

3.2 Materials and methods 

3.2.1 The plant material 
The A. thaliana cerk1-1 mutant in the Col-0 genetic background (Germplasm: 4515087882) 

was obtained from the germplasm collection of Arabidopsis Information Resource (TAIR). 

The A. thaliana wild type Columbia-0 was kindly provided by CSIRO (Adelaide, Australia). 

In time course studies, a Cabernet Sauvignon clone was used, while in the Agrobacterium -

mediated transformations a Shiraz clone was considered based on recent studies about genetic 

transformations attitudes. 

 

3.2.2 LYK and WRKY phylogenetic analysis 
Bioinformatics analysis revealed the presence of 12 LysM-RLK genes within the grapevine 

genome (Zhang et al., 2009). A phylogenetic analysis among these candidates and the 5 
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AtLYKs of A. thaliana was carried out using the free platform Phylogeny.fr 

(http://www.phylogeny.fr/). 

A similar analysis was performed to identify the WRKY grape candidates. Using AtWRKY33 

as protein query, an in silico analysis of its homologs was carried out in the protein database 

using the algorithm Blastp in the free platform NCBI Blast 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LI

NK_LOC=blasthome). The results were screened using the p-values and some reference 

papers and the selected predicted protein sequences were analyzed using the free platform 

Phylogeny.fr (http://www.phylogeny.fr/) together with the all Arabidopsis WRKY proteins.  

 

3.2.3 General CDS cloning protocol 
The CDS sequences were amplified using the Phusion® High-Fidelity DNA Polymerase 

(New England Biolabs, England, UK) from grapevine cDNAs. The PCR products were 

purified from agarose gel using the PureLink Quick Gel Extraction Kit (Invitrogen, Carlsbad, 

CA, USA) and the concentration was quantified using the Nanodrop spectrophotometer 

(Thermo Fisher Scientific, Waltham, US). A ligation step was performed in a pCR BLUNT 

Vector from the Zero BLUNT PCR Cloning kit (Invitrogen, Carlsbad, CA, USA). The 

ligation reaction was performed in a 5 µL volume containing 2.5 ng/µl of the vector, 0.5 µl of 

T4 DNA ligase, 1x Ligase Buffer and and 3.5 µl of purified product and incubated overnight 

at 16°C. Ligation reactions were precipitated with n-Butanol to eliminate salt from the 

ligation buffer, increase transformation efficiency and eliminate arcing of cuvettes. The 

ligation was transferred in a 1.5 ml tube and 10 volumes of n-butanol added. After a brief 

vortex (5s), the mixture was centrifuged at 11,300 g for 10 min at room temperature. The 

supernatant was decanted, 20 volumes of 70% (v/v) ethanol added and the sample re-

centrifuged at 11,300 g for 10 min at room temperature. After decanting the supernatant, the 

pellet was dried under vacuum for 7 min and resuspended in 5 ul of nanopure water. Electro-

competent E. coli DH5α cells were transformed by electroporation using a Gene-Pulsar 

apparatus (Bio-Rad, CA, USA). 3 µl of ligation reaction was mixed with a 50 µl aliquot of 

cells and transferred to an ice-cold cuvette (path length = 1mm; Invitrogen). The cuvette was 

given a single pulse in the Gene Pulser (1.8 KV, 125 µFD, 200 Ohms), and immediately 

resuspended in 700 µl of LB agar (Broth LB Agar Lennox 20 gr/L). After incubation at 37°C 

for 45 min with 200 rpm shaking, the transformed cells were spread on LB agar plates with 

Kanamycin 100 µg/mL, X-gal 80 µg/mL and IPTG 50 µg/mL and incubated at 37°C 

overnight. With the blue/white screening, 10 white single colonies were picked, grown in 5 
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mL of LB liquid media at 37°C with 180rpm shaking overnight and purified using the 

PureLink Quick Plasmid Miniprep Kit (Invitrogen, Carlsbad, CA, USA), according to the 

manufacturer’s instructions. A digestion reaction of purified sequences was performed using 1 

µl of an appropriate restriction enzymes (generally EcoRI-HF (New England Biolabs, 

England, UK)), 4 µl of the purified colony, 2 µl of CutSmart Buffer (New England Biolabs, 

England, UK) and water up to a final volume of 20 µl. The reaction was incubated at 37°C for 

two hours. The purification of the specific fragments from agarose gels after visualization by 

trans-illuminator was achieved using a QIAquick Gel Extraction Kit (Qiagen) according to 

the manufacturer’s instructions. The purified fragments were sequenced using an ABI PRISM 

BigDye Terminator Cycle Sequencing Ready Reaction Kit (PE Applied Biosystems, 

Norwalk, CT, USA) according to the manufacturer’s instructions. Extension products were 

precipitated by adding 80 µl of 75% (v/v) isopropanol, incubating at room temperature for 20 

min in the dark and centrifuging for 15 min at maximum speed. After discarding the 

supernatant and adding 100 µl of 75% (v/v) isopropanol, the tubes were centrifuged for 5 min 

at maximum speed. The supernatant was aspirated carefully and samples dried in a vacuum 

centrifuge for 10-15 min. Sequencing reactions were analyzed at the Australian Genome 

Research Facility (Urrbrae, South Australia). Sequence chromatograms were analyzed by 

Vector NTI software (Invitrogen, Carlsbad, CA, USA). 

 

3.2.4 A. thaliana cerk1 mutant floral dipping 
The pART27_VvLYK1 (Figure 6), pART27_VvLYK2 (Figure 7) and pART27_VvLYK3 

(Figure 8) vectors in Agrobacterium EHA105 were kindly provided from Dr.Ian Dry (CSIRO, 

Adelaide, Australia). 
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Figure 6. pART27 vector constructed with the expression cassette 35S-VvLYK1-OCS. NotI 

restriction sites, Right Border, Left Border, Spectinomycin resistance (Spec), and 

kanamycin resistance (NPTII) sites are reported.  

 
Figure 7. pART27 vector constructed with the expression cassette 35S-VvLYK2-OCS. NotI 

restriction sites, Right Border, Left Border, Spectinomycin resistance (Spec), and 

kanamycin resistance (NPTII) sites are reported.  
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Figure 8. pART27 vector constructed with the expression cassette 35S-VvLYK3-OCS. 

NotI restriction sites, Right Border, Left Border, Spectinomycin resistance (Spec), and 

kanamycin resistance (NPTII) sites are reported.  

 

The floral dipping was performed on at least six pots of A. thaliana cerk1 mutants using a 

five-days protocol. At the beginning of the first day, an aliquot of the construct was taken 

from glycerol stock using a inoculation loop, put in 10 mL of LB (Broth LB Agar Lennox 20 

gr/L) with Spectinomycin, Gentamicin and Rifampicin (0.1 mg/mL) and incubated at 28°C 

with 200 rpm shaking overnight. At the very end of the second day, the culture was equally 

distributed in two sterile flasks containing 160 ml of LB media and the appropriate 

antibiotics, and incubated overnight at 28°C with 180 rpm shaking. The third day, the culture 

were placed in centrifuge bottles and spin at 5000 rpm for 15 minutes. Poured off the 

surnatant, 80 mL of 5% sucrose were added to each bottle and the pellet resuspended. Once 

resuspended, 0.02% of Silwett was added to each bottle to increase the transformation 

efficiency. Afterwards, the developed siliques were removed from the A. thaliana cerk1 

mutant and the flowers were dipped twice for 15 seconds. Transformed plants were places in 

a humid container with a removable lid. This lid was opened in the fourth day and removed in 

the fifth one. The plants were dried to collect the seeds. 

 

3.2.5 Seeds sterilization and plantlets screening  
After floral dipping, the selfing (F1) generation seeds were collected, incubated at 37°C for 

one week and then sterilized. The sterilization consists of an incubation with Ethanol 70% 

(v/v) for 5 minutes, decant of the solution and another incubation with 2 parts of Ethanol 

VvLYK3 pART27
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100%(v/v), 1 part bleach and 0.1% SDS for 5 minutes. The seeds were after washed three 

times with Ethanol 100%(v/v) and left to dry in laminar flow hood for at least two hours. 

Dried seeds were sprinkled on selection plates with MS media, Kanamycin (100 µg/mL) and 

Timentin (200 µg/mL) and incubated at 4°C for 48 hours for seeds synchronization. The 

plates were incubated in growing camera for two weeks and the positive plantlets (green) 

were distinguished from the negative ones (yellow) and transferred in new plates without 

antibiotics. After two weeks, the healthy plantlets fully formed were transferred in pots for 

seed collection. Four-week-old positive transformed plants were used for powdery mildew 

penetration test.  

 

3.2.6 Semi-quantitative analysis of VvLYKs positive plantlets 
The correct insertion of the VvLYKs sequences in the positive lines was confirmed trough 

semi-quantitative amplification of VvLYK1, VvLYK2 or VvLYK3 sequences. Total RNA was 

isolated using the Spectrum Plant Total RNA Kit (Sigma-Aldrich) and DNase-treated 

according to the manufacturer’s instructions. cDNA was synthesized using the SuperScript® 

VILO™ cDNA Synthesis Kit (Life Technology). The semi-quantitative RT-PCRs were 

performed using the REDTaq® DNA Polymerase (Sigma-Aldrich) in a 25 cycles PCR 

reaction according to the manufacturer’s instructions. The primer used for VvLYK1, VvLYK2 

and VvLYK3 are reported in Table 1 and the internal standard used is the Arabidopsis 

housekeeping gene Elongation Factor (AtELF; At5g60390) (Table 1). 

 

3.2.7 Functional characterization of VvLYKs 
Two leaves per each positive plant were infected with one-week-old E. necator growing on 

Cabernet Sauvignon leaves or one-week-old E. cichoracearum growing on cucumber leaves. 

The infection was set up taking a little piece of the infected leaf (grape or cucumber) and 

putting it carefully in contact with the top page of the Arabidopsis leaf. Detached leaf material 

was sampled 48h post powdery mildew inoculation and stained in trypan blue with heat for 4 

minutes according to Koch and Slusarenko (1990). Fungal structures were visualized using a 

Zeiss (Göttingen, Germany) Axioscop 2 light microscope and photographed using a Lecia 

(Wetzlar, Germany) DFC 500 digital camera. Successful penetration was determined by the 

presence of a fungal haustorium. As negative and positive controls, the A. thaliana cerk1 

mutant and the wild-type Columbia-0 (col-0) were used, respectively. The percentage of 

penetration (% PEN) was calculated counting a minimum of 100 germinated spores 
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presenting appressoria (Figure 9A), haustoria (Figure 9B) or secondary hyphae (Figure 9C) 

and applying the following formula:  

%  𝑃𝐸𝑁 =
#  ℎ𝑎𝑢𝑠𝑡𝑜𝑟𝑖𝑎 + #  𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  ℎ𝑦𝑝ℎ𝑎𝑒 ∗ 𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑  𝑠𝑝𝑜𝑟𝑒𝑠  

100
 

Each experiment result was confirmed by triplicates. The Student’s t-test was used for 

statistical significance of results using Excel add-in options. 

Figure 9. Germinated spores visualized on the light microscope. A. The conidia is germinated growing the appressoria, but 

didn’t penetrate in the epidermal cell. B. The conidia is penetrated in the epidermal cell developing the haustoria. C. The 

conidia is penetrated in the epidermal cell developing the secondary hyphae. 

 

3.2.8 Powdery mildew infection 
E. necator (isolate APC, provided by E. Scott, University of Adelaide, SA, Australia) was 

maintained on detached leaves of V. vinifera Cabernet Sauvignon using an 8- to 10-day 

rotation as previously described (Donald et al., 2002). E. cichoracearum was maintained on 

cucumber (Cucumis sativus) plants grown in chambers with a cycle of 16 h of light and 8 h of 

darkness and maintained at 22°C. Young no glossy Cabernet Sauvignon and Shiraz leaves 

were detached from glasshouse, sterilized and inoculated with adapted and non adapted 

powdery mildew. The infected leaves were maintained on agar medium in incubator and then 

sampled at 0, 4, 8, 12 and 24 hours post inoculation (h.p.i.).  

 

3.2.9 Chitin treatment 
The youngest no-glossy leaves of Cabernet Sauvignon were sprayed with water and Chitin 0.5 

mg/ml diluted in water (YSK – Yaizu Suisankagaku Industry, Japan). The sprayed leaves 

were sampled at 0, 15, 30, 60, 120 and 240 minutes after spray (m.a.s.). 

 

3.2.10 Gene expression analysis 
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Total RNA was isolated from 40 mg of ground leaves using the Spectrum™ Plant Total RNA 

kit (Sigma-Aldrich, St. Louis, USA) following the manufacturer’s protocol. RNA quality and 

quantity were determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific, 

Wilmington, DE). For gene-specific primers, 1 ug of each sample was reverse transcripted in 

cDNA using the SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen) following the 

manufacturer’s protocol. Semi-quantitative reverse transcriptase-polymerase chain reactions 

were performed in a 15 µL volume containing 1× NH4 reaction buffer with 670mM Tris-HCl 

(pH 8.8 at 25°C) and 160mM (NH4)2SO4, 2mM MgCl2 Solution, 0.2mM dNTPs Mix, 0.7 µM 

primer forward, 0,7 µM primer reverse, 1 unit of BIOTAQ Red (Bioline, Alexandria, NSW, 

Australia), 0,5 µl of cDNA. PCR cycle included initial denaturation of 5 m at 94°C and 25 

cycles of 20 sec at 94°C, of 30 sec at Ta°C, of 30 sec at 72°C. The PCR products were 

visualized on a 1,2% agarose gel. Before use in qRT-PCR experiments, cDNA reactions were 

diluted 10-fold to 200 mL with 10mM Tris–HCl, pH 7.6. Expression analysis was conducted 

by real-time PCR analysis using a SYBR Green method on a Light Cycler 480 thermal cycler 

(Roche). Each 7.5 µL PCR reaction contained 140 nM of each primer, 2 µL of diluted cDNA 

and 3.75 µL of SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA). The 

thermal cycling conditions used were 95°C for 15 min followed by 40 cycles of: 95°C for 30 

s, 57°C for 30 s, and 72°C for 30 s, followed by a melt cycle of 1°C increment per min from 

65 to 96°C. The primer pairs used in quantitative analysis are reported in Table 1. All primer 

pairs amplified a single product of the expected size and sequence, which was confirmed by 

melt-curve analysis, agarose gel electrophoresis and DNA sequencing. The expression of each 

target gene was calculated relative to the expression of the housekeeping gene elongation 

factor, VvELF. The housekeeping expression values were used to calculate the multiplication 

factor of each cDNA (a good value was lower than 5). Afterwards the relative expression 

values were carried out multiplying the multiplication factors with the expression values. A 

Fold-change data was obtained dividing the relative expression of a treated sample on the no 

treated sample. 

 

3.2.11 Overexpression of VvWRKY24 in Shiraz calli  
For over-expression studies, the VvWRKY24 CDS was amplified using the 

VvWRKY24_Xho_F and VvWRKY24_Xba_R primers and cloned in pCR BLUNT vector as 

reported in the Section 3.2.3. Afterwards, the purified constructs and the pART7 vector 

(Gleave et al., 1992) were double digested with Xba and XhoI using 1.5 µl of each enzyme, 4 

µl of the purified colony or 2 µg of plasmid, 3 µl of CutSmart Buffer (New England Biolabs, 
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England, UK) and water up to a final volume of 30 µl, following an incubation at 37°C for 

two hours. The products were purified from agarose gel and diluted to the concentration of 20 

ng/µl. The ligation reaction was performed in a 5 µL volume containing 20 ng of vector, 20 

ng of insert, 0.5 µl of T4 DNA ligase, 1x Ligase Buffer and incubated overnight at 16°C. The 

amount of vector and insert to use for ligation were calculated using the online tool Ligation 

Calculator (http://www.insilico.uni-duesseldorf.de/Lig_Input.html) considering a vector to 

insert ratio of 1 to 3. The electroporation and the cells growing were set up as reported in 

Section 3.2.3, but with different antibiotics. Without the blue/white screening, 10 random 

colonies were purified and the fragment insertion was checked with XhoI/Xba digestion. The 

next step consist in the purification of the expression cassette 35S-VvWRKY24-OCS and 

transformation in the pART27uGFP vector. Based on the pART7 vector restriction map, the 

NotI enzyme is able to cut the complete cassette, but another enzyme cutting outside the 

sequence is necessary to avoid restriction mistakes. A double digestion with NotI and FspI 

was performed as previously described. The VvWRKY24 ORF (3700 bp fragment) was cutted 

from agarose gel, purified, treated with alkaline phospatase and diluted to 20 ng/µl. This 

fragment was inserted in the binary vector pART27uGFP trough ligation reaction, as 

previously described. The pART27uGFP binary vector is a modified form of the binary vector 

pART27 (Gleave, 1992) with the introduction of a GFP (Green Fluorescent Protein) reporter 

gene driven by the Arabidopsis ubiqutin-10 gene promoter (UBQ10). The ligation reactions 

were precipitated with n-Butanol (see Section 3.2.3). The vector is represented in Figure 10. 

Electro-competent E. coli DH5α cells were transformed by electroporation as previously 

described. The transformed cells were spread on LB agar plates with Spectinomycin 100 

µg/mL, X-gal 80 µg/mL and IPTG 50 µg/mL and incubated overnight at 37 °C. Four white 

colonies were picked, purified and digested with NotI enzyme to check the insert size. One of 

them was used for transformation in Agrobacterium EHA105 cells using the Gene Pulser (2.0 

KV, 125 µFD, 200 Ohms), electroporation. The cuvette was given a single pulse in and 

immediately resuspended in 700 µl of LB agar (Broth LB Agar Lennox 20 gr/L). After 

incubation at 28 °C for 90 min with 200 rpm shaking, the transformed cells were spread on 

LB agar plates with Spectinomycin 100 µg/mL and Rifampicin 10µg/mL and allowed to grow 

for 3-5 days at 28°C until single colonies were visible. To produce a culture for 

transformation, a single colony was inoculated into 3 ml of LB with the selective antibiotic 

and incubated with shaking at 28 °C for 24-48 h. Afterwards the colony was stocked with 

glycerol and stored at -80°C. The transformation in Shiraz callus was set up by Dr. Ian Dry 

group (Adelaide, Australia). 
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Figure 10. pART27uGFP vector constructed with the expression cassette 35S-VvWRKY24-

OCS. NotI restriction sites, Right Border, Left Border, Spectinomycin resistance (Spec), 

kanamycin resistance (NPTII) sites, GFP reporter gene (mGFP5-ER) and its promoter 

(UBQ10) are reported. 

 

3.2.12 Knock-out of VvWRKY24 in Shiraz calli 
For production of a VvWRKY24 silencing construct, 566 bp of the ORF of VvWRKY24 were 

inserted into the pGFP_HELLSGATE12 vector (Helliwell and Waterhouse, 2003). This 

vector use Gateway recombinational cloning (Invitrogen) for high-throughput construction of 

hairpins targeting and silencing the gene of interest. The VvWRKY24 ORF fragment was 

amplified with flanking attB1 and attB2 sites using the VvWRKY24_RNAi_attB2_R and 

VvWRKY24_RNAi_attB1_F primers (Table 1) using Pfu DNA polymerase (Bioline). The 

fragment was cloned, purified and sequenced as described in Section 3.2.3 to check the 

sequence. The resulting fragment was recombined with the plasmid pDONR-221, which 

contains attP1 and attP2 sites. The clonase reaction was performed in 5 µl of final volume 

containing 70 ng of pDONOR221 vector, ~ 100 ng of purified fragment and 1 µl of BP 

clonase and incubated at 25°C for two hours. A treatment was set up. The reaction was treated 

with 1 µl of Proteinase K for 15 minutes at 37°C, precipitated with n-butanol and 

electroporated in E.coli DH5α cells as reported in Section 3.2.3. Ten colonies were purified 

and digested to check the fragment size. The clonase reaction gave rise to the pENTR vector 

with the inserted VvWRKY24 ORF with flanking attL1 and attL2 sites. A second 

recombination reaction was then carried out to insert the target sequence into the attR1 and 

attR2 sites in the pGFP_HELLSGATE12 vector using 70 ng of pGFP_HELLSGATE12 

vector, 70 ng of pENTR, 2 µl of TE buffer and 1 µl of LR Clonase. The reaction was 

VvWRKY24 pART27uGFP
18096 bp

NPT2 (5214)

mGFP5-ER (8031)

Spec Resistance (15314)

VvWRKY Full CDS (2313)

LB

RB

pNOS

UBI10 prom

35S

UBI10 term

OCS term



	  

	  
91	  

	  

incubated at 25°C for two hours and cloned as previously described for the pENTR. The 

silencing construct (Figure 11) was electroporated into Agrobacterium EHA105 strain and 

transformed in Shiraz callus as described in the section 3.2.11. 

 
Figure 11. pGFPHellsgate vector constructed with the RNAi sequences of VvWRKY24 

under the promoter CaMV 35S and the terminator NOS. NotI restriction sites, Right Border, 

Left Border, Hygromicin resistance, kanamycin resistance (NPTII) sites, GFP reporter gene 

(mGFP5-ER) and its promoter (CaMV35S) are reported. 

 

3.2.13 Transient gene expression of VvLYK1 and VvWRKY24 
VvLYK1 (VIT_12s0059g01130) was amplified with VvLYK1_Xho_F and 

VvLYK1_Xba_R_NO_STOP primers and VvWRKY24 (VIT_08s0058g00690) with 

VvWRKY24_Xho_F and VvWRKY24_Xba_R_NO_STOP primers to eliminate the stop 

codone (Table 1). The fragments amplified were cloned in pCR BLUNT as described in the 

Section 3.2.3. Afterwards, the positive colonies were separately cloned into pNgfp2 (a 

modified version of vector pART7 with an added in-frame GFP coding region) as reported in 

the Section 3.2.11. The sequences across junction of VvLYK1/VvWRKY24 and GFP protein 

were sequenced to confirm the in-frame fusion. Young grape leaves and onion epidermal cells 

were bombarded with the pNgfp2_VvLYK1:GFP and the pNgfp2_VvWRKY24:GFP 

constructs coated on gold particles. For three shots, 10 mg of 1 µM gold particles (Bio-Rad, 

Gladesville, Australia) in 200 µl of ethanol were vortexed for 2 min, spun down for 10 s in a 

pGFPHellsgate VvWRKY24
14540 bp

Hygromycin (452)

NPT II-Kan (Bacterial) (2202)

mGFP5-ER (8942)

VvWRKY24 RNAi (11608)

VvWRKY24 RNAi (13157)

CAT Intron (rev erse)

OCS300,ATAN5
OCS300A,ATAN6

M13R

P27-5 Primer

M13F

P27-5 Primer
ntGWH12 F

ntPdk Intron primer

ntCAT intron primer, ATAN4

ntGW H12 R

ntTER GWH12

NOS promoter (pART27)

CaMV 35S

CaMV 35S

35S terminator

NOS terminator

OCS terminator

T-DNA LB

T-DNA RB

HindIII NotI Linker

xbaI NotI Linker
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microfuge, drained, washed twice with sterile water, and resuspended in 170 µl of 40% 

glycerol. While gently vortexing, 10 µl of the plasmid solutions (150 ng/µl), 10 µl of cold 0.1 

M spermidine and 25 µl of 2.5 M CaCl2 were added drop wise and the resulting mixture was 

incubated on ice for 10 min. The particles were spin down, washed with 70% ethanol, and 

resuspended in 24 µl of cold 100% ethanol and 6-µl aliquots were placed onto sterile filter 

holders. After bombardment, tissue was stored in the dark for 24 h before fluorescence 

microscopy. The onion layers were floated on 0.5 M sucrose (to induce plasmolysis) and 

DAPI (4',6-diamidino-2-phenylindole) (to color the nucleus), incubated for 30 min and 

observed with a light microscope (Zeiss Axio Imager M1). The DIC (Differential interference 

contrast) microscopy, also known as Nomarski microscopy was used to enhance the cells 

contrast. An average of twenty cells were imaged for each experiment. 
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Table 8. Primers used in this research. For each primers, gene family, name used, sequence and usage and reported. 

Gene Family Primers identity Primer sequence (5’-3’) Usage 

MAPK 

VvMPK3_F1 tatcatgcaactcccccaac Real Time PCR 
VvMPK3_R2 ctctgggcaaactggttcat Real Time PCR 
VvMPK6_F1 accaccacctcagaggacag Real Time PCR 

VvMPK6_RT_Rv gtccctgtgaagaacatttgc Real Time PCR 

WRKY 

VvWRKY16_RT_Fw ctgatggcttcggattctc Real Time PCR 
VvWRKY16_Rv gcagagcttcaacagagcag Real Time PCR 
VvWRKY24_F2 gcctataaggccctcagtca Real Time PCR 
VvWRKY24_R gttcttgagaaaaccccatctg Real Time PCR 

VvWRKY24_Xho_F gcgctcgagccatggcttcctctgctgctag Over expression 
transformation 

VvWRKY24_Xba_R gcgtctagagcaattcagcaaaaaaatgactgg Over expression 
transformation 

VvWRKY24_RNAi_attB1_
F 

ggggacaagtttgtacaaaaaagcaggctccttta
ccaaataatagcaccac Gateway knock-out 

VvWRKY24_RNAi_attB2_
R 

caacaatgcctcattcaaactatgacccagctttctt
gtacaaagtggtcccc Gateway knock-out 

VvWRKY24_Xba_R_NO 
STOP 

gcgtctagagcaaaaaaatgactggaacaagtc
atc Biolistic transformation 

VvLYK1 

VvLYK1_RT_F tacatgccaccagaatacgc Real Time PCR 
VvLYK1_RT_R aaggtcctctcgtggatcag Real Time PCR 
VvLYK1-1_R2 taaacagatccaaagccacc RT-PCR 
VvLYK1_F2 gtgggcttgtttacattcctac RT-PCR 

VvLYK1_Xho_F cgcctcgagcaaatgaaacagaaggtggg Vector construction 
VvLYK1_Xba_R cgctctagaaaggaaaaatggtgaagtattg Vector construction 

VvLYK1_Xba_R_NO 
STOP cgctctagaccttccagacattagattgac Biolistic transformation 

VvLYK2 

VvLYK2_RT_F cgtcttgtgggtacatttgg Real Time PCR 
VvLYK2_RT_R tcctcaaacaaagcaacgag Real Time PCR 
VvLYK2-1_F2 cccgaatttgtaaaaggaag RT-PCR 
VvLYK2_R2 cacaggaactgtatgctcatg RT-PCR 

VvLYK2_Xba_R cgctctagatgctaccttcctgacattag Vector construction 
VvLYK2_Xho_F ggcctcgagaaacatggtcatttcatcaac Vector construction 

VvLYK3 

VvLYK3_RT_F ttcttcattgcccactcgtc Real Time PCR 
VvLYK3_RT_R caagtcctcttgcttcagtgg Real Time PCR 
VvLYK3-5_R2 atatcctatcaggcgaaccag RT-PCR 
VvLYK3_F2 gttgatttcagccttggtagtg RT-PCR 

VvLYK3_Xba_R cgctctagacacactatcttcctgacatc Vector construction 
VvLYK3_Xho_F gcgctcgagccatctttgctagggtttc Vector construction 

Housekeeping 
genes 

AtELF_F tgagcacgctcttcttgctttca RT-PCR 
AtELF_R	   ggtggtggcatccatcttgttaca RT-PCR 
VvELF_F	   cgggcaagagatacctcaat Real Time PCR 
VvELF_R	   agagcctctccctcaaaagg Real Time PCR 

Arabidopsis 
genes 

VvLYK3_FullcDNA_Fw  caaccacgtcttcaaagcaag RT-PCR 
VvLYK3_FullcDNA_Rv catgcgatcataggcgtctc RT-PCR 

VvLYK3_InternalFw gatgggaaaggcaccacttc RT-PCR 
VvLYK3_InternalRv cagagaaacagcagcaaccag RT-PCR 

AtMPK3_F ctcacggaggacagttcataag RT-PCR 
AtMPK3_R gagatcagattctgtcggtgtg RT-PCR 

AtWRKY33_F ctccgaccacaactacaactac  RT-PCR 
AtWRKY33_R ggctctctcactgtcttgcttc RT-PCR 
AtWRKY53_F cctacgagagatctcttcttctg RT-PCR 
AtWRKY53_R agatcggagaactctccacgtg RT-PCR 
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3.3 Results 

3.3.1 Functional characterization of grape chitin receptor  
Certain members of the LysM-RLK receptor family have been shown to play a specific role in 

penetration resistance against powdery mildew, including the AtCERK1 isolated from 

Arabidopsis (Wan et al., 2008). In order to identify the candidate genes involved in chitin 

recognition and penetration resistance in grapevine, we carried out a cluster analysis using the 

12 VvLYK orthologous proteins found in V. vinifera (Clone PN40024) genome sequence 

(Jallion et al., 2007; Zhang et al., 2009) and the 5 members of the Arabidopsis LysM-RLK 

family (Hyun et al., 2010) (Figure 12). AtCERK1 clustered with VvLYK1 

(VIT_12s0059g01130), VvLYK2 (VIT_10s0116g00910) and VvLYK3 (VIT_10s0116g00920). 

 
Figure 12. Philogenetic analysis of V. vinifera (VvLYK) and A. thaliana (AtLYK) LysM-RLK candidates. 

Bootstrap values are displayed. 

To determine whether VvLYK1, VvLYK2 and VvLYK3 could contribute to penetration 

resistance, we generated transgenic lines in the A. thaliana cerk1 mutant background. This 

mutant is compromised in penetration resistance and allow enhanced entry levels of non-

adapted powdery mildew species (Miya et al., 2007), for this reason was used as negative 

control. On the counterpart, the wild type Columbia-0 showing a high resistance to non-

adapted powdery mildew species, was used as positive control. During one year, 15 positive 

and healthy selfing (F1) populations were collected from VvLYK1 transformations, 5 for 

VvLYK2 and 30 from VvLYK3. During the selection of positive transformed lines, VvLYK2 

showed growing difficulties both on plate media and on pots; indeed only five F1 populations 
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were collected and were used for functional studies. All the transformed populations selected 

on plate through antibiotic resistance were also tested using genomic PCR. The F1 and F2 

lines checked to be positive are reported in Table 2. The F1 lines were usually indicated with 

two numbers, the first one is related to the construct used for the transformation (1 for	  

pART27-VvLYK1, 2 for	   pART27-VvLYK2 and 3 for	   pART27-VvLYK3) and the second 

number represent a sequential numbering used to distinguish each line. For example, 1.2 is 

one of the F1 lines obtained from VvLYK1 transformation.  

Table 2. Identification number of the F1 lines of the three pART27-VvLYKs constructs and number of 
the F2 lines generated from them. Sometimes the F1 lines numbering is not sequential because the 
missed lines were tested to be negative.  

 
Construct F1 line # F2 lines  Construct F1 line # F2 lines 
pART27-
VvLYK1 1.1 2  

pART27-
VvLYK3 3.1 3 

 1.2 4   3.2 4 

 1.4 3   3.3 3 

 1.5 9   3.5 3 

 1.6 4   3.6 5 

 1.7 2   3.7 2 

 1.8 2   3.8 5 

 1.11 3   3.9 5 

 1.12 5   3.10 5 

 1.13 5   3.11 3 

 1.15 3   3.15 3 

     3.16 6 
Construct F1 line # F2 lines   3.19 2 
pART27-
VvLYK2 2.2 5   3.22 8 

 2.5 1   3.23 5 

 2.10 4   3.24 8 

 2.12 3   3.25 1 

 2.14 2   3.26 2 

     3.27 1 

     3.28 7 

     3.30 5 

       
 

Another test used to check the correct insertion of the VvLYK sequences in the A. thaliana 

cerk1 mutant genome, was the semi-quantitative amplification of the inserted CDS in the 

positive lines after RNA retro-transcription. In Figure 13 is reported an example of the data 

obtained in six VvLYK1 F1 lines (1.1, 1.2, 1.5, 1.6, 1.7, 1.8), five VvLYK2 F1 lines (2.2, 2.5, 

2.10, 2.12, 2.14) and five VvLYK3 F1 lines (3.1, 3.2, 3.5, 3.7, 3.15). The expression was 

evaluated on agarose gel trough the bands presence/absence and intensity. The bands 

amplified in the VvLYK1 lines showed a miscellaneous expression with the higher intensity in 

the 1.2, 1.5 and 1.7 lines. On the counterpart, in the VvLYK3 lines the bands are uniform and 
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highly intense in all line analyzed. Instead, in the VvLYK2 lines the amplification was scanty 

or completely missed. 

Figure 13. Semiquantitative reverse-transcription-PCR analysis of VvLYKs expression in 6 transgenic VvLYK1 lines, 5 
VvLYK2 lines and 5 VvLYK3 lines. AtELF was used as internal control. Results shown are representative of three technical 
replicates. 

To study the behavior of the transgenic lines in a plant-pathogen interaction, a penetration test 

was set up with non adapted powdery mildew, E. necator. The experiment plan used for 

inoculations is represented in Figure 14. In the experiment, a minimum of three positive F2 

plantlets were considered for each selfing line and three or more leaves of this plantlets were 

functionally studied with powdery mildew inoculations. The inoculations were carried out 

more than one time on each transformed lines.  

 
Figure 14. Experimental scheme of F2 lines screening for powdery mildew inoculations.  

The inoculations were always set up also on the positive and the negative control, the wild-

type Columbia-0 and the A. thaliana cerk1 mutant, respectively. The results obtained on six 

VvLYK1 F1 lines (1.1, 1.2, 1.5, 1.6, 1.7 and 1.8), five VvLYK2 F1 lines (2.2, 2.5, 2.10, 2.12 

and 2.14) and five VvLYK3 F1 lines (3.1, 3.2, 3.5, 3.7 and 3.15) are representative of the all 

sampled lines and are reported in Figure 15. The number of leaves infected in the experiments 

is reported in brackets and ranged from 2 for 1.1 and 2.14 lines to 11 for 3.2 and 3.15 lines. In 

each graph, are reported the penetration percentages of controls, positive lines and two 

negative lines. The latter are F2 lines resulted negative at the PCR screening, they were 

considered as negative controls. In the VvLYK1 lines, the penetration percentages ranged from 

30.7 for 1.1 to 39.9 for 1.5 and resulted significantly similar to the positive control (38.8) (p = 

0,3811). The VvLYK1 negative lines results were highly different than the positive control and 
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similar to the negative control, as expected. For the other two transgenic lines, the percentages 

of penetration were highly similar to the negative control. Indeed, in VvLYK2 and VvLYK3 

lines, the lowest values were 55.87 (2.14 line) and 58.4 (3.1 line) and the highest values were 

69.1 (2.5) and 72.2 (3.15). There were no significant differences among the positive and the 

negative lines of VvLYK2 and VvLYK3. 

 
Figure 15. Penetration efficiency of E. necator in the 

negative and positive controls, the A. thaliana cerk1 

mutant and the wild type Columbia-0, and on positive and 

negative lines of VvLYK1, VvLYK2 and VvLYK3. The 

number of leaves infected are bracketed. 

 

In order to confirm the data obtained on the VvLYK1 transgenic lines, a penetration test was 

arranged using the adapted powdery mildew, E. cichoracearum. The results obtained in the 

controls (the A. thaliana cerk1 mutant and the wild type Columbia-0) and in four VvLYK1 

positive lines (1.1, 1.2, 1.6 and 1.8) are represented in Figure 16. The average of the 

percentage of penetration in the VvLYK1 lines was 75.7 and the data recorded in Col-0 was 
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73.4. This finding suggested that the penetration levels in the positive lines were significantly 

similar to the positive control, Columbia-0 (p=	  0,817), as expected.  

 
Figure 16. Penetration efficiency of the adapted powdery mildew E. 

cichoracearum on two controls, the cerk1 and the wild type Col-0, and on 

the positive VvLYK1 lines. In brackets, the number of leaves infected. 

For a further investigation of the chitin perception in the transgenic lines, a semi-quantitative 

analysis of Arabidopsis signal transduction genes was carried in VvLYK1 and VvLYK3 

positive lines The AtMPK3, AtWRKY33 and AtWRKY53 genes were selected because have 

been shown to be involved in Arabidopsis signal transduction after chitin recognition (Wan et 

al., 2004). A pilot experiment was set up on the A. thaliana cerk1 mutant and the wild-type 

Columbia-0 to compare the response to soluble and insoluble chitin after 30 minutes of 

treatment (Figure 17). The results showed a higher expression of AtWRKY33 and AtWRKY53 

genes after treatment with insoluble chitin (bands more intense). Contrariwise, the AtMPK3 

gene didn’t showed any differences along the time course. 

 
Figure 17. Semi-quantitative analysis of AtMPK3, AtWRKY33 and AtWRKY53 in A. 

thaliana cerk1 mutant and the wild-type Columbia-0. The plantlets were sampled at 0 
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time (cerk1_0 and Col-0_0), after 30 minutes treatment with water (cerk1_30_W and Col-

0_30_W), soluble chitin (cerk1_30_S and Col-0_30_S) and insoluble chitin (cerk1_30_IS 

and Col-0_30_IS). A PCR water control was included (Water). AtELF was used as 

internal control. 

Three VvLYK1 (1.1, 1.5 and 1.6) and VvLYK3 (3.1, 3.2 and 3.15) transgenic lines were used in 

a 0, 15 and 30 minutes time course treatment with insoluble chitin. The time courses were 

semi-quantitative analyzed using the AtWRKY33 and AtWRKY53 genes (Figure 18) The 

results showed a heterogeneous expression in the VvLYK3 lines and a more reliable data in the 

VvLYK1 lines. Indeed, in the three VvLYK1 lines the expression was activated only following 

chitin treatment (no bands at point 0) and it was higher than the water controls. 

 

 
Figure 18. Semi-quantitative expression analysis of AtWRKY33 and AtWRKY53 genes in three VvLYK1 (1.1, 1.5 
and 1.6) and VvLYK3 (3.1, 3.2 and 3.15) transgenic lines in a 0, 15 and 30 minutes time course treatment with 
insoluble chitin. 0 = 0 Time (no treated); 15w = 15 minutes treated with water; 15c = 15 minutes treated with chitin; 
30w = 30 minutes treated with water; 30c = 30 minutes treated with chitin. AtELF was used as internal control. 

Based on our data only VvLYK1 proved to be involved in chitin recognition and signal 

transduction. To confirm the data and avoid the possibility of a functional mutation in 

VvLYK3 lines due to the transformation process, we amplified and sequenced the VvLYK3.1, 

VvLYK3.2 and VvLYK3.15 sequences in cDNAs and gDNAs. The amplified full-length and 

partial sequences of VvLYK3.1 and VvLYK3.2 are reported in Figure 19. The amplicons 

obtained in cDNA (Figure 19, lane 1, 3 and 5) and in gDNA (Figure 19, lane 2, 4 and 6) 

didn’t show any difference, suggesting the lack of modifications both in the genomic and 

transcript sequence. The data were confirmed by sequencing (data not shown). 
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Figure 19. Amplification of two VvLYK3 lines on cDNAs and gDNAs. M = Molecular 
marker 1kbPlus; 1 = cDNA Full Length; 2 = gDNAs Full Length; 3 = cDNA partial 
sequence; 4 = gDNA partial sequence; 5 = cDNA partial sequence; 6 = gDNA partial 
sequence. 

	  

To localize the VvLYk1 protein, a biolistic transformation in onion layers was set up co-

expressing the VvLYK1 and the GFP proteins using the pNgfp2_VvLYK1:GFP vector. Those 

products were found to be localized in the cell periphery, certainly in the plasma membrane 

(Figure 20). The cell wall localization was excluded due to the plasmolysis induced by 

sucrose treatment, which caused the distinction of the cell wall from the cell membrane. 

Evenly, the vacuola localization was excluded due to internal nucleus position (DAPI 

staining). 

 
Figure 20. Biolistic transformation of pNgfp2_VvLYK1:GFP vector in onion layers. Each 
image is captured with different filters: (A) DAPI , (B) GFP, (C) GFP e DAPI e (D) DIC, GFP e 
DAPI. 
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3.3.2 Functional characterization of grape intracellular signal transduction  
 

Using Arabidopsis as model plant, we looked at the genes induced in response to chitin 

treatment and powdery mildew infection, focusing on MAPK and WRKY gene families. Based 

on the VvMPK sequenced characterized by Hyun et al. (2010), specific primers were designed 

on the VvMPK3 and VvMPK6 sequences for expression analysis (Figure 21).  

 

 
Figure 21. Part of the alignment of the 12 VvMPKs sequences reported by Hyun et al. (2010). specific primers were 
designed on the VvMPK3 (green boxes) and VvMPK6 (red boxes) sequences for expression analysis  

Considering Arabidopsis as model, the grapevine WRKY transcription factors homologs were 

identified. The Arabidopsis WRKY33 positively regulates the plant defence after biotic and 

abiotic stress, in particular fungal infections. In silico analysis allow us to identify the 78 

AtWRKY sequences and among them the AtWRKY33 predicted protein sequence (Accession 

Number AEC09541). A Blastp search (See Section 3.2.2) of the AtWRKY33-like sequences 

was carried out allow us to identify the grape, tobacco, rice, parsley and Brassica homologs. 
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A phylogenetic analysis of all identified sequences was performed and a cladogram was built 

(Figure 22). The phylogenetic tree showed a similarity among the two grape homologs, 

VvWRKY26 and VvWRKY24, and AtWRKY33 and the other AtWRKY-like sequences (Figure 

22, red box). 

 
Figure 22. Phylogenetic tree of 78 AtWRKYs and all the 

AtWRKY33 homologs identified trough in silico analysis. 



	  

	  
103	  

	  

The grape VIT_06s0004g07500 and VIT_08s0058g00690 genes were considered as 

candidates and renamed VvWRKY16 and VvWRKY24, respectively, according to the 

nomenclature proposed by Wang et al. (2014). To investigate the possible biological roles of 

VvMPKs (VvMPK3 and VvMPK6) and VvWRKYs (VvWRKY16 and VvWRKY24) candidates, 

an expression analysis was conducted on Cabernet Sauvignon leaves treated with insoluble 

chitin as well as infected with grapevine powdery mildew (Figure 23). 

 
Figure 23. Cabernet Sauvignon leaves were sprayed with insoluble chitin (left) and infected with powdery mildew (right) 

following specific time courses. 

VvMPK3, VvMPK6, VvWRKY16 and VvWRKY24 gene expression was evaluated both on 

powdery mildew and chitin time course (Figure 24). The relative expression values were 

reported in fold change. The time courses were referred to in minutes after spray (m.a.s.) for 

chitin and hours post infection (h.p.i.) for powdery mildew. The results showed a changeless 

expression of VvMPK3, VvMPK6, and VvWRKY16 in both experiments, with values ranging 

between 0.67 (VvMPK3 at 60 m.a.s.) and 5.04 (VvWRKY33 at 15 m.a.s.) in chitin treatment 

and between 0.74 (VvMPK6 at 24 h.p.i.) and 1.62 (VvMPK3 at 24 h.p.i.) in powdery mildew 

infection. The highest expression was obtained with VvWRKY24, which showed 28.20 (30 

m.a.s.) and 6.87 (15 h.p.i.) expression values in chitin spray and powdery mildew infection, 

respectively.  

 
Figure 24. Expression analysis of four candidate genes in powdery mildew and chitin time courses. 
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As shown in Figure 25, the VvWRKY24 protein localization in onion and grape cells, after co-

expression with the green fluorescent protein, was restricted to the nucleus . This is consistent 

with its role as transcription factor. 

 
Figure 25. Biolistic transformation of VvWRKY24 in frame with GFP. Each 
image is captured with different filters and in different tissues: (A) onion 
with GFP, (B) onion with GFP and DAPI, (C) and (D) grape with GFP. 

 

3.3.3 Grapevine genetic transformation  

A grapevine Agrobacterium -mediated transformation was begun to a complete functional 

characterization of the candidate genes identified. Towards this goal, both an over-expression 

and knock-out vectors were built with the VvWRKY24 candidate. Embryogenic calli were 

initiated from anther filaments. The transformation was started using the construct 

pART27uGFP-VvWRKY24 for over-expression in the Agrobacterium strain EHA105. The 

embryogenic callus derived from Shiraz. The first positive embryos obtained are reported in 

Figure 26, in which the GFP fluorescence indicates that their embryos are positive. 
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Figure 26. GFP positive embryos together obtained from over-expression of 

pART27uGFP-VvWRKY24 vector in Shiraz calli. Cotyledons an roots of the 

embryos are underlined. 
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3.4 Discussion 
According to the central dogma of plant pathology proposed by Bent and Macket (2007), the 

first inducible responses during a plant-microbe interaction are a consequence of the 

perception of chemical elicitors, microbe-associated molecular patterns (MAMPs), pathogen-

associated molecular patterns (PAMPs) and/or damage-associated molecular patterns 

(DAMPs). PAMPS are a subgroup of MAMPs (Maffei et al., 2012). All of these molecules, 

which could universally be described as “patterns that elicit immunity” (PEIs), are often 

recognized by trans-membrane pattern recognition receptors (PRRs) in plant cells (Maffei et 

al., 2012; Newman et al., 2013). A PAMP defines an evolutionarily conserved structural unit 

present only in a pathogen species. In particular, chitin is a major component of fungal cell 

walls and serves for the detection of various potential pathogens in innate immune systems of 

both plants and animals. The losses of crop plants from fungal attacks is a serious problem 

worldwide and fungicides might successfully control fungal diseases. However, fungicide 

application have a environmental cost. Nowadays little is known about the PTI response to 

fungal pathogen in grapevine and therefore is deemed important to use the available genetic 

resources and genomic data to explore the grape immunity and characterize the involved 

genes and proteins. In this scenario, the functional genomics and the progressive 

biotechnologies represent powerful tools to establish protective strategies. The main goal of 

this research was the molecular investigation of the mechanisms by which grapevines resist 

infection by the non-adapted powdery mildew through the characterization of the grape 

homologous genes involved in the immune response. The approach used consist of a 

classification of the defense response in two parts: the perception of chitin in the epidermal 

cells apoplast and the intracellular signal transduction. Using Arabidopsis as model, the lysin 

motif (LysM)-containing proteins were chosen as chitin receptor, and the MAPK and WRKY 

gene families as key-genes in the signal transduction. The LysM domain was initially 

identified in bacterial enzymes involved in binding and degrading the bacterial cell wall 

component peptidoglycan (Joris et al., 1992; Steen et al., 2003; Buist et al., 2008), which is 

structurally similar to chitin. In rice (Oryza sativa), CEBiP (for chitin elicitor-binding protein) 

was shown to be important in the activation of plant innate immunity upon chitin addition 

(Kaku et al., 2006). This protein has an extracellular domain containing two LysMs and a 

single transmembrane domain. The analysis of mutants identified AtLYK1/CERK1 (for 

LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) as the primary PRR 

for chitin recognition in Arabidopsis (Miya et al., 2007; Wan et al., 2008; Shimizu et al., 

2010) among five characterized AtLYKs: LYK1/CERK1 and LYK2 to LYK5 (Zhang et al., 
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2007; Wan et al., 2008a). The grapevine genome encodes twelve LysM domain (Zhang et al., 

2009) and three of them (i.e. VvLYK1, -2, and -3) contain proteins, similar to AtLYK1. In this 

research, a functional analysis of each grape candidate was carried out transforming the A. 

thaliana cerk1 mutant. Our data suggested that VvLYK1, VvLYK2 and VvLYK3 can play a 

different role in chitin signaling in grapevine. We demonstrated that a total resistance to 

powdery mildew is re-established in the A. thaliana cerk1 mutant only from VvLYK1, but not 

from VvLYK2 and VvLYK3. Further experiments also suggested an inactive VvLYK2 and an 

active but with unknown function, VvLYK3. Published data in Arabidopsis and rice showed 

that various LysM receptor proteins can be involved in chitin recognition and signal 

transduction in different manner. However, there are still many unanswered questions 

regarding the exact composition of the respective receptor complexes, other auxiliary 

proteins, and the mechanism of signaling and other components of the signaling cascade 

leading ultimately to enhanced disease resistance (Tanaka et al., 2013). In Arabidopsis, is 

clear that some LysM receptor proteins have affinity for chitin-like molecules, but the 

biological/biochemical function of the other Arabidopsis LysM receptor proteins remains 

enigmatic (i.e., AtLYK2, AtLYK3, AtLYK5 and AtLYP1). Based on our results, it might be 

possible that VvLYK3 and/or VvLYK2 proteins bind chitin but not induce downstream 

signaling, for example, as a decoy receptor. Such an example has been found for plant 

recognition of the fungal elicitor xylanase where only one receptor (Eix2) mediates defense 

signaling while the other (Eix1) acts as a decoy receptor to attenuate the PAMP response (Bar 

et al., 2010; 2011). Decoy receptors are well-known in mammals (Pan et al., 1997; Mantovani 

et al., 1996; Bergtsson et al., 2002), in which a decoy receptor manipulates the signaling of a 

cognate one by competing for ligand binding. Such interaction results in inhibition of 

downstream signaling to regulate tumor proliferation and cell death. If acting as a decoy, the 

LysM receptor protein could attenuate the MAMP response in the extracellular matrix. 

Alternatively, it is still possible that VvLYK3 and/or VvLYK2 recognize different size chitin 

oligomers, since different oligomers could have distinct functions (Khan et al., 2011; 

Brotman et al., 2012), as shown for chitin recognition by mammalian macrophages. Further 

studies are required to disclose the nature of molecular functions of all VvLYKs receptors in 

grapevine innate immunity. 

Concerning the intracellular signal transduction, the PTI includes the activation of mitogen-

activated protein kinase (MAPK) and the activation of transcription factors (Ausubel, 2005). 

Both processes are often co-activated with other ones like accumulation of ROS, 

transcriptional activation of pathogenesis-related genes, synthesis of antimicrobial secondary 
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metabolites, cell-wall reinforcement via the oxidative cross-linking of cell-wall components 

and the deposition of lignins (Nurnberger et al., 2004). However, most of these observations 

have been made in dicot plants such as Arabidopsis, rice and tobacco and little is known in 

grape. Mitogen-activated protein kinase (MAPK) cascades consist of kinase signaling modules 

that are evolutionarily conserved throughout eukaryotes (MAPK Group, 2002). A MAPK 

cascade minimally consists of three kinases: a MAPK, a MAPK kinase (MAPKK) and a 

MAPKK kinase (MAPKKK) and have important functions in regulating stress responses 

(Nakagami et al., 2005; Pedley and Martin, 2005). In the Arabidopsis genome were identified 

20 MAPKs, 10 MAPKKs and more than 60 MAPKKKs (MAPK Group, 2002), and other 

several dozens of MAPKs have been identified and isolated from tobacco, tomato, rice, 

alfalfa, maize, oat, wheat, barley, cotton, petunia and poplar as reviewed by Hyun et al., 2010. 

Recently, Hyun et al. (2010) conducted a genome-wide analysis of MAPK genes and 

identified 12 putative MAPK genes by means of in silico analysis of the grapevine genome 

sequence. Among them VvMAPK3 and VvMAPK6 are homologs of the two Arabidopsis 

MAPKs, AtMPK3 and AtMPK6, involved in chitin signaling (Wan et al., 2004). Nowadays, 

only Wang et al. (2014b) provided a expression analysis of all VvMAPKs in different 

grapevine tissues and organs at different developmental stages, and in leaf tissues challenged 

by E. necator, salicylic acid, ethylene, hydrogen peroxide and drought. They identified 

several VvMPKs candidate genes which might be involved in grapevine growth and 

development and in biotic and abiotic responses for further functional characterization. In this 

research, VvMAPK3 and VvMAPK6 seemed to be not involved in plant-microbe response 

showing no expression differences in powdery mildew infection and chitin treatment time 

courses. Our data confirm the findings of Wang et al. (2014b), who identified VvMAPK1 and 

10 as the most prominent induction following E. necator infection, being expressed two fold 

more than that in the control, at 48 and 12 h post-inoculation, while VvMAPK2, VvMAPK3, 

VvMAPK6 and VvMAPK8 showed the lowest expression during the experiment with fold-

changes lower than 1. Furthermore, Wang et al. (2014) surveyed the grapevine MAPK gene 

family and found that VvMPK6 increased its expression level in response to all the stress-

related treatments rather than powdery mildew infection. This suggested that in the grapevine 

this gene might be involved in response to abiotic stresses. Overall, our findings suggest a 

different specialization of the VvMAPKs in response to biotic and/or abiotic stress. For these 

MAPKs and their homologues in other species, the available information is still scanty. 

Investigations of their possible involvement in grapevine resistance to biotic or abiotic 
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stresses will be possible only through future functional genomics experiments of gain/loss of 

function in grapevine. 

Chitin is perceived by LYKs receptors that initiate signaling via intracellular MAPK cascades, 

this stimulates the induction of unknown WRKY transcriptional activators and repressors. In 

grapevine, a total of 59 VvWRKY genes were identified (Wang et al., 2014), but their 

specialization and regulation of biological processes is still unknown. In this research, a 

functional study of two candidates of this important class of transcriptional regulators have 

been conducted to identify the role of VvWRKY TFs in plant defense signaling. Considering 

Arabidopsis as model, AtWRKY33 have been proved to be a potential downstream target 

based on its gene activation (Kim and Zhang, 2004; Wan et al., 2004), its high expression 

after treatment with PAMPs (Zheng et al., 2006) or infection by pathogens (Lippok et al., 

2007; Qiu et al., 2008). For this reason an in silico research of AtWRKY33 homologs was 

carried out in grapevine, tobacco, parsley and rice. We were able to identify two grape 

homologs, VvWRKY16 and VvWRKY24. The transcriptomic databases generated in previous 

studies of grapevine subjected to biotic and abiotic stresses, together with our qRT-PCR 

analysis, allowed us to identify VvWRKY24 gene involved in biotic stress response, but 

exclude VvWRKY16. Indeed, the VvWRKY24 had the strongest up-regulation in response to 

powdery mildew infection and chitin treatment on Cabernet Sauvignon. The effect of E. 

necator infection on VvWRKYs response appeared to be much stronger in a susceptible variety 

than in a resistant one, because the overall changes in the global transcriptome are generally 

lower in the resistant genotypes (Wang et al., 2014). The up regulation of VvWRKY24 have 

been reported by Fung et al. (2008), Wang et al. (2014) and Guo et al. (2013) as a powdery 

mildew specific response. Indeed, Guo et al. (2013) reports that the change in expression 

profile of VvWRKY24 is not significant in various biotic treatments. 

The possible interactions between two or more genes and regulatory mechanisms remain to be 

resolved, for this reason a over-expression and silencing transformation in Shiraz was begun. 

Because classical genetic improvement by convetional breeding is a very long process for 

grapevine, alternative strategies such as genetic engineering are being investigated to improve 

several traits, such as resistance (Coutos-Thévenot et al., 2001, Maghuly 2006, Spielmann et 

al., 2000, Yamamoto et al., 2000). However, V. vinifera is recalcitrant to genetic 

transformation. The first report proving this recalcitrance was given by Mullins et al. (1990). 

The authors used petiole explants of Cabernet Sauvignon and Chardonnay and were unable to 

obtain transformants. Probably the reason why have to be correlated to the inefficient 

selection techniques rather than the Agrobacterium infectivity or gene integration. Further 
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studies highlighted that this grapevine inaptitude to Agrobacterium-mediated transformation 

is attributed to the necrogenesis response of its tissues after bacteria inoculation. This 

hypersensitivity, a stress elicited response where infected cells are killed at the site of 

inoculation, was assumed to be the reason for avirulence of the wide host range 

Agrobacterium to grapevine (Pu and Goodman, 1992, 1993). Later on, Perl et al. (1996) 

working with V. vinifera cv. Superior Seedless observed that necrosis was not induced during 

or after the co-cultivation process but observed 48 hours after transfer of calli to bacterial free 

medium with antibiotics. They found that oxidation caused due to elevated peroxidase levels 

was the likely cause of necrosis as peroxidase activity correlated with the onset of browning. 

Since the first experiment of grapevine genetic transformation, many achievements have been 

made to set up the best conditions. Recently, Torregrosa et al, (2015) described a grapevine 

transformation system that meets three peculiar criteria: (1) the production of highly 

regenerative transformable tissue, (2) optimal co-cultivation conditions for both grapevine 

tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant 

regeneration. Nowadays, few paper reports the stable genetic transformation of transcription 

factors, among them Marchivè et al. (2013) successfully overexpressed VvWRKY1 in 

grapevine cell culture inducing a global transcriptional reprogramming which clearly 

enhanced resistance to downy mildew. Following the Torregrosa et al. (2015) advices, an 

efficient transformation system have been performed in this research using Shiraz calli as 

explants. However, the grape recalcitrance induced an elongation of the expected 

transformation time from few months to nearly one year. Indeed, after approximatly eight 

months few positive embryos have been detected in overexpression transformation. This plant 

material represent the starting-point for future functional studies on VvWRKY24 role in chitin 

perception and/or grapevine defense activation after fungal attack. On the counterpart, the 

knock-out genetic transformation, did not give any positive embryos. These results is 

probably correlated with the silencing of a transcription factor, which is usually involved in 

more than one biological pathway. Sometimes, the overexpression or silencing of regulation 

factor can be lethal. 
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3.5 Conclusion 
In conclusion, a complete structural ad functional study have been conducted in grapevine to 

identify the genes involved in chitin perception and signal transduction. Using Arabidopsis as 

model species, we identified and functionally studied the candidate grape genes. In particular, 

Atcerk1 showed three homologous in grape, VvLYK1, VvLYK2 and VvLYK3 and our findings 

suggested a different role in chitin signaling of these candidates. Indeed, we demonstrated that 

a total resistance to powdery mildew was re-established in the A. thaliana cerk1 mutant only 

by VvLYK1. Further experiments also suggested an inactivation of VvLYK2 and an active but 

unknown function of VvLYK3. Based on the results obtained here, we can speculate that 

additional auxiliary proteins can be involved in this process and that the VvLYK candidates are 

pathogen-specific, as VvLYK1 for powdery mildew. Alternatively, it is still possible that 

VvLYK3 and/or VvLYK2 recognize different size chitin oligomers, since it is possible that 

different oligomers could have distinct functions.  

The plant basal immunity includes the activation of mitogen-activated protein kinase (MAPK) 

and transcription factors (WRKY). In this research, VvMAPK3 and VvMAPK6 did not seem to 

be involved in biotic response showing no expression differences in powdery mildew 

infection and chitin treatment time courses. The expression data of two grape WRKY 

candidates, VvWRKY16 and VvWRKY24, suggested VvWRKY24 as the positive regulation 

factor of grape defense to powdery mildew, but excluded VvWRKY16. This is the first 

comprehensive experimental survey of the grapevine PTI response, which provides insights 

into VvLYK, VvMAPK and VvWRKY potential roles in plant defense activation.  
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General conclusions 

The common grapevine, V. vinifera subsp. sativa L. (2n=6x=38) is one of the major fruit 

crops worldwide in terms of economic value and cultivated area. Italy, together with France, 

is one of the most important producers with more than 450 varieties registered. In the 

panorama of Italian viticulture and oenology, Campania region is characterized by a rich 

biodiversity, which collect a distinctive number of varieties including very ancient ones (more 

than one hundred years old). This peculiar condition is the consequence of historical, social, 

geographical and cultural elements, such as the region orography, the fragmentation of land 

tenures, the volcanic origin of the soil and the traditional cutting asexual propagation coupled 

with promiscuously planted grapevines in a single vineyard. The main variety is Aglianico, 

the undisputed star of Southern Italy red grapes and the grape behind the region's two most 

famous and respected red wines: Taurasi and Aglianico del Taburno. Until recently, this 

incredible wealth of native varieties has hardly been studied; unbelievable as it may seem, as 

recently as in 200, only ten varieties from Campania were listed in Italy’s National Registry. 

In the last few years grape, as several other crops, enjoyed the use of recent genomics tools 

and resources. They represent now essential ingredients not only for germplasm valorization, 

but also for the identification of genes and QTL of interests, for understanding the genetics of 

complex traits, and for the development of efficient molecular markers . In addition, the 

genome sequence of V. vinifera was published in 2007, rushing in  new era of grape 

functional and comparative genomics. In this environmental and scientific context the 

research activities described in the previous chapters have been carried out. One major 

objective was pursued in the frame of the project SALVE (Safeguarding of the plant 

biodiversity of Campania) funded by Campania region. It was related to Campania grape 

germplasm genetic authentication using microsatellite and retrotransposon-based markers in a 

large collection of 62 grapevines, mostly native. Data suggested that a genetic variability is 

still present in the germplasm collection studied and the restricted number of synonymous and 

homonymous found confirm the uniqueness of Campania genotypes. In our effort, we were 

able to identify 19 grape-specific alleles, that represent useful tools for many purposes such as 

traceability in germplasm, typicity preservation and varietal identification. Even if specific 

sequences have been identified, these molecular data cover only part of the grapevine 

genome, meaning that even when all the DNA sequences we analyzed look totally identical, it 

might turn out that genetic differences are present in other part of the genome and they might 

be more widespread than we believe. Indeed, the accessions sharing the same SSR/REMAP 



	  

	  
122	  

	  

profile must be evaluated further before being eliminated from standard grapevine collections, 

because they might not be redundant at all. Our molecular findings represent a peculiar 

starting point for whole-genome profiling of varieties native of Campania region. Within the 

collection analyzed, Aglianico del Taburno is a model for astringency and the strong 

resveratrol content confer high positive nutriceutical properties to their grapes and wines. For 

this reason, a transcriptomic analysis of key genes of the phenyl-propanoid pathway were 

carried out in different tissues of the berry during the fruit maturation. This study was 

correlated with the chemical analysis of total phenols, flavans, anthocyanins and tannins 

detected in skin and berry using a spectrophotometric assay. Anthocyanin analysis revealed 

the highest amount of these molecules in ripening berry skin and the lowest in seed. 

Correlating the transcriptomic and chemical data, the key-genes able to control production of 

poly-phenolic compounds in berry tissues have been determined. In order to investigate the 

relation between defense compounds, as polyphenols, and abiotic stresses, an expression 

analysis have been carried out on Aglianico del Taburno leaves stressed with wounding. The 

results provided evidence that an increase of antioxidant compounds occurs after wounding 

stress, and that phenyl-propanoid genes expression might be regulated from a transcription 

factor, VvMyB14; during the whole	  treatment.	  

Poly-phenolic compounds are key-molecules of grapevine defence and in particular of PTI 

(PAMP-Triggered Immunity). Indeed, they are produced as defense compounds after 

pathogen recognition. Nowadays, much has been written about defense mechanisms and 

chitin perception in Arabidopsis, but little is known in grapevine. Considering powdey 

mildew as the most destructive disease of grapevines world-wide, an intense structural and 

functional study of PTI-involved grape genes has been conducted. Grapevines are highly 

resistant to many the powdery mildew of other species, called non-adapted (e.g E. 

cichoracearum). Using Arabidopsis as model species, we identified and functionally studied 

the grape genes involved in the perception of chitin in the epidermal cells apoplast, as LysM-

RLK, and in the intracellular signal transduction. Our findings suggest that three candidates, 

VvLYK1, VvLYK2 and VvLYK3, can play a different role in chitin signaling in V. vinifera. We 

demonstrated that a total resistance to powdery mildew was re-established in the A. thaliana 

cerk1 mutant only by VvLYK1, but not by VvLYK2 and VvLYK3. Further experiments also 

suggested an inactive VvLYK2 gene and an active but unknown function of VvLYK3. There 

are still many unanswered questions regarding the exact composition of the receptor 

complexes activated in the epidermal cells after powdery attack. Based on the results obtained 

here, we can speculate that additional auxiliary proteins can be involved in this process and 
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that the VvLYK candidates are pathogen-specific, as VvLYK1 for powdery mildew. 

Alternatively, it is still possible that VvLYK3 and/or VvLYK2 recognize different size chitin 

oligomers, since it is possible that different oligomers could have distinct functions.  

Regarding the signal transduction pathways, we found VvMAPK3 and VvMAPK6 to be not 

involved in biotic response, since they both did not show expression differences in powdery 

mildew infection and chitin treatment time courses. The transcriptomic data generated in this 

study allowed us to identify VvWRKY24 as the positive regulation factor of grape defense to 

powdery mildew, but excluded VvWRKY16. Indeed, the VvWRKY24 had the strongest up-

regulation in response to powdery mildew infection and chitin treatment. To better understand 

the possible interactions between two or more genes and regulatory mechanisms, an over-

expression and silencing transformation in Shiraz have been begun. The transformations 

carried out gave rise to few positive embryos after ten months from co-cultivation with 

Agrobacterium . This result is strictly correlated with the known recalcitrance of grapevine to 

transformation. Further studies will allow progress to be made on this point, such as the 

investigation of positive transformed embryos behavior after powdery mildew infection or 

chitin treatment. As far as we know, this represents the first complete structural and functional 

genomics study in grapevine aimed at identifying the major genes involved in chitin 

perception and signal transduction. 

 


