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INTRODUCTION

Masonries have been largely utilized in the history of architecture, in the 

past.

Despite their present uncommon use in new buildings, they still represent 

an important research topic due to several applications in the framework of 

structural engineering, with particular reference to maintaining and restoring 

historical and monumental buildings.

Hence, even if new materials (for example the reinforced concrete) are, 

today, wider spread than masonry ones, the unquestionable importance of a lot 

of real masonry estate requires researcher’s particular attention for this kind of 

structures. Therefore, in order to design an efficient response for repairing 

existing masonry structures, a large number of theoretical studies, experimental 

laboratory activities and computational procedures have been proposed in 

scientific literature. 

Masonry is a heterogeneous medium which shows an anisotropic and 

inhomogeneous nature. In particular, the inhomogeneity is due to its biphasic 

composition and, consequently, to the different mechanical properties of its 
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constituents, mortar and natural or artificial blocks. The anisotropy is, instead, 

due to the different masonry patterns since the mechanical response is affected 

by the geometrical arrangement of the constituents. Basically, in literature, two 

approaches are usually taken into account for materials which have a 

heterogeneous micro-structure: the heuristic approach and the 

thermodynamical one. In the former, aprioristic hypotheses on the dependence 

of the constitutive response on a certain number of parameters are considered 

and the material’s mechanical behaviour is obtained by such hypotheses and by 

experimental tests. This approach is particularly used in non-linear field, where 

structural analyses are employed (Heyman, 1966). Our attention was focused 

on the latter approach. It extends the use of the homogeneous classical 

elasticity to heterogeneous materials by replacing the elastic constants of the 

classical homogeneous theory with the effective elastic ones, which average the 

actual inhomogeneous properties of the medium. Hence, such approach yields 

the overall compliance tensor and the overall stiffness tensor in a mathematical 

framework by means of mathematical operations of volume averaging and 

thermodynamical consistency. In this way, starting from the concepts of the 

average strain for prescribed macrostress and of the average stress for 

prescribed macrostrain, the global behaviour is provided from the masonry 

micro-structure geometry and from the known properties of the individual 

constituents.

In this framework, advanced analytical and numerical strategies - based on 

the finite element method - have been recently developed.

The main object of the present work is, in a first moment, to furnish an 

overall description of the different homogenization approaches utilized in 

literature for modelling masonry structures in linear-elastic field. Then, it will 

be given a number of new possible proposals for theoretical models which 
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yield global constitutive relationships. Later, computational analyses are 

employed in order to compare the analytical results obtained from the proposed 

homogenization techniques with the literature data.

The work is articulated in seven chapters. Briefly, it is given a description 

of each one, here:

• Chapter I – it deals with the continuum mechanics for solids whose 

micro-structure is characterized by some heterogeneities. This means 

that they can appear to be constituted by various components, inclusions 

with different properties and shapes, or yet, they can show some defects 

such as cracks or cavities. A lot of advanced materials have this 

heterogeneous micro-structure, like ceramics, some metals, reinforcing 

fibres, polymeric composites and so on, for example. For such 

materials, a micro-mechanical analysis must be involved. Hence, the 

two approaches which are usually employed in literature for the micro-

mechanical analysis of such media (the thermodynamical and heuristic

approaches) are here described.

• Chapter II – it provides a short introduction to the notion of 

homogenization and of the essential concepts connected to it. Since 

most of the composite materials shows a brittle, rather than ductile, 

behaviour and, so, the elastic behaviour prevails, there is often no need 

to consider the homogenization in an elasto-plastic range. On the 

contrary, such an approach cannot be ignored when the plastic 

behaviour comes into play, like in the composites which have a metallic 

matrix, for example. This leads to some difficulty since the solution of 

the elasto-plastic homogenization problem in an exact form is available 

only for very simple cases. However, we will be interested in the elastic 

response of the homogenized material.
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• Chapter III – it deals with the mechanic characterization of masonries, 

whose heterogeneity makes it quite a difficult task. Masonry is, indeed, 

constituted by blocks of artificial or natural origin jointed by dry or 

mortar joints. Hence, such a biphasic composition implies masonry is an 

inhomogeneous material. Moreover, since the joints are inherent plane 

of weakness, notably the mechanical masonry response is affected by 

behaviour preferred directions, which the joints determine. This fact 

implies masonry is also an anisotropic material. So, the chapter III 

describes the fundamental mechanical approaches (Discrete and 

Continuous models) which have been developed in literature, in order to 

formulate an appropriate constitutive description of masonry structures 

in linear-elastic field. In particular, our attention will be focused on the 

different homogenization proposals for modelling masonry structures, 

which are given in literature by some authors (Pietruszczack & Niu, 

Anthoine, Zucchini & Lourenco, et al…), in order to obtain a general 

account on the existent homogenization procedures and, 

contemporaneously, to underline the advantages and disadvantages for 

each one of them. 

• Chapter IV – It furnishes some possible proposals for modelling 

masonry structures, in linear-elastic field, starting from the results of 

literature approaches. The main object has been to obtain new 

homogenization techniques able to overcome the limits of the literature 

homogenization procedures.

• Chapter V – It provides a short introduction to the formulation of Finite 

Element Method, propaedeutic knowledge in order to employ numerical 

analyses with F.E.M. calculation codes.
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• Chapter VI – It provides some computational analyses (stress and 

strain-prescribed), carried out by means of the calculation code Ansys, 

in its version 6.0. This software offers a large number of appliances in a 

lot of engineering fields and it is just based on the mathematical F.E.M. 

model. Such finite element analyses have been employed in order to 

compare the analytical results obtained by our proposed 

homogenization techniques with the literature data.

• Chapter VII – It deals with a review of the international codes referred 

to the design of masonry structures. In this framework, the object of this 

chapter is to furnish a short summary and a comparison between the 

examined codes different from a number of countries. 
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CHAPTER I

Micro-mechanics theory

1.1 Introduction

Continuum mechanics deal with idealized solids consisting of material 

points and material neighbourhoods, by assuming that the material distribution, 

the stresses and the strains within an infinitesimal material neighbourhood of a 

typical point were essentially uniform [47], [48]. On the contrary, at a micro-

scale, the infinitesimal material neighbourhood turns out to be characterized by 

some micro-heterogeneities, in the sense that it can appear to be constituted by 

various components, inclusions with differing properties and shapes, or yet, it 

can show some defects such as cracks or cavities. Hence, the actual stress and 

strain fields are not likely uniform, at this level.

A lot of advanced materials have this heterogeneous micro-structure. For 

example, the ceramics, some metals, ceramic, reinforcing fibres, polymeric 

composites and so on. For such materials, a micro-mechanical analysis must be 

involved.

Basically, two approaches are usually employed for the micro-mechanical 

analysis of such media [25].
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The first one extends the use of homogeneous classical elasticity to 

heterogeneous materials by replacing the elastic constants of the classical 

homogeneous theory by effective elastic constants which average the actual 

inhomogeneous properties of the medium [47], [11]. According to this 

procedure, the definition of the overall compliance tensor and the overall 

elasticity tensor can be attained in a rigorous mathematical framework from the 

concept of average strain for prescribed macrostresses and from the concept of 

average stress for prescribed macrostrain, respectively. This kind of approach 

provides the materials’ overall behaviour from the micro-structure geometry 

and from the known properties of the individual constituents, so that, at a 

macro-scale, the heterogeneous medium can be replaced by a homogeneous 

one having the mechanical anisotropic properties previously determined. In 

other words, it is possible to express in a systematic and rigorous manner the 

continuum quantities of an infinitesimal material neighbourhood in terms of the 

parameters that characterize the microstructure and the micro-constituents

properties of the examined material neighbourhood.

However, in order to obtain the effective estimates of the overall material 

properties, the recourse to quite restrictive hypotheses and special averaging 

procedures is subsequently required [33], [10].

The second approach is somewhat more heuristic and is based on the 

hypothesis that the overall mechanical properties of the heterogeneous medium 

must be dependent on a certain number of parameters. Later, general 

relationships between these parameters and the overall elasticity tensor are 

obtained by means of fundamental theorems of the theory of elasticity. 

Moreover, certain of the effective material properties must be determined 

experimentally and cannot be predicted from the properties of the constituent 

materials [16], [54]. The limitation of the approach is counterbalanced by the 
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fact that the resulting theories are able to make predictions in situations where 

the equivalent homogeneity approach cannot. A remarkable case is that one in 

which the deformation of the void volume is significant [15]. 

In the present chapter, a general treatment of micro-mechanics theory is 

employed in the spirit of the first of the above mentioned approaches.

According to it, there are several micro-mechanical models which are used 

for predicting the global mechanical behaviour of the heterogeneous materials, 

as the dilute approximation, the self-consistent scheme, the spherical model, 

the Mori-Tanaka and the differential scheme. All these models involve some 

approximations useful for carrying out the analysis and, therefore, they provide 

approximate effective global properties. The validity of the prediction depends 

on the chosen model.

1.2 Definition of the Representative Volume Element: geometrical and 
stress-condition considerations

A common procedure for developing the analysis of heterogeneous solids in 

micromechanics consists in making reference to a Representative Volume 

Element (RVE), which is an heterogeneous material volume, statistically 

representative of the neighbourhood of a certain point of a continuum mass 

[47], [11]. The continuum material point is called a macro-element. The 

corresponding micro-constituents of the RVE are called the micro-elements. 

Therefore, the concept of an RVE is used to estimate the continuum properties 

at the examined continuum material point, in terms of its microstructure and its 

microconstituents. In other words, the goal is to obtain the overall average 

constitutive properties of the RVE in terms of the properties and structure of 

the microelements, included in it,  in order to calculate the global response of 

the continuum mass to applied loads and prescribed boundary data. These ones 
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correspond to uniform fields applied on the continuum infinitesimal material 

neighbourhood which the RVE is aimed to represent. 

The Figure 1.1 shows a continuum and identifies a typical material point P

of it, surrounded by an infinitesimal material element. When the macro-element 

P is magnified, it shows the own complex micro-structure consisting in voids, 

cracks, inclusions, whiskers and other similar defects. To be representative, the 

RVE has to contain a very large number of such micro-heterogeneities. 

magnified

1e

P

MACROSCALE-
CONTINUUM MATERIAL POINT

p

O

I

1

e2

MICROSCALE-
RVE

2

e3
3

3

x

∂ (V)

(V)

(V)

(V)

∂V
V

I(V)

Figure 1.1  Possible microstructure of an RVE for the material neighbourhood 
of the continuum material point P

In literature, [47], [1], it is often found an RVE definition according to the 

following geometrical considerations:

1. the RVE has to be structurally typical of the whole medium on 

average

2. the RVE must include a very large number of micro-elements



Chapter I – Micro-mechanics theory   5  

Hence, according to the above given concept of the RVE, two length-scales 

are necessary: one is the continuum or macro-length scale, by which the 

infinitesimal material neighbourhood is measured; the other one is the micro-

length scale which corresponds to the smallest micro-constituent whose 

properties and shape are judged to have direct and first-order effects on the 

continuum overall response and properties. Therefore, it provides a valuable 

dividing boundary between continuum theories and microscopic ones, being 

large if compared to the micro-constituents and small if compared to the entire 

body. So, for scales larger than the representative volume element, continuum 

mechanics are used and properties of the material as whole are determined, 

while for scales smaller than the representative volume element, the 

microstructure of the material has to be considered.

In general, if the typical dimension of the material being modelled is named 

with L, if the typical dimension of the macro-element is named with D and if 

the typical dimension of the micro-element is named with d, they have to be in 

the following relation:

 
1; 1;

L D d
L D
D d

? ?

? ?
 (1.2-1) 

This means that the typical dimension D of the RVE should be much larger 

than the typical size d of the micro-element and much smaller than the typical 

size L of the entire body, as it is shown in the following figure, where the RVE 

is used in the shape of cube. 
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Figure 1.2  The typical dimension a Representative Volume Element.

The relation Errore. L'origine riferimento non è stata trovata. has to be 

valid independently from the fact that the micro-elements have or not have a 

random, periodic or other distribution within the continuum material, although, 

of course, the corresponding overall RVE properties are directly affected by 

this distribution.

It is useful to underline two important concepts in the previous geometrical 

RVE definition:

o the absolute dimensions of the micro-constituents may be very large 

or very small, depending on the size of the continuum mass and the 

objectives of the analysis - it is only the relative dimensions that are 

of concern.

d

D

D
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o the evaluation of the essential micro-constituent is another relative 

concept, depending on the particular problem and on the particular 

objective. It must be addressed through systematic micro-structural 

observations at the level of interest and must be guided by 

experimental results.

Hence, the definition of the RVE is one of the most important decisions that 

the analyst makes for employing an accurate micro-mechanical analysis. An 

optimum choice would be one that includes the most dominant features that 

have first-order influence on the overall properties of interest and, at the same 

time, yields the simplest model. This can only be done through a coordinate 

sequence of microscopic and macroscopic observations, experimentations and 

analyses. 

The until now mentioned definition of the RVE, based only on geometrical 

ratio between the different scales of the whole body, RVE’s size and 

characteristic dimensions of the micro-inclusions or defects, is – in general –

not sufficient to ensure the optimality of the choice related to the accuracy and 

consistency of the micro-mechanical approach, as well as of the 

homogenization procedure. Indeed, as shown in some works with reference to 

configurational body force, possible significant gradients of stress and strain 

fields can play a crucial rule for establishing the RVE size, provided that they 

strongly vary within the RVE characteristic length, [39]. In other words, a 

consistent criteria to select an RVE has to be also based on the preliminary 

requirement of a smooth distribution of the physical quantities involved in the 

analysis. This mathematical property finds its mechanical interpretation in the 

fact that all micro-mechanics and homogenization theories are based on 

averaged stress and strain values over the RVE domain, as well as on the 

overall elastic and inelastic responses. Therefore, no strong field gradients have 



 8    Chapter I – Micro-mechanics theory   

to be attempted and, in order to ensure this, functional analysis and theory of 

elasticity theorems have to be invoked and utilized.

On the other hand, some works reported in literature also consider 

approaches where the weight of geometrical parameters gradients are taken into 

account. In particular, in this framework, a paper by Fraldi & Guarracino [25]

deals with a straightforward homogenization technique for porous media 

characterized by locally variable values of  the volume fraction. From a 

theoretical point of view, the employed technique corresponds to averaging a 

continuum model in order to end up with a higher continuum model. According 

to the opinion of the writers, such procedure offers several advantages. First, 

making the effective elastic moduli of the homogenized porous medium 

dependent not only on the value of the matrix volume fraction, γ , but on its 

gradient, γ∇ , as well, allows a simple characterization of the micromechanical 

inhomogeneity of the RVE in a closed mathematical form. Second, the number 

of parameters necessary to an adequate identification of the mechanical 

properties of the material is extremely reduced and essentially coincides with 

the properties of the constituent matrix and with the knowledge of the local 

values of the density of the medium under analysis. Finally, it seems that, by 

means of this approach, several problems involving porous media characterized 

by a non-periodic distribution of voids, such as cancellous bone tissues or 

radioactively damaged materials, can be effectively tackled from a 

computational standpoint. 

However, once an RVE has been chosen, the micromechanical analysis has 

to be employed in order to calculate, as said before, its overall response 

parameters. Since the microstructure of the material, in general, changes in the 

course of deformation, the overall properties of the RVE also, in general, 

change. Hence, as anticipated before, an incremental formulation is sometimes 
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necessary, but, for certain problems in elasticity, a formulation in terms of the 

total stresses and strains may suffice.

In this framework, consider an RVE occupying a volume IV and bounded 

by a regular surface IV∂ , where the superscript I stays for inhomogeneous. A 

typical point in IV is identified by its position vector x , with components 

( )1, 2,3ix i = , relative to a fixed rectangular Cartesian coordinate system (see 

Figure 1.1). The unit base vectors of this coordinate system are denoted by 

( )1, 2,3i i =e , so the position vector is given by:

  i ix=x e  (1.2-2)

where repeated subscripts are summed.

For the purpose of micromechanical approach, the RVE is regarded as a 

heterogeneous continuum with spatially variable, but known, constitutive 

properties [47], whose it needs to estimate the average ones. 

In general, the displacement field, ( )=u u x , the strain field, ( )= xΕ Ε , 

and the stress one, ( )= xΤ Τ , within the RVE volume, vary in fact from point 

to point, even if the boundary tractions are uniform or the boundary 

displacements are linear. Under both the prescribed surface data, the RVE must 

be in equilibrium and its overall deformation compatible. The governing field 

equilibrium equations at a typical point x in the volume V of the RVE (for 

simplicity, the superscript I will be not repeated) are:

 ( ) ( ) ( )T= =⋅T x 0; T x T x∇ in V      (1.2-3)

where body forces are assumed absent and where the superscript T stands for 

transpose.

In a rectangular Cartesian component form, the (1.2-3) becomes:
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 , 0;ij i ij jiσ σ σ= = in V    (1.2.4)

where:

1, 2,3i j= =

and where a comma followed by an index denotes the partial differentiation 

with respect to the corresponding coordinate variable.

Moreover, the strain-displacement relation has to be verified:

  ( ) ( ){ }1
2

T= ⊗ + ⊗E x u u∇ ∇ in V   (1.2-5)

where ∇ is the del operator defined by:

 i i i
ix

∂
= ∂ =

∂
e e∇  (1.2-6)

and the superscript T denotes transpose.

The(1.2-5), in a rectangular Cartesian component form, becomes:

 ( ), ,
1
2ij i j j iu uε = +  in V  (1.2-7)

When the self-equilibrating tractions, 0t , are prescribed on the RVE 

boundary V∂ , as shown in Figure 1.3 the following boundary equilibrium 

conditions have to be verified:

 ( ) 0=T x n t  on tV∂  (1.2-8)

or, in Cartesian components:

 0
ij i jn tσ = on tV∂   (1.2-9)

where:

=n the outer unit normal vector of the RVE boundary δV.

tV∂ = the partition of the RVE boundary where the self-equilibrating tractions, 

0t , are prescribed.
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1e

O

3e

e 2

Figure 1.3  Traction boundary conditions

On the other hand, when the self-compatible displacements, 0u , (self-

compatible in the sense that they don’t include rigid-body translations or 

rotations) are assumed prescribed on the boundary of the RVE, as shown in 

Figure 1.4, it follows that:

 0=u u on uV∂  (1.2-10)

or, in Cartesian components:

 o
i iu u= on uV∂   (1.2-11)

where:

P

t°t°
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uV∂ = the partition of the RVE boundary where the displacements, 0u , are 

prescribed.

1e

O

3e

e2

Figure 1.4 Displacement boundary conditions

If the modified microstructure of the material during the deformation has to 

be taken into account, the incremental formulation is necessary to consider a 

rate problem, where traction rates 0&t or velocity 0&u may be regarded as 

prescribed on the boundary of the RVE. Here, the rates can be measured in 

terms of monotone increasing parameter, since no inertia effects are included. 

Therefore, the basic field equations are obtained by substituting in the above 

D 11e° D

P
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written equations the corresponding rate quantities, i.e. ( )& xΤ for ( )xΤ , 

( )& xΕ for ( )xΕ and &u for u , obtaining that:

 ( ) ( ) ( )T= =⋅ & & &T x 0; T x T x∇ in V   (1.2-12)

and

 ( ) ( ){ }1
2

T= ⊗ + ⊗& & &E x u u∇ ∇ in V  (1.2-13)

When the self-equilibrating tractions, 0&t , are prescribed on the RVE 

boundary IV∂ , the following boundary equilibrium conditions have to be 

verified:

 ( ) 0=& &T x n t  on tV∂  (1.2-14)

On the other hand, when the velocities, 0&u , are assumed prescribed on the 

boundary of the RVE, it follows that:

 0=& &u u  on uV∂  (1.2-15)

Once the boundary-value problems associated with an RVE is formulated, 

the aim is, then, to calculate its overall response parameters and to use these

ones in order to describe the local properties of the continuum material 

element, when returning to the starting macro-scale. In this scale, in fact, the 

RVE represents a point of the continuum material in which mechanical 

properties have to be found.  Hence, it is necessary to obtain uniform 

macrofields on the RVE boundary; thus, prescribed surface tractions, 0t , may 

be applied as spatially uniform, or prescribed surface displacements, 0u , may 

be assumed as spatially linear. In the first case, the goal is to found the average 

strain field as a function of the corresponding prescribed nominal stress one. 
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Consequently, the components of the overall compliance tensor are obtained 

as:

 

( ) ( )

0

01 1

ij
ijhk ij hk

hk

ij
ijhk ij hk

hk

S

S

ε
δ δ

σ

ε
δ δ

σ

=

= − ⋅ − ⋅

 i j h k x y z=, , , , ,  (1.2-16)

where consistent considerations are done for defining the opportune average 

strain field to use in the calculation.  In the second case, the goal is to found the 

average stress field as a function of the corresponding prescribed nominal 

strain one. Consequently, the components of the overall stiffness tensor are

obtained as:

 

( ) ( )

0

01 1

ij
ijhk ij hk

hk

ij
ijhk ij hk

hk

C

C

σ
δ δ

ε

σ
δ δ

ε

=

= − ⋅ − ⋅

 i j h k x y z=, , , , ,  (1.2-17)

where consistent considerations are done for defining the opportune average 

stress field to use in the calculation.  

In order to reach this objectives, fundamental averaging methods are 

necessary for evaluating average quantities and they will be shown in the 

following section. 

It is worth to notice, here, that an elastic solution obtained via micro-

mechanical approach satisfies, at a micro-scale, both the equilibrium and the 

compatibility in each internal point of the RVE, either in the case of prescribed 

stress problem either in the other one of prescribed strain. On the contrary, by 

considering the RVE inside the continuum solid, the first problem satisfies the 
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equilibrium conditions in the points belonging to the interface between two 

adjacent RVE but doesn’t satisfy the compatibility conditions at the same 

interface. The second problem, instead, satisfies the compatibility conditions in 

such points but doesn’t satisfy, in general, the equilibrium ones. Nevertheless, 

at a macro-scale the found solution is always an exact one because both field 

equilibrium and field compatibility conditions are verified. Thanks to the 

uniformity of the obtained macro-fields, in fact, it will be:

  ( )
⋅ =

∧ ∧ =

0
0

T
E

∇

∇ ∇
B∀ ∈x  (1.2-18)

where:

=T average stress field

=E average strain field

=x position vector of the points within the volume B.

B = the volume of the continuum solid from which the RVE has been 

extracted.

It will be seen, in the follows, that the homogenization approach, differently 

by the micro-mechanical one, starts by assuming constant stress (stress 

prescribed problem) or constant strain (stress prescribed problem) fields 

everywhere within the RVE volume, V. Such a procedure whose goal is the 

evaluation of the overall response parameters, yet, implies that at a micro-scale, 

in the case of prescribed stress problem, field equilibrium equations are verified 

in each internal point of the RVE while the compatibility ones are not satisfied 

for the internal points of the RVE belonging to the interface between two 

adjacent micro-constituents. In the case of prescribed strain problem, instead, it 

happens the opposite: compatibility equations are always verified in each 

internal point of the RVE while the equilibrium ones at the interface between 
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two adjacent micro-constituents are not satisfied. Moreover, by considering the 

RVE inside the continuum solid, the satisfaction of the equilibrium and the 

compatibility conditions at the interface between two adjacent RVE is 

dependent by the shape of the RVE boundary: in the homogenization approach, 

in fact, either in a prescribed stress problem either in the converse prescribed 

strain one, the surface tractions and displacements are obtained as a 

consequence and so they are, in general not uniform or linear respectively. For 

this reason, such an approach is useful if there is a periodicity of the RVE in 

the continuum medium and if there is not the presence of voids on the RVE 

boundary. Nevertheless, at a macro-scale the found solution is always, also for 

the homogenization approach, an exact one because both field equilibrium and 

field compatibility equations are verified. Since the homogenization approach, 

as it will be shown in detail in the Chapter 2, calculates the overall response 

parameters of the RVE by taking into account the average stress and strain field 

produced within its volume (and not, like the micro-mechanical approach, the 

nominal quantities) and thanks to the uniformity of such fields, the (1.2-18) are 

verified yet.

In particular, for prescribed constant stress field in each point of V, the 

object is to found the average value of the piecewise obtained constant strain 

field in V, (for homogeneous micro-constituents, the strain field is constant in 

each phase and it assumes different values from phase to phase), as a function 

of the corresponding prescribed stress field. Consequently, the components of 

the overall compliance tensor are obtained as given by the(1.2-16), where 

consistent considerations are done for defining the opportune average strain 

field to use in the calculation.  Analogously, for prescribed constant strain field 

in each point of V, the object is to found the average value of the piecewise 

obtained constant stress field in V (for homogeneous micro-constituents, the 
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stress field is constant in each phase and it assumes different values from phase 

to phase) as a function of the corresponding prescribed strain field.

Consequently, the components of the overall stiffness tensor are obtained as

given by the (1.2-17), where consistent considerations are done for defining the 

opportune average stress field to use in the calculation.  

1.3 General theory for evaluating average quantities

In order to obtain further insight into the relation between the microstructure 

and the overall properties, averaging theorems have to be considered.

In particular, in the case of prescribed self-equilibrating tractions on the 

boundary δV of the RVE, either spatially uniform or not, the unweighted 

volume average of the variable stress field ( )T x , taken on the volume V of 

the RVE, is completely defined in terms of the prescribed boundary tractions. 

To show this, denote the volume average of the spatially variable and 

integrable quantity ( )T x by:

 ( ) ( )1
V

dV
V

= < > = ∫T T x T x  (1.3-1)

where x is the position vector, that identifies each point in the volume V of 

the RVE, with components ( )1, 2,3ix i = , relative to a fixed rectangular 

Cartesian coordinate system (see Figure 1.1).

The gradient of x satisfies:

 ( ) ( )
,

T
j i i j i j i j ij i jx x δ⊗ = ∂ ⊗ = ⊗ = ⊗ = 21x e e e e e e∇  (1.3-2)

where:

ijδ = Kronecker delta

( ) =21 the second-order unit tensor
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Hence, in according to the equilibrium equations (1.2-3) and since the stress 

tensor ( )T x is divergence-free, the stress field ( )T x can be written in the 

following form:

 ( ) ( ) ( ) ( ) ( ) ( )( ){ }TT= ⋅ = ⊗ ⋅ = ⋅ ⊗21T x T x x T x T x x∇ ∇  (1.3-3)

By means of the Gauss theorem, and by remembering the 

Errore. L'origine riferimento non è stata trovata. and the(1.3-3), the 

average stress field T is expressed as:

( ) ( )( ){ } ( )( ){ }1 1T T

V V
dV ds

V V δ
=< > = ⋅ ⊗ = ⋅ ⊗∫ ∫T T x T x x n T x x∇ (1.3-4)

and, for the boundary equilibrium condition (1.2-8), it can be written:

 01
V

ds
V δ

= ⊗∫T x t  (1.3-5)

or, in Cartesian components:

 01
ij i jV

x t ds
V δ

σ = ∫  (1.3-6)

It should be noted that since the prescribed surface tractions, 0t , are self-

equilibrating, their resultant total force and total moment about a fixed point 

vanish, i.e.:

  0 0

V V

ds ds
∂ ∂

= ∧ =∫ ∫0 0t x t  (1.3-7)

or, in components:

 0 00 0
j ijk j k

V V

t ds e x t ds
∂ ∂

= ∧ =∫ ∫  (1.3-8)

where:

ijke = the permutation symbol of the third order; ( )1, 1,0ijke = + − when i, j, k 

form (even, odd, no) permutation of 1, 2, 3.
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Hence, the average stress T defined by the (1.3-5) is symmetric and 

independent of the origin of the coordinate system. Indeed, from the (1.3-8), it 

is:

 0 0

V V
ds ds

δ δ
⊗ = ⊗∫ ∫x t t x  (1.3-9)

and, so:

 =TT T  (1.3-10)

Let us to assume that the following boundary equilibrium equations were 

satisfied:

 ( ) 0=T x n t on tV∂  (1.3-11)

and:

  =0 0T n t  on tV∂  (1.3-12)

where:

=n the outer unit normal vector of the RVE boundary δV.

tV∂ = the partition of the RVE boundary where the self-equilibrating surface 

tractions, 0t , are prescribed.

=0t the prescribed surface self-equilibrating tractions, assumed as spatially 

uniform on the boundary tV∂ of the RVE.

( ) =T x the spatially variable stress tensor obtained from the stress prescribed 

problem within the volume V of the heterogeneous RVE.

=0T the spatially constant stress tensor obtained from the stress prescribed 

problem within the volume V of the RVE, regarded as homogeneous.

From the equation (1.3-5), and by using again the Gauss theorem, it can be 

written:
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 ( ) ( )01 1 1
V V V

ds ds dV
V V Vδ δ

= ⊗ = ⊗ ⋅ = ⋅ ⊗∫ ∫ ∫0 0T x t T x n T x∇  (1.3-13)

Thus, by taking into account the position (1.3-3), the volume average of the 

spatially variable and integrable quantity ( )T x can be expressed in the 

following form:

 0 01
V

dV
V

= =∫T T T  (1.3-14)

For the rate problem, the average stress rate is obtained in an analogous 

manner to what has been done previously, by obtaining that:

 ( ) 01
V

ds
V δ

= < > = ⊗∫& & &T T x x t   (1.3-15)

or, in Cartesian components:

 ( ) 1 0
ij ij i jV

x x t ds
V δ

σ σ= < > = ∫ && &  (1.3-16)

Hence, it is seen that for the small deformations the average stress rate 

equals the rate of change of the average stress:

 ( ) ( )d
dt

= < > = < > = && &T T x T x T  (1.3-17)

In particular, in the case of prescribed displacements on the boundary δV of 

the RVE, either spatially linear or not, the unweighted volume average of the 

variable displacement gradient ⊗ u∇ (and so of the variable strain field 

( )E x ), taken over the volume V of the RVE, is completely defined in terms of 

the prescribed boundary displacements. To show this, denote the volume 

average of the spatially variable and integrable quantity ⊗ u∇ by:

 ( ) ( )1
V

dV
V

⊗ =< ⊗ > = ⊗∫∇ ∇ ∇u u x u x  (1.3-18)
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where x is the position vector, that identifies each point in the volume V of 

the RVE, with components ( )1, 2,3ix i = , relative to a fixed rectangular 

Cartesian coordinate system (see Figure 1.1).

From the Gauss theorem, and in view of the boundary conditions (1.2-10), it 

is:

 ( ) ( ) ( ) ( ) ( )
V V V

dV ds ds
∂ ∂

⊗ = ⊗ = ⊗∫ ∫ ∫∇ 0u x n x u x n x u x  (1.3-19)

where:

=n the outer unit normal vector of the RVE boundary δV.

Thus, the average displacement gradient within the RVE volume V can be 

expressed in the following form: 

 ( ) ( ) ( )1
V

ds
V ∂

⊗ =< ⊗ > = ⊗∫∇ ∇ 0u u x n x u x  (1.3-20)

or, in Cartesian components:

 ( ) ( )1 0
i jV

x n u x ds
V ∂

=< > = ∫j,i j,iu u  (1.3-21)

Let us to remember that the rotation field ( )R x is the anti-symmetric part of 

the displacement gradient, that is:

 ( ) ( ) ( )( )1
2

T = ⊗ − ⊗
 
∇ ∇R x u x u x  (1.3-22)

or, in components:

 ( ) 1
2ij j,i i, jR x u u = −   (1.3-23)

while the strain field ( )E x is the corresponding symmetric part of the 

displacement gradient, hence, the stress field ( )E x within the RVE volume 

can be written in the following form:
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 ( ) ( ) ( )( )1
2

T
+ = ⊗ ⊗

 
∇ ∇E x u x u x  (1.3-24)

or, in components:

 ( ) 1
2ij j,i i, jE x u +u =    (1.3-25)

Let us to denote the volume average of the spatially variable and integrable 

quantity ( )E x by:

 ( ) ( )1
V

dV
V

= < > = ∫E E x E x   (1.3-26)

Hence, by means of the (1.3-24) and of the (1.3-19), the average strain field 

E is expressed as:

 ( ) ( )1 1
2V

ds
V ∂

= < > = ⊗ + ⊗∫ 0 0E E x n u u n  (1.3-27)

or, in components:

 ( ) ( )1 1
2

0 0
ij i j i jij V

x n u u n ds
V

ε ε
∂

=< > = +∫  (1.3-28)

while the average rotation field R is expressed as:

 ( ) ( )1 1
2V

- ds
V ∂

= < > = ⊗ ⊗∫ 0 0R R x n u u n  (1.3-29)

or, in components:

 ( ) ( )1 1
2

0 0
ij i j i jij V

r r x n u - u n ds
V ∂

= < > = ∫  (1.3-30)

It is worth to underline that the average strain E defined by the (1.3-27) is 

symmetric and independent of the origin of the coordinate system, and, so, it is:

 =TE E  (1.3-31)
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It should be remembered that the prescribed surface displacements, 0u , are 

self-compatible and, so, don’t include rigid displacements of the RVE. 

However, it should be noted that the found average value E of the strain field 

( )E x is unchanged even if rigid displacements are added to the surface data. 

In fact, at a generic point x in the RVE, a rigid translation, ru , and a rigid-

body rotation associated with the anti-symmetric, constant, infinitesimal 

rotation tensor, ⋅ rx R , produce an additional displacement given by 

+ ⋅r ru x R . The corresponding additional average displacement gradient is, 

then:

( )

( ) { } { }1 1
V V

ds ds
V V∂ ∂

⊗ + ⋅ =

=< ⊗ + ⋅ > = ⊗ + ⊗ ⋅∫ ∫

r r

r r r r

u x R

u x R n u n x R

∇

∇
 (1.3-32)

By using the Gauss theorem, it follows that:

 

( ) ( )

( ) ( )

1 1 1

1 1 1
V V V

V V V

ds ds dV
V V V

ds dV dV
V V V

∂ ∂

∂

= ⋅ = ⋅ =

⊗ = ⊗ = =

∫ ∫ ∫

∫ ∫ ∫

02 2

2 2

n n 1 1

n x x 1 1

∇

∇
 (1.3-33)

where:
( ) =21 the second-order unit tensor

Hence, it is:

 ( ) ( )⊗ + ⋅ =< ⊗ + ⋅ > =r r r r ru x R u x R R∇ ∇  (1.3-34)

which doesn’t affect E . Therefore, whether or not the prescribed surface 

displacements 0u include rigid-body translation or rotation, is of no 

significance in estimating the relations between the average stresses and strains 
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or their increments. For simplicity, however, it will be assumed that the 

prescribed boundary displacements are self-compatible.

Moreover, it can be also found the average value of the displacements field 

in terms of the surface data. So, by denoting the volume average of the spatially 

variable and integrable quantity ( )u x by:

 ( ) ( )1
V

dV
V

= < > = ∫u u x u x  (1.3-35)

and by considering that the displacements field may be written as:

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )= ⋅ = ⋅ ⊗ = ⋅ ⊗ − ⋅2u x u x 1 u x x u x x u x x∇ ∇ ∇  (1.3-36)

the average displacements field u may be expressed in the following form:

 ( ) ( )( ) ( )( )1
V

dV
V

= < > = ⋅ ⊗ − ⋅∫ ∇ ∇u u x u x x u x x  (1.3-37)

By making use of the Gauss theorem, it is obtained that:

 ( ) ( )( ) ( )( )1 1
V

V

ds dV
V V∂

= < > = ⋅ ⊗ − ⋅∫ ∫0u u x n u x x u x x∇  (1.3-38)

or, in components:

 ( ) 1 10
i i j j i j, j iV

V

u u x n u x ds u x dV
V V∂

= < > = −∫ ∫  (1.3-39)

which includes the volumetric strain coefficient, ⋅u∇ . So, for incompressible 

materials whose displacements field is divergence-free, the average 

displacement, u assumes the following expression in terms of the prescribed 

linear surface displacements, 0u :

  ( ) ( )( )1
V

ds
V ∂

= < > = ⋅ ⊗∫ 0u u x n u x x  (1.3-40)

or, in components:
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 ( ) 1 0
i i j j iV

u u x n u x ds
V ∂

= < > = ∫  (1.3-41)

Let us to assume that the following boundary equilibrium equations were 

satisfied:

 ( ) 0=E x x u on uV∂  (1.3-42)

and:

 =0 0E x u  on uV∂  (1.3-43)

where:

( ) =E x the spatially variable strain tensor obtained from the strain prescribed 

problem within the volume V of the heterogeneous RVE.

=0E the spatially constant strain tensor obtained from the strain prescribed 

problem within the volume V of the RVE, regarded as homogeneous.

=x the position vector of the RVE boundary points.

uV∂ =  the partition of the RVE boundary where the self-compatible 

displacements, 0u , are prescribed.

=0u  the prescribed self-compatible displacements, assumed as spatially 

linear on the boundary uV∂ of the RVE.

From the equation(1.3-27), the average value of the strain tensor can be 

written:

 
( ) ( )

( ) ( )( )

1 1
2

1 1
2

V

V

ds
V

ds
V

∂

∂

= < > = ⊗ + ⊗ =

= ⊗ ⋅ + ⋅ ⊗

∫

∫

0 0

0 0

E E x n u u n

n E x E x n
 (1.3-44)

By using the Gauss theorem, it will be:
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 ( ) ( ) ( )( )( )1 1
2

T

V
ds

V
= < > = ⊗ ⋅ + ⊗ ⋅∫ ∇ ∇0 0E E x E x E x  (1.3-45)

Hence, by operating some calculations and by considering that 

( )T
=0 0E E , the volume average of the spatially variable and integrable 

quantity ( )E x can be expressed in the following form:

 0 01
V

dV
V

= =∫E E E  (1.3-46)

For the rate problem, the average strain rate is obtained in an analogous 

manner to what has been done previously, by obtaining that:

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

0 0

0 0

1

1

1

V

V

V

ds
V

1 ds
V 2

1 - ds
V 2

δ

δ

∂
⊗ =< ⊗ > = ⊗

= < > = ⊗ + ⊗

= < > = ⊗ ⊗

∫

∫

∫

& & &

& & & &

& & & &

∇ ∇ 0u u x n x u x

E E x n x u x u x n x

R R x n x u x u x n x

 (1.3-47)

Hence, it is seen that for the small deformations the average strain rate 

equals the rate of change of the average strain:

 ( ) ( )d
dt

= < > = < > = && &E E x E x E  (1.3-48)

and similarly:

 
( ) ( )d

dt
d
dt

= < > = < > =

⊗ = < ⊗ > = < ⊗ > = ⊗

&& &

& &

R R x R x R

u u u u∇ ∇ ∇ ∇
  (1.3-49)

Moreover, another useful relation to be considered, valid for either uniform 

boundary tractions or linear boundary displacements [47], is:

 : :< > =< > < >T E T E  (1.3-50)
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It is important to note that this identity, according to which the average 

value of the product between the stress and the strain tensor is equal to the 

product of the average values of both mentioned tensors, is valid for materials 

of any constitutive properties.

As pointed out before, an RVE represents the microstructure of a macro-

element (typical continuum material neighbourhood) in a continuum mass, so 

the stress and strain fields until now considered, that are spatially variable 

within the volume V of the RVE, can be defined as microstress or microstrain

fields. In an analogous manner, the continuum stress and the strain fields, that 

are spatially variable in function of the position of the macro-elements within 

the volume B of the continuum solid, can be defined as macrostress or 

macrostrain fields, to distinguish them from the previous ones. In particular, 

according to what done before, denote the microstress and microstrain fields by 

( )=T T x and ( )=E E x and the macrostress and macrostrain fields by 

( )=Σ Σ X and ( )= XE E , respectively. In particular, it has been considered 

the variability of such fields in function of the position vector x that describes 

the points position within the RVE volume and of the position vector X that 

describes the points position within the continuum volume. In general, these 

mechanical quantities are functions of the time t , too.

At a macro-scale, the macro-fields must satisfy the following continuum 

balance equations:

 ( ) ( ) ( )T= =⋅∇ Σ Σ ΣX 0; X X in B    (1.3-51)

where body forces are assumed absent.

In rectangular Cartesian component form, the (1.3-51) becomes:

 , 0;M M M
ij i ij jiσ σ σ= = in B    (1.3-52)

where:
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1, 2,3i j= =

and where a comma followed by an index denotes partial differentiation with 

respect to the corresponding coordinate variable. Note that the superscript M

stands for macro.

Moreover, the strain-displacement relation has to be verified:

 ( ) ( ) ( )( ){ }1
2

T
= ⊗ + ⊗∇ ∇X U X U XE in B  (1.3-53)

where ∇ is the del operator defined by:

 i i i
iX

∂
= ∂ =

∂
∇ e e  (1.3-54)

( ) =U X the macro-displacement field

and the superscript T denotes transpose.

The(1.3-53), in rectangular Cartesian component form, becomes:

 ( ), ,
1
2

M
ij i j j iU Uε = + in B  (1.3-55)

In general, at a typical point X in the continuum, at a fixed time t , the 

values of the macrostress and macrostrain tensor, Σ and E , can be determined 

by the average microstress and microstrain, T and E , over the RVE which 

represents the corresponding macro-element. So, in micromechanics it is 

assumed that:

 ;= =Σ T EE  (1.3-56)

Conversely, the macrostress and the macrostrain tensors, Σ and E , provide 

the uniform traction or the linear displacement boundary data for the RVE. 

Hence, when the traction boundary data are prescribed, it is:

  ⋅ =Σ 0n t on V∂  (1.3-57)
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Analogously, when the displacements are assumed to be prescribed on the 

RVE boundary, it is:

 ⋅ = 0x uE on V∂  (1.3-58)

In general, the response of the macro-element characterized by relations 

among macrostress Σ and macrostrain E will be inelastic and history-

dependent, even if the micro-constituents of the corresponding RVE are elastic. 

This is because, in the course of deformation, flaws, microcracks, cavities and 

other microdefects develop within the RVE and the microstructure of the RVE 

changes with changes of the overall applied loads. Therefore, the stress-strain 

relations for the macro-elements must, in general, include additional 

parameters which describe the current microstructure of the corresponding 

RVE.

So, for a typical macro-element, denote the current state of its 

microstructure by S , which may stand for a set of parameters, scalar or 

possibly tensorial, that completely defines the microstructure, for example it 

may stand for the sizes, orientations and distribution of its microdefects. 

However, by considering a class of materials whose microconstituents are 

elastic (linear or non-linear) and by assuming that no change in the 

microstructure happens under the applied loads, the response of the macro-

element will be also elastic. Hence, a Helmholtz free energy, i.e. a macrostress 

potential, exists and it can be written as:

 ( ), SΦ = Φ E  (1.3-59)

which, at a constant state S , yields:

 
( )∂Φ

=
∂

Σ
E

E
 (1.3-60)

Then, through the Legendre transformation:
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  ( ) ( ), , :S SΦ + Ψ =Σ ΣE E  (1.3-61)

a macrostrain potential can be analogously defined, as:

 ( ), SΨ = Ψ Σ  (1.3-62)

which, at a constant state S , yields:

 
( )∂Ψ

=
∂

Σ
Σ

E  (1.3-63)

It is worth to underline that no thermal effects are here considered.

Once these macropotential functions are defined, it is possible to express 

them in terms of the volume averages of the microstress and microstrain 

potentials of the microconstituents. Since no thermal effects are considered, 

yet, and since the material within the RVE is assumed to be elastic, it admits a 

stress potential, ( ),φ φ= x E , and a strain potential, ( ),ψ ψ= x T , such that 

at a typical point it is:

 ( ) ( ) :φ ψ+ =E T • •  (1.3-64)

and also:

 
( ) ( );

φ ψ∂ ∂
= =

∂ ∂
E •

• E
E •

 (1.3-65)

As it follows, the cases of the prescribed boundary tractions and of the 

prescribed boundary displacements for the RVE will be considered separately, 

for a fixed RVE microstructure so that the dependence on S will not be 

displayed explicitly.

- Case of prescribed constant macrostrain 

Let the RVE be subjected to linear displacements defined through a constant 

macrostrain E . For such a boundary-value problem, a variable microstrain 

field and a variable microstress one are obtained within the RVE:
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( )
( )

,

,

=

=

E E x

T T x

E

E
 (1.3-66)

where the argument E emphasizes that a displacement boundary data with 

constant macrostrain, ( )= =< , >E E xE E , is being considered. Then, the 

corresponding microstress potential is:

 ( )( ) ( ), ,,φ φ φ= =x E x xEE E  (1.3-67)

where the superscript E on φ emphasizes the fact that the microstress 

potential is associated with the prescribed macrostrain E .

Consider now an infinitesimally small variation δE in the macrostrain 

which produces, consequently, a variation in the microstrain field given by:

  ( ) ( ),
,δ δ

∂
=

∂
E x

E x
E

E E
E

 (1.3-68)

Then:

( )( ) ( )

( )

: :

: :

, , ,
>= >=

,
>=

φ
δ δ

φ
δ φ δ

∂ ∂
< <

∂ ∂
∂ ∂

=< < >
∂ ∂

x E x E x
T E

E
xE

E

E E
E

E
E

E E
E E

 (1.3-69)

So, by remembering the (1.3-50), it follows that:

( ) ( ),, φ
∂

< > = < >
∂

T x xEE E
E

 (1.3-70)

Therefore, by defining the macrostress potential as:

( ) ( ) ( )1, , dV
V

φ φΦ = Φ =< > = ∫V
x xE E E EE E E  (1.3-71)

and the corresponding macrostress field (as before) by:

( ) ( ),= = =< >Σ Σ T T xE E E E  (1.3-72)
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it is obtained that:

  ( ) ( )∂Φ
∂

Σ =
E

E E E
E

 (1.3-73)

where the superscript E on Σ emphasizes that ΦE and ΣE are, respectively 

the macrostress potential, i.e. the volume average of the microstress potential, 

and the macrostress field, i.e. the volume average of the microstress field, 

obtained at a macroscale by the constant prescribed macrostrain E .

- Case of prescribed constant macrostress 

Let the RVE be subjected to uniform tractions defined through a constant 

macrostress Σ . For such a boundary-value problem, a variable microstrain 

field and a variable microstress one are obtained within the RVE:

 
( )
( )

,

,

=

=

Σ

Σ

E E x

T T x
 (1.3-74)

where the argument Σ emphasizes that a traction boundary data with constant 

macrostress, ( )= =< , >Σ ΣT T x , is being considered. Then, the 

corresponding microstrain potential is:

 ( )( ) ( ), ,,ψ ψ ψ= = ΣΣ Σx T x x  (1.3-75)

where the superscript Σ on ψ emphasizes the fact that the microstrain 

potential is associated with the prescribed macrostress Σ .

Consider now an arbitrary change δΣ in the macrostress which produces, 

consequently, a change in the microstress field given by:

 ( ) ( ),
,δ δ

∂
=

∂
Σ

Σ Σ
Σ

T x
T x  (1.3-76)

Then:
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( ) ( )( )

( )

: :

: :

, ,,
>= >=

,
>=

ψ
δ δ

ψ
δ δ ψ

∂∂
< <

∂ ∂
∂ ∂

=< < >
∂ ∂

Σ
Σ

ΣΣ
Σ

Σ
Σ

Σ Σ
Σ Σ

x T xT x
T E

T
x

 (1.3-77)

So, by remembering the (1.3-50), it follows that:

( ) ( ),, ψ
∂

< > = < >
∂

ΣΣ Σ
Σ

E x x   (1.3-78)

Therefore, by defining the macrostrain potential as:

( ) ( ) ( )1, , dV
V

ψ ψΨ = Ψ =< > = ∫Σ Σ Σ ΣΣ Σ Σ
V

x x  (1.3-79)

and the corresponding macrostrain field (as before) by:

( ) ( ),= = = < >Σ Σ Σ ΣE E xE E  (1.3-80)

it is obtained that:

( ) ( )∂Ψ
∂

Σ
Σ Σ = Σ

Σ
E  (1.3-81)

where the superscript Σ on E emphasizes that ΨΣ and ΣE are, respectively 

the macrostrain potential, i.e. the volume average of the microstrain potential, 

and the macrostrain field, i.e. the volume average of the microstrain field, 

obtained at a macroscale by the constant prescribed macrostress Σ .

Define, now, a new macrostress potential function:

( ) ( )Φ = Φ = − ΨΣ Σ Σ Σ ΣΣ : ΣE E  (1.3-82)

where the superscript Σ emphasizes that the corresponding quantity is 

obtained for prescribed macrostress Σ .

On the other hand, at the local level, the microstress and the microstrain 

potential can be expressed, respectively, in the following form:
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( )( ) ( )
( )( ) ( )

, , ,

, , ,

φ φ φ

ψ ψ ψ

Σ Σ

Σ Σ

= =

= =

Σ Σ

Σ Σ

x E x x

x T x x
  (1.3-83)

and hence:

 ( ) ( ), : ,φ ψΣ Σ+ = Σ ΣT x E x  (1.3-84)

The volume average over the volume V of the RVE yields:

 :φ ψΣ Σ< > + < >= ΣΣ E   (1.3-85)

The comparison of the (1.3-85) with the (1.3-82), by taking into account th

e(1.3-79), shows that:

 ( ) ( ),φΣ ΣΦ = < >Σ ΣxE  (1.3-86)

Moreover, by remembering the relation (1.3-81), it is also deduced that: 

 ( )∂Φ
∂

Σ
Σ

ΣΣ = E
E

 (1.3-87)

In a similar manner, when the macrostrain E is prescribed through linear 

boundary displacements, a new macrostrain potential function may be defined:

 ( ) ( )Ψ = Ψ = − ΦΣ Σ :E E E E EE E  (1.3-88)

where the superscript E emphasizes that the corresponding quantity is 

obtained for prescribed macrostrain E .

On the other hand, at the local level, the microstress and the microstrain 

potential can be expressed, respectively, in the following form:

 
( )( ) ( )
( )( ) ( )

, , ,

, , ,

φ φ φ

ψ ψ ψ

= =

= =

x E x x

x T x x

E E

E E

E E

E E
 (1.3-89)

and hence:

 ( ) ( ), : ,φ ψ+ = T x E xE E E E  (1.3-90)

The volume average over the volume V of the RVE yields:
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:φ ψ< > + < >= ΣE E E E   (1.3-91)

The comparison of the (1.3-91) with the (1.3-88), by taking into account the 

Errore. L'origine riferimento non è stata trovata., shows that:

( ) ( ),ψΨ = < >Σ xE E E E  (1.3-92)

Moreover, by remembering the relation (1.3-73), it is also deduced that: 

 ( )∂Ψ
∂

= Σ
Σ

E
E

EE  (1.3-93)

At this point, it is useful to make an important consideration.

When the boundary tractions are given by:

 0 = ⋅Σt n  on V∂  (1.3-94)

the microstress and the microstrain fields, as considered before, are:

 
( )
( )

,

,

Σ

Σ

T = T x

E = E x
 (1.3-95)

hence, the overall macrostrain is:

 ( ),= < >Σ ΣE xE  (1.3-96)

Now, suppose that boundary displacements are defined for this obtained 

macrostrain by:

 = ⋅ Σ0u x E on V∂  (1.3-97)

the resulting microstress and microstrain fields are:

  
( )
( )

,

,

Σ

Σ

T = T x

E = E x

E

E
 (1.3-98)

In general, these fields are not identical with those ones shown in the 

equation (1.3-95). Furthermore, while it is:

 ( ),= < >Σ ΣE xE E  (1.3-99)
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there is no a priori reason that ( ),< >ΣT x E should be equal to Σ for an 

arbitrary heterogeneous elastic solid.

So, the RVE is regarded as statistically representative of the macroresponse 

of the continuum material neighbourhood if and only if any arbitrary constant 

macrostress Σ produces, through the (1.3-94), a macrostrain 

( ),= < >Σ ΣE xE such that when the displacement boundary conditions  

(1.3-97) are imposed, then the obtained macrostress must verify the following 

relation [47]:

 ( ),< > ;Σ ΣT x E  (1.3-100)

where the equality is to hold to a given degree of accuracy.

Conversely, when the boundary displacements are given by:

 0 =u xE on V∂  (1.3-101)

the microstress and the microstrain fields, now, are:

 
( )
( )

,

,

T = T x

E = E x

E

E
 (1.3-102)

hence, the overall macrostress is:

 ( ),= < >Σ T xE E  (1.3-103)

Now, let us suppose that boundary tractions are defined for this obtained 

macrostress by:

 = ⋅Σ0t n E on V∂  (1.3-104)

the resulting microstress and microstrain fields are:

 
( )
( )

,

,

Σ

Σ

T = T x

E = E x

E

E
  (1.3-105)
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In general, these fields are not identical with those ones shown in the 

equation (1.3-102). Furthermore, while it is:

 ( ),= < >Σ ΣT xE E  (1.3-106)

there is no a priori reason that ( ),< >ΣE x E should be equal to E for an 

arbitrary heterogeneous elastic solid.

So, analogously, the RVE is regarded as statistically representative of the 

macroresponse of the continuum material neighbourhood if and only if any 

arbitrary constant macrostrain E produces, through the (1.3-101), a 

macrostress ( ),= < >Σ T xE E so that when the traction boundary conditions 

(1.3-104) are imposed, then the obtained macrostrain must verify the following 

relation [47]:

 ( ),< >;ΣE x E E  (1.3-107)

where the equality is to hold to a given degree of accuracy.

Based on the above given definitions for an RVE, then, the macrostrain 

potential ( )ΣΨ Σ and the macrostress potential ( )ΦE E correspond to each 

other in the sense that:

( ) ( )
Σ∂Ψ ∂Φ

⇐⇒
∂ ∂

; ;Σ Σ
Σ

E

E E
E

 (1.3-108)

and in accordance with the Legendre transformation, it is:

( ) ( )ΣΨ + Φ ;Σ Σ :E E E  (1.3-109)

It should be noted, however, that even for Σ and E which satisfies the

(1.3-108), it will be:

( ) ( )
( ) ( )

, ,

, ,

≠

≠

Σ

Σ

T x T x

E x E x

E

E
  (1.3-110)
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Moreover, in general, it is:

( ) ( ) ( ) ( ), , , ,ψ φΣ + ≠Σ Σ :x x • x E xE E E  (1.3-111)

Similarly, the macropotentials ( )Ψ ΣE E and ( )ΦΣ ΣE correspond to each 

other in the sense that:

( ) ( )∂Ψ ∂Φ
⇐⇒

∂ ∂
; ;

Σ
Σ Σ

ΣΣ Σ
Σ

E
E E

E E E
E

 (1.3-112)

and in accordance with the Legendre transformation, it is:

( ) ( )Ψ + Φ ;Σ Σ ΣΣ Σ :E E EE E  (1.3-113)

whereas, the corresponding micropotentials don’t satisfy a similar relation, i.e.:

( ) ( ) ( ) ( ), , , ,ψ φ+ ≠Σ ΣΣ : Σx x • x E xE E E E  (1.3-114)

The following table 1.1 provides a summary of the results presented in this 

section:
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   PRESCRIBED Σ  PRESCRIBED Ee

microstress ( ),T x Σ ( ),T x E

microstrain ( ),E x Σ ( ),E x E

macrostress ( ), >= < T xΣ Σ ( ), >= < T xΣE E

macrostrain ( ),Σ >= < E x ΣE ( ), >= < E xE E

microstress  potential

( )( ) ( )

( )
( )( )

, ,

,
,

,

,

φ φ

φ

=

∂
=

∂

x E x x

x E x
T x

E

ΣΣ Σ

Σ
Σ

( )( ) ( )

( )
( )( )

, ,

,
,

,

,

φ φ

φ

=

∂
=

∂

x E x x

x E x
T x

E

EE E

E
E

microstrain  potential

( )( ) ( )

( )
( )( )

, ,

,
,

,

,

ψ ψ

ψ

ΣΣ =

∂
=

∂

x T x x

x T x
E x

T

Σ

Σ
Σ

( )( ) ( )

( ) ( )( )
, ,

,
,

,

,

ψ ψ

ψ

=

∂
=

∂

x T x x

x T x
E x

T

EE E

E
E

macrostress  potential

( )

( )

φ
Σ Σ Σ Σ

Σ

Σ

Σ

Φ = Φ = < >

∂Φ
Σ =

∂

E

E
E

( )

( )

φΦ = Φ = < >

∂Φ
=

∂
Σ

E E E

E

E

E

E
E

macrostrain  potential

( )

( )

ψΣ Σ Σ

Σ

Σ

Ψ = Ψ = < >

∂Ψ
=

∂

Σ

Σ
Σ

E

( )

( )

ψ

Σ

Ψ = Ψ = < >

∂Ψ
=

∂

Σ

Σ
Σ

E E E E

E

E

E
E

microlegendre  
transformation

( ) ( ):, ,φ ψΣ Σ+ = Σ ΣT x E x ( ) ( ):, ,φ ψ+ = T x E xE E E E

macrolegendre  
transformation

:Σ Σ ΣΦ + Ψ = Σ E :Φ + Ψ = ΣE E E E

approximated 
macrolegendre  
transformation

( ) ( ) :ΣΦ + Ψ ≈Σ ΣE E E ( ) ( ) :Σ Σ ΣΦ + Ψ ≈Σ ΣE E EE E

corresponding 
microlegendre  
transformation

( ) ( ):, ,φ ψ Σ+ ≠ T x E xΣE E ( ) ( ):, ,φ ψΣ + ≠ T x E x ΣE E

Table 1.1 Relation between macro and micro quantities for prescribed 
macrostress and macrostrain.
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1.4 Elasticity, groups of symmetry, anisotropic solids with fourth rank 
tensors

The heterogeneous materials can be characterized by both inhomogeneity 

and anisotropy, since the first aspect is due to the multi-phase composition of 

the medium, while the second one is due to the geometrical arrangement of the 

different constituents within the examined heterogeneous volume.  

In the previous sections, it has been analyzed the first aspect.

In this section, the constitutive relations for anisotropic materials, in linear-

elasticity, are presented [64].

A linear anisotropic elastic material, as known, can have as many as 21 

elastic constants. However, this number can be opportunely reduced when the 

examined material possesses certain material symmetry. Moreover, it is also 

reduced, in most cases, when a two-dimensional deformation is considered. It 

is worth to remember that the matrices of the elastic constants must be positive 

definite, because the strain energy must be positive.

Hence, referring to a fixed rectangular coordinate system 1 2 3, ,e e e , let T

and E be the stress and the strain fields, respectively, in an anisotropic pier-

elastic material. The stress-strain relation can be written in the following form:

  := C:T E  (1.4-1)

or, in components:

 ij ijhk hkCσ ε=  (1.4-2)

where:

=C fourth rank elastic stiffness tensor 

and where, for the hypothesis of iper-elasticity, the components ijhkC satisfy 

the following conditions of full symmetry:

 ijhk jihk hkijC C C= =  (1.4-3)
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The above written equation (1.4-3) groups in it the following equalities:

 ijhk jihk ijkh jikhC C C C= = =  (1.4-4)

and 

 ijhk hkijC C=  (1.4-5)

where the (1.4-4) follows directly from the symmetry of the stress and the 

strain tensors, while the (1.4-5) is due to the assuming hypothesis of existence 

of the elastic potential φ , [64]. In other word, the strain energy φ per unit 

volume of the material, given by:

 
0 ij ijd
ε

φ σ ε= ∫  (1.4-6)

is independent of the loading path, i.e. the path that ijε takes from 0 to ε while 

it depends on the final value of ε , only.

In linear elasticity, the (1.4-6) may be written as:

 
1 1
2 2ij ij ijhk ij hkCφ σ ε ε ε= =  (1.4-7)

and since the strain energy must be positive, it has to be:

 0ijhk ij hkC ε ε >   (1.4-8)

for any real, non zero, symmetric tensor ijε .

Hence, as said before, the stiffness tensor C is defined positive.

Analogously, the stress-strain relation can be written in the following form, 

inverse of (1.4-1):

 := S:E T  (1.4-9)

or, in components:

 ij ijhk hkSε σ=  (1.4-10)

where:
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=S fourth rank elastic compliance tensor 

and where, for the hypothesis of iper-elasticity, the components ijhkS satisfy the 

following conditions of full symmetry:

 ijhk jihk hkijS S S= =  (1.4-11)

The above written equation (1.4-11) groups in it the following equalities:

ijhk jihk ijkh jikhS S S S= = =  (1.4-12)

and 

 ijhk hkijS S=  (1.4-13)

where the (1.4-12) follows directly from the symmetry of the stress and the 

strain tensors, while the (1.4-13) is due to the assuming hypothesis of existence 

of the elastic complementary potential ψ , [64]. In other word, the stress energy 

ψ per unit volume of the material, given by:

 
0 ij ijd
σ

ψ ε σ= ∫  (1.4-14)

is independent of the loading path, i.e. the path that ijσ takes from 0 to σ

while it depends on the final value of σ , only.

In linear elasticity, the (1.4-14) may be written as:

1 1
2 2ij ij ijhk ij hkSψ σ ε σ σ= =  (1.4-15)

and since the stress energy must be positive, it has to be:

  0ijhk ij hkS σ σ >  (1.4-16)

for any real, non zero, symmetric tensor ijσ .

Hence, as said before, the compliance tensor S is defined positive.

Introducing, now, the contract notation, [36], such that:
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11 1 22 2 33 3

32 4 31 5 12 6

11 1 22 2 33 3

32 4 31 5 12 6

, , ,
, , ,

, , ,
2 , 2 , 2 ,

σ σ σ σ σ σ
σ σ σ σ σ σ

ε ε ε ε ε ε

ε ε ε ε ε ε

= = =
= = =

= = =

= = =

 (1.4-17)

the stress-strain laws (1.4-2) and (1.4-10) may be written, respectively, as:

,C C Cα αβ β αβ βασ ε= =  (1.4-18)

and

,S S Sα αβ β αβ βαε σ= =  (1.4-19)

With reference, in particular, to the equation (1.4-18), it may be expressed 

in a matrix form, as it follows:

 : , T= =C C CT E   (1.4-20)

The stress and the strain tensors, T and E , are expressed in form of 6x1 

column matrices, while the stiffness tensor C is expressed in form of 6x6 

symmetric matrix, as given in the following equation:

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

C C C C C C
C C C C C

C C C C
C C C

Sym C C
C

 
 
 
 

=  
 
 
 
  

C  (1.4-21)

where the transformation between ijhkC and Cαβ is accomplished by replacing 

the subscripts ij (or hk) by α or β , by using the following rules:
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( ) ( )
11 1
22 2
33 3

32 23 4
31 13 5
12 21 6

ij or hk or

or
or
or

α β↔
↔
↔
↔
↔
↔
↔

  (1.4-22)

We may write the transformation (1.4-22) as:

9

9

i if i j
i j if i j

h if h k
h k if h k

α

β

=
=  − − ≠

=
=  − − ≠

 (1.4-23)

Analogously, with reference to the equation (1.4-17), the stress-strain law 

(1.4-19) may be expressed in a matrix form, as it follows:

: , T= =S S SE T  (1.4-24)

where also the compliance tensor S is expressed in form of 6x6 symmetric 

matrix, as given by:

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

S S S S S S
S S S S S

S S S S
S S S

Sym S S
S

 
 
 
 

=  
 
 
 
  

S  (1.4-25)

Here, the transformation between ijhkS and Sαβ is similar to that one between 

ijhkC and Cαβ except the following:
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, 3
2 3

4 , 3

ijhk

ijhk

ijhk

S S if both
S S if either or
S S if both

αβ

αβ

αβ

α β

α β

α β

= ≤

= ≤

= >

 (1.4-26)

From (1.4-20) and (1.4-24), it is obtained the expression of the strain 

energy, as:

1 1 1
2 2 2

φ = = =C ST T TE E T E T T  (1.4-27)

and, by considering that φ has to be positive, it must be:

 
> 0

> 0
C
S

T

T

E E
T T

 (1.4-28)

This implies that the matrices C and S are both positive definite. Moreover, 

the substitution of the (1.4-24) in the (1.4-20) yields:

 = =CS=I=SC   (1.4-29)

where the second equality follows from the first one which says that C and S
are the inverses of each other and, hence, their product commute.

For a linear anisotropic elastic material, like it has been anticipated before, 

the matrices C and S have 21 elastic independent constants. However, this 

number can be reduced when a two-dimensional deformation is considered.

Assume, therefore, the deformation of the examined anisotropic elastic 

bodies to be a two-dimensional one for which 3 0ε = . When 3 0ε = , the 

stress-strain law given by the first equation of (1.4-18) becomes:

3

1,2,3,....,6 1, 2,....,6Cα αβ β
β

σ ε α β
≠

= = =∑  (1.4-30)

Ignoring the equation for 3σ , the (1.4-30) may be written as:

ˆ ˆ ˆˆ ˆ TC C CT = E =  (1.4-31)

where:
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[ ]ˆ , , , ,T
1 2 4 5 6= σ σ σ σ σT  (1.4-32)

[ ]ˆ , , , ,T
1 2 4 5 6= ε ε ε ε εE  (1.4-33)

and:

11 12 14 15 16

22 24 25 26

44 45 46

55 56

66

ˆ

C C C C C
C C C C

C C C
Sym C C

C

 
 
 
 =
 
 
  

C   (1.4-34)

Since Ĉ is obtained from C by deleting the third row and the third column 

of it, Ĉ is a principal submatrix of C and it also is positive definite. It 

contains 15 independent elastic constants.

The stress-strain law (1.4-19) for 3 0ε = is:

 3 30 S β βε σ= =  (1.4-35)

Solving for 3σ , it is:

3 3
333

1 S
S β β

β

σ σ
≠

= − ∑  (1.4-36)

and by sobstituting the (1.4-36) within the first equation of the (1.4-19), it is 

obtained:

  
3

'Sα αβ β
β

ε σ
≠

= ∑  (1.4-37)

with:

3 3

33

' '
S S

S S S
S

α β
αβ αβ βα= − =  (1.4-38)

where:
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'S αβ = reduced elastic compliances.

It is clear, moreover, that:

3 3' 0, ' 0 , 1,2,....,6S Sα β α β= = =  (1.4-39)

For this reason, there is no need to exclude 3β = in the (1.4-37).

By using the notation of the (1.4-32) and (1.4-33), the (1.4-37) can be 

written in the following form:

ˆ ˆ T= ' ' 'S Sv SvE T =  (1.4-40)

where 'Svcan be defined as reduced elastic compliance tensor and it has a 

symmetric matrix form, given by:

11 12 14 15 16

22 24 25 26

44 45 46

55 56

66

' ' ' ' '
' ' ' '

' ' ' '
' '

'

S S S S S
S S S S

S S S
Sym S S

S

 
 
 
 =
 
 
  

S  (1.4-41)

Like Ĉ , 'S contains 15 independent elastic constants. Moreover, the 

substitution of the (1.4-40) in the (1.4-31) yields:

 ˆ ˆ' '= =CS =I=S C=  (1.4-42)

where the second equality follows from the first one which says that Ĉ and 

'S are the inverses of each other and, hence, their product commute. This 

result is independent of whether 3 0ε = or not, because it represents a property 

of elastic constants, [64]. It has to be underlined that the positive definite of Ĉ
implies that 'S is also positive definite.

An alternate proof that Ĉ and 'S are positive definite is to write the strain 

energy as:
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1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ'
2 2 2

φ = = =C ST T TE E T E T T  (1.4-43)

and to consider that φ has to be positive for any nonzero T̂ and Ê , so it must 

be:

 
ˆˆ ˆ

ˆ ˆ'

> 0

> 0

C
S

T

T

E E

T T
 (1.4-44)

As anticipated at the beginning of this section, the number of the 

independent elastic constants of the 6x6 matrices C and S can be opportunely 

reduced, yet, when the examined anisotropic material possesses certain 

material symmetry.

Hence, with reference to a new rectangular coordinate system 1 2 3, ,∗ ∗ ∗e e e , 

obtained from the initial fixed one 1 2 3, ,e e e under an orthogonal 

transformation:

 ∗ =e eΩ  (1.4-45)

or, in components:

 i ij je e∗ = Ω   (1.4-46)

in which Ω is an orthogonal matrix that satisfies the following relations:

 T T= =IΩΩ Ω Ω  (1.4-47)

or:

ij kj ik ji jkδΩ Ω = = Ω Ω  (1.4-48)

a material is said to possess a symmetry with respect to Ω if the elastic fourth 

rank stiffness tensor ∗C referred to the ie∗ coordinate system is equal to that 

one C referred to the ie coordinate system, i.e.:
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 ∗ =C C   (1.4-49)

or in components:

 ijhk ijhkC C∗ =  (1.4-50)

where:

ijhk ip jq hr ks pqrsC C∗ = Ω Ω Ω Ω  (1.4-51)

An identical equation can be written for ijhkS .

In other words, when:

 ijhk ip jq hr ks pqrsC C= Ω Ω Ω Ω  (1.4-52)

the material possesses a symmetry with respect to Ω .

The transformation law (1.4-51) is referred for the ijhkC , but, for simplicity 

of the calculations, some authors adopt the transformation law for Cαβ , [64]:

 r t rtC K K Cαβ α β
∗ =  (1.4-53)

where:

K = a 6x6 matrix, whose elements are obtained by means of suitable assembly 

of the components ijΩ , according to proposals by Mehrabadi, Cowin et 

al (1995), [43] and Mehrabadi and Cowin (1990), [42].

Then, an anisotropic material possesses the symmetry of central inversion

(C) if the (1.4-52) is satisfied for:

1 0 0
0 1 0
0 0 1

− 
 = − = − 
 − 

IΩ  (1.4-54)

It is obvious that the (1.4-52) is satisfied by the Ω given in the (1.4-54) for any 

ijhkC . Therefore, all the anisotropic materials have the symmetry of central 

inversion.
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θ

e 1

e*
1

θ

O

33e =* e

2e

e *
2

If Ω is a proper orthogonal matrix, the transformation (1.4-45) represents a 

rigid body rotation about an axis. So, an anisotropic material is said to possess 

a rotational symmetry if the (1.4-52) is satisfied for:

( ) ( )
cos sin 0
sin cos 0
0 0 1

r

θ θ
θ θ θ

 
 = − 
  

Ω  (1.4-55)

which represents, for example, a rotation about the 3e -axis an angle θ , as 

shown in the following figure. 

Figure 1.5 Rigid rotation about the e3-axis.



Chapter I – Micro-mechanics theory   51  

By extending this property, i.e. if the (1.4-52) is satisfied by the Ω as given 

through the (1.4-55) for any θ , then the material possesses a rotational 

symmetry with respect at any rotation in the 3 = 0e plane. In this case, it is said 

that the 3 = 0e is the plane of transverse isotropy or that 3e is axis of elastic 

symmetry with order p = ∞ ( L∞ ). More in general, instead, by indicating with:

 
2
p
π

θ =   (1.4-56)

the rotation angle about an axis, this latter is defined as axis of elastic symmetry

with order p . Since p may assume values equal to 2,3, 4,6 and ∞ , the axis 

of elastic symmetry has indicated, respectively, with 2L , 3L , 4L , 6L and L∞ .

If Ω is, instead, an orthogonal matrix as defined below:

 2= − TI nnΩ  (1.4-57)

where:

=n a unit vector 

then, the transformation (1.4-45) represents a reflection about a plane whose

normal is n , defined as reflection plane or symmetry plane (P). In particular, if 

m is any vector on the plane, the following relation is satisfied:

,= − =n n m mΩ Ω   (1.4-58)

According to a such orthogonal matrix, therefore, a vector normal to the 

reflection plane reverses its direction after the transformation while a vector 

belonging to the reflection plane remains unchanged.
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So, an anisotropic material is said to possess a symmetry plane if the 

(1.4-52) is satisfied by the Ω as given by (1.4-57). For example, consider:

  [ ]cos ,sin ,0θ θ=Tn  (1.4-59)

i.e. the symmetry plane contains the 3e -axis and its normal vector makes an 

angle of θ with the 1e -axis, as shown in the following figure.

Figure 1.6 Reflection about a plane containing the e3-axis.

The orthogonal matrix Ω of the (1.4-57), so, has the following expression:

 ( )
cos 2 sin 2 0
sin 2 cos 2 0

0 0 1

θ θ
θ θ θ

− − 
 = − 
  

Ω
2 2
π π

θ− < ≤  (1.4-60)

e3

e2

p
θn

-p

e1
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which is an improper orthogonal matrix and represents a reflection with respect 

to a plane whose normal is on the ( ),1 2e e plane. Since θ and θ π+ represent 

the same plane, θ is limited to the range shown in (1.4-60). In the particular 

case that 0θ = , Ω becomes:

( )
1 0 0

0 1 0
0 0 1

θ
− 

 =  
  

Ω  (1.4-61)

which represents a reflection about the plane 1 0=e . Hence, an anisotropic 

material for which the (1.4-52) is satisfied by the Ω as given through the 

(1.4-61) is said to possess a symmetry plane at 1 0=e . By extending this 

property, i.e. if the (1.4-52) is satisfied by the Ω as given through the (1.4-60)

for any θ , then the material possesses a symmetry plane with respect at any 

plane that contains the 3e -axis. In this case, it is said that the 3e -axis is the axis 

of symmetry (L).

In analogous manner, it is considered, in the following equation, the 

expression of an orthogonal matrix which represents a reflection with respect to 

a plane whose normal is on the ( ),2 3e e plane, making an angle ϕ with the 

2e -axis:

 ( )
1 0 0
0 cos 2 sin 2
0 sin 2 cos 2

ϕ ϕ ϕ
ϕ ϕ

 
 = − − 
 − 

Ω
2 2
π π

ϕ− < ≤  (1.4-62)
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e 1

n

θ

O

e 3

2e

n'

In particular, the symmetry plane = 02e can be represented by either 

2
π

θ = or 0ϕ = , while the symmetry plane = 03e can be represented by 

2
π

ϕ = , as shown in the following figure:

Figure 1.7  The vectors n and n’ are, respectively, the normal vectors 
to planes of reflection symmetry defined by the (1.4-60)
and (1.4-62)

The existence of various combinations of the different symmetry forms 

implies a corresponding classification of the anisotropy classes of the materials. 

In particular, two extreme cases of anisotropic elastic materials are the triclinic

materials and the isotropic ones. The first material possesses no rotational 

symmetry or a plane of reflection symmetry, while the second material 
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possesses infinitely many rotational symmetries and planes of reflection 

symmetry. For such materials, it can be shown that [64]:

( )ijhk ij hk ih jk ik jhC Gλδ δ δ δ δ δ= + +  (1.4-63)

where λ and G are the Lamè constants, satisfies the (1.4-52) for any 

orthogonal Ω .

It is possible to demonstrate that if an anisotropic elastic material possesses 

a material symmetry with the orthogonal matrix Ω , then it also possesses the 

material symmetry with =T -1Ω Ω . This means, for example, that if the 

material has rotational symmetry with rotation about the 3x -axis an angle θ , it 

also has the symmetry about the 3x -axis an angle θ− . Moreover, it is possible 

to demonstrate, yet, that if an anisotropic elastic material possesses a symmetry 

with 'Ω and ''Ω , then it also possesses a symmetry with ' ''=Ω Ω Ω , [64]. 

These statements, valid either for linear or nonlinear material, are useful in 

determining the structure of the stiffness tensor when the material possesses 

symmetries. 

Depending on the number of rotations and/or reflection symmetry a crystal 

possesses, Voigt (1910) in fact classified crystals into 32 classes. However, in 

terms of the 6x6 matrix C , there are only 8 basic groups, since different 

combinations of symmetry forms may lead to the same structure of the stiffness 

tensor, [36]. This classification maid for crystals can be extended for non-

crystalline materials, so that for them the structure of  C can also be 

represented by one of the 8 basic groups.

Without loss in generality, in the follows, the list of such groups of 

materials are presented by choosing the symmetry plane (or planes) to coincide 

with the coordinate planes whenever possible. If the matrix ∗C referred to a 

different coordinate system is desired, the (1.4-51) is used to obtain it.



 56    Chapter I – Micro-mechanics theory   

• Triclinic materials

They represent the most general case, in which no symmetry form exists. 

The number of independent constants is, therefore, 21 and the matrix C
assumes the following form:

  

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

C C C C C C
C C C C C

C C C C
C C C

Sym C C
C

 
 
 
 

=  
 
 
 
  

C 0 21n =  (1.4-64)

which is equal to that one of the equation (1.4-21).

• Monoclinic materials

The symmetry forms are: 2 2, , ;L P L PC The number of the independent 

elastic constants is 13 and the matrix C assumes the following expressions: 

a) Symmetry plane coinciding with = 01e , i.e., 0θ =

11 12 13 14

22 23 24

33 34

44

55 56

66

0 0
0 0
0 0
0 0

C C C C
C C C

C C
C

Sym C C
C

 
 
 
 

=  
 
 
 
  

C 0 13n =  (1.4-65)

b) Symmetry plane coinciding with = 02e , i.e., 
2
π

θ = or 0ϕ = :
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11 12 13 15

22 23 25

33 35

44 46

55

66

0 0
0 0
0 0

0
0

C C C C
C C C

C C
C C

Sym C
C

 
 
 
 

=  
 
 
 
  

C 0 13n =  (1.4-66)

c) Symmetry plane coinciding with = 03e , i.e., 
2
π

ϕ = :

11 12 13 16

22 23 26

33 36

44 45

55

66

0 0
0 0
0 0

0
0

C C C C
C C C

C C
C C

Sym C
C

 
 
 
 

=  
 
 
 
  

C 0 13n =  (1.4-67)

• Orthotropic (or Rhombic) materials

The symmetry forms are: 3P, 2 2 23 , 2 ,3 3 ;L L P L PC With reference to the 

symmetry form 3P, it means that the three coordinate planes, 0θ = , 
2
π

θ =

and 
2
π

ϕ = are the symmetry planes. The number of the independent elastic 

constants is 9 and the matrix C assumes the following form: 



 58    Chapter I – Micro-mechanics theory   

11 12 13

22 23

33

44

55

66

0 0 0
0 0 0
0 0 0

0 0
0

C C C
C C

C
C

Sym C
C

 
 
 
 

=  
 
 
 
  

C 0 9n =  (1.4-68)

• Trigonal materials

The symmetry forms are: 3 2 3 3 2
63 , 3 , 3 3 ;L L L P L L PC With reference to the 

symmetry form 3P, it is verified that the three coordinate planes, 0θ = , 

3
π

θ = + and 
3
π

θ = − are the symmetry planes. The number of the 

independent elastic constants is 6 and the matrix C assumes the following 

form: 

( )

11 12 13 14

11 13 14

33

44

44 14

11 12

0 0
0 0

0 0 0
0 0

1
2

C C C C
C C C

C
C

Sym C C

C C

 
 − 
 
 =  
 
 
 −  

C 0 6n =  (1.4-69)

• Tetragonal materials

The symmetry forms are: 4 4 2
4, , ;L L PC L It is verified that the tetragonal 

materials show five symmetry planes at 0θ = , 
4
π

θ = + , 
4
π

θ = − , 
2
π

θ = +
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and 
2
π

ϕ = + . The number of the independent elastic constants is 6 and the 

matrix C assumes the following form: 

11 12 13

11 13

33

44

44

66

0 0 0
0 0 0
0 0 0

0 0
0

C C C
C C

C
C

Sym C
C

 
 
 
 

=  
 
 
 
  

C 0 6n =  (1.4-70)

• Transversely isotropic (or exagonal) materials

The symmetry forms are: 
3 3 2 6 6 2 6 6 6 2, 3 4 , , 6 , , 6 , 6 7 ;L P L L P L L L L PC L P L L PC

For the transversely isotropic materials the symmetry planes are 
2
π

ϕ = , 

i.e. ( )= 03e , and any plane that contains the 3e -axis. So, the 3e -axis is the 

axis of symmetry. The number of the independent elastic constants is 5 and the 

matrix C assumes the following form:

( )

11 12 13

11 13

33

44

44

11 12

0 0 0
0 0 0
0 0 0

0 0
0

1
2

C C C
C C

C
C

Sym C

C C

 
 
 
 
 =  
 
 
 −  

C 0 5n =  (1.4-71)
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• Cubic materials

The symmetry forms are 
2 3 2 3 2 3 4 3 2 4 3 2

6 4 63 4 ,3 4 3 ,3 4 6 ,3 4 6 ,3 4 6 9 ;L L L L PC L L P L L L L L L PC

For the cubic materials there are nine symmetry planes, whose normal 

vectors are on the three coordinate axes and on the coordinate planes making 

an angle 
4
π

with coordinate axes. The number of the independent elastic 

constants is 3 and the matrix C assumes the following form:

11 12 12

11 12

11

44

44

44

0 0 0
0 0 0
0 0 0

0 0
0

C C C
C C

C
C

Sym C
C

 
 
 
 

=  
 
 
 
  

C 0 3n =  (1.4-72)

• Isotropic materials

For the isotropic materials any plane is a symmetry plane. The number of 

the independent elastic constants is 2 and the matrix C assumes the following 

form:
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 ( )

( )

( )

11 12 12

11 12

11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

1 0 0
2

1 0
2

1
2

C C C
C C

C

C C

Sym C C

C C

 
 
 
 
 
 −=  
 
 −
 
 

− 
 

C
0 2n =  (1.4-73)

If λ and G are the Lamè constants, the (1.4-73) assumes the expression given 

by:

2 0 0 0
2 0 0 0

2 0 0 0
0 0

0

G
G

G
G

Sym G
G

λ λ λ
λ λ

λ

+ 
 + 
 +

=  
 
 
 
 

C 0 2n =  (1.4-74)

It is remarkable that, for isotropic materials, it needs only three planes of 

symmetry to reduce the number of elastic constants from 21 to 2.

The following figure shows the hierarchical organization of the eight 

material symmetries of linear elasticity. It is organized so that the lower 

symmetries are at the upper left and, as one moves down and across the table to 

the right, one encounters crystal systems with greater and greater symmetry.
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Figure 1.8 Hierarchical organization of the eight material symmetries 
of linear elasticity

It is worth to underline that the structure of the matrix C above obtained for 

each class of materials is referred to the specified coordinate system. When 

different coordinate systems are employed, the transformation law (1.4-51) has 

to be used for obtaining the structure of the new matrixC , in which, while the 

number of nonzero elements may increase, the number of independent elastic 

constants remains constant since it does not depend on the choice of the 

coordinate systems. In the applications, the choice of the coordinate system is 

very often dictated by the boundary conditions of the problem and hence it may 

not coincide with the symmetry planes of the material. In these cases, the 

transformation of the matrix C to a different coordinates system becomes 

necessary.
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The analysis until here presented for obtaining the structure of the stiffness 

tensor C may be applied analogously for obtaining the structure of the 

compliance tensor S . Like C , the elastic compliance tensor S is a fourth rank 

tensor and, under the orthogonal transformation (1.4-45), its components, 

ijhkS ∗ , referred to a new coordinate system are related to those ones, ijhkS , 

referred to the initial coordinate system by:

ijhk ip jq hr ks pqrsS S∗ = Ω Ω Ω Ω  (1.4-75)

which is identical to (1.4-52).

Hence, the structure of the matrix C appearing in (1.4-64)-(1.4-73) remains 

valid for the matrix S with the following modifications required by (1.4-26):

- The relation:

 56 24 14C C C= − =  (1.4-76)

in the (1.4-69) is replaced by:

 56 24 14
1
2

S S S= − =  (1.4-77)

and the elastic coefficient 66C in (1.4-69), (1.4-71) and (1.4-73) is replaced by:

 ( )66 11 122S S S= −  (1.4-78)

In engineering applications the matrix S for isotropic materials is written as:

 ( )
( )

( )

1 0 0 0
1 0 0 0

1 0 0 01
2 1 0 0

2 1 0
2 1

E
Sym

ν ν
ν

ν
ν

ν

− − 
 − 
 

=  + 
 +
 

+  

S (1.4-79)
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where:

( )
( )

3 2
,

2
G G

E
G G

λ λ
ν

λ λ
+

= =
+ +

  (1.4-80)

are, respectively, the Young’s modulus and the Poisson ratio. It can be shown 

that:

( )( ) ( )
,

1 1 2 2 1
E EGν

λ
ν ν ν

= =
+ − +

 (1.4-81)

For obtaining the structure of the elastic reduced compliance tensor 'S , the 

same considerations are valid with some modifications required by the (1.4-38)

. Hence, for example, the expression of 'S for isotropic materials is the 

following one:

1 0 0 0
1 0 0 0

1' 2 0 0
2

2 0
2

G

ν ν
ν

− − 
 − 
 =
 
 
  

S 0 2n =   (1.4-82)

Like stated previously, the strong convexity condition which is equivalent to 

the positive definiteness of the strain energy, (1.4-8),  yields that the stiffness 

tensor C is defined positive, as well as, the positive definiteness of the stress 

energy, (1.4-16),  yields that the compliance tensor S is defined positive. In 

particular, in the contracted notation, the (1.4-8) implies that the 6x6 matrix C
is also positive definite and, so, all its principal minors are positive, i.e.:

  0iiC > ( )i not summed  (1.4-83)

 0ii ij

ij jj

C C
C C

> ( ),i j not summed  (1.4-84)
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0
ii ij ih

ij jj jh

ih jh hh

C C C
C C C
C C C

> ( ), ,i j k not summed  (1.4-85)

 M   (1.4-86)

where , ,i j h are distinct integers which can have any value from 1 to 6. 

In particular, according to the theorem which states that a real symmetric 

matrix is positive definite if and only if its leading principal minors are 

positive, the necessary and sufficient conditions for the 6x6 matrix C to be 

positive definite are the positivity of its 6 leading principal minors, i.e.:

 11 0C > ( )i not summed  (1.4-87)

11 12

12 22

0
C C
C C

> ( ),i j not summed   (1.4-88)

11 12 13

12 22 23

13 23 33

0
C C C
C C C
C C C

> ( ), ,i j k not summed  (1.4-89)

 M  (1.4-90)

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

0

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

>  (1.4-91)
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Analogously, the (1.4-16) implies that the 6x6 matrix S is also positive 

definite and, so, also its 6 leading principal minors are positive. The same 

consideration can be applied for the matrices Ĉ and 'S . By imposing these 

conditions of positivity on the minors of the matrices, the restrictions on the 

elastic coefficients can be found.

The above done anisotropic classification of the materials according to the 

number of symmetry planes is based on the assumption that, for each material, 

the number and the locations of the symmetry planes are known. However, this 

is not the case when considering an unknown material. So, often, the elastic 

stiffnesses and the elastic compliances of the material have to be determined to 

an arbitrarily chosen coordinate system. The result is that, if there exists a

symmetry plane, it may not be one of the coordinate planes. Consequently, all 

elements of the matrices C and S can be nonzero. The problem is to locate the 

symmetry planes if they exist when C (or S ) is given.

When a plane of symmetry exists, as already seen, the (1.4-52) is satisfied 

by the Ω given in (1.4-57), which has the properties given in (1.4-58) where 

n is a unit vector normal to the plane symmetry and m is any vector 

perpendicular to n . Cowin and Mehrabadi (1987) have demonstrated that a set 

of necessary and sufficient conditions for n to be a unit normal vector to a 

plane of symmetry is, [64]:

( )ijhh j pqss p q iC n C n n n=  (1.4-92)

( )ikhk h pqrq p q iC n C n n n=  (1.4-93)

( )ijhk j k h pqrs p q r s iC n n n C n n n n n=  (1.4-94)

( )ijhk j k h pqrs p q r s iC m m m C n m n m n=  (1.4-95)
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For example, if the plane = 01e is considered as plane of symmetry, by 

substituting in the (1.4-92)-(1.4-95) the vectors n and m , defined as:

1 2 3, cos sini i i i in mδ δ θ δ θ= = +  (1.4-96)

where θ is an arbitrary constant, the independent elastic constants are 

obtained, according to the (1.4-65) if using the contracted notation.

More in general, the equations (1.4-92)-(1.4-95) tell that n is an 

eigenvector of the 3x3 symmetric matrices U , V , ( )Q n and ( )Q m whose 

elements are:

( ), ,ij ijhh ih ikhk ih ijhk j kU C V C Q C n n= = =n  (1.4-97)

and it is stated, here, a modified Cowin-Mehrabadi theorem, as it follows:

o An anisotropic elastic material with given elastic stiffnesses ijhkC has a 

plane of symmetry if and only if n is an eigenvector of ( )Q n and 

( )Q m , or of U and ( )Q m or of V and ( )Q m . The vector n is 

normal to the plane of symmetry, while m is any vector on the plane 

of symmetry.

Since this theorem is not suitable for determining n because the matrix ( )Q m

depends on m which, in turns, depends on n , another theorem is used for 

computing n : 

o An anisotropic elastic material with given elastic stiffnesses ijhkC has a 

plane of symmetry if and only if n (normal vector to the plane of 

symmetry) is a common eigenvector of U and V and satisfies:

 0ijhk i j h kC m n n n =  (1.4-98)

 0ijhk i j h kC m m m n =  (1.4-99)
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for any two independent vectors ( )1, 2α α =m on the plane of symmetry that 

do not form an angle a multiple of 3π .

For the physical interpretation of these matrices and for the demonstration 

of such theorems, the reader is referred to [64].

1.5 Overall elastic modulus and compliance tensors

In this section, an RVE of volume V bounded by V∂ is considered, which 

consists of a uniform elastic matrix  having elasticity and compliance tensors 
MC and MS , containing n elastic micro-inclusions with volume αΩ , having 

elasticity and compliance tensors αC and αS ( )1, 2,...,nα = . It is assumed 

that the micro-inclusions are perfectly bonded to the matrix. All the 

constituents of the RVE are assumed to be linearly elastic. Hence, the overall 

response of the RVE is linearly elastic, too. The matrix and each inclusion are 

assumed to be homogeneous, but neither the matrix nor the inclusions need be 

isotropic. In general, the overall response of the RVE may be anisotropic, even 

if its constituents are isotropic. This depends on the geometry and arrangement 

of the micro-inclusions.

The overall elasticity and compliance tensors of the RVE, denoted by C and 

S , respectively, are, in the follows, estimated in terms of the RVE’s micro-

structural properties and geometry. As done previously, the cases of a 

prescribed macrostress and a prescribed macrostrain are considered separately. 

- Case of prescribed constant macrostress 

For the constant macrostress = 0Σ Σ , the boundary tractions are:

= ⋅0t n 0Σ on V∂  (1.5-1)
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Because of the heterogeneity, neither the resulting stress nor the resulting strain 

fields in the RVE are uniform. Define the constant strain field 0E by:

 :M≡ S0E 0Σ   (1.5-2)

and observe that the actual stress field, denoted by ( )T x , and the actual strain 

field, denoted by ( )E x , can be expressed as:

 
( ) ( )
( ) ( )

= +

= +

0 d

0 d

T x T x

E x E E x

Σ
 (1.5-3)

where the variable stress and strain fields, ( )dT x and ( )dE x , are the 

disturbances or perturbations in the prescribed uniform stress field 0Σ and the 

associated constant strain field 0E , due to the presence of the inclusions.

Hence, the total stress and strain tensors, T and E , are related by Hooke’s 

law, as it follows:

 ( ) ( )
( ) ( ){ }
( ) ( ){ }

: :

: :

M M inM V

inα α α

 = + = −Ω= + = 
= + Ω

C C
C C

0 d
0 d

0 d

E x E E x
T x T x

E x E E x
Σ  (1.5-4)

and:

 ( ) ( )
( ) ( ){ }
( ) ( ){ }

: :

: :

M M in M V

inα α α

 = + = − Ω= + = 
= + Ω

S S
S S

0 d

0 d
0 d

T x T x
E x E E x

T x T x

Σ

Σ
 (1.5-5)

where:

1

n
α

α =

Ω = ΩU = the total volume of all micro-inclusions

M = matrix volume

From the averaging theorems, discussed in Section 1.3, and according to the 

(1.5-1), it follows that:
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 ( )=< >=T T x 0Σ  (1.5-6)

On the other hand, the overall average strain field is given by:

( ) ( )=< >=< + >0 dE E x E E x  (1.5-7)

i.e., in general, for a prescribed macro-stress, it is:

 ( )< x > 0≠dE  (1.5-8)

The goal is to calculate the overall compliance tensor, S , such that:

 : := =S: S:E T 0Σ  (1.5-9)

In order to do it, obtain the average value of the strain field over each micro-

inclusion as:

 ( ) ( ) dV
α

α
α α

Ω

1
=< > =

Ω ∫E E x E x  (1.5-10)

and the average value of the stress field over each micro-inclusion is:

( ) ( ) dV
α

α
α α

Ω

1
=< > =

Ω ∫T T x T x  (1.5-11)

In similar manner, the average value of the strain field over the matrix material 

is obtained as:

( ) ( )M
M

M

dV
M
1

= < > = ∫E E x E x  (1.5-12)

and the average value of the stress field over the matrix material is obtained as:

( ) ( )M
M

M

dV
M
1

= < > = ∫T T x T x  (1.5-13)

The volume average of the (1.5-5) over the matrix and the inclusions yields:

:
:

M M M=
=α α α

S :
S :

E T
E T

( )not summedα  (1.5-14)

Since:
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: :
n n

M
M

=1 =1
f - f fα α α

α α
α α

= = −∑ ∑S SE E E T0Σ  (1.5-15)

and:

: :
n

M M M M
M M

=1
f f f α

α
α

 
= = − 

 
∑S S 0E T TΣ  (1.5-16)

then, it is obtained that:

 ( ) ( ) ( ) ( ): : :
n n

M M M

=1 =1
f fα α α
α α α

α α

− = − = − < + >∑ ∑S S S S S S 0 dT T x0Σ Σ  (1.5-17)

where:

f
V

α

α

Ω
= = the volume fraction of the thα inclusion

M
Mf
V

= = the volume fraction of the matrix

The (1.5-17) leads to an exact result. It defines the overall compliance 

tensor S in terms of the average stresses in the inclusions. It is important to 

note that this result does not require the knowledge of the entire stress field 

within each inclusion: only the estimate of the average value of it in each 

inclusion is needed.

Since the overall response is linearly elastic, the disturbances or 

perturbations in the stress and strain fields due to the presence of the inclusions, 

( )dT x and ( )dE x , are linear and homogeneous function of the prescribed 

constant macro-stress 0Σ . So, in general:

( ) ( ) ( ): : :M Mα α α α
α− < + > = − =S S S S H0 d 0T x TΣ Σ  (1.5-18)

where the constant fourth-order αH tensor is defined by:

 ( ) ( ): : :M Mα α α
α α− =< + > − < + > =S S H0 d 0 d 0E T E E x T xΣ Σ  (1.5-19)
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This is the change in the average strain field of αΩ if αS is replaced by MS .

Since 0Σ is arbitrary, the substitution of the (1.5-18) in the (1.5-17) yields:

1

n
M f α

α
α =

= + ∑S S H  (1.5-20)

which is an exact result, yet. It applies to a finite as well as infinitely extended 

RVE. There is no restriction on the geometry (i.e. shapes) or distribution of the 

inclusions. The only requirements are that the matrix as well as each inclusion 

are linearly elastic and homogeneous and that the inclusions are perfectly 

bonded to the matrix. However, approximations and specializations are 

generally introduced for obtaining the constant tensors ( )1, 2,.....nα α =H . In 

fact, in order to estimate such tensor, an usually used approximation is that one 

to assume the inclusions to be ellipsoidal.

- Case of prescribed constant macrostrain 

For the constant macrostrain =E E 0 , the boundary conditions for the RVE 

are:

 = ⋅E 00u x on V∂  (1.5-21)

Define the constant strain field 0T by:

 :M≡ C0T 0E   (1.5-22)

and observe that the actual stress field, denoted by ( )T x , and the actual strain 

field, denoted by ( )E x , can be expressed as:

 
( ) ( )
( ) ( )

= +

= +E

0 d

0 d

T x T T x

E x E x
 (1.5-23)
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where the variable stress and strain fields, ( )dT x and ( )dE x , are the 

disturbances or perturbations in the prescribed uniform strain field E 0 and the 

associated constant stress field 0T , due to the presence of the inclusions with 

different elasticity, i.e. of the existence of a material mismatch.

The total stress-strain relations are given by (1.5-4) and (1.5-5).

From the averaging theorems, discusses in the Section 1.3, and according to 

the (1.5-21), it follows that:

 ( )=< >= E 0E E x  (1.5-24)

On the other hand, the overall average stress field is given by:

( ) ( )=< >=< + >0 dT T x T T x  (1.5-25)

i.e., in general, for a prescribed macro-strain, it is:

 ( )< x > 0≠dT  (1.5-26)

The goal is to calculate the overall stiffness tensor, C , such that:

 : := = E 0C: C:T E  (1.5-27)

The volume average of the (1.5-4) over the matrix and the inclusions yields:

 
:

:

M M M=
=α α α

C :
C :

T E
T E

( )not summedα  (1.5-28)

Since:

: :
n n

M
M

=1 =1
f - f fα α α

α α
α α

= = −∑ ∑E 0C CT T T E  (1.5-29)

and:

: :
n

M M M M
M M

=1
f f f α

α
α

 
= = − 

 
∑S S 0T E EE  (1.5-30)

then, it is obtained that:
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( ) ( ) ( ) ( ): : :
n n

M M M

=1 =1
f fα α α
α α α

α α

− = − = − < + >∑ ∑C C C C C C 0 dE E x0E E  (1.5-31)

The (1.5-31) leads to an exact result. It defines the overall stiffness tensor 

C in terms of the average strains in the inclusions. It is important to note that 

also this result, like the previous one, does not require the knowledge of the 

entire strain field within each inclusion: only the estimate of the average value 

of it in each inclusion is needed.

Since the overall response is linearly elastic, the disturbances or perturbations 

in the stress and strain fields due to the presence of the inclusions, ( )dT x and 

( )dE x , are linear and homogeneous function of the prescribed constant 

macro-strain E 0 . So, again, because of linearity, the change in the average 

strain field of αΩ if αC is replaced by MC , is expressed as:

 : :Mα α α− =S J 0E T E  (1.5-32)

Since E 0 is arbitrary, from the (1.5-31) it is obtained that:

4

1 1
: :

n n
M M Mf fα α

α α
α α= =

 
= − = − 

 
∑ ∑1C C C J C J  (1.5-33)

which is an exact result, yet. At this point, the constant tensors αH and 

( )1, 2,.....nα α =J has to be estimated for each inclusion.

At this point, in order to introduct the concepts of eigenstrain and 

eigenstress, a specific elastic problem is considered, where a finite 

homogeneous linearly elastic (not necessarily isotropic) solid, having elasticity 

tensor MC and compliance tensor MS , contains only one homogeneous 

linearly elastic (not necessarily isotropic) inclusion Ω , of arbitrary geometry, 

having elasticity tensor αC and compliance tensor αS . The total volume is V, 
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bounded by V∂ , and the matrix volume is M V= − Ω , bounded by 
MV V∂ + ∂Ω = ∂ − ∂Ω ; see the figure below.

M

∂Ω

∂V

V = M + Ω

Figure 1.9 Finite homogeneous linearly elastic solid

When self-equilibrating surface tractions, corresponding to the uniform 

stress field constant=0Σ , are applied on the boundary, because of the RVE 

heterogeneity, the stress and the strain fields within the volume V are spatially 

variable and they can be expressed by (1.5-3). Analogously, when self-

compatible linear surface displacements, corresponding to the uniform strain 

field constant=E 0 , are applied on the boundary, because of the RVE 

heterogeneity, the stress and the strain fields within the volume V are spatially 

variable and they can be expressed by (1.5-23).

However, instead of dealing with the above-mentioned heterogeneous solid, 

it is convenient and effective to consider an equivalent homogeneous one 

which has the uniform elasticity tensor MC of the matrix material everywhere, 

including in Ω . Then, in order to account for the mismatch of the material 

properties of the inclusion and of the matrix, a suitable strain field ( )∗E x is 

introduced in Ω . Doing so, the equivalent homogeneous solid has the same 
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strain and stress fields as the actual heterogeneous solid under the applied 

boundary conditions (tractions or displacements). The introduced strain field 

( )∗E x is called eigenstrain. The following figure shows this procedure when 

boundary tractions corresponding to 0Σ are prescribed on V∂ .

Ω

M
ε° + εd

t° = Σ° n

M

Ω

t° = Σ° n

ε° + ε − ε*d

ε° + εd

Figure 1.10 (a)  heterogeneous solid; (b) equivalent homogeneous solid.

where the assigned eigenstrain field is given by:

( ) ( )
in M
in

∗
∗


=  Ω

0
E x

E x
 (1.5-34)

Since for this equivalent problem the elasticity tensor is, as already 

mentioned, uniform everywhere and given by MC , the strain and the stress 

fields within the solid can be expressed as:

 ( ) ( )= +0 dE x E E x  (1.5-35)

and:

(a) (b)
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 ( ) ( ) ( )( )
( )( )
( ) ( )( )

:
:

:

M

M
M

in M

in
∗

∗

= − = 
− Ω

C
C

C

0 d

0 d

E + E x
T x E x E x

E + E x E x
 (1.5-36)

which shows that the eigenstrain field disturbs the stress-strain relation.

In order to relate the eigenstrain ( )∗E x to the corresponding perturbation 

strain ( )dE x , consider the equivalent uniform elastic solid of volume V and 

uniform elasticity MC and observe that, since by definition:

 :M= C0 0T E  (1.5-37)

or:

 :M= S0 0E T  (1.5-38)

Hence, by considering that:

 
( ) ( )
( ) ( )

= +

= +

0 d

0 d

T x T T x

E x E E x
  (1.5-39)

and by taking in account the (1.5-35) and (1.5-36), it follows that:

( ) ( ) ( )( ):M ∗= −Cd dT x E x E x in V  (1.5-40)

Since the resulting stress field must be in equilibrium and must produce a 

compatible strain field, in general the perturbation strain field ( )dE x is 

obtained in terms of an integral operator acting on the corresponding 

eigenstrain ( )∗E x . In the present context, this integral operator is denoted by 

S , such that:

 ( ) ( ); ∗=dE x x ES  (1.5-41)

or, in components:

( ) ( );d
ij ijE ∗=x x ES  (1.5-42)
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The same procedure of homogenization previously developed can be 

performed by the introduction of an eigenstress ( )∗T x . To this end, set:

( ) ( )
in M
in

∗
∗


=  Ω

0
T x

T x
 (1.5-43)

Since for this alternative equivalent problem the elasticity tensor is, again, 

uniform everywhere and given by MC , the strain and the stress fields within 

the solid can be expressed as:

 ( ) ( )= +0 dE x E E x  (1.5-44)

and:

( ) ( ) ( )
( )( )
( )( ) ( )

:
:

:

M
M

M

inM

in
∗

∗

= = 
+ Ω

C
C

C

0 d

0 d

E + E x
T x E x +T x

E + E x T x
 (1.5-45)

which shows that the eigenstress field disturbs the stress-strain relation.

In order to relate the eigenstress ( )∗T x to the corresponding perturbation 

stress ( )dT x , by considering again the equivalent uniform elastic solid of 

volume V and uniform elasticity MC and by taking in account the (1.5-35), 

(1.5-36) and the (1.5-39), it follows that:

( ) ( ) ( ):M ∗= Cd dT x E x + T x in V  (1.5-46)

In general also the perturbation stress field ( )dT x is obtained in terms of 

an integral operator acting on the corresponding eigenstress ( )∗T x . In the 

present context, this integral operator is denoted by T , such that:

( ) ( ); ∗=dT x x TT  (1.5-47)

or, in components:
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( ) ( );d
ij ijT ∗=x x TT   (1.5-48)

According to this topic, an important result due to Eshelby (1957), whis has 

played a key role in the micromechanical modelling of elastic and inelastic 

heterogeneous solids, as well as of nonlinear creeping fluids, is that if:

1. V − Ω is homogeneous, linearly elastic, and infinitely extended and

2. Ω is an ellipsoid

then:

1. the eigenstrain ∗E necessary for homogenization is uniform in Ω .

2. the resulting strain dE and, hence, stress dT are also uniform in 

Ω , the former being given by:

 :Ω ∗=dE ES in Ω  (1.5-49)

where the fourth-order tensor ΩS is called Eshelby’s tensor, having the 

following properties:

a) it is symmetric with respect to the first two indices and the second 

two indices:

 ijkl jikl ijlk
Ω Ω Ω= =S S S  (1.5-50)

however, it is not in general symmetric with respect to the exchange 

of ij and kl, i.e. in general it is:

  ijkl klij
Ω Ω≠S S  (1.5-51)

b) it is independent of the material properties of the inclusion Ω .

c) it is completely defined in terms of the aspect ratios of the 

ellipsoidal inclusion Ω and the elastic parameters of the 

surrounding matrix M and 

d) when the surrounding matrix M is isotropic, it depends only on the 

Poisson ratio of the matrix and the aspect ratios of Ω .
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The components of the Eshelby tensor are listed for several special cases. 

For them, the reader is referred to the Appendix, at the end of this chapter.

When the eigenstrain ∗E and the resulting strain disturbance dE are 

uniform in Ω , then the corresponding eigenstress ∗T and the associated stress 

disturbance dT are also uniform in Ω . Hence, a fourth-order tensor ΩT may 

be introduced, such that:

 :Ω ∗=dT TT in Ω  (1.5-52)

The tensor ΩT has the same symmetries of Eshelby’s tensor.

In order to relate the tensors ΩT and ΩS , it is first noted from the (1.5-40)

and the (1.5-46) that the eigenstrain and the eigenstress are related by:

: , :M M∗ ∗ ∗ ∗+ = + =0 0C ST E E T  (1.5-53)

So, from the (1.5-46), the (1.5-49) and the (1.5-52), it follows that:

( )( ) ( )
( )( ) ( )

: : : :

: : : :

M M

M M

Ω ∗ Ω ∗

Ω ∗ Ω ∗

= − −

= − −

4

4

1

1

S C

C S

E E

T T

S T

T S
 (1.5-54)

Therefore, the tensors ΩT and ΩS must satisfy:
( ) ( ): : , : :M M M MΩ Ω Ω Ω+ = + =4 41 1S C C SS T T S  (1.5-55)

or, in components:

( )

( )

1: :
2
1: :
2

M M
ijkl ijpq pqrs rskl ik jl il jk

M M
ijkl ijpq pqrs rskl ik jl il jk

S C

C S

δ δ δ δ

δ δ δ δ

Ω Ω

Ω Ω

+ = +

+ = +

S T

T S
 (1.5-56)

However, for the general case, the eigenstrains and the eigenstresses 

necessary for the homogenization are not uniform in Ω , even if Ω is 

ellipsoidal, whether V is unbounded or finite. So, the eigenstrains, ( )∗E x (or 



Chapter I – Micro-mechanics theory   81  

the eigenstresses, ( )∗T x ) are defined by the so-called consistency conditions, 

which require the resulting stress field ( )T x , (or the strain field ( )E x ), to be 

the same under the applied overall loads, whether it is calculated directly from 

the (1.5-4) or through homogenization from (1.5-40).

Note here that the (1.5-4), when considering an only inclusion, becomes:

 ( ) ( )
( ) ( ){ }

( ) ( ){ }
: :

: :

M M inM V

inΩ Ω

 = + = −Ω= + = 
= + Ω

C C
C C

0 d

0 d
0 d

E x E E x
T x T T x

E x E E x
 (1.5-57)

Hence, the resulting stress field in Ω , according to the (1.5-57), is given by:

 ( ) ( ) ( ){ }: :Ω Ω= = +C C 0 dT x E x E E x in Ω  (1.5-58)

or else, according to the (1.5-36):

 ( ) ( ) ( )( ) ( ) ( )( ): :M M∗ ∗= − = −C C 0 dT x E x E x E + E x E x in Ω  (1.5-59)

By summarizing the equations (1.5-58) and (1.5-59), the stress field in Ω

can be expressed in the following form:

( ) ( )( ) ( ) ( )( ): :d MΩ ∗= = −C C0 0 dT x E + E x E + E x E x  (1.5-60)

and analogously for the resulting strain field in Ω :

( ) ( )( ) ( ) ( )( ): :d MΩ ∗= = −S S0 0 dE x T + T x T + T x T x  (1.5-61)

The substitution in the (1.5-60) of ( )dE x as given by (1.5-41) yields an 

integral equation for ( )∗E x . Similarly, The substitution in the (1.5-61) of 

( )dT x as given by (1.5-47) yields an integral equation for ( )∗T x .

It is worth to underline that both (1.5-60) and (1.5-61) are valid whether 

uniform tractions or linear displacements are prescribed on V∂ . In particular,

if the overall stress 0Σ is given, then:
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:M

=

= S

0

0

T
E

0

0

Σ

Σ
 (1.5-62)

while, if the overall strain 0E is given, then:

 
:M

=

= C

0

0

E
T

0

0

E

E
 (1.5-63)

For any homogeneous linearly elastic inclusion Ω in a homogeneous 

linearly elastic matrix M, consistency conditions (1.5-60) and (1.5-61) yield:

 ( ) ( ) ( ) ( ): , :d dΩ ∗ Ω ∗= =A B0 0E + E x E x T +T x T x in Ω  (1.5-64)

where:

( ) ( )1 1
: , :M M M M− −Ω Ω Ω Ω= − = −A C C C B S S S  (1.5-65)

By definition, the constant tensors ΩA and ΩB satisfy:

 ( ) ( ) ( ) ( )( )1 1
:

T
M

−− −Ω Ω Ω= − = −4 41 1S C A B  (1.5-66)

or:

( ) ( ) ( ) ( )( )1 1
:

T
M

−− −Ω Ω Ω= − = −4 41 1C S B A  (1.5-67)

where the superscript T− stands for the inverse of the transpose or the 

transpose of the inverse.

In the follows, the attention is confined to the case when V is unbounded 

and Ω is ellipsoidal, so that the eigenstrains and the eigenstresses necessary 

for the homogenization are both uniform in Ω . In particular, when V is 

unbounded there is no distinction between the cases when the strain or the 

stress is prescribed and, so, it is:

 
:
:

M

M

=

=

S
C

0 0

0 0

Σ

Σ

E

E
 (1.5-68)
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Moreover, when in addition Ω is ellipsoidal, the substitution, in the first of 

(1.5-64), for dE given by (1.5-49) and, analogously, the substitution, in the 

second of (1.5-64), for dT given by (1.5-52) provides explicit expressions for 

the eigenstrain ∗E and eigenstress ∗T which are necessary for 

homogenization:

( ) ( )1 1
: , :

− −∗ Ω Ω ∗ Ω Ω= − = −A B0 0ΣE TES T in Ω  (1.5-69)

Hence, according to the (1.5-64) and the (1.5-69), it can be obtained the 

strain and stress fields’ expressions:

( )
( )

1

1

: :

: :

= + =

= + =

−Ω Ω Ω

−Ω Ω Ω

−

−

A A

B B

0 0

0 0Σ Σ

d

d

E E

T T

E ES

T
in Ω  (1.5-70)

The strain field E and the stress field T in Ω given by the (1.5-70) are 

equivalent. From costitutive relations (1.5-57) and from dual ones:

 ( )
( ) ( ){ }

( ) ( ){ }
: :

: :

M M in M V

inΩ Ω

 = + = − Ω= 
= + Ω

S S
S S

0 d

0 d

T x T x
E x

T x T x

Σ

Σ
 (1.5-71)

substitution of the (1.5-65) into (1.5-70), yields, in Ω :

 
( ) ( ) ( )( ){ }{ }
( ) ( ) ( )( ){ }{ }

11

11

: : : : : : : :

: : : : : : : :

M M

M M

=

=

−−Ω Ω Ω Ω Ω Ω Ω

−−Ω Ω Ω Ω Ω Ω Ω

− = − −

− = − −

4 4

4 4

1 1

1 1

S B B S C S C

C A A C S C S

E

T

0 0

0 0

Σ

Σ

E

E

T T

S S

 (1.5-72)

By taking into account the advantage of the identities (1.5-55), the fourth-

order tensors in the right-hand sides of (1.5-72) become:

 

( ) ( )( ){ } ( ) ( )( ){ }
( ) ( )( ){ } ( ) ( )( ){ }

1 1

1 1

: : : : = : :

: : : : = : :

M M M

M M M

− −
Ω Ω Ω Ω Ω

− −
Ω Ω Ω Ω Ω

− − − −

− − − −

4 4 4 4

4 4 4 4

1 1 1 1

1 1 1 1

S C S C S C

C S C S C S

T S

S T
 (1.5-73)
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Hence, the (1.5-73) compared with the (1.5-70) yields the equivalence 

relations between ( ),Ω ΩA S and ( ),Ω ΩB T , as it follows:

( ) ( )
( ) ( )

1 1

1 1

: : : :

: : : :

M

M

− −Ω Ω Ω Ω Ω Ω Ω

− −Ω Ω Ω Ω Ω Ω Ω

− = −

− = −

S B B C A A

C A A S B B

T S

S T
 (1.5-74)

Since the total strain in an ellipsoidal inclusion Ω is uniform for the 

unbounded V, the corresponding αH and αJ -tensors defined in the (1.5-19)

and (1.5-32), respectively, become:

: : :M MΩ Ω Ω
Ω Ω< > − < > = − =S S HE T E T 0Σ in Ω  (1.5-75)

when the overall stress 0Σ is prescribed, and:

: : :M MΩ Ω Ω
Ω Ω< > − < > = − =S S JE T E T 0E in Ω  (1.5-76)

when the overall strain 0E is prescribed. Moreover, since V is considered 

unbounded, αH and αJ -tensors satisfy:

: , :M MΩ Ω Ω Ω= =J H C H J S  (1.5-77)

By comparing the (1.5-72) with (1.5-75) and (1.5-76), note that αH and 
αJ -tensors may be expressed in terms of Eshelby’s tensor ΩS and its 

conjugate ΩT , as:

( ) ( )
( ) ( )

1

1

: :

: : :

M

M

−Ω Ω Ω Ω Ω

−Ω Ω Ω Ω Ω Ω

= − −

= − −

H S S B B

J S S C A A

T

S
 (1.5-78)

or:

( ) ( )
( ) ( )

1

1

: : : :

: : :

M M

M M

−Ω Ω Ω Ω Ω Ω

−Ω Ω Ω Ω Ω

= − −

= − −

H S S C A A S

J S S B B C

S

T
 (1.5-79)
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As pointed out before, the Eshelby tensor ΩS and its conjugate ΩT , in case 

of uniform ellipsoidal inclusion Ω in an unbounded uniform matrix M, depend 

on the aspect ratios of Ω and on the elastic parameters of the matrix material, 

but they are independent of the material properties of Ω . On the other hand, 
ΩH and ΩJ depend on the geometry of Ω , as well as on the elasticity of both 

Ω and the matrix material. For cavities, on the other hand, the (1.5-79) reduce 

to:

( )( )
( )( )

1

1

: M−
Ω Ω

−
Ω Ω

= −

= −

4

4

1

1

H S

J

S

S
 (1.5-80)

which shows that ΩH and ΩJ -tensors are effective tools for homogenization 

of solids with cavities and cracks, [47].

It is seen, from the above equations, that the equivalence relations between 

( ),Ω ΩA S and ( ),Ω ΩB T , given by (1.5-74), correspond to the equivalence 

relations between ΩJ and ΩH , given by (1.5-77). It should be kept in mind 

that:

1. if the solid containing an inclusion is unbounded, these equivalent 

relations always hold, since the farfield stress = 0∞Σ Σ and strain 

= 0∞E E are related by the (1.5-68) and, hence, the response of the 

solid is the same whether 0Σ or 0E is prescribed.

2. if the solid containing an inclusion is bounded, these equivalent 

relations do not hold, in general, since the response of the solid 

when uniform boundary tractions are prescribed is different, in 

general, from that one when linear boundary displacements are 

prescribed.
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1.6 Strategies for obtaining overall elasticity tensors: Voigt and Reuss 
estimating

In this section, we will introduce some general results about extremely 

useful bounds for overall elastic stiffness and compliance tensors, in the 

framework of the micromechanical theory. In particular, Hill (1952) has proved 

that, independently from the RVE geometry, the actual overall moduli lie 

somewhere in an interval between the Reuss and Voigt estimates, as shown in 

the follows.

For semplicity, it is considered the simplest case of an RVE volume V

consisting in a linear elastic homogeneous matrix M which contains one only a 

linear elastic homogeneous inclusion Ω . So, either for stress prescribed and 

for strain prescribed boundary conditions, the equation (1.5-17) assumes the 

following form:

( ) ( ): :M Mf Ω Ω
Ω− = −S S S S TΤ  (1.6-1)

where:

f
VΩ
Ω

= = volumetric fraction of the inclusion Ω .

From the (1.6-1), it is possible to obtain a unique dependence of the average 

value of the stress field in the phase of the inclusion upon the overall stress 

field in the RVE volume:

 :Ω Ω= LT Τ  (1.6-2)

where:

( ) ( )11 M Mf
−Ω − Ω

Ω= − −L S S S S  (1.6-3)
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Analogously, it is possible to express the average value of the stress field in 

the phase of the matrix in function of the overall stress field in the RVE 

volume, as it follows:

 :M M= LT Τ  (1.6-4)

where:
MandΩ =L L concentration matrices.

By considering the (1.5-11) and (1.5-13), the overall stress field in the RVE 

volume can be written in the form:

 M
Mf f Ω

Ω= +T TΤ  (1.6-5)

From the (1.6-5), by taking in account the relations (1.6-2) and (1.6-4), it 

has to be verified that:

 M
Mf f Ω

Ω+ =L L I  (1.6-6)

where:

=I the unit matrix

Hence, the concentration matrix ML can be expressed as:

 ( ) 1M
M- f fΩ −

Ω=L LI  (1.6-7)

In similar manner, in the simplest case of an RVE volume V consisting in a 

linear elastic homogeneous matrix M which contains one only a linear elastic 

homogeneous inclusion Ω , either for stress prescribed and for strain 

prescribed boundary conditions, the equation (1.5-31) assumes the following 

form:

( ) ( ): :M Mf Ω Ω
Ω− = −C C C CE E  (1.6-8)

From the (1.6-8), it is possible to obtain a unique dependence of the average 

value of the strain field in the phase of the inclusion upon the overall strain 

field in the RVE volume:
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 :Ω Ω= ME Ε   (1.6-9)

where:

( ) ( )11 M Mf
−Ω − Ω

Ω= − −M C C C C   (1.6-10)

Analogously, it is possible to express the average value of the strain field in 

the phase of the matrix in function of the overall strain field in the RVE 

volume, as it follows:

 :M M= ME Ε  (1.6-11)

where:
MandΩ =M M concentration matrices.

By considering the (1.5-10) and (1.5-12), the overall strain field in the RVE 

volume can be written in the form:

  M
Mf f Ω

Ω= +E EΕ  (1.6-12)

From the (1.6-12), by taking in account the relations (1.6-9) and (1.6-11), it 

has also to be verified that:

 M
Mf f Ω

Ω+ =M M I  (1.6-13)

where:

=I the unit tensor

Hence, the concentration matrix MM can be expressed as:

( ) 1M
M- f fΩ −

Ω=M MI  (1.6-14)

By taking into account the (1.5-14) and the (1.5-28), the equations (1.6-5)

and (1.6-12), respectively, yield:

: :

: :

M M
M

M M
M

f f
f f

Ω Ω
Ω

Ω Ω
Ω

= +

= +

C C
S S

E E
E
Τ

Τ Τ
  (1.6-15)

Because it is:
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K 1
u

K 2

 :CΤ = Ε  (1.6-16)

by combining the (1.6-16) with the first equation of the (1.6-15), and according 

to the (1.6-9) and (1.6-11), the required effective RVE’s stiffness tensor is 

obtained in the following form:

 : :M M
Mf f Ω Ω

Ω= +C C M C M  (1.6-17)

Equivalently, because it is:

 :SΕ = Τ  (1.6-18)

by combining the (1.6-18) with the second equation of the (1.6-15), and 

according to the (1.6-2) and (1.6-4), the required effective RVE’s compliance 

tensor is obtained in the following form:

 : :M M
Mf f Ω Ω

Ω= +S S L S L  (1.6-19)

A model for the evaluation of the overall elastic stiffness tensor, probably 

the simplest one, was introduced by Voigt in 1889 for the estimation of the 

average constants of polycristals. He assumes that the strain field throughout 

the RVE is uniform, that yields:

 M Ω= = = 0E E E E  (1.6-20)

Such a condition can be represented by means of the following simplified 

model:

Figure 1.11 Strain-prescribed problem.

It follows that:
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K1 K2 F

 M Ω= =M M I  (1.6-21)

and the (1.6-17) becomes:

 V M
Mf f Ω

Ω= +C C C  (1.6-22)

which the superscript V underlines that the overall stiffness tensor has been 

obtained in the Voigt approximation.

Moreover, the equation (1.5-32) yields that in Voigt approximation, the 
ΩJ tensor assumes the following form:

( )( ):MΩ Ω= −41J S C  (1.6-23)

so that the (1.5-33) leads to (1.6-22).

It is worth to underline that the resulting Voigt stresses are such that the 

tractions at interface boundaries would not be in equilibrium, so this 

approximation satisfies the compatibility conditions and do not satisfy the 

equilibrium ones.

Dually, a model for the evaluation of the overall elastic compliance tensor, 

probably the simplest one, was introduced by Reuss in 1929. He assumes that 

the stress field throughout the RVE is uniform, that yields:

 M Ω= = = 0T T T T  (1.6-24)

Such a condition can be represented by means of the following simplified 

model: 

Figure 1.12 Stress-prescribed problem.
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It follows that:

 M Ω= =L L I  (1.6-25)

and the (1.6-19) becomes:

 R M
Mf f Ω

Ω= +S S S  (1.6-26)

which the superscript R underlines that the overall compliance tensor has been 

obtained in the Reuss approximation.

Moreover, the equation (1.5-19) yields that in Reuss approximation, the
ΩH tensor assumes the following form:

 MΩ Ω= −H S S  (1.6-27)

so that the (1.5-20) leads to (1.6-26).

It is worth to underline that the resulting Reuss strains are such that the 

displacements at interface boundaries would not be compatible, i.e., the 

inclusion and the matrix could not remain bonded, so this approximation 

satisfies the equilibrium conditions and do not satisfy the compatibility ones.

As mentioned in the beginning of this section, Hill proved in the 1952 that, 

independently from the RVE geometry, the actual overall moduli lie 

somewhere in an interval between the Reuss and Voigt estimates. Thus, the 

Voigt and Reuss approximations are the upper and lower bounds of the true 

effective elastic moduli. In order to demonstrate it, let the above cited RVE to 

be subjected to displacement homogeneous boundary conditions, 

Errore. L'origine riferimento non è stata trovata.:

 =0u xE on V∂  (1.6-28)

The external work is given by:

1 1 1
2 2 2

M M
i ij j ij i j

V V V

W ds t x ds t x dsε ε
∂ ∂ ∂

= ⋅ = =∫ ∫ ∫0t u  (1.6-29)

By remembering that in case of prescribed macrostrain, it is:
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( ),= < >=E E x E E  (1.6-30)

and by considering the Errore. L'origine riferimento non è stata trovata.

and the Errore. L'origine riferimento non è stata trovata., it is obtained1:

1 1
2 2

W V V= =Σ E TEE  (1.6-31)

Similarly, let the above cited RVE to be subjected to traction homogeneous 

boundary conditions, Errore. L'origine riferimento non è stata trovata.:

 = Σ0t n on V∂  (1.6-32)

The external work is given by:

1 1 1
2 2 2

M M
ij j i ij j i

V V V

W ds n u ds n u dsσ σ
∂ ∂ ∂

= ⋅ = =∫ ∫ ∫0t u  (1.6-33)

By remembering that in case of prescribed macrostress, it is:

( ),= < >= ΣT T x E  (1.6-34)

and by considering Errore. L'origine riferimento non è stata trovata. and 

the Errore. L'origine riferimento non è stata trovata. , it is obtained2:

  
1 It can be noted that, by taking in account the 

Errore. L'origine riferimento non è stata trovata., the equation (1.6-31) yields the 

following relation:

( ) ( ),W dV Vφ= = Φ∫ E EE E
V

x

2 It can be noted that, by taking in account the

Errore. L'origine riferimento non è stata trovata., the equation (1.6-35) yields the 

following relation:

( ) ( ),W dV Vψ Σ Σ= = Ψ∫V
x Σ Σ
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1 1
2 2

W V V= =Σ Σ E TE  (1.6-35)

Since, in both cases, it is:

1 1
2 2i i ij ij

V V

W t u ds dVσ ε
∂

= =∫ ∫  (1.6-36)

it follows that the following identity is established:

1
ij ij ij ij

V

dV
V

σ ε σ ε= ∫  (1.6-37)

Define:

( ) ( )1 1
ˆˆ ,p p p p p p

ij ijhk hk ij ijhk hkσ σ ε ε
− −

= =M L  (1.6-38)

therefore, by recalling the equations (1.6-2), (1.6-4), (1.6-9) and (1.6-11),  it 

can be deduced that:

ˆˆ ,p p p p
ij ijhk hk ij ijhk hkC Sσ ε ε σ= =  (1.6-39)

where the superscript p stands for the inclusion phase Ω or for the matrix 

phase, M, and where p
ijhkC and p

ijhkS represent the elastic stiffnesses and 

compliances of the single examined phase. 

Furthermore, it is:

,p p p p p p
ij ijhk hk ij ijhk hkC Sσ ε ε σ= =  (1.6-40)

Hence, it follows that:

ˆˆ ,p p p p p p
ij ij ij ij ij ij ij ijσ ε σ ε σ ε σ ε= =  (1.6-41)

and therefore:

( )( ) ( )
( )( ) ( )

ˆ ˆ 2

ˆ ˆ 2

p p p p p p p p
ij ij ij ij ij ij ij ij ij ij ij

p p p p p p p p
ij ij ij ij ij ij ij ij ij ij ij

σ ε σ σ ε ε σ ε ε ε σ

σ ε σ σ ε ε σ ε σ σ ε

+ − − = + −

+ − − = + −
 (1.6-42)
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The second terms in the left sides in the equations (1.6-42) are positive, 

since they can be written, respectively, as:

( )( ) ( )( )
( )( ) ( )( )

ˆ

ˆ

p p p p p p
ij ij ij ij ijhk hk hk ij ij

p p p p p p
ij ij ij ij ijhk hk hk ij ij

C

S

σ σ ε ε ε ε ε ε

σ σ ε ε σ σ σ σ

− − = − −

− − = − −
 (1.6-43)

In addition, by recalling the equation (1.6-37), it is:

( ) ( )0, 0p p p p
ij ij ij ij ij ij

V V

dV dVσ ε ε σ σ ε− = − =∫ ∫  (1.6-44)

With these considerations, the equation (1.6-42) yields:

ˆ

ˆ

p
ij ij ij ij

V

p
ij ij ij ij

V

V dV

V dV

σ ε ε σ

σ ε σ ε

≤

≤

∫

∫
 (1.6-45)

By considering the (1.6-39), we have finally:

 

1

1

p
ijhk ijhk

V

p
ijhk ijhk

V

C C dV
V

S S dV
V

≤

≤

∫

∫
 (1.6-46)

This result, by taking in account the equations (1.6-22) and (1.6-26), can be 

expressed in the following form:

 
V

ijhk ijhk

R
ijhk ijhk

C C

S S

≤

≤
 (1.6-47)

which indicates that the Voigt approximation gives upper bound and the Reuss 

approximation gives lower bound for the overall stiffness tensor of the 

homogenized material. Unfortunately, these bounds are of pratical significance 

only for small volume fractions and slight mismatch of elastic moduli of 
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phases. Better universal bounds are given by Hashin and Shtrikman (1963), as 

shown in the following section.

1.7 Variational methods- Hashin and Shtrikman’s variational principles.

The homogenization problem of an heterogeneous RVE is equivalent to 

solve one of the following variational problems:

( ) ( )

( ) ( )

1 1 1inf
2 2
1 1 1inf
2 2

V

V

+ + dV
V

+ + dV
V

∈

∈

⋅ = ⋅

⋅ = ⋅

∫

∫

C C

S S

d

d

d d

E

d d

T

E E E E E E

T T T T T T

E

T

 (1.7-1)

where:

=E compatible periodic strain field space, whose average value is equal to 

zero

=T equilibrated periodic stress field space, whose average value is equal to 

zero

=C homogenized stiffness tensor

=S homogenized compliance tensor

=T generic stress field belonging to Sym

=E generic strain field belonging to Sym

The first members of the (1.7-1) represent, respectively, the elastic energy 

density and the complementary one of the homogenized material. In particular, 

solving the first problem of the (1.7-1) is equivalent of determining, between 

the compatible strain fields, whose prescribed average value is E , the sole one 

that is also equilibrated. On the contrary, solving the second problem of the 
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(1.7-1) is equivalent of determining, between the equilibrated stress fields, 

whose prescribed average value is T , the sole one that is also compatible.

It is possible to demonstrate that, if the stiffness tensor C and the 

compliance one S have, unifomly in V, all the eigenvalues lower down 

bounded by a positive constant, then the equations (1.7-1) admit one and only 

one solution.

Since the functionals in the first members of the (1.7-1) are conjugate each 

other, [29], it follows that the homogenized properties of the material are well 

defined, hence:

 1−=S C   (1.7-2)

In this framework, the basic physic idea of the Hashin and Shtrikman’s 

principles is to substitute the heterogeneous medium with a reference 

homogeneous one, having a stiffness tensor, HC , and a compliance tensor, 
HS .  In order to simulate the actual micro-structure, eigenstress and eigenstrain 

fields are prescribed on the reference homogeneous medium, as already seen in 

the previous section. So, the Hashin and Shtrikman’s variational principles are 

characterized from two tumbled variational problems:

- The first problem, defined as auxiliary problem, is related to the 

elastostatic response of the reference homogeneous solid, subjected 

to a prescribed field of polarization (eigenstress or eigenstrain).

- The second problem, defined as optimization problem, has the 

objective to found the unknown field of polarization.

In the follows, the four classic Hashin and Shtrikman’s variational 

principles are reported. It is worth to underline that two of these are minimum 

principles, while the other two are saddle principles. Naturally, the minimum 

principles are particularly useful, because each numeric approximation of them, 
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for example by using the Finite Element Method, represents an upper 

estimation of the solution.

In particular, consider a reference homogeneous material which is 

more deformable than each phase included in the heterogeneous RVE, 

such that H−C C is positive definite everywhere in V. Hence, the 

following identity is verified:

 
( )

1 1
2 2

1sup
2

H

H

- dV

- dV
∗

∗ ∗ ∗

∈

 ⋅ ⋅ = 
 

  = ⋅ − ⋅  
  

∫

∫

V

-1

VT

E E E E

T E T T

C C

C C
H

 (1.7-3)

where:

=H the space of symmetric second-order periodic tensors
∗ =T polarization field (eigenstress) prescribed on the reference homogeneous 

medium in order to simulate the actual micro-structure of the 

heterogeneous RVE.

In particular, by taking:

 ˆ= +E E E  (1.7-4)

where Sym∈E and ˆ ∈E E , and by remembering that HC is constant in V, 

the (1.7-3) assumes the following form:

( ) ( )

( )

1 1ˆ ˆ
2 2

1sup
2

1ˆ ˆ ˆ
2

H

H

H

dV

dV

dV

∗

∗ ∗ ∗

∈

∗

 + ⋅ + − ⋅ = 
 

  = > ⋅ − − ⋅ +  
  

 + ⋅ + ⋅ 
 

∫

∫

∫

C C

C C

C

V

-1

VT

V

E E E E E E

< T E T T

T E E E

H
 (1.7-5)

where ∗ >< T denotes the average value of ∗T in V.
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Therefore, by considering the lower bound with respect to Ê , changing the 

minimization with the maximization and by dividing for V, it is obtained:

( ) ( )
ˆ

1 1
2 2

1 1sup inf
2 H

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ =

  = > ⋅ − − ⋅ +  
  

∫
-1 T

V ET

E E E E

< T E T T C

C C

C C
EH

 (1.7-6)

where the quadratic functional ( )
HF

∗

C
T

is defined by:

( ) 1ˆ ˆ ˆ ˆ:
2H

H

V

F dV
∗

∗ ∈ → ⋅ + ⋅ 
 ∫C CT E T E E EE  (1.7-7)

Consider, now, a reference homogeneous material which is stiffer than each 

phase included in the heterogeneous RVE, such that H−C C is negative 

definite everywhere in V. Hence, in analogous manner, it is obtained the 

following equation:

( ) ( )
ˆ

1 1
2 2

1 1inf inf
2 H

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ =

  = > ⋅ − − ⋅ +  
  

∫
-1 T

V ET

E E E E

< T E T T C

C C

C C
EH

 (1.7-8)

The equations (1.7-6) and (1.7-8) represent the Hashin and Shtrikman’s 

variational principles, based on the eigenstress. In particular, the (1.7-6) is a 

saddle principle, while the (1.7-8) is a minimum principle. From them, by 

imposing stationariness principles with respect to ∗T , it is obtained:

( ) 1 ˆH − ∗− = +C C T E E  (1.7-9)



Chapter I – Micro-mechanics theory   99  

that confirms that stress field ∗T is the correction which has to be prescribed to 

the reference homogeneous material stress field ( )ˆH +C E E in order to obtain 

the stress field in the actual material ( )ˆ +C E E .

It is possible to obtain other two variational principles, having similar 

expressions to the (1.7-6) and the (1.7-8) and involving the overall compliance 

tensor S . About them, the sole results will be shown, directly, since they are 

reached with similar considerations to those ones already done.

Therefore, consider a reference homogeneous material which is stiffer than 

each phase included in the heterogeneous RVE, such that H−S S is positive 

definite everywhere in V. Hence, in analogous manner, it is obtained the 

following equation:

( ) ( )
ˆ

1 1
2 2

1 1sup inf
2 H

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ =

  = > ⋅ − − ⋅ +  
  ∫

-1 E

V TE

T T T T

< E T E E S

S S

S S
TH

 (1.7-10)

where the quadratic functional ( )
HF

∗

S
E

is defined by:

( ) 1ˆ ˆ ˆ ˆ:
2H

H

V

F dV
∗

∗ ∈ → ⋅ + ⋅ 
 ∫S SE T E T T TT  (1.7-11)

and where:

=H the space of symmetric second-order periodic tensors
∗ =E polarization field (eigenstrain) prescribed on the reference homogeneous 

medium in order to simulate the actual micro-structure of the 

heterogeneous RVE.

Consider, on the contrary, a reference homogeneous material which is more 

deformable than each phase included in the heterogeneous RVE, such that 
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H−S S is positive definite everywhere in V. Hence, in similar form, it is 

obtained the following equation:

( ) ( )
ˆ

1 1
2 2

1 1inf inf
2 H

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ =

  = > ⋅ − − ⋅ +  
  ∫

-1 E

V TE

T T T T

< E T E E S

S S

S S
TH

 (1.7-12)

The equations (1.7-10) and (1.7-12) represent the Hashin and Shtrikman’s 

variational principles, based on the eigenstrain. In particular, the (1.7-10) is a 

saddle principle, while the (1.7-12) is a minimum principle. From them, by 

imposing stationariness principles with respect to ∗E , it is obtained:

 ( ) 1 ˆH − ∗− = +S S E T T  (1.7-13)

that confirms that strain field ∗E is the correction which has to be prescribed 

to the reference homogeneous material strain field ( )ˆH +S T T in order to 

obtain the strain field in the actual material ( )ˆ +S T T .

It has to be considered that the Hashin and Shtrikman’s variational 

principles involve auxiliary problems, consisting in the minimization of the 

functionals, ( )
HF

∗

C
T

and ( )
HF

∗

S
E

. The goal is to solve an equilibrium problem and 

a compatibility problem, respectively, for the reference homogeneous solid, 

subject to a prescribed eigenstress, ∗T , and eigenstrain, ∗E , respectively. For 

a such problem, however, only few particular cases shows the solution.

In particular, it can be remembered the Eshelby’s solution for the case in 

which the polarization field is constant and different from zero, only in an 

ellipsoidal region. This solution lets to use the Hashin and Shtrikman’s 

variational principles for determining the homogenized properties of a biphasic 
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composite, with a low concentration of inclusions. In order to do it, the same 

matrix or the inclusions can be chosen as reference homogeneous material, but 

the matrix and the inclusions have to be well ordered, that means, M Ω−C C
has to be defined in sign.

In case of periodic composite, the auxiliary problem is easier to solve, 

because it is possible to transform the RVE domain into a Fourier domain. It is 

not our interest to expose this procedure, so the interested reader is referred to 

[29].

The calculation of the elastic energy density and of the complementary one, 

according to the two equations of (1.7-1), requires the execution of very 

difficult minimization with respect of functionals, that are defined on 

unbounded space. Operating such minimizations is equivalent to solve the 

elastostatic problem for the RVE, in the cases of displacements approach and 

tractions approach, respectively. A numeric minimization, obtained, for 

example, by using the Element Finite Method, can be employed on finite 

subspaces, fE and fT , of the above mentioned spaces, E and T . 

Consequently, numeric minimization will yield the following expressions of 

the tensors, +C and +S :

( ) ( )

( ) ( )

1 1 1inf
2 2
1 1 1inf
2 2

f

f

V

V

+ + dV
V

+ + dV
V

+

∈

+

∈

⋅ = ⋅

⋅ = ⋅

∫

∫

C C

Sh S

d

d

d d

E

d d

T

E E E E E E

T T T T T T

E

T

 (1.7-14)

which, for constructions, satisfy the following inequalities: 

1 1
2 2
1 1
2 2

+

+

⋅ ≤ ⋅

⋅ ≤ ⋅

C C

S S

E E E E

E E E E
 (1.7-15)
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By naming with −C and −S , respectively, the inverse of the tensors +S and 
+C , upper and lower limitations for the elastic energy, and the complementary 

one, of the homogenized material are obtained, as given by:

1 1 1
2 2 2
1 1 1
2 2 2

− +

− +

⋅ ≤ ⋅ ≤ ⋅

⋅ ≤ ⋅ ≤ ⋅

C C C

S S S

E E E E E E

E E E E E E
 (1.7-16)

Elementary estimations on C and S are obtained by choosing the simplest 

fE and fT , i.e., coinciding with the space constituted by the sole null tensor. 

In this way, the well known Voigt and Reuss’ estimations dall’alto e dal basso 

are reached; in particular, for a biphasic composite, it is:

( )
( )

1

1

M M M M

M M M M

f f f f

f f f f

−
Ω Ω Ω Ω

−
Ω Ω Ω Ω

+ ≤ ≤ +

+ ≤ ≤ +

S S C C C
C C S S S

 (1.7-17)

with:

( ) ( ) ( )
( ) ( ) ( )

1

1

,

,

V V

M M M M

R R

M M M M

f f f f

f f f f

−+ −
Ω Ω Ω Ω

− − +
Ω Ω Ω Ω

+ = + =

+ = + =

C C C C C S

S S C S S S
 (1.7-18)

where the superscript V and R stands for Voigt and Reuss.

At the same manner, The Hashin and Shtrikman’s variational principles, 

(1.7-6), (1.7-8), (1.7-10) and (1.7-12) yield estimations dall’alto e dal basso on 

the stiffness and compliance tensors, if the optimization with regard to the 

polarization fields is employed above a finite underspace, fH , of the above 

unbounded mentioned space H of all possible polarization fields.

In particular:

- if the reference homogeneous material is more deformable than each phase 

included in the heterogeneous RVE, it is:
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( ) ( )

ˆ

1 1
2 2

1 1sup inf
2

H

f

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ ≥

  ≥ > ⋅ − − ⋅ +  
  

∫
-1 T

V ET

E E E E

< T E T T C

C C

C C
EH

 (1.7-19)

and:

 
( ) ( )

ˆ

1 1
2 2

1 1inf inf
2 H

f

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ ≤

  ≤ > ⋅ − − ⋅ +  
  ∫

-1 E

V TE

T T T T

< E T E E S

S S

S S
TH

 (1.7-20)

- if the reference homogeneous material is stiffer than each phase included 

in the heterogeneous RVE, it is:

( ) ( )
ˆ

1 1
2 2

1 1inf inf
2 H

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ ≤

  ≤ > ⋅ − − ⋅ +  
  ∫

-1 T

V ET

E E E E

< T E T T C

C C

C C
EH

 (1.7-21)

and

( ) ( )
ˆ

1 1
2 2

1 1sup inf
2

H

f

H

H dV F
V

∗

∗

∗ ∗ ∗

∈∈

⋅ − ⋅ ≥

  ≥ > ⋅ − − ⋅ +  
  

∫
-1 E

V TE

T T T T

< E T E E S

S S

S S
TH

 (1.7-22)

A numeric estimation of the inferior extreme of ( )
HF

∗

C
T

and of ( )
HF

∗

S
E

implies 

that only the minimum principles (1.7-20) and (1.7-21) yield upper estimations 

for the density of the elastic complementary energy and for the elastic one, 

respectively, for the homogenized material. The saddle principles (1.7-19) and 

(1.7-22), instead, are able to yield an estimation that cannot be read as an upper 

or lower estimation.
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1.8 Inhomogeneous materials: Stress and Displacement Associated 
Solution Theorems.

As studied in the previous sections, the heterogeneity of the material implies 

an inhomogeneity of the same medium, so that the elastic properties of the 

solid are spatially variable in the examined volume.

It is well known the difficulty to find solutions to anisotropic 

inhomogeneous material problems. A very few restricted classes of these 

problems, in fact, are solved in a general way. For example, it can be cited the 

solution for cylinders subjected to pure torsion, possessing cylindrical 

orthotropy with a variation of the shear moduli with the local normal direction 

to the family of curves of which lateral boundary is a member, [17]. A second 

example is the exact solution for the case of an anisotropic half-space with 

elastic moduli dependent upon the coordinate, the angle θ , when the loads on 

the half-space are represented by a straight line of force, [12]. A third example 

can be considered, that is the solution for problems in which the variation of 

the elastic constants is in the radial direction, [4].

In spite of this difficulty, in the last years, it has been a growing interest 

about the mechanical behaviour of anisotropic and inhomogeneous solids, 

above all in biomechanics. Moreover, the necessity to build thermodynamically 

consistent theories for this kind of materials, by means the employment of the 

mathematical theory of the homogenization, has determined the necessity to 

find exact analytical solutions in the ambit of this more complex section of the 

theory of elasticity, [37], [41]. 

In literature, a method has been presented by Fraldi & Cowin, 2004, [24], to 

overcome the difficulties exposed above: the use of two theorems, S.A.S. 

theorem and D.A.S. theorem, introduced by the authors, provides solutions for 

inhomogeneous, anisotropic elastostatic problems starting from the solution of 
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associated anisotropic and homogeneous ones, but they have to be satisfied 

some conditions, that are exposed in the following.

In particular, the stress-associated solution (S.A.S.) theorem lets to find 

solutions for inhomogeneous anisotropic elastostatic problems, if two 

conditions are satisfied:

1. The solution of the homogeneous elastic reference problem (the 

associated one) is known and it has a stress state with a zero 

eigenvalue everywhere in the domain of the problem.

2. The inhomogeneous anisotropic elastic tensor is in relation with the 

homogeneous associated one according to the following equation:

( ) ( ) ( ) 0I H B Rϕ ϕ ϕ α α += ∀ ∈ > > ∈, , ,C Cx x x x  (1.8-1)

where:
TH H= =C C the elasticity tensor of the anisotropic homogeneous elastic 

reference problem.
I =C the  elasticity  tensor  of  the  corresponding   anisotropic  

inhomogeneous elastic problem.

B =  the domain occupied by both the homogeneous object (BH) and the 

inhomogeneous one (BI).

Rα +∈ =  an arbitrary positive real number.

( )ϕ =x  a ( )2C B scalar function.

The second condition implies that the inhomogeneous character of the 

material is due to the presence of a scalar parameter, ( )ϕ x , producing the 

inhomogeneity in the elastic constants. It can be also relaxed and, so, written in 

a weaker form:

 ˆ ˆ
ijhk ijhk

I HC Cϕ=  (1.8-2)
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where:

ˆ
ijhk

HC = those only elastic coefficients explicitly involved in the specific 

anisotropic homogeneous problem used to construct the associated 

solution.

This means that components of the elasticity tensor not involved in the 

solution of the homogeneous problem will not be involved in that one of the 

associated inhomogeneous problem.

If the conditions 1 and 2 are satisfied, starting from the known solution of 

the homogeneous problem, the associated solution, that is the solution to the 

inhomogeneous problem, is derived.

In particular, the strain-displacement field solution is identical with the 

strain-displacement field of the homogeneous reference solution, while the 

stress field of the inhomogeneous problem is equal to ( )ϕ x times the stress 

field of the homogeneous problem.

The advantage of this method is in the fact that its use yields both exact 

solutions for several new inhomogeneous and anisotropic problems and a 

redefinition of the already known solutions, like those ones for the shape 

intrinsic anisotropic materials, the angularly inhomogeneous materials and the 

radially inhomogeneous materials.

More in detail, let us to consider the following anisotropic homogeneous 

elastic object, that occupies a volume HB , with mixed boundary-value:
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Figure 1.13 Homogeneous solid.
In absence of action-at-a-distance forces and taking into account the 

compatibility of the solution by writing the equilibrium equations in terms of 

displacements, the following equilibrium equations can be written:

 
( )

( )

H

H
t

in B

on B

⋅ =

⋅ = ∂

0T u

T u n t

∇
 (1.8-3)

where:

i= ∂ =ie∇ is a vectorial differential operator

H
tB∂ = the boundary partition of the homogeneous continuum on which the 

traction field is assigned.

On the boundary partition on which the displacements field is assigned, the 

following relation has to be satisfied:

  H
uon B= ∂0u u  (1.8-4)

where, in fact:
H
uB∂ = the boundary partition of the homogeneous continuum on which the 

displacements field is assigned.

The anisotropic Hooke’s law, in a linear elastic stress-strain relation, is 

written in the form:

( ) ( ) ( ) ( ): : :H H Hsym= = ⊗ = ⊗T u E u u uC C C∇ ∇  (1.8-5)

or, in components:

 ,
H H

ij ijhk hk ijhk h kC C uσ ε= =  (1.8-6)
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Let us consider, now, the following anisotropic inhomogeneous elastic 

object, that occupies a volume IB , geometrically the same of HB , with mixed 

boundary-value:

Figure 1.14 Inhomogeneous solid.

In absence of action-at-a-distance forces and taking into account the 

compatibility of the solution by writing the equilibrium equations in terms of 

displacements, in an analogous manner to what has been done before, the 

following equilibrium equations can be written:

 
( )

( )

I

I I
t

in B

on B

⋅ =

⋅ = ∂

0T u

T u n t

∇
 (1.8-7)

where:
I
tB∂ = the boundary partition of the inhomogeneous continuum on which the 

traction field is assigned. It is geometrically the same of that one in 

the homogeneous problem.

On the boundary partition on which the displacements field is assigned, the 

following relation has to be satisfied:
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 H
uon B= ∂0u u  (1.8-8)

where, in fact:
I
uB∂ = the boundary partition of the inhomogeneous continuum on which the 

displacements field is assigned. It is geometrically the same of that 

one in the homogeneous problem.

The anisotropic Hooke’s law, in a linear elastic stress-strain relation, is written 

in the form:

( ) ( ) ( )
( ) ( ) ( ) ( )

: :I I

H H

sym

symϕ ϕ

= = ⊗ =

= ⊗ = ⊗: :

T u E u u

x u x u

C C
C C

∇

∇ ∇
 (1.8-9)

according to the position (1.8-1).

So, taking into account the equations (1.8-1) and (1.8-9), yet, the first of the 

equilibrium equations (1.8-7), can be written in the following form:

 ( ) ( ) ( ) ( ) ( ): :H H Iin Bϕ ϕ   ⋅ = ⋅ + ⋅ =    0T u x E u E u xC C∇ ∇ ∇  (1.8-10)

If it is considered the hypothesis that the displacements field is equal in the 

homogeneous and inhomogeneous problems, that is:

 H I=u u  (1.8-11)

where:
H =u displacements field, solution of the homogeneous problem
I =u displacements field, solution of the inhomogeneous problem

then, the equation (1.8-10) can be written in the form:

 ( ) ( ) ( ) ( ) ( )H H H H H IinBϕ ϕ   ⋅ = ⋅ + ⋅ =    0T u x T u T u x∇ ∇ ∇  (1.8-12)

that is obtained by sobstituting:

( ) ( ):H H H H   ⋅ = ⋅   E u T uC∇ ∇  (1.8-13)

But, since the equation (1.8-13) is equal to zero, it follows that:
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( ) ( )H H Ix Bϕ  ⋅∇ = ∀ ∈  0T u x  (1.8-14)

By excluding the trivial case in which ( )ϕ x is constant, this means that:

1. the stress tensor HT for the reference homogeneous problem has to 

be plane, at each internal point HB∈x , that is, it has to be a locally 

variable zero-eigenvalue stress state:

   det 0H HB= ∀ ∈,T x    (1.8-15)

2. the vector ϕ∇ , at the corresponding points IB∈x , has to be 

coaxial with the eigenvector associated to the zero stress eigenvalue 

in the homogeneous problem.

In the previous statements, it has been implicitly considered the definition 

about the “plane stress”: a stress state will be said plane if, in a fixed point x of 

the solid, there is a plane of the stresses to which all the stress components ijσ

belong. It is easy to demonstrate that this plane exists if the stress tensor T has 

a zero eigenvalue. So, if { }1 2 3, ,ξ ξ ξ is the orthogonal principal reference frame 

of the stress tensor T and if 3ξ is assumed, for example, as the eigenvector 

associated to the zero eigenvalue of T , the plane of the stresses must coincide 

with 1 2ξ ξ− plane.

It follows that a necessary and sufficient condition for the existence of a 

plane stress is given by:

 det 0=T   (1.8-16)

The geometrical relationship (1.8-14) between the stress tensor HT and the 

vector ϕ∇ may be rewritten in the form:
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{ } ( ){ }: 0H HVϕ ϕ⋅ = ⇔ ∀ ∈ ⊗ =0 ,T v T v∇ ∇  (1.8-17)

where:

=v any unit vector defined in the three-dimensional Euclidean space 3E

V = the corresponding vector space

So, it follows that the stress vector on the plane whose normal is v is always 

orthogonal to the vector ϕ∇ .

More in detail, representing the stress tensor HT in the principal stress 

directions space, as:

1

2

3

0 0
0 0
0 0

H

H H

H

ξ

ξ

ξ

σ
σ

σ

 
 =  
  

T  (1.8-18)

and representing in the same space the gradient of the scalar function ϕ , as:

( ) 1 2 3
T

ξ ξ ξϕ ξ ϕ ϕ ϕ =  , , ,∇  (1.8-19)

the equation (1.8-14) becomes:

1 1 2 2 3 30 0 0, ; , ; ,H H H
ξ ξ ξ ξ ξ ξσ ϕ σ ϕ σ ϕ= = =  (1.8-20)

and it is satisfied only if the two conditions above written are satisfied. The 

case of three zero eigenvalues of the stress tensor HT in each point HB∈x is 

trivial; The case of only one zero eigenvalue of the stress tensor HT in each 

point HB∈x , for example in the 3ξ direction, the only non zero component 

of the vector ϕ∇ at the corresponding points IB∈x is 
3

,ξϕ (so, too, if there 

are two zero eigenvalues there can be two non-zero components of ϕ∇ ).

In the following figure it is shown the case of stress plane, for each point 
HB∈x , con eigenvalue 

3ξσ equal to zero.



 112    Chapter I – Micro-mechanics theory   

Figure 1.15 Geometrical interpretation of the relationship between the 
equipotential surfaces of and the distribution of the planes of 
stresses in the associated anisotropic problem.

It illustrates, in fact, that, at each internal point IB∈x , the equipotential 

surfaces of ϕ admit as a tangent plane the plane whose normal (parallel to 

ϕ∇ ) is coaxial with the eigenvector associated with the zero stress eigenvalue.

It can be noted that the assumed position (1.8-1) and the hypothesis (1.8-11)

, that is true if the equation (1.8-14) is satisfied, imply:

 I Hϕ=T T  (1.8-21)
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So, the following theorem is established:

Stress associated solution theorem (SAS)

Consider two geometrically identical elastic objects, one homogeneous, HB , 

and the other inhomogeneous, IB , respectively. Let be HC and 

( )I Hϕ= xC C the corresponding elasticity tensors. The two elastostatic

Cauchy problems associated with the two objects, in presence of the body 

forces and of mixed boundary-value, are:

( ) ( ){ }
( ) ( ){ }

H H H H
t u

I I I I
t u

p in B on B on B

p in B on B on Bϕ

⋅ = ⋅ = ∂ = ∂

⋅ = ⋅ = ∂ = ∂

: 0 , ,

: 0 , ,

0

0

T u T u n t u u

T u T u n t u u

∇

∇
 (1.8-22)

where:

( ) ( ) ( )2 0C B B Rϕ ϕ α α +∈ ∀ ∈ > > ∈, ,x x x

if Hu is the solution of the homogeneous problem Hp , then I H=u u if and 

only if ( ){ }: 0H Vϕ ⊗ = ∀ ∈,T v v∇ , i.e.:

( ){ }: 0I H I HB V ϕ∀ ∈ ∀ ∈ ⊗ = ⇔ =, ,x v T v u u∇  (1.8-23)

In other words, when a solution { }H H H H
σ = , ,u E TB for an anisotropic 

homogeneous elastic problem Hp is known , the SAS theorem yields the 

corresponding solution for an inhomogeneous elastic problem Ip as 

{ }I H H H
σ ϕ= , ,u E TB , if and only if H ϕ⋅ = 0T ∇ everywhere in the object 

and the displacements boundary conditions are the same for both the 

homogeneous and inhomogeneous  objects.

This SAS theorem can be generalized to comprise different types of 

composite materials, [24].



 114    Chapter I – Micro-mechanics theory   

For example, let us to consider the composite materials for which each 

phase is characterized by constant elastic moduli within their own phase, but 

different from phase to phase.

This kind of inhomogeneity can be described by a scalar function ϕ that is 

constant in each phase, but piecewise discontinuous.

In this case, in particular, for each phase p of the composite material, the 

elasticity tensor can be written as:

{ }1 2H H
p p p n Nϕ= = ⊂, , ...,C C  (1.8-24)

where:
H =C the elasticity tensor of a reference isotropic or anisotropic homogeneous 

material whose   geometries are the same of those ones of the composite 

material object.
H
p =C the elasticity tensor of the phase p of the anisotropic homogeneous 

material which is homogeneous in it.

pϕ = a positive scalar parameter, different from phase to phase.

Let us to consider a partition of the inhomogeneous body as:

 ( ) ( ){ }1
n

p p pB B U B=Ω ≡ Ω  (1.8-25)

and let us to indicate with ( ),p q∂Ω the interface boundary between two generic 

sub-domains pΩ and qΩ of the partition, with elasticity tensors H
pC and H

qC , 

respectively.

In order to obtain the solution for this kind of composite material, starting 

from the known solution for the anisotropic homogeneous reference problem, it 

has to be:

( )H H
p p p Bϕ= ∀ ∈ΩT T x  (1.8-26)
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that is the condition required by the S.A.S theorem.

It is noted that this position satisfies the equilibrium equations in each sub-

domain of the partition. In fact, it can be written:

( )H H
p p p Bϕ⋅ = ⋅ = ∀ ∈ Ω0T T x∇ ∇  (1.8-27)

Moreover, according to the constitutive relationship, it can be written:
1 1H H H H H H

p p p pp N
− −

= = = ∀ ∈ ∀ ∈Ω,E T T E xC C  (1.8-28)

that yields that compatibility condition on the discontinuity surfaces between 

the different phases of the composite is automatically satisfied and the same 

thing it can be said for the compatibility conditions on the external boundary.

As regards the limit equilibrium equations for the interface surfaces, it 

follows that:

( ) ( ) { } ( ){ }H H
p qp q q p p qp q N⋅ = ⋅ ∀ ∈ ∀ ∈∂Ω, , ,, ,T n T n x  (1.8-29)

where:

( )p q =,n the unit normal vector to the interface between the phases p and q.

According to the equation (1.8-26), the equation (1.8-29) is satisfied if:

( ) ( )
H

p q p q⋅ = ∀ ∈∂Ω, ,0T n x  (1.8-30)

This means that, for each point belonging to the interface surfaces between 

two phases, the stress tensor HT of the reference homogeneous material has to 

possess at least one zero eigenvalue, that is:

( )0H
p qdet = ∀ ∈∂Ω ,T x  (1.8-31)

So, the eigenvector associated with the zero eigenvalue of the stress tensor 

is coaxial with the unit normal vector to the tangent plane to the interface.

Finally, to complete the elastic solution for the composite material, it is 

necessary that the equilibrium conditions on the external boundary were 



 116    Chapter I – Micro-mechanics theory   

verified. In particular, indicating with ( )t eB∂ the partition of the external 

boundary on which the tractions Ht are assigned in the homogeneous reference 

material, it can be written:

( )
H H H

e e e t eBϕ⋅ = = ∀ ∈∂T n t t x  (1.8-32)

where the total stress boundary is given by:

 ( )1
k

t e t eB B=∂ = ∂U  (1.8-33)

where:

k = the total number of the phases that have a projection of their boundary on 

the external boundary on which the tractions are prescribed.

At this point, known the stress and strain fields that are elastic solution for 

the reference homogeneous problem, it is possible to built the elastic associated 

solution for the composite multi-phase materials with analogous geometry to 

the homogeneous problem.

It also has to be noted that the case of multi-phase materials, characterized 

by a scalar parameter ϕ , constant in each phase, can be seen as a 

generalization of the S.A.S. theorem where it is sufficient that the condition 

0Hdet =T were worth only in the points belonging to the internal interfaces 

between the different phases, and not necessarily in each point of the 

homogeneous body; in other words, the stress tensor HT can be a three-

dimensional stress field in any point of the domain, except for the points 

belonging to the interface surfaces.

A further example of materials to which the S.A.S. theorem can be applied 

is that one of composite multi-phase materials, where, in a more general 

situation, the following relation can be written for the elasticity tensor in each 

phase of the heterogeneous solid:
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( ) ( )H H
p p p p B Bϕ= ∀ ∈Ω ⊂x xC C  (1.8-34)

where:

( ) ( )1
n

p p pB B B=Ω ≡ ΩU  (1.8-35)

is again the considered partition of the inhomogeneous object.

The equation (1.8-34) means that, now, pϕ is a positive scalar function, not 

necessarily constant, but continuous inside each phase.

With analogous procedure to that one used before, it is easy to verify that, in 

order to extend the S.A.S. theorem to piecewise continuous composite 

materials, two facts have to be verified:

1. at each internal point of each phase p, the stress tensor HT
possesses at least one zero eigenvalue.

2. at every point belonging to the interface surfaces between two 

adjacent phases, the eigenvector associated with the zero eigenvalue 

of the stress tensor HT is coaxial with the normal to the tangent 

plane.

For further examples of applicability of the S.A.S. theorem and for more 

details on its formulation, let us to send to the references being in literature, 

[24]. It is useful to underline, now, that the S.A.S. theorem yields the 

possibility to find a closed-form solution for inhomogeneous materials and it 

evidences that this possibility doesn’t depend on the relation between geometry 

of the solid domain and orientation of the planes of the mirror symmetry but on 

the relation between the geometry of the stress distribution in the homogeneous 

material and the structural gradient of the inhomogeneous material.

In analogous manner, the displacement-associated solution (D.A.S.) 

theorem lets to find solutions for inhomogeneous anisotropic elastostatic 

problems, if two conditions are satisfied, [23]:
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3. The solution of the homogeneous elastic reference problem (the 

associated one) is known and it has a local plane strain state, with a 

zero eigenvalue everywhere in the domain of the problem.

4. The inhomogeneous anisotropic compliance tensor is in relation 

with the homogeneous associated one according to the following 

equation:

 
( ) ( ) ( ) ( )11 0I H H B Rλ λ λ β β

ϕ
− += = ∀ ∈ > > ∈, , ,x x x x

x
S C S  (1.8-36)

where:
TH H= =S S the compliance tensor of the anisotropic homogeneous elastic 

reference problem.
I =S  the compliance tensor of the corresponding anisotropic 

inhomogeneous elastic problem.

B = the domain occupied by both the homogeneous object (BH) and the 

inhomogeneous one (BI).

Rβ +∈ = an arbitrary positive real number.

( )λ =x a ( )2C B scalar function.

The second condition implies that the inhomogeneous character of the 

material is due to the presence of a scalar parameter, ( )λ x , producing the 

inhomogeneity in the compliance coefficients. It can be also relaxed and, so, 

written in a weak form:

 ˆ ˆ
ijhk ijhk

I HS Sλ=  (1.8-37)

where:
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ˆ
ijhk

HS = those only compliance coefficients explicitly involved in the specific 

anisotropic homogeneous problem used to construct the associated 

solution.

This means that components of the compliance tensor not involved in the 

solution of the homogeneous problem will not be involved in that one of the 

associated inhomogeneous problem.

If the conditions 3 and 4 are satisfied, starting from the known solution of 

the homogeneous problem, the associated solution, that is the solution to the 

inhomogeneous problem, is derived.

In particular, the stress field solution is identical with the stress field of the 

homogeneous reference solution, while the strain field of the inhomogeneous 

problem is equal to ( )λ x times the strain field of the homogeneous problem.

The advantage of this method is in the fact that its use yields exact solutions 

for several new interesting inhomogeneous and anisotropic problems. 

More in detail, let us to consider an anisotropic homogeneous elastic object, 

that occupies a volume HB , with mixed boundary-value (see figure 1.13).

In presence of action-at-a-distance forces and taking into account the 

compatibility of the solution by writing the equilibrium equations in terms of 

displacements, the following equilibrium equations can be written:

( )
( )
( )

H

H
t

H
o

in B

on B

on B

⋅ =

⋅ = ∂

⋅ = ∂

0

0

T u

T u n t

T u n

∇

 (1.8-38)

where:

i= ∂ =ie∇ is a vectorial differential operator
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H
tB∂ =  the boundary partition of the homogeneous continuum on which the 

traction field is assigned.
H
oB∂ =  the boundary partition of the homogeneous continuum in absence of 

both traction and displacements fields.

On the boundary partition on which the displacements field is assigned, the 

following relation has to be satisfied:

 H
uon B= ∂0u  (1.8-39)

where, in fact:
H
uB∂ = the boundary partition of the homogeneous continuum on which the 

displacements field is assigned.

The anisotropic Hooke’s law, in a linear elastic stress-strain relation, is 

written in the form:

( ) ( ) ( ) ( ): : :H H Hsym= = ∇ ⊗ = ⊗C C CT u E u u u∇  (1.8-40)

or:

( ) ( ) ( ):Hsym ⊗ = = Su E u T u∇   (1.8-41)

in components:

 ,
H H

ij ijhk hk ijhk h kC C uσ ε= =  (1.8-42)

and:

 H
ij ijhk hkSε σ=  (1.8-43)

Let us to consider, now, an anisotropic inhomogeneous elastic object, that 

occupies a volume IB , geometrically the same of HB , with mixed boundary-

value (see figure 1.14).

In presence of action-at-a-distance forces and taking into account the 

compatibility of the solution by writing the equilibrium equations in terms of 
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displacements, in an analogous manner to what has been done before, the 

following equilibrium equations can be written:

 

( )
( )
( )

I

I
t

I
o

in B

on B

on B

⋅ = −

⋅ = ∂

⋅ = ∂0

T u b

T u n t

T u n

∇

 (1.8-44)

where:
I
tB∂ =  the boundary partition of the inhomogeneous continuum on which the 

traction field is assigned. It is geometrically the same of that one in 

the homogeneous problem.
I
oB∂ = the boundary partition of the inhomogeneous continuum in absence of 

both traction and displacements fields. It is geometrically the same of 

that one in the homogeneous problem.

On the boundary partition on which the displacements field is assigned, the 

following relation has to be satisfied:

 H
uon B= ∂0u  (1.8-45)

where, in fact:
I
uB∂ =  the boundary partition of the inhomogeneous continuum on which the 

displacements field is assigned. It is geometrically the same of that 

one in the homogeneous problem.

Let us to assume the stress tensor HT as the solution for the homogeneous 

problem, and let us to assume, also, the hypothesis that:

   I H=T T  (1.8-46)
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In this way, the equations in the differential system (1.8-38) are 

automatically satisfied. Moreover, if HT is the solution of the first anisotropic

and homogeneous problem, we have that the compatibility condition

[ ( : )]H H× × = OS T∇ ∇  (1.8-47)

have to be also satisfied. As well-known, this ensures that a displacement 

field Hu exists. So, it is possible to write the strain-displacement relationship

:H H H Hsym= = ⊗SE T u∇  (1.8-48)

where:
H =u displacements field, solution of the homogeneous problem

Then, in order to accept the hypothesis (1.8-46), the following equation: 

[ ( : )] [ ( : )]I I H Hλ× × = × × = OT TS S∇ ∇ ∇ ∇  (1.8-49)

becomes necessary and sufficient condition for the existence of a displacement 

field Iu , where Iu is the displacements field, solution of the inhomogeneous 

problem, and it is given by:

: :I I I I H Hsym = λ⊗ = =u E T TS S∇  (1.8-50)

The compatibility condition (1.8-49), in general, is not satisfied. Therefore, 

it is necessary to find the conditions under whose it becomes true, [23].

Without loss of generality, let us consider:

 ( )λ λ= 3x  (1.8-51)
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This means that 3x is the direction that is locally coaxial with the gradient 

of λ , i. e.,

 3[0, 0, / ]T xλ λ= ∂ ∂∇  (1.8-52)

So, by recalling that Hu is the solution of the homogeneous problem, and by 

operating some algebraic manipulations, the set of compatibility equations 

(1.8-49) can be reduced to five differential equations as it is shown:

,33 1,1 ,3 1,3 3,1 ,1

,33 2,2 ,3 2,3 3,2 ,2

,3 1,2 2,1 ,1

,3 1,2 2,1 ,2

,33 1,2 2,1 ,3 1,3 3,1 ,2 2,3 3,2 ,1

( ) 0

( ) 0

( ) 0

( ) 0

( ) [( ) ( ) ] 0

H H H

H H H

H H

H H

H H H H H H

u u u

u u u

u u

u u

u u u u u u

λ λ

λ λ

λ

λ

λ λ

 + − =


+ − =


− =
 − =
 + + − + − =

 (1.8-53)

where, obviously, is absent any prescribed constrain about the relation 

between the first and the second derivatives of the parameter λ , [23].

It can be noted that the terms in the parentheses represent the skew 

components of the H⊗ u∇ , that are local rotations, while the only present 

strain components are 3 3 ,(1 ) (1 ) H
i j i juδ δ− − , having indicated with hkδ the 

standard Kronecker operator.

It has to be noted that:

1. the displacement field for the reference homogeneous problem has 

to be related, at each internal point HB∈x , with a local plane 
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strain field, where any plane with support the axis 3x can be the 

plane of the strains:      

  det 0H HB= ∀ ∈,E x  (1.8-54)

2. the vector λ∇ , at the corresponding points IB∈x , has to be 

coaxial with the support axis 3x of plane of the strains in the 

homogeneous problem.

3. ( )Hcurl u must be independent from 3x -direction, i.e. the λ∇ -

direction.

In the previous statements, analogously to what has been done with the 

stress state, it has been implicitly considered the definition about the “plane 

strain”: a strain state will be said plane if, in a fixed point x of the solid, there 

is a plane of the strains to which all the strain components ijε belong. It is easy 

to demonstrate that this plane exists if the strain tensor E has a zero 

eigenvalue. So, if { }1 2 3, ,ξ ξ ξ is the orthogonal principal reference frame of the 

strain tensor E and if 3ξ is assumed, for example, as the eigenvector 

associated to the zero eigenvalue of E , the plane of the strains must coincide 

with 1 3ξ ξ− plane.

It follows that a necessary and sufficient condition for the existence of a 

plane strain is given by:

 0det =E  (1.8-55)
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It has to be noted that the satisfaction of the compatibility condition (1.8-49)

yields that the displacements field of the homogeneous problem has to satisfy 

the equations (1.8-53).

This compatibility condition (1.8-49), therefore, may be rewritten in the 

form:

{ }
{ }

:

: 0 ( , ( ) 0

H H

H H

curl curl

V curl sym

λ

λ

= ⇔

⇔ ∀ ∈ ⋅ = ⊗ = ⊗ ⋅ =

[ ( )] O

, 0

T

h h u h u h h

S
∇ ∇ ∇ 

 (1.8-56)

where:

( ) ( ) ( )2 0C B B Rλ λ α α +∈ ∀ ∈ > > ∈, ,x x x

=h any unit vector defined in the three-dimensional Euclidean space 3E

V = the corresponding vector space

Moreover, it is worth to note that the assumed position (1.8-36) and the 

hypothesis (1.8-46), that is true if the equation (1.8-49) is satisfied, imply:

 I Hλ=E E   (1.8-57)

So, at this point, it can be stated that any anisotropic and homogeneous 

elastic problem that possesses a solution represented by the displacement 

equations can be considered a Displacement Auxiliary Solution for the 

corresponding dual inhomogeneous elastic problem.

In other words, it can be possible to demonstrate the following theorem:

Displacement associated solution theorem (DAS)

Consider two geometrically identical anisotropic elastic objects, one 

homogeneous, HB , and the other inhomogeneous, IB , respectively. Let be 



 126    Chapter I – Micro-mechanics theory   

HS and ( )I Hλ= xS S the corresponding compliance tensors. The two 

elastostatic Cauchy problems associated with the two objects, in presence of 

the body forces and of mixed boundary-value, are:

 
( ) ( ) ( ){ }
( ) ( ) ( ){ }

H H H H H
t o u

I I I I I
t o u

p inB on B on B on B

p inB on B on B on B

⋅ = − ⋅ = ∂ ⋅ = ∂ = ∂

⋅ = − ⋅ = ∂ ⋅ = ∂ = ∂

: , , 0 , 0

: , , 0 , 0

T u b T u n t T u n u

T u b T u n t T u n u

∇

∇
 (1.8-58)

If HT is the solution of the homogeneous problem Hp , then I H=T T if and 

only if the second part of the equation (1.8-56) is verified, i.e.:

if ( ),H H H Hcurl V skew= ∀ ∈ ⊗ = ∧w u v u v w v∇

we have that:

 
{ }

{ }
0 ( , ( ) 0H H

I H

V curl symλ∀ ∈ ⋅ = ⊗ = ⊗ ⋅ = ⇔

⇔ =

, 0h h u h u h h

T T

∇ ∇ ∇ 

 (1.8-59)

In other words, when a solution { }H H H
ε = , ,u E TB H for an anisotropic 

homogeneous elastic problem Hp is known , the DAS theorem yields the 

corresponding solution for an inhomogeneous elastic problem Ip as 

{ }I H H
ε λ= ,E TB , if and only if the anisotropic and homogeneous elastic 

problem possesses, everywhere in the object, a displacement solution satisfying 

the equations (1.8-53) and if the displacements boundary conditions are the 

same for both the homogeneous and inhomogeneous  objects.

The solution Iu , for the inhomogeneous problem, in general, have to be 

integrated with reference to the specific case.

It is worth to underline that in the case where displacement boundary-

value u is not equal to zero, the elastic mixed problem can be rewritten
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as the corresponding first type one, in which only the traction and reaction 

fields are considered.

For more details on D.A.S. demonstration, let us to send to the references 

being in literature, [23].

It is useful to underline, now and again, the geometrical interpretation of the 

result of the theorem, constituted by the observation that, in  order to find an 

analytical solution for a given elastic inhomogeneous and anisotropic body in 

the form { }I H H
ε λ= ,E TB , a necessary and sufficient condition is that the 

displacement solution for the corresponding anisotropic and homogeneous 

problem is related with a local plane strain field that has as plane of the strains 

any plane with support an axis coaxial with the gradient of λ , with rotational 

part depending on this gradient direction, only.

The D.A.S. theorem can be generalized to comprise different types of 

composite materials.

For example, it is possible to consider the case of a multi-linear law for λ ,

i.e.:

0 1 2 3λ λ λ λ λ= + + +1 2 3x x x  (1.8-60)

with , {0,...,3}i iλ = arbitrary constants.

In this case, it is obtained that the second derivatives of the differential 

system (1.8-53) go to zero, therefore, the compatibility equation system 

becomes as it follows:
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* * * *
1 1,2 2,1 ,2 2 1,2 2,1 ,1

* * * *
2 2,3 3,2 ,3 3 2,3 3,2 ,2

* * * *
3 1,3 3,1 ,1 1 1,3 3,1 ,3

* * * * * * * *
1 1,2 2,1 ,3 1,3 3,1 ,2 2 1,3 3,1 ,1 3 1,2 2,1 ,1

* *
2 2,1 1,2 ,3 2,3

( ) ( )

( ) ( )

( ) ( )

[( ) ( ) ] ( ) ( )

[( ) (

u u u u

u u u u

u u u u

u u u u u u u u

u u u

λ λ

λ λ

λ λ

λ λ λ

λ

− = −

− = −

− = −

− + − = − + −

− + * * * * * *
3,2 ,1 1 2,3 3,2 ,2 3 2,1 1,2 ,2

* * * * * * * *
3 3,1 3,1 ,2 3,2 2,3 ,1 1 3,2 2,3 ,3 2 3,1 1,3 ,3

) ] ( ) ( )

[( ) ( ) ] ( ) ( )

u u u u u

u u u u u u u u

λ λ

λ λ λ








 − = − + −
 − + − = − + −

 (1.8-61)

Because of the arbitrary of the assumption about the constants in the λ law, 

by setting to zero all skew components of H⊗ u∇ , a very closed solution of 

the system can be found in the classical strain potential form, [8], that is

 H φ=u ∇  (1.8-62)

where ( )φ φ= x is a scalar function. The displacement in the form of the 

equation (1.8-61) produces, as well-known, an irrotational deformation field 

and constitutes the irrotational part of the Papkovich-neuber representation in 

the isotropic elasticity, [8]. The reason for which this particular case could 

result very useful is related to the fact that many fundamental solutions in 

isotropic and anisotropic elasticity have a representation as described in 

(1.8-61), as the axisymmetric, thermoelastic and heat-conduction problems. 

It is, also, interesting to observe that, for the case of multi-linear law of λ ,  

not any prescription on the form of the strain tensor HE is necessary and, so, it 

is possible to use as Displacement Associated Solutions all the three 

dimensional solutions about anisotropic elasticity, satisfying the equation 

(1.8-61), that is, all the three dimensional solutions that satisfy the equation:

 Hcurl = 0u  (1.8-63)
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For the examples of applicability of the D.A.S. theorem and for more details 

on its formulation, let us to send to the references being in literature, [23]. 

It is worth to note that the D.A.S. theorem, like the S.A.S. one, yields the 

possibility to find a closed-form solution for some inhomogeneous materials 

and it evidences that this possibility  depends, in general, on the relation 

between the geometry of the strain distribution in the homogeneous material 

and the structural gradient, λ∇ , of the inhomogeneous material.
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APPENDIX

The components of the Eshelby tensor S , with respect to a rectangular 

Cartesian coordinate system, are listed for several special cases, [47]. In 

particular, it is here considered a matrix M to be unbounded and isotropically 

elastic, and the inclusion Ω to be ellipsoidal with semiprincipal axes, ia , 

which coincide with the coordinate axes, ( )1, 2,3i =ix , as shown in the 

following figure:

a

a

a

x

x

x3

2

1

3

2

1

Figure 1.16 An ellipsoidal coaxial with the Cartesian coordinates.

1) General form ( )> >1 2 3a a a :

( )
( )

( )

( )
( )

( )

( ) ( ) ( )
( ) ( )

2
1111 1 11 1

2
1122 2 12 1

2 2
1212 1 2 12 1 2

1 23
8 1 8 1

1 21
8 1 8 1

1 21
16 1 16 1

a I I

a I I

a a I I I

ν
π ν π ν

ν
π ν π ν

ν
π ν π ν

−
= +

− −

−
= −

− −

−
= + + +

− −

S

S

S

 [1-1]
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where the iI and ijI integrals are given by:

( )( )
( ) ( ){ }

( )( )
( ) ( )

1 2 3
1 1 22 2 2 2

1 2 1 3

1 22 2
2 1 31 2 3

3 1 22 2 2 2
1 32 3 1 3

1 2 3

4 , ,

4 ,

4

a a aI F k E k
a a a a

a a aa a aI E k
a aa a a a

I I I

π
θ θ

π
θ

π

= −
− −

 − = − 
− −   

+ + =

 [1-2]

and:

2 2 2
11 12 13 1 11 2 12 3 13 12

1

2 1
12 2 2

1 2

43 , 3 3I I I a I a I a I I
a

I II
a a

π
+ + = + + =

−
=

−

 [1-3]

where F and E are the elliptic integrals of the first and the second kind, and:

1 21 22 2 2 2
1 3 1 2

2 2 2
1 1 3

arcsin ,a a a ak
a a a

θ
  − −

= =   −   
 [1-4]

2) Sphere ( )= = =1 2 3a a a a :

( ) ( ) ( )5 1 4 5
15 1 15 1ijkl ij kl ik jl il jk

ν ν
δ δ δ δ δ δ

ν ν
− −

= + +
− −

S  [1-5]

3) Elliptic cylinder ( )→ ∞3a :
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( ) ( )
( )

2
2 1 2 2

1111 2
1 21 2

2
1 1 2 1

2222 2
1 21 2

3333

2
2 2

1122 2
1 21 2

1
2233

1 2

2
1 1

2211 2
1 21 2

21 1 2
2 1

21 1 2
2 1

0

1 1 2
2 1

21
2 1

1 1 2
2 1

a a a a
a aa a

a a a a
a aa a

a a
a aa a

a
a a

a a
a aa a

ν
ν

ν
ν

ν
ν

ν
ν

ν
ν

 + = + − 
− ++  

 + = + − − ++  
=

  = − − 
− ++  

=
− +

= − −− ++

S

S

S

S

S

S

( )

( ) ( )
( )

( )

( )

2
1133

1 2

3311 3322

2 2
1 2

1212 2
1 2

1
2323

1 2

2
3131

1 2

21
2 1

0

1 21
2 1 22

2

2

a
a a

a a
a a

a
a a
a

a a

ν
ν

ν
ν




  

=
− +

= =

 −+ = + − +  

=
+

=
+

S

S S

S

S

S

 [1-6]

4) Penny-shape ( )?1 2 3a = a a :



133    Chapter I – Micro-mechanics theory  

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

3
1111 2222

1

3
3333

1

3
1122 2211

1

3
2233 1133

1

3
3311 3322

1

3
1212

1

3
3131 2323

1

13 8
32 1

1 2
1

4 1

1 8
32 1

1 2
8 1

4 1
1

1 8

7 8
32 1

21 1
2 4 1

a
a

a
a

a
a

a
a

a
a

a
a

a
a

π ν
ν

π ν
ν

π ν
ν

π ν
ν

π νν
ν ν

π ν
ν

π ν
ν

−
= =

−

−
= −

−

− +
= =

−

− +
= =

−

+ 
= = − 

−  
−

=
−

 − = = + −  

S S

S

S S

S S

S S

S

S S
 [1-7]



Chapter II – Homogenization theory   134  

CHAPTER II

Homogenization theory

2.1 Introduction

In this chapter, a short introduction to the notion of the homogenization and 

of the essential concepts connected to it is provided.

In particular, by considering a heterogeneous medium, i.e., a medium whose 

material properties vary pointwise in a continuous or discontinuous manner, in 

a periodic or non periodic way, deterministically or randomly, homogenization

can be defined as the modelling technique of such a heterogeneous medium by 

means a unique continuous medium, [41]. Furthermore, its goal is to determine 

the mechanical parameters of the unique fictitious material that “best” 

represents the real heterogeneous material or composite material. Obviously, 

homogenization procedure applies itself to all fields of macroscopic physics, 

but we will focus the attention on the mechanics of elastic bodies, particularly, 

on composite materials.

Since most of the composite materials present a brittle, rather than ductile, 

behaviour and, so, the elastic behaviour prevails, often there is no need to 

consider the homogenization in an elasto-plastic range. Such an approach 
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cannot be ignored when the plastic behaviour comes into play, like in the 

composites which have a metallic matrix, for example. This leads to some 

difficulty since the solution of the elasto-plastic homogenization problem in an 

exact form is available only for very simple cases. However, we will be 

interested in the elastic response of the homogenized material.

2.2 General theory

In the chapter 1, it has been noticed that, in order to employ a

homogenization procedure, two different scales are used in the description of 

the heterogeneous media. One of these, we remember, is a macroscopic scale at 

which homogeneities are weak, [41]. The other one is the scale of 

inhomogeneities and it has been defined as the microscopic scale. The latter 

defines the size of the representative volume element.

About the notion of the RVE, it can be said that, from the experimental 

point of view, there exists a kind of statistical homogeneity, in the sense that 

any RVE at a specific point looks very much like any other RVE taken at 

random at another point. 

The mechanical problem presents itself in the following manner, [41].

Let ( )T x and ( )E x be the stress and the strain field at the microscale in 

the framework of the examined RVE and denote, analogously to what has been 

done in the previous chapter, the same mechanic quantities at macroscale by 

( )XΣ and ( )E X , and the averaging operator by ...< > . Hence, for a volume 

averaging, we have, as already seen before:
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( ) ( ) ( )

( ) ( ) ( )

1

1
V

V

dV
V

dV
V

= < > =

=< > =

∫

∫

Σ X T x T x

X E x E xE
 (2.2-1)

where V is the volume of the representative element.

In literature, [41], the following definitions are given:

a) The process that relates the macrofields ( ),Σ E , by means of  the  

(2.2-1), to the microscopic constitutive equations is called 

homogenization.

b) The “inverse” process which consists in determining the microfields 

( ),T E from the macrofields ( ),Σ E is called localization.

Therefore, in the localization process, the data are the prescribed 

macrostress Σ , or the prescribed macrostrain E , and such problem 

corresponds to the following one:

( ). . "micro" equilibrium
the "micro" behaviour is known

L P div
< > = , < > = 

 = , 
 
 

0
T E

T
Σ  E

 (2.2-2)

This is a particular ill-posed problem, because of the following two reasons:

1. The prescribed load is not a prescription at points in the bulk or at a 

limiting surface, but it is the averaged value of a field.

2. There are no boundary conditions.

The missing boundary conditions must, in some way, reproduce the internal 

state of the RVE in the most satisfactory manner. They therefore depend on the 

choice of RVE, more specifically on its size. Different choices of RVE, in fact, 

will provide different macroscopic laws.

Hence, the following relations give some examples of boundary conditions:
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 ⋅ = ⋅ΣT n n on V∂  (2.2-3)

 = ⋅u xE on V∂  (2.2-4)

They represent, respectively, the condition of prescribed uniform tractions on 

V∂ and the condition of prescribed uniform strains on V∂ . These two 

conditions are so that the (2.2-1) is verified. Indeed, from the(2.2-4), it is 

obtained:

( )( ) ( ) ( )( )( )1 1
2 2

TT

V V
ds ds

∂
⊗ + ⊗ = ⊗ ⋅ + ⊗ ⋅∫ ∫∇ ∇u u n x n xE E (2.2-5)

This implies:

 ( )= < > =E E u E  (2.2-6)

and the proof for the (2.2-3) is self-evident.

The above reasoning does not apply for the case of periodic structure. This 

because, in this case, the stress and strain microfields, T and E are locally 

periodic and, so, periodicity conditions have to be considered, as it follows:

- The tractions ⋅T n are opposite on opposite faces of V∂ , where the 

unit normal vector n corresponds to -n .

- The local strain field ( )E u is made of two parts, the mean E and a 

fluctuation part ( )∗E u so that:

( ) ( ) ( ), 0∗ ∗= + < > =E u E u E uE  (2.2-7)

where:
∗ =u periodic displacement

Therefore, the boundary conditions for this problem are the following ones:

 is antiperiodic⋅T n on V∂  (2.2-8)

, periodic+ ∗ ∗= ⋅u x u uE on V∂  (2.2-9)
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By taking in account the (2.2-3) and (2.2-4) or the (2.2-8) and (2.2-9), the 

localization problem (2.2-2) is, now, theoretically well-posed, but this must be 

verified for each constitutive behaviour.

2.3 Localization and Homogenization problem in pure elasticity

The case of purely elastic components will be examined, in this section. 

Here, anisotropic linear-elastic components will be considered.

About the localization problem, it is written in the following form:

( ) ( ) ( ) ( ) ( )( )
( )

: :

boundaryconditions

∗ = = + 
=

+

C CT x x E x x E u x

divT x 0

E

 (2.3-1)

where E or Σ is prescribed and where:

( ) =C x the tensor of elasticity coefficients at the micro-scale.

Accordingly, the fluctuation displacement ∗u is the solution of the 

following problem:

( ) ( )( )( ) ( )( ): :

boundaryconditions

∗ = −

+

C Cdiv x E u x div x E
 (2.3-2)

Whenever the stiffness tensor C is constant for each component, it can be 

shown that:

( ) § ¨( ) ( ): : δ=C Cdiv nE E I  (2.3-3)

where:

 § ¨ + −= −C C C   (2.3-4)

and where:

( )δ =I Dirac’s distribution.
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=n  the unit normal oriented from the “-” to the “+” side of the surface I
separating components.

Under classical working hypotheses applying toC , the localization problem 

(2.3-2) admits a unique solution for all the types of boundary conditions,  

(2.2-3), (2.2-4), (2.2-8) and (2.2-9).  In order to prove this, we must distinguish 

whether it is E or Σ is prescribed.

- Case where E is prescribed

For the demonstration of the existence and uniqueness of the solution, the 

reader can see Suquet (1981). We are only interested, here, to give the 

representation of the solution.

Since the problem is linear, the solution ( )∗E u depends linearly by the 

prescribed macrostrain field, E . Moreover, this latter can be decomposed into 

six elementary states of macroscopic strains (i.e. stretch in three directions and 

three shears). So, let ( )hkχE be the fluctuation strain field at microscopic 

level, induced by these six elementary states. The solution ( )∗E u for a 

general macrostrain E is the superposition of the six elementary solutions, as 

in the following relation:

 ( ) ( )hk hkχ∗ = EE u E  (2.3-5)

where a summation over h and k is considered.

In all, it is:

( ) ( ) ( )( )+ ∗= = +E u E u I EE E χ  (2.3-6)

This can be also expressed in the form:

 ( ) := LE u E  (2.3-7)

or, in components:



Chapter II – Homogenization theory   140  

 ( ) :ij ijhk hkLε = Eu   (2.3-8)

where:

 ( )ijhk ijhk ij hkL I ε χ= +  (2.3-9)

with:

( )1
2ijhk ih jk ik jhI δ δ δ δ= + = the tensorial representation in 3R of the unity of 

6R .
The tensor L , as already mentioned in the previous section, is called the 

tensor of concentrations (Mandel, 1971) or, depending on the author, the tensor 

of strain localization or also the tensor of influence (Hill, 1967).

About the homogenization problem, instead, we can write:

( ) ( ): : : : :=< >=< =< =<> > >C C L C LT x E uΣ E E  (2.3-10)

so that:

 := CΣ E  (2.3-11)

where:

=C homogenized symmetric stiffness tensor, which is given by:

 :=< >C C L  (2.3-12)

It can be noticed that:

 , T< > = < > =L LI I  (2.3-13)

where the superscript T denotes transpose.

The obtained equation (2.3-12) shows that the tensor of the macro elasticity 

coefficients can be determined by taking the average of the micro elasticity 

coefficients, the latter being weighted by the tensor of strain localization. The 

symmetry of the homogenized stiffness tensor can be proved in two ways; the 

interested reader is referred to [41].
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- Case where Σ is prescribed

For the demonstration of the existence and uniqueness of the solution, here 

again, the reader can see Suquet (1981). Here, we are only interested to give 

the representation of the solution, by starting that a unique solution exists.

In this case, the localization problem becomes:

( ) ( ) ( )
( )

( )

:

boundaryconditions

∗= + =

=

=

+

SE u E u T x

divT x

T x

0

< > Σ

E

 (2.3-14)

where:

=S tensor of the micro elastic compliances.

=E unknown macrostrain field.

Analogously to the previous case, since the problem is linear, the solution 

( )T x depends linearly by the prescribed macrostress field Σ . Moreover, this 

latter can be decomposed into six elementary states of macroscopic stresses 

(i.e. compression in three directions and three shears). So, let hkM be the 

solution of the problem (2.3-14), induced by these six elementary states. The 

solution ( )T x for a general macrostress Σ is the superposition of the six 

elementary solutions, as in the following relation:

  ( ) hk hk= ΣT x M  (2.3-15)

where a summation over h and k is considered.

In all, it can be written that:

 ( ) := MT x Σ  (2.3-16)

or, in components:
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 ( ) :ij ijhk hkMσ = Σx  (2.3-17)

where:

 ( )ijhk hk ij
M = M  (2.3-18)

The tensor M , as already mentioned in the previous section, is called the 

tensor of concentrations or the tensor of stress localization.

About the homogenization problem, instead, we can write:

( ) ( ): : : : :=< >=< =< =<> > >S S M S ME u T x Σ ΣE  (2.3-19)

so that:

 := S ΣE   (2.3-20)

where:

=S homogenized symmetric compliance tensor, which is given by:

 :=< >S S M  (2.3-21)

It can be noticed that:

 , T< > = < > =M MI I  (2.3-22)

where the superscript T denotes transpose.

The obtained equation (2.3-20) shows that the tensor of the macro 

compliance coefficients can be determined by taking the average of the micro 

compliance coefficients, the latter being weighted by the tensor of stress 

localization. The symmetry of the homogenized compliance tensor can also be 

proved; the interested reader is referred to [41], again.

2.4 Equivalence between prescribed stress and prescribed strain

It can be highlighted that C and S are inverse tensors of one another if 

they correspond to the same choice of boundary conditions in the localization 

problem. By using the symmetry of C , it can be written:
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( ): : : : :
T T= = < > < >C S C S L C S M  (2.4-1)

in which, for the definition of the tensors L and M , the first factor represents 

an admissible stress field and the second factor is an admissible strain field. 

So, by applying the Hill-Mandel principle, and by considering that : = IC S , 

the (2.4-1) assumes the following form:

: : : : : :T T T=< > = < > = < > < > = IC S L C S M L M L M  (2.4-2)

which, indeed, implies that C and S are inverse tensors of one another.

However, if different boundary conditions are used, according to the 

estimate of Hill (1967) and Mandel (1971), it is:

 ( )( )3: O /d l= +IC S  (2.4-3)

where C is evaluated by using the condition (2.2-4), while S is computed by 

using the condition (2.2-3) and where:

d = characteristic size of an inhomogeneity.

l =  typical RVE size.

If l d>> , then the choice of boundary conditions is hardly important. For 

periodic media where ( )/ O 1d l = , this choice is very important.
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CHAPTER III

Mechanics of masonry structures: experimental, numerical 
and theoretical approaches proposed in literature

3.1 Introduction

Masonries have been largely used in the history of architecture. Despite 

their unusual use in new buildings, they still represent an important research 

topic due to several applications in the framework of structural engineering, 

with particular reference to maintaining and restoring historical and 

monumental buildings. Hence, since preservation of existing masonry 

structures is considered a fundamental issue in the cultural life of modern 

societies, large investments have been concentrated on this issue, leading to 

develop a great number of theoretical studies, experimental laboratory activities 

and computational procedures in the scientific literature. The main interest of 

many researchers is in finding constitutive models able to simulate the complex 

response of such structures subjected to static and dynamic loads.
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However, the mechanic characterization of a masonry structure shows 

itself as a very difficult task. This complexity results from its anisotropic 

composite behaviour. Masonry is, indeed, constituted by blocks of artificial or 

natural origin jointed by dry or mortar joints. Moreover, since the joints are 

inherent plane of weakness of such composite material, notably the mechanical 

masonry response is affected by behaviour preferred directions, which the 

joints determine, [28]. Two fundamental mechanical approaches have been 

developed in order to formulate an appropriate constitutive description of 

masonry structures: 

- Discrete Models 

- Continuous Models

The main object of this chapter will be to furnish an overall description of 

the above mentioned kind of approaches. In particular, our attention will be 

focused on the different homogenization proposals for modelling masonry 

structures, which are given in literature by some authors.

As it will be seen in the follows, indeed, the analysis of masonry via micro-

mechanic and homogenization techniques, have to be included in the 

approaches which are based on the continuous models. In this framework, 

advanced analytical and numerical strategies – these latter based on the finite 

element method - have been recently developed.

3.2 Discrete and “ad-hoc” models 

In spite of the considerable solutions which can be derived from 

continuous approaches, an interesting natural treatment of a masonry structure, 

which deals more directly with its discontinuous nature, is offered by its 

numerical modelling.
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The numerical modelling of masonry structures shows objective 

difficulties, due to distinct issues:

- The typological characteristics of such structures don’t allow 

referring to simplified static schemes.

- The material mechanical properties yield to a non-linear 

behaviour, whose prediction can result to be misleading.

- The incomplete experimental characterization of the masonry 

makes the calibration of numerical models quite uncertain.    

However, they will be exposed, in the follows, three different modelling 

approaches in which each single structural masonry element is studied and the 

actual distribution of blocks and joints can be accounted for [30]: the finite 

element method with micro-modelling, the finite element method with 

discontinuous elements (FEMDE) and the discrete element method (DEM).

1. Modelling with FEM

Basically, two different approaches have been adopted to model with FEM 

the masonry behaviour: the ‘micro-modelling’ or ‘two-materials approach’ and 

the macro-modelling or ‘equivalent-material approach’. Since this latter 

regards the masonry structure as a homogeneous equivalent continuum, it is 

referred to the group of continuous models. So, it will be illustrated in the 

following section.

As regards the former approach, the discretization follows the actual 

geometry of both the blocks and mortar joints, adopting different constitutive 

models for the two components. Particular attention must be paid in the 

modelling of joints, since the sliding at joint level often starts up the crack 

propagation. Although this approach may appear very straightforward, its 
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major disadvantage comes from the extremely large number of elements to be 

generated as the structure increases in size and complexity.

Hence, the use of micro-models becomes unlikely to use for the global 

analysis of entire buildings, also considering the fact that the actual distribution 

of blocks and joints might be impossible to detect unless invasive 

investigations are performed, [30]. 

2. Modelling with FEMDE

In this approach, the blocks are modelled using conventional continuum 

elements, linear or non-linear, while mortar joints are simulated by interface 

elements, the ‘joint elements’, which are made up of two rows of superimposed 

nodes with friction constitutive low, (see Fig. 3.1).

Figure 3.1  Degeneration of the continuum element into “joint element”.

The introduction of the joint is easy to implement in a software programme, 

since the nodal unknowns are the same for continuum and joint elements, 

though for the latter the stress tensor must be expressed in terms of nodal 

displacements instead of deformation components.

Two major concerns balance the apparent simplicity of this approach, [30]:
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• Block mesh and joint mesh must be connected together, so that they 

have to be compatible, which is possible only if interface joints are 

identically located. This compatibility is very difficult to ensure when 

complex block arrangements are to be handled, like in 3D structures.

• The joint element is intrinsically able to model the contact only in the 

small displacement field. When large motion is to be dealt, is not 

possible to provide easy remeshing in order to update existing contacts 

and/or to create new ones.

3. Modelling with DEM

The above-mentioned limitations are overcome by the DEM (discrete 

element method).

This methodology originated as distinct element method in geotechnical and 

granular flow applications (Cundall, 1971) and it is based on the concept that 

individual material elements are considered to be separate and are (possibly) 

connected only along their neighbours by frictional/adhesive contact. Here, 

elements were considered rigid, but later developments (Munjiza et al, 1995)

included the addition of element deformations and fracturing, which has 

permitted a more rigorous treatment of both the contact conditions and fracture 

requirements. The incorporation of deformation kinematics into the discrete 

element formulation has also led naturally to a combined finite/discrete element 

approach in which the problem is analyzed by a combination of the two 

methods.

With present day computational power, large scale discrete element 

models can be considered, also for industrial applications in different fields. 

About 10-50,000 elements are routinely employed, [56].
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In this approach, therefore, the structure is considered as an assembly of 

distinct blocks, rigid or deformable, interacting through unilateral elasto-plastic 

contact elements which follow a Coulomb slip criterion for simulating contact 

forces. The method is based on a formulation in large displacement (for the 

joints) and small deformations (for the blocks), and can correctly simulate 

collapse mechanisms due to sliding, rotations and impact.

The contacts are not fixed, like in the FEMDE, so that during the analyses 

blocks can loose existing contacts and make new ones. Once every single block 

has been modelled both geometrically and mechanically, and the volume and 

surface forces are known, the time history of the block’s displacements is 

determined by explicitly solving the differential equations of motion. In 

particular, high viscous damping is used to achieve convergence to static 

solution or steady failure mechanism, [30].

In other words, two main features of the DEM method lead to its use for 

the analysis of masonry structures by means of the Cundall’s software program 

UDEC-Universal Distinct Element Code, [18]. One is the allowance for large

displacements and rotations between blocks, including their complete 

detachment. Other is the automatic detection of new contacts as the calculation 

progresses.

Another advantage of this approach is the possibility of following the 

displacements and determining the collapse mechanism of structures made up 

of virtually any number of blocks, [30], [51]. On the contrary, it must be 

considered that the finite elements used for the internal mesh of the blocks, 

when deformable, show poor performance, so the method is not accurate for 

the study of stress states within the blocks. 

The discrete element analysis is particularly suitable for problems in 

which a significant part of the deformation is accounted for by relative motion 
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between elements. Hence, masonry provides just a natural application for this 

technique since its significant deformation occurs at joints or contact points, i.e. 

the deformation and failure modes of these structures are strongly dependent on 

the role of the joints. This approach is, therefore, as already mentioned, well 

suited for collapse analysis and may thus provide support for studies of safety 

assessment, for example of historical stone masonry structures under 

earthquakes. It has been recently applied by Guiffrè et al (1994) for the design 

of masonry walls.

The representation of the interfaces between blocks relies on sets of point 

contacts. Adjacent blocks can touch along a common edge segment or at 

discrete points where a corner meets an edge or another corner.

Figure 3.2  Joints elements vs. “point contacts”.

Different types of contacts can be handled, depending on the initial 

geometry and on the displacement history during the analysis, [30]. Typically, 

the general types of contacts are:

- face-to-face (FF)

- edge-to-face (EF)
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- vertex-to-face (VF)

- edge-to-edge (EE)

- vertex-to-edge (VE)

- vertex-to-vertex (VV)

Figure 3.3  Different types of contacts.

All of them can be represented by sets of point contacts of two elementary 

types: VF and EE (see Fig. 3.3).

At each contact, the mechanical interaction is represented by a force, 

resolved into a normal and a shear component. Contact displacements are 

defined as the relative displacements between two blocks at the contact point. 

In the elastic range, contact force and displacements are related through the 

contact stiffness parameters (normal and shear).

The discrete element techniques allow describing the masonry constitutive 

behaviour if an accurate stress-strain relationship is employed for each 

constituent material, which is, then, discretized individually and by taking in 

account the necessary parameters to define the contact mechanical behaviour; 
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since the contact forces are thought to follow a classical Mohr–Coulomb 

criterion, the following parameters must be assigned:

- kn: normal stiffness

- ks: shear stiffness

- Nt: tensile strength

- f: friction angle

- m: dilatancy angle

- c: cohesion

This numerical approach concurs to investigate, numerically, some 

distinctive aspects of masonry which are closely related to the behaviour of its 

micro-constituents and its geometry (bond patterns, thickness of joints), such as 

anisotropy in the inelastic range and the post peak softening, [44]. In particular, 

since masonry is analyzed as an assembly of blocks connected each other by 

interfaces, such numerical technique also yields the investigation of the 

interactions between the single constituents. In order to do this, frictional 

properties and appropriate constitutive laws of interfaces are often included in 

the numerical models. Hence, this approach is able to provide a realistic and 

rigorous analysis in which the exact joint positions are considered.

Several attempts have been made to categorise, in the framework of the 

discrete models, the computational approaches for structural masonry, where 

its inherent discontinuous nature (unit, joints, interface) need to be recognized. 

Perhaps, the most appropriate categorization comes from the “Delft School”, 

[9], [38], where the following principal modelling strategies are identified:
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Figure 3.4 Modelling strategies

a) Detailed micro-modelling: units and joint are represented by continuous 

elements, whereas unit/mortar interfaces are modelled by discontinuous 

elements.

b) Simplified micro-modelling: “geometrically expanded” continuum units, 

with discontinuum elements covering the behaviour of both mortar 

joints and interfaces.

It has to be underlined that a three-dimensional micro-modelling analysis 

of a masonry panel involving only a very simple geometry would require a 

large number of elements in order to enable accurate modelling of each joint 

and masonry unit.

Hence, the Micro-modelling approaches appears to be too onerous for the 

analysis of single masonry walls and, in practice, not feasible for the analysis 

of structures with a large number of masonry panels. However, to overcome 

this computational difficulty, a different way of tackling the problem is often 

considered: the Macro-modelling approach, in which masonry is modelled by 

an equivalent continuous material, as shown in the following section.

a b



Chapter III - Mechanics of masonry structures: experimental, numerical  
 and  theoretical approaches proposed in literature  154

  

3.3 Continuous Models

The accuracy of the discrete approaches, described in the previous section, 

is much higher than of the continuous ones, because they are able to yield a 

detailed investigation of the microscopic problem. Even though they show this 

advantage, according to what it has been already underlined, they also show the 

disadvantage to be too expensive in terms of computational costs and, 

moreover, the corresponding high number of degrees limits the applicability, 

[45]. So, whole buildings are almost impossible to simulate by means of such 

micro-models. 

On the contrary, in the framework of numerical modelling and according to 

the traditional continuous finite element theory, masonry can also be analyzed 

like a continuum homogeneous media which, by taking in account the block 

and the mortar properties in its constitutive law, is able to represent the 

mechanical behaviour of the discrete and composite starting material.

This approach is called, in literature, Macro-modelling approach. The 

macro-modelling assumes that the homogeneous equivalent material is 

discretized with a finite element mesh which does not copy the wall organism, 

but obeys the method’s own criteria. 

 Figure 3.5 Modelling strategies

c
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c) Macro-modelling: all the three constituents of structural masonry are 

represented by an equivalent continuum

The here considered macro-models don’t make distinction between blocks 

and mortar joints but they smear the effect of joint presence through the 

formulation of the constitutive modelling of the fictitious equivalent material.

Such a constitutive model has to reproduce an average mechanical behaviour of

masonry. This assumption bypasses the physical characteristics of the problem. 

Hence, obviously, these models can not be as accurate as micro-models can 

be, nevertheless their main advantages are:

- the enormous reduction of the computational cost, that makes 

possible the numerical analyses of complex structures such as 

bridges and even buildings, cathedrals, castles and so on, and 

- the capability to investigate the global response of the masonry 

structures without the computing effort needed in the micro-

modelling.

The use of a discretization technique based on continuous models implies 

the previous definition of a carefully tuned constitutive characterization of the 

equivalent continuous material, which depends on the analysis of masonry 

micro-structure and averages the macroscopic mechanical behaviour of the 

structural masonry. To this aim, two different ways have been considered: 

- Phenomenological and experimental approaches 

- Homogenization Theory based approaches 

In the following subsections, major details are given on this topic by starting 

from the description of first approach. This latter provides valuable information 

used to establish, via phenomenological considerations or via experimental 

testing, empirically and semi-empirically based methodologies for the design of 
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masonry structures. However, such an approach finds its limits in the 

dependence of the results by the conditions in which the data are obtained.

3.3.1 Phenomenological and experimental approaches

Some continuous models which have been proposed for masonry are based 

on phenomenological laws. In phenomenological analysis, the constitutive 

response of the masonry is determined by experimental tests, [57]. One of the 

most adopted phenomenological constitutive law for masonry is the so-called 

“no-tension material”. According to this model, the masonry is schematized as 

a homogeneous elastic material which cannot support tensile stresses.

This prevalent feature that distinguishes masonry structures and makes them 

dissimilar from actual concrete and steel structures was first introduced 

explicitly by Heyman in 1966, [31], [32]. He proved, after a number of 

practical studies carried on with special reference to monumental buildings, 

that proneness to disease or collapse is much more dependent on the activation 

of cracking mechanisms than on the probability of crushing in compression of 

masonry. He also proved, on the contrary, that localised fractures do not 

usually affect the performance of the skeleton, as can be observed in many 

existing masonry buildings. In other words, fractures should be considered as a 

physiological feature of the masonry material, unless they are so large as to 

compromise the local resistance of the material elements, or so well organised 

that a collapse mechanism may be activated.

The logical conclusion was that the material model should include 

fracturing as an intrinsic pattern for the stress-strain relationships. Moreover, 

the structural model should be sensitive to the presence of collapse mechanisms 

in the neighbourhood of the actual equilibrium configuration.
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Some authors have tried to develop a formal theoretical framework for such 

phenomena, just based on the assumption that the material model, that is 

intended to be an "analogue" of real masonry, cannot resist tensile stress, but 

behaves elastically (indefinitely) under pure compression, [7], [6], [19], [14], 

[66], [20]. 

It is noted that these conditions give a well-defined specification of the 

admissible domain for stresses, but allow complete freedom for the path of 

fracture growth. This means that, in building up the stress-strain relationships 

for inelastic deformation (fractures, in this case), one is free to include the most 

appropriate assumptions. Hence, one deals with Standard NRT (Not-Resisting-

Tension) material or with Non-standard NRT material, depending on the 

circumstance that the material is assumed to fracture according to a pattern 

similar to the Drucker's postulate, or not. 

In the NNRT (Non-Standard NRT) case, one can imagine even more 

patterns.

In the framework of such no-tension structures, with reference to the danger 

of their collapse, a special extension of Limit Analysis has been developed in 

literature allowing to formulate basic theorems quite analogous to the 

kinematical and static theorems of classical Limit Analysis, thus giving the 

possibility to establish effective procedures to assess structural safety versus 

the collapse limit state, [6], [14]. Special problems, such as the non-existence in 

highly depressed arches of collapse mechanisms involving exclusively 

unilateral hinges, have been identified, and attention has been drawn on the 

necessity to include the eventuality that sliding mechanisms occur between 

stones by inadequate friction. More in general, an analysis of the class of 

structural problems with unilateral constitutive relations has been employed by 

formulating a general model and by proving its consistency. The authors of this 
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analysis, moreover, have exposed two iterative methods for the numerical 

solution of this class of problems, [61]. 

However, as regards the masonry, the basic assumption to study via 

phenomenological approach this kind of structures, we underline again, is that 

no-tension stress fields are selected by the masonry through the activation of an 

additional inelastic strain field, i.e. the fractures. Hence, the stress-strain 

relationship for NRT materials is of the form:

 e f f= + = +SE E E T E  (3.3.1-1)

or in the inverse one:

 ( )f e= − =C CT E E E  (3.3.1-2)

where:

=S compliance tensor 

=C  stiffness tensor 

Since in a NRT solid, the equilibrium against external loads is required to 

be satisfied by admissible stress fields, which imply pure compression 

everywhere in the solid, and by assuming stability of the material in the 

Drucker’s sense, compatibility of the strain field can be ensured, indeed, by 

superposing to the elastic strain field an additional fracture field, that does not 

admit contraction in any point and along any direction.

This means that the stress tensor T in equation (3.3.1-1) must be negative 

semi-definite everywhere in the solid, while the fracture strain field fE is 

required to be positive semi-definite.

In other words, it has to be verified:

0
0

faf
a

a

positive
semi definite a r

negative
≥ − → ∀ ∈ 
≤ 

EE
TT

 (3.3.1-3)

where:
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ar = the set of directions through the generic point in the solid

a = one of such directions

f =E the tensile fracture inelastic strain that is assumed to superpose to the 

elastic one eE , in order to anneal tensile stresses, if possible.

Solution stress and strain fields obtained by the authors are proven to satisfy 

classical variational principles, like the minimum principles of Complementary 

and Total Energy functionals, respectively on the compatibility and equilibrium 

side, [6]. Moreover, the solution paths are based on constrained optimisation of 

the energetic functionals, also enhancing some peculiar features that distinguish 

structural patterns from each other.

For ulterior details on this kind of approach, the reader is referred to the 

existing literature in such framework, [6], [7]. 

3.3.2 Homogenization theory based approaches

In this second subsection, the homogenization theory based approaches are 

described. They regard the masonry as a heterogeneous biphasic medium, 

consisting in units (brick or stones) and mortar joints, from which a

homogeneous equivalent material is obtained, by using homogenization 

techniques. With this task, they provide an analytical definition of the average 

mechanical properties of structural masonry.

However, it has to be underlined that, in this framework, the most of 

homogenization techniques proposed in literature adopt the hypothesis of 

“periodic-structure” for masonry. This leads to assume units, head and bed 

mortar joints of equal dimensions and elastic properties. Moreover, these 

components must be arranged in a periodic pattern. Nevertheless, this 

hypothesis can be accepted for new structures only. The periodic approach, 
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indeed, is surely incorrect for a very large number of existing masonry 

structures, which vice versa have a great cultural and social interest such as in 

restoring historical buildings. So, in order to apply the homogenization theory 

to old masonry, which are characterized by chaotic or semi-periodic patterns, a 

different approach is necessary, [13].

In the chapters 1 and 2, it has been highlighted that the study of composite 

materials is, in general, referred to the analysis of an RVE that represents, 

statistically, the microstructure of such materials. Well, in the case of a periodic 

composite material, like masonry one, the homogenization techniques are 

based on the identification of a particular RVE, which is able to generate the 

whole examined structure through opportune translations. This kind of RVE is 

defined, in literature, the masonry periodic cell or the masonry basic cell.

However, given the complex geometry of the basic cell, a close-form 

solution of the homogenization problem seems to be impossible, which leads, 

basically, to three different lines of action.

The first one is to handle the brickwork structure of masonry by considering 

the salient features of the discontinuum within the framework of a Cosserat 

continuum theory, e.g. Muhlhaus (1993), [46]. Particular attention is given to 

the interface problem. This approach is considered a very elegant solution, but 

nevertheless very complex both from a mathematical point of view and from 

the point of view of the development of a systematic methodology for the 

homogenized properties identification. Hence, the step towards the real 

application of such an approach is still to be done.

The second one aims at substituting the complex geometry of the basic cell 

with a simplified microstructure geometry so that a close-form solution of the 

homogenized problem can be possible. This approach is, in literature, well 

known as engineering approach. Keeping in mind the objective of performing a 
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non-linear analysis at the structural level, Geymonat [27], Pande et al. [58], 

Maier et al. [40] and Pietruszczak and Niu, [60], introduced homogenization 

techniques in such approximate manner. In spite of the fact that these 

simplified approaches present some limits in the solution accuracy, as it will be 

illustrated in the follows, they are used by several authors and, nevertheless, 

perform satisfactorily in the case of linear elastic analysis. In non-linear field, 

on the contrary, they lead to unacceptable results.

The third one, e.g. Anthoine, [5] and Urbanski et al. [65], is to apply 

rigorously the homogenization theory for periodic media to the basic cell in a 

sole step. Because of the complexity of the exact geometry of the basic cell, it 

becomes necessary to find the solution problem by using an approximate and 

numerical method such as the finite element method. Since the complete 

determination of the homogenized constitutive law requires an infinite number 

of computations, in a nonlinear range, the theory has been used to determine 

the macro-parameters of masonry and not, actually, to carry out analysis at the 

structural level.

3.3.2.a A homogenization approach by Pietruszczak & Niu

These authors have proposed a mathematical formulation for describing the 

average mechanical properties of a periodic structural masonry, [60]. 

The object of such approach is to present an alternative solution method to 

the discrete one that becomes quite impractical in the context of large-scale 

masonry buildings.

The conceptual approach is based on the framework already outlined by 

Pietruszczak (1991) which regards a representative volume element of 

structural masonry as a composite medium consisting of the brick matrix 
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intercepted by the sets of head and bed joints. Thus, the presence of discrete 

sets of mortar joints results in a strong directional dependence of the average 

mechanical properties. The estimation of them is the main interest of the 

authors.

Therefore, let us consider a typical element of structural masonry, i.e. a 

brick panel, as shown schematically in the following figure:

 

Figure 3.6 Geometry of a structural masonry panel

Let it be subjected to a uniformly distributed load. On the macroscale, the 

panel is regarded, as already mentioned, as a two-phase composite: brick units 

interspersed by two orthogonal sets of joints filled with mortar.

In order to describe the average mechanical properties of the system, the 

authors propose a simplified homogenization procedure, consisting in 

addressing the influence of head and bed joints separately, i.e. in invoking the 

concept of a superimposed medium. It is worth to notice that a homogenization 

process which is performed in several steps (in this case two steps) leads to 
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results depending on the sequence of steps chosen. Moreover, it doesn’t take 

into consideration the geometrical arrangement of the masonry: two different 

bond patterns yield the same results, [27]. This leads to results that are 

unacceptable in non-linear range.

With reference to the following figure, it has been considered first a 

medium (1), consisting in the brick matrix with a family of head joints. The 

head joints are treated as aligned, uniformly dispersed weak inclusions 

embodied in the matrix. In particular, they are considered in the form of 

monotonically aligned rectangular parallelepipeds. 

 Figure 3.7 Medium (1)

The average properties of the medium (1) can be represented by a 

constitutive relation, as:

 ( ) ( ) ( ) =  
& &1 1 1T C E   (3.3.2.a-1)

where the volume average of stress rate ( )& 1T in the medium (1) is considered 

in vectorial form, as given by:

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1 1 1
11 22 33 12 13 23, , , , ,

T
σ σ σ σ σ σ=& & & & & & &1T  (3.3.2.a-2)
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Homogenized medium

Bed joints

and so also for the volume average of strain rate ( )& 1E in the medium (1):

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1 1 1
11 22 33 12 13 23, , , , ,

T
ε ε ε ε ε ε=& & & & & & &1E  (3.3.2.a-3)

while ( ) 
 

1C is the volume average of 6x6 stiffness matrix in the medium (1).

In particular, if both bricks and head joints are isotropic, then the 

homogenized medium (1) can be regarded as an orthotropic elastic-brittle 

material. In such a case, the components of ( ) 
 

1C can be estimated from 

Eshelby’s (1957) solution to an ellipsoidal inclusion problem combined with 

Mori-Tanaka’s (1973) mean-field theory, [60].

The whole masonry panel can now be represented by a homogenized 

medium (1), stratified by a family of bed joints, considered as a medium (2). It 

is shown in the following figure:

Figure 3.8 Medium (2): medium (1) intercepted by bed joints
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The bed joints are regarded as continuous plane of weakness. In other 

words, they run continuously through the panel and form the weakest link in 

the microstructure of the system. In particular, the bed joints are considered as 

an elasto-plastic medium, (2), with mechanical properties defined by:

 ( ) ( ) ( )2 2 =  
& &2T C E  (3.3.2.a-4)

By assuming that both constituents (1) and (2) exist simultaneously and are 

perfectly bonded, the overall stress and strain rate averages, &T and &E , can be 

derived from the averaging rule (Hill, 1963):

 ( ) ( )
1 2f f= +& & &1 2E E E   (3.3.2.a-5)

 ( ) ( )
1 2f f= +& & &1 2T T T  (3.3.2.a-6)

where 1f and 2f are the volume fractions of both constituents, defined as:

 1 2;h tf f
h t h t

= =
+ +

 (3.3.2.a-7)

and where h and t represent the spacing and the thickness of bed joints, 

respectively.

The assumption of perfect bonding between the constituents and the 

equilibrium requirements provides additional kinematics and static constraints, 

given by:

 ( ) ( )* *   =   
& &1 2E Eδ δ  (3.3.2.a-8)

 [ ] ( ) [ ] ( )=& &1 2T Tδ δ  (3.3.2.a-9)

where:
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 [ ]*

1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 ; 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1

   
     = =     
      

δ δ  (3.3.2.a-10)

The constraints (3.3.2.a-8) and (3.3.2.a-9), as applied averages, are rigorous 

provided that t h= . 

It is evident that the field equations listed above, (3.3.2.a-1), (3.3.2.a-4), 

(3.3.2.a-5) and (3.3.2.a-6), together with the constraints (3.3.2.a-8) and 

(3.3.2.a-9), provide a set of 30 equations for 30 unknowns, e.g. &T , ( )& 1T , ( )& 2T , 

( )& 1E and ( )& 2E . Thus the problem is mathematically determinate. Moreover, it 

can be noticed that the number of unknowns can be reduced by introducing 

certain simplifying assumptions pertaining to the kinematics of bed joints. For 

example, the formulation can be employed by expressing the local deformation 

field in bed joints in terms of velocity discontinuities rather than strain rates 
( )& 2E , thereby reducing the number of unknowns to 27.

In order to solve a so-posed problem and, so, provide an explicit form of the 

average constitutive relation, it is convenient to introduce the following 

identity:

[ ] ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( )* ; 1,2i      = = + =      
& & & &δ δ δ δi i i i i i i

1 2T C E F E F E  (3.3.2.a-11)

where:

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

21 23 25 22 24 26

41 43 45 42 44 46

61 63 65 62 64 66

;

i i i i i i

i i i i i i

i i i i i i

C C C C C C

C C C C C C

C C C C C C

   
   

   = =         
      

i i
1 2F F  (3.3.2.a-12)

By using the equations (3.3.2.a-11) and the (3.3.2.a-8), the static constraint 

(3.3.2.a-9) can now be expressed in the following form:
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( ) ( ) [ ] ( ) ( ) ( ) [ ] ( )* *          + = +          
& & & &δ δ δ δ1 1 1 2 2 2

1 2 1 2F E F E F E F E  (3.3.2.a-13)

By means of the representation (3.3.2.a-13) and the decomposition 

(3.3.2.a-5), the strain rates in both constituents can be uniquely related to &E . 

Therefore, in view of the cinematic constraints (3.3.2.a-8), the set of equations 

(3.3.2.a-5) reduces to:

[ ] ( ) [ ] [ ] ( )1

2 2

1 f-
f f

=& & &2 1E E Eδ δ δ  (3.3.2.a-14)

Substitution of the equation (3.3.2.a-14) in the (3.3.2.a-13), after some 

simple algebra, results in:

 [ ] ( ) [ ]=& &1E Eδ M  (3.3.2.a-15)

where:

[ ] ( ) ( ) ( ) [ ] ( ) ( )( )
1

*1

2 2

1f
f f

−
              = + + −                

1 2 2 2 1
2 2 2 1 1F F F F Fδ δM  (3.3.2.a-16)

Thus, in view of equation (3.3.2.a-5), the following relationship is obtained:

( )
1 =  

& &1E EM  (3.3.2.a-17)

where:

11 12 13 14 15 16

1
21 22 23 24 25 26

31 32 33 34 35 36

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 
 
 
 

  =   
 
 
 
  

M M M M M M

M M M M M M

M M M M M M

M  (3.3.2.a-18)

and the components of [ ]M are defined by the equation (3.3.2.a-16).
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The strain rates in bed joints can be expressed in a similar functional form 

to that of equation (3.3.2.a-17). Indeed, after substituting the equation 

(3.3.2.a-17) in (3.3.2.a-5), one obtains:

 ( )
2 =  

& &2E EM   (3.3.2.a-19)

where:

[ ] 1
2 1

2 2

1 f
f f

 
   = −    

 
M MI   (3.3.2.a-20)

and [ ]I represents the unit matrix (6x6).

Finally, the overall stress rate averages &T remains to be determined. It can 

be obtained from equation (3.3.2.a-6). Indeed, the substitution of the equations 

(3.3.2.a-17) and (3.3.2.a-19) in (3.3.2.a-6), results in:

( ) ( ) [ ]( ){ }1 2
1 1 1 1f f      = + −      

& &T C C EM MI  (3.3.2.a-21)

Since the following relation:

  =  
& &T C E  (3.3.2.a-22)

represents the average constitutive relation for the entire composite system, it is 

obtained that:

( ) ( ) [ ]( ){ }1 2
1 1 1 1f f        = + −        C C CM MI  (3.3.2.a-23)

As expected, the macroscopic behaviour depends on the mechanical 

properties of both constituents and their volume fractions. In the follows, the 

average elastic properties of the masonry are established in detail.

By remembering, indeed, the assumed hypothesis of orthotropic behaviour 

of the medium (1), the constitutive matrix of the equation (3.3.2.a-1) assumes 

the form:
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

1 1 1
11 12 13

1 1 1
12 22 23

1 1 1
1 13 23 33

1
44

1
55

1
66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 
   =   
 
 
 
  

C  (3.3.2.a-24)

The nine independent elastic constants are functions of the properties of 

both constituents (brick and head joints) as well as the cross-sectional aspect 

ration and the volume fraction of the inclusions.

The authors use the results reported by Zhao and Weng (1990) for the 

estimation of the average elastic properties of the medium (1) considered in 

equation (3.3.2.a-24). These latter authors have identified the average elastic 

constants of an orthotropic composite reinforced with aligned elliptic cylinders.

The estimates, as already mentioned, are based on Eshelby’s solution to the 

ellipsoidal inclusion problem combined with Mori-Tanaka’s mean field theory, 

in order to deal with the finite concentration of inclusions. For the algebraic 

expressions of such elastic constants the reader is referred to the original 

publication, [60].

By considering now that the bed joints are isotropic, the constitutive matrix 

of the equation (3.3.2.a-4) assumes the form:



Chapter III - Mechanics of masonry structures: experimental, numerical  
 and  theoretical approaches proposed in literature  170

  

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( ) ( ) ( )

2 2 2
11 12 12

2 2 2
12 11 12

2 2 2
2 2 212 12 11

44 11 122
44

2
44

2
44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C C C

C

C

C

 
 
 
 
   = = −  
 
 
 
  

2C  (3.3.2.a-25)

Thus, given the representations (3.3.2.a-24) and (3.3.2.a-25), the matrices 

( )
1

iF 
  and ( )

2
iF 

  defined in the equation (3.3.2.a-12) reduce to:

 

( )

( ) ( )

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )

2212 23

44

66

1112 12

44

44

0 00
0 0 0 ; 0 0
0 0 0 0 0

0 00
0 0 0 ; 0 0
0 0 0 0 0

11 1

1

1

22 2

2

2

CC C
C

C

CC C
C

C

  
     = =         
    
  
     = =         
    

1 1
1 2

2 2
1 2

F F

F F

 (3.3.2.a-26)

The substitution of the (3.3.2.a-26) in the equation (3.3.2.a-16) yields, after 

some algebraic manipulations:

[ ]

( ) ( )( ) ( ) ( ) ( )( )

( )

( )

2 1 2 12
12 12 12 2311

2

2
44

2

2
44

2

1 0 0 0

10 0 0 0 0

10 0 0 0 0

C C C CC
a f a a

C
f b

C
f c

 − −
 
 
 
 = 
 
 
 
  

M  (3.3.2.a-27)

where:
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 ( ) ( ) ( ) ( ) ( )1 1 2 1 221 1 1
22 11 44 44 66 44

2 2 2

; ;f f fa C C b C C c C C
f f f

= + = + = +  (3.3.2.a-28)

Thus, by means of the definitions (3.3.2.a-24), (3.3.2.a-25) and (3.3.2.a-27), 

the components of the macroscopic constitutive matrix can be determined by 

means of the equation (3.3.2.a-23). So, the composite masonry panel is an 

orthotropic body (on a macro-scale) with a stiffness matrix   C whose nine 

components are defined as it follows:

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( )

22 1
1 12 121 2

11 1 11 2 11 22
1 21 21

22 1122 11
1 22

22 1
1 12 231 2

33 1 33 2 11 44
1 2 21 21

44 11 1222 11
1 22

1 2 2
55 1 55 2 11 12 66

1 2 2
66 11 12

1 2

1
12 1 12 2 12

1; ;1 1

1; ;1 1

1; ;1 1

f C C
C f C f C Cf C CC C

f ff

f C C
C f C f C Cf C C CC C

f ff

C f C f C C C
C C C

f f

C f C f C

−
= + − =

++

−
= + − =

+ −+

= + − =
+ −

= + ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

2 1 2 1
1 12 12 11 222

1 21
22 11

2

2 1 2 1
1 12 12 12 231 2

13 1 13 2 13
1 21

22 11
2

2 1 2 1
1 12 23 11 221 2

23 1 23 2 12
1 21

22 11
2

;

;

;

f C C C C
fC C
f

f C C C C
C f C f C fC C

f

f C C C C
C f C f C fC C

f

− −
−

+

− −
= + −

+

− −
= + −

+

 (3.3.2.a-29)
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3.3.2.b Homogenization theory for periodic media by 
Anthoine

In this paragraph, it will be exposed the homogenization theory for periodic 

masonry proposed by A. Anthoine, [5].

Hence, the starting step is to choice the basic cell, which, together with the 

associated frame of reference, depends strongly on the geometry of the 

considered composite material. Therefore, typical “masonry like” patterns are 

analyzed and, consequently, appropriate basic cell are chosen.

For example, they can are, here, exposed some basic cells, proposed by the 

author, for different, simple and complex, masonry patterns, [5].

FLEMISH BONDDUTCH BOND

1/3 RUNNING BONDENGLISH BOND

Figure 3.9  Basic cell and frame of reference for more complex bond patterns.
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In particular, it can be said that, for two-dimensional periodic media, i.e. for 

three-dimensional media under the plane stress or plane strain assumption, the 

periodicity of the arrangement may be characterized by a plane frame of 

reference ( )1 2,v v , where 1v and 2v are two independent vectors having the 

following property: 

- the mechanical characteristics of the media are invariant along any 

translation 1 1 2 2m m+v v , where 1m and 2m are integers, as it is shown in 

the following figure.

e1

2

-v2 -v21v

1-2v2v2 22v -v1

12v
v2

1v
v1 2+v

e

Figure 3.10  Two-dimensional running bond  masonry (plane stress) and 
frame of reference

As a consequence, it is enough to define the mechanical properties of the 

media in the domain S of the basic cell. In particular, the following properties 

can be considered: 

-  for a given frame of reference ( )1 2,v v , all the possible associated cells have 

the same area S , where:
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 1 2S = ∧v v  (3.3.2.b-1)

- the boundary Sδ of a cell S can always be divided into two or three pairs 

of identical sides corresponding to each other through a translation along 

1v , 2v or 1 2−v v (two such sides will be said opposite), as it is shown in 

the following figure 3.11.

Figure 3.11  Two different cells associated to the same frame of reference and 
having, respectively, two and three pairs of opposite sides.

However, it is worth to underline that neither the frame of reference, nor the 

cell, are uniquely defined: the same cell, S, leads to different masonry patterns 

when associated to different frames of reference; and so also, for a given frame 

of reference more cells can be used, but it is worth choosing that one with the 

least area and, if possible, with symmetry properties. Such minimum cells and 

associated frames of reference will be called basic cell.
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1v
-v2

v2

v1

d l

hv

v

1

2

x

In literature, a distinction is often made between rectangular and hexagonal 

patterns: the formers admit an orthogonal basic frame, whereas the latter ones

do not; so, the first ones can be seen as particular cases of the second ones.

In particular, the more common masonry patterns are analyzed by the 

author, [5]: stack bond or running bond. In this case, she proposes a cell, made 

up of one brick surrounded by half mortar joint, as a “good” basic cell, as 

shown in the following figure 3.12.

Figure 3.12  Frame of reference, basic cell and opposite sides for common 
masonry patterns: d=0 for stack bond; d=l for running bond.

The reference frame is then composed by the vectors 1v and 2v that satisfy 

the following relations:
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 1 1

2 1 2

2
2

l
d h

=
= +

v e
v e e

 (3.3.2.b-2)

where:

2l = the length of the brick plus the thickness of the head joint 

2h = the height of the brick plus the thickness of the bed joint 

d = the overlapping 

So, according to the above shown figure, the different frames that can be 

determined in function of the variation of the parameter d yields to different 

bond patterns. In fact, it is:

0d = ⇒ stack bond pattern

d l= ⇒ running bond pattern

2
3

d l= ⇒ another kind of running bond pattern, and so on…

The first two bond patterns are here considered.

The boundary Sδ of the chosen cell is, so, composed of three pairs of 

opposite sides, if 0d ≠ (running bond pattern), or of two pairs of opposite 

sides, if 0d = (stack bond pattern). In particular:

0d ≠ ⇒ the opposite sides are the vertical ones, the upper left with the 

lower right, the upper right with the lower left.

0d = ⇒ the opposite sides are the parallel sides of the rectangle according 

to the definition of the opposite sides, given before.

Once it is established the appropriate basic cell, the homogenization 

procedure can be performed.

Here, the author proposes a different approach to the homogenization 

problem for periodic continuum media that aims to overcome the limits of the 
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simplified homogenization techniques, previously described. Indeed, several 

limits can be adduced to these approximate procedures:

• a homogenization process which is performed in several steps, by 

introducing the head joints and the bed ones in different times, leads to 

results depending on the order of the successive steps. Moreover, it

doesn’t take into consideration the geometrical arrangement of the 

masonry: two different bond patterns yield the same results, [27].

• a homogenization procedure which is itself approximated (for example, 

self-consistent method in [60]) or based on a simplified geometrical 

arrangement of the media (mortar joints being treated as interfaces or 

ellipsoidal inclusions,[60]) leads to results that are unacceptable in 

non-linear range.

• another approximation lies in the fact that the finite thickness of 

masonry has never been taken into account: the masonry has always 

been considered or infinitely thin, in the sense of a two-dimensional 

media under the plane stress assumption, [58], [40], or infinitely thick, 

in the sense of a three-dimensional bulk [60], [58].

The idea of the homogenization procedure by Anthoine is that one to derive 

the in-plane characteristics of masonry through a rigorous application of the 

homogenization theory for periodic media, i.e. by performing a procedure that 

is in one-step and on the exact geometry, according, therefore, to the actual 

bond pattern of the masonry and, when considering the three-dimensional 

media, to its finite thickness. So, first, an appropriate cell and frame of 

reference are chosen. Here, it will be illustrated the case of two-dimensional 

media.

So, let us consider a masonry specimen Ω , subjected to a macroscopically 

homogeneous plane stress state 0T .
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A stress state is said to be globally (or macroscopically) homogeneous over 

the domain Ω if all the included basic cells within Ω undergo the same 

loading conditions. Really, there always is an approximation in the fact that the 

perturbations near the boundary δ Ω imply that the more external cells of the 

specimen are not subjected to the same loading conditions as those ones lying 

in the centre. This difficulty is overcome according to the Saint-Venant 

principle: cells lying far enough from the boundary are subjected to the same 

loading conditions and so they also show the same deformation. In particular, 

two joined cells must still fit together in their common deformed state.

In mechanical terms, this yields that:

1. the stress vector has to be continuous when passing from a cell to the 

next one. Since passing from a cell to the next one that is identical is 

the same thing that passing from a side to the opposite one in the same 

cell, this condition can be written in the form:

the vectors are opposite on opposite sides of SδΤ n  (3.3.2.b-3)

because the external normal n are opposite. Such a stress field T is said to be 

periodic on Sδ , while the external normal n and the stress vector Tn are said 

to be anti-periodic on Sδ .

2. strains are compatible, i.e. neither separation nor overlapping occurs. 

In order to satisfy the compatibility, the displacement fields on the two 

opposite sides must be equal up to a rigid displacement. Such a strain 

field E is said to be periodic on Sδ . So, in the case of the stack bond 

pattern, shown in the figure 3.13, this condition can be written in the 

form:

[ ] ( ) ( )
[ ] ( ) ( )

2 2 2 2 1

1 1 1 1 2

, , , ,

, , , ,

x h h l x l x Rx

x l l x h x h Sx

∀ ∈ − − − = −

∀ ∈ − − − =

u u U e

u u V + e
 (3.3.2.b-4)
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where:

and =U V translation vectors

R and S = rotation constants

Figure 3.13  Displacement fields for a rectangular cell

Since each corner of the cell belongs both to the vertical and the horizontal 

side and since it must undergo the same displacement, the equation (3.3.2.b-4)

has to be compatible when written for the extreme values of 1x and 2x :

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1

2 1

1 2

1 2

, ,

, ,

, ,

, ,

x h l h l h Rh

x h l h l h Rh

x l l h l h + Sl

x l l h l h - Sl

= ⇒ − − = −

= − ⇒ − − − − =

= ⇒ − − =

= − ⇒ − − − − =

u u U e

u u U + e

u u V e

u u V e

  (3.3.2.b-5)

The relations (3.3.2.b-5) can be ensured only if R and S are zero constants.

What has been written for the stack bond pattern can be reformulated for the 

running bond pattern, shown in the following figure 3.14:
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Figure 3.14  Displacement fields for a parallelogram cell

Now, the reference basic cell is a parallelogram cell; so the system 

(3.3.2.b-4) changes to:

 
[ ]

[ ]

2 2 2
2 2 2 2 1 2

1 1 1 1 2

, , , ,
2 2 2

, , , ,
2 2

lx lx lxx h h l x l x R x
h h h

l lx l l x h x h Sx

     ∀ ∈ − + − − + = − +     
     

   ∀ ∈ − + − − + − =   
   

u u U e e

u u V + e
 (3.3.2.b-6)

Analogously, displacements at corners are consistent only if R and S are 

zero constants.

Taking into consideration the zero values of R and S, the systems (3.3.2.b-4)

and (3.3.2.b-6) assume the form:

[ ]

[ ]

2 2
2 2 2

1 1 1

, , , ,
2 2

, , , ,
2 2

dx dxx h h l x l x
h h

d dx l l x h x h

   ∀ ∈ − + − − + =   
   

   ∀ ∈ − + − − + − =   
   

u u U

u u V
 (3.3.2.b-7)

where:

d = the overlapping
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Such a displacement field u is said strain-periodic because it leads to a 

periodic strain field.

A so done displacement field u may always be written in the following 

form:

 
( ) ( )

( ) ( )
1 2 1 2

1 2 1 2

, 1 2, , ,

, ,

por u x x E x u x x

x x + x x

αβα β αα β∀ = = + ⇔

⇔ = pu Ex u
 (3.3.2.b-8)

where:

Eαβ = constants
p =u periodic displacement field, in the sense that it assumes equal values on 

the opposite sides of Sδ .

By the equation (3.3.2.b-8), it can be obtained that:

 ( ) ( )1 2 1 2, ,P x x x x -u = u Ex  (3.3.2.b-9)

By comparing the equation (3.3.2.b-8) with the equation (3.3.2.b-7), it is 

deduced that:

 
( )
( )

11 1

21 2

12 1 1

22 2 2

2

2

2 2

2 2

E U l

E U l

E V U d l h

E V U d l h

=

=

= −

= −

 (3.3.2.b-10)

From the relations (3.3.2.b-10), it can be noted that, for example, the 

component 11E represents the mean elongation of the cell along the 1x axis 

and, so, E can be considered as the mean strain tensor of the cell. It can be 

demonstrated by considering the definition of the average of the strain 

components in the domain of the basic cell. Therefore, it is:
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 ( ) ( )1

S

ds
S

αβ αβε ε= ∫u u   (3.3.2.b-11)

where:

( )αβε =u the average value, marked by the symbol , of the generic strain 

component αβε . 

,α β =  1, 2

S =  the area of the basic cell

Since, the generic strain component, obtained as the symmetric part of the 

gradient of u , is given by the following expression:

 ( ) ( ), , 2p pE u E uαβ βααβ α β β αε = + + +u  (3.3.2.b-12)

and for the assumed symmetry of E (only the symmetric part of it is 

considered, being the anti-symmetric part of it correspondent to a rigid rotation 

of the cell and being the rigid displacements disregarded), it is:

( ) ( ), , 2p pE u uαβαβ α β β αε = + +u  (3.3.2.b-13)

the relation (3.3.2.b-11) becomes:

( ) ( ) ( ), ,
1 1

2 2
p p p p

S S

E u u ds E u n u n dl
S S

αβ αβαβ α β β α α β β α
δ

ε = + + = + +∫ ∫u (3.3.2.b-14)

Since pu is a periodic vector fields and n is an anti-periodic one on Sδ , 

the product pu nα β represents an anti-periodic scalar field on Sδ . Thus, in the 

(3.3.2.b-14), the integral in Sδ is equal to zero because the assumed values on 

the opposite sides cancel each other. This means that:
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 ( ) Eαβαβε =u   (3.3.2.b-15)

and, as it was above mentioned, E turns out to coincide with the average of 

( )uΕ on the cell.

By substituting the (3.3.2.b-15) into the (3.3.2.b-9), it is obtained:

( ) ( ) ( )1 2 1 2, ,P x x x x - ⋅u = u u xΕ  (3.3.2.b-16)

At this point, it can be stated that, if T is periodic and u is strain-periodic 

on the boundary Sδ of the cell, it is possible to study the problem within the 

single cell rather than on the whole specimen. If the specimen is subjected to 

the macroscopically homogeneous stress state 0T , above defined, such a posed 

problem to solve is:

( )

0

1

0
( )

div on S
periodic on S anti periodic on S

f

periodic on S

−

=
=

∂ − ∂

=

− ⋅ ∂

T T
T

T Tn
E T

u xΕ

 (3.3.2.b-17)

where:

 
1

S

ds
S

= ∫T T  (3.3.2.b-18)

with:

=T the average value of the stress tensor in the domain of the basic cell

In particular, in this prescribed stress problem (the macroscopically 

homogeneous stress state 0T is the assigned data of the problem), no body 

forces are considered and the constitutive law f is a periodic function of the 
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spatial variable x that describes the mechanical behaviour of the different 

materials in the composite cell.

Naturally, the same problem can be considered as a prescribed strain one; 

such a similar problem is written in the following form:

( )

0

0

0
( )

periodic on S
f

div on S
periodic on S anti periodic on S

=
− ⋅ ∂

=

=
∂ − ∂

E
u E x
T E

T
T Tn

Ε

 (3.3.2.b-19)

where the assigned data of the problem is the macroscopically homogeneous 

strain state 0E , and analogously to the equation (3.3.2.b-18) it is:

 
1

S

ds
S

= ∫E E  (3.3.2.b-20)

By passing, first, through a “localization” problem that concurs to determine 

the local (microscopic) fields T , u and E from the global (macroscopic) 

field 0T or 0E , the unknown macroscopic fields T and E are then evaluated.

In particular, in the case of stress prescribed problem, they will be obtained 

0=T T and E according to the equation (3.3.2.b-20); dually, in the case of 

strain prescribed problem they will be obtained T according to the equation 

(3.3.2.b-18) and 0=E E .

At this point, the global (macroscopic) constitutive law of the composite 

material, that is the 0 0−T E relationship, can be built by repeating the above 

described procedure for different values of 0T and 0E .
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Such a procedure is said homogenization process because the actual 

composite specimen, subjected to the prescribed macroscopically homogeneous 

loading, can be, now, substituted with a fictitious homogenized material 

obeying to the found global constitutive law without changing its mechanical 

macroscopic answer.

This result has a remarkable importance since, while the discretization of 

the original composite masonry structure is prohibitive, the discretization of the 

same structure, subjected to the same loads but replaced by the homogeneous 

material, is more advantageous.

It has again to be underlined, however, that the homogenization theory is 

applied only under the assumption that the loading conditions are equal (or 

enough similar) for adjacent basic cells. This happens if two cases are possible:

1. or the size of the basic cell is quite small when compared with the size 

of the structure, so that, at a structural scale, two adjacent cells have 

almost the same position and, therefore, the same loading.

2. or the basic cell is “not so small” when compared with the size of the 

structure, but the macroscopic stresses induced by the structural loads 

don’t vary (or vary slowly) within the structure.

It is worth to state that, in presence of concentrated loads and boundary 

conditions, high gradients or even singularities can be generated in the 

macroscopic stress field. In these cases, also very small adjacent cells can 

undergo to different load conditions, so local analyses in such critical regions 

have to be performed on the original composite material.

If the two constituents of the masonry basic cell are considered linear elastic 

and perfectly bonded, the two “localization” problems, the prescribed stress 

one shown in the (3.3.2.b-17) and the prescribed strain one shown in the 

(3.3.2.b-19), can be rewritten in the respectively following forms:
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( ) 1

1

0

:
( )

:

div on S

periodic on S anti periodic on S

periodic on S

−

−

=

=

∂ − ∂

− ⋅ ∂

=

0T
E u T
T Tn

u T x

T T

C :

C :
 (3.3.2.b-21)

where:

( )1 :− = =T uΕC : the average value of the strain tensor in the basic cell

and
1− = =C S= the known elastic compliance tensor of the constituents in plane 

stress.

For the prescribed strain problem:

( )( )
( )

( ) ( )
( )0

0

:

:

: ( : )

div on S

periodic on S anti periodicon S

periodic on S

=

=

∂ ⋅ − ∂

− ⋅ ∂

=

0E u

T E u

E u E u n

u E u x

EΕ

C
C

C C  (3.3.2.b-22)

where:

=C the known elastic stiffness tensor of the constituents in plane stress.

The problem (3.3.2.b-22) may be rewritten in terms of pu .

In order to make it, let us to consider the equation (3.3.2.b-13), that in a 

tensorial form becomes:

 ( ) ( )p= +E u E E u  (3.3.2.b-23)

Therefore, by substituting the (3.3.2.b-23) in the (3.3.2.b-22), it is obtained:
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( ) ( )( )
( )( )

( )( ) ( )( )

0

: :

:

: ( : )

p

p

p p

p

div div on S

periodicon S anti periodicon S

periodic on S

+ =

= +

+ ∂ + ⋅ − ∂

∂

=

0E E u

T E E u

E E u E E u n

u

EΕ

C C

C

C C  (3.3.2.b-24)

When the boundary of the basic cell is constituted by the same material in 

each its point and when the two constituents of the cell are homogeneous 

materials, and so, the stiffness tensor C is constant on each component, the 

third condition in the (3.3.2.b-24), ( )( )( : p+ ⋅E E u nC is anti-periodic on 

Sδ , reduces to ( )( )( : p ⋅E u nC . The solution of such a posed problem is a 

periodic displacement field that yields a periodic stress field on Sδ and is in 

equilibrium with the concentrated body forces f , induced at the interfaces I  

by the uniform average strain tensor E :

( ) ( ): :m bdiv δ= = − ⋅f E E nC C C I  (3.3.2.b-25)

where:
m =C stiffness tensor, in plane stress, of the mortar
b =C stiffness tensor, in plane stress, of the brick

n =  the normal oriented from the brick to the mortar (see figure 3.15)

δ =I the Dirac distribution on the interface I (see figure 3.15)
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Figure 3.15  Body forces concentrated at the interface of the constituents 
(brick and mortar).

For the linearity of problems (3.3.2.b-21) and (3.3.2.b-24), the superposition 

principle (S.P.) can be considered valid.

Therefore, both for the prescribed stress problem and the prescribed strain 

problem, the given symmetric second-order tensors, respectively 0T and 0E

are assigned as linear combination of three elementary tensors αβI , where α

and β belong to the range [ ]1, 2 .

In particular, for the problem (3.3.2.b-21), if αβT is the elementary solution 

obtained for 0
αβ=T I , then for 0 0T αβ αβ=T I , the solution is:

 0Tαβ αβ=T T  (3.3.2.b-26)

This solution can be rewritten in the following form:

 0=T TB   (3.3.2.b-27)

where:

=B a fourth-order tensor, called the tensor of stress concentration, because it 

gives the local stress field T in terms of the average stress field 0T . 

Finally, the average value of the strain state E is given by:

 -1 -1 -1 -1
0 0: : : : : : := = = = =E E T T T TC C B C B C B  (3.3.2.b-28)
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So, it may be deduced that:

 

1 1 :

:

or

− −=

=

C C B

S S B
 (3.3.2.b-29)

where:
1−

= =C S the macroscopic (homogenized) tensor of elastic compliances of the 

equivalent (homogeneous) two-dimensional plane stress material.

Analogously, for the problem (3.3.2.b-22), if αβu is the elementary solution 

obtained for 0
αβ=E I , then for 0 0Eαβ αβ=E I , the solution is:

 0Eαβ αβ=u u  (3.3.2.b-30)

and the local strain field is given by the following relation:

( ) ( ) ( )0 0 0E E Eαβ αβ αβ αβ αβ αβ= = =E u E u E u E  (3.3.2.b-31)

where:

( )αβ αβ= =E E u the local strain field obtained for the elementary solution 

when 0
αβ=E I

The equation (3.3.2.b-31) can be rewritten in the following form:

 0=E EA  (3.3.2.b-32)

where:

=A a fourth-order tensor, called the tensor of strain localization, because it 

gives the local strain field E in terms of the average strain field 0E . 

Finally, the average value of the stress state T is given by:

0 0: : : : : : := = = = =T T E E E EC C A C A C A (3.3.2.b-33)

So, it may be deduced that:
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  :=C C A  (3.3.2.b-34)

where:

=C the macroscopic (homogenized) tensor of elastic stiffness of the 

equivalent (homogeneous) two-dimensional plane stress material.

All what has been said for the two-dimensional (plane stress) periodic 

masonry may be generalized to the case of the three-dimensional periodic 

masonry, having two or three directions of periodicity, where its actual finite 

thickness is taken into account. Because this problem is out of our interest, for 

more details on such topic, the reader is referred to the proposed procedure in 

literature by A. Anthoine, [5].

It, however, appears quite interesting to illustrate, here, the main results and 

considerations that the author obtains from her numerical analysis, in linear 

elasticity, on bi-dimensional and three-dimensional masonry specimens. In 

both cases, comparisons are done between her proposed formulation and the 

other simplified approaches, existing in literature. Some of these ones have 

already mentioned, at the start of this section.

In particular, they may be divided in two groups: the two-dimensional 

approaches and the three-dimensional ones. The formers, in order of increasing 

approximation and decreasing complexity, are:

- the method proposed by Maier et al (1991); the homogenization 

approach is performed in three steps for running bond masonry patterns 

and in two steps for stack bond masonry patterns.

- the method proposed by Pande et al (1989); the homogenization 

approach is performed in two steps, head joints being introduced first.

- a variant of the Pande method; the homogenization approach is yet 

performed in two steps, but the steps are inverted: bed joints are 
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introduced first. In the case of stack bond patterns, this method is 

equivalent to Maiers’ one.

- The multi-layer approximation proposed by Maier et al (1991); the 

head joints are disregarded and, therefore, the masonry is considered as 

composed of alternating layers of mortar (bed joints) and brick. The 

homogenization approach is so performed in one step.

The latter ones, again in order of increasing approximation and decreasing 

complexity, are:

- the method proposed by Pande et al (1989)

- the inverse of it

- the multi-layer approximation

The methods belonging to both two groups, differently from the formulation 

proposed by Anthoine, don’t need finite element calculations, but, for their 

simplicity, they can be implemented analytically.

In the follows, in Table 3.1 and in Table 3.2 are summarized the direct 

comparisons, about the macroscopic properties, between the different methods, 

respectively for the two-dimensional methods and for the three-dimensional 

ones:
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Table 3.1 Elastic constants of the homogenized material; two-dimensional 
methods.

Table 3.2 Elastic constants of the homogenized material; three-dimensional 
methods.

TWO- DIMENSIONAL
HOMOGENIZATION

E1(MPa) E2(MPa) n12 G12(MPa)

Stack bond 8530 6790 0.196 2580

Running bond 8620 6770 0.200 2620

Running bond in three steps 
(Maier et al., 1991)

9208 6680 0.2045 2569

Running or stack bond in 
two steps, head joints first
(Pande et al., 1989)

8464 6831 0.2182 2569

Running or stack bond in 
two steps, bed joints first
(“Pande inverted” or 
“Maier” for stack bond)

8587 6768 0.1948 2569

Multi-layer 
(Maier et al., 1991)

9646 6950 0.2077 2782

TWO- DIMENSIONAL
HOMOGENIZATION

E1(MPa) E2(MPa) n12 G12(MPa)

Stack bond 8600 7000 0.200 2580

Running bond 8680 6980 0.204 2620

Running or stack bond in 
two steps, head joints first
(Pande et al., 1989)

8566 7066 0.1974 2569

Running or stack bond in 
two steps, bed joints first
(“Pande inverted”)

8676 7006 0.1995 2569

Multi-layer 9647 7198 0.2098 2782
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All the results are presented in terms of four material elastic coefficients, 1E , 

2E , 12ν and 12G . 

From the Table 3.1, the first two rows obtained with the Anthoine’s 

formulation yield that the different bond pattern, stack bond or running bond, 

has very little influence (less than 1% difference) on the homogenized elastic 

properties. This influence is, however, stronger on the local displacements and 

stress fields, [5]. Moreover, yet from the Table 3.1, it can be noted that the 

other four simplified methods lead to quite acceptable results. The less accurate 

is the multi-layer approach (the simplest one) where the homogenized elastic 

coefficients are overestimated. This was logical, since head joints are 

substituted by a stiffer material (the brick). The more elaborated approach 

(homogenization in three steps, Maier et al (1991)), instead, doesn’t reveal 

itself the more accurate.

The Table 3.2, substantially, suggests the same considerations as deduced 

by Table 1, about the global elastic behaviour of masonry, as obtained through 

the different methods. 

It is interesting to underline that, for a given bond pattern and for a given 

method, the two-dimensional approach always gives lower values of the elastic 

constants than the three-dimensional one. This fact is quite obvious, since the 

plane stress assumption neglects the thickness of the wall, by weakening it. In 

spite of this consideration, the two- and the three-dimensional approaches yield 

quite similar results on the homogenized elastic coefficients (less than 4% 

difference).

However, strong differences can be, instead, pointed out in the local stress 

fields. In particular, this fact is not relative to the in-plane components 

( )11 12 22, ,σ σ σ , but to the out-of-plane ones ( )13 23 33, ,σ σ σ , which are, by 
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definition, equal to zero in the two-dimensional approach. For this reason, even 

if the homogenized elastic constants are only slightly modified in the two 

approaches, it is worth to consider this strong difference in a non-linear 

analysis: by neglecting the stress component 33σ in the two-dimensional 

method, some failure situations may be not encountered.

It is, therefore, most probable that the conclusions drawn in the elastic 

range, in the two-dimensional approaches, are wrong in a non-linear range. In 

fact:

- the plane assumptions may lead to quantitatively wrong results 

(under-estimation of the ultimate load) and to qualitatively wrong 

results (erroneous failure mechanism)

- the bond pattern may strongly influence the failure mechanism and 

consequently the failure load; for example, in the stack bond 

masonry the cracks may develop easily in the aligned head joints, 

while in the running bond masonry they need to pass through or 

around the brick.

Of course, if a non-linear analysis has to be performed, the problems 

(3.3.2.b-21) and (3.3.2.b-22) have to be solved for a macroscopic loading 

history and with damage or plasticity constitutive laws. Since the superposition 

principle doesn’t apply anymore, the complete determination of the constitutive 

law requires an infinite number of computations. The reader is referred to 

Suquet (1987).

3.3.2.c A homogenization procedure by A. Zucchini - P.B. 
Lourenco

In the framework of the third homogenization approach shown in the 

previous paragraph, an interesting analysis has been employed by the authors



 Chapter III - Mechanics of masonry structures: experimental, numerical  
195   and  theoretical approaches proposed in literature     

A. Zucchini and P.B. Lourenco, [67]. They have proposed a new micro-

mechanical model. By taking in account the actual deformations of the basic 

cell of a periodic masonry arrangement, this micro-mechanical model includes 

additional internal deformation modes which are neglected in the standard two-

step homogenization procedure, which is based on the assumption of 

continuous perpendicular head joints. The authors show that these mechanisms, 

which result from the staggered alignment of the bricks in the composite, are 

important for the medium global response and for reducing the maximum 

errors in the calculation of the homogenized elastic moduli when large 

difference in mortar and brick stiffness are expected. Indeed, one of the goals 

of this approach is constituted just by the overcoming the limitations presented 

in the standard two-step homogenization technique, often known in literature as 

simplified homogenization approach that, we remember, are:

o Large errors which occurred if great differences of stiffness 

between unit and mortar are presented. For the cases in which non-

linear analysis is employed, and where the ratio stiffness of unit 

(brick) on stiffness of mortar becomes larger (>10), this simplified 

approach leads to non-acceptable errors.

o The standard two-step homogenization technique does not take 

into account the pattern of units and mortar joints (running bond 

and stretcher bond lead to the same result).

o The results depend on the order in which the two steps are 

executed.

In particular, the analysis is employed for a single leaf masonry wall, with 

typical periodic arrangement in stretcher bond and the hypothesis of linear 

elastic-brittle behaviour is assumed, so that the S.P. may be used until the 

collapse. The unit-mortar interface is not considered in the model. On the 
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contrary, the full three-dimensional behaviour is examined and the attention is, 

finally, given to a comparison between the results from a detailed finite 

element analysis (FEM) and the proposed micro-mechanical homogenization 

model, in order to demonstrate the efficiency of the proposed solution, [67].

Hence, such a micro-mechanical model is obtained by extracting a basic 

periodic cell, which can rebuild the whole structure by making opportune 

translations of it, as shown in figure below.

Figure 3.16 Definition of masonry axes and of chosen micro-
mechanical model

It has been chosen a right-oriented x-y-z Cartesian coordinate system and 

the following components for the basic cell are considered:

- Head joint (2)

- Unit (b)

- Cross joint (3)

- Bed joint (1)

The following figure shows, in detail, the geometry of the basic cell, with 

the definition of its dimensions and of adopted symbols.

Homogenized cellbasic cell (R.V.E.)

y

xz
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2

3

b 2

b

1 3

Figure 3.17 Adopted basic cell and geometric parameters

The assumed hypothesis of linear elasticity concurs to the possibility to 

study the elastic response of the model for a generic loading condition as linear 

combination of the elastic responses to six elementary loading conditions: three 

cases of normal stresses and three cases of simple shear (prescribed stress 

homogenization).

For each of these cases, and – as a consequence – for each constituent of 

the cell, suitably chosen components of the stress and strain tensors are 

assumed to be of relevance for the stress-strain state of the basic cell. In 

particular, such choose derives by observing the basic cell deformations, which 

are calculated, previously, with a finite element analysis under the same 

loading conditions. In the figure 3.18 are reported the deformed configurations 

resulting from the FEM analysis, [67].
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Figure 3.18 (a) finite element mesh, (b) deformation for compression in 
x-direction, (c) deformation for shear xy, (d) deformation 
for shear xz

As an example, therefore, in the case of uniform normal stress in x

direction, the assumed deformation mechanism and, as a consequence, the 

chosen stress components are shown in the figure below.



 Chapter III - Mechanics of masonry structures: experimental, numerical  
199   and  theoretical approaches proposed in literature     

Figure 3.19  Normal stress loading in x-direction

Analogously, for the case of uniform normal stress in y direction, the 

assumed deformation mechanism and, as a consequence, the chosen stress 

components are shown in figure below.
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Figure 3.20  Normal stress loading in y-direction

In a so-posed elastic problem, the number of unknowns is larger than in a

usual homogenization procedure, since the second-order effects are considered 

by taking in account, as already mentioned, the additional deformation 

mechanisms, given by:



 Chapter III - Mechanics of masonry structures: experimental, numerical  
201   and  theoretical approaches proposed in literature     

• Vertical normal stress 1
yyσ , in the bed joint, when the basic cell is 

loaded with in-plane shear 0
xyσ .

• In-plane shear 1
xyσ , in the bed joint, when the basic cell is loaded 

with a horizontal in-plane normal stress 0
xxσ .

• Out-of-plane shear 1
yzσ , in the bed joint, when the basic cell is loaded 

with an out-of-plane shear stress 0
xzσ .

In order to define uniquely the unknown internal stresses and strains of 

each component, a set of equilibrium, compatibility and constitutive equations, 

for each loading case, has to be imposed, as it follows. Brick, bed joint, head 

joint and cross joint variables will be indicated respectively by the superscripts 

b, 1, 2 and 3. The mean value of the normal stress xxσ and the normal strain 

xxε in the unit will be indicated, respectively, by b
xxσ and b

xxε . The prescribed 

uniform normal (macro) stresses on the faces of the homogenized basic cell in 

the x-, y- and z-direction will be indicated, respectively, by 0
xxσ , 0

yyσ and 0
zzσ .

- Uniform normal stress loading case in x, y or z direction.

No other stresses, except 0
xxσ , 0

yyσ and 0
zzσ , are applied on the boundary of 

the basic cell. In this case, all shear stresses and strains for each component are 

neglected, except the in-the-plane shear stress and strain ( ),xy xyσ ε in the bed 

joint and in the brick, as illustrated in the above figure 3.19. We remember that 

the shear strain component, 1
xyε , is one of the deformation mechanisms here 

considered and, instead, neglected by the standard two step homogenization 

procedure, since depending on the geometrical arrangement of the bricks in the 
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masonry pattern.  Furthermore, the non-zero stresses and strains are assumed to 

be constant in each basic cell constituent, except the normal stress b
xxσ in the 

brick, which must be a linear function of x in order to account for the presence 

of the shear stress component b
xyσ . The latter, moreover, requires the 

introduction of a couple for the momentum equilibrium of one-fourth of the 

brick in the basic cell (see figure 3.19) which derives from the neighbouring cell 

along y-axis. The symmetric brick quarter of the cell above, indeed, reacts at the 

centre line of the brick with a couple due to a self-equilibrating vertical stress 

distribution, b
yyσ , which is neglected in the model. This is shown in the 

following figure 3.21.

Figure 3.21 Normal stress loading in x-direction: unit equilibrium (couple 
moment equal to self-equilibrating vertical stress distribution).
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Is has to be underlined, yet, that, in order to assure the brick equilibrium, 

the shear stress b
xyσ has to be a linear function of y and, in order to assure the 

bed joint equilibrium, a shear stress 1
xyσ has to be introduced also for the left 

and right sides of such joint.

Under these hypotheses, the following equilibrium equations, at internal or 

boundary interfaces, can be written:

Ø Limit equilibrium equation at internal interface brick-head joint

 2 1

2
b

xx xx xy
l t

h
σ σ σ

−
= −  (3.3.2.c-1)

where:
b
xxσ = average value of the normal stress in the brick. It is given by:

  
1 2

2

b b
b xx xx
xx

σ σ
σ

+
=  (3.3.2.c-2)

with:
1b

xxσ = the normal stress in the left side of the brick

2b
xxσ = the normal stress in the right side of the brick

For the equilibrium of the brick, moreover, the following relation has to be 

verified:

 ( )1 1 2b b
xx xy xxh l t hσ σ σ+ − =  (3.3.2.c-3)

where the authors assume that the shear acts only on the bed-brick interface 

( )l t− . Hence, some equilibrium conditions at the interfaces are not satisfied.

From the (3.3.2.c-2) and (3.3.2.c-3), it is obtained that:

 1 1

2
b b
xx xx xy

l t
h

σ σ σ
−

= −  (3.3.2.c-4)

and:
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 2 1

2
b b
xx xx xy

l t
h

σ σ σ
−

= +  (3.3.2.c-5)

which have been used in the equation (3.3.2.c-1).

Ø Limit equilibrium equation at internal interface brick-bed joint

 1b
yy yyσ σ=  (3.3.2.c-6)

Ø Limit equilibrium equation at right boundary

( )2 3 1 02 2
2

b
xx xx xx xy xx

l th t h h t
h

σ σ σ σ σ
− + + + = + 

 
 (3.3.2.c-7)

Ø Limit equilibrium equation at upper boundary

 ( )2 0b
yy yy yyl t l tσ σ σ+ = +   (3.3.2.c-8)

Ø Limit equilibrium equation at front boundary

( ) ( )2 1 2 3 02 2 2 4 2 2 2b
zz zz zz zz zzth l t t lh t th l t t lhσ σ σ σ σ+ − + + = + + +    (3.3.2.c-9)

Analogously, the following compatibility equations can be written:

Ø Compatibility equation at upper boundary
1 2 32 2b
yy yy yy yyt h h tε ε ε ε+ = +  (3.3.2.c-10)

Ø Compatibility equation at right boundary

( )2 3 12b
xx xx xx xxt l t l tε ε ε ε+ = + −  (3.3.2.c-11)

Ø Compatibility equation at front boundary

 1b
zz zzε ε=   (3.3.2.c-12)

Ø Compatibility equation at front boundary

 2b
zz zzε ε=  (3.3.2.c-13)

In the above equations, the unknown stresses and strains in the cross joint 

can be eliminated by means of the following relations:
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2
3 2

3

1
3 1

3

3
3 1

1

yy yy

xx xx

zz zz

E
E
E
E
E
E

ε ε

ε ε

σ σ

=

=

=

  (3.3.2.c-14)

 3 1
xx xxσ σ=  (3.3.2.c-15)

The equations (3.3.2.c-14) assume that the cross joint behaves as a spring 

connected in series with the bed joint in the x-direction, connected in series 

with the head joint in the y-direction and connected in parallel with the bed 

joint in the z-direction. The equation (3.3.2.c-15) represents the equilibrium at 

the cross-bed joint interface. It can be noted that the stress-strain state in the 

cross joint does not play a major role in the problem, because of its usually 

small volume ratio, [67].

By coupling with the nine linear elastic stress-strain relations in the brick, 

head joint and bed joint the above considered equilibrium and compatibility 

equations, a linear system of 18 equations comes out. In particular, the 

constitutive equations assume the following form:

Ø Constitutive linear elastic equations

( )

( )

( )

1

1 ,1, 2

1

k k k k
xx xx k yy zzk

k k k k
yy yy k xx zzk

k k k k
zz zz k xx yyk

E

k b
E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

 = − + 

 = − + = 

 = − + 

 (3.3.2.c-16)
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In this linear system, the unknowns are the six normal stresses and strains of 

each of the three components (brick, head joint and bed joint) and the shear 

stress and strain in the bed joint, for a total of 20 unknowns.

Therefore, two additional equations are necessary to solve the problem. 

These ones can be derived introducing the shear deformation of the bed joint: 

the elastic mismatch between the normal x strains in the brick and in the head 

joint is responsible for the shear in the bed joint because of the staggered 

alignment of the bricks in the masonry wall. This mechanism, shown in the 

following figure, leads to the approximated relation:

Ø Compatibility equation
2 2 2

1 21
2 2 4 4

b b
b xx xx xx xx

xy
x x t t

t t
ε ε ε ε

ε
∆ − ∆ − −

= = ;  (3.3.2.c-17)

which is valid in the hypothesis that the bed joint does not slip on the brick and 

the b
xxε is assumed linear in x-direction. In particular, it would be verified that:

( )2 1

2
b b
xx xx xy b

l t
hE

ε ε σ
−

= +  (3.3.2.c-18)

but, usually, the second term in the right-hand side can be neglected.

Another one additional equation is the elastic stress-strain relation: 

Ø Constitutive linear elastic equation

 1 1 12xy xyGσ ε=  (3.3.2.c-19)

Hence, a linear system of 20 equations and 20 variables is finally obtained. 

Since a symbolic solution, nevertheless obtained, was too complex for the 

practical purposes, the linear system has been solved numerically. So, the 

internal stresses and strains are obtained for uniaxial load in the i-direction, 

given by: 
0 01, 0 , , ,ii ij i j i j x y zσ σ= = → ≠ =  (3.3.2.c-20)
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Once the unknowns are found, the shear stress in the brick can be obtained 

by means of the internal equilibrium equation:

0
bb b
xyxx xz

x y z
σσ σ∂∂ ∂

+ + =
∂ ∂ ∂

 (3.3.2.c-21)

which leads to:

 1 1b
xy xy

y
h

σ σ  = − 
 

  (3.3.2.c-22)

At this point, the homogenized Young’s moduli and Poisson’s coefficient of 

the basic cell are, finally, obtained by forcing the macro-deformation of the 

model and of the homogenized material to be the same, meaning that both 

systems must contain the same strain energy.

By assuming an orthotropic behaviour, the Young’s moduli and the 

Poisson’s coefficients are given by:

 
0

, , , , ,
H
jjii

i ijH H
ii ii

E i j x y z
εσ

ν
ε ε

= = =  (3.3.2.c-23)

where:
H
iiε = homogenized strain, obtained for a prescribed stress case.

In particular, it is obtained that:

 
( )

1 3
1

2 2 3

2

2

H
xx xx

b
yy yyH

yy

H b
zz zz

l t t E E
l t

h t E E h
l t

ε ε

ε ε
ε

ε ε

− +
=

+
+ +

=
+

=

  (3.3.2.c-24)

The procedure for determining the homogenized shear moduli is analogous 

to the previous one.
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- In-plane shear modulus Gxy

No other stresses, except 0
xyσ , are applied on the boundary of the basic cell. 

In this case, all stresses and strains are neglected, except the in-the-plane shear 

stress and strain ( ),xy xyσ ε in each basic cell component, and the normal stress 

and strain components 1
yyσ and 1

yyε in the bed joint. We remember that this 

latter is one of the strain components here considered and, instead, neglected by 

the standard two step homogenization procedure. Furthermore, the non-zero 

stresses and strains are assumed to be constant in each basic cell constituent, 

except the shear stress b
xyσ in the brick, which must be a linear function of x in 

order to account for the presence of the normal stress component 1
yyσ in bed 

joint. The deformation of the basic cell is approximated in the following figure.

Figure 3.22 Model assumptions for xy shear

Under these hypotheses, the following equilibrium equations, at internal or 

boundary interfaces, can be written: 

Ø Limit equilibrium equation at upper boundary
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 ( )2 0b
xy xy xyt l t lσ σ σ+ = +  (3.3.2.c-25)

Ø Limit equilibrium equation at internal interface brick-head joints

 2 1

2
b

xy xy yy
l
h

σ σ σ= +  (3.3.2.c-26)

Ø Limit equilibrium equation at internal interface brick-bed joints

 1b
xy xyσ σ=  (3.3.2.c-27)

where:
b
xyσ = the mean value of b

xyσ in the brick

The normal strain 1
yyε is derived from geometric considerations on the 

deformation mechanism illustrated in the figure 3.22 where all the geometric 

quantities can be defined. So, neglecting the second-order terms, it is 

straightforward to obtain:

( )1 22 ' 2 ,
2 2 2 2

b
yy xy xy

y t l yt t y y
t t t l

ε ε ε
∆ + ∆− ∆ ∆

≅ ≅ − = +  (3.3.2.c-28)

This leads to:

Ø Compatibility equation

 1 2 b
yy xy xyε ε ε= −  (3.3.2.c-29)

By coupling with the four linear elastic stress-strain relations in the brick, 

head joint and bed joint the above considered equilibrium and compatibility 

equations, a linear system of 8 equations comes out. In particular, the 

constitutive equations assume the following form:

Ø Constitutive linear elastic equations

 ( )1 1 2b
yy xy xyEσ ε ε= −  (3.3.2.c-30)

 2 ,1, 2k k k
xy xyG k bσ ε= =  (3.3.2.c-31)
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In this linear system, the unknowns are the three shear stresses and strains 

of the three basic cell components (brick, head joint and bed joint) and the 

normal stress and strain, 1
yyσ and 1

yyε , in the bed joint, for a total of 8 

unknowns.

By solving the obtained linear system, the internal stresses and strains are 

found.

At this point, the homogenized shear modulus, xyG , of the basic cell is, 

finally, given by:

 ( )( )
( ) ( )( ) ( ) ( )

0

2

2 1

2
xy

xy H
xy

b

l t l t h
G

t l kt lh ttl t h t t l t l kt
k

G G G

σ
ε

+ +
= =

+ − −+ + + −
+ +

 (3.3.2.c-32)

where:
H
xyε = homogenized strain, obtained for a prescribed stress case and given by:

( ) ( )
2

2 1 21H b b
xy xy xy xy xy xy

h tl t t
h t l t l t

ε ε ε ε ε ε
 

= + + + − + + + 
 (3.3.2.c-33)

and k is defined as it follows, [67]:
1

2
1 1

2

4

4 1

b

b
b

lE hGk
l GlE hG E

l t G

+
=

 
+ + − +  

 (3.3.2.c-34)

In analogous manner, the other two homogenized shear moduli are 

determined.

- In-plane shear modulus Gxz

No other stresses, except 0
xzσ , are applied on the boundary of the basic cell. 

In this case, all stresses and strains are neglected, except the in-the-plane shear 
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stress and strain ( ),xz xzσ ε in each basic cell component, and the shear stress 

and strain components 1
yzσ and 1

yzε in the bed joint. We remember that this 

latter is one of the strain components here considered and, instead, neglected by 

the standard two step homogenization procedure. Furthermore, the non-zero 

stresses and strains are assumed to be constant in each basic cell constituent, 

except the shear stress b
xzσ , which must be a linear function of x in order to 

account for the presence of the shear stress component 1
yzσ in bed joint. The 

deformation of the basic cell is approximated in the following figure 3.23.

Figure 3.23 Model assumptions for xz shear

Under these hypotheses, the following equilibrium equations, at internal or 

boundary interfaces, can be written: 

Ø Limit equilibrium equation at right boundary

( ) ( )1 1 2 02 2
2

b
xz yz xz xz xz

l t
h t h t h

h
σ σ σ σ σ

− 
+ + + = + 

 
 (3.3.2.c-35)
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Ø Limit equilibrium equation at internal interface brick-head joints

 
( )2 1

2
b

xz xz yz

l t
h

σ σ σ
−

= −  (3.3.2.c-36)

Ø Compatibility equation at internal interface brick-bed joints

 1 b
xz xzε ε=  (3.3.2.c-37)

Moreover the shear strain 1
yzε is derived from geometric considerations on 

the deformation mechanism illustrated in the figure 3.23 where all the 

geometric quantities can be defined. So, it can be found to be verified the 

following compatibility equation, [67]:

Ø Compatibility equation

 ( )1 21
2

b
yz xz xzε ε ε= −  (3.3.2.c-38)

By coupling with the four linear elastic stress-strain relations in the brick, 

head joint and bed joint the above considered equilibrium and compatibility 

equations, a linear system of 8 equations comes out. In particular, the 

constitutive equations assume the following form:

Ø Constitutive linear elastic equations

 1 1 12yz yzGσ ε=  (3.3.2.c-39)

2 ,1,2k k k
xz xzG k bσ ε= =  (3.3.2.c-40)

In this linear system, the unknowns are the three shear stresses, xzσ , and 

strains, xzε , of the three basic cell components (brick, head joint and bed joint) 
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and the shear stress and strain, 1
yzσ and 1

yzε , in the bed joint, for a total of 8 

unknowns.

By solving the obtained linear system, the internal stresses and strains are 

found.

Hence, the homogenized shear modulus xzG of the basic cell is, finally, 

given by:

( ) ( )
( ) ( )

( )

10

1

2 1

2 4
4

b
xz

xz H b
xz

t l tG hG
G

hG l t G
t h t l

hG l t G

σ
ε

+ +
= =

 + −
+ + + − 

 (3.3.2.c-41)

where:
H
xzε = homogenized strain, obtained for a prescribed stress case and given by:

 
2 b

H xz xz
xz

t l
t l

ε ε
ε

+
=

+
 (3.3.2.c-42)

- In-plane shear modulus Gyz

No other stresses, except 0
yzσ , are applied on the boundary of the basic cell. 

In this case, all stresses and strains are neglected, except the in-the-plane shear 

stress and strain ( ),yz yzσ ε in each basic cell component, assumed to be 

constant everywhere. The deformation of the basic cell is approximated in the 

following figure.
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Figure 3.24 Model assumptions for yz shear

Under these hypotheses, the following equilibrium and compatibility 

equations, at internal or boundary interfaces, can be written: 

Ø Limit equilibrium equation at upper boundary

( )2 0b
yz yz yzt l t lσ σ σ+ = +  (3.3.2.c-43)

Ø Limit equilibrium equation at internal interface brick-bed joints

 1b
yz yzσ σ=  (3.3.2.c-44)

Ø Compatibility equation at internal interface brick-head joints

 2b
yz yzε ε=  (3.3.2.c-45)

By coupling with the three linear elastic stress-strain relations in the brick, 

head joint and bed joint the above considered equilibrium and compatibility 

equations, a linear system of 6 equations comes out. In particular, the 

constitutive equations assume the following form:
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Ø Constitutive linear elastic equations

2 ,1, 2k k k
yz yzG k bσ ε= =  (3.3.2.c-46)

In this linear system, the unknowns are the three shear stresses yzσ and the 

three shear strains yzε of the three basic cell components (brick, head joint and 

bed joint), for a total of 6 unknowns.

By solving the obtained linear system, the internal stresses and strains are 

found.

Hence, the homogenized shear modulus yzG of the basic cell is, finally, 

given by:
0 2

1
12

b
yz

yz H b
yz

t h lG tGG G
t l tG hG

σ
ε

+ +
= =

+ +
 (3.3.2.c-47)

where:
H
yzε = homogenized strain, obtained for a prescribed stress case and given by:

 
1 b
yz yzH

yz

t h
t h

ε ε
ε

+
=

+
 (3.3.2.c-48)

For more details, the reader is referred to [67].

However, we want to underline, here, the most results obtained from the 

authors. Their described model has been applied to a real masonry basic cell 

and compared with the results of the previous accurate FEM analysis. In the 

finite element analysis and the analytical model, the properties of the 

components have been taken absolutely equal.

The same elastic properties have been adopted for the bed joint, head joint 

and cross joint 1 2 3 1 2 3;m mE E E E ν ν ν ν= = = = = = . Different stiffness ratios 

between mortar and unit are considered. 
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This has allowed assessing the performance of the model for inelastic 

behaviour. In fact, non-linear behaviour is associated with (tangent) stiffness 

degradation and homogenisation of non-linear processes will result in large 

stiffness differences between the components. In the limit, the ratio between 

the stiffness of the different components is zero or infinity.

The material properties of the unit are kept constant, whereas the properties 

of the mortar are varied. In particular, for the unit, the Young’s modulus Eb is 

20 GPa and the Poisson’s ratio is 0.15. For the mortar, the Young’s modulus is 

varied to yield a ratio Eb/Em ranging from 1 to 1000 while the mortar 

Poisson’s ratio is kept constant to 0.15 and equal to that one of the unit.

The adopted range of Eb/Em is very large (up to 1000). Note that the ratio 

Eb/Em tends to infinity when softening of the mortar is complete and only the 

unit remains structurally active.

The elastic properties of the homogenised material, calculated by means of 

the proposed micro-mechanical model, are compared with the values obtained 

by FEM analysis, in the figures 3.25 and 3.26. 
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Figure 3.25 Comparison between the micro-mechanical model and FEA 
results for different stiffness ratios: (a) Young’s moduli, (b) 
Poisson’s ratio and (c) Shear moduli.

The agreement is very good in the entire considered range Eb/Em. In 

particular the figure 3.26 yields the relative error of the elastic parameters 

predicted by the proposed model and show that it is always less than 6%. 
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Figure 3.26 Comparison between the proposed micro-mechanical model 
and the simplified model

The thinner curves in Fig. 3.26 yield the results of a simplified model ( xE

only), which is derived from the model presented in the paper, [67], where the 

additional deformation mechanisms of the bed joint have not been taken into 

account. The simplified model, therefore, neglects the main effects due to the 

misalignment of the units in the masonry wall and coincides with the full 

model when the units are aligned in the wall. For this reason, such a simplified 

model appears closer to the standard two-step homogenisation techniques.
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The figure 3.26a also includes the results of the standard two-step 

homogenisation of Lourenco (1997), showing that it leads to non-acceptable 

errors up to 45% for the estimation of Young’s modulus xE in x-direction. 

Less pronounced differences are found in the estimation of young’s moduli in 

y- and z- directions, but they are not reported in the figure, see Lourenco 

(1997).

For large ratios Eb/Em the simplified model predicts value of xE , xzν and 

xzG much smaller than the actual values obtained by FEM analysis. The large 

and increasing errors of such model on these variables (up to 50%) indicate that 

for much degraded mortar the neglected deformation mechanisms of the bed 

joint contribute significantly to the overall basic cell behaviour.

In spite of the fact that Lourenco’s approach overcomes the limits of the 

standard two-steps homogenization, it is worth to notice that the proposed

homogenized model is obtained on a parametrization-based procedure 

depending on a specific benchmark FEM model (i.e. selected ratios between 

elastic coefficients and geometrical dimensions), so it shows a sensitivity to 

geometrical and mechanical ratios! 
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CHAPTER IV

Proposal of modified approaches: theoretical models

4.1 Introduction

In this chapter, some possible new procedures for modelling masonry 

structures, in linear-elastic field, are proposed, starting from the results of 

literature approaches.

In the previous chapter 3, a general account on such existing 

homogenization techniques has been shown. In particular, it has been 

underlined that they can be basically divided in two approaches. The first one 

employs an approximated homogenization process in different steps by 

obtaining, on the contrary, a close-form solution (for example, Pietruszczak & 

Niu, 1992). The second one employs a rigorous homogenization process in one 

step by obtaining, on the contrary, an approximated numerical solution (for 

example, Lourenco & al, 2002). Moreover, also the limits for each one of the 

two approaches have been highlighted in the chapter 3.
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Hence, the main object of this chapter is to obtain new homogenization 

techniques which are able to overcome the limits of the existing ones, in both 

approaches. More in detail, two procedures have been proposed: a simplified 

two-step homogenization (S.A.S. approach) and a rigorous one-step 

homogenization (Statically-consistent Lourenco approach).

4.2 Statically-consistent Lourenco approach

As first approach, a new proposal for the analysis of masonry structures is 

given, starting from some results already reached by A. Zucchini and P.B. 

Lourenco and mentioned in the previous chapter 3, [67]. In that work, the 

authors have employed a numerical strategy to analyze masonry walls, by using 

a propaedeutic micro-mechanical approach to determine constitutive properties. 

Hence, in the present section, by recalling Lourenco’s stress-prescribed

homogenization technique, a new rigorous one-step homogenization procedure 

is proposed. In particular, the overall material properties of the representative 

volume element (RVE) are determined as functions of both the elastic 

coefficients of the phases and the geometry of the arrangement, under the 

hypothesis of orthotropic behaviour. By developing a new modified 

constitutive model for masonries, it will be seen that the proposed approach 

leads to a statically-consistent solution for the elastic homogenization problem, 

but it doesn’t take into account for compatibility conditions at the constituent 

interfaces. However, by means of equilibrium considerations, a different stress 

distribution in each masonry component, which is more accurate than 

Lourenco’s one, is obtained. 

The micro-mechanical model used in the analysis is the same than the one 

considered by the authors. For clearness of exposition, it is shown again in the 

following figure:
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Figure 4.1 Definition of masonry axes and of chosen micro 
mechanical model

Such micro-mechanical model is obtained by extracting a basic periodic 

cell from single leaf masonry in stretcher bond.

It has been considered a right-oriented x-y-z Cartesian coordinate system 

and the following components for the basic cell are considered:

- Head joint (a)

- Unit (b)

- Cross joint (c)

- Bed joint (d)

and for the symmetry of the assembly, we also have:

- Cross joint (e)

- Unit (f)

- Head joint (g)

The following figure shows, in detail, the geometry of the basic cell, with 

the definition of the dimensions and of adopted symbols.

Homogenized cellbasic cell (R.V.E.)
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ba

c d e

f g

Figure 4.2 Adopted basic cell and geometric parameters

We have maintained the assumed hypothesis of linear elasticity so that it is 

possible to study, yet, the elastic response of the model for a generic loading 

condition as linear combination of the responses to six basic loading 

conditions: three cases of normal stresses and three cases of simple shear 

(prescribed stress homogenization).

For each of these cases, and – as a consequence – for each constituent of 

the cell, selected components of stress tensor are involved. In particular, it is 

done the hypothesis that the stresses vary as bi-linear functions upon the 

coordinates.

As an example, in the case of uniform normal stress both in x and in y 

directions, the assumed stress components are taken as shown in the figures 

below.
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Figure 4.3 Selected components of the stress tensor for prescribed-stress 
loading conditions
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For both these load conditions, a plane stress state is considered: all shear 

and normal stress components that involve z–direction are neglected and non-

zero stress components, , ,xx xy yyσ σ σ , are assumed bi-linear functions in x 

and y in each constituent of the cell. So, it can be written:
(p) (p) (p) (p) (p)
xx 0 1 2 3= A + A x + A y + A x yσ ⋅ ⋅ ⋅ ⋅  (4.2-1)

(p) (p) (p) (p) (p)
xy 0 1 2 3= B + B x + B y + B x yσ ⋅ ⋅ ⋅ ⋅  (4.2-2)

(p) (p) (p) (p) (p)
yy 0 1 2 3= C + C x + C y + C x yσ ⋅ ⋅ ⋅ ⋅  (4.2-3)

where the “p” index runs between “a” and “g” .

With these hypotheses, for these cases, the number of constants to 

determine is 84, which are 12 unknown constants for each component.

In order to define uniquely the above written functions, a set of equilibrium 

equations has to be imposed.

In particular, by fixing the origin of the right-oriented local x-y-z 

coordinate system, each time, in according to our convenience, for the single 

constituent of the cell, the following relations can be written:

- indefinite equilibrium equations, in absence of volume force:

{ }( ) 0p
ij i with i j x yσ = =, , ,    (4.2-4)

- limit equilibrium equations on the boundary of the basic cell, in weak 

form:
( ) ( )p p
ij i j

p p
e e

d t d pσ α
∂Ω ∂Ω

⋅ Ω = Ω ∀∫ ∫
( ) ( )

 (4.2-5)

with: 

p a b c e f g= , , , , ,

, ,i j x y=
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( )p
e∂Ω = the boundary faces of the generic p element.

iα = the components of the unit vector, normal to the boundary faces.

p
jt =( )  the uniform macro-stresses applied on boundary faces of the 

homogenized basic cell, for   the generic p element.

- equilibrium equations at the interfaces between the constituents:
( ) (q)p
ij i ij i

p p
i i

d dσ α σ α
∂Ω ∂Ω

⋅ Ω = ⋅ Ω∫ ∫
( ) ( )

 (4.2-6)

where “p” and “q” are two contact elements and where:
( )p
i∂Ω = the internal faces of the generic p element.

iα = components of the unit vector, normal to the internal surfaces.

Moreover, they are written local equilibrium equations for the unloaded 

boundary faces and global equilibrium equations, in a weak form, for 

translation and rotation of the whole basic cell:

- local equilibrium equations for the global cell, on the unloaded 

boundary faces:

0ij x y with i j x yσ = ∀ =, , ,  (4.2-7)

- weak equilibrium equations for translation and rotation of the whole 

basic cell:

 0ij dσ
∂Ω

Ω =∫  (4.2-8)

and:

 0ii j

k

x d kσ
∂Ω

Ω = ∀∫  (4.2-9)

where:
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4

1
k

k =

∂Ω = ∂Ω∑  (4.2-10)

with:

∂Ω = the boundary surface of the whole basic cell, obtained as the summation 

of four  boundary faces shown in the following figure 4.4.

Figure 4.4 Boundary surface of the basic cell

Finally, in order to satisfy the conditions of polar symmetry, the following 

equations are considered:

- polar-symmetry punctual conditions:

 ij ijσ σ= *( ) ( )P P  (4.2-11)

where *P is the polar-symmetric point of P, obtained fixing the origin of the 

right-oriented local x-y-z coordinate system in the centre of mass of the whole 

system.

Solving this system of linear equations in the unknown constants, the stress 

components, for each constituent of the basic cell, are obtained.

In particular, for the compression in x direction, it can be written:

 0p
xx xxσ σ= −( )  (4.2-12)

2∂Ω
g

3∂Ω
g

1∂Ω
g

4∂Ω
g
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 0p p
xy yyσ σ= =( ) ( )  (4.2-13)

where:
0
xxσ = the uniform normal macro-stress applied on the faces of the 

homogenized basic cell in x direction.

This result tells us that the sole non-zero stresses are constant in each basic 

cell component.

In analogous manner, for the compression in y direction, it is obtained:

 0p
yy yyσ σ= −( )  (4.2-14)

 0p p
xy xxσ σ= =( ) ( )  (4.2-15)

where:
0
yyσ = the uniform normal macro-stress applied on the faces of the 

homogenized basic cell in y direction.

Also in this case, non-zero stresses are everywhere constant.

In the last loading case, i.e. the basic cell loaded with a uniform normal 

stress, that one in z direction, the procedure is simplified, because of the a 

priori hypothesis that the sole stresses that can play a significant role are the z-

direction normal stresses.

So, in particular, it can be written:

 0p
zz zzσ σ= −( )   (4.2-16)

where:
0
zzσ = the uniform normal macro-stress applied on the faces of the 

homogenized basic cell in z direction.

All other stress components are neglected.
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At this point, known the stress functions, strain ones, in each component, 

can be derived by considering a linear elastic and isotropic stress-strain relation 

of all the components.

That means:

 

1

1

1

p p p p p
xx xx yy zzp

p p p p p
yy yy xx zzp

p p p p p
zz zz xx yyp

E

with p a b g
E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

 = − + 

 = − + = 

 = − + 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( )

( ) , , ....,

( )

 (4.2-17)

Here, in the follows, they are presented the values of the strains, induced by 

the different load conditions. Since in all the three load cases, the stress state is 

a mono-dimensional one and the non-zero stress component value is equal to 

the applied load, generalizing the results, it can be written:

 
0

0

2

p p
ijp

ij ij hhp pG E
σ ν

ε δ σ= −
( ) ( )

( )
( ) ( )  (4.2-18)

where:
( ) ( ) ( ), ,p p pG E ν = material properties of the single basic cell constituent. In 

particular, it is:
( )pG = Lamè modulus
( )pE = Young modulus

( )pν = Poisson modulus

For the average theorem, when boundary conditions are applied in terms of 

uniform stresses on the considered RVE (basic cell) and by naming with ijσ

the average value of stress in it, the following relation can be considered:
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 01
ij ij ij

V

dV
V

σ σ σ= =∫  (4.2-19)

according to what has been studied in the Chapter 1.

In the (4.2-19), V stands for the volume of the basic cell.

The average value of strain, ijε , instead, is defined as: 

1 1
p

g
p

ij ij ij
p aV V

dV dV
V V

ε ε ε
=

 
= =  

  
∑∫ ∫

( )

( )  (4.2-20)

where:
( )pV = the volume of the single basic cell constituent.

So, the properties of the homogenized cell can be determined through the 

following relation between the average values of stress and strain, by 

establishing, at the most, the hypothesis of an orthotropic behaviour. In detail, 

the components of fourth order homogenized tensor of compliances are found:

0
ij

ijhk ij hk
hk

S with i j x y zε
δ δ

σ
= =, , ,  (4.2-21)

where:

ijδ = components of Kronecker delta

This procedure concurs to find the inverse of homogenized Young’s moduli 

and the Poisson’s coefficients for the homogenized RVE.

An analogous procedure can be used to determine the homogenized shear 

moduli, as:

( ) ( ) 01 1 ij
ijhk ij hk

hk

S with i j h k x y zε
δ δ

σ
= − ⋅ − ⋅ =, , , , ,  (4.2-22)
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In this case, the analysis carried out in this paper has lead to the same results 

of those ones reached by Lourenco e Zucchini, [67]. For this reason, the 

procedure that we have employed for determining the homogenized shear 

moduli will be not shown here, but we only illustrate the obtained results.

In particular, the fourth order compliance tensor, so determined, assumes 

the following form:

1111 1122 1133

1122 2222 2233

1133 2233 3333

3131

3232

1212

0 0 0
0 0 0
0 0 0

1 2 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

S S S
S S S
S S S

with x y z
S

S
S

 
 
 
 

= ≡ ≡ ≡ 
 
 
 
  

, ,S  (4.2-23)

where

 

( ) ( )

1111 2222 3333

2 2 2 2

2

S S S

h l h l h h l t t tt
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 (4.2-25)
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( - )
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 (4.2-26)

3232
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⋅ ⋅ + ⋅ + ⋅
 (4.2-27)
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(4.2-28)

These results suggest a hexagonal material symmetry.

By comparing the proposed homogenization technique with Lourenco’s

one, it can be said that:

LOURENCO & AL. APPROACH - proposes a homogenized model 

obtained on a parameterization-based procedure depending on a specific 

benchmark FEM model (i.e. selected ratios between elastic coefficients and 

geometrical dimensions), so it shows a sensitivity to geometrical and 

mechanical ratios! Moreover, the numerical estimate of the homogenized 

coefficients gives some not symmetrical moduli, so a symmetrization becomes 

necessary!

LOURENCO MODIFIED APPROACH (Statically-consistent approach) -

proposes a parametric homogenized model not depending on specific selected 

ratios between elastic coefficients and geometrical dimensions, so it shows a 

more generalized applicability. Moreover, since the approach implies a 

statically-consistent solution, it results extremely useful for its applicability 

according to the Static Theorem: a statically admissible solution guarantees the 

structure to be in security as regards the collapse.

4.3 SAS approach: two-step procedure consistency

In the follows, it will be shown an application of the S.A.S. theorem in 

order to homogenize the masonry material. 
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Since the description of this theorem has been already highlighted in the 

Section 8 of the Chapter 1, we will limit here to expose the proposed 

homogenization procedure.

In particular, it is considered a single leaf masonry wall in stretcher bond. 

From it, a basic cell (RVE) is considered, as illustrated in the figure, below:

Figure 4.5 Basic cell (RVE)

The different constituents of the RVE are indicated, respectively, with:

1 2 3 4 5 6, , , , ,m m m m m m = the mortar components

1 2 3, ,b b b =  the unit components

The homogenization approach, which we use, remarks the standard 

simplified two-step technique. This means that a homogenization process is 

operated first in one direction, then in the orthogonal one. In such a way, 

masonry basic cell can be seen as a layered material.

So, by calling with homogenization y x→ the approach that homogenizes 

first in x-direction, then in y-direction and with homogenization x y→ the 

other approach that homogenizes first in y-direction, then in x-direction,  both 

cases are analyzed.

x

y

z

1b

2m

4m

2b

3b

6m

5m

3m

1m
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1. Homogenization y -> x

In order to simplify the procedure, it is supposed that the homogenization in 

x-direction was already effected. Therefore, the above illustrated masonry RVE 

can be considered as the layered material shown below:

Figure 4.6 Layered material (RVE)

In order to apply the S.A.S. theorem, generally it is required that two 

conditions have to be satisfied, [24]. These are:

a. det 0H H= ∀ ∈ ΩT x  (4.3-1)

b. ( ) ( ) 0H H Iϕ  ⋅∇ = ∀ ∈Ω T u x x   (4.3-2)

where:
H =T the stress tensor of the reference homogeneous material.
HΩ = domain occupied by the reference homogeneous material.
IΩ = domain occupied by the inhomogeneous material (RVE).

For this layered material, it is clear that the material inhomogeneity is 

defined by a function ( )ϕ x that is a constant function, but piecewise 

1m

3m

6m

1p

2p

x

y

z
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discontinuous from a phase to another one, and it is clear that the ϕ∇ -direction 

is coincident with the y-direction. In this particular case, as already seen, the 

above written two conditions become:

c. ( )det 0H
p q= ∀ ∈∂Ω ,T , x   (4.3-3)

d. ( ) ( )
H

p q p q⋅ = ∀ ∈∂Ω, ,T 0n x    (4.3-4)

where:

( )p q∂Ω =, interface surface between two faces p and q.

This means that it is not necessary to have a stress tensor HT everywhere 

plane in the reference homogeneous material, but only in each point belonging 

to the interface surfaces, and that the eigenvector associated with the zero 

eigenvalue of the stress tensor HT has to be coaxial with the unit normal 

vector to the tangent plane to the interface.

For simplicity, it will be however considered a plane stress tensor HT in 

each point of the homogeneous reference body. 

So, by assuming the homogeneous reference body coincident with an 

orthotropic characterization of the mortar, a strain prescribed homogenization 

in y-direction is operated. The sole non-zero components of the stress tensor 
HT have to be:

 
0, 0, 0

0, 0, 0

H H H
xx zz xz
H H H
yy zy xy

σ σ σ

σ σ σ

≠ ≠ ≠

= = =
 (4.3-5)

because they are in the respect of the condition (4.3-2).

According to the S.A.S. theorem, for the generic phase “i” of the 

inhomogeneous material, it can be written:
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1 1 3 2 6, , , ,

I H
i i
I H
i
I H

i i

with i m p m p m
ϕ

ϕ

=

= =

=T T

C C
u u  (4.3-6)

where:

, ,I I I
i i i =TC u  respectively, the stiffness tensor, the displacements solution and 

the stress tensor of  the generic phase of the inhomogeneous 

material (RVE).

, ,H H H =TC u respectively, the stiffness tensor, the displacements solution  

and the stress tensor of  reference homogeneous material.

Let us assume that the stress tensor is constant everywhere in the 

homogeneous reference domain and let us to consider the stress components 

separately each from the other, for example:

0, 0, 0H H H
xx zz xzσ σ σ≠ = =  (4.3-7)

So, by using the Voigt notation, the stress tensor HT can be written in the 

form of a vector, [24]. In general, it is:

  

11

22

33

32

31

12

H

H

H
H

H

H

H

σ
σ
σ
σ
σ
σ

 
 
 
 

=  
 
 
 
  

T  (4.3-8)

In the particular case that the sole non-zero stress component is the H
xxσ , it 

is:
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0
0
0
0
0

H
xx

H

σ 
 
 
 

=  
 
 
 
  

T  (4.3-9)

where it has been assumed:

 1 ; 2 ; 3 ;x y z≡ ≡ ≡   (4.3-10)

By calling HS the fourth order compliance tensor of the homogeneous 

reference orthotropic material, it can be written in the following form:

1111 1122 1133

2222 2233

3333

3232

3131

1212

0 0 0
0 0 0
0 0 0

0 0
0

H H H

H H

H
H

H

H

H

S S S
S S

S
S

Sym S
S

 
 
 
 

=  
 
 
 
  

S  (4.3-11)

By remembering that the assumed homogeneous reference orthotropic 

material is the mortar, the compliance tensor HS can be written as:
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− − 

 
 
− − 

 
 
 − −
 =  
 
 
 
 
 
 
 
  

S  (4.3-12)

where the symbol ( )m indicates the mortar and where, for symmetry, it has to 

be:
( ) ( ) ( ) ( )( ) ( )
13 31 23 3212 21

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 3 2 3

; ; ;
m m m mm m

m m m m m mE E E E E E
ν ν ν νν ν

= = =  (4.3-13)

The strain tensor, for the same material, is, therefore, obtained through the 

following relation:

 :H H H=E TS   (4.3-14)

In the case that the sole non-zero stress component is the H
xxσ and by using 

the Voigt notation, the strain tensor HE is:
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1

( )
21

( )
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( )
31

( )
3

0
0
0

H
xx
m

m H
xx

m

H m H
xx

m

E

E

E

σ

ν σ

ν σ

 
 
 
 
− 

 
 =
 −
 
 
 
 
 
 

E  (4.3-15)

For the second equation of (4.3-6), it is:

1 1 3 2 6, , , ,I H
i with i m p m p m= =E E  (4.3-16)

that means that everywhere in each phase ( 1 1 3 2 6, , , ,m p m p m ) of the 

inhomogeneous material the strain tensor is equal to the strain tensor HE of the 

homogeneous reference material, so the compatibility is automatically satisfied 

in each point of the RVE.

Moreover, being the strain tensor constant in each point of the 

inhomogeneous material, it is also possible to write:

 
I H=E E   (4.3-17)

where:
I

=E average value of the strain tensor in the homogeneous material.

The equilibrium conditions are, instead, guaranteed by the S.A.S. theorem. 

According to it, in fact, it is obtained that:
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1 1 3 2 6

0
0

, , , ,
0
0
0

H
i xx

I H
i i with i m p m p m

ϕ σ

ϕ

 
 
 
 

= = = 
 
 
 
  

T T  (4.3-18)

This means that everywhere in each phase ( 1 1 3 2 6, , , ,m p m p m ) of the 

inhomogeneous material the stress tensor is equal to iϕ times the stress tensor 

HT of the homogeneous reference material.

By indicating the average value of the stress tensor in the inhomogeneous 

material with 
I

T , it can be calculated as:

 
1I I

V
dV

V
= ∫T T  (4.3-19)

where:

V = the whole volume of the RVE.

The equation (4.3-19) is equivalent to write:

1 1 3 2 6
1 , , , ,

i

I I
iV

i
dV with i m p m p m

V
= =∑∫T T  (4.3-20)

By remembering that:

 
i

II
ii iV

dV V=∫ T T  (4.3-21)

where:
I
i =T average value of the stress tensor in the generic phase of the RVE

iV =  volume of the generic phase of the RVE

So, the equation (4.3-20) can be rewritten in the form:
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1 1 3 2 6, , , ,
I H

i if with i m p m p mϕ= =T T  (4.3-22)

where it has been considered that:

;
I I Hi
ii i i

Vf
V

ϕ= = =T T T  (4.3-23)

with:

if = the volumetric fraction of the generic phase, weighed upon the whole 

inhomogeneous volume.

The average stress tensor, 
I

T , therefore, has the following form:

1 1 3 2 6

0
0

, , , ,
0
0
0

H
i i xx

I

f

with i m p m p m

ϕ σ 
 
 
 

= = 
 
 
 
  

T     (4.3-24)

At this point, it is possible to obtain the homogenized compliance tensor for 

the inhomogeneous layered material, shown in figure 4.6, by means of the 

relation: 

 :
I I I

=E TS     (4.3-25)

with:

:
y xI →

=S S = homogenized compliance tensor of the inhomogeneous layered 

material where the symbol “ y x→ ” recalls the two-step 

homogenization process, here considering that we first 

homogenize in x-direction and then in y-direction.

By considering in explicit form the equation (4.3-25), it can be written:
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 (4.3-26)

By taking into account the equations (4.3-17) and (4.3-24), for the assumed 

hypothesis (4.3-7), the first column of the homogenized compliance tensor 
IS

is calculated. In particular, it is obtained:

1111 ( )
1

( )
21

2211 1122 1 1 3 2 6( )
2

( )
31

3311 1133 ( )
3

1 ;

; , , , ,

;

I

m
i i

mI I

m
i i

mI I

m
i i

S
f E

S S with i m p m p m
f E

S S
f E

ϕ

ν
ϕ

ν
ϕ

=

= = − =

= = −

 (4.3-27)

By repeating the same procedure for the other two stress conditions, it is 

possible to determine adding compliance coefficients. 

In particular, let us to assume now the following stress condition:

0, 0, 0H H H
xx zz xzσ σ σ= ≠ =  (4.3-28)

So, by using the Voigt notation, the stress tensor of the homogeneous 

reference material, HT , becomes:
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 

T  (4.3-29)

The strain tensor, for the same material, is, therefore, obtained through the 

relation (4.3-14), that yields, in Voigt notation:
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 

E  (4.3-30)

For the same considerations, already done before, it is still worth to write: 

1 1 3 2 6, , , ,I H
i with i m p m p m= =E E  (4.3-31)

and:

 
I H=E E  (4.3-32)

Then, according to the S.A.S. theorem, it is now obtained that:
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T T  (4.3-33)

and by proceeding analogously to what has been already done, it can be 

written, again:

   1 1 3 2 6, , , ,
I H

i if with i m p m p mϕ= =T T  

(4.3-34)

The average stress tensor, 
I

T , in this case, has the following form:

1 1 3 2 6
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T  (4.3-35)

By taking into account the equations (4.3-32) and (4.3-35), for the assumed 

hypothesis (4.3-28), the third column of the homogenized compliance tensor 
IS is calculated. In particular, it is obtained:
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 (4.3-36)
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Finally, let us assume the following stress condition:

 0, 0, 0H H H
xx zz xzσ σ σ= = ≠  (4.3-37)

So, the stress tensor of the homogeneous reference material, HT , becomes:

 

0
0
0
0

0

H

H
xzσ

 
 
 
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 
 
 
 

T  (4.3-38)

About the strain tensor, for the same material, the relation (4.3-14) yields, in 

Voigt notation:

  

( )
31
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H

H
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mG
σ

 
 
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 
 
 
  

E  (4.3-39)

Again, it is still worth to write: 

1 1 3 2 6, , , ,I H
i with i m p m p m= =E E  (4.3-40)

and:

 
I H=E E  (4.3-41)

Moreover, according to the S.A.S. theorem, it is now obtained that:
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and by proceeding analogously to what has been already done, it can be 

written, again:

  1 1 3 2 6, , , ,
I H

i if with i m p m p mϕ= =T T  

(4.3-43)

The average stress tensor, 
I

T , in this case, has the following form:
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T  (4.3-44)

By taking into account the equations (4.3-41) and (4.3-44), for the assumed 

hypothesis (4.3-37), another coefficient of the homogenized compliance tensor 
IS is calculated. In particular, it is obtained:

3131 1 1 3 2 6( )
31

1 , , , ,
2

I

m
i i

S with i m p m p m
f Gϕ

= =  (4.3-45)

In this way, for the symmetry of the compliance tensor 
IS , only three 

coefficients remain undeterminable, and the tensor assumes the form:
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where:

1 1 1 1 3 3 2 2 6 6i i m m p p m m p p m mf f f f f fϕ ϕ ϕ ϕ ϕ ϕ= + + + +  (4.3-47)

By considering that the mortar is the reference orthotropic homogeneous 

material, it is:

 
1 3 6

1m m mϕ ϕ ϕ= = =  (4.3-48)

being the phases 1 3 6, ,m m m coincident with the mortar.

Moreover, it can be considered that the two partitions, 1p and 2p , have the 

same volumetric fraction weighed upon the RVE volume V :

1 2p pf f=  (4.3-49)

So, the equation (4.3-47) can be rewritten in the form:

( )1 1 2orizzi i m p p pf f fϕ ϕ ϕ= + +  (4.3-50)

with:

1 3 6
orizz

orizz

m
m m m m

V
f f f f

V
= + + =  (4.3-51)

and where:
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orizzmf = the volumetric fraction of the horizontal mortar, weighed upon the 

whole RVE volume, V .

It is worth to underline that the found elastic coefficients represent an exact 

solution to the homogenization problem, and, therefore, both compatible and 

equilibrated solution, according to the S.A.S. theorem, [24].

Moreover, it must be said that the S.A.S. theorem also yields the stiffness 

tensor for the generic phase “i” of the inhomogeneous material (RVE), shown 

in figure 4.6, as:

1 1 3 2 6, , , ,I H
i i with i m p m p mϕ= =C C  (4.3-52)

from whose:

1 1 3 2 6
1 , , , ,I H

i
i

with i m p m p m
ϕ

= =S S  (4.3-53)

So, the compliance tensors for the partition 1p and 2p can be obtained as it

follows:
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

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

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





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 (4.3-54)
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and:

2 2 2

2 2 2
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







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(4.3-55)

where:

1

I
p =S compliance tensor of the partition 1p

2

I
p =S compliance tensor of the partition 2p

At this point, it is possible to explicit the constants 1pϕ and 2pϕ related to 

the partitions 1p and 2p , obtained by means a homogenization process in x-

direction of the elements 1 2 2, ,b m b and 4 3 5, ,m b m , respectively, as it is shown 

in the figures below:

Figure 4.7 a) Partition p1; b) Partition p2.

2b1b

2m

4m 5m
3b

x
y

za b
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So, let us consider for example the partition 1p .

For this layered material, it is clear that the ϕ∇ -direction is coincident, 

now, with the x-direction and, analogously to the previous case, the material 

inhomogeneity is yet defined by a function ( )xϕ that is a constant function, 

but piecewise discontinuous from a phase to another one. 

For analogous considerations to those previous ones, it will be again 

considered a plane stress tensor HT in each point of the homogeneous 

reference body. 

So, by remembering that the orthotropic homogeneous reference body is 

coincident with the mortar, a strain prescribed homogenization in x-direction is 

operated. The sole non-zero components of the stress tensor HT , now, have to 

be:

 
0, 0, 0

0, 0, 0

H H H
yy zz yz

H H H
xx xy xz

σ σ σ

σ σ σ

≠ ≠ ≠

= = =
 (4.3-56)

because they are in the respect of the condition (4.3-2).

According to the S.A.S. theorem, for the generic phase “j” of the partition 

1p , it can be written:

1

1

1

1 2 2, ,

p H
j j

p H
j

p H
j j

with j b m b

ϕ

ϕ

=

= =

=T T

C C
u u  (4.3-57)

where:

1 1 1, ,p p p
j j j =TC u respectively, the stiffness tensor, the displacements solution 

and the stress tensor of  the generic phase of the partition 1p

of the RVE.
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, ,H H H =TC u respectively, the stiffness tensor, the displacements solution 

and the stress tensor of  reference homogeneous material.

Let us assume, again, that the stress tensor is constant everywhere in the 

homogeneous reference domain and let us to consider the stress components 

separately each from the other, for example:

0, 0, 0H H H
yy zz yzσ σ σ≠ = =  (4.3-58)

So, by using the Voigt notation, the stress tensor HT of the homogeneous 

material can be written in the form of the following vector:

 

0

0
0
0
0

H
yy

H

σ
 
 
 
 

=  
 
 
 
 

T  (4.3-59)

where it has been assumed:

1 ; 2 ; 3 ;x y z≡ ≡ ≡   (4.3-60)

The strain tensor, for the same material is obtained by means the following 

relation:

 :H H H=E TS  (4.3-61)

In the case that the sole non-zero stress component is the H
yyσ , by using the 

Voigt notation and by remembering the (4.3-12), the strain tensor HE is:
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( )
12

( )
1

( )
2

( )
32

( )
3

0
0
0

m H
yy

m

H
yy
m

H m H
yy

m

E

E

E

ν σ

σ

ν σ

 
− 

 
 
 
 
 =  − 
 
 
 
 
  

E  (4.3-62)

For the second equation of (4.3-57), it is:

1
1 2 2, ,p H

j with j b m b= =E E  (4.3-63)

It means that everywhere in the phases 1 2 2, ,b m b of the inhomogeneous 

material the strain tensor is equal to the strain tensor HE of the homogeneous 

reference material, so the compatibility is automatically satisfied in these 

phases of the RVE.

Moreover, being the strain tensor constant in each point of the partition 1p , 

it is also possible to write:

 1 1
p p H

j= =E E E   (4.3-64)

where:

1p
=E average value of the strain tensor in the partition 1p .

The equilibrium conditions are, instead, guaranteed by the S.A.S. theorem. 

According to it, in fact, it is obtained that:
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1
1 2 2

0

0
, ,

0
0
0

H
j yy

p H
j j with j b m b

ϕ σ

ϕ

 
 
 
 

= = = 
 
 
 
 

T T   (4.3-65)

This means that everywhere in the phases 1 2 2, ,b m b of the partition 1p the 

stress tensor is equal to jϕ times the stress tensor HT of the homogeneous 

reference material.

By indicating the average value of the stress tensor in the partition 1p with 

1p
T , it can be calculated as:

 1 1

1
1

1
p

p p

V
p

dV
V

= ∫T T  (4.3-66)

where:

1pV = the volume of partition 1p of the RVE.

The equation (4.3-66) is equivalent to write:

1 1

1

1 2 2
1 , ,

j

p p
jV

jp

dV with j b m b
V

= =∑∫T T  (4.3-67)

By remembering that:

11
1 2 2, ,

j

pp
jj jV

dV V with j b m b= =∫ T T  (4.3-68)

where:
1p

j =T average value of the stress tensor in the generic phase j of the RVE, 

with 1 2 2, ,j b m b= .
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jV = volume of the generic phase j of the RVE, with 1 2 2, ,j b m b=

So, the equation (4.3-67) can be rewritten in the form:

1 '
1 2 2, ,

p H
j jf with j b m bϕ= =T T  (4.3-69)

where it has been considered that:

1 1

1

' ;
pj p H
jj j j

p

V
f

V
ϕ= = =T T T  (4.3-70)

with:
'
jf = the volumetric fraction of the generic phase “j”, weighed upon the 

volume of the partition 1p .

The average stress tensor in the partition 1p , 1p
T , therefore, has the 

following form:

1

'

1 2 2

0

0
, ,

0
0
0

H
j j yy

p

f

with j b m b

ϕ σ
 
 
 
 

= = 
 
 
 
 

T  (4.3-71)

At this point, it is possible to obtain the homogenized compliance tensor for 

the inhomogeneous layered partition 1p , shown in figure 4.7a, by means of the 

relation: 

 1 1 1:
p p p

=E TS  (4.3-72)

with:



255   Chapter IV – Proposal of modified approaches: theoretical approaches  

1 :
xp

=S S = homogenized compliance tensor of the inhomogeneous layered 

partition 1p where the symbol “ x ”  recalls the homogenization 

process, which is in x-direction.

By considering in explicit form the equation (4.3-72), it can be written:

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

11 1111 1122 1133 11

22 2222 2233 22
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p p p p

p p p

p p p

p p p

p p p

S S S

S S

S

S
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S

ε σ
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    
    
    
    = ⋅
    
    
    
    
        













 (4.3-73)

By taking into account the equations (4.3-64) and (4.3-71), for the assumed 

hypothesis (4.3-58), the second column of the homogenized compliance tensor 
1pS is calculated. In particular, it is obtained:

1 1

1

1 1

( )
12

1122 2211 ' ( )
1

2222 1 2 2' ( )
2

( )
32

3322 2233 ' ( )
3

;

1 ; , ,

;

mp p

m
j j

p

m
j j

mp p

m
j j

S S
f E

S with j b m b
f E

S S
f E

ν
ϕ

ϕ

ν
ϕ

= = −

= =

= = −

 (4.3-74)

By repeating the same procedure for the other two stress conditions, it is 

possible to determine adding compliance coefficients. 

In particular, let us assume now the following stress condition:

0, 0, 0H H H
yy zz yzσ σ σ= ≠ =  (4.3-75)
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So, by using the Voigt notation, the stress tensor of the homogeneous 

reference material, HT , becomes:

 

0
0

0
0
0

H
zzH σ

 
 
 
 

=  
 
 
 
 

T  (4.3-76)

The strain tensor, for the same material, is, therefore, obtained by means the 

relation (4.3-61), that yields, in Voigt notation:
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( )
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( )
3

0
0
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m

m H
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m

H H
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m

E
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E
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ν σ
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 
 
− 

 
 =
 
 
 
 
 
 
 

E  (4.3-77)

For the same considerations, already done before, it is still worth to write: 

1
1 2 2, ,p H

j with j b m b= =E E  (4.3-78)

and:

 11p p H
j= =E E E  (4.3-79)

Then, according to the S.A.S. theorem, it is now obtained that:
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1
1 2 2

0
0

, ,
0
0
0

H
j zzp H

j j with j b m b
ϕ σ

ϕ

 
 
 
 

= = = 
 
 
 
 

T T  (4.3-80)

and by proceeding analogously to what has been already done, it can be 

written, again:

   1 '
1 2 2, ,

p H
j jf with j b m bϕ= =T T  (4.3-81)

The average stress tensor, 1p
T , in this case, has the following form:

1
'

1 2 2

0
0

, ,
0
0
0

H
p j j zzf

with j b m b
ϕ σ

 
 
 
 

= = 
 
 
 
 

T  (4.3-82)

By taking into account the equations (4.3-79) and (4.3-82), for the assumed 

hypothesis (4.3-75), the third column of the homogenized compliance tensor 
1pS is calculated. In particular, it is obtained:

1 1

1 1

1

( )
13

1133 3311 ' ( )
1

( )
23

2233 3322 1 2 2' ( )
2

3333 ' ( )
3
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; , ,

1 ;

mp p

m
j j

mp p

m
j j

p

m
j j

S S
f E

S S with j b m b
f E

S
f E

ν
ϕ

ν
ϕ

ϕ

= = −

= = − =

=

 (4.3-83)

Finally, let us assume the following stress condition:
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0, 0, 0H H H
yy zz yzσ σ σ= = ≠  (4.3-84)

So, the stress tensor of the homogeneous reference material, HT , becomes:

 

0
0
0

0
0

H
H
yzσ

 
 
 
 
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 
 
 
 

T  (4.3-85)

About the strain tensor, for the same material, the relation (4.3-61) yields, in 

Voigt notation:

  
( )
32

0
0
0

2
0
0

H H
yz

mG
σ

 
 
 
 
 

=  
 
 
 
 
 

E  (4.3-86)

Again, it is still worth to write: 

1
1 2 2, ,p H

j with j b m b= =E E  (4.3-87)

and:

 1 1
p p H

j= =E E E  (4.3-88)

Moreover, according to the S.A.S. theorem, it is now obtained that:



259   Chapter IV – Proposal of modified approaches: theoretical approaches  

1 2 2

0
0
0

, ,

0
0

1p H
j j H

j yz

with j b m bϕ
ϕ σ

 
 
 
 

= = = 
 
 
 
 

T T  (4.3-89)

and by proceeding analogously to what has been already done, it can be 

written, again:

   1 '
1 2 2, ,

p H
j jf with j b m bϕ= =T T   (4.3-90)

The average stress tensor, 1p
T , in this case, has the following form:

1

1 2 2'

0
0
0

, ,

0
0

p

H
j j yz

with j b m b
f ϕ σ

 
 
 
 

= = 
 
 
 
 

T  (4.3-91)

By taking into account the equations (4.3-88) and (4.3-91), for the assumed 

hypothesis (4.3-84), another coefficient of the homogenized compliance tensor 
1pS is calculated. In particular, it is obtained:

1
3232 1 2 2' ( )

32

1 , ,
2

p

m
j j

S with j b m b
f Gϕ

= =  (4.3-92)

In this way, for the symmetry of the compliance tensor 1pS , only three 

coefficients remain undeterminable, and the tensor assumes the form:
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where:

2 21 1 2 2

' ' ' '
j j m mb b b bf f f fϕ ϕ ϕ ϕ= + +  (4.3-94)

By considering that the mortar is the reference orthotropic homogeneous 

material, it is:

 
2

1mϕ =  (4.3-95)

being the phase 2m coincident with the mortar, while it will be:

  
1 2b b bϕ ϕ ϕ= =  (4.3-96)

where:

bϕ = the brick elastic ratio

Moreover, it can be considered that the two constituents, 1b and 2b , of the 

partition 1p , have the same volumetric fraction weighed upon the volume
1pV of 

the partition:

 
1 2

' '
b bf f=  (4.3-97)

So, the equation (4.3-94) can be rewritten in the form:
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21

' ' '2j j mb bf f fϕ ϕ= +  (4.3-98)

By comparing the (4.3-93) with the (4.3-54) and by imposing their 

equivalence, that is:

 1

1

I p
p =S S    (4.3-99)

it is obtained that:

1 21

' ' '2p j j mb bf f fϕ ϕ ϕ= = +    (4.3-100)

Then, a similar homogenization process in x-direction has been executed for 

the other partition 2p , shown in the figure 4.7b. Because of the analogy of the 

procedure, it is here shown the result, only, that is the compliance tensor 2pS :
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S  (4.3-101)

with:

2

4 3 5
' , ,k

k
p

Vf with k m b m
V

= =  (4.3-102)

and where:
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'
kf = the volumetric fraction of the generic phase “k”, weighed upon the 

volume of the partition 2p .

So, it can be written:

5 54 4 3 3

' ' ' '
m m m mk k b bf f f fϕ ϕ ϕ ϕ= + +  (4.3-103)

By considering, again, that the mortar is the reference orthotropic 

homogeneous material, it is:

 
54

1m mϕ ϕ= =  (4.3-104)

being the phases 4m and 5m coincident with the mortar, while it will be:

 
3b bϕ ϕ=  (4.3-105)

Moreover, it can be considered that the two constituents, 4m and 5m , of the 

partition 2p , have the same volumetric fraction weighed upon the volume
2pV

of the partition:

 
54

' '
m mf f=  (4.3-106)

So, the equation (4.3-103) can be rewritten in the form:

 
4 3

' ' '2 mk k b bf f fϕ ϕ= +  (4.3-107)

By comparing the (4.3-101) with the (4.3-55) and by imposing their 

equivalence, that is:

 2

2

pI
p =S S  (4.3-108)

it is obtained that:

2 4 3

' ' '2p mk k b bf f fϕ ϕ ϕ= = +  (4.3-109)

According to the geometry of the RVE, it can be considered that:
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 4 2

1 3

' '

' '

2

2
m m

b b

f f

f f

=

=
 

(4.3-110)

and so, it can be written:

1 2

' '
vertp p p m b bf fϕ ϕ ϕ ϕ= = = +  (4.3-111)

with:

1 1

' '
' 'vert
vert

m b
m b

p p

V Vf and f
V V

= =  (4.3-112)

where:
'
vertmV = the volume of the vertical mortar in a single row.

'
bV =  the volume of the brick in a single row.

So, the equation (4.3-50) can be rewritten in the form:

  12
orizzi i m ppf f fϕ ϕ= +  (4.3-113)

that is:

( )''
12

orizz verti i b bm mpf f f f fϕ ϕ= + +  (4.3-114)

By considering that:

1 2 1
1

2
2 p p p

p
V V V

f
V V
+

= =  (4.3-115)

and by remembering the (4.3-51) and the (4.3-112), the equation (4.3-114) can 

be rewritten in the form:

 i i m b bf f fϕ ϕ= +  (4.3-116)

where:
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b
b

m m m

m
m

f f f

V
f

V
Vf
V

= +

=

=

  (4.3-117)

At this point, it is possible to write the homogenized compliance tensor of 

the RVE as it follows:
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 
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 
 
 
 
 
  

S  (4.3-118)

where ( )m b bf fφ ϕ= + .

It has to be underlined, again, that the found elastic coefficients represent a 

solution to the homogenization problem that is both exact and very simple. The 

exactness is given according to the S.A.S. theorem, [24]. The simplicity is 

related to the fact that the homogenized compliance tensor is obtained from that 

one of the reference homogeneous material by multiplying for a scalar factor 
1φ − , depending from the geometry of the micro-constituents and from the 

elastic ratio bϕ .



265   Chapter IV – Proposal of modified approaches: theoretical approaches  

2. Homogenization x y→

Analogously to what has been done for the homogenization y-> x , in order 

to simplify the procedure, it is supposed that the homogenization in y-direction 

was already effected. Therefore, the illustrated above masonry RVE can be 

considered as the layered material shown below:

Figure 4.8 Layered material (RVE)

For this layered material, it is clear that the ϕ∇ -direction is coincident with 

the x-direction and that the material inhomogeneity is defined by a function 

( )xϕ that is a constant function, but piecewise discontinuous from a phase to 

another one. 

For analogous considerations to those previous ones, also in this case, it will 

be considered a plane stress tensor HT in each point of the homogeneous 

reference body (the orthotropic mortar), so that HT satisfies the condition 

(4.3-2) . 

So, a strain prescribed homogenization in x-direction is operated. The sole 

non-zero components of the stress tensor HT , in this case, have to be:

2s 4s

3s

1s 5s

x

y

z
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0, 0, 0

0, 0, 0

H H H
yy zz yz

H H H
xx xy xz

σ σ σ

σ σ σ

≠ ≠ ≠

= = =
 (4.3-119)

just because they are in the respect of the condition (4.3-2).

According to the S.A.S. theorem, for the generic phase “q” of the 

inhomogeneous material, shown in figure 4.8, it can be written:

1 2 3 4 5, , , ,

I H
q q

I H
q

I H
q q

with q s s s s s

ϕ

ϕ

=

= =

=T T

C C
u u  (4.3-120)

where:

, ,I I I
q q q =TuC  respectively, the stiffness tensor, the displacements solution and 

the stress tensor of the generic phase of the inhomogeneous 

material (RVE), shown in figure 4.8.

, ,H H H =TC u respectively, the stiffness tensor, the displacements solution 

and the stress tensor of  reference homogeneous material.

By reiterating the procedure used for the homogenization y x→ , it is possible 

to obtain the homogenized compliance tensor for such inhomogeneous layered 

material, by means of the relation: 

 :
I I I

=E TS   (4.3-121)

where:

  
I

H=E E  (4.3-122)

1 2, 3 4 5, , ,
I

H
q qf with q s s s s sϕ= =T T  (4.3-123)

with:
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I
=E  the average value of the strain tensor in the inhomogeneous layered 

material, shown in figure 4.8.
I

=T  the average value of the stress tensor in the inhomogeneous layered 

material, shown in figure 4.8.

:
x yI →

=S S = homogenized compliance tensor of such inhomogeneous layered 

material, where the symbol “ x y→ ”  recalls the two-step 

homogenization process, here considering that we first homogenize

in y-direction and then in x-direction.

By considering in explicit form the equation (4.3-121), it can be written:

11 1111 1122 1133 11

22 2222 2233 22

33 3333 33

32 3232 32

31 3131 31

12 1212 12
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0 0 0
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0 0
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Sym S
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ε σ

     
     
     
     
     
     = ⋅     
     
     
     
     
          

  (4.3-124)

By considering the non-zero stress components (4.3-119) separately each 

one from the other, and by taking into account the equations (4.3-122) and 

(4.3-123), the second and the third column of the homogenized compliance 

tensor 
I

S are obtained, and so, also the coefficient 3232

I
S . In particular, for the 

second column, it is obtained:
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= = −
⋅

 (4.3-125)

For the third column, it is obtained:

  

( )
13

1133 3311 ( )
1

( )
23

2233 3322 ( )
2

3333 ( )
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1

mI I

m
q q

mI I

m
q q
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m
q q

S S
f E

S S
f E

S
f E

ν
ϕ

ν
ϕ

ϕ

= = −
⋅

= = −
⋅

=
⋅

 

(4.3-126)

and then:

   3232 ( )
32

1
2

I

m
q q

S
f Gϕ

=
⋅

  

(4.3-127)

In this way, for the symmetry of the compliance tensor 
I

S , only three 

coefficients remain undeterminable, and the tensor assumes the form:
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S  (4.3-128)

where:

5 51 1 2 2 3 3 4 4q q s s s s s s s s s sf f f f f fϕ ϕ ϕ ϕ ϕ ϕ= + + + +  (4.3-129)

It can be considered, now, that the three partitions, 1 3,s s and 5s , have the 

volumetric fractions, weighed upon the RVE volume, V , that are in the 

following relation:

 
53 1

2 2s s sf f f= =  (4.3-130)

while the partitions 2s and 4s have the same volumetric fraction, weighed 

upon the RVE volume, V :

 
2 4s sf f=  (4.3-131)

where:

1, 2, 3, 4, 5t
t

s
s

V
f t

V
==   (4.3-132)

Moreover, it can be considered that, for the geometric symmetry, it is:
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 51

2 4

s s

s s

ϕ ϕ

ϕ ϕ

=

=
 (4.3-133)

So, the equation (4.3-129) can be rewritten in the form:

( )1 1 3 2 2
2 2q q s s s s sf f fϕ ϕ ϕ ϕ= + +  (4.3-134)

It is worth to underline, again, that the found elastic coefficients represent 

an exact solution to the homogenization problem, and, therefore, both 

compatible and equilibrated solution, according to the S.A.S. theorem, [24].

Moreover, as already said for the homogenization y x→ , the S.A.S. 

theorem also yields the stiffness tensor for the generic phase “q” of the 

inhomogeneous layered material, shown in figure 4.8. By recalling the first 

equation of the (4.3-120), it is:

 1 2 3 4 5, , , ,I H
q q with q s s s s sϕ= =C C  (4.3-135)

from whose:

1 2 3 4 5
1 , , , ,I H

q
q

with q s s s s s
ϕ

= =S S  (4.3-136)

So, the compliance tensors for the partitions 1 2 3 4, , ,s s s s and 5s can be 

obtained as it follows:
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∈

(4.3-137)

At this point, it is possible to explicit the constants s t
ϕ , where t is within 

the range [1-5], related to the partitions 1 2 3 4, , ,s s s s and 5s , obtained by 

means a homogenization process in y-direction of the elements 

{ }1 1 1 1 1
1 1 3 4 6, , , ,s s s s sm b m m m , { }3 52 2 4

1 1 3 3 6, , , ,s ss s sm b m b m , { }3 3 3 3 3
1 2 3 3 6, , , ,s s s s sm m m b m , 

{ }4 4 4 4 5
1 2 3 3 6, , , ,s s s s sm b m b m and { }5 5 5 5 5

1 2 3 5 6, , , ,s s s s sm b m m m , respectively, as it is 

shown in the figure below.
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Figure 4.9 a) partition s1;  b) partition s2;  c) partition s3;  d) partition s4; 
e) partition s5.

So, let us consider for example the partition 1s .

For this layered material, it is clear that the ϕ∇ -direction is coincident, 

now, with the y-direction and, analogously to the previous case, the material 

inhomogeneity is yet defined by a function ( )xϕ that is a constant function, 

but piecewise discontinuous from a phase to another one. 

For analogous considerations to those previous ones, it will be again 

considered a plane stress tensor HT in each point of the homogeneous 

reference body. 

So, by remembering that the orthotropic homogeneous reference body is 

coincident with the mortar, a strain prescribed homogenization in y-direction is 

operated. The sole non-zero components of the stress tensor HT , now, have to 

be:

 
0, 0, 0

0, 0, 0

H H H
xx zz xz
H H H
yy xy yz

σ σ σ

σ σ σ
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= = =
 (4.3-138)
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because they are in the respect of the condition (4.3-2).

According to the S.A.S. theorem, for the generic phase “r” of the partition 

1s , it can be written:

1

1 1 1 1 1 1

1

1 1 3 4 6, , , ,

s H
r r

s S S S S SH
r
s H
r r

with r m b m m m
ϕ

ϕ

=

= =

=T T

C C
u u  (4.3-139)

where:

1 1 1, ,s s s
r r r =TC u respectively, the stiffness tensor, the displacements solution and 

the stress tensor of  the generic phase of the partition 1s of the 

RVE.

, ,H H H =TC u respectively, the stiffness tensor, the displacements solution 

and the stress tensor of  reference homogeneous material.

By reiterating the procedure until here used, it is possible to obtain the 

homogenized compliance tensor for the inhomogeneous layered partition 1s , 

shown in figure 4.9a, by means of the relation: 

 
1 1 1

:
s s s

=E TS  (4.3-140)

where:

 
1s

H=E E  (4.3-141)

and:
1 1 1 1 1 1'

1 1 3 4 6, , , ,
s s s s s sH

r rf with r m b m m mϕ= =T T  (4.3-142)

with:
1s

=E the average value of the strain tensor in the inhomogeneous layered 

partition 1s , shown in figure 4.9a.
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1s
=T  the average value of the stress tensor in the inhomogeneous layered 

partition 1s , shown in figure 4.9a.

1
:

ys
=S S = homogenized compliance tensor of the same inhomogeneous layered 

partition 1s where the symbol “ y ”  recalls the homogenization 

process, which is in y-direction.

In (4.3-142) it has been considered that:

1 1 1 1 1 1 1

1

'
1 1 3 4 6; , , , ,

s s s s s s sHr
rr r r

s

Vf with r m b m m m
V

ϕ= = = =T T T  (4.3-143)

with:
'

rf = volumetric fraction of the generic phase “r”, weighed upon the volume 

1sV of the partition 1s

rV = volume of the generic phase “r” of the partition 1s

By considering in explicit form the equation (4.3-140), it can be written:
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 (4.3-144)

By considering the non-zero stress components (4.3-138) separately each 

one from the other, and by taking into account the equations (4.3-141) and 
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(4.3-142), the first and the third column of the homogenized compliance tensor 

1s
S are obtained, and so, also the coefficient 

1
3131

s
S . In particular, for the first 

column, it is obtained:

1 1 1 1 1
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 (4.3-145)

For the third column, it is obtained:
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 (4.3-146)

and then:

   3131 ' ( )
31

1
2

I

m
r r

S
f Gϕ

=   

(4.3-147)

In this way, for the symmetry of the compliance tensor 
1s

S , only three 

coefficients remain undeterminable, and the tensor assumes the form:



Chapter IV – Proposal of modified approaches: theoretical approaches   276
  

1

1

1

1

( )( )
1312

' ( ) ' ( ) ' ( )
1 1 1

( )
23

1111 ' ( )
2

' ( )
3

3232

' ( )
31

1212

1 0 0 0

0 0 0

1 0 0 0

0 0
1 0

2

mm

m m m
r r r r r r

ms

m
r r

s
m

r r
s

m
r r

s

f E f E f E

S
f E

f E

S

Sym
f G

S

νν
ϕ ϕ ϕ

ν
ϕ

ϕ

ϕ

 
− − 

 
 

− 
 
 
 =  
 
 
 
 
 
 
  

S  (4.3-148)

where:

1 1 1 1 1 1 1 1 1 1
1 1 1 1 3 3 4 4 6 6

' ' ' ' ' '
r r m m b b m m m m m ms s s s s s s s s sf f f f f fϕ ϕ ϕ ϕ ϕ ϕ= + + + +  (4.3-149)

By considering that the mortar is the reference orthotropic homogeneous 

material, it is:

 1 1 1 1
1 3 4 6

1
m m m ms s s sϕ ϕ ϕ ϕ= = = =  (4.3-150)

being the phases 1sm coincident with the mortar, while it will be:

 1
1

bbsϕ ϕ=  (4.3-151)

where:

bϕ = the brick elastic ratio

Moreover, it can be considered that the constituents, 1 1
1 3,s sm m and 1

6
sm , of 

the partition 1s , have the volumetric fractions, weighed upon the volume
1sV of 

the partition, that are in the following relation:

 1 1 1
3 1 6

' ' '2 2
m m ms s sf f f= =  (4.3-152)
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while, for the constituents 1
1
sb and 1

4
sm , it can be written:

 1 1
1 4

' '

b ms sf f=   (4.3-153)

So, the equation (4.3-149) can be rewritten in the form:

( )1 1
1 1

' ' '4 1r r bm bs sf f fϕ ϕ= + +  (4.3-154)

By comparing the (4.3-148) with the (4.3-137) and by imposing their 

equivalence, that is:

 
1

1

s
I
s =S S  (4.3-155)

it is obtained that:

 
1

'
s r rfϕ ϕ=   (4.3-156)

Moreover, because the partitions 1s and 5s have the same micro-structure, 

as already considered in the first equation of the (4.3-133) , it will be:

51

51 2 1

I I
s s

s s s sϕ ϕ= = = ⇒ =S S S S  (4.3-157)

This consideration yields that:

( )111 115

' '4 1SSs bbms f fϕ ϕ ϕ= = + +  (4.3-158)

Then, a similar homogenization process in y-direction has been executed for 

another partition, 2s , shown in the figure 4.9b. Because of the analogy of the 

procedure, it is here shown the result, only, that is the compliance tensor 
2s

S :
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where:

2 2 2 2 2 2 2 2 2 2
1 1 1 1 3 3 3 3 6 6

' ' ' ' ' '
S S S S S S S S S Su u m m b b m m b b m m

f f f f f fϕ ϕ ϕ ϕ ϕ ϕ= + + + +  (4.3-160)

and:

2 2 2 2 2

2

'
1 1 3 3 6, , , ,S S S S Su

u
S

Vf with u m b m b m
V

= =  (4.3-161)

with:
'

uf = the volumetric fraction of the generic phase “u”, weighed upon the 

volume of the partition 2s .

By considering, again, that the mortar is the reference orthotropic 

homogeneous material, it is:

 2 2 2
1 3 6

1S S Sm m m
ϕ ϕ ϕ= = =  (4.3-162)

being the phases 2 2
1 3,S Sm m and 2

6
Sm coincident with the mortar, while it will 

be:

 2 2
1 3
S S bb b

ϕ ϕ ϕ= =  (4.3-163)
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Moreover, it can be considered that the constituents, 2 2
1 3,S Sm m and 2

6
Sm , of 

the partition 2s , have the volumetric fractions, weighed upon the volume
2SV of 

the partition, that are in the following relation:

 2 2 2
3 1 6

' ' '2 2S S Sm m m
f f f= =    (4.3-164)

while, for the constituents 2
1
Sb and 2

3
Sb , it can be written:

 2 2
1 3

' '
S Sb b

f f=  (4.3-165)

So, the equation (4.3-160) can be rewritten in the form:

2 2
1 1

' ' '4 2S Su u bm b
f f fϕ ϕ= +  (4.3-166)

By comparing the (4.3-159) with the (4.3-137) and by imposing their 

equivalence, that is:

 
2

2

s
I
s =S S   (4.3-167)

it is obtained that:

 
2

'
s u ufϕ ϕ=  (4.3-168)

Moreover, because the partitions 2s and 4s have the same micro-structure, 

as already considered in the second equation of the (4.3-133) , it will be:

 
2 4

2 4 2 4

s s
I I
s s s sϕ ϕ= = = ⇒ =S S S S  (4.3-169)

This consideration yields that:

2 22 4 1 1

' '4 2S Ss s bm b
f fϕ ϕ ϕ= = +  (4.3-170)

Finally, the same homogenization process in y-direction has been executed 

for the partition 3s , shown in the figure 4.9c. The obtained compliance tensor 

3s
S is:
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where:

3 3 3 3 3 3 3 3 3 3
1 1 2 2 3 3 3 3 6 6

' ' ' ' ' '
S S S S S S S S S Sv v m m m m m m b b m m

f f f f f fϕ ϕ ϕ ϕ ϕ ϕ= + + + +  (4.3-172)

and:

3 3 3 3 3

3

'
1 2 3 3 6, , , ,S S S S Sv

v
S

Vf with v m m m b m
V

= =  (4.3-173)

with:
'

vf = the volumetric fraction of the generic phase “v”, weighed upon the 

volume of the partition 3s .

Again, it is possible to write:

 3 3 3 3
1 2 3 6

1S S S Sm m m m
ϕ ϕ ϕ ϕ= = = =  (4.3-174)

being the phases 3 3 3
1 2 3, ,S S Sm m m and 3

6
Sm coincident with the mortar, while it 

will be:

 3
3
S bb

ϕ ϕ=  (4.3-175)
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Analogously to the previous case, it can be considered that the 

constituents, 3 3
1 3,S Sm m and 3

6
Sm , of the partition 3s , have the volumetric 

fractions, weighed upon the volume
3SV of the partition, that are in the 

following relation:

 3 3 3
3 1 6

' ' '2 2S S Sm m m
f f f= =  (4.3-176)

while, for the constituents 3
2
Sm and 3

3
Sb , it can be written:

 3 3
2 3

' '
S Sm b

f f=  (4.3-177)

So, the equation (4.3-172) can be rewritten in the form:

 ( )3 3
1 3

' ' '4 1S Sv v bm b
f f fϕ ϕ= + +  (4.3-178)

Because, it is:

 
13

11

13
13

' '

' '

S S

S S

mm

bb

f f

f f

=

=
   (4.3-179)

it is obtained that:

 ' '
v v r rf fϕ ϕ=   (4.3-180)

By comparing the (4.3-171) with the (4.3-137) and by imposing their 

equivalence, that is:

  
3

3

S
I
S =S S  (4.3-181)

it is obtained that:

 
3

'
S v vfϕ ϕ=    (4.3-182)

and so:

( )1 1
3 1 5 1 3

' '4 1S SS S S bm b
f fϕ ϕ ϕ ϕ= = = + +  (4.3-183)
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By substituting the (4.3-158), the (4.3-170) and the (4.3-183) in the equation 

(4.3-134), and by operating some manipulation according to the definition of 

the involved volumetric fractions , it is reached that:

( )
1 1 2 2

1 1 1 116 4 1 8 4
S S S Sm b m b

q q b b

V V V V
f

V V V V
ϕ ϕ ϕ= + + + +  (4.3-184)

So, according to the geometry of the RVE, it can be written that:

 

1 2
1 1

1 1
1 4

1 2
1 1

16 8

4 4

4 4

S S orizz

S S vert

S S

mm m

mb m

bb b

V V V

V V V

V V V

+ =

= =

+ =

 (4.3-185)

where:

orizzmV = the volume of the horizontal mortar in the RVE.

vertmV = the volume of the vertical mortar in the RVE.

bV =  the volume of the bricks in the RVE.

V =  the volume of the representative element.

So, the equation (4.3-184) can be rewritten in the form:

orizz vertm m b
q q b

V V Vf
V V V

ϕ ϕ= + +  (4.3-186)

By considering that:
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m m m

m
m

m
m

b
b

f f f

V
f

V
V

f
V

Vf
V

= +

=

=

=

 (4.3-187)

where:

mf = the volumetric fraction of the mortar, weighed upon the volume V of the 

RVE.

bf = the volumetric fraction of the brick, weighed upon the volume V of the 

RVE.

The equation (4.3-186) becomes:

 q q m b bf f fϕ ϕ= +  (4.3-188)

At this point, it is possible to write the homogenized compliance tensor of 

the RVE as it follows:
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where ( )m b bf fφ ϕ= + .

By comparing the equation (4.3-118) with the equation (4.3-118), it is noted 

that the found elastic coefficients of the homogenized compliance tensor 

obtained after the homogenization process y x→ are equal to those ones of 

the homogenized compliance tensor obtained after the homogenization process 

x y→ . This means that the proposed two-step homogenization appears to be a 

consistent procedure, which, differently from the standard two-step 

homogenization approaches found in literature, doesn’t lead to results 

depending on the order of the step execution.

So, by unifying the two results, a more complete homogenized compliance 

tensor is obtained:
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1312

( ) ( ) ( )
1 1 1

( )
23

( ) ( )
2 2

( )
3

( )
32

( )
31

1212

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0
2

1 0
2

mm

m m m

m

m m

Hom m

m

m

Hom

E E E

E E

E

G

Sym
G

νν
φ φ φ

ν
φ φ

φ

φ

φ

 
− − 

 
 

− 
 
 
 

=  
 
 
 
 
 
 
 
 

S

S

 (4.3-190)

with:
Hom =S the found complete homogenized compliance tensor. 

It has to be underlined that there is a sole elastic coefficient remaining 

unknown.
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By comparing the proposed homogenization technique with Pietruszczak & 

Niu’s one, it can be said that:

PIETRUSZCZAK & NIU APPROACH - implies an approximated 

homogenization procedure in two steps, whose results are dependent on the 

sequence of the steps chosen. It represents the limit of this kind of the existing 

approaches.

S.A.S. APPROACH - employs a parametric homogenization which results 

consistent in the two-step process, by implying exact solutions in some 

direction. Hence, the proposed procedure overcomes the limit of the simplified 

approaches. Moreover, it has to be underlined, yet, the simplicity of the 

procedure which yields to obtain the homogenized compliance tensor from that 

one of the reference homogeneous material, by multiplying for a scalar factor 
1φ − depending on the geometry of the micro-constituents and on the elastic 

ratio, bϕ .
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CHAPTER V

Remarks on finite element method (F.E.M.)

5.1 Introduction

The procedure of subdividing a complex system into its components, or 

elements, whose behaviour is more easily described, represents a natural path 

followed in every science branch, as well as the engineering one. 

Such a treatment, defined as “discrete problems”, is often used in order to 

overcome the difficult solution of the “continuous problems”, where a complex 

mathematical continuous model is hold by local differential equations.

However, both mathematics and engineers have developed general techniques

that are directly applicable to the differential equations of the “continuous 

problems”, as well as:

- approximations to the finite differences.

- weighted residual techniques



287      Chapter V – Remarks on finite element method (F.E.M)  

- appropriate techniques on the determination of the stationariness

of some functional.

On the other side, engineers study the problem by establishing an analogy 

between the elements of the discrete model and the portions of the continuous 

domains. For example, in the solids mechanics area, Mc Henry, Hremikoff e 

Newmark have shown, in the early fifty years, that suitable solutions to the 

elastic problem of the continuum can be obtained by means of substitution of

little portions of such medium with an assembly of simple elastic beams. Later, 

Argyris and Turner also demonstrated that the mechanical behaviour of the 

continuum can be obtained by analyzing the elements in which it is subdivided.

With the use of personal computers, furthermore, the “discrete problems” 

are easily solved even if the number of elements, necessary to obtain a suitable 

model, is enough great.

The term “finite element” was born for direct analogy.

The goal of this chapter is to show that the finite element method 

corresponds to a continuum discretization, based on consistent mathematical  

models.

Standard methodologies are developed, in the last years, in the analysis of 

discrete problems. The civil engineering, for the structures, first estimates the 

relations between forces and displacements for each element of the structure 

and then provides to assembly the whole system by means of a well defined 

procedure: it requires establishing the local equilibrium for each node or each 

connection point of the structure. The solution of the unknown displacements 

becomes, so, feasible.

It is possible to define some systems of standard discretization. The 

existence of a unified treatment of the discretization standard problem allows
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us to define the finite element procedure as an approximation method for the 

continuous problems, so that:

- the continuum is divided into a finite number of parts (elements) 

whose behaviour is individualized by a finite number of parameters

- the solution of the whole system is obtained by assembling its 

single constituent elements.

5.2 Structural elements and systems

In order to introduce the general concept of the discrete systems, it is 

initially considered, for example, the structure of figure 5.1 with a linear 

mechanical behaviour, [59].

The connexions are given by hinges, so that the moments cannot be 

transferred. It is assumed that, from pulled apart calculations, the 

characteristics of each element are exactly known. Hence, if a typical element, 

marked with (1) and associated to the nodes 1, 2, 3, is analyzed, the forces 

acting on such nodes are univocally defined by the same nodal displacements.

Both forces and displacements are defined by appropriate components (U, V, u, 

v) in a global coordinate system. The distributed load is named p. Furthermore, 

it is presumed an initial deformation, for example due to a thermal variation.
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Figure 5.1  Typical structure constituted from interconnected elements.

By listing the forces acting on all nodes (in the examined case, node 3) of 

the elements (in the examined case, element 1) in matrix form, it is obtained:

 

1
1

11 1 1
2 1

11
3

,

q
U

q etc
V

q

 
   

= =   
  

 

q q  (5.2-1)

and for the corresponding nodal displacements:

 

1
1

11 1 1
2 1

11
3

,

a
u

a etc
v

a

 
   

= =   
  

 

a a (5.2-2)

By considering a linear-elastic behaviour of the element, the characteristic 

relations assume the form:
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  11111
o

ffaKq p ε++=   (5.2-3)  

where:
1
P =f  the nodal forces necessary to balance the distributions of acting loads 

on the element.

0

1
ε =f  the nodal forces necessary to balance the reactions due, for example, to 

thermal strains.
1 1 =K a the nodal forces due to the nodal displacements.

At the same manner, the preliminary analysis lets to define a unique 

distribution of stresses and internal reactions in a specific point, in terms of 

nodal displacements.

Hence, the stresses are defined by means of a matrix 1σ and relations 

having the following form:
11111
opaS εσσσ ++=   (5.2-4)

where the last two terms are, respectively, the stresses due to the distribution of 

load on the element and the stresses due to the initial strains when the 

displacement results to be constrained.

The matrix eK and the matrix eS are known, respectively, as stiffness 

matrix and stress matrix of the element.

The relations (5.2-3) and (5.2-4) have been illustrated in an example of 

three nodes element, with interconnection points that are able to transfer only 

two force components. However, the same considerations and the same 

definitions can be applied to a general case.

The element 2 has only two interconnection points, but in general it is 

possible to have a higher number of such points. Moreover, if the connections 

are rigid and built-in, the three components of the generalized forces and of the 
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generalized displacements corresponding to moments and rotations, 

respectively, have to be considered. For rigid connections in three-dimensional 

structures, the number of components for each node is six.
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  (5.2-5)

where e
iq and e

ia have the same components number of the freedom grades. 

These quantities are connected the ones with the others.

The stiffness element matrix is always a square matrix and it assumes the 

form:


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e

KK

KKK

K

......
...
...

...

   (5.2-6)

where:
e
iiK = are square submatrices l x l, with 1 the number of force components 

which have to be considered at nodes.

For example, it can be considered a hinged beam, having an uniform section 

A and Young’s modulus E, in a two-dimensional problem, as it is shown in the 

following figure.
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Figure 5.2  Hinged beam.

The examined beam is subjected to an uniform lateral load p and to a

uniform thermal deformation:

 εo=αT  (5.2-7)

By denoting with xi , yi and xn , yn the extreme nodes coordinates, the beam 

length is defined as:

 ( ) ( ) ][ 22
inin yyxxL −+−=  (5.2-8)

and its slope with regards to the horizontal axis as:

 
in

in

xx
yy

−
−

= −1tanβ  (5.2-9)

At nodes, only two components of the forces and of displacements have to 

be considered.

The nodal forces due to lateral loads are:
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and represent the components of the reactions on the beam, pL/2.

In order to block the thermal strain εo , an axial force is necessary (EαTA), 

whose components are:
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   (5.2-11)

The element displacements are, finally:
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   (5.2-12)

They cause an elongation equal to ( ) ( ) ββ sencos inin vvuu −+− . This one, 

multiplied for EA/L, yields the axial forces whose components can be found 

again.

By using a matrix notation, it s obtained:

=eeaK

i

i

n

n

U

V

U

V

=

 
  
 
 
  



Chapter V – Remarks on finite element method (F.E.M.)    294
  

2 2

2 2

2 2

2 2

cos sen cos cos sen cos

sen cos sen sen cos sen

cos sen cos cos sen cos

sen cos sen sen cos sen

i

i

n

n

u

vEA
uL

v

β β β β β β

β β β β β β

β β β β β β

β β β β β β

− −

− −
=

− −

− −

  
           

(5.2-13)

The general components of the equation (5.2-3) have been established by 

means of the analysis of an elementary case. It is very simple to obtain the 

stress in a general element section in the form given by (5.2-4).

For example, if our attention is focused on the middle section C of the 

beam, the extreme stress in the fibres is determined by the axial forces and 

bending moments acting on the element. By using the matrix notation, it can be 

written:
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 (5.2-14)

where:

d = half deepness of the section.

I = inertial moment of the area.

All the terms in the (5.2-4) can be easily known.

For more complex elements, more advanced analytical procedures have 

been required, but the results are formally identical.

It is worth to notice that the complete stiffness matrix, obtained for the 

simple examined element, results to be symmetric. This is the consequence of 

the energy conservation and its corollaries (the well known Maxwell-Betti 

theorem). 
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The properties of the elements are assumed by considering simple linear 

relations. Generally, similar relations could be also established for non-linear 

materials.

5.3 Assembly and analysis of a structure

Let us consider the whole structure of the figure 5.1. In order to obtain the 

complete solution, both the following conditions have to be satisfied:

a- compatibility

b- equilibrium

A general system of nodal displacements a, having the form:
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1

   (5.3-1)

and built by taking into account all the structure elements, satisfies 

automatically the first condition.

In this way, the equilibrium condition within the single element is satisfied, 

while it is necessary to establish the equilibrium condition at structure nodes. 

The resulting equations will carry the unknown displacements, so that the 

structural problem is determined after founding such displacements.

The internal elements forces or the stresses can be easily attained from the 

equation (5.2-4) by using priori-established characteristics for each element.

Let us consider that the structure is loaded with external nodal forces r, in 

addition to distribute loads acting on the single elements.
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The generic force ri, moreover, must have the same number of components 

than those ones of the reactions of the examined elements.

For example, in this case, since the hypothesis of hinged nodes has been 

done, it is:
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i
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X

   (5.3-3)

However, in order to generalize the problem, an arbitrary number of 

components are taken into consideration.

If the equilibrium conditions for a general node i are imposed, each ri

component is equal to the summation of the components of the forces acting on 

the elements concurred in the node.

Hence, by considering all the components of the forces, it is obtained:

∑
=

++==
m

e
ii

e
ii qqqr

1

21 ...    (5.3-4)

where:
1
iq = the force contribute to the node i from the element 1.

2
iq = the force contribute to the node i from the element 2.

Only the elements concurred in the node evidently give a non-zero 

contribute to the forces. For not losing in generality, the summation is here 

thought to be extended to all elements.
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By substituting in the equation (5.2-3) the forces contribute to the nodes i

and by noting that the nodal variables ia are common (so that the index e can 

be omitted), it is obtained:

∑∑∑
===

++







+








=

m

e

e
i

m

e

e
i

m

e

e
ii faKaKr

1
2

1
21

1
1 ...   (5.3-5)

where:

  e
o

e
p

e fff ε+=   (5.3-6)

and where the summation is again pertained to the sole elements concurred in 

the node i. 

By assembling the equations, relative to all nodes, it is simply obtained:

frKa −=   (5.3-7)

where the submatrices are:

∑
=

=
m

e

e
ijij KK

1
   (5.3-8)

  ∑
=

=
m

e

e
ii ff

1
   (5.3-9)

and where the summation includes all elements.

Such a rule for assembling is very suitable because as soon as a coefficient 

is determined, for a typical element, this one can be immediately introduced in 

its own location within the global stiffness matrix of the structure.

This general process can be easily extended and generalized to any process 

which adopts the finite elements methodology.

It is worth to be noted, moreover, that the structure is constituted by 

different elements and that, in order to carry out the matrix summation, all the 

matrices must have the same dimensions. Furthermore, the single matrices to 

sum have to be constructed with the same number of components of forces and 
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displacements. For example, if a force component is able to transfer moments 

at a node and if another hinged node is coupled with it, it is necessary to 

complete the stiffness matrix by inserting appropriate null coefficients 

corresponding to rotations or moments.

5.4 Boundary conditions

The system of equations resulting from the (5.3-7) can be solved afterwards 

having substituted the pre-determined displacement field. In the example of the 

figure 5.1, where both the displacement components of nodes 1 and 6 are equal 

to zero, this means the substitution of:

 








==
0
0

61 aa  (5.4-1)

This is equivalent to reduce the number of equilibrium equations (12 for this 

case) by deleting the first and the last couple and, so, by reducing to eight the 

number of unknown displacements.

It is always suitable, nevertheless, to include all nodes when assembling the 

equations according to the relations (5.3-7). Obviously, without a number 

minimum of constrained displacements, (that is a number minimum of 

constrains which blocks the rigid displacement of the structure), it is not 

possible to solve the system, since the displacements cannot univocally be

determined. Such an obvious physical problem can be mathematically read in 

the fact that the matrix K becomes singular and has not an inverse matrix.

The assignment of suitable displacements, after the phase of the assembly, 

allows obtaining a unique solution by deleting suitable rows and columns from 

the various matrices. 
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If all the equations of a system are assembled, the assumed form is the 

following one:

22222121

11212111

...
...

fraKaK
fraKaK

−=++
−=++

  (5.4-2)

It is well known that, if some displacements as 11 aa = are set, the external 

forces 1r cannot be set and they remain unknown. The first equation can be 

deleted and the 1a value can be substituted in the remaining equations.

Such a computational process is uncomfortable and the same result can be 

reached by adding a very large number, Iα , to the coefficient 11K and then by 

rectifying with α1a the right member of the equation 11 fr − . 

If α is quite greater than the other stiffness coefficients, such a correction 

really substitutes the first equation of the (5.4-2) with the following one:

11 aa αα =     (5.4-3)

which represents the required condition.

The whole system remains symmetric and only few and little changes are 

necessary in the computational sequence. Such a procedure is employed for the 

assigned displacements. It was introduced by Payne and Irons.

When all the boundary conditions have been introduced, the system 

equations can be solved according to unknown displacements and strains. 

Hence, the internal forces for each element are obtained.

5.5 General model

In order to straighten the topic discussed in this chapter, we consider an 

example where five elements are interconnected, as shown in the figure 5.3. 
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Figure 5.3 An assembly example for the stiffness matrix.

The first step is to determine the element properties from geometry and 

loads. 

For each element, the stiffness matrix, and so the corresponding nodal 

forces, are found in the form given by the (5.2-3). Each element is identified by

its own number and by nodal connections. For example:

element 1 connection 1  3  4

element 2 1  4  2

element 3 5  2

element 4 3  6  7 4

element 5 4  7  8  5

Tabe 5.1 Nodal connections.
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By assuming that the properties are evaluated in a global reference system, 

the stiffness values and the forces can be introduced in their location in the 

global matrix (see fig. 5.3b). Each shaded square represents a single coefficient 

or submatrix of a kind ijK .

The second step is the assembly of the final equation. According to the 

equation (5.3-8), this is obtained by means of a simple summation of all 

numbers set in the apposite spaces of the global matrix.

The result is shown in the figure 5.3c, where the coefficients are blackened.

All the non-zero coefficients are edged within the BAND, which can be a 

priori-calculated from the nodal connections.

In a computer programming, only the elements located to one side of the 

diagonal have to be memorized.

The third step is the input of the boundary conditions in the assembled 

matrix.

The fourth step is the solution of the system with any methodology. 

5.6 The systems of standard discretization

In the standard discretization systems, either structural ones or other 

different ones, it is worth:

1) A set of parameters, called ai, can be detected. These parameters 

simultaneously describe the behaviour of each element e and of the whole 

system. They are called system parameters.

2) For each element, a set of quantities qi
e can be calculated, in function of the 

system paramaters ai, as shown in the following equation:

)(aqq e
i

e
i =   (5.6-1)
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Such relations can generally be non-linear, but in a lot of cases they assume 

a linear form, of a kind:
e
iii

e
i faKaKq +++= ...2211   (5.6-2)

3) The system of equations is obtained by a simple sum:

∑
=

=
m

e

e
ii qr

1
  (5.6-3)

In the linear case, it is obtained:

rfKa =+   (5.6-4)

so that:

∑

∑

=

=

=

=

m

e

e
ii

m

e

e
ijij

ff

KK

1

1     (5.6-5)

From such system, after the suitable boundary conditions have been 

imposed, the solutions in the variables a are found.

It is noticed that these statements are very general and they include 

structural problems, hydraulic or electronic ones, etc. Generally, there is neither 

linearity nor the symmetry of the matrices, even if both linearity and symmetry 

naturally come in a lot of problems.

5.7 Coordinate transformations

It is often suitable to establish the characteristics of a single element in a 

coordinate system different from the one in which the external forces and 

displacements of the assembled structure will be measured.
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A new coordinate system can be used for each element, so it becomes a 

simple problem of transformation of the force and displacement components 

contained in equation (5.2-3) in another coordinate system.

Obviously, the passage from the local reference system to the global one has 

to be carried out before to employ the assembly.

The local coordinate system in which the element properties have been 

evaluated is marked by the superscript ′. 

The displacement components can be transformed through a suitable matrix 

of the direction cosines L with:

Laa ='    (5.7-1)

The corresponding force components have to carry out the same work in the 

systems:

'' aqaq TT =     (5.7-2)

By considering the (5.7-1), it is obtained: 

 Laqaq TT '=  (5.7-3)

or

'qLq T=    (5.7-4)

The set of the transformations given by the (5.7-1), (5.7-2), (5.7-3) and 

(5.7-4) is called controvariant.

The stiffness matrix could also be obtained in the local reference system, 

and so opportunely transformed. It can be, therefore, written:

''' aKq =    (5.7-5)

From the (5.7-1), (5.7-3), (5.7-4) and (5.7-5), it is obtained:

 LaKLq T '=  (5.7-6)

or in the global coordinate system:

LKLK T '=   (5.7-7)
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The above mentioned transformation results to be very useful. This fact can 

be verified by calculating the stiffness values of the previous example 

(structure with hinged nodes) in the local reference system.

Generally, the problem is to substitute a group of parameters a, in which the 

system of equations has been written, with another one b by means of a 

transformation matrix T. Hence, it is obtained:

Tba =    (5.7-8)

In the linear problem, the system of equations assumes the following form:

frKa −=    (5.7-9)

and, by substituting, it can be written:

frKTb −=   (5.7-10)

By pre-multiplying for TT, it is obtained a new system:

( ) fTrTbKTT TTT −=   (5.7-11)

where the equations symmetry is preserved if the matrix K is symmetric. 

However, sometimes the matrix T is not a square matrix and the (5.7-8)

represents an approximation in which a large number of parameters a is

constrained. 

Evidently, the system of equation (5.7-10) has more equations than those 

closely necessary in order to solve the transformed group of parameters b and

the final expression (5.7-11) shows a reduced system which rounds the original 

one.

5.8 General concepts

The approximation process of a continuum behaviour by means of “finite 

elements” (whose behaviour is quite similar to the actual structure make 

“discrete”) was introduced, in the first place, on mechanical structures.
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In a lot of engineering problems, the solution of the stress and strain 

distributions in an elastic continuum is required and different problems can be 

encountered: plane stress field, plane strain field, solids with an axial 

symmetry, plates, shells, three-dimensional solids and so on.

In all cases, the number of interconnections between each finite element and 

its contiguous ones, through imaginary boundaries, is infinite. For this reason, 

it is very difficult to understand, in a first approach, how some problems may 

be discretized.

Such a difficulty, however, can be overcome in the following manner:

1. The continuum is divided, by imaginary lines or areas, in a finite number of 

elements. 

2. The elements are assumed to be interconnected by means of a discrete 

number of nodal points located on their boundary. The nodal displacements 

are the unknown quantities of the problem.

3. A set of functions is selected to univocally define the displacement field 

within each “finite element” in terms of the nodal displacements.

4. The displacement functions univocally define the strain field within the 

element in terms of nodal displacements. Such strain field, together with 

some initial strains and with material properties, define the stress state in 

the element and on its boundary.

5. A force system, acting on nodes, in equilibrium with the boundary tractions 

and some distribute loads, is obtained by means of the stiffness relation 

(5.2-3).

Finally, the solving procedures follow the general models described in the 

previous paragraphs. 

Obviously, in a first approach, it is not always easy to select displacement 

functions which satisfy the requirement of continuous displacements between 
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contiguous elements. This means that the compatibility conditions on boundary 

can be violated. On the contrary, the compatibility conditions within each 

element are obviously satisfied, due to the uniqueness of the displacement 

underlying their continuous representation.

Furthermore, the equilibrium conditions are satisfied only in a global form, 

due to the equivalent point-wise forces at nodes. Hence, local violations to the 

equilibrium conditions can rise within the element and its boundary.

The choice of the element form and of the displacement functions form is 

depending by the engineer’s genius and, evidently, the approximation degree in 

the results is strongly dependent by this choice. 

Such a till now described approach is known as displacement formulation. It 

is equivalent to minimize the total potential energy of the system in terms of an 

assigned displacement field. The right definition of such displacement field 

provides a convergence in the results.

The acknowledgment of the equivalence between the finite element method 

and a minimization procedure for the total potential energy has been guessed 

late.

However, Courant in 1934 and Prager at Synge in 1947 suggested methods 

essentially identical.

It is worth to notice that the finite element method allows to be extended to 

various continuum problems where it is possible to have variational 

formulations.  

5.9 Direct formulation of the Finite Element Method

In this paragraph, some indications are given in a more detailed 

mathematical form, in order to obtain the characteristics of a finite element. It 
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is preferred to obtain the results in a generalized form, which is, so, applicable 

to various situations.

In order to avoid difficult concepts, the general relations are illustrated by 

means of very simple examples regarding the analysis of plane stress fields for 

a thin structure.

A general region is divided in triangular elements, as shown in the figure 

5.4.

Figure 5.4  Plane stress field for a region divided in triangular elements.

5.9.1 Shape functions

A typical finite element, e, is defined by the nodes i, j, m,... etc. and by 

boundary lines. The displacement vector u in a point within the element is 

approximated by a column vector û .
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where:

Ni = pre-established functions depending on the nodes coordinates
e
ia = nodal displacements for a particular element.

In plane stress field, it is obtained, for example:

    =u
( )
( )








yxv
yxu

,
,

   (5.9.1-2)

This represents the column vector (horizontal and vertical displacements) of a 

typical point within the element. Moreover, it also is:

   =ia








i

i

v
u

   (5.9.1-3)

which represents the column vector of the corresponding nodal displacements

(node i).

The functions Ni, Nj, Nm are chosen so that they provide the respective 

nodal displacements when the corresponding node coordinates are introduced 

in the equation (5.9.1-1).

In general, it can be written:

  Ni ( ) =ii yx , I (identity matrix)  (5.9.1-4)

while:

 Ni ( ) =jj yx , Ni ( ) ,0, =mm yx  etc (5.9.1-5)

which is always satisfied by suitable linear functions in x and y.
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If both displacement components are identically interpolated, it can be 

written:

Ni=Ni I (5.9.1-6)

where Ni is obtained by the (5.9.1-1), by noticing that Ni=1 for the vertex with 

coordinates xi, yi but it is equal to zero for the other ones.

In the case of triangular elements, the more obvious linear interpolation is 

shown in the following figure.

Figure 5.5  Shape function for triangular elements.

The function N is named shape functions and they are very important, as it 

will be seen, in the analysis to finite elements.

5.9.2 Strain fields

By the knowledge of all displacements within the element the strain field 

can be determined everywhere, in each element point, according to the 

following matrix relation:

 uS=ε   (5.9.2-1)

where:

S = a suitable linear operator. 



Chapter V – Remarks on finite element method (F.E.M.)    310
  

By considering the equation (5.9.1-1), the (5.9.2-1) is approximated as:

aB=ε   (5.9.2-2)

with:

NSB =   (5.9.2-3)

For plane strain fields, the strain values are obtained in terms of 

displacement fields by means of the well-known relations which define the 

operator S:
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(5.9.2-4)

If the shape functions, Ni, Nj, Nm,  are already established, the matrix B can 

be easily reached. If a linear form is assumed for such functions, the strain field 

is constant everywhere in the element.

5.9.3 Stress fields

Generally, an element is subjected to initial strains, on its boundary, due, for 

example, to temperature gradients. Such strains are denoting with 0ε . 

The stresses are caused by the difference between the actual strains and the 

initial ones. Furthermore, it is suitable to assume that there was also an initial 

stress state in the element, due to residual stresses 0σ ,which can be measured 

but cannot be known if the material stress history is unknown.

Hence, for a linear-elastic behaviour, they are assumed the following stress-

strain linear relations: 
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( ) 00 σ+ε−ε=σ D   (5.9.3-1)

where:

D = elastic stiffness matrix which contains the material properties.

For plane stress fields, there are only three stress components, denoted with: 
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(5.9.3-2)

The matrix D is simply obtained from the stress-strain for an isotropic 

material:

(5.9.3-3)

Hence, it is obtained:
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5.9.4 Equivalent nodal forces

Let us assign the following nodal forces:
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which are statically equivalent to the boundary tractions and to the element 

distribute loads.

Each force e
iq has the same number of components than the corresponding 

nodal displacements ia and also the same directions.

The distribute mass forces b are defined as forces on unit volume at an 

element point and they have directions corresponding to those ones of the 

displacements u in such point.

For example, in a plane stress state, the nodal forces are:

=e
iq



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



i

i

V
U

(5.9.4-2)

where the components U and V correspond to the displacement directions u and

v, while it is:

=b








y

x

b
b

(5.9.4-3)

where bx, and by, are the mass force components.

In order to found the statically equivalent nodal forces, it can be imposed a 

virtual displacement, eaδ , at nodes and then the external work has to be 

balanced to the internal one.

According to the equations (5.9.1-1) and (5.9.2-2), the assignment of the 

virtual displacement eaδ implies the following displacements and strains, 

respectively:
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eaNu δ=δ  and  eaBδ=εδ   (5.9.4-4)

The external work can be written in the following matrix form as:

eTe qaδ   (5.9.4-5)

while the internal work for unit volume is given by:

buTT δ−σεδ   (5.9.4-6)

or

)( bNBa TTT −σδ    (5.9.4-7)

By integrating the internal work in the element volume Ve and, then, by 

balancing the two works, it is obtained:











−σδ=δ ∫∫

ee V

T

V

TTeeTe dVbNdVBaqa   (5.9.4-8)

The equation (5.9.4-8) is valid for each virtual displacement and, therefore, 

it has to be verified the following relation:

∫∫ −σ=
ee V

T

V

Te dVbNdVBq   (5.9.4-9)

By taking into consideration the equation (5.9.3-1), the equation (5.9.4-9)

can be written in the following form:
eeee faKq +=   (5.9.4-10)

where:

∫=
eV

Te dVDBBK   (5.9.4-11)

and

∫∫∫ σ+ε−−=
eee V

T

V

T

V

Te dVBdVDBdVbNf 00  (5.9.4-12)
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In the last equation, the three terms in the right hand represent the forces 

due, respectively, to the mass forces, to the initial strains and to the initial 

stresses.

If the initial stress field is self-equilibrated, like in the case of residual 

stresses, the contribute of such forces in the (5.9.4-12) is identically null. For 

this reason, their estimation is often omitted. 

In the particular case of plane stress field for triangular elements, the matrix 

B doesn’t depend on the coordinates, so the volume integral becomes 

particularly simple.

The structure interconnection and the structure solution, given by the 

elements assembly, follow the simple procedures until now described.

Generally, nodal concentrated forces can be applied at nodes, and so the 

matrix:
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   (5.9.4-13)

is added up to the equivalent nodal forces.

If some boundary displacements are individualized, they can be satisfied by 

establishing some of the nodal parameters a. 

Let us consider that the boundary is subjected to distribute loads t for unit 

area. Thus, a load condition at the nodes of an element having a boundary face 

Ae has to be taken into consideration. By means of the virtual work principle, it 

is read as:

∫−
eA

T dAtN   (5.9.4-14)
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It is worth to notice that t must have the same number of u components in 

order to satisfy the (5.9.4-14). 

Once the nodal displacements are determined from the global structure 

solution, the stress field in some elements points are found by means of the 

equations (5.9.2-2) and (5.9.3-1), that is:

00 σ+ε−=σ DDBae    (5.9.4-15)

where the terms of the equation (5.2-4) are immediately recognized. The stress 

matrix is given by:

DBS e =   (5.9.4-16)

and the stresses:

000 σ+ε−=σε D     (5.9.4-17)

have to be summed.

In the (5.9.4-15) there are not the stresses due to the distribute load, e
pσ , 

because the internal element equilibrium has not been considered, since only 

global equilibrium condition have been established.

5.10 Generalization to the whole region

In the previous paragraph, the virtual work is applied to the single elements 

and it is introduced the concept of the equivalent nodal forces. The assembly 

follows the traditional approach of the direct equilibrium.

The idea of considering the contribute of the nodal forces on the element 

substitutes the actual interactions in the continuum. If such introduction of 

nodal forces which are equivalent to nodes is quite obvious from an 

engineering point of view, it is less obvious from the mathematical one. 
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The reasoning previously done can be directly applied on the whole 

continuum. However, each element has to be separately considered, yet. Thus, 

the equation (5.9.1-1) can be read as applied on the whole structure, and so it 

assumes the following form:

aNu =    (5.10-1)

where a comprises all the nodal displacements and where:
e
ii NN =    (5.10-2)

if the point i is internal to a particular element e while it is:

0=iN    (5.10-3)

if the point i is not internal to a particular element e.

The matrix B is also defined and it is considered that the shape functions 

are defined on the whole region V. For simplicity, we omit the superscript 

   . For virtual displacements δa, the sum of the internal and external work 

for the whole region assumes the following form:

∫∫∫ σδε−δ+δ=δ−
V

T

A

T

V

TT dVdAtudVbura   (5.10-4)

In the equation (5.10-4), the quantities δa, δu, δε are arbitrary only if they 

derive from continuous displacements. Let us assume, for simplicity, that such 

quantities are simple variations according to (5.9.2-2) and (5.10-1). Hence, by 

considering the (5.9.3-1), an algebraic system is obtained:

rfKa =+   (5.10-5)

where:

∫=
V

T dVDBBK    (5.10-6)

and
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∫∫∫∫ σ+ε−−−=
V

T

V

T

A

T

V

T dVBdVDBdAtNdVbNf 00   (5.10-7)

The integrals are calculated on the whole volume V and on the whole 

surface A. 

It is obvious that:

∑= e
ijij KK   ∑= e

ii ff   (5.10-8)

since, for the property of the definite integrals, it is:

( ) ( )dVdV
V V e
∫ ∑ ∫=   (5.10-9)

The same thing is true for the area integrals.

The assembling rules are so obtained without building the interaction forces 

between the elements.

By considering the equation (5.10-4) and by making it equal to the sum of 

each element contributes, it is implicitly assumed that there are not 

discontinuities between adjacent elements. In other words, it is required that the 

integrated terms in the equation (5.10-9) are continuous functions. Such terms 

derive from the function Ni used to define the displacement u. (eq. (5.10-1)).

Hence, for an example, if the strains are obtained by the first derivatives of the 

function N, the latter have to be continuous, that is, it has to be a C0 class 

function. In some more general problems, the strain can be defined by means of 

the second derivatives of the function N. In such cases, it is required that the 

function N and its derivatives have to be continuous, that is, they have to be C1

class functions.
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5.11 Displacement method as the minimum of the total potential energy

The virtual work principle used in the previous paragraphs guarantees the 

satisfaction of the equilibrium conditions, in the pre-established limits of the 

displacement model. If the number of the parameters a, defining the 

displacement field, increases beyond some limits, then all the equilibrium 

conditions can be assured since the approximation is very close to the reality.

Hence, the equation (5.10-4) can be rewritten in a different form if the 

virtual quantities δa, δu, δε are considered as variations of the actual ones. For 

example, it becomes:

WdAtudVbura
A

T

V

TT δ−=







++δ ∫∫   (5.11-1)

where:

W = external forces potential

This is true if ri, b, t are conservative. 

The last terms of the equation (5.10-4) for elastic materials can be written in 

the following form:

∫ σεδ=δ
V

T dVU     (5.11-2)

where:

U = elastic system energy.

For a linear-elastic material, whose behaviour is described in the equation 

(5.9.3-1), it is:

∫∫∫ σε+εε−εε=
V

T

V

T

V

T dVdVDdVDU 002
1

  (5.11-3)

where:

D = elastic symmetric matrix
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By considering the equation (5.10-4), it can be simply written:

( ) ( ) 0=δ=+δ ΠWU   (5.11-4)

where:

Π = total potential energy.

This means that, if the equilibrium is assured, the total potential energy is 

stationary for admissible displacement variations.

The equations previously obtained (from the (5.10-5) to the (5.10-8)) are 

simply the result of such variations with respect to constrained displacements 

of a finite parameters number a . It can be written:

0

.

.

.
2

1

=































∂
∂
∂
∂

=
∂
∂ a

a

a

Π

Π

Π
   (5.11-5)

It is demonstrated that in condition of elastic stability, the total potential 

energy is not only stationary but it touches a minimum. So, the finite element 

method looks for a minimum within an assumed displacement model.

It is worth to notice that the actual equilibrium requires an absolute 

minimum of the total potential energy Π .

5.12 Convergence criterions

By assuming accurate shape functions, the endless system grades of 

freedom are contained and the minimum of the total potential energy can be not 

found independently from the refinement of the mesh.
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In order to assure the convergence to the correct result, some requirements 

have to be satisfied.

For example, the shape functions must be able to represent the 

displacements distribution in a form which has to be the closest one to the 

actual distribution. This means that the shape function must be chosen 

according to determined criterions:

• CRITERION 1: The shape functions have to be so to describe a null strain

state. This occurs in case of rigid displacements.

• CRITERION 2: The shape functions have to be so to describe a constant 

strain state. It is worth to notice that the second criterion includes the first 

one, since the rigid displacements yield a particular case of constant strain 

field, which is null everywhere.

Both the criterions have to be satisfied if the elements dimension, at the limit, 

tends to zero. By imposing such criterions on finite sizes, a greater solution 

accuracy is yielded. 

• CRITERION 3: The shape functions have to be chosen so that the interface 

strains result to be finite. This criterion implies a certain continuity of 

displacements cross the elements.

5.13 Error discretization and convergence classes

Generally, the approximation in the displacement field given by the 

equation (5.9.1-1) makes the solution to be exact, in the limits in which the h

element dimension decreases. In some cases, the exact solution is obtained with 

a finite number of subdivisions (or with a single element) if the used 

polynomial growth exactly complies with the solution. So, if the exact solution 



321      Chapter V – Remarks on finite element method (F.E.M)  

is, for example, a square polynomial and if the shape function includes all the 

square terms, the approximations will yield just the exact solution. This latter 

can always be expanded in series in the around of a point or a node with a 

polynomial growth, as a kind:

( ) ( ) ...+−







∂
∂

+−







∂
∂

+= i
i

i
i

i

i
i yy

y
uxx

x
uuu   (5.13-1)

If a polynomial expression with p grade is used within an h dimension 

element, it can locally comply with the expansion in Taylor’s series. Moreover, 

if  x and y have the same order of magnitude than h, the u error will be of the 

order )( 1+phO . Thus, for example, for a plane stress field where a linear 

expression of p=1 grade is used, an order )( 2hO convergence class is 

expected and the error in displacement field is reduced to 1/4 for a halved 

mesh. 

With analogous reasoning, the strains (or stresses) which are given by the 

m-th derivative of the displacement can converge with an error of )( 1 mphO −+

(in the above cited example where m=1 the error is ( )O h ).

The elastic energy given by the square value of the stresses converges with 

an error of  )( )1(2 mphO −+ or, in case of plane stress field, )( 2hO .

In a lot of problems, the simple determination of the convergence order is 

sufficient to extrapolate the correct result.

Hence, if the displacements converge with an error of )( 2hO and two 

approximate solutions u1 and u2 are obtained with a mesh size of  h and h/2, it 

can be written:

4
)2/(
)(

2

2

2

1

==
−
−

hO
hO

uu
uu

  (5.13-2)
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where u is the exact solution.

The discretization errors are not the only possible in the finite elements 

computation, since the rounding errors produced by the electronic computer on 

the decimal digits have to be summed to the discretization ones. Such errors are 

minimized if computers which use a great number of significant digits are used.

5.14 Analysis of a three-dimensional stress field

In this paragraph, the finite element method is applied to a generic three-

dimensional stress state.

The simplest element in three-dimensions is the tetrahedral one, which is a 

four nodes element, whose characteristics are analyzed in the follows. 

5.14.1 Displacement functions

Let us consider the tetrahedral element i, j, m, p in the reference system 

x,y,z, as it is shown in the following figure.

Figure 5.6 A tetrahedral volume.
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It is:

=u
















w
v
u

  (5.14.1-1)

where a linear function is assumed like displacement function, as given in the 

following equation:

=u zyx 4321 αααα +++   (5.14.1-2)

By making equal the displacement values at node, four equations are 

obtained, given by:

iiii zyxu 4321 αααα +++=   (5.14.1-3)

where the coefficients from 1α to 4α can be evaluated.

It is possible to write the solution by using a form as a kind:

V
u

6
1

=
( ) ( )
( ) ( ) 












+++++++

++++++++

pppppmmmmm

jjjjjiiiii

uzdycxbauzdycxba
uzdycxbauzdycxba

  (5.14.1-4)

with:
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1
1
1
1

det    (5.14.1-5)

where the value V represents the tetrahedral volume. Furthermore, it is:
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 (5.14.1-6)

where the constants can be defined by means of an index rotation, in order p, i, 

j, m.

The ordination of the nodal numbers p, i, j, m is done in counter clockwise, 

as shown in the figure 5.6. 

The displacement element is defined by twelve nodal displacements 

components:
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
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a    (5.14.1-7)

with
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
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
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i

w
v
u

etc                    (5.14.1-8)

The displacement of an arbitrary point can be written in the form:

u=[INi, INj, INm, INp ]ae    (5.14.1-9)

where the shape functions are defined as:

V
zdycxbaN iiii

i 6
+++

= etc   (5.14.1-10)

with
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I = identical matrix.

The used displacement functions obviously satisfy the required continuity at 

the interface between two different elements, as natural consequence of their 

linearity.

5.14.2 Strain matrix

The six strain components are all considerable in the three-dimensional 

analysis. Hence, the strain matrix is so defined:
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where the standard Timoshenko’s notation is assumed.

By using the equations  (5.14.1-3) and (5.14.1-9), it is easily verified that:

[ ] e
pmji

e aBBBBBa ,,,==ε   (5.14.2-2)

where
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 (5.14.2-3)

The initial strain field is written in the form:
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e

e

e

   (5.14.2-4)

with

α = coefficient of thermal dilation

θe = mean raise of temperature in the element.

5.14.3 Elasticity matrix

In case of complete anisotropy, the matrix D contains 21 independent 

constants. Generally, it is:
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In case of isotropic material, the matrix D is described in function of only 

two independent elastic constants, E and υ , and it assumes the following form:

 ( )
( )( )
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  (5.14.3-2)

5.14.4 Stiffness, stress and loads matrix

The stiffness matrix is defined by means of the equation (5.9.4-8) and it can 

be easily expressed since the stresses and the strains within the element are 

constants. The general stiffness submatrix is given by:
e

j
T
i

e
ij VDBBK =    (5.14.4-1)

where:

Ve = tetrahedral volume.
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The nodal forces, due to the initial strain field, have the following form:
eT

i
e
i VDBf 0ε−=   (5.14.4-2)

The forces due to the initial stress field have an analogous form.

The mass distribute forces are expressed in terms of the components bx, by, 

bz. It is possible to show that the nodal forces equivalent to the distribute mass 

ones result equal each others and they are equal to ¼ of the resulting force in 

case where the mass forces are constant. 
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CHAPTER VI

Computational Analyses

6.1 Introduction

In the previous chapter, it has been studied the finite element method from a 

theoretical point of view. Hence, it has been seen that the FEM can be thought 

as a mathematical model able to include in it the continuum theories. Such 

method, in fact, overcomes the difficulties of the analysis of a continuum solid

structural response by operating a discretization of the same continuum. This 

means, as already seen, that the solid is divided in a finite number of elements, 

whose structural behaviours are known. Such elements, when assembled with 

accurate relation laws among the nodes, are able to yield the global behaviour 

of the primitive solid, even if approximately. Obviously, the solution is as 

much close to the actual mechanical response as the mesh is heightened.
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After having introduced these fundamental and essential notes on the 

F.E.M. theory, the goal of this chapter will be to show some computational 

analyses, carried out by means of the calculation code Ansys, in its version 6.0.

This software offers a large number of appliances in a lot of engineering 

fields and it is just based on the mathematical F.E.M. model.

In the follows, the used micro-mechanical model and the effected analyses 

will be described. Since, in linear-elastic field, a numerical analysis can 

efficaciously replace an experimental test, such finite element analyses have 

been employed in order to compare the analytical results obtained by our

proposed homogenization techniques, shown in the chapter 4, and the literature 

data.

6.2 Micro-mechanical model

The micro-mechanical model used in the finite element analyses is the 

same one considered in the S.A.S. homogenization approach and illustrated in 

the chapter 4. In particular, it is constituted by a periodic basic cell extracted 

from a single leaf masonry wall in stretcher bond, as shown in the figure

below:

Figure 6.1 Definition of masonry axes and of chosen micro 
mechanical model.

m

b
m

m

m

b

m

m

b
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where m stands for the mortar components and b stands for the brick ones.

The assigned dimensions are so that the equivalence in the volumetric 

fractions, between the above mentioned model and the one considered in the 

Lourenco-Zucchini analysis and in the statically-consistent Lourenco approach, 

is obtained.

In particular, the two models must have the following dimensions:

Figure 6.2 Equivalence in the volumetric fractions between the two 
micro mechanical models.

The input data considered in the analysis are:
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 (6.2-1)

with:

bE = Young modulus for the brick, considered isotropic

mE = Young modulus for the mortar, considered isotropic

bν = Poisson modulus for the brick

mν = Poisson modulus for the mortar

s = Thickness of the brick in z-direction

zl = Dimension of the micro-mechanical model in z-direction

The assumed hypothesis of linear elasticity lets to study the elastic response 

of the model for a generic loading condition as linear combination of the elastic 

responses for six elementary loading conditions. In particular, both stress-

prescribed and strain-prescribed F.E.M. analyses have been carried out.

In the following paragraph, the results obtained with the stress-prescribed 

analysis will be described.

However, it is first illustrated, in the figure below, the finite element model 

which has been used in the numerical analysis. 
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Figure 6.3 Finite element model-mesh.

The element type considered was the structural solid 45, in particular the 

brick 8 nodes. The mesh was obtained by a process of regular subdivisions of 

all model lines, by taking into account a mesh size of 0.5 cm. Thus, the model 

has been discretized in a number of the elements n equal to 21120.

6.3 Stress-prescribed analysis

In the stress-prescribed analyses, the goal has been to obtain the overall 

compliance tensor by means of six numerical analyses. Since an orthotropic 

mechanical behaviour is considered, only nine elastic coefficients will be 

independent and different from zero.

By using the Voigt notation, so that:
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the stress-strain relation can be written in the following form:
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   (6.3-2)

where the superscript    means that the above written equations refer to the 

average values of the corresponding quantities within the considered RVE.

By applying the six loading conditions one at a time, it is possible to obtain 

the single columns of the compliance tensor, one at a time too, according to the 

following relation:

    , 1,2,3, 4,5,6i
ij

j

S i jε
σ

= =     (6.3-3)

More in detail, both homogenized compliance coefficients and physic ones 

are determined, as described in the follows.

• Homogenized elastic compliances

In the chapter 1, it has been seen that, for the average theorem, when the 

boundary conditions are applied in terms of uniform stresses on the considered 

RVE (basic cell), the following relation furnishes the average stress value in 

the RVE volume:
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 01 1 2 3 4 5 6j j j
V

dV j
V

σ σ σ= = =∫ , , , , ,  (6.3-4)

where V stands for the volume of the basic cell and 0
jσ is the generic stress-

prescribed component.

The same result is attained if the above shown RVE is considered subjected, 

for an example, to a unit stress component 0
jσ , i.e:

   0 1jp σ= = −      (6.3-5)

Hence, the resulting force jF on loaded face is obtained by:

   ( ) ( )

1

m
r r

j j
r

F Aσ
=

= ∑     (6.3-6)

where:

m = the number of the elements in which the loaded face is discretized.
( )rA = the area of the generic element 
( )r
jσ = the average value of the j-stress component, for the generic element 

Since the used mesh size is constant everywhere, all the areas of the 

elements are equal, too. So, the equation (6.3-6) can be rewritten in the form:

     ( ) ( )

1 1

m m
jr r

j j j
r r

F
F A

A
σ σ

= =

= ⇒ =∑ ∑      (6.3-7)

By dividing both members for the elements number m, it is obtained:

   ( ) 0

1

1 ˆ
m

r
j j j

r tot

F F p
m mA A

σ σ σ
=

= = ⇒ = =∑     (6.3-8)

where:

ˆ jσ = the average value of the j-stress component on the examined loaded face

totA = the area of such loaded face
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The equation (6.3-8) remains unaltered if it is multiplied and divided for l , 

where l is given by:

  
nl
m

=  (6.3-9)

and with:

n = the number of the elements, equal to 21120, in which the whole RVE has 

been discretized.

Since such operation yields the average value of the j-stress component within 

the whole RVE, it is obtained that:

   0 1j jpσ σ= = = −      (6.3-10)

At this point, it occurs to calculate the volume average value of strain, iε , 

obtained as:

 1

n
r

i
r

i
n

ε
ε ==

∑ ( )

  (6.3-11)

where:

n =  the number of elements in which the whole RVE is discretized and equal 

to 21120.
( )r

iε = the average value of the i-strain component, for the generic element.

Hence, the properties of the homogenized cell can be determined by means 

of equation (6.3-3). In detail, in the follows, the found coefficients of the

homogenized tensor of compliances are shown for the six loading conditions:

- case of compression in x-direction:
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     (6.3-12)

- case of compression in y-direction:
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   (6.3-13)

- case of compression in z-direction:
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23

3
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3

43 53 63
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S S S
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    (6.3-14)

- case of shear stress in zy-plane:
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14 24 34
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4

54 64

0

14,78 10

0

S S S

S

S S

ε
σ

−

= = =

= = ⋅

= =

   (6.3-15)

- case of shear stress in zx-plane:

  

15 25 35 45

65
55

5

65

0

9,19 10

0

S S S S

S

S

ε
σ

−

= = = =

= = ⋅

=

    (6.3-16)

- case of shear stress in xy-plane:

    
16 26 36 46 56

66
66

6

0

15,9 10

S S S S S

S ε
σ

−

= = = = =

= = ⋅
      (6.3-17)

Hence, the homogenized compliance tensor assumes the following form:

 6

7.98 1.09 0.95 0 0 0
1.09 12.6 1.04 0 0 0
0.95 1.04 6.6 0 0 0
0 0 0 14.78 0 0
0 0 0 0 9.19 0
0 0 0 0 0 15.9

10
F.E.M

Hom

.
−

− −

− −

− −

 
 
 
 

=  
 
 
 
 

S (6.3-18)

• Physic elastic compliances

The procedure used for determining the physic elastic compliances is 

analogous to the one used for determining the homogenized compliance tensor.

In order to find the volume average stress value on the boundary faces, the 

equation (6.3-8) can be again used. Thus, it is, yet:
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    0 1j jpσ σ= = = −     (6.3-19)

At this point, it occurs to calculate the volume average value of nominal 

strain, iε . In case of normal strain components, it is obtained as:

  i
i

i

l
l

ε
∆

=     (6.3-20)

where:

il = the characteristic RVE lengths 

il∆ = the average characteristic lengths variation, equal to:

   

( )

1

m
r

i
r

i

u
l

m
=∆ =

∑
     (6.3-21)

where:

m =  the number of the elements for the generic loaded surface.
( )r

iu = the average value of the i-displacement component for the generic 

element.

Analogously, the average value of the nominal shear strain components can 

be obtained.

Hence, the properties of the homogenized cell can be determined by means 

of the equation (6.3-3). In detail, in the follows, the found coefficients of the 

physic tensor of compliances are shown for the six loading conditions:

- case of compression in x-direction:
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- case of compression in y-direction:
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    (6.3-23)

- case of compression in z-direction:
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  (6.3-24)

- case of shear stress in zy-plane:
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- case of shear stress in zx-plane:
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- case of shear stress in xy-plane:

  
16 26 36 46 56
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= = = = =

= = ⋅
    (6.3-27)

Hence, the physic compliance tensor assumes the following form:

   6

8.05 1.13 0.97 0 0 0
1.13 12.6 1.1 0 0 0
0.97 1.1 6.8 0 0 0
0 0 0 15.07 0 0
0 0 0 0 8.61 0
0 0 0 0 0 14.54

10
F.E.M

Phys

.
−

− −

− −

− −

 
 
 
 

=  
 
 
 
 

S   (6.3-28)

6.4 Strain-prescribed analysis

In the strain-prescribed analyses, the goal has been to obtain the overall 

stiffness tensor by means of six numerical analyses. Since an orthotropic 
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mechanical behaviour is considered, only nine elastic coefficients will be 

independent and different from zero.

By remembering the Voigt notation, the stress-strain relation can be written 

in the following form:

  

1 111 12 13

2 212 22 23

3 313 23 33

4 444

5 555

6 666

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
S S C
C C C

C
C

C

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

    
    
    
    

= ⋅    
    
    
    

        

   (6.4-1)

where the superscript    means that the above written equations refer to the 

average values of the corresponding quantities within the considered RVE.

By applying the six loading conditions one at a time, it is possible to obtain 

the single columns of the stiffness tensor, one at a time too, according to the 

following relation:

   , 1,2,3, 4,5,6i
ij

j

C i jσ
ε

= =      (6.4-2)

More in detail, both homogenized stiffness coefficients and physic ones are 

determined, as described in the follows.

• Homogenized elastic stiffness

In the chapter 1, it has been seen that, for the average theorem, when the 

boundary conditions are applied in terms of surface displacements on the 

considered RVE (basic cell), the following relation furnishes the average strain

value in the RVE volume:
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   01
j j jV

dV
V

ε ε ε= =∫   (6.4-3)

where V stands for the volume of the basic cell and 0
jε is the generic strain 

component so that:

  ⋅ =0 0x uε     (6.4-4)

with:
0u = prescribed surface displacement.

More in detail, in order to found the homogenized stiffness tensor, the 

average strain value within the RVE volume is obtained as:

   
( )

0

1

rn
j

j j
r n

ε
ε ε

=

= = ∑      (6.4-5)

where:

n  = the number of elements in which the whole RVE is discretized and equal 

to 21120.
( )r
jε = the average value of the j-strain component, for the generic element.

At this point, it occurs to calculate the average value of stress, iσ , obtained 

as:

 1

n
r

i
r

i
n

σ
σ ==

∑ ( )

    (6.4-6)

where:
( )r
iσ = the average value of the i-stress component, for the generic element.
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Hence, the properties of the homogenized cell can be determined by means 

of equation (6.4-2). In detail, in the follows, the found coefficients of the 

homogenized stiffness tensor are shown for the six loading conditions:

- case of normal strain in x-direction:
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- case of normal strain in y-direction:
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- case of normal strain in z-direction:
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- case of shear strain in zy-plane:
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- case of shear strain in zx-plane:
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- case of shear strain in xy-plane:

   
16 26 36 46 56
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66

6

0

0.06 10

C C C C C

C σ
ε

= = = = =

= = ⋅
    (6.4-12)

Hence, the homogenized stiffness tensor assumes the following form:

     6

0.13 0.013 0.02 0 0 0
0.013 0.08 0.014 0 0 0
0.02 0.014 0.17 0 0 0

0 0 0 0.07 0 0
0 0 0 0 0.11 0
0 0 0 0 0 0.06

10
F.E.M

Hom

.

 
 
 
 

=  
 
 
 
 

C  (6.4-13)

• Physic elastic compliances

The procedure used for determining the physic elastic stiffness coefficients

is analogous to the one used for determining the homogenized stiffness tensor.

It occurs to calculate the volume average value of nominal strain, jε . In 

case of normal strain components, it is obtained as:
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0
j

j

j

u
l

ε =        (6.4-14)

where:

jl = the characteristic RVE lengths 

0
ju = the unit prescribed displacement

Analogously, the volume average value of the nominal shear strain 

components can be obtained.

At this point, it occurs to calculate the average value of nominal stress, iσ , 

obtained as:

  i
i

F
A

σ =   (6.4-15)

where:

iF = the resulting force on the loaded surface

A = the area of the loaded surface 

Hence, the properties of the homogenized cell can be determined by means 

of equation (6.4-2). In detail, in the follows, the found coefficients of the

physic stiffness tensor are shown for the six loading conditions:

- case of normal strain in x-direction:
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- case of normal strain in y-direction:
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- case of normal strain in z-direction:
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- case of shear strain in zy-plane:
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- case of shear strain in zx-plane:
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- case of shear strain in xy-plane:
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= = ⋅
    (6.4-21)

Hence, the homogenized stiffness tensor assumes the following form:

  6

0.13 0.013 0.02 0 0 0
0.013 0.08 0.014 0 0 0
0.02 0.014 0.17 0 0 0

0 0 0 0.07 0 0
0 0 0 0 0.11 0
0 0 0 0 0 0.06

10
F.E.M

Phys

.

 
 
 
 
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 
 
 
 

C   (6.4-22)

It is worth to notice that the homogenized and the physic stiffness tensor are 

equal. It is due to the linearity of the problem.

The reader is referred to the appendix to this chapter for the plotting of the

obtained results.

6.5 Numerical Voigt and Reuss estimation

In the chapter 1, general concepts were illustrated about the Reuss and 

Voigt estimations of the overall elastic stiffness and compliance coefficients. 

Moreover, it was underlined that such estimations are extremely useful bounds 

since the actual overall moduli of a heterogeneous material lie somewhere in an 

interval between the Reuss and Voigt estimates.

Thus, in order to obtain the Reuss and Voigt elastic tensors, mortar and 

brick volumetric fractions are calculated for the simple above illustrated RVE.

For clearness of exposition, this latter is shown again, in the following figure 

6.4, with its numerical characteristic dimensions. The unit of measurement is 
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the centimetre. Since the examined basic cell referrers to a single leaf masonry 

wall, the characteristic length in z-direction ( 10zl cm= ) doesn’t influence the

volumetric fractions. Hence, the figure 6.4 shows the RVE in xy-plane.

Figure 6.4  Utilized RVE (xy-plane) in F.E.M. analysis.

The volumetric fractions can, so, be determined as:

    i
i

Af
A

=  ,i mortar brick=       (6.5-1)

where:

iA = mortar and brick surface in xy-plane

A = RVE surface in xy-plane

By operating some calculation, it is obtained that:

  
0.2
0.8

m

b

f
f

=

=
    (6.5-2)
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with:

mf = mortar volumetric fraction

bf = brick volumetric fraction

By remembering that the overall compliance tensor obtained in the Reuss 

approximation is given as:

   R m b
m bf f= +S S S      (6.5-3)

where the superscript R just stands for Reuss and where:
mS = mortar compliance tensor
bS = brick compliance tensor

Since both mortar and brick are considered homogeneous isotropic 

materials, the Reuss compliance tensor shows, evidently, only three elastic 

coefficients different from zero, and only two of these are independent. By 

taking in account the assumed numerical data in (6.2-1), the Reuss compliance 

tensor assumes the following form:

   6

14 2.1 2.1 0 0 0
2.1 14 2.1 0 0 0
2.1 2.1 14 0 0 0
0 0 0 16.1 0 0
0 0 0 0 16.1 0
0 0 0 0 0 16.1

10R −

− −

− −

− −

 
 
 
 

=  
 
 
 
 

S   (6.5-4)

From it, the Reuss stiffness tensor can be determined as the inverse of the 

Reuss compliance one. Thus, it assumes the following form:
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   ( ) 1 6

0.08 0.01 0.01 0 0 0
0.01 0.08 0.01 0 0 0
0.01 0.01 0.08 0 0 0

0 0 0 0.06 0 0
0 0 0 0 0.06 0
0 0 0 0 0 0.06

10R R −

 
 
 
 

= =  
 
 
 
 

C S (6.5-5)

Analogous procedure is employed for determining the overall stiffness 

tensor in the Voigt approximation. It is given as:

     V m b
m bf f= +C C C       (6.5-6)

where the superscript V just stands for Voigt and where:
mC = mortar stiffness tensor
bC = brick stiffness tensor

Also the Voigt stiffness tensor shows, evidently, only three elastic 

coefficients different from zero, and only two of these are independent. By 

taking in account the assumed numerical data in (6.2-1), yet, the Voigt stiffness 

tensor assumes the following form:

  6

0.17 0.03 0.03 0 0 0
0.03 0.17 0.03 0 0 0
0.03 0.03 0.17 0 0 0

0 0 0 0.14 0 0
0 0 0 0 0.14 0
0 0 0 0 0 0.14

10V

 
 
 
 

=  
 
 
 
 

C    (6.5-7)

From it, the Voigt compliance tensor can be determined as the inverse of the 

Voigt stiffness one. Thus, it assumes the following form:
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 ( ) 1 6

6.21 0.93 0.93 0 0 0
0.93 6.21 0.93 0 0 0
0.93 0.93 6.21 0 0 0
0 0 0 7.14 0 0
0 0 0 0 7.14 0
0 0 0 0 0 7.14

10V V −

− −

− −

− −

 
 
 
 

= =  
 
 
 
 

S C (6.5-8)

6.6 Numerical results for the analyzed homogenization techniques

In the chapter 3, an account of the literature data on masonry 

homogenization procedures has been analyzed and, in this framework, some

techniques have been studied more in detail. Then, in the following chapter IV, 

starting from those literature approaches, two theoretical homogenization 

procedures have been proposed: the statically-consistent Lourenco approach 

and the S.A.S. one.

The goal of this chapter is to obtain the numerical results from these 

proposed techniques and, then, to compare them with the ones obtained from 

the most recent literature approach: the one-step Lourenco-Zucchini 

homogenization.

6.6.1 Numerical results for Lourenco-Zucchini approach

It is shown, in the following figure 6.5, the RVE adopted by the authors

Lourenco and Zucchini with its numerical characteristic dimensions. It is worth 

to remember that the assigned dimensions are so that there is equivalence, in 

the volumetric fractions, between such RVE and the examined F.E.M. model.

In particular, the model has the following dimensions:
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b 2

b2

3 1 3

 Figure 6.5 Lourenco’s RVE in xy-plane.

The unit of measurement is the centimetre. Since also this examined basic 

cell referrers to a single leaf masonry wall, the characteristic length in z-

direction ( 10zl cm= ) doesn’t influence the volumetric fractions. Hence, the 

figure 6.5 shows the RVE in xy-plane, again.

Let us recall the analytical results, which are obtained by the authors. Thus, 

it is:  
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By taking into account the numerical data given by the equation (6.2-1) and 

by substituting the numerical value of the strains which the authors have 

obtained for each basic cell constituent, the overall compliance tensor is finally 

determined. It assumes the following form:

   6

7.47 1.02 0.92 0 0 0
0.54 6.83 0.5 0 0 0
0.91 0.92 6.13 0 0 0
0 0 0 14.99 0 0
0 0 0 0 8.15 0
0 0 0 0 0 15

10L-Z −

− −

− −

− −

 
 
 
 

=  
 
 
 
 

S   (6.6.1-2)

where the superscript L Z− stands for Lourenco-Zucchini.

From it, also the overall stiffness tensor is obtained as the inverse of the 

overall compliance one. Hence, it assumes the following form:

( ) 1 6

0.14 0.024 0.023 0 0 0
0.013 0.15 0.014 0 0 0
0.022 0.026 0.17 0 0 0

0 0 0 0.067 0 0
0 0 0 0 0.12 0
0 0 0 0 0 0.064

10L-Z L-Z −

 
 
 
 

= =  
 
 
 
 

C S (6.6.1-3)

6.6.2 Numerical results for the statically-consistent Lourenco-
approach

The RVE adopted in this proposed approach is the same one used by 

Lourenco and Zucchini. For clearness of exposition, it is shown here, again, 

with its numerical characteristic dimensions:
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Figure 6.6 Utilized RVE (xy-plane) in Lourenco modified approach.

The unit of measurement is the centimetre again.

Let us recall the analytical results which we have obtained with this 

homogenization procedure. Thus, it is:  
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By taking into account the numerical data given by the equation (6.2-1), the 

overall compliance tensor is finally determined. It assumes the following form:

   6

14.2 2.1 2.1 0 0 0
2.1 14.2 2.1 0 0 0
2.1 2.1 14.2 0 0 0
0 0 0 14.99 0 0
0 0 0 0 8.15 0
0 0 0 0 0 15

10S-c −

− −

− −

− −

 
 
 
 

=  
 
 
 
 

S     (6.6.2-6)

where the superscript S c− stands for statically-consistent approach.

From it, also the overall stiffness tensor is obtained as the inverse of the 

overall compliance one. Hence, it assumes the following form:  

 ( ) 1 6

0.074 0.013 0.013 0 0 0
0.013 0.074 0.013 0 0 0
0.013 0.013 0.074 0 0 0

0 0 0 0.067 0 0
0 0 0 0 0.12 0
0 0 0 0 0 0.064

10S-c S-c −

 
 
 
 

= =  
 
 
 
 

C S (6.6.2-7)
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6.6.3 Numerical results for the S.A.S. approach

It is shown, in the following figure 6.7, the RVE adopted in this proposed 

approach with its numerical characteristic dimensions. It is worth to remember, 

again, that the assigned dimensions are so that there is equivalence, in the 

volumetric fractions, between such RVE and the examined F.E.M. model.

In particular, the model has the following dimensions:

Figure 6.7 Utilized RVE (xy-plane) in S.A.S. approach.

The unit of measurement is the centimetre again. 

Let us recall the analytical results, which we obtained with this 

homogenization procedure. Thus, it is:  
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where:

   ( )m b bf fφ ϕ= +     (6.6.3-2)

By taking into account the numerical data given by the equation (6.2-1), the 

overall compliance tensor is finally determined. It assumes the following form:

  6

6.13 0.92 0.92 0 0 0
0.92 6.13 0.92 0 0 0
0.92 0.92 6.13 0 0 0
0 0 0 7.05 0 0
0 0 0 0 7.05 0
0 0 0 0 0 7.05

10S.A.S. −

− −

− −

− −

 
 
 
 

=  
 
 
 
 

S  (6.6.3-3)

where the superscript . . .S A S stands for S.A.S. approach.

From it, also the overall stiffness tensor is obtained as the inverse of the 

overall compliance one. Hence, it assumes the following form:



360   Chapter VI – Computational analyses      
  

 1 6

0.17 0.03 0.03 0 0 0
0.03 0.17 0.03 0 0 0
0.03 0.03 0.17 0 0 0

0 0 0 0.14 0 0
0 0 0 0 0.14 0
0 0 0 0 0 0.14

( ) 10S.A.S S.A.S −

 
 
 
 

= =  
 
 
 
 

C S (6.6.3-4)

6.7 Comparisons for numerical results

In this paragraph, a comparison between the numerical results, obtained by 

the examined homogenization techniques, illustrated in the previous sections, is 

made. In particular, it is worth to notice that the numerical estimate of the 

homogenized coefficients proposed by Lourenco et al. furnishes a not 

symmetrical elasticity tensor, as it is shown in the following table.

Table 6.1 Comparisons.
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Hence, in order to ensure consistency to the model a symmetrization of 

Lourenco’s elasticity tensor should be suggested.

Thus, in the following tables, a new comparison is made between the 

numerical results obtained by the proposed homogenization techniques and 

those ones obtained by means of the effected Lourenco’s tensor 

symmetrization, with reference to all the employed F.E.M. analyses. In each 

table, the procedure which furnishes the numerical reference results is marked 

with a red ring and our proposed techniques are in red fonts.   

Table 6.2 Comparisons.
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Table 6.3 Comparisons.

Table 6.4 Comparisons.
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Table 6.5 Comparisons.

By observing differences among the elastic coefficients shown in 

comparison-tables, it is worth to notice that, due to consistency, some elastic 

moduli appear to be closer than those proposed by Lourenco.

As a result, it is possible to determine an elasticity tensor obtained by means 

of those parametric terms, yielded by the examined homogenization 

procedures, which are closer to the reference numerical data. Such elasticity 

tensor is, so, defined on the knowledge of elastic ratios as well as of 

geometrical parameters characterizing the RVE.
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APPENDIX

- Stress-prescribed analyses: compression in x-direction

Figure 1  Deformed configuration.

Figure 2 Normal strain in x-direction.
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Figure 3 Normal stress in x-direction, 0.7 1.3xσ− < < − .

Figure 4 Normal stress in x-direction, 0 0.6xσ< < − .
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- Stress-prescribed analyses: compression in y-direction

Figure 5 Deformed configuration.

Figure 6 Normal stress in y-direction.
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Figure 7 Normal strain in y-direction.

Figure 8 Displacement in y-direction.
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- Stress-prescribed analyses: compression in z-direction

Figure 9 Deformed configuration.

Figure 10 Normal stress in z-direction, 1 1.3zσ− < < − .



369     Chapter VI- Computational analyses

Figure 11 Normal strain in z-direction.

Figure 12 Displacement in z-direction.
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- Stress-prescribed analyses: shear in xy-plane

Figure 13 Deformed configuration.

Figure 14 Vector-plot for displacement.
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Figure 15 Shear strain in xy-plane, 30.4*10xyε −< .

Figure 16 Shear strain in xy-plane, 3 30.4*10 0.6*10xyε− −< < .
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- Stress-prescribed analyses: shear in xz-plane

Figure 17 Deformed configuration.

Figure 18 Shear stress in xz-plane.
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Figure 19 Shear strain in xz-plane.

Figure 20 Displacement in x-direction.
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- Stress-prescribed analyses: shear in yz-plane

Figure 21 Deformed configuration.

Figure 22 Shear stress in yz-plane.
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Figure 23 Vector plot for displacement.

Figure 24 Shear strain in yz-plane, 3 30.4*10 0.5*10yzε− −< < .
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- Strain-prescribed analyses: normal strain in x-direction

Figure 25 Deformed configuration.

Figure 26 Vector-plot for displacement.
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Figure 27 Normal strain in x-direction.

Figure 28 Normal stress in x-direction.
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- Strain-prescribed analyses: normal strain in y-direction

Figure 29 Deformed configuration.

Figure 29 Normal stress in y-direction.
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Figure 30 Normal stress in z-direction.

Figure 31 Normal strain in y-direction.
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- Strain-prescribed analyses: normal strain in z-direction

Figure 32 Deformed configuration.

Figure 33 Vector-plot for displacement.
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Figure 34 Normal stress in z-direction.

Figure 35 Normal strain in z-direction.
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- Strain-prescribed analyses: shear strain in xy-plane

Figure 36 Deformed configuration.

Figure 37 Shear stress in xy-plane.
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Figure 40 Principal stress 1s .

Figure 41 Shear strain in xy-plane.
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- Strain-prescribed analyses: shear strain in xz-plane

Figure 42 Deformed configuration.

Figure 43 Vector-plot for displacement.
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Figure 44 Shear strain in xz-plane.

Figure 45 Shear stress in xz-plane.
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- Strain-prescribed analyses: shear strain in yz-plane

Figure 46 Deformed configuration.

Figure 47 Vector-plot for displacement.
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Figure 48 Shear stress in yz-plane.

Figure 49 Principal stress 1s .
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Figure 50 Principal stress 3s .

Figure 51 Shear strain in zy-plane.
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CHAPTER VII

Design codes for masonry buildings

7.1 Introduction

The most effective use of masonry construction is seen in load bearing 

structures wherein it performs a variety of functions, namely, supporting loads, 

subdividing space, providing thermal and acoustic insulation and so on.

Until 1950’s there were no engineering methods of designing masonry for

buildings and thickness of walls was based on Rules-of-Thumb tables given in 

Building Codes and Regulations, [21]. As result, walls used to be very thick 

and masonry structures were found to be very uneconomical. Hence, since 

intensive theoretical and experimental research has been conducted in 

advanced countries, factor affecting strength, stability and performance of 

masonry structures have been identified, which need to be considered in 

design.
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Recently mechanized brick plants, moreover, are producing brick units 

having nominal strength which ranges from 17.5 to 25 N/mm2 and, so, 

sufficiently greater than the ordinary manufactured ones, with strength of only 

0.07 to 0.1 N/ mm2. Therefore, nowadays, it is possible to construct 5 to 6 

storeyed load bearing structures at costs which are less than those of RC 

framed structures, [21].

The use of reinforcement in masonry can further improve its load carrying 

capacity and above all its flexure and shear behaviour under earthquake loads. 

In particular, masonry units are being manufactured in shapes and sizes that 

make reinforcement embedding in masonry less cumbersome. 

With these developments, structural design of load bearing masonry 

buildings has been undergoing considerable modifications as underlined by the 

changes which are taking place in the masonry guidelines throughout the 

world.

In this framework, the object of this chapter is to furnish a short summary 

and a comparison of the different codes from a number of countries, which are 

referred to the design of masonry structures.

7.2 Review of masonry codes

A brief description and the major highlights of the various codes are 

presented below and the comparison between them is summarized in tables, 

related to design approach, member sizing and details, as given in the follows,

[21].

§ BUILDING CODE REQUIREMENTS FOR MASONRY 

STRUCTURES

(ACI 530-02/ASCE 5-02/TMS 402-02)
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This code has been drawn up by the joint efforts of the American Concrete 

Institute, the Structural Engineering Institute of the American Society of the 

Civil Engineers and the Masonry Society, [2], [3]. Such a code covers the 

design and the construction of masonry structures, by providing minimum 

requirements for the structural analysis and by using both allowable stress 

design as well as limit state design for unreinforced and reinforced masonries. 

An empirical design method applicable to buildings meeting specific location 

and construction criteria is also included.

§ INTERNATIONAL BUILDING CODE 2000

The International Building Code (IBC 2000) has been designed to meet the 

need for a modern, up-to-date building instrument addressing the design of 

building systems through requirements emphasizing performance, [34]. This 

model code encourages the international consistency in the application of 

provisions and it is available for adoption and use by jurisdictions 

internationally.

The provisions of this code for the design of masonry members have been 

heavily borrowed from ACI 530-02, ASCE 5-02, TMS 402-02.

§ EUROCODE 6: DESIGN OF MASONRY STRUCTURES (DD 

ENV 1-1-1996: 1996)
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The Eurocode 6 has been published by the European Committee for 

Standardization (CEN) and it is to be used with the National Application 

Document (NAD) of member countries, [22].

This code provides a general basis for the design of buildings and civil 

engineering works in unreinforced and reinforced masonry made with clay and 

concrete masonry units imbedded in mortar. It adopts the limit state design 

method.

However, Eurocode 6 doesn’t cover the special requirements of seismic 

design: provisions related to such requirements are given in Eurocode 8, 

Design of Structures in Seismic Regions.

The designer should consider the relative contribution of concrete infill and 

masonry in resisting load and, where the concrete infill makes a much greater 

contribution to the load resistance than the masonry, Eurocode 2 should be 

used and the strength of masonry should be ignored, [21].

§ TESTO UNICO-NORME TECNICHE PER LE COSTRUZIONI

(C.S.LL.PP.30-05-2005)

Such a code covers the design and the construction of masonry structures, in 

order to guarantee pre-established safety coefficients. It adopts the limit state 

design for unreinforced and reinforced masonries. In particular, the 

constructions have to satisfy the following requirements:

o safety towards ultimate limit state – overcoming of an ultimate limit 

state is not reversible and provides a structural collapse.

o safety towards serviceability limit state – overcoming of a serviceability 

limit state can be or not be reversible. In the first case, the damage or 
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the deformations will disappear when the external actions which have 

caused such an overcoming will stop. In the second case, the damage 

and deformations will be permanent and unacceptable; this limit state is 

identified with damage limit state.

o strength towards accidental loads.

§ NEW ZEALAND STANDARD – CODE OF PRACTICE FOR 

THE DESIGN OF CONCRETE MASONRY STRUCTURES (NZS 

4230: Part 1: 1990)

The New Zealand Standard has been prepared under the direction of the 

Building and Civil Engineering Divisional Committee for the Standards 

Council, established under the Standards Act 1988. It is set in two parts: Code 

and Commentary, [55].

Such a code is largely dictated by seismic considerations. In this framework, 

it is intended to provide a satisfactory structural performance for masonry 

structures during a major earthquake. Minimum reinforcing requirements for 

different structural systems and the reinforcing and separation of non-structural 

elements will limit non-structural damage during moderate earthquakes.

The NZS 4230 adopts a design philosophy based on strength design, using 

reinforced masonry only. It contains cross-references to NZS 3101, which is 

the primary code for the seismic design of structure.
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§ INDIAN STANDARD: CODE OF PRACTICE FOR 

STRUCTURAL USE OF UNREINFORCED MASONRY (IS: 

1905-1987)

The Indian Standard on masonry design has been first published in 1960 

and later on revised in 1969, 1980 and 1987, [35]. This latter has been 

reaffirmed in 1998. A separate handbook to this code, SP 20 (S&T), 1991, is 

also available, [21].

Such a code provides recommendations for structural design aspect of load 

bearing and non-load bearing walls of unreinforced masonry only, by using a 

design procedure based on the allowable stress design, along with several 

empirical formulae.

These guidelines are referred to IS 4326 for strengthening unreinforced 

masonry building for seismic resistance and it doesn’t provide any calculation 

for the design of reinforcement.

7.3 Comparison on design philosophies

In this section, design philosophies of various codes have been compared 

with regard to their design assumptions and assumed factor of safety.

§ EMPIRICAL DESIGN

Empirical rules for the design of masonry structures were developed by 

experience and, traditionally, they have been used as a procedure, not as a 

design analysis for sizing and proportioning masonry elements, [21].

This method predates any engineering analysis and the effect of any steel 

reinforcement, if used, is neglected. However, this design procedure is 
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applicable to very simple structures with severe limitations on building height 

proportions and on horizontal loads, due to wind and earthquake.

Empirical design method is still being continued in ACI 530-2002 and, with 

some changes, in IBC 2000. The Indian Standard also mixes empirical 

procedure with allowable stress design method.

§ ALLOWABLE STRESS DESIGN 

This method states that, under the working loads, the stresses developed in a 

member must be less than admissible ones.

In case of unreinforced masonry, it is assumed that tensile stresses, not 

exceeding the allowable limits, are resisted by masonry material, while in the 

case of reinforced structures masonry tensile strength is neglected.

The ACI code has followed this approach for both reinforced and 

unreinforced masonry, while the IS code has applied it only to unreinforced 

masonry. On the contrary, such a design method doesn’t find place in Eurocode 

and in the New Zealand Standard.

§ STRENGTH DESIGN OR LIMIT STATE DESIGN

This method requires masonry members be proportioned so that the design 

strength equals or exceeds the required strength.

Design strength is the nominal strength multiplied by a strength reduction 

factor, j. The required strength shall be determined in accordance with the 

strength design load combinations of a legally adopted building code, [21].

The ACI code has adopted this procedure, as well as the IBC 2000 and the 

New Zealand code, with more emphasis on the reinforced masonry rather than 



396    Chapter VII- Design codes for masonry buildings    

unreinforced ones. The Eurocode 6 specifies a limit state design for collapse 

and serviceability, wherein instead of strength reduction factors, partial safety 

factors for loads and materials are specified separately. In particular, partial 

safety factor for loads depends on the load combinations and partial safety 

factor for materials depends on the type of masonry units and the failure mode.

Also the Italian code (T.U. 30/03/2005) adopts the ultimate and serviceability 

limit state design, for reinforced and unreinforced masonry.

In these codes, the strength of reinforced masonry members is calculated by

basing on the following hypothesis:

a. There is strain continuity between the reinforcement, grout and 

masonry.

b. The maximum compressive strain ( )muε at the extreme masonry 

compression fibre shall be assumed to be 0.0035 for clay masonry 

and 0.0025 for concrete one. The New Zealand code also specifies 

that the maximum usable strain will be 0.008 for confined concrete 

masonry.

c. Reinforcement stress below specified yield strength ( )yf shall be 

taken as sE times steel strain. For strain greater than the ones

corresponding to ( )yf , stress in reinforcement shall be taken equal 

to ( )yf .

d. The tensile strength of masonry shall be neglected in calculating 

flexural strength but shall be considered in calculating deflection.

e. Masonry stress of 0.80 times the compressive strength of masonry,

mf , (ACI code) or 0.85 mf (IBC 2000, New Zealand Standards)

shall be assumed uniformly distributed over an equivalent 
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compression zone bounded by the edges of the cross section and a 

straight line located parallel to the neutral axis at a distance of 

0.80a c= or 0.85a c= respectively from the fibre of the 

maximum compressive strain, as shown in figure 7.1. In particular, 

a is defined as the depth of equivalent compression zone at 

nominal strength and c is the distance from extreme compression 

fibre to neutral axis. The value of uniformly distributed masonry 

stress for confined masonry, as specified in New Zealand Standards, 

is 0.9 mKf up to a distance 0.96a c= , as shown in figure 7.1

where K is a factor greater than 1, for increase in masonry strength 

due to confinement provided by confining plates.

Figure 7.1  Equivalent rectangular masonry stress distribution.

7.4 Comparison of the key concepts for unreinforced masonry

In this section, provisions of both allowable stress and strength (limit state) 

design, specified in various codes, will be discussed and compared with 
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reference to unreinforced masonry subjected to axial compression, flexure and 

shear. The Italian code will be exposed separately.

7.4.1   Allowable stress design

7.4.1a Axial compression

Masonry is generally subjected to axial compression due to vertical loads, 

dead and live ones.

Compression tests of masonry prisms are used for determining specified 

compressive strength of masonry mf , which is further modified for 

slenderness, eccentricity, shapes of cross-section and so on, in order to derive

allowable compressive stress values.

In ACI code, calculated compressive stress, af , should be less than the 

allowable compressive stress aF , which is obtained by multiplying mf with 

0.25 and slenderness ratio R . In particular, the factor 0.25 accounts for 

material uncertainty and reduces mf to working stress level. R is the capacity 

reduction factor for slenderness, as given in the following equations, [21]:

 
2

1
40
hR

t
 = −  
 

for / 29h t ≤  (7.4.1a-1)

220tR
h

 =  
 

for / 29h t >  (7.4.1a-2)

where:

h = height of masonry structural element

t = thickness of masonry structural element
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Slenderness can affect capacity either as a result of inelastic buckling or

because of additional bending moments due to the deflection. Applied axial 

load must be less than 25% of the Euler buckling load, eP , as given in the 

following relation:

 
32

2

21m n
e

E I eP
h t

π  = − 
 

 (7.4.1a-3)

where:

e =  the eccentricity of the axial load

mE = modulus of elasticity of masonry in compression

nI = moment of inertia of net cross-sectional area of a member

Hence, according to ACI code, the permissible value is function of the 

slenderness ratio whereas the limiting value of axial load is depending on both 

slenderness ratio and eccentricity of the axial load.

In IS: 1905 code a stress reduction factor, sk , is multiplied with the basic 

compressive stress for slenderness ratio of the element and also the eccentricity 

of loading. The basic compressive stress is valued both from prism tests and a 

standard table which is based on compressive strength of unit and mortar type.

A limit to the maximum slenderness ratio for a load bearing wall is considered, 

depending on the number of storeys and the type of mortar.

7.4.1b   Axial compression with flexure

Masonry is generally subjected to flexural stresses due to eccentricity of

loading or application of horizontal loads, as well as wind or earthquake.

According to ACI code, if a member is subjected to bending only, 

calculated bending compressive stress bf should be less than allowable 
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bending stress bF in masonry, taken as 0.33 mf , which is 1.33 times the basic 

compressive stress allowed for direct loads (0.25 mf ). This increase is due to 

the restraining effect of less highly strained compressive fibres on those ones of 

maximum strain and is supported by experiment.

For combined axial and flexural loads, a masonry member is acceptable if 

the sum of the quotients of the resulting compression stresses to the allowable 

stresses does not exceed 1, as given in the following relation and figure:

 1a b

a b

f f
F F

+ ≤  (7.4.1b-1)

Figure 7.2  Interaction diagram for unreinforced masonry using allowable 
stress design.

The unity formula (7.4.1b-1) is widely used and very conservative.

IS: 1905 code checks bending compression and tensile stresses 

independently against permissible values. The permissible values for bending 

compression are obtained first by increasing the basic compressive stress by 

25% and then reducing it for the eccentric loading causing flexure. The code 

furnishes permissible loads for three eccentricity values, [21]:

(a) 24e t<
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(b) 24 6t e t< <

(c) 6t e<

An applied moment can be converted into equivalent eccentricity.

7.4.1c   Shear

Masonry is generally subjected to shear stresses due to in-plane lateral wind 

or seismic forces. So, masonry load bearing walls also act as shear walls to 

resist to such a kind of load.

The lateral load carrying capacity of shear wall structures mainly depends 

on their in-plane resistances because the in-plane stiffness is far greater than its 

out-of-plane stiffness. Three modes of shear failure in unreinforced masonry 

are possible, [21]:

(a) Diagonal tension crack form through the mortar and masonry units.

(b) Sliding occurs along a straight crack at horizontal bed joints.

(c) Stepped cracks form, alternating from head joint to bed joint.

The ACI code recognizes these modes and addresses them while specifying 

permissible shear stresses. For prevention of diagonal cracks, in-plane shear 

stress should not exceed 0.125 mf . For sliding failure, the allowable shear 

stress is based on a Mohr-Coulomb type failure criterion and for preventing 

stepped cracks, different values of permissible shear stress are given for various 

bond masonry patterns, [21].

The IS: 1905 code, instead, only takes into account the sliding failure by 

specifying that the allowable shear stress 0.1 6v dF σ= + , which is a Mohr-

Coulomb type failure criterion, where dσ is average axial stress. However, this 
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linear relation is valid up to axial compression of 2.4 MPa, at which it reaches 

the maximum limiting value of 0.5 MPa, [21].

7.4.2      Strength design or limit state design

7.4.2a   Axial Compression

According to ACI code, the nominal axial strength is based on compressive 

strength of masonry, modified for unavoidable minimum eccentricity and 

slenderness ratio, in addition to the strength reduction factor. The expression 

for effect of the slenderness is the same as in allowable stress design. 

Eurocode 6 also considers the effect of slenderness and eccentricity by 

using capacity reduction factor. However, this capacity reduction factor is 

based on eccentricity not only at the ends of member but also at middle one–

fifth, wherever the moment may be maximum, [21].

7.4.2b   Axial Compression with Flexure

According to all codes, the two failure modes of wall considered are parallel 

and perpendicular to bed joints. The codes require the section to be checked by 

calculating axial and flexural strength.

7.4.2c   Shear

The ACI code considers the previously discussed three modes of failure for 

evaluating the nominal shear strength of masonry.

Analogously, the IBC 2000 also considers those factors for determining the 

masonry nominal shear strength and differs only in magnitude from the ACI 

code.
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On the contrary, Eurocode 6 only considers a sliding mode of shear failure 

and prescribes an equation of Mohr-Coulomb type ( )0.1 0.4v dF σ= + .

7.5 Comparison of the key concepts for reinforced masonry

In this section, provisions of both allowable stress and strength (limit state) 

design, specified in various codes, will be discussed and compared with 

reference to reinforced masonry subjected to axial compression, flexure and 

shear.

Reinforced masonry is a construction system where steel reinforcement, in 

the form of reinforcing bars or mesh, is embedded in the mortar or placed in the 

holes and filled with concrete or grout, [21].

By reinforcing masonry with steel reinforcement, the resistance to seismic 

loads and energy dissipation capacity can be improved significantly. In such 

reinforced structures, tension is developed in masonry but it is not considered 

to be effective in resisting design loads: reinforcement is assumed to resist all 

the tensile stresses.

7.5.1      Allowable stress design

Only the ACI code contains provisions on allowable stress design for 

reinforced masonry.
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7.5.1a   Axial Compression

In ACI code, the allowable axial compressive load ( )aP in reinforced 

masonry shall not exceed ( )0.25 0.65m n st sf A A F R+ , which is obtained by 

adding the contribution of masonry and reinforcement, and where:

nA = net cross-sectional area of masonry

stA = total area of longitudinal reinforcing steel

sF = allowable tensile or compressive stress in reinforcement 

The second term in the addition is the contribution of the longitudinal steel. 

In particular, the coefficient 0.65 was determined from tests of reinforced 

masonry columns. The coefficient 0.25 provides a factor of safety of about 4 

against the crushing of masonry. Strength is further modified for slenderness 

effects by the factor R , which is the same for unreinforced masonry.

7.5.1b   Axial Compression with Flexure

For combined axial compression and flexure, the unity formula for 

interaction is not used in designing masonry members in case of reinforced 

masonry, since it becomes very conservative.

In such cases, emphasis has been to compute nonlinear interaction diagram 

taking the effect of reinforcement and compression behaviour of masonry into 

account. The equations and the assumptions used for developing the axial load-

bending moment interaction diagram are very similar to those ones used in the 

analysis and design of reinforced concrete members. Interaction diagrams thus 

produced permit a rapid graphical solution.
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7.5.1c   Shear

The shear resistance of masonry also increases when reinforcements are 

added. However, they are effective in providing resistance only if they are 

designed to carry the full shear load.

According to ACI code, the minimum area of shear reinforcement is given 

by the following relation:

 S
V

S

VA
F d

=   (7.5.1c-1)

where:

VA = cross section area of shear reinforcement.

SV = shear strength provided by reinforcement.

d = distance from extreme compression fibre to centroid of tension 

reinforcement.

This can be derived by assuming a 45° shear crack extended from the 

extreme compression fibre to the centroid of the tension steel, summing the 

forces in the direction of the shear reinforcement neglecting the doweling 

resistance of the longitudinal reinforcement, [21]. However, the shear stress 

shall not exceed the permissible shear stress of masonry, which depends on the 

VM Vd ratio for shear walls, where:

M = maximum moment at the section under consideration.

V = shear force.

Vd = actual depth of masonry in direction of shear considered.

Such a ratio is the product of Vh d ratio and a factor depending on end 

restraints, as shown in the following figure.
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Figure 7.2  Significance of M/Vdv factor.

 

7.5.2      Strength design or limit state design

7.5.2a   Axial Compression

The nominal strength of a member may be calculated by using the 

assumptions of an equivalent rectangular stress block. Slenderness effect on 

axial load carrying capacity is also taken into account, except in IBC 2000.

In New Zealand Standards, nominal axial strength of a load bearing wall is 

given by '0.5 m gf A R , where 'R is always equal to ( )21 40h t −  and where 

gA is the gross cross-sectional area of masonry.
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7.5.2b   Axial Compression with Flexure

The nominal axial and flexure strength, for combined axial compression and 

flexure, are computed similar to RC members with the design assumptions as 

discussed earlier, which vary from one code to another.

According to ACI code and IBC 2000, the maximum usable strain muε shall 

be 0.0035 for clay masonry and 0.002 for concrete masonry. In wall design for 

out-of-plane loads, according to both the codes, the required moment due to the 

lateral loads, eccentricity of axial load and lateral deformation are assumed 

maximum at mid-height of the wall. In certain design conditions, like large

eccentricities acting simultaneously with small lateral loads, the design 

maximum moment may occur elsewhere. When this occurs, the designer 

should use the maximum moment at the critical section.

In Eurocode 6, the maximum tensile strain in reinforcement should be 

limited to 0.01. According to this code, no redistribution of the moment is 

allowed with normal ductility steel. In this case the ratio of depth of neutral 

axis to the effective depth should not be greater than 0.4. Redistribution of 

moments in a continuous beam should be limited to 15% when high ductility 

steel is to be used.

The New Zealand Standards, which deals with only concrete masonry, 

specifies that muε shall be 0.0025 for unconfined masonry and 0.008 for 

confined masonry. Confinement is provided to the masonry walls to impart 

ductility to them, [21].
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7.5.2c   Shear

Shear force is assumed to be resisted by both, masonry and reinforcement.

The formulas given in the ACI code and IBC 2000 to derive nominal shear 

strength of masonry and reinforcement are empirically derived from research.

The concept of the minimum shear reinforcement is to help restrain growth of 

inclined cracking and provide some ductility for members (by confining 

masonry) subjected to unexpected force or catastrophic loading.

In Eurocode 6, there is a maximum limit to the shear strength provided by 

masonry and shear reinforcement together, which is given by 0.3 m mf bd γ , 

[21], where:

b =  width of the section.

d = distance from extreme compression fibre to centroid of tension 

reinforcement.

mγ = partial safety factor for materials.

In the New Zealand Standards, it is mentioned that for masonry members 

subjected to shear and flexure together with axial load, the shear stress 

provided by the masonry shall be multiplied by the factor ( )1 12 u g mP A f+ , 

where the axial load, P, is negative for tension and where uP is the factored 

axial load, [21].

It is evident that the shear strength provided by masonry, mV , will decrease 

because of a reduction of aggregate interlock resulting from axial tension. The 

code considers instances where shear transfer is required by shear friction 

along a known or likely crack path. Resistance to sliding along a potential shear 

failure plane is provided by frictional forces between the sliding surfaces. The 
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frictional forces are proportioned to the coefficient of friction and the total 

normal force acting across the joint, which may be provided by axial force, uP , 

and distributed reinforcement, vf yA f , where vfA is the area of shear friction 

reinforcement. The effective clamping force across the crack will be 

vf y uA f P+ . Thus the dependable factored shear force, uV , which can be 

transmitted across the crack by shear friction, is ( )f vf y uA f Pϕµ + , where ϕ is 

the strength reduction factor and fµ is the coefficient of friction. Thus, the 

required area of shear friction reinforcement shall be computed from:

 
1 u

vf u
y f

VA P
f µ ϕ

 
= −  

 
  (7.5.2c-1)

During the placing of grout, if the interface has been intentionally 

roughened, 1fµ = ; else fµ is taken to be 0.7.

7.6 Discussion

Presently, most design codes prefer Limit State Design approach because of 

better reliability and economy, which is a major departure from the 

conventional empirical design method. Moreover, for reinforced masonry, only 

the ACI code contains provisions based on allowable stress values, whereas all 

other codes follow only Limit State Design approach. The International 

Building Code 2000 specifies some minor changes to the ACI code in the form 

of design assumptions and strength reduction factors.

For allowable strength of masonry shear walls, ACI code emphasizes on the 

aspect ratio and boundary conditions by a parameter VM Vd . Also the 
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strength of masonry is based on prism tests, instead of placing reliance on 

standard tables, which relate it to the strength of unit and type of mortar. The 

advantage of prism test is that the prisms are built of similar materials under the 

same conditions with the same bonding arrangement as in the structure.

The design approach in IS: 1905-1987 is semi-empirical, which combines 

allowable stress design with rules of thumb for unreinforced masonry only, 

especially for stresses arising from vertical and moderate lateral loads, such as 

wind. The permissible stress values are not directly linked to prism test values 

and do not address the strength and ductility of masonry members under large 

lateral loads due to earthquakes. Neither limit state methodology has been 

adopted in this code nor there are any provisions related to reinforced masonry 

for any design philosophies. So, this code should be expanded to incorporate 

such provisions.

It is worth to underline that, among such these codes, only the New Zealand 

Standard contains provisions on ductility of masonry structures and confined 

masonry. Regarding shear, it contains provisions on shear friction 

reinforcement and also considers the case when masonry members are 

subjected to shear and flexure together with axial tension. These salient 

features are not covered in other documents, [21].

7.7 The Italian code (T.U. 30/03/2005)

They will be exposed, in this paragraph, the main aspects of the Italian 

code- T.U. 30/03/2005. The interested reader is referred, for major details, to

[63].

The first aspect regards the determination of the characteristic resistances 

for masonry and its constituents. In particular, it is:
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Ø Compressive characteristic strength for masonry element, bkf , in 

the direction of vertical loads (UNI EN 772-1), in the case of 30 

examined specimens, is obtained as it follows:

 1.64bk bmf f s= −   (7.7-1)

where:

bmf = the arithmetic media of the resistances of the elements.

s = the mean square deviation.

When the number n of the examined specimens is between 10 and 29, the 

coefficient s assumes the following k values:

n 10 12 16 20 25

k 2.13 2.06 1.98 1.93 1.88

Table 7.1 Mean square deviation.

When the number n of the examined specimens is between 6 and 9, the 

compressive characteristic strength is assumed equal to the minimum value 

between:

a. ( )20.7 bmf N mm

b. the minimum value of the unit resistance of the single specimen.

When masonry is constituted by natural elements, the compressive 

characteristic strength of the element is assumed, conventionally, equal to:

  0.75bk bmf f=  (7.7-2)
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Ø Compressive characteristic in-plane strength for masonry element, 

bkf , in the orthogonal direction of vertical loads (UNI EN 772-1) is 

obtained as it follows:

  0.7bk bmf f=  (7.7-3)

Ø Compressive characteristic strength for mortar, mf , (UNI EN 998-

2) is given by the following table 2:

Class M 2.5 M 5 M 10 M 15 M 20 M d

Compressive 
strength 

2N mm
2.5 5 10 15 20 d

Table 7.2 Compressive characteristic strength for mortar.

where d is a compressive strength ≥ 25 N/mm2, declared by the producer.

Ø Compressive characteristic strength for masonry, kf , is given by 

the following relation:

 k mf f ks= −  (7.7-4)

where:

mf = average resistance

s =  deviation estimate

k =  a coefficient is dependent from the number n of the specimens, [63].
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Compressive characteristic strength for masonry, kf , can be also obtained 

according to the compressive characteristic strength of the masonry elements, 

bkf , and to the mortar category, as shown in the following tables 3 and 4:

Mortar typeCompressive 
strength bkf for 

artificial masonry 
elements  2N mm

M 15 M 10 M 5 M 2.5

2.0 1.2 1.2 1.2 1.2

3.0 2.2 2.2 2.2 2.0

5.0 3.5 3.4 3.3 3.0

7.5 5.0 4.5 4.1 3.5

10.0 6.2 5.3 4.7 4.1

15.0 8.2 6.7 6.0 5.1

20.0 9.7 8.0 7.0 6.1

30.0 12.0 10.0 8.6 7.2

40.0 14.3 12.0 10.4 --

Table 7.3  Compressive characteristic strength for masonry - Artificial 
elements.

Mortar typeCompressive 
strength bkf for 
natural masonry 

elements  2N mm

M 15 M 10 M 5 M 2.5

2.0 1.0 1.0 1.0 1.0

3.0 2.2 2.2 2.2 2.0

5.0 3.5 3.4 3.3 3.0

7.5 5.0 4.5 4.1 3.5

10.0 6.2 5.3 4.7 4.1
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15.0 8.2 6.7 6.0 5.1

20.0 9.7 8.0 7.0 6.1

30.0 12.0 10.0 8.6 7.2

≥ 40.0 14.3 12.0 10.4 --

Table 7.4 Compressive characteristic strength for masonry – Natural 
elements.

Ø Shear characteristic strength for masonry in absence of normal 

stresses, 0vkf , is given by the following relation:

 0 0.7vk vmf f=  (7.7-5)

where:

vmf = average shear resistance.

Shear characteristic strength for masonry, 0vkf , can be also obtained 

according to the compressive characteristic strength of the masonry element, 

bkf , and to the mortar category, as shown in the following tables:

Compressive strength 
bkf for artificial brick 

elements 

Mortar type vk0f

15≤ 15M≤ 0.2

15> 15M≤ 0.3

Table 7.5 Shear characteristic strength for masonry – Artificial brick 
elements.
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Compressive 
strength bkf for 

artificial concrete 
elements 

Mortar type vk0f

15, 10, 5M M M 0.1
3≤

2.5M 0.1

15, 10, 5M M M 0.2
3>

2.5M 0.1

Table 7.6 Shear characteristic strength for masonry – Artificial 
concrete elements.

Compressive 
strength bkf for 
natural elements 

Mortar type vk0f

15, 10, 5M M M 0.1
3≤

2.5M 0.1

15, 10, 5M M M 0.2
3>

2.5M 0.1

Table 7.7 Shear characteristic strength for masonry – Natural 
elements.

Ø Shear characteristic strength for masonry in presence of normal 

stresses, vkf , is given by the following relation:

 0 0.4vk vk nf f σ= +  (7.7-6)

where:
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nσ = average normal stress, due to the vertical loads acting on the examined 

section.

Ø Elastic secant modulus, E , is given by the following relation:

 1000 kE f=  (7.7-7)

Ø Elastic tangential modulus, G , is given by the following relation:

 0.4G E=  (7.7-8)

The second aspect regards the specification of the provisions for the 

structural organization of a masonry building and for the structural analysis of

unreinforced and reinforced masonry with reference to both allowable stress 

and limit state design. 

7.7.1  Structural organization

A bearing masonry building has to be conceived as a three-dimensional box

where the bearing walls, the ceilings and the foundations are opportunely 

connected each other in order to resist to the vertical and horizontal loads, [63].

The thickness of the masonry walls cannot be less than:

- masonry in artificial resistant full elements:           120 mm

- masonry in artificial resistant half-full elements:    200 mm

- masonry in artificial resistant perforated elements: 250 mm

- masonry in squared stone:                                       240 mm

- lined masonry:                                                         400 mm

The following tables relate a classification for the artificial brick and 

concrete elements:
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Brick elements Hole percentage f

Full 15%ϕ ≤ 2900f mm≤

Half full 15% 45%ϕ< ≤ 21200f mm≤

Perforated 45% 55%ϕ< ≤ 21500f mm≤

Table 7.8 Brick elements classification.

fConcrete 

elements
Hole percentage

290000A mm≤ 290000A mm>

Full 15%ϕ ≤ 10A≤ 15A≤

Half full 15% 45%ϕ< ≤ 10A≤ 15A≤

Perforated 45% 55%ϕ< ≤ 10A≤ 15A≤

Table 7.9 Concrete elements classification.

where:

ϕ = hole percentage.

f = average area of a single hole section.

A = the gross area of the element face, which is delimited by its perimeter.

The conventional thinness of the masonry walls has to be defined according 

to the following equation:

  0h tλ =  (7.7.1-1)

where:

0h = free bending length of the wall equal to hρ .

h = internal level height.

ρ = lateral factor of constraint (see table 10).
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t = thickness of the wall.

ρ

≤h/a 0.5 1

≤0.5 < h/a 1.0 3/2 –h/a

1.0 < h/a 1/[1+(h/a)^2]

Table 7.10 Lateral factor of constraint.

with:

a = wheelbase between two transversal walls. 

In any case, the conventional thinness of the masonry walls cannot result more 

than 20, [63].

7.7.2  Structural analyses and resistance controlling

The structural analyses can be non linear analyses or linear ones, these latter 

being obtained by assuming the secant value for the elastic moduli. For each 

structural element, they must yield:

- the axial load given by the vertical loads and, for buildings with 

height more than 10 m, the variation of the axial load given by the 

horizontal actions.

- the shear force given by the vertical and horizontal loads.

- the eccentricity of the axial loads.

- the bending moments given by the vertical and horizontal loads.

The actions have to be combined so to determine the most disadvantageous 

load conditions for the single resistance controlling. However, it has to be 
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considered the reduced probability of a simultaneous intervention of all actions 

with their most unfavourable values, like the in force codes prescribe, [63].

Two hypotheses are considered in a strength controlling: the assumption 

that the sections remain plane and the masonry tensile strength is neglected.

Each masonry wall has to be verified with reference to both allowable stress 

and limit state design, under the following load conditions:

(a) axial compression with flexure for lateral loads

(b) axial compression with flexure for in-plane loads

(c) shear for in-plane loads

(d) concentrated loads

The design strength df to be used in the cases (a), (b) and (d) is:

 
,

1k
d

m R d

ff
γ γ

=    (7.7.2-1)

where:

kf =  compressive characteristic strength for masonry.

mγ = partial safety coefficient on the masonry compressive strength. It is 

equal to 2 or 2.5 depending on the kind of resistant elements, artificial 

or natural, [63].

,R dγ = partial safety coefficient (see table 11).

The design strength vdf to be used in the case (c) is:

  
,

1vk
vd

m R d

ff
γ γ

=   (7.7.2-2)

where:

vkf = shear characteristic strength for masonry, in presence of normal 

stresses, calculated in function of the 0vkf .
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mγ = partial safety coefficient on the masonry compressive strength. It is 

equal to 2 or 2.5 depending on the kind of resistant elements, artificial 

or natural, [63].

,R dγ = partial safety coefficient (see table 11).

Calculation 

method
,R dγ

Allowable stress 2≥

Limit state design 1.2≥

Table 7.11  Partial safety coefficient ,R dγ .

7.7.3  Allowable stress design for unreinforced masonry

7.7.3a   Axial Compression with Flexure 

The strength controlling is satisfied if:

 d
d

l t

N f
A

σ = ≤
Φ Φ

 (7.7.3a-1)

where:

dN = design axial force.

lΦ = restrictive coefficient of the strength for longitudinal eccentricity.

tΦ = restrictive coefficient of the strength for transversal eccentricity.

df =  design compressive strength for masonry.

A = area of the wall section.  
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7.7.3b Shear for in-plane loads

The strength controlling is satisfied if:

 d
vd

V f
A

τ
β

= ≤  (7.7.3b-1)

where:

vdf =  design shear strength for masonry.

dV =  design shear force.

β =  choking coefficient of the wall.

A =  net area of the wall section.

7.7.3c   Concentrated loads

The strength controlling is satisfied if:

 dc
d

c c

N f
A

σ
β

= ≤  (7.7.3c-1)

where:

dcN = design value of the concentrated load.

cβ =  amplifying coefficient of the concentrated loads.

df =  design compressive strength for masonry.

cA =  support area.
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7.7.4  Limit state design for unreinforced masonry

7.7.4a   Axial Compression with Flexure for out-of-plane loads

The strength controlling is satisfied if:

 d Rd t dN N f A≤ = Φ   (7.7.4a-1)

where:

dN =  design axial force.

RdN = design strength.

tΦ =  restrictive coefficient of the strength for load transversal eccentricity 

and for the wall thinness.

df =  design compressive strength for masonry.

A =  area of the wall section.

7.7.4b   Axial Compression with Flexure for in-plane loads

The strength controlling is satisfied if:

 
2

1
2

d d
d Rd

d

N NtlM M
A A fα

 
≤ = − 

 
  (7.7.4b-1)

where:

dM =  design bending moment.

dN =  design axial force.

RdM = design strength.

t =  wall thickness.

l = wall length.
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df =  design compressive strength for masonry.

A =   area of the wall section.

α  0.85≤ ; it is a restrictive coefficient of the strength.

7.7.4c   Shear for in-plane loads

The strength controlling is satisfied if:

 d Rd vdV V Afβ≤ =    (7.7.4c-1)

where:

dV =  design shear force.

RdV =  design strength.

vdf =  design shear strength for masonry.

A =  area of the wall section.

β = choking coefficient of the wall.

7.7.4d   Concentrated loads

The strength controlling is satisfied if:

 dc Rdc c c dN N A fβ≤ =    (7.7.4d-1)

where:

dcN = design concentrated force.

RdcN = design strength.

df =  design compressive strength for masonry.

cA =  support area.
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cβ =  amplifying coefficient for the concentrated loads.

It has been illustrated, here, a short review of the Italian code. For more 

detail on it, the reader is referred to [63].



Conclusions    425  

CONCLUSIONS

The present work deals with the mechanic characterization of masonries 

(heterogeneous materials) via micro-mechanical approach, in linear-elastic 

field. In order to provide a definition of the constitutive laws for masonry, both 

the aspects of inhomogeneity and anisotropy are taken into consideration, since 

the first one is due to the biphasic composition and the second one is due to the 

geometrical arrangement of the constituents within the masonry RVE.

In this framework, both heuristic and thermodynamical approaches, which 

are used in literature in order to study the heterogeneous materials, are 

described. In particular, the attention has been focused on the latter one and, 

more in detail, on the homogenization techniques and micro-mechanical 

analyses which are furnished by the scientific literature, with reference to 

masonries.

By applying the homogenization theory to the masonry material, it is 

possible to obtain a “homogeneous equivalent material” whose mechanical 

properties are able to average the actual and variable ones of the heterogeneous 

medium. Hence, by means of mathematical operations of volume averaging 
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and consistency, the global mechanical behaviour of masonry can be 

determined, depending on its micro-structure geometry and on the known 

elastic properties of its micro-constituents.

The present work has, so, two main objects:

• to furnish a general account on the homogenization procedures for 

periodic masonries existing in literature in linear-elastic field and, 

contemporaneously, to underline the advantages and disadvantages for 

each one of them. More in detail, the existing homogenization

procedures can be basically divided in two approaches. The first one 

employs a simplified homogenization process in different steps for

obtaining, on the contrary, a close-form solution (Pietruszczak & Niu, 

1992, for example). The second one employs a rigorous 

homogenization process in one step for obtaining, on the contrary, an 

approximated numerical solution (Lourenco & al, 2002, for example).

• to furnish some possible proposals for modelling periodic masonry 

structures, in linear-elastic field, by starting from the results of literature 

approaches, in order to obtain new homogenization techniques able to 

overcome the limits of the existing ones. More in detail, two procedures 

have been proposed: a simplified two-step homogenization (S.A.S. 

approach) and a rigorous one-step homogenization (Lourenco modified 

approach-statically consistent).

By comparing the homogenization techniques, it can be said that:

PIETRUSZCZAK & NIU APPROACH - implies an approximated 

homogenization procedure in two steps, whose results are dependent on the 

sequence of the steps chosen. It represents the limit of this kind of the existing

approaches.
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S.A.S. APPROACH - employs a parametric homogenization which, on the 

contrary, results consistent in the two-step process, by implying exact solutions 

in some directions. Hence, the proposed procedure overcomes the limit of the 

above mentioned simplified approaches.

LOURENCO & AL. APPROACH - proposes a homogenized model which 

is obtained on a parameterization-based procedure depending on a specific 

benchmark FEM model (i.e. selected ratios between elastic coefficients and 

geometrical dimensions); so it shows a sensitivity to geometrical and 

mechanical ratios! Moreover, the numerical estimate of the homogenized 

coefficients gives some not symmetrical moduli, so a symmetrization becomes 

necessary!

LOURENCO MODIFIED APPROACH - proposes a parametric 

homogenized model which, on the contrary, is not dependent on specific 

selected ratios between elastic coefficients and geometrical dimensions, so it 

shows a more generalized applicability. Moreover, since the approach implies a 

statically-consistent solution, it results extremely useful according to the Static 

Theorem.

Some computational analyses (stress and strain-prescribed) are finally

carried out by means of the calculation code Ansys, in its version 6.0, in order 

to compare the analytical results obtained by our proposed homogenization 

techniques with the literature theoretical and experimental data. Such 

comparison has yielded the elaboration of useful tables. They contain both the 

elastic homogenized moduli, which are obtained by means of the different 

examined homogenization techniques, and the estimate of the errors from 

which each procedure is affected. By observing differences among the elastic 

coefficients which are shown in the comparison-tables, it is worth to highlight 

that:
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- due to consistency, some proposed elastic moduli appear to be closer than 

those ones yielded by Lourenco.

- as a result, it is possible to determine an elasticity tensor by means of those 

parametric moduli, yielded by the examined homogenization procedures, 

which are closer to the reference numerical data. Such elasticity tensor is, 

so, defined on the knowledge of elastic ratios as well as of geometrical 

parameters characterizing the RVE.

The last chapter, finally, deals with a review of the international codes

referred to the design of masonry structures. In this framework, the goal is to 

furnish a short summary and a comparison between the examined codes 

different from a number of countries. This review will be particularly useful in 

a possible continuation of the research activity, whose perspectives are:

- the extension of the proposed strategies to post-elastic range.

- the introduction of anisotropic failure criteria.

- the comparison of the proposed models with the experimental data, by 

considering the possibility of applying them to reinforced masonry walls.

Hence, in this framework, a comparison between the theoretical constitutive 

characterizations, obtained by means of the examined homogenization 

procedures, and that ones yielded by the examined codes will be made.
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