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Riassunto 
 

La mia attività di dottorato si è articolata in due fasi distinte, la prima svolta presso il 

laboratorio di Genetica Molecolare dell’Università di Napoli “Federico II”, sotto la 

supervisione della Prof.ssa Viola Calabrò, la seconda improntata sulla ricerca 

applicativa e svolta presso i laboratori dell’azienda Arterra Bioscience Srl. Questa 

parte del mio percorso formativo mi ha dato l’opportunità di avere un reale ed 

effettivo contatto con quelli che sono gli aspetti che caratterizzano la ricerca di tipo 

aziendale.  

L’Arterra Bioscience Srl è un’azienda italiana basata sulla ricerca biotecnologica con 

una forte conoscenza di base nel settore della biologia e una vasta esperienza nella 

ricerca di molecole bio-attive. 

Il filo conduttore della mia attività di dottorato è stato quello di studiare i processi di 

proliferazione, rigenerazione e differenziamento dell’epidermide, attraverso differenti 

approcci sperimentali. Per questo motivo la mia attività di ricerca aziendale è stata 

finalizzata alla identificazione di nuovi principi attivi derivanti da estratti di cellule 

staminali vegetali che svolgessero un’attività di controllo sui processi di idratazione, 

rigenerazione e differenziamento della pelle. L’azienda Arterra Bioscience Srl 

rappresenta una valida fonte di prodotti bioattivi già utilizzati nel settore della 

cosmetica per i loro benefici effetti nei processi di protezione, idratazione e 

rigenerazione della pelle.  

La pelle rappresenta il più grande organo del corpo dei mammiferi e costituisce la 

principale barriera difensiva del corpo da fattori esterni di differente natura. Lo strato 

più superficiale della pelle è l’epidermide, un epitelio pluristratificato composto 

principalmente da strati di cheratinociti, ma anche da altri tipi cellulari, quali: i 

melanociti, le cellule di Langerhans e le cellule di Merkel. I cheratinociti a loro volta si 

dividono in cheratinociti proliferanti nello strato basale ed in cheratinociti differenziati 

nello strato sopra-basale (Candi E. et al. 2005). Nello strato basale sono immerse 

anche delle cellule staminali a cui si deve la capacità della pelle di auto-rigenerarsi. 

La capacità autorigenerativa della pelle richiede un corretto equilibrio tra il 

programma di proliferazione, differenziamento e morte cellulare (Fuchs et al. 2002). 

Tuttavia, fattori ambientali e genetici possono alterare il normale turnover dei 

cheratinociti, e determinare la comparsa di differenti condizioni patologiche, quali: 

proliferazione incontrollata (carcinoma delle cellule basali e squamose), 

infiammazione dell’epidermide (dermatite atopica e psioriasi) ed invecchiamento 

prematuro.  

Ad Arterra erano già presenti colture di cellule staminali di Hibiscus syriacus e Betula 

pendula in quanto queste due piante, dai dati presenti in letteratura, sembravano 

avere benefici effetti sui meccanismi di controllo dell’omeostasi cellulare. Infatti, 

l’acido betulinico (3β, hydroxyl-lup-20(29)-en-28oic acid) è un prodotto naturale con 

un ampio spettro di attività biologiche, tra cui l’ attività antitumorale (Fulda 2008). In 

più è stato dimostrato che l’olio ottenuto dalla corteccia di Betula pendula è già 

utilizzato nel trattamento di patologie infiammatorie, quali l’eczema e la psoriasi. 

Invece, la corteccia radicale di Hibiscus syriacus è nota in Asia per le sue attività 
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antipiretiche, antielmintiche e antifungine mentre l’estratto di Hibiscus syriacus è noto 

per la sua capacità antiossidante (Kwon SW et al. 2003) e mostra effetti 

antiproliferativi sui carcinomi polmonari umani (Cheng YL et al. 2008) . 

Nella prima fase del mio periodo in azienda, mi sono occupata della preparazione di 

due tipologie di estratti da culture di cellule staminali vegetali, ottenendo un estratto 

alcolico ed uno idrosolubile per ciascuna coltura. Infatti, nella produzione industriale 

la possibilità di usare differenti solventi e procedure di estrazione risulta vantaggiosa 

per produrre estratti con contenuti differenti di alcuni principi bio-attivi sulla base della 

loro differente solubilità. Ho poi caratterizzato in base alle loro proprietà biochimiche 

le due diverse tipologie di estratto, determinando per ciascuna la quantità totale di 

proteine, la quantità totale di zuccheri, la quantità totale di polifenoli ed infine la loro 

capacità antiossidante mediante un saggio ORAC. Ho infine determinato la 

concentrazione di utilizzo di tali estratti nei sistemi cellulari da me selezionati, quali i 

cheratinociti umani immortalizzati ma non trasformati (cellule HaCaT) ed in fibroblasti 

umani primari (cellule HDF) mediante un saggio MTT che mi ha permesso di valutare 

l’effetto citotossico o pro-proliferativo delle differenti concentrazioni di estratto. 

Nella fase successiva ho valutato gli effetti degli estratti alcolici e idrosolubili di Betula 

p. e Hybiscus s. sulla regolazione dell’espressione di geni coinvolti nell’idratazione 

dell’epidermide, ed in particolare sul gene dell’aquaporina 3 (AQP3) e della filagrina 

(FLG). Le aquaporine sono una famiglia di proteine transmembrana, che funzionano 

da canali per il trasporto di acqua ed altri soluti attraverso la membrana plasmatica, 

risultando fondamentali per l’idratazione dell’epidermide (Verkman AS et al. 2012). In 

particolare, l’Aquaporina-3 (AQP3) è la più abbondante nella pelle dei mammiferi. La 

filagrina è una proteina strutturale responsabile dell’integrità degli strati superiori della 

pelle e della loro capacità di trattenere l’acqua (Pereda MCV et al. 2010). I risultati 

ottenuti mediante PCR semi-quantitativa, indicano chiaramente che il trattamento 

delle cellule HaCaT con entrambi gli estratti, ma in particolare con gli estratti di 

Betula p., promuove la trascrizione di AQP3 e FLG suggerendo quindi che tali estratti 

possano trovare applicazione in tutti i processi che richiedano riequilibrio della 

idratazione cutanea. 

La rigenerazione della pelle è un processo patologico dinamico e finemente regolato 

da segnali intra ed extra- cellulari, che sono fondamentali per la sostituzione dei 

tessuti danneggiati con nuovi tessuti (H. Sinno et al. 2013). Mediante un saggio di 

Wound Healig ho osservato che gli estratti di Betula p. non hanno mostrato effetti 

considerevoli sul fenomeno della rigenerazione sia su cellule HaCaT che sui 

fibroblasti HDF, mentre l’estratto alcolico di Hibiscus s. si è dimostrato efficace nel 

favorire il processo di riparo in ambedue i contesti cellulari. In particolare, mediante 

saggi ELISA, ho dimostrato che l’estratto alcolico di Hibiscus s. è in grado di favorire 

la produzione della fibronectina, una proteina adesiva che gioca un ruolo 

fondamentale nel processo di rigenerazione della matrice extracellulare (ECM).  

In seguito, ho analizzato la capacità dell’estratto alcolico di Hibiscus s. di 

incrementare la contrattilità dei fibroblasti mediante un saggio tridimensionale di 

contrazione del collagene. Infatti, i fibroblasti giocano un ruolo fondamentale nel 

processo di rigenerazione della pelle, poiché secernono chemochine, fattori di 
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crescita e proteine dell’ECM che sono necessarie per l’infiltrazione delle cellule nei 

processi di infiammazione e neo-angiogenesi (Singer AJ et al 1999). La contrazione 

del collagene è un fenomeno fondamentale in questo processo perché può ridurre la 

dimensione della ferita e facilitare il suo riparo (Martin P. 1997).  Anche in questo 

caso, l’estratto alcolico di Hibiscus s. si è rivelato efficace ad incrementare la 

contrazione del collagene in cellule HDF. 

Lo sviluppo ed il mantenimento dell’integrità e del riparo della pelle dipende anche 

dall’equilibrio tra la produzione ed la degradazione del pro-collagene di tipo I 

(Verrecchia F 2005). Mediante un saggi ELISA ho analizzato la produzione del pro- 

collagene di tipo I in cellule HDF in seguito al trattamento con l’estratto alcolico di 

Hibiscus s. osservando un incremento della sua produzione.  

Infine, mediante PCR semi-quantitativa, ho analizzato l’effetto degli estratti di Betula 

p. ed Hibiscus s. sull’espressione dei geni che codificano per le laminine che giocano 

un ruolo fondamentale nell’architettura della membrana basale (Senyürek I et al. 

2014). Ho osservato che sia Betula p. che Hibiscus s. incrementano I’ espressione 

genica di LAM B che codifica per la catena della laminina 5. Viceversa, non ho 

avuto risultati sull’espressione genica di LAM C che codifica per la catena della 

laminina 5. 

I dati ottenuti durante il periodo trascorso in Arterra indicano chiaramente che 

l’estratto di Betula p. può essere un valido prodotto bioattivo da usare nel settore 

cosmetico per migliorare l’idratazione della pelle, mentre l’estratto alcolico di Hibiscus 

s. si è rivelato essere efficace nella stimolazione dei processi di rigenerazione della 

cute. 

I processi di rigenerazione e riparo dell’epidermide sono un settore affascinante 

anche per la ricerca di base poiché coinvolge settori quali quello farmacologico, della 

genetica del differenziamento o del cancro. Durante la seconda fase della mia tesi, 

nel laboratorio della prof.ssa Viola Calabrò, ho avuto modo di studiare i meccanismi 

molecolari che governano i processi di rigenerazione e differenziamento 

dell’epidermide. Come detto in precedenza, l’omeostasi dell’epidermide dipende 

dall’equilibrio tra i processi di differenziamento, proliferazione e morte cellulare. I 

cheratinociti dello strato basale dell’epidermide mostrano un elevato potenziale 

proliferativo ed esprimono elevati livelli della proteina p63. Durante il 

differenziamento dei cheratinociti l’espressione della proteinap63 decresce fino 

a scomparire (Barbieri et al. 2006).  

Nel laboratorio della prof.ssa Viola Calabrò è stato dimostrato che p63 

interagisce fisicamente col l’oncoproteina YB-1 (Di Costanzo et al. 2012). La proteina 

YB1 è fattore trascrizionale e traduzionale coinvolto in un ampio spettro di funzioni 

cellulari inclusi I processi di proliferazione, migrazione, riparo del DNA, resistenza ai 

farmaci e risposta allo stress (Annette LASHAM et al. 2013). La proteina YB1 svolge 

le sue funzioni sia nel nucleo che nel citoplasma (Evdikomova et al. 2009). 

L’incremento della quantità di YB-1 nella cellula o la sua traslocazione dal citoplasma 

al nucleo sono tipiche della trasformazione tumorale. Tuttavia, i meccanismi che 

governano la localizzazione subcellulare della proteina YB-1 e la sua stabilità sono 

ancora in gran parte sconosciuti. Dato il grande potenziale che YB-1 potrebbe avere 



13 

 

nel controllare il differenziamento e la proliferazione dei cheratinociti, ho esaminato 

dettagliatamente la relazione funzionale tra YB-1 e p63

Ho proceduto analizzando il pattern di espressione di YB-1 durante il processo di 

differenziamento indotto da Ca2
+, sia nei cheratinociti umani primari (NHEK) che nelle 

cellule HaCaT, ed ho osservato che sia i livelli di p63 che di YB-1 decrescono 

bruscamente con l'avanzare del differenziamento. In seguito, portando le cellule 

HaCaT a confluenza ed inducendo un blocco della crescita mediante privazione del 

siero, ho osservato che i livelli di espressione di YB-1 e di ΔNp63α decrescono, e 

che tale diminuzione è associata ad un’uscita dal ciclo cellulare dimostrata da una 

riduzione della ciclina D1 e dall’induzione dell’inibitore del ciclo cellulare p21WAF. 

Contemporaneamente, nel mio laboratorio è stato dimostrato che il silenziamento di 

YB-1 nelle HaCaT e in cellule di cheratinociti trasformati porta ad una immediata e 

drammatica risposta apoptotica (Troiano et al. 2015). Questi dati dimostrano che YB-

1 è essenziale per sostenere la proliferazione e la sopravvivenza dei cheratinociti 

basali. 

In seguito, poichè p63 e YB-1 sono abbondantementi espressi nei cheratinociti 

basali proliferanti e p63 promuove l’accumulo della forma di 50kDa di YB-1 nel 

nucleo (Di Costanzo et al. 2012), ho ipotizzato che ΔNp63α potesse controllare la 

stabilità di YB-1. Mediante esperimenti condotti in presenza di cicloesimmide, un 

inibitore della traduzione, in cellule trasfettate e non con ΔNp63α ho osservato che 

ΔNp63α riduce il turnover della proteina YB-1.  

Inoltre, ho osservato che la proteina YB-1 presenta una notevole quantità di forme ad 

alto peso molecolare. Per di più, in seguito alla trasfezione di quantità crescenti della 

proteina ΔNp63α in cellule MDA-MB 231 ho osservato un aumento della forma da 50 

kDa e delle forme ad alto peso molecolare. Tali forme ad alto peso sono state 

riscontrate in tutte le linee cellulari testate (A431, SCC011, e HaCaT), ed inoltre sono 

state visualizzate utilizzando anticorpi anti-YB-1 diretti contro diversi epitopi della 

proteina.  

Dopo aver verificato l’identità di queste forme modificate di YB-1 mediante 

esperimenti di silenziamento genico, ho dimostrato che esse sono localizzate 

prevalentemente nel compartimento nucleare e che l’espressione di ΔNp63α ne 

determina un ulteriore accumulo in tale compartimento subcellulare. 

A questo punto ho proceduto valutando un possibile coinvolgimento del proteasoma 

sul turnover della proteina YB-1. Il trattamento delle cellule HaCaT con l’inibitore del 

proteasoma MG132 dimostra che la la proteina YB-1 è sottoposta all’attività 

proteolitica del proteasoma. 

In letteratura è stato precedentemente dimostrato che YB-1 è poli-ubiquitinata (Lutz 

M. et al. 2006). Inoltre, la sequenza aminoacidica di YB-1 è ricca di lisine che sono 

potenziali siti di ubiquitinazione o sumoilazione. A tale scopo, ho trasfettato in cellule 

A431 ubiquitina coniugata all’epitopo HA e mediante esperimenti di 

immunoprecipitazione ho dimostrato che le forme ad alto peso di YB-1 sono poli-

ubiquitinate.  Sulla base dei miei dati non è possibile ancora escludere che la 

proteina possa subire ulteriori modifiche quali la sumoilazione o l’acetilazione. Infine, 
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ho dimostrato che in cellule MDA-MB 231 le forme ad alto peso molecolare di YB-1 

incrementano significativamente in seguito alla co-trasfezione di ΔNp63α e 

ubiquitina, suggerendo un ruolo fondamentale di ΔNp63α non solo nell’accumulo 

della forma da 50 kDa di YB-1 ma anche delle sue forme modificate. 

Tutti questi dati nel loro insieme indicano che YB-1 svolge un ruolo fondamentale nel 

processo di proliferazione dei cheratinociti basali e che ΔNp63α ne influenza 

significativamente la stabilità ed il “turnover”. 

Durante la mia attività di dottorato ho avuto anche la possibilità di trascorrere quattro 

mesi in Germania presso il Karlsruhe Institute of Technology (KIT) sotto la 

supervisione del Professore Nickolaus Foulkes, uno dei maggiori esperti della 

biologia di zebrafish (danio rerio). In questo periodo, ho avuto la possibilità di 

imparare a lavorare con un sistema modello come zebrafish e di caratterizzare 

l’espressione di YB-1 in questo organismo modello ed in colture cellulari di fibroblasti 

derivanti da zebrafish.  Ho ottenuto chiare evidenze sperimentali che la 

localizzazione nucleare della proteina YB-1 in zebrafish è fortemente regolata dal 

ritmo circadiano, con un massimo picco di espressione all’inizio della fase luminosa e 

un minino durante la notte. 

Il mio percorso formativo è stato estremamente interessante poiché mi ha dato 

l’opportunità, di poter studiare un solo processo biologico guardandolo da differenti 

prospettive ed usando approcci sperimentali diversi ma sicuramente complementari. 

Tale esperienza mi consentirà di effettuare le mie scelte future con una maggiore 

consapevolezza. 
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Summary 
 
My PhD program included two phases, the first was carried out in the laboratory of 

Molecular Genetics, under the supervision of Professor Viola Calabrò, and the latter 

in the laboratory of Arterra Biosciene Srl.  

Arterra Bioscience is an Italian research-based biotech company with a strong know-

how in biological science and an extensive experience in screening for the discovery 

of active molecules. 

The opportunity to join these two different scientific groups allows me to gain a more 

comprehensive experience including molecular biology and industrial biotechnology.  

During my period in Arterra Bioscience Srl, I investigated whether Betula pendula 

and Hybiscus syriacus plant stem cells could have beneficial effects on several 

aspects of skin homeostasis. Surprisingly, I found that Betula p. extract can be a 

valuable bioactive ingredient to use in cosmetic field for improving skin hydration, on 

other hand Hibiscus s. extract turned out to be more efficient in stimulating skin 

regeneration. 

The research about skin regeneration and differentiation is not only an appealing 

topic for biotechnological company, but also for molecular basic investigation. 

Indeed, in the laboratory of the professor Viola Calabrò, I had the possibility to study 

the molecular mechanisms governing skin regeneration and differentiation.  

The epidermis is the outermost layer of the skin, a multistratified epithelium whose 

homeostasis depends on a balance between cell proliferation and differentiation. 

Np63 is a critical pro-proliferative factor and a marker of epidermal stemness. We 

had previously shown that Np63 physically interacts with YB-1 a multifunctional 

protein with a well assessed oncogenic potential (Di Costanzo et al. 2012). 

Given the great potential that YB-1 may have in the control of keratinocyte 

proliferation, I have investigated in more details the functional relationships between 

YB-1 and Np63 and provided clear evidences indicating that Np63 plays a role 

in the control of YB-1 protein stability and turnover (di Martino et al. 2015 in 

submission). 

Finally, I spent a period of four months abroad at the Karlsruhe Institute of 

Technology (KIT), Karlsruhe, Germany (April 2014- July 2014) under the supervision 

of Professor Nicholas S. Foulkes, one of the major expert in zebrafish biology. 

During this period I demonstrated that YBX-1 protein is expressed in adult zebrafish 

fins and in the embryonic cell line (Pac2). Moreover, I obtained consistent evidences 

that YBX-1 nuclear localization and protein expression level is a circadian regulated 

protein. Indeed, under a light-dark cycle it shows a maximum peak of nuclear protein 

at the beginning of the light phase and a minimum trough during the beginning of the 

dark phase.  

All these working experiences gave me the possibility to study different aspects of 

skin proliferation and differentiation, developing new bioactive molecules to use in the 

cosmetics field and studying more in detail the molecular mechanisms that regulate 

keratinocyte proliferation and differentiation. 
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1.1 Aim of the thesis 

  
In the last years, cosmetic industry is constantly looking for innovative products to 
use especially in skincare sector that amounts for approximately 80% of the total 
U.S. and European cosmeceutical market.  
 
In particular, the cosmetics research field is focused on the discovery of natural 
compounds able to excite beneficial effects on skin hydration, elasticity or to 
counteract molecular pathways leading to skin damage and aging. For this 
reason the plant kingdom has been already selected as preferred source of 
natural products. 
  
I spent part of my Ph.D project in Arterra Bioscience Srl an Italian research-based 
biotech company with a strong know-how in biological science and an extensive 
experience in screening for the discovery of active molecules. Arterra Bioscience 
Srl represents a valuable source of bioactive products that are already used in 
the cosmetic sector for their positive effect on skin protection, hydration and 
regeneration.  
The principal aim of this work was then to first identify novel activities from plant 
stem cell extracts and subsequently to determine their biological properties 
particularly on skin proliferation, differentiation and hydration. 
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Identification and characterization of novel activities from plant stem 
cell extracts regulating epidermal cell proliferation and homeostasis 

 

1.2  Introduction: 

1.2.1 Epidermis: structure and function.  

Skin is the largest organ of the mammalian organism and its direct defence 
from external factors (Elias PM et al. 2008). Healthy skin provides protection 
of the body from environmental factors: physical (mechanical trauma, thermal 
injury, radiation etc.), chemical (destructive agents, surface active substances, 
xenobiotics, allergens) and biological (bacteria, viruses, etc.), (Elias PM et al. 
2005).The epidermis is a stratified epithelium that forms the outer layer of the 
skin, serving as the physical and chemical barrier between the interior body 
and exterior environment; it is mainly composed of layers of keratinocytes but 
also contains melanocytes, Langerhans cells and Merkel cells. 
The formation of the different layers of the epidermis (stratification) occurs 
during the embryonic development, so that animals at birth already present a 
functional barrier (Pangiota et al. 2012).  
The self-renewing ability of the epidermis requires an appropriate proliferation 
and differentiation program in the basal layer (Fuchs et al. 2002).  
Basal stem cells proliferate to produce daughter transit amplifying (TA) cells 
having a limited proliferative potential, TA cells migrate upwards through the 
epidermis layers and begin to differentiate producing the external skin 
components (Koster MI et al. 2010).  
Recent studies have established an important developmental role for p63 in 
formation of stratified epithelia. p63 is a transcription factor driving expression 
of proteins controlling cell proliferation, adhesion and apoptosis (Makoto 
Senoo et al. 2007). Moreover, it also induces tissue specific proteins such as 
keratins, involucrin and loricrin (Vigano MA et al.2009).  
The relevance of p63 in skin development was mainly supported by the 
observation of the phenotype of knockout mice, that at birth lacked 
multilayered epithelia and skin appendages, such as teeth, hair follicles and 
mammary glands (McKeon F 2004).  
Studies on mature epidermis led to the conclusion that p63 plays a dual role: 
initiating epithelial stratification during development and maintaining 
proliferative potential of basal keratinocytes in mature epidermis (Maranke I. 
Koster et 2004). 
Environmental and genetic factors can alter normal keratinocytes turnover, 
and this alteration can generate different pathological conditions such as: 
uncontrolled hyper-proliferation (squamous and basal cell carcinoma), skin 
inflammation and premature aging (atopic dermatitis and psoriasis). 
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1.2.2 Epidermal Hydration: Role of AQP3 and FLG in skin hydration 

 

The main function of the skin is to act as a barrier that maintains homeostasis 

by preventing the uncontrolled loss of water, ions and serum proteins from the 

organism into the environment (R. Darlenski. et al 2011). Water retention 

contributes to the skin elasticity and is a fundamental to have a healthy skin. In 

fact, water is one of the basic element of physiological processes in living 

organisms. In particular, the uncontrolled passage of water to the external 

environment is limited by the stratum corneum (SC) whose integrity acts as a 

barrier (Elias PM et al. 2006). The mechanical resistance of the epidermal 

barrier is mainly due to the corneocytes embedded in the so-called cornified 

envelope that is composed of keratins, corneodesmosin and the dynamically 

linked loricrin, involucrin and filaggrin (Elias PM et al. 2006).  

 
The keratins form the intermediate filaments of the corneocyte cytoskeleton. 

The major keratins, expressed in the suprabasal layers are keratins 1, 2f and 

10, representing about 80% of the corneocyte weight (Elias PM et al. 2006). 

Keratins 1 and 10 forming the corneocyte cytoskeleton are connected with 

desmoglein 1 and desmocollin 1 through desmosomal plaque proteins – 

plakoglobin and desmoplakins (Sprecher E et al.2001). The keratins are 

attached to the cornified envelope proteins surrounding the corneocyte, thus 

contributing to the stability of the epidermal barrier. Mutations in the gene 

responsible for the synthesis of keratin 1 in ichthyosis hystrix, leads to 

incomplete formation of intermediate filaments and impaired barrier function 

(Sprecher E et al.2001). 

 

Filaggrin belongs to the family of the S100 Ca2+-binding proteins. The 

enzymatic transformation of profilaggrin located in keratohyalin granules in 

stratum granulosum, leads to the formation of two products filaggrin and N-

terminal peptide (Elias PM et al. 2006).  Filaggrin provides the formation of 

keratin filaments into macrofibrils in the lowest layers of stratum corneum (SC) 

(R. Darlenski. et al 2011). The filaggrin is an important source for maintaining 

skin moisture (Rawlings AV et al. 2005). By reaching the skin surface, filaggrin 

is degraded to free amino acids – the basic components of a highly absorbent 

complex called natural moisturizing factor (NMF) (Rawlings AV et al. 2006).  

A small part of filaggrin binds to loricrin forming the corneocyte envelope 

(Candi et al. 2005). The N-terminal peptide is involved in regulation of the 

corneocyte programmed cell differentiation (Pearton DJ et al.2002).The 

enzymatic degradation of filaggrin is dependent also on the water content in 

SC (Casper PJ et al. 2003) . The reduced hydration of SC activates the 

filaggrin degradation to hygroscopic amino acids (the composition of the 

natural moisturizing factor) which retain water in the stratum corneum (Scott IR 

et al. 2006). 

 

Impairment of this regulatory mechanism in ichthyosis vulgaris is associated 

with reduced levels of natural moisturizing factor and impaired skin barrier 

function (Madison KC et al. 2003). Mutations in the filaggrin gene are 
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associated with impaired barrier function in diseases such as ichthyosis 

vulgaris and atopic dermatitis (O‘Regan GM et al. 2009).  

Other proteins fundamental for the epidermal hydration are the aquaporins, a 

family of transmembrane channels transporting water and in some cases, 

small solutes across the plasma membrane driven by osmotic gradients 

(Verkman AS et al. 2012).  

Aquaporin-3 (AQP3) is the predominant and most widely studied aquaporin in 

mammalian skin. It is an aquaglyceroporin  which transports water, glycerol 

and small solutes across the plasma membrane (Verkman AS et al. 2012). Its 

functions are not limited to fluid transport but also involve the regulation of cell 

proliferation, migration, skin hydration, wound healing and tumorigenesis 

(Liogiong Guo et al. 2013).  

The functions of AQP3 in skin have been defined from studies in AQP3-

deficient mice. AQP3-mediated transport of glycerol plays an important role in 

hydration of stratum corneum, skin elasticity, barrier recovery, wound healing 

and cell proliferation whereas AQP3-mediated water transport is critical for cell 

migration (Hara-Chikuma M et al 2008). 

  

1.2.3 Epidermal regeneration: Proteins involved in Wound Healing  

Skin is always exposed to the external environment, therefore it is subjected to 
mechanical stress and injuries. The regeneration process by which the skin 
repairs itself after injury is named Wound healing (H. Sinno et al. 2013).The 
restoration of tissue integrity is the result of the interaction of neutrophils, 
monocytes/macrophages, fibroblasts, endothelial cells, and keratinocytes as 
well as extracellular matrix (ECM) components, such as fibronectin, 
glycosaminoglycans, proteoglycans, thrombospondins, tenascin, vitronectin, 
or collagens (K.S. Midwood et al. 2004). 

ECM components play a significant role in each stage of the healing process. 
It concerns the structural biomechanical aspect of the process because they 
create a “scaffolding” (a temporary matrix, granulation tissue, and scar), which 
is indispensable in the repairing process, providing in this way a structural 
integrity of the matrix during each stage of the healing process (Pawel Olczyk 
et al 2013). Moreover, other functions are connected with stimulating the 
adhesion and migration of cells during the healing process as well as 
interactions among cells, between cells and the matrix, or between ECM 
proteins (Pawel Olczyk et al 2013).  

Collagens, the main structural element of the ECM, provide tensile strength, 
regulate cell adhesion, support chemotaxis and migration, and direct tissue 
development (Rozario and DeSimone, 2010). 

The bulk of interstitial collagen is transcribed and secreted by fibroblasts that 
either reside in the stroma or are recruited to it from neighbouring tissues (De 
Wever et al., 2008). By exerting tension on the matrix, fibroblasts are able to 
organize collagen fibrils into sheets and cables and, thus, can dramatically 
influence the alignment of collagen fibers. Although within a given tissue, 
collagen fibers are generally a heterogeneous mix of different types, one type 
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of collagen usually predominates (Christian Frantz et al 2010). Collagen 
associates with elastin, another major ECM fiber. Elastin fibers provide recoil 
to tissues that undergo repeated stretch. Importantly, elastin stretch is crucially 
limited by tight association with collagen fibrils (Wise and Weiss, 2009). 

Fibronectin is an adhesive molecule that plays a crucial role in wound healing, 
particularly in extracellular matrix (ECM) formation and also in re-
epithelialisation (Lenselink EA et al. 2013). Fibronectin plays many different 
roles in the wound healing process because of the presence of specific 
functional domains and binding sites in its structure (Lenselink EA et al. 2013). 
The main role of fibronectin is ECM formation. First, plasma fibronectin forms 
a provisional fibrin-fibronectin matrix, which will later be replaced by the 
mature ECM-containing tissue fibronectin (Lenselink EA et al. 2013). 
Moreover, Fibronectin can interact with different cell types and cytokines. 

The laminins are a family of glycoproteins that provide an integral part of the 
structural scaffolding of basement membranes in almost every animal tissue 
Laminins contribute to the structure of the extracellular matrix (ECM), each 

laminin is a heterotrimer made of , and  chain subunits, secreted and 
incorporated into cell-associated extracellular matrices (Holly Colognato and 
Peter D. Yurchenco 2000).The laminins can self-assemble, bind to other 
matrix macromolecules, and have unique and shared cell interactions 
mediated by integrins, dystroglycan, and other receptors and through these 
interactions, laminins critically contribute to cell differentiation, cell shape and 
movement, maintenance of tissue phenotypes, and promotion of tissue 
survival (Holly Colognato and Peter D. Yurchenco 2000). 

Since ancient times, search is on for suitable materials which may restore or 
reproduce a favourable and a natural milieu required for skin regeneration, so 
as to prevent infections, and make the process fast and less painful. The 
journey started with the use of natural materials with a simple function of 
covering or dressing the wounds. Advances in the field of 
biotechnology research has made it possible to produce more advanced 
materials and scaffolds, which are designed for specific and extraordinary 
functions. Natural and modified or synthetic polymers; alone or in combination 
are commonly used as dressing (couture) materials for wound healing. 

 

1.2.4 Plant cell cultures as source of cosmetic active ingredients  

Plants are notable for their high synthetic versatility: the spectrum of chemical 
structures synthesized by the plant kingdom is broader than that of any other 
group of organisms, which makes the plants the biggest source of natural 
remedies in the fields of pharmacy, food and cosmetics (Fowler 1984).  

The two characteristics that most distinguish plants among all living organisms 
and are fundamental to understand plant tissue culturing are plasticity and 
totipotency. Plasticity is the capacity of the plants to change their metabolism, 
adapting their growth and development to the surrounding environmental 
conditions. In nature, plant cells are able to initiate cell division from almost 
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any tissue, to regenerate and switch on different biosynthetic and 
developmental pathways according to stress conditions.  

Plant cell cultures provide useful alternatives for the production of active 
ingredients for cosmetic industry, since they represent standardized, 
contaminant-free and bio-sustainable systems, which allow the production of 
desired compounds on an industrial scale. Moreover, thanks to their 
totipotency, plant cells grown as liquid suspension cultures can be used as 
“biofactories” for the production of commercially interesting secondary 
metabolites, which are in many cases synthesized in low amounts in plant 
tissues and differentially distributed in the plant organs, such as roots, leaves, 
flowers or fruits (Barbulova et al. 2014). 

In vitro plant cells have very high levels of plasticity as well, and are able to 
regenerate tissues, organs and even entire plants by a process of 
dedifferentiation and subsequent differentiation (Barbulova et al.2014). In 
addition, some undifferentiated totipotent cells are always present in the 
meristems located in the tips of shoots and roots or inside the vascular 
system, in order to obtain a fast cell division under proper stimuli (Lee, E. et al 
2010). As Barbulova said, even though scientifically correct, it is generally 
redundant to use the term “stem” when talking about plants, since the 
totipotency is an intrinsic feature of each differentiated plant tissue belonging 
to adult plants and not only to embryonic developmental stages.  

For this reasons, plant cell cultures certainly represent a valid alternative for 
the production of cosmetic active ingredients, since they always provide 
standardized, contaminant-free and bio-sustainable products, whose 
production can be easily extended to an industrial scale (Barbuolova et al. 
2014). 

 

1.2.5 Plant stem cell culture 

The plant tissue culture technique is based on propagation of plant stem cells 
either to produce a whole plant, a tissue or just a single type of cells in culture 
to harvest plant metabolites. This practice allows the production of plant 
material under sterile and standardized conditions independent of season and 
other environmental restraints. Plant tissue cultures can be initiated from 
nearly all type of plant tissue called explant. As a kind of wound reaction, new 
cells are formed on the cut surfaces of the explant. The cells slowly divide to 
form a color-less cell mass which is called callus. Callus cells are stem cells 
comparable to those in the meristem regions. They are dedifferentiated and 
lack the distinctive features of normal plant cells. For high yield production 
callus cells can be cultured as individual cells or small cell clusters in a liquid 
culture (D. Schmid et al. 2008) The callus could be maintained in vitro 
practically for unlimited time using the appropriate growth medium. In practical 
terms though, identifying the culture conditions and stimuli required to 
manifest this totipotency can be extremely difficult and often entirely depends 
on the responsiveness of a certain plant species, thus it can be largely an 
empirical process (Barbulova et al. 2014). When callus cells are cultured in 
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liquid medium, they form a fast growing suspension culture of single cells or 
small clusters of cells (Moscatiello, R et al. 2013). Plant cell cultures grown in 
liquid media can now be up-scaled to much bigger volumes and employed for 
the production of commercially interesting compounds for industrial 
applications, including cosmetics. 

 
1.2.6 Plant stem cell extracts 

Different types of bio-active ingredients can be developed and produced from 
plant grown as a liquid suspension. As known, 55% of the plant cell volume 
consists of cell wall and membranes. The remaining is cytosol that consists of 
90% water and contains the different cellular organelles. Various metabolites, 
with different chemical natures (for example, oil-soluble or water-soluble), are 
produced during the life cycle of the plants and then are stored in different cell 
compartments.  
For this reason it’s critical to select the appropriate plant cell extraction method 
in order to enrich the amount of the desired compounds with efficient activity. 
Using different solvents and extraction procedures allows to obtain more than 
one active ingredient from the same culture, resulting really advantageous in 
the industrial production scale (Barbulova et al 2014).  
Generally, it’s possible to obtain two different type of extracts from the same 
culture: water soluble (hydrosoluble) and oil-soluble (liposoluble). Each kind of 
extracts is enriched of different bio-active compounds with different properties.  
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1.3 Results 

 
1.3.1 Identification and characterization of novel activitiesIdentification of 

Betula pendula and Hibiscus syriacus 

 
In Arterra Bioscience Srl my PhD project partner are available a wide range of 

plant stem cell cultures. Moreover, Arterra Bioscience Srl is an Italian 

research-based biotech company with a strong know-how in biological science 

and an extensive experience in screening for the discovery of active 

molecules. In Arterra were already present Betula pendula and Hibiscus 

syriacus  plant cell cultures, because these two species appear to be very 

interesting from a dermatological point of view.  

In fact, the Betulinic acid (3β, hydroxyl-lup-20(29)-en-28oic acid), present in 
Betula p. is a natural product with a range of biological effects, for example 
potent antitumor activity. This anticancer property is linked to its ability to 
induce apoptotic cell death in cancer cells by triggering the mitochondrial 
pathway of apoptosis. In contrast to the cytotoxicity of betulinic acid against a 
variety of cancer types, normal cells and tissue are relatively resistant to 
betulinic acid, pointing to a therapeutic window for antitumor activity (Fulda 
2008). In addition, oil obtained from the Betula pendula bark are already used 
for the treatment of skin inflammatory diseases, such as eczema and 
psoriasis. The root bark of Hibiscus syriacus is known in Asia for antipyretic, 
anthelmintic, and antifungal properties. Moreover, the Hibiscus syriacus 
extract shows antiproliferative effect on human lung cancer cells (Cheng YL et 
al. 2008) and antioxidant capacity of have been already demonstrated (Kwon 
SW et al. 2003). 
 

1.3.2 Chemical characterization of Betula pendula and Hibiscus syriacus stem 

cells extract. 

 
I prepared two different type of extracts from the plant cell cultures: water 
soluble (hydrosoluble) and ethanolic (liposoluble) extracts.  In this way it is 
possible to have two kind of extracts enriched of different bio-active 
compounds with different characteristics.  
 
The extracts thus obtained were analysed by several assays aimed to 
characterize some properties of each kind of extract. 
For each extract it was determined the total protein content (Bradford assay), 
the total sugar amount (phenol/H2SO4 method) and the quantity of total 
polyphenol content in extract (Folin Denis Method), as described in materials 
and methods. 
Finally, I measured the total antioxidant capacity of the Betula p. and Hibiscus 
s. cell extracts using the ORAC (Oxygen Radical Absorbance Capacity) 
assay. Table 1 shows that Betula pendula Ethanolic Extract preparation has a 
lower protein content than Hydrosoluble Extract preparation, and a lower total 
polyphenol amount (indicated as ug Gallic acid/ ug powder).  
However, it shows a higher sugar content and antioxidant capacity expressed 

as mol Trolox Equivalent/g. Remarkably, the results obtained with Hybiscus 
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siriacus shows the same trend (Table 2). However, the antioxidant capacity of 
Hybiscus siriacus Alcohol Extract seems to be almost twice in comparison with 
Hybiscus siriacus Hydrosoluble extract (Table 2). 
 
 

 
 

Table 1. Chemical characterization of Betula pendula Hydrosoluble and Ethanolic stem 
cells extract. The total protein content was determined by Biorad assay. The total sugar 
amount by the phenol/H2SO4 method while the quantity of total polyphenol content in extract 
was determided by Folin Denis Method. Finally, I measured the total antioxidant capacity of 
the Betula p. using the ORAC (Oxygen Radical Absorbance Capacity) assay.  
 

 
 

Table 2. Chemical characterization of Hibiscus syriacus Hydrosoluble and Ethanolic 
stem cells extract. The total protein content was determined by Biorad assay. The total sugar 
amount by the phenol/H2SO4 method while the quantity of total polyphenol content in extract 
was determided by Folin Denis Method. Finally, I measured the total antioxidant capacity of 
the Betula p. using the ORAC (Oxygen Radical Absorbance Capacity) assay. 
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1.3.3 Analysis of cell vitality after treatment with Betula pendula and Hibiscus 
syriacus stem cells extracts. 
 
Viable cells with active metabolism convert MTT (3-(4,5-dimetiltiazol-2-il)-2,5-
difeniltetrazolio) into a purple coloured formazan product, thus colour 
formation serves as convenient marker of cells viability. 
I have established the extract use concentrations showing nether cytotoxic nor 
hyper-proliferative effect by a MTT assay in primary fibroblasts (HDF) and 
HaCaT cells (immortalized but not transformed keratinocytes).  
The results of MTT assay performed in HaCaT cells after 24 hours of 
treatment show the absence of both the effects. (Figura 1). As shown in figure 
2 a similar result was obtained with a long term treatment (8 days). 
 
 

 
 
Figure1. Analysis of cell vitality in HaCaT cells after treatment with Betula pendula and 
Hibiscus syriacus stem cells extract. A total of HaCaT keratinocytes cells were plated into 
96-well plates at a density of 1.3×103 cells/well, grown for 8 hrs and treated for 12h with 
different concentrations of the extracts (from 0.05% w/v to 0.0004% w/v). After treatments, the 
percentage of vital cells was measured for each sample by using MTT dye. The number of 
healthy cells is directly proportional to the level of the formazan product created. The values 
are means of five independent measures obtained from one representative experiment among 
three, and the P-value < 0.05 is represented by *; P-value < 0.01 is represented by **. 
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Figure 2. Analysis of cell vitality in HaCaT cells after long term treatment ( 8 days)  
with Betula pendula and Hibiscus syriacus stem cells extract. A total of HaCaT 
keratinocytes cells were plated into 96-well plates at a density of 1.3×103 cells/well, grown 
for 8 hrs and treated for 8 days with two different concentrations of the extracts (0,01% 
and 0,002% w/v). After treatments, the percentage of vital cells was measured for each 
sample by using MTT dye. The number of healthy cells is directly proportional to the level 
of the formazan product created. The values are means of five independent measures 
obtained from one representative experiment among three. 

 

1.3.5 Effect of Betula pendula and Hibiscus syriacus stem cells extracts in 

epidermal hydration. 

 
1.3.6 Regulation of AQP3 and FLG genes after treatment with Betula 

pendula and Hibiscus syriacus stem cells extracts 

 
I investigated whether these extracts could improve skin hydration by 

stimulating biosynthesis of aquaporins and filaggrin, proteins specifically 

involved in the maintenance of water balance in human skin cells.  

As previously described aquaporins are channel proteins that facilitate the 

transport of water and other solutes across the cell membrane and AQP3 

is the most abundant in skin. 

Filaggrin is a structural protein, responsible for the water-proofing capacity 

and integrity of the upper skin layers (Pereda MCV et al. 2010). In fact, 

filaggrin (FLG) is a protein which interacts with keratins intermediate 

filaments into the corneum stratum causing their aggregation into 

macrofibrils. This process contributes to form highly insoluble keratin 

matrix, and for this reason, filaggrin monomers are fundamental for the 

skin barrier function (Sandilands et al. 2009). 

Using semi quantitative RT-PCR I demonstrated that HaCaT cells 

treatment with Betula pendula ethanolic extract (at concentration of 

0,002% w/v) or with Hibiscus syriacus hydrosoluble and ethanolic extracts 

(at concentration of 0,002% w/v) increased the expression of AQP3 by 

80% and 20%, respectively (Figure 3). 
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* 

 
 
Figure 3. AQP3 gene expression analysis in HaCaT cells cells treated with Betula p. and 
Hibiscus s. extracts at the indicated concentrations. HaCat cells were seeded at 
concentration of 1.5x105 cells in 35mm dishes. After 24 hours, cells were treated with the 
extracts for six hours and total RNA were collected.  cDNA obtained was used to evaluate 
AQP3 gene expression by performing a semi-quantitative RT- PCR. Retinoic acid at 

concentration of M/ ml was used as positive control. The values were normalized to 
rRNA18S. Each column value represents the average of four experiments and error bars 

indicate standard deviations. P-value < 0.05 is represented by *; P-value < 0.01 is represented 

by **. P-value < 0.001 is represented by ***. 
 
Next, using semi quantitative PCR, I demonstrated that treatment of HaCaT 
cells with Betula pendula hydrosoluble extracts  or Hibiscus syriacus ethanolic 
extracts increased FLG gene expression by about 60% (Figure 4). 
Instead, as shown in figure 4 treatment of HaCaT cells with Betula pendula 
ethanolic at concentration of 0,002% increased FLG gene expression by 
100%. 
 
Taken together these data strongly suggest that both extracts, and especially 
that from Betula pendula, are able to improve skin hydration by promoting FLG 
and AQP3 biosynthesis. 
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Figure 4. FLG gene expression analysis in HaCaT cells cells treated with Betula p. 
and Hibiscus s. extracts at the indicated concentrations. HaCat cells were seeded at 
concentration of 1.5x105 cells in 35mm dishes. After 24 hours, cells were treated with the 
extracts for six hours and total RNA were collected.  cDNA obtained was used to evaluate 
FLG gene expression by performing a semi-quantitative RT- PCR. Retinoic acid at 

concentration of M/ ml was used as positive control. The values were normalized to 
rRNA18S. Each column value represents the average of four experiments and error bars 

indicate standard deviations. P-value < 0.05 is represented by *; P-value < 0.01 is 

represented by **. P-value < 0.001 is represented by ***. 
 

 
1.3.7 Effect of Betula pendula and Hibiscus syriacus stem cells extracts on 

skin regeneration. 

 
1.3.8 Effect of Betula pendula and Hibiscus syriacus stem cells extracts 

during Wound Healing process 

 
Next, I investigated whether Betula pendula and Hibiscus syriacus stem 

cells extracts could improve epidermal regeneration process. 

Wound healing is a complex and dynamic pathological process, finely 

regulated by intracellular signaling and extracellular components, which 

concerns replacing damaged tissue by a living one (H. Sinno et al. 2013). 

Preliminary data showed that Betula p. had no effect the wound healing 

process (data not shown), thus I continued my experiments only with 

Hibiscus s. 

Wound healing assay in HaCaT cells clearly showed that ethanolic extract 

of Hibiscus syriacus (0,002% and 0,001% w/v) increased the wound repair 

by 50% and 20%, respectively (Figure 5).  
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Figure 5. Effect of and Hibiscus syriacus ethanolic extracts during Wound Healing 
process in HaCaT cells. (A) Cells seeded at confluence were wound and then treated with 
Hibiscus S. extracts at indicated concentrations for 7 h in 0.5% FBS-containing medium. At 0, 
18h, phase-contrast pictures of the wounds at four different locations were taken. (B) To 
estimate the relative migration of the cells, for each condition was compared the unclosed cell-
free areas at time 0 and eighteen hours after treatments by using the software Image J. TGF 

at concentration of 2,5 ng/ml had used as positive control. Each column value represents 
the average of three experiments and error bars indicate standard deviations. P-value < 0.05 
is represented by *. 
 
As shown in figure 5 in human dermal fibroblast (HDF cells) treatment with 
Hibiscus syriacus ethanolic extract (0,01% and 0,002% w/v) resulted in an 
increase of healing of 18% and 30%, respectively. 
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Figure 6. Effect of and Hibiscus syriacus ethanolic extracts during Wound Healing 
process in HDF cells. (A) Cells seeded at confluence were wound and then treated with 
Hibiscus S. extracts at indicated concentrations for 7 h in 0.5% FBS-containing medium  
and Mytomycin C (10 g/ml) is included in the media to prevent cell proliferation. At 0, 7h, 

phase-contrast pictures of the wounds at four different locations were taken. (B) To 
estimate the relative migration of the cells, for each condition was compared the unclosed 
cell-free areas at time 0 and seven hours after treatments by using the software Image J. 

TGF at concentration of 2,5 ng/ml had used as positive control Each column value 
represents the average of three experiments and error bars indicate standard deviations. 
P-value < 0.001 is represented by ***. 

   
 

1.3.9 Effect of Hibiscus syriacus ethanolic extracts on Fibronectin 

production. 
 

Fibronectin is an adhesive molecule that plays a crucial role in wound 

healing, particularly in extracellular matrix (ECM) formation. To investigate 

the molecular mechanisms by which Hibiscus syriacus enhances wound 

healing, I evaluated in HDF cells fibronectin neo-synthesis upon Hibiscus 

treatment by Elisa. In fact, I carried out an Elisa assay and measured the 

amount of fibronectin produced by fibroblast (HDF cells) under cell extract 

stimulation. The results show that 0,002% w/v of Hibiscus syriacus 

ethanolic extract caused an increase in fibronectin of about 30% (Figure 6). 
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Figure 6. Effect of Hibiscus syriacus ethanolic extracts on Fibronectin production. 
HDF cells are seeded in 96-well plates at density of 9 x 103 per well, and treated with 
compounds at indicate concentrations for 72h without changing the medium. Each 

condition is run in quadruplicate. TGF  at concentration of 2,5 ng/mL was used as 
positive control. Each column value represents the average of four experiments and error 
bars indicate standard deviations. P-value < 0.05 is represented by *. 

 
 

1.3.10 Effect of Hibiscus syriacus ethanolic extracts on Collagen 

contraction. 

 

Next, I proceeded to examine the effect of the Hibiscus syriacus ethanolic 

extracts on fibroblast contractility by three-dimensional collagen gel 

contraction assay. Fibroblasts play a fundamental role in wound healing by 

secreting chemokines, growth factors and ECM proteins that are 

necessary for inflammatory cells infiltration and neo-angiogenesis (Singer 

AJ et al 1999). Collagen contraction can shrink the size of the wound 

facilitating its repair, so that it is a crucial event in this process (Martin P. 

1997).  3D collagen gel contraction assay simulates the 3D collagen-riched 

environment of wound granulation tissue, so it is a useful in vitro model for 

studying wound contraction (Carlson MA et al. 2004). The result of 3D 

collagen gel contraction assay proved that HDF cells after treatment with 

0,01% w/v Hibiscus syriacus  promotes about 30% wound contraction 

(Figure 7).  
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Figure 7. Effect of Hibiscus syriacus ethanolic extracts on Collagen contraction. (A) 
2x105 HDF are seeded in 24 well mixed with 2mg/ml of collagen solution .The plate is 

incubated at 37°C for 30’ in way to induce collagen gel formation. TGF at concentration of 
2,5 ng/ml had used as positive control At the end of incubation the medium with treatment is 
added and the plate is incubated for the night. The next day the gel is released from the 
bottom of the well in way to induce collagen gel contraction. Pictures at different times are 
taken and the best time is 24 hours after the release. Each column value represents the 
average of four experiments and error bars indicate standard deviations. . P-value < 0.05 is 
represented by *. 
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1.3.11 Effect of Hibiscus syriacus ethanolic extracts on Pro-Collagen type I  

production  

 

Development and maintenance of skin integrity and repair is also 

dependent on the balance between production and degradation of type I 

collagen (Verrecchia F 2005). Collagen is a major structural protein in the 

skin, it contributes to make skin compact and healthy. 

For this reason considering the positive effect of Hibiscus s. on wound 

healing, fibronectin biosynthesis and collagen contraction  I have 

investigated whether the treatment with this extract improve also the Pro-

collagene type I biosynthesis by Elisa in HDF cells.  

I carried out an Elisa assay and measured the amount of new Pro-

Collagen I type produced by fibroblast (HDF cells).  

The result shows that under stimulation with 0,01% and 0,002% w/v of 

Hibiscus syriacus ethanolic extract, the synthesis of Pro-Collagen type I 

increased by  60%. 

 

 
 

Figure 8. Effect of Hibiscus syriacus ethanolic extracts on Pro-Collagen I 
production. HDF cells are seeded in 96-well plates at density of 1,5 x 104 per well, and 
treated with compounds at indicate concentrations for 24h without changing the medium. 
Each condition is run in quadruplicate. Ascorbic acid at concentration of 300/mL was used 
as positive control. Each column value represents the average of three experiments and 
error bars indicate standard deviations. . P-value < 0.05 is represented by *. P-value < 
0.01 is represented by **. 

 
1.3.12 Regulation of LAM B and C genes after treatment with Betula pendula 

and Hibiscus syriacus stem cells extracts. 

 

Laminins play a fundamental role in skin basement membrane architecture 
and function (Senyürek I et al. 2014). I also evaluated if Betula pendula or 

Hibiscus syriacus extracts could improve biosynthesis of chain (LAM B) 

and chain (LAM C) of laminin 5 protein. 
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Using semi quantitative RT-PCR I demonstrated that both Betula and 
Hibiscus syriacus hydrosoluble and ethanolic extracts increased the 
expression of LAM B in HaCaT cells, of about 40%.(Figure 9) 
 
Conversely, LAM C gene expression was not regulated by Betula p. and 
Hibiscus s. treatment (data not shown). 

 

 
 

Figure 9. LAM B gene expression analysis in HaCaT cells cells treated with Betula p. 
and Hibiscus s. extracts at the indicated concentrations. HaCat cells were seeded at 
concentration of 1.5x105 cells in 35mm dishes. After 24 hours, cells were treated with the 
extracts for six hours and total RNA were collected.  cDNA obtained was used to evaluate 
FLG gene expression by performing a semi-quantitative RT- PCR. A compound known for 
stimulating LAM B biosynthesis was used as positive control. The values were normalized to 
rRNA18S. Each column value represents the average of four experiments and error bars 
indicate standard deviations. P-value < 0.05 is represented by *; P-value < 0.01 is represented 
by **; P-value < 0.001 is represented by ***. 
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1.4 Discussion  
 
During my PhD I contributed to select novel plant-derived bio-active products 
and characterize their activity in epidermal homeostasis and skin self-renewal. 
This project was aimed to discover new bio-active products that can be used 
as anti- aging dermo-cosmetics or pharmacological treatment for skin 
disorders associated to deregulated epidermal proliferation and/or 
differentiation. 
For this reason I selected Arterra Bioscience Srl company as my PhD project 
partner. In Arterra, a wide range of plant stem cell cultures are available. They 
represents a valuable source of bioactive products with potential pro-
regenerative and differentiative properties to be used in cosmetics and 
pharmaceuticals sector. 
The selected plant stem cell extracts were Betula pendula and Hibiscus 
syriacus, on the othe hand Human Dermal Fibroblasts (HDF) and human 
keratinocytes (HaCaT) were chosen as cell model systems. 
 
First, I produced two different type of extracts from each stem cell culture: 
ethanolic and hydrosoluble. I observed no cytotoxic and pro-proliferative effect 
of both extracts in our cell systems, also in long term, by performing a MTT 
assay, at selected concentrations. Then, I analysed in HaCaT cells the effect 
of the extracts on the expression of Aquaporin 3 (AQP3) and Filaggrin (FLG), 
two genes involved in water transport and retention. The results of my 
experiments clearly indicate that the Betula p. is more efficient than Hibiscus s. 
in the up regulating of both AQP3 and FLG gene expression.  
 
Concerning the regeneration process, data from the wound healing assay in 
HaCaT and HDF cells strongly show that Hibiscus syriacus ethanolic extracts 
efficiently increases the wound repair and this was more evident at the 0,002% 
w/v concentration while Betula exhibited no detectable effects. 
Accordingly, I observed a strong stimulation of fibronectin by Hibiscus in HDF 
cells further supporting the pro-regenerative potential of this extractNext, I 
concentrated my attention on the wound repair capacities.  
 
When HDF cells were treated with the Hibiscus syriacus ethanolic extract, 
wound contraction significantly increased thereby demonstrating the efficacy of 
Hibiscus syriacus in promoting fibroblast activation. Moreover, Hibiscus s. was 
able to enhance Pro-Collagen I production in HDF fibroblasts. Remarkably, 
collagen production is fundamental for a healthy skin and especially Type I 
collagen fibrils that because of their enormous tensile strength can be 
stretched without being broken. 
 
Finally, to corroborate data from Wound healing and Collagen contraction 
assays I investigated whether Hibiscus and/or Betula extracts could improve 
skin regeneration by stimulating biosynthesis of basal lamina genes, and in 

particular I examined laminin 5 andchain transcription. Actually, laminins 
play a fundamental role in basement membrane architecture and function in 
human skin (Senyürek I et al. 2014).  
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Interestingly, when HaCaT cells were treated with the Hibiscus syriacus and 
Betula pendula, I observed an increase in LAM B genes expression but not 
LAM C. Further experiments should be performed to clarify this point. 
 
Taken together my data suggest that Betula p. extract can be a valuable 
bioactive ingredient to use in cosmetic field for improving skin hydration, on 
other hand Hibiscus s. extract turned out to be more efficient in stimulating 
skin regeneration. 
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1.5  Material and Methods 

 

1.5.1 Hydrosoluble extract preparation from plant stem cell. 

 

Cells are harvested, verified for micro-organism contamination (37°C ON) and 

then frozen at -30°C or -80°C until processing. The cells are grinded (when 

still partially frozen) in PBS 3X pH 7.2 (1:1 w/v) in a mortar with pestle or 

mechanic grinder. Filter through a cloth filter and collect the soluble fraction in 

a sterile container placed in an ice bath.  

 

1.5.2 Ethanol (liposoluble) extract preparation from plant stem cells 

Cells are harvested, verified for micro-organism contamination (37°C ON) and 

then frozen at -30°C or -80°C until processing. 200ml of EtOH 96% is added. 

The mix is agitated for 1h at Room Temperature. Filter through a cloth filter 

and collect the lipo soluble fraction in a sterile container placed in an ice bath. 

The ethanol is eliminated by using the Rotavapor until 1/10 of the extract is 

obtained   

 

1.5.3 Bradford assay 

The Bradford assay is a protein determination method that involves the 

binding of Coomassie Brilliant Blue G-250 dye to proteins (Bradford 1976). a 

series of standards dilution of BSA (Bovine Serum Albumin) from 1ug/1ul to 

final concentrations of 0, is prepare in Bradford solution 1X. Serial dilutions of 

the unknown sample are also prepare to be measured. 5 µL of sample is 

added in each well of 96-well. 100 L of Coomassie Blue is added to each well 

and mix, gently. After 5 minutes, the developed colour was quantified at 595 

nm by a multiwell spectrophotometer Victor3 (PerkinElmer). Plot the 

absorbance of the standards vs. their concentration and calculate the 

concentrations of the unknown samples.  

 

1.5.4 Folin Denis assay 

Aliquot 50 l dilutions of the samples to test in a 96 well plate (from 20ug/l to 

0). Prepare a solution of 1mg/ml of gallic acid and make several dilutions in 50 

l volume of water. The Folin-Denis reagent (sodium tungstate 10% w/v, 

phosphomolybdic acid 2% w/v, orthophosphoric acid 5% v/v) is diluted 1:20 in 

water and add 50 l to all samples (both the extract dilutions and the 

standards). Leave 3-5 minutes at room temperature. Read at Victor by 

Bradford@595 program to obtain the blank. Add 50 l of 1M Na2CO3 pH 8-9 to 

all wells and the plate is incubated 10-15 minutes until dark-blue color 

develops. Read at Victor by Bradford@595. Compare OD values of the 

sample extracts with those obtained from standard dilutions of gallic acid. 

Calculate total polyphenol amount present in the extract (% or mg/g). 
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1.5.5 Measure of sugar content with Phenol/H2SO4 

It’s prepared a standard curve with different concentrations of mannose or 

glucose (from 0 mM to 5mM) in 200 ul of water containing 30% phenol. 5-10 l 

of sample solution is taken and mixed with water/30% phenol in 200 l 

volume. All the samples are briefly vortexed and added 800 l of concentrated 

H2SO4, and mix well. Wait until the red/orange color appears. The samples is 

transferred in to plastic cuvettes or 24 well plates and the OD at 490 nm 

(Victor) is taken. The concentrations of sugar in the samples is calculated 

comparing with those of the standard curve 

 

1.5.6 ORAC assay 

The Oxygen Radical Absorbance Capacity assay measures the total 

antioxidant power of a compound or extract and is based on the ability to 

inhibit the oxidation of a fluorophore, generally fluorescein, by a potent 

oxidant, 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). Twenty-five 

L of the extract dilutions in phosphate buffer 100mM. pH 7.4, was aliquoted 

into 96-well plate, and 150 L of a fluorescein solution (8nM in phosphate 

buffer) was added to each sample. After incubation at 37°C for 15 min, 25 L 

of AAPH solution (153 mM in phosphate buffer) was pipetted into each well, 

and  the progress of the reaction was monitored at 535 nm(excitation at 485 

nm), using a fluorescence multiwall reader. The fluorescence was measured 

every minute for 50 min. Antioxidant power of the mixture was calculated 

according to the method described by Huang D et al. (2002). The standard 

curve was obtained by plotting Trolox concentrations against the average AUC 

(area Under Curve) of two measurements for each concentration. ORAC 

values of the samples were expressed as mole of Trolox equivalents per g of 

extract. 

 

1.5.7 Skin cell cultures 

Spontaneously immortalized human keratinocyte (HaCaT) and Human Dermal 

Fibroblasts (HDF) were maintained in DMEM supplemented with 10% fetal 

bovine serum (FBS) or fetal calf serum (FCS) respectively 95% air, 5% CO2 

humidified atmosphere at 37°C.  

 

1.5.8 MTT assay 

A total of Human Dermal Fibroblasts (HDF) or HaCaT keratinocytes cells were 

plated into 96-well plates at a density of 1.3×103 cells/well, grown for 8 hrs and 

treated for 12h with different concentrations of the extracts. After treatments, 

cells were washed with PBS and incubated with 100 L per well of reaction 

buffer (10 mM Hepes, 1.3 mM CaCl2, 1 mM MgSO4, 5mM glucose and 0.5 

mg/mL of colorimetric substrate MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny
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ltetrazoliumbromide) in PBS buffer at pH 7.4. After 3 hrs, at 37°C, 5% CO2, 

cells were solubilized by the addiction of 100 L of solubilation solution 

(TritonX100, 0.1N HCl in 10% isopropanol), and the plate was incubated for 4 

hrs at room temperature. The number of healthy cells is directly proportional to 

the level of the formazan product created. The developed colour was then 

quantified at 595 nm by a multiwall- plate reader Victor3 (Perkin Elmer). 

 

1.5.9 Gene expression analysis  

HaCaT or HDF cells were seeded in 6-well plates at density of 1.5 x 104 or 1.0 

x 105, per well, respectively. The cells were incubated for 6 hours at 37°C, 5% 

CO2 , with the extracts and with retinoic acid 1m alone (control), and then 

collected for total RNA extraction. Total RNA was extracted with the GenElute 

Mammalian Total RNA Purification Kit (Sigma), according to the manufacture's 

instructions and treated with DNAse I at 37°C for 30 min to eliminate any 

contaminating genomic DNA. The first strand cDNA was synthesized from 1 

g using the RevertAidTM First Strand cDNA Synthesis Kit (Fermentas). RT-

PCR was performed using gene specific primers and the Quantum RNATM 

18S internal standard (Ambion) according to manufacturer’s instructions. The 

Quantum RNA TM kit contains primers to amplify 18S rRNA along with 

competimers that reduce the amplified 18S rRNA product within the range to 

allow it to be used as endogenous standard. The amplification reactions are 

performed with the following general scheme: 2 min at 94°C followed by 35 

cycles of 94°C for 30s, annealing temperature (specific for each gene) for 30s, 

and 72°C for 30-60s, with a 10 min final extension at 72°C. The PCR products 

obtained are loaded on 1.5 percent agarose gel, and the amplification bands 

are visualized and quantified with the Geliance 200 Imaging system (Perkin 

Elmer). The amplification band corresponding to the gene analyzed is 

normalized to the amplification band corresponding to the 18S. The values 

obtained are finally converted into percentage values by considering the 

measure of the untreated controls as 100 percent. All the semiquantitative RT-

PCRs were repeated three times, and the result of a representative experiment 

are reported in the graphs.  

Gene Specific Primers used:  

AQP3-FW: 5’GATCAAGCTGCCCATCTA 3’  

AQP3-RV: 5’TGGGCCAGCTTCACATTCT 3’  

FLG-FW: 5’ AGAGCTGAAGGAACTTCTGG 3’  

FLG-RV: 5’ GTGTCATAGGCTTCATCC 3’  

LAM5-β-FW: 5’ AGACCTATGATGCGGACCT 3’ 

LAM5-β RV: 5’ GAAGACATCTCCAGCCTCA 3’  

LAM5-γ FW: 5 ’ATCAACAGGTGAGCTATGG 3’  
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LAM5-γ RV: 5 ’CAATCTCCTGTGTCTGGAT 3’ 

 

1.5.10 ELISA assay 

HDF cells are seeded in 96-well plates at density of 9 x 103 per well, and 
treated with test compounds for 24-72h without changing the medium. Each 
condition is run in quadruplicate. After the treatments, the medium is removed 
and the cells are washed with PBS 1X, fixed in para-formaldehyde (PFA) 4% 
for 10 min, washed three times with PBS 1X, and permeabilized with 1% 
TritonX-100 in PBS for 30 min. After permeabilization, the cells are treated for 
30 min with 0.5% Tween, 5% BSA in PBS and incubated a 4°C with primary 
goat polyclonal antibody, raised against human fibronectin or Pro-Collagen 
type I (Santa Cruz Biotechnology), diluted 1:500 in PBS 1X, containing 0.5% 
Tween, 1% BSA. 16 hours later, samples are washed 3 times with PBS + 
0.5% Tween, and incubated wi and incubated with anti-goat secondary 
antibody, labelled with Horse-Radish Peroxidase (HRP) (Santa Cruz 
Biotechnology), diluted 1:1000 in PBS 1X, containing 0.5% Tween, 1% BSA. 
One hour later, plates are washed 3 times with PBS 1X and the amount of 
fibronectin produced by the cells is measured by a colorimetric reaction, using 
a 0.5 mg/ml solution of o-phenylendiamin (OPD) (Sigma-Aldrich) 0.012% 
H2O2 in citrate buffer 50mM. The plate is incubated at room temperature for 
60 min until the yellow color develops. The absorbance of each sample is 
measured at 490 nm by a Multi-well Plate reader Victor3 (Perkin Elmer). 

 

1.5.11 Wound Healing assay 

HaCaT or HDF cells were seeded in 6-well plates at density of 1 x 106, per 
well. 7hrs later, when the cells are confluent, same areas of each well are 
displaced by scratching a line through the cell layer by a pipet tip, simulating a 
wound. Floating cells are removed by PBS washing. Media containing 0.5% 
FBS with or without treatment is added and the cells incubated for 7 hours. 

Mytomycin C (10 g/ml) is always included in the media to prevent cell 
proliferation. To estimate the relative migration of the cells, it’s compared, for 
each condition, the unclosed cell-free areas at time 0 and seven hours after 
treatments by using the software Image J. Means of left and right wound 
margins were calculated 

 

1.5.12 Collagen Contraction assay 

2x105 HDF are seeded in 24 well mixed with 2mg/ml of collagen solution .The 
plate is incubated at 37°C for 30’ in way to induce collagen gel formation. At 
the end of incubation the medium with treatment is added and the plate is 
incubated for the night. The next day the gel is released from the bottom of the 
well in way to induce collagen gel contraction. Pictures at different times are 
taken and the best time is 24 hours after the release. 

 

 



42 

 

1.5.13 Statistical analysis. 

Unpaired t-test was performed using GraphPad softwere. Quantitative data 
were presented as mean ± standard deviation (SD). Comparison between 
data was analyzed using t-tests. Significant differences were accepted when P 
values is less than 0.05 p<0.05 was considered statistically significant. 
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2.1 Aim of the thesis 

The evidence that YB-1 interacts with Np63 and accumulates into the nuclear 

compartment following Np63 overexpression raises the interesting question of 
what could be the biological role of YB-1 in normal epidermis.   
Furthermore, multiple stimuli trigger YB-1 protein nuclear localization but the 
mechanisms governing YB-1 protein subcellular localization and turnover are still 
largely unknown.  

My PhD thesis was aimed to elucidate the physiological role of Np63/YB-1 
interaction given the potential relevance that this association might have in skin 
biology.  
During my Ph.D project I have analysed the expression pattern of YB-1 and 

Np63 in several cell contexts contribuiting to the knowledge that ΔNp63plays 
a role in YB-1 protein post-translational modification and turnover. 

In the first part I have shown that ΔNp63and YB-1 are  highly expressed in 
proliferating keratinocytes and are both down-regulated under differentiating  
conditions.  

In the second part of my work I have established that ΔNp63reduces YB-1 
protein turnover and induces the accumulation of poly-ubiquitinated forms of YB-
1 into the nucleus. 
Taken together, my data indicate, that the control of YB-1 protein stability by 

Np63 contributes to the proliferative potential of basal keratinocytes while the 
ubiquitination process can regulate YB-1 protein abundance into the nuclear 
compartment. 
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ΔNp63α protects YB-1 oncoprotein from proteasome-dependent proteolysis  

 

2.2  Introduction: 

2.2.1 Epidermal differentiation and proliferation 

I spent part of my PhD in the laboratory of Molecular Genetics under the 
supervision of Prof. Viola Calabrò. Her main field of interest is to study the 
molecular mechanisms governing skin regeneration and differentiation.  
The epidermis is the outermost layer of the skin, a multistratified epithelium 
whose homeostasis depends on a balance between cell proliferation and 
differentiation. Several molecular pathways impinge on epidermal  regeneration 
and their deregulation often results in the development of cancer.  
The epidermis is composed of four layers of keratinocytes: basal, spinosum, 
granulosum and corneum but it also cells of a different ontogenic derivation 
such as melanocytes, Langerhans and Merkel cells. During epidermal 
differentiation the actively proliferating basal keratinocytes move towards the 
surface of the skin and differentiate generating the so-called stratum corneum 
made of flattened dead cells ( Blanpain et al. 2009).  
Keratinocyte differentiation is characterized by subsequent steps of expression 
of distinct keratins: K5 and K14 are found in the basal layer while K1 and K10 
in the suvrabasal more differentiated ones.  
Keratinocytes of the basal layer show high proliferative potential and express 

high level of Np63one of the products of the TP63 locus. During the 

differentiation process the level of Np63 decreases (Barbieri et al. 2006). 

In embrionic development, Np63is crucial for epidermal commitment while 

in mature epidermis it controls skin regeneration and differentiation(Yang et al. 
1999).  

In a collaborative study of functional proteomics, the Y-box binding protein 

1(YB-1, NSEP1) was identified among a pool of 50 potential Np63protein 

partners in human keratinocytes (Amoresano et al. 2010)  

YB-1 is a multifunctional protein with a well assessed oncogenic potential. Its 

interaction with Np63 was further validated by several experimental 
approaches (Di Costanzo et al. 2012).  
Given the great potential that YB-1 may have in the control of keratinocyte 
proliferation, I have investigated in more details the functional relationships 

between YB-1 and Np63 and provided clear evidences indicating that 

Np63 plays a role in the control of YB-1 protein stability and turnover (di 
Martino et al. 2015; in submission). 
 
 
 
 
 
 
 
 
 

http://us.expasy.org/cgi-bin/niceprot.pl?P13647
http://us.expasy.org/cgi-bin/niceprot.pl?P02533
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 2.2.2 The controversial role of Np63 protein 

 

Np63 is encoded by the TP63 locus, the ancestral gene of the p53 gene 
family (Calabrò et al. 2004). Originally, it was thought that p63 was another 
tumor-suppressor as p53. Studies on p63 knockout mice have clearly 
demonstrated that p63 plays a fundamental role in skin homeostasis, 
regeneration and proliferation (Yang et al. 1999). ΔNp63-null mice die within 
hours after birth, are unable to develop a mature stratified epidermis and show 
severe abnormalities including limb truncations and craniofacial malformations 
(Romano RA et al 2012). 
Using two alternative start sites the TP63 gene generates two functionally 
different protein isoforms: TA isoforms with an acidic transactivation domain 

and N isoforms lacking this domain.  
Alternative splicing at the carboxy-terminal (C-terminal) generates at least 

three p63 variants (,  and ) in each class (Rossi et al. 2006). Among the six 

p63 isoforms, onlyNp63and TAp63hold a sterile alpha motif (SAM 
domain) that is involved in protein-protein interactions (Lee E. Finlan et al. 
2007). 

Np63isoform is the most predominantly expressed isoform in the skin. 

Np63 is a critical pro-proliferative factor and a marker of epidermal 
stemness. It’s essential for morphogenesis of organs/tissues developing by 
epithelial-mesenchimal interactions such as the epidermis, teeth, hair and 
glands (Yang et al. 1999). 

Np63 is highly expressed in embryonic ectoderm while in adults is found in 
the nuclei of basal regenerative cells of stratified epithelia including skin, 
breast, myoepithelium, oral epithelium, prostate and urothelia (Mc Keon 2004).  

Finally, according to its pro-proliferative role Np63 is the most abundant 
isoform over-expressed in  squamous cell carcinomas (Nylander K et al. 2000) 

suggesting that Np63 also plays a role in squamous carcinogenesis.  
 
 

2.2.3 Y Box Binding protein 1: structure and function 
 
 
Y Box Binding protein 1 (YB-1) encoded by the YBX1 gene, belongs to the 
superfamily of cold-shock proteins characterized by a highly conserved motif, 
the “cold shock domain” (CDS) that binds to both DNA and RNA. This motif is 
located within a central region of the protein encompassing about 65 amino 
acids (Annette LASHAM et al. 2013).  
Human YB-1 consists of 324 amino acid residues, the most abundant are Arg 
(11.7%), Gly (12%), Pro (11%), and Glu (8.3%). Based on amino acid 
sequence, YB-1 molecular mass was estimated to be 35.9 kDa. However in 
SDS-PAGE YB1 migrates as a protein of 50 kDa showing a peculiar behavior 
(I. A. Eliseeva et al.2011).  
YB1 protein is a transcription/translation regulator factor involved in a wide 
variety of cellular functions including cell proliferation and migration, DNA 
repair, multidrug resistance and stress response to extracellular signals 
(Annette LASHAM et al. 2013).  
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YB1 protein performs its functions both in the cytoplasm and in the cell nucleus 
(I. A. Eliseeva et al. 2011). YB-1 peptides can be secreted from kidney 
mesangial cells and can activate mitogenic signaling by binding to Notch 3 
receptor (I. A. Eliseeva et al. 2011).  
Under physiological conditions, YB-1 localizes in the nucleus at certain steps of 
the cell cycle (Jurchott K etr al. 2003). Cytokines (Tsujimura et al. 2004) and 
Serine 102 phosphorylation in response to MAPK and PI3K/AKT signaling 
(Sinneberg et al. 2012; Sepe et al. 2011) also promote YB-1 nuclear 
translocation.  
In the cytoplasm, YB-1 inhibits translation of pro-proliferative proteins and acts 
as a positive translation factor of pro-metastatic genes including Snail1 
(Evdokimova et al. 2009). In the nucleus, YB-1 induces the transcription of 

several pro-proliferative genes, such as cyclins, DNA pol  and PIK3CA and 
the multidrug resistance (MDR1) (Jurchott K etr al. 2003; En-Nia et al 2005; 
Astanahe et al. 2009).  
The plethora of functions fulfilled by YB-1 necessitates sub-cellular protein 
shuttling. Specific protein domains, denoted nuclear localization (NLS) and 
cytoplasmic retention signals (CRS), coordinate YB-1 multifunctional shuttling 
and tasking (Van Roeyen et al. 2013). Changes in the abundance of YB-1 in 
the cell or YB-1 translocation from the cytoplasm to the nucleus is 
characteristic of malignant cell growth. However, the mechanisms governing 
YB-1 protein subcellular localization and stability are still largely unknown.  
In clinical studies, it has been shown that YB-1 is highly expressed in several 
type of tumors (Shibao et al 1999). Nuclear accumulation of YB-1 was shown 
to be associated with tumor progression, multidrug resistance and poor 
prognosis in ovarian cancer (Yahata et al. 2002), glioblastoma (Fotovati et al. 
2011), melanoma (Sinneberg et al. 2012) and non-small cell lung cancer 
(Shibahara et al. 2001). For this reason, in the last years, YB1 has been 
considered one of the most important tumor markers and a potential 
therapeutic target gene for several types of malignancies. 
YB-1 is targeted by several post-translational modifications, including 
phosphorylation, and acetylation. Data from literature indicate that YB1 protein 
undergoes limited proteolysis by the 20S proteasome (Sorokin et al. 2005). On 
the other hand, Lutz et al. have demonstrated that YB1 can be completely 
degraded by the 26S proteasome after ubiquitination by the F-Box protein 

(FBX33), a ubiquitin ligase induced during programmed cell death (Lutz et al. 
2006). Later on, Moredreck et al. in 2008 discovered a new E3 ligase capable 
of ubiquitinating YB-1 named RBBP6 (Retinoblastoma binding protein 6) 
(Moredreck et al. 2008). Taken together, these observations suggest that YB-1 
protein levels have to be finely tuned during cell proliferation and differentiation. 
However, molecular players and signaling controlling YB-1 protein turnover are 
remain largely unknown.  
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Figure 1. The Y-box-binding protein (YB-1). YB-1 represents the most evolutionary 
conserved nucleic-acid-binding protein currently known. YB-1 is a member of the cold-shock 
domain (CSD) protein superfamily. It performs a wide variety of cellular functions, including 
transcriptional regulation, translational regulation, DNA repair, drug resistance and stress 
responses to extracellular signals. As a result, YB-1 expression is closely associated with cell 
proliferation 
 

  

2.2.4 Ubiquitination function in different biological process. 

 
 
Ubiquitination is a critical modification for several biological processes, such as 
cell survival, differentiation and innate and adaptive immunity. Usually, 
ubiquitin–proteasome proteolysis pathway is used to label proteins for rapid 
degradation. Ubiquitin (Ub) is covalently coupled to lysine residues on target 
proteins by four critical enzymes that acts in succession: a ubiquitin-activating 
enzyme (E1), a ubiquitin-conjugating enzyme (E2 or UBC), a ubiquitin ligase 
(E3), and the 26S proteasome. Ub is first activated by E1 in an ATP-dependent 
manner via a thiolester bond and then transferred to an E2.  
E3 Ubiquitin ligases concomitantly interact with a Ub-loaded E2 and the 
substrate protein and mediate isopeptide bond formation between the C 
terminus of Ubiquitin and a substrate lysine (Hershko, A. & Ciechanover, A. 
1998). The 26S proteasome rapidly detects and degrades the polyubiquitinated 
conjugates resulting from covalent ubiquitination.  
Proteins can be modified through the conjugation of monoubiquitin or 
polyubiquitin chains of variable length on any of the seven Lys residues (Lys6, 
Lys11, Lys27, Lys29, Lys33, Lys48 or Lys63) or the amino-terminal Met (Met1) 
of the ubiquitin monomer (Grabbe et al.2011).  
Ubiquitination was shown to regulate several biological processes such as 
protein turnover, receptor internalization, assembling of multiprotein 
complexes, intracellular trafficking, inflammatory signaling, autophagy, DNA 
repair and regulation of enzymatic activity (Popovic d. et al 2014). 

Image modified by Lasham et al. 2013 
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For this reason, deregulation of the ubiquitination pathway can have dramatic 
consequences on cell physiology. For example it could entail to up-regulation 
or down-regulation of metabolic pathways, incorrect assembly of protein 
complexes, accumulation of misfolded proteins or mislocalization of proteins 
(Popovic d. et al 2014). 
Finally, ubiquitination can influence cancer development. However, this aspect 
is still difficult to understand the role of ubiquitination since ubiquitination might 
equally control tumor-suppressor and tumor-promoting pathways. Therefore, 
depending on the nature of the targeted substrate, a single Ub ligase can act 
as both as an oncogene or a tumor suppressor (Hoeller D. et al 2009).  

My work experience stemmed from previous data showing thatNp63 protein 
physically associates with YB-1 promoting its nuclear accumulation (Di 
Costanzo et al. 2012). I have focused my attention on YB-1 post-translational 

modification and demonstrated that Np63 plays a role in the control of YB-1 
protein ubiquitination and turnover. 
  

 
  
 
Figure 2. Ubiquitination machinery. (Ub) is covalently coupled to lysine residues on target 
proteins by four critical enzymes that acts in succession: a ubiquitin-activating enzyme (E1), a 
ubiquitin-conjugating enzyme (E2 or UBC), a ubiquitin ligase (E3), and the 26S proteasome. 
Ub is first activated by E1 in an ATP-dependent manner via a thiolester bond and then 
transferred to an E2. E3 Ubiquitin ligases concomitantly interact with a Ub-loaded E2 and the 
substrate protein and mediate isopeptide bond formation between the C terminus of Ubiquitin 
and a substrate lysine (Hershko, A. & Ciechanover, A. 1998). The 26S proteasome rapidly 

detects and degrades the polyubiquitinated conjugates resulting from covalent ubiquitination.  
 
 
 
 
 
 
 
 
 
 
 
 

Popovic et al. 2014 
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2.3 Results 

 

2.3.1 YB1 and ΔNp63α aredown-regulated during keratinocyte differentiation 

 
ΔNp63α is highly expressed in proliferating keratinocytes and decreases 

abruptly when cells start to differentiate (Barbieri et al. 2006). Since Np63 
and YB-1 are co-expressed in proliferating HaCaT keratinocytes (Di Costanzo 
et al. 2012), I investigated the pattern of YB1 expression in Normal Human 
Epidermal (NHEK) and HaCaT keratinocytes during Ca2+ induced 
differentiation. I cultured keratinocytes in calcium-free medium, and treated 
them with Ca2+ for the indicated time points. Then, I prepared whole cell 
extracts to perform immunoblot analysis. As shown in Figures 1A and 1B as 
differentiation proceeds, the level of YB1 protein decreased suggesting that, 
similar to ΔNp63α, YB1 must be down-regulated to allow differentiation of 
keratinocytes.  
 
 
 

 
 
 
 
 
 
Figure 1. YB1 and ΔNp63α are down-regulated during keratinocyte differentiation. 
(A) NHEK were induced to differentiate, for the indicated days, in 1.5 mM Ca2+. Whole cell 
extracts were analyzed by immunoblotting using antibodies against p63, YB-1, Cytokeratin 1 
(CK1). Actin was used as loading control. (B)  HaCaT cells were induced to differentiate for 
the indicated days with 2.0 mM calcium. Cell extracts were analyzed by immunoblotting with 
p63, YB- 1 and CK1 antibodies, as indicated. Undifferentiated HaCaT, grown in absence of 
calcium, were used as negative control. GAPDH was used as loading control. 
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2.3.2 YB-1 and ΔNp63α down-regulation is associated to cell cycle exit. 
 
Next, I induced growth arrest in HaCaT keratinocytes by confluency and 
serum starvation as cell cycle exit is an integral part of keratinocyte 
differentiation. My aim was to examine YB1 and ΔNp63α expression under 
normal and serum-starvation conditions. HaCaT keratinocytes were grown to 
confluence and serum starved for 24 hours. I prepared nuclear and 
cytoplasmic extracts to perform immunoblot analysis. As shown in Figure 2A, 
both YB1 and ΔNp63α were down-regulated under growth arrest conditions as 
demonstrated by reduction of cyclin D1 expression and induction of the cell 
cycle inhibitor p21WAF (Figure 2A). While I was doing my experiments, results 
from Dr. A. Troiano in my laboratory revealed that YB1 silencing in 
proliferating HaCaT and transformed keratinocytes triggers a dramatic and 
fast apoptotic response (Troiano et al. 2015). All together these results 
indicate that YB1 is essential for sustaining proliferation and survival of basal 
keratinocytes. Remarkably, I noticed that calcium-dependent differentiation 
protects from apoptotic death induced by decrease of YB-1 protein level.  
 
 
 

 
 
 
Figure 2. YB-1 sustains the proliferative activity of keratinocytes. (A-B) HaCaT 
keratinocytes were cultured in DMEM medium with (+ FBS) or without FBS (- FBS), as 
indicated. After 48 hours, cells were harvested. Nuclear (Nu) and cytoplasmic (Cy) extracts 
were subjected to immunoblot using p63, YB-1, P21WAF, Cyclin D1 antibodies. GAPDH and 
PARP antibodies were used as loading controls and to check for cross-contamination between 
the fractions. 
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2.3.3 ΔNp63α regulates YB1 stability   

 

Since Np63 and YB-1 are abundantly expressed in proliferating basal 

keratinocytes and Np63 promotes accumulation of full length YB1 protein 

in the nuclear compartment (Di Costanzo et al. 2012), I postulated that 
ΔNp63α control YB1 protein stability. Therefore, I first investigated whether the 

increase of YB1 protein level, induced by Np63, was due to reduced YB1 

protein turnover. Thus, I compared YB1 protein half-life in mock and Np63 
transfected MDA-MB231 cells. 24 hrs after transfection, cells were treated with 
cycloheximide to block protein synthesis. At the indicated times of drug 
exposure, cells were harvested, and whole extracts were analyzed by Western 
blot and probed with anti-YB1 antibody. As shown in Figure 3, in mock 
transfected cells, YB1 exhibited a very peculiar byphasic response to 
cycloheximide, indeed the amount of YB1 protein was reduced to 40% after 4 
hours, but then it remained constant up to 16 hours of incubation. Strikingly, in 

presence of Np63 80% of YB1 protein persisted after 24 hours of 

incubation with CHX thereby indicating that Np63 reduces YB1 protein 

turnover. 
 


 
Figure 3. Np63 reduces YB-1 protein turnover. (A) A representative immunoblot analysis 
of YB-1 protein level in MDA-MB231 cells treated with 10 µg/ml cycloheximide (CHX), for the 
indicated times. Cells were seeded at 60% confluency in 100-mm dishes. 24 hours after, cells 
were transfected with an empty vector or a ΔNp63α expressing plasmid. Equal amounts of 
proteins were subjected to immunoblot analysis with YB-1 or p63 antibodies. Actin was used 
as loading control. (B) Protein half-life was expressed in the plot as the fraction of the initial 
protein. Data are presented as the mean value obtained from three independent experiments. 
YB-1 bands (50 kDa) were quantified by densitometric scanning and Quantity-ONE software. 
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2.3.4 ΔNp63α expression increase the amount of YB1 slow migrating forms 


Next, I transfected increasing amount of Np63 expression plasmid in p63 
null MDA-MB231 cells. In addition to the expected accumulation of full length 

YB1 protein (p50/YB1), Np63 expression caused an increase of slow 
migrating YB1 immunoreactive bands (sm/YB1) and a concomitant reduction 
of faster migrating YB1 forms (Figure 4A). In particular, I observed the 
reduction of a 36 KDa band of YB-1 previously reported to be a product of YB-
1 50 kDa limited proteolysis by proteosome 26S (Sorokin et al. 2005).Then, I 

performed immunoblot analyses of whole-cell extracts obtained from Np63 
proficient HaCaT, A431, and SCC011 cells to further investigate on the 
observed high molecular forms of YB1. In all cell lines tested, I observed slow 
migrating bands immunoreactive to YB1 antibodies raised against a peptide 
encompassing aminoacids 1 to 100 of human YB1 (Figure 4B). I obtained 
similar results with a different commercial antibody directed against a peptide 
encompassing aminoacids 167 to 264 of YB1 (data not shown). 

 
 

 
 
Figure 4. ΔNp63α expression increase the amount of YB1 slow migrating forms. (A)  
Immunoblotting (upper panel) and densitometric analysis (lower panel) of MDA-MB231 cells 
transiently transfected with increasing amounts of ΔNp63α expression plasmid (0.5, 1.0, 1.5, 

2.0 g). Whole extracts were analysed with YB-1 and p63 antibodies. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was used as loading control.  (B) Immunoblot analysis of 
YB-1 in HaCaT, A431 and SCC011 cells with YB-1 antibody (ab12148, Abcam). The 50 kDa 
band corresponding to unmodified YB-1 protein is indicated by arrow. Actin was used as 
loading control. 
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2.3.5 p63 depletion by siRNA induces a reduction of YB1 slow migrating forms 

 
To check the identity of the observed slow migrating bands, I depleted p63 
proficient A431 cells of endogenous YB1 by RNA interference. 48 hrs after 
YB1 silencing, whole cell extracts were subjected to immunoblots with YB1 
antibodies. Some of the slow migrating bands disappeared or were reduced 
along with full length YB1 implying that they were YB1 modified forms (Figure 

5A, black arrows). Next, I depleted SCC011 cells of endogenous Np63, to 

finally prove the effect of Np63on YB1 protein modification. As shown in 

Figure 5B, I observed a significant reduction of full length and slow migrating 
YB1 bands in the nuclear compartment. As expected, the p36/YB1 form 
became clearly detectable thus confirming my previous observations (Figure 
5B).  
 

 
Figure 5. p63 and YB-1 depletion by siRNA induces a reduction of YB1 slow migrating 
forms (A) Immunoblot analysis of YB-1 in YB-1 depleted A431 cells 48 hours after silencing. 
YB-1 protein was detected using the YB-1 antibody. Actin was used as loading control. (B) 
SCC011 cells were silenced with IBONI p63-siRNA pool or scrambled oligos. 48 h after 
silencing, cells were fractionated to obtain cytoplasmic (Cy) and nuclear (Nu) fractions. Filters 
were incubated with YB-1 and p63 antibodies. To check for cross-contamination, PARP and 
total AKT were used as nuclear and cytoplasmic control, respectively. 

 
2.3.6 YB1 slow migrating forms are accumulated in the nuclear compartment 

 
Next, I performed western blot analysis of nuclear and cytoplasmic fractions of 
MDA-MB231, A431 and SCC01 carcinoma cells (Figure 3A). These 
experiments revealed that slow migrating YB1-immunoreactive bands were 
enriched in the nuclear compartment. Interestingly, I also detected distinct 
several YB1 forms, smaller than 50 kDa, likely generated by proteasome-
mediated limited cleavage (Sorokin et al. 2005) (Figure 6A, black arrow).  I 
analyzed the effect of proteasome inhibition, by treating HaCaT cells with 
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MG132. I prepared nuclear/cytoplasmic fractions to perform immunoblot with 
YB1 antibodies. As shown in Fig 3B, I observed high molecular forms of YB1 
into the nucleus of not transformed HaCaT keratinocytes. Following MG132 
treatment, full length YB1 accumulated and nuclear YB1 fragments smaller 
than 50 kDa either decreased or disappeared. Remarkably, proteasome 
inhibition also reduced high molecular forms of YB1 suggesting that they were 
generated upon endoproteolytic cleavage of YB1 probably by the 20S 
proteasome (Figure 6B). 

 

  
 
Figure 6.YB1 slow migrating forms are accumulated in the nuclear compartment. (A) 
Immunoblot analysis of MDA-MB231, A431 and SCC011 cytoplasmic (Cy) and nuclear (Nu) 
361 fractions. YB-1 and p63 were detected with ab12148 (Abcam) and D9 (Santa Cruz 
Biotechnology) antibodies, respectively.  The filters were blotted with antibodies against PARP 
and total AKT to check for cross-contamination between the fractions. (Note the presence of 
YB-1 36 kDa band exclusively in the nuclear compartment). (B) Immunoblot analysis of 
HaCaT cytoplasmic (Cy) and nuclear (Nu) fractions after 5 hrs of MG132 treatment (5μM final 
concentration). YB-1 was detected with ab12148 (Abcam). Note the decrease of slow and fast 
migrating YB-1 forms following MG132 treatment into the nucleus and the accumulation of full 
length YB-1 50 kDa. The filters were blotted with antibodies against PARP and actin to check 
for cross-contamination between the fractions. 

 

2.3.7 YB1 slow migrating forms are poli-ubiqitinated 

 
It was previously reported that YB1 is poly-ubiquitinated and degraded via the 
ubiquitin-proteasome pathway (Lutz M. et al. 2006). Indeed, in MDA-MB231 
cells transfected with Ubi-Ha, ubiquitin-containing complexes, 
immunoprecipitated with anti-HA antibodies, included endogenous YB1 and 
p63 proteins (Figure 7A, lanes 5 and 6). By specifically looking at the pattern 
of high-molecular weight YB1 forms in MB-MDA231 cells, I found that it was 

enhanced by ubiquitin or Np63 transfection (Figure 7B, lanes 1 and 3 and 
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Figure 7C, lane 2) and even more by ubiquitin and Np63 co-transfection 
(Figure 7B lane 4 and Figure 7C lane 4) resulting very similar to that observed 

in Np63 proficient A431 cells (Figure 7B, lane 5). Moreover, I observed a 

reduction of the YB1 36 kDa forms in cells expressing Np63 (Figure 7C, 
lanes 2 and 4).  MG132 addition to cells overexpressing ubiquitin and 

Np63, instead, stabilized full length YB1 and reduced ubi-conjugated forms 
of YB1, particularly those migrating between 50 and 70 kDa, again suggesting 
that they are generated following limited YB1 cleavage (Figure 7C, compare 
lanes 3 and 4). 

  
Figure 7. YB1 slow migrating forms are poli-ubiqitinated. (A) A431 cells were transiently 
transfected with Ubi-HA expression plasmids.  After 24 hrs, extracts were immunoprecipitated 
(IP) with anti-HA antibody and the immunocomplexes were subjected to immunoblot (IB) with 
YB-1 or  p63 antibodies, as indicated.  (B)  MDA-MB231  cells were transiently transfected 
with an empty vector (mock), a ΔNp63α and/or Ubi-HA plasmid, asindicated. Whole cell 
extracts were analysed by immunoblotting with YB-1 and p63 antibodies. Actin was used as 
loading control. A431 are p63 proficient cells. (C)  MDA-MB231 cells were transiently 
transfected with Ubiquitin and/or ΔNp63α expression plasmid. Cells were treated with MG132, 
as indicated. Whole extracts were analysed by immunoblotting with YB-1 and p63antibodies. 
Actin was used as loading control.   
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2.4 Discussion 

In the second part of my PhD work I contributed to understand the functional 

mechanism by which ΔNp63 is involved in the regulation of YB-1 protein 

turnover. 

My first observation was that YB-1 protein exhibits a quite reproducible pattern 

of high molecular weight forms. Moreover, the expression pattern of those 

bands was quite reproducible and similar in all cell lines tested.  

Inspection of YB-1 aminoacid sequence revealed the presence of many 

lysines that are potential target of ubiquitin and sumo modifications.  

Transfection of HA-tagged Ubiquitin followed by immunoprecipitation with HA 

antibodies confirmed that at least some of the observed YB1 slow migrating 

forms are poly-ubiquitinated although we cannot exclude that other 

modifications such as sumoylations or acetylations can also be present. 

Further experiments are needed to clarify this point. 

This observation suggested a role for the proteasome 26S in YB-1 

degradation. However, since I have observed accumulation of full length YB-1 

and reduction of YB-1 slow-migrating Y-1 forms following treatment with 

MG132, we hypothesized that a 20S proteasome-dependent YB-1 

endoproteolityc cleavage occurs before YB-1 poli-ubiquitination. It is important 

to remind that it was previously demonstrated that YB-1 undergoes a 

proteasome-dependent limited cleavage under DNA damage stimuli (Sorokin 

et al).  

Next, I established that the ectopic expression of Np63in p63 null MDA-

MB231cells significantly increases full length YB1 protein half-life and reduces 

the level of the p36 YB-1 fragment. This last experiment demonstrates that 

Np63expression can protect full length YB-1 from specific endoproteolysis. 

Moreover, the increase of poli-ubiquitinated YB-1 upon 

Np63enforcedexpression suggests that Np63might either reduce their 

export from the nuclear to the cytoplasmic compartment or increase the rate of 

YB-1 ubiquitination. At these stage, however, I have not clear experimental 

evidences to distinguish between these two hypotheses.  

Ubiquitination is a critical modification for several biological processes, such 

as cell survival, differentiation and innate and adaptive immunity (Popovic et 

al. 2014). Usually, ubiquitin-conjugation is used to label proteins for rapid 

degradation. By the 26 proteasome. However, considering my results I cannot 

exclude that addition of polyubiquitin chain to YB-1 can confer to the protein 

new functionalities such as the ability to interact with target proteins via 

ubiquitin binding domains or assemble into multimeric complexes (O’Neil LA 

2009). 

In my system I have not identified a specific ubiquitin ligase/s involved YB-1 

post- translational modification. However, the F-box Protein 33 (FBX33) (Lutz 
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et al.2006) and the ring finger Retinoblastoma Binding Protein 6 (RBBP6) 

(Moredreck Chibi et al. 2008) are potential candidates as they have already 

demonstrated to specifically target YB-1. 

Generation of YB-1 mutant proteins that that cannot be ubiquitinated will 

largely help to understand the physiological role of such YB-1 modification.  

YB-1 expression in basal keratinocytes can be functionally critical for skin 

proliferation and survival. Accordingly, Np63a well assessed marker of 

basal keratinocyte proliferation acts by preserving full length YB-1 integrity. I 

have observed that YB-1 levels are higher in response to growth stimuli and 

rapidly down-regulated during cell cycle such as upon serum deprivation and 

differentiating stimuli. A relevant issue, is whether YB-1 expression can exert a 

selective control upon Np63transcriptional functions and what might the 

effect of mutant p63 on YB-1 functions.  

A further hypothesis to explore is that by binding YB-1 into the nuclear 

compartment, Np63 might recruit the YB-1 protein on the promoter of pro-

proliferative genes. Np63 gene silencing followed by Chromatin 

immunoprecipitation and deep sequencing can provide the answer to this 

question. However, we cannot exclude that Np63 might reduce the pool of 

cytoplasmic YB-1 thereby influencing the translation regulatory functions of 

YB-1.  

At this stage, although it needs to be confirmed in vivo, YB-1 can be 

considered a reliable marker of keratinocyte proliferation and a pro-survival 

factor.  
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2.5      Materials and Methods 

 

2.5.1 Plasmids 

  

cDNA encoding human Np63 was previously described (Di Costanzo et al. 

2012). cDNA encoding human Ubi-HA were provided by Dr. V Orsini.  

 

2.5.2 Cell culture  

 

MDA-MB231 cells were derived from metastatic breast carcinoma and A431 

cells were established from an epidermoid carcinoma of the vulva. Cutaneous 

squamous carcinoma cells SCC011 were described in Di Costanzo et al. 2012 

and cultured in RPMI supplemented with 10% fetal bovine serum at 37°C 42 

and 5% CO2. A431, HaCaT and MDA-MB231 were purchased from Cell Line 

Service (CLS, Germany) and cultured at 37°C and 5% CO2. A431 and HaCaT 

cells were maintained in DMEM supplemented with 10% FBS. MDA-MB231 

cells were maintained in DMEM supplemented with5% FBS.  NHEK cells were 

obtained from PromoCell (Heidelberg; Germany) and cultured M2 medium 

under the manufacturer’s recommendations For differentiation, NHEK (2.3 × 

105) cells, seeded at 60% confluence in 60 mm dishes were cultured for the 

indicated days in 1.5 mM Ca2+. For HaCaT differentiation, cells (2.5 × 105) 

were seeded in 35 mm dishes and grown until 80% confluence. The medium 

was then replaced with DMEM without FBS and 2 mM calcium. 

  

2.5.3 Transient transfection  

 

Lipofections were performed with Lipofectammine 2000 (Invitrogen), according 

to the manufacturer’s recommendations. YB1 transient silencing was carried 

out with RIBOXX (IBONI YB-1siRNA pool) and RNAiMAX reagent (Invitrogen), 

according to the manufacturer’s recommendations. Briefly, cells were seeded 

at 60% confluence (1.5 × 106) in 100-mm dishes and transiently silenced with 

IBONI YB1-siRNA at 20 nm final concentration.   

 

YB-1 guide sequences: UUUAUCUUCUUCAUUGCCGCCCCC; 

UUAUUCUUCUUAUGGCAGCCCCC; UUCAACAACAUCAAACUCCCCC; 

UCAUAUUUCUUCUUGUUGGCCCCC.   

 

Np63 transient silencing was carried out with RIBOXX (IBONI p63-siRNA 

pool) at 20 nm (final concentration) and RNAiMAX reagent (Invitrogen).   

 

p63 guide sequences: UUAAACAAUACUCAAUGCCCCC; 

UUAACAUUCAAUAUCCCACCCCC; AUCAAUAACACGCUCACCCCC; 

AUGAUUCCUAUUUACCCUGCCCCC.  

“All Star Negative Control siRNA”, provided by Quiagen, was used as negative 

control.  
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2.5.4 Protein turnover analysis  

 

For half-life studies MDA-MB231 cells were transfected with mock or Np63 

plasmids. 24 hours after transfection, cells were replated in 6-well dishes, 

allowed to adhere overnight, and treated with cycloheximide (Calbiochem) at a 

final concentration of 10 g/ml. Cells were harvested at the indicated time 

points. Total cell extracts were prepared and 20 g of each sample was 

probed, in Western blot, with anti YB-1 antibody and, as control, with anti-actin.   

 

2.5.5 Antibodies and chemical reagents  

 

Anti-p63 (4A4), anti-cytokeratin 1 (4D12B3), anti-p21WAF (F-5), anti-GAPDH 

(6C5), and anti- actin (1-19) were purchased from Santa Cruz (Biotechnology 

Inc.). Cyclin D1, PARP and AKT antibodies were from Cell Signaling 

Technology (Beverly, Massachussets). Rabbit polyclonal YB1(Ab12148) 

antibody was purchased from Abcam. (Cambridge, UK). Mouse monoclonal 

anti-HA(12CA5) antibody was purchased from Roche Applied Science. 

Proteasome inhibitor MG132 and Cycloheximide (CHX) were purchased from 

Sigma-Aldrich. MG132 treatment was carried out as previously described (22).  

 

2.5.6 Western blotting 

 

At 48 h after transfection cells were lysed in 10 mM Tris-HCl (pH 7.5), 1 mM 

EDTA, 150 mM NaCl, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 

0.5% sodium deoxycholate, and protease inhibitors. Cell lysates were 

incubated on ice for 30 min, and the extracts were centrifuged at 13,000 rpm 

for 10 min to remove cell debris. Protein concentrations were determined by 

the Bio-Rad protein assay. After the addition of 4× loading buffer (2% sodium 

dodecyl sulfate [SDS], 30% glycerol, 300 mM β-mercaptoethanol, 100 mM Tris-

HCl [pH 6.8]), the samples were incubated at 95°C for 5 min and resolved by 

SDS-polyacrylamide gel electrophoresis. To detect YB-1 poli-ubiquitinated 

forms, in MDA- MB231 cells (p63 -/-), 2 ×106 cells were plated in 100 mm 

dishes and transfected with plasmids encoding human Np63and Ubi-HA. 30 

-PAGE and subjected to 

immunoblot.   

 

2.5.7 Nuclear-cytoplasmic fractionation  

 

The cells were seeded at 60% confluence (1.5 × 106) in 100 mm dishes. 24 h 

after seeding, cell lysates were fractionated to obtain cytoplasmic and nuclear 

separated by SDS-PAGE and subjected to immunoblot. All images were 

acquired with CHEMIDOC (Bio Rad) and analyzed with the Quantity-ONE 100 

software. 
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2.5.8 Immunoprecipitation  

 

To detect YB-1 poli-ubiquitinated forms in A431 cells, 2 ×106 cells were seeded 

in 100 mm dishes and transfected with Ubi-HA plasmid vector. Lysates 

containing 1 mg of proteins were precleared with 30 μl of protein A-agarose 

(50% slurry; Roche) and then incubated overnight at 4 ̊C with 3μg of anti-p63 

(anti-HA; Roche). The immunocomplexes were collected by incubating with 

protein A-agarose (Roche) at 4 ̊C for 4 hrs. The beads were washed vigorously 

seven times with Co-IP buffer (50 mM Tris-HCl pH 7.5; 150 mM NaCl; 5 mM 

EDTA; 0.5% NP40; 10% glycerol). The beads were then resuspended in 4X 

loading buffer, loaded directly onto an SDS-8% polyacrylamide gel and 

subjected to western blot with the indicated primary antibodies. 
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3. Zebrafish as a model to study YBX-1 protein expression and function 

 

3.1 Aim of the visit 

 

As part of my PhD degree program I spent four months abroad at the Karlsruhe 

Institute of Technology (KIT), Karlsruhe, Germany (April 2014- July 2014) under 

the supervision of Professor Nicholas S. Foulkes, one of the major expert in 

zebrafish biology.  

The aim of my visit was to study YBX-1 gene expression and function in vivo 

using zebrafish (Danio rerio) as a model organism. The use of Zebrafish present 

several benefits, such as the small size, fecundity and the optical transparency of 

its embryos. Zebrafish has become a widely used model organism because of its 

morphological and physiological similarity to mammals (Graham et al. 2007), the 

existence of many genomic tools and the amenability to genetic and chemical 

phenotype-based screening. Because of these attributes, zebrafish can largely 

contribute to drug developmental process, including target identification, disease 

modeling and toxicology. The Karlsruhe Institute of technology (KIT institute, 

Germany) has one of the biggest European fish facility (European Zebrafish 

Resource Center of Karlsruhe) therefore is one of the best place to gain 

experience on this model. 

As previously mentioned the relevance of YBX-1 in the control of cell proliferation 

is well assessed. However, the specific role played by YBX-1 in the molecular 

mechanisms regulating cell proliferation and differentiation remains undefined.  

In zebrafish, cell cycle is under the control of the light and circadian rhythms. 

Remarkably, this is also observed in established zebrafish cell lines (Dekens et 

al., 2003). I took advantage of these properties to investigate the expression 

pattern of YB-1 under light-dark conditions in epidermal cells.  

 

 

 

3.2 Introduction 

 

3.2.1 Circadian rhythmicity and timing in cell proliferation. 

Almost every aspect of plant and animal biology shows day - night rhythms. 

Rhythmicity is observed in transcriptional expression of a wide range of genes 

that regulate a variety of normal cell functions, such as cell division and 

proliferation. De-synchrony of this rhythmicity seems to be implicated in 

several pathologic conditions, including tumorigenesis and progression of 

cancer (Christos Savvidis and Michael Koutsilieris 2012). 

Central to the circadian timing system is a pacemaker that oscillates with a 

period of circa 24 hours (Idda et al. 2012). Thus, to remain synchronized with 

the day-night cycle, environmental timing signals (zeitebergs) such as light or 
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temperature, reset this pacemaker via input pathways. Importantly, clock 

output pathways subsequently convey this timing information to almost every 

aspect of physiology in the organism (Idda et al. 2012). At the core of the 

circadian clock are transcription-translation feedback loops that take 

approximately 24 hours to complete one cycle (Vatine et al 2011). (Figure 1) 

 

 
 

Figure 1. Circadian clock system. Central to the circadian timing system is a pacemaker 

that oscillates with a period of circa 24 hours (Idda et al. 2012). Thus, to remain synchronized 

with the day-night cycle, environmental timing signals (zeitebergs) such as light or 

temperature, reset this pacemaker via input pathways. Importantly, clock output pathways 

subsequently convey this timing information to almost every aspect of physiology in the 

organism (Idda et al. 2012).   

 

Within the vertebrate clock, the bHLH PAS domain transcription factors 

CLOCK and BMAL (positive elements) bind as heterodimers to E-box 

enhancer elements  (CACGTG) up-regulating the expression of negative 

elements (PERIOD and CRYPTOCHROME) that thereby down-regulate their 

own transcription.  

One of the key outputs of the clock is the timing of cell cycle progression. 

From cyanobacteria to higher vertebrates, there is evidence that the circadian 

clock gates regulatory steps in DNA synthesis and mitosis (Mori T et al. 2000). 

Circadian rhythms of cell cycle and cyclins mRNA expression have been 

reported in many vertebrate peripheral tissues included skin. (Bjarnason GA et 

al. 2000). 
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3.2.2 Zebrafish as excellent model organism to study circadian clock 

The zebrafish represents a fascinating model for studying key aspects of the 

vertebrate circadian timing system (Vatine et al. 2011). As in other 

vertebrates, most zebrafish tissues contain independent circadian clocks (so-

called peripheral clocks) (Whitmore et al.1998). While in mammals, light 

entrainment of peripheral clocks occurs indirectly via the retina and the central 

clock of the suprachiasmatic nucleus (Bailes et al.2010), in zebrafish the 

peripheral clocks are directly entrained by exposure to light (Whitmore et al. 

2000). In zebrafish organs, exposure to light directly activates the transcription 

of two clock genes per2 and cry1a in tissues and cultured cells. This is 

predicted to lead to the entrainment of the circadian clock (Mracek et al. 

2012). 
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3.3 Results 

 

3.3.1 Analysis of YBX-1 protein expression in Pac2 cells and adult Zebrafish 

fins.  

 

One limitation of the zebrafish model is the lack of high-quality primary 

antibodies to detect zebrafish proteins. Zebrafish literature is plenty of studies 

that rely on reverse transcription-PCR to measure gene-expression, although 

it is well known that gene function can also be regulated at protein level, in a 

non-negligible part.  

Because YBX-1 is evolutionarily well-conserved protein, I tested whether 

primary antibodies directed against aa 1-100 of human YBX-1 (1-100 epitope) 

were able to detect zebrafish YB-1 (zYBX-1). Figure 2 shows the alignment 

sequence of Human and Zebrafish YBX-1 aminoacids, the alignment shows 

that Human YB1 is 67% identical to Zebrafish YBX-1 protein. The region 

encompassing residues 29 to 132 of zYB-1 is 100% identical to the 

correspondent region of human YBX-1. 

 
 

Human  1    MSSEAETQQPPAAPPAAPALSAADTKPGTTGSGAGSGGPGGLTSAAPAGGDKKVIATKVL  60\ 

            MSSEAETQQPP   PAA A S +                    +AA   GDKKVIATKVL\ 

Zebraf 1    MSSEAETQQPPQ--PAADAESPS------------------SPAAAATAGDKKVIATKVL  40\ 

\ 

Query  61   GTVKWFNVRNGYGFINRNDTKEDVFVHQTAIKKNNPRKYLRSVGDGETVEFDVVEGEKGA  120\ 

            GTVKWFNVRNGYGFINRNDTKEDVFVHQTAIKKNNPRKYLRSVGDGETVEFDVVEGEKGA\ 

Sbjct  41   GTVKWFNVRNGYGFINRNDTKEDVFVHQTAIKKNNPRKYLRSVGDGETVEFDVVEGEKGA  100\ 

\ 

Query  121  EAANVTGPGGVPVQGSKYAADRNHYRRYPRRRGPPRNYQQNYQN---SESGEKNEGSESA  177\ 

            EAANVTGPGGVPVQGSKYAADRN YRRYPRRR PPR+YQ+NYQ+   +E  EK EG+ESA\ 

Sbjct  101  EAANVTGPGGVPVQGSKYAADRNRYRRYPRRRAPPRDYQENYQSDPEAEPREKREGAESA  160\ 

\ 

Query  178  PEG--QAQQRRPYR--RRRFPPYYMRRPYGRRPQYSNP--PVQGEVMEGADNQGAGEQG-  230\ 

            PEG  Q QQRRP    RRR+PPY++RR YGRRP Y+N       E  EG +NQG  +QG \ 

Sbjct  161  PEGEMQQQQRRPTYPGRRRYPPYFVRRRYGRRPPYTNSQRGEMTEGGEGEENQGGPDQGN  220\ 

\ 

Query  231  RPVRQNMYRGYRPRFRRGPPRQRQPREDGNEEDKENQGDETQGQQPPQRRYRRNFNYRRR  290\ 

            +P+RQN YRG+RP   RGP R R P  DG EEDKENQ +  Q Q+P QRRYRRNFNYRRR\ 

Sbjct  221  KPMRQNYYRGFRP--SRGPSRPR-PVRDG-EEDKENQSESGQNQEPRQRRYRRNFNYRRR  276\ 

\ 

Query  291  RPENPKPQDGKETKAADPPAENSSAPEAEQGGAE  324\ 

            RP+  KPQDGK++KAAD  A+ S+APEAEQGGA+\ 

Sbjct  277  RPQTTKPQDGKDSKAADASADKSAAPEAEQGGAD  310\ 

 

Figure 2. Alignment sequence of Human and Zebrafish YBX-1 aminoacids. The 

alignment shows that Human YB1 is 67% identical to Zebrafish YBX-1 protein.  

 

I first performed immunoblot using the human YBX-1 antibody to detect zYB-1 

protein in whole extract from adult zebrafish fins collected at different time 

after injury. An aliquot of extract from human squamous carcinoma cells 

(SCC022) was loaded as positive control. As shown in Figure 3.A specific 
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band at about 50 kDa was detected. Interestingly, YBX-1 expression appeared 

to oscillate in a time-dependent manner.   

Notably, the same band was detected with a different mouse antibody direct 

against the full length aminoacid sequence of human YBX-1 (aa 1-324) 

suggesting that the observed signal was specific (data not shown). 
 

 
 

Figure3. Analysis of YBX-1 protein expression during adult Zebrafish fin regeneration 

and in Pac 2 cells. (A)Extracts of adult zebrafish fin were collected at different time after 

injury, an aliquot of extract from human squamous carcinoma cells (SCC022) was loading as 
positive control.  Proteins were detected with specific antibodies, as indicated. Actin was used 
as loading control. Images were acquired with CHEMIDOC (Bio-Rad) and analyzed with the 
Quantity-ONE software. (B) Pac2 fibroblast cells were seeded at 60% confluency (5 × 105) in 
35-mm dishes. 24 h after seeding, cells were collected and part of cell lysates were 
fractionated to obtain cytoplasmic (cy) and nuclear (nu) fractions. Total and 
Nuclear/cytoplasmic extracts were separated by SDS-PAGE and subjected to immunoblot. 
Proteins were detected with specific antibodies, as indicated. . Images were acquired with 
CHEMIDOC (Bio-Rad) and analyzed with the Quantity-ONE software. 
 
Next, I prepared whole and nuclear/cytoplasmatic fractions of zebrafish Pac2 
fibroblasts to analyze them by immunoblot with YBX1 antibodies. Surprisingly, 
in addition to the expected 50 kDa form, a 70 KDa band of YBX-1 was 
observed and it was enriched in the nuclear compartment (Figure 3.B). 

 

 
 

3.3.2 Analysis of YBX-1 protein expression in the nuclei of adult zebrafish fin 

in Light-Dark cycle 14:10. 

 

To deeply investigate if YBX-1 protein expression is under a time-dependent 

control, I proceeded to collect samples from adult zebrafish fins kept in a 

permanent light-dark cycle 14:10 (14 h of light and 10 h of darkness) at 

different time points (zeitebergs=ZT). Nuclear/cytoplasmic extracts were 

prepared and subjected to immunoblots with YBX-1 antibodies. As shown in 

A B 
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Figure 4, right panel, I observed a peak and trough of nuclear YBX-1 protein at 

the beginning of the light phase (ZT3).  

The same experiment, performed in amputated adult fin, gave a very similar 

results suggesting that the phenomenon was not influenced by the 

regeneration process (Figure 4.A, left panel). I never observed differences of 

YBX-1 in cytoplasmic fractions (data not shown). 

 
 

 
 
 

Figure 4. Analysis of YB-1 protein expression in the nuclei of adult zebrafish fin in 
Light-Dark cycle 14:10. (A) Fins derived from adult zebrafish kept permanently in Light-Dark 
cycle 14:10 were collected at different time points (ZT). The samples were fractionated to 
obtain cytoplasmic (cy) and nuclear (nu) fractions. Nuclear extracts were separated by SDS-
PAGE and subjected to immunoblot. Proteins were detected with specific antibodies, as 
indicated. H3 was used as loading control. (B) Histograms of protein expression were 
measured using Image, and proportions normalized against the mean of H3 for each individual 
blot. The values are means of six independent measures obtained from three experiments. 

 

 

3.3.3 Analysis of YBX-1 expression in the Nuclear extract of Pac2 cells in LD 

14:10 

 

Pac2 is a zebrafish-derived fibroblast cell line widely used for in vitro studies 

on circadian clock regulation. I explored the pattern of YBX-1 expression, in 

zebrafish Pac2 fibroblasts kept in light-dark cycle (14:10) for 24 h. 24 h after 

circadian clock induction, nuclei of Pac2 cells were collected at different time 

points (ZT) and subjected to immunoblot with YBX-1 antibodies. As shown in 

Figure 5, YBX-1 nuclear levels were strongly regulated by the light-dark cycle 

with a peak of nuclear protein during the light phase and a trough during the 

dark phase showing that YBX-1 protein expression was subjected to a similar 

regulation both in vitro and in vivo. 
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Figure 5. Analysis of YBX-1 expression in the Nuclear extract of Pac2 cells in LD 14:10. 

(A) Pac2 fibroblast  cells were seeded at 60% confluency (5 × 105) in 35-mm dishes and kept 

in light-dark cycle for 24 hours to induce circadian regulation. 24 h after circadian clock 

induction, cells were collected and cell lysates were fractionated to obtain cytoplasmic (cy) and 

nuclear (nu) fractions. Nuclear extracts were separated by SDS-PAGE and subjected to 

immunoblot. Proteins were detected with specific antibodies, as indicated. . H3 was used as 

loading control. (B) Histograms of protein expression were measured using Image, and 

proportions normalized against the mean of H3 for each individual blot. The values are means 

of six independent measures obtained from three experiments. 

 

 
 

3.3.4 High resolution of YBX-1 expression in the Nuclear extract of Caudal Fin 

in LD 14:10  

 

Comparison of data showed that YBX-1 expression, in PAC2 and fin tissues, 

peaked at slightly different time points. To determine exactly the peak and 

trough of nuclear YBX-1 protein I performed a high resolution curve of YBX-1 

protein expression by collecting samples of fin tissues from adult zebrafish 

kept permanently in light-dark (14:10) conditions. 

Nuclei of adult Zebrafish fin in light-dark cycle 14:10 (14 hours of light and 10 

hours of darkness), were collected at different time points (ZT) and subjected 

to immunoblots with YB1 antibodies. Histone H3 was used as loading control. 

Figure 6 shows that the level of YBX-1 in nuclear extracts peaked after 3 

hours of light exposure, and trough after 7 hours of light exposure. 
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Figure 6. High resolution of YB1 expression in the nuclear extract of Caudal Fin in LD 

14:10. (A) Fins derived from adult zebrafish kept permanently in Light-Dark cycle 14:10 were 

collected at different time points (ZT). The samples were fractionated to obtain cytoplasmic (cy) 

and nuclear (nu) fractions. Nuclear extracts were separated by SDS-PAGE and subjected to 

immunoblot. Proteins were detected with specific antibodies, as indicated. H3 was used as loading 

control. (B) Histograms of protein expression were measured using Image J, and proportions 

normalized against the mean of H3 for each individual blot. The values are means of three 

independent measures obtained from one representative experiment and the asterisk indicates 

statistically significant value, P <0.01.  
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3.3.5 YBX-1 Immunofluorescence in Zebrafish caudal fin 

 

Next, I carried out an immune-fluorescence assay in zebrafish caudal fin 

taking two different time points, corresponding at the observed peak (ZT3) and 

trough (ZT9) of YBX-1 nuclear protein. The samples of fins were collected 

from adult zebrafish kept permanently in light-dark cycle. Incubation of fin 

samples with YB-1 antibody showed that at ZT3 YBX-1 protein was mainly 

localized into nuclear compartment while at ZT9 it was localized mostly in the 

cytoplasm (Figure 7). 

Thus, the immunofluorescence confirmed the data obtained by Western blot 

analysis thus leading to the conclusion that YBX-1 nuclear expression is clock 

regulated. 

 

 

 
 

 
Figure 7. YB-1 Immunofluorescence in Zebrafish caudal fin.  Caudal fin collected from 

adult zebrafish kept permanently in light-dark cycle 14:10 were fixed and subjected to double 

immunofluorescence using rabbit primary YB-1 antibody and Cy3-conjugated secondary 

antibodies (red). DAPI was used to stain nuclei. Images of merge (yellow) show the co-

expression of YBX-1 protein and the nuclei. 
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3.3.6 YBX-1 mRNA expression in adult caudal fins in LD cycle (14L:10D)   

Next, it was of interest to determine if clock-dependent regulation of YBX-1 

expression was regulated at transcript or protein level. Therefore, I analyzed 

the level of YBX-1 mRNA from caudal fin of adult zebrafish, permanently kept 

in light- dark cycle 14L:10D. Samples were collected at different time points 

(ZT), mRNA was purified and subjected to quantitative RT-PCR analysis using 

oligonucleotides designed to specifically amplify YBX-1 transcript mRNA. -

actin was used to normalize the samples. As shown in Figure 8, the level of 

YBX-1 mRNA fluctuates during the light-dark cycle but its behaviour did not 

reflect the observed pattern of YBX-1 protein expression thereby suggesting 

that regulation of YBX-1 expression was at protein level.  

  

 
 

 

Figure 8. RT-PCR analysis of YBX-1 mRNA expression in adult caudal fins in LD cycle 

(14L:10D). Real-time PCR was used to quantify YBX-1 mRNA expression in adult caudal fins 

in LD cycle (14L:10D). mRNA levels were normalized to -actin. The values are the means ± 

S.D. of three biological replicates. 

 

3.3.7 YBX-1 in the nuclei has a circadian oscillation in deep darkness (DD) 

with a shift of peak between CT3 and CT9 

 

To further elucidate if YBX-1 protein peak in the nuclei was light inducible, I 

performed experiments in deep darkness on adult zebrafish fin and Pac2 cells. 

For this reason, adult zebrafish caudal fins and Pac2 cells were held in deep 

darkness for 48 hours, in order to eliminate any light-related stimulus.   

After 48 hours nuclei of adult Zebrafish fin and Pac2 in deep darkness, were 

collected at different time points (CT) and subjected to immunoblots with YB1 

antibodies. H3 was used as loading control.  

As is shown in Figure 9, interestingly, nuclear YBX-1 exhibited the same 

pattern of expression shown under the light-dark cycle. This experiment 

confirmed that YBX-1 expression in the nuclei is not light-inducible but is 

dependent on the circadian clock. 
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Figure 9. Analysis of YBX-1 nuclear protein expression in deep darkness. (A) Pac2 

fibroblast cells were seeded at 60% confluency (5 × 105) in 35-mm dishes and kept in deep 

darkness for 48 hours to eliminate stimuli light related. After 48 hours, cells were collected and 

cell lysates were fractionated to obtain cytoplasmic (cy) and nuclear (nu) fractions. Nuclear 

extracts were separated by SDS-PAGE and subjected to immunoblot. Proteins were detected 

with specific antibodies, as indicated. H3 was used as loading. (B) Fins derived from adult 

zebrafish kept in deep darkness for 48 hours to eliminate stimuli light related were collected at 

different time points (CT). The samples were fractionated to obtain cytoplasmic (cy) and 

nuclear (nu) fractions. Nuclear extracts were separated by SDS-PAGE and subjected to 

immunoblot. Proteins were detected with specific antibodies, as indicated. H3 was used as 

loading control.  
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3.4 Discussion 

During my training in the laboratory of Professor Nicholas Foulkes, I had the 

opportunity to learn the use of a model organism as zebrafish.First, I 

demonstrated that YBX-1 is expressed in adult zebrafish fins and in the 

embryonic cell line (Pac2).  

Moreover, I obtained consistent evidence that YBX-1 nuclear localization and 

protein expression level is strongly regulated by the light-dark cycle with a 

maximum peak of nuclear protein at the beginning of the light phase and a 

minimum trough during the beginning of the dark phase.  

The oscillation of YBX-1 nuclear localization persists also when the fishes are 

transferred in constant darkness conditions showing that YBX-1 is regulated by 

the circadian clock. 

Finally, I observed that YBX-1 mRNA doesn’t present a clear circadian 

regulation. In addition, the nuclear form of YBX-1 shows an increased molecular 

weight consistent with post-translation modification However, this point needs to 

be further investigated. All these data taken together represent a solid starting 

point to further investigate the potential involvement of YBX-1 in regulating the 

cell time proliferation, a mechanism clock regulated. 
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3.5 Materials and Methods 
 

3.5.1 Zebrafish cell culture 
 
A subline derived from the zebrafish embryonic cell line PAC-2 (Lin, Gaiano et 
al. 1994) was propagated at 25oC in L-15 (Leibovitz) medium (Gibco BRL) 
supplemented with 15% Fetal Calf Serum (Biochrom KG), 100 units/ml 
penicillin, 100 µg/ml streptomycin and 50 µg/ml gentamycin (Gibco BRL) in an 
atmospheric CO2, non-humidified cell culture incubator. These fibroblast-like 
cells grow optimally as an adherent monolayer culture on normal tissue 
culture-treated plastic substrates (Greiner). Cells were typically subcultured 
once every week by trypsinization of the cells followed by dilution in culture 
medium at a ratio of 1:4 and then seeding in fresh culture flasks. 
 

3.5.2 Adult Fish treatment and ethical statements 
 
The zebrafish Tübingen strain were raised according to standard procedures 
in a re-circulating water system under 14 hours light and 10 hours dark cycles 
at 28°C and fed twice per day. Before each experiment adult zebrafish (6–12 
months of age) were adapted for a minimum of 3 days at a constant 28°C 
under a 14-h light: 10-h dark cycle (LD) (light intensity, 20 uW/cm2), or in 
constant darkness (DD). The caudal fins were amputated using razor blades 
following anesthesia with 0.02% MS222 (3-aminobenzoate methanesulfonic 
acid, Sigma Aldrich). In the regeneration experiments, the control fish (non-
amputated) were anesthetized and handled in the same way and at the same 
times as the amputated fish. 
. 

3.5.3 RNA extraction and reverse transcription 
 
Total RNA was extracted from t zebrafish fins by adding Trizol Reagent 
(Gibco, BRL). Addition of chloroform and subsequent centrifugation lead to 
phase separation under conditions where RNA remained water-soluble and 
proteins or DNA were partitioned in the lower, organic phase or at its interface. 
Total RNA was subsequently isolated from the aqueous phase by isopropanol 
precipitation followed by centrifugation and then rinsing the pellet using 75% 
ethanol. Reverse transcription was performed with the extracted total RNA to 
produce cDNA using Superscript III RT (Invitrogen), according to the 
manufacturer’s recommendations. 

 
3.5.4 Quantitative RT-PCR (qRT-PCR) 

 
For qRT-PCR analysis, 4μl of 1:20 diluted cDNA was pipetted in each well of a 
96well plate together with the SYBRgreen-Primer-MasterMix (Promega). qRT-
PCR was performed in an ABI StepOnePlus Real-Time RT-PCR machine 
(Applied Biosystems) with a standard temperature cycle programme, 
according to the manufacturer’s conditions. The relative levels of each mRNA 

were calculated by the 2-CT method (CT indicating the cycle number at which 
the signal reaches the threshold of detection). Relative expression levels were 
normalized using zebrafish β-actin mRNA. For each gene the RT-PCR primer 
sequences are listed as follows:  
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-actin (Forward): 5’GCCTGACGGACAGGTCAT 3’ 
 

-actin (Reverse): 5’ ACCGCAAGATTCCATACCC 3’ 
 
zYBX-1 (Forward):5’ TACCCACCATACTTCGTGCG 3’ 
 
zYBX-1 (Reverse): 5’GCGGTAGTTGAAGTTGCGAC 3’  

 
3.5.5 Protein analysis by Western blots 

For western blot analysis, whole fin protein extracts were prepared from fins of 

zebrafish adult fish or from confluent Pac2 cell monolayers 5x10 5  in 35 mm 

dishes. The extracts were prepared by direct addition of 200μl of Laemmli 

solution including a cocktail of phosphatase inhibitors (Sigma Aldrich) into an 

eppendorf where 3 amputated fins were added. For the Pac2 200μl of 

Laemmli solution was added for each 35 mm dish.including a cocktail of 

phosphatase inhibitors (Sigma Aldrich). Lysate samples were boiled for 5 min 

to denature the proteins before storage at –20°C. A miniprotean III gel system 

(BioRad) was used for all subsequent electrophoresis and transfer steps 

according to the manufacturer’s instructions. Samples were loaded on 10% 

polyacrylamide-SDS gels for electrophoresis and subsequently transferred to 

an Immobilon-P membrane (Millipore). Transferred membranes were then 

blocked for two hours at room-temperature by incubation in 1x Tris Buffer 

saline supplemented with 0, 1% Tween20 and either non-fat dry milk or BSA. 

Histone H3 and YB-1 antibodies were used at dilution 1:1000 in 1x Tris Buffer 

saline supplemented with 0,1% Tween20 and 5% BSA. Immunoreactive 

bands were visualized by using either anti-rabbit secondary antibodies 

(1:5000). Signals were then detected using the Pierce-ECL detection system 

(Thermo Scientific). 

 
3.5.6 Immunochemestry 

Adult zebrafish (6–12 months of age) were adapted for a minimum of 3 days 

at a constant 28°C under a 14-h light: 10-h dark cycle (LD) (light intensity, 20 

uW/cm2), or in constant darkness (DD). The caudal fins were amputated using 

razor blades following anesthesia with 0.02% MS222 (3-aminobenzoate 

methanesulfonic acid, Sigma Aldrich). Fins were fixed 4% PFA for 20 to 30 

minutes in 6-multiwell. After the fixation the fins were permeabilized, 

denatured (PBST) and blocked PBST+BSA .As the primary antibody we used 

the YBX1 ( Abcam ab 12148) at 1:1000 diluition. The incubation of the 

antibodies was overnight at 4°C .The next step involved repeated washing and 

blocking before the next second antibody 1.1000 was added (codice Cy-3 ) for 

1h in the dark. The antibody staining was followed by DAPI 1:10000 to 
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visualize the nuclei for 30 minutes at RT in the dark. The next day the slides 

were examined using a Confocal Microscope SPE (Leica). 

 
3.5.7 Statistical analysis. 

Unpaired t-test was performed using Microsoft Excel. All the results were 

expressed as means +/− SD. p<0.05 was considered statistically significant. 
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ABSTRACT  27 

  28 

Stearoyl-Coenzyme A desaturase 1 (SCD1) belongs to the fatty acid family of desaturases.  In 29 

lactating ruminants, the SCD1 protein is highly expressed in the mammary gland and is 30 

relevant for the fatty acid composition of milk and dairy products. Bovine mammary epithelial 31 

cells (BME-UV1), cultured in vitro, have been proposed as a model to reproduce the biology of 32 

the mammary gland. The present study was designed to investigate the responsiveness of 33 

bovine SCD1 promoter to serum, insulin, oleic acid and NFY transcription factor in BME-UV1 34 

cells. A luciferase-based reporter assay was used to monitor the transcriptional activity of the 35 

SCD1 promoter region in BME-UV1 cells treated or not with insulin and/or oleic acid. The 36 

level of endogenous SCD1 mRNA was evaluated by Real time PCR. Insulin (20 ng/mL) 37 

induced a 2.0 to 2.5-fold increase of SCD1 promoter activity. Additionally, the effect of insulin 38 

was inhibited by oleic acid, serum components, and NFY enforced expression. Serum and NFY 39 

showed no synergistic or additive effect on  SCD1 promoter activity suggesting that they 40 

repress SCD1 transcription through the same responsive element. 41 

 42 

Key words: stearoyl coenzyme A desaturase; regulation of gene expression; bovine mammary 43 

cells; fatty acids; insulin. 44 

45 
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46 

INTRODUCTION  47 

Understanding the basis of lipid homeostasis is fundamental for developing new 48 

strategies to combat obesity, diabetes and other diseases of abnormal lipid 49 

metabolism. Stearoyl CoA desaturase 1 (SCD1, also called ∆
9
-desaturase) (EC 50 

1.14.99.5) is a short-lived endoplasmic reticulum-bound enzyme that catalyzes the 51 

∆
9
-cis desaturation of saturated fatty acyl-CoA substrates (SFAs) to 52 

monounsaturated fatty acids (MUFAs), primarily palmitoyl-CoA and stearoyl-CoA 53 

into palmitoleoleyl-CoA and oleyl-CoA, respectively (1). Oleic acid, the main 54 

product of SCD1 reaction, is the predominant fatty acid of human adipose tissue 55 

triacylglycerols, associating SCD1 with the development of obesity and metabolic 56 

syndrome. Moreover, as the SFA/MUFA ratio affects membrane phospholipid 57 

composition and fluidity; it has been implicated in obesity, diabetes, neurological 58 

disease, skin disorders and cancer (2). Stearoyl CoA desaturase 1 gene homologs 59 

have been identified in a range of species, many of which express multiple isoforms, 60 

with SCD1 being the most abundant isoform in lipogenic tissues (3; 4). The SCD1 61 

gene plays an important role in converting trans-11 C18:1 vaccenic acid into cis-9, 62 

trans-11 C18:2 CLA (5) and is highly expressed in the mammary gland of lactating 63 

ruminant (6). Early after parturition, the SCD1 activity in adipose tissue decreases 64 

while increasing in mammary gland (7).  65 

Activity and expression of SCD1 have been reported to be regulated by fatty acids, 66 

although the responses appear to vary among the species. For instance, oleic acid was 67 

shown to reduce rat and bovine SCD1 promoter activity (8; 9) but had no effect on 68 
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human SCD1 mRNA synthesis (10). Promoter elements that are responsible for the 69 

PUFA repression localize with the promoter elements for SREBP-mediated 70 

regulation of the SCD gene (11). In Bos Taurus, the PUFA response region (PUFA-71 

RE, 60 bp) is essential for the control of SCD1 expression by PUFA (12). This 72 

region encompasses the binding sites for Sp1 and NFY transcription factors and the 73 

Sterol Response Element (SRE) which is the binding site for the SREBP1 protein. 74 

Recently, it has been demonstrated that SREBP1 cooperates extensively with NFY in 75 

the control of genes involved in lipid metabolism. Moreover, promoters of genes 76 

involved in lipid metabolism were preferentially occupied by the combination of 77 

SREBP1 and NFY factors while genes involved in carbohydrate metabolism were 78 

enriched among targets of SREBP1 alone (13). In the present study, we have 79 

explored the ability of oleic acid and serum to repress SCD1 promoter activity in 80 

control and insulin-stimulated BME-UV1 immortalized cells that can mimic the in 81 

vivo response of bovine mammary cells. Moreover, since oleic acid was reported to 82 

have no effect on human SCD1 mRNA synthesis (10) we performed similar 83 

experiments in MCF7 cells, a  human breast cancer cell line previously defined as a 84 

model for the study of insulin action on mammalian cell metabolism (14).  85 

86 
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 87 

MATERIALS AND METHODS 88 

Cell Culture 89 

The BME-UV1 cell line was established from primary bovine mammary epithelial 90 

cells by stable transfection with a plasmid, carrying the sequence of the simian virus 91 

40 early region mutant tsA58, encoding the thermolabile large T antigen (15). BME-92 

UV1 cells were provided to us by the Laboratory of Cell Culture-Department of 93 

Veterinary Science and Technologies for Food safety at the Veterinary Medicine 94 

Faculty (University of Milan) and cultured according to Cheli et al., 1999. Human 95 

breast cancer MCF7 cells were purchased from Cell Line Service (CLS, Germany). 96 

MCF7 cells were routinely grown into 100 cm
2
 plates (Corning Life Science, 97 

Corning, NY, USA) as a monolayer culture in Dulbecco’s modified Eagle’s medium 98 

(DMEM) (EuroClone, Pero, MI) supplemented with 10% (v/v) fetal bovine serum 99 

(FBS) (EuroClone), in humidified incubator with 5% CO2 at 37° C.   100 

Construction of SCD1_PGL3 reporter plasmid containing the bovine SCD1 101 

promoter 102 

A 600 bp genomic fragment containing the SCD1 proximal promoter region, -590 103 

from the transcription start site (+1) was amplified by PCR. The amplified region is 104 

shown in Figure 1A and contains the SP1, SRE and NFY binding sites (Figure 1A 105 

and B). Whole genomic DNA was isolated from leucocytes of cow peripheral blood 106 

and used as template for PCR using bovine SCD1-promoter specific primers: 107 

Forward 5’GCATGGTACCCCAGTGCCCATC and Reverse 108 
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5’GGTACCGCGCTGCACGGTGC. The primers included a 8 extra-bases (indicated by 109 

small caps) to generate protected XhoI or KpnI restriction sites. The PCR conditions 110 

are given as follows: 94°C for 30 s, 40 cycles of 57°C for 1 min and a final extension 111 

step at 72°C for 1 min. The PCR fragment was gel purified and appropriately 112 

digested with XhoI or KpnI restriction enzyme (Roche diagnostics, MI, Italy) to 113 

produce cohesive ends. After a step of purification, the digested DNA insert was 114 

directionally cloned into the promoter-less luciferase reporter vector, pGL3-Basic 115 

(Promega, Madison USA), using XhoI and KpnI cloning sites. Ligation reaction was 116 

set up at a vector to insert ratio of 1:5, using 50 ng of pGL3-Basic vector. T4 DNA 117 

ligase and 1X ligase buffer were used according to manufacturer’s instructions. 118 

Positive clones were first selected for the presence of the XhoI and KpnI 600 bp 119 

restriction fragment, by agarose gel electrophoresis, and then sequenced.   120 

The 2.4 Kb fragment containing the p21WAF promoter was retrieved from the 121 

p21WAF-CAT plasmid (16) and ligated into the HindIII site of pGL3-basic Vector 122 

(Promega) to obtain the p21WAF-Luciferase reporter construct. 123 

cDNAs encoding human NFYA, NFYB and NFYC proteins cloned in pBK-CMV  124 

expression vector (Stratagene) were provided to us by Dr. Maria Morasso (NIH, 125 

Bethesda). 126 

Transient transfections and luciferase assay  127 

MCF-7 or BME-UV1 cells were counted and seeded in 6-well plates at a density of 128 

2.5X10
5
 cells/well in 4 mL of complete medium. For luciferase assay, each 129 

Page 6 of 33

URL: http://mc.manuscriptcentral.com/labt

Animal Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

7 

 

experimental point was transfected with 1 µg of PGL plasmid (SCD1_PGL3, 130 

p21WAF_PGL3 or PGL3 basic vector). Briefly plasmid DNA was diluted in 250 µl 131 

of DMEM serum free and mixed with 2,5 µl of Lipofectamine 2000 (Life 132 

Technologies, CA, USA) in 250 µl DMEM serum free. Transfection master mixtures 133 

were incubated at room-temperature for 20 min, prior to drop-wise addition to 134 

MCF7/BME-UV1 cells. Complexes were added to the cells containing 1 mL of 135 

DMEM and 0, 5 or 10% FBS/FCS). After 24 h transfection, the medium was 136 

removed, cells were washed twice with PBS and then lysed using the Lysis Buffer 137 

(Promega) according to manufacturer’s instructions. Firefly luciferase activity in cell 138 

lysates was measured using Dual Luciferase Assay kit (Promega), according to the 139 

manufacturer’s instructions. Results were normalized against protein concentration 140 

(Bradford Assay, Biorad).  141 

To evaluate the effect of NFY transcription factor, MCF7 cells were co-transfected 142 

with 0.5 γ of SCD1_PGL3 basic construct and 0.5 γ of each NFY subunit (NFY-A, 143 

NFY-B, NFY-C). Four hours after transfection, the cells were incubated with 0%, 144 

5% or 10% FBS, for 24 h. The promoter activity was evaluated by Luciferase assay. 145 

To evaluate the effect of insulin on SCD1 promoter activity, insulin was added to 146 

MCF7 and BME-UV1 cells, at a concentration of 20 ng/mL (3.4 10
-9

 M), 4 h after 147 

transfection. Physiologic concentrations of insulin range between 10
-8

 and 10
-11

 (14) 148 

therefore treatment with 3.4 10
-9

 M  insulin is expected to induce a physiological 149 

response in mammalian cells. 150 
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  Cells were then incubated for 24 hours. To evaluate the promoter response to 151 

MUFA, oleic acid (> 99% purity, Calbiochem) was added to a concentration of 30 152 

and 50 µM according to a previously published manuscript (17).  153 

 Immunoblot 154 

Immunoblots (IB) was performed as previously described (18). NF-YA (G2, sc-155 

17753) and NF-YB (FL207, sc13045) antibodies (Santa Cruz Biotechnology Inc.)  156 

were used to specifically detect expression of NFYA or B subunits and used at 1:200 157 

dilution. The anti-GAPDH (6C5) was purchased from Santa Cruz (Biotechnology 158 

Inc.). 159 

mRNA quantification by qPCR 160 

SCD1 specific transcript was amplified by quantitative PCR. The primers designed 161 

for qPCR reaction are: Forward TCCGACCTAAGAGCCGAGAA and Reverse 162 

AGCACAACAACAGGACACCA (NCBI Reference Sequence: NM_173959.4, from 163 

751 to 823, amplified fragment 72 bp). Total RNA was extracted from BME-UV1 164 

cells maintained in culture with FCS 0% or 10%, with or without insulin (20 ng/mL) 165 

(Sigma-Aldrich, St. Louis, MO) using Cells to Ct
TM

 kit (Ambion, Life 166 

Technologies), according to the manufacturer’s instructions. To evaluate the 167 

response of SCD1 endogenous gene in BME-UV1 cells to MUFA, oleic acid > 99% 168 

purity (Calbiochem, Millipore, Germany) was added to a concentration of 30 and 50 169 

µM. 170 

For PCR analysis total RNA was isolated using the RNA Extraction Kit  from 171 

Qiagen (Hilden, Germany) according to the manufacturer’s instructions. RNA (2-172 
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5µg) was treated with DNAse I (Promega, Madison USA) and used to generate 173 

reverse transcribed cDNA using SuperScript III (Life Technologies, CA, USA) and 174 

random examers in 20 µl of total reaction volume. All samples in each experiment 175 

were reverse transcribed at the same time and the resulting cDNA diluted 1:5 in 176 

nuclease-free water and stored in aliquots at –80°C until used.  177 

Real Time PCR with SYBR green detection was performed with a 7500 RT-PCR 178 

Thermo Cycler (Applied Biosystem, Foster City, USA). The thermal cycling 179 

conditions were composed of 50ºC for 2 min followed by an initial denaturation step 180 

at 95ºC for 10 min, 45 cycles at 95ºC for 30s, 60ºC for 30s and 72ºC for 30s. For the 181 

qPCR the relative quantification in gene expression was determined using the 2
-∆∆Ct

 182 

method (19). As previously suggested, Eukaryotic translation initiation factor 3 183 

subunit K (EIF3K) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were 184 

used as an internal controls to normalize all data (20). After normalization, the data 185 

were presented as fold change relative to the control sample. Appropriate no-RT and 186 

non-template controls were included in each 96-well PCR reaction and dissociation 187 

analysis was performed at the end of each run to confirm the specificity of the 188 

reaction.  189 

Statistical analysis 190 

All experiments were performed in triplicate and repeated at least two times. 191 

Quantitative data were presented as mean ± standard deviation (SD). Comparison 192 

between data was analyzed using t-tests. Significant differences were accepted 193 

when P values is less than 0.05 194 

195 
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RESULTS  196 

 197 

The effect of Fetal Bovine Serum and Insulin on SCD1 promoter activity  198 

The sequence of full length SCD1 promoter in Bos Taurus (1880 base pairs) is 199 

annotated in the (EMBL BANK) with the accession number AY241932 while a 200 

partial promoter region of Bubalus bubalis SCD1 is included in the ENA database 201 

(EMBL gene BANK) with the accession number FM876222. Comparison of the 202 

SCD1 proximal promoter region of several mammalian species, using the TFBIND 203 

and the TRANSFAC (ver.3.4) software, reveals high homology. The SCD1 proximal 204 

promoter sequences of Bos Taurus and Bubalus bubalis share 97% of identity. Figure 205 

1a shows the PUFA-responsive SCD1 promoter region encompassing the perfectly 206 

conserved binding sites for Sp1, the SREBP-1c and NF-Y transcription factors, as 207 

previously described (8).   208 

To evaluate bovine SCD1 promoter activity we generated the SCD1_PGL3 209 

luciferase reporter construct. The bovine SCD1 promoter region including the 210 

PUFA-RE was PCR amplified from genomic cow DNA and appropriate primers (see 211 

Materials and Methods). The 600 bp amplified fragment was cloned upstream of the 212 

luciferase gene in the PGL3 promoter-less vector (Promega) to generate the 213 

SCD1_PGL3 reporter construct. 214 

Cell culture conditions can have a profound impact on intracellular signaling cascade 215 

and may be a fondamental source of variability accounting, at least in part, for the 216 

conflicting results in the SCD1 litterature. For instance, oleic acid was reported to 217 
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reduce rat and bovine SCD1 promoter activity (8; 9) while having no effect on 218 

human SCD1 mRNA synthesis (10). To determine the extent to which serum affects 219 

SCD1 promoter activity, MCF7 cells were grown in serum-free or serum-220 

supplemented medium (5-10% FBS) and transiently transfected with the 221 

SCD1_PGL3 construct or the p21WAF_PGL3 plasmid, containing a serum-222 

independent promoter (our previous observations). The promoter-less pGL3 basic 223 

vector was used to evaluate the background signal. At 24 hrs after transfection, cells 224 

were collected, whole cell extracts were prepared and subjected to luciferase assay. 225 

As shown in Fig. 2a, in presence of serum, the p21WAF promoter activity was 226 

unaffected while the SCD1 promoter activity was significantly reduced (p< 0.02). In 227 

10% FBS the SCD1 promoter activity was about 4.3 folds lower than in serum-free 228 

medium, with a residual activity ranging between 15 and 25 %. The background 229 

activity of pGL3 basic construct was negligible in both serum conditions (4.3 +/- 1.5 230 

RLU, arbitrary units of luciferase activity).  231 

Next, we monitored the effect of insulin on SCD1 promoter activity. The 232 

experiments were performed in serum-free condition or 10% serum as this is the 233 

most commonly used condition for the growth of mammalian cell lines. Insulin was 234 

added to the medium at the concentration of 20 ng/mL. In serum-free medium, 235 

insulin treatment caused a 2.5-fold induction of the SCD1 promoter reporter (Fig. 236 

2b). After FBS-supplementation, the SCD1 promoter basal activity was reduced and 237 

insulin treatment was unable to evoke any response (Fig. 2b). The results 238 

demonstrate that serum components exert a strong repression on the SCD1 promoter 239 

and that insulin appears to be unable to overcome this repression.  240 
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Role of NFY transcription factor in the regulation of SCD1 promoter activity. 241 

NFY factor has been suggested to be a PUFA-specific transcription factor for SCD1 242 

gene repression (11). The transcription factor NFY is a hetero-trimeric protein, 243 

composed of three subunits NFY-A, NFY-B and NFY-C. NF-YB and NF-YC must 244 

interact and dimerize for association with NF-YA and consequent binding to 245 

CCAAT motifs in the promoter regions of a variety of genes. NFY interacts with the 246 

Sterol Regulatory Element-Binding Proteins (SREBPs). SREBPs, indeed, are weak 247 

transcriptional activators on their own and interact with their target promoters in 248 

cooperation with additional regulators, most commonly including one or both NFY 249 

and SP1 transcription factors.  To investigate the effect of NFY enforced expression 250 

on SCD1 promoter activity, we transiently transfected the SCD1_PGL3 reporter 251 

construct into MCF7 cells along with an equal amount of each plasmid encoding 252 

NFY subunit A, B or C. Four hours after transfection, the culture medium was 253 

replaced and cells were maintained in serum-free, 5% or 10% FBS-supplemented 254 

medium for 24 h.  The expression of transfected NFY subunit A and B was 255 

monitored by immunoblot analysis using NFY specific antibodies (Figure 3A). The 256 

SCD1_PGL3 activity was then evaluated by Luciferase assay.  As expected, in 257 

serum-supplemented media the basal activity of SCD1 promoter was lower than in 258 

serum-free medium  (Fig. 3A). However, both in absence and 5% serum NFY 259 

expression causes a significant decline of luciferase activity (p< 0.02) indicating that 260 

NFY is a transcriptional repressor of SCD1 gene. However, in 10% serum the 261 

residual activity of SCD1 promoter was 50% of the control and NFY caused only a 262 
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15 % reduction thereby suggesting that serum and NFY compromise SCD1 promoter 263 

activity by acting at the same regulatory element.  264 

 265 

Regulation of SCD1 promoter activity in bovine mammalian cells  266 

The regulation of SCD1 expression in bovine mammary cells affects milk yield and 267 

fatty acid profile (21). SCD1 is induced by insulin (22). It was interesting to study 268 

the effect of insulin on SCD1 gene expression in BME-UV1 cells, immortalized, but 269 

not transformed, bovine mammary cells that closely mimic the in vivo mammary 270 

epithelial cells. The promoter reporter construct was transiently transfected into 271 

BME-UV1 grown in serum-free, 5% or 10% FCS with or without insulin (20 272 

ng/mL). BME-UV1 cells were transiently transfected with SCD1_PGL3 construct 273 

and after 24 hours whole cell extracts were prepared and subjected to the luciferase 274 

assay. According to what observed in MCF7 cells, serum-addition repressed SCD1 275 

activity in bovine mammary cells (Fig. 4A). Again, we observed a 2.5 fold promoter 276 

activation by insulin only in serum-starved cells showing that the repressive activity 277 

of serum is dominant over the inductive effect of insulin. To corroborate these data, 278 

we decided to examine the level of SCD1 endogenous mRNA in BME-UV1 cells by 279 

quantitative Real Time PCR. Cells were grown in serum-free or 10% FCS medium 280 

and treated or not with insulin (20 ng/mL), for 24 hours. Total RNA was isolated and 281 

subjected to quantitative PCR using primers to specifically amplify bovine SCD1 282 

mRNA. The level of SCD1 specific transcript was normalized against the 18S 283 

ribosomal RNA and expressed as relative amount respect to the sample obtained in 284 

Page 13 of 33

URL: http://mc.manuscriptcentral.com/labt

Animal Biotechnology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

14 

 

serum and insulin-free medium. As shown in Fig. 4B, we confirmed that insulin 285 

treatment enhanced SCD1 mRNA expression level only in serum-deprived cells.  286 

Regulation of SCD1 promoter by oleic acid is still controversial. Oleic acids 287 

concentrations up to 100 µM were previously demonstrated do not affect MCF7 cell 288 

proliferation and viability (23). However, we performed preliminary test by treating 289 

MCF7 and BME-UV1 with increasing amount of oleic acid (15, 30, 50, 80 and 100 290 

µM) for 24 and 48 hours. In each experimental point the cells behave healthy. 291 

Moreover, cells lysates were analyzed by immunoblot with antibodies against 292 

Caspase3 and PARP and we did not detect signs of apoptosis neither in terms of 293 

Caspase 3 induction nor Poli ADP-ribose polymerase cleavage.  294 

 (data not shown).  To check the effect of oleic acid in the control of bovine SCD1 295 

promoter we transiently transfected BME-UV1 cells with the SCD1 promoter-296 

luciferase reporter in serum-free medium supplemented or not with 30 or 50 µM 297 

oleic acid.   298 

The combined effect of insulin and oleic acid was checked by adding insulin at a 299 

concentration of 20 ng/mL in cells treated or not with oleic acid. 24 hours after 300 

transfection, whole cell extracts were prepared and subjected to the luciferase assay. 301 

As shown in Fig. 5A, oleic acid alone did not significantly changed the basal activity 302 

of SCD1 promoter which was instead efficiently activated by insulin. Interestingly, 303 

insulin-dependent activation was almost completely abolished by oleic acid addition 304 

to the culture medium showing that, similar to serum, the repressive activity of oleic 305 

acid overrides the inductive effect of insulin. To substantiate these data, we decided 306 

to examine the level of SCD1 endogenous mRNA in BME-UV1 cells by quantitative 307 
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Real Time PCR. Cells were grown in serum-free medium supplemented or not with 308 

30 or 50 µM oleic acid for 24 hours.  The combined effect of insulin and oleic acid 309 

was checked by adding insulin at a concentration of 20 ng/mL. Total RNA was 310 

isolated and subjected to quantitative PCR using primers to specifically amplify 311 

bovine SCD1 mRNA. The level of SCD1 specific transcript was normalized against 312 

the EIF3K and GAPDH RNA and expressed as relative amount respect to the sample 313 

obtained in oleic acid and insulin-free medium. As shown in Fig. 5B, we confirmed 314 

the induction of SCD1 endogenous gene transcription by insulin which was 315 

completely suppressed by oleic acid.  316 

317 
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 318 

DISCUSSION  319 

Alignment of the highly conserved region of bovine SCD1 promoter region shows 320 

the expected high homology of the putative PUFA-RE between different farm animal 321 

species. This region is known to be involved in the response of SCD promoter to 322 

insulin, fatty acids and sterols (24). The PUFA-RE contains binding sites for 323 

SREBP1, NFY and SP1 transcription factors. Genome-wide analysis of promoter co-324 

occupancy, in human liver cells, have recently shown that SREBP1 cooperates 325 

extensively with NFY and SP1 throughout the genome, thereby suggesting that the 326 

regulatory circuitry among SREBP, NFY and SP1 is highly interconnected. 327 

Concerning the metabolic pathways, combination of all three factors was reported to 328 

be involved in the control of cholesterol biosynthesis and aminoacid activation while 329 

the combination of SREBP1 and NFY alone was shown to regulate lipid metabolism 330 

and RNA processing (13).  331 

The expression of the SCD l gene is under complex control mechanisms such as 332 

hormones and, possibly, intermediates of carbohydrate and fat metabolism therefore 333 

it is difficult to dissect all the agents that regulate SCD1 gene transcription by in vivo 334 

models. The aim of this study was to investigate the responsiveness of bovine SCD1 335 

promoter to insulin, oleic acid and NFY in BME-UV1 cells, a potential in vitro 336 

model for studying biotransformation in bovine mammary gland.  337 

In the mammary gland of ruminants, SCD1 is known to be responsible for the 338 

production of about 63-97% of c9t11 CLA coming from vaccenic acid as estimated 339 

using either direct (13C-labelled fatty acids) or indirect methods (inhibition of SCD 340 
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by sterculic acid or duodenal and milk FA flows) (25). SCD1 activity can be 341 

measured by comparing the product/substrate ratios of certain fatty acids. There are 342 

four main products of SCD1 activity in the mammary gland of ruminants: c9C14:1, 343 

c9C16:1, c9C18:1 and CLA, which are produced from C14:0, C16:0, C18:0 and 344 

trans11 C18:1, respectively. According to Lock and Garnsworthy (26), the best 345 

indicator of SCD1 activity is the c9C14:1/C14:0 ratio because all of the C14:0 in 346 

milk fat is produced via de novo synthesis in the mammary gland; consequently, 347 

desaturation is the only source of C14:1. Increasing c9C14:1/C14:0 ratio values 348 

would indicate an increase of SCD1 activity. 349 

The regulation of SCD1 by dietary factors has been largely investigated in rodents 350 

(11), while in ruminants the results are conflicting. Ahnadi et al. (27) and Harvatine 351 

and Bauman (28) found a depression of mammary SCD1 mRNA abundance when 352 

lactating cows were fed protected PUFA. Researches effected on goats showed that 353 

the supplementation of sunflower seed oil (29) and linseed oil (30) did not affect 354 

both SCD1 expression and/or activity in maize silage-based diets while the same 355 

supplementation to diets based on grass hay decreased only the SCD1 activity (31). 356 

Similar results have been reported supplementing soya beans to lucerne hay-based 357 

diets (32). Finally, supplementing grass hay-based diets with formaldehyde-treated 358 

linseed decreased mammary SCD1 mRNA without effect on the SCD1 activity (32). 359 

Tudisco et al (33) reported higher SCD1 expression  in the somatic cells of milk 360 

yielded from goats bred according either organic system than those bred in stable. 361 

The authors justify the results for the a higher amount of both C18:2 and C18:3 362 
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ingested by organic group than the stable group, as registered in previous researches 363 

(34; 35) thus probably resulting in an up-regulation of the SCD expression.  364 

Bernard et al. (36) suggest to evaluate the importance of interactions between the 365 

composition of the basal diet and lipid supplement with the implication that specific 366 

PUFA escaping metabolism in the rumen or specific biohydrogenation intermediates 367 

may inhibit SCD1 activity via transcriptional or post- transcriptional regulatory 368 

mechanisms. 369 

More recently, Tudisco et al (37) reported that the grazing season as well as lactation 370 

stage can affect the SCD1 mRNA abundance determined from milk somatic cells 371 

with values that progressively decreased from April until June, increased in July  and 372 

decreased again in August.  373 

In keeping with previous findings (38), we found that insulin treatment induces a 374 

significant increase of  SCD 1 gene promoter activity in BME-UV1 cells, providing 375 

further evidence of its pro-lipogenic role. However, attention must be paid to the 376 

evaluation of SCD1 promoter regulation in serum-supplemented cell culture as the 377 

repressive effect of serum on SCD1 promoter activity overcomes induction by 378 

insulin and this was consistently shown both in human MCF7 and bovine BME-UV1 379 

cells. Remarkably, oleic acid was also able to repress SCD1 promoter activation only 380 

in insulin treated cells thereby providing a possible explanation of the controversial 381 

literature about the inhibitory effect of oleic on SCD1 expression (11). We confirmed 382 

our data on SCD1 endogenous transcription of BME-UV1 cells, thereby 383 

demonstrating that our reporter system truly reflects the response of the endogenous 384 

SCD1 gene promoter and can be a useful tool to investigate the modulation of SCD1 385 
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promoter activity by nutrients and extracellular stimuli. Finally, our study provides 386 

evidences that NFY enforced expression represses SCD1 promoter activity. It has to 387 

be mentioned that Tabor and coworkers (22) reported that NFY transcription factor is 388 

a SCD1 transcriptional activator in adipocytes; our data are in contrast with Tabor 389 

conclusion and this might depend on the specific cell type and growing condition 390 

used. However, whether NFY works in cooperation or not with other transcription 391 

factors, deserves more attention and will be the subject of further investigations.  392 

393 
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 515 

Legends to figures 516 

Figura 1. The SCD1 gene promoter. (A) Sequence alignment of  the PUFA-RE  517 

sequence in the SCD1 proximal promoter region underlined the sequences 518 

corresponding to the Sp1 protein binding site, the Sterol Responsive Element and the 519 

NF-Y/NFI consensus. (B) The SCD1 proximal promoter region. The primers used 520 

for PCR and subsequent cloning are indicated in italic. Underlined are highlighted 521 

the sequences corresponding to the Sp1 protein binding site, the Sterol Responsive 522 

Element and the NF-Y/NFI consensus. The transcription start site (+1) is indicated  523 

in capital.  524 

Figure 2. Effect of FBS on SCD1 promoter activity. (A) The SCD1_PGL3 or 525 

p21WAF_PGL3 promoter constructs were transfected into MCF7 cells and treated 526 

with different concentrations of serum (0%, 5%,10%). After 24 h the luciferase assay 527 

was performed. The p21WAF_PGL3 promoter, was used as a serum independent 528 

control.  The basal activity of the promoters at 0% FBS was fixed as 100%.  Each 529 

experimental point was done in triplicate and the results are presented as the mean of 530 

three biological replicates. (B) The SCD1_PGL3 promoter construct was transfected 531 

into MCF7 cells grown in serum-free or 10% Fetal Bovine Serum. Insulin was added 532 

at a concentration of 20 ng/ml. After 24 hr the luciferase assay was performed. The 533 

basal activity of the promoters at 0% FBS was fixed as 100%.  Each experimental 534 

point was done in triplicate and the results are presented as the mean of three 535 

biological replicates. 536 

 537 
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Fig.3 Effect of NFY transcription factor and on SCD1 promoter activity into 538 

MCF7 cells.  539 

MCF7 cells were co-trasfected with 0.5 µg of SCD-1-PGL3 construct along with 0.5 540 

µg of each plasmid encoding NFY-A, NFY-B and NFY-C subunits. Cells  were grow 541 

in serum-free medium or media supplemented with 5 or 10%  FBS  for 24 hrs. (A) 542 

Expression of transfected NFYA and NFYB protein was evaluated by immunoblot 543 

analysis with specific antibodies.  (B) Promoter activity was evaluated by luciferase 544 

assay. Each experimental point was done in triplicate and the results are presented as 545 

the mean of three biological replicates.  546 

Figure 4. Effect of serum and Insulin on SCD1 promoter activity. (A) 547 

SCD1_PGL3 promoter construct was transfected into BME-UV1 cells treated with 548 

the indicated concentrations of serum (0%, 5%, 10%) with or without  insulin (20 549 

ng/mL), as indicated. After 24 hr, the promoter activity was evaluated by luciferase 550 

assay.  Each experimental point was done in triplicate and the results are presented as 551 

the mean of three biological replicates.  552 

(B) BME-UV1 cells were treated with the indicated concentrations of serum (0%, 553 

10%) with or without insulin (20 ng/mL), for 24 h. The SCD1 specific transcript was 554 

quantified by Real Time PCR and expressed as the relative amount respect to the 555 

level expressed in cells grown in serum and insulin-free medium. The results are 556 

presented as the mean of three experimental replicates 557 

 558 
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Figure 5.  Effect of insulin and oleic acid on SCD1 promoter activity 559 

(A) SCD1_PGL3 promoter construct was transfected into BME-UV1 cells cultured 560 

in serum-free medium with or without  insulin (20 ng/mL), as indicated. Oleic acid 561 

(30 and 50 µM) was supplemented to the medium as indicated. After 24 hr, the 562 

promoter activity was evaluated by luciferase assay.  Each experimental point was 563 

done in triplicate and the results are presented as the mean of three biological 564 

replicates.  565 

(B) BME-UV1 cells were treated as indicated in (A) for 24 h. The SCD1 specific 566 

transcript was quantified by Real Time PCR and expressed as the relative amount 567 

respect to the level expressed in cells grown in serum-free medium without insulin 568 

and oleic acid. The results are presented as the mean of three experimental replicates. 569 
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The SCD1 gene promoter. (A) Sequence alignment of  the PUFA-RE  sequence in the SCD1 proximal 
promoter region underlined the sequences corresponding to the Sp1 protein binding site, the Sterol 

Responsive Element and the NF-Y/NFI consensus. (B) The SCD1 proximal promoter region. The primers 

used for PCR and subsequent cloning are indicated in italic. Underlined are highlighted the sequences 
corresponding to the Sp1 protein binding site, the Sterol Responsive Element and the NF-Y/NFI consensus. 

The transcription start site (+1) is indicated  in capital.  
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Effect of FBS on SCD1 promoter activity. (A) The SCD1_PGL3 or p21WAF_PGL3 promoter constructs were 
transfected into MCF7 cells and treated with different concentrations of serum (0%, 5%,10%). After 24 h 
the luciferase assay was performed. The p21WAF_PGL3 promoter, was used as a serum independent 

control.  The basal activity of the promoters at 0% FBS was fixed as 100%.  Each experimental point was 
done in triplicate and the results are presented as the mean of three biological replicates. (B) The 

SCD1_PGL3 promoter construct was transfected into MCF7 cells grown in serum-free or 10% Fetal Bovine 
Serum. Insulin was added at a concentration of 20 ng/ml. After 24 hr the luciferase assay was performed. 
The basal activity of the promoters at 0% FBS was fixed as 100%.  Each experimental point was done in 

triplicate and the results are presented as the mean of three biological replicates.  
190x275mm (96 x 96 DPI)  
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Effect of NFY transcription factor and on SCD1 promoter activity into MCF7 cells.  
MCF7 cells were co-trasfected with 0.5 µg of SCD-1-PGL3 construct along with 0.5 µg of each plasmid 

encoding NFY-A, NFY-B and NFY-C subunits. Cells  were grow in serum-free medium or media supplemented 

with 5 or 10%  FBS  for 24 hrs. (A) Expression of transfected NFYA and NFYB protein was evaluated by 
immunoblot analysis with specific antibodies.  (B) Promoter activity was evaluated by luciferase assay. Each 

experimental point was done in triplicate and the results are presented as the mean of three biological 
replicates.  
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Effect of serum and Insulin on SCD1 promoter activity. (A) SCD1_PGL3 promoter construct was transfected 
into BME-UV1 cells treated with the indicated concentrations of serum (0%, 5%, 10%) with or 

without  insulin (20 ng/mL), as indicated. After 24 hr, the promoter activity was evaluated by luciferase 

assay.  Each experimental point was done in triplicate and the results are presented as the mean of three 
biological replicates.  
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Effect of insulin and oleic acid on SCD1 promoter activity  
(A) SCD1_PGL3 promoter construct was transfected into BME-UV1 cells cultured in serum-free medium with 
or without  insulin (20 ng/mL), as indicated. Oleic acid (30 and 50 µM) was supplemented to the medium as 

indicated. After 24 hr, the promoter activity was evaluated by luciferase assay.  Each experimental point 
was done in triplicate and the results are presented as the mean of three biological replicates.  

(B) BME-UV1 cells were treated as indicated in (A) for 24 h. The SCD1 specific transcript was quantified by 
Real Time PCR and expressed as the relative amount respect to the level expressed in cells grown in serum-
free medium without insulin and oleic acid. The results are presented as the mean of three experimental 

replicates.  
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Abstract  25 

Y-box binding protein 1 (YBX-1 or YB-1) is an oncoprotein that promotes replicative immortality, 26 

tumor cell invasion and metastasis. A change in YB-1 abundance or nuclear localization is 27 

characteristic of malignant cell growth. YB-1 interacts with Np63 a master regulator of 28 

epidermal morphogenesis. Here, we report that Np63 reduces YB-1 protein turnover and induces 29 

the accumulation of polyubiquitinated YB-1 into the nucleus. We show that Np63 and YB-1 are 30 

highly expressed in proliferating keratinocytes and are both down-regulated under differentiating 31 

conditions. This suggests that the control of YB-1 protein stability by Np63 contributes to the 32 

proliferative potential of basal keratinocytes.  33 

 34 



Highlights 

 Np63expression protects full length YB-1 from specific endoproteolysis. 

 Np63 induces the accumulation of polyubiquitinated YB-1 into the nucleus. 

 YB-1 and Np63 sustains the proliferative potential of basal keratinocytes. 
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Introduction 1 

Y Box Binding protein 1 (YBX-1 also known as YB-1) is a transcription/translation factor involved 2 

in a wide variety of cellular functions including cell proliferation and migration, DNA repair, 3 

multidrug resistance and stress response to extracellular signals (1; 2; 3). In clinical studies, YB-1 is 4 

associated with tumor progression, chemoresistance and poor prognosis in ovarian cancer (4), 5 

glioblastoma (5), melanoma (6) and non small cell lung cancer (7).  6 

In physiological conditions, YB-1 is predominantly cytoplasmic and it appears to localize in the 7 

nucleus only at certain steps of the cell cycle (8). Cytokines (9), cytotoxic agents (10) and stimuli 8 

exerted by hyperthermia (11) and hypoxia (12) alter YB-1 cytoplasmic localization to a nuclear 9 

preponderance. YB-1 phosphorylation at Serine 102 in response to MAPK and PI3K/AKT 10 

signaling, also promotes YB-1 translocation in the nucleus (6) where it activates pro-proliferative 11 

genes such as cyclins, DNA pol PCNAand PIK3CA (8; 13; 14).  12 

The plethora of functions fulfilled by YB-1 requires its sub-cellular shuttling. Specific protein 13 

domains, denoted nuclear localization (NLS) and cytoplasmic retention (CRS) signals, coordinate 14 

YB-1 multifunctional shuttling and tasking (15).  15 

Changes in the abundance of YB-1 in the cell or YB-1 translocation from the cytoplasm to the 16 

nucleus is characteristic of malignant cell growth. The mechanisms governing YB-1 protein 17 

localization and stability are still largely unknown. YB-1 was reported to be fully degraded by 26S 18 

proteasome or endoproteolitically cleaved  by the 20S proteasome. YB-1 limited proteolysis 19 

releases YB-1 fragments that localize to the nucleus and play pro-survival functions ( 3; 16 ). 20 

We have previously identified YB-1 as a Np63 molecular partner (17). Np63 is encoded by 21 

the TP63 locus, the ancestral gene of the p53 gene family (17). By alternative promoters usage, the 22 

TP63 locus gives rise to multiple isoforms that can be placed in two categories: TA isoforms with 23 

an acidic transactivation domain and N isoforms that lack this domain. Alternative splicing at the 24 

carboxy-terminal (C-terminal) generates at least three p63 variants (,  and ) in each class (18).  25 

*Manuscript text
Click here to view linked References
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Np63 is a critical pro-proliferative factor. Itis essential for morphogenesis of organs/tissues 26 

developing by epithelial-mesenchimal interactions such as the epidermis, teeth, hair and glands 27 

(19). In adults, Np63 is robustly expressed in progenitor cells within the basal layer of stratified 28 

epithelia, such as the skin, breast and prostate where it is required for both the proliferative and 29 

differentiation potential of developmentally mature cells (20).  30 

Recently, we have demonstrated that YB-1 silencing affects Np63 expression and viability of 31 

human immortalized keratinocytes (21). Here, we show evidence that Np63 controls YB-1 32 

protein stability suggesting that Np63/YB-1 cross-talk is relevant for survival of basal 33 

keratinocytes in stratified epithelia. 34 

35 
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Materials and Methods 36 

Plasmids  37 

cDNA encoding human Np63 was previously described (1). cDNA encoding human Ubi-HA 38 

were provided by Dr. V Orsini. 39 

 40 

Cell culture 41 

MDA-MB231 cells were derived from metastatic breast carcinoma and A431 cells were established 42 

from an epidermoid carcinoma of the vulva. Cutaneous squamous carcinoma cells SCC011 were 43 

previously described (1) and cultured in RPMI supplemented with 10% fetal bovine serum at 37°C 44 

and 5% CO2 (1). A431, HaCaT and MDA-MB231 were purchased from Cell Line Service (CLS, 45 

Germany) and cultured at 37°C and 5% CO2. A431 and HaCaT cells were maintained in DMEM 46 

supplemented with 10% FBS. MDA-MB231 cells were maintained in DMEM supplemented with 47 

5% FBS.  NHEK cells were obtained from PromoCell (Heidelberg; Germany) and cultured M2 48 

medium under the manufacturer’s recommendations. 49 

For differentiation, NHEK (2.3 × 10
5
) cells, seeded at 60% confluence in 60 mm dishes were 50 

cultured for the indicated days in 1.5 mM Ca
2+

. For HaCaT differentiation, cells (2.5 × 10
5
) were 51 

seeded in 35 mm dishes and grown until 80% confluence. The medium was then replaced with 52 

DMEM without FBS and 2 mM calcium. 53 

 54 

Transient transfection 55 

Lipofections were performed with Lipofectammine 2000 (Invitrogen), according to the 56 

manufacturer’s recommendations. 57 

YB1 transient silencing was carried out with RIBOXX (IBONI YB-1siRNA pool) and RNAiMAX 58 

reagent (Invitrogen), according to the manufacturer’s recommendations. Briefly, cells were seeded 59 
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at 60% confluence (1.5 × 10
6
) in 100-mm dishes and transiently silenced with IBONI YB1-siRNA 60 

at 20 nm final concentration.  61 

YB-1 guide sequences: UUUAUCUUCUUCAUUGCCGCCCCC; 62 

UUAUUCUUCUUAUGGCAGCCCCC; UUCAACAACAUCAAACUCCCCC; 63 

UCAUAUUUCUUCUUGUUGGCCCCC.  64 

Np63 transient silencing was carried out with RIBOXX  (IBONI p63-siRNA pool) at 20 nm final 65 

concentration and RNAiMAX reagent (Invitrogen).  66 

p63 guide sequences: UUAAACAAUACUCAAUGCCCCC; UUAACAUUCAAUAUCCCACCCCC; 67 

AUCAAUAACACGCUCACCCCC; AUGAUUCCUAUUUACCCUGCCCCC. 68 

“All Star Negative Control siRNA”, provided by Quiagen, was used as negative control. 69 

 70 

Protein turnover analysis 71 

For half-life studies MDA-MB231 cells were transfected with mock or Np63 plasmids. 24 hours 72 

after transfection, cells were replated in 6-well dishes, allowed to adhere overnight, and treated with 73 

cycloheximide (Calbiochem) at a final concentration of 10 g/ml. Cells were harvested at the 74 

indicated time points. Total cell extracts were prepared and 20 g of each sample was probed, in 75 

Western blot, with anti YB-1 antibody and, as control, with anti-actin.  76 

 77 

Antibodies and chemical reagents 78 

Anti-p63 (4A4), anti-cytokeratin 1 (4D12B3), anti-p21WAF (F-5), anti-GAPDH (6C5), and anti-79 

actin (1-19) were purchased from Santa Cruz (Biotechnology Inc.). Cyclin D1, PARP and AKT 80 

antibodies were from Cell Signaling Technology (Beverly, Massachussets). Rabbit polyclonal YB1 81 

(Ab12148) antibody was purchased from Abcam. (Cambridge, UK). Mouse monoclonal anti-82 

HA(12CA5) antibody was purchased from Roche Applied Science. Proteasome inhibitor MG132 83 
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and Cycloheximide (CHX) were purchased from Sigma-Aldrich. MG132 treatment was carried out 84 

as previously described (22). 85 

 86 

Immunoblot analyses and coimmunoprecipitation  87 

Immunoblots (IB) and coimmunoprecipitations (Co-IP) were performed as previously described 88 

(18; 19). To detect YB-1 poli-ubiquitinated forms in A431 cells, 2 ×10
6
 cells were seeded in 100 89 

mm dishes and transfected with Ubi-HA plasmid vector. For Co-IP, cell extracts, precleared with 30 90 

μl of protein A-agarose (50% slurry; Roche, Manheim, Germany), were incubated overnight at 4°C 91 

with anti-HA (3 μg)  or -rabbit IgG  (3 μg). To detect YB-1 poli-ubiquitinated forms, in MDA-92 

MB231 cells (p63 -/-), 2 ×10
6
 cells were plated in 100 mm dishes and transfected with plasmids 93 

encoding human Np63and Ubi-HA. 30 g of whole extracts were separated by SDS-PAGE and 94 

subjected to immunoblot.  95 

Nuclear-cytoplasmic fractionation was performed as previously described (21); briefly cells were 96 

seeded at 60% confluence (1.5 × 10
6
) in 100 mm dishes. 24 h after seeding, cell lysates were 97 

fractionated to obtain cytoplasmic and nuclear fractions. 10 g of nuclear and 30 g of cytoplasmic 98 

extracts (1:3 rate) were separated by SDS-PAGE and subjected to immunoblot.  99 

All images were acquired with CHEMIDOC (Bio Rad) and analyzed with the Quantity-ONE 100 

software. 101 

 102 

Results 103 

Np63 regulates YB-1 stability  104 

We have previously shown that Np63 promotes accumulation of full length YB-1 protein in the 105 

nuclear compartment (1). To investigate whether the increase of YB-1 protein abundance, induced 106 

by Np63, was due to reduced YB-1 protein turnover, we compared the half-life of YB-1 in mock 107 
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and Np63transfected MDA-MB231 cells. 24 hrs after transfection, cells were treated with 108 

cycloheximide to block protein synthesis. At the indicated times of drug exposure, cells were 109 

harvested, and whole extracts were analyzed by Western blot and probed with anti-YB1 antibody. 110 

As shown in Figure 1, in mock transfected cells, YB-1 exhibited a very peculiar byphasic response 111 

to cycloheximide, indeed the amount of YB1 protein was reduced to 40% after 4 hours, but then it 112 

remained constant up to 16 hours of incubation (Figure 1). Strikingly, in presence of Np63 80% 113 

of YB-1 protein persisted after 24 hours of incubation with CHX thereby indicating that 114 

Np63reduces YB-1 protein turnover 115 

116 

Np63 stabilizes Ubi-conjugated forms of YB-1 117 

Next, we transfected increasing amount of Np63expression plasmid in p63 null MDA-MB231 118 

cells. In addition to the expected accumulation of full length YB-1 protein (p50/YB1), 119 

Np63expression caused an increase of slow migrating YB-1 immunoreactive bands (sm/YB1) 120 

and a concomitant reduction of faster migrating YB-1 forms (Figure 2A). 121 

To further investigate on the observed high molecular forms of YB-1 we performed immunoblot 122 

analyses of whole-cell extracts obtained from Np63 proficient HaCaT, A431, and SCC011 cells. 123 

In all cell lines tested, we observed slow migrating bands immunoreactive to YB-1 antibodies raised 124 

against a peptide encompassing aminoacids 1 to 100 of human YB-1 (Figure 2B).  Similar results 125 

were obtained with a different commercial antibody directed against a peptide encompassing 126 

aminoacids 167 to 264 of YB-1 (data not shown).  127 

To check the identity of the observed slow migrating bands, we depleted p63 proficient A431 cells 128 

of endogenous YB-1 by RNA interference. 48 hrs after YB-1 silencing, whole cell extracts were 129 

subjected to immunoblots with YB-1 antibodies. Some of the slow migrating bands either 130 



7 

 

disappeared or were reduced along with full length YB-1 implying that they were YB-1 modified 131 

forms (Figure 2C, black arrows).  132 

Western blot analysis of nuclear and cytoplasmic fractions of MDA-MB231, A431 and SCC011 133 

carcinoma cells (Figure 3A) revealed that slow migrating YB-1 immunoreactive bands were 134 

enriched in the nuclear compartment. Interestingly, we also detected distinct YB-1 forms, smaller 135 

than 50 kDa, probably generated by proteasome-mediated limited cleavage (16) (Figure 3A, black 136 

arrow).  137 

To analyze the effect of proteasome inhibition, we treated HaCaT cells with MG132. 138 

Nuclear/cytoplasmic extracts were prepared and subjected to immunoblot with YB-1 antibodies. As 139 

shown in Fig 3B high molecular forms of YB-1 were clearly observed  into the nucleus of non-140 

transformed HaCaT keratinocytes. Following MG132 treatment, full length YB-1 accumulated and 141 

nuclear YB-1 proteolytic fragments smaller than 50 kDa either decreased or disappeared. 142 

Remarkably, proteasome inhibition also reduced high molecular forms of YB-1 suggesting that they 143 

were generated following YB-1 endoproteolytic cleavage (Figure 3B). 144 

It was previosly reported that YB-1 is polyubiquitinated and degraded via the ubiquitin-proteasome 145 

pathway (23). Indeed, in MDA-MB231 cells transfected with Ubi-Ha, ubiquitin-containing 146 

complexes, immunoprecipitated with anti-HA antibodies, included endogenous YB-1 and p63 147 

proteins (Figure 4A, lanes 5 and 6). By looking specifically at the pattern of high-molecular weight 148 

YB-1 forms in MB-MDA231 cells, we found that it was enhanced  by ubiquitin or 149 

Np63transfection (Figure 4B,  lanes 1 and 3 and Figure 4C, lane 2) and even more by ubiquitin 150 

and Np63 co-transfection (Figure 4B lane 4 and Figure 4C lane 4) resulting very similar to that 151 

observed in Np63 proficient A431 cells (Figure 4B, lane 5). Moreover, we observed a reduction 152 

of the YB-1 36 kDa forms in cells expressing  Np63 (Figure 4C, lanes 2 and 4).  153 
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MG132 addition to cells overexpressing ubiquitin and Np63, instead, stabilized full length YB-1 154 

and reduced ubi-conjugated forms of YB-1, particularly those migrating between 50 and 70 kDa, 155 

again suggesting that they are generated following limited YB-1 cleavage (Figure 4C, compare 156 

lanes 3 and 4).  157 

Next, we depleted SCC011 cells of endogenous Np63, to finally prove the effect of Np63 on 158 

YB-1 protein modification. As shown in Figure 4D, we observed a significant reduction of full 159 

length and slow migrating YB-1 bands in the nuclear compartment. As expected, the p36/YB1 form 160 

became clearly detectable thus confirming our previous observations (Figure 4 D). 161 

 162 

YB-1 and Np63 dowregulation are associated to cell cycle exit  163 

ΔNp63α is highly expressed in proliferating keratinocytes and decreases abruptly when cells 164 

undergo differentiation (24). As our results strongly indicate that Np63 stabilizes YB-1 protein 165 

into the nucleus, we wondered whether we could establish a functional link between their cross-talk 166 

and the proliferation of  keratinocytes. 167 

To this aim, we examined Normal Human Epidermal (NHEK) and HaCaT keratinocytes for YB1 168 

expression during Ca
2+

 induced differentiation. Keratinocytes were cultured in calcium-free 169 

medium, treated with Ca
2+

 for the indicated time points and subjected to immunoblot analysis. As 170 

differentiation proceeds, the level of YB-1 protein decreased suggesting that, similar to Np63, 171 

YB-1 must be downregulated to allow keratinocyte differentiation (Figures 5A and 5B). Then, as 172 

cell cycle exit is an integral part of keratinocyte differentiation, we induced growth arrest of HaCaT 173 

keratinocytes by confluency and serum starvation. HaCaT keratinocytes were grown to confluence 174 

and serum starved for 24 hours. Nuclear and cytoplasmic extracts were prepared and subjected to 175 

immunoblot to examine YB1 and Np63 expression under normal and serum-starvation 176 

conditions. As shown in Figure 5C, both YB1 and Np63 were downregulated under growth 177 
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arrest conditions as demonstrated by reduction of cyclin D1 expression and induction of the cell 178 

cycle inhibitor p21WAF (Figure 5C). Finally, we have recently published that YB-1 silencing 179 

causes apoptotic death of immortalized and transformed keratinocytes  (21). All together our results 180 

strongly indicate that YB-1 and Np63cooperation is essential for sustaining proliferation and 181 

survival of basal keratinocytes. 182 

183 
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Discussion 184 

While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly 185 

overexpressed in human squamous cell cancers, however, whether it actively plays a role in skin 186 

tumor formation or is a bystander is still unclear.  187 

We have recently demonstrated that ΔNp63 physically interact with YB-1, a proliferation-188 

dependent factor that is up-regulated in several forms of cancer (1). We have already shown that 189 

ΔNp63 contributes to YB-1 accumulation into the nucleus where YB-1 is known to play a major 190 

role in enhanced cell survival and drug resistance (11). Herein, we present data indicating that 191 

Np63 is involved in the regulation of  YB-1 protein turnover. 192 

The mechanisms governing YB-1 protein stability are still undefined. Sorokin et al. (16) described 193 

that YB-1 is endoproteolitically processed by the 20S proteasome after the negatively charged 194 

glutamic acid residue E219. The released N-terminal protein fragment was found to accumulate in 195 

the nucleus after thrombin stimulation of endothelial cells (25) or following treatment of cells with 196 

DNA damaging drugs (3). Recently, van Roeyen et al. demonstrated that cell stress-dependent YB-197 

1 cleavage is followed by the nuclear shuttling of the C-terminal domain of the protein (15). 198 

Intriguingly, using an antibody against the YB-1 epitope (aa 21-37), the authors were unable to 199 

detect the N-terminal fragment of YB-1 suggesting that it was either post-translationally modified, 200 

thus masking the epitope, or rapidly degraded (15). Moreover, it has also been reported that YB-1 is 201 

polyubiquitinated and degraded via the ubiquitin-proteasome pathway (23).  202 

Our first observation was  that YB-1 protein exhibits a quite reproducible pattern of high molecular 203 

forms, although there are notable variations among different cell lines. Immunoprecipitation with 204 

HA antibodies, specifically targeting HA-ubiquitin tagged proteins, revealed the presence of YB-1 205 

thus indicating that the ubiquitin-proteasome pathway is involved in the control of YB-1 protein 206 

turnover. On the other hands, according to Sorokin (16), we found that YB-1 undergoes a 207 

proteasome-dependent limited cleavage. Interestingly, following treatment with MG132 that 208 



11 

 

inhibits the proteolytic activity of the proteasome, we found accumulation of full length YB-1 and 209 

reduction of YB-1 modified forms thus suggesting that many of them are generated following YB-1 210 

limited cleavage. 211 

The  relevant outcome of our work is the demonstration that Np63expression protects full length 212 

YB-1 from specific endoproteolysis. Accordingly, Np63 significantly increases the half-life of 213 

p50 YB-1 protein and reduces the level of the p36 YB-1 fragment. However, Np63 enforced 214 

expression also causes an increase of poli-ubiquitinated YB-1. Historically, the function of poly-215 

ubiquitination was to cause protein degradation in the 26 proteasome. However, we cannot exclude 216 

that addition of polyubiquitin chain to YB-1 can confer to the protein new functionalities such as 217 

the ability to interact with target proteins via ubiquitin binding domains or assemble into multimeric 218 

complexes (26). 219 

In our system we have not yet identified a specific ubiquitin ligase/s involved YB-1 post-220 

translational modification. However, the F-box Protein 33 (FBX33) (23) and the ring finger 221 

Retinoblastoma Binding Protein 6 (RBBP6) (27) are potential candidates as they have already 222 

demonstrated to specifically target YB-1.  223 

In normal conditions, full length YB-1 exists simultaneously in the nucleus with the truncated form, 224 

although their relative amount can be modulated by several stimuli such as stress and/or DNA 225 

damage (3). However, the exact biological function of p36/YB-1 and p50/YB-1 is not fully 226 

understood. The nuclear accumulation of YB-1 is believed to impart pro-survival advantages to 227 

cells (7; 28; 29).  228 

Concerning the physiological role of YB-1 and Np63 association in keratinocytes, we can 229 

speculate that YB-1 expression in basal keratinocytes can be functionally critical for skin 230 

homeostasis. Although it needs to be confirmed in an in vivo system, our observations suggest that 231 

Np63 may increase the proliferative potential of basal keratinocytes by preserving full lenght 232 
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YB-1 integrity into the nucleus. Remarkably, we have show that YB-1 level are higher in response 233 

to growth stimuli and rapidly downregulated on cell cycle arrest conditions such as serum 234 

deprivation and differentiative stimuli. A relevant issue is whether YB-1 expression can exert a 235 

selective control upon Np63 transcriptional functions and what might the effect of mutant p63 on 236 

YB-1 functions. We are currently addressing these  relevant questions. 237 

238 
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 338 

Figure Legends 339 

 340 

Figure 1. Np63 reduces YB-1 protein turnover. (A) A representative immunoblot analysis of 341 

YB-1 protein level in MDA-MB231 cells treated with 10 µg/ml cycloheximide (CHX), for the 342 

indicated times. Cells were seeded at 60% confluency  in 100-mm dishes. 24 hours after, cells were 343 

transfected with an empty vector or a ΔNp63α expressing plasmid. Equal amounts of  proteins were 344 

subjected to immunoblot analysis with YB-1 or  p63  antibodies. Actin was used as loading control.  345 

(B) Protein half-life was expressed in the plot as the fraction of the initial protein. Data are 346 

presented as the mean value obtained from three independent experiments. YB-1 bands (50 kDa) 347 

were quantified by densitometric scanning and Quantity-ONE software.  348 

 349 

Figure 2. Np63 influences YB-1 stability and specific proteolysis 350 

(A)  Immunoblotting (upper panel) and densitometric analysis (lower panel) of MDA-MB231 cells 351 

transiently transfected with increasing amounts of ΔNp63α expression plasmid (0.5, 1.0, 1.5, 2.0 352 

g). Whole extracts were analysed with YB-1 and p63 antibodies. Glyceraldehyde 3-phosphate 353 

dehydrogenase (GAPDH) was used as loading control.  (B) Immunoblot analysis of YB-1 in 354 

HaCaT, A431 and SCC011 cells with YB-1 antibody (ab12148, Abcam). The 50 kDa band 355 

corresponding to unmodified YB-1 protein is indicated by arrow. Actin was used as loading control. 356 

(C) Immunoblot analysis of YB-1 in YB-1 depleted A431 cells 48 hours after silencing. YB-1 357 

protein was detected using the YB-1 antibody. Actin was used as loading control. 358 

 359 

Figure 3. Posttranslationally modified YB-1 accumulates within the nucleus   360 
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(A) Immunoblot analysis of MDA-MB231, A431 and SCC011  cytoplasmic (Cy) and nuclear (Nu) 361 

fractions. YB-1 and p63 were detected with ab12148 (Abcam) and D9 (Santa Cruz Biotechnology) 362 

antibodies, respectively.  The filters were blotted with antibodies against PARP and total AKT to 363 

check for cross-contamination between the fractions. (Note the presence of YB-1 36 kDa band 364 

exclusively in the nuclear compartment). (B) Immunoblot analysis of HaCaT cytoplasmic (Cy) and 365 

nuclear (Nu) fractions after 5 hrs of MG132 treatment (5μM final concentration). YB-1 was 366 

detected with ab12148 (Abcam). Note the decrease of slow and fast migrating YB-1 forms 367 

following MG132 treatment into the nucleus and the accumulation of full length YB-1 50 kDa. 368 

The filters were blotted with antibodies against PARP and actin to check for cross-contamination 369 

between the fractions. 370 

 371 

Figure 4. YB-1  is ubiquitinated  372 

(A) A431 cells were transiently transfected with Ubi-HA expression plasmids.  After 24 hrs, 373 

extracts were immunoprecipitated (IP) with anti-HA antibody and the immunocomplexes were 374 

subjected to immunoblot (IB) with YB-1 or  p63 antibodies, as indicated.  (B)  MDA-MB231  cells 375 

were transiently transfected with an empty vector (mock), a ΔNp63α and/or Ubi-HA plasmid, as 376 

indicated. Whole cell extracts were analysed by immunoblotting with YB-1 and p63 antibodies. 377 

Actin was used as loading control. A431 are p63 proficient cells. (C)  MDA-MB231 cells were 378 

transiently transfected with Ubiquitin and/or ΔNp63α expression plasmid. Cells were treated with 379 

MG132, as indicated. Whole extracts were analysed by immunoblotting with YB-1 and p63 380 

antibodies. Actin was used as loading control.  (D) SCC011 cells were silenced with IBONI p63-381 

siRNA pool or scrambled oligos. 48 h after silencing, cells were fractionated to obtain cytoplasmic 382 

(Cy) and nuclear (Nu) fractions. Filters were incubated with YB-1 and p63 antibodies. To check for 383 
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cross-contamination, PARP and total AKT were used as nuclear and cytoplasmic control, 384 

respectively. 385 

 386 

Figure 5. YB-1 sustains the proliferative activity of keratinocytes  387 

(A) NHEK were induced to differentiate, for the indicated days, in 1.5 mM Ca
2+

. Whole cell 388 

extracts were analyzed by immunoblotting using antibodies against p63, YB-1, Cytokeratin 1 389 

(CK1). Actin was used as loading control. (B)  HaCaT cells were induced to differentiate for the 390 

indicated days with 2.0 mM calcium. Cell extracts were analyzed by immunoblotting with p63, YB-391 

1 and CK1 antibodies, as indicated. Undifferentiated HaCaT, grown in absence of calcium, were 392 

used as negative control. GAPDH was used as loading control. (C) HaCaT keratinocytes were 393 

cultured in DMEM medium with (+ FBS) or without FBS (- FBS), as indicated. After 48 hours, 394 

cells were harvested. Nuclear (Nu) and cytoplasmic (Cy) extracts were subjected to immunoblot 395 

using p63, YB-1, P21WAF, Cyclin D1 antibodies. GAPDH and PARP antibodies were used as  396 

loading controls and to check for cross-contamination between the fractions. 397 
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Abstract  

Cutaneous squamous cell carcinomas (SCCs) typically lack somatic oncogene‐activating mutations 

and most of them contain p53 mutations. However, the presence of p53 mutations in skin 

premalignant lesions suggests that these represent early events during tumor progression and 

additional alterations may be required for SCC development. SCC cells frequently express high 

levels of ΔNp63α and Y‐box binding 1 (YB‐1 or YBX1) oncoproteins. Here, we show that 

knockdown of YB‐1 in spontaneously immortalized HaCaT and non‐metastatic SCC011 cells led to a 

dramatic decrease of ΔNp63α, cell detachment and death. In highly metastatic SCC022 cells, 

instead, YB‐1 silencing induces PI3K/AKT signaling hyperactivation which counteracts the effect of 

YB‐1 depletion and promotes cell survival. In summary, our results unveil a functional cross‐talk 

between YB‐1, ΔNp63α and the PI3K/AKT pathway critically governing survival of squamous 

carcinoma cells. This article is protected by copyright. All rights reserved  
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Introduction 

Squamous cell carcinoma (SCC) is a treatment-refractory malignancy arising within the epithelium 

of different organs, that is frequently associated with overexpression of ΔNp63α oncoprotein 

(Rocco et al., 2006, Hibi et al., 2000). ΔNp63α is encoded by the TP63 locus, the ancestral gene of 

the p53 gene family that gives rise to multiple isoforms that can be placed in two categories: TA 

isoforms with an acidic transactivation domain and ΔN isoforms that lack this domain. Alternative 

splicing at the carboxy-terminal (C-terminal) generates at least three p63 variants (α, β and γ) in 

each class (Rossi et al., 2006, Yang et al., 1999). ΔNp63α is essential for the maintenance of the 

proliferative capacity of epithelial cell progenitors (Senoo et al., 2004); as these cells start to 

differentiate, ΔNp63α protein level gradually drops and those that no longer express ΔNp63α, loose 

the proliferative capacity (Koster, 2010).    

In squamous carcinoma, ΔNp63α up-regulation causes skin hyperplasia and abnormal keratinocyte 

differentiation predisposing to malignant transformation (Hibi et al., 2000; Moll and Slade, 2004).  

Despite its undisputed relevance in epithelial cancer, the mechanisms through which ΔNp63α 

executes its pro-oncogenic functions are not fully understood. However, ΔNp63α expression was 

shown to be induced by activation of downstream targets of EGFR activation including STAT3 

(Ripamonti et al., 2013) and the phosphoinositide-3-kinase (PI3K) pathway (Barbieri et al., 2003).  

We have recently shown that ΔNp63α interacts with the YB-1 oncoprotein and promotes 

accumulation of YB-1 into the nuclear compartment (Di Costanzo et al., 2012; Amoresano et al., 

2010). YB-1, also named YBX1, is a member of the cold shock domain (CSD) protein family, 

which is found in the cytoplasm and nucleus of mammalian cells, being able to shuttle between the 

two compartments (Eliseeva et al., 2011). The YB-1 gene, located on chromosome 1p34 (Toh et al., 

1998), encodes a 43 kDa protein having three functional domains: a variable NH2-terminal 

Alanine/Proline rich tail domain (aa 1-51), involved in transcriptional regulation, a highly 

conserved nucleic acid binding domain (CSD, aa 51-171), and a COOH-terminal tail (B/A repeat) 

for RNA/ssDNA binding and protein dimerization (129-324). 
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YB-1 is a major downstream target of Twist (Shiota et al., 2008) and c-Myc-Max complexes by 

recruitment to the E-box consensus sites in YB-1 promoter (Uramoto et al., 2002).  YB-1 regulates 

genes promoting cancer cell growth such as EGFR, Her-2, PI3KCA and MET (To et al., 2010) as 

well as genes linked to cancer stem cells such as those encoding the hyaluronan receptor CD44, 

CD49f (integrin α6) and CD104 (β4 integrin), implying that YB-1 plays a key role as oncogene by 

transactivating genes associated with a cancer stem cell phenotype (To et al., 2010). YB-1 protein 

level drastically increases during progression of several types of tumors including squamous 

carcinoma, thereby suggesting a role for this protein in the pathogenesis of human epithelial 

malignancy (Di Costanzo et al., 2012, Kolk et al., 2011). 

To mediate gene regulation, YB-1 translocates into the nucleus and interacts with the proximal 

promoter regions of its target genes (Sutherland et al., 2005; Shiota et al., 2011). Phosphorylation of 

serine 102 in response to MAPK and PI3K/AKT signaling promotes YB-1 nuclear translocation 

(Sinnberg et al., 2012). Moreover, YB-1 translocates to the nucleus when cells are exposed to 

cytokines, anticancer agents, hyperthermia, or UV light irradiation (Schittek et al., 2007).  

Herein, we present data showing the existence of a functional cross-talk between YB-1, ΔNp63α 

and the PI3K/AKT signaling pathway critically governing survival of squamous carcinoma cells. 



A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved 

 

MATERIALS AND METHODS 

Plasmids 

The 1.1 Kb EGFR promoter luciferase plasmid was provided by Dr. A.C. Johnson (US National 

Cancer Institute, Massachusetts, USA). The cDNA encoding human ΔNp63α and ΔNp63α F518L 

were previously described (Lo Iacono et al., 2006).  

 

Cell lines, transfection  and antibodies  

SCC011 and SCC022 cell lines were established from cutaneous squamous carcinomas (Lefort et 

al.,  2007). SCC011 and SCC022 cells were cultured in RPMI supplemented with 10% fetal bovine 

serum at 37°C and 5% CO2. HaCaT and MDA-MB231 cells were purchased from Cell Line Service 

(CLS, Germany) and cultured at 37°C and 5% CO2. HaCaT cells were maintained in DMEM 

supplemented with 10% FBS. MDA-MB231 cells were maintained in DMEM supplemented with 

5% FBS.   

 

Transient transfection 

Lipofections were performed with Lipofectammine 2000 (Life Technologies, CA, USA), according 

to the manufacturer’s recommendations. 

YB1 transient silencing was carried out with IBONI YB-1siRNA pool (RIBOXX GmbH, Germany) 

and RNAiMAX reagent (Life Technologies, CA, USA), according to the manufacturer’s 

recommendations. Briefly, cells were seeded at 60% confluence (1.5 × 106) in 100-mm dishes and 

transiently silenced with IBONI YB1-siRNA at 20 nM final concentration.  

YB-1 guide sequences:  

UUUAUCUUCUUCAUUGCCGCCCCC; 

 UUAUUCUUCUUAUGGCAGCCCCC;  

UUCAACAACAUCAAACUCCCCC;  

UCAUAUUUCUUCUUGUUGGCCCCC.  
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ΔNp63α transient silencing was carried out with  IBONI p63-siRNA pool (RIBOXX GmbH, 

Germany) at 20 nM final concentration and RNAiMAX reagent (Life Technologies, CA, USA).  

p63 guide sequences:  

UUAAACAAUACUCAAUGCCCCC;  

UUAACAUUCAAUAUCCCACCCCC;  

AUCAAUAACACGCUCACCCCC;  

AUGAUUCCUAUUUACCCUGCCCCC. 

 “All Star Negative Control siRNA”, provided by Quiagen (Hilden, Germany), was used as negative 

control.  

Transfection efficiency of siRNA was quantified using BLOCK-iT™ Control Fluorescent Oligo 

(Life Technologies, CA, USA) at a final concentration of 20 nM using Lipofectamine RNAiMAX 

(Life Technologies, CA, USA).  Cells were stained with Hoechst and transfected cells detected by 

direct immunofluorescence. Transfection efficiency ranged between 70 and 80% .The percentage of 

transfected cells was estimated as the average of counts performed on 100 cells in five independent 

fields.  

Immunoblot analyses and coimmunoprecipitation  

Immunoblots (IB) were performed as previously described (Di Costanzo et al., 2012). Briefly, 30 

μg of whole cell extracts were separated by SDS-PAGE, subjected to immunoblot and incubated 

overnight at 4°C with antibodies.  

For nuclear-cytoplasmic fractionation 10 μg of nuclear and 30 μg of cytoplasmic extracts (1:3 rate) 

were separated by SDS-PAGE and subjected to immunoblot.  

All images were acquired with CHEMIDOC (Bio Rad, USA) and analyzed with the Quantity-ONE 

software. 

Coimmunoprecipitation was performed as previously described (Rossi et al., 2006). Briefly, whole 

HaCaT cell extracts, precleared with 30 μl of protein A-agarose (50% slurry; Roche, Manheim, 
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Germany), were incubated overnight at 4°C with anti-p63 (2 μg) or α-mouse IgG. The reciprocal 

experiment was performed with anti-YB-1(3 μg) or α-rabbit IgG (3 μg).  

 

Antibodies and chemical reagents 

Anti-p63 (4A4), anti-cytokeratin 1 (4D12B3), anti-GAPDH (6C5), and anti-actin (1-19) were 

purchased from Santa Cruz (Biotechnology Inc. CA, USA). PARP, PTEN, AKT,  pAKT S473 , 

EGFR and STAT3 antibodies were from Cell Signaling Technology (Beverly, Massachusetts). 

Rabbit polyclonal YB1 (Ab12148) antibody was purchased from Abcam (Cambridge, UK).  

Proteasome inhibitor MG132 were purchased from Sigma-Aldrich (St Louis, MO) and used at 10 

μM final concentration in DMSO (Sigma-Aldrich, St Louis, MO).  LY294002 was purchased from 

Calbiochem (CA, USA) and used at 50 μΜ final concentration in DMSO.  

Cell Viability assay 

Cell viability was determined by the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide assay (Sigma-Aldrich, St Louis, MO). Briefly, cells were seeded in 96-well plates at 2 x 

103 and transfected with scrambled or YB-1 siRNA oligos, 48h after silencing  MTT solution 

(5mg/ml in PBS, 20 μl/well) was added to cells to produce formazan crystals. MTT solution was 

substituted by 150 μl DMSO 30 minutes later to solubilize the formazan crystals. The optical 

absorbance was determined at 570 nm using an iMark microplate reader (Bio-Rad, USA). The 

experiments were carried out in triplicate for each knockdown and compared to scrambled control 

(value set at 1.0). 

 

Quantitative Real Time-PCR 

For PCR analysis total RNA was isolated using the RNA Extraction Kit  from Qiagen (Hilden, 

Germany) according to the manufacturer’s instructions. RNA (2-5µg) was treated with DNAse I 

(Promega, Madison USA) and used to generate reverse transcribed cDNA using SuperScript III 
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(Life Technologies, CA, USA),  according to the manufacturer’s instructions. All samples in each 

experiment were reverse transcribed at the same time, the resulting cDNA diluted 1:5 in nuclease-

free water and stored in aliquots at –80°C until used.  

Real Time PCR with SYBR green detection was performed with a 7500 RT-PCR Thermo Cycler 

(Applied Biosystem, Foster City, USA). The thermal cycling conditions were composed of 50ºC for 

2 min followed by an initial denaturation step at 95ºC for 10 min, 45 cycles at 95ºC for 30s, 60ºC 

for 30s and 72ºC for 30s. Experiments were carried out in triplicate. The relative quantification in 

gene expression was determined using the 2-ΔΔCt method (Livak and Schmittgen, 2011). Using this 

method, we obtained the fold changes in gene expression normalized to an internal control gene and 

relative to one control sample (calibrator). 18S was used as an internal control to normalize all data 

and the siCtrl was chosen as the calibrator. 

Appropriate no-RT and non-template controls were included in each 96-well PCR reaction and 

dissociation analysis was performed at the end of each run to confirm the specificity of the reaction.  

YB1(F):5’CGCAGTGTAGGAGATGGAGAG 

YB1(R):5’GAACACCACCAGGACCTGTAA 

ΔNp63 (F):5’GGTTGGCAAAATCCTGGAG 

ΔNp63 (R):5’GGTTCGTGTACTGTGGCTCA 

EGFR (F) :5’TTCCTCCCAGTGCCTGAA 

EGFR (R):5’GGGTTCAGAGGCTGATTGTG 

STAT3 (F) :5’CCTCTGCCGGAGAAACAG 

STAT3 (R):5’CTGTCACTGTAGAGCTGATGGAG 

GADD45A (F): 5’ TTTGCAATATGACTTTGGAGGA 

GADD45A (R): 5’ CATCCCCCACCTTATCCAT 

18S (F):5’TCGAGGCCCTGTAATTGGAA 

18S (R):5’CTTTAATATACGCTATTGGAGCTG 
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Luciferase reporter assay  

MDA-MB231 cells were co-transfected with ΔNp63α, ΔNp63α F518L and EGFR promoter-

luciferase reporter vector. Transfections were performed in triplicate in each assay. At 24h after 

transfection, cells were harvested in 1x PLB buffer (Promega, Madison, USA) and luciferase 

activity was measured using Dual Luciferase Reporter system (Promega, Madison, USA) using 

pRL-TK activity as internal control. FireFly-derived luciferase activity was normalized for 

transfection efficiency. Successful transfection of p63 was confirmed by immunoblotting. The 

average values of the tested constructs were normalized to the activity of the empty construct.  

 

Immunofluorescence and bright -field images acquisition 

HaCaT cells (2.5 x 105) were plated in 35 mm dish, grown on micro cover glasses (BDH). At 24 

hours after seeding, cells were washed with cold phosphate-buffered saline (PBS) and fixed with 

4% paraformaldehyde (PFA) (Sigma-Aldrich, St. Louis, MO) for 15 min at 4°C. Cells were 

permeabilized with ice-cold 0.1% Triton X-100 for 10 min, washed with PBS and incubated with 

Thermo Scientific Hoechst 33342 (2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-

benzimidazole trihydrochloride trihydrate) for 3 min.  Images were digitally acquired at  470 nm 

using Nikon TE Eclipse 2000 microscope and processed using Adobe Photoshop software CS. 

SCC022 cells (2.5 x 105) were plated in 35 mm dish and grown on micro cover glasses (BDH). At 

24 hours after seeding, cells were transfected with scramble , YB-1 or p63 siRNA oligos. 48 hrs 

after silencing cells were washed with cold phosphate-buffered saline (PBS) and fixed with 4% 

paraformaldehyde (PFA) (Sigma-Aldrich, St. Louis, MO) for 15 min at 4°C. Cells were 

permeabilized with ice-cold 0.1% Triton X-100 for 10 min and then washed with PBS. P63 was 

detected using a 1:200 dilution of the monoclonal antibody D9 (Santa Cruz, Biotechnology Inc., 

CA, USA). YB-1 was detected using 1:100 dilution of the YB1 antibody (Ab12148). After 

extensive washing in PBS, the samples were incubated with Cy3-conjugated anti-mouse  (red) and 

Cy5-conjugated anti-rabbit IgGs (green)  at room temperature for 30 min. Cells were incubated with 
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Hoechst 33342 (2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole 

trihydrochloride trihydrate) (Thermo Scientific) for 3 min. Images were digitally acquired and 

processed using Adobe Photoshop software CS. 

 

Cell motility assay 

SCC022 cells were cultured on 35-mm dishes (Corning, NY) at 2x104 cells/dish density. 

ΔNp63α or YB1 transient silencing were performed as described above. After 24 h from silencing 

cell migration tests were performed via an Olympus IX81 inverted microscope equipped with a 10X 

objective and an integrated stage incubator (Okolab, Italy). Images of selected positions of the cell 

culture were collected in bright field for 16 h with 5-min frame intervals. All of the collected data 

were processed with the Olympus imaging software Cell^R. To quantify the cell speed (μm/min), 

time-lapse acquisitions were processed by the dedicated software add-in (TrackIT). The average 

speed per cell was calculated from the length of the path divided by time. An average number of 60 

cells were analyzed for each condition.  
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Results 

YB-1 knockdown in HaCaT cells 

We have previously shown that ΔNp63α interacts with YB-1 in human squamous carcinoma cells 

and promotes accumulation of full length YB-1 protein (50 kDa) in the nuclear compartment (Di 

Costanzo et al., 2012). We first validated the interaction between YB-1 and ΔNp63α in non 

transformed HaCaT keratinocytes by co-immunoprecipitation assay (Supplementary Fig. 1). Then, 

we examined the effect of YB-1 silencing in mitotically active HaCaT keratinocytes. Interestingly, 

at 48 hrs of silencing we observed massive cell detachment (Figure 1A, upper panel) associated 

with a high proportion of condensed and fragmented nuclei (Figure 1A, lower panel). Western blot 

analysis showed a significant reduction of ΔNp63α protein level and PARP1 proteolytic cleavage 

(Figure 1B, left panel) indicating that YB-1 is critical for keratinocyte survival.  

ΔNp63α is known to sustain survival in squamous cell carcinoma (Rocco et al., 2006, Hibi et al., 

2000) and up-regulate cell adhesion-associated genes (Carrol et al., 2006). To rule out the 

possibility that YB-1 silencing induces cell death by merely reducing the level of ΔNp63α, we 

knocked down ΔNp63α expression in HaCaT cells by RNA interference. According to previous  

studies (Barbieri et al., 2006), we observed neither cell detachment (Figure 1A, upper panel) nor 

PARP1 activation (Figure 1B, right panel) clearly indicating that apoptosis, induced by YB-1 

depletion, cannot be simply ascribed to the lack of ΔNp63α.  

Next, we evaluated the level of ΔNp63α-specific transcript following YB-1 knockdown by Real 

Time quantitative PCR (RT-qPCR) and we found that it was drastically reduced (Figure 1C). After 

p63 silencing, instead, YB-1 transcript level was slightly enhanced (Figure 1D) while  the mRNA of 

GADD45A, a gene induced by stressful conditions and used as control, was enhanced in both 

experiments (Figure 1C and D).  
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YB-1 knockdown in squamous carcinoma cells 

Next, we used RNA interference to explore the function of YB-1 in squamous cell carcinoma 

(SCC). SCC011 and SCC022 are cell lines derived from cutaneous squamous carcinomas (Lefort et 

al., 2007). SCC022 are highly metastatic and, when subcutaneously injected in nude mice, form 

large tumors. SCC011 cells, instead, generate only keratin pearls (C. Missero, personal 

communication).  

Similarly to what observed in HaCaT cells, YB1-depleted SCC011 cells detached from the plate 

generating abundant cellular debris (Figure 2A, upper panel) and exhibited a reduced level of 

ΔNp63α protein (Figure 2B). PARP1 cleavage was barely detectable (Figure 2B). On the other 

hand, we have previously demonstrated that p63 knockdown has no apparent effect on SCC011 cell 

viability (Di Costanzo et al., 2012).  

Surprisingly, SCC022 cells looked healthy and tightly adherent to the plate after YB1 silencing 

(Figure 2A, lower panel). Moreover, as detected by immunoblot analysis, the expression level of 

ΔNp63α protein was significantly increased (Figure 2B).  Interestingly, ΔNp63α transcript in 

SCC011 was reduced while in SCC022 it was 2.1-fold higher than control (Figure 2C).  

Analysis of cell viability by the MTT assay showed that after 48 hrs of YB-1 knockdown the 

percentage of viability of SCC022 cells was 70% of the control, while it was reduced to 10% in 

HaCaT and SCC011 cells (Figure 4C).  

We have also performed p63 knockdown in SCC022 cells and, as expected, we observed 

accumulation of YB-1 in the cytoplasm without any apparent effect on cell viability 

(Supplementary Fig. 2).  

We also determined the influence of ΔNp63α or YB-1 silencing on SCC022 cell motility by time-

lapse microscopy using siRNA-based silencing of endogenous proteins. According to our previous 

observations made on SCC011 cells (Di Costanzo et al., 2012) ΔNp63α silenced cells display 

higher speeds (p < 0.01) than control cells. Conversely,  SCC022 cell motility was unaffected by 

YB-1 depletion (Supplementary Fig. 3). 
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YB-1 silencing hyper-activates the PI3K/AKT signaling pathway in SCC022 cells 

ΔNp63α is a target of the phosphoinositide-3-kinase (PI3K) pathway downstream of the Epidermal 

Growth Factor Receptor (Barbieri et al., 2003). We hypothesized an involvement of the PI3K/AKT 

pathway in the upregulation of ΔNp63α observed in SCC022 cells following YB-1 silencing, and 

we looked for changes in the phosphorylation status of AKTSer473. Interestingly, unlike HaCaT and 

SCC011, SCC022 cells exhibited constitutive phosphorylation of AKTSer473 which was reproducibly 

potentiated following YB-1 depletion (Figure 3A and B) suggesting that YB-1 expression restrains 

AKT activation. To corroborate this result, we treated YB1-silenced SCC022 cells with Ly294002, 

a highly selective PI3K inhibitor. Remarkably, Ly294002 treatment counteracted AKT 

hyperphosphorylation and the increase of ΔNp63α protein level in response to YB-1 silencing 

(Figure 3B).  Moreover, it resulted in cell death and detachment (data not shown). Importantly, 

Ly294002 treatment alone had no apparent effect on ΔNp63α level and SCC022 cell viability 

(Figure 3B and data not shown). Quantification of ΔNp63α transcript in YB-1 depleted SCC022 

cells, treated or not with LY294002, showed that the increase of ΔNp63α transcription was strictly 

dependent on the PI3K/AKT pathway (Figure 3B). Moreover, inhibition of the proteasome activity 

with MG132 did not significantly enhance ΔNp63α protein level in YB1-silenced SCC022 cells, 

thereby confirming that ΔNp63α up-regulation was almost exclusively at transcriptional level 

(Supplementary Fig. 4).  

The PI3K/AKT signaling pathway is negatively regulated by the phosphatase and tensin homologue 

PTEN (Song et al., 2012). To further investigate on the ability of SCC022 cells to escape from 

death following YB-1 depletion, we compared the protein level of PTEN among HaCaT, SCC011 

and SCC022 cell lines. Compared to HaCaT and SCC011 cells, the  level of PTEN protein in 

SCC022 cells was very low, accounting for their high basal level of AKTSer473 phosphorylation 

(Figure 3E). Furthermore, YB-1 silencing resulted in increased levels of cytoplasmic PTEN in 
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HaCaT and SCC011 cells, while no effects on PTEN protein level was observed in YB-1 silenced 

SCC022 cells (Figure 3E).  

 

Cross-talk of ΔNp63α and YB-1 with EGFR/STAT3 and  PI3K/AKT signaling pathways  

In pancreatic cancer cells, ΔNp63α expression was shown to induce the Epidermal Growth Factor 

Receptor (EGFR) (Danilov et al.,  2011). As we observed a PI3K-dependent increase of ΔNp63α in 

SCC022 cells upon YB-1 silencing, we decided to evaluate the level of EGFR and its direct 

downstream target STAT3 in SCC022 cells upon YB-1 or ΔNp63α silencing. As shown in Figure 4, 

along with ΔNp63α, YB-1 depletion up-regulates EGFR and STAT3 both at protein (Figure 4A) 

and RNA level (Figure 4B). Real Time PCR assay in SCC022 cells clearly shows that YB-1 

silencing results in about 2 and 3.5 fold induction of EGFR and STAT3 transcripts, respectively 

(Figure 4B). Following ΔNp63α silencing, instead, the expression of both EGFR and STAT3 was 

switched off although the level of YB-1 protein remained unaltered (Figure 4A). These results 

suggest that ΔNp63α is a major activator of the EGFR/STAT3 axis in squamous carcinoma cells. 

Accordingly, in SCC011 and HaCaT cells where YB-1 silencing reduces ΔNp63α, EGFR and 

STAT3 transcription was also reduced (Supplementary Fig. 5A and B).  

To confirm the ability of ΔNp63α to regulate EGFR gene expression we performed transient 

transfection and luciferase reporter assays in MDA-MB231 breast cancer cells expressing no 

detectable p63.  MDA-MB231 cells were transiently transfected with the EGFR promoter-luciferase 

vector and increasing amount of expression plasmid encoding wild type ΔNp63α  or its mutant 

form bearing  the F to L substitution at position 518 of the SAM domain. This mutant was 

previously described to be transactivation defective (Radoja et al., 2007). Remarkably, wild type 

but not mutant ΔNp63α protein induced luciferase activity, in a dose-dependent manner (Figure 4C 

and D). Moreover, Western blot analysis of extracts from MDA-MB231 breast cancer cells 
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transiently transfected with ΔNp63α showed induction of both EGFR and STAT3 endogenous 

proteins, confirming that EGFR and STAT3 expression are induced by ΔNp63α (Figure 4E).   

 

DISCUSSION 

YB-1 is a versatile protein associated with many malignancies. However, because of its 

multifunctional character, the role of YB-1 in neoplastic cell growth remains elusive (Bader et al., 

2006).  

Our previous (Di Costanzo et al., 2012) and present data show that ΔNp63α hyper-expression, as it 

occurs in squamous carcinoma cells, is associated with YB-1 nuclear localization where it is 

expected to play a pro-proliferative role. In the present manuscript we show that YB-1 depletion has 

a strong negative impact on cell survival of both immortalized HaCaT keratinocytes and non-

metastatic SCC011 squamous carcinoma cells. Interestingly, in HaCaT and SCC011 cells, YB-1 

knockdown causes a significant reduction of ΔNp63α transcription (Yang et al., 1999; Senoo et al., 

2004). However, in HaCaT and SCC cells, ΔNp63α knockdown is not sufficient to trigger cell 

death thereby indicating that YB-1, in keratinocytes, plays additional p63-independent pro-survival 

functions. 

Surprisingly, in highly metastatic SCC022 cells, YB-1 silencing does not result in cell death. 

Strikingly, in these cells, YB-1 silencing potentiates AKT activation suggesting that YB-1 can act 

as a negative regulator of the PI3K/AKT signaling pathway and its loss allows PI3K/AKT-

dependent induction of pro-survival genes, including ΔNp63α. Interestingly, the low level of 

endogenous PTEN observed in SCC022 cells can likely explain the constitutive activation of the 

PI3K/AKT pathway observed in this cell line. Remarkably, we have observed only in HaCaT and 

SCC011 cells a strong activation of PTEN in response to YB-1 depletion. In SCC022 cells, instead, 

where PI3K/AKT hyper-activation sustains ΔNp63α protein level, we did not observe any increase 
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of PTEN after YB-1 depletion. However, at this stage, we can hypothesize that, in this cell line, 

PTEN cannot be up-regulated because of epigenetic or other inactivating mechanisms.  

The evidence that PI3K/AKT hyperactivation in SCC022 cells is responsible for ΔNp63α 

transcriptional induction is in line with previous studies showing that ΔNp63α is positively 

regulated by the PI3K pathway (Barbieri et al., 2003). However, it is important to remind that 

ΔNp63α has been shown to repress the expression of PTEN (Leonard et al., 2011). Accordingly, in 

PTEN-proficient HaCaT and SCC011 cells, where YB-1 silencing causes a decrease of ΔNp63α, 

we observed an increase in the level of PTEN protein which is expected to restrain signaling by the 

PI3K pathway. 

In summary, our results indicate that, being able to sustain ΔNp63α gene expression, YB-1 is part 

of a complex molecular network linking ΔNp63α to the PI3K/AKT/PTEN pathway and that 

establishment of a positive feedback loop coupling induction of ΔNp63α expression with 

PI3K/AKT activation may be a relevant step in progression of squamous carcinogenesis.  

An important finding of our work is the observation that ΔNp63α controls the expression of the 

Epidermal Growth Factor Receptor switching-on the entire EGFR/STAT3 axis. Accordingly, in 

normal adult epidermis, the EGFR is predominantly expressed in basal keratinocytes and signaling 

events elicited by it are known to affect their proliferation and migration (Bito et al., 2011). 

ΔNp63α, therefore, represents an important molecular connection between YB-1, the PI3K/AKT 

and the EGFR/STAT3 signaling pathways. We can postulate that constitutive activation of 

PI3K/AKT, such as in PTEN-deficient cells, may likely cause persistence of ΔNp63α which can 

induce keratinocyte hyper-proliferation by impinging on the EGFR/STAT3 pathway. Interestingly, 

in physiological conditions EGF-dependent and PI3K/AKT pathways are both required for efficient 

skin wound re-epithelialization (Haase et al., 2003). Moreover, EGFR/STAT3 inhibition was shown 

to be unable to induce apoptosis (Bito et al., 2003) thereby providing a plausible explanation of why 

ΔNp63α silencing alone was not sufficient to induce cell death in our experimental settings.  
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In summary, we have presented clear evidences to suggest that YB-1 can play a role in skin 

carcinogenesis. However, the molecular basis of cancer can widely vary and the ability of YB-1 to 

control multiple and overlapping pathways raises concerns about the consideration of YB-1 as an 

attractive target for therapy against metastatic squamous cancer. In particular, our results indicate 

that YB-1 knockdown in cells whose oncogenic transformation depends on PI3K/AKT constitutive 

activation is expected to enhance rather than arrest metastatic progression. Association of YB1-

targeted therapy with drugs that target the PI3K and/or EGFR pathway should be evaluated as a 

valuable strategy to treat squamous carcinoma. In vivo experiments will help to clarify this relevant 

point.  
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Figures Legend 

 

Figure 1. YB-1 knockdown affects HaCaT cell survival. (A) upper panel, Phase-Contrast 

imaging and  Hoechst staining (lower panel) showing HaCaT keratinocyte cells transfected with 
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scrambled, YB-1 or p63 siRNA oligos. (B) Representative immunoblot analyses of HaCaT 

keratinocytes transfected with YB1 (upper panel), p63 (lower panel) or scrambled (siCtrl) 

siRNA oligos, respectively.  48 hours after silencing whole cell extracts were immunoblotted 

with YB-1, p63 and PARP antibodies. Actin was used as a loading control. Bar graphs are 

quantitative densitometric analyses of four indipendent Western blots. The blots were 

normalized to actin and the fold-changes of protein levels are reported in comparison to control 

(value set at 1.0). P-value <0.05 is represented by *; P-value <0.01 is represented by **. (C) 

Quantitative real-time PCR analysis of HaCaT keratinocytes transfected with scrambled or YB-1 

siRNA oligos. GADD45A mRNA level was measured as a control. (D) Quantitative Real-time 

PCR analysis of HaCaT keratinocytes transfected with scrambled or p63 siRNA oligos. In both 

experiments data were analyzed according to the fold-changes compared to scrambled control 

(value set at 1.0) using the 2-ΔΔCt method. P-value <0.05 is represented by *; P-value <0.01 is 

represented by **. 

 

Figure 2. YB-1 knockdown in SCC011 and SCC022 squamous carcinoma cells. (A) Phase-

contrast imaging showing SCC011 (upper panel) and SCC022 (lower panel) cells at 48 hours 

post-YB1 silencing.  (B) Representative immunoblot analysis of SCC011 or SCC022 cells 

transfected with scrambled or YB-1 siRNA oligos. 48 hours after silencing whole cell lysates 

were immunoblotted with YB-1, p63 and PARP antibodies. GAPDH was used as a loading 

control. Bar graph is a quantitative densitometric analysis of four indipendent Western blots. The 

blots were normalized to GAPDH and the fold-changes of protein levels are reported in 

comparison to control (value set at 1.0). P-value <0.05 is represented by *; P-value <0.01 is 

represented by **. (C) Quantitative Real-time PCR analysis of SCC011 (left panel) and SCC022 

cells (right panel) transfected with scrambled or YB-1 siRNA oligos. Data were analyzed 

according to the fold-changes compared to scrambled control (value set at 1.0) using the 2-ΔΔCt 

method. P-value <0.05 is represented by *; P-value <0.01 is represented by **. (D) Effect of 
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YB1 silencing on the viability of HaCaT and SCC cells. Cell viability was assessed by MTT 

assay following 48 hours of YB-1 silencing. Data are represented as the mean +/- SD from three 

independent experiments. The asterisk indicates P-value<0.05. 

 

Figure 3. YB-1 knockdown enhances pAKTS473  in SCC022 squamous carcinoma. (A) 

Immunoblot analysis of HaCaT, SCC011 and SCC022 cells transfected with scrambled or YB1-

siRNA oligos.  48 hours after silencing whole cell extracts were immunoblotted with YB-1, 

pAKTS473 and AKT antibodies. Actin was used as a loading control. (B) SCC022 cells were 

transfected with scrambled or YB-1 siRNA oligos transfection. After 42 hrs cells were treated 

with LY294002 for 6 hrs. Whole cell extracts were analyzed by immunoblotting with YB-1, 

pAKTS473, p63 and AKT antibodies. Actin was used as loading control. (C) Quantitative Real-

time PCR of ΔNp63 mRNA levels. ΔNp63 mRNA levels were analyzed according to the fold-

changes compared to scrambled control (value set at 1.0) using the 2-ΔΔCt method. P-value < 0.05 

is represented by *; P-value < 0.01 is represented by **. DMSO was used as control (D) 

Immunoblot analysis of HaCaT, SCC011 and SCC022 cells. Whole cell extracts were 

immunoblotted with, PTEN,  pAKTS47 , and AKT antibodies. GAPDH was used as loading 

control. (E) Nuclear and cytoplasmic fractionation of extracts from control or YB-1 silenced 

HaCaT, SCC011 and SCC022 cells are shown in Figure 5A. Fractions were analysed by 

immunoblotting with PTEN antibody. GAPDH and PARP were used as cytoplasmic and nuclear 

controls, respectively. 

 

Figure 4. Cross-talk of ΔNp63α and YB-1 with EGFR/STAT3 pathway. (A) Immunoblot 

analysis of SCC022 cells transfected with scramble, YB-1 or p63 siRNA oligos. Whole cell 

extracts were immunoblotted with, YB-1, p63, EGFR, STAT3 antibodies. Actin was used as a 

loading control. (B)  Quantitative Real-time PCR analysis of SCC022 cells transfected with 
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scrambled or YB-1 siRNA oligos. YB-1, EGFR and STAT3 mRNA levels  were analyzed 

according to the fold-changes compared to scrambled control (value set at 1.0) using the 2-ΔΔCt 

method. P-value < 0.05 is represented by *; P-value < 0.01 is represented by **. (C) Luciferase 

assay of EGFR-promoter activity in MDA-MB231 cells. Cells were  transiently transfected with 

1μg of luciferase reporter plasmid and the indicated amounts of ΔNp63α or ΔNp63α F518L 

plasmids. Luciferase assay was performed at 48 hrs post-transfection. Values are the mean +/- 

SD of three independent experimental points. (D) Representative immunoblotting showing the 

level of ΔNp63α in transfected MDA-MB231 cell extracts used for the luciferase assay shown in 

7C. GAPDH immunodetection was used as loading control. (E) MDA-MB231 cells were 

transfected with empty vector or ΔNp63α plasmids. At 24h post-transfection cells were 

harvested and whole cell extracts were analyzed by immunoblotting with p63, STAT3 and 

EGFR antibodies. Actin was used as a loading control. 

 

Supplementary Figures 

S1. YB-1 and ΔNp63α coimmunoprecipitation in HaCaT cells. (A) Extracts from HaCaT 

cells were immunoprecipitated with anti-p63 antibodies and the immunocomplexes were blotted 

and probed with anti-YB-1, as indicated. (B) Extracts from HaCaT cells were 

immunoprecipitated with anti-YB-1 antibodies and the immunocomplexes were blotted and 

probed with anti-p63. Samples with no antibody (no Ab) or irrelevant α-mouse and α-rabbit 

antibodies were included as controls. (C) Immunoblot analysis of YB-1 level in HaCaT cells 

treated with proteasome inhibitor MG132 for 6h (5μM final concentration). 36kDa and 43kDa 

YB-1 forms are reduced with concomitant accumulation of full-length YB-1 50kDa band 

showing the identity of YB-1 bands. 
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S2. YB-1 and p63 knockdown in SCC022 cells. (A) Immunofluorescence assay in SCC022 

cells transfected with scrambled, YB-1 or p63 siRNA oligos. YB1 was detected using anti-YB-1 

and secondary anti-rabbit Cy5-conjugated (green) antibodies. p63 was detected using anti-p63 

and secondary anti-mouse Cy3-conjugated (red) antibodies. Hoechst was used to stain nuclei. (B) 

(upper panel) SCC022 cells were incubated with normal mouse serum and secondary anti-mouse 

Cy3-conjugated (red) antibodies; (lower panel) SCC022 cells were incubated with normal rabbit 

serum and secondary anti-rabbit Cy5-conjugated (green) antibodies. 

 

S3. Effect of p63 and YB-1 silencing on SCC022 cells migration speed. (A) Motility assay on 

SCC022 cells after transient silencing of p63 and YB-1 performed by time-lapse microscopy. 

After 24 h of incubation with siRNA oligos, cell migration assay was performed. Averaged cell 

speeds after 16 h of observation are reported. Horizontal lines and boxes and whiskers represent 

the medians, 25th/75th, and 5th/95th percentile, respectively. P-value < 0.01 is represented by 

**. Only statistically different doubles are marked. (B) Immunoblot analysis of ΔNp63α and 

YB-1 protein levels in SCC022 cells after 40 h of ΔNp63α or YB-1 silencing and used in cell 

migration assay. Cell extracts were blotted and probed with anti-p63 or anti-YB-1 antibodies. 

GAPDH was used as a loading control. ΔNp63α protein band was almost undetectable while 

YB-1 protein was reduced to 40%, as assed by densitometric scanning.  

 

S4. Proteasome activity is not involved in ΔNp63α up-regulation upon YB-1 silencing. 

Immunoblot analysis of SCC022 cells transfected with scrambled or YB1-siRNA oligos and 

treated with MG132 (6 hrs) after 42 hours of YB-1 silencing cells. Whole cell extracts were 

immunoblotted with YB-1 and p63 antibodies. Actin was used as loading control.  
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S5. Effect of YB-1 silencing on EGFR/STAT3 mRNA levels in SCC011 and HaCaT cells. 

Quantitative Real-time  PCR analysis of (A) SCC011 cells and (B) HaCaT cells transfected with 

scrambled or YB-1 siRNA oligos. YB-1, EGFR and STAT3 mRNA levels were analyzed 

according to the fold-changes compared to scrambled control (value set at 1.0) using the 2-ΔΔCt 

method. P-value < 0.05 is represented by *; P-value < 0.01 is represented by **. 
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The p63 Protein Isoform �Np63� Modulates Y-box Binding
Protein 1 in Its Subcellular Distribution and Regulation of Cell
Survival and Motility Genes*
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Background: YB-1 is a multifunctional protein that affects transcription, splicing, and translation.
Results: �Np63�, the main p63 protein isoform, interacts with YB-1 and affects YB-1 subcellular localization and regulation of
cell survival and motility genes.
Conclusion: �Np63� and YB-1 interaction inhibits epithelial to mesenchymal transition and tumor cell motility.
Significance: This is the first demonstration of a physical and functional interaction between YB-1 and �Np63� oncoproteins.

TheY-box binding protein 1 (YB-1) belongs to the cold-shock
domain protein superfamily, one of themost evolutionarily con-
served nucleic acid-binding proteins currently known. YB-1
performs a wide variety of cellular functions, including tran-
scriptional and translational regulation, DNA repair, drug
resistance, and stress responses to extracellular signals. Inas-
much as the level of YB-1 drastically increases in tumor cells,
this protein is considered to be one of themost indicativemark-
ers of malignant tumors. Here, we present evidence that
�Np63�, the predominant p63 protein isoform in squamous
epithelia and YB-1, can physically interact. Into the nucleus,
�Np63� and YB-1 cooperate in PI3KCA gene promoter activa-
tion. Moreover, �Np63� promotes YB-1 nuclear accumulation
thereby reducing the amount of YB-1 bound to its target tran-
scripts such as that encoding the SNAIL1 protein. Accordingly,
�Np63� enforced expressionwas associatedwith a reduction of
the level of SNAIL1, a potent inducer of epithelial to mesenchy-
mal transition. Furthermore, �Np63� depletion causes morpho-
logical change and enhanced formation of actin stress fibers in
squamous cancer cells. Mechanistic studies indicate that �Np63�
affects cell movement and can reverse the increase of cell motility
induced by YB-1 overexpression. These data thus suggest that
�Np63� provides inhibitory signals for cell motility. Deficiency of
�Np63� gene expression promotes cell mobilization, at least par-
tially, through a YB-1-dependentmechanism.

The Y-box binding protein 1 (YB-1), also known as NSEP1,
CSBD, and MDR-NF1, is a member of the highly conserved
Y-box family of proteins that regulate gene transcription by
binding to the TAACC element (the Y-box) contained within
many eukaryotic promoters (1). Transcriptional targets of YB-1
include genes associated with cell death, cell proliferation, and

multidrug resistance (1, 2). YB-1 protein can also regulate gene
transcription by binding to other transcription factors such as
p53, AP1, and SMAD3 (2).
YB-1 is an important marker of tumorigenesis and is overex-

pressed in many malignant tissues, including breast cancer,
non-small cell lung carcinoma, ovarian adenocarcinoma,
human osteosarcomas, colorectal carcinomas, and malignant
melanomas (1). Mostly cytosolic, YB-1 protein shuttles
between the nucleus and cytoplasm. Cytoplasmic YB-1 acts as a
translation factor of oncogenic/pro-metastatic genes (3). It
binds to the mRNA cap structure and displaces the eukaryotic
translation initiation factors eIF4E and eIF4G, thereby causing
mRNA translational silencing (4). However, cytoplasmic YB-1
activates cap-independent translation of mRNA encoding
SNAIL1, a transcription factor that promotes epithelial-mesen-
chymal transition by suppressing E-cadherin (5). According to
those observations, the YB-1 protein level, in breast carcinoma,
is positively correlated to the increase of SNAIL1 protein level
and reduced expression of E-cadherin (6).
In normal conditions, YB-1 is located in the cytoplasm and

transiently translocates to the nucleus at the G1/S transition of
the cell cycle (7). Moreover, nuclear translocation of YB-1 was
shown to occur in response to DNA-damaging agents, phos-
phorylation at Ser-102 by AKT kinase, UV irradiation, TGF�
stimulation, virus infection, hypothermia, and pharmacological
compounds (1, 8, 9). Under stress stimuli, YB-1 nuclear trans-
location requires a physical interaction with wild type p53 (10).
Herein, we report that YB-1 directly interacts with �Np63�

and accumulates in the nuclear compartment. �Np63� is
encoded by the TP63 locus, a homologue of the p53 tumor
suppressor gene and themost ancientmember of the p53 family
(11). Because of the presence of two promoters, the TP63 gene
encodes twomajor classes of proteins as follows: those contain-
ing a transactivating domain homologous to the one present in
p53 (i.e. TAp63), and those lacking it (i.e. �Np63) (12). In addi-
tion, alternate splicing at theC terminus generates at least three
p63 variants (�, �, and �) in each class. The TAp63� isoform
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resembles most p53, whereas the �-isoforms include a con-
served protein-protein interaction domain named the sterile �
motif.
Gene knock-out mice demonstrated that p63 plays a critical

role in the morphogenesis of organs/tissues developed by epi-
thelial-mesenchymal interactions such as the epidermis, teeth,
hair, and glands (13). In adults, �Np63� expression occurs in
the basal cells of stratified epithelia. High expression of
�Np63� is associated with the proliferative potential of epithe-
lial cells (14) and is enhanced at the early stages of squamous
cell carcinomas (SCCs)2 (15). Down-regulation of �Np63� by
SNAIL transcription factor instead was found to reduce cell-
cell adhesion and increase the migratory properties of squa-
mous carcinoma cells (16).Moreover, a partial or complete loss
of �Np63� expression was associated with tumor metastasis
supporting the idea that�Np63� plays a relevant role inmetas-
tasis suppression (17, 18). Here, we provide experimental evi-
dence that the YB-1 protein associates with �Np63� and such
interaction plays a critical role in the control of genes involved
in cell survival and motility.

EXPERIMENTAL PROCEDURES

Plasmids—cDNAs encoding human FLAG-tagged YB-1
were provided byDr. SandraDunn (Research Institute for Chil-
dren’s and Women’s Health, Vancouver, British Columbia,
Canada). PIK3CA promoter luciferase plasmid was provided by
Dr. Arezoo Astanehe (Research Institute for Children’s and
Women’s Health, Vancouver, British Columbia, Canada).
cDNA encoding human �Np63� and �Np63� were previously
described (19). For bacterial expression, �Np63� and �Np63�
cDNAs were inserted in pRSETA vector in XhoI/ClaI and
XhoI/XbaI (filled) sites, respectively. GFP and YB-1-GFP vec-
tors were provided by Dr. Paul R. Mertens (University Hospital
Aachen, Germany). PET-YB-1 was fromDr. Jill Gershan (Med-
ical College of Wisconsin, Milwaukee, WI).
Cell Lines, Transfection, and Antibodies—Squamous carci-

noma cells (SCC011 and SCC022) were described previously
and provided to us by Dr. C. Missero (20).
These cell lines were maintained in RPMI medium supple-

mented with 10% fetal bovine serum at 37 °C and 5% CO2.
A431, H1299, and MDA-MB-231 cells were obtained from
ATCC andmaintained in DMEM supplemented with 10% fetal
bovine serum at 37 °C and 5% CO2. Dox-inducible Tet-On
H1299/�Np63� cells were described previously (21).
Lipofections were performed with Lipofectamine (Invitro-

gen), according to the manufacturer’s recommendations. YB-1
transient silencing was carried out with ON-TARGET plus
SMART pool YB-1-siRNA (Dharmacon) and RNAiMAX rea-
gent (Invitrogen). �Np63� transient silencing in SCC011 cells
was carried out with RIBOXX (IBONI p63-siRNA pool) and
RNAiMAX reagent (Invitrogen), according to the manufactur-
er’s recommendation. An si-RNA against luciferase (si-Luc)
was used as a negative control. Anti-p63 (4A4) and anti-

actin(1–19)were fromSantaCruzBiotechnology Inc., and anti-
FLAG M2 was from Sigma. PARP, AKT, pAKT (Ser-473) and
rabbit polyclonal YB-1 antibody (Ab12148) were fromCell Sig-
naling Technology (Beverly, MA). Mouse monoclonal E-cad-
herin (ab1416) and SNAIL1 antibodies were from Abcam
(Cambridge, UK). Mouse monoclonal N-cadherin (610921)
was from BDTransduction Laboratories. Cy3-conjugated anti-
mouse IgG and Cy5-conjugated anti-rabbit IgG were from
Jackson ImmunoResearch. Doxycycline was from Clontech.
Chromatin Immunoprecipitation (ChIP) Assay—ChIP was

performed with chromatin from human MDA-MB-231 cells
transfected with �Np63�, �Np63�, and/or FLAG YB-1, as
described previously (22). Real time PCR was performed with
the 7500 Applied Biosystems apparatus and SYBR Green Mas-
terMix (Applied Biosystems) using the following oligonucleo-
tides: PIK3CA-For, CCCCCGAACTAATCTCGTTT, and
PIK3CA-Rev, TGAGGGTGTTGTGTCATCCT.
Sequential ChIP was performed with chromatin from

SCC011 cells. Method of chromatin extraction and controls
used were previously described (22).
Chromatin sampleswere subjected to pre-clearingwith 80�l

of salmon spermDNA-saturated agarose A beads for 2 h at 4 °C
with rotation. The first immunoprecipitation stepwas obtained
with p63 antibodies (4A4). After several washes, the immuno-
complexes were extracted from beads with 100 �l of 2%
TE/SDS. The second immunoprecipitation step was obtained
with YB-1 (Ab12148) antibodies after a 30-fold dilution in DB
buffer (50mMTris-HCl, 5mM EDTA, 200mMNaCl, 0.5%Non-
idet P-40, 15 mM DTT). Samples were incubated overnight at
4 °C with rotation. Immunocomplexes were extracted from
beads as described above. Immunoprecipitated protein-DNA
complexes were subjected to reverse cross-linking and protein-
ase K treatment. DNA was purified by phenol/chloroform
extraction and resuspended in 40 �l of TE. 2 �l were used for
PCR performed with the following primers: PIK3CA promoter
For, ACAAACCCCTGGAATGTGAG, and PI3KCA promoter
Rev, TGGAAAAGCGTAGGAGCAGT.
Immunoblot Analyses and Co-immunoprecipitation—Im-

munoblots and co-immunoprecipitations were performed as
described previously (19). To detect p63/YB-1 interaction in
SCC011 cells, 5.0 � 105 cells were plated in 60-mm dishes. For
co-immunoprecipitations, whole cell extracts, precleared with
30�l of proteinA-agarose (50% slurry; RocheApplied Science),
were incubated overnight at 4 °C with anti-YB-1(3 �g) or
�-rabbit IgG (3 �g). The reciprocal experiment was performed
with anti-p63 (2 �g) or �-mouse IgG.
Far Western Assays—Far Western assays were conducted

according to the protocol described by Cui et al. (23). Increas-
ing amounts (0.2, 0.5, and 1.5 �g) of �Np63� or �Np63�
recombinant proteins were subjected to SDS-PAGE and trans-
ferred to PVDF membrane (IPVH00010 Immobilon Millipore,
Milan, Italy). Bovine serum albumin (0.5 and 1.5 �g; BSA) was
used as control of unspecific binding and equal loading of BSA,
and recombinant YB-1 or p63 proteins in far Western blotting
was verified by Coomassie staining (data not shown).
Luciferase Reporter Assay—MDA-MB-231 cells were

co-transfected with �Np63�, PIK3CA luc promoter, and pRL-
TK. YB-1 gene silencing was carried out 24 h before plasmid

2 The abbreviations used are: SCC, squamous cell carcinoma; For, forward;
Rev, reverse; PARP, poly(ADP-ribose) polymerase; Dox, doxycycline; TRITC,
tetramethylrhodamine isothiocyanate; S, speed; P, persistence time; Ab,
antibody; HPRT, hypoxanthine-guanine phosphoribosyltransferase.
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transfection. At 24 h after transfection, cells were harvested in
1� PLB buffer (Promega), and luciferase activity was measured
using the Dual-Luciferase Reporter system (Promega) using
pRL-TK activity as internal control. Firefly-derived luciferase
activity was normalized for transfection efficiency. Successful
transfection of p63 and silencing of YB-1 was confirmed by
immunoblotting.
RNA Immunoprecipitation—1 � 106 MDA-MB-231 cells

were seeded in 100-mm plates and transfected with pcDNA3.1
or �Np63� expression plasmids. 24 h after transfection, cells
were fixed with 1% formaldehyde for 10 min and washed twice
in ice-cold PBS. Cell extracts were prepared in RNA immuno-
precipitation buffer (0.1% SDS, 1% Triton, 1 mM EDTA, 10 mM

Tris, pH 7.5, 0.5 mM EGTA, 150 mM NaCl) supplemented with
complete protease inhibitor mixture (Sigma), and sonication
was carried out with BANDELINE SONOPULSE HD2200
instrument under the following conditions: 8 pulses of 4 s at
0.250% of intensity. Cell extracts were incubated with anti-
YB-1 (3 �g) at 4 °C overnight. The RNA-protein immunocom-
plexes were precipitated with protein A beads (Roche Applied
Science) saturatedwith tRNA and, after reverse cross-link, sub-
jected to real time PCR.
Semi-quantitative and Real Time PCR—For PCR analysis,

total RNA was isolated using the RNA mini extraction kit
(Qiagen, GmbH, Hilden, Germany) according to the manufac-
turer’s instructions. Total RNA (1 �g) was used to generate
reverse-transcribed cDNA using SuperScript III (Invitrogen).
PCR analysis was performed with the following primers: Twist
(For), 5�-AGAAGTCTGCGGGCTGTG, and Twist (Rev), �-
TCTGCAGCTCCTCGTAAGACT; YB (For), 5�-CGCAGTG-
TAGGAGATGGAGAG, and YB (Rev), 5�-GAACACCACCA-
GGACCTGTAA; and HPRT (For), 5�-CCT GCT GGA TTA
CAT TAA AGC, and HPRT (Rev), 5� CTT CGT GGG GTC
CTT TTC.

SNAIL1 amplification was performed using Quantitect
Primers/Hs SNAIL1 from Qiagen (GmbH, Hilden, Germany).
The amplification sequence consisted of 30 cycles of 94 °C for 1
min, 55 °C for 1min, and 72 °C for 1 min. PCR products were
resolved by 2% agarose electrophoresis. RT-PCR amplification
results were analyzed byQuantityOne software (Bio-Rad). Real
time PCR was performed with a 7500 RT-PCR Thermo Cycler
(Applied Biosystem) as already described (22). HPRT was used
for normalization. The results were expressed with the value
relative to HPRT (set at 1) for each mRNA sample.
Immunofluorescence—A431, SCC011, and SCC022 cells

(2.5 � 105) were plated in 35-mm dishes and grown on micro
cover glasses (BDH). 24 h after seeding, cells were washed with
cold phosphate-buffered saline (PBS) and fixed with 4% para-

FIGURE 1. �Np63� and YB-1 are co-expressed in squamous carcinoma cell lines. a, whole cell lysates were obtained from H1299 (non-small cell lung
carcinoma), A431 (epidermoid carcinoma cell line), and SCC011 and SCC022 (keratinocyte-derived SCC) cells. 30 �g of total protein extracts were separated by
SDS-PAGE and subjected to immunoblot (IB). Proteins were detected with specific antibodies as indicated. Images were acquired with CHEMIDOC (Bio-Rad)
and analyzed with the Quantity-ONE software. b, A431, SCC011, and SCC022 cells were seeded (2.5 � 105) on a 35-mm dish and grown on micro cover glasses
(BDH). After 24 h at seeding, cells were fixed and subjected to double immunofluorescence using rabbit primary YB-1 antibody and Fitch-conjugated
secondary antibodies (green). p63 protein was detected using mouse anti-p63 and Cy3-conjugated secondary antibodies (red). Images of merge (yellow) show
the co-expression of two proteins.

FIGURE 2. �Np63� interacts with YB-1. a, extracts from SCC011 cells were
immunoprecipitated (IP) with anti-YB-1 antibodies, and the immunocom-
plexes were blotted and probed with anti-p63 as indicated. b, extracts from
SCC011 cells were immunoprecipitated with anti-p63 antibodies, and the
immunocomplexes were blotted and probed with anti-YB-1. Samples with no
antibody (no Ab) or irrelevant �-mouse and �-rabbit antibodies were
included as controls. IB, immunoblot.
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formaldehyde (Sigma) for 15 min at 4 °C. Cells were permeabi-
lized with ice-cold 0.1% Triton X-100 for 10 min and then
washedwith PBS. p63was detected using a 1:200 dilution of the
monoclonal antibody 4A4.
YB-1 was detected using 1:100 dilution of the YB-1 antibody

(Ab12148). After extensive washing in PBS, the samples were
incubated with Cy3-conjugated anti-mouse IgGs and Cy5-con-
jugated anti-rabbit IgGs at room temperature for 30 min. After
PBS washing, the cells were incubated with 10 mg/ml 4�,6�-
diamidino-2-phenylindole (DAPI) (Sigma) for 3 min. The
glasses were mounted with Moviol (Sigma) and examined
under a fluorescencemicroscope (Nikon). Imageswere digitally
acquired and processed using Adobe Photoshop software CS.
H1299 and MDA-MB-231 cells (5.0 � 105) were plated in

35-mmdishes, grown onmicro cover glasses (BDH), and trans-
fectedwith 0.2�g of pcDNAYB-1/GFPplasmidwith orwithout
0.6 �g of �Np63� or �Np63� plasmid. The GFP empty vector
was used as control (data not shown). 24 h after transfection,
cells were subjected to the immunofluorescence protocol as
described above.
Cytoskeleton Analysis—Actin bundles were stained with

TRITC-conjugated phalloidin. Cell fixation was performed with
4% paraformaldehyde for 20 min and then permeabilized with
0.1% Triton X-100 (Sigma) in PBS one time for 10 min. Actin
staining was done by incubating sample with TRITC-phalloidin
(Sigma) inPBS for 30min at roomtemperature. Images of fluores-
cent cells were collected with a fluorescent inverted microscope
(IX81,Olympus,Tokyo, Japan)equippedwithanORCA2.8digital
camera (Hamamatsu Photonics, Japan).
Time-lapse Microscopy—SCC011 cells were cultured on

35-mm dishes (Corning, NY) at 2 � 104 cells/dish density.
�Np63� transient silencing was performed as described under
“Experimental Procedures.” At 48 h from the addition of
�Np63� si-RNA, the culture dishes were placed in a mini-in-
cubator connected to an automated stage of an optical micro-
scope (Olympus Co., Japan). Images of selected positions of the
cell culture were collected in bright field every 10 min for 12 h.
The bright field images were mounted to obtain 72-frame time
lapse video for each position. Cell trajectories were recon-
structed from time lapse video using Metamorph software
(Molecular Device, CA). Root mean square speed (S) and per-
sistence time (P) were chosen as relevant parameters to
describe the macroscopic features of cell migration in the dif-
ferent experimental conditions. These parameters were calcu-
lated according to the procedure reported byDunn (24). Briefly,
mean-squared displacement of each cell was calculated accord-
ing to overlapping time interval methods (25). Subsequently, S
and P were estimated by fitting the experimental data of the
mean-squared displacement to a linear approximation of the
persistent random walk model. The upper limit for the data
fitting was set at approximately 200min for each cell because of
the deviation from linearity that was observed at higher time
points. The fitting procedure provided (S, P) pairs for each cell
and the statistical significance between S and P values of the
different experimental setups was assessed by performing a
nonparametric Kruskal-Wallis test in Matlab (MathWorks,
MA). p values � 0.05 were considered significant.

Cell migration in H1299 cells was evaluated with a similar
approach. Briefly, cells were cultured on 35-mm dishes (Corn-
ing, NY) at a density of 2 � 104 cells/dish. �Np63� expression
was inducedwith 2�g/ml doxycycline for 48 h. 16 h after trans-
fection, cell dishes were placed in a mini-incubator connected
to an automated stage of an optical microscope (Cell[caret]R,
Olympus Co., Japan). Time 0 images of selected position were
collected in fluorescence to localize transfected cells. Then, at
the same positions, images were recorded in bright field every 10
min for 12 h. Data analysis was performed as described above.

RESULTS

YB-1 Interacts with�Np63� in Vitro and inVivo—As a result
of a comprehensive screening for �Np63� interactors, using
affinity purification followed by mass spectrometry, we identi-
fied a set of proteinswithDNA/RNAbinding activity, including
YB-1 (26). We decided to confirm the interaction between
�Np63� and YB-1 in SCC as in this cellular context the TP63
gene is often amplified and/or overexpressed (27). Immunob-
lots and immunofluorescence assays performed in A431,
SCC022, and SCC011 cell lines showed intense signals for both
proteins thus confirming that endogenous YB-1 and �Np63�
are abundantly co-expressed in human squamous carcinoma
cells (Fig. 1, a and b).
We next performed co-immunoprecipitation experiments in

SCC011 cells. Immunocomplexes containing �Np63� and

FIGURE 3. �Np63� but not �Np63� interacts with YB-1. a, H1299 cells
were transiently transfected with 5 �g of �Np63� (left panel) or �Np63� (right
panel) expression vectors. Equal amounts (1 mg) of extracts were immuno-
precipitated (IP) with anti-p63 antibodies (4A4) or unrelated �-mouse IgG.
The immunocomplexes were blotted and probed with anti-p63 and anti-YB-1
antibodies, as indicated. b, far Western analysis. Increasing amounts of puri-
fied recombinant �Np63� (0.2, 0.5, and 1.5), �Np63� (0.2, 0.5, and 1.5), or BSA
(0.5 and 1.5) were subjected to SDS-PAGE. After Coomassie staining to mon-
itor equal loading, the proteins were transferred to a PVDF membrane, and
the filter was incubated with purified YB-1 recombinant protein (0.8 �g/ml).
After extensive washing, the membrane was subjected to immunoblotting
(IB) with YB-1 antibodies followed by ECL detection. Recombinant YB-1 pro-
tein (0.1 �g) was used as positive control. m.w., molecular weight markers.
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YB-1 were isolated from total cell lysates, using either antibod-
ies against YB-1 or antibodies against p63 thus confirming the
interaction inferred by mass spectrometry (Fig. 2, a and b). To
determine whether YB-1 interacts specifically with the �-iso-
form of �Np63, we transfected p63 null H1299 cells with
�Np63� or �Np63� to perform co-immunoprecipitation
assays. As shown in Fig. 3a, YB-1 associates with �Np63� but
not�Np63�. This result was also confirmedby farWestern blot
analysis using �Np63�, �Np63�, and YB-1 recombinant pro-
teins purified by affinity chromatography (Fig. 3b). The
obtained results indicate that the �-isoform C-terminal region
is involved in the association with YB-1, and the interaction
between the two proteins requires no additional factors.

�Np63� Induces YB-1 Nuclear Accumulation—It has been
reported that YB-1 is ubiquitously expressed and predomi-
nantly localized to the cytoplasm (2), �Np63� is mainly
expressed by basal and myoepithelial cells in skin and glands
and is almost completely restricted to the nuclear compartment
(29). Because we noticed some overlapping between the p63
and YB-1 immunofluorescence signals in the nucleus of squa-
mous carcinoma cell lines, we sought to determine whether
�Np63� has an effect on YB-1 subcellular localization. Fusion
of YB-1 with the green fluorescent protein (YB-1-GFP) was
transfected in H1299 cells. H1299 cells are p63 null and express
moderate levels of endogenous YB-1. GFP-positive cells were
counted, and 95% showed a strong cytoplasmic signal, although
in the remaining 5%, the signal was nuclear or distributed
between the nucleus and cytoplasm (Fig. 4, a and b). A very
similar result was observed following �Np63� co-transfection
(Fig. 4, b and c, lower panel). Remarkably, combined expression

of YB-1-GFP and �Np63� caused a dramatic change of YB-1-
GFP subcellular localization. In fact, among the GFP-positive
cells, more than 40% showed an intense nuclear signal (Fig. 4, b
and c, upper panel); an additional 20% exhibited YB-1-GFP
almost equally distributed between the nucleus and cytoplasm,
and the remaining 40% exhibited exclusively cytoplasmic YB-1-
GFP (Fig. 4b). As expected, �Np63� and �Np63� immunoflu-
orescence signals were almost exclusively nuclear (Fig. 4c).

�Np63� is a selective nuclear marker of human breast
myoepithelial cells. �Np63� persists in benign lesions of the
breast, although it consistently disappears in invasive carcino-
mas (30). We transfected �Np63� in MDA-MB-231 cells,
human metastatic breast carcinoma cells lacking p63 but
expressing high level of endogenous YB-1. As shown in Fig. 5, in
cells with no detectable p63 signal, YB-1 exhibited a largely
prevalent cytoplasmic localization (Fig. 5a, white arrows),
although 95% of �Np63�-expressing cells showed a strong
YB-1 nuclear staining (Fig. 5a, yellow arrows). We verified this
observation by nuclear/cytoplasmic fractionation of MDA-
MB-231 cells transfected with �Np63� or �Np63�. Endoge-
nousYB-1 protein, inMDA-MB-231 cells, was detectable as 50-
and 36-kDa immunoreactive forms. Both forms of YB-1 appear
to accumulate in the nuclear compartment of cells transfected
with �Np63� but not �Np63� (Fig. 5b). Immunoblots with
antibodies against PARP-1 (nuclear) and AKT (cytoplasmic)
were performed to check for the quality of the fractionation.
Interestingly, although the amount of total AKT was compara-
ble, phosphorylated AKT, at serine 473, was enhanced in
�Np63� but not �Np63�-transfected cells (Fig. 5b). This
observation was in line with previous data showing the specific

FIGURE 4. �Np63� induces YB-1 nuclear accumulation. a, H1299 cells (2.3 � 105) were seeded at 60% confluency in 24 � 24-mm sterile coverglasses placed
in 60-mm dishes and transiently transfected with GFP-YB-1 expression vector (0.3 �g). GFP-YB-1 was detected by direct immunofluorescence. b, H1299 cells
(2.3 � 105) were seeded as described in a and transiently transfected with GFB-YB-1 (0.3 �g) along with 1 �g of �Np63� or �Np63� expression vectors. Plot
shows the percentage of nuclear (dark gray), nucleo-cytoplasmic (gray), and cytoplasmic (white) GFP-YB-1 in cells transfected with �Np63� or �Np63�
expression vectors. Each experimental point is the average of counts performed on 100 cells in five independent fields. Each histogram bar represents the mean
and standard deviation of values from three biological replicates. c, H1299 cells (2.3 � 105) were transfected as described in b. GFP-YB-1 was detected by direct
immunofluorescence (green), and p63 was detected using anti-p63 antibodies and secondary anti-mouse Cy3-conjugated (red). DAPI was used to stain nuclei.
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ability of the �Np63� isoform to promote PI3K/AKT pathway
activation (31).
We then evaluated the contribution of�Np63� to YB-1 sub-

cellular distribution in SCC011 cells expressing both proteins
endogenously. To this aim we analyzed YB-1 subcellular distri-
bution by immunoblot on nuclear/cytoplasmic fractions after
depletion of �Np63� by siRNA. As shown in Fig. 6, a and b, fol-
lowing p63 knockdown the YB-1 nuclear pool was dramatically
reduced, and the36-kDa formofYB-1becamedetectable (Fig. 6a).

�Np63� and YB-1 Bind to the PIK3CA Gene Promoter and
Cooperate in Its Transcriptional Activation—ThePIK3CA gene
encodes the p110� catalytic subunit of the PI3K and is a well
characterized YB-1 direct transcriptional target (32). We spec-
ulated that�Np63� should increase PIK3CA promoter activity
because of its ability to cause YB-1 nuclear accumulation. We
tested this hypothesis by luciferase assays. As shown in Fig. 7a,
�Np63� transfection in MDA-MB-231 cells caused a relevant
increase of the PIK3CA promoter activity that was consistently
attenuated by YB-1 knockdown. In addition, we observed that
�Np63� was able to transactivate the PIK3CA promoter in a
dose-dependent manner, although �Np63� was completely
ineffective (Fig. 7b).
The role of �Np63� and YB-1 in PIK3CA promoter activa-

tion was thoroughly investigated by chromatin immunopre-
cipitation (ChIP). We first performed ChIP assays in MDA-
MB-231 cells transfected with �Np63� or �Np63� using
anti-p63 (4A4) antibodies and PIK3CA promoter-specific
primers. As shown in Fig. 8a, �Np63�, but not �Np63�, binds
to the genomic sequence of the PIK3CA promoter.
Then we evaluated the effect of �Np63� expression on the

binding of YB-1 to the PIK3CA promoter. FLAG-YB-1 was
transfected, in MB-MDA-231 cells, with or without �Np63�
plasmid. ChIP was carried out with anti-FLAG antibodies and
coupled with quantitative real time PCR. As show in Fig. 8b,
FLAG-YB-1 efficiently binds to the PIK3CA promoter, and its
binding was substantially increased by �Np63�. Finally, by
using a sequential chromatin immunoprecipitation assay (Re-
ChIP) in SCC011 cells, expressing endogenous �Np63� and
YB-1, we found that both proteins are recruited to the PIK3CA

proximal promoter suggesting that they cooperate in PIK3CA
gene transactivation as a complex (Fig. 8c).

�Np63� Affects YB-1 Binding to SNAIL and YB-1 mRNAs—
Cytoplasmic localization of YB-1 was associated with binding
and translational activation of SNAIL1mRNA (33). Snail1 pro-
tein is a transcriptional repressor of �Np63� and E-cadherin
and promotes the epithelial-mesenchymal transition in several
epithelium-derived cancer cell lines (34).We first observed that
�Np63� overexpression in MB-MDA-231 caused a reduction
of SNAIL1 protein level (Fig. 9a). Such a reduction was not
associated with a decrease of SNAIL1 mRNA levels (Fig. 9b)
thereby suggesting that the SNAIL1 protein was down-regu-
lated at the translational level. We hypothesized that the spe-

FIGURE 5. Endogenous YB-1 accumulates in the nucleus of breast cancer cells expressing �Np63�. a, MDA-MB-231 cells were seeded at 60% confluency
(2.3 � 105) on 24 � 24-mm sterile coverglasses placed in 60-mm dishes and transiently transfected with 1 �g of �Np63� expression vector. Cells were fixed and
subjected to double indirect immunofluorescence using rabbit primary YB-1 antibody and Fitch-conjugated secondary antibodies (green). p63 protein was
detected using mouse anti-p63 and Cy3-conjugated secondary antibodies (red). DAPI was used to stain nuclei (blue). A representative image is given of a cell
expressing �Np63� and showing nuclear endogenous YB-1 (yellow arrows). A representative image is given showing YB-1 cytoplasmic localization in cells
bearing no detectable �Np63� expression (white arrows). b, MB-MDA-231 cells were transiently transfected with a fixed amount (5 �g) of an empty vector
(mock) and �Np63� or �Np63� expression vector in 100-mm dishes. 24 h after transfection, cell lysates were fractionated to obtain cytoplasmic (cy) and
nuclear (nu) fractions. 20 �g of nuclear and cytoplasmic extracts were separated by SDS-PAGE and subjected to immunoblot. Proteins were detected with
specific antibodies, as indicated. PARP and total AKT were used as nuclear and cytoplasmic controls, respectively, to check for cross-contamination. Images
were acquired with CHEMIDOC (Bio-Rad) and analyzed with the Quantity-ONE software.

FIGURE 6. �Np63� depletion reduces the pool of nuclear YB-1. a, SCC011
cells were seeded at 60% confluency (1.5 � 106) in 100-mm dishes. 24 h after
seeding, cells were transiently silenced with IBONI p63-siRNA pool (20 nm final
concentration). 48 h after p63-silencing, cell lysates were fractionated to obtain
cytoplasmic (cy) and nuclear (nu) fractions. Nuclear and cytoplasmic extracts
were separated by SDS-PAGE and subjected to immunoblot. Proteins were
detected with specific antibodies, as indicated. PARP and total AKT were used as
nuclear and cytoplasmic control respectively, to check for cross-contamination.
Images were acquired with CHEMIDOC (Bio-Rad) and analyzed with the Quanti-
ty-ONE software. b, plots show the percentage of YB-1 subcellular distribution in
control sample (upper panel) and in p63-silenced sample (lower panel) consider-
ing the total amount of YB-1 between the nucleus and cytoplasm as 100%.
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cific association of �Np63� with YB-1 would reduce the
amount of YB-1 bound to the SNAIL1 transcript. To test this
hypothesis, we performed RNA-immunoprecipitation coupled
with real time PCR to quantitate the amount of SNAIL1mRNA
bound to endogenous YB-1, in mock and �Np63�-transfected
MDA-MB-231 cells. The obtained results confirm that
�Np63� reduces the amount of YB-1 bound to SNAIL1 tran-

script (Fig. 9c). A similar analysis performed on the YB-1 tran-
script gave the same result (Fig. 9d).

�Np63� Affects Cell Shape and Motility—So far, little atten-
tion has been focused on the effects of �Np63� on epithelial
cancer cell morphology and motility. We have unexpectedly
noted a profound change in cell morphology when SCC011
cells were depleted of �Np63� by siRNA. SCC011 cells are

FIGURE 7. �Np63� and YB-1 activates the PIK3CA gene promoter. a, MB-MDA� cells were transfected with 1 �g of PIK3CA promoter luciferase reporter
plasmid. The luciferase activity upon siRNA-mediated knockdown of endogenous YB-1 was measured in the presence or absence of �Np63� expression.
Values are shown as mean � S.D. of three biological replicates. The extent of YB-1 knockdown was documented by Western blotting as shown in the lower
panel. b, MB-MDA-231 cells were seeded at 60% confluency (1.2 � 106) in 100-mm dishes and transiently transfected with 1 �g of PIK3CA promoter luciferase
reporter plasmid and the indicated amounts of �Np63� or �Np63� plasmid. Values are the mean � S.D. of three independent experimental points. Lower
panel, immunoblotting (IB) with indicated antibodies to detect proteins in samples transfected with different amounts of �Np63� or �Np63�.

FIGURE 8. �Np63� increases YB-1 binding to the PIK3CA gene promoter. a, MDA-MB-231 cells were seeded at 60% confluency (1.2 � 106) in 100-mm dishes
and transiently transfected with �Np63� or �Np63� plasmid (5 �g). After formaldehyde cross-linking, the DNA-proteins complexes were immunoprecipitated
(IP) with anti-p63 (4A4) antibody. Immunoprecipitated DNA was PCR-amplified with PIK3CA promoter oligonucleotides and 18 S rRNA oligonucleotides (right).
The data obtained from the ChIP assay were measured by densitometry and are presented as signal relative to the input (left). b, MDA-MB-231 cells were seeded
at 60% confluency (1.2 � 106) in 100-mm dishes and transiently transfected with 3�FLAG empty vector or 3�FLAG-YB-1 (5 �g) plasmid with or without
�Np63� (2.5 �g) expression vector. The cells were cross-linked with formaldehyde, and DNA-protein complexes were immunoprecipitated with anti-FLAG
antibody or irrelevant IgG antibody as negative control. The DNA immunoprecipitates were analyzed by quantitative PCR using PIK3CA or GAPDH promoter
oligonucleotides. Quantitative RT-PCR results were analyzed with the ��CT method and expressed as fold of enrichment with respect to the IgGAb control
samples. Values are represented as the mean of three independent experiments. c, SCC011 cells at 85% confluency were fixed with formaldehyde, and the
DNA-protein complexes were subjected to sequential ChIP with anti-p63 (4A4), anti-YB-1(Ab12148), or irrelevant IgG antibody as described under “Experi-
mental Procedures.” Immunoprecipitated DNA was PCR-amplified with PIK3CA promoter primers and 18 S rRNA primers to check the quality of the input
chromatin and the cleaning of the other samples.
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round in shape, and under high density culture conditions, they
appear orderly arranged with tight cell-cell contacts. Con-
versely, �Np63�-depleted cells tend to lose their contacts and
exhibited an unusual extended phenotype that was distinct
from that of the control cells cultured at the same density (Fig.
10a). The unusual change in morphology of �Np63�-depleted
cells indicated possible alterations in actin cytoskeleton organi-
zation. Therefore, we examined the status of actin stress fibers
at the level of individual cells, in control and �Np63�-depleted
cells, with TRITC-phalloidin followed by fluorescent micros-
copy. As shown in Fig. 10b, the control cells exhibited a diffuse
pattern of actin staining, although �Np63�-depleted cells dis-
played a more substantial enhancement of actin stress fibers sug-
gesting an inhibitory effect of �Np63� on cancer cell motility.
Remarkably, compared with the control cells, �Np63�-depleted
SCC011 cells express higher levels of N-cadherin and lower
amounts of E-cadherin, suggesting that theywere undergoing epi-
thelial to mesenchymal trans-differentiation (Fig. 10c).
We determined the influence of �Np63� on cell motility by

time-lapse microscopy using siRNA-based silencing of endog-
enous �Np63� in SCC011 cells. Silencing efficiency was about
90% as determined by fluorescent staining for p63 protein (data

not shown). SCC011 migration was characterized by oscilla-
tions of the cells around their initial adhesion site. These oscil-
lations occurred at random directions in space, as reported in
the windrose plots of the trajectories (Fig. 10d, inset). Con-
versely, �Np63� silenced cells display much wider oscillations
(Fig. 10d). These observationswere confirmed by the analysis of
themigration parameters “Speed (S)” and “persistence time (P)”
that are computed from cell tracks and are a measure of the
frequency of cell steps and of the minimum time that is neces-
sary for a cell to significantly change direction. According to
these parameters, SCC011 exhibit lower speeds (p � 0.05) and
shorter persistence times (0.26 � 0.03 �m/min and 6.5 � 0.7
min) with respect to �Np63�-depleted cells (0.44 � 0.05
�m/min and 8.2 � 2.3 min). These data indicate a role for
�Np63� in affecting cell motility. In particular, the absence of
�Np63� causes the cells to migrate faster with less frequent
direction changes, which enables the cells to explore larger
areas in a fixed time interval.
To gain a better insight into the effects of the interaction of

�Np63� and YB-1 on cell migration, we used the genetically
modified Tet-On-H1299 cells expressing �Np63� upon Dox
addition (Fig. 11a). Cells were transfected with GFP or GFP-

FIGURE 9. �Np63� affects SNAIL1 protein level and YB-1 binding to SNAIL1 and YB-1 mRNAs in MDA-MB-231 cells. a, MDA-MB-231 cells were transfected
with an empty vector (mock) or a fixed amount (1 �g in 60-mm dishes) of �Np63� or �Np63� expression vector. 24 h after transfection, cells were harvested,
and total extracts were prepared. 20 �g of each extract were loaded on SDS-PAGE and subjected to immunoblot with the indicated antibodies. b, MB-MDA-231
cells were transfected with an empty vector or �Np63� encoding plasmid. 24 h after transfection, total RNA was purified and retrotranscribed as described
under “Experimental Procedures.” The expression level of �Np63� was checked by immunoblot (right panel). WB, Western blot. PCR was performed with
primers designed to specifically amplify SNAIL1, TWIST, or HPRT transcripts and analyzed by agarose gel electrophoresis (left panel). Plot showing the level of
SNAIL1 and TWIST transcripts was normalized respect to HPRT. Values are the mean of three independent experiments (lower panel). Nuclear extracts from
�Np63� transfected MB-MDA-231 cells were immunoprecipitated with anti-YB-1 antibody. After reverse cross-linking, the YB-1-bound RNA was purified,
retrotranscribed, and subjected to quantitative RT-PCR analysis using oligonucleotides designed to specifically amplify SNAIL1 transcript (c) or YB-1 transcript
(d). Plots represent the % of enrichment of SNAIL1/YB-1 transcript normalized as indicated under “Experimental Procedures.” 1:50 of the input extract was
loaded as control. The values are the means � S.D. of three biological replicates.
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FIGURE 10. �Np63� affects cell shape and motility. a, SCC011 cells were transiently silenced with IBONI p63-siRNA pool (20 nm final concentration). Cells
were fixed and subjected to double immunofluorescence 48 h after silencing, as already described. b, protein extracts from control and p63-depleted cells were
separated by SDS-PAGE and subjected to immunoblot. Proteins were detected with specific antibodies. c, actin staining with TRITC-conjugated phalloidin of
control and �Np63�-depleted SCC011 cells (see “Experimental Procedures”). Cell expressing �Np63� displayed a round morphology. Conversely, �Np63�-
depleted cells had a polarized morphology with more evident lamellipodia and trailing edge. d, windrose plot of trajectories described by �Np63� depleted
SCC011 or SCC011 control cells (inset) in 12-h time lapse video. Only 15 cell trajectories were reported in each plot for graphical clarity. E-cad, E-cadherin; N-cad,
N-cadherin.

FIGURE 11. Effects of �Np63� and YB-1 on cell migration. a, after being subjected to the migration experiment, extracts from Tet-On H1299 cells, induced
(�dox) or not (�dox) with doxycycline, were prepared and subjected to immunoblot analysis to monitor �Np63� induced expression. b, trajectories of
GFP/YB-1- or GFP (insets)-transfected cells. Inducible H1299/�Np63� cells were transfected with a fixed amount of GFP-YB-1(1 �g) or GFP empty vector (1 �g).
4 h after transfection, 2 �g/ml doxycycline was added to induce �Np63� expression, and 16 h later uninduced (�Dox) and induced (�Dox) cells were tracked
with optical microscopy. Plots represent data from the following number of cells (YB-1/�dox 79; YB�1/�dox 69; control/�dox 44; control/�dox 49). c, bar
chart of speed (S; gray bars) and persistence ratios (P; white bars). The ratios are computed by dividing the population average values of speed and persistence
for H1299 control cells (� Dox) and �Np63�-expressing cells (� Dox).
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YB-1 plasmid, and unfluorescent and fluorescent cells were
tracked separately. Cells migrated describing trajectories that
are randomly distributed in plane, as depicted in plots of Fig.
10b. In Dox-free medium (�Dox), GFP-YB-1-expressing cells
were characterized by a significantly higher S and lower P
(0.69 � 0.04 �m/min and 8.4 � 0.5 min) than cells expressing
GFP alone (0.54 � 0.05 �m/min and 15 � 2.1 min). Remark-
ably, in Dox-supplemented medium (�Dox), GFP-YB-1-ex-
pressing cells exhibited S andP values (0.62� 0.05�m/min and
9.2 � 1.0 min), which were not significantly different from
those of cells transfected with GFP alone (0.68 � 0.05 �m/min
and 8.6 � 0.9 min) (Fig. 10c). We also noticed that unfluores-
cent cells were characterized by the highest S values suggesting
that expression of the green fluorescent protein alters cell
migration to some extent (data not shown). However, S of
unfluorescent cells with or withoutDoxwas comparable. Over-
all, these data indicate that �Np63� expression can revert the
increase of cell motility induced by YB-1-enforced expression.

DISCUSSION

In normal epithelium, �Np63� protein expression is abun-
dant in basal cells and decreases with differentiation (35). Tran-
sient overexpression of �Np63� was shown to enhance cell
proliferation, inhibit differentiation, and promote malignant
conversion of primary keratinocytes (36, 37). However,
enhanced and stable expression of �Np63�, as seen in human
squamous cell carcinomas, is believed to alter skin homeostasis
and be directly implicated in the etiology of human cutaneous
carcinomas. In normal cells, YB-1 is mainly detected in the
cytosol, particularly at the perinuclear region, with a minor
pool located in the nucleus (38). Nuclear localization of YB-1
appears to be critical for its role in promoting proliferation. In
fact, in the nucleus YB-1 may not only act as a transcription
factor of various genes that are closely associated with DNA
replication, cell proliferation, andmultidrug resistance but also
exert SOS signaling against genotoxic factors that could under-
mine the integrity of highly proliferative basal cells.
This report unveils a novel protein-protein association

involving�Np63� andYB-1. This specific association results in
the accumulation of nuclear YB-1, as shown by immunofluo-
rescence assays and nuclear-cytoplasmic fractionation. More-
over, we have demonstrated that �Np63� and YB-1 cooperate
in PIK3CA gene activation with both being recruited to the
PIK3CA proximal promoter, thereby supporting the hypothesis
that this molecular association can function as a pro-survival
mechanism. It’s worth mentioning, however, that additional
mechanisms have been described to activate and translocate
YB-1 to the nucleus (8).
Into the cytoplasm, YB-1 is known to act as a positive trans-

lational regulator of SNAIL1, a potent epithelial to mesenchy-
mal transition inducer able to reduce cell-cell adhesion and
increase migratory properties of cancer cells (33). Accordingly,
we have observed that enforced expression of YB-1 in tumor
cells increases their motility and migration speed. Remarkably,
we have shown that �Np63�-enforced expression reduces the
activating binding of YB-1 to the SNAIL1 transcript and
restores a normal migratory behavior to YB-1-overexpressing
cells. However, depletion of endogenous �Np63� in SCC cells

results in SNAIL1 up-regulation, E-cadherin repression, and
increased cell motility.
Finally, cytoplasmic YB-1 is known to bind to actin filaments

and causes actin fibers to bundle in vitro (39). It was also dem-
onstrated that YB-1 plays a relevant role in the organization of
the actin cytoskeleton by binding to F-actin and microtubules
(40, 41). In normal conditions, SCC011 cells are round in shape
and exhibit a more diffuse actin distribution, as determined by
phalloidin staining. Here, we show that �Np63� depletion in
SCCcellspromotesmorphological changesandcauses aprofound
cytoskeleton reorganization. �Np63�-depleted cells had a polar-
izedmorphologywithmoreevident lamellipodiaand trailingedge.
They also exhibited mature stress fibers suggesting a pro-migra-
tory behavior. The alterations in cell morphology and motility of
�Np63�-depleted SCC cells closely resemble the process of epi-
thelial to mesenchymal transition (28). We can speculate that the
absence of �Np63� can promote F-actin polymerization by YB-1
thereby promoting the formation of stress fibers.
All together, our data indicate that �Np63�-YB-1 associa-

tion into the nucleus can act as a pro-proliferative/survival
mechanism, although the loss of p63 predisposes the acquisi-
tion ofmesenchymal characteristics at least in part by restoring
YB-1 cytoplasmic functions.Moreover, we suggest that the bal-
ance between�Np63� and YB-1 protein levels could be critical
for the transition to a mesenchyme-like phenotype explaining,
at least in part, why �Np63� depletion promotes cancer cell
invasion and spreading (35).
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