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ṁ mass flow rate [kg/s]
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Chapter 1

INTRODUCTION

According to the International Energy Agency statistic data [1], the world electricity

production is strongly dependent on fossil fuels, like coal, oil and natural gas. In Fig.

1.1, the percent contribution of each source is reported. Sustainable resources, like solar,

geothermal and waste heat, still need a larger application.

The challenge of reducing the consumption of fossil fuels and the growing attention

in environmental concerns have lead to the development of energy conversion systems

able to satisfy such needs. However, the aforementioned sustainable resources occur at a

temperature significantly lower than fossil fuels. The energy conversion of such resources

by means of traditional steam power cycle is not efficient and feasible. In Table 1.1, a

subdivision of sustainable heat sources by grade of temperature is reported, according to

Tchanche et al. [2].

The Organic Rankine cycle (ORC) is proving to be one of the most promising technolo-

gies for conversion of low-grade temperature heat sources, such as solar, geothermal and

industrial waste heat. Moreover, it allows the energy conversion with adaptability to the

heat source, reasonable investment cost, for small scale and distribuited power generation

systems.

In recent years, the research has devoted many studies to the thermodynamic of Or-

ganic Rankine cycle, as for instance: Hung et al. [3], Borsukiewicz-Gozdur and Nowak [4],

Chen et al. [5], Papadopoulos et al. [6], Quoilin et al. [7], Aneke et al. [8], He et al. [9],

◦C Solar Geothermal Biomass Industrial waste

Low grade < 80 < 100 − < 230

Medium grade 80− 300 100− 180 < 350 230− 650

High grade > 300 > 180 − > 650

Table 1.1: Subdivision by grade of heat sources.
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Figure 1.1: Share of resources to electricity generation.

Bao and Zhao [10], Cataldo et al. [11], Tchanche et al. [2].

A basic Organic Rankine cycle is shown in Fig. 1.2, using the working fluid R245fa. In

such a cycle, it is possible to recognize the fundamental transformations of a power cycle:

• compression of the liquid flow;

• liquid heating and evaporation;

• expansion of the vapour flow;

• desuperheating and condensation.

Because of the low values of temperature of the heat sources, the reduction of thermal

entropy generation in the heat exchangers is crucial. It is well-known that the larger

the mean temperature difference between the fluids in heat exchangers, the greater the

thermal entropy generation. In Fig. 1.3, the temperaure variations are reported against

the cumulative heat exchanged for the R245fa cycle.

The relationship between fluid temperature and heat flow is gven in Eq. (1.1), for an

infinitesimal control volume:

dQ̇ =U (Thot − Tcold)dAht (1.1)

where U is the overall heat transfer coefficient and dAht is the infinitesimal heat transfer

area.
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Figure 1.2: Basic organic Rankine cycle with R245fa as working fluid.
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Figure 1.4: Flow patterns in horizontal tubes during evaporation.

In order to realise a better temperature matching, a proper heat exchanger design is

meant to increase the overall heat transfer coefficient. However, it should be noted that

pressure drop occurs in fluid flows, according to the force balance in Eq. (1.2):

dp
dz

= − 4
D
τ (1.2)

Pressure drops are the cause for mechanical entropy generation. The heat transfer coeffi-

cient and the pressure drop compete on varying the operational conditions and geometry

in heat exchangers. Therefore, it is essential the knowledge of methods able to calculate

such quantities.

In two-phase flow, the fluid flow and heat transfer predictions are complicated because

of the relative configuration assumed by the liquid and the vapour phases, namely the flow

pattern. References about two-phase flow patterns can be found in Kattan et al. [12],

Zürcher et al. [13], El Hajal et al. [14], Wojtan et al. [15, 16], Mastrullo et al. [17],

Kim and Mudawar [18], Charnay et al. [19]. The most usual flow pattern encountered in

evaporation and condensation processes in horizontal tubes are:

• bubbly flow;

• plug flow;

• slug flow;

• wavy flow;

• annular flow.

In Fig. 1.4, a representation of flow patterns occurring in a horizontal tube during evap-

oration is shown (Collier and Thome [20]).

It is worth noting that the occurrence of a particular flow pattern depends on the

operational conditions, the thermodynamic quality and the channel size. A flow pattern

map describes the range of conditions in which the flow patterns occurs. In Fig. 1.5, a

flow pattern map from Wojtan et al. [15] is derived for evaporating R245fa at saturation

temperature of 70 ◦C.
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Figure 1.5: Flow pattern map for evaporating R245fa, using the transition lines from.

The annular flow pattern play an important role in two-phase heat transfer: causes

very high values of heat transfer coefficient and affects the dryout condition. The annular

flow is characterised by a thin liquid film, which completely or partially wets the pipe wall,

and a vapour core flowing in the centre. The liquid phase may flow as entrained droplets

in the vapour core. The liquid droplets mass flow rate derives from a competition between

deposition rate and entrainment rate. An important feature of the liquid-vapour interface

is the presence of dynamic waves, usually discerned in disturbance waves of large ampli-

tude and ripples of low amplitude. The thinness of the liquid film ensures an enhanced

convection respect to the liquid single-phase flow. However, it is also responsible for an

early dryout and, hence, an abrupt decrease of heat transfer. A comprehensive literature

about the annular flow can be found in Wallis [21], Hewitt and Hall-Taylor [22], Hanratty

[23], Whalley [24], and Collier and Thome [20].

The purpose of this study is an in-depth analysis of the annular flow in order to pro-

pose a two-dimensional model able to predict the cross-sectional liquid film distribution.

Indeed, such a distribution may cause a significant variation of the heat transfer coef-

ficient from the tube top toward the tube bottom. The cross-sectional variation of the

heat transfer coefficient is not taken into account by one-dimensional models and correla-

tions and, therefore, an improper heat exchanger design may be originated. In literature,

several studies are present about the topic. Bar-Cohen et al. [25, 26] stated that the



16 CHAPTER 1. INTRODUCTION

minimization of the wall temperature difference around the pipe circumference occurs at

the onset of the annular flow. Jayanti and Hewitt [27] analysed a vertical liquid film in-

duced by upward gas flow by means of a numerical two-dimensional CFD model. They

highlighted the enhancement of the heat transfer due to the disturbance waves, which are

packets of turbulence transported by the vapour phase along the tube. Hetsroni et al. [28]

obtained measurements of the heat transfer coefficient for air-water flow along the pipe

circumference in a upward inclined tube. The same task has been performed by Zimmer-

man et al. [29] in a 25 mm diameter horizontal tube by means of infrared thermography

technique. They showed an higher heat transfer coefficient at the tube bottom because of

the augmentation of the turbulence at higher film thickness. This behaviour was mainly

due to two phenomena: the waviness of the liquid-vapour interface and the entrainment

of vapour bubbles in the liquid film.



Chapter 2

STATE-OF-ART OF ANNULAR

FLOW MODELLING

2.1 Prediction of the liquid film thickness

2.1.1 The triangular relationship

Assuming that the liquid film behaves like a boundary layer region in single-phase flow,

the universal velocity profile can be used, as reported by Whalley [24].

u+ = f (y+) (2.1)

where the dimensionless velocity u+ and the dimensionless distance from the wall y+ are

given by the Eqs. (2.2) and (2.3).

u+ = u
(ρL
τ

)0.5
(2.2)

y+ = y
(
τ
ρL

)0.5 ρL
µL

(2.3)

According to the turbulence theory, the universal velocity profile can be calculated by

the following expression:

u+ =


laminar sublayer: y+, for y+ < 5;

buffer layer: − 3.05 + 5ln(y+), for 5 < y+ < 30;

turbulent core: 5.5 + 2.5ln(y+), for y+ > 30.

(2.4)

Usually, in liquid-vapour annular flow, the liquid film thickness δ is small compared

to the channel diameter D. Under this assumption, the liquid film flow rate ṁLF can be

found by integrating the velocity profile:

ṁLF = πD
∫ δ

o
ρLudy (2.5)

17
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Using Eqs. (2.2) and (2.3), the following dimensionless equation can be obtained:

ṁ+
LF =

∫ δ+

o
u+ dy+ (2.6)

where

ṁ+
LF =

ṁLF

πDµL
(2.7)

δ+ = δ
(
τ
ρL

)0.5 ρL
µL

(2.8)

Solving the integral in Eq. (2.6) with the universal velocity profile given in Eq. (2.4),

the triangular relationship is finally achieved.

ṁ+
LF =


0.5δ+, for δ+ < 5;

12.5− 8.05δ+ + 5δ+ ln(δ+), for 5 < δ+ < 30;

−64 + 3δ+ + 2.5δ+ ln(δ+), for δ+ > 30.

(2.9)

It is worth mentioning that, according to the annular flow theory, the shear stress in

the liquid film is almost uniform and equal to the interfacial shear stress. Therefore in

Eqs. (2.2) and (2.3), the interfacial shear stress τi is used and calculated with a proper

correlation, unless otherwise stated. Owen and Newell [30], Hurlburt and Newell [31],

Shedd [32] used the universal velocity profile showing a satisfactory agreement against

experimental data. Dobran [33, 34] stated that the turbulence is reduced near the liquid-

vapour interface. The two-layer model proposed by Dobran showed a better agreement

for very thin liquid film. Cioncolini et al. [35] recommended the simultaneous application

of the universal velocity profile and the Dobran’s model, and carried out a new simple

turbulence model which seems to be the best predictive method so far.

2.1.2 Liquid film thickness correlations

It is usual to define a liquid film Reynolds number as:

ReLF =
4ṁLF

πDµL
(2.10)

where ṁLF is liquid mass flow rate flowing in the liquid film and D is channel diamater.

Assuming the liquid film thickness δ small relative to the channel diameter, the liquid

Reynolds number can be computed as follows:

ReLF =
4ρLuLFδ
µL

(2.11)

It should be noted that both the mass flow rate and the velocity of the liquid film

are calculated assuming the entrainment rate ṁLE known. From the definition of the
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entrainmet ratio E,

E =
ṁLE

ṁL
(2.12)

the liquid film mass flow rate is given by the following:

ṁLF = ṁL(1−E) (2.13)

Among the first authors to propose a correlation for the liquid film thickness, Kosky

[36] found the following correlation for the dimensionless film thickness, solving a force

balance on the liquid film with a turbulent velocity profile for vertical upward flows:

δ+ =

(2ReLF)0.5, if δ+ < 25;

0.0512Re−0.875
LF , if δ+ > 25.

(2.14)

Ishii and Gromels [37], assuming the roll-wave as the predominant mechanism for the

entrainment of liquid droplet [38], derived the following criterion by considering a force

balance between the vapour drag force on a wave crest and the surface tension.

δ+ = 0.347Re2/3
LF (2.15)

Asali et al. [39] correlated the dimensionless film thickness against the liquid film

Reynolds number in the ripple regime, as reported in Eq. (2.16).

δ+ = 0.34Re0.6
LF (2.16)

They found that, for vertical air-water flows, the ripple regime stands for ReLF < 300.

Henstock [40] proposed the Eq. (2.17) for the disturbance wave regime.

δ+ = 0.0379Re0.9
LF (2.17)

Hurlburt and Newell [31] proposed a combination between Asali’s and Henstock’s corre-

lations in order to predict the dimensionless film thickness.

δ+ =
((

0.34Re0.6
LF

)2.5
+
(
0.0379Re0.9

LF

)2.5
)0.4

(2.18)

They demonstrated a good agreement with experimental data from Sacks [41] for R11

and R22 for liquid fraction and pressure drop. Moreover, solving the turbulent thermal

diffusivity by analogy with the momentum diffusivity, they predicted the heat transfer

coefficient and compared it against experimental data from Wattelet [42] for R134a and

R22, Dobson [43] for R134a and R22 and Sacks [41] for R12, R11 and R22. The comparison

for the heat transfer coeffcient resulted to be satisfactory.

Ambrosini [38, 44, 45] recollected the Asali’s and Kosky’s correlations and found a

new expression which best fitted a wide range of experimental data, on varying channel
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diameters and working fluids.

δ+ =

0.34Re0.6
LF , if ReLF ≤ 1000;

0.0512Re−0.875
LF , if ReLF > 1000.

(2.19)

Henstock and Hanratty [46] carried out two correlations for the liquid film thickness,

one for horizontal flows, reported in Eq. (2.20),

δ
D

=
6.59F

(1 + 850F)0.5 , 103 < ReLF < 104 (2.20)

and Eq. (2.21) for vertical flows.

δ
D

=
6.59F

(1 + 1400F)0.5 , 10 < ReLF < 104 (2.21)

where

F =
1

20.5Re0.4
V

Re0.5
LF

Re0.9
V

ρ0.5
V

ρ0.5
L

µL
µV

(2.22)

Tatterson et al. [47] proposed a new way to calculate the parameter F to be used in

Eqs. (2.20) and (2.21).

F =

((
0.707Re0.5

LF

)2.5
+
(
0.0379Re0.9

LF

)2.5
)0.4

Re0.9
V

(
ρV
ρL

)0.5 µL
µV

(2.23)

It should be noted that the vapour Reynolds number, which appears in Eqs. (2.22) and

(2.23), it is calculated considering the tube diameter as characteristic length. In Fukano’s

work [44], two expressions for liquid film thickness prediction in vertical upward flows for

air-water was presented. The Hori’s correlation is:

δ
D

= 0.905Re−1.45
JV Re0.9

JL Fr
0.93
V Fr−0.68

L

(
µL
µL,ref

)0.5

(2.24)

where µL,ref refers to the water dynamic viscosity at 20 ◦C. The Fukano’s correlation is

given by:

δ
D

= 0.0594exp

(
−0.34Fr−0.25

V ReJL
0.19
(

JVρV
JVρV + JLρL

)0.6
)

(2.25)

Hori’s and Fukano’s correlations are valid in the limits of their experimental data. In

Eqs. (2.24) and (2.25) the liquid Reynolds number ReL is computed with the whole liquid

phase mass flow rate, whereas the liquid and vapour Froude number are calculated as:

FrL =
JL

(gD)0.5 (2.26)

FrV =
JV

(gD)0.5 (2.27)
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Okawa et al. [48] proposed a method to predict the liquid film thickness from a force

balance between interfacial shear stress and wall friction acting on the liquid film:

δ =
1
4

(
fWρL
fiρV

)0.5 JLF
JV
D (2.28)

where fW is the wall friction factor, evaluated withmax(16/ReLF,0.005), fi is the interfacial

friction factor obtained by the Wallis’ correlation.

Finally, it is worth mentioning a correlation for bottom film thickness in horizontal

annular flow. The first author was Spurret [49] to propose such a correlation. This was

later modified by Roberts et al. [49], according to the Jepson’s assumption [49] that

the ratio δ/D at the tube bottom is constant under the same superfical velocities. The

Robert’s correlation is given below.

δ+ = 846
D
Dref

Re0.44
LF

Re0.59
V

(2.29)

where Dref is a reference diameter and is equal to 0.026 m. The shear stress to be used in

Eq. (2.29) is a wall shear stress for vapour single-phase flow proposed by Asali [39].

2.1.3 Correlations for the liquid film distribution

Recently, some authors attempted to proposed correlations for the liquid film distribution.

Hurlburt and Newell [31] introduced a correlation to calculate the ratio between average

film thickness and bottom film thickness. It is give by the following:

δaδ
−1
b = 0.2 + 0.7

(
1− exp

(
− (x/(1− x))0.5(JV )/(gD)0.5 − 20

75

))
(2.30)

Schubring and Shedd [50] proposed the following correlation for the ratio between top

film thickness and bottom film thickness:

δtδ
−1
b = 1− exp

(
−0.63

xG
ρL(gδa)0.5

)
(2.31)

Cioncolini and Thome [51] recommended the following correlations, validated against

a wide experimental database for air-water:

δtδ
−1
b =

0.0789Fr1.9

1 + 0.0789Fr1.9 (2.32)

δaδ
−1
b =

0.366Fr1.45

1 + 0.366Fr1.45 (2.33)

where the Froude number Fr has to be computed as

Fr =
xG

ρV(ρL − ρV)gD
(2.34)
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A correlation for the entire liquid film distribution has been proposed by Mauro et

al. [52]. Using Eqs. (2.32) and (2.33) by Cioncolini and Thome [51] to calculate the film

thickness at the tube top and bottom, the distribution is given by the following:

δ(θ) =



R− 2(R− δa)2 (R− δt)

(2R− δt − δb)
((

2(R−δa)2

2R−δt−δb cosθ
)2

+ ((R− δt) sinθ)2
)0.5 , if 0 ≤ θ ≤ π/2;

R− 2(R− δa)2 (R− δb)

(2R− δt − δb)
((

2(R−δa)2

2R−δt−δb cosθ
)2

+ ((R− δb) sinθ)2
)0.5 , if π/2 ≤ θ ≤ π;

(2.35)

2.2 Prediction of the interfacial shear stress

In annular flow, the liquid film tends to behave as a rough wall on the vapour core [21, 53].

According to the fluid dynamics theory of single-phase flow, the interfacial shear stress is

defined as [21, 20]:

τi =
1
2
fiρV(uV −ui)2 (2.36)

where fi and ui are the interfacial friction factor and the interfacial velocity, respectively.

It is worth noting that, in order to calculate the interfacial shear stress, equations or

correlations are needed for the interfacial friction factor and the interfacial velocity. Most

authors neglect the interface velocity, assuming that it is small compared to the vapour

velocity. This is a reliable assumption for gas-liquid or water-steam flows at near-ambient

pressure, because of high values assumed by the ratio between liquid phase density and

vapour phase density. For low values of density ratio, as instance in refrigerants flow, this

assumption may not be valid.

2.2.1 Interfacial shear stress correlations

The first author to propose a correlation for the interfacial shear stress was Wallis [21].

The correlation for the friction factor is:

fi = 0.005
(

1 + 300
δ
D

)
(2.37)

Wallis noted a very interesting similarity to the Nikuradse’s relationship for the sand-

grain roughness friction factor. Being ks the sand-grain roughness height, he found that

ks = 4δ [53]. To better fit experimental data, the Wallis’ correlation was later modified in

the following.

fi = fV

(
1 + 300

δ
D

)
(2.38)



2.2. PREDICTION OF THE INTERFACIAL SHEAR STRESS 23

where fV is the single-phase vapour friction factor. Wallis proposed to estimate the inter-

facial velocity as [21, 20]:

ui = 2uL (2.39)

All the interfacial friction factor correlations are essentially functions of the vapour

Reynolds number and the ratio δ/D. For sake of uniformity, the vapour Reynolds number

is calculated with the vapour core hydraulic diamater as characteristic length, even on the

assumption that δ << D. It is undoubtedly that the Wallis’ correlation is the most used.

However, as pointed out by Fore et al. [53], it may not be accurate at fully rough regimes,

namely regimes in which the friction factor is independent of the vapour Reynolds number,

or at transition roughness regimes, which are regimes at low values of vapour Reynolds

numer and large ratio δ/D.

Moeck [54] suggested a correlation for annular flows in disturbance wave regimes:

fi = 0.005

(
1 + 1458

(
δ
D

)1.42
)

(2.40)

Henstock and Hanratty [46], to best fit several experimental data, proposed the fol-

lowing implicit correlation:

fi = fV

(
1 + 212

(
fi
fV

)0.5 δ
D

)
(2.41)

In the study of Fukano and Furukawa [44], the Hori’s correlation, reported in Eq.

(2.42), was validated against their experimental data for air-water and air-aqueous glycerol

solution vertical annular flow, with channel diameter of 26.0 mm and 19.2 mm.

fi = 0.2825

(
Re−0.89

JV Re0.68
JL Fr0.25

V Fr−0.45
L

(
µL
µw,ref

)0.77
)

(2.42)

A satisfactory agreement was only found for large values of ReVO. Fukano and Fu-

rukawa [44] compared their experimental data with other two correlations as well, re-

ported in Eqs. (2.43) (for horizontal rectangular ducts) and (2.44) (for vertical channels),

respectively.

fi = fV

1 + 6.1 · 10−5χ0.52

(
V̇
′
L

υL

)0.65

Re0.7
JV

 (2.43)

fi = 0.425
(

12 +
υL
υw,ref

)−1.33(
1 + 12

δ
D

)8

(2.44)

where V̇
′
L is the liquid volumetric flow rate per unit width and υw,ref is the kinematic

viscosity of liquid water at 20 ◦C.

whereas Eq. (2.43) showed satisfactory agreement only for ReVO > 5 · 104, Eq. (2.44)
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resulted to be a good predictor in the whole range of their experimental data. The reason

for this behaviour is indeed an important remark: for vertical annular flows, the liquid film

thickness is mainly controlled by the gravity force at low values of vapour Reynolds num-

ber; in horizontal annular flows the average value of the liquid film thickness is controlled

by the interfacial shear stress instead.

Another implict correlation was found by Asali et al. [39]:

fi = fV

(
1 + 0.45Re−0.2

V

(
ReV

(
fi
2

)0.5 δ
D
− 4

))
(2.45)

In order to better predict the interfacial friction factor at transition roughness regimes,

Fore et al. [53] proposed the following adaptation of Wallis’ correlation:

fi = 0.005
(

1 + 300
((

1 +
17500
ReV

)
δ
D
− 0.0015

))
(2.46)

Eq. (2.46) was validated against experimental data from Asali [55], Fore and Dukler

[56, 57], and Fore et al. [53], for several gas-liquid flow, in a range of channel diameter

between 9.68 mm and 50.8 mm, pressure up to 17 atm, temperature between 17 ◦C and

93 ◦C. The agreement resulted to be satisfactory.

Ashwood et al. [58] recommended to use a correlation which is dependent on the

intermittency of the disturbance waves. The expression is:

fi =
(
0.079Re−0.25

V

)(
1 + 18.7Re−0.5

V

(
µL
µV

(
ρV
ρL

)0.5

δ+(1 + INT )

))
(2.47)

where the disturbance wave intermittency INT has to be calculated by means of the

following:

INT = 0.1 +
ReL

4 · 104 (2.48)

A satisfactory agreement was found against experimental data on pressure drop for air-

water flows.

Schubring and Shedd [50] and Shedd [32], in order to predict the average liquid film

thickness in air-water horizontal flows, used both the Haaland and Colebrook’s fully rough

correlation:

(4fi)
−0.5 = −1.8log10

(
6.9
Recore

+
(
RR
3.7

) 10
9

)
(2.49)

Recore =
ρV(uV −uL)(D − 2δ)

µV

RR =
1
3

δ
D − 2δ

x0.25

and a modified McAdams’ smooth tube correlation:
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fi = 0.046φRRRe
−0.2
core (2.50)

where RR is the relative roughness. In Eq. (2.50), φRR is a correction factor to take the

interfacial roughness into account. Best fitting their data, φRR was found to be equal to

1.289. They used both Eqs. (2.49) and (2.50), which determined no significant difference

in the results. Their data was reported in Schubring and Shedd [59], resulting in a channel

diameter range of 8.8 - 26.3 mm, mass flux range of 71 - 430 kg/(m2s), vapour quality range

of 0.0119 - 0.782, for air-water flow at near-ambient pressure, founding a good agreement.

Another expression, which uses the relative roughness at the liquid-vapour interface,

was proposed by Hurlburt et al. [60] and used by Schubring and Shedd [61] in a model

for the prediction of the liquid film thickness and pressure drop:

fi = 0.582
(
− ln(RR)

(RR− 1)2 − ln(0.8) + 1.05 +
1
2
RR+ 1
RR− 1

)−2

(2.51)

RR =
4(1−LF)δ
D − 2δ

where the laminar fraction LF was declared to be equal to 0.7. In the same work, Schubring

and Shedd [61] declared that the model predictions was not sensitive whether a modified

Blasius’ correlation was used instead of Eq. (2.51):

fi = 0.079φRRRe
−0.25
core (2.52)

φRR = 1.9x0.1

where Recore is computed in same way as in Eq. (2.49). Eq. (2.51) was validated against

experimental data for gas-liquid horizontal flows from Schubring and Shedd [59], Laurinat

[62] and Paras and Karabelas [63], resulting in a good agreement.

2.3 Heat transfer in turbulent liquid film

For a Newtonian fluid in laminar flow, the following relationship between shear stress and

velocity gradient is valid:

τ = µ
du
dy

(2.53)

In turbulent flow, the momentum transport is increased because of the eddy diffusivity

ε, according to Eq. (2.54):

τ = (µ+ ρε)
du
dy

(2.54)

It is possible to define a dimensionless diffusivity ε+ using Eqs. (2.2) and (2.3):
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ε+ =
ρε
µ

(2.55)

ε+ =
(

du+

dy+

)−1

− 1 (2.56)

Using the three-part universal velocity profile, the values of the dimensionless eddy

diffusivity can be found as follows:

ε+ =


laminar sublayer: 0, for y+ < 5;

buffer layer:
y+

5
− 1, for 5 < y+ < 30;

turbulent core:
y+

2.5
− 1, for y+ > 30.

(2.57)

In the same way done for the momentum transport, the thermal energy transport

is enhanced by the turbulence. In laminar flow, the heat transfer is transported by the

molecular conduction only:

q̇ = −kdT
dy

(2.58)

In order to quantify the increase in the heat transfer due to the turbulence, the eddy

thermal diffusivity εt is introduced in Eq. (2.59).

q̇ = −(k + ρεtcp)
dT
dy

(2.59)

According to the Reynolds analogy, the thermal eddy diffusivity equals the momentum

eddy diffusivity. It is convenient to define a dimensionless temperature T + as:

T + = cp
(τρ)

1
2

h
(2.60)

where h is the heat transfer coeffcient. Using Eqs. (2.3), (2.59) and (2.60), it is possi-

ble to obtain the following relationship between dimensionless temperature gradient and

dimensionless diffusivity:

dT +

dy+ =
1

1/P r + ε+ (2.61)

where P r is the Prandtl number. With Eq. (2.62), the integration of Eq. (2.60) lead to:

T + =


laminar sublayer: y+P r, for y+ < 5;

buffer layer: 5(P r + ln(1 + P r (y+/5− 1))) , for 5 < y+ < 30;

turbulent core: 2.5ln
(
y+ + 2.5(1/P r − 1)
30 + 2.5(1/P r − 1)

)
+ 5(P r + ln(1 + 5P r)), for y+ > 30.

(2.62)
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In conventional channels, the dimensionless liquid film thickness is usually greater than

30, therefore the liquid film assumes a turbulent behaviour. In this case, it is possible to

define a thermal resistance for laminar sublayer, buffer layer and turbulent core, respec-

tively, as follows:

Rt =



laminar sublayer:
5P r

cp(τρ)
1
2

;

buffer layer:
5ln(1 + 5P r)

cp(τρ)
1
2

;

turbulent core:

2.5ln
(
y+ + 2.5(1/P r − 1)
30 + 2.5(1/P r − 1)

)
cp(τρ)

1
2

.

(2.63)

Cioncolini and Thome [64] proposed a new equation for the dimensionless temperature

T + for evaporating annular flow. The latter has been validated against heat transfer

coefficient experimental data for water and refrigerants.

2.4 Theoretical and semi-theoretical models

Theoretical and semi-theoretical models, based on one-dimensional mass and momentum

equations on the liquid phase, have been proposed by many authors. Okawa et al. [65,

66] performed a one-dimensional mass balance on the liquid film, taking deposition and

entrainment rates into account, in order to predict the critical heat flux. Kishore and

Jayanti [67] solved three-dimensional mass and momentum equations for the vapour core,

whereas the triangular relationship and a sand-grain roughness approach for the interfacial

shear stress was used for the liquid film flow. Alipchenkov et al. [68] carried out a one-

dimensional three-fluid model for annular flow. In such a model, the mass and momentum

equations have been applied to the liquid film, gas core and entrained liquid droplets.

A one-dimensional annular flow model was developed by Revellin and Thome [69] in

order to predict CHF. They used mass and momentum equations on the liquid phase

and the vapour phase to calculate the liquid film thickness and to compare it against a

correlation for the interfacial waves. Cioncolini et al. [70] developed a unfied macro-to-

micro scale method in order to predict the pressure drop in annular flow. Whan Na and

Chung [71] proposed a one-dimensional annular flow model for evaporative heat transfer

in microchannels taking the Marangoni effect, the capillarity and the wettability into

account.

Cioncolini et al. [35] and Cioncolini and Thome [64] studied the turbulence modelling

in annular flow liquid film in anon-adiabatic and in non-adiabatic and evaporating condi-

tions, respectively, assuming a symmetric liquid film distribution. Schubring and Shedd

[61] also proposed a one-dimensional model for the pressure drop, film thickness and en-
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trainment fraction predictions considering the intermittency of the disturbance waves.

Mass transportation equation was used to determine the entrainment rate by Liu et al.

[72] in a VOF scheme in order to model the roll wave flow.

Kim and Mudawar [73, 74] developed two one-dimensional models for condensing and

boiling annular flow for microchannels, respectively, in order to predict pressure drop

and heat transfer coefficient. In both their studies, mass and momentum equations were

applied on each phase, taking the liquid radial velocity profile and a turbulence model into

account, although the circumferential gradient was neglected.

Li and Anglart [75] developed a CFD model for evaporating liquid film using a Eulerian-

Langrangian approach. The radial and tangential gradients of velocities and pressures was

neglected and the entrained droplets was taken into account. Zhang et al. [76] used mas

and momentum equations on each phase into a probability model for the prediction of

droplet entrainment. Jesseela and Sobhan [77] studied a quasi three dimensional numerical

model to analyse flow with phase change in a rectangular microchannel. Their model is

found to be capable of obtaining the velocity distribution, two phase pressure drop, an

average two phase heat transfer coefficient and the wall temperature corresponding to the

annular flow domain in the channel.

The studies cited so far are able to predict the average liquid film thickness in the

cross-section, for a given condition. However, it is well-known that the annular flow

presents liquid film stratification in horizontal channels, since the gravity force becomes

important in specific conditions. Williams [78] introduced a symmetry parameter in order

to quantify such a stratification. Laurinat et al. [79] proposed a liquid film thickness model

using both mass and momentum equations, although this was accomplished with the aid

of a correction factor for a better agreement with experimental data. Fukano and Ousaka

[80] modified Laurinat’s model in order to include the effect of disturbance waves on the

liquid surface. Hurlburt and Newell [31] also developed mass and momentum equations

in three coordinates, although they considered a static tangential momentum equation for

the liquid phase and ignored any surface tension effect.

Wang and Rose [81] applied mass and momentum equations on the liquid phase in

order to predict the liquid film distribution for condensing flow in microchannels. Neb-

uloni and Thome [82] developed a numerical model for condensing laminar annular flow

in microchannels for different channel shapes. Their study contemplates several interface

phenomena, such as capillarity, wettability and molecular transport, but they used an

one-dimensional equations for the vapour phase. Da Riva et al. [83] used the Volume of

Fuid (VOF) method to the annular flow with the purpose to predict liquid film thickness

distribution and heat transfer coefficient. Nevertheless, the VOF method requires a con-

siderable computational effort and it has not been validated in a wide range of channel

sizes and working fluids.

It is clear that the theoretical modelling of two-phase annular flow is a highly inves-

tigated topic of research. However, despite the great number of studies which take many

physical phenomena into account, such as radial velocity profile in the liquid film, tur-
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bulent flow, wettability effect, there is a lack of theoretical models which solve the mass

and momentum equations on both phases and, therefore, able to predict liquid film, in-

terfacial shear stress and field of velocity in the tangential direction with a reasonable

computational effort.

2.5 Upward liquid transport mechanisms

As it is well-known, the gravitational force causes the stratification of the liquid film

in horizontal annular flow. Nevertheless, it is still not clear which force or transport

mechism toward the tube top may sustain the liquid film and, therefore, counterbalance

the gravitational liquid transport toward the tube top. The following mechanisms are

usually recognised:

• surface tension: in small-diameter channels, the distribution of the interface curva-

ture induces pressure gradient in the tangential direction, pumping the liquid film

upward.

• secondary flow (Laurinat et al. [79], Lin et al. [84], Flores et al. [85]): in the cross-

section of the channel, counter-rotating velocitiy fields in the vapour phase drag

the liquid film upward by tangential shear-stress; secondary flows can be induced

by wall-roughness variation (Darling and McManus [86]), by non-uniform droplet

concentration (Belt et al. [87]), or by non-circular cross-section (Speziale [88]);

• liquid entrainment and deposition (Russel and Lamb [89]): the entrainment rate is

greater at the tube bottom because of the thinner liquid film, whereas the deposition

rate may be predominant at the tube top, contributing to replenish the liquid film

in the latter zone;

• wave spreading and mixing mechanism (Butterworth and Pulling [90], Jayanti et al.

[91]): due to the non-uniform liquid film thickness, the disturbance waves spread

over the circumference;

• pumping action of disturbance wave (Fukano and Ousaka [80], Sutharshan et al.

[92]).

Sutharshan et al. [92], by means of photo-chromic spot activation technique, demon-

strated that the pumping action of the disturbance waves plays the most important role

in the liquid upward transport. They showed that the liquid film between two consecutive

disturbance waves is continuously drained downward by the gravity. The replenishment

of the liquid film at the tube top occurred at the passage of such disturbance waves.

Jayanti and Hewitt [93], by means of CFD simulations, showed that the secondary flows

are induced by the tangential variation of the interfacial roughness. Nevertheless, an ax-

ial variation of such interfacial roughness destroys the secondary flows near the interface,
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negating the possibility to redistribute the liquid film along the tube circumference by

such a mechanism.

Recently, Fukano and Inatomi [94], carrying out a Direct Navier-Stokes (DNS) analysis

for horizontal annular flow, stated that the predominant mechanism is the pumping action

of disturbance waves. van’t Westende et al. [95] investigated the role of the secondary

flows on the deposition rate of liquid droplets. They stated the secondary flows may

ensure a near-uniform deposition rate over the circumference, contrasting the effect of the

gravitational force on the liquid droplets.

McCaslin and Desjardins [96] analysed the gravitational effect on horizontal gas-liquid

annular flow, showing that ripples and deposition are mostly responsible to the transport

of the liquid phase upward and to supply the top film thickness.



Chapter 3

A TWO-DIMENSIONAL MODEL

FOR ANNULAR FLOW

In this study, a new model for horizontal two-phase annular flow in circular channels is

presented. Two-dimensional mass and momentum equations are applied on the liquid

and the vapour phases, neglecting the variation along the radial direction of velocity and

pressure. Nevertheless, laminar or turbulent conditions are taken into consideration. The

capillarity is solely contemplated as interface phenomenon. The scope of the model is

to reduce the number of equations and, hence, the computational time with respect to

the most detailed models currently available in literature. In spite of the reduction of

equations, a validation based on experimental data over a wide range of operational con-

ditions for pressure drops and liquid film thickness is presented. The range of operational

conditions in terms of reduced pressure, channel diameter and working fluid is the wider

available in literature, including those conditions affected by intense stratification.

3.1 Derivation of the fundamental equations

The main feature to be performed by the model is the liquid film distribution along the wall

of the pipe. It is well-known that such distribution is solely caused by the gravity, if any

other mass forces on the liquid phase are not involved. A semi-theoretical two-dimensional

model for two-phase annular flow is derived afterwards. Such a model is derived from the

fundamental equations of mass conservation and momentum balance. The assumptions

on which the equations are based are:

• annular flow pattern;

• steady state flow;

• in non-anon-adiabatic condition, the thermal power is entirely used for the phase

31
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Figure 3.1: Reference system in cylindrical coordinates.

change, in such a way that the following energy balance is verified:

dṁLV =
q̇ · dAht

hLV
(3.1)

where dṁLV is the mass flow rate of phase change in a elementary control volume, q̇

is the heat flux at the wall, dAht is the elementary heat transfer area and hLV is the

latent heat of vaporization.

• smooth liquid-vapour interface;

• no entrainment of liquid droplets in the vapour core.

3.1.1 Coordinate reference system

A cylindrical coordinates system is used as illustrated in Fig. 3.1. The height axis z lies

in the axis of symmetry of the pipe, on the flow’s direction, and the point z = 0 is set to

the inlet section. The azimuthal axis θ is located along the tangential direction of the

channel section and points downward. For sake of reference, in each section the points at

θ = 0 and θ = π are referred as tube top and tube bottom, respectively.

3.1.2 Description of the geometry

Because of the assumption of annular flow, the vapour phase flows as a core enclosed

by a liquid film which wets the entire periphery of the wall. Referring to the cylindrical

coordinates, the liquid-vapour interface is completely described by the radius of the vapour

core r(z,θ). Taking into consideration an infinitesimal control volume, the view sections

are shown in Fig. 3.2, for the axial direction and for the tangential direction respectively.

For the definition of the surfaces of interest, two subscripts are used: the first indicates

the phase, the second designates the normal direction to the surface.

AL,z =
R2 − r2

2
dθ (3.2)
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Figure 3.2: Views sections of an infinitesimal control volume.

AV,z =
r2

2
dθ (3.3)

AL,θ = (R− r)dz (3.4)

AV,θ = rdz (3.5)

For the infinitesimal area of the liquid-vapour interface the subscript i is used, whereas

LW indicates the contact surface between the liquid film and the tube wall.

Ai = rdzdθ (3.6)

ALW = Rdzdθ (3.7)

It is worth mentioning that the liquid-wall contact surface ALW equals the elementary

heat transfer area dAht.
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3.1.3 Liquid-vapour interface equation

In two-phase flow, the liquid-vapour interfase can be modelled as an infinitely thin mem-

brane having a stretching resistance, which is quantified by the surface tension σ . The

Young-Laplace equation states that the difference between the vapour pressure and the

liquid pressure is a function of the surface tension and the mean curvature of the interface:

pV − pL = 2σκ (3.8)

The mean curvature κ is a geometrical property of a surface [97], and it is defined as

follows:

κ =
1
γ1

+
1
γ2

(3.9)

In Eq. (3.9), γ1 and γ2 are the principal radii of curvature. Accordingly to the

geometry of the annular flow pattern, the radius of curvature in the axial direction is

significantly larger than the one in the tangential direction. Hence, the mean curvature

is computed considering only the dependence of r along the θ axis. In polar coordinates,

the curvature is determined as:

κ =
r2 +

(
∂r
∂θ

)2

− r
(
∂2r
∂θ2

)
(
r2 +

(
∂r
∂θ

)2
) 3

2

(3.10)

3.1.4 Mass balance for the liquid phase

The mass variation in the liquid phase is due to the phase change, as illustrated in Fig.

3.3. As a vector quantity, the velocity can be decomposed in the two scalar quantities u

and v, which indicate the velocity of each phase in the axial direction and in the tangential

direction, respectively. The liquid mass balance in a infinitesimal control volume is given

by the Eq. (3.11).

dṁL,z + dṁL,θ = −dṁLV (3.11)

Rearranging the Eq. (3.11) with the definition of the surfaces in Eqs. (3.2) and (3.4)

and the energy balance in Eq. (3.1), the liquid mass balance leads to Eq. (3.12) and Eq.

(3.13).

∂
(
AL,zuL

)
∂z

dz+
∂
(
AL,θvL

)
r∂θ

rdθ = − q̇ ·R
ρLhLV

dzdθ (3.12)

−uLr
∂r
∂z

+
R2 − r2

2
∂uL
∂z
− vL

∂r
∂θ

+ (R− r) ∂vL
∂θ

= − q̇ ·R
ρLhLV

(3.13)
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Figure 3.3: Mass balance on an infinitesimal control volume for the liquid phase.
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Figure 3.4: Mass balance on an infinitesimal control volume for the vapour phase.

3.1.5 Mass balance for the vapour phase

As shown in Fig. 3.4, the mass balance for the vapour phase can be formulated as in Eq.

(3.14). It should be noted that the choice of sign in the source term is congruent with an

evaporation process. However, the mass balance equations are still valid for a condensing

flow if a negative heat flux is considered.

dṁV,z + dṁV,θ = dṁLV (3.14)

Using Eqs. (3.3) and (3.5) for the surfaces and the energy balance in Eq. (3.1), the

vapour mass balance can be arranged as follows:

∂
(
AV,zuV

)
∂z

dz+
∂
(
AV,θvV

)
r∂θ

rdθ =
q̇ ·R
ρVhLV

dzdθ (3.15)

uVr
∂r
∂z

+
r2

2
∂uV
∂z

+ vV
∂r
∂θ

+ r
∂vV
∂θ

=
q̇ ·R
ρVhLV

(3.16)
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Figure 3.5: Momentum balance in the axial direction for the liquid phase.

3.1.6 Momentum equation in the axial direction for the liquid phase

For an infinitesimal control volume on the liquid phase, the momentum equation along the

z direction is shown graphically in Fig. 3.5. It should be noted that an angle φ is needed

because of the inclination of the liquid-vapour interface. Two frictional shear stresses

appear at the wall surface and at the liquid-vapour interface, respectively. The latter

points the flow’s direction, because, in such situations, the relation uV > uL is verified.

Finally, a source term is present due to the phase change. The z−momentum balance for

the liquid phase assumes, hence, the form expressed in Eq. (3.17).

ρL
∂
(
AL,zu

2
L

)
∂z

dz+ ρL
∂
(
AL,θvLuL

)
r∂θ

rdθ = −
∂
(
AL,zpL

)
∂z

dz+

Ai2σκ sin(φ)−AipV sin(φ)− dṁLVuL +Aiτi,zcz(φ)−ALWτLW,z (3.17)

cz(θ), defined in Eq. (3.18), is a correction factor which takes into account the incli-

nation of the interface with respect to the z axis.

cz(φ) = cos
(

arctan
(
∂r
∂z

))
(3.18)

Using the Eqs. (3.2) and (3.4) for the surfaces, the Young-Laplace equation Eq. (3.8),

and Eq. (3.1) for the energy balance, Eq. (3.17) can be rearranged as follows:

ρL
∂
(
AL,zu

2
L

)
∂z

dz+ ρL
∂
(
AL,θvLuL

)
r∂θ

rdθ =

−AL,z
∂pL
∂z

dz − q̇ ·R
hLV

uLdzdθ +Aiτi,zcz(φ)−ALWτLW,z (3.19)

− ρLu2
Lr
∂r
∂z

+ ρL
(
R2 − r2)uL∂uL∂z − ρLvLuL ∂r∂θ + ρL(R− r)uL

∂vL
∂θ

+ ρL(R− r)vL
∂uL
∂θ

=

−
(
R2 − r2)

2
∂pL
∂z
− q̇ ·R
hLV

uL + rτi,zcz(φ)−RτLW,z (3.20)
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Figure 3.6: Momentum balance in the tangential direction for the liquid phase.

3.1.7 Momentum equation in the tangential direction for the liquid phase

The forces acting on the liquid phase infinitesimal control volume in the tangential direc-

tion are shown in Fig. 3.6. A gravitational force appears in the balance. This term is

extremely important because it is responsible for the liquid film stratification. An angle

ψ is introduced, in order to quantify the inclination of the interface with respect to the θ

axis. It is worth noting that the interfacial shear stress is opposed to the flow verse. This

occurs because vL and vV are opposite in sign. The momentum equation in the tangential

direction for the liquid phase is given by the following equation:

ρL
∂
(
AL,θv

2
L

)
r∂θ

rdθ + ρL
∂
(
AL,zuLvL

)
∂z

dz = −
∂
(
AL,θpL

)
r∂θ

rdθ+

Ai2σκ sin(ψ)−AipV sin(ψ) + ρLgAL,z sin(θ)dz −Aiτi,θcθ(ψ)−ALWτLW,θ (3.21)

For the inclination of the liquid-vapour interface, the correction factor cθ(ψ) is com-

puted as in Eq. (3.22).

cθ(ψ) = cos
(

arctan
(
∂r
r∂θ

))
(3.22)

Rearranging Eq. (3.21) with Eqs. (3.2), (3.4) and (3.8), the following can be obtained:

ρL
∂
(
AL,θv

2
L

)
r∂θ

rdθ + ρL
∂
(
AL,zuLvL

)
∂z

dz =

−AL,θ
∂pL
r∂θ

rdθ + ρLgAL,z sin(θ)dz −Aiτi,θcθ(ψ)−ALWτLW,θ (3.23)
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Figure 3.7: Momentum balance in the axial direction for the vapour phase.

− ρLv2
L

∂r
∂θ

+ 2ρL(R− r)vL
∂vL
∂θ
− ρLuLvLr

∂r
∂z

+ ρL

(
R2 − r2)

2
vL
∂uL
∂z

+ ρL

(
R2 − r2)

2
uL
∂vL
∂z

=

− (R− r)∂pL
∂θ

+ ρLg

(
R2 − r2)

2
sin(θ)− rτi,θcθ(ψ)−RτLW,θ (3.24)

3.1.8 Momentum equation in the axial direction for the vapour phase

The vapour phase infinitesimal control volume is shown in Fig. 3.7, including the forces

acting in the axial direction. The angle φ appears in order to quantify the inclination

of the interface, as done for the liquid phase. The frictional shear stress at the interface

is reverse in respect to the vapour flow. The momentum equation assumes the following

expression:

ρV
∂
(
AV,zu

2
V

)
∂z

dz+ ρv
∂
(
AV,θvVuV

)
r∂θ

rdθ = −
∂
(
AV,zpV

)
∂z

dz

Ai2σκ sin(φ) +AipL sin(φ) + dṁLVuv −Aiτi,zcz(φ) (3.25)

It is possible to use the Eqs. (3.3), (3.4) and (3.8) in order to rearrange the Eq. (3.28).

Consequently, Eqs. (3.26) and (3.27) are derived.

ρV
∂
(
AV,zu

2
V

)
∂z

dz+ ρV
∂
(
AV,θvVuV

)
r∂θ

rdθ = −AV,z
pV
∂z

dz+ dṁLVuV −Aiτi,zcz(φ) (3.26)

ρVu
2
Vr
∂r
∂z

+ ρVr
2uV

∂uV
∂z

+ ρVvVuV
∂r
∂θ

+ ρVruV
∂vV
∂θ

+ ρVrvV
∂uV
∂θ

=

− r
2

2
∂pV
∂z

+
q̇ ·R
hLV

uV − rτi,zcz(φ) (3.27)
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Figure 3.8: Momentum balance in the tangential direction for the vapour phase.

3.1.9 Momentum equation in the tangential direction for the vapour phase

In Fig. 3.8, the forces acting on the vapour phase infinitesimal control volume in tangential

direction are represented. The following equation is derived.

ρV
∂
(
AV,θv

2
V

)
r∂θ

rdθ + ρV
∂
(
AV,zuVvV

)
∂z

dz = −
∂
(
AV,θpV

)
r∂θ

rdθ+

Ai2σκ sin(ψ) +AipL sin(ψ) + ρVgAV,z sin(θ)dz+Aiτi,θcθ(ψ) (3.28)

Using Eqs. (3.3), (3.5) and (3.8), it is possible to obtain:

ρV
∂
(
AV,θv

2
V

)
r∂θ

rdθ + ρV
∂
(
AV,zuVvV

)
∂z

dz = −AV,θ
∂pV
r∂θ

rdθ + ρVgAV,z sin(θ)dz+Aiτi,θcθ(ψ)

(3.29)

ρVv
2
V

∂r
∂θ

+ 2ρVrvV
∂vV
∂θ

+ ρVuVvVr
∂r
∂z

+ ρV
r2

2
vV
∂uV
∂z

+ ρV
r2

2
uV
∂vV
∂z

=

− r ∂pV
∂θ

+ ρVg
r2

2
sin(θ) + rτi,θcθ(ψ) (3.30)

It should be noted that the sign of the interfacial frictional shear stress in Eqs. (3.28),

(3.29) and (3.30) is consistent with the experimental and numerical studies of Sutharshan

et al. [92], Paras and Karabelas [63], Flores et al. [85], van’t Westende et al. [95], Höhne

et al. [98].
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3.2 Treatment of the frictional shear stresses

3.2.1 Liquid-wall frictional shear stress

Most authors, among which Whang Na and Chung [71], Kim and Mudawar [73, 74],

Nebuloni and Thome [82], Da Riva et al.[83], used the Newton Law for fluid flow in

order to calculate the friction between liquid film and wall. Alipchenkov et al. [68] and

Revellin and Thome [69] utilized single-phase correlations. In the present study, in order

to propose a more simple model, single-phase correlations are used. In the axial direction,

the frictional shear stress can be computed as follows:

τLW,z = f
1
2
ρLu

2
L (3.31)

The friction factor f is computed with the Haigen-Poiseulle’s equation and the Blasius’

equation, for laminar and turbulent flow respectively.

f =

16/Re, if Re < 2300;

0.0791Re−0.25, if Re ≥ 2300.
(3.32)

The Reynolds number ReL,z and the hydraulic diameter DL,z, to be used in Eqs. (3.31)

and (3.32), are given in Eqs. (3.33) and (3.34).

ReL,z =
ρLuLDL,z

µL
(3.33)

DL,z = 2
(
R2 − r2

R

)
(3.34)

In the tangential direction, the frictional shear stress is given by:

τLW,θ = f
1
2
ρLv

2
L (3.35)

Eqs. (3.36) and (3.37) respectively assign the values for the Reynolds number ReL,θ
and the hydraulic diameter DL,θ to be used in Eqs. (3.35) and (3.32).

ReL,θ =
ρLvLDL,θ

µL
(3.36)

DL,θ = 4(R− r) (3.37)

3.2.2 Interfacial shear stress

The interface is not smooth, but presents waves and tends to act as a rough surface for

both the vapour core and the liquid film. The Moeck’s correlation [54] was obtained

for disturbance wave region in air-water flow. Fukano and Furukawa [44] proposed a

correlation for vertical air-water flows. Wang and Rose [81] and Nebuloni and Thome [82]
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followed the approach of [99], including a correction factor for the condensation effect.

Alipchenkov et al. [68] used a modified Wallis’ correlation. Kim and Mudawar [73, 74]

utilized the correlation of [100]. Kishore and Jayanti [67] and Belt et al. [101] used a

sand-grain roughness approach, but fitting the sand-grain roughness ks in a narrow range

of experimental data. The single-phase correlation for laminar flow is used by Whang

Na and Chung [71]. Fore et al. [53] proposed a modified Wallis’ correlation in order to

better predict the interfacial friction factor. in transition roughness regime. In the studies

of Schubring and Shedd [50, 61], a correlation for fully-rough regime was used. although

the interfacial shear stress is an active field of research, the most reliable correlation, for

operational conditions and working fluids analysed in this paper, seems to be the Wallis’

one. For the axial direction, the interfacial shear stress is defined as follows:

τi,z = fi
1
2
ρV(uV −ui) |uV −ui| (3.38)

According to Wallis, the interface velocity ui can be computed as

ui = 2uL (3.39)

The interfacial friction factor fi results to be a function of the liquid film thickness and

the friction factor of the vapour core.

fi = f
(

1 + 300
δ
D

)
(3.40)

In Eq. (3.40), the friction factor f is computed as in Eq. (3.32) on condition that the

velocity uV, the thermodynamic properties of the vapour core and the hydraulic diameter

defined DV,z in Eq. (3.41) are used.

DV,z = 2r (3.41)

In the tangential direction, it is assumed that the interface velocity is null. Hence, the

interfacial shear stress is defined as:

τi,θ = fi
1
2
ρVv

2
V (3.42)

The interfacial friction factor is given in Eq. (3.40). The friction factor of the vapour

core is computed using the velocity vV and the hydraulic diameter given in Eq. (3.43).

DV,θ = 4r (3.43)
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Chapter 4

NUMERICAL ANALYSIS AND

VALIDATION

4.1 Numerical method

Eqs. (3.8), (3.13), (3.16), (3.20), (3.24), (3.27) and (3.30) compose a system of 7 non-

linear differential equations in 7 unknowns (r, uL, vL, pL, uV, vV, pV). Such a system

can be solved with the aid of an iterative numerical method. In the present work, the

Finite Difference method is used [102]. The domain is subdivided in a mesh of nz · nθ
nodal points, being nz and nθ the number of nodal points along the z-axis and the θ-axis,

respectively. In Fig. 4.1, a representation of such mesh is shown. The quantities i and j

enumerate the nodal points along the z-axis and the θ-axis, respectively. The derivatives

appearing in the aforementioned equations are computed with the backward and central

difference approximations, depending on the position of the nodal points, as indicated

in Table 4.1. It is worth mentioning that a boundary condition has been set in the inlet

section, assuming an axial-symmetric liquid film distribution, which is computed by means

of the the Rouhani-Axelsson’s correlation [20]. The discretized form of the fundamental

equations are applied on each node in order to compose an linear system. Three features

are investigated for the purpose of verify the reliability of the solution of such a system:

accuracy of solution, ill-conditioning, numerical convergence and stability.

4.1.1 Accuracy of solution

The linear system can be written in matrix form as

Ax = B (4.1)

where A, x and B are the matrix of coefficients, the column vector of unknowns and the

column vector of known coefficients. For sake of completeness, the sparsity patterns of

the matrix A for the nodal points in one cross-section and for the nodal points in four

neighbouring cross-sections are shown in Fig. 4.2 and Fig. 4.3, respectively.

43
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Figure 4.1: Mesh of nodal points for the Finite Difference method.

Approximation Discrete operator Truncation error Nodal points

Backward
x(i,j)−x(i−1,j)

∆z ∆z i = nz

Central
x(i+1,j)−x(i−1,j)

2∆z ∆z2 i = 2,nz − 1

Central
−x(i+2,j)+8x(i+1,j)−8x(i−1,j)+x(i−2,j)

12∆z ∆z4 3 ≤ i ≤ nz − 2

Central
−x(i,j+2)+8x(i,j+1)−8x(i,j−1)+x(i,j−2)

12∆z ∆θ4 1 ≤ j ≤ nθ

Table 4.1: Derivative discrete operators for the Finite Difference method.
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Figure 4.2: Sparsity pattern of the matrix of coefficients for the nodal points in one cross-
section.
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Figure 4.3: Sparsity pattern of the matrix of coefficients for the nodal points in four
neighbouring cross-sections.
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Figure 4.4: MSR against the number of iterations.

In Fig. 4.2, it is possible to note that the first and the last points in the central group,

which are the nodes for the top tube and bottom tube, are characterised by symmetry

condition for the unknowns r, uL, pL, uV, pV and asymmetry condition for the unknowns

vL, vV.

Once the solution of the unknowns in the column vector x has been found, it is possible

to compute the system residuals SR as follows:

SR = Ax-B (4.2)

It is worth mentioning that the matrix of coefficients A is a function of the unknowns in

the column vector x because of the non-linearity of the fundamental equations. The linear

system has to be solved with an iterative method. In order to obtain an accurate solution,

the system residuals have to approach the zero value. In Fig. 4.4, the maximum system

residual (MSR) is reported against the number of iterations for a certain operational

condition. The MSR shows an order of magnitude of 1− 2 · 10−10, ensuring the excellent

accuracy of solutions. Moreover, the solution exists and it is unique, proving that the

problem is well-posed.

4.1.2 Ill-conditioning

In linear systems such as Eq. (4.1), the condition number is a measure of the variation

in the output values for a small change of the input values. Linear systems are well-
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Condition number nz = 500 nz = 1700

2D annular flow model 4.0413 · 1015 1.6065 · 1017

Hilbert 4.4417 · 1020 1.2795 · 1021

Poisson 4.1357 · 104 1.4093 · 105

Table 4.2: Condition numbers estimation and comparison.

conditioned if the condition number is sufficiently near the unit value, otherwise they

are said to be ill-conditioned. The condition number is greater or equal to 1 and it is a

property of the matrix of coefficients A. Hereinafter, the condition number are calculated

by means of the 1-norm condition estimator of Hager. In Table 4.2, the condition numbers

are reported for the matrix of coefficients A of the two-dimensional annular flow model,

Hilbert matrix, and 5-point Poisson matrix. The Hilbert matrix has been chosen because

it is a classical example of ill-conditioned system, whereas the Poisson matrix has been

investigated for sake of comparison to a well-conditioned problem. Considering a number

of elements for the Hilbert matrix equal to the square root of the number of non-zero

values in the two-dimensional model matrix, it can be deducted that the two-dimensional

annular flow problem is not ill-conditioned. As a matter of fact, the difference between

the two condition numbers is about 4 orders of magnitude. However, by comparison

with the Poisson matrix, the solution of such a model may be subject to rounding error.

Nevertheless, such an approximation is acceptable enough for the purpose of this study.

4.1.3 Numerical convergence and stability

The numerical convergence has been examined through a monitoring of the solution of

the linear system against the variation of the number of nodal points. The stability of the

numerical method is evaluated with the maximum relative residual (MRR), defined as:

MRR =max
(

xiter − xiter-1

xiter-1

)
(4.3)

In Eq. (4.3), y indicates the iteration. Considering a trade-off between accuracy of the

solution and the computational time, the value of the maximum relative residual had been

set to 10−2 as stop criterion. For sake of example, a convergence plot of the maximum

relative residual against the number of iterations is shown in Fig. 4.5 on varying the

number of nodal points. It results that the more dense the grid, the more stable the

solution.
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Figure 4.5: MRR against the number of iterations.

4.2 Validation of the model

4.2.1 Pressure drop experimental database description

The model has been validated against an experimental pressure drop database from Padilla

et al. [103], Mastrullo et al. [104] and Revellin and Thome [105]. The details of the

database are summarized in Table 4.3. It consists of 107 data points, 60 for conventional

channels split among R134a, R410A and R1234yf, 23 for the carbon dioxide, and 24 for

microchannels. It is worth noting that the database include operational conditions in

which the stratification of the liquid film is significative. In Fig. 4.6, the distribution of

the data points against the operational variables and the density ratio is shown. The data

points against the mass flux and the saturation temperature are well-distributed. The

vapour quality shows the typical transition from higher values in conventional channel to

lower values in microchannels. It is worth to noting that the distribution of the density

ratio is staggered for conventional channel data points. Such behaviour is a consequence

of the different critical temperatures of the fluids which compose the database.

4.2.2 Pressure drop comparison between model and experimental data

In Fig. 4.7, it is shown the discrepancy between the solutions of the model and the

experimental data for the whole pressure drop database. The RME, the MRE and the

P20 results to be 8.72 %, 24.94 % and 94.4 %, respectively, ensuring the validity of
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D [mm] Fluid G [kg/(m2s)] T [◦C] x [−]

R134a 299.8 - 948.7 10.31 - 20.35 0.4034 - 0.6170

7.9 - 10.85 R1234yf 300.5 - 1147.9 14.88 - 15.78 0.3939 - 0.6051

R410A 368.8 - 1667.9 5.761 - 21.21 0.3970 - 0.6271

6 R744 300.0 - 350.0 4.50 - 5.10 0.4180 - 0.840

0.517 R134a 475.2 - 1986.9 18.79 - 29.35 0.0849 - 0.4000

Table 4.3: Experimental pressure drop database.
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Figure 4.6: Data points distribution against the operational variables (Red: conventional
channels; Blue: microchannels; Green: carbon dioxide).
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Figure 4.7: Comparison between the solutions of the model and the experimental data for
the pressure drop.

the model. From the scatter plot, it seems that the model slightly overestimates the

experimental data. The authors share this opinion because this behaviour is due to the

absence of equations which take into account the entrainment of liquid droplets. Indeed,

the overestimation does not occur for R410A data points. The density ratio and the surface

tension, the main thermodynamic properties affecting the entrainment [38, 106, 107], are

lower for R410A than the other two refrigerants, according to the operational conditions

described previously. This behaviour is also verified with the carbon dioxide, which is the

working fluid with the more intense stratification in the selected database. Regarding the

pressure drop in microchannels, it appears that the discrepancy between the model and

experiments does not follow any particular behaviour.

4.2.3 Liquid film thickness experimental database description

A comparison has been carried out between experimental and predicted liquid film thick-

ness. The experimental data points has been choosen from the database of Luninski [108]

and they are composed by 10 operational conditions for flow of air-water mixture at room

temperature. The details of the database are given in Table 4.4.

4.2.4 Liquid film thickness comparison between model and experimental data

In Fig. 4.8, the comparison between experimental data and model predictions is shown.

It is worth mentioning that liquid film measurements is a diffcult task. A study carried
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D [mm] Fluid JL [m/s] JV [m/s] p [kP a]

8.15, 9.85, 12.30 air - water 0.16 - 0.40 10 - 40 100

Table 4.4: Experimental liquid film thickness database.
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Figure 4.8: Liquid film thickness comparison between the solutions of the model and the
experimental data for air-water.

out by Damsohn and Prasser [109] with the electrical conductance method shows that, for

thin liquid film in air-water annular flow pattern, the measurement error may amount to

50 %. Recently, Ashwood et al. [110], using a micro-scale PIV measurement technique,

declared a maximum uncertainty in the wall shear stress of 15 %, although it is not clear

how this uncertainty propagates in the liquid film thickness. Regarding this comparison,

it is undeniable that the discrepancy is significantly large for some measurements, since

the MRE results to be 70.9 %. However, the model may comprehensively be considered

as a good predictor for the liquid film thickness, namely RME = 21.5 % and P30 = 80.8

%.
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Chapter 5

MODEL ASSESSMENT AND

APPLICATION

5.1 Liquid film thickness and pressure drop

The pressure drop in annular flow is usually computed by means of an one-dimensional

force balance on the vapour core, provided that the average liquid film thickness and the

interfacial shear stress are known. Hereinafter, pressure drop is intended to be calculated

solving the two-dimensional and founding the dp/dz in the liquid phase.

A comparison about the calculation of the liquid film thickness between the two-

dimensional model and the Hurlburt’s and Newell’s correlation [40] is reported in Fig.

5.1. It is possible to note that the two-dimensional model and the Hurlburt’s and Newell’s

correlation are in satisfactory agreement in the prediction of the liquid film thickness in

tube top and average values, whereas a certain difference results for the tube bottom

values. However, it is clear that the two-dimensional model tends to overestimate the

liquid film thickness. In more detail, the difference in the solution between the the methods

increases for lower values of the saturation temperature (figures 5.1a and 5.1b) and for

higher values of the mass flux (figures 5.1c and 5.1d). The two-dimensional model presents

such behaviours because it neglects the influence of two peculiar phenomena of annular

flow, namely the entrainment of liquid droplets and the disturbance waves. These events

exhibit a growing influence on annular flow as the difference between liquid film flow

rate and the critical liquid mass flow rate for the disturbance waves incipience increases

[111, 112]. In Table 5.1, the liquid phase mass flux GL, the critical mass flux for the onset

of entrainment GLFC and the entrainment mass flux GLE are calculated for the fluids and

operational conditions shown in Fig. 5.1. According to the previous considerations, the

greater the entrainment mass flux, the more the discrepancy between the two methods.

Under the same operational conditions, a comparison with a pressure drop correlation

has been carried out in Fig. 5.2. Among numerous pressure drop correlations for two-

phase flow [113], the Müller-Steinhagen’s and Heck’s correlation has been chosen because

of its good accuracy in the pressure drop prediction for refrigerants in the operational

53
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Figure 5.1: Comparison on the liquid film thickness correlation between the two-
dimensional model and the Hurlburt’s and Newell’s correlation.

Case GL[kg/m2s] GLFC[kg/m2s] GLE[kg/m2s]

a) 160 11.5 0.4735

b) 160 8.97 0.3579

c) 160 8.42 0.3988

d) 280 8.42 1.0089

Table 5.1: Mass flux, critical mass flux and entrainment rate of the liquid phase for the
cases shown in Fig 5.1, calculated at vapour quality 0.6.
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Figure 5.2: Comparison on the pressure drop prediction between the two-dimensional
model and the Müller-Steinhagen’s and Heck’s correlation.

conditions and channel sizes of interest. As expected, the pressure drop prediction of

the two-dimensional model shows greater values in comparison to the Müller-Steinhagen’s

and Heck’s correlation. The discrepancy between the two methods tends to decrease at

relatively low pressure drop conditions, namely at higher values of saturation temperature

and lower values of mass flux.

Fig. 5.3 reports the influence of the gravity acceleration on the pressure drop. The

less the gravity acceleration, the less the pressure drop. This trend can be explained

as follows. The asymmetry in the liquid film distribution causes an asymmetry in the

liquid-wall frictional shear stress and in the interfacial shear stress. This effect can be

deducted from Fig. 5.4. whereas the former is decreased with the stratification, the latter

is increased. It is worth noting that axial liquid velocity is only barely affected by the

stratification. Because of the high values of the void fraction, the increase in the interfacial

shear stress rules against the decrease in the liquid-wall frictional shear stress. Hence, the

stratification causes an accretion on the pressure drop. Nevertheless, for R410A at 40
◦C of saturation temperature and 400 kg/(m2 · s) of mass flux, the relative difference on

the pressure drop between normal gravity and micro-gravity equals -3.9 %. Therefore,
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Figure 5.3: Influence of the gravity acceleration on the pressure drop.
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Figure 5.4: Influence of the gravity acceleration on (a) liquid film distribution, (b) axial
liquid velocity, (c) liquid-wall frictional shear stress and (d) interfacial shear stress.
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Figure 5.5: Comparison on the heat transfer prediction between the two-dimensional model
and the Shah’s correlation.

the influence of the stratification on the pressure drop losses significance as the interfacial

shear stress increases.

5.2 Heat transfer coefficient

The liquid film distribution causes also a variation on the heat transfer coefficient in the

cross-section. It is worth recalling the definition of heat transfer coefficient and Nusselt

number in two-phase flow, given respectively by the following equations:

h =
q̇

(TW − Tsat)
(5.1)

Nu =
hδ
kL

(5.2)

It is worth mentioning that, once the liquid film distribution is known, the calculation of

the heat transfer coeffcient is possible by using Eqs. (2.60) and (2.62).

A comparison has been carried out in Fig. 5.5 between the cross-sectional average
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value of heat transfer coefficient obtained by the two-dimensional model and the Shah’s

correlation [114], which is one of most accurate for condensing flow. The reason that

have led to the selection of a correlation for condensation is the absence of the nucleation

and entrained liquid droplets phenomena in the two-dimensional model. It is well-known

that such events do not occur in condensing annular flow, whereas are peculiar during

evaporation. The agreement between the two methods results to be very satisfactory.

In Fig. 5.6, the liquid film distribution, the dimensionless liquid film thickness, the

liquid Nusselt number and the local heat transfer coefficient are shown on varying the

saturation temperature of the working fluid. The liquid film stratification increases as

the saturation temperature increases, because of the lower values of density ratio between

the liquid and the vapour phases. Despite the variation of the dimensionless liquid film

thickness may suggest a strong convection at the tube bottom, the local heat transfer

increases moving toward the tube top. For instance, in the conditions described in Fig.

5.6, with R134a at 60 ◦C of saturation temperature, the top heat transfer coefficient and

the bottom heat transfer coefficient yield a discrepancy against the average heat transfer

coefficient of 3.52 % and -7.15 %, respectively. It is clear that such a discrepancy grows

in magnitude as the saturation temperature increases. In Table 5.2, the liquid thermal

conductivity for some working fluids is reported on varying the saturation temperature.

The difference between the heat transfer coefficient curves in Fig. 5.6d are mainly due to

the decrease of the liquid thermal conductivity against the saturation temperature.

The influence of the channel diameter on liquid film distribution, dimensionless liquid

film thickness, liquid Nusselt number and local heat transfer coefficient is reported in

Fig. 5.7. As expected, the stratification losses significance for lower values of the channel

diameter. It is worth noting that higher values of the heat transfer coefficient for the

R245fa respect to the R134a are mainly due to the lower values of liquid film thickness.

Indeed, the liquid thermal conductivity and the liquid Nusselt number are very similar for

these two fluids. The tangential variation of the heat transfer coefficient shows the same

trend encountered previously. For sake of instance, in the same conditions reported in

Fig. 5.7, the top heat transfer coefficient for R245fa in 10 mm channel diameter presents

a relative difference against the average value of 1.47 %, whereas the bottom heat transfer

coefficient diverges from the average value by -1.91 %.

In Fig. 5.8, the liquid film distribution, the dimensionless liquid film thickness, the

liquid Nusselt number and the local heat transfer coefficient are shown on varying the

kL [10−3W/(mK)] Tsat = 30◦C Tsat = 50◦C Tsat = 70◦C

R134a 79.0 70.4 61.7

R245fa 86.5 80.2 73.7

Table 5.2: Liquid thermal conductivity for some working fluids on varying the saturation
temperature.
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Figure 5.6: Influence of the saturation temperature on (a) liquid film distribution, (b)
dimensionless liquid film thickness, (c) liquid Nusselt number and (d) local heat transfer
coefficient.

vapour quality. It is possible to note that the heat transfer coefficient approaches to a

maximum at about 0.81 of vapour quality. The reason in the decrease of the heat transfer

rate may be explained by means of the liquid film thermal resistances in the laminar

sublayer, buffer layer and turbulent core. Such thermal resistances are shown in Fig.

5.8, for the same operational conditions and working fluid of Fig. 5.8. Three important

features can be deducted:

• The magnitude of the turbulent core’s thermal resistance is negligible compared to

the laminar sublayer’s and the buffer layer’s. This observation leads to the conse-

quence that the conduction mechanism dominates on the convection in the conditions

here analysed. Therefore, the stratification of the liquid film ensures a decrease of

the heat transfer coefficient toward the tube bottom.

• A positive variation of the heat transfer coefficient toward the tube bottom may

only be possible for great variation of the interfacial shear stress in the tangential

direction. This event is realised in conditions of high values of ratio between bottom

film thickness and channel diameter.
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Figure 5.7: Influence of the channel diameter on (a) liquid film distribution, (b) dimension-
less liquid film thickness, (c) liquid Nusselt number and (d) local heat transfer coefficient.

• The share of the turbulent core’s thermal resistance decreases as the vapour quality

increases. It seems that the value of vapour quality, at which the heat transfer coef-

ficient shows a maximum, corresponds nearly to the disappearance of the turbulent

core’s thermal resistance.

The decrease of the heat transfer coefficient toward to the tube bottom has been

found in all the conditions analysed in this study, and the behaviour seems to be in

contrast to the data of Zimmerman et al. [29]. It results that, whereas the conditions and

the thermodynamic properties promote the turbulence at the tube bottom in air-water

flows, the conduction dominates in refrigerants flows. Therefore, the effect of the liquid

film stratification on the heat transfer coefficient differs varying the working fluids and

operational conditions.
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Figure 5.8: Influence of the vapour quality on (a) liquid film distribution, (b) dimensionless
liquid film thickness, (c) liquid Nusselt number and (d) local heat transfer coefficient.
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Figure 5.9: Thermal resistances distribution for laminar sublayer, buffer layer and turbu-
lent core on varying the vapour quality.
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Chapter 6

CONCLUSIONS

The fluid mechanics and heat transfer in two-phase flow has always been a challenging

matter. The consequences of the interaction between the liquid and the vapour phases

provide the reasons for the application in a wide field of fluid systems. In the present thesis,

the characterization of the liquid film distribution in horizontal two-phase annular flow

has been investigated in order to understand its effect on the pressure drop and the heat

transfer coefficient. This topic may be very important in the design of heat exchangers

involved by two-phase flows with significant liquid film stratification. The study yielded

the following remarks:

• In literature, the studies concerning the liquid film distribution in annular flow are

several. Direct Navier Stokes (DNS) is the most accurate method, since it can take

complex phenomena into account, such as disturbance waves, but it requires great

computational effort. Correlations for the liquid film distribution is easy to use,

but it is valid in a narrow range of operational conditions and working fluids. A

new method able to predict the liquid film distribution in annular flow is needed,

which can hold simultaneously a satisfactory accuracy and a moderate computational

effort.

• The modelling of the liquid film in horizontal annular flow has still some questions

unanswered. In order to sustain the liquid film, the gravitational force has to be coun-

terbalanced. It is not straightforward to determine which force is main responsible

to this feature. It is evident that more experimental and theoretical investigations

are needed to this feature for the purpose to define a more accurate and general

model.

• A new two-dimensional model has been proposed in order to predict the liquid film

distribution. Such a model resolves the mass and the momentum equations on each

phase, with the aid of proper correlations for the liquid-wall shear stress and the

interfacial shear stress. The main assumptions, on which the model is based, are

the smoothness o the liquid-vapour interface and the absence of entrained liquid

droplets.
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• The two-dimensional model has been validated against an experimental database on

pressure drop and on liquid film thickness. The pressure drop database is endowed

with the following ranges of operational conditions and working fluids: channel di-

ameter 0.517−10.85 mm; fluids R134a, R1234yf, R410A, carbon dioxide; mass flux

300 − 2000 kg/(m2s); saturation temperature 5 − 30◦C; vapour quality 0.08 − 0.8.

In regard to the liquid film database, the compared measurements are allocated

among the following limits: 8.15 − 12.3 mm; fluid air-water; liquid superficial ve-

locity 0.16 − 0.4 m/s; vapour superficial velocity 10 − 40 m/s; pressure 100 kP a.

The comparison between the two-dimensional model and the experimental database

resulted to be satisfactory.

• The liquid film thickness prediction results to be only reliable for relatively low pres-

sure drop conditions. As a matter of fact, the amount of entrainment rate becomes

largely significant in high pressure drop flows, in conflict with the model assump-

tions. This behaviour is confirmed by a comparison between the two-dimensional

model and a pressure drop correlation.

• It results that the more the gravitational acceleration, the more the pressure drop.

The reason for such a behaviour has to be found in the phenomenological nature of

the interfacial shear stress. The increase of the gravity force causes an increase in the

cross-sectional average value of the liquid film thickness, which, in turn, produces

an accretion of the interfacial roughness. However, the influence of the gravitational

acceleration is only significant for low pressure drop flows.

• The tangential variation of the heat transfer coefficient in the liquid film proves to be

negative in the conditions analysed previously. This behaviour is due to the mainly

conductive characteristic of the heat transfer, in contrast to experimental data for

air-water flows present in literature. The turbulent core provides a negligible thermal

resistance, in contrast to the laminar sublayer’s and buffer layer’s. As long as the

stratification occurs, the increase of the film thickness toward the tube bottom causes

an increase of the thermal resistance.

• Such a variation of the heat transfer coefficient become more relevant in high ther-

mal resistance conditions, namely for higher saturation temperature and/or larger

channel diameter. However, the comparison between the two-dimensional model and

a heat transfer coefficient correlation for condensing flow shows an good agreement.

The two-dimensional model proposed in this study is a starting point in order to better

approach at the heat exchanger design involved by horizontal two-phase annular flow.

The model may be improved further taking the entrainment and the deposition of liquid

droplets into account, and using a more accurate model of turbulence for the heat transfer.

However, a wider validation against experimental data on liquid film thickness and heat

transfer coefficient is needed.
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