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ABSTRACT  
Dopamine (DA) is a neurotransmitter that plays a number of very important roles in 

humans and other animals, such as regulating movement,	   behavior and cognition. 

Excess and deficiency of DA have been associated with a number of neurological 

diseases, including Parkinson’s disease and drug addiction. To date the molecular 

mechanisms and the key elements involved in these disorders have not completely 

discovered. In C. elegans, studies aimed at understanding the molecular mechanisms 

regulating the DAergic system have taken advantage either of chemical treatments or of 

engineered transgenes. Unfortunately these approaches are not feasible to study the loss 

of function of a gene, while classic genetic mutations can cause pleiotropic effects or 

lethal phenotypes in mutant animals, hampering the study of the role played by a gene 

of interest in DAergic system. In this work I used C. elegans as animal model and a 

powerful variant of RNA-interference approach, to dissect the role played specifically 

and only in DAergic system by two candidate genes, overcoming the technical 

limitations previously described for loss of gene function, such as lethality or 

pleiotropic effects. With this approach I therefore reduced the function of unc-64 gene, 

the ortholog of the mammalian component of the core synaptic vesicle fusion 

machinery Syntaxin1A, only in the C. elegans DAergic system. Using a well known 

behavioral assay in vivo, the SWimming-Induced Paralysis (SWIP), which is known to 

be regulated by endogenous DA uptake by the DA transporter DAT-1, I confirmed that 

the presence of unc-64 in DAergic circuit is important to guarantee a correct 

neurotransmitter reuptake. Moreover I showed that the SWIP effect, produced in the 

nematode after treatment with a psychostimulant such as Amphetamine (AMPH), 

strongly depends on the presence of unc-64 specifically in DAergic circuit, together 

with DAT-1 and DA receptors.  This demonstrates that unc-64 is a novel key modulator 

of DA reuptake mechanism. I then investigated the role of unc-63 gene, the ortholog of 

the mammalian alpha 6 Cholinergic nicotinic receptor CHRNA6, in the C. elegans 

DAergic system. Using microscopy analysis I demonstrated a specific expression of 

unc-63 gene in the nematode DAergic neurons. DAergic related behaviors are not 

impaired in vivo by loss of unc-63, thus demonstrating that unc-63 does not exert a main 

role in regulating the DA signaling in this neuronal circuit. Rather, through a well 

established drug treatment, I showed that unc-63 presence specifically in the DAergic 
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system is necessary to mediate the toxic action produced by the nicotinic agonist DMPP 

(1,1-dimethyl-4-phenylpiperazinium), during larval development. 

In conclusion, all these results validated C. elegans as a powerful animal model where 

to identify new genes playing a role in Daergic neurons and demonstrated all the power 

of our innovative variant of the RNAi approach, which, by the knock-down a gene of 

interest only in these neurons, allows to discover new genetic modifiers of Daergic 

neurotransmission.  
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CHAPTER I  
 

Dopaminergic neurotransmission in the human central nervous system 
Dopamine (DA) is the most abundant catecholamine of the central nervous system and 

is highly conserved among species [1, 2]. DA is involved in the modulation of a variety 

of physiological functions ranging from locomotion, motivation, learning and memory 

to hormone secretion, reward and thermoregulation [3-5]. Defects in the DAergic 

neurotransmission have been linked to severe pathologies of the central nervous system. 

For example, the decrease in the levels of DA in the brain leads to a neurodegenerative 

pathology known as Parkinson’s disease, characterized by severe impairments such as 

rigidity, inability to direct movements and loss of coordination. The altered DA 

signaling observed in human neurological diseases is often related to dysfunction of 

genes involved in the biosynthesis, transport, release and reuptake of the DA. However 

the mechanism of DA signaling is very sophisticated and therefore it is regulated by 

other several key elements of the DAergic system. The identification of new elements 

involved in DAergic neurons function may contribute to a better understanding of the 

mechanisms that, when altered, cause dysfunctions in DAergic circuit.  

DA is present in three major axonal pathway: the nigrostriatal, the mesocorticolimbic 

and tuberuloinfundibular pathways (Figure 1) [6, 7]. Projections constituting the 

nigrostriatal pathway arise from the midbrain DAergic cell bodies located in substantia 

nigra pars compacta (SNpC) and innervate caudate and putamen (dorsal striatum) 

(Figure 1). The nigrostriatal pathway is involved in the control of movement and its 

degeneration is associated with Parkinson’s disease [8]. The mesocortical and 

mesolimbic pathways arise from DAergic neurons present in the midbrain Ventral 

Tegemental Area (VTA) (Figure 1). 

Both of these DAergic systems are involved in emotion related behaviors, including 

motivation and reward [9]. Mesolimbic DAergic projections are involved in a broad 

range of functions including novelty detection, learning and memory. The major DA 

pathway, the tuberoinfundibular tract, projects from the hypothalamus to the 

infundibulum of the posterior pituitary [10]. Here, DA release inhibits the release of the 

hormone prolactin, which is important in the reproductive cycle.   

A loss of cortical DA signaling results in a variety of disease states, ranging from 
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Attention-Deficit Hyperactivity Disorder (ADHD) to SchiZophrenia (SZ). Moreover 

drugs of abuse, including opiates, cocaine, amphetamine and nicotine, are also involved 

in mesolimbic system for their psychomotor effects. Di Chiara and Imperato in 1988 

discovered the interesting link between drugs of abuse and DA release in the  

Nucleus Accumbens (NAc), reporting that rats administered with drugs typically abused 

by humans, resulted in an increase in DA concentrations in both the NAc and the 

striatum [11].  

Taken together, all these studies revealed the main districts of the Central nervous 

system involved in regulating the DA neurotransmission that, when altered, can lead to 

the onset of human neurological disease.  

 

 
Figure 1. Dopaminergic projections in the mammalian brain 

Illustration of major DA projections in the central nervous system. The nigrostriatal pathway originates in the 

substantia nigra and projects to the striatum. The mesolimbic projections originate in the VTA and project both to the 

nucleus accumbens (not shown) and areas in the prefrontal cortex. The final system is the tuberoinfundibular system 

which projects from the hypotlamamus to the pituitary (Figure from www.cnsforum.com) 
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Biosynthesis of dopamine 
DA is synthesized from L-tyrosine in a pathway that includes Tyrosine Hydroxylase 

(TH) and Aromatic Acid DeCarboxylase (DCAA) enzymes (Figure 2). TH is the initial 

rate limiting factor since it hydroxylates the L- tyrosine to L-DOPA, thus playing a key 

role in DA synthesis. Similar to other catecholamines DA is produced both in cell 

bodies and in the nerve terminals. Once it is synthesized, DA is packaged into synaptic 

vesicles by a Vesicular MonoAmine Transporter (VMAT) and it is released into the 

synaptic cleft where binds to DAergic receptors and activates various signaling 

pathways in target cells (Figure 2). The DA signaling is controlled by receptors that 

have been classified into two sub-families, D1- and D2-like, on the basis of their 

biochemical and pharmacological properties (Figure 2). D1-like family includes D1 and 

D5 receptors, whereas D2-like includes D2, D3 and D4 receptors. D1-like receptors are 

coupled to Gs proteins and their activation results in an increase in cAMP concentration. 

D2-like receptors are coupled to Gi proteins and their activation results in a decrease in 

cAMP levels [12]. DA signaling is terminated by the reuptake of DA into the 

presynaptic neuron by the DA Transporter (DAT). The DA that is reabsorbed by DAT 

is then repackaged into vesicles by VMAT and is ready for another subsequent round of 

release (Figure 2). The DA biosynthetic cycle ends with the inactivation of 

neurotransmitter by two different enzymes, the MonoAmine Oxidase (MAO) and the 

Catechol O-MethylTransferase (COMT) from which the main final metabolites of DA 

are produced: HomoVanillic Acid (HVA) and 3,4-DihydrOxyPhenylAcetiC aid 

(DOPAC) [13]. 
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Figure 2. Biosynthesis of dopamine and dopaminergic synapse 

Synthesis of DA from L-DOPA in the DAergic nerve terminals. DCAA, aromatic acid decarboxylase; DAT, DA 

transporter, TH, Tyrosine Hydroxylase; D1, D1-like DA receptor; D2, D2-like DA receptor (Figure from [14]). 

 

 

Dopamine transporter (DAT): a critical enzyme for dopamine 

regulation  
An important characteristic of mammalian DAergic neurons is the presence of the DA 

Transporter DAT. It is an integral plasma membrane phosphoprotein belonging to the 

SCL6 family of transporters, a family which also includes transporters for the biogenic 

amines serotonin and norepinephrine (SERT and NET respectively), as well as for the 

inhibitory transmitters GABA and glycin [15]. DAT is a specific marker of DAergic 

neurons and in the human brains it localizes to axons and dendrites of mesencephalic 

and hypothalamic DA neurons, which innervate the striatum and frontal cortex, and that 

directly or indirectly regulates locomotor activity, cognition, emotion, reward, and 

neuroendocrine function [16-18]. DAT is responsible for the reuptake of DA in the 

presynaptic neuron following release into the synaptic cleft [15, 19, 20]. In detail DAT 

coordinates the spatial and temporal action of DA by actively clearing the amine from 

the extracellular space. Although diffusion and enzymatic degradation may partially 

govern the synaptic concentration of DA, several studies have established DAT as key 
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element responsible for DA signalling in the brain, by mediating rapid clearance of DA 

from the synaptic clefts [21, 22]. 

Interestingly the control of DA signalling can be altered by the actions of 

psychostimulants such as AMPHetamine (AMPH) that, interacting with DAT, attenuate 

DA clearance and increase DA release. The final result of AMPH abuse is to elevate the 

extracellular concentration of DA and, as a consequence, enhance DA signaling [23, 

24]. However all the key molecular players involved in the behavioral effects induced 

by AMPH are still unknown. Because of the importance of DAT in DA 

neurotransmission, it is likely that DAT is under strict regulatory control, but the 

mechanism of this regulation is poorly understood [25-27]. Dysregulation of DAT 

activity, which leads to inappropriate DA clearance, is known to play an important role 

in the etiology of DAergic related disorders such as schizophrenia, depression, and 

Parkinson’s disease [28, 29]. Researchers have therefore focused on elucidating 

signaling mechanisms involved in DAT trafficking to and from the membrane, in order 

to try to better understand the molecular mechanims underlying DAergic related 

diseases. It has been therefore discovered that the cytosolic N-terminus of DAT is 

important for translocation to the plasma membrane or retention at the plasma 

membrane while the C-terminus is important for constitutive and PKC-mediated 

endocytosis of DAT [30-32]. Moreover the N-terminus of DAT represents the site of 

many protein-protein interactions that can regulate DAT surface expression and activity, 

thus modulating the DA clereance [33]. One of the main regulatory partner of DAT is 

the neuronal SNARE (Soluble N-ethylmaleimide Associated protein REceptor) protein 

Syntaxin1A (Syn1A), which is involved also in the molecular machinery of DA release 

[34]. 

 

 

The contribution of SNARE protein Syn1A in dopaminergic system 
Syn1A is a nervous system-specific protein, belonging to the Syntaxin superfamily. It 

possesses a single C-terminus transmembrane domain, a SNARE domain (known as 

H3), and an N-terminus regulatory domain (Habc). Syn1A binds Synaptotagmin in a 

calcium-dependent fashion and interacts with voltage dependent calcium and potassium 

channels, via the C-terminus H3 domain. It is mainly implicated in the regulation of 
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exocytosis by mediating the fusion of the vesicular membrane with the plasma 

membrane to release vesicular contents into the extracellular space.  

Moreover, several studies have drawn explicit attention to the physical and functional 

interaction of Syn1A with plasma membrane ion channels [35-38] and neurotransmitter 

transporters [39-45]. In particular, several studies have demonstrated a direct interaction 

of Syn1A with the cytoplasmic N-terminus of neurotransmitter transporters, including 

the GABA transporter (GAT1) [46], the serotonin transporter (SERT) [42], the 

norepinephrine transporter (NET) [44, 47] and the DA transporter (DAT) [48, 49]. 

These interactions allow Syn1A to play a key role both to regulate transport activity and 

channel properties of the neurotransmitter transporters [39, 44, 50].  

Regarding DAT, previous studies demonstrated a direct interaction between Syn1A and 

human DAT (hDAT) in a heterologous expression system and with native DAT in 

murine striatal synaptosomes [49]. Interestingly, in a different animal model such as the 

nematode C. elegans, Carvelli et al. suggested that C. elegans Syn1A (UNC-64) binds 

the N-terminus of C. elegans DAT (DAT-1) and its loss may suppress the DAT1 

channel-like activity [40]. In addition, they observed that fusion of green fluorescent 

protein (GFP) to the DAT-1 N-terminus disrupted DAT1 interaction with UNC-64 and 

caused a swimming induced paralysis [40], a behavioural phenotype previously 

observed in DAT-1 deficient nematodes [51]. Whether the defect in GFP::DAT-1 

animals was directly caused by perturbed DAT-1/UNC-64 interactions cannot be 

discerned. These studies, demonstrated that Syn1A may regulate DAT reverse transport 

and ion channel activity, supporting the idea that this SNARE protein could represents 

an important element in DAergic circuit to guarantee a correct DA reuptake. However 

the specific function of Syn1A in this neuronal circuit has not been completely clarified. 

 

 

The contribution of nicotine acetylcholine receptors in dopaminergic 

system  

As previously described, in the human brain DA plays a role in motor control, 

motivation, arousal, cognition, and reward. Regarding the motor control, DA released 

from the midbrain DAergic neurons exerts its role together with acetylcholine (ACh), 

produced by the cholinergic circuit. Interesting the striatal DAergic and Cholinergic 
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systems play an overlapping role in regulating central nervous system functions linked 

to motor activity and that are relevant in diseases such as Parkinson's disease [52-54]. 

The extensive colocalization of DA and ACh in the nigrostriatal pathway most likely 

underlies the functional interdependence of these two systems [52, 54, 55]. In particular 

ACh though the cholinergic transmission modulates striatal DA levels by stimulating 

nicotinic acethylcoline receptors (nAChRs). nAChRs are Cys-loop ligand-gated ion 

channels formed by pentameric complexes made up of combinations of a number of 

different subunits. The subunits composing nAChRs, possess two adjacent cysteines in 

the ACh binding site referred to as α subunits, whereas those with no such motif are 

referred to as non-α subunits. nAChRs can be divided into two subfamilies, according to 

the co-assembly of the subunits that influence their physiological and pharmacological 

profiles. In particular there are homopentamers composed of α-subunits and 

heteropentamers, characterized by the combination of α- and β-subunits in different 

ratios [56, 57]. A single subunit is composed of about 600 amino acids and has four 

separate transmembrane segments (TM1-TM4) with a large N- and a small C-termini 

facing the synaptic cleft (Figure 3) [58, 59]. The ligand-binding sites are located at the 

interfaces of the N-terminal hydrophilic domain of α-subunit and its adjacent α/β 

subunit (Figure 3) [56].  

 

 

 
Figure 3. Structure of nAChRs  

One subunit of the nAChR contains a large N- and a small C-terminal extracellular domains, four transmembrane 

domains (M1-M4), and a long cytoplasmic loop between M3 and M4 (Figure from [60]). 
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The ion channel (mainly permeable to cations as Na+ and Ca2+) can be opened only 

when the receptor is activated by endogenous acetylcholine (ACh) or exogenous ligand 

(e.g. nicotine) binding to the ligand binding site (Figure 3) [58, 59]. Furthermore, the β-

subunits also largely contribute to the physiological and pharmacological properties 

(such as desensitization, inward rectification, and functional rundown) of the receptors 

[61, 62].  

Mammals possess 17 subunits composing the nAChRs, characterized as either “muscle” 

(α1, β1, γ, δ, and ε) or “neuronal” (α2–10, β2–4) subtypes [63-65]. Neuronal nAChRs 

are widely distributed throughout the central nervous system (CNS) and are mainly 

involved in motor control [66]. In addition some of these nAChRs seem to be 

concentrated in DAergic system in the brain, thus researchers have focused their studies 

in identifying genes coding for the subunits composing these receptors, to better 

understand their functions in DAergic circuit under physiological and pathological 

conditions.  

In particular, the α6-subunit, encoded by CHRNA6 gene, has been shown to have a 

potential role in this neuronal circuit. It can be found with other subunits in heteromeric 

forms (i.e. α6β2- and α4α6β2-nAChRs) and is highly expressed in visual and 

catecholaminergic pathways, including the DAergic nigrostriatal pathway [67]. In order 

to study its function in DAergic circuit, have been conducted experiments characterized 

by the induction of a damage in the regions of nigrostriatal system of rodent and 

monkey, that include α6-subunit combined with other subunits in heteromeric forms 

(α6α4β2β3 and α6β2β3). Interestingly they observed that, after nigrostriatal damage, 

there is a loss of α6-subunit that correlates with a decline in DA release, suggesting a 

biologically relevant association of these subunits in the DAergic circuit. Therefore 

being particularly susceptible to nigrostriatal damage, α6-subunits may represent an 

important target for the treatment of neurodegenerative disorders including Parkinson’s 

disease [68, 69].  

Even if researchers have just begun to explore the involvement of α6-subunit in 

DAergic circuit, the infomations reached to date reinforce the idea that they may play an 

important role in this neuronal circuit.  
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CHAPTER II 

 

Dopaminergic neurotransmission in Caenorhabditis elegans nervous 

system 
In order to understand the complex mechanisms of the nervous system, neuroscientists 

rely on different types of animal models that include vertebrates like rodents [70-72], 

chick [73, 74] and Xenopus [75] and invertebrates like Caenorhabditis elegans [76], 

Drosophila [77], Ascaris [78, 79] and cephalopods [80]. The decision to use a particular 

animal model is based on its validity and simplicity in conducting experimental studies 

for answering specific biological questions. 

In my thesis, I was interested in investigating the role of Syn1A and CHRNA6 in 

DAergic system and therefore it has been necessary to use a model that not only 

conserves an high homology with human DAergic pathway, but that also displays 

interesting specific DA-mediated behaviors and shows an accessible nervous system. 

One such model is the nematode Caenorhabditis elegans. 

 

 

Caenorhabditis elegans: a powerful animal model  
Caenorhabditis elegans (C. elegans) is a free-living, soil nematode found in temperate 

climates [81]. It has been used as a valuable biological model since Nobel Prize-

winning Sydney Brenner used the nematode to perform genetic screens for the purpose 

of unveiling mutations that alter its movement [82]. Since then, C. elegans has been 

extensively used because of its small size, rapid generation time, short lifespan, simple 

and measurable behaviors, extensive biological characterization, genetic tractability and 

for the high degree of conservation of gene sequences [81]. With adult worms being 

approximately 1 mm in length, a large number of worms can be grown in a very small 

space, most often on agar plates containing Escherichia coli (E. coli), which C. elegans 

consumes as food (Figure 4) [82]. 
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Figure 4. The nematode C. elegans.  

Hermaphrodite, anterior is to the left, ventral is down (Figure adapted from www.wormatlas.org). 

 

 

C.elegans proceeds through its life cycle in approximately three days and has a lifespan 

of about three weeks. Under normal conditions (when food is present and temperature is 

near to 20°C), the worm passes though 4 larval stages consisting of L1, L2, L3, L4 and 

after that it develops into young adults capable of laying their own eggs [81, 83]. 

Moreover this small worm is transparent allowing the observation of cells and features 

within the entire organism without the need to kill it or permealise and fixate [81]. In 

this way it can be used as an in vivo system while maintaining many beneficial 

characteristics of an in vitro system.  

Despite its simplicity, C. elegans presents many similarities with other multicellular 

organisms including complex organ structures, a rich array of sophisticated behaviors 

(social, sexual, and learning behaviors) and a 60-80% of homology with human genes 

[84]. Although the worm presents limitations compared with more complex organisms, 

it contributed to understand many fundamental conserved mechanisms that have been 

used to investigate many aspects of animal development and translated to vertebrates 

and humans. Examples are the programmed cell death [85, 86], the mechanisms 

mediated by RNA interference (RNAi) [87], and the use in vivo of the Green 

Fluorescent Protein (GFP), which were described by the Nobel Prize winners B. 

Horvitz, A. Fire, C. Mello and M. Chalfie, respectively.  

Many large scale genetic screens using classical genetics and RNAi techniques have 

been performed to identify new genes, phenotypes, and interacting proteins [88-90]. All 

these features make C. elegans a powerful tool in genetic and genomic studies.  

Finally the nematode presents also several useful characteristics as animal model for 

studying neurobiology, since the wiring diagram of the nervous system consists of a 

defined set of 302 neurons, which are well mapped and characterized and the main 
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interactions between them are very well known [91].  

 

 

The C. elegans nervous system  
The ~100 MB genome of C. elegans codes for ~20,000 protein-coding genes many of 

which are required for the function of the most complex and well-characterized organ in 

the nematode, the nervous system. It contains 302 neurons of 118 subtypes [92, 93], 

6393 chemical synapses, 890 electrical junctions, and 1410 neuromuscular junctions 

[94]. C. elegans represents the only organism whose entire nervous system has been 

completely reconstructed by electron microscopy (EM) [91]. Most neurons have a 

simple morphology with a single process emanating from the cell body which, in most 

of the cases, is located in the anterior head region, surrounding the elongated bilobed 

structure of the pharynx. The remaining cell bodies are located  along the ventral, lateral 

or posterior tail regions (Figure 5). The major synaptic activity in the animal is in the 

nerve ring or “worm brain”, a region of high neuronal process density that might 

function as a central information exchange in the nervous system of C. elegans (Figure 

5) [91]. 

 

 
Figure 5. A general view of the L1 larva nervous system 

The main region of neurons location is the nerve ring, which is a loop around the pharynx. The ventral cord runs back 

from this and contains motor neuron cell bodies in addition to processes. Those ventral cord motor neurons, that do 

not send a commissure around the left side of the body to the dorsal cord, send one commissure to the right side. 

There are four small ganglia in the tail: the preanal ganglion (not highlighted), the dorsorectal ganglion, and two 

lumbar ganglia, one on each side. Anterior is to the left, ventral is down (Figure adapted from www.wormatlas.org).  

 

 

The structure and connectivity of neurons in the C. elegans nervous system are 

reminiscent of the postganglionic neurons of the autonomic nervous system, that form 

synapses en passant at multiple places along target tissues, contain non-traditional pre-
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synaptic specializations, and have almost no post-synaptic specialization [91]. Despite 

the relative anatomical simplicity of the C. elegans nervous system, it contains many of 

the known signaling components and neurotransmitter systems found in the mammalian 

nervous system. It contains acetylcholine, glutamate, γ-aminobutyric acid (GABA), 

serotonin (5-HT), dopamine (DA), and neuropeptides [95], among other chemical 

messengers. Neurotransmitter-specific transporters (membrane and vesicular) and 

receptors (including G-protein-coupled) are also highly conserved with their 

mammalian counterpart. Most ligand-gated and voltage-gated ion channels are present 

within the worm, with the notable exception of the voltage-gated ion channel [95]; 

however, the voltage-gated Ca++ channels are conserved and, as in mammals, can 

generate the necessary action potentials for neurotransmission. Moreover all the known 

synaptic components involved in synaptic vesicle plasma membrane interactions and 

exocytosis, including syntaxins, synaptotagmin, synaptobrevin, and SNAP-25, are 

highly conserved between worms and mammals [95].  

For this reason many researchers have turned to this model organism for studying the 

molecular and genetic basis of neuronal behaviors that, when altered, may cause 

neurodegenerative disorders, including Parkinson’s and Azheimer’s diseases [96]. 

 

 

Dopaminergic neurons in C. elegans 
As previously mentioned the C. elegans nervous system has many neurotransmitters, 

neuromodulators, and signaling pathways that are evolutionarily conserved including 

the DA system [95, 97]. DAergic neurons were initially identified by Sulston and 

coworkers, who used the catecholamine-specific technique of formaldehyde-induced 

fluorescence (FIF) to reveal 8 DA neurons in the hermaphrodite with an additional set 

of 6 DA neurons specific to males (Figure 6)  [97]. DAergic cell bodies and processes 

were visualized using fluorescence microscopy, confirmed as DA by alumina 

absorption and thin-layer chromatography (TLC). Based on FIF micrographs and worm 

DA content as well as the estimated volume of the cell bodies and processes, the 

concentration of DA in the nerve endings is predicted to be very similar to the 

concentration within mammalian varicosities [97]. 

DAergic neurons are believed to be mechanosensory neurons because the microtubule-
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containing cilium at the end of the dendrites are embedded in the subcuticle and may 

detect movement or food [98-100]. The most anterior of these cell pairings are the CEPs 

(two dorsal and two ventral) containing a single long dendrite that extends from the cell 

body near the nerve ring, through the length of the head where the ciliated endings enter 

the cuticle near the nose of the animal (Figure 6) [91, 98]. The ADE cell bodies are 

located behind the second bulb of the pharynx, and the dendrites contain ciliated 

endings that travel into the deirid sensilla (Figure 6). The axons of both CEPs and ADEs 

are directed into the nerve ring, and the dorsal pair of CEPs may receive some synaptic 

input from ADEs. The cell bodies of PDEs are located posterior to the vulva, and, as 

with other DA neurons, the dendrites contain ciliated endings that enter the sensillum 

(Figure 6). The PDE axons enter the nerve cord, where the anterior process extends to 

near the nerve ring, and receive en passant synaptic connections from other neurons [91, 

101]. The male tail contains 3 extra sets of DA containing neurons required for mating 

[102, 103].  

 

 
Figure 6. The C. elegans dopaminergic neurons  

The picture shows an adult C. elegans hermaphrodite, with key anatomical features and the DAergic neurons (green). 

The DAergic neurons include four cephalic (CEP) neurons, two anterior deirid (ADE) neurons, and two posterior 

deirid (PDE) neurons. Males have six additional DAergic neurons located in the tail (not shown) (Figure from [104]). 

 

 

The distinctive morphology and anatomical positioning of DAergic neurons in C. 

elegans makes it an attractive model to study neurodegeneration, particularly in relation 

to Parkinson Disease [105, 106]. Nass and Blakely demonstrated the use of C. elegans 

as a model in 2001, by administering the neurotoxin, 6-hydroxydopamine (6-OHDA) 

[106]. Due to the similarity in structure to neurotransmitter DA, 6-OHDA is 

accumulated into the DAergic neurons by pre-synaptic DA transporter, thereby causing 



	   19	  

cytotoxic damage and cell death. Effective neurodegeneration was scored by examining 

whether the dendritic extensions of the CEP neurons were intact from the cell body to 

the tip after OHDA treatment [106]. This method of evaluating intact dendrites, in 

addition to noting any change in cell shape and/or size, was adopted for subsequent 

studies of DA neuron degeneration [107-109]. 

 

 

Genes involved in dopaminergic signaling in C. elegans 
The biosynthesis of the catecholamine DA in the nematode shares notable features with 

mammalian neurons and starts from the Tyrosine Hydroxylase enzyme (encoded by the 

cat-2 gene). CAT-2 converts tyrosine to 1-DihydrOxyPheny-l-Alaninelevadopa (L-

DOPA) that is then converted by BAS-1 (aromatic amino acid decarboxylase, encoded 

by the bas-1 gene) to DA [2, 97, 102] (Figure 7). Cytosolic DA is packaged into 

synaptic vesicles by CAT-1 (vesicular monoamine transporter, encoded by the cat-1 

gene) [110] where it is stored until it is secreted upon neuronal depolarization (Figure 

7). Synaptic DA is taken up by DA transporter DAT-1 (encoded by the dat-1 gene) that, 

through the reuptake of the neurotransmitter terminates the DA signaling [111] (Figure 

7).  

 

 
Figure 7. Schematic representation of a dopaminergic neuron synapse  

The biosynthesis of the catecholamine DA in the nematode starts from CAT-2 that converts tyrosine to L-DOPA that 

is then converted by BAS-1 to DA. Cytosolic DA is packaged into synaptic vesicles by CAT-1 where it is stored until 

it is secreted upon neuronal depolarization. Synaptic DA is taken up by DA transporter DAT-1 that, through the 

reuptake of the neurotransmitter terminates the DA. AAAD: aromatic L-amino acid decarboxylase; bas-1: Biogenic 
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Amine Synthesis related 1, cat: abnormal CATecholamine distribution, DA: dopamine, dat: DopAmine Transporter, 

GTPCH: GTP cyclohydrolase, TH: Tyrosine hydroxylase, Tyr: tyrosine, VMAT: vesicular monoamine transporter 

(Figure from [112]). 

 

 

Sulston and coworkers isolated several mutants deficient in DAergic pathway, revealing 

that the C. elegans DAergic system is fundamentally very similar to vertebrates. For 

example, cat-1 animal mutants (catecholamine deficient) have a dramatic reduction in 

DA content yet over a threefold increase in L-DOPA and are unable to load DA into 

synaptic vesicles [97]. Duerr and coworkers confirmed these results when they 

identified the mutation in the C. elegans orthologue of mammalian Vesicular 

MonoAmine Transporters (VMATs) [110].  

Also cat-2 mutants (catecholamine deficient) have been identified by Sulston, and they 

have a complete loss of DA, as detected by FIF and TLC [97]. Lints and Emmons 

subsequently identified the gene cat-2 via BLAST searches and gene sequencing, and 

they found that it encodes a polypeptide, CAT-2, with 50% amino acid identity to 

tyrosine hydroxylase (TH) [2].  

Finally as in mammals two types of DAergic receptors can be identified in C. elegans: 

D1-like receptor (increases cAMP level after DA stimulation) that includes DOP-1 and 

DOP-4, and D2-like receptor (decreases cAMP level after DA stimulation) that includes 

DOP-2 and DOP-3 [2, 97, 102, 113-116].  

 

 

Dopamine-related behaviors in C. elegans   
Similarly to vertebrates, DA produced in the nematode represents one of the main 

neurotransmitter and it plays a crucial role as neuromodulator, by altering the intrinsic 

properties of neurons within circuits, both presynaptically and postsynaptically [117].  

In C. elegans, DA controls through a sophisticated signaling a wide range of behaviors, 

including mechanical stimuli, foraging behavior, and food-dependent modulation of 

locomotion [99, 113, 114, 118]. Similarly to humans, DA signaling mechanisms in the 

nematode are regulated by environmental factors and by various essential components 

encoded by genes involved in DA synthesis, release, reuptake, and response [97, 119-

121]. Similarly to humans where altered DA signaling is involved in several disorders, 
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in the nematode defective signaling impairs the control that DA exerts on behaviors 

previously mentioned.  

For example, when healthy non-starved worms move into an area of the culture plate 

with food bacteria, wild-type (N2) L4 larval stage nematodes drastically slow their 

locomotion speed. This behavior is known as “Basal Slowing” response. It was found 

that the detection of the bacterial lawn is mediated by the eight DAergic neurons (two 

pairs of each CEPV, CEPD, ADE and PDE neurons), but it also depends on functional 

DA signaling. Indeed genetic mutants of the cat-2 gene (catecholamine deficient), 

which encodes for tyrosine hydroxylase enzyme for the biosynthesis of DA, do not 

exhibit basal slowing response, indicating that this behavior is DA-mediated [99, 109]. 

Exogenous DA restores basal slowing response in cat-2 mutants as well as in the cat-

4;bas-1 double mutants (an animal which lacks catecholamines altogether), suggesting 

that a lack of endogenous DA is responsible for this behavior [99]. 

As mentioned before, DA signaling mechanisms does not depend only on DA 

biosynthesis but also on other processes that include DA packaging, release and 

reuptake. The presynaptic DA Transporter (DAT-1), encoded by the dat-1 gene in the 

nematode, as well as in human, is of particular importance in reuptaking DA from the 

synaptic cleft and therefore in modulating the neurotransmitter signal [111, 122]. 

McDonald et al using C.elegans demonstrated that loss of dat-1 elicits a DA-dependent 

locomotory phenotype known as Swimming Induced Paralysis (SWIP) [51]. They 

observed that wild-type L4 stage worms swim at a continuous rate for 10 min when 

forced to engage in vigorous motor activity in water, while dat-1 mutant worms initiate 

normal swimming, but then paralyze over the next six minutes. This paralysis is mainly 

mediated by DAT-1 activity and also by DOP-3 receptor, because in water animals have 

to exert maximal motor activity, which needs an efficient clearance of DA mediated by 

the DA transporter activity. Indeed in dat-1 genetic mutants there is an extrasynaptic 

DA accumulation and an over-stimulation of DOP-3 receptors on the cholinergic motor 

neurons, that leads to an inhibition of acetylcholine release and consequent paralysis.  
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The unc-64 gene in C. elegans 
In 1998 Nonet demonstrated that unc-64 gene in C. elegans, corresponding to cosmid 

T07H5, showed an high similarity to the vertebrate neuronal synaptic protein 

syntaxin1A and Drosophila Syx1A [123]. unc-64 gene maps on Chromosome III and it 

is composed of 8 exons spanning 5 kb. Its protein product exhibits 95,5% of homology 

with human counterpart and consists of 291 amino acids [123]. 

In the nematode UNC-64 is as an essential component of the core synaptic vesicle 

fusion machinery and it is required for normal locomotion [123]. It is expressed in the 

nervous system and secretory tissues. In particular it is widely distributed in neurons of 

the nerve ring (Figure 8A) and in the ventral (Figure 8B) and dorsal cord. In neurons, 

the protein is ubiquitously distributed and similarly to vertebrates it has been also found 

in the nematode synaptic vesicles [124-126]. Outside the nervous system the protein is 

expressed in the intestine, the cells of the vulva and in the spermatheca (Figure 8C-D) 

[123]. 

 

A B C D 

 
Figure 8. Expression of unc-64 syntaxin  

Whole adult wild-type hermaphrodite worms fixed and stained with anti-UNC-64 primary antibodies and visualized 

with FITC-conjugated antibodies. (A) Lateral view of the head region showing immunoreactivity in the nerve ring, 

dorsal cord, and pharyngeal nervous system. (B) Ventral view of the midbody region showing expression in ventral 

cord axons, neuronal cell bodies, and in commissural and sublateral processes. (C) A lateral view of the midbody 

showing UNC-64 immunoreactivity on the basolateral surface of the intestine. (D) A lateral view of the vulva 

showing fluorescence in the cells of the vulva (Figure adapted from [123]). Scale bar in all panels is 20µm. 

  

 

Down-regulation of UNC-64, using classical RNA interference to decrease the 

endogenous levels of protein product and investigate its role in the nematode, leads to 

growth rate and locomotion defects [127].  

All six unc-64 genetic mutants isolated so far exhibit locomotory abnormalities. The 

two mutants allele js115 and js116 are lethal, arrest development just after hatching and 
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die as L1 larvae. In detail js115 animals (Figure 9B) are completely paralyzed and 

rarely maintain a sinusoidal posture such as in the wild type animals (Figure 9A) and 

js116 animals exhibit very slow motor movements and tend to adopt a coiled position 

(Figure 9C). In addition the pharyngeal pumping and motor defecation are completely 

abolished in these mutants. Hypomorphic mutants js21, e246, md130 and md1259 

present milder locomotory defects, whereas pharyngeal pumping and motor defecation 

are relatively normal [128].  

In summary, a variety of defective phenotypes have been found in all unc-64 mutants 

isolated and in animals where the gene is knocked-down by classic RNA interference 

approach. These defects and in particular the defective locomotion are very severe and 

do not allow to use these genetic models to perform more subtle behavioral assays to 

specifically explore the role of unc-64 gene in DAergic circuit.  

 

A 

B 

C 
 

Figure 9. Phenotype of lethal unc-64 syntaxin mutants 

Bright field images of first larval stage animals of wild-type, unc-64(js115), and unc-64(js116) animals on an E. coli 

bacterial lawn at the indicated time intervals (wild-type in seconds and mutants in minutes) (Figure from [123]). 

Scale bar is 100µm. 
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The unc-63 gene in C. elegans 
In C. elegans unc-63 gene corresponds to YAC vector Y72E2 and shows homology 

with human gene encoding for an α6-subunit of a levamisole-sensitive nicotinic 

acetylcholine receptor, encoded by CHRNA6 gene. unc-63 gene maps on chromosome I 

and it is composed of 10 exons spanning 7.5 kb [129]. Its protein product exhibits 35% 

of homology with human counterpart, consists of 502 amino acids and possesses motifs 

common to Cys-loop ligand-gated ion channels [129], including an N-terminal signal 

peptide of 23 amino acids [130], 4 transmembrane regions, and the Cys-loop [64]. 

Stretches of amino acids in loops A–F, which are involved in ligand binding, are also 

conserved. In loop C, there are two adjacent cysteines, defining UNC-63 as a nAChR α 

subunit (Figure 10) [129].  

 

 
Figure 10. Alignement of UNC-63 and other C.elegans AchR with human muscular α-nAChR 

The overall similarity between the human musccular α-nAChR subunit (alpha1) and the nematode sequences is 

35,3%. Homology is particularly significant in those regions that are thought to be functionally significant. The 

protein alignment includes UNC-38, LEV-1, UNC-29, and the human muscular α-nAChR subunit (Figure from 

[129]). 
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In the nematode, UNC-63 is required for normal locomotion and regulation of egg-

laying behavior, and functions as a subunit of a ligand-gated ion channel that likely 

mediates fast actions of acetylcholine at neuromuscular junctions and in the nervous 

system [129].  

It is expressed in all body wall muscles, in vulval muscles and in many cells of the 

nervous system, including motor neurons in the ventral nerve cord and neurons in the 

head, posterior lateral, pre-anal, and lumbar ganglia (Figure 11A-D) [129].  

Down-regulation of UNC-63 by classical RNA interference leads to defects in 

locomotion and egg laying [127]. 

 

 
Figure 11. Expression pattern of UNC-63  

Transgenic young adult animals showing a typical expression pattern of UNC-63 protein tagged to GFP. Neurons in 

the anal ganglia (A), and body wall muscle cells (arrow in B) are fluorescent. Scale bar is 5µm and 50µm respectively 

(anterior is on the right). Four neurons of the posterior lateral ganglion and some vulval muscles cells (arrows in C-D) 

also express UNC-63::GFP. Scale bar is 5µm and 10µm respectively. (anterior is on the left) (Figure adapted from 

[129]). 

 

 

Moreover several genetic mutants have been generated and they all exhibit several 

defective phenotypes. The two null mutants alleles x13 and x18 exhibited several 

defective phenotypes including a strongly uncoordinated locomotion and levamisole 

resistance [129], whereas the null mutant allele x37 in addition to these phenotypes also 

presents swimming defects and resistance to the toxicity caused during post-embryonic 

development by the nicotinic receptor agonist DMPP (1,1-dimethyl-4-

phenylpiperazinium) [131, 132]. Other hypomorphic mutants alleles showed less severe 

uncoordinated locomotion (alleles b404 and x26) and swimming defects (x26) [132, 

133]. 

Also in this case the defective locomotion observed using both classical RNA 
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interference and genetic mutations, makes it impossible to study UNC-63 function in 

DAergic circuit. In particular, uncoordinated locomotion can hamper the analysis of 

DA-mediate behavioral assays, which are necessary to explore the specific role of this 

gene in DA neuronal circuit.  
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MATERIAL AND METHODS   
 
Cultivation and Strains 
All Caenorhabditis elegans strains were cultivated under standard conditions at 20°C 

on NGM plates seeded with Escherichia coli strain OP50, as described by Brenner [82], 

except for worms that were grown on Escherichia coli strain HB101 as a food source. 

Worms were grown in non-crowded conditions. The wild-type C. elegans strain used 

was N2, Bristol variety. Other strains used include dat-1(ok157)III; cat-2(e1112)II; 

unc-63(x37)I; sid-1(qt9)V; otIs181[dat-1::mCherry;ttx-3::mCherry]III; otIs199[cat-

2::GFP; rgef-1(F25B3.3)::dsRed; rol-6(su1006)]; vtIs1 [pdat-1::gfp, rol-6(su1006)]; 

sEx14685[punc-63::gfp; dpy(+)], dpy-5(e907)I, that were provided by the 

Caenorhabditis  Genetics  Center  (CGC, University of Minnesota, USA).  

Transgenic lines, and relative genotype, generated in this work, were as follows.  

To express of gfp in DAergic neurons with pcat-2:  

gbEx519 [pcat-2::gfp 50 ng/uL; podr-1::rfp] 

To express of gfp in DAergic neurons with pdat-1:  

gbEx570 [pdat-1::gfp 50 ng/uL; podr-1::rfp]  

To knock-down the gfp in DAergic neurons with pcat-2:  

gbEx525 [pcat-2::gfp RNAi sas 50 ng/uL; podr-1::rfp]; vtIs1 [pdat-1::gfp; rol-

6(su1006)] 

To knock-down the gfp in DAergic neurons with pdat-1: 

gbEx572a [pdat-1::gfp RNAi sas 50ng/uL; pelt-2::rfp]; otIs199 [pcat-2::gfp; prgef-

1::dsRed; rol-6 (su1006)] 

gbEx572b [pdat-1::gfp RNAi sas 50ng/uL; pelt-2::rfp]; otIs199 [pcat-2::gfp; prgef-

1::dsRed; rol-6 (su1006)] 

gbEx572c [pdat-1::gfp RNAi sas 50ng/uL; pelt-2::rfp]; otIs199 [pcat-2::gfp; prgef-

1::dsRed; rol-6 (su1006)] 

gbEx617a [pdat-1::gfp RNAi sas 50ng/uL; pelt-2::rfp] 

gbEx617b [pdat-1::gfp RNAi sas 50ng/uL; pelt-2::rfp] 

To knock-down the dat-1 in DAergic neurons with pdat-1:  

gbEx584a [pdat-1::dat-1 RNAi sas 50ng/uL; podr-1::rfp; pcat-2::GFP] 

gbEx584b [pdat-1::dat-1 RNAi sas 50ng/uL; podr-1::rfp; pcat-2::GFP] 
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gbEx584c [pdat-1::dat-1 RNAi sas 50ng/uL; podr-1::rfp; pcat-2::GFP] 

To knock-down the cat-2 in DAergic neurons with pdat-1: 

gbEx574a [pdat-1::cat-2 RNAi sas 50ng/uL; podr-1::rfp]  

gbEx574b [pdat-1::cat-2 RNAi sas 50ng/uL; podr-1::rfp] 

gbEx574c [pdat-1::cat-2 RNAi sas 50ng/uL; podr-1::rfp] 

To knock-down the unc-63 in DAergic neurons with pdat-1:  

gbEx582a [pdat-1::unc-63 RNAi sas 50ng/uL; pelt-2::rfp] 

gbEx582b [pdat-1::unc-63 RNAi sas 50ng/uL; pelt-2::rfp] 

gbEx582c [pdat-1::unc-63 RNAi sas 50ng/uL; pelt-2::rfp] 

To knock-down the unc-64 in DAergic neurons with pdat-1:  

gbEx585a [pdat-1::unc-64 RNAi sas 50ng/uL; podr-1::rfp; pcat-2::GFP]  

gbEx585b [pdat-1::unc-64 RNAi sas 50ng/uL; podr-1::rfp; pcat-2::GFP]  

gbEx585c [pdat-1::unc-64 RNAi sas 50ng/uL; podr-1::rfp; pcat-2::GFP]  

To co-localize unc-63 with DAergic neurons: 

otIs181[dat-1::mCherry; ttx-3::mCherry]; sEx14685[punc-63::gfp; dpy(+)] 

gbEx569a[punc-63::unc-63-SL2-GFP; rol-6(su1006)]; otIs181[dat-1::mCherry; ttx-

3::mCherry] 

To express unc-63wt in muscles and neurons with pmyo-3: 

gbEx563a [pAF54 pmyo-3::unc-63wt; podr-1::RFP]  

To express unc-63wt in neurons with punc-63: 

gbEx559a [pAF68 punc-63::unc-63wt; podr-1::RFP] 

To rescue the function of unc-63wt, expressed in muscles and neurons, in unc-63(x37) 

background: 

gbEx563a [pAF54 pmyo-3::unc-63wt; podr-1::RFP]; unc-63(x37)  

To rescue the function of unc-63wt, expressed in neurons, in unc-63(x37) background: 

gbEx559a [pAF68 punc-63::unc-63wt; podr-1::RFP]; unc-63(x37)  

To remove systemic spreading of RNAi: 

gbEx582b [pdat-1::unc-63 RNAi sas; pelt-2::rfp]; sid-1(qt9) 
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Genomic DNA extraction  
Nematode genomic DNA was extracted using the following protocol: worms were 

washed and harvested from NGM plates. Lysis buffer (0.1 M TrisCl pH  8.5, 0.1 M 

NaCl, 50 mM EDTA pH 8.0, 1% SDS) with 20 mg/mL of Proteinase K was added to 

harvested worms and incubated at 60°C for 1 hr. Proteinase K was then inactivated by 

incubation for 20 min at 95°C and 2-3 uL of the lysates were directly used for PCR 

reactions.  

 
 
Construction of transgenes for neuron specific knock-down  
The construction of transgene for neuron specific knock-down were made by PCR 

fusion as previously described [134]. Genomic sequences, corresponding to the target 

gene and to the chosen specific promoter, are amplified separately.  

For the cat-2 promoter a 600 bp fragment, upstream of the ATG, was amplified using 

the following primers:  

Pf cat-2: ataataaaactgcgtggcgtg 

Pr cat-2: ctcttccaatttttcaagggg  

Nested primer used for the second step was:  

Pf*2 cat-2: cgtgttgttaagaacgtgcttgatcg 

For the dat-1 promoter a 795 bp fragment, upstream of the ATG, was amplified using 

the following primers:  

Pf dat-1: aaagtctttctgcccacacaa    

Pr dat-1: agtaaaccgtagcgggatcag 

Nested primer used for the second step was:  

Pf* dat-1: cgacctcatacactttctctcg      

For the C. elegans target genes, I amplified from genomic DNA the same exon rich 

regions that have been used for plasmid libraries prepared for RNAi by feeding 

experiments [135-137]. For gfp expression and knocking-down I amplified the fragment 

to be fused from A. Fire plasmids pPD95.75 and L4417, respectively. 

Primers used to amplify the unc-63 region (2480 bp) were:  

Tfa unc-63 sas:  tggcggtatttgaattctcc   

Tfs unc-63 sas:  tgagtttttgcccctttttg    

Tr* unc-63 sas : TGATCCGCTATATAGGCAACACT   
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Tf* unc-63 sas: TGTTTGAAAAAGTTTCCACCTGT   

Primers used to fuse the unc-63 fragment to dat-1 promoter were:  

Tf pdat-1::unc-63 sas: ctgatcccgctacggtttactTGTTTGAAAAAGTTTCCACCTGT   

Tr pdat-1::unc-63 sas: ctgatcccgctacggtttactTGATCCGCTATATAGGCAACACT   

Primers used to amplify the unc-64 region (1999 bp) were:  

Tfa1 unc-64 sas:  cttttcgtgtcgagacctgtc  

Tfs unc-64 sas: AATGCCAGGAATATACTGAATGAG  

Tr* unc-64 (1) sas: CTCAATTCGATCAACCATCTCTC  

Tf* unc-64 (1) sas: AGAGATTCGTGGAAGTGTGGATA  

Primers used to fuse the unc-64 fragment to dat-1 promoter were:  

Tf pdat-1::unc-64 sas: ctgatcccgctacggtttactAGAGATTCGTGGAAGTGTGGATA    

Tr pdat-1::unc-64 sas: ctgatcccgctacggtttactCTCAATTCGATCAACCATCTCTC  

Primers used to amplify the gfp region (890 bp) for knocking-down were:  

Tfa gfp sas: gttgtaaaacgacggccagt  

Tfs gfp sas: GGCCGATTCATTAATGCAG  

Tf* gfp sas: tcactataGGGAGACCGGCA  

Tr* gfp sas: tcactatagggcgaattggg  

Primers used to fuse the gfp fragment to dat-1 promoter were:  

Tf pdat-1::gfp sas: ctgatcccgctacggtttactTCACTATAGGGAGACCGGCA    

Tr pdat-1::gfp sas: ctgatcccgctacggtttactTCACTATAGGGCGAATTGGG    

Primers used to fuse the gfp fragment to cat-2 promoter were:  

Tf pcat-2::gfp sas: ccccttgaaaaattggaagagTCACTATAGGGAGACCGGCA 

Tr pcat-2::gfp sas: ccccttgaaaaattggaagagTCACTATAGGGCGAATTGGG 

Primers used to amplify the dat-1 region (890 bp) were:  

Tfs dat-1 sas: TTCGAACCTGATCTCAACCC  

Tfa dat-1 sas: TGCAGTTGGTGCCTACAGg  

Tf* dat-1 sas: AAGCAAATGCACCGAACTCT 

Tr*dat-1sas: AGCTCCAGCAAAACTTCCAA  

Primers used to fuse the dat-1 fragment to dat-1 promoter were:  

Tf pdat-1::dat-1 sas: ctgatcccgctacggtttactAAGCAAATGCACCGAACTCT  

Tr pdat-1::dat-1 sas: ctgatcccgctacggtttact AGCTCCAGCAAAACTTCCAA  

Primers used to amplify the cat-2 region (1092 bp) were:  
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Tfa cat-2 sas:  caagctcttgtgatccgtga  

Tfs cat-2 sas: acaatctgctgaacgccttt  

Tf* cat-2 sas: GAAATTCTCGATTTTCGCCA  

Tr* cat-1 sas : CTTCTTTGCACAACCCGAAT    

Primers used to fuse the cat-2 fragment to dat-1 promoter were:  

Tf pdat-1::cat-2 sas: ctgatcccgctacggtttactGAAATTCTCGATTTTCGCCA  

Tr pdat-1::cat-2 sas: ctgatcccgctacggtttactCTTCTTTGCACAACCCGAAT  

All the Tf and Tr primers had at their 5’-end 20-21 additional nucleotides 

complementary to 3’ end of the promoter, which drove the knocking-down. 

A mixture of sense and anti-sense PCR fusion product at the concentration of 50ng/uL 

was microinjected together with co-transformation markers podr-1::RFP, expressed in 

the AWB and AWC neurons (kind gift from C. Bargmann, Rockfeller University, USA) 

or pelt-2::RFP, expressed in intestinal cells (kind gift from J.D. McGhee, University of 

Calgary, USA) at the concentration of 30ng/uL, into the gonad of N2 animals using 

standard microinjection.  

 

 

Microinjection 
Transgenic animals are generated by injecting appropriate DNA fragments or plasmids 

into the distal gonad syncytium or directly into the developing oocytes. Injected DNA 

forms large extrachromosomal arrays incorporating between 50 and 300 copies, which 

are inherited by the progeny of injected animals. Identification of transgenic individuals 

is facilitated by the use of several available transformation markers, which are co-

injected along with the DNA of interest. In the present work I used the two fluorescent 

co-trasformation markers podr-1::RFP and pelt-2::RFP, previously described (see 

above). A varying number of F1 progeny that carry the desired extrachromosomal array 

can thereby be identified by characteristic phenotypes associated with each 

transformation marker. Extrachromosomal arrays are inherited in a non-Mendelian 

manner to subsequent generations. Typically, a varying percentage (between 5 and 

80%) of next-generation progeny will carry the extrachromosomal array [138].  
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Genetic crosses  
A genetic cross in C. elegans is usually carry out by using non-starved animals at the L4 

stage. Hermaphrodites and males in a 5:1 ratio, respectively, are transferred to a new 

plate that contains only a minimal surface area of bacteria to encourage physical 

proximity and thus increase the likelihood of mating. A paternal marker was used to 

select the non-self F1 progeny that was moved to a new fresh plate to identify our strain 

of interest.  

  

 

Construction of transgenes for rescue experiments  
The construction of transgenic lines for rescue experiments of unc-63 function  was 

performed by microinjection of plasmid DNA into the gonad, using standard 

microinjection [138] and afterwards by performing genetic crosses. In the case of unc-

63 project, N2 animals were injected with a DNA mixture cointaining plasmid 

pAF54[pmyo-3::unc-63] or pAF68[punc-63::unc-63] at the concentration of 30ng/uL 

together with a co-transformation marker podr-1::RFP at the concentration of 30ng/uL. 

The two transgenes obtained, gbEx563a [pAF54 pmyo-3::unc-63wt; podr-1::RFP] or 

gbEx559a [pAF68 punc-63::unc-63wt; podr-1::RFP] were then crossed as previously 

described (see above) with a unc-63(x37) mutant strain. The two transgenic 

homozygous strains obtained were:  

- gbEx563a [pAF54 pmyo-3::unc-63wt; podr-1::RFP]; unc-63(x37)  

- gbEx559a [pAF68 punc-63::unc-63wt; podr-1::RFP]; unc-63(x37)  

The presence of unc-63(x37) allele was confirmed by performing the SWIP assay (see 

below) and by sequencing the appropriate region of genomic DNA. Plasmids pAF54 

and pAF68 were a kind gift from J.L. Bessereau (Paris, France).  

 

 

Construction of transgenes with no systemic spreading of RNAi  
The construction of a transgenic line without systemic spreading of RNAi was 

performed by microinjection of DNA into the gonad, using standard microinjection 

[138] and afterwards by performing genetic crosses. N2 animals were injected with a 

DNA mixture cointaining (pdat-1::unc-63 RNAi sas) at the concentration of 50ng/uL, 
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together with a co-transformation marker pelt-2::RFP at the concentration of 30ng/uL. 

The transgene obtained gbEx582b [pdat-1::unc-63 RNAi sas; pelt-2::rfp] was crossed 

as previously described (see above) with a sid-1(qt9) mutant strain. The transgenic 

homozygous strain obtained is gbEx582b [pdat-1::unc-63 RNAi sas; pelt-2::rfp]; sid-

1(qt9). The presence of sid-1(qt9) allele was confirmed by PCR genotyping and by 

sequencing the appropriate region of genomic DNA from the transgenic strain.  

 
 
Construction of transgenes for miscoscopy analysis  
The construction of transgenic lines for miscoscopy analysis was performed by 

microinjection of plasmid DNA into the gonad, using standard microinjection [138], or 

by genetic crosses. In the first case otIs181[dat-1::mCherry + ttx-3::mCherry] 

transgenic animals were injected with a DNA mixture cointaining plasmid pAF66 

(punc-63::unc-63-SL2-GFP) at the concentration of 30ng/uL together with pRF4 

plasmid [rol-6(su1006)], as co-transformation marker at the concentration of 50ng/uL. 

The double transgenic strain obtained was gbEx569a[punc-63::unc-63-SL2-GFP; rol-

6(su1006)]; otIs181[pdat-1::mCherry; ttx-3::mCherry]. Plasmids pAF66 was a kind gift 

from J.L. Bessereau (Paris, France).  

In the second case the sEx14685(punc-63::gfp) transgenic animals was crossed as 

previously described (see above) with otIs181[dat-1::mCherry; ttx-3::mCherry] 

transgenic animals. The transgenic homozygous strain obtained was sEx14685(punc-

63::gfp); otIs181[dat-1::mCherry; ttx-3::mCherry]. The presence of the two transgenes 

was confirmed by selecting animals at the stereomicroscope using GFP and mCherry 

fluorescence filters.  

 

 
Microscopy and imaging  
Animals were mounted and anesthetized with 0.01% tetramisole hydrochloride (Sigma-

Aldrich) on 4% agar pads. As regarding the analysis of GFP expression and knocking-

down on DAergic neurons, animals were visualized using Zeiss Axioskop microscopes. 

Confocal microscopy images were obtained with a confocal microscopy Leica (TCS 

SP2 AOBS filter-free spectral laser scanning) and were formatted using LCS (Leica 

confocal software).  
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SWimming Induced Paralysis (SWIP) assay  
SWIP assay was done as previously described [51]. All worms assayed were selected as 

hermaphrodites at L3 or L4 stage, 24 hours before the execution of the experiments. 

Animals were placed in 40 uL of water with or without AMPH in a Pyrex Spot Plate 

and scored for movement for 10 minutes. In this study, we used an intermediate 

concentration of AMPH (0,5 mM) that is known to be physiologically relevant for long 

treatment periods such as 10 minutes [139]. The number of paralyzed worms was 

reported as a percentage among the total number of animals observed in each test. At 

least 3 trials were conducted on each strain.  

Data were analyzed using Prism software (GraphPad Software, Inc., San Diego, CA). 

 
 
Basal Slowing Response (BSR) assay 
Basal slowing response assays were done as previously described [114]. Young egg-

laying adults, 18-22 hours post L4 stage at 20° C, were assayed. The locomotion rates 

of young adult animals were quantified by counting the number of body bends 

completed in 5 consecutive 20-second intervals in the presence and the absence of 

HB101 bacteria. Data were collected for 6 animals per condition for a total of 30 

measurements per condition. Percent of slowing was calculated by dividing the 

difference between locomotion rates on and off food by the locomotion rate off food. 

Data were analyzed using Prism software (GraphPad Software, Inc., San Diego, CA). 

 
 
Nicotinic agonist resistance assay  
1,1-Dimethyl-4-phenylpiperazinium (DMPP) (Sigma) was dissolved in water and added 

to 55°C-equilibrated NGM agar just before plates were poured, as previously described 

[131]. Gravid adult worms were sacrified to recover the eggs that were carefully 

transferred on 0,75mM DMPP-containing plates and incubated for 24 hours (@20°C). 

After 24 hours the number of L1 larvae was scored and the assay was concluded when 

surviving L3, L4 and dauer larvae were scored, after 3 days of development.  

Data were analyzed using Prism software (GraphPad Software, Inc., San Diego, CA). 
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Statistical analysis 
Primer of Biostatistics and GraphPad Prism softwares were used for statistical analyses. 

The statistical significance was determined using Mann-Whitney or T-student or 

Compare two proportions tests. Standard error of mean was used to estimate variation 

within a single population. 
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AIM OF THE PROJECT  
The neurotransmitter DA, produced by the DAergic system, controls several behaviors 

in the nervous system, that when altered may cause neuronal disorders. A correct 

balance of the DA levels mainly depends on the elements constituting the DA-

biosynthesis pathway, including the initial rate limiting enzyme Tyrosine Hydroxylase 

(TH) and the DA Transporter (DAT). However other key elements have been also 

identified that seem to participate to DAergic neurotransmission, including the SNARE 

protein syntaxin1A (Syn1A) and the α6-subunit of the nicotin acetylcholine receptors 

(CHRNA6). During my PhD thesis, I used the nematode Caenorhabditis elegans as a 

model system to explore, in vivo, the role in the  DAergic circuit of unc-64 and unc-63 

genes, homologues to CHRNA6 and syntaxin1A. I chose these two genes because of 

evidences in literature that suggest their potential involvement in DAergic system. By 

studying these genes we want to contribute to a better understanding of their role in 

DAergic system and of their possible involvement in pathologic conditions. 
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EXPERIMENTAL PLAN  
During my PhD thesis, I used the advantages of the nematode C. elegans as animal 

model to explore in details the role of unc-64 and unc-63 genes, the mammalian 

syntaxin1A and CHRNA6 homologues, in vivo.  

In C. elegans several experimental models have been generated aimed at understanding 

the complex mechanisms regulating the DAergic system. These models include 

chemical treatments and engineered transgenes, which unfortunately are not feasible to 

study the loss of function of a gene [140]. In addition classic genetic mutations can 

cause pleiotropic effects or lethal phenotypes in mutant animals that can hamper the 

study of DAergic system. This was true both for unc-64 (Syn1A) and unc-63 

(CHRNA6) genes.  

In the case of unc-64, its down regulation by classical RNA interference leads to growth 

rate and locomotion defects [127]. So unc-64 genetic mutants can not be used to 

perform DA-related behavioral assays in vivo. In particular, unc-64 null mutants exhibit 

locomotory abnormalities that lead to a complete paralysis, while hypomorphic mutants 

still present severe locomotory abnormalities [123].  

Also for unc-63, downregulation by RNA interference leads to severe locomotion 

defects [127]. Moreover severe locomotory abnormalities are observed in unc-63 

mutants, together with other phenotypes which includes swimming defect, levamisole 

and DMPP resistance [129, 131-133].  

Therefore unc-63 and unc-64 genetic models obtained using genetic mutations or classic 

RNA interference are not appropriate to investigate the role of these two genes in C. 

elegans DAergic circuit, which requires specific subtle behavioral assays. To overcome 

these limitations, I took advantage of a powerful RNAi technique developed in the 

laboratory where I Have been doing my PhD work [134] to set up efficient transgenic 

models of DAergic specific knock-down of unc-63 and unc-64 genes.  

The discovery of RNAi has provided a powerful reverse genetic tool that has 

enormously increased the range of C. elegans genes whose function can be rapidly 

analyzed [87, 88]. However there are several limitations to the use of RNAi to address 

the function of genes in specific cells, especially in neurons [141]. First, direct delivery 

of dsRNA to worms, by injection, feeding or soaking [142] results in systemic RNAi, 

which affects many or all the cells in the organism. Thus it is not possible, with this 
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approach, to dissect the role exerted by a gene of interest in specific cells or group of 

cells. Moreover essential genes are obviously very difficult to study. Second, some late 

acting genes and most of the genes expressed in neurons are largely resistant to RNAi 

knocking-down [141, 142]. In C. elegans, a transgene driven genetic interference has 

been described as a possible way to overcome some of the limitations of classical RNAi 

obtained by direct delivery of dsRNA to the animals [141]. However each of these 

techniques present different limitations. The method described by Tavernarakis et al. 

(2000), based on the generation of a harpin dsRNA transgene driven by a heat-shock 

promoter, cannot be utilized for cell-specific knock-down and there are also problems 

related to the stability of the harpin in the plasmid [141, 143]. Modifications of this 

approach, using cell-specific promoters, have also been described but the efficiency of 

knocking-down in neurons and the cell-autonomy of the effects obtained have either not 

been addressed or have produced conflicting results [141, 144, 145]. Finally an 

inducible genetic interference has also been obtained with sense and antisense RNAs 

transcribed as separate molecules and not as a harpin plasmid [146]. However also in 

this case, an ubiquitously heat-shock promoter was used and thus the knock-down of 

gene function was not targeted to specific cells.  

The innovative RNAi technique developed in the laboratory by Esposito et al. (2007) 

enables to efficiently reduce the function of a chosen gene in selected C. elegans 

neurons. This neuron-specific RNAi knocking-down method is transgene driven and is 

based on the expression, under a cell-specific promoter, of sense and antisense RNA 

molecules corresponding to a fragment of the gene of interest (for this reason it was 

called RNAi sas). The sense and antisense fragments are easily amplified and can be 

mixed and injected as such to transform animals, making this approach relatively fast 

and easy (Figure 12) [134]. It has been demonstrated that gene knocking-down obtained 

with RNAi sas is efficient, heritable and cell-autonomous. The RNAi sas has been used 

with success to knock-down several genes in different neuronal classes and to 

investigate their role in development and in the survival of selected neurons, as well as 

in the behavioral response they control [147-151]. 

In conclusion this powerful RNAi approach allows to dissect the role played by a gene 

of interest, specifically in chosen neurons in otherwise wild type animals, eliminating 

the onset of lethal effects due to the use of classic genetic mutations or the difficulty of 
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studying the gene loss of function by using chemical treatments or RNA interference 

approaches previously described.  

Using this innovative RNAi strategy I reduced the function of the two candidate genes 

selectively in DAergic C. elegans neurons, thus generating transgenic animals which 

were viable and able to move. Afterwards I performed molecular and behavioral studies 

on these transgenic animals to dissect the role of unc-64 and unc-63 genes in DAergic 

circuit. 

 
Figure 12. Construction of transgenes for neuron specific knock-down. 

The construction of transgene for neuron specific knock-down includes three steps. In the first step, genomic 

sequences corresponding to the target gene and to the chosen specific promoter are amplified separately. The neuron 

specific promoter (black line) is amplified with primers Promoter forward (arrow Pf) and Promoter reverse (arrow Pr) 

obtaining the product A. An exon rich fragment of the target gene (green line) is amplified in two different reactions 

to obtain the sense and antisense fragments. The sense fragment (product B) is amplified with primers Target forward 

(arrow Tf) and Target forward sense (arrow Tfs). The antisense fragment (product C) is  amplified with primers 

Target forward antisense (arrow Tfa) and Target reverse (arrow Tr). The Tf and Tr primers had at their had at their 5’ 

end 20-21 additional nucleotides complementary to 3’ end of the of promoter (red line). In the second step A is fused 

by amplification to B or C, separately, by using the nested primers Pf* and either Tr* or Tf*. These two reactions 

yeld DNA fragments in which the target gene fragment can be transcribed by the specific promoter in the sense and 

antisense orientation. In the third step the fusion fragment are mixed in equimolar amounts and injected, together 

with a visible marker (not shown), in recipient animals. 
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RESULTS 

 

Set up of a specific and efficient knock-down of genes of interest in 

dopaminergic neurons 
To dissect the role played by a gene of interest, specifically in DAergic neurons in 

otherwise wild type animals, we have to obtain transgenic animals injected with DNA 

constructs made of a specific DAergic promoter fused to a part of the genomic region of 

the target gene, to be amplified in sense and antisense direction. Moreover we need to 

prepare the appropriate positive and negative controls, where genes known to play a 

function (positive control genes) and not playing a role (negative controls) in DAergic 

neurons are knocked-down with the same approach and their phenotypes are compared 

to the corresponding genetic mutants. 

In order to knock-down in DAergic neurons the different genes of interest, I tested the 

efficiency of the promoters of two genes, cat-2 and dat-1, hence named pcat-2 and 

pdat-1. These promoters have been described in literature to be specific to DAergic 

neurons and we decided to compare their efficiency by using them to express green 

fluorescent protein (GFP) reporter gene and then to separately knock-down the same 

reporter gene in DAergic neurons. dat-1 gene encodes for DAT Transporter and is 

required to regulate synaptic DA signaling by controlling extracellular DA levels 

(Figure 7). A promoter spanning 0.7 kb of dat-1 upstream region fused to gfp causes an 

intense gene reporter expression, restricted to DAergic neurons [106]. cat-2 gene 

encodes for Tyrosine Hydroxylase (TH) and is the rate-limiting enzyme required to 

produce L-Dopa in DA biosynthesis. In this case, 1.5 kb of the presumptive cat-2 

promoter were used to drive gfp expression and an intense expression of the reporter 

only in DAergic neurons was observed [2, 97, 102]. Moreover Flames and Hobert in 

2009 demonstrated the existence of small cis-regulatory modules (CRM) in each 

DAergic promoter, necessary to drive expression specifically in C. elegans DAergic 

neurons [152]. Based on these informations, I generated PCR costructs by fusing the gfp 

gene to the promoter regions of cat-2 (0.6 kb) or dat-1 (0.8 kb), which include the cis-

regulatory modules (CRM). These PCR fusions were injected in wild type animals and I 

obtained two different transgenic strains expressing pdat-1::gfp and pcat-2::gfp, 

respectively. I carried out analysis at the compound fluorescence microscope to 
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determine the expression pattern of the two promoters in DAergic neurons. As shown in 

Figure 13 both promoters were expressed in all DAergic neurons and only in them (data 

not shown). Moreover the percentage of CEP, ADE and PDE visible neurons was 

different for the two promoters, with pdat-1 expressed in 90%, 93% and 92% of 

expected neurons, respectively, and pcat-2 in 64%, 81% and 31%, respectively.  
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Figure 13. Efficiency of the two dopaminergic promoters in driving GFP expression in dopaminergic  neurons 

Quantification of CEPs, ADEs and PDEs visible neurons, among the expected ones in transgenic animals expressing 

GFP gene under pdat-1 (green bar) or pcat-2 (light green bar). Neurons were quantified at L4 larval stage, using 

compound fluorescence microscopy. n is the number of neurons expected to be visible (8 per worm). Asterisks 

represent statistical difference between two bars by using Compare two proportions non parametric test (*p<0.001 

significantly different from pcat-2).  

 

 

Then I examined the ability of the two promoters to knock-down a reporter gene in 

DAergic neurons. With this aim I used the RNAi sas technique [134] described above, 

to reduce the expression of gfp in the same neurons but in a different transgenic 

background where GFP is costitutively expressed. To this aim I drove the expression of 

fragments corresponding to a part of the gfp gene, in sense and antisense direction, 

under the control of pdat-1 or pcat-2. The two PCR constructs obtained were injected in 

two different integrated transgenic strains, in which the gfp is expressed in DAergic 
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neurons under the control of pcat-2 and pdat-1, respectively. A “complementary” 

approach, i.e. pdat-1::gfp(RNAisas) silencing construct injected in pcat-2::GFP 

transgenic strain for GFP expression and viceversa, was used to avoid any disturbance 

of the same promoter on gene knock-down and on gene expression. Compound 

fluorescence microscope analysis was used on determining a possible different ability 

between the two promoters to knock-down the gfp. In particular after gfp knock-down 

using pdat-1, only 12%, 6% and 29% of CEP, ADE and PDE neurons, respectively, 

were still visible, while in the controls that constitutively express the gfp in DAergic 

neurons 100%, 94% and 99% of CEP, ADE and PDE neurons are usually visible. 

Differently, 91%, 90% and 90% of CEP, ADE and PDE neurons, respectively, were 

visible when using pcat-2 (Figure 14).  
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Figure 14. Efficiency of the two specific promoters in knocking-down GFP expression in dopaminergic 

neurons 

Quantification of CEPs, ADEs and PDEs visible neurons, among the number of neurons expected to be present in 

transgenic strains with two interfering constructs, pdat-1::gfp(RNAisas) or pcat-2::gfp(RNAisas), and GFP 

constitutively expressed. The gfp specific knock-down in DAergic neurons induces a reduction in the number of 

visible neurons that is stronger with pdat-1 (green bar) than pcat-2 (light green bar). Neurons visible in controls are 

represented by a dark green bar. Neurons were quantified in L4 larval stage animals under compound fluorescence 

microscopy. n is the number of neurons expected to be present. Asterisks represent statistical difference from pcat-2 

and control by using Compare two proportions non parametric statistical test (*p<0.001 significantly different from 
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pcat-2 and control). 

 

In conclusion all these analysis revealed that pdat-1 is much more efficient in driving in 

DAergic neurons the expression and the knocking-down of a gfp reporter than pcat-2. 

Thus I used this promoter for further experiments and to generate transgenic models of 

DA specific knock-down of the two genes of interest, unc-63  and unc-64.  

Before generating these transgenic models, I evaluated the ability of pdat-1 to knock-

down in DAergic neurons genes normally expressed in the same neurons (positive 

control genes). With this purpose, I chose dat-1 and cat-2 genes, known to have an 

essential role in the DA pathway.  

The nematode C. elegans is an animal model with a simple but sophisticated DAergic 

nervous system. In particular a variety of DA-mediated behavioral assays have been 

identified. In order to confirm the knock-down of the positive control genes cat-2 and 

dat-1 in DAergic system, I performed two of these behavioral assays, which are the 

Basal Slowing Response (BSR) and the SWimming Induced Paralysis assay (SWIP).  

The Basal Slowing Response (BSR) assay tests one of the main effects of DA release 

from DAergic neurons in response to food. As demonstrated from Sawin et al., wild-

type animals slow down their rate of locomotion when they encounter a bacterial lawn, 

whereas cat-2(e1112) mutant animals, defective for tyrosine hydroxylase and therefore 

for DA synthesis, do not exhibit a slowing response because they lack endogenous DA 

[99]. To obtain a cat-2 knock-down by using the RNAi sas technique, I generated 

transgenic animals expressing sense and antisense corrsponding to cat-2 sequence under 

the control of pdat-1 promoter. Afterwards I used the basal slowing response assay to 

evaluate the ability of the technique to efficiently knock-down cat-2 gene in DAergic 

neurons. As reported in Figure 15, the transgenic animals lacking cat-2 in DAergic 

neurons exhibited a defective basal slowing response similar to cat-2(e1112) null 

mutant animals, whereas the negative control, represented by transgenic animals lacking 

gfp in the same neurons using the same approach, reduced its locomotion rate in 

response to bacterial food, behaving similarly to wild-type animals. These results 

demonstrated that the DAergic specific knock-down of cat-2 gene, using pdat-1 and this 

novel RNAi approach, is effective and is able to reproduce the specific phenotype 

observed in cat-2(e1112) mutant animals.  
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Figure 15. cat-2 knock-down in dopaminergic neurons causes a defect in Basal Slowing Response 

Transgenic animals lacking cat-2 in DAergic neurons exhibit a defective slowing response (pdat-1::cat-2(sas)), 

similar to cat-2(e1112) mutant animals and different from the negative controls: wild-type animals (first row), non 

transgenic animals (control) and negative controls (pdat-1::gfp(sas)). Locomotory rate was counted for 5 young adult 

worms per strain, for five intervals each of 20-seconds, with a total of 30 independent measurements per condition. 

Dark-blue bars indicate locomotion rate among 20 seconds in the absence of food, and blue bars indicate locomotion 

rate in the presence of food. Error bars indicate SEM between indipendent experiments. Asterisks indicate values 

significantly different from the 45% of slowing seen in the wild type (Student's t-test: *P <0.001). The percentage of 

slowing in the presence of bacteria for each strain is shown on the right.  

 

 

Another DAergic specific behavior in the nematode is the specific locomotory response 

to an excess of extrasynaptic DA neurotransmitter. As described by McDonald et al. 

2007, this behavior consists in a paralysis subsequent to vigorous swimming or 

thrashing, termed “SWimming-Induced Paralysis” (SWIP) that is dependent on 

endogenous DA release as well as re-uptake by DAT-1 transporter function. In fact 50% 

of dat-1(ok157) null mutant animals, which are defective for DA reuptake into 

presynaptic neurons, display a paralytic phenotype when placed in water for 10 minutes 

[51]. To generate a suitable dat-1 knock-down as positive control by using the RNAi 

sas technique, I generated transgenic animals expressing sense and antisense fragments 

corresponding to dat-1 gene sequence under the control of pdat-1. Afterwards I 

performed the SWIP assay to evaluate the ability of the approach to efficiently knock-
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down dat-1 in DAergic neurons. This analysis revealed that transgenic animals lacking 

dat-1 in DAergic neurons showed an intermediate SWIP response, compared to dat-

1(ok157) mutant animals, with 30% of the animals becoming paralyzed after 10 minutes 

of swimming in water versus 55% in the genetic mutant. The negative controls, as 

above, showed a SWIP response similar to the wild-type strain (below 10%) (Figure 

16). In conclusion also this result confirmed that the use of pdat-1 and of RNAi sas 

approach are able to efficiently reduce the function of a target gene in DAergic neurons, 

generating the same phenotype observed in mutant animals.  
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Figure 16. The dat-1 knock-down in dopaminergic neurons induces SWIP  

After knocking-down dat-1 specifically in DAergic neurons, the 30% of transgenic animals became paralyzed (purple 

bar), similarly to dat-1(ok157) mutant animals (plum bar). Error bars indicate SEM between indipendent 

experiments. Statistical significance was assessed by Compare two proportions (*p<0.05, significantly different from 

wild-type, control and pdat-1::gfp(sas)). n is the number of L4 animals observed. 

 

 

Cell specific knock-down of unc-64 gene  
UNC-64 is an essential component of the core synaptic vesicle fusion machinery in the 

nematode and it is required for normal locomotion [123]. Previous works have shown 

that in C. elegans UNC-64, similarly to what happens in mammals [48, 49], interacts 

with the N-terminus of DAT-1 [40]. Moreover it has been observed that fusing the GFP 

to DAT-1 N-terminus prevented DAT-1 interaction with UNC-64, causing a swimming 
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induced paralysis (SWIP) [40], the behavioural phenotype observed in DAT-1 deficient 

nematodes [51].  

In order to explore the role of UNC-64 in C. elegans DAergic system, I focused on the 

effects of its knock-down in DAergic neurons on motor behavior. To study the role of 

Syntaxin 1A in C. elegans DAergic circuit, I generated a transgenic model, using the 

RNAi sas technique, to knock-down the C. elegans Syn1A homologue, unc-64, in 

DAergic circuit. The DAergic specific knock-down of unc-64 gene was obtained by 

injecting the interfering construct, prepared as above, by PCR-fusing the pdat-1 

promoter to sense and antisense fragments corresponding to unc-64 gene sequence.  

All the transgenic lines obtained from this microinjection were viable, did not present 

developmental defects and abnormal locomotion. Therefore by using the RNAi sas 

technique I overcame the problems related to the classical genetic and RNAi 

approaches, that cause the onset of several defective phenotypes and did not allow to 

perform behavioral assays, which are essential to explore the role of unc-64 gene in 

DAergic circuit. 

 

 

Behavioral analysis 
I carried out the SWIP assay on transgenic animals where unc-64 is knocked-down in 

DAergic neurons, and observed that 24% of them showed a locomotion paralysis when 

placed in water for 10 minutes, similarly to dat-1(ok157) null mutant animals (Figure 

17). Moreover this intermediate SWIP response is also very similar to the positive 

control, represented by animals lacking dat-1 in the same neurons, that presented 30% 

of paralysed animals (Figure 17). This result demonstrated that the knock-down of unc-

64 specifically in DAergic neurons is able to increase the extrasynaptic endogenous DA 

levels and cause a SWIP. This demostrates that unc-64 presence is important in 

DAergic system to guarantee a correct DA reuptake. 
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Figure 17. The effects of dopaminergic specific knock-down of unc-64 in SWIP response 

After knocking-down unc-64 in DAergic neurons, the 24% of transgenic animals became paralyzed after 10 minutes 

in water (lilac bar), similarly to dat-1(ok157) null mutant (plum bar) and pdat-1::dat-1(sas) (purple bar). Error bars 

indicate SEM between indipendent experiments. Statistical significance was assessed by using Compare two 

proportions statistical test (*p<0.05 significantly differents from wild-type, control and pdat-1::gfp(sas); *p<0.05 

significantly different from wild-type). n is the number of L4 animals observed. 

 

 

A dysfunction in DA reuptake has been implicated in the effects of several 

psychostimulants of abuse, such as Amphetamines (AMPH). Having as a substrate 

DAT-1 protein, AMPH elevates extracellular DA levels by antagonizing DA clearance 

and stimulating DAT-mediated DA efflux. The final result of AMPH is to elevate the 

extracellular concentration of DA and, as a consequence, to alterate DA signaling [23, 

153, 154]. To date all the key molecular players involved in the mechanism of AMPH 

are still not identified.  

Carvelli et al. showed that the treatment of C. elegans wild-type animals for 10 minutes 

with 0,5 mM of AMPH induced a significant SWIP with respect to dat-1(ok157) null 

mutant animals that were resistant, confirming that AMPH induces also in C. elegans an 

accumulation of extracellular DA and that this phenomenon requires DAT-1 expression 

[155]. They also demostrated that AMPH-Induced SWIP is mediated by DA storage, 

DA synthesis, and DA receptors signaling, including DOP-2, DOP-3, and DOP-4 

receptors [155].  

In an attempt to verify if UNC-64 is one of the key elements of DAergic signaling 
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involved in the behavioral effects induced by AMPH, in collaboration with the Carvelli 

Laboratory, we measured AMPH-induced SWIP in trasgenic animals where unc-64 is 

specifically knocked-down in DAergic neurons. Interestingly, when trangenic animals 

lacking unc-64 in DAergic neurons were tested in the presence of AMPH, a strong and 

significant reduction in SWIP was observed, as compared to wild-type animals and 

negative controls (Figure 18). Moreover this reduction in SWIP response is similar to 

dat-1(ok157) null mutant animals and to transgenic animals where dat-1 is specifically 

knocked-down in DAergic neurons, suggesting that the knock-down of the unc-64 gene 

in DAergic system is sufficient to decrease the capacity of the transgenic animals to 

paralyze upon exposure to AMPH (Figure 18). These data suggest that AMPH-induced 

SWIP response not only depends on DAT-1 protein but also on the UNC-64 activity, 

specifically in DAergic system. 
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Figure 18. The effects of dopaminergic specific knock-down of unc-64 in AMPH response 

AMPH treatment of transgenic animals where unc-64 is knocked-down in DAergic neurons, induces a reduction in 

SWIP response (lilac bar) similar to dat-1(ok157) null mutant (plum bar) and dat-1 knock-down (purple bar), and not 

observed in wild-type and negative control (pdat-1::gfp(sas)). Error bars indicate SEM between indipendent 

experiments. Statistical significance was assessed by using Compare two proportions test (*p<0.01, significantly 

differents from wild-type and pdat-1::gfp(sas)). n is the number of L4 animals observed. 
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UNC-63 involvement in dopaminergic system  
UNC-63 plays an important role in cholinergic transmission at the nematode 

neuromuscular junction [129]. To explore the possible role of UNC-63, the α6 subunit 

of the nicotin Acetylcholine receptor in C. elegans DAergic circuit, I initially needed to 

demonstrate its expression in this specific neuronal system. 

  

 

UNC-63 is expressed in dopaminergic neurons  
Previous works revealed that it is expressed in body wall muscles, in head muscles and 

in many neurons in the head and in the ventral cord of the nematode [129] (Figure 11). 

To date it has never been described a specific expression in DAergic neurons. To 

determine a possible role of unc-63 in DAergic circuit, I initially needed to determine its 

expression pattern. With this purpose, I used transgenic animals, available from the 

C.elegans stock center, in which a gfp reporter was fused to unc-63 promoter (punc-63), 

allowing its expression both in muscles and in neurons (punc-63::gfp) [156]. 

Afterwards I checked the possible expression pattern in DAergic neurons by crossing 

transgenic animals bearing punc-63::gfp transgene with a reporter strain that expresses 

mCherry fluorophore in all the DAergic neurons, under the control of dat-1 promoter 

(pdat-1::mCherry). I analysed these double trangenic strains with confocal microscopy 

and I observd that, apart from the expression in body wall muscles and in other cells of 

the nervous system, GFP was expressed also in DAergic neurons, co-localizing with 

mCherry in cell bodies (Figure 19). This result demonstrates that a nicotinic 

acetylcholine receptor (nAChR) containing the UNC-63 subunit in the nematode, may 

have an important function in regulating the C. elegans DAergic system. To confirm 

this result I also made a second analysis by observing, at the confocal microscope, a 

second type of transgenic animals obtained by injecting a second plasmid which has 

been previously used to determine the unc-63 expression profile by a different research 

group [131]. This plasmid was injected in the reporter strain pdat-1::mCherry as above. 

Again a co-localization of GFP with mCherry was visible in DAergic neurons (not 

shown).  
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Figure 19. Expression pattern of unc-63 in dopaminergic circuit 

Columns from left to right show: a diagram of DAergic neurons (WormAtlas 2008); animal region with the 

expression of a DAergic neuron-specific marker pdat-1::mCherry (Rhodamine filter); the GFP expression under 

punc-63 promoter (GFP filter); merge of the two previous images. (A) Left panel: diagram of CEP neurons in the 

head (WormAtlas 2008); middle left panel: expression of mCherry in CEP neurons; middle right panel: GFP 

expression under punc-63 promoter in muscles and neurons of the head; right panel: merge of the two previous 

images shows that GFP and mCherry colocalize in CEP neurons (images were captured at 630x magnification). (B) 

Middle panel, from left to right: diagram of ADE neurons in the head (WormAtlas 2008); head regions containing 

ADE neurons visualized by the expression of a DAergic neuron-specific marker pdat-1::mcherry; GFP expression 

under punc-63 promoter in neurons of the head; merge of the two previous images shows that GFP and mCherry 

colocalize in ADE neurons (images captured at 630x magnification). (C) Lower panel, from left to right: diagram of 

PDE neurons at mid body (WormAtlas 2008); PDE neurons visualized by the expression of a DAergic neuron-

specific marker pdat-1::mcherry; GFP expression under punc-63 promoter in a neuron at midbody; merge of the two 

previous images shows that GFP and mCherry colocalize in PDE neurons (images captured at 1000x magnification). 

All the animals were examined with a confocal microscopy Leica equipped with epifluorescence. Anterior is to the 

left, ventral is down in all pictures. 
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Behavioral analysis of unc-63 interfered animals 

Once revealed that unc-63, the homolog to the human CHRNA6 gene, is also expressed 

in DAergic neurons, I explored its functional role in the same neurons by generating 

transgenic animals lacking the gene in DAergic neurons using the RNAi sas technique. 

The DAergic specific knock-down of unc-63 gene was obtained, as above, by fusing the 

pdat-1 promoter to sense and antisense fragments corresponding to unc-63 gene 

sequence.  

All the transgenic lines obtained from this microinjection were viable and did not 

present abnormal locomotion. Therefore I again overcame the problems related to the 

classical genetic approaches, that because of severe defective phenotypes observed in 

unc-63 genetic mutants, did not allow to perform behavioral assays, which are essential 

to explore the role of unc-63 gene in DAergic circuit. 

Transgenic animals lacking unc-63 in DAergic neurons were analysed for behavioral 

assays known to be DA-mediated.  

Firstly, I verified the response to food in transgenic animals, by performing the Basal 

Slowing Response assay. As shown in Figure 20, these transgenic animals exhibit a 

normal rate of locomotion, similar to the wild-type and the negative control. This result 

suggests that the specific knocking-down of unc-63 in DAergic circuit does not down-

regulate the DA biosynthesis, since interfered animals still maintain their ability to 

detect the presence of food. 
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Figure 20. The effect of dopaminergic specific knock-down of unc-63 in the Basal Slowing Response 

After knocking-down unc-63 specifically in DAergic neurons, transgenic animals exhibit normal slowing response 

(pdat-1::unc-63(sas)), similarly to wild-type animals. Locomotory rate was counted for 5 young adult worms per 

strain, for five intervals each of 20-seconds, with a total of 30 independent measurements per condition. Dark-blue 

bars indicate locomotion rate among 20 seconds in the absence of food, and blue bars indicate locomotion rate in the 

presence of food. Error bars indicate SEM between indipendent experiments. Asterisks indicate values significantly 

different from the 44% of slowing seen in the wild type (Student's t-test: *p<0.001). The percentage of slowing in the 

presence of bacteria for each strain is shown on the right.  

 

 

I also performed the SWIP assay, to verify if unc-63 specific loss in DAergic neurons 

may enhance the DA signaling in terms of increasing extrasynaptic neurotransmitter 

levels. As shown in Figure 21, only 18% of transgenic animals lacking of unc-63 in 

DAergic neurons became paralyzed, when placed in water for 10 minutes. This 

percentage was not significantly different from the wild-type and the negative controls, 

suggesting that the contribution of unc-63 is not essential in increasing the extrasynaptic 

DA levels in C. elegans DAergic system. 
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Figure 21. The effect of dopaminergic specific knock-down of unc-63 in the SWIP response 

After knocking-down unc-63 specifically in DAergic neurons, a very low percentage of transgenic animals became 

paralyzed after 10 minutes in water (dark green bar), non significantly different from wild-type, control and pdat-

1::gfp(sas) (light green bars). Error bars indicate SEM between indipendent experiments. Statistical significativity of 

the difference was assessed by using Compare two proportions test. n is the number of L3 animals observed. 

 

 

UNC-63 is required in dopaminergic neurons to mediate DMPP-

induced toxicity during C. elegans larval development  
Given that the previous DAergic specific behavioral assays revealed that UNC-63 

subunit does not have a role in modulating DA levels in the nematode DAergic system, 

I explored whether it may play a different function in this neuronal system.  

Previous research demonstrated that the UNC-63 subunit mediates, during post-

embryonic development, the toxicity to DMPP (1,1-dimethyl-4-phenylpiperazinium), 

a nicotinic receptor agonist known to be able to activate most vertebrate nAChR 

subtypes [131, 157-159]. The C. elegans larvae normally get to adulthood through a 

discontinuous development through four larval stages (L1 to L4), each terminated by a 

molt. This molt cycle is tightly coordinated with the postembryonic cellular divisions. 

Ruaud and Bessereau discovered that manipulating nicotinic neurotransmission by 

chronically exposing animals to DMPP during post-embryonic development cause a 

lethal phenotype at L2 to L3 molt [131]. In particular it has been observed the 

exposure of a defective cuticle during the L2 stage that remains at the subsequent 
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molt, resulting in a lethal overlap of these two developmental stages. They also 

discovered that the action of the nicotinic agonist was not due to general toxicity, but 

rather was specific and was mediated through UNC-63 containing receptors, 

because unc-63(x37) null mutants were partially resistant to the stage-specific lethality 

of DMPP [131]. Partial resistance was explained by functional redundancy between 

nAChR subunits. Moreover the DMPP sensitivity was not mediated by muscle tissue, 

but rather by neurons expressing UNC-63 receptor [131]. To date the neuronal 

pathways mediating this effect have not been determined.  

By using this novel paradigm introduced by Ruaud and Bessereau, I investigated 

whether DAergic system may be one of the neuronal pathways through which UNC-63 

mediates the toxic effects produced by DMPP exposure. To this end I initially 

performed rescue experiments aimed at confirming that the DMPP sensitivity was 

mediated by neurons expressing UNC-63 and not by muscles. The rescue experiments 

were made by expressing the unc-63 full-length cDNA in muscules through a muscle 

specific promoter (pmyo-3) or both in muscles and in neurons though the unc-63 

endogenous promoter (punc-63). The punc-63 promoter has been previously used to 

determine the unc-63 expression profile (see paragraph above) and together with pmyo-

3 promoter they have also been used for rescue experiments in the DMPP-resistance 

assay [131]. The two different rescuing constructs were microinjected in wild-type 

animals and then transferred in unc-63(x37) null mutants. The transgenic animals 

obtained by rescuing the function of unc-63 in both muscle and in neurons, as  tested 

after DMPP exposure, were significantly less resistant to the nicotinic receptor agonist, 

with 17% of survival worms (Figure 22). Differently transgenic animals in which the 

function of unc-63 is rescued only in muscles, still presented a DMPP sensitivity similar 

to the unc-63 null mutant, with 41% of survival worms (Figure 22).  
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Figure 22. Neurons expressing UNC-63 receptor are required for the DMPP toxicity 

Survival on 0.75 mM DMPP. Muscular expression of UNC-63 does not rescue unc-63(x37) DMPP resistance (lilac 

bar), while muscular and neuronal expression (plum bar) produce a strain which is significantly less resistant to 

DMPP than unc-63(x37) (purple bar) (*p< 0.05, Mann-Whitney test). Error bars indicate SEM between indipendent 

experiments. n is the number of animals observed. 

 

 

Once confirmed that the expression of the UNC-63 subunit in neurons, and not in 

muscles, is required to trigger the action of DMPP, I examined the response to the 

nicotinic agonist of transgenic animals in which the function of unc-63 is knocked-

down specifically in DAergic neurons. As reported in Figure 23, these animals showed 

a significant DMPP resistance, similar to the unc-63(x37) null mutant, with 45% of 

survival worms. This was different from the negative control, represented by transgenic 

animals lacking gfp in the same neurons, with 8% of survival worms and a DMPP 

sensitivity similar to wild-type animals (Fiure 23). Interestingly these data indicate that 

the DAergic specific knock-down of unc-63 is sufficient to induce a partial DMPP 

resistance, thus strongly supporting the idea that its presence in DAergic neurons is 

required to mediate the DMPP lethal effect in the nematode. 
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Figure 23. The effect of dopaminergic specific knock-down of unc-63 on DMPP resistance  

Survival on 0.75 mM DMPP. DAergic knocking-down of unc-63 (light violet bar) causes a DMPP resistance similar 

to null mutant (purple bar). (*p<0.05, Mann-Whitney test, significantly different from wild-type, control and pdat-

1::gfp(sas)). Error bars indicate SEM between indipendent experiments. n is the number of animals observed. 

 

 

To further confirm this hypothesis, and to demostrate that knocking-down is confined to 

DAergic neurons, I transferred transgenic contructs in a sid-1 mutant background, 

deficient for systemic RNAi. In fact sid-1 encodes a dsRNA-channel conserved in 

humans and mice, responsible for the trafficking of RNA knocking-down molecules 

into all cells and therefore it is required for systemic RNAi [160]. It has been 

demonstrated that mutations in sid-1 gene, such as allele qt9, are completely defective 

for systemic RNAi, whereas they are fully functional for cell-autonomous RNAi [160]. 

Thus to prevent systemic spreading of RNAi, I exposed to DMPP transgenic animals 

obtained by transferring the DAergic specific interfering construct of unc-63 in sid-

1(qt9) mutant background. As reported in Figure 24 transgenic animals still present a 

partial resistance to DMPP similar to unc-63 null mutant, with 30% of surviving worms. 

This is different from sid-1(qt9) mutant strain, that showed a sensitivity to DMPP 

similar to the wild-type animals with 9% of survival worms (Figure 24). Altogheter, 

these data confirm the idea that the partial DMPP resistance  observed in UNC-63 

mutants is mediated by the unc-63 loss of activity specifically in DAergic neurons, 

indicating that this neuronal circuit is the target required to protect animals from DMPP 
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toxicity during larval development.  
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Figure 24. Dopaminergic system represents the neuronal tissue through which UNC-63 mediates the toxic 

effect produced by the DMPP exposure  

Survival on 0.75 mM DMPP. unc-63 knocking-down in DAergic neurons in sid-1 mutant background (lilac bar) 

showed a resistance to DMPP similar to unc-63(x37) null mutant (purple bar), to unc-63(RNAi sas) (light lilac bar)  

and significantly different from control and wild-type (pink bars) and from sid-1 (plum bar). (*p<0.05, Mann-

Whitney test, significantly different from wild-type, control and sid-1(qt9)). Error bars indicate SEM between 

indipendent experiments. n is the number of animals observed. 
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DISCUSSION 

 
DA is one of the main neurotransmitter of the central nervous system, responsible for 

several physiological functions including locomotion, motivation and learning [3-5]. 

Alterations in the DA levels may lead to neuronal disorders of which the molecular 

mechanisms and the key elements responsible are not completely understood. I focused 

my PhD project in carrying out a genetic analysis on DAergic system, to identify some 

of these elements, which may help to better understand the complex mechanisms 

regulating this neuronal system. In order to perform specific studies on these novel key 

elements in DAergic system, it has been necessary to use an animal model that is 

amenable for genetic manipulations, and that conserves an high homology with human 

DAergic pathway and allows to analyse specific behaviors which are known to be 

mediated by DA. One such model is the nematode Caenorhabditis elegans. This 

animal, with its powerful genetics and an easily accessible nervous system has been 

used by researchers as a model to investigate neurodegeneration [161] and to 

understand the molecular mechanisms underlying DAergic system development and 

regulation [140].  

In the present study, I explored the role in the C. elegans DAergic system of unc-64 and 

unc-63 genes, orthologs of the human genes Syntaxin1A and CHRNA6. I have chosen 

these genes because there are strong evidences that they may play a role in DAergic 

system which have never been fully demonstrated [49, 68, 69]. Previous studies on unc-

64 and unc-63 genes in C. elegans have utilised genetic mutants or classic RNA 

interference technique [123, 127, 129, 131-133]. These models present some 

limitations, making it difficult to dissect their possible role in DAergic system. In 

particular uncoordinated locomotion due to muscle dysfunction and growth defects 

hamper the analysis of DA-mediated behaviors, indispensable to explore the possible 

role they may play in this neuronal circuit. Therefore, I used a powerful RNAi strategy, 

named RNAi sense and antisense (RNAi sas), to generate two transgenic models where 

the function of unc-63 or unc-64 genes, was selectively knocked-down in C. elegans 

DAergic neurons. To obtain efficient transgenic models, it has been necessary to 

initially choose a DAergic-specific promoter, such as pdat-1, able to specifically and 

efficiently drive both the expression and the knock-down of a reporter-gene (such as 
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gfp) in these neurons only. pdat-1 promoter has been used also to knock-down genes to 

be used as positive controls (cat-2 and dat-1). By obtaining an highly efficient and 

specific knock-down fo these control genes in DAergic neurons, I obtained the first 

model of DA-neurons specific RNA-inteference ever. After having set up the best 

experimental conditions, I generated transgenic models lacking unc-64 or unc-63 only 

in DAergic-neurons. Importantly, these animals are viable and able to move, allowing 

us to overcome the limitations of classical  approaches such as defects in growth and in 

locomotion. These models allow to study the role played by the genes of interest in 

selected DA neurons in a very fast, direct and simple way. 

 

 

Characterization of the phenotypes caused by unc-64/Syntaxin1A 

knock-down in dopaminergic neurons 
Several studies have recognized the SNARE protein Syntaxin1A as one of the 

regulatory partner of DA transporter DAT, that can regulate reverse transport and ion 

channel activity through its direct interaction with DAT N-terminus [40, 49]. The 

molecular mechanisms of protein-protein interaction has been demontrated using the 

yeast-two-hybrid approach and fusion proteins in vitro [48, 49], while in C. elegans an 

N-terminal tag of DAT-1 disrupt the interactions between CeDAT-1/hDAT and 

CeUNC-64/hSyntaxin1A [40]. These studies support the hypothesis that Syntaxin1A 

may represent an important key element in DAergic circuit to guarantee a correct DA 

reuptake, a role that has never been completely clarified. 

During my PhD project I have explored the role of unc-64 gene in the C. elegans 

DAergic system in vivo, using a genetic approach. I took advantage of the RNAi sas 

technique to generate a transgenic model where the function of unc-64 gene was 

knocked-down specifically in DAergic neurons. Transgenic animals obtained with this 

approach have been used to perform in vivo the SWimming Induced Paralysis (SWIP) 

assay, which allows to explore a behaviour associated with an excess of synaptic DA 

[51]. Interestingly we have demonstrated that the lack of unc-64 in DAergic system 

induces a paralysis similar, albeit less penetrant, to dat-1(ok157) null mutant, 

demonstrating for the first time in vivo that its presence in this neuronal system is 

necessary to modulate a function similar to the DA transporter and to guarantee a 
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correct neurotransmitter reuptake.  

Treatment of C.elegans with psychostimulants such as Amphetamine (AMPH), induces 

a SWIP phenotype in the nematode, that requires DAT-1 correct expression. The key 

molecular players involved in this behaviour are still unclear. In an attempt to verify if 

UNC-64 may be one of these key elements, in collaboration with Carvelli’s Laboratory, 

we have measured AMPH-induced SWIP in transgenic animals where unc-64 is 

specifically knocked-down in DAergic neurons. Interestingly we have shown that 

animals lacking UNC-64 specifically in DAergic neurons have a decreased sensitivity to 

AMPH treatment, similarly to DAT-1 mutants. Our results strongly support unc-64 as a 

novel key mediator in DAergic circuit of the AMPH-induced SWIP, together with 

DAT-1 and DAergic receptors. 

 

 

Characterization of the phenotypes caused by unc-63/hCHRNA6 

knock-down in C. elegans dopaminergic system  
It has been recognised that the striatal DAergic and cholinergic systems play an 

overlapping role in regulating central nervous system functions, linked to motor activity 

and that are relevant in diseases such as Parkinson's disease [52-54]. In particular 

Acetylcholine (ACh) modulates striatal DA levels by stimulating nicotinic acetylcoline 

receptors (nAChRs). Interestingly, α6 subunit of nAChRs, encoded by CHRNA6 gene, 

is highly expressed in DAergic nigrostriatal pathway [67]. Moreover the induction of a 

damage in the nigrostriatal system of rodent and monkey, produces the loss of α6-

subunit that correlates with a decline in DA release, thus suggesting a biological 

relevance of this subunit in DAergic circuit [68, 69].  

For this reason I explored the role of unc-63 gene, the ortholog of the mammalian 

CHRNA6, in the C. elegans DAergic system. Firstly, it has been necessary to determine 

the possible expression of UNC-63 in this neuronal system. With this aim, I have 

analysed transgenic animals expressing the gfp under the control of an unc-63 promoter, 

to visualize tissues and neurons in which unc-63 is normally expressed. In addition the 

same animals express a red fluorescent reporter under the control of pdat-1 which 

allows to easily visualize and recognize DAergic neurons. Interestingly, this analysis 

revealed that unc-63 is also localized in DAergic neurons, supporting the hypothesis 
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that nAChRs containing the UNC-63 subunit may have a role in C. elegans DAergic 

system. After demonstrating the expression of unc-63 in DAergic neurons, I have used 

the RNAi sas technique to generate a C. elegans model in which unc-63 is selectively 

knocked-down in the same neurons. In this way I had the opportunity to study in vivo its 

role in this neuronal circuit. I tried to identify behavioural alterations in vivo arising 

from its specific knock-down in DAergic neurons, by performing the Basal Slowing 

Response (BSR) and the SWIP assays [51, 99]. In both cases the specific knock-down 

of unc-63 in DAergic neurons does not cause any phenotype, suggesting that unc-63 

loss does not severely reduce or enhance the DA levels. From these results I concluded 

that UNC-63 subunit does not exert a major role in regulating the DA signalling in C. 

elegans DAergic system. Thus I have explored if it may have a novel function in the 

same neuronal system.  

Previous studies on the nematode have demonstrated that illegitimate activation of 

nAChRs containing the UNC-63 subunit by the nicotinic agonist DMPP (1,1-dimethyl-

4-phenylpiperazinium), induced a lethal heterochronic phenotype during the second 

larval stage. The primary target of DMPP seems to be neuronal, since the loss of 

expression of the nAChR subunit UNC-63 in neurons partially protects the animals 

from DMPP toxicity [131]. Using the experimental paradigm described above, I have 

shown that the lack of unc-63 in DAergic system is able to produce a partial resistance 

to the nicotinic agonist DMPP, as observed in the null mutant, supporting for a specific 

role in the mechanism of DMPP toxicity during larval development. Importantly these 

results have allowed for the first time to recognize the DAergic system as the main 

neuronal target required to protect the animals from the DMPP toxicity.  
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FUTURE PERSPECTIVES 
Results obtained have demonstrated the advantages of using C. elegans as an animal 

model and of the RNAi sas approach, to explore novel roles of unc-64 and unc-63 genes 

in DAergic neurons.  

In order to complete the first part of the study on unc-64 gene, we will perform HPLC 

(High-Performance Liquid Chromatography) analysis, in collaboration with Dr. Leo 

(Italian Institute of Technology, Genova), to detect DA levels in transgenic animals 

lacking unc-64 in DAergic neurons. We expect that as observed in dat-1 null mutants  

[51], we should observe an enhancement of DA accumulation in transgenic animals. 

Moreover in collaboration with the research group of Dr. Carvelli (University of North 

Dakota) we will perform electrophysiological studies on C. elegans embryonic culture 

to evaluate the synaptic activity of DAergic neurons after knocking-down unc-64. We 

expect to see a defect in DA uptake after unc-64 knock-down, as observed in dat-1 null 

genetic mutants. 

Moreover, using the same approach, I have shown that the main role of UNC-63 in 

DAergic system is not related to the control of DA signaling. Results obtained strongly 

suggest instead that its presence in this neuronal tissue is required to modulate the 

sensitivity to the nicotinic agonist DMPP during larval development.  

To complete the study on the role of unc-63 on DAergic system, I will characterize the 

morphology of DAergic neurons, in order to identify possible morphological defects 

related to its specific knock-down in these neurons. Moreover it may be interesting, to 

generate and characterize new transgenic models, by using the RNAi sas approach, that 

lack others nAChRs in order to identify the receptor complex mediating nicotine effects 

in DAergic neruons. 
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