Fiore, Gianfranco (2015) Identification and control of gene networks in living cells. [Tesi di dottorato]

[img]
Anteprima
Testo
Fiore_Gianfranco_27.pdf

Download (6MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Identification and control of gene networks in living cells
Autori:
AutoreEmail
Fiore, Gianfrancoing.gianfrancofiore@gmail.com
Data: 30 Marzo 2015
Numero di pagine: 144
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Medicina Molecolare e Biotecnologie Mediche
Scuola di dottorato: Biotecnologie
Dottorato: Biologia computazionale e bioinformatica
Ciclo di dottorato: 27
Coordinatore del Corso di dottorato:
nomeemail
Cocozza, Sergiosergio.cocozza@unina.it
Tutor:
nomeemail
di Bernardo, Diego[non definito]
di Bernardo, Mario[non definito]
Data: 30 Marzo 2015
Numero di pagine: 144
Parole chiave: quantitative biology, synthetic biology, system identification, control engineering, mathematical modelling
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/04 - Automatica
Aree tematiche (7° programma Quadro): BIOTECNOLOGIE, PRODOTTI ALIMENTARI E AGRICOLTURA > Scienze della vita, biotecnologia e biochimica per prodotti e processi non-alimentari sostenibili
Depositato il: 07 Apr 2015 10:23
Ultima modifica: 25 Set 2015 09:37
URI: http://www.fedoa.unina.it/id/eprint/10303
DOI: 10.6092/UNINA/FEDOA/10303

Abstract

System identification is a branch of control engineering aimed at developing computational approaches to derive, from measurement data, a quantitative dynamical model of a physical system able to predict its future behaviour. There is a long tradition in the successful application of system identification approaches to Medicine and Physiology, however, in Molecular Biology, only few attempts have been made to infer a quantitative model of gene regulation due to experimental limitations of current techniques. Indeed, whereas in Engineering it is now common to measure thousands of time-points at a desired sampling rate for a physical system to be modelled, this has been very difficult in Biology, where time-series data consist of very few samples. In order to overcome the current limitations, I devised an experimental platform based on a microfluidic device, a time-lapse microscopy apparatus and, a set of automated syringes all controlled by a computer, that allows to provide a time varying concentration of any molecule of interest (input) to a population of cells, and to measure the single-cell response in the form of the fluorescence level of a reporter protein, at a sufficiently high sampling rate, thus making it possible to evaluate the dynamics of the process of interest. I tested the experimental platform to implement and compare different linear and nonlinear system identification approaches to a transcriptional network in the yeast S. cerevisiae. The results I obtained confirm that the experimental system identification platform I developed can successfully be used to infer quantitative models of a eukaryotic promoter in a rapid and efficient manner. Moreover I have used the same experimental set up for the study and the it in-vivo implementation of novel feedback control strategies meant to precisely regulate the level of expression of a protein from the GAL1 endogenous promoter and from a complex synthetic transcriptional network in yeast cells. The proposed effective control approach, allows to generate custom time profiles of a desired protein, and it can be exploited to study trafficking or signalling pathways and the endogenous control mechanisms of a cell.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento