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Introduction

The main goal of this thesis is to investigate imitative behavior

arising from informational externalities in capital markets where in-

formation is asymmetrically distributed among market participants.

Herding has always attracted the attention of financial economists

because it can help to explain many interesting regularities observed

in capital markets that are not easily addressed in theories based on

the efficient markets hypothesis. For example, the empirical evi-

dence of episodes of increasing prices and subsequent collapse, like

the Dutch Tulip Mania in the seventeenth century, the stock mar-

ket crashes of 1929 and 1987, and more recently, the international

financial crisis in southeast Asia in 1997-8, and the overpricing of US

technology stocks in the late 1990s, would be consistent with a short-

run mispricing caused by rational herd.1 Yet, the high volatility of

prices that frequently financial data exhibit even in the absence of

justifying news, could be the consequence of the information aggre-

gation failure due to herding behaviors.2

Originally, imitative behavior was not considered rational: herd-

ing was associated with people blindly following the decision of oth-

ers.3 In the last decades, however, the literature on social learning

has reconciled herding with rational behavior in many economic en-

vironments. Informational cascades models belong to this strand of

literature on ”rational herding”.

The standard models of informational cascades apply to envi-

ronments in which prices are taken to be exogenously given, and

therefore they can hardly be applied to asset markets, where prices

adjust continuously to reflect the changing information revealed by

1See Avery and Zemsky [1].
2See Lee [26].
3For references about irrational herding see Devenow and Welch [14].
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the orders and trades effected by market participants. However,

some recent theoretical models have analyzed mechanisms that may

generate informational cascades also in the context of financial mar-

kets.

This thesis aims at contributing to this research area by ana-

lyzing the existence and the empirical implications of informational

cascades arising from transaction costs, in financial markets with

asymmetric information, sequential trading and competitive price

mechanism. The main contributions of this work are the followings.

In an asset market with exogenous transaction costs, the competitive

price mechanism does not prevent the occurrence of informational

cascades. These may develop not only when beliefs converge to a

specific asset value, but also when in the market there is complete

uncertainty about the asset’s fundamental value. With proportional

transaction costs, cascades are asymmetric in that they are more

likely to develop in a context of high prices. Both bid-ask spreads

and trading volume tend to shrink before an informational cascade,

and attain their lowest level during the cascade.

The outline of the thesis is as follows.

The first chapter, titled ”Informational cascades in financial eco-

nomics: A review”, surveys and appraises the recent theoretical

research on informational cascades and herding behavior in capital

markets.

This survey is divided in two parts. The first part presents a

basic model of informational cascades, similar to that proposed by

Bikhchandani, Hirshleifer and Welch [3], and describes the main

extensions to the standard cascading models proposed by the re-

cent literature on social learning (Chamley and Gale [8]; Gale [17];

Smit and Sorenson [29]; Chamley [6]). Moreover, it highlights the

difference between the concepts of informational cascade and herd

behavior, and introduces the notion of partial informational cascade.

The second part reviews the main studies on cascades in sequen-

tial asset markets with asymmetrically informed agents. The most

interesting results of this strand of literature are the following. In

the standard setting proposed by Glosten and Milgrom [19], price

adjustment prevents the occurrence of an informational cascade in
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equilibrium. Nevertheless, multidimensional uncertainty and, more

generally, non-monotonic signals open the possibility of herd behav-

ior that may lead to a significant, short-run mispricing of assets

(Avery and Zemsky, [1]). Moreover, informational cascades may de-

velop in the case of different risk aversion among traders and market

makers (Decamps and Lovo [13]; Cipriani and Guarino [10]), when

traders care about their reputation for ability (Dasgupta and Prat

[12]), or if informed market participants must pay a brokerage fee

to trade (Lee [26]).

The second chapter, titled ”Learning, cascades and fixed transac-

tion costs” studies the equilibrium in an asset market à la Glosten-

Milgrom [19] with costly market-making. Trades are assumed to

entail a fixed transaction cost, and the focus of the analysis is on

how this cost affects social learning. The starting point is the analy-

sis of market crashes and informational avalanches by Lee [26], who

shows that in a sequential asset market with fixed brokerage costs

social learning fails, and partial or total informational cascades oc-

cur.

The shortcoming of Lee’s analysis is that its results depend on

the assumption of non-rational market maker. In this chapter, in-

stead, this assumption is removed: sequential trades for a single

risky asset are channeled through risk neutral market makers who

set competitive bid and ask prices. Some traders have superior in-

formation about the asset’s fundamental value and trade to exploit

their informational advantage, while the remaining traders are un-

informed and trade for exogenous reasons. A key assumption is that

the competitive market makers have to pay an exogenous fixed cost

to execute each order placed with them.

The fixed transaction cost is shown to lead to an informational

cascade, despite the competitive price mechanism. Moreover, since

all informed traders act alike, during an informational cascade the

adverse selection component of the bid-ask spread disappears and

the spread shrinks. Moreover, high transaction costs may generate

an informational cascade even in a situation where market partic-

ipants are completely uncertain about the true value of the asset.

This contrasts with results in the literature on informational cas-

cades in stock markets which highlight that cascades develop when
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there is a convergence of beliefs in the market.

The third chapter, titled ”Informational cascades with propor-

tional trading costs”, analyzes the robustness of the main results in

the previous chapter, with respect to different kinds of transaction

costs. To accomplish this task, it presents two models that are simi-

lar in spirit to that presented in the previous chapter, but assuming

that transaction costs are a function of the size of the order rather

than being fixed. In one of the two models, they are assumed to be

proportional to the asset price. The other model allows for different-

sized orders, and transaction costs are taken to be increasing in the

quantity of the asset traded. In both cases, transaction costs turn

out to reduce the informational content of orders and may generate

cascades.

With proportional transaction costs, if the asset’s fundamental

value in the bad state of nature is sufficiently low, an informational

cascade may develop only when the prices are very high. This has

the interesting implication that cascades will be asymmetric: they

will be likely in bull markets and rare in depressed ones. By the same

token, informational cascades are more prone to result in crashes

than in frenzies.

In the second model, traders can choose between two order sizes:

a large or a small one. Since informed traders always prefer to trade

larger quantities (other things being equal), allowing for variable

trade size induces an adverse selection problem. It turns out that, for

any public belief about the true asset value, an informational cascade

develops if the transaction cost exceeds the informational advantage

of informed traders: in this case, since the latter will refrain from

using their superior information in their trading strategy, no private

information is impounded in market prices. As in the analysis of

the second chapter, trading volume gradually is shown to decrease

before a cascade occurs, and to reach its lowest value as the cascade

develops.

If instead transaction costs are below this critical threshold, a

cascade cannot develop, because at least some of the private infor-

mation possessed by informed traders will be reflected in market

prices. More specifically, two situations can arise, depending on

the magnitude of the transaction cost. For intermediate values of
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the transaction cost, a pooling equilibrium exists, where informed

traders place both large and small orders. For very low values of

the transaction cost and a sufficiently large difference between the

size of large and small orders, a semi-separating equilibrium exists,

in which informed traders place only large orders and thereby reveal

even more of their private signal to other market participants.
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Chapter 1

Informational cascades in

financial economics: A

review
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1.1 Introduction

A crucial goal of financial markets is to aggregate information about

fundamentals which is widely dispersed among the market partici-

pants.

The recent literature on herding suggests that the information

aggregation sometimes may fail because agents prefer to imitate

others rather than act following their own information.1

The idea that individuals are influenced by others in investment

decisions and financial transactions has had always great allure. For

Keynes [21] financial markets were very similar to a ”beauty con-

text” in which the judges picked who they thought other judges

would pick rather than who they considered to be the most beauti-

ful. Similarly, in stock markets, investors - rather than focusing on

the fundamental value - are often interested in the asset assessment

of others traders.

Payoff externalities and informational externalities are the main

sources of rational herding.2 In most theoretical models both ex-

ternalities are simultaneously present. Herding patterns based on

reputational concerns in a principal-agent setting are an example.

Herding due to payoffs externality can arise when the payoffs

depend directly on the behavior of other market participants. Such

externalities cause herding of analysts or fund managers in models of

reputational herding3 or herd behavior of depositors in bank runs.4

Informational based herding arises when an agent gains useful

information from observing actions of previous agents, to the point

where he optimally acts as prior agents even when his own private

information advises him to take a different action. This herding

may lead to an informational cascade5, that is an extreme example

of failure of social learning in which agents’ decisions do not covey

any information to successors. Hence, the occurrence of a cascade

leads to a complete information blockage.

1See Hirshleifer and Teoh [20] for a survey on the theoretical and empirical literature on

herd behavior and cascades in capital markets.
2Brunnermeier [4].
3For example, see Scharfstein and Stein [28].
4For example, see Diamond and Dybving [15].
5Hirshleifer and Welch [3].
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The main purpose of this chapter is to provide a critical review

of cascading models applied to capital markets.6

The term ”informational cascade” was introduced by Bikhchan-

dani, Hirshleifer and Welch in their seminarial paper A Theory of

Fads, Fashion, Custom and Cultural Change as Informational Cas-

cades [3], to denote a situation in which, in a sequential trade frame-

work, every agent, based on the observation of previous agents, takes

a decision that is independent of his private information.7 The idea

they illustrate by their simple model is the following. When individ-

uals receive limited private information and make publicly observed

actions, every individual tries to infer his predecessors’ information

from their choices. If early actions show a clear pattern, the in-

formation collected from the history of actions may dominate the

private information of later agents. In this case, later agents may

optimally choose to imitate the action of previous ones regardless

of their private information. Hence, once an informational cascade

starts, actions do not convey private information, the social learning

fails and the cascade goes on forever, possibly with incorrect deci-

sions. Bikhchandani, Hirshleifer and Welch [3] show that this type

of behavioral convergence is: idiosyncratic, because the behavior of

many followers depends on the first few individuals; path dependent,

because the order of moves and information arrival affects the out-

comes; fragile, because the arrival of a little new information may

breakdown easily a cascade.

The standard cascade model applies in fixed-price contexts. Thus,

it cannot be directly applied to asset markets, where prices change

to take into account the information revealed by trades. Avery and

Zemsky [1] prove that, in the standard Glosten-Milgrom [19] set-

ting, price adjustments prevent informational cascades. Besides,

they find that with multidimensional uncertainty, individuals may

optimally act in opposition to their private information. Intuitively,

this happens because price is a single-dimensional instrument and

it only assures that the market learns about one dimension of un-

6The task of surveying the existing literature on informational cascades exhaustively is

somehow ambitious and this chapter is not aimed at this, rather intending to introduce the

part of literature most related to the present research.
7Banerjee [2] proposed at the same time another paper on imitative behaviors due to

informational externalities. But the results of his model are more idiosyncratic and one

cannot analyze their robustness.
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certainty at a time. Hence, in a market with multiple dimensions of

uncertainty, a short run mispricing may occur because market mak-

ers and informed traders interpret differently the history of trades.

However, in the Avery and Zemsky model, the flow of information to

the market never stops because the market continues to learn about

at least one of the dimensions of uncertainty. Therefore, herding

does not impede prices to converge to the fundamental value, that

is, in the long run, the market is informational efficient.

In the standard Glosten-Milgrom [19] setting agents are homoge-

neous in preferences. Decamps and Lovo [13] show that differences

in risk aversion between market makers and informed traders can

generate informational cascades if the minimum and maximum size

of trade per period are fixed. More specifically, they analyze the case

of risk averse traders and risk neutral market makers. In their model,

an informational cascade occurs because as prices become more in-

formative, the traders’ informational advantage vanishes and orders

only reflect the inventory imbalance of traders. Cipriani and Guar-

ino [10] reach similar results by considering heterogeneous traders in

a multiple security setting. Moreover, they find that informational

cascades can spill over from one asset to the other pushing prices

far from fundamentals value, even in the long run.

Dasgupta and Prat, [12] adjust the standard sequential sequen-

tial trading model to allow for reputational concern. They show

that if traders care about their reputation for ability, the market is

informational inefficient and traders behave in a conformist manner.

Lee [26] argues that in a capital market with fixed transaction

costs and sequential trading, the aggregation mechanism of dis-

persed information may fail and partial or total informational cas-

cades occur. Moreover, during a partial cascade, the market accu-

mulates a large amount of hidden information. If it is inconsistent

with the current public belief, a small triggering event can reverse

the cascade and induce agents to reveal their private information.

Lee [26] terms ”informational avalanche” the sudden release of hid-

den information due to the triggering event.

The remainder of the chapter is structured as follows. Section

1.2 presents the basic model for cascades and illustrates some inter-

esting extensions. Section 1.2.1 also clarifies the difference between
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information cascade and herd behavior, and introduces the concept

of partial informational cascade. Section 1.3 provides a review of the

main works on cascading in sequential capital markets à la Glosten

and Milgrom [19]. Section 1.4 concludes the chapter.

1.2 The basic model for informational cascades

In this section we describe the simplest model used by Bikhchandani,

Hirshleifer, and Welch [3] to introduce the concept of informational

cascades. In what follows we will use modifications of this model

to show how the idea of herding due to informational cascades has

been applied to capital markets.

The market is for an investment project whose liquidation value

is low or high, depending on the realization of the bad or the good

state of nature. Thus, the project can be viewed as a claim on a

random variable Ṽ ∈ {V , V }, with V > V ≥ 0. Without loss

of generality, V = 1 and V = 0. The initial prior probability of

the high value is π1. We assume that it is non-degenerate, that is,

π1 ∈ (0, 1).

A sequence of risk neutral agents, indexed by t, face the choice of

whether invest or not in the project. Each agent privately receives

a conditionally independent imperfect signal θ on the true project

value. The set of private signals is Θ = {θ, θ}. The probability to

receive the signal θ is p ∈ (0.5, 1) if the true project value is V ,

and (1− p) otherwise. Symmetrically, the signal θ is observed with

probability p if the true project value is V , and (1−p) otherwise. We

say that agents receiving θ are endowed with a good signal whereas

agents receiving θ are endowed with a bad signal.

Agents make their choice in an exogenous order. With the index

t we denote the agent who takes his action in period t (and only in

this period).

The information of agent t is his private signal θt and the publicly

observable history ht of the actions up until time t. The public

belief about the liquidation value of the project, at time t, is the

probability of the high value conditional on the prior history ht,

that is:

πt = P (Ṽ = 1 | ht).
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By bayes’ rule, the expected liquidation value of the project for the

agent t is:

π =
πp

πp+ (1− π)(1− p) > π,

if he observes a good signal, and:

π =
π(1− p)

π(1− p) + (1− π)p
< π,

if he observes a bad signal. The choice of the agent depends on

whether his private belief is greater than the cost to invest.

The cost of the investment c is fixed and, without loss of gen-

erality, we assume that it is equal to 0.5. It is easy to notice that

if the public belief is above p, then π is greater than the cost c;

both agents endowed with a good signal and agents endowed with

a bad signal find worthwhile to invest. Otherwise, if it is lower than

(1−p), then π is lower than c, and no agent chooses to invest. So, in

any period t, if the public belief πt belongs to [(1− p), p], the agent

t chooses to invest only if his signal is good; if πt is above p, the

agent t invests regardless of his signal; if πt is smaller than (1− p),
he does not invest regardless of his signal. As a consequence, the

choice of agent t does not convey information on his private signal

both when πt is greater than p and when it is lower than (1 − p).
This blockage of the information is called informational cascade.

In order to shows that in a such benchmark an informational

cascade starts in finite time with probability 1, we assume, for sim-

plicity, π1 = 0.5. Therefore, the private belief of an agent endowed

with a good signal is π = p, and the private belief of an agent

endowed with a bad signal is π = (1− p).
Since p > 0.5, the agent first arriving in the market follows his

private information: if he observes θ, he invests; if he observes θ, he

rejects the project. The second agent observes the decision of the

first one and infers his signal. Suppose that he infers θ1 = θ. If

his signal is θ2 = θ, he invests. If, instead, his signal is θ2 = θ, his

expected liquidation value of the project is 0.5; therefore, he is in-

different between investing and rejecting. Assume, as a tie-breaking

convention, that an agent indifferent between to invest and to re-

ject invests and rejects with equal probability.8 If the second agent

8This tie-breaking convention is the same as Bikhchandani, Hirshleifer, and Whelch [3].
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invests, the third agent infers that the first agent saw θ and the

second one is more likely to have seen θ than θ. Clearly, if his signal

is θ3 = θ he invests. But, even if his signal is θ3 = θ he invests, be-

cause his private belief on the project value exceeds the cost. Thus,

the third agent always invests regardless of his private information.

This implies that his decision is uninformative to others. The fourth

agent faces exactly the same position as the previous one. Since all

signals are drawn independently from the same distribution, he too

invests independently of his own information. And so on all later

agents arriving in the market. We can conclude that a cascade with

investment starts in period 3. Similarly, if both first and second

agents choose to reject the projet, a cascade with no investment

begins in period 3. If π1 is greater than c, and the first agent op-

timally chooses to invest, a cascade with investment develops at

second agent; if π1 is lower than c, and the first agent rejects the

project, a cascade with no investment develops at second agent.

We can conclude that a necessary condition to have no cascade is

that actions alternate consecutively between investing and rejecting.

The probability that actions alternate consecutively for t periods, is

decreasing in t, and converges to 0.

Proposition 1.1 (Chamley [7]) When agents have a binary sig-

nal, an informational cascade occurs after some finite date, almost

surely. The probability that the cascade has not started by date t

converges to 0 like βt for some βt with 0 < β < 1.

Our simple model points out that, when the decisions are sequen-

tial with subsequent actors observing only predecessors’ decisions

(and not their signals), and the action space is discrete (e.g., an

adopt/reject decision), the choice of few may influence the behav-

ior of a large number of agents. Since only a small part of private

information becomes public, the probability that a wrong informa-

tional cascade starts is positive. The fundamental reason the out-

come with observable actions is different from the observable-signals

Koessler and Ziegelmeyer [22] show that, in the model of Bikhchandani, Hirshleifer, and

Whelch, by relaxing their tie-breaking convention, there exist other equilibria in which in-

formational cascades are not necessarily observed. More precisely, they consider a new tie-

breaking rule: the non-confident tie breaking rule. Under this rule, an indifferent agent simply

imitates the action of his predecessor.
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benchmark is that if the signals received by predecessors are observ-

able (instead of actions taken), later decision-makers would have

almost perfect information about the true value of the project and

would tend to take the correct action.

An important feature of informational cascades is that they are

fragile with respect to small shocks, where a small shock refers to

a change in the public belief due to a public signal less informative

than the private signal of a single agent. Cascades aggregate the

information of only a few early agents’ actions. The shock thus

needs only to offset the information conveyed by the action of the

least agent before the start of the cascade.

1.2.1 Informational cascades and herd behavior

In the literature, the terms informational cascade and herd behavior

are often used interchangeably, but the two concepts are not equiv-

alent.9 An informational cascade is said to occur when all agents

ignore their private information when choosing an action; whereas

a herd take place when all agents act alike after some period.

In a herd, all agents choose the same action, but some of them

may have acted differently if the realization of their private signal

had been different. During an informational cascade, agents opti-

mally follow their predecessors disregarding their private signal since

the public belief is so strong to outweigh any private signal. Thus,

a cascade implies a herd but the converse is not true.10

The distinction between cascades and herd is significant because

in a cascade the learning process stops since agents behavior became

purely imitative and hence in uninformative. In contrasts, in a herd,

agents become more and more likely to imitate but their actions

still may provide information. Clearly, if the herd is sustained, the

amount of social learning is very small because the probability that

the herd is broken must be vanishingly small.

Herd always occurs with probability 1, while cascades take place

only in very specific models. In the framework described to illustrate

the concept of informational cascade, we assumed a binary signal

9Smith and Sorenson [29] first empathize the difference between cascades and herd.
10See Chamley [7] for a more formal explanation.
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space. Bikhchandani, Hirshleifer and Welch [3] present a model for

cascades with a finite set of conditionally independent and identi-

cally distributed private signals. Smith and Sorensen [29] show that

the hypothesis of bounded distribution of private signals is crucial

for the existence of informational cascades. The intuition is easy:

in a model with identical preferences, binary actions space and two

states, a complete information blockage can takes place only if the

public belief from the history of actions dominates any private sig-

nal. This condition cannot be satisfied if the distribution of private

signals is unbounded. If this is the case, the public belief eventually

converges to the truth.

However, this result does not reduce the relevance of cascading

models to explain many economic and financial phenomena. Al-

though cascades do not arise with unbounded distributions of pri-

vate signals, under many plausible distributions the learning process

is so much slow11 that the convergence to the truth does not matter

and the behavior of agents exhibits the main properties of cascad-

ing models. Chamley [6] illustrates with a numerical example how

a model with unbounded private signals can generate long regimes

where agents herd and sudden changes of the public belief due to

contrarian actions. Therefore, informational cascades, although may

not exist, are a good stylized description of the properties of social

learning in contexts where the actions space is discrete.

1.2.2 Informational cascades with continuum action space

In the model illustrated in section 1.2, which is similar to that pre-

sented in Bikhchandani, Hirshleifer, and Welch [3], informational

cascades arise because of the discrete action space.12

Lee [25] shows that the hypothesis of discrete action space is

essential for the occurrence of cascades in the Bikhchandani, Hirsh-

leifer, and Welch [3] setting. Discreteness reduces the social learning

because of two effects. First, it prevents the actions from fully re-

vealing the private information of agents. Actions are the main tool

11Chamley [6] demonstrates that when the actions space of agents is discrete and the signals

distribution is unbounded, the rate of convergence to the truth is exponentially slower than

the rate when private signals are observable.
12To simplify, we have assumed two actions, but the results could be generalized to a finite

set of actions.
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for the communication of information between agents. A finite set of

actions is a strong limitation on the capability of social communica-

tion. Second, the discreteness prevents agents from fully using their

private information. As a consequence, the likelihood of a wrong

cascade decreases as the action space grows.

In Banerjee [2] informational cascades (termed herd in the pa-

per) develop despite the continuum action space. More precisely,

an informational cascade occurs because the one-dimensional ac-

tion space, even if continuous, cannot reflect two-dimensional un-

certainty.

In the Banerjee model, risk neutral agents sequentially choose an

asset on a continuum. Each agent observes the decisions of all those

ahead of him. Only one asset has certain positive payoff. All the

others have zero payoff. With positive probability an agent privately

gets an imperfect signal about the asset with positive payoff. If the

signal is false, it is uniformly distributed on the continuum. This im-

plies that the probability that two agents get the same wrong signal

is equal to zero. Banerjee assumes that when agents are indifferent

between two or more actions, they follow their private signal, if they

are informed; they choose the asset number 0, otherwise. This im-

plies that, if the first agent does not receive a signal, he chooses the

asset number 0.

The assumptions on the distribution of wrong signals and on the

tie-breaking rule are crucial in the Banerjee model. The first agent

buying an asset different from ”0” is following his private signal,

for the assumption on the tie-breaking rule. If the following agent

makes that same choice, two scenarios are possible. Either he is

uninformed, or he observes the same private signal as the previous

agent, and this signal is true for the assumption on the distribution

of wrong signals. If the third agent gets a signal, in the first scenario

he is indifferent between following the predecessors’ decision and his

own signal; in the second scenario he strictly prefers following his

predecessors. If he does not get a signal he always prefers following

his predecessors. Since the agents do not observe the signals of those

ahead of them, the third agent will follow his predecessors and ignore

his own signal. Following agents face exactly the same situation as

the third agent and they will make the same choice. If the first

agent receives a wrong signal and the second agent does not receive
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signal, all agents will choose the wrong action. In this case herding

leads to an informational cascade.

1.2.3 Endogenous sequencing

A crucial assumption for the occurrence of an informational cascade

is that agents choose sequentially, with subsequent agents observ-

ing actions, and not information, of their predecessors. The basic

informational cascades model makes the hypothesis of exogenous se-

quencing of decisions. In both models described in the previous sec-

tions we suppose that agents enter the market to make their choice

in a pre-specified order. Yet, cascades are robust to the relaxation

of this assumption.

In a dynamic game with asymmetric information, waiting allows

agents to take advantage of the information revealed by others.

Hence, in a setting where delay is costless and agents can choose

the timing of their decision, everybody would prefer to decide last.

Since someone has to decide first, individual compete for the best

place in the decision-making queue.

Strategic delay due to informational externalities, has been an-

alyzed by Chamley and Gale [8]. They study a strategic model of

investment, with discrete time, in which a random number of agents

receive a real option with fixed exercise price but a risky payoff.

To have an investment opportunity is private information, and the

value of the underlying asset is increasing in the number of real op-

tions. Agents who exercise the option early reveal that they had

and investment opportunity. This positive externality allows the

successors to update their belief about the true value of the under-

lying asset. The cost of waiting is modelled by assuming that agents

discount the future using a common discount factor δ ∈ (0, 1).

Chamley and Gale [8] show that if beliefs about the number of

real options are sufficiently pessimistic, no agent will exercise the op-

tion. Since no information is revealed in the absence of investment,

the situation will not change in the next period. Therefore, if no

one invests in one period, the investment stops forever. The prob-

ability of informational collapse depends on the speed with which

agents can react to the information inferred from their predecessors:

it increases as the period length reduces.
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1.2.4 Heterogeneous preferences

Smith and Sorensen [29] investigate the social learning in a exoge-

nous sequencing model with heterogeneous preferences of agents.

They find that with multiple rational preferences types, not all or-

dinally alike, an incomplete learning informational pooling outcome

exists even when an informational cascade is impossible.13 The in-

tuition is that if agents’preferences differ, the successor does not

know whether the action of a predecessor is due to a different pri-

vate signal of to a different preference ordering. As a consequence,

it may be impossible to draw any clear inference from the history of

actions. Smith and Sorensen [29] denote these outcome confounded

learning.

1.2.5 Partial informational cascades

Most recent works on social learning focus on the completeness of in-

formation revelation and the rate at which information is revealed.

In particular, cascading models emphasize the complete failure of

learning process due to informational externalities. Gale [17] re-

marks that, a setting where information arrives too slowly to be

helpful for most individuals decisions is essentially the same from

the point of view of both welfare and predicting behavior as one

where there is a complete information blockage. An economy is in a

partial information cascade when all agents with mildly bad or good

news make an identical choice regardless of their private informa-

tion. Therefore, during a partial informational cascade, the learning

process goes on, but very slowly.

Gale [17] proposes a model with a continuous signal space and

a binary action space. N agents choose sequentially whether to

invest or not. Each agent privately observes a signal θn uniformly

distributed on [−1, 1] correlated with a payoff relevant variable. If

an agent invests, he makes a return Ṽ =
∑N

n=1 θn,; if he rejects he

obtains a zero payoff. The first agent invests if E[Ṽ | θ1] = θ1 is

greater than 0. The second agent invests if E2[Ṽ ] = θ2 + E[θ1 |
action1] > 0. If the first agent has invested, E2[Ṽ ] = θ2 + E[θ1 |
θ1 > 0] = θ2 + 1

2
. When the second agent sees the first agent invest,

13This is the case when beliefs are unbounded.
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he will invest as long as θ2 >
1
2
. When both the first and the second

agent have invested, the third agent will invest as long as θ3 >
3
4
,

and so on. So, all subsequent agents may imitate the action of the

first agent, even though they would not make that choice if they

had to choose by considering only their private information. This is

the sense in which agents ignore their private information during a

partial information cascade. Clearly, the longer the partial cascade,

the harder is for a single agent not to make an identical choice,

even if his private information strongly indicates an opposite action.

However, although herding behavior may occur, a full informational

cascade can never develop.

1.3 Informational cascades in financial markets

Cascades can help to explain many empirical phenomena in financial

economics. Welch [30] in his cascade model explains the decisions of

IPO (initial public offering) investors to ask for share allocations.14

He shows that if sufficiently many investors underwrite early to re-

ceive shares, all later investors rationally and optimally ignore their

own private information and imitate earlier investors. Corb [11]

models intra-bank panics and Chen [9] models inter-bank panics

using the concept of informational cascade.

The basic cascades model applies in fixed-price situations. In an

asset market, prices are not fixed; they every time move to incor-

porate all new publicly available information. The instantaneous

prices adjustment should prevent informational cascades. As Brun-

nermeier [4] remarks, in these frameworks, the predecessors’ actions

not only cause an informational externality as in Bikhchandani, Hir-

shleifer, and Welch [3], but also a payoff externality. In fact, changes

in prices alter the payoffs structures for all successors. To show this

result, we need modify the simple framework formerly considered.15

The investment opportunity is represented by a financial asset

whose value can be low (= 0) or high (= 1), depending on the true

state of nature. The investors are traders who exchange the asset

with a competitive risk neutral market maker responsible for quot-

ing prices. Transactions occur sequentially in a discrete time, with
14Offering prices are fixed by regulation in the U.S.
15The model we present is a special case of Glosten and Milgrom [19] model.
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one trader allowed to transact in each period t. With probability

(1− µ), the trader who comes in the market is a profit maximizing

informed agent who is endowed with a private signal θ ∈ {θ, θ} cor-

related with the fundamental value; with probability µ, he is a noise

trader who transacts for exogenous reasons.16 The type of a trader

is private information to that trader. However, the probability that

the trader is informed is common knowledge, as well as the history

if transactions Ht. The choice of a trader arriving in the market

is whether to buy or sell one unit of the asset, or to refrain from

trading. We suppose that noise traders buy, sell, or do nothing with

equal probability 1
3
. As in the previous section, we denote π the

public belief at the beginning of an arbitrary period.

Since some traders have a superior information, then the market

maker takes losses, on average, to those traders. To remain sol-

vent, the market maker has to offset these losses by making gains

from noise traders. Consequently, he sets a bid and an ask price re-

spectively below and above the expected asset value in the common

knowledge. Since the market maker acts competitively, he posts a

bid price B and an ask price A such that his expected profit is equal

to zero on both sides of the market; that is:

B = E[Ṽ | a sell, H] = π
P (a sell | Ṽ = 1, H)

P (a sell, H)
< π, (1.1)

and

A = E[Ṽ | a buy, H] = π
P (a buy | Ṽ = 1, H)

P (a buy, H)
> π. (1.2)

The probability of a sell order is the same as the probability of

meeting a trader with a bad signal or a selling noise trader. Conse-

quently, the bid price is greater than π, whatever the public belief

is. Likewise, the ask price is always below π since a buy order may

come from either a trader observing a good signal or a buying noise

trader.

It is easy to show that this price mechanism prevents the occur-

rence of a (full) informational cascade. Indeed, in a cascade the

16The presence of noise traders is needed to guarantee that trading occurs. Indeed, without

the presence of traders who trade for reasons other than speculation, the no-trade theorem of

Milgrom and Stokey [27] applies and the market breaks down.
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decisions of traders are uninformative about the true state of na-

ture. This means that the expected asset value given a sell order

or given a buy order is, in both cases, equal to the unconditional

expectation. From the zero expected profit condition, it follows that

both the bid and the ask prices would be equal to the public belief

π during a cascade. In this case, however, traders receiving a bad

signal would sell the asset (since π < π) and traders with a good sig-

nal would buy the asset (since π > π). Hence, trades would convey

some information. This contradicts the hypothesis that a cascade is

begun.

Our simple model showed that with binary signals, herd behav-

ior never arises when prices adjust to reflect available information.

Avery and Zemsky [1] generalize this property to the case where

private signals are monotonic.

1.3.1 Herd behavior with multidimensional uncertainty

In the previous section we showed that in sequential trading models à

la Glosten and Milgrom [19], in which the market maker modifies the

price on the basis of the order flow, it is never the case that traders

neglect their information and imitate previous traders’ decisions.

In those models, herd does not occur because prices fully reflect

available information. However, as Avery and Zemsky [1] remark,

the price is a single-dimensional instrument and it only allows to

learn about a single dimension of uncertainty at one time. Therefor,

when there are multiple sources of uncertainty, herd could arise even

in the Glosten-Milgrom framework.

Avery and Zemsky [1] find that multidimensional uncertainty can

lead traders and market maker to a different interpretation of the

history and it may produce herd behavior in the short-run. In any

case, multidimensional uncertainty does not prevent beliefs to con-

verge to the true asset value in the long-run.

The definition of herding they adopt differ from the standard one

in the literature. More precisely, they say that an informed investor

engages in buy (sell) herding behavior if initially he strictly prefers

not to buy (resp. not to sell) and after observing a positive history

of trades (resp. negative), he strictly prefers to buy (resp. to sell).

They also introduce the notion of contrarian behavior: they say
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that an informed investor engages in buy (sell) contrarian behavior

if initially he strictly prefers not to buy (resp. not to sell) and after

observing a negative history of trades (resp. negative), he strictly

prefers to buy (resp. to sell).

In order to obtain herding behavior, they add to the value uncer-

tainty, another dimension of uncertainty: the event uncertainty.17

In the standard trade framework used by Glosten and Milgrom [19],

an information event is assumed to have occurred. Avery and Zem-

sky, following Easley and O’ Hara [16], consider a market in which

an information event occurs with positive probability α < 1.

More precisely, they assume that Ṽ ∈ {0, 1
2
, 1}. If no information

arrives, the asset value remains Ṽ = 1
2
. Otherwise, Ṽ ∈ {0, 1}

and some traders receive a private signal on the true asset value,

whose precision is p ∈ (1
2
, 1). Besides, all traders know whether an

information event has occurred, while the market maker does not;

this is the second dimension of uncertainty.

After the information event, in the Easley and O’ Hara [16] model

informed traders know for certain the true asset value. In contrast,

in the Avery and Zemsky model, signals are imperfect.18 As the mar-

ket maker does not know whether an information event has occurred,

he learns from the trading sequence less than informed traders and

adjusts prices slowly.19 Slow price adjustment reduces the payoff

externality. As a consequence, informed traders might rationally ig-

nore their own private information about value uncertainty in order

to trade following the trend in past trades.20 During the herding,

new information still reaches the market because the market maker

collects information about the occurrence of an information event21;

hence a cascade never starts. Moreover, since when herding takes

place prices move slowly, this information structure cannot lead to

a price bubble and crash.

Avery and Zemsky also consider a setting with two types of sig-

nals. Some traders observe a signal with low precision (pL < 1),

17Easley and O’ Hara, [16].
18The information structure they consider makes signals nonmonotonic.
19The model of Bikhchandani, Hirshleifer, and Welch [3] can be viewed as an extreme case

where prices are fixed.
20The authors prove that when an information event is very rare, the probability of herding

goes to 1 and this herd behavior is misdirected with a strictly positive probability.
21Herd behavior can occur only after an information event.
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whereas the other know for certain the true asset value (pH = 1).

The fraction of traders receiving a perfect signal can be high (the

market is said well-informed) or low (the market is said poorly-

informed); no market participant knows this fraction for sure. The

probability β of a well-informed market is common knowledge. The

authors denote this information structure composition uncertainty.

They show that when imperfect signals are very noisy, composition

uncertainty can generate, in the short-run, contrarian behavior of

less informed traders.

Finally, Avery and Zemsky investigate the combination of event

uncertainty and composition uncertainty, by making the hypothesis

that some information events have a high fraction of perfectly in-

formed traders, while others have only a few. They show, by means

of a simulation, that with a such information structure traders may

herd for an extended length of time and a sudden price change may

occur.

To illustrate this result, we consider a market with an extreme

information event (low α) and high probability of well-informed mar-

ket (conditional on the occurrence of the information event). Be-

sides, by following Avery and Zemsky, we assume that in a poorly

informed market there are not perfectly informed traders, and that

the precision of imperfect signals is very low.

We suppose that a sequence of buy orders take place. If an in-

formation event has occurred, they can come from either informed

traders or noise traders. Since β is very high, poorly informed

traders believe that buy orders are generated by perfectly informed

traders with high probability. Hence, their expectation about the

true asset value increases significantly. The market maker does not

know if an information event has occurred. Since α is low, the asset

price does not change very much.

After a few of periods, informed traders with low precision signals

choose to buy regardless of their private information. In a first

phase, the market maker believes to be trading with noise traders,

but, at some point, he realizes that all these purchases are very

unlikely in the absence of an information event. Given the long

sequence of previous buy orders, the price shoots op to near 1 since

a well-informed market is more likely. At this point, if the market is

poorly informed, all informed traders stop to buy the asset because
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the price is too high, and the trading volume reduces significantly.

After a while, the market maker realizes that the low volume

is incompatible with a well-informed market. Consequently, the

asset price suddenly falls to near 1
2
. Avery and Zemsky refer to this

sequence of events as a bubble.

The price path described by Avery and Zemsky is really spectacu-

lar. Nevertheless, as stressed in Chamley [9], the empirical relevance

of their example is not convincing. Indeed, a price bubble develops

only if a unlikely state of nature occurs, and a specific sequence of

traders arrive to the market.

The impact of multidimensional uncertainty on the bayesian learn-

ing process in an asset market is also analyzed by Gervais [18]. As

in Avery and Zemsky [1], in Gervais [18] there is uncertainty about

traders’ information precision. Before transactions start, if an infor-

mation event occurs any insider receives a signal on a certain aspect

of the liquidation asset value22, whose precision (equal for all signals)

can be high or low. The market maker does not observe the quality

of signals. He can only seek to infer that quality from the history

of trades. In contrast to Avery and Zemsky [1], Gervais [18] finds

information blockage due to the bid-ask spread. Indeed, the com-

petitive bid-ask spread decreases as trades go on. When it reduces

below a certain threshold, low precision informed traders make the

same choice as high precision informed traders. As a consequence,

trades do not convey any information about precision and the mar-

ket is in a cascade. This result, even if fascinating, is not robust.

The occurrence of a cascade strongly depends on many assumptions

very restrictive of the model.

1.3.2 Risk aversion and informational efficiency

In the standard Glosten and Milgrom [19] setting, both informed

traders and market maker are assumed risk neutral. Decamps and

Lovo [13] relax this hypothesis, by assuming risk averse informed

traders. They find that differences in the degree of risk aversion

between market makers and traders can generate history dependent

22In Avery and Zemsky [1], signals refer to the liquidation value of the asset. Here, the

future payoff of the risky asset is equal to the sum of N independent incremental payoffs, that

is: eV =
PN
n=1

eξn. Each private signal refers to a specific incremental payoff.
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behaviors and long run mispricing, in asset markets where the max-

imum and the minimum size of trade per period are fixed.23

As Avery and Zemsky [1], they consider a sequential trade model

similar to Glosten and Milgron [19]. The peculiarity of their model is

that traders are risk averse24 and can choose to trade any amount nq,

with q fixed and n ∈ N, of the asset, up to a maximum quantity Q =

Nq. The information structure is similar to that described in section

1.3, with the only difference that there are not noise traders.25

The risk aversion hypothesis has relevant consequences on the

trading motivations of informed traders. In the basic framework

presented in section 1.3, risk neutral informed traders only transact

to exploit their informational advantage. By assuming aversion to

the risk, Decamps and Lovo add to the trading motivations of in-

formed traders the inventory component, which reflects the traders

preference for low-risk-portfolio.

Decamps and Lovo demonstrate that as the public belief gets

concentrated in the extreme tails of asset value distribution, the in-

formation component of traders decisions reduces and, since the ac-

tion space is discrete, transactions only reflect the traders inventory

unbalance. Thus, depending on the distribution of their portfolio

composition, traders may engage in herding or contrarian behav-

ior. At this point, trades stop providing information on the true

asset value and an informational cascade starts. Besides, as a finite

history of trade is, in general, compatible with any realization of

liquidation asset value, the informational cascade may be incorrect.

These results are in contrast to the findings of Avery and Zemsky

[1]. In their model, the competitive price mechanism eliminates

the possibility of informational cascades, and the price ultimately

converges to the fundamental value. Decamps and Lovo show that

if there is a difference in the degree of risk aversion between market

makers and traders, the market may not be strong-form efficient in

the long run.

The findings of Decamps and Lovo are strongly dependent on

the exogenous distribution of the traders portfolio composition. In

23This is what happens, for instance, in the Nasdaq SOES market.
24Whereas the market maker is risk neutral.
25Differences in risk aversion prevent the market to break down. Thus, the presence of noise

traders is irrelevant.
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my opinion, risk averse informed traders who have not risky asset

in their initial portfolio, would always choose to buy the asset with

positive probability26 if he observes a good signal, and to sell the

asset (with positive probability) in the opposite case. Hence, in the

absence of exogenous initial portfolio exposure to risk, the learning

process should never stop and the price, eventually, converge to the

fundamental value.

Analogous results have been founded by Cipriani and Guarino

[10], which extend the Glosten and Milgrom [19] model to a multi-

ple security setting. They consider heterogenous informed traders.

More precisely, they suppose that some traders have an extra util-

ity and other suffer a disutility from holding an asset. When there

is a convergence of belief, the informational advantage of informed

traders is small. Then, the gains and the losses from holding an

asset may exceed the gains due to the private information. In that

case, traders may optimally choose to buy the asset even if they

observe a bad signal, or choose to sell the asset even if they have

a good signal. When the public belief on the asset value becomes

such that all traders optimally make their choice regardless of their

private signals, an informational cascades develops. Furthermore,

Cipriani and Guarino show that informational cascades can lead to

contagion across markets.

1.3.3 Informational cascades due to reputational concerns

Scharfstein and Stein [28] present a principal-agent model where

reputational concerns of fund managers can generate herd behavior.

Managers care about reputation because there is uncertainty about

their ability to forecast the true investment liquidation value. Since

the managers payoff depends only on the beliefs of the principal

about their ability, they may optimally choose to ignore their private

information and mimic decisions of previous managers.

As in the model of Bikhchandani, Hirshleifer and Welch [3],

Scharfstein and Stein [28] assume that the investment is available

to all agents at the same price. Dasgupta and Prat [12] develop a

sequential trading model à la Glosten and Milgrom [19] which cap-

26In order to guarantee the existence of equilibrium bid and ask prices, Decamps and Lovo

allow traders to use any mixed strategy when they are indifferent between trading or not.
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tures reputational concerns of informed traders in a setting where

prices are endogenously determined.

In their paper informed traders are found managers who trade

on behalf of other investors. They can be of two types: smart or

dump. The precision of their signal depends on their unknown type.

The payoff that found managers receive depends both on the trading

profits and on the reputation that they earn with their clients.

Dasgupta and Prat [12] introduce an incentive to imitate others

by assuming that the reputational payoff reduces when the manager

takes an opposite position with respect to his predecessor.

As the uncertainty over the fundamental value is resolved and

price becomes sufficiently precise, trading profits reduce and found

managers ignore their own information and behave in a conformist

way because of reputational concerns. Thus, financial markets whit

reputationally sensitive traders are informationally inefficient.

1.3.4 Bubbles, crashes, and informational avalanches

An interesting feature of many market crashes is that, at the time

of the crash, no major event changing the state of nature happens.

Moreover, the empirical evidence shows that, before a market crash,

prices grow steadily and, after the crash, they remain low for a

substantial length of time before rising again27. Lee [26] tries to

explain market crashes exhibit a such price path, by the failure of

information aggregation due to the transaction costs in the capital

markets.

The model described by Lee [26] differs from the previous ones

in many aspects. A sequence of risk averse traders exchange a risky

asset whit a risk neutral market maker, who is responsible for quot-

ing the price, over T + 1 trading rounds. At the end of each trading

period, there is a positive probability β that the liquidation asset

value becomes common knowledge and the trading activity stops.28

In contrast to the previous models, traders can decide when to

trade, and are allowed to transact several times. In each trad-

ing round a new trader reaches the market and makes his choice.
27See Lee [26].
28This assumption prevents traders to place an infinite trading order for a certain profit in

any period.
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Traders arrived in the previous trading rounds remain active. The

first time that a trader wants to trade he incurs a fixed transaction

cost c > 0 to open an account with a broker.

Each trader privately observes a signal θi ∈ Θ correlated with the

liquidation value of the risky asset. Signals differ in their precision

and satisfy the monotone likelihood property. Strategic behaviors

are ruled out by assuming that the traders behave as price takers.

Prior to any trading round the market maker sets the price at

which all orders will be executed. The market maker does not take

into account all the relevant information: by setting the price, he

ignores the information provided by orders in the current trading

round. The equilibrium price is indeed equal to the expected asset

value conditional on the history of previous trades. The model of

Lee thus neglects a step that is crucial in all models of trade between

rational agents29. The market maker loses money on average since he

is trading with traders better informed than him and does not offset

these losses by making gain with noise traders. As Brunnermeier [4]

emphasizes, the assumption of non-full rationality for the market

maker is necessary to induce informed traders to trade. Otherwise,

the no-trade speculation theorem of Milgrom and Stokey [27] would

apply in a setting without noise traders.

Before to proceed to the equilibrium analysis, we need some def-

initions.

A no-trade informational cascade with respect to the subset Θ̂

of Θ (having more than 2 elements) is said to be developed if, given

the public belief π on the liquidation asset value, all agents with

signal in Θ̂ prefer to refrain from trading.

An informational avalanche is said to be occurred in trading

round t if all the agents arrived in previous trading rounds without

trading, simultaneously opt for trade.

The definition of informational cascade is different from that of

Bikhchandani, Hirshleifer, and Welch [3] in that it allows a partial

informational cascade because Θ̂ can be a proper subset of Θ. Dur-

ing a partial informational cascade, all the traders endowed with

private signal θ ∈ Θ̂ make an identical choice. Hence, their signals

are not distinguishable and the market accumulates a lot of hidden

29Chamley [7].
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information not incorporated in the asset price. A trader with an

extreme signal (that is, a signal θ ∈ Θ̂c) might shatter the partial

cascade by taking an action which contradicts the state of nature

implied by the cascade. If a such action is observed in the market,

an informational avalanche occurs and all the hidden information

accumulated during the partial informational cascade is revealed.

In order to find the security market equilibrium, Lee demon-

strates that the first non-zero trade fully reveals the private signal

of trader. This implies that after the first trading order, the infor-

mational advantage of traders disappears. Because of risk aversion,

in the absence of fixed costs, a trader whose private belief is the

same as the public belief, strictly prefers to get perfect insurance.30

Hence an informed trader trades at the most twice, first to buy or

sell risky asset based on his private signal and second to unload the

risky asset at the fair price, after the price reflects his private signal.

Clearly, a trader makes the first non-zero trading order in period

t if, and only if, the expected payoff from that strategy is greater

than the payoff from permanently no trading.31 Indeed, it may be

the case that the expected capital gains are so small that it is not

worthwhile for a trader to pay the fixed transaction cost.

Lee shows that, due to the transaction cost, new traders with a

middle informational advantage do not trade and a partial informa-

tional cascade develops as the public beliefs get concentrated either

on the bad or on the good state of nature. More precisely, he proves

that for every signal θ there exist unique public beliefs πu(θ) and

πl(θ) (with πu(θ) ≥ πl(θ)) such that, given a public belief π lower

than πl(θ) or greater than πu(θ), traders with signal θ optimally

choose to refrain from trading.

To explain the meaning of this result we analyze the simple ex-

ample proposed by Lee. We consider an economy with only three

private signals: H, L, and R.32, such that πu(R) > πu(H) > πu(L) >

πl(L) > πl(H) > πl(R),. R is rarely observed under both states.

30In the absence of informational advantage, the only trading motivation of traders is the

inventory component.
31By assumption, traders behave as price takers. As a consequence, they do not compare

the profit from the optimal non-zero trade against the future trading profit from a price path

which does not reflect their own private signal.
32H=high liquidation value; L=low liquidation value; R=rare extreme low liquidation value

signal.
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The initial prior on the asset liquidation value is such that all traders

prefer to trade following their private information.

We suppose that the true asset value is 0 and consider the fol-

lowing sequence of arrivals.

In the first K periods traders observing the signal H reach the

market and place buy orders. The market maker infers their private

information and the asset price rises. This phase is called by Lee

the ”boom”. If K is big enough (so that the public belief becomes

greater than πu(H)), a partial informational cascade including sig-

nals H and L develops, strongly indicating the high asset value.

In the following phase, denoted ”euphoria”, a sequence of traders

with mildly bad and good news (signals L and H) arrive at the

market without trading. A large amount of hidden information is

accumulated because traders with low-precision signals are not dis-

tinguishable. If this phase is very long a total informational cascade

develops. On the contrary, if a trader with rare very informative

bad signal arrives at the market before public belief grows bigger

than πu(R), he places a sell order. This period is the ”trigger”.

Subsequent to trigger, traders with signal L who arrived in the

market during the euphoria phase place selling orders, since their

mild skepticism is strengthened by the trigger. An informational

avalanche develops, resulting in the phase of ”panic”.

Therefore, during the phase of panic a dramatic price movement

may happen even in the absence of correspondingly dramatic news.

The variability of the price at the time of informational avalanche

exceeds what would be possible if only the trading order from the

new agent is taken into account. If the R signal arrives early in

the euphoria phase, the price change is not too dramatic since the

traders with moderate bad signal who are active in the market are

not much. But, if there are many traders observing a private in-

formation inconsistent with the present price, the price fall is very

big. Lee demonstrates that the volatility of price increases whit the

length of the partial informational cascade preceding the informa-

tional avalanche.

Moreover, although we cannot entirely rule out the possibility

of the price being incorrect after the informational avalanche, when

the informational avalanche occurs the price is likely to be closer
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to the correct one because it incorporates the hidden information

accumulated during the partial cascade.

In the model of Lee a market crash is described as a procedure

which corrects the public belief inconsistent with the distribution

of private information in the market. In that, the model is very

similar to Caplin and Leahy [5], where a market crash is viewed as

a mechanism by which markets aggregate previously received, but

hidden, private information, and only a small piece of additional

information is required to price collapse.33

However, the model of Lee, as that of Caplin and Leahy [5],

does not present a specific bias for a crash. By changing the signal

distribution, the same mechanism described previously to illustrate

a crash can generate a boom.

The main criticisms of the model are related to the price mech-

anism. The market maker, by setting the asset price, does not take

into account the information content of current orders. In any pe-

riod, the asset price is equal to the public belief given the history

of previous trades. Moreover, the market maker cannot adjust the

price within the trading round even when his belief moves because of

trading orders. Those assumptions are not realistic in capital mar-

kets. But they are essential for the occurrence of an informational

avalanche. The large trading volume which characterizes avalanches

would probably not occur if the market maker were to adjust the

asset price after each trading order.

1.4 Concluding remarks

In this chapter we have reviewed the recent theoretical researches

on cascading in capital markets with sequential trading mechanism.

In the basic models of informational cascades, the price for taking

an action is fixed ex ante and remains so. This assumption is inap-

propriate for market microstructure models, since in asset markets

prices adjust to incorporate any new relevant information.

33In Caplin and Leahy [5], private signals of informed traders are revealed to other market

participants by alterations to their routine behavior. Fixed costs incurred by traders when

they change their behavior, prevent the gradual release of private information.
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In sequential models à la Glosten and Milgrom [19], in the ab-

sence of market frictions, an informational cascade does not arise,

and prices are strong-form efficient in the long run. Moreover, as

long as the private signals of informed traders are monotonic, the

competitive price mechanism prevents any herd behavior.

However, if there are multiple sources of uncertainty, herd be-

havior due to informational externalities can arise because traders

and market maker interpret differently the history if trades. In Av-

ery and Zemsky [1], imitative behaviors lead to an interesting short

run mispricing and, with a more complex informational structure,

can generate bubbles and crashes. In contrast, in Gervais [18], the

uncertainty about the precision of private information can lead to a

complete blockage of the learning process.

Decamps and Lovo [13] show that, by relaxing the hypothesis

of risk neutral informed traders, history dependent behaviors and

long run mispricing can arise, because the inventory component of

trading motivations may outweigh the information one. A similar

result is illustrated in Cipriani and Guarino [10].

Dasgupta and Prat [12] argue that the presence of reputational

concerns induce found managers to ignore their private information

and to act in a conformist way. This prevents prices to converge to

the true asset value.

Finally, Lee [26] finds that total or partial informational cascades

with no trade may develop if traders have to pay a one-time fixed

fee to transact. Moreover, he introduces the concept of informa-

tional avalanche to explain a market crash as a procedure which

corrects a public belief inconsistent with the distribution of private

information.

A central purpose of almost all models on herd behavior and in-

formational cascades in financial markets is to explain the empirical

evidence of bubbles and market crashes, not fully addressed in stan-

dard asset pricing models. But, all models discussed so far have

not a particular bias for a crash. In principle, in all those models,

herd behavior can generate frenzies as often as crashes. This is a

general criticism of almost all models given the empirical evidence

that frenzies do not happen as often as crashes.

All the models described predict that herd behaviors and/or in-
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formational cascades can occur as the public belief gets concentrated

in the extreme tails of the asset value distribution. May rational

traders herd when the market is completely uncertain about the

fundamental value?

Finally, in my view, the effect of informational cascades on the

trading volume is not really clear. It would be interesting to investi-

gate whether, as the informational content of transactions reduces,

the size of orders decreases or not.
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Chapter 2

Learning, cascades and

fixed transaction costs
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2.1 Introduction

Standard market microstructure models predict that when the infor-

mation is dispersed among many agents and trades occur sequen-

tially, the market gradually learns fundamentals and, eventually,

prices converge to fundamental value.1 In other words, in the long

run, asset markets are viewed as being informational efficient.2 How-

ever, recent theoretical literature has suggested new models of asset

market behavior which conflict with the efficient market hypothe-

sis.3 In particular, the literature on informational cascades shows

that sequential actions can produce herd behavior by rational agents

and lead to a complete or partial information blockage.

In the previous chapter we discussed main issues achieved in the

existing literature about informational cascades in securities markets

with sequential trading mechanism. Recent research has emphasized

several plausible market frictions which may generate informational

cascades in financial economics although prices are endogenously

determined.

In this chapter we investigate the effect of fixed processing order

costs on the social learning in a capital market whit sequential trades

and asymmetric information.

Market microstructure is mainly about the effect of trading fric-

tions on price formation, so it is natural to ask whether such frictions

are more conducive to informational cascades. Lee [26] finds that in

an asset market with sequential trades,if traders bear a fixed bro-

kerage cost to transact, the aggregation of the information may fail

and a partial or total informational cascade develops. The main

criticism of the model of Lee [26] is that the market maker ignores

the implication of current trades for the information. At each trad-

ing round, he is assumed to set the price equal to the expected asset

value conditional on the history of past trades. This assumption,
1See Glosten and Milgrom [19], Kyle [24].
2Informational efficiency refers to how much information is revealed by the price process.

This is important in economies where information is dispersed among many individual. Prices

are informational efficient if they fully and correctly reflect the relevant information. If prices

do not correctly and fully reflect public information, then there would be a profitable trad-

ing opportunity for individuals. In general, this is ruled out in models with rational utility

maximizing agents.
3See Kortian [23] for a survey of recent theoretical literature on asset price formation.
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implausible in asset markets, is crucial for the main properties of

the model.

In this work, we relax this hypothesis and analyze a Glosten -

Milgrom type model with fixed transaction costs.4 We prove that

when the bid and ask prices are set by competitive market makers

who bear a fixed cost per transaction, the market is not informa-

tional efficient. In other words, the price mechanism cannot prevent

the occurrence of an informational cascade. In tune with the find-

ing of Lee [26], we show that during the informational cascade, no

informed traders will trade. This implies that in a cascade, the

adverse selection component of bid-ask spread disappears and the

spread decreases.

We also find a positive correlation between bid-ask spreads and

trading volume. This is because traders endowed with private sig-

nals with moderate informational content place high weight on the

previous price history in their investment decisions. Therefore, they

will prefer to refrain from trading because of transaction costs.

Namely, before the cascade occurs, the trading volume will gradually

decrease and it will reach the minimum as the cascade develops.

Moreover, we show that if transaction costs are high enough,

an informational cascade may occur even when the market is com-

pletely uncertain about the fundamental value. This is in contrast

with results in the previous literature on informational cascades in

stock markets which highlights that cascades develop when there is

a convergence of beliefs in the market.

The outline of this chapter is as follows. The basic model with

fixed transaction costs is presented in section 2.2. In section 2.3

we define and derive the market equilibrium. In 2.4 we prove the

occurrence of informational cascades, while in section 2.5 we analyze

the equilibrium during a cascade. Finally section 2.6 concludes. The

appendix at the end of the chapter contains proofs of propositions,

corollaries and lemmas.
4Glosten and Milgrom ([19]) introduce fixed transaction costs in their model to show that if

the market maker pay a fixed processing cost then transaction prices changes exhibit negative

serial correlation.
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2.2 The environment

We consider a sequential trade model similar to Glosten and Mil-

grom [19]. The market is for a single risky asset whose value Ṽ

depends on the state of nature. If the true state of nature is good,

the asset value is V ; if it is bad, the value of the asset is V , with

V > V ≥ 0. We assume that the initial prior probability π0 = P (V )

of the high value is non-degenerate, that is, π0 ∈ (0, 1). The asset

is exchanged among traders and market makers who are responsi-

ble for quoting prices. Trades take place in a sequential fashion,

with one trader allowed to transact at any point in the time. Before

a trader arrives, market makers simultaneously announce the bid

and ask prices at which they are willing to buy and sell one unit

of the asset. We assume that market makers are risk neutral and

act competitively. In addition, we suppose that they incur a fixed

order-processing cost c. The trader arriving in the market observes

the prices and has the option to sell or buy one unit of the asset at

the most attractive bid and ask prices, or to refrain from trading.

The trader leaves the market after he had the opportunity to trade.

He may trade further, but only after returning to the pool of traders

and being selected again to trade.

A fraction µ of traders are uninformed liquidity traders while

1−µ are informed. Liquidity traders trade for reasons exogenous to

the model. To simplify the analysis, we assume that they choose to

sell, buy, or refrain from trading with equal probability.5 Informed

traders are risk neutral, price taking agents6 that privately observe

a signal θ correlated with the asset value. They trade to maximize

their expected profit. We denote Θ = {θ1, θ2, . . . , θN} the set of

private signals, and assume that the private signals are conditionally

independent and satisfy the monotone likelihood property:

0 < λ1 < λ2 < · · · < 1 < · · · < λN−1 < λN <∞
5In Glosten and Milgrom [19], liquidity traders trade as long as the reservation value

dictated by their liquidity needs exceed the ask (bid) price for the buy (sell) order. As a

consequence, if there are too many informed traders, then the market maker may have to set

a spread so large as to preclude any trading at all. In order to avoid market collapse, we

assume that the probability that liquidity traders buy and sell in each period is sufficiently

high and is stationary.
6This assumption simplify the analysis by ruling out strategic behavior of informed traders.

It is reasonable given that the trader’s chance to trade again is zero since there are infinitely

many informed traders in the pool.
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where λn = P (θn|eV=V )

P (θn|eV=V )
.

The signal θn is denoted “good” if the probability that a trader

observes θn when the true asset value is V , exceeds the probability

of θn conditional on V ; that is, λn < 1. It is denoted “bad” in the

opposite case. For simplicity, we assume that good and bad signals

are symmetric, that is λ1 = 1
λN

, λ2 = 1
λN−1

, and so on.

Both market makers and traders are Bayesians who know the

structure of the market. We denote by πt the probability of V

conditional on the publicly observable history of trades up until

time t. Thus, the public belief about the true asset value at t is:

Et[Ṽ ] = πt · V + (1− πt) · V = V + πt · (V − V )

2.3 The equilibrium

Prior to each trading round, market makers set their prices. Bertrand

competition and risk neutrality lead, in equilibrium, market makers

to earn zero expected profit for every possible trade. After prices

are set, a trader is randomly selected to trade. If he is informed,

he chooses his optimal strategy given the prices. By assuming that

market makers act competitively and that informed traders are price

takers, we rule out all strategic behavior. Therefore, any trading

round can be viewed as a four-stage game.

At stage 1, nature chooses the true asset value. Agents do not

observe the realization of Ṽ : they know only the probability π of

Ṽ = V , which is common knowledge.

At stage 2, nature selects a trader to transact. With probability

µ the trader will be uninformed and with probability 1 − µ he will

be informed. Informed traders differ from one another in the private

signal θ ∈ Θ they observe. There are N types of signals and then N

types of informed traders. The signal distribution depends on the

true asset value. The conditional distributions P (θ| Ṽ ) are common

knowledge. Agents do not observe the type of the selected trader.

At stage 3, market makers announce the price Bt at which they

are willing to buy the asset and the price At at which they are willing

39



to sell the asset. Perfect competition restricts the market makers to

set these prices so as they earn zero expected profit.

At stage 4, the selected trader observes the prices and plays his

strategy. He can choose to place a sell order (SO) at the highest bid

price, to place a buy order (BO) at the lowest ask price, to refrain

from trading (RT ). We denote byA ≡ {SO, BO, NT } the traders’

action space. Uninformed traders trade for exogenous reasons and

submit sell and buy orders in the ex-ante specified probabilistic way.

Informed traders choose the strategy that maximizes their expected

profit given the price schedule. We denote σ ≡ {σθ}θ∈Θ the informed

traders’ strategies, where σθ is the mixed strategy of the informed

if he observes θ. Clearly:

σθ ≡ (σθ, SO, σθ,BO, σθ,RT )

where σθ, i is the probability of i, with i ∈ A, if the informed observes

θ, Σi∈A σθ, i = 1, and σθ, i ≥ 0 ∀ i ∈ A.

The expected profit of a market maker is equal to Et[Ṽ |SO at B]−
B − c, if he buys at B, and it is equal to A− Et[Ṽ |BO at A]− c, if

he sells at A. The expected profit of a trader endowed with signal

θ, when the price schedule is P = {B, A} and he plays the strategy

σ ∈ ∆(A), is Et[Πθ(σ|P )] = σθ, SO(B−Et[Ṽ |θ])+σθ,BO(Et[Ṽ |θ]−A).

Next, we define the equilibrium in the asset market as a sequen-

tially rational Nash equilibrium.

Definition 2.1 At each trading round t, the equilibrium in the as-

set market consists of a trading strategy correspondence σ∗θ(P |t) :

R2
+ −→ ∆(A) for each informed trader θ ∈ Θ, and a price schedule

P ∗t = {B∗t , A∗t} such that:

1. σ∗θ(P |t) = arg maxσ∈∆(A)Et[Πθ(σ|P )], ∀P ∈ R2
+, ∀θ ∈ Θ

2. B∗t ∈ Et[Ṽ |SO at B∗t , σ
∗(P ∗t |t)]− c

3. A∗t ∈ Et[Ṽ |BO at A∗t , σ
∗(P ∗t |t)] + c

4. B∗t ≤ A∗t

where σ∗(P ∗t |t) = {σ∗θ(P |t)}θ∈Θ.
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The first equilibrium condition means that informed traders max-

imize their expected profit given the price schedule, trade by trade.

The second and third conditions imply that market makers deter-

mine the price schedule such that they anticipate zero expected

profit from each trade. It is clear that, if there are no fixed trans-

action costs, the equilibrium bid and ask prices are equal to the

conditional expectation of Ṽ given a sell or a buy order respectively.

The last condition says that at the equilibrium the price at which

market makers buy the asset must be lower than (or at most equal

to) the price at which they sell the asset.

We can now provide an useful characterization of the equilibrium

in term of informed traders’ optimal strategy, and then prove the

existence and the uniqueness of zero profit equilibrium prices. We

will see that equilibrium bid and ask prices straddle the public belief

about the true asset value.

The last condition of definition 2.1 states that the equilibrium

bid price does not exceed the equilibrium ask price. Proposition 2.1

describes the optimal strategies of informed traders when they face

a price schedule that satisfies this condition.

Proposition 2.1 For any P = {B, A} such that B ≤ A, the opti-

mal strategy of the traders endowed with the private signal θ ∈ Θ is

σ∗θ(P |t) equal to:

{

σ∗θ, SO(P |t) = 1 if Et[Ṽ |θ] < B

σ∗θ, SO(P |t) = α σ∗θ,RT (P |t) = 1− α if Et[Ṽ |θ] = B

σ∗θ,RT (P |t) = 1 if B < Et[Ṽ |θ] < A

σ∗θ,BO(P |t) = β σ∗θ,RT (P |t) = 1− β if Et[Ṽ |θ] = A

σ∗θ,BO(P |t) = 1 if Et[Ṽ |θ] > A

.

where α and β are any real number belonging to the interval [0, 1].

Proof: See Appendix.

Informed traders are profit maximizing agents. Hence, for any

price schedule P = {B, A} such that B ≤ A, traders observing

the private signal θ ∈ Θ optimally prefer to sell the asset if their
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conditional expectation of its value is below the bid price; to place a

buy order if their conditional expectation is above the ask price; to

refrain from trading if the bid and ask prices straddle their valuation.

Finally, if their valuation is equal to the bid or to the ask prices, they

are indifferent between all mixed strategies defined on the simplex

∆(SO, RT ) in the first case or on the simplex ∆(BO, RT ) in the

second case.

The next lemma establishes a link between the optimal trading

strategies of traders endowed with different signals.

Lemma 2.1 If σ∗θn, SO(P |t) 6= 0, then σ∗θn+i, SO
(P |t) = 1 for any

i ∈ {1, 2, ..., N − n}. If σ∗θn, BO(P |t) 6= 0, then σ∗θn−j , BO(P |t) = 1 for

any j ∈ {1, 2, ..., n− 1}.

Proof: See Appendix.

Informed traders maximize the expected profit given their infor-

mation set. The information set includes both the whole history of

trades and the trader’s private signal. For the maximum likelihood

ratio property of signals, the expected asset value of traders observ-

ing the signal θi exceeds the expectation of traders observing θj for

any j < i. Hence, if it is profitable for traders endowed with signal

θn to sell the asset when the price schedule is P , then all traders

observing signals θn+i, with i ∈ {1, 2, ..., N −n}, optimally prefer to

sell the asset as well. Similarly, if the traders endowed with the sig-

nal θn prefer to buy the asset, then all traders endowed with signals

θn−j, with j ∈ {1, 2, ..., n− 1}, prefer to do the same.

Let define the informational content of a trading order as the

likelihood ratio of that order. More precisely, the informational

content λSOt of a sell order arriving at t is :

λSOt ≡
Pt(SO at B|V )

Pt(SO at B|V )

and the informational content λBOt of a buy order arriving at t is :

λBOt ≡ Pt(BO at A|V )

Pt(BO at A|V )
.
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It is straightforward to notice that an order indicates V if the prob-

ability of its occurrence is greater in the good state of nature, that

is, the likelihood ratio is lower than 1. It indicates the low asset

value if the likelihood ratio is greater than 1. Finally, a trading or-

der is uninformative about the true asset value if the probability of

observing it does not depend on the true asset value, that is, like-

lihood ratio is exactly equal to 1. Clearly, the more the likelihood

ratio differs from 1, the more informative the order is about the true

asset value.

An implication of Lemma 2.1 is that a sell order generally indi-

cates V, while a buy order generally indicates V . To see that, let

define the “marginal selling trader” at t, given the price schedule

P = {B, A} with B ≤ A, as the trader endowed with signal θnbt(B)

such that:

Et[Ṽ |θnbt(B)] ≤ B and Et[Ṽ |θ(nbt(B)−1)] > B

and the “marginal buying trader” at t as the trader endowed with

signal θnat (A) such that:

Et[Ṽ |θnat (A)] ≥ A and (Et[Ṽ |θnat (A)+1)] < A.

Given the traders’ strategy described above, the likelihood ratio

of a sell order arriving at t, when the price schedule is P = {B, A},
is equal to:

λSOt (B) =

µ
3

+ (1− µ)
∑N

i=nbt(B) P (θi|V )

µ
3

+ (1− µ)
∑N

i=nbt(B) P (θi|V )

and the likelihood ratio of a buy order is equal to:

λBOt (A) =
µ
3

+ (1− µ)
∑nat (A)

i=1 P (θi|V )
µ
3

+ (1− µ)
∑nat (A)

i=1 P (θi|V )

where µ
3

is the probability that the trading order comes from a liq-

uidity trader, and θnbt(B) and θnat (A) are respectively the signals of

marginal selling and buying traders.7

7For simplicity, here we suppose that the marginal traders choose to place an order also if

they are indifferent between trade and to refrain from trading.
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Since
∑N

i=n Pt(θi|V ) ≥∑N
i=n Pt(θi|V ) for all n = 1, 2, . . . , N , the

probability of a sell order is greater in the bad state of nature. Sim-

ilarly, since
∑n

i=1 Pt(θi|V ) ≤ ∑n
i=1 Pt(θi|V ) for all n = 1, 2, . . . , N ,

the probability of a buy order is greater in the good state of nature.

This shows that a sell order generally indicates V , and a buy order

generally indicates V .

We now analyze the equilibrium behavior of market makers. From

Lemma 2.1, it follows that if equilibrium bid and ask prices exist,

they straddle the unconditional expected asset value, which is the

price that would prevail in the absence of adverse selection and fixed

transaction costs.

Proposition 2.2 If a price schedule P ∗t = {B∗t , A∗t} satisfying con-

ditions 2 and 3 of Definition 2.1 exists, the equilibrium bid and ask

prices are such that:

B∗t ≤ Et[Ṽ ] ≤ A∗t .

Proof: See Appendix.

Market makers know that orders may come from either a liquidity

trader or an informed trader, but they cannot tell them apart. When

they are trading with informed traders, they lose on average. Hence,

they have to balance the losses to the informed traders with the

gains from the liquidity traders. Moreover, market makers pay a

fixed cost c to process each trading order. To recover the losses due

to both the adverse selection and the order processing cost, market

makers set a spread between the price at which they are willing to

sell the asset and the price at which they are willing to buy the

asset. Namely, if the probability that an informed trader places a

trading order is greater than 0 and/or the fixed transaction cost is

strictly positive, then B∗t ≤ Et[Ṽ ] ≤ A∗t .

The next proposition states the existence and the uniqueness of

equilibrium bid and ask prices.

Proposition 2.3 In each period t there exists a unique price sched-

ule P ∗t = {B∗t , A∗t} that satisfies conditions 2 and 3 of Definition

2.1.

44



Proof: See Appendix.

2.4 Informational cascades with costly market-

making

In this section we study the occurrence of informational cascades in

the asset market just described.

If all informed traders make the same choice regardless of their

private signal, no new information reaches the market. Hence,

during an informational cascade, the market equilibrium is such

that: σ∗θ(P
∗
t |t) = σ∗(P ∗t |t) for all θ ∈ Θ, and B∗t = Et[Ṽ ] − c and

A∗t = Et[Ṽ ] + c since λSOt (B∗t ) = λBOt (A∗t ) = 1.

It is straightforward to notice that in equilibrium traders endowed

with a bad signal never place a buy order, and traders endowed with

a good signal never place a sell order. Indeed, the asset valuation

of traders with a bad signal is always lower than the unconditional

expected asset value, while that of traders observing a good signal

always exceeds it. Proposition 2.2 dictates that the unconditional

expected asset value is the upper bound of the equilibrium bid price

and the lower bound of the equilibrium ask price. Therefore, traders

endowed with a bad signal will never find worthwhile to buy the

asset, and traders endowed with a good signal will never find worth-

while to sell the asset. This implies that informational cascades

characterized by all informed traders placing orders in the same di-

rection will never occur in the market equilibrium. Nevertheless, if

fixed transaction costs are positive, the equilibrium price schedule

may be such that all informed traders choose to refrain from trad-

ing, since transaction costs induce higher bid ask spreads. On the

other hand, the expectation of market makers and that of informed

traders converge as the number of transactions increases.8 Hence,

there will be a moment when the informational advantage of the

informed is so small relative to the fixed transaction cost that it is

no longer profitable for any informed trader to place an order.

A no-trade informational cascade starts if Et[Ṽ |θ] > B∗t and

Et[Ṽ |θ] < A∗t for any θ ∈ Θ. Clearly, if an informational cascade oc-

8See Glosten and Milgrom [19].
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curs, orders have no informational content and hence B∗t = Et[Ṽ ]−c
and A∗t = Et[Ṽ ] + c.

Proposition 2.4 B∗t = Et[Ṽ ]− c if, and only if:

Et[Ṽ ]− Et[Ṽ |θN ] ≤ c

and A∗t = Et[Ṽ ] + c if, and only if:

Et[Ṽ |θ1]− Et[Ṽ ] ≤ c.

Proof: See Appendix.

Proposition 2.4 establishes that when (and only when) the infor-

mational advantage of traders with the most informative bad signal

θN is lower than the fixed transaction cost, the equilibrium bid price

is equal to the public belief about the true asset value minus the

transaction cost c. Symmetrically, when (and only when) the infor-

mational advantage of traders endowed with the most informative

good signal θ1 is lower than the fixed transaction cost, the equilib-

rium ask price is equal to the public belief about the true asset value

plus c.

The valuation of traders endowed with bad signals less informa-

tive than θN , exceeds that of traders observing θN . This means

that:

Et[Ṽ ]− Et[Ṽ |θN ] ≤ c =⇒ Et[Ṽ ]− Et[Ṽ |θ] ≤ c

for all bad signals θ ∈ Θ. Likewise, the valuation of traders endowed

with good signals less informative than θ1, is lower than that of

traders who observe it. This means that:

Et[Ṽ |θ1]− Et[Ṽ ] ≤ c =⇒ Et[Ṽ |θ]− Et[Ṽ ] ≤ c

for all good signals θ ∈ Θ. Hence, if the informational advantage

of all informed traders is lower than the transaction cost, no trader

observing a private signal will place a trading order. Since all in-

formed traders act alike, no new information reaches the market and

an informational cascade starts.

It is straightforward that until the uncertainty is resolved, the

informational advantage of informed traders is strictly positive. As
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a consequence, in the absence of fixed transaction costs, an infor-

mational cascade would never occurs. On the other hand, if for

any possible history of trades the fixed transaction cost is greater

than the advantage of informed traders, then orders will never be

information-based.

To determine the minimum level of c such that no informed trader

prefers to trade, define the functions hθ(π) as:

hθ(π) ≡ |Et[Ṽ |θ]− Et[Ṽ ]| = π − π2

π + (1− π)λθ
· |1− λθ| · (V − V ).

hθ(π) gives the informational advantage of traders observing θ for

any π ∈ [0, 1]. Since signals are assumed to be symmetric, it is easy

to see that:

maxhθN (π) = maxhθ1(π) =
|1−√λ1|
1 +
√
λ1

· (V − V ) ≡ c.

We know that the informational advantage of traders endowed with

the signals θN and θ1 always exceeds that of traders observing a

different signal. Hence, if c > c, all informed traders will prefer to

refrain from trading whatever the history of trades is.

The next proposition states that if transaction costs are below c

then an informational cascade occurs as the public belief approaches

the extreme values of the distribution of the true asset value.

Proposition 2.5 If c ∈ (0, c ) there exist unique πlθ1 and πuθN , with

πlθ1 < πuθN , such that when π ∈ [0, πlθ1)∪(πuθN , 1] all informed traders

refrain from trading in equilibrium.

Proof: See Appendix.

Proposition 2.5 establishes that, if the transaction cost is small

enough, there exist a lower bound πlθ1 and an upper bound πuθN of

public beliefs such that if the unconditional expected asset value is

lower than E[Ṽ |πlθ1 ] or greater than E[Ṽ | πuθN ], then no informed

trader prefers to trade.

The last result is a consequence of the beliefs convergence. Sup-

pose that at t = 0 the unconditional expected asset value E0[Ṽ ] is
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Figure 2.1: Informational cascades in a market with positive fixed transaction
costs.

such that at least traders endowed with signals θ1 and θN prefer to

trade (see figure 2.1). Suppose also that a sequence of buy orders

arrive. Because of the new information that reaches the market,

the public belief about the true asset value moves toward V . Hence

the bid and ask prices increase as well as the asset assessment of in-

formed traders. If the public belief rises too much, the informational

advantage of traders endowed with signal θ1 becomes so small that

it is not worthwhile for them to buy the asset. Moreover, if E0[Ṽ ]

is low enough, at the beginning of the arrival process the expected

profit from selling of traders endowed with signal θN increases be-

cause the bid price rises. Nevertheless, if the buy orders are very

numerous, the expected profit from selling begins to fall off until it

becomes negative. This occurs because in the traders’ asset assess-

ment the relative weight of the information inferred from the history

of trades grows with respect to the traders’ private information. If

enough buy orders are placed, so that the unconditional expected

asset value grows bigger than E[Ṽ |πuθN ], no informed trader places

a sell order although the bid price is very high. At that point, an

informational cascade occurs. A similar argument can be used to

show the occurrence of an informational cascade when the public
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belief tends to V .

An informational cascade develops because the asset assessment

of each informed trader depends not only on his private signal but

also on the history of actions taken by previous traders. If in the

market there are perfectly informed traders, an informational cas-

cade never occurs. Indeed, if signals θ1 and θN are perfectly infor-

mative (that is, P (θ1|V ) = P (θN |V ) = 0) then when the public

belief tends to V , traders endowed with signal θ1 will always buy

the asset, and when the public belief tends to V , traders endowed

with signal θN will always sell the asset.

The next proposition states that if transaction costs are high

enough, an informational cascade may start even when the market

is completely uncertain about the true asset value, that is π close

to 1
2
. To see this, notice that if the most informative good and bad

signals are symmetric then hθN (1
2
) = hθ1(1

2
) = |1−λ1|

2(1+λ1)
· (V − V ) = c.

That is, if the market is completely uncertain about the true asset

value, then the informational advantage of traders endowed with

signal θ1 is equal to that of traders observing signal θN . Proposition

2.6 establishes that if the fixed transaction cost exceeds this bound,

there exists a neighborhood of V+V
2

such that an informational cas-

cade occurs also if the unconditional expected asset value, Et[Ṽ ], is

within this neighborhood.

Proposition 2.6 If c < c < c then there exist πuθ1 ∈ (πlθ1 ,
1
2
)

and πlθN ∈ (1
2
, πuθN ) such that an informational cascade occurs when

π ∈ (πuθ1 , π
l
θN

).

Proof: See Appendix.

To understand intuitively why cascades can occur under the con-

ditions described in Proposition 2.6, consider the following argu-

ment. The informational advantage of traders endowed with a good

signal exceeds that of traders observing an equally informative bad

signal when π < 1
2
, and it is lower in the opposite case. This im-

plies that if the transaction cost is high, no trader with a bad signal

chooses to place a sell order when Et[Ṽ ] is below V−V
2

, and no trader

observing a good signal chooses to buy the asset when Et[Ṽ ] exceeds
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Figure 2.2: Informational cascades in a market with high fixed transaction costs.

V−V
2

(see figure 2.2). As a consequence, when the bid price is low,

sell orders are uninformative about the true asset value and when

the ask price is high, buy orders are uninformative. Moreover, if

Et[Ṽ ] is into the interval (E[Ṽ |πuθ1 ], E[Ṽ |πlθN ]) no informed trader

will place an order and an informational cascade occurs. Therefore,

if transaction costs are large enough, an informational cascade may

develop even when the public belief is not concentrated on V or V .

This result contrasts with the typical finding of the literature that

informational cascades tend to occur when there is convergence of

beliefs.

2.5 Informational content of orders and fixed

transaction costs

In this section we analyze the effect of fixed transaction costs on

the informational content of trading orders in equilibrium. To this

aim, we first prove that in the absence of order processing costs,

the competitive price mechanism leads to equilibrium bid and ask

prices that maximize the informational content of orders. Then we
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show that positive transaction costs reduce the information that the

market can infer from both buy and sell orders.

The informational content of a trading order depends on the set

of informed traders who prefer to place the order. From Lemma

2.1 it follows that, given the price schedule P = {B, A}, the set of

informed traders who sell the asset is Θb
t(B) = {θn ∈ Θ : n ≥ nbt(B)}

and the set of informed traders who buy the asset is Θa
t (A) = {θn ∈

Θ : n ≤ nat (A)}, with nbt(B) and nat (A) being the signals respectively

of the marginal selling and buying traders.

Lemma 2.2 There exist a bad signal θnb and a good signal θna such

that, for all trading histories:

• the informational content of a sell order is maximum if nbt(B) =

nb

• the informational content of a buy order is maximum if nat (A) =

na.

Proof: See Appendix.

Lemma 2.2 establishes that there exist a set of selling traders,

Θnb = {θn ∈ Θ : n ≥ nb}, and a set of buying traders, Θna = {θn ∈
Θ : n ≤ na}, which maximize the informational content respectively

of sell and buy orders, for any given history of trades. Then the

price schedule P = {B, A} maximize the information of orders at t

if Θb
t(B) = Θnb and Θa

t (A) = Θna .

The next proposition states that in the absence of fixed transac-

tion costs, perfect competition among market makers leads to equi-

librium bid and ask prices such that: Θb
t(B

∗
t ) = Θnb and Θa

t (A
∗
t ) =

Θna for all trading histories.

Proposition 2.7 If c = 0, the equilibrium bid and ask prices, B∗t
and A∗t , are such that Θb

t(B
∗
t ) = Θnb and Θa

t (A
∗
t ) = Θna ∀ t.

Proof: See Appendix.
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To gain intuition about this result, denote Et[Ṽ |Θna ] the expected

asset value conditional on a buy order, when the set of informed

buying traders is Θna . Clearly: Et[Ṽ |BO at A] ≤ Et[Ṽ |Θna ] ≤
Et[Ṽ |θna ] for all ask price A. In the absence of order processing

costs, the expected profit of market makers is equal to the difference

between the ask price and the conditional expectation. It is easy to

see that if traders observing θna refrain from trading, that is the ask

price exceeds Et[Ṽ |θna ], the expected profit from selling of market

makers is positive. On the other hand, if traders observing good

signals less informative than θna buy the asset, that is A is below

Et[Ṽ |θ(na+i)], the information that market makers can infer from

a buy order is more precise than the signal θ(na+i). This implies

that Et[Ṽ |BO at A] exceeds the valuation of marginal traders and

hence the expected profit from selling of market makers is negative.

As a consequence, the equilibrium ask price belongs to the interval

(Et[Ṽ |θ(na+1)], Et[Ṽ |θna ]], and then nat (A
∗
t ) = na.

The results of Proposition 2.7 suggest that in an asset market

with competitive price mechanism, if the adverse selection is the

only source of the bid-ask spread, the informational content of both

sell and buy orders is always maximum in equilibrium.

When market makers pay a fixed cost to process orders, the equi-

librium bid price is lower than the conditional expectation of the as-

set value, given a sell order, and the equilibrium ask price is greater

than the conditional expectation of the asset value, given a buy

order. As a consequence, fixed transaction costs reduce the infor-

mational content of both sell and buy orders, for any given history

of trades.

An implication of Proposition 2.7 is that, in the absence of trans-

action costs, the set of informed traders whose asset assessment is

lower than the equilibrium bid price, and the set of informed traders

whose asset assessment is greater than the equilibrium ask price do

not depend on the trading history and are constant over time. As

a result, the occurrence probability of a trading order, conditional

on the true asset value, is the same at each t. If we consider the

expected trading volume as the occurrence probability of a trading

order, Proposition 2.7 suggests that in equilibrium, the expected

trading volume is constant over time and does not depend on the

public belief about the true asset value.
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This result does not apply to a market characterized by fixed

order processing costs. We know that when an informational cas-

cade occurs, no trading order comes from an informed trader. This

means that, during an informational cascade, the expected trading

volume is equal to the probability that a liquidity trader is selected

to trade and places an order. Moreover, before an informational cas-

cade starts, the probability of an order gradually decreases because

traders endowed with less informative signals prefer to refrain from

trading. To show this, suppose that at t = 0 traders endowed with

signal θn prefer to buy the asset, that is:

E0[Ṽ |θn]− A∗0 > 0.

Suppose then, that a sequence of buy orders arises. The informa-

tional advantage of traders endowed with signal θn decreases as the

public belief about the true asset value approaches V . In particu-

lar, it becomes negative before the public belief grows larger than

E[Ṽ |πuθ1 ] because the valuation of traders observing θn is lower than

the valuation of traders endowed with θ1. Because the ask price

exceeds the public belief, traders endowed with signal θn prefer to

refrain from trading before an informational cascade starts. There-

fore, the probability of a trading order is not constant over time.

We conclude that, in an asset market with fixed transaction costs,

the trading volume decreases as the public belief approaches V or

V , and it is positively correlated with the bid-ask spread.

2.6 Conclusions

We have presented a model of the effect of fixed transaction costs on

the informational efficiency of prices in an asset market characterized

by asymmetric information and sequential trading mechanism.

Standard microstructure models predict that prices ultimately

converge to the true asset value. However, most of the models that

analyze the price mechanism in asset markets with asymmetrically

informed agents, do not take into account transaction costs. Lee [26]

who does consider fixed brokerage costs in a setting with asymmet-

ric information and sequential trading, does not allow for optimizing

behavior by market makers. In contrast, in this paper market mak-

ers are assumed to behave optimally and competitively in setting
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prices. The results show that the competitive price mechanism does

not prevent the occurrence of informational cascades. Moreover,

large fixed transaction costs may lead to an informational cascade

not only when the market attaches a large probability to the high

or to the low asset value and then prices are very high or very low,

as in Lee [26], but even when there is complete uncertainty about

the asset’s fundamental value.
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Appendix

Proof of Proposition 2.1

The proposition is an immediate consequence of definition 2.1.

2

Proof of Lemma 2.1

We prove the result for the ask side of the market. The proof

for the bid side is similar. Suppose that σ∗θn, BO(P |t) 6= 0. This

means that, when the price schedule is P and the probability of V

is πt, the expected profit from buying of traders observing θn is not

negative and greater or at most equal to the expected profit from

selling. For the maximum likelihood ratio property of private sig-

nals, Et[Ṽ |θn] < Et[Ṽ |θn−j]. Then, the expected profit from buying

of traders observing θn−j is always greater than the one of traders

endowed with θn. This proves the thesis. 2

Proof of Proposition 2.2

Bertrand competition among market makers leads to equilibrium

bid and ask prices respectively equal to the expected asset value con-

ditional to a sell order minus the transaction cost and the expected

asset value conditional to a buy order plus the transaction cost.

When the price schedule is P = {B, A}, the expected asset value

given a sell order is equal to:

Et[Ṽ |SO at B, σ∗(P |t)] = V + (V − V )
πt

πt + (1− πt)λSOt (B)

and the expected asset value given a buy order is equal to:

Et[Ṽ |BO at A, σ∗(P |t)] = V + (V − V )
πt

πt + (1− πt)λBOt (A)
.

Since λSOt (B) ≥ 1 and λBOt (A) ≤ 1 for all π and P , the expected

asset value conditional to a sell order is always lower or equal to

the unconditional expectation, while the expected asset value con-

ditional to a buy order is always greater or equal to it. 2
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Lemma 2.3 The marginal selling trader affects positively the infor-

mational content of a sell order if, and only if:

• λθ
nbt (B)

> λSOt (B).

The marginal buying trader affects positively the informational con-

tent of a buy order if, and only if:

• λθnat (A)
< λBOt (A).

Proof

We prove the result for the ask side. The result for the bid side

follows from symmetry.

Let fa(n) =
µ
3

+(1−µ)
Pn
i=1 P (θi|V )

µ
3

+(1−µ)
Pn
i=1 P (θi|V )

. In order to prove the lemma for

the ask side, we have to show that:

fa(n) ≥ fa(n− 1)⇐⇒ λn ≥ fa(n).

By using algebraic calculus, it is easy to show that:

1. fa(n) ≥ fa(n− 1)⇐⇒ λn ≥ fa(n− 1)

2. λn ≥ fa(n− 1)⇐⇒ λn ≥ fa(n).

By combining these results, we obtain:

fa(n) ≥ fa(n− 1)⇐⇒ λn ≥ fa(n).

Since fa(nat (A)) = λBOt (A), the lemma for the ask side is proved. 2

Proof of Proposition 2.3

We prove the proposition for the ask price. The proof for the bid

price can be obtained with a symmetric argument.

For the monotone likelihood property of signals, the expected

asset value conditional on a buy order is always greater or equal to

the unconditional expected asset value. This implies that, if the ask

price is lower than E[Ṽ |H] + c, the market maker’s expected profit
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is negative. Moreover, E[Ṽ |H, BO at A] is upper bounded by V .

Hence, for the zero expected profit condition, the equilibrium ask

price cannot be greater than V + c. Let define the correspondence

F a
t : [Et[Ṽ ] + c, V + c] ; [Et[Ṽ ] + c, V + c] as:

F a
t (A) ≡ Et[Ṽ |BO at A] + c

F a
t (A) is an upper semicontinuous convex valued correspondence

that maps the set [Et[Ṽ ]+c, V +c] in itself. For the Kakutani’s fixed

point theorem, F a
t (A) has a fixed point A

∗
t , that is, an equilibrium

ask price always exists.

The uniqueness is proved by using the results of Lemma 2.3, that

states that the marginal buying (selling) trader affects positively

the informational content of a buy (sell) order, that is the likelihood

ratio of the buy (sell) order increases (decreases) when the marginal

buying (selling) trader refrains from trading, if the signal that he

observes is more accurate than the information that the market

maker infers from a buy (sell) order.

Suppose, by way of obtaining a contradiction, that there exist

two equilibria ask prices: A1 and A2, with A1 < A2. Denote nat (A1)

and nat (A2) respectively the marginal buying trader given A1 and

the marginal buying trader given A2. Clearly, since we suppose

A1 < A2, it has to be λnat (A1) > λnat (A2). First, we notice that at

the equilibrium, the asset assessment of the marginal buying trader

is greater or at most equal to the market maker’s conditional ex-

pected asset value. Hence λnat (A1) ≤ λBOt (A1). This implies that

λBOt (A1) < λBOt (A2) because, when the ask price grows to A2, the

traders endowed with the signal θnat (A1) prefer to refrain from trad-

ing, and then the likelihood ratio of a buy order increases by lemma

2.3. As a consequence, if the ask price is equal to A2, the market

maker’s expected profit is strictly positive. Hence, for the zero ex-

pected profit condition, A2 cannot be an equilibrium ask price. 2

Proof of Proposition 2.4

We prove the proposition for the ask price; the proof for the bid

price is symmetric. First we assume that A∗t = Et[Ṽ ] + c and we

prove that this implies Et[Ṽ ] − Et[Ṽ |θN ] ≤ c. Suppose by way of
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obtaining a contradiction that Et[Ṽ |θ1] − Et[Ṽ ] > c. Since at least

the traders observing θ1 prefer to buy the asset when the ask price

is Et[Ṽ ] + c, the expected asset value conditional to a buy order

at Et[Ṽ ] + c is greater than the unconditional expected asset value.

This implies that the market maker’s expected profit is negative,

which contradict the fact that Et[Ṽ ]+c is the equilibrium ask price.

On the other hand, if Et[Ṽ |θ1] − Et[Ṽ ] ≤ c then no informed

trader prefers to buy the asset. Hence inf{Et[Ṽ |BO at Et[Ṽ ] +

c, σ∗(P ∗t |t)] + c} = Et[Ṽ ] + c = A∗t . 2

Proof of Proposition 2.5

Consider the function hθ defined at page 47. Notice that:

• hθ(0) = hθ(1) = 0

• maxhθ(π) = |1−
√
λ|

1+
√
λ
· (V − V )

• h′′θ (π) = − 2λ
(π+(1−π)λ)3 · |1− λi| · (V − V ) < 0 ∀π ∈ [0, 1].

Since by assumption 0 < c ≤ |1−
√
λ|

1+
√
λ
· (V − V ), from the strictly

concavity of hθ(π) it follows that there exist unique πlθ and πuθ , with

πlθ < πuθ , such that hθ(π
l
θ) = hθ(π

u
θ ) = c and hθ(π) > c if, and only

if, π ∈ (πlθ, π
u
θ ). Thus, when π ∈ (0, πlθ)∪ (πuθ , 1), traders endowed

with signal θ prefer to refrain from trading. Moreover

arg maxhθ1(π) =

√
λ1

1 +
√
λ1

<
1

2
< arg maxhθN (π) =

√
λN

1 +
√
λN

and

hθ1(π) ≥ hθN (π) ∀π ≤ 1

2

As πlθ1 < arg maxhθ1(π) and πuθN > arg maxhθN (π), then πlθ1 < πlθN
and πuθN > πuθ1 . Hence, when either π < πlθ1 or π > πuθN , all informed

traders prefer to refrain from trading. 2

Proof of Proposition 2.6

From the proof of Proposition 2.5, we know that there exist

πuθ1 > πlθ1 and πlθN < πuθN such that hθ1(πuθ1) = hθN (πlθN ) = c. Since
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h
′
θ1

(1
2
) < 0 and h

′
θN

(1
2
) > 0, and since |1−λ1|

2(1+λ1)
· (V −V ) < c < c, then

πuθ1 < πlθN and both c > hθ1(π) and c > hθN (π) for any π ∈ [πuθ1 , π
l
θN

].

2

Proof of Lemma 2.2

We prove the lemma for the ask side. The proof for the bid side

is analogous.

A buy order indicates the good state of nature. Hence, the infor-

mational content of a buy order is maximum when fa(n) (defined in

the proof of lemma 2.3) reaches its minimum value. If all informed

traders prefer to buy the asset, then fa(N) = 1 < λN . By lemma

2.3, it follows that the marginal buying trader affects negatively the

informational content of the buy order; that is: fa(N −1) < fa(N).

If no informed traders prefer to buy the asset, then fa(0) = 1 > λ1,

and the marginal buying trader affects positively the informational

content of the buy order; that is: fa(1) > fa(0). For the maximum

likelihood property of signals, it follows that there exists an unique

signal θna such that:

fa(na + 1) > fa(na) ≥ λna and fa(na) ≤ fa(na − 1).

If the equilibrium ask price A∗t is such that nat (A
∗
t ) = na, then the

equilibrium informational content of a buy order is maximum. 2

Proof of Proposition 2.7

We prove the proposition for the ask side of the market. The

proof for the bid side can be obtained by using symmetric arguments.

Since c = 0, the competitive ask price has to be equal to the

expected asset value conditional to a buy order, that is:

A∗t ∈ Et[Ṽ |BO at A∗t , σ
∗(P ∗t |t)].

Lemma 2.2 states that there exists a good signal θna such that

fa(na) ≤ fa(n) for every n ∈ {1, 2, ..., N}, and λna ≤ fa(na).

Moreover, by combining lemmas 2.3 and 2.2 it easy to see that

λ(na+1) > fa(na + 1). As a consequence, for any history of trades:

Et[Ṽ |θna+1] < V +
πt

πt + (1− πt)fa(na + 1)
· (V − V ) (2.1)
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and

Et[Ṽ |θna ] ≥ V +
πt

πt + (1− πt)fa(na) · (V − V ). (2.2)

2.1 and 2.2 imply that there exists an ask price A∗t that belongs

to (Et[Ṽ |θna+1], Et[Ṽ |θna ]], that satisfies the zero market maker’s

expected profit condition. By Proposition 2.3, we know that there

exists an unique ask price that satisfies the zero market makers’

expected profit condition. Thus, in equilibrium, nat (A
∗
t ) = na. 2
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Chapter 3

Informational cascades with

proportional trading costs
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3.1 Introduction

In the last chapter we have modified the standard sequential trad-

ing model of Glosten and Milgrom [19] to allow for fixed transaction

costs. We have shown that fixed costs reduce the informational

content of orders and lead to informational cascades. Besides, de-

spite of the existing literature which predicts informational cascades

when beliefs converge to a specific asset value, we have shown that

if transaction costs are very high, an informational cascade may de-

velop when in the market there is complete uncertainty about the

asset’s fundamental value.

The aim of this chapter is twofold: to verify the robustness of re-

sults presented in the previous chapter with respect to different kinds

of exogenous transaction costs and, more importantly, to better in-

vestigate the empirical implications of cascades in financial markets.

To this purpose, we develop two sequential trading models where

transaction costs are proportional rather than fixed. More precisely,

in one model we suppose that market makers bear a cost per trans-

action which is proportional to the asset price. In the other model,

traders are allowed to transact different trade sizes, and transaction

costs are an increasing function of the quantity of the asset traded.

We find that in both cases transaction costs negatively affect the

informational content of orders and yield informational cascades.

The first model is similar to that presented in the previous chap-

ter, with the only difference that the transaction cost payed by mar-

ket makers is proportional to prices.

We find that in this setting, if the true asset value in the bad state

of nature is sufficiently low, then the probability of an informational

cascade approaches zero when the prices are low. This implies that

with transaction costs depending on bid and ask prices cascades

will tend to be asymmetric. They will seldom emerge in depressed

markets, while they are more likely to develop in bull markets. As

a consequence, they are more likely to result in market crashes than

in price jumps.

The second model differs from the previous one mainly along two

dimensions. First, traders are allowed to transact different trade
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sizes. This ability to transact orders for large or small quantities in-

troduces a strategic element into the trading game. Informed traders

choose their optimal order size given the price schedule. If risk

neutral informed traders wish to trade, they prefer to trade larger

amount to any given price. Consequently, the market maker sets a

larger spread for larger trades in every equilibrium with information

based trading. A second difference in this model lies in the nature

of transaction costs which are assumed to increase with the order

size. Such transaction costs give informed traders an incentive to

purchase small, rather than large quantity.

We show that, for any public belief about the true asset value,

three types of equilibria can arise depending on the magnitude of

the transaction cost. In the separating equilibrium, informed traders

place only large orders. Hence, small orders are uninformative and

the spread for small quantities only reflects the exogenous trans-

action cost. This outcome occurs if the transaction cost is very

low and the difference between the size of large and small orders is

sufficiently large. For intermediate values of the transaction cost,

a pooling equilibrium prevails in the market. In this equilibrium,

informed trade both the large and the small amounts. The large

trade spread reduces with respect to the separating equilibrium,

whereas the spread for small quantities increases because of infor-

mation costs. Finally, if the transaction exceeds the informational

advantage of traders observing a private signal on the true asset

value, all informed prefer to refrain from trading. Orders are not

information based and an informational cascade develops.

The informational content of orders reaches its maximum level in

the separating equilibrium. It reduces when a pooling equilibrium

prevails in the market and tends to zero in the no-trading equilib-

rium, as an informational cascade develops. As in the analysis of

the second chapter, trading volume gradually is shown to decrease

before a cascade occurs, and to reach its lowest value as the cascade

develops.

The remainder of this chapter is structured as follows. In section

3.2 we extend the model presented in the previous chapter to the

case of transaction costs proportional to the asset price. In sections

3.3 and 3.4 we analyze the case of transaction costs increasing with
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the trade size. In section 3.5 we conclude. All the proofs are in the

appendix at the end of the chapter.

3.2 The case of transaction costs proportional

to the asset price

In this section, we discuss the occurrence of informational cascades

when the market makers pay a proportional transaction cost to ex-

ecute each trading order. The only difference relative to the setting

of the previous sections is in the expected profit of market makers.

Because of proportional transaction costs, the expected profit of a

market maker is equal to Et[Ṽ |SO at B]− (1 + c)B if he buys at B,

and it is equal to (1− c)A− Et[Ṽ |BO at A] if he sells at A.

Perfect competition leads market makers to earn zero expected

profit on any side of the market. Hence, the equilibrium price sched-

ule, P ∗t = {B∗t , A∗t}, is such that:

B∗t ∈
Et[Ṽ |SO at B∗t , σ

∗(P ∗t |t)]
1 + c

(3.1)

A∗t ∈
Et[Ṽ |BO at A∗t , σ

∗(P ∗t |t)]
1− c . (3.2)

Since equilibrium bid and ask prices straddle the unconditional

expectation of the asset value, in equilibrium traders with a bad

signal will never buy the asset, and traders with a good signal will

never sell the asset. Then, as before, informational cascades charac-

terized by all informed traders placing orders in the same direction

will never occur in equilibrium. But, the equilibrium price schedule

may be such that all informed traders refrain from trading. If this

occurs, orders have no informational content and hence B∗t = Et[eV ]
1+c

and A∗t = Et[eV ]
1−c .

Proportional transaction costs do not affect the optimal corre-

spondence strategies of informed traders. Hence, no informed trader

wishes to sell the asset when the bid price is lower than the val-

uation of traders with the most informative bad signal, that is

Et[Ṽ |θN ] > B∗t . Symmetrically, no informed trader wishes to buy

the asset when the ask price exceeds the valuation of traders with

the most informative good signal, that is Et[Ṽ |θ1] < A∗t .
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Proposition 3.1 B∗t = Et[eV ]
1+c

if, and only if:

Et[Ṽ ]− Et[Ṽ |θN ]

Et[Ṽ |θN ]
≤ c

and A∗t = Et[eV ]
1−c if, and only if:

Et[Ṽ |θ1]− Et[Ṽ ]

Et[Ṽ |θ1]
≤ c.

Proof: See Appendix.

Proposition 3.1 states that if (and only if) the relative informa-

tional advantage of traders observing the most informative bad sig-

nal θN is lower than the c, the equilibrium bid price is equal to the

public belief about the true asset value times 1
1+c

. Symmetrically, if

(and only if) the relative informational advantage of traders observ-

ing the most informative good signal θ1 is lower than the transaction

cost, the equilibrium ask price is equal to the public belief about the

true asset value times 1
1−c . Clearly, an informational cascade devel-

ops when the proportional transaction cost c exceeds the relative

informational advantages of both traders with θN and traders with

θ1.

In the previous model, where transaction costs are fixed, the

condition for the occurrence of informational cascades concerns the

absolute informational advantage of traders observing private sig-

nals. Here, the amount of the costs payed by the market maker

depends on the price at which he buys or sells the asset. Higher bid

and ask prices produce higher transaction costs. So, their impact

on equilibrium prices is larger when the probability that the market

attaches to V is high. As a consequence, when the transaction costs

are proportional to prices, the condition for informational cascades

depends on the relative informational advantage of informed traders

rather than their absolute one.

If in the bad state of nature the true asset value is zero, the

impact of the transaction costs on the equilibrium bid and ask prices

vanishes as π converges to 0. Hence, it is worthwhile to consider

separately the two cases of V > 0 and V = 0.
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First we consider the case of V > 0. If for any possible his-

tory of trades the proportional transaction cost is greater than the

relative informational advantages of both traders endowed with θN
and traders endowed with θ1, then orders will never be information-

based.

To determine the minimum level of c such that no informed trader

prefers to trade, define the functions gθ(π) as:

gθ(π) ≡ |Et[Ṽ |θ]− Et[Ṽ ]|
Et[Ṽ |θ]

=
π − π2

πV + (1− π)λθV
· |1− λθ| · (V − V ).

gθ(π) gives the relative informational advantage of traders observing

θ for any π ∈ [0, 1]. It is easy to see that:

max gθ1(π) < max gθN (π) =
V − V

(
√
V +
√
λNV )2

· (λN − 1) ≡ cp.

The relative informational advantage of traders endowed with the

signals θN and θ1 always exceeds that of traders observing a different

signal. Hence, if c > cp, all informed traders will prefer to refrain

from trading whatever the history of trades is.

The next proposition states that, if V is strictly positive and the

proportional transaction cost is below cp, an informational cascade

develops both when the public belief about the true asset value tends

to V , and when it approaches V . Besides, if the transaction costs

are large enough and if the difference between V and V is not too

large, an informational cascade may occur also when the probability

that the market attaches to V and V are close.

Proposition 3.2 If c ∈ (0, cp) and if V is strictly positive, there

exist unique π and π, with π < π, such that when π ∈ [0, π)∪ (π, 1]

all informed traders refrain from trading in equilibrium. Besides, if

c ∈ (cp, cp), with cp = V−V
V+V

· 1−λ1

1+λ1
, and V is greater than λ1V , there

exist π ∈ (π, V

V+V
) and π ∈ ( V

V+V
, π) such that an informational

cascade occurs also when π ∈ (π, π).

Proof: See Appendix.
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Too large transaction costs inhibit informed traders from trading

whatever is the public belief about the asset value. If transaction

costs are not too large, informed traders find worthwhile to trade

until their relative informational advantage exceeds c. When the

low asset value is greater than zero, the relative informational ad-

vantage of traders observing a private signal decreases both when π

approaches 0 and when π tends to 1, and it is zero when π is exactly

equal to 0 or 1. As a result, an informational cascade occurs both

when the public belief about the asset value is close to V , and when

it is near to V .

The relative informational advantage of traders endowed with a

bad signal exceeds that of traders observing an equally informative

good signal for all π > V

V+V
, and it is lower than it in the opposite

case.

If V is not too small respect to V , that is V > λ1V , the behav-

ior of the relative informational advantages of traders is similar to

the absolute ones (see figure 2.1). Hence, if c exceeds the relative

informational advantages of traders with θ1 and θN when π = V

V+V
,

an informational cascade can occur even when the probability that

the market attaches to V is close to V

V+V
. Clearly, if the difference

between V and V is small, V

V+V
is near to 1

2
. We can conclude that

if V is not too small respect to V , the results about the occurrence

of an informational cascade due to proportional transaction costs,

are similar to those obtained for a market characterized by fixed

transaction costs.

If V is low, the relative informational advantage of traders ob-

serving θ1 exceeds that of traders observing θn only if the probability

that the market attaches to V is very high (see figure 3.1). As a

consequence, an informational cascade can occur only when π ap-

proaches 0 or 1. Moreover, if V is close to zero, the amount of the

executing cost payed by the market maker is very low when π is near

to zero. Then, the probability of an informational cascade with low

prices, given that true asset value is V , approaches zero. In partic-

ular, it is exactly equal to zero in the extreme case of V = 0. This

result is stated in the next proposition.

Proposition 3.3 If c ∈ (0, cp) and if V = 0, there exists unique π
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Figure 3.1: Informational cascades in a market with proportional transaction
costs and V < λ1V .

such that if, and only if, π > π, all informed traders refrain from

trading in equilibrium.

Proof: See Appendix.

Intuitively, transaction costs payed by market makers reduce as π

tends to zero, and they reach the minimum value, cV , when π = 0.

Clearly, if V is equal to zero, proportional transaction costs vanish

when π = 0. As a consequence, an informational cascade will never

occur when the equilibrium prices are low.

This result has the interesting implication that cascades will tend

to be asymmetric. They will almost never emerge in depressed mar-

kets, while they are more likely to be present in bull markets. As a

consequence, they are more likely to result in market crashes than

in price jumps.
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3.3 The case of transaction costs proportional

to the trade size: the framework

We consider an extension of model presented in section 2.2 to ac-

count for different trade sizes. In the previous, we discussed sequen-

tial models where sell and buy orders of traders are restricted to a

fixed size of one unit. In this section, we analyze a market where

traders are allowed to place large and small orders.1

The market is for a risky asset which is exchanged among a se-

quence of risk neutral traders and competitive market makers who

are responsible for quoting prices. The value Ṽ of the asset can be

low (Ṽ = V ) or high (Ṽ = V ). The nature probability of Ṽ = V is

π0 ∈ (0, 1).

There are two types of traders: informed traders (fraction 1−µ)

and liquidity traders (fraction µ). Each informed trader is endowed

with a private signal θ correlated with the true asset value. The set

of private signals is Θ = {θ, θ}; the signal θ indicates V and the

signal θ indicates V . We assume that signals are symmetric and let

be p = Pr(θ|V ) = Pr(θ|V ) > 1
2
.

Trades occur sequentially, with one trader allowed to transact at

any point in the time. A trader whose turn is to transact may either

buy a small or a large quantity, or sell a small or a large quantity, or

refrain from trading. We denote QS and QL, with QS < QL, the size,

respectively, of small and large orders. To simplify the analysis, we

assume that liquidity traders choose to submit large or small sell and

buy orders with equal probability γ
4
; clearly (1−γ) is the probability

that they refrain from trading. Before a trader arrives, the market

maker sets competitive prices. We suppose that any transaction

costs to the market maker c ·Q euros, where Q ∈ {QS, QL}.

3.4 The case of transaction costs proportional

to the trade size: the equilibrium

At the beginning of any trading round t, the market maker sets bid

and ask prices at which he is willing to trade each asset quantity.
1The approach taken in this section involves a sequential trade model similar to that of

Easley and O’Hara [16].
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We denote Pt the price schedule at time t. Clearly:

Pt = {BL, t, BS, t, AS, t, AL, t }
where BL, t denotes the bid price for the large quantity, BS, t the bid

price for the small quantity, AS, t the ask price for the small quantity,

and AL, t the ask price for the large quantity.

After prices are set, a trader, randomly selected to trade, observes

the price schedule and plays his strategy.2 The traders’ action space

is A ≡ {SL, SS, BS, BL, NT}, where SL = to Sell the Large

quantity, SS = to Sell the Small quantity, BS = to Buy the Small

quantity, BL = to Buy the Large quantity, and RT = to Refrain

from Trading.

If the trader selected is a liquidity trader, he acts in the ex-ante

specified probabilistic way. If the trader selected is an informed

trader, he chooses the strategy which maximizes his expected profit

given the price schedule. We denote σ ≡ {σθ, σθ} the informed

traders’ strategies, where σθ is the mixed strategy of the informed

if he observes θ. Clearly:

σθ ≡ (σθ, SL, σθ, SS, σθ,BS, σθ,BL, σθ,RT )

where σθ, i is the probability of i, with i ∈ A, if the informed observes

θ, Σi∈A σθ, i = 1, and σθ, i ≥ 0 ∀ i ∈ A.

The expected asset value for a trader observing signal θ is equal

to:

Et[Ṽ | θ] = V +
πt

πt + (1− πt)Pr(θ|V )

Pr(θ|V )

· (V − V ),

which exceeds Et[Ṽ ] if θ = θ, and which is lower than Et[Ṽ ] if

θ = θ. Given the price schedule P and the strategy σ = (σθ, σθ),

the expected profit of a trader observing θ is:

Et[Πθ(σ, P )] = σθ, SL(BL−Et[Ṽ | θ])QL+σθ, SS(BS−Et[Ṽ | θ])QS+

+σθ,BS(Et[Ṽ | θ]− AS)QS + σθ,BL(Et[Ṽ | θ]− AL)QL.

The equilibrium strategy of informed traders will be the correspon-

dence σ∗(P |t) = (σ∗θ(P |t), σ∗θ(P |t)) which associates to any price

2By assuming that the market maker acts competitively and that the informed traders are

price takers, we exclude all strategic behaviors, and any trading round can be viewed as an

independent game.
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schedule P , the strategies maximizing expected profits for any type

θ ∈ Θ; that is:

σ∗θ(P |t) = arg max
σ∈∆(A)

Et[Πθ(σ|P )], ∀P ∈ R4
+, ∀θ ∈ Θ (3.3)

The market maker anticipates the optimal strategies correspon-
dence and announces his price schedule. Bertrand competition re-
stricts the market maker to earn zero expected profit from each
trade. Hence, the equilibrium price schedule P ∗t = {B∗L, t, B∗S, t, A∗S, t, A∗L, t}
will be such that:

B∗i, t = Et[Ṽ | SOQi at B∗i, t, σ
∗(P ∗t |t)]− c ∀ i ∈ {S, L}

A∗i, t = Et[Ṽ | BOQi at A∗i, t, σ
∗(P ∗t |t)] + c ∀ i ∈ {S, L}, (3.4)

where SOQi = Sell Order for quantity Qi and BOQi = Buy Order

for quantity Qi.

Following Easly and O’Hara [16], we are interested in an equilib-

rium price schedule P ∗t in which bid prices B∗S, t and B∗L, t and ask

prices A∗S, t and A∗L, t straddle the unconditional expected asset value

Et[Ṽ ]. Given a such equilibrium, traders observing a good signal

will never prefer to sell the asset, and traders with a bad signal

will never prefer to buy the asset. However, depending on the pa-

rameters of the model, different outcomes may prevail. If informed

traders prefer to trade only the large quantity, they are separated

from small liquidity traders. We call this a separating equilibrium.

If informed traders submit either small or large orders with positive

probability, a pooling equilibrium occurs. If they prefer to refrain

from trading, a no trading equilibrium occurs.

It is useful to stress that the equilibrium on one side of the market

may differ from the equilibrium on the other side. For example, the

equilibrium price schedule P ∗t may be such that traders observing θ

prefer to sell only large quantity and traders observing θ optimally

choose to buy with positive probability either small or large quantity.

In the next sections we show how different outcomes can occur by

changing the transaction cost c.

3.4.1 The no-trading equilibrium

We first analyze the no-trading equilibrium. Before to proceed, we

need a more formal definition.

71



Definition 3.1 The no-trading equilibrium is described by an equi-

librium price schedule P ne = {Bne
L , B

ne
S , A

ne
S , A

ne
L } and an equilib-

rium strategies correspondence σ∗(P ) such that: σ∗(P ne) = σne,

where σne = (σθ,NT = 1; σθ,NT = 1).3

In the no-trading equilibrium, no sell or buy order arises from

informed traders. Since trades are not information based, they do

not affect the probability, π, the market maker attaches to Ṽ =

V , and the expected asset value, conditional on a trading order,

is always equal to the unconditional expectation. Therefore, the

competitive price schedule, given σne, is P ne = {Bne
L , B

ne
S , A

ne
S , A

ne
L }

such that:
Bne
L = Bne

S = E[Ṽ ]− c = Bne

AneS = AneL = E[Ṽ ] + c = Ane.

P ne is an equilibrium price schedule if σ∗(P ne) = σne. This

happens only when the expected profit from trading of informed

is strictly negative whatever quantity of asset they choose to sell or

buy. In particular, the no-trading equilibrium prevails in the ask

side of market when E[Ṽ |θ]− Ane < 0, that is true only if:

c > (
π

π + (1− π)1−p
p

− π) · (V − V ) = cne(π, θ).

cne(π, θ) is exactly equal to the informational advantage of traders

observing θ. Hence, if the fixed transaction cost exceeds the infor-

mational advantage of traders endowed with the good signal, the

no-trading equilibrium prevails in the ask side of market. Simi-

larly, the bid side of market is in the no-trading equilibrium when

Bne − E[Ṽ |θ] < 0, that is true only if:

c > (π − π

π + (1− π) p
1−p

) · (V − V ) = cne(π, θ),

where cne(π, θ) is equal to the informational advantage of traders

observing the bad signal. These results are summarized in the fol-

lowing proposition.

3For brevity we omit the time subscript.
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Figure 3.2: Threshold costs cne(π, θ) and cne(π, θ) for no trading equilibrium,
respectively, in the ask side and in the bid side of market as functions of public
belief π.

Proposition 3.4 For any public belief π ∈ (0, 1) on Ṽ = V , a

no-trading equilibrium prevails in the bid side of market if, and only

if, c > cne(π, θ). It prevails in the ask side of market if, and only

if, c > cne(π, θ).

Since cne(π, θ) is greater than zero for all π ∈ (0, 1) and θ ∈ Θ, a

no trading equilibrium never occurs in the absence of positive trans-

action costs. Figure 3.2 depicts cne(π, θ) and cne(π, θ) as functions

of the public belief π. We can see immediately from the graph that

the threshold cost for the no trading equilibrium in the ask side of

market exceeds the threshold cost in the bid side of market when

the market maker attaches a greater probability to V (π < 1
2
). The

reverse is true when the unconditional probability of V is greater

than 1
2
.

To investigate the link between public belief and threshold costs,

let consider the limit case p = 1, and suppose that Ṽ = V . Since

signals are perfect, the expected asset value of informed traders is

always V , whatever public belief. The informational advantage of

informed traders is equal to (V −V )(1−π). It is low if the probability
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the market maker attaches to Ṽ = V is high, and it grows as the

public belief about Ṽ = V approaches to 0. Then, the more the

valuation of the market differs from V , the higher the cost that

informed are willing to pay in order to transact.

In a similar way, when signals are not perfect (p < 1), the infor-

mational advantage of traders observing θ is low if the public belief

is consistent with θ, and it grows as the valuation of the market

maker moves in the opposite direction respect to the signal. But,

unlike the case of perfect signals, if the market maker attaches a

very low probability to the asset value consistent with θ, then the

informational advantage of traders observing θ reduces. This occurs

because, when signals are not perfect, the expectation of informed

traders depends not only on the private signal, but also on the public

belief. If the past history of trades strictly indicates a value incon-

sistent with θ, traders observing this signal attach a low weight to

their private information respect to the public belief. However, if

the market attaches a greater probability to V (π < 1
2
), the infor-

mational advantage of traders observing θ is bigger than that of

traders observing θ; if the market attaches a greater probability to

V (π > 1
2
), the reverse is true.

Proposition 3.5 If the public belief π is greater than 1
2
, then cne(π, θ) >

cne(π, θ). Otherwise, cne(π, θ) ≤ cne(π, θ).

From proposition 3.5, it follows that, when the market attaches

a greater probability to V , the no-trading equilibrium prevails in

the market if the fixed transaction cost exceeds the threshold cost

of traders observing the good signal; when the market attaches a

greater probability to V , there is a no-trading equilibrium if c is

bigger than the threshold cost of traders observing the bad signal.

In the no-trading equilibrium, no new information reaches the

market because all informed traders choose to refrain from trading.

Therefore, the economy is in an informational cascade.

It is interesting to notice that, the occurrence of an informational

cascade does not depend on the asset quantities that agents can sell

or buy. This result follows from the interaction between the risk
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neutrality of agents and the assumption of costs proportional to the

quantity of asset that traders choose to buy or sell.

3.4.2 The separating equilibrium

In this section, we analyze the market in the separating equilib-

rium. The following definition gives a more formal description of

this equilibrium.

Definition 3.2 The separating equilibrium is described by an equi-

librium price schedule P se = {Bse
L , B

se
S , A

pe
S , A

se
L } and an equilib-

rium strategies correspondence σ∗(P ) such that: σ∗(P se) = σse,

where:

σse = (σseθ, SL = 1, σse
θ, BL

= 1).

When a separating equilibrium prevails, the price schedule is such

that, the trader who enters the market places a large sell order with

probability 1, if he observes the bad signal, and he places a large

buy order with probability 1, if he observes the good signal. This

implies that small trades are not information-based and then they

do not affect the public belief about the true asset value.

Given the informed strategy σse, the asset valuation conditional

on a small trade is the same as the unconditional expectation. This

means that, in the separating equilibrium, competitive bid and ask

prices for the small quantity are given by:

Bse
S = E[Ṽ ]− c

AseS = E[Ṽ ] + c.

This is not the case for large trades. The conditional expectation

of Ṽ conditional on a large sell order is:

E[ Ṽ | SOQL, σ
se] = V +

π

π + (1− π)
µ γ

4
+(1−µ)p

µ γ
4

+(1−µ)(1−p)
· (V − V ),

which is lower than the unconditional expectation, because a large

selling order could be submitted by a trader endowed with bad sig-

nal. Similarly, the conditional expectation of Ṽ , given a large buy
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order, is:

E[ Ṽ | BOQL, σ
se] = V +

π

π + (1− π)
µ γ

4
+(1−µ)(1−p)
µ γ

4
+(1−µ)p

· (V − V ),

which exceeds the unconditional expectation to reflect the probabil-

ity of trading with a trader observing a good signal.

Let be λseSOQL =
µ γ

4
+(1−µ)p

µ γ
4

+(1−µ)(1−p) > 1 and λseBOQL =
µ γ

4
+(1−µ)(1−p)
µ γ

4
+(1−µ)p

<

1, respectively, the likelihood ratio of a large sell and buy order in

the separating equilibrium. The condition of zero expected profit for

the market maker implies that, given the informed traders strategy

σse, equilibrium bid and ask prices for the large quantity are equal

to:
Bse
L = V + π

π+(1−π)λseSOQL
· (V − V )− c

AseL = V + π
π+(1−π)λseBOQL

· (V − V ) + c.

The price schedule P se determines a separating equilibrium if an in-

formed traders entering the market chooses to submit a large trading

order, that is, if σ∗(P se) = σse. So, a separating equilibrium pre-

vails in the market only if, given the price schedule P se, the expected

profit of informed traders is not lower trading the large quantity, QL,

than trading the small quantity, QS, and it is strictly positive. For

the the bid side of the market this means:

(Bse
L − E[Ṽ | θ])QL ≥ (Bse

S − E[Ṽ | θ])QS ≥ 0, (3.5)

and for the ask side:

(E[Ṽ | θ]− AseL )QL ≥ (E[Ṽ | θ]− AseS )QS ≥ 0. (3.6)

A separating equilibrium occurs in the market when the ex-

pected profit from trading of informed traders is strictly positive,

and the advantage due to the large quantity exceeds the better

price available for the small trades. Consider the ask side of mar-

ket and suppose that, given the price schedule P se, the expected

profit from buying the large quantity of a trader observing θ is

strictly positive. The difference between the expected profit from

buying the large and the small quantity can be written as follows:

∆(Π) = [(E[Ṽ | θ] − AseL )(QL − QS)] − [(AseL − AseS )QS]. The first
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term represents the expected gain due to the greater quantity of as-

set brought, and the second term is the loss due to the higher price

payed to purchase the first QS units of asset. An informed trader

endowed with θ chooses to place a large trading order if this differ-

ence is positive. Clearly, the separating equilibrium is more likely to

prevail when the distance between the large and the small quantity

is greater. The following proposition states a necessary condition

on QL and QS for a separating equilibrium to occur on each side of

market. Denote with λθ and λθ the informational content of signals

θ and θ, where: λθ = p
1−p and λθ = 1−p

p
.

Proposition 3.6 Given the public belief π, if a separating equilib-

rium prevails in the bid side of market, then:

QL −QS

QS

>
λseSOQL − 1

λθ − λseSOQL
(π + (1− π)λθ), (3.7)

and if it prevails in the ask side of market, then:

QL −QS

QS

>
1− λseBOQL
λseBOQL − λθ

(π + (1− π)λθ). (3.8)

Proof: See Appendix.

A separating equilibrium can prevail in the market only if QL

is sufficiently larger than QS. From proposition 3.6, it follows that

the minimum distance between the large and the small quantity to

observe a separating equilibrium reduces as signals become more

informative. Moreover, it is easy to verify that in the absence of

transaction costs, if QS and QL satisfy conditions 3.7 and 3.8, the

market equilibrium is separating. On the other hand, if the distance

between QL and QS is too small in relation to the informational ad-

vantage of informed traders, a separating equilibrium never prevails

in the market whatever π and apart from the existence of the trans-

action cost c. This result is illustrated by the following proposition.

Proposition 3.7 If QL−QS
QS

<
λseSOQL

−1

λθ−λseSOQL
, a separating equilibrium

never occurs in the market.
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Proof: See Appendix.

The minimum size of the relative distance between the large and

the small quantity depends on the probability of a noise trading

order. If µ is low, the information that the market maker can infer

from a large trading order is very accurate (λseSOQL is closer to λθ
than to 1). This, in tune, implies that the difference between Bse

S

and Bse
L and the difference between AseL and AseS are significant and

then the losses due to the worse prices in trading QL rather than

QS are high. Hence, QL has to be very large with respect to QS

in order to encourage informed traders to separate from small noise

traders. In the following we assume QL−QS
QS

>
λseSOQL

−1

λθ−λseSOQL
. Proposition

3.8 illustrates the conditions on c for the occurrence of a separating

equilibrium on the bid and on the ask side of market.

Proposition 3.8 For any public belief π such that condition 3.7 is

satisfied, a separating equilibrium prevails in the bid side of market

if, and only if: c ≤ cse(π, θ), where cse(π, θ) = cne(π, θ)− QL
QL−QS (π−

π
π+(1−π)λseSOQL

)(V −V ). Analogously, for any public belief π such that

condition 3.8 is satisfied, a separating equilibrium prevails in the

ask side of market if, and only if: c ≤ cse(π, θ), where cse(π, θ) =

cne(π, θ)− QL
QL−QS ( π

π+(1−π)λseBOQL
− π)(V − V )

Proof: See Appendix.

We can conclude that a separating equilibrium prevails in the

market only if the large quantity is big enough with respect to the

small quantity, so that both cse(π, θ) and cse(π, θ) are positive, and

the transaction cost is very low.

3.4.3 The pooling equilibrium

In this section we study a market in the pooling equilibrium. This

equilibrium can be formalized in the following definition.
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Definition 3.3 The pooling equilibrium is described by an equilib-

rium price schedule P pe = {Bpe
L , B

pe
S , A

pe
S , A

pe
L } and an equilibrium

strategies correspondence σ∗(P ) such that: σ∗(P pe) = σpe, where

σpe = (σpeθ, SL, σ
pe
θ, SS, σ

pe
θ,RT ; σpe

θ,BS
, σpe

θ,BL
, σpe

θ,RT
),

with

σpeθ, SL,+σ
pe
θ, SS,+σ

pe
θ,RT = 1 and σpeθ,RT < 1,

and

σpe
θ,BL

,+σpe
θ,BS

,+σpe
θ,RT

= 1 and σpe
θ,RT

< 1.

In a market in the pooling equilibrium, informed traders submit

both small and large orders. More precisely, the competitive price

schedule P pe = {Bpe
L , B

pe
S , A

pe
S , A

pe
L } is such that:

• the trader who enters the market chooses to sell the large quan-

tity with probability σpeθ, SL > 0 and the small quantity with

probability σpeθ, SS > 0, if he observes θ;

• the trader who enters the market chooses to buy the large quan-

tity with probability σpe
θ,BL

> 0 and the small quantity with

probability σpe
θ,BS

> 0, if he observes θ.

For (P pe, σ∗(P )) to describe a pooling equilibrium, two condi-

tions must be satisfied. First, informed traders must be indifferent

between trading the large and the small quantity, given the price

schedule P pe. Second, the market maker must anticipate zero ex-

pected profit from each trade, given σ∗(P pe) = σpe.

First condition requires:

(Bpe
L − E[Ṽ | θ])QL = (Bpe

S − E[Ṽ | θ])QS ≥ 0 (3.9)

(E[Ṽ | θ]− ApcL )QL = (E[Ṽ | θ]− ApcS )QS ≥ 0. (3.10)

For every price schedule which satisfies condition 3.9, the optimal

strategy of traders observing the bad signal, is any mixed strategy

defined on the simplex ∆(SL, SS) if the expected profit from sell-

ing is strictly positive, or any mixed strategy defined on the simplex

∆(SL, SS, NT ) in the case of zero expected profit. Analogously,

condition 3.10 implies that the optimal strategy of traders observ-

ing the good signal is any mixed strategy defined on the simplex
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∆(BL, BS) if the expected profit from buying is strictly positive,

or any mixed strategy defined on the simplex ∆(BL, BS, NT ) in

the case of zero expected profit.

Second condition requires, on the bid side of market:

Bpe
L = V + π

π+(1−π)
µ
γ
4 +(1−µ)σ

pe
θ, SL

p

µ
γ
4 +(1−µ)σ

pe
θ, SL

(1−p)

· (V − V )− c

Bpe
S = V + π

π+(1−π)
µ
γ
4 +(1−µ)σ

pe
θ, SS

p

µ
γ
4 +(1−µ)σ

pe
θ, SS

(1−p)

· (V − V )− c
(3.11)

for some σpeθ, SL and σpeθ, SS positive and such that σpeθ, SL + σpeθ, SS ≤ 1,

and on the ask side of market:

ApeS = V + π

π+(1−π)
µ
γ
4 +(1−µ)σ

pe

θ,BS
(1−p)

µ
γ
4 +(1−µ)σ

pe

θ,BS
p

· (V − V ) + c

ApeL = V + π

π+(1−π)
µ
γ
4 +(1−µ)σ

pe

θ,BL
(1−p)

µ
γ
4 +(1−µ)σ

pe

θ,BL
p

· (V − V ) + c

(3.12)

for some σpe
θ,BS

and σpe
θ,BL

positive and such that σpe
θ,BS

+ σpe
θ,BL

≤ 1.

It is immediate to see that if BL > BS, traders endowed with

θ never choose the small sale, and if AL < AS, traders observing

θ never buy the small quantity. Conditions 3.9 and 3.10 can be

satisfied only if the price schedule is such that Bpe
L ≤ Bpe

S and ApeL ≥
ApeS . More precisely, a pooling equilibrium with positive probability

of no trading for traders observing θ occurs only if: E[Ṽ | θ] = Bpe
L =

Bpe
S , and the pooling equilibrium with positive probability of no

trading for traders observing θ occurs only if: E[Ṽ | θ] = ApeL =

ApeS . A pooling equilibrium with zero probability of no trading for

informed traders requires on the bid side of market: Bpe
L < Bpe

S , and

on the ask side of market: ApeL > ApeS . This, in tune, implies that

σpeθ, SL ≥ σpeθ, SS and σpe
θ,BL

≥ σpe
θ,BS

.

The next proposition dictates conditions on c for the occurrence

of a pooling equilibrium on each side of market.

Proposition 3.9 For any public belief π ∈ (0, 1), a pooling equilib-

rium prevails in the bid side of market if, and only if, c ∈ (cse(π, θ),

cne(π, θ)] and c ≥ 0. It prevails in the ask side of market if, and

only if, c ∈ (cse(π, θ), cne(π, θ)] and c ≥ 0.
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Proof: See Appendix.

A pooling equilibrium prevails in the market when the transac-

tion cost is lower than the informational advantage of traders ob-

serving a private signal, but it is not low enough to induce informed

to separate from small noise traders. In particular, if conditions

3.7 and 3.8 are not satisfied, cne(π, θ) and cne(π, θ) are negative

and the market equilibrium is pooling every time the informational

advantage of informed traders exceeds the transaction cost.

In a market in the pooling equilibrium, the learning process about

the true asset value can be very slow. If the informational advan-

tage of traders endowed with a private signal only exceeds little

the transaction cost, then at the equilibrium the probability of an

information based trading order is low. Moreover, in a pooling equi-

librium with positive probability of no trading for informed traders,

the informational content of a large trading order is the same as

the informational content of a small trading order. The information

that the market can infer from a trading order increases if the trans-

action cost is small with respect to the informational advantage of

traders observing a private signal. In this case, the probability that

an informed trader refrains from trading goes to zero and the large

orders become more informative than the small ones.

3.5 Comments and concluding remarks

In this chapter we have examined the impact of proportional trad-

ing costs on price discovery. Our goal in doing so is to demonstrate

the robustness of herd behavior due to informational externalities in

financial markets with trading frictions. To this aim, we have inves-

tigated, with two different models, the effect on the informational

content of orders of exogenous transaction costs proportional to the

asset price and to the orders size. The analysis shows that in both

cases the market is not informationally efficient and an informational

cascade develops with positive probability.

In the case of transaction costs proportional to the asset price,

we find that the probability of an informational cascade is greater in

a context of high prices. In particular, if the true asset value in the
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bad state is close to zero, an informational cascade cannot develop

when the asset prices are low.

As a result, cascades will tend to be asymmetric. They will al-

most never emerge in depressed markets, while they are more likely

to be present in bull markets. Therefore, they are more likely to

result in market crashes than in price jumps.

In the case of transaction costs proportional to the order size,

we show that the occurrence if an informational cascade does not

depend on the amount of the asset traded. It develops as the trans-

action cost exceeds the informational advantage of traders endowed

with private information. Moreover, as in the previous models, dur-

ing a cascade no informed trader chooses to trade at the equilibrium.

If the transaction cost is not too big with respect to the infor-

mational advantage of informed traders, two equilibria can arise.

The separating equilibrium, where informed choose to trade only

the large quantity. The pooling equilibrium, where informed choose

to submit both large and small orders with positive probability. The

first outcome prevails in the market if two conditions are satisfied:

the transaction cost has to be very low, and the difference between

the size of large and small orders must be sufficiently large. Since

in the separating equilibrium the spread at the large quantity ex-

ceeds the spread at the small quantity, if the large quantity is not

large enough to offset the better prices for small orders, a separating

equilibrium never prevails whatever transaction cost.

Finally, the analysis shows that as the public belief gets con-

centrated in the extreme tails of the asset value distribution, the

upper threshold costs for both separating and trading equilibria re-

duce. Consequently, before an informational cascade develops, the

trading volume gradually decreases.
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Appendix

Proof of Proposition 3.1

We prove the proposition for the ask price; the proof for the

bid price is symmetric. First we assume that A∗t = Et[eV ]
1−c and

we prove that this implies Et[eV |θ1]−Et[eV ]

Et[eV |θ1]
≤ c. Suppose by way of

obtaining a contradiction that Et[eV |θ1]−Et[eV ]

Et[eV |θ1]
> c. This means that

Et[Ṽ |θ1] > Et[eV ]
1−c . Hence, at the least the traders observing θ1 prefer

to buy the asset when the ask price is Et[eV ]
1−c . As a consequence, the

expected asset value conditional to a buy order at Et[eV ]
1−c is greater

than the unconditional expected asset value. This implies that the

market maker’s expected profit is negative, which contradict the fact

that Et[eV ]
1−c is the equilibrium ask price.

On the other hand, if Et[eV |θ1]−Et[eV ]

Et[eV |θ1]
≤ c then no informed trader

prefers to buy the asset.4 Hence inf{Et[eV |BO at
Et[

eV ]
1−c , σ

∗(P ∗t |t)]
1−c } = Et[eV ]

1−c =

A∗t . 2

Proof of Proposition 3.2

First we prove that there exist unique π and π such that when π ∈
[0, π)

⋃
(π, 1], all informed traders prefer to refrain from trading.

Consider the function gθ(π) defined at page 66. Notice that:

• gθ(0) = gθ(1) = 0

• max gθ(π) = V−V
(
√
V+
√
λθV )2

· |λθ − 1|

• g′′θ (π) = − 2λθV V

(πV+(1−π)λθV )3 · |1− λθ| · (V − V ) < 0 ∀π ∈ [0, 1].

Since by assumption 0 < c ≤ cp, from the strictly concavity of gθ(π)

it follows that there exist unique πθ and πθ, with πθ < πθ, such that

4The relative informational advantage of informed traders increases with the signal preci-

sion.
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gθ(πθ) = gθ(πθ) = c and gθ(π) > c if, and only if, π ∈ (πθ, πθ).

Thus, π = inf{πθ}θ∈Θ and π = sup{πθ}θ∈Θ.

In order to prove the second part of the theorem, we first notice

that gθ1( V

V+V
) = gθN ( V

V+V
) = cp, and gθ1(π) < gθN (π) for all π >

V

V+V
. Moreover, if V > V λ1 then V

V+V
< arg max gθ1(π) < πθ1 . As a

consequence, if V > V λ1 then the relative informational advantage

of traders endowed with θN is strictly positive for all π ∈ [πθ1 , πθN )

whatever c ∈ (0, cp). In contrast, if V < V λ1 and c is greater

than cp, then πθ1 is lower than πθN and both gθ1(π) and gθN (π)

are strictly negative for all π ∈ (πθ1 , πθN ). Hence an informational

cascade occurs also when π ∈ (πθ1 , πθN ). 2

Proof of Proposition 3.3

If V = 0, the relative informational advantage of traders endowed

with the signal θ as a function of π is given by gθ(π) = (1−π)·|λθ−1|.
Since by assumption 0 < c ≤ cp, it follows that for any θ ∈ Θ there

exists an unique πθ such that gθ(πθ) = c, and gθ(π) > c if, and only

if, π < πθ. Thus, π = sup{πθ}θ∈Θ. 2

Proof of Proposition 3.6

Assume that a separating equilibrium prevails in the ask side of

market and suppose, by way of obtaining a contradiction, that

QL −QS

QS

≤ λseSOQL − 1

λθ − λseSOQL
(π + (1− π)λθ). (3.13)

With simple algebraic calculus 3.13 becomes:

(E[Ṽ | θ]− E[ Ṽ | BOQL, σ
se])QL ≤ (E[Ṽ | θ]− E[Ṽ ])QS. (3.14)

Since AseL = E[ Ṽ | BOQL, σ
se] + c and AseS = E[Ṽ ] + c, 3.14 implies:

(E[Ṽ | θ]− AseL )QL < (E[Ṽ | θ]− AseS )QS

which contradicts the assumption that a separating equilibrium pre-

vails in the ask side of market. The part of the proof concerning the

bid side of market is analogous and it is omitted. 2

Proof of Proposition 3.7
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Let be fθ(π) =
λseSOQL

−1

λθ−λseSOQL
(π+(1−π)λθ) and fθ(π) =

1−λseBOQL
λseBOQL

−λθ
(π+

(1 − π)λθ). The proposition is proved immediately by noting that

minπ∈[0, 1] fθ(π) = minπ∈[0, 1] fθ(π) =
λseSOQL

−1

λθ−λseSOQL
. 2

Proof of Proposition 3.8

The proof is straightforward by plugging P se into conditions 3.5

and 3.6, and by noting that condition 3.7 implies cse(π, θ) > 0 and

condition 3.8 implies cse(π, θ) > 0. 2

Proof of Proposition 3.9

We prove the proposition for the ask side of market. The proof

for the bid side is similar. First we consider the pooling equilibrium

with positive probability of no trading for traders observing θ. This

equilibrium requires that the ask price for both the large and the

small quantity equates the expected asset value conditional to θ.

By combining E[Ṽ | θ] = ApeL = ApeS with condition 3.12 we ob-

tain: σpe
θ,BS

= σpe
θ,BL

=
1−σpe

θ,NT

2
< 1

2
. Then, the ask side of market

is characterized by a pooling equilibrium with no trading if there

exists a σpe
θ,Buy

< 1
2

such that:

E[Ṽ | θ] = V +
π

π + (1− π)
µ γ

4
+(1−µ)σpe

θ, Buy
(1−p)

µ γ
4

+(1−µ)σpe
θ, Buy

p

· (V − V ) + c.

We define the function f(x) defined on [0, 1
2
] as follows:

f(x) = E[Ṽ | θ]− V +
π

π + (1− π)
µ γ

4
+(1−µ)x(1−p)
µ γ

4
+(1−µ)xp

· (V − V ).

It is easy to see that:

• f ′(x) < 0 for all x ∈ [0, 1
2
]

• minx∈[0, 1
2

] f(x) = f(1
2
)

• maxx∈[0, 1
2

] f(x) = f(0)
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We can conclude that there exists a σpe
θ,Buy

< 1
2

such that f(σpe
θ,Buy

) =

c, if and only if c ∈ (f(1
2
), f(0)]. This part of the proof is complete

by noting that f(0) = cne(π, θ) and f(1
2
) > cse(π, θ).

Let’s move to consider the pooling equilibrium with zero proba-

bility of no trading for traders observing θ. This equilibrium requires

that E[Ṽ | θ] > ApeL > ApeS . By combining ApeL > ApeS with condition

3.12 we obtain: σpe
θ,BL

= 1 − σpe
θ,BS

∈ (1
2
, 1). So, the ask side of

market is characterized by a pooling equilibrium with σpe
θ,NT

= 0, if

there exists a σpe
θ,BL

∈ (1
2
, 1) such that:

[(
π

π + (1− π)λθ
− π

π + (1− π)
µ γ

4
+(1−µ)σpe

θ, BL
(1−p)

µ γ
4

+(1−µ)σpe
θ,BL

p

) ·(V −V )−c] ·QL =

[(
π

π + (1− π)λθ
− π

π + (1− π)
µ γ

4
+(1−µ)(1−σpe

θ, BL
)(1−p)

µ γ
4

+(1−µ)(1−σpe
θ, BL

)p

)·(V −V )−c]·QS.

(3.15)

We define the function g(α) defined on [1
2
, 1] as follows:

g(α) =
π

π + (1− π)λθ
− 1

QL −QS

·

(
π ·QL

π + (1− π)
µ γ

4
+(1−µ)α(1−p)
µ γ

4
+(1−µ)αp

− π ·QS

π + (1− π)
µ γ

4
+(1−µ)(1−α)(1−p)
µ γ

4
+(1−µ)(1−α)p

)

Condition 3.15 is satisfied if and only if there exists α ∈ (1
2
, 1) such

that g(α)(V − V ) = c. Since g(α) is a strictly decreasing function,

this is true when c ∈ (g(1)(V − V ), g(1
2
)(V − V )). The proposition

for the ask side of market is proved by noting that g(1)(V − V ) =

cse(π, θ), and g(1
2
)(V − V ) = f(1

2
). 2
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