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Introduction I

INTRODUCTION

Masonries have been largely utilized in the history of architecture, in the
past.

Despite their present uncommon use in hew buildings, they still represent
an important research topic due to several applications in the framework of
structural engineering, with particular reference to maintaining and restoring
historical and monumental buildings.

Hence, even if new materias (for example the reinforced concrete) are,
today, wider spread than masonry ones, the unquestionable importance of alot
of real masonry estate requires researcher’s particular attention for this kind of
structures. Therefore, in order to design an efficient response for repairing
existing masonry structures, a large number of theoretical studies, experimental
laboratory activities and computational procedures have been proposed in
scientific literature.

Masonry is a heterogeneous medium which shows an anisotropic and
inhomogeneous nature. In particular, the inhomogeneity is due to its biphasic
composition and, consequently, to the different mechanical properties of its
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constituents, mortar and natural or artificial blocks. The anisotropy is, instead,
due to the different masonry patterns since the mechanical response is affected
by the geometrical arrangement of the constituents. Basically, in literature, two
approaches are usualy taken into account for materials which have a
heterogeneous  micro-structure:  the  heuristic  approach and the
thermodynamical one. In the former, aprioristic hypotheses on the dependence
of the constitutive response on a certain number of parameters are considered
and the material’ s mechanical behaviour is obtained by such hypotheses and by
experimenta tests. This approach is particularly used in non-linear field, where
structural analyses are employed (Heyman, 1966). Our attention was focused
on the latter approach. It extends the use of the homogeneous classical
elagticity to heterogeneous materials by replacing the elastic constants of the
classica homogeneous theory with the effective elastic ones, which average the
actual inhomogeneous properties of the medium. Hence, such approach yields
the overall compliance tensor and the overall stiffness tensor in a mathematical
framework by means of mathematical operations of volume averaging and
thermodynamical consistency. In this way, starting from the concepts of the
average strain for prescribed macrostress and of the average stress for
prescribed macrostrain, the global behaviour is provided from the masonry
micro-structure geometry and from the known properties of the individual
constituents.

In this framework, advanced analytical and numerical strategies - based on
the finite element method - have been recently devel oped.

The main object of the present work is, in a first moment, to furnish an
overall description of the different homogenization approaches utilized in
literature for modelling masonry structures in linear-elastic field. Then, it will
be given a number of new possible proposals for theoretical models which
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yield globa congitutive relationships. Later, computational analyses are
employed in order to compare the analytical results obtained from the proposed
homogenization techniques with the literature data.
The work is articulated in seven chapters. Briefly, it is given a description
of each one, here:
Chapter 1 — it deals with the continuum mechanics for solids whose
micro-structure is characterized by some heterogeneities. This means
that they can appear to be constituted by various components, inclusions
with different properties and shapes, or yet, they can show some defects
such as cracks or cavities. A lot of advanced materials have this
heterogeneous micro-structure, like ceramics, some metals, reinforcing
fibres, polymeric composites and so on, for example. For such
materials, a micro-mechanical analysis must be involved. Hence, the
two approaches which are usually employed in literature for the micro-
mechanical analysis of such media (the thermodynamical and heuristic
approaches) are here described.
Chapter 1l — it provides a short introduction to the notion of
homogenization and of the essential concepts connected to it. Since
most of the composite materials shows a brittle, rather than ductile,
behaviour and, so, the elastic behaviour prevails, there is often no need
to consider the homogenization in an elasto-plastic range. On the
contrary, such an approach cannot be ignored when the plastic
behaviour comes into play, like in the composites which have a metallic
matrix, for example. This leads to some difficulty since the solution of
the elasto-plastic homogenization problem in an exact form is available
only for very simple cases. However, we will be interested in the elastic
response of the homogenized material.
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Chapter 111 — it deals with the mechanic characterization of masonries,
whose heterogeneity makes it quite a difficult task. Masonry is, indeed,
constituted by blocks of artificial or natura origin jointed by dry or
mortar joints. Hence, such a biphasic composition implies masonry is an
inhomogeneous material. Moreover, since the joints are inherent plane
of weakness, notably the mechanical masonry response is affected by
behaviour preferred directions, which the joints determine. This fact
implies masonry is also an anisotropic material. So, the chapter 11l
describes the fundamental mechanical approaches (Discrete and
Continuous models) which have been developed in literature, in order to
formulate an appropriate constitutive description of masonry structures
in linear-elastic field. In particular, our attention will be focused on the
different homogenization proposals for modelling masonry structures,
which are given in literature by some authors (Pietruszczack & Niu,
Anthoine, Zucchini & Lourenco, et a...), in order to obtain a genera
account on the existent homogenization procedures and,
contemporaneoudly, to underline the advantages and disadvantages for
each one of them.

Chapter IV — It furnishes some possible proposals for modelling
masonry structures, in linear-elastic field, starting from the results of
literature approaches. The main object has been to obtain new
homogenization techniques able to overcome the limits of the literature
homogenization procedures.

Chapter V — It provides a short introduction to the formulation of Finite
Element M ethod, propaedeutic knowledge in order to employ numerical
analyses with F.E.M. calculation codes.
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Chapter VI — It provides some computational analyses (stress and
strain-prescribed), carried out by means of the calculation code Ansys,
inits version 6.0. This software offers alarge number of appliancesin a
lot of engineering fields and it is just based on the mathematical F.E.M.
model. Such finite element analyses have been employed in order to
compare the analytica results obtained by our proposed
homogenization techniques with the literature data.

Chapter VII — It deals with a review of the international codes referred
to the design of masonry structures. In this framework, the object of this
chapter is to furnish a short summary and a comparison between the
examined codes different from a number of countries.
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CHAPTER |

Micro-mechanics theory

1.1 Introduction

Continuum mechanics deal with idedlized solids consisting of materia
points and material neighbourhoods, by assuming that the material distribution,
the stresses and the strains within an infinitesimal material neighbourhood of a
typical point were essentially uniform [47], [48]. On the contrary, at a micro-
scale, the infinitesimal material neighbourhood turns out to be characterized by
some micro-heterogeneities, in the sense that it can appear to be constituted by
various components, inclusions with differing properties and shapes, or yet, it
can show some defects such as cracks or cavities. Hence, the actual stress and
strain fields are not likely uniform, at this level.

A lot of advanced materials have this heterogeneous micro-structure. For
example, the ceramics, some metals, ceramic, reinforcing fibres, polymeric
composites and so on. For such materials, a micro-mechanical analysis must be
involved.

Basically, two approaches are usually employed for the micro-mechanical

analysis of such media [25].
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The first one extends the use of homogeneous classical eladticity to
heterogeneous materials by replacing the elastic constants of the classical
homogeneous theory by effective elastic constants which average the actual
inhomogeneous properties of the medium [47], [11]. According to this
procedure, the definition of the overall compliance tensor and the overall
eladticity tensor can be attained in arigorous mathematical framework from the
concept of average strain for prescribed macrostresses and from the concept of
average stress for prescribed macrostrain, respectively. This kind of approach
provides the materials overall behaviour from the micro-structure geometry
and from the known properties of the individual constituents, so that, at a
macro-scale, the heterogeneous medium can be replaced by a homogeneous
one having the mechanical anisotropic properties previousy determined. In
other words, it is possible to express in a systematic and rigorous manner the
continuum quantities of an infinitessmal material neighbourhood in terms of the
parameters that characterize the microstructure and the micro-constituents
properties of the examined material neighbourhood.

However, in order to obtain the effective estimates of the overall material
properties, the recourse to quite restrictive hypotheses and specia averaging
procedures is subsequently required [33], [10].

The second approach is somewhat more heuristic and is based on the
hypothesis that the overall mechanical properties of the heterogeneous medium
must be dependent on a certain number of parameters. Later, genera
relationships between these parameters and the overall eadticity tensor are
obtained by means of fundamental theorems of the theory of elasticity.
Moreover, certain of the effective material properties must be determined
experimentally and cannot be predicted from the properties of the constituent
materials [16], [54]. The limitation of the approach is counterbalanced by the
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fact that the resulting theories are able to make predictions in situations where
the equivalent homogeneity approach cannot. A remarkable case is that one in
which the deformation of the void volume is significant [15].

In the present chapter, a general treatment of micro-mechanics theory is
employed in the spirit of the first of the above mentioned approaches.

According to it, there are several micro-mechanical models which are used
for predicting the globa mechanical behaviour of the heterogeneous materials,
as the dilute approximation, the self-consistent scheme, the spherical model,
the Mori-Tanaka and the differential scheme. All these models involve some
approximations useful for carrying out the analysis and, therefore, they provide
approximate effective global properties. The validity of the prediction depends
on the chosen model.

1.2 Definition of the Representative Volume Element: geometrical and
stress-condition consider ations

A common procedure for developing the analysis of heterogeneous solids in
micromechanics consists in making reference to a Representative Volume
Element (RVE), which is an heterogeneous material volume, statistically
representative of the neighbourhood of a certain point of a continuum mass
[47], [11]. The continuum material point is called a macro-element. The
corresponding micro-constituents of the RVE are called the micro-elements.
Therefore, the concept of an RVE is used to estimate the continuum properties
at the examined continuum material point, in terms of its microstructure and its
microconstituents. In other words, the goa is to obtain the overall average
constitutive properties of the RVE in terms of the properties and structure of
the microelements, included in it, in order to calculate the global response of
the continuum mass to applied loads and prescribed boundary data. These ones
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correspond to uniform fields applied on the continuum infinitessimal material
neighbourhood which the RVE is aimed to represent.

The Figure 1.1 shows a continuum and identifies a typical material point P
of it, surrounded by an infinitesimal material element. When the macro-element
P is magnified, it shows the own complex micro-structure consisting in voids,
cracks, inclusions, whiskers and other similar defects. To be representative, the
RVE hasto contain a very large number of such micro-heterogeneities.

MACROSCALE- MICROSCALE-
CONTINUUM MATERIAL POINT e, A RVE

\
R

magnified

&

Figure1.1 Possible microstructure of an RVE for the material neighbourhood
of the continuum materia point P

In literature, [47], [1], it is often found an RVE definition according to the
following geometrical considerations:
1. the RVE has to be structurally typical of the whole medium on
average
2. the RVE must include a very large number of micro-elements
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Hence, according to the above given concept of the RVE, two length-scales
are necessary: one is the continuum or macro-length scale, by which the
infinitesimal material neighbourhood is measured; the other one is the micro-
length scale which corresponds to the smallest micro-constituent whose
properties and shape are judged to have direct and first-order effects on the
continuum overal response and properties. Therefore, it provides a valuable
dividing boundary between continuum theories and microscopic ones, being
large if compared to the micro-constituents and small if compared to the entire
body. So, for scales larger than the representative volume element, continuum
mechanics are used and properties of the materia as whole are determined,
while for scales smaler than the representative volume element, the
microstructure of the material has to be considered.

In general, if the typical dimension of the material being modelled is named
with L, if the typical dimension of the macro-element is named with D and if
the typical dimension of the micro-element is named with d, they have to be in
the following relation:

L?2D?2d

L D (1.2-1)
L5, Do

D = d =

This means that the typical dimension D of the RVE should be much larger
than the typical size d of the micro-element and much smaller than the typical
size L of the entire body, as it is shown in the following figure, where the RVE
is used in the shape of cube.
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The real ohject

The mathem atical model
of the object

& Cartesian BEeference
Coordinate System

REUCLIDEAN 3D SPACE

THE REAL WORLD

Figure1.2 Thetypical dimension a Representative Volume Element.

The relation Errore. L'origine riferimento non é stata trovata. has to be
valid independently from the fact that the micro-elements have or not have a
random, periodic or other distribution within the continuum material, although,
of course, the corresponding overall RVE properties are directly affected by
this distribution.

It is useful to underline two important concepts in the previous geometrical
RVE definition:

0 the absolute dimensions of the micro-constituents may be very large
or very small, depending on the size of the continuum mass and the
objectives of the analysis - it is only the relative dimensions that are
of concern.
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0 the evauation of the essential micro-constituent is another relative
concept, depending on the particular problem and on the particular
objective. It must be addressed through systematic micro-structural
observations at the level of interest and must be guided by
experimental results.

Hence, the definition of the RVE is one of the most important decisions that
the analyst makes for employing an accurate micro-mechanical analysis. An
optimum choice would be one that includes the most dominant features that
have first-order influence on the overall properties of interest and, at the same
time, yields the simplest model. This can only be done through a coordinate
sequence of microscopic and macroscopic observations, experimentations and
analyses.

The until now mentioned definition of the RVE, based only on geometrical
ratio between the different scales of the whole body, RVE's size and
characteristic dimensions of the micro-inclusions or defects, is — in genera —
not sufficient to ensure the optimality of the choice related to the accuracy and
consistency of the micro-mechanical approach, as well as of the
homogenization procedure. Indeed, as shown in some works with reference to
configurational body force, possible significant gradients of stress and strain
fields can play a crucia rule for establishing the RVE size, provided that they
strongly vary within the RVE characteristic length, [39]. In other words, a
consistent criteria to select an RVE has to be aso based on the preliminary
requirement of a smooth distribution of the physical quantities involved in the
analysis. This mathematical property finds its mechanical interpretation in the
fact that all micro-mechanics and homogenization theories are based on
averaged stress and strain values over the RVE domain, as well as on the
overall elastic and inelastic responses. Therefore, no strong field gradients have
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to be attempted and, in order to ensure this, functional analysis and theory of
elagticity theorems have to be invoked and utilized.

On the other hand, some works reported in literature also consider
approaches where the weight of geometrical parameters gradients are taken into
account. In particular, in this framework, a paper by Fraldi & Guarracino [25]
deals with a straightforward homogenization technique for porous media
characterized by locally variable values of the volume fraction. From a
theoretical point of view, the employed technique corresponds to averaging a
continuum model in order to end up with a higher continuum model. According
to the opinion of the writers, such procedure offers several advantages. First,
making the effective elastic moduli of the homogenized porous medium
dependent not only on the value of the matrix volume fraction, g, but on its

gradient, Ng , aswell, allows a simple characterization of the micromechanical

inhomogeneity of the RVE in a closed mathematical form. Second, the number
of parameters necessary to an adequate identification of the mechanical
properties of the material is extremely reduced and essentially coincides with
the properties of the constituent matrix and with the knowledge of the local
values of the density of the medium under analysis. Finally, it seems that, by
means of this approach, several problems involving porous media characterized
by a non-periodic distribution of voids, such as cancellous bone tissues or
radioactively damaged materials, can be effectively tackled from a
computational standpoint.

However, once an RVE has been chosen, the micromechanical analysis has
to be employed in order to calculate, as said before, its overal response
parameters. Since the microstructure of the material, in general, changes in the
course of deformation, the overall properties of the RVE aso, in generd,
change. Hence, as anticipated before, an incremental formulation is sometimes
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necessary, but, for certain problems in elasticity, a formulation in terms of the
total stresses and strains may suffice.

In this framework, consider an RVE occupying a volume V' and bounded
by aregular surface V', where the superscript | stays for inhomogeneous. A
typical point in V' is identified by its position vector X, with components
x (i =1,2,3), relative to afixed rectangular Cartesian coordinate system (see
Figure 1.1). The unit base vectors of this coordinate system are denoted by
e (i =1,2,3), so the position vector is given by:
X=X€ (1.2-2)
where repeated subscripts are summed.
For the purpose of micromechanical approach, the RVE is regarded as a

heterogeneous continuum with spatially variable, but known, constitutive
properties [47], whose it needs to estimate the average ones.

In general, the displacement field, u=u(x), the strain field, E = E (x),

and the stressone, T =T (), within the RVE volume, vary in fact from point

to point, even if the boundary tractions are uniform or the boundary
displacements are linear. Under both the prescribed surface data, the RVE must
be in equilibrium and its overall deformation compatible. The governing field
equilibrium equations at a typical point X in the volume V of the RVE (for
simplicity, the superscript | will be not repeated) are:

N3 (x)=0;  T(x)=T"(x)inV (1.2-3)
where body forces are assumed absent and where the superscript T stands for
transpose.

In arectangular Cartesian component form, the (1.2-3) becomes:
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s.. =0 S.=S. inV (1.2.4)
where:
i=j=123
and where a comma followed by an index denotes the partial differentiation
with respect to the corresponding coordinate variable.
Moreover, the strain-displacement relation has to be verified:
E(x):%{NAu+(NAu)T} inV (1.2-5)
where N isthe del operator defined by:
S —a— T
N=1e=_—¢ (1.2-6)
X

and the superscript T denotes transpose.
The(1.2-5), in arectangular Cartesian component form, becomes:

e, :%(ui,j +u,,;) inv (1.2-7)

When the self-equilibrating tractions, t°, are prescribed on the RVE
boundary IV , as shown in Figure 1.3 the following boundary equilibrium

conditions have to be verified:
T(x)n=t° on 1V, (1.2-8)
or, in Cartesian components:
s;n =t on 1V, (1.2-9)
where:

n= the outer unit normal vector of the RVE boundary dV.

TV, = the partition of the RVE boundary where the self-equilibrating tractions,

t°, are prescribed.
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e,

Figure 1.3 Traction boundary conditions

On the other hand, when the self-compatible displacements, u°, (self-
compatible in the sense that they don’'t include rigid-body trandations or
rotations) are assumed prescribed on the boundary of the RVE, as shown in
Figure 1.4, it follows that:

u=u’on 1V, (1.2-10)
or, in Cartesian components:
u =u’ on Vv, (L.2-11)

where:



12 Chapter | — Micro-mechanics theory

TV, = the partition of the RVE boundary where the displacements, u®, are

prescribed.

Figure 1.4 Displacement boundary conditions

If the modified microstructure of the material during the deformation has to
be taken into account, the incremental formulation is necessary to consider a

rate problem, where traction rates #° or velocity &° may be regarded as
prescribed on the boundary of the RVE. Here, the rates can be measured in
terms of monotone increasing parameter, since no inertia effects are included.
Therefore, the basic field equations are obtained by substituting in the above
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written equations the corresponding rate quantities, i.e. T(x) for T (x),

B (x) for E(x) and @ for u, obtaining that:

N (x)=0;  B(x)=F"(x) inv (1.2-12)
and
é(x):%{NA&+(NA@)T} inV (1.2-13)

When the self-equilibrating tractions, £, are prescribed on the RVE

boundary V', the following boundary equilibrium conditions have to be
verified:
B(x)n=£ on 1V, (1.2-14)

On the other hand, when the velocities, §°, are assumed prescribed on the
boundary of the RVE, it follows that:

§=48° on TV, (1.2-15)

Once the boundary-value problems associated with an RVE is formulated,
the aim is, then, to calculate its overall response parameters and to use these
ones in order to describe the local properties of the continuum material
element, when returning to the starting macro-scale. In this scale, in fact, the
RVE represents a point of the continuum material in which mechanical
properties have to be found. Hence, it is necessary to obtain uniform

macrofields on the RVE boundary; thus, prescribed surface tractions, t°, may

be applied as spatially uniform, or prescribed surface displacements, u®, may
be assumed as spatialy linear. In the first case, the goal is to found the average
strain field as a function of the corresponding prescribed nominal stress one.
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Consequently, the components of the overall compliance tensor are obtained
as.

_ 3
thk = dijdhk S_é
hk i,j,hk=xy,z (1.2-16)

§u’hk = (1' dij ) >(1' dhk) xse_g

hk

where consistent considerations are done for defining the opportune average
strain field to use in the calculation. In the second case, the goal is to found the
average stress field as a function of the corresponding prescribed nominal
strain one. Consequently, the components of the overall stiffness tensor are

obtained as:
- S
Cijhk :dijdhk e_oJ
e _ i,j,hk=xy,z (1.2-17)
= S ij
Cijhk = (1 dlj ) >(1' dhk) Xe_oJ
hk

where consistent considerations are done for defining the opportune average
stress field to use in the calculation.

In order to reach this objectives, fundamental averaging methods are
necessary for evaluating average quantities and they will be shown in the
following section.

It is worth to notice, here, that an elastic solution obtained via micro-
mechanical approach satisfies, at a micro-scale, both the equilibrium and the
compatibility in each internal point of the RVE, either in the case of prescribed
stress problem either in the other one of prescribed strain. On the contrary, by
considering the RVE inside the continuum solid, the first problem satisfies the
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equilibrium conditions in the points belonging to the interface between two
adjacent RVE but doesn’'t satisfy the compatibility conditions at the same
interface. The second problem, instead, satisfies the compatibility conditionsin
such points but doesn’t satisfy, in general, the equilibrium ones. Nevertheless,
at a macro-scale the found solution is always an exact one because both field
equilibrium and field compatibility conditions are verified. Thanks to the
uniformity of the obtained macro-fields, in fact, it will be:

0 -
(NUE)=0 x1 B (1.2-18)

2
X
1

2
C/
2

where:

|

= average stressfield
E = average strain field

X = position vector of the points within the volume B.

B= the volume of the continuum solid from which the RVE has been

extracted.

It will be seen, in the follows, that the homogenization approach, differently
by the micro-mechanical one, starts by assuming constant stress (stress
prescribed problem) or constant strain (stress prescribed problem) fields
everywhere within the RVE volume, V. Such a procedure whose godl is the
evauation of the overall response parameters, yet, implies that at a micro-scale,
in the case of prescribed stress problem, field equilibrium equations are verified
in each interna point of the RVE while the compatibility ones are not satisfied
for the internal points of the RVE belonging to the interface between two
adjacent micro-constituents. In the case of prescribed strain problem, instead, it
happens the opposite: compatibility eguations are always verified in each
internal point of the RVE while the equilibrium ones at the interface between
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two adjacent micro-constituents are not satisfied. Moreover, by considering the
RVE inside the continuum solid, the satisfaction of the equilibrium and the
compatibility conditions at the interface between two adjacent RVE is
dependent by the shape of the RV E boundary: in the homogenization approach,
in fact, either in a prescribed stress problem either in the converse prescribed
strain one, the surface tractions and displacements are obtained as a
consequence and so they are, in general not uniform or linear respectively. For
this reason, such an approach is useful if there is a periodicity of the RVE in
the continuum medium and if there is not the presence of voids on the RVE
boundary. Nevertheless, at a macro-scale the found solution is always, also for
the homogenization approach, an exact one because both field equilibrium and
field compatibility equations are verified. Since the homogenization approach,
as it will be shown in detail in the Chapter 2, calculates the overall response
parameters of the RVE by taking into account the average stress and strain field
produced within its volume (and not, like the micro-mechanical approach, the
nomina quantities) and thanks to the uniformity of such fields, the (1.2-18) are
verified yet.

In particular, for prescribed constant stress field in each point of V, the
object is to found the average value of the piecewise obtained constant strain
field in V, (for homogeneous micro-constituents, the strain field is constant in
each phase and it assumes different values from phase to phase), as a function
of the corresponding prescribed stress field. Consequently, the components of
the overall compliance tensor are obtained as given by the(1.2-16), where
consistent considerations are done for defining the opportune average strain
field to use in the calculation. Anaogously, for prescribed constant strain field
in each point of V, the object is to found the average value of the piecewise
obtained constant stress field in V (for homogeneous micro-constituents, the
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stress field is constant in each phase and it assumes different values from phase
to phase) as a function of the corresponding prescribed strain field.
Consequently, the components of the overall stiffness tensor are obtained as
given by the (1.2-17), where consistent considerations are done for defining the

opportune average stress field to use in the calculation.

1.3 General theory for evaluating aver age quantities

In order to obtain further insight into the relation between the microstructure
and the overall properties, averaging theorems have to be considered.
In particular, in the case of prescribed self-equilibrating tractions on the

boundary dV of the RVE, either spatialy uniform or not, the unweighted
volume average of the variable stress field T (), taken on the volume V of

the RVE, is completely defined in terms of the prescribed boundary tractions.
To show this, denote the volume average of the spatialy variable and

integrable quantity T (x) by:

T :<T(x)>:V1QT(x)dv (1.3-1)

where X is the position vector, that identifies each point in the volume V of
the RVE, with components x (i =1,2,3), relative to a fixed rectangular
Cartesian coordinate system (see Figure 1.1).
The gradient of x satisfies:
(NAx) =1,xeAe =x ehAe =deghe =17 (132
where:

d; = Kronecker delta

1 = the second-order unit tensor
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Hence, in according to the equilibrium equations (1.2-3) and since the stress
tensor T (x) is divergence-free, the stress field T () can be written in the
following form:

T(x) =195 (x) = (RA x)" 5T (x) ={N{T (x)Ax)}" (133

By means of the Gauss theorem, and by remembering the
Errore. L'origine riferimento non é stata trovata. and the(1.3-3), the

average stressfield T is expressed as:

= 1 ~ . T 1 . T
T=<T =—OINXT A dav =—¢@ T A ds (1.34
<T()>=4, O{RAT () A} av =2 g {nAT () A x)} ds (1.34)
and, for the boundary equilibrium condition (1.2-8), it can be written:
T :vlq x A t°ds (1.3-5)
or, in Cartesian components:

— 1 <
S jj = Q xt? ds (1.3-6)

It should be noted that since the prescribed surface tractions, t°, are self-

equilibrating, their resultant total force and total moment about a fixed point

vanish, i.e.
Ot°ds=0 Ox Ut%ds=0 (1.3-7)
w v
or, in components:
Ofjds=0 08X Utids=0 (1.3-8)
w w

where:
&, = the permutation symbol of thethird order; &, =(+1,- 1,0) wheni, j, k

form (even, odd, no) permutation of 1, 2, 3.
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Hence, the average stress T defined by the (1.3-5) is symmetric and
independent of the origin of the coordinate system. Indeed, from the (1.3-8), it
iS:

Q/xAtO ds=Q/t°A x ds (1.3-9)
and, so:
T =T (1.3-10)

Let us to assume that the following boundary equilibrium equations were
satisfied:

T(x)n=t%on 1V, (1.3-11)
and:
T°n=t% on 1V, (1.3-12)
where:
n= the outer unit normal vector of the RVE boundary dV.

1V, = the partition of the RVE boundary where the self-equilibrating surface

tractions, t°, are prescribed.
t° =  the prescribed surface self-equilibrating tractions, assumed as spatially
uniform on the boundary V, of the RVE.

T (x) = the spatially variable stress tensor obtained from the stress prescribed

problem within the volume V of the heterogeneous RVE.
T°=  the spatially constant stress tensor obtained from the stress prescribed
problem within the volume V of the RVE, regarded as homogeneous.
From the equation (1.3-5), and by using again the Gauss theorem, it can be

written:
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T :éq xAtOds=\%Q/(T°A x)mds=%(‘3|§|>(T°A x)aV (1.3-13)
Thus, by taking into account the position (1.3-3), the volume average of the
spatially variable and integrable quantity T (x) can be expressed in the
following form:
1
Vv

For the rate problem, the average stress rate is obtained in an analogous

T = QTO av =T° (1.3-14)

manner to what has been done previously, by obtaining that:
il N .
'I5_<'I5(x)>—\7Q/xAﬁ ds (1.3-15)
or, in Cartesian components:
1.
&ij = <d; (x)>= v xt ds (1.3-16)

Hence, it is seen that for the small deformations the average stress rate
equals the rate of change of the average stress:

'F:<'l5(x)>:%<T(x)>:'# (1.3-17)

In particular, in the case of prescribed displacements on the boundary dV of
the RVE, either spatially linear or not, the unweighted volume average of the

variable displacement gradient NA u (and so of the variable strain field
E (X)), taken over the volume V of the RVE, is completely defined in terms of
the prescribed boundary displacements. To show this, denote the volume
average of the spatially variable and integrable quantity N A u by:

1
>=__
V

NAu=<NAu(x) QNAu(x)dV (1.3-18)
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where X is the position vector, that identifies each point in the volume V of
the RVE, with components x (i =1,2,3), relative to a fixed rectangular

Cartesian coordinate system (see Figure 1.1).
From the Gauss theorem, and in view of the boundary conditions (1.2-10), it
is.

NAu(x)adv = gn(x)Au(x)ds= n(x)Au®(x)ds (1.3-19)
v v v

where:
N = the outer unit normal vector of the RVE boundary dV.

Thus, the average displacement gradient within the RVE volume V can be
expressed in the following form:

“"—NAU:<NAu(x)>:Viqn(x)Au°(x)ds (1.3-20)

or, in Cartesian components:

1y .0
u :<ujyi(x)>:v(‘}br\uj (x)ds (1.3-21)

IR
Let usto remember that the rotation field R(x) is the anti-symmetric part of

the displacement gradient, that is:

T

R(x):%gmu(x)- (KA u(x)) (1322

o c

or, in components:
1, .
R; (X) _Eng,i - Uil (1.3-23)
while the strain field E(x) is the corresponding symmetric part of the

displacement gradient, hence, the stress field E (x) within the RVE volume

can be written in the following form:
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14~ .. ~ TN
E(X)ZEgVAu(x)+(NAu(X)) g (1.3-24)
or, in components:
1, N
E, (x)= S8, U (1.3-25)

Let us to denote the volume average of the spatially variable and integrable

quantity E (x) by:
— 3 1.
E_<E(x)>—\70E(x)dV (1.3-26)
Hence, by means of the (1.3-24) and of the (1.3-19), the average strain field

E is expressed as:
— 1.1/ .+ o o=«
=< >=__ — + _
E=<E(x) Vsz(nAu wAn)ds  (13-27)
or, in components:

e_ij:<e(x),j >:\%q/%(r\u?+u?nj)ds (1.3-28)

while the average rotation field R is expressed as:

1.1, . )
R:<R(x)>:\7q/§(nAu°-u°An)ds (1.3-29)

It is worth to underline that the average strain E defined by the (1.3-27) is

symmetric and independent of the origin of the coordinate system, and, o, it is:
E'=E (1.3-31)
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It should be remembered that the prescribed surface displacements, u°, are
sdf-compatible and, so, don't include rigid displacements of the RVE.

However, it should be noted that the found average value E of the strain field
E (x) is unchanged even if rigid displacements are added to the surface data.
In fact, at a generic point X in the RVE, arigid trandation, u’, and arigid-
body rotation associated with the anti-symmetric, constant, infinitesimal
rotation tensor, XXR', produce an additional displacement given by
u" +xxR". The corresponding additiona average displacement gradient is,

then:

NA(ur+x><Rr)=
o 1 i} 1 i} (1.3-32)
=<NA(u + X xR )>=[vqnds}Au +[anAxds}xR

By using the Gauss theorem, it follows that:

(1.3-33)

where:

1? = the second-order unit tensor

Hence, it is:

NA(ur+x><Rr):<|§|A(ur+x><Rr)>:Rr (1.3-34)
which doesn't affect E . Therefore, whether or not the prescribed surface

displacements u°® include rigid-body trandation or rotation, is of no

significance in estimating the relations between the average stresses and strains
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or their increments. For simplicity, however, it will be assumed that the
prescribed boundary displacements are self-compatible.

Moreover, it can be also found the average vaue of the displacements field
in terms of the surface data. So, by denoting the volume average of the spatially

variable and integrable quantity u(x) by:
u=<u(x) >:\%Qu(x)dv (1.3-35)
and by considering that the displacements field may be written as:
u(x)=u(x)<® =u(x){N A x) =R {u(x)A x)- (Rxu(x))x (1.3-36)
the average displacements field U may be expressed in the following form:
0 =<u(x) >:\%@N {u(x)A x)- (Rou(x))xav (1337
By making use of the Gauss theorem, it is obtained that:
u=<u(x >_—q/n>(u Ax)ds-—de (x))xdv (1.3-39)
or, in components:
u =<u (x) >:\%q/nju?>g ds- Vic‘y“)g av (1.3-39)
\%

which includes the volumetric strain coefficient, N xu . So, for incompressible
materials whose displacements field is divergence-free, the average
displacement, U assumes the following expression in terms of the prescribed

linear surface displacements, u°:
_ 1. ..
u:<u(x)>:\7q/n>(u°(x)A x)ds (1.3-40)

or, in components:
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u =<u (x)>:viqnjuj?>g ds (1.3-41)
Let us to assume that the following boundary equilibrium equations were
satisfied:
E(x)x=uon 1V, (1.3-42)
and:
E°x=u’ on 1V, (1.3-43)
where:
E (x) = the spatially variable strain tensor obtained from the strain prescribed
problem within the volume V of the heterogeneous RVE.

E° = the spatially constant strain tensor obtained from the strain prescribed
problem within the volume V of the RVE, regarded as homogeneous.
X= the position vector of the RVE boundary points.

1V, = the partition of the RVE boundary where the self-compatible
displacements, u°, are prescribed.

u = the prescribed self-compatible displacements, assumed as spatialy
linear on the boundary 1V, of the RVE.

From the equation(1.3-27), the average value of the strain tensor can be
written:

(1.3-44)

By using the Gauss theorem, it will be:
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— N P e o \\T

E_<E(x)>_\70§(NA(E x)+(NA (E° ) )ds (1.3-45)
Hence, by operating some caculations and by considering that

E° =(E°)T, the volume average of the spatially variable and integrable

quantity E () can be expressed in the following form:

v 0 E°dv =E° (1.3-46)

For the rate problem, the average strain rate is obtained in an analogous
manner to what has been done previously, by obtaining that:

NAI&I<NA@(X)>: 1q/n(x)Al&°(X)ds
\%Q%(n(x)A 8°(x)+6°(x) A n(x))ds (1.3-47)
1.1

0,5 (n(x)A 8 (x)-8 (x)An(x))ds

Hence, it is seen that for the small deformations the average strain rate
equals the rate of change of the average strain:

E:<é(x)>=%<E(x)>:é (1.3-48)

and similarly:

q (1.3-49)
NAI&Z<NAI&>:E<NAU>:NAU
Moreover, another useful relation to be considered, valid for either uniform

boundary tractions or linear boundary displacements [47], is:

<T:E>=<T ><E> (1.3-50)
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It is important to note that this identity, according to which the average
value of the product between the stress and the strain tensor is equal to the
product of the average values of both mentioned tensors, is valid for materials
of any congtitutive properties.

As pointed out before, an RVE represents the microstructure of a macro-
element (typica continuum material neighbourhood) in a continuum mass, so
the stress and strain fields until now considered, that are spatialy variable
within the volume V of the RVE, can be defined as microstress or microstrain
fields. In an analogous manner, the continuum stress and the strain fields, that
are spatially variable in function of the position of the macro-elements within
the volume B of the continuum solid, can be defined as macrostress or
macrostrain fields, to distinguish them from the previous ones. In particular,
according to what done before, denote the microstress and microstrain fields by

T=T(x) and E=E(x)and the macrostress and macrostrain fields by
S=S(X) and E =E (X)), respectively. In particular, it has been considered
the variability of such fields in function of the position vector X that describes
the points position within the RVE volume and of the position vector X that
describes the points position within the continuum volume. In genera, these
mechanical quantities are functions of thetime t, too.

At a macro-scale, the macro-fields must satisfy the following continuum

bal ance equations:
N>S(X)=0;  S(X)=S"(X)inB (1.3-51)
where body forces are assumed absent.
In rectangular Cartesian component form, the (1.3-51) becomes:

sii=0 s =siinB (1.3-52)

ij,i

where:
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i=j=123
and where a comma followed by an index denotes partia differentiation with
respect to the corresponding coordinate variable. Note that the superscript M
stands for macro.

Moreover, the strain-displacement relation has to be verified:

E(X):%{NAU(X)+(NAU(X))T} inB (1.3-53)
where N isthe del operator defined by:
N 1
N=9e =—— 1354
fie 1 & ( )

U (X) = the macro-displacement field

and the superscript T denotes transpose.
The(1.3-53), in rectangular Cartesian component form, becomes:

e =%(UU+U“) inB (1.3-55)
In general, at a typical point X in the continuum, at a fixed time t, the
vaues of the macrostress and macrostrain tensor, S and E , can be determined
by the average microstress and microstrain, T and E, over the RVE which
represents the corresponding macro-element. So, in micromechanics it is
assumed that:
S=T; E=E (1.3-56)
Conversely, the macrostress and the macrostrain tensors, S and E , provide
the uniform traction or the linear displacement boundary data for the RVE.
Hence, when the traction boundary data are prescribed, it is:

Sx=t° on IV (1.3-57)
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Analogously, when the displacements are assumed to be prescribed on the
RVE boundary, it is:

Exx=u’ on IV (1.3-58)

In general, the response of the macro-element characterized by relations
among macrostress S and macrostrain E will be inelastic and history-
dependent, even if the micro-constituents of the corresponding RVE are elastic.
This is because, in the course of deformation, flaws, microcracks, cavities and
other microdefects develop within the RVE and the microstructure of the RVE
changes with changes of the overal applied loads. Therefore, the stress-strain
rdations for the macro-elements must, in general, include additional
parameters which describe the current microstructure of the corresponding
RVE.

So, for a typica macro-element, denote the current state of its
microstructure by S, which may stand for a set of parameters, scalar or
possibly tensorial, that completely defines the microstructure, for example it
may stand for the sizes, orientations and distribution of its microdefects.

However, by considering a class of materials whose microconstituents are
elastic (linear or non-linear) and by assuming that no change in the
microstructure happens under the applied loads, the response of the macro-
element will be also elastic. Hence, a Helmholtz free energy, i.e. a macrostress
potential, exists and it can be written as:

F=F(E,S) (1.3-59)
which, at a constant state S, yields:
F(E
S= 1 ( ) (1.3-60)
TE

Then, through the Legendre transformation:



30 Chapter | — Micro-mechanics theory

F(E,S)+Y (S,S)=S:E (1.3-61)
amacrostrain potential can be analogoudy defined, as:
Y =Y (S,S) (1.3-62)
which, at a constant state S, yields:
E= ﬂ\fﬂéS) (1.3-63)

It is worth to underline that no thermal effects are here considered.

Once these macropotential functions are defined, it is possible to express
them in terms of the volume averages of the microstress and microstrain
potentials of the microconstituents. Since no thermal effects are considered,
yet, and since the material within the RVE is assumed to be elastic, it admits a

stress potential, f =f (x, E), and a strain potential, y =y (X, T), such that

a atypical pointitis:

f(E)+y (T)=e :e (1.3-64)
and also:
. =T (E). e () (1.3-65)
E T

As it follows, the cases of the prescribed boundary tractions and of the
prescribed boundary displacements for the RVE will be considered separately,
for a fixed RVE microstructure so that the dependence on S will not be
displayed explicitly.

- Case of prescribed constant macr ostrain

Let the RVE be subjected to linear displacements defined through a constant
macrostrain E . For such a boundary-vaue problem, a variable microstrain
field and a variable microstress one are abtained within the RVE:
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E =E(x,E)
(1.3-66)

T =T(x,E)
where the argument E emphasizes that a displacement boundary data with
constant macrostrain, E= E=< E(X,E)>, is being considered. Then, the
corresponding microstress potentia is:

f =f (x,E(x.E))=f%(x,E) (1.3-67)
where the superscript E on f emphasizes the fact that the microstress

potential is associated with the prescribed macrostrain E .
Consider now an infinitesimally small variation dE in the macrostrain

which produces, consequently, a variation in the microstrain field given by:

dE(x,E):MdE (1.3-68)
TE
Then:
<T:dE>=< L (X’E(X’E)) ; ﬂE(X’E)dE >=
i TE TE (1.3-69)
:<—‘”f (X’E) dE >= l<f £ >dE
TE TE
So, by remembering the (1.3-50), it follows that:
<T(x,E)>:ﬂlE<f ®(x,E)> (1.3-70)

Therefore, by defining the macrostress potentia as:
FE:FE(E):<fE(x,E)>:VEQfE(x,E)dv (13-71)

and the corresponding macrostress field (as before) by:
SF=S°(E)=T =<T(x,E)> (1.3-72)
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it is obtained that:
E
=1 ()
TE
where the superscript E on S emphasizes that F* and S© are, respectively

s (E)

(1.3-73)

the macrostress potential, i.e. the volume average of the microstress potential,
and the macrostress field, i.e. the volume average of the microstress field,
obtained at a macroscale by the constant prescribed macrostrain E .

- Case of prescribed constant macr ostress

Let the RVE be subjected to uniform tractions defined through a constant
macrostress S. For such a boundary-value problem, a variable microstrain
field and a variable microstress one are abtained within the RVE:

E=E(x,S)
(1.3-74)

T =T(x,S)

where the argument S emphasizes that a traction boundary data with constant
macrostress, S=T=<T(x,S)>, is being considered. Then, the
corresponding microstrain potential is:

y =y (x,T(x,8))=y *(x,S) (1.3-75)
where the superscript S on y emphasizes the fact that the microstrain
potential is associated with the prescribed macrostress S.

Consider now an arbitrary change dS in the macrostress which produces,

consequently, a change in the microstress field given by:

T (x,S)

dT (x,S) = 0s

ds (1.3-76)

Then:
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dS:.”y (X’T(X’S))>:

! (13-77)
1 s
=dS: —
> ﬂS <y >

<dT:E>=<

T (x.S)
1
=<dS:—‘”y (x.9)

So, by remembering the (1.3-50), it follows that:

<E(x,S)>:ﬂls <y °(x,8)> (1.3-78)

Therefore, by defining the macrostrain potential as:
vS:vS(s):<yS(x,s)>:V1@yS(x,s)dv (13-79)

and the corresponding macrostrain field (as before) by:
ES=E%(S)=E=<E(x,S)> (1.3-80)

it is obtained that:
VE

E°(S)= ﬂ'ns (S) (1.3-81)

where the superscript S on E emphasizesthat Y° and E® are, respectively
the macrostrain potential, i.e. the volume average of the microstrain potential,
and the macrostrain field, i.e. the volume average of the microstrain field,
obtained at a macroscale by the constant prescribed macrostress S.

Define, now, a new macrostress potential function:

FS=F°(E%)=S:E®- Y*(S) (1.3-82)
where the superscript S emphasizes that the corresponding quantity is
obtained for prescribed macrostress S.

On the other hand, at the loca level, the microstress and the microstrain
potential can be expressed, respectively, in the following form:
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f°=f(x,E(x,S))=f°(x,S)

s < (1.3-83)
y S=y (x,T (x,S)) =y *(x,S)
and hence:
fS+y *=T(x,S):E(x,S) (1.3-84)
The volume average over the volume V of the RVE yields:
<fS>+<yS>=S:E® (1.3-85)

The comparison of the (1.3-85) with the (1.3-82), by taking into account th
€(1.3-79), shows that:

FS(ES)=<f5(x,5)> (1.3-86)
Moreover, by remembering the relation (1.3-81), it is a so deduced that:
S
s=1F s(E°) (1.3-87)
TE

In a similar manner, when the macrostrain E is prescribed through linear
boundary displacements, a new macrostrain potential function may be defined:
YE=YE(ST)=S":E- FE(E) (1.3-88)
where the superscript E emphasizes that the corresponding quantity is
obtained for prescribed macrostrain E .

On the other hand, at the loca level, the microstress and the microstrain

potential can be expressed, respectively, in the following form:
fE=f(x,E(x,E))=fF(xE
= (xE(uE)) =1 (8] s
y =y (x,T(x,E)):y (x,E)

and hence:
fE+y £ =T (x,E):E(x,E) (1.3-90)

The volume average over the volume V of the RVE yields:
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<ff>+<yF>=S"E (1.3-91)
The comparison of the (1.3-91) with the (1.3-88), by taking into account the
Errore. L'origineriferimento non e stata trovata., shows that:

YE(sF) =<y £(x,E)> (13-92)
Moreover, by remembering the relation (1.3-73), it is a so deduced that:
E
E= %(SE) (1.3-93)
1S

At this point, it is useful to make an important consideration.
When the boundary tractions are given by:

t°=n>S on Vv (1.3-94)
the microstress and the microstrain fields, as considered before, are:
T=T(x5S)
(1.3-95)
E=E(x,S)

hence, the overall macrostrain is:
E®=<E(x,S)> (1.3-96)
Now, suppose that boundary displacements are defined for this obtained
macrostrain by:

u® = x>E° on vV (1.3-97)
the resulting microstress and microstrain fields are:
T=T(xE®)
(1.3-98)
E=E(xE®)

In general, these fields are not identical with those ones shown in the
equation (1.3-95). Furthermore, whileit is:

E°=<E(xE®%)> (1.3-99)
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there is no a priori reason that <T(X,ES) > should be equa to S for an

arbitrary heterogeneous elastic solid.

So, the RVE is regarded as statistically representative of the macroresponse
of the continuum material neighbourhood if and only if any arbitrary constant
macrostress S produces, through the (1.3-94), a macrostrain

E®=<E(x,S)> such that when the displacement boundary conditions

(1.3-97) are imposed, then the obtained macrostress must verify the following
relation [47]:

<T(xE®)>;S (1.3-100)

where the equality isto hold to a given degree of accuracy.
Conversely, when the boundary displacements are given by:

u® =Ex on vV (1.3-101)
the microstress and the microstrain fields, now, are:
T =T(xE)
(1.3-102)
E =E(x,E)

hence, the overall macrostressis:
S =<T(x.E)> (1.3-103)
Now, let us suppose that boundary tractions are defined for this obtained
macrostress by:
t° =n>St on IV (1.3-104)
the resulting microstress and microstrain fields are:
T=T(x5)

e E(x ) (1.3-105)



Chapter | — Micro-mechanics theory 37

In general, these fields are not identical with those ones shown in the
equation (1.3-102). Furthermore, whileit is:

S =<T(x,8)> (1.3-106)

there is no a priori reason that < E(X,SE) > should be equal to E for an

arbitrary heterogeneous elastic solid.
So, analogoudly, the RVE is regarded as statistically representative of the
macroresponse of the continuum material neighbourhood if and only if any

arbitrary constant macrostrain E  produces, through the (1.3-101), a

macrostress S =<T (x,E) > so that when the traction boundary conditions

(1.3-104) are imposed, then the obtained macrostrain must verify the following
relation [47]:
<E(x,8°)>;E (1.3-107)
where the equality isto hold to a given degree of accuracy.
Based on the above given definitions for an RVE, then, the macrostrain

potential Y °(S) and the macrostress potential F© (E) correspond to each

other in the sense that:

ﬂY S . 1'": E
S);EUP E);S 1.3-108
is (9 = () (13108
and in accordance with the Legendre transformation, it is:
YS(S)+FF(E); S:E (1.3-109)

It should be noted, however, that even for S and E which satisfies the
(1.3-108), it will be:
T(x,S)* T(x.E)

£ (%) E(xE) (1.3-110)
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Moreover, in generd, it is:

y 5(x,S)+fF(x,E)t* (x,S): E(x,E) (1.3-111)
Similarly, the macropotentials Y © (SE) and F° (ES) correspond to each

other in the sense that:

E S
A (s°);ESUP Ll (E%); s (13-112)
1S TE
and in accordance with the Legendre transformation, it is:
YE(ST)+FS(E%); S°:E° (1.3-113)

whereas, the corresponding micropotentials don’'t satisfy a similar relation, i.e.:
yE(x,SE)+fS(x,ES)1 * (x,E):E(x,9) (1.3-114)
The following table 1.1 provides a summary of the results presented in this
section:
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PRESCRIBED S

PRESCRIBED Ec¢

microstress T(x,8) T(x.E)
microstrain E(x,S) E(x,E)
macrostress s=<T(xs)> sE =< T(x.E)>
macrostrain E°=<E(x,S)> E=<E(x,E)>

microstress potential

f (x,E(x,8))=f°(x,S)
_ qf (x,E(x,S))

T(x,S) pr

f (x,E(x,E))=f"(x,E)
T (xE) = 7t (x,E(x.E))
E

microstrain potential

y (x,T(x,8)) =y *(x,S)
£ (xs) =Y (x,1(x,8))

y (xT(xE)) =y & (xE)
£ (x) = Ty (x,7(x,E))
’ T

macrostress potential

FS:FS(ES):<fs>

=
S-E(E )

F*=F"(E)=<f">

FE
s =1 (g)
1E

macrostrain potential

Y =Y°(S)=<y°>

e = (s)
1S

YE:YE(SE):<yE >
Y
- s (S)

microlegendre
transformation

f°+y °=T(x,8):E(x,9)

f+y " =T(x,E):E(xE)

macrolegendre
transformation

F°+Y®=S:E°

approximated
macrolegendre
transformation

FE(E)+Y°(S)»S:E

S

FP(e°)+Y*(s7)»s :E

corresponding
microlegendre
transformation

f+y ° 1 T(x,8):E(XE)

f*+y "1 T(x,E):E(x,S)

Table 1.1 Relation between macro and micro quantities for prescribed
macrostress and macrostrain.
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1.4 Elagticity, groups of symmetry, anisotropic solids with fourth rank
tensors

The heterogeneous materials can be characterized by both inhomogeneity
and anisotropy, since the first aspect is due to the multi-phase composition of
the medium, while the second one is due to the geometrical arrangement of the
different constituents within the examined heterogeneous volume.

In the previous sections, it has been analyzed the first aspect.

In this section, the constitutive relations for anisotropic materials, in linear-
elasticity, are presented [64].

A linear anisotropic elastic material, as known, can have as many as 21
elastic constants. However, this number can be opportunely reduced when the
examined material possesses certain material symmetry. Moreover, it is aso
reduced, in most cases, when a two-dimensional deformation is considered. It
is worth to remember that the matrices of the elastic constants must be positive
definite, because the strain energy must be positive.

Hence, referring to a fixed rectangular coordinate system e,e,,e,, let T
and E be the stress and the strain fields, respectively, in an anisotropic pier-
elastic material. The stress-strain relation can be written in the following form:

T=C=E (1.4-1)
or, in components:
Sy = Cijhkehk (14-2)
where:
C = fourth rank elastic stiffness tensor

and where, for the hypothesis of iper-elagticity, the components Cijhk satisfy

the following conditions of full symmetry:
Cijhk = Cjihk = Chkij (1.4-3)
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The above written equation (1.4-3) groupsin it the following equalities:
Cijhk = Cjihk = C.jkh = Cjikh (1.4-4)
and
Cijhk = Chkij (1.4-5)
where the (1.4-4) follows directly from the symmetry of the stress and the
strain tensors, while the (1.4-5) is due to the assuming hypothesis of existence
of the elastic potential f , [64]. In other word, the strain energy f per unit

volume of the material, given by:

isindependent of the loading path, i.e. the path that e; takesfromOto e while

it depends on the final value of e, only.
In linear elasticity, the (1.4-6) may be written as:

1 1
f= ES i€ = Ethkeijehk (1.4-7)

and since the strain energy must be positive, it has to be:
Cin€i€w >0 (1.4-8)
for any real, non zero, symmetric tensor €; .
Hence, as said before, the stiffness tensor C is defined positive.
Anaogoudly, the stress-strain relation can be written in the following form,
inverse of (1.4-1):
E=ST (1.4-9
or, in components:
€ = thks hk (1.4-10)

where:
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S = fourth rank elastic compliance tensor

and where, for the hypothesis of iper-elasticity, the components thk satisfy the

following conditions of full symmetry:

thk = Sjihk = &kij (2.4-11)
The above written equation (1.4-11) groups in it the following equalities:
thk = Sjihk = Sjkh = Sjikh (1.4-12)
and
thk = Snkij (1.4-13)

where the (1.4-12) follows directly from the symmetry of the stress and the
strain tensors, while the (1.4-13) is due to the assuming hypothesis of existence
of the elastic complementary potential y , [64]. In other word, the stress energy

y per unit volume of the material, given by:
y = Q e,ds, (1.4-14)
is independent of the loading path, i.e. the path that s, takes from O to s

while it depends on the final value of s , only.
In linear elasticity, the (1.4-14) may be written as:

1 1
y = ES ijeij = E thks ijS hk (14-15)
and since the stress energy must be positive, it has to be:
SnSiSw >0 (1.4-16)

for any real, non zero, symmetric tensor s ;; .

Hence, as said before, the compliance tensor S is defined positive.
Introducing, now, the contract notation, [36], such that:
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(1.4-17)
€,=€e, €,=e, e;=e,
2e,=e,, 2e,=6€, 2e,=¢,,
the stress-strain laws (1.4-2) and (1.4-10) may be written, respectively, as:
s, =C,e,, C,=C, (1.4-18)
and
€, =SSy, Sp =S, (1.4-19)
With reference, in particular, to the equation (1.4-18), it may be expressed
inamatrix form, asit follows:
T=C:E, C=C' (1.4-20)
The stress and the strain tensors, T and E, are expressed in form of 6x1

column matrices, while the stiffness tensor C is expressed in form of 6x6

symmetric matrix, as given in the following equation:

§C11 C. Gy Cy Gy G l;l
é

& C», Cu Cu Cy Cyy
é C. C, C, C.u

C=a 33 34 35 36 i (14-21)

é C44 C45 C46 U
é C. c.u
e Cesll

where the transformation between C;, and C,,, is accomplished by replacing

the subscriptsij (or hk) by a or b, by using the following rules:
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ij(orhk) « a(orb)

11 « 1
22 « 2
33 « 3 (1.4-22)
320r23 « 4
3lorl3d « 5
120r21 « 6
We may write the transformation (1.4-22) as:
il ifi=j
a=ji_. . . e
19-1-] ifil ]
) (1.4-23)
ih if h=k
b=j

19-h-k ifhtk
Anaogoudly, with reference to the egquation (1.4-17), the stress-strain law
(1.4-19) may be expressed in amatrix form, asit follows:
E=S:T, S=§T (1.4-24)
where also the compliance tensor S is expressed in form of 6x6 symmetric
matrix, as given by:

€S, S, S; S S5 Seu
§ S, Ss Su S Suy
e S: Sy Ss SiU
S=ea ’ (1.4-25)

(:3 S44 S45 S46E
e

& Sym Se 5563
] Sel

Here, the transformation between S, and S,, is similar to that one between

Gy and C,, except the following:
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thk =S, if both a,b £3
25 =S, if either aorb £3 (1.4-26)
4thk =S, if both a,b>3

From (1.4-20) and (1.4-24), it is obtained the expression of the strain
energy, as.
=1 E'CE “Lre :ETTST (1.4-27)
2 2 2

and, by considering that f has to be positive, it must be:

E'CE>0
T'ST>0
This implies that the matrices C and S are both positive definite. Moreover,
the substitution of the (1.4-24) in the (1.4-20) yields:
CS=I=SC (1.4-29)
where the second equality follows from the first one which saysthat C and S

(1.4-28)

are the inverses of each other and, hence, their product commute.

For alinear anisotropic elastic material, like it has been anticipated before,
the matrices C and S have 21 elastic independent constants. However, this
number can be reduced when a two-dimensional deformation is considered.

Assume, therefore, the deformation of the examined anisotropic elastic
bodies to be a two-dimensional one for which e, =0. When e, =0, the

stress-strain law given by the first equation of (1.4-18) becomes:
s,=aC,e, a=123...6 b=12..,6 (1430

bt3

Ignoring the equation for s 5, the (1.4-30) may be written as:

A A A ~ A

T=CE c=C" (1.4-31)

where:
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T"=[5.,5,,54555¢] (1.4-32)
E"=[e,.e,.e, 6 6] (1.4-33)
and:

écll C, Cy Cs Cgp l;l

é a

R é C22 C24 CZS C26 l:l
C=é Cu Cx Cyl (1.4-34)

é a

é%/m C55 C56 u

8 C66H

Since C is obtained from C by deleting the third row and the third column

A

of it, C is a principal submatrix of C and it also is positive definite. It
contains 15 independent elastic constants.

The stress-strain law (1.4-19) for e, =0 is:

e,=0=§;s, (1.4-35)
Solving for s ,, itis:
_ 15
S;=-—a S,s, (1.4-36)
3 b13

and by sobstituting the (1.4-36) within the first equation of the (1.4-19), it is
obtained:

e, =8 S..S, (1.4-37)
bt3
with:
Sy =S - S E S'a (1.4-38)
S

where:
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S',, = reduced elastic compliances.
Itis clear, moreover, that:
S.,=0, S, =0 a,b=12..6 (1.4-39)
For this reason, there is no need to exclude b =3 in the (1.4-37).
By using the notation of the (1.4-32) and (1.4-33), the (1.4-37) can be
written in the following form:
E=S'T S\z SV (1.4-40)
where S\ can be defined as reduced elastic compliance tensor and it has a

symmetric matrix form, given by:

éslll S, Su S Sk l;l
g SIZZ Sl24 S'ZS Sl263
S'=§ S'v S S'46l;l (1.4-41)
gym S's Sy
g S'wH

Like é, S' contains 15 independent elastic constants. Moreover, the
substitution of the (1.4-40) in the (1.4-31) yields:

CS'=I=S'C: (1.4-42)
where the second equality follows from the first one which says that C and
S' are the inverses of each other and, hence, their product commute. This

result is independent of whether e, =0 or not, because it represents a property
of elastic constants, [64]. It has to be underlined that the positive definite of C
impliesthat S' is also positive definite.

An aternate proof that C and S' ae positive definite is to write the strain

energy as.
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f=lECE=1fTE=1fTsT (14-43)
2 2 2

and to consider that f has to be positive for any nonzero T and E , SO it must

be:
(1.4-44)

As anticipated at the beginning of this section, the number of the
independent elastic constants of the 6x6 matrices C and S can be opportunely
reduced, yet, when the examined anisotropic material possesses certain
material symmetry.

Hence, with reference to a new rectangular coordinate system €',,€,,€ ,,
obtained from the initial fixed one €,e,e, under an orthogonal
transformation:

e =We (1.4-45)
or, in components:
€ =We (1.4-46)
inwhich W is an orthogonal matrix that satisfies the following relations:
W =1 =WW (1.4-47)
or:

W, W, =d, =W, W, (1.4-48)

a material is said to possess a symmetry with respect to W if the elastic fourth

rank stiffness tensor C’ referred to the e*i coordinate system is equal to that

one C referred to the € coordinate system, i.e.:
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c =C (1.4-49)
or in components:
C*ijhk = Cijhk (1.4-50)
where:
C:*ijhk = VvipVquWherstqrs (14_51)

Anidentical equation can be written for S, .

In other words, when:
Cijhk = VVipVquWherstqrs (14_52)

the material possesses a symmetry with respect to W.
The transformation law (1.4-51) is referred for the C, , but, for simplicity

of the calculations, some authors adopt the transformation law for C,, , [64]:
Co =K, K, Cy (1.4-53)
where:

K = a6x6 matrix, whose elements are obtained by means of suitable assembly

of the components W, ,

according to proposas by Mehrabadi, Cowin et
al (1995), [43] and Mehrabadi and Cowin (1990), [42].
Then, an anisotropic material possesses the symmetry of central inversion

(C) if the (1.4-52) is satisfied for:

&1 0 04
W=g0 -1 0p=-1 (1.4-54)
g0 0 -1§

It is obvious that the (1.4-52) is satisfied by the W given in the (1.4-54) for any

Cin- Therefore, al the anisotropic materials have the symmetry of central

inversion.
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If W isaproper orthogonal matrix, the transformation (1.4-45) represents a
rigid body rotation about an axis. So, an anisotropic material is said to possess
arotational symmetry if the (1.4-52) is satisfied for:

€ cosq sing Ou
W7(q)=§ sing cosq 0 (1.4-55)
0o o0 1§

D

>

@ D!

which represents, for example, a rotation about the €,-axis an angle q, as

shown in the following figure.

€5=€;5/\

Figure15 Rigid rotation about the e;-axis.
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By extending this property, i.e. if the (1.4-52) is satisfied by the W as given
through the (1.4-55) for any q, then the material possesses a rotational
symmetry with respect at any rotation in thee, =0 plane. In this case, it is said
that the e, =0 is the plane of transverse isotropy or that €, is axis of elastic

symmetry with order p=3% ( L¥). Morein general, instead, by indicating with:

q=22 (1.4-56)

the rotation angle about an axis, this latter is defined as axis of elastic symmetry

with order p. Since p may assume values equal to 2,3,4,6 and ¥ , the axis

of elastic symmetry has indicated, respectively, with L, L*, L*, L® and L.
If W is, instead, an orthogonal matrix as defined below:

W=1-2nn' (1.4-57)

where:

N= aunit vector

then, the transformation (1.4-45) represents a reflection about a plane whose
normal is n, defined as reflection plane or symmetry plane (P). In particular, if
m is any vector on the plane, the following relation is satisfied:

Wh =-n, Wm =m (1.4-58)

According to a such orthogonal matrix, therefore, a vector normal to the
reflection plane reverses its direction after the transformation while a vector
belonging to the reflection plane remains unchanged.
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So, an anisotropic material is said to possess a symmetry plane if the
(1.4-52) is satisfied by the W as given by (1.4-57). For example, consider:

n' =[cosq,sing,0] (1.4-59)

i.e. the symmetry plane contains the €,-axis and its normal vector makes an

angle of g with the € -axis, as shown in the following figure.

&
Vs

/el

Figure 1.6 Reflection about a plane containing the es-axis.

The orthogonal matrix W of the (1.4-57), so, has the following expression:

gcoqu -sn2g Og
Wa)=§-snzg coszy 0f-D<qel  aen
g 0 0 1§
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which is an improper orthogonal matrix and represents a reflection with respect

to a plane whose normal ison the (e;,e,) plane. Since q and g +p represent

the same plane, g is limited to the range shown in (1.4-60). In the particular

casethat g =0, W becomes:

&1 0 0u
W(a)=5g0 1 0 (1.4-61)
g0 0 1§

which represents a reflection about the plane € =0. Hence, an anisotropic
material for which the (1.4-52) is satisfied by the W as given through the
(1.4-61) is said to possess a symmetry plane at € =0. By extending this
property, i.e. if the (1.4-52) is satisfied by the W as given through the (1.4-60)
for any q, then the material possesses a symmetry plane with respect at any
plane that contains thee, -axis. In this case, it is said that the €,;-axisisthe axis
of symmetry (L).

In analogous manner, it is considered, in the following equation, the
expression of an orthogonal matrix which represents a reflection with respect to

a plane whose normal is on the (e,,e,) plane, making an angle | with the

€, -axis:
e 0 0
Wi )=% -cosg -sinz 3-%4 5% (14-62)
€0 -sing cosZ
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In particular, the symmetry plane e, =0 can be represented by either

q =% or j =0, while the symmetry plane e, =0 can be represented by
] =% , as shown in the following figure:
€31\
=
x;;o ’ y e2>
q /

€

Figure 1.7 Thevectorsnand n' are, respectively, the normal vectors
to planes of reflection symmetry defined by the (1.4-60)
and (1.4-62)

The existence of various combinations of the different symmetry forms
implies a corresponding classification of the anisotropy classes of the materials.
In particular, two extreme cases of anisotropic elastic materials are the triclinic
materials and the isotropic ones. The first material possesses no rotational
symmetry or a plane of reflection symmetry, while the second material
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possesses infinitely many rotational symmetries and planes of reflection
symmetry. For such materials, it can be shown that [64]:

Cijhk =1 dijdhk +G(dihdjk +dikdjh) (1.4-63)
where | and G are the Lameé constants, satisfies the (1.4-52) for any
orthogonal W.

It is possible to demonstrate that if an anisotropic elastic material possesses

a material symmetry with the orthogona matrix W, then it also possesses the
material symmetry with W' =W". This means, for example, that if the
material has rotational symmetry with rotation about the X,-axisan angle q , it

a'so has the symmetry about the X, -axis an angle - . Moreover, it is possible

to demonstrate, yet, that if an anisotropic elastic material possesses a symmetry
with W' and W", then it also possesses a symmetry with W=W'W", [64].
These statements, valid either for linear or nonlinear material, are useful in
determining the structure of the stiffness tensor when the material possesses
symmetries.

Depending on the number of rotations and/or reflection symmetry a crystal
possesses, Voigt (1910) in fact classified crystals into 32 classes. However, in
terms of the 6x6 matrix C, there are only 8 basic groups, since different
combinations of symmetry forms may lead to the same structure of the stiffness
tensor, [36]. This classification maid for crystals can be extended for non-
crystalline materials, so that for them the structure of C can also be
represented by one of the 8 basic groups.

Without loss in generality, in the follows, the list of such groups of
materials are presented by choosing the symmetry plane (or planes) to coincide

with the coordinate planes whenever possible. If the matrix C™ referred to a
different coordinate system is desired, the (1.4-51) is used to obtain it.
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Triclinic materials

They represent the most general case, in which no symmetry form exists.

The number of independent constants is, therefore, 21 and the matrix C
assumes the following form:

s 11 ClZ C13

C22 C23

C33

9
Ie
Ie
00

0
g

N
[}

O

I
0
8%0
0

°=21 (1464

gm

@]
&
@]
)
o NaN o alf alf oY =¥ «lf o
>
1

@D D> M D> D> D> D>
O
N
O
&
3O

80

which is equal to that one of the equation (1.4-21).

Monoclinic materials
The symmetry forms are: L*, P,L’PC; The number of the independent
elastic constants is 13 and the matrix C assumes the following expressions:

a) Symmetry plane coinciding with e, =0,i.e, q =0

§C11 Clz C13 C14 0 0 l;l
e

& C, Cy C, 0 0y
é C, C, O a

C=a w7 g n°=13  (1.4-65)

é Cu 0 Oy
é c.u
e $m CSS 56l;|
e Ces

b) Symmetry plane coinciding with e, =0, i.e, q =P orj =0:

2



Chapter | — Micro-mechanics theory 57

§C11 Clz C13 0 C15 0 l;l
e
& C, Cy 0 Cs 0y
é C, 0 C, Ou

C=a ® * g n’=13 (1.4-66)
é Cu 0 Cuy
¢  Sm C, o0
€ u
e Ces 0

c) Symmetry plane coinciding with e, =0, i.e, | :% :

§C11 Clz C13 0 0 C16 l;l
e
& C, Cy 0 0 Cuy
é C, 0 0 cCuu

C=a ® *®an°=13 (1.4-67)
é C, C. O G
¢ 9m Cs OU
é g
e Ces 0

Orthotropic (or Rhombic) materials

The symmetry forms are: 3P, 3L%, L*2P,3L*3PC; With reference to the

symmetry form 3P, it means that the three coordinate planes, q =0, q =%

and | =% are the symmetry planes. The number of the independent elastic

constantsis 9 and the matrix C assumes the following form:
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&€, G C; 0 0 Ou
§ C, C 0 0 04
é C, 0 0 00
C=¢ gn =9 (1.4-68)
& Cu 0 0y
e ou
e $m C55 l;l
e Ces

Trigonal materials
The symmetry forms are: L*3L%, L3P, L33L*3PC; With reference to the

symmetry form 3P, it is verified that the three coordinate planes, q =0,

q =+B and Q =-% are the symmetry planes. The number of the

3

independent elastic constants is 6 and the matrix C assumes the following

form:
(f:Cll C12 C13 C14 0 0 U
e u
é C11 C13 - C14 0 0 ]
é C, 0 O 0o
—€ u o — _
C_(:e C, O 0 gn‘6 (1.4-69)
? 3/m C44 C14 u
¢ L {
g E (Cll - Clz )E

Tetragonal materials

The symmetry forms are: L*, L*PC, L%; It is verified that the tetragonal

materials show five symmetry planesat g =0, q :+B, q=- B, q -+P

4 4 2
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and | = +%. The number of the independent elastic constants is 6 and the

matrix C assumes the following form:

€, C, C; 0 0 0u
e u
& c, C; 0 O 0 a
é C 0O O ou
C=a » gn°=6 (1.4-70)
& C, 0 O u
¢ Sm Cu 01U
€ u
e Cos
Transversely isotropic (or exagonal) materials
The symmetry forms are:
L*P, L*3L%4P, L%, L°6L%, L°PC, L°6P, L°6L*7PC;
_p

For the transversely isotropic materials the symmetry planes are | =—

i.e (e, =0), and any plane that contains the e, -axis. So, the e,-axis is the

axis of symmetry. The number of the independent elastic constantsis 5 and the

matrix C assumes the following form:

&€, G, C 0 0 0 U
é ua
& c, C; 0 O 0 i
é C,; 0 O 0 u
_e U 0 _
C_(:e C, O 0 G n"=5 (1471
g Sym C. 0 3
~ 1 -
: HCREST
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Cubic materials
The symmetry forms are

3L%4L°,3L°4L23PC, 3L54L°6P, 3L*4L°6L%, 3L* 4L} 6L*9PC;
For the cubic materials there are nine symmetry planes, whose normal
vectors are on the three coordinate axes and on the coordinate planes making

an angle pZ with coordinate axes. The number of the independent elastic

constants is 3 and the matrix C assumes the following form:

&€, G C, 0 0 Ou
§ C, C 0 0 o0y
é cC, 0 0 00,
C=eé an =3 (1.4-72)
a C, 0 0y
g gm C, O 3
e Cug

I sotropic materials
For the isotropic materials any plane is a symmetry plane. The number of
the independent elastic constants is 2 and the matrix C assumes the following

form:
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&€, G G 0 0 0 U

E G G 0 0 0

e Cy 0 0 0 d

s }(Cu-%) 0 0 HnO:Z (1.4-73)
e ’ g |

¢ 1 u

¢ sm 2GrG) 0

e 1 a

& E(%‘%)H

If | and G arethe Lameé constants, the (1.4-73) assumes the expression given

by:

&
o)
*

I I
2G +1 I
2G+1

0

a
%
ou

gn°=2 (1.4-74)
Og
ou

u
Gy

O o o o
O o o o o

gym

O
1
MD: M D> D D> D D> D D

It is remarkable that, for isotropic materials, it needs only three planes of
symmetry to reduce the number of elastic constants from 21 to 2.

The following figure shows the hierarchical organization of the eight
material symmetries of linear eladticity. It is organized so that the lower
symmetries are at the upper left and, as one moves down and across the table to
the right, one encounters crystal systems with greater and greater symmetry.
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& &°
Triclinic Q\ Q\'z’ Orthotropic

0=m/2
MonOC“n/@ T
ﬁ Tetragonal
=m/4 S
\o®
\ Trigonal “\‘ee?

G Tc/3

Cublc

47

Isotropic
Transverse
Isotropy

Figure 1.8 Hierarchical organization of the eight material symmetries
of linear elasticity

It is worth to underline that the structure of the matrix C above obtained for
each class of materials is referred to the specified coordinate system. When
different coordinate systems are employed, the transformation law (1.4-51) has
to be used for obtaining the structure of the new matrix C, in which, while the
number of nonzero elements may increase, the number of independent elastic
constants remains constant since it does not depend on the choice of the
coordinate systems. In the applications, the choice of the coordinate system is
very often dictated by the boundary conditions of the problem and hence it may
not coincide with the symmetry planes of the material. In these cases, the
transformation of the matrix C to a different coordinates system becomes
necessary.
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The analysis until here presented for obtaining the structure of the stiffness
tensor C may be applied analogously for obtaining the structure of the
compliancetensor S. Like C, the elastic compliance tensor S is afourth rank
tensor and, under the orthogonal transformation (1.4-45), its components,

S*ijhk, referred to a new coordinate system are related to those ones, Sy, ,

referred to the initial coordinate system by:

S, i = W Wi W WS (1.4-75)

pars
which isidentical to (1.4-52).

Hence, the structure of the matrix C appearing in (1.4-64)-(1.4-73) remains
vaid for the matrix S with the following modifications required by (1.4-26):

- Therelation:
C,=-C,=C, (1.4-76)
in the (1.4-69) is replaced by:
1
E 556 =- 524 = 34 (14-77)
and the elastic coefficient C4 in (1.4-69), (1.4-71) and (1.4-73) is replaced by:
S =2(Ss- S») (1.4-78)

In engineering applications the matrix S for isotropic materials is written as:

gl -n -n 0 0 0O u

é G

& 1 -n 0 0 0 a
s=1% b9 0 0 4 e
“Es 2(1+n) 0 o 4047

€ gm 2(1+n) o U

é a

6 2(1+n)g
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where:

g-GB=*2) 1 (1.4-80)
| +G 2(1 +G)

are, respectively, the Young's modulus and the Poisson ratio. It can be shown
that:

! :(1_+n)E(I?L- )’ G:2(1E+n)

(1.4-81)

For obtaining the structure of the elastic reduced compliance tensor S*', the
same considerations are valid with some modifications required by the (1.4-38)
. Hence, for example, the expression of S' for isotropic materias is the

following one:

0
u

0d

oun®=2 (1.4-82)
u

0y

24

Like stated previoudy, the strong convexity condition which is equivalent to

«
1

S|-

CED)CD)CD)CD)CDWD)Q
|_\
1
>
N O
N O O O

the positive definiteness of the strain energy, (1.4-8), yields that the stiffness
tensor C is defined positive, as well as, the positive definiteness of the stress
energy, (1.4-16), yields that the compliance tensor S is defined positive. In
particular, in the contracted notation, the (1.4-8) implies that the 6x6 matrix C
is also positive definite and, so, al its principal minors are positive, i.e.:

C, >0 (i not summed) (1.4-83)

G G >0 (i, j not summed 1.4-84
not sum 4

c c (i, j not summed) (1.4-84)
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o C.j Ci
C; C;, C;[>0(i,j,k notsummed) (1.4-85)
Ci th Cin

I (1.4-86)

where i, |, h are distinct integers which can have any value from 1 to 6.

In particular, according to the theorem which states that a real symmetric
matrix is positive definite if and only if its leading principa minors are
positive, the necessary and sufficient conditions for the 6x6 matrix C to be
positive definite are the positivity of its 6 leading principal minors, i.e.:

C,, >0(i not summed) (1.4-87)
c, C
" ?1>0(i, j not summed) (1.4-88)
Co Cyp
Cll C12 Cl3
C, C, Cu/>0(i, ],k notsummed) (1.4-89)
Cl3 C23 C33
I (1.4-90)
ClZ Cl3 Cl4 ClS Cl6
C22 C23 C24 CZS C26

Q)
Eﬁo
e
8%0
Q)

>0 (1.4-91)

@)
R
0
0

N
N

'SO GO 'EO SO IGO '.:‘O
000
000

30 @O

£

80 80
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Anaogoudly, the (1.4-16) implies that the 6x6 matrix S is aso positive
definite and, so, also its 6 leading principa minors are positive. The same

consideration can be applied for the matrices C and S'. By imposing these
conditions of positivity on the minors of the matrices, the restrictions on the
elastic coefficients can be found.

The above done anisotropic classification of the materials according to the
number of symmetry planes is based on the assumption that, for each material,
the number and the locations of the symmetry planes are known. However, this
is not the case when considering an unknown material. So, often, the elastic
stiffnesses and the elastic compliances of the materia have to be determined to
an arbitrarily chosen coordinate system. The result is that, if there exists a
symmetry plane, it may not be one of the coordinate planes. Consequently, all
elements of the matrices C and S can be nonzero. The problem isto locate the
symmetry planesif they exist when C (or S) isgiven.

When a plane of symmetry exists, as aready seen, the (1.4-52) is satisfied
by the W given in (1.4-57), which has the properties given in (1.4-58) where
n is a unit vector norma to the plane symmetry and mis any vector
perpendicular to n. Cowin and Mehrabadi (1987) have demonstrated that a set
of necessary and sufficient conditions for n to be a unit normal vector to a

plane of symmetry is, [64]:

Cimh; = (Cm$npnq ) n (1.4-92)
Coy = (CoaayM )1 (1499
Cin N, = (CoranyNeN, )1 (1.4-04)

Cijhk mj rn<n]1 = (Cpqrsnprnan rns) '1 (14_95)
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For example, if the plane € =0 is considered as plane of symmetry, by
substituting in the (1.4-92)-(1.4-95) the vectors n and m, defined as:

n=d,, m =d,, cosq +d;sing (1.4-96)

where  is an arbitrary constant, the independent elastic constants are

obtained, according to the (1.4-65) if using the contracted notation.

More in general, the equations (1.4-92)-(1.4-95) tell that n is an
eigenvector of the 3x3 symmetric matrices U , V, Q(n) and Q(m) whose
elements are:

Ui =Cimr Vin =Ciwr Qu(n) =Cynin (1.4-97)
and it is stated, here, a modified Cowin-Mehrabadi theorem, asit follows:

0 Ananisotropic elastic material with given elastic tiffnesses C;, hasa
plane of symmetry if and only if n is an eigenvector of Q(n) and

Q(m), orof U and Q(m) or of V and Q(m). The vector n is
normal to the plane of symmetry, while m is any vector on the plane
of symmetry.

Since this theorem is not suitable for determining N because the matrix Q(m)

depends on m which, in turns, depends on n, another theorem is used for

computing N:

0 Ananisotropic elastic material with given elastic stiffnesses C;, hasa

plane of symmetry if and only if n (normal vector to the plane of
symmetry) is acommon eigenvector of U and V and satisfies:

Cinmnnn, =0 (1.4-98)

Cinmm;mn, =0 (1.4-99)
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for any two independent vectors m* (a =1, 2) on the plane of symmetry that

do not form an angle amultiple of p/3.

For the physical interpretation of these matrices and for the demonstration
of such theorems, the reader isreferred to [64].

1.5 Overall elastic modulus and compliance tensors

In this section, an RVE of volume V bounded by [V is considered, which

consists of a uniform elastic matrix having elasticity and compliance tensors
C" and S, containing n elastic micro-inclusions with volume W , having
elasticity and compliance tensors C* and S$* (a =1,2,...,n). It is assumed
that the micro-inclusions are perfectly bonded to the matrix. All the
constituents of the RVE are assumed to be linearly elastic. Hence, the overal
response of the RVE is linearly elastic, too. The matrix and each inclusion are
assumed to be homogeneous, but neither the matrix nor the inclusions need be
isotropic. In general, the overall response of the RVE may be anisotropic, even
if its congtituents are isotropic. This depends on the geometry and arrangement
of the micro-inclusions.
The overall elasticity and compliance tensors of the RVE, denoted by C and
S, respectively, are, in the follows, estimated in terms of the RVE's micro-
structural properties and geometry. As done previoudly, the cases of a
prescribed macrostress and a prescribed macrostrain are considered separately.

- Case of prescribed constant macr ostress
For the constant macrostress S = S°, the boundary tractions are:

t°=n>8% on IV (1.5-1)
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Because of the heterogeneity, neither the resulting stress nor the resulting strain
fields in the RVE are uniform. Define the constant strain field E° by:
E%osM:s° (1.5-2)
and observe that the actual stress field, denoted by T (x), and the actual strain
field, denoted by E (), can be expressed as:
T(x)=S"+T9(x
(=87 () 59
E(x)=E°+E‘(x)

where the variable stress and strain fields, T¢(x) and E°(x), are the

disturbances or perturbations in the prescribed uniform stress field S° and the
associated constant strain field E°, due to the presence of the inclusions.

Hence, the total stress and strain tensors, T and E , arerdated by Hooke's
law, asit follows:

_fC":E(x)=C" {EC+EY(x)} inM=V-W

T()=S+T7(x) ; Ca:E(x):Ca:{E°+Ed(x)} inW -4
and:
E ()= E°+Ed(x)=]|'-SM :T(x)=8" :{S0 +Td(x)} inM =V-W (155

i $*:T(x)=5":{S"+T°(x)} inwW
where:

n
W= |JW = thetota volume of al micro-inclusions

a=1
M = matrix volume
From the averaging theorems, discussed in Section 1.3, and according to the
(1.5-1), it follows that:
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T=<T(x)>=5° (1.5-6)
On the other hand, the overall average strain field is given by:
E=<E(x)>=<E°+E"(x)> (1.5-7)
i.e., in general, for aprescribed macro-stress, it is:
<E‘(x)>10 (1.5-8)
The goal isto calculate the overall compliance tensor, S, such that:
E=S:T=S5%° (1.5-9)

In order to do it, obtain the average value of the strain field over each micro-

inclusion as:
E* =<E(X)> =~ QE(x)aV (L5-10)
W WA
and the average value of the stress field over each micro-inclusionis:
T® =<T(x) >a:i OF (x)dv (1.5-11)
W WA

In similar manner, the average value of the strain field over the matrix material
is obtained as:

E :<E(x)>M:ﬁc‘)E(x)dV (L512)

and the average value of the stress field over the matrix material is obtained as:
1

TV =<T(x)>,== o (x)dv (1.5-13)
M M
The volume average of the (1.5-5) over the matrix and the inclusions yields:
M _ coM.gM
IE =S EI’ (a not summed) (1.5-14)
E*=5*.3°

Since:
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f,EM =E-§ f E*=5:8°-§ f.s*:T* (15-15)
a=1 a=1

and:

N

fEY = f,8" T =s" [~ § f,T°

1
| a=1

(1.5-16)

o<\C

then, it is obtained that:

(s%-8): =4 f,(s"-§):T =& 1, (8- &)< +T9(x)>, (L517)

a=1
where:
f, = v = the volume fraction of the ath inclusion
M : :
fy = v = the volume fraction of the matrix

The (1.5-17) leads to an exact result. It defines the overall compliance
tensor S in terms of the average stresses in the inclusions. It is important to
note that this result does not require the knowledge of the entire stress field
within each inclusion: only the estimate of the average value of it in each
inclusion is needed.

Since the overal response is linearly elastic, the disturbances or

perturbations in the stress and strain fields due to the presence of the inclusions,

T9(x) and E“(x), are linear and homogeneous function of the prescribed
constant macro-stress S°. So, in general:
(s°-8")<s+T9(x)>,=(s" - S"):T* =H*:S°  (1518)

where the constant fourth-order H* tensor is defined by:

E*-SY:T* =<E°+E‘(x)>, -S" :<S°+T%(x) >, =H":S° (15-19)
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Thisis the change in the average strain field of W if S* isreplaced by S™ .
Since S° isarhitrary, the substitution of the (1.5-18) in the (1.5-17) yields:

S=s"+§ f H (1.5-20)

a=l
which is an exact result, yet. It applies to afinite as well as infinitely extended
RVE. Thereis no restriction on the geometry (i.e. shapes) or distribution of the
inclusions. The only requirements are that the matrix as well as each inclusion
are linearly éastic and homogeneous and that the inclusions are perfectly
bonded to the matrix. However, approximations and specializations are

generally introduced for obtaining the constant tensors H* (a =1,2,.....n) . In

fact, in order to estimate such tensor, an usually used approximation is that one
to assume the inclusions to be ellipsoidal.

- Case of prescribed constant macr ostrain
For the constant macrostrain E =E°, the boundary conditions for the RVE
are
u® =x>E° on IV (1.5-21)
Define the constant strain field T° by:

TPo CM:E° (1.5-22)
and observe that the actual stress field, denoted by T (X ), and the actual strain
field, denoted by E (), can be expressed as:

T(x)=T°+T(x)

1.5-23
£ (x)=E°+E(x) (-2
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where the variable stress and strain fields, T¢(x) and E°(x), are the

disturbances or perturbations in the prescribed uniform strain field E° and the

associated constant stress field T°, due to the presence of the inclusions with
different elagticity, i.e. of the existence of a material mismatch.

The total stress-strain relations are given by (1.5-4) and (1.5-5).

From the averaging theorems, discusses in the Section 1.3, and according to
the (1.5-21), it follows that:

E=<E(x)>=E° (1.5-24)
On the other hand, the overall average stressfield is given by:
T=<T(x)>=<T°+T%(x)> (1.5-25)
i.e., in general, for a prescribed macro-strain, it is:
<TY(x)>10 (1.5-26)

The godl isto calculate the overall stiffness tensor, C, such that:

T=CE=CE®° (1.5-27)
The volume average of the (1.5-4) over the matrix and the inclusions yields:
M M. M
-E =C iE (a not summed) (1.5-28)
T*=C".EF*
Since:
f,T"=T-§ f,T® =C:E°- § f,C*:E° (1.5-29)
a=1 a=1
and:
£,T" = f,S" :E" =S¥ :{E°- § faﬁag (1.5-30)
| a=1

then, it is obtained that:
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(C"- ) =A 1, (C"- C):E =& 1,(C"- C):<E+E(x)>, (L53Y)

a=1 a=1
The (1.5-31) leads to an exact result. It defines the overall stiffness tensor

C in terms of the average strains in the inclusions. It is important to note that
also this result, like the previous one, does not require the knowledge of the
entire strain field within each inclusion: only the estimate of the average value
of it in each inclusion is needed.

Since the overal response is linearly elastic, the disturbances or perturbations

in the stress and strain fields due to the presence of the inclusions, T (x) and
E?(x), are linear and homogeneous function of the prescribed constant

macro-strain E®. So, again, because of linearity, the change in the average
strain field of W' if C* isreplaced by C", isexpressed as:
E*-SY:T? =J3":E° (1.5-32)
Since E? isarbitrary, from the (1.5-31) it is obtained that:

C=c“-§ f,.c": =c" :?“- 8132 @s3w
a=1 (%)

a=1
which is an exact result, yet. At this point, the constant tensors H® and
J% (@ =1,2,....n) hasto be estimated for each inclusion.

At this point, in order to introduct the concepts of eigenstrain and
eigenstress, a gpecific elastic problem is considered, where a finite
homogeneous linearly elastic (not necessarily isotropic) solid, having elasticity
tensor C" and compliance tensor S", contains only one homogeneous
linearly elastic (not necessarily isotropic) inclusion W, of arbitrary geometry,

having elasticity tensor C* and compliance tensor S? . The total volumeis V,
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bounded by 9V, and the matrix volume is M =V - W, bounded by
Vv + W =9V - W, see the figure below.

Figure 1.9 Finite homogeneous linearly elastic solid

When self-equilibrating surface tractions, corresponding to the uniform
stress field S° = constant , are applied on the boundary, because of the RVE
heterogeneity, the stress and the strain fields within the volume V are spatially
variable and they can be expressed by (1.5-3). Analogously, when self-
compatible linear surface displacements, corresponding to the uniform strain
fidd E° =constant, are applied on the boundary, because of the RVE
heterogeneity, the stress and the strain fields within the volume V are spatially
variable and they can be expressed by (1.5-23).

However, instead of dealing with the above-mentioned heterogeneous solid,
it is convenient and effective to consider an equivalent homogeneous one
which has the uniform elasticity tensor C" of the matrix material everywhere,

including in W. Then, in order to account for the mismatch of the material

properties of the inclusion and of the matrix, a suitable strain field E™(x) is

introduced in W. Doing so, the equivalent homogeneous solid has the same
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strain and stress fields as the actual heterogeneous solid under the applied
boundary conditions (tractions or displacements). The introduced strain field

E" (x) is called eigenstrain. The following figure shows this procedure when

boundary tractions corresponding to S° are prescribed on fV .

Ry .
o T
T ‘
o \ e+et e \q \
(a) \q ere’  (b)

Figure 1.10 (a) heterogeneous solid; (b) equivalent homogeneous solid.

where the assigned eigenstrain field is given by:
. i0 inM
E'(X)={ _. _ (1.5-34)
i E'(x) inw
Since for this equivalent problem the elasticity tensor is, as already

mentioned, uniform everywhere and given by C", the strain and the stress
fields within the solid can be expressed as:

E(x)=E°+E"(x) (1.5-35)
and:
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_}CM :(E°+Ed(x))

| (1.5-36)
TCM :(E°+Ed(x)- E*(x)) inW

T(x)=C" :(E(x)- E*(x))

which shows that the eigenstrain field disturbs the stress-strain relation.

In order to relate the eigenstrain E” (x) to the corresponding perturbation
strain E“(x), consider the equivalent uniform elastic solid of volume V and

uniform elasticity C" and observe that, since by definition:
T°=C":E° (1.5-37)
or:
E0=sS":T° (1.5-38)
Hence, by considering that:
T(x)=T°+T(x) (1539
E(x)=E°+E‘(x)
and by taking in account the (1.5-35) and (1.5-36), it follows that:
T¢(x)=C":(E*(x)- E"(X)) inv  (1L540)
Since the resulting stress field must be in equilibrium and must produce a
compatible strain field, in general the perturbation strain field E®(x) is
obtained in terms of an integral operator acting on the corresponding
eigenstrain E” (x). In the present context, this integral operator is denoted by
S, such that:
E*(x)=S(xE) (15-41)

or, in components:

E' (x) =S, (xE) (15-42)

1
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The same procedure of homogenization previously developed can be
performed by the introduction of an eigenstress T (X ) . To thisend, set:
_i0 inM

T (x)—% T(x) W (1.5-43)

Since for this alternative equivalent problem the elasticity tensor is, again,

uniform everywhere and given by C" , the strain and the stress fields within
the solid can be expressed as:

E(X): E0+Ed(x) (1.5-44)
and:

jc":(E°+E*(x)) inM

T(x)=C":E(x)+T (x)= (1.5-45)

|

. M. 0 d * H

iC .(E +E (x))+T (x) inw

which shows that the eigenstress field disturbs the stress-strain relation.
In order to relate the eigenstress T~ (x) to the corresponding perturbation

stress T¢(x), by considering again the equivalent uniform elastic solid of

volume V and uniform elasticity C" and by taking in account the (1.5-35),
(1.5-36) and the (1.5-39), it follows that:

TY(x)=C":E*(x)+T"(x) inV (1.5-46)

In general also the perturbation stress field T (x) is obtained in terms of

an integral operator acting on the corresponding eigenstress T (). In the
present context, this integral operator is denoted by T , such that:

T¢(x) =T (xT) (1.5-47)

or, in components:
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T () =T, (X;T*) (1.5-48)
According to this topic, an important result due to Eshelby (1957), whis has
played a key role in the micromechanical modelling of elastic and inelastic
heterogeneous solids, as well as of nonlinear creeping fluids, is that if:
1. V- Wishomogeneous, linearly elastic, and infinitely extended and
2. Wisanédlipsoid
then:
1. theeigenstrain E™ necessary for homogenization is uniformin W.

2. the resulting strain E® and, hence, stress T are also uniform in
W, the former being given by:

E‘=SY:E"inW (1.5-49)
where the fourth-order tensor S" is called Eshelby’s tensor, having the
following properties:

a) it is symmetric with respect to the first two indices and the second
two indices:

Sis =S =Si (15-50)
however, it isnot in general symmetric with respect to the exchange
of ij and kl, i.e. in generd it is:

Sie ! Sui (1.5-51)

b) itisindependent of the material properties of the inclusion W.

C) it is completely defined in terms of the aspect ratios of the
ellipsoidal incluson W and the elastic parameters of the
surrounding matrix M and

d) when the surrounding matrix M is isotropic, it depends only on the

Poisson ratio of the matrix and the aspect ratios of W.
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The components of the Eshelby tensor are listed for several specia cases.
For them, the reader is referred to the Appendix, at the end of this chapter.

When the eigenstrain E” and the resulting strain disturbance E¢ are
uniform in W, then the corresponding eigenstress T~ and the associated stress

disturbance T¢ are also uniform in W. Hence, a fourth-order tensor T* may
be introduced, such that:

T=T":T" inW (1.5-52)
Thetensor T has the same symmetries of Eshelby’s tensor.

In order to relate the tensors T and S™, it is first noted from the (1.5-40)
and the (1.5-46) that the eigenstrain and the eigenstress are related by:

T +C":E" =0, E"+SY:T =0 (1.5-53)
So, from the (1.5-46), the (1.5-49) and the (1.5-52), it follows that:
SW:E" =gV :(TW- 1(4)):(- cM: E*)

(1.5-54)

TV:T" =CM :(SW- 1(4)):(-8“" :T*)

Therefore, thetensors T and S must satisfy:
SWasM.TW.c =19, TW4+CM:SV:sM =19 (1555
or, in components:
W M .+—W . \Y/ — 1

Sijkl +Squ 'qurs 'Crskl _E(dikdjl +dildjk)

(1.5-56)

T +Ct 1St St :%(dikdjl +d,d,,)

11pq pars
However, for the general case, the eigenstrains and the eigenstresses
necessary for the homogenization are not uniform in W, even if W is

dlipsoidal, whether V is unbounded o finite. So, the eigenstrains, E™ (x) (or
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the eigenstresses, T™ (X)) are defined by the so-called consistency conditions,

which require the resulting stress field T (), (or the strain field E (x)), to be

the same under the applied overall loads, whether it is calculated directly from
the (1.5-4) or through homogenization from (1.5-40).
Note here that the (1.5-4), when considering an only inclusion, becomes:

N

X)=T°+T9(x 4
T(x)=T°+T"(x) i CW:E(X):CW:{EO+Ed(X)} inw

cY:E(x)=C" :{E°+Ed(x)} inM=V-W (1557
Hence, the resulting stress field in W, according to the (1.5-57), is given by:
T(x)=C":E(x)=C":{E°+E’(x)} inW (1558)
or else, according to the (1.5-36):
T(x)=C":(E(x)- E'(x))=C":(E°+E"(x)- E'(x)) inW (1.559)
By summarizing the equations (1.5-58) and (1.5-59), the stress field in W
can be expressed in the following form:
T(x)=C":(E°+E*(x))=C":(E°+E*(x)- E'(X)) (15-60)
and analogously for the resulting strain field in W:
E(x) :SW:(TO +T¢ (x)) =s" :(T°+Td (x)-T° (x)) (1.5-61)
The substitution in the (1.5-60) of E°(X) as given by (1.5-41) yields an
integral equation for E"(x). Similarly, The substitution in the (15-61) of
T9(x) asgiven by (1.5-47) yields an integral equation for T" ().

It is worth to underline that both (1.5-60) and (1.5-61) are valid whether

uniform tractions or linear displacements are prescribed on V . In particular,

if the overall stress S° isgiven, then:
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T°=8°

o _gn g (1.5-62)
while, if the overall strain E° is given, then:

EO - EO

I (1.5-63)

For any homogeneous linearly elastic inclusion W in a homogeneous
linearly elastic matrix M, consistency conditions (1.5-60) and (1.5-61) yield:

E°+E‘(x)=A":E" (x), T°+TY(x)=B":T"(x)inW (1564

where:
A¥=(c-c") i, BY=(sM-sY) Y (L56s)
By definition, the constant tensors A" and B" satisfy:
sMicW=19- (AY) = (1(4) - (BW)'l)-T (15-66)
or:
c:sW=1@. (B")" = (1(4) - (AW)'l)-T (L5-67)

where the superscript -T stands for the inverse of the transpose or the
transpose of the inverse.

In the follows, the attention is confined to the case when V is unbounded
and W is ellipsoidal, so that the eigenstrains and the eigenstresses necessary
for the homogenization are both uniform in W. In particular, when V is
unbounded there is no distinction between the cases when the strain or the
stressis prescribed and, so, it is:

E®=5":8°

(1.5-68)
s*=CcM:E°
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Moreover, when in addition W is éllipsoidal, the substitution, in the first of
(1.5-64), for = given by (1.5-49) and, analogously, the substitution, in the
second of (1.5-64), for T¢ given by (1.5-52) provides explicit expressions for
the eigenstrain E~ and eigenstress T which are necessary for
homogeni zation:
E'=(AY-s"):E°, T =(B"-T"):S°inW (1569
Hence, according to the (1.5-64) and the (1.5-69), it can be obtained the
strain and stress fields' expressions:

E=E°+E‘= A":(A"- sW) ":E°
o in W (1.5-70)
T=s+T'=B":(B"-T") :8°
The strain field E and the stress field T in W given by the (1.5-70) are
equivalent. From cogtitutive relations (1.5-57) and from dual ones:

3sMiT(x) =s" {S*+T(x)} inM =V - W

E(x (15-72)
() ; SWZT(X):SWZ{SO+Td(X)} inwW
substitution of the (1.5-65) into (1.5-70), yields, in W:
E=S": BW:(BW- T"")_lzsO =[SW:{1(4) - TW:(l(“) -cM :SW)}J:C""} ‘E°
(1.5-72)

-1

T= CW:AW:(AW- SW)_leO =[CW:{1(4) - SW:(1(4) -sM :CW)} :SM} S0

By taking into account the advantage of the identities (1.5-55), the fourth-
order tensors in the right-hand sides of (1.5-72) become:

sW:[l(“) ST (19 :SW)}'l:cM :[1(“) - " (19 s :CW)}'l

; L sy
CW:[l(“) - 5" (19 s :CW)} .gM :[1(“) ST (1 e :SW)}
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Hence, the (1.5-73) compared with the (1.5-70) yields the equivalence
relations between (AW,SW) and (BW,TW) , asit follows:

SW:BY:(BY-TY) :cM =AY (AY- V)"

(1.5-74)

1

CV:AY:(A"- sW) "M =B": (BY-TY)
Since the total strain in an ellipsoidal inclusion W is uniform for the

unbounded V, the corresponding H* and J? -tensors defined in the (1.5-19)
and (1.5-32), respectively, become:
<E>,-S"<T>,=EY-s":TY=H":S"inW (1.5-75)
when the overall stress S° is prescribed, and:
<E>,-SM<T>=EY-S":TY=J":E°inW (1.5-76)
when the overall strain E° is prescribed. Moreover, since V is considered
unbounded, H* and J? -tensors satisfy:
JY=HY:C", H¥=J":.s (1.5-77)
By comparing the (1.5-72) with (1.5-75) and (1.5-76), note that H* and
J? -tensors may be expressed in terms of Eshelby’s tensor SV and its
conjugate T ", as:
HY = (s sV):BY:(B"- T)"
(1.5-78)
JV=(sW-sV):cY AV (AY- sY)

or:
HY = (S sM):cv:AY: (A"- s%) s

w Y w.(pgW Tw)l.~m (1579)
J =(S -S ):B :(B -T) :C
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As pointed out before, the Eshelby tensor S* and its conjugate T", in case
of uniform ellipsoidal inclusion W in an unbounded uniform matrix M, depend
on the aspect ratios of W and on the elastic parameters of the matrix material,
but they are independent of the material properties of W. On the other hand,
H" and J“ depend on the geometry of W, aswell as on the elasticity of both

W and the matrix material. For cavities, on the other hand, the (1.5-79) reduce
to:

H" = (16~ s%) " s

W= (1(4) ) Sw)-l (1.5-80)

which shows that H" and J"-tensors are effective tools for homogenization
of solids with cavities and cracks, [47].
It is seen, from the above equations, that the equivalence relations between

(AW,SW) and (BW,TW), given by (1.5-74), correspond to the equivalence

relations between JV and HY, given by (1.5-77). It should be kept in mind
that:

1. if the solid containing an inclusion is unbounded, these equivalent
relations always hold, since the farfield stress S¥ =S° and strain
E¥ =E° arerdated by the (1.5-68) and, hence, the response of the
solid is the same whether S° or E° is prescribed.

2. if the solid containing an inclusion is bounded, these equivalent
relations do not hold, in general, since the response of the solid
when uniform boundary tractions are prescribed is different, in
general, from that one when linear boundary displacements are
prescribed.
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1.6 Strategies for obtaining overall elagticity tensors. Voigt and Reuss
estimating

In this section, we will introduce some general results about extremely
useful bounds for overal elastic stiffness and compliance tensors, in the
framework of the micromechanical theory. In particular, Hill (1952) has proved
that, independently from the RVE geometry, the actual overall moduli lie
somewhere in an interval between the Reuss and Voigt estimates, as shown in
the follows.

For semplicity, it is considered the simplest case of an RVE volume V
consisting in alinear elastic homogeneous matrix M which contains one only a
linear elastic homogeneous inclusion W. So, either for stress prescribed and
for strain prescribed boundary conditions, the equation (1.5-17) assumes the

following form:

(s*-S)T =1,(s"-8"):T™ (16-1)

= volumetric fraction of the inclusion W.

From the (1.6-1), it is possible to obtain a unique dependence of the average
value of the stress field in the phase of the inclusion upon the overall stress
field in the RVE volume:

TV=1V:T (1.6-2)
where:

L= f,/(s" - s%) (s - §) (16-3)



Chapter | — Micro-mechanics theory 87

Anaogoudly, it is possible to express the average value of the stress field in
the phase of the matrix in function of the overall stress field in the RVE
volume, asit follows:

TV =1M:T (1.6-4)
where:
LW and L™ = concentration matrices.

By considering the (1.5-11) and (1.5-13), the overall stressfield in the RVE

volume can be written in the form:
T=f,T"+f,T" (1.6-5)
From the (1.6-5), by taking in account the relations (1.6-2) and (1.6-4), it
has to be verified that:
f, LM+, LY =1 (1.6-6)
where:
| = the unit matrix

Hence, the concentration matrix L™ can be expressed as:

LY =(1 - flY) (1.6-7)

In similar manner, in the ssimplest case of an RVE volume V consisting in a
linear elastic homogeneous matrix M which contains one only a linear elastic
homogeneous inclusion W, either for stress prescribed and for strain
prescribed boundary conditions, the equation (1.5-31) assumes the following
form:

(c*-c):E=1,(c"-cY):EY (16-9)

From the (1.6-8), it is possible to obtain a unique dependence of the average

value of the strain field in the phase of the inclusion upon the overall strain
field in the RVE volume:
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EV=M":E (1.6-9)
where:
MY = £, t(cV - ") (c - C) (1.6-10)

Anaogoudly, it is possible to express the average value of the strain field in
the phase of the matrix in function of the overall strain field in the RVE

volume, asit follows:

EM=M":E (1.6-11)
where:
M%Wand MM = concentration matrices.

By considering the (1.5-10) and (1.5-12), the overall strain field in the RVE

volume can be written in the form:
E=f,E"+f,E" (1.6-12)
From the (1.6-12), by taking in account the relations (1.6-9) and (1.6-11), it
has also to be verified that:
f,M" + f MY =1 (1.6-13)
where:
| = the unit tensor

Hence, the concentration matrix M" can be expressed as:
MM =(1 - f,MY) £, (16-14)
By taking into account the (1.5-14) and the (1.5-28), the equations (1.6-5)
and (1.6-12), respectively, yield:
T =f,C":E"+f,C":EY
_ _ W o (1.6-15)
E=f,S":T"+fS"T

Becauseitis:
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T=C:E (1.6-16)
by combining the (1.6-16) with the first equation of the (1.6-15), and according
to the (1.6-9) and (1.6-11), the required effective RVE's tiffness tensor is
obtained in the following form:

c=f,C":M" +f,C":M" (1.6-17)
Equivaently, becauseit is:

E=S:T (1.6-18)
by combining the (1.6-18) with the second equation of the (1.6-15), and
according to the (1.6-2) and (1.6-4), the required effective RVE's compliance
tensor is obtained in the following form:

S=f,s":L"+f,S": LY (1.6-19)

A model for the evaluation of the overall eastic stiffness tensor, probably

the smplest one, was introduced by Voigt in 1889 for the estimation of the

average constants of polycristals. He assumes that the strain field throughout
the RVE is uniform, that yields:

E=E"=E"=E° (1.6-20)

Such a condition can be represented by means of the following simplified

model:

Figure 1.11 Strain-prescribed problem.

It follows that:
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MY =M%V = (1.6-21)
and the (1.6-17) becomes:
c'=f,c"+f,C" (1.6-22)
which the superscript V underlines that the overall stiffness tensor has been
obtained in the VVoigt approximation.
Moreover, the equation (1.5-32) yields that in Voigt approximation, the

J" tensor assumes the following form:
JW:(1(4) - gM :CW) (16-23)

so that the (1.5-33) leads to (1.6-22).

It is worth to underline that the resulting Voigt stresses are such that the
tractions at interface boundaries would not be in equilibrium, so this
approximation satisfies the compatibility conditions and do not satisfy the
equilibrium ones.

Dually, a model for the evaluation of the overall elastic compliance tensor,
probably the simplest one, was introduced by Reuss in 1929. He assumes that
the stress field throughout the RVE is uniform, that yields:

T=T"=T"=T° (1.6-24)
Such a condition can be represented by means of the following simplified
model:

Figure 1.12 Stress-prescribed problem.
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It follows that:
M =L"=1 (1.6-25)
and the (1.6-19) becomes:
Sf=f,S"+f,S" (1.6-26)
which the superscript R underlines that the overall compliance tensor has been

obtained in the Reuss approximation.

Moreover, the eguation (1.5-19) yields that in Reuss approximation, the
H " tensor assumes the following form:

HY=g%.- s (1.6-27)
so that the (1.5-20) leads to (1.6-26).

It is worth to underline that the resulting Reuss strains are such that the
displacements at interface boundaries would not be compatible, i.e, the
inclusion and the matrix could not remain bonded, so this approximation
satisfies the equilibrium conditions and do not satisfy the compatibility ones.

As mentioned in the beginning of this section, Hill proved in the 1952 that,
independently from the RVE geometry, the actual overall moduli lie
somewhere in an interval between the Reuss and Voigt estimates. Thus, the
Voigt and Reuss approximations are the upper and lower bounds of the true
effective elastic moduli. In order to demonstrate it, let the above cited RVE to
be subjected to displacement homogeneous boundary conditions,
Errore. L'origineriferimento non e stata trovata.:

u’® =Ex on vV (1.6-28)

The external work is given by:
W =1 goutds=1 gfel'x, ds= el ¢yx, d
=3 ot S—E o€ % S_Ee” OhiX; ds (1.6-29)
w w w

By remembering that in case of prescribed macrostrain, it is:
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E=<E(x,E)>=E (1.6-30)

and by considering the Errore. L'origine riferimento non é stata trovata.
and the Errore. L'origine riferimento non & stata trovata., it is obtained:
w=lesv=1gTv (1.6-31)
2 2
Similarly, let the above cited RVE to be subjected to traction homogeneous
boundary conditions, Errore. L'origineriferimento non e stata trovata.:
t°=Sn on IV (1.6-32)
The external work is given by:

1
—S

w=1 & uds = GslMnuds=Zs” nuds  (16-33)
2 C 2 271 &

1\%

By remembering that in case of prescribed macrostress, it is:
'F:<T(x,E)>:S (1.6-34)
and by considering Errore. L'origine riferimento non e stata trovata. and
the Errore. L'origineriferimento non & stata trovata. , it is obtained”

! It can be noted that, by taking in account the
Errore. L'origine riferimento non € stata trovata., the equation (1.6-31) yields the

following relation:

W=0f " (xE)av =F" (E)V

2 It can be noted that, by taking in account the
Errore. L'origine riferimento non € stata trovata., the equation (1.6-35) yields the

following relation:

W=y (xs)av=Y*(s)v
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w=lgs )Y “leTv (1.6-35)
2 2
Since, in both cases, it is:

= Ot uds= ; ;€ dV (1.6-36)

\%

it follows that the following identity is established:

S8, == (P& AV (16-37)

Define:
sP=(mp)se, 6 =(L0,) e (1.6-38)
therefore, by recaling the equations (1.6-2), (1.6-4), (1.6-9) and (1.6-11), it
can be deduced that:

=ClL.&, € =ShLSn (1.6-39)
where the superscript p stands for the inclusion phase W or for the matrix
phase, M, and where Cf, and Sf, represent the elastic stiffnesses and

compliances of the single examined phase.
Furthermore, it is:
s =Chen & =SS (1.6-40)
Hence, it follows that:
PaP —c Pa PAP —c QP
S, i€ =S;€;, S;€ =S;€ (1.6-41)

and therefore:

(1.6-42)
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The second terms in the left sides in the equations (1.6-42) are positive,
since they can be written, respectively, as:

3 a |\=CP P _ & P_ &
(S ijp -S ijp)(eijp - eij) _Cijhk (ehk - ehk)(eij - eij)

B R B B (1.6-43)
(Sijp - Sij)(eijp - eijp) = j’Lk (S h?( -S hk)(S ijp - Sij)
In addition, by recaling the equation (1.6-37), it is:
Gilef-a)av=o  dor-s)efav=o  aom
\% \Y
With these considerations, the equation (1.6-42) yields:
Vs,e, £€g; ¢ Aijp av
Yo (1.6-45)
Vs,& £S5, FPdv
\%
By considering the (1.6-39), we have finaly:
_ 1.
Cij hk £ v cpijphk dv
v (1.6-46)

— 1 <
thk £\7 oﬁﬂk dv
v

This result, by taking in account the equations (1.6-22) and (1.6-26), can be
expressed in the following form:
c_:ijhk £ c_:i\j/hk
gjhk £ éj?]k
which indicates that the Voigt approximation gives upper bound and the Reuss
approximation gives lower bound for the overal siffness tensor of the

homogenized material. Unfortunately, these bounds are of pratical significance
only for small volume fractions and dlight mismatch of elastic moduli of

(1.6-47)
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phases. Better universal bounds are given by Hashin and Shtrikman (1963), as
shown in the following section.

1.7 Variational methods- Hashin and Shtrikman’svariational principles.

The homogenization problem of an heterogeneous RVE is equivaent to
solve one of the following variational problems:

%chgzéﬂvalvc‘Elc(BEd){aEd)dv

(1.7-1)
y 11 = _
ESTxT:#dTﬁv\SES(T+Td)>(T+Td)dV

where:

E =compatible periodic strain field space, whose average value is equal to
zero

T = equilibrated periodic stress field space, whose average value is equa to

zero
C = homogenized stiffness tensor

S= homogenized compliance tensor

|

=generic stressfield belonging to Sym

E = generic strain field belonging to Sym

The first members of the (1.7-1) represent, respectively, the elastic energy
density and the complementary one of the homogenized material. In particular,
solving the first problem of the (1.7-1) is equivalent of determining, between

the compatible strain fields, whose prescribed average value is E , the sole one
that is also equilibrated. On the contrary, solving the second problem of the
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(1.7-1) is equivalent of determining, between the equilibrated stress fields,

whose prescribed average valueis T , the sole one that is also compatible.

It is possible to demonstrate that, if the stiffness tensor C and the
compliance one S have, unifomly in V, al the eigenvalues lower down
bounded by a positive constant, then the equations (1.7-1) admit one and only
one solution.

Since the functionals in the first members of the (1.7-1) are conjugate each
other, [29], it follows that the homogenized properties of the material are well
defined, hence:

S=C* (1.7-2)

In this framework, the basic physic idea of the Hashin and Shtrikman's
principles is to substitute the heterogeneous medium with a reference

homogeneous one, having a stiffness tensor, C", and a compliance tensor,

S" . In order to simulate the actual micro-structure, eigenstress and eigenstrain
fields are prescribed on the reference homogeneous medium, as aready seen in
the previous section. So, the Hashin and Shtrikman’s variational principles are
characterized from two tumbled variational problems:

- The first problem, defined as auxiliary problem, is related to the
elastostatic response of the reference homogeneous solid, subjected
to a prescribed field of polarization (eigenstress or eigenstrain).

- The second problem, defined as optimization problem, has the
objective to found the unknown field of polarization.

In the follows, the four classic Hashin and Shtrikman's variational
principles are reported. It is worth to underline that two of these are minimum
principles, while the other two are saddle principles. Naturally, the minimum
principles are particularly useful, because each numeric approximation of them,
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for example by using the Finite Element Method, represents an upper
estimation of the solution.

In particular, consider a reference homogeneous material which is
more deformable than each phase included in the heterogeneous RVE,

such that C- C" is positive definite everywhere in V. Hence, the
following identity is verified:

Qae—ICExE-lc“ExEde:
82 2 e (1.7-3)
i . 1 1_. _+0..,0 '
—sup i AT <E-=(c-c") T 5 Qv
P1ogh E-5(c- et T
where:

H = the space of symmetric second-order periodic tensors
T’ = polarization field (eigenstress) prescribed on the reference homogeneous
medium in order to simulate the actual micro-structure of the
heterogeneous RVE.
In particular, by taking:
E=E+E (1.7-4)
where ET Sym and ET E , and by remembering that C™ is constant in V,
the (1.7-3) assumes the following form:

OG5 C(E+E){E+E)- S ey =
:wE\i;% T*>>E-%(C- C“)"lT*xT*gdvu+ (1.7-5)

where < T > denotes the average value of T  in V.
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Therefore, by considering the lower bound with respect to E , changing the
minimization with the maximization and by dividing for V, it is obtained:

1eesE- LcvEsE=
2 2
1 i 1 1 A 0 (1.7-6)
== supj e T >E- Z(C- C¥) T 2av +inf FC(I)'
Vring V8 2 o ETE %
where the quadratic functional FC(:*) is defined by:
FIETE @ §F €+ictExt v (1.7-7)
C V% 2 &

Consider, now, a reference homogeneous material which is stiffer than each
phase included in the heterogeneous RVE, such that C- C" is negative
definite everywhere in V. Hence, in analogous manner, it is obtained the
following equation:

leexe- LevEse=

2 2

1 . . N (1.7-8)
Q?T* > - E(C- c") 757" %av +inf £ )g

g Eie €

The equations (1.7-6) and (1.7-8) represent the Hashin and Shtrikman's
variational principles, based on the eigenstress. In particular, the (1.7-6) is a
saddle principle, while the (1.7-8) is a minimum principle. From them, by

imposing stationariness principles with respect to T, it is obtained:

(c-c*)'T =E+E (1.7-9)
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that confirms that stress field T~ is the correction which has to be prescribed to

the reference homogeneous material stress field C" (é + E) in order to obtain

the stress field in the actual material C(é + E).

It is possible to obtain other two variationa principles, having similar
expressions to the (1.7-6) and the (1.7-8) and involving the overall compliance
tensor S. About them, the sole results will be shown, directly, since they are
reached with similar considerations to those ones already done.

Therefore, consider a reference homogeneous material which is stiffer than
each phase included in the heterogeneous RVE, such that S- S™ is positive

definite everywhere in V. Hence, in analogous manner, it is obtained the
following equation:

ST 28T =

2
1 ‘| 1 . . N (1.7-10)
== ap < E > - Z(S- 8") EHE 20V +inf Ry
V Ein 0 8 2 ] T [V)
where the quadratic functional FS(HE ) is defined by:
EE)TiT @ (& 5+ L1s97 5 Sav (1.7-12)
S \% 2 9

and where:
H = the space of symmetric second-order periodic tensors

E" =polarization field (eigenstrain) prescribed on the reference homogeneous

medium in order to smulate the actua micro-structure of the
heterogeneous RVE.

Consider, on the contrary, a reference homogeneous material which is more
deformable than each phase included in the heterogeneous RVE, such that
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S- S" is positive definite everywhere in V. Hence, in similar form, it is
obtained the following equation:
st loviar=
2 2
L L . ) hg @712
== inf .'Qa% E'>T-2(s-s") E & v +inf FE )Y
V ETH | 8 2 9 T S [V)
The equations (1.7-10) and (1.7-12) represent the Hashin and Shtrikman's
variational principles, based on the eigenstrain. In particular, the (1.7-10) is a
saddle principle, while the (1.7-12) is a minimum principle. From them, by

imposing stationariness principles with respect to E”, it is obtained:
H -1 ~ —
(s-s") E =T+T (1.7-13)
that confirms that strain field E is the correction which has to be prescribed

to the reference homogeneous materia strain field S" ('I: +'F)in order to

obtain the strain field in the actual material S('I: +'F) .

It has to be considered that the Hashin and Shtrikman's variational

principles involve auxiliary problems, consisting in the minimization of the

functionals, FC(: ) and FS(HE ) . The goal is to solve an equilibrium problem and

a compatibility problem, respectively, for the reference homogeneous solid,
subject to a prescribed eigenstress, T, and eigenstrain, E”, respectively. For
a such problem, however, only few particular cases shows the solution.

In particular, it can be remembered the Eshelby’s solution for the case in
which the polarization field is constant and different from zero, only in an
ellipsoidal region. This solution lets to use the Hashin and Shtrikman's
variational principles for determining the homogenized properties of a biphasic
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composite, with a low concentration of inclusions. In order to do it, the same
matrix or the inclusions can be chosen as reference homogeneous material, but

the matrix and the inclusions have to be well ordered, that means, C" - C%
has to be defined in sign.

In case of periodic composite, the auxiliary problem is easier to solve,
because it is possible to transform the RVE domain into a Fourier domain. Itis
not our interest to expose this procedure, so the interested reader is referred to
[29].

The calculation of the elastic energy density and of the complementary one,
according to the two equations of (1.7-1), requires the execution of very
difficult minimization with respect of functionas, that are defined on
unbounded space. Operating such minimizations is equivalent to solve the
elastostatic problem for the RVE, in the cases of displacements approach and
tractions approach, respectively. A numeric minimization, obtained, for
example, by using the Element Finite Method, can be employed on finite

subspaces, E, and T,, of the above mentioned spaces, E and T .
Consequently, numeric minimization will yield the following expressions of

thetensors, C* and S*:

Lo EE= int Soic(E+EY)E+E)av
2 ENEV
(1.7-14)
ESﬁ?xf: inf 1 ‘1S(T+Td)>(f+Td)dV
2 Td|TfVV

which, for constructions, satisfy the following inequalities:

leeseelcEsE
(1.7-15)
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By naming with C* and S’ , respectively, the inverse of the tensors S* and

C", upper and lower limitations for the elastic energy, and the complementary
one, of the homogenized material are obtained, as given by:
leeesliceEcelces
i 12 12 (1.7-16)
S EXEEL£ZSEXEE-S'EE
2 2 2
Elementary estimations on C and S are obtained by choosing the simplest

E, and T, i.e, coinciding with the space constituted by the sole null tensor.

In this way, the well known Voigt and Reuss' estimations dall’ato e dal basso
are reached; in particular, for a biphasic composite, it is:
-1 —
(fMSM + f\I\ISW) -l£ C_£ fMCM + fWCW (17_17)
(fMCM + fWCW) ESEf,S, +f,Sy
with:
+\V -1 \V
f,Cy + fuCy=(C") (fuCu + fuCu)  =(5)
-1 _\R . R
(fMSM+fWSW) :(C ) ’ fMSM+fWSW:(S )

where the superscript V and R stands for Voigt and Reuss.

(1.7-18)

At the same manner, The Hashin and Shtrikman's variational principles,
(1.7-6), (1.7-8), (1.7-10) and (1.7-12) yield estimations dall’ alto e dal basso on
the dtiffness and compliance tensors, if the optimization with regard to the

polarization fields is employed above a finite underspace, H , , of the above

unbounded mentioned space H of al possible polarization fields.
In particular:
- if the reference homogeneous materia is more deformable than each phase
included in the heterogeneous RVE, it is:
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%c‘:ﬁxﬁ-%cHExﬁs
1 1 (1.7-19)
2 p [ QRT >E-(c-c)iT A Oav +inf £
Vrin, 1 8 2 o ETE [V)
and:
ST ST E
(1.7-20)

1 1 ()4
£VE||n|£f:Q8<E >sT 2(3 s* ) E' g deﬂTPTfF [V)

- if the reference homogeneous material is stiffer than each phase included

in the heterogeneous RVE, it is:

%CEXE-ECHEXE£
L 1 ) L (L7-21)
- :'Q T*>>E-—(c-c“)' T3 av +inf F( )4

V H Y 8 2 ] ElE [V)

and

ST ST 0
1 1 (1.7-22)
= :'Q <E*>>T‘-—(s-s“) E € OaV +inf F( Y
V T 8 2 17 T [V)

A numeric estimation of the inferior extreme of FC(: ) and of FS(HE ) implies
that only the minimum principles (1.7-20) and (1.7-21) yield upper estimations
for the density of the eastic complementary energy and for the elastic one,
respectively, for the homogenized material. The saddle principles (1.7-19) and
(1.7-22), instead, are able to yield an estimation that cannot be read as an upper

or lower estimation.
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1.8 Inhomogeneous materials: Stress and Displacement Associated
Solution Theorems.

As studied in the previous sections, the heterogeneity of the material implies
an inhomogeneity of the same medium, so that the elastic properties of the
solid are spatialy variable in the examined volume.

It is wel known the difficulty to find solutions to anisotropic
inhomogeneous material problems. A very few restricted classes of these
problems, in fact, are solved in a general way. For example, it can be cited the
solution for cylinders subjected to pure torsion, possessing cylindrical
orthotropy with a variation of the shear moduli with the local normal direction
to the family of curves of which lateral boundary is a member, [17]. A second
example is the exact solution for the case of an anisotropic half-space with
elastic moduli dependent upon the coordinate, the angle g , when the loads on
the half-space are represented by a straight line of force, [12]. A third example
can be considered, that is the solution for problems in which the variation of
the elastic constantsis in the radial direction, [4].

In spite of this difficulty, in the last years, it has been a growing interest
about the mechanical behaviour of anisotropic and inhomogeneous solids,
above al in biomechanics. Moreover, the necessity to build thermodynamically
consistent theories for this kind of materials, by means the employment of the
mathematical theory of the homogenization, has determined the necessity to
find exact analytical solutions in the ambit of this more complex section of the
theory of easticity, [37], [41].

In literature, a method has been presented by Fraldi & Cowin, 2004, [24], to
overcome the difficulties exposed above: the use of two theorems, SA.S
theorem and D.A.S theorem, introduced by the authors, provides solutions for
inhomogeneous, anisotropic elastostatic problems starting from the solution of
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associated anisotropic and homogeneous ones, but they have to be satisfied
some conditions, that are exposed in the following.

In particular, the stress-associated solution (S.A.S.) theorem lets to find
solutions for inhomogeneous anisotropic elastostatic problems, if two
conditions are satisfied:

1. The solution of the homogeneous elastic reference problem (the
associated one) is known and it has a stress state with a zero
eigenvalue everywhere in the domain of the problem.

2. The inhomogeneous anisotropic elastic tensor is in relation with the
homogeneous associated one according to the following equation:

c'=j (x)c", j(x)|"xI Bj(x)>a>0, al R" (181)

C" =C"" = the eadticity tensor of the anisotropic homogeneous dastic
reference problem.

C'= the elasticity tensor of the corresponding anisotropic
inhomogeneous elastic problem.

B= the domain occupied by both the homogeneous object (B") and the
inhomogeneous one (B').

al R' =  anarhitrary positive real number.

i (x)= a C?(B) scalar function.

The second condition implies that the inhomogeneous character of the

material is due to the presence of a scalar parameter, | (x) producing the

inhomogeneity in the elastic constants. It can be also relaxed and, so, written in
awesaker form:

c' =jc" (1.8-2)
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where:

A

C" = those only elastic coefficients explicitly involved in the specific

ik
anisotropic homogeneous problem used to construct the associated
solution.

This means that components of the elasticity tensor not involved in the
solution of the homogeneous problem will not be involved in that one of the
associated inhomogeneous problem.

If the conditions 1 and 2 are satisfied, starting from the known solution of
the homogeneous problem, the associated solution, that is the solution to the
inhomogeneous problem, is derived.

In particular, the strain-displacement field solution is identical with the
strain-displacement field of the homogeneous reference solution, while the

stress field of the inhomogeneous problem is equal to j (X) times the stress

field of the homogeneous problem.

The advantage of this method is in the fact that its use yields both exact
solutions for several new inhomogeneous and anisotropic problems and a
redefinition of the aready known solutions, like those ones for the shape
intrinsic anisotropic materials, the angularly inhomogeneous materials and the
radially inhomogeneous materials.

More in detail, let us to consider the following anisotropic homogeneous

elastic object, that occupies avolume B™ , with mixed boundary-value:
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Figure 1.13 Homogeneous solid.
In absence of action-at-a-distance forces and taking into account the

compatibility of the solution by writing the equilibrium eguations in terms of
displacements, the following equilibrium equations can be written:
N (u)=0 inB"
(1.8-3)
T(u)m=t onfB’
where:

N =9,e= isavectoria differential operator
B = the boundary partition of the homogeneous continuum on which the

traction field is assigned.
On the boundary partition on which the displacements field is assigned, the
following relation has to be satisfied:
u=u’ on1B/ (1.8-4)
where, in fact:
B!' = the boundary partition of the homogeneous continuum on which the
displacementsfield is assigned.
The anisotropic Hooke's law, in a linear elastic stress-strain relation, is
written in the form:
T(u)=C":E(u)=C" :sym(NAu)=C":(NAu) (185
or, in components:

Sy = Cineu = Cinlnk (1.8-6)

ij i
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Let us consider, now, the following anisotropic inhomogeneous elastic

object, that occupies avolume B', geometrically the same of B", with mixed

boundary-value:

Figure 1.14 Inhomogeneous solid.

In absence of action-at-a-distance forces and taking into account the
compatibility of the solution by writing the equilibrium eguations in terms of
displacements, in an analogous manner to what has been done before, the
following equilibrium equations can be written:

N (u)=0 inB'
(1.8-7)
T(u)n=t'" onTB

where:

B! = the boundary partition of the inhomogeneous continuum on which the
traction field is assigned. It is geometrically the same of that one in
the homogeneous problem.

On the boundary partition on which the displacements field is assigned, the
following relation has to be satisfied:
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u=u’ onyB’ (1.8-8)
where, in fact:
B! = the boundary partition of the inhomogeneous continuum on which the
displacements field is assigned. It is geometrically the same of that
one in the homogeneous problem.

The anisotropic Hooke's law, in alinear elastic stress-strain relation, is written

in the form:

T(u)=C':E(u)=C':sym(NAu)=
=j (x)C" :sym(NAu)=j (x)C":(NAu)
according to the position (1.8-1).
So, taking into account the equations (1.8-1) and (1.8-9), yet, the first of the
equilibrium equations (1.8-7), can be written in the following form:

N (u) =j (x)N>6C" : E (u)p+gC™ 1 E(u)pplNj (x)=0 inB' (1.8-10)
If it is considered the hypothesis that the displacements field is equal in the

(1.8-9)

homogeneous and inhomogeneous problems, that is:

u” =u' (1.8-11)
where:
u" = displacements field, solution of the homogeneous problem

u' = displacementsfield, solution of the inhomogeneous problem
then, the equation (1.8-10) can be written in the form:

7~

Nil'(u“) = (x)g\l T+ (u“)8+gTH (u“)gﬂj (x)=0 inB" (1812
that is obtained by sobstituting:
N%C“ :E(uH)BZNx&éTH(uH)B (1.8-13)
But, since the equation (1.8-13) is equal to zero, it follows that:
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gT“ (uH)BNj (x)=0 " xI B' (1.8-14)

By excluding the trivial caseinwhich j (X)is constant, this means that:

1. thestresstensor T" for the reference homogeneous problem has to
be plane, at each interna point xT B", thatis, it hasto be alocaly
variable zero-eigenvalue stress state:

detT" =0, " xI B" (1.8-15)

2. the vector Nj , @ the corresponding points xT B', has to be

coaxial with the eigenvector associated to the zero stress eigenvalue

in the homogeneous problem.
In the previous statements, it has been implicitly considered the definition
about the “plane stress’: a stress state will be said plane if, in afixed point x of

the solid, there is a plane of the stresses to which all the stress components s ;
belong. It is easy to demonstrate that this plane exists if the stresstensor T has
azero eigenvaue. So, if {xl,xz,x3} is the orthogonal principal reference frame
of the stress tensor T and if X, is assumed, for example, as the eigenvector
associated to the zero eigenvalue of T , the plane of the stresses must coincide
with X, - X, plane.

It follows that a necessary and sufficient condition for the existence of a
plane stressis given by:
detT =0 (1.8-16)

The geometrical relationship (1.8-14) between the stress tensor T " and the

vector Nj may be rewritten in the form:
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{TH N :O} U {" viv, T" (N] Av):o} (1.8-17)
where:

V = any unit vector defined in the three-dimensional Euclidean space E®
V = the corresponding vector space
So, it follows that the stress vector on the plane whose normal is v is aways

orthogonal to the vector Nj .

More in detail, representing the stress tensor T" in the principa stress
directions space, as.

u
i (18-18)
U
u

and representing in the same space the gradient of the scalar function | , as:

Ni (X)" =86 o iz 1 ol (1.8-19)

the equation (1.8-14) becomes:
sh ,.=0, sY,,=0 sf, .=0 (1.8-20)
and it is satisfied only if the two conditions above written are satisfied. The
case of three zero eigenvalues of the stress tensor T in each point xT B" is
trivial; The case of only one zero eigenvalue of the stress tensor T in each

point xT B", for example in the X, direction, the only non zero component
of the vector Nj at the corresponding points x1 B' isj ,, (so, too, if there

aretwo zero eigenvalues there can be two non-zero components of Nj ).
In the following figure it is shown the case of stress plane, for each point

x1 B", coneigenvalue s, equal to zero.
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Figure 1.15 Geometrical interpretation of the relationship between the
equipotential surfaces of and the distribution of the planes of
stresses in the associated anisotropic problem.

It illustrates, in fact, that, at each internal point x1 B', the equipotential
surfaces of | admit as a tangent plane the plane whose normal (parallel to
Nj ) is coaxia with the eigenvector associated with the zero stress eigenvalue.

It can be noted that the assumed position (1.8-1) and the hypothesis (1.8-11)
, that istrue if the equation (1.8-14) is satisfied, imply:

T =jT" (1.8-21)
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So, the following theorem is established:

Stress associated solution theorem (SAS)
Consider two geometrically identical elastic objects, one homogeneous, B",
and the other inhomogeneous, B', respectively. Let be C" and
C' =j (x)C" the corresponding elasticity tensors. The two elastostatic

Cauchy problems associated with the two objects, in presence of the body
forces and of mixed boundary-value, are:

p" :{Nil'(u):o inB", T(u)=t onTB", u=u’ on‘ﬂBL'f}
P :{NxT(u):O inB', T(upn=jtonTg, u=u° on‘I]BL'j} (&2
where:
i (x)1 CZ(B)| "x1 B,j (x)>a>0, al R'
if u™ isthe solution of the homogeneous problem p", then u' =u" if and
only if {T" :(Nj Av)=0, "vi V} ie:
{" xT B'," vi Vv, T":(Kj Av):O} U u =u" (1.8-23)
In other words, when a solution B/ ={u“ JE" ,TH} for an anisotropic
homogeneous elastic problem p" is known , the SAS theorem yields the
corresponding solution for an inhomogeneous elastic problem p' as
B, ={u",E"j T"}, if and only if T">\j =0 everywhere in the object

and the displacements boundary conditions are the same for both the
homogeneous and inhomogeneous objects.

This SAS theorem can be generalized to comprise different types of
composite materials, [24].
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For example, let us to consider the composite materials for which each
phase is characterized by constant elastic moduli within their own phase, but
different from phase to phase.

This kind of inhomogeneity can be described by a scalar function | that is

constant in each phase, but piecewise discontinuous.

In this case, in particular, for each phase p of the composite material, the
elasticity tensor can be written as:
ch=j,c" p={12..n1 N (1.8-24)
where:

C" =the easticity tensor of a reference isotropic or anisotropic homogeneous
material whose geometries are the same of those ones of the composite
material object.

C'; =the eladticity tensor of the phase p of the anisotropic homogeneous
material which is homogeneousin it.
] , = apositive scalar parameter, different from phase to phase.
Let usto consider a partition of the inhomogeneous body as:
{w,(B)BoUL, W,(B)] (1.8-25)

and let us to indicate with ﬂV\/(p’q) the interface boundary between two generic

sub-domains W, and W, of the partition, with elasticity tensors C'} and C,

respectively.

In order to obtain the solution for this kind of composite material, starting
from the known solution for the anisotropic homogeneous reference problem, it
has to be:

T =j, " "xiw,(B) (1.8-26)



Chapter | — Micro-mechanics theory 115

that is the condition required by the SA.S theorem.
It is noted that this position satisfies the equilibrium equations in each sub-
domain of the partition. In fact, it can be written:

Nt =j Nt =0 "xTw/(B) (1.8-27)
Moreover, according to the constitutive relationship, it can be written:
EF=Cl'T/=Cc"'T"=E" "pl N,"xI W, (1828
that yields that compatibility condition on the discontinuity surfaces between
the different phases of the composite is automatically satisfied and the same
thing it can be said for the compatibility conditions on the external boundary.

As regards the limit equilibrium equations for the interface surfaces, it
follows that:

Tron =T { {p.g}T N,"xI ﬂW(p’q)} (1.8-29)

where:

Mooy = the unit normal vector to the interface between the phases p and g.

According to the equation (1.8-26), the equation (1.8-29) is satisfied if:

TH Mg =0 " xTIW, (1.8-30)

p.a)
This means that, for each point belonging to the interface surfaces between

two phases, the stress tensor T of the reference homogeneous material has to
possess at least one zero eigenvalue, that is:

detT" =0 "xI W, 0 (1.8-31)

So, the eigenvector associated with the zero eigenvalue of the stress tensor
is coaxial with the unit normal vector to the tangent plane to the interface.

Finally, to complete the elastic solution for the composite material, it is
necessary that the equilibrium conditions on the external boundary were
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verified. In particular, indicating with ﬂBt(e) the partition of the externa

boundary on which the tractions t" are assigned in the homogeneous reference
material, it can be written:

Toon=t =j " " xT 1By, (18-32)
where the total stress boundary is given by:
T8, =Uc, 1B, (1.8-33)

€

where:
k = the total number of the phases that have a projection of their boundary on
the external boundary on which the tractions are prescribed.

At this point, known the stress and strain fields that are elastic solution for
the reference homogeneous problem, it is possible to built the elastic associated
solution for the composite multi-phase materials with analogous geometry to
the homogeneous problem.

It also has to be noted that the case of multi-phase materials, characterized
by a scalar parameter | , constant in each phase, can be seen as a

generaization of the S.A.S. theorem where it is sufficient that the condition

detT"™ =0 were worth only in the points belonging to the internal interfaces

between the different phases, and not necessarily in each point of the

homogeneous body; in other words, the stress tensor T" can be a three-
dimensional stress field in any point of the domain, except for the points
belonging to the interface surfaces.

A further example of materials to which the S.A.S. theorem can be applied
is that one of composite multi-phase materias, where, in a more general
situation, the following relation can be written for the elasticity tensor in each
phase of the heterogeneous solid:



Chapter | — Micro-mechanics theory 117

ch=j, (x)c" "x,Tw/(B)i B (1.8-34)
where:
W, (B)|B° U}, W, (B) (1.8-35)

is again the considered partition of the inhomogeneous object.

The equation (1.8-34) means that, now, j , isa positive scalar function, not

necessarily constant, but continuous inside each phase.

With anal ogous procedure to that one used before, it is easy to verify that, in
order to extend the S.A.S. theorem to piecewise continuous composite
materials, two facts have to be verified:

1. a each internal point of each phase p, the stress tensor T"
possesses at least one zero eigenvalue.

2. a every point belonging to the interface surfaces between two
adjacent phases, the eigenvector associated with the zero eigenvalue

of the stress tensor T" is coaxial with the normal to the tangent
plane.

For further examples of applicability of the S.A.S. theorem and for more
details on its formulation, let us to send to the references being in literature,
[24]. It is useful to underline, now, that the S.A.S. theorem yields the
possibility to find a closed-form solution for inhomogeneous materials and it
evidences that this possibility doesn’t depend on the relation between geometry
of the solid domain and orientation of the planes of the mirror symmetry but on
the relation between the geometry of the stress distribution in the homogeneous
material and the structural gradient of the inhomogeneous material.

In analogous manner, the displacement-associated solution (D.A.S)
theorem lets to find solutions for inhomogeneous anisotropic elastostatic
problems, if two conditions are satisfied, [23]:
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3. The solution of the homogeneous elastic reference problem (the
associated one) is known and it has aloca plane strain state, with a
zero eigenvalue everywhere in the domain of the problem.

4. The inhomogeneous anisotropic compliance tensor is in relation
with the homogeneous associated one according to the following

equation:

S =—-C"=l(xs", I(x|"xI BI(x)>b>0 bl R (1836)

where:
SH =s"" = the compliance tensor of the anisotropic homogeneous elastic
reference problem.

S' = the compliance tensor of the corresponding anisotropic

inhomogeneous elastic problem.

B= the domain occupied by both the homogeneous object (B™) and the
inhomogeneous one (B').

bl R"= anarbitrary positive real number.

| (x)=  aC?(B)scaar function.

The second condition implies that the inhomogeneous character of the
materia is due to the presence of a scalar parameter, | (x) producing the
inhomogeneity in the compliance coefficients. It can be aso relaxed and, so,
written in aweak form:

S =|&" (1.8-37)

ijhk ijhk

where:
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S" = those only compliance coefficients explicitly involved in the specific

ik
anisotropic homogeneous problem used to construct the associated
solution.

This means that components of the compliance tensor not involved in the
solution of the homogeneous problem will not be involved in that one of the
associated inhomogeneous problem.

If the conditions 3 and 4 are satisfied, starting from the known solution of
the homogeneous problem, the associated solution, that is the solution to the
inhomogeneous problem, is derived.

In particular, the stress field solution is identical with the stress field of the
homogeneous reference solution, while the strain field of the inhomogeneous

problem is equal to | (x) times the strain field of the homogeneous problem.
The advantage of this method is in the fact that its use yields exact solutions

for several new interesting inhomogeneous and anisotropic problems.
More in detail, let us to consider an anisotropic homogeneous elastic object,

that occupies avolume B™ , with mixed boundary-value (see figure 1.13).

In presence of action-at-a-distance forces and taking into account the
compatibility of the solution by writing the equilibrium eguations in terms of
displacements, the following equilibrium equations can be written:

Nx (u)=0 inB"
T(u)m=t onfB’ (1.8-38)
T(u)xn=0 onYB!

where:

N =9,e= isavectorid differential operator
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B =  the boundary partition of the homogeneous continuum on which the
traction field is assigned.
‘IIBC',4 =  theboundary partition of the homogeneous continuum in absence of
both traction and displacements fields.
On the boundary partition on which the displacements field is assigned, the
following relation has to be satisfied:
u=0 onB’ (1.8-39)
where, in fact:
B!' = the boundary partition of the homogeneous continuum on which the
displacementsfield is assigned.
The anisotropic Hooke's law, in a linear elastic stress-strain relation, is

written in the form:

T(u)=C":E(u)=C" :sym(NAu)=C" :(NAu) (1.8-40)

or:
sym(NAu)=E (u)=S":T (u) (1.8-41)
in components:
S = Ciien = Clrln (1.8-42)
and:
CHESSHE I (1.8-43)

Let us to consider, now, an anisotropic inhomogeneous elastic object, that

occupies avolume B', geometrically the same of B™, with mixed boundary-
value (seefigure 1.14).

In presence of action-at-a-distance forces and taking into account the
compatibility of the solution by writing the equilibrium eguations in terms of
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displacements, in an analogous manner to what has been done before, the
following equilibrium equations can be written:

N (u)=-b inB'
T(u)m=t onfB (1.8-44)
T(u)n=0 onfB;

where:

1B the boundary partition of the inhomogeneous continuum on which the

traction field is assigned. It is geometrically the same of that one in
the homogeneous problem.

B! = the boundary partition of the inhomogeneous continuum in absence of

both traction and displacements fields. It is geometrically the same of
that one in the homogeneous problem.
On the boundary partition on which the displacements field is assigned, the
following relation has to be satisfied:

u=0 onB’ (1.8-45)
where, in fact:
B! = the boundary partition of the inhomogeneous continuum on which the

displacements field is assigned. It is geometrically the same of that
one in the homogeneous problem.
Let us to assume the stress tensor T" as the solution for the homogeneous

problem, and let us to assume, also, the hypothesis that:

T =T" (1.8-46)
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In this way, the equations in the differential system (1.8-38) are

automatically satisfied. Moreover, if T™ is the solution of the first anisotropic
and homogeneous problem, we have that the compatibility condition

N[N (s":T")]=0 (1.8-47)

have to be also satisfied. As well-known, this ensures that a displacement

field u" exists. So, it is possible to write the strain-displacement relationship

EF =s":T" =symN A u" (1.8-48)
where:

u"™ = displacements field, solution of the homogeneous problem

Then, in order to accept the hypothesis (1.8-46), the following equation:

N [N (S:TH]=N"[N" (1 s*:T")]=0 (1.8-49)
becomes necessary and sufficient condition for the existence of a displacement

fild u', where u' is the displacements field, solution of the inhomogeneous

problem, and it is given by:
symNAuU' =E'=8"T'=Is":T" (1.8-50)
The compatibility condition (1.8-49), in general, is not satisfied. Therefore,

it is necessary to find the conditions under whose it becomes true, [23].
Without loss of generality, let us consider:

| =1 (x,) (1.8-51)
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This means that X, is the direction that is locally coaxial with the gradient

of | ,i.e,

NI T =[0,0, T /1x,] (1.8-52)

So, by recalling that u" is the solution of the homogeneous problem, and by
operating some agebraic manipulations, the set of compatibility equations
(1.8-49) can be reduced to five differential equations asit is shown:

: | o Ulk,il +l g (Urg - u:1),1 =0
it +1 5 (- ug), =0
i - ufh), =0 (1.8-53)
: |5 (U - uzy), =0

| —
1 I 33 (u{lz + u;l) +1 3 [(urs - u;l),z + (U;3 - u:z),l] =0

where, obvioudly, is absent any prescribed constrain about the relation
between the first and the second derivatives of the parameter | , [23].

It can be noted that the terms in the parentheses represent the skew
components of the NA u" | that are local rotations, while the only present
strain components are (1- d;;)(1- d;;)u,, having indicated with d,, the
standard Kronecker operator.

It has to be noted that:

1. the displacement field for the reference homogeneous problem has

to be related, at each internal point x1 B", with a local plane



124 Chapter | — Micro-mechanics theory

strain field, where any plane with support the axis X, can be the

plane of the strains:
detE" =0, " xI B" (1.8-54)

2. the vector NI , at the corresponding points xT B', has to be
coaxial with the support axis X, of plane of the strains in the
homogeneous problem.

3. curl(u") must be independent from X, -direction, i.e. the NI -

direction.

In the previous statements, analogoudy to what has been done with the
stress state, it has been implicitly considered the definition about the “plane
strain”: a strain state will be said plane if, in a fixed point x of the solid, there

is aplane of the strainsto which al the strain components €; belong. It is easy
to demonstrate that this plane exists if the strain tensor E has a zero

eigenvalue. So, if {X,,X,,X,} is the orthogonal principal reference frame of the

grain tensor Eand if X, is assumed, for example, as the eigenvector
associated to the zero eigenvalue of E , the plane of the strains must coincide
with X, - X; plane.
It follows that a necessary and sufficient condition for the existence of a
plane strain is given by:
deE =0 (1.8-55)
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It has to be noted that the satisfaction of the compatibility condition (1.8-49)
yields that the displacements field of the homogeneous problem has to satisfy
the equations (1.8-53).

This compatibility condition (1.8-49), therefore, may be rewritten in the
form:

{aurl[arl (1 8" =0} O
. S . - (1.8-56)
O {"hi v:RIl =0, (NAaurlu" h=0, ymNAu")h>h=0

where:
I (x)1T CZ(B)| "xI B, I (x)>a>0, al R*

h = any unit vector defined in the three-dimensional Euclidean space E®

V = the corresponding vector space

Moreover, it is worth to note that the assumed position (1.8-36) and the
hypothesis (1.8-46), that istrue if the equation (1.8-49) is satisfied, imply:
E'=I E" (1.8-57)

So, at this point, it can be stated that any anisotropic and homogeneous
elastic problem that possesses a solution represented by the displacement
equations can be considered a Displacement Auxiliary Solution for the
corresponding dual inhomogeneous e astic problem.

In other words, it can be possible to demonstrate the following theorem:

Displacement associated solution theorem (DAS)
Consider two geometrically identical anisotropic elastic objects, one

homogeneous, B", and the other inhomogeneous, B', respectively. Let be
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S" and S'=1(x)S" the corresponding compliance tensors. The two
elastostatic Cauchy problems associated with the two objects, in presence of
the body forces and of mixed boundary-value, are:

p:{R(u) =-binB", T(un=t B’ T(u)n=0 1B, u=0cn 1B}

(18-58)
p:{N(0)=-binB, T(usn=t m1B, T(U)>n=0 B, u=0 1B}

If T isthe solution of the homogeneous problem p", then T' =T" if and
only if the second part of the equation (1.8-56) is verified, i.e.:

if w =curl u“|" vi V,skew(NA u" )v:WH Uv

we have that:

"hT V[N sh=0{(NAcurl u" h=0, smNAu")h>h=0 0
) (1.8-59)
0 {1 ="}

In other words, when a solution B ={u“ E" ,TH} for an anisotropic

homogeneous elastic problem p" is known , the DAS theorem yields the
corresponding solution for an inhomogeneous elastic problem p' as
B, :{I E" ,TH}, if and only if the anisotropic and homogeneous elastic

problem possesses, everywhere in the object, a displacement solution satisfying
the equations (1.8-53) and if the displacements boundary conditions are the
same for both the homogeneous and inhomogeneous objects.

The solution u', for the inhomogeneous problem, in general, have to be
integrated with reference to the specific case.

It is worth to underline that in the case where displacement boundary-
value u is not equal to zero, the elastic mixed problem can be rewritten
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as the corresponding first type one, in which only the traction and reaction
fields are considered.

For more details on D.A.S. demonstration, let us to send to the references
being in literature, [23].

It is useful to underline, now and again, the geometrical interpretation of the
result of the theorem, constituted by the observation that, in order to find an
anaytical solution for a given elastic inhomogeneous and anisotropic body in

the form B, ={I E",T"}, a necessary and sufficient condition is that the

displacement solution for the corresponding anisotropic and homogeneous
problem is related with alocal plane strain field that has as plane of the strains
any plane with support an axis coaxial with the gradient of | , with rotational
part depending on this gradient direction, only.

The D.A.S. theorem can be generadlized to comprise different types of
composite materials.

For example, it is possible to consider the case of a multi-linear law for | ,
ie:

I =1+ x +1, %, +1 X%, (1.8-60)

with | ;, 1 ={0,...,3 arbitrary constants.

In this case, it is obtained that the second derivatives of the differential
system (1.8-53) go to zero, therefore, the compatibility equation system

becomes as it follows:
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(U= )2 =1 (e o,

i1 (U U)o =15 (U - U,),

P Uy W), =1 (U - ),

LI - ) s (U U,) =1 (U ), (- ),
I~ U)o+ (U~ U)o ] =1 (U - Usy) 5 +1 4 (U, - U,),

{ I 3 [(U;,l - u;,l),Z + (u;,z - u;,S),l] =1 1 (u;,z - u;,s),s +l 2 (u;,l - uis),s

(1.8-61)

Because of the arbitrary of the assumption about the constantsin the | law,

by setting to zero all skew components of NA u", a very closed solution of
the system can be found in the classical strain potential form, [8], that is

u" =Nf (1.8-62)
where f =f (X)is a scalar function. The displacement in the form of the
equation (1.8-61) produces, as well-known, an irrotational deformation field
and constitutes the irrotational part of the Papkovich-neuber representation in
the isotropic easticity, [8]. The reason for which this particular case could
result very useful is related to the fact that many fundamental solutions in
isotropic and anisotropic elagticity have a representation as described in
(1.8-61), as the axisymmetric, thermoelastic and heat-conduction problems.

It is, also, interesting to observe that, for the case of multi-linear law of | ,
not any prescription on the form of the strain tensor E" is necessary and, so, it
is possible to use as Displacement Associated Solutions all the three
dimensional solutions about anisotropic elasticity, satisfying the equation
(1.8-61), that is, all the three dimensional solutions that satisfy the equation:

curlu" =0 (1.8-63)
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For the examples of applicability of the D.A.S. theorem and for more details
onitsformulation, let usto send to the references being in literature, [23].

It is worth to note that the D.A.S. theorem, like the S.A.S. one, yields the
possibility to find a closed-form solution for some inhomogeneous materials
and it evidences that this possibility depends, in general, on the relation
between the geometry of the strain distribution in the homogeneous material

and the structural gradient, NI , of the inhomogeneous material.
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APPENDI X

The components of the Eshelby tensor S, with respect to a rectangular
Cartesan coordinate system, are listed for several special cases, [47]. In
particular, it is here considered a matrix M to be unbounded and isotropically

elastic, and the inclusion W to be ellipsoidal with semiprincipal axes, a,,
which coincide with the coordinate axes, X, (i =1,2,3), as shown in the

following figure:

Figure 1.16 An dllipsoidal coaxia with the Cartesian coordinates.
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_3 al +—(1_2h)|
()= e (in)
1 ) (1- )
S1122 P |12' —Il
g(1-n) 2" & (l-n)

_—_— 1-
S1212 :Wi_n)(% +a2)|12+%(|1+|2)

S1111 =

[1-1]



131 Chapter | — Micro-mechanics theory

wherethe |; and |, integrals are given by:

= ;‘Zf)a(ijlgﬁsag)w{ﬂq,k)- E(a,k)
i 2 _ o2)¥? 0
Is:( : 45))a(1a§a3 Z)Vz%aZ(alalasaS) -E(@k)y 12
L-aylla-a) | b
I +1,+1,=4p

and:

3'11+|12+|13:%’ 3312|11+322|12+a§|13:3|1
[1-3]

Y a2 A2 Y a2 a2
q:arcsin:'al 2a3l'J , k::'ai2 azzl,J [1-4]
ia b pa?-all)
2) Sphere (a, =a,=a, =a):
-1 4-M
Sijkl = 15(1_ n)dijdkl +m(dikdj| +dildjk) [1-5]

3) Elliptic cylinder (a, ® ¥):



4) Penny-shape (&, =a, ? a,):

Chapter | — Micro-mechanics theory 132
_ 1 ta+2a, a,
S, = i +(1- 2n
1111 2(1'”)T (a1+a2) ( )a1+a2)[;
1 ja?+2aa, a f
S, = i +(1- ) ——
2222 2(1'”)T (a1+a2)2 ( )a1+a2)t/)
S, =0
11 a f
S = 1- Xn \/
1122 2(1_n)+(a1+a2)2 )al+a2)[;
S = 1 ha
2233 2(1 n)a1+a2
1§ a a ¥
S, .= - (1- Y
2211 2(1 n)T(a1+a2) ( )aﬁazi;
s = 1 ha,
1133 2(1 n) a+a,
Sz = Sa, =0
o -1 1 af+ap  (-2)i
1212 2(1_n)+2(a1+a2)2 2 i;
SzazszL [1-6]
2(a,+a,)
- &
S3131_2(::__"14_:{_12)



133

Chapter | — Micro-mechanics theory

p (13- &
S1111 282222 :ﬁ
;. PA-2)a

S3333 - ~

4(1-n) &

&
a

p(7- &)
32(1-n)

13
S3131 = S2323 = 5%14' 4(1_ n)

©

(n-2)

[1-7]



Chapter 11 — Homogenization theory 134

CHAPTER I

Homogenization theory

2.1 Introduction

In this chapter, a short introduction to the notion of the homogenization and
of the essential concepts connected to it is provided.
In particular, by considering a heterogeneous medium, i.e.,, a medium whose
material properties vary pointwise in a continuous or discontinuous manner, in
a periodic or non periodic way, deterministicaly or randomly, homogenization
can be defined as the modelling technique of such a heterogeneous medium by
means a unique continuous medium, [41]. Furthermore, its goa is to determine
the mechanical parameters of the unique fictitious material that “best”
represents the real heterogeneous material or composite material. Obvioudly,
homogenization procedure applies itself to all fields of macroscopic physics,
but we will focus the attention on the mechanics of elastic bodies, particularly,
on composite materials.

Since most of the composite materials present a brittle, rather than ductile,
behaviour and, so, the elastic behaviour prevails, often there is no need to
consider the homogenization in an elasto-plastic range. Such an approach
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cannot be ignored when the plastic behaviour comes into play, like in the
composites which have a metallic matrix, for example. This leads to some
difficulty since the solution of the elasto-plastic homogenization problem in an
exact form is available only for very simple cases. However, we will be
interested in the elastic response of the homogenized material.

2.2 General theory

In the chapter 1, it has been noticed that, in order to employ a
homogenization procedure, two different scales are used in the description of
the heterogeneous media. One of these, we remember, is a macroscopic scale at
which homogeneities are weak, [41]. The other one is the scale of
inhomogeneities and it has been defined as the microscopic scale. The latter
defines the size of the representative volume element.

About the notion of the RVE, it can be said that, from the experimental
point of view, there exists a kind of statistical homogeneity, in the sense that
any RVE a a specific point looks very much like any other RVE taken at
random at another point.

The mechanical problem presentsitself in the following manner, [41].

Let T(x) and E(x) be the stress and the strain field at the microscale in

the framework of the examined RVE and denote, analogously to what has been
done in the previous chapter, the same mechanic quantities at macroscale by

S(X) and E(X), and the averaging operator by <...>. Hence, for avolume

averaging, we have, as aready seen before:
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S(X)=<T (x)>=o & (x)aV

\%

E(X):<E(x)>:\%c‘ﬁ(x)dv

\%

(2.2-1)

whereV isthe volume of the representative element.
In literature, [41], the following definitions are given:

a) The process that relates the macrofields (S,E), by means of the

(2.2-1), to the microscopic congtitutive equations is called
homogenization.

b) The “inverse’ process which consists in determining the microfields

(T,E) from the macrofields (S,E) iscaled localization.

Therefore, in the localization process, the data are the prescribed
macrostress S, or the prescribed macrostrain E, and such problem
corresponds to the following one:

1<T>=S, <E>=E v
(LP.)idivT =0, "micro" eqilibriumy (2.2-2)
 the "micro” behaviour is known |,
Thisisaparticular ill-posed problem, because of the following two reasons:
1. The prescribed load is not a prescription at points in the bulk or at a
limiting surface, but it is the averaged value of afield.
2. Thereare no boundary conditions.
The missing boundary conditions must, in some way, reproduce the internal
state of the RVE in the most satisfactory manner. They therefore depend on the
choice of RVE, more specifically on its size. Different choices of RVE, in fact,
will provide different macroscopic laws.
Hence, the following relations give some examples of boundary conditions:
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Tx=Sx on V (2.2-3)
u=E xx onV (2.2-9)
They represent, respectively, the condition of prescribed uniform tractions on
vV and the condition of prescribed uniform strains onfV . These two
conditions are so that the (2.2-1) is verified. Indeed, from the(2.2-4), it is
obtained:
05 (NAu+(RAU))ds= g S (nA () +(nA (E ) Jds 229)
Thisimplies:
E=<E(u)>=E (2.2-6)
and the proof for the (2.2-3) is self-evident.

The above reasoning does not apply for the case of periodic structure. This
because, in this case, the stress and strain microfields, T and E are localy
periodic and, so, periodicity conditions have to be considered, asit follows:

- Thetractions T xn are opposite on opposite faces of V , where the

unit normal vector n correspondsto -n .

- Thelocal strain field E (u) is made of two parts, the mean E and a
fluctuation part E(u*) so that:
E(u)=E+E(u’), <E(u’)>=0 (2.2-7)
where:
u" = periodic displacement

Therefore, the boundary conditions for this problem are the following ones:
T isantiperiodic on TV (2.2-8)

u=E>xx+u’, u periodic on TV (2.2-9)
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By taking in account the (2.2-3) and (2.2-4) or the (2.2-8) and (2.2-9), the
localization problem (2.2-2) is, now, theoretically well-posed, but this must be
verified for each constitutive behaviour.

2.3 Localization and Homogenization problem in pure elasticity

The case of purely elastic components will be examined, in this section.
Here, anisotropic linear-elastic components will be considered.

About the localization problem, it is written in the following form:

T (x)=C(x): E(x)=C(x):§$+E(u*(x))8
divT (x)=0 (2.3-1)
+ boundary conditions

where E or S isprescribed and where:

C(x) = the tensor of elasticity coefficients at the micro-scale.

Accordingly, the fluctuation displacement U  is the solution of the

following problem:
div(C(x):E(u*(x))):-div(C(x):E) 23
+ boundary conditions

Whenever the stiffness tensor C is constant for each component, it can be
shown that:

div(C:E)=(8C™:E)nd(1) (2.3-3)
where:
§c'=c*-C (2.3-4)
and where:

d (I) = Dirac’s distribution.
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n=  the unit normal oriented from the “-” to the “+” side of the surface |
separating components.

Under classical working hypotheses applying to C, the localization problem
(2.3-2) admits a unique solution for all the types of boundary conditions,
(2.2-3), (2.2-4), (2.2-8) and (2.2-9). In order to prove this, we must distinguish
whether itis E or S is prescribed.

- Casewhere E isprescribed

For the demonstration of the existence and uniqueness of the solution, the
reader can see Suquet (1981). We are only interested, here, to give the
representation of the solution.

Since the problem is linear, the solution E (u) depends linearly by the

prescribed macrostrain field, E . Moreover, this latter can be decomposed into
six elementary states of macroscopic strains (i.e. stretch in three directions and

three shears). So, let E(c,,) be the fluctuation strain field at microscopic

level, induced by these six elementary states. The solution E(u*) for a

general macrostrain E is the superposition of the six elementary solutions, as
in the following relation:

E(u)=E.E(cy) (2.3-5)
where a summation over h and k is considered.
Inal,itis:
E(u)=E+E(u’)=E(1 +E(c)) (2.3-6)
This can be also expressed in the form:
E(u)=L:E (2.3-7)

or, in components:
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e; (u) = Lyn : Eny (2.3-8)
where:
Line = lijre T€; (Chk) (2.3-9)

with:

L =%(dihdjk +dikdjh) = the tensorial representation in R® of the unity of
R°.

The tensor L, as aready mentioned in the previous section, is called the
tensor of concentrations (Mandel, 1971) or, depending on the author, the tensor
of strain localization or also the tensor of influence (Hill, 1967).

About the homogenization problem, instead, we can write:

S=<T(x)>=<C:E(u)>=<C:L:E >=<C:L>E (2310
so that:
S=C:E (2.3-11)

where:

C = homogenized symmetric stiffness tensor, which is given by:
C=<C:L> (2.3-12)
It can be noticed that:
<L>=1, <L >=1| (2.3-13)
where the superscript T denotes transpose.

The obtained equation (2.3-12) shows that the tensor of the macro elasticity
coefficients can be determined by taking the average of the micro elasticity
coefficients, the latter being weighted by the tensor of strain localization. The
symmetry of the homogenized stiffness tensor can be proved in two ways;, the
interested reader is referred to [41].
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- Casewhere S isprescribed
For the demonstration of the existence and uniqueness of the solution, here
again, the reader can see Suquet (1981). Here, we are only interested to give
the representation of the solution, by starting that a unique solution exists.

In this case, the localization problem becomes:
E(u):E+E(u*):S:T(x)
divT (x) =0
<T(x)>=S
+ boundary conditions

(2.3-14)

where:
S = tensor of the micro elastic compliances.
E = unknown macrostrain field.
Anaogoudly to the previous case, since the problem is linear, the solution

T (x) depends linearly by the prescribed macrostress fieldS. Moreover, this
latter can be decomposed into six elementary states of macroscopic stresses
(i.e. compression in three directions and three shears). So, let M,, be the
solution of the problem (2.3-14), induced by these six elementary states. The
solution T (x) for a general macrostress S is the superposition of the six
elementary solutions, asin the following relation:

T (x) =S, My (2.3-15)
where a summation over h and k is considered.

In all, it can be written that:
T(x)=M:S (2.3-16)

or, in components:
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S (X) =My : Sy (2.3-17)
where:

Mijne :(M hk)ij (2.3-18)
The tensor M, as already mentioned in the previous section, is caled the

tensor of concentrations or the tensor of stress localization.
About the homogenization problem, instead, we can write:

E=<E(u)>=<S:T(x)>=<S:M:S>=<S:M>:S (23-19)

o that:
E=S:S (2.3-20)
where:
S = homogenized symmetric compliance tensor, which is given by:
S=<S:M> (2.3-21)
It can be noticed that:
<M>=]1, <M'" >=| (2.3-22)

where the superscript T denotes transpose.

The obtained equation (2.3-20) shows that the tensor of the macro
compliance coefficients can be determined by taking the average of the micro
compliance coefficients, the latter being weighted by the tensor of stress
localization. The symmetry of the homogenized compliance tensor can also be
proved; the interested reader is referred to [41], again.

2.4 Equivalence between prescribed stress and prescribed strain

It can be highlighted that C and S are inverse tensors of one another if
they correspond to the same choice of boundary conditions in the localization

problem. By using the symmetry of C, it can be written:
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C:§:(6)T:§:<LT:C>:<S:I\/I> (2.4-1)
in which, for the definition of the tensors L and M , the first factor represents
an admissible stress field and the second factor is an admissible strain field.
So, by applying the Hill-Mandel principle, and by considering that C:S =1,
the (2.4-1) assumes the following form:

C:S=<L":C:S:M>=<L":M>=<L"><M>=| (242
which, indeed, impliesthat C and S areinverse tensors of one another.

However, if different boundary conditions are used, according to the
estimate of Hill (1967) and Mandel (1971), it is:

C:5=1+0((d/1)’) (2.4-3)

where C is evaluated by using the condition (2.2-4), while S is computed by
using the condition (2.2-3) and where:
d = characteristic size of an inhomogeneity.
| = typica RVE size.
If | >>d, then the choice of boundary conditions is hardly important. For

periodic mediawhere d /1 =O(1), this choice is very important.
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CHAPTER 111

Mechanics of masonry structures: experimental, numerical
and theoretical approaches proposed in literature

3.1 Introduction

Masonries have been largely used in the history of architecture. Despite
their unusual use in new buildings, they still represent an important research
topic due to several applications in the framework of structural engineering,
with particular reference to maintaining and restoring historical and
monumental buildings. Hence, since preservation of existing masonry
structures is considered a fundamental issue in the cultura life of modern
societies, large investments have been concentrated on this issue, leading to
develop agreat number of theoretical studies, experimental [aboratory activities
and computational procedures in the scientific literature. The main interest of
many researchersisin finding constitutive models able to simulate the complex
response of such structures subjected to static and dynamic loads.
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However, the mechanic characterization of a masonry structure shows
itself as a very difficult task. This complexity results from its anisotropic
composite behaviour. Masonry is, indeed, constituted by blocks of artificial or
natural origin jointed by dry or mortar joints. Moreover, since the joints are
inherent plane of weakness of such composite material, notably the mechanical
masonry response is affected by behaviour preferred directions, which the
joints determine, [28]. Two fundamental mechanical approaches have been
developed in order to formulate an appropriate congtitutive description of
masonry structures:

- Discrete Models
- Continuous Models

The main object of this chapter will be to furnish an overall description of
the above mentioned kind of approaches. In particular, our attention will be
focused on the different homogenization proposals for modelling masonry
structures, which are given in literature by some authors.

Asit will be seen in the follows, indeed, the analysis of masonry via micro-
mechanic and homogenization techniques, have to be included in the
approaches which are based on the continuous models. In this framework,
advanced analytical and numerical strategies — these latter based on the finite
element method - have been recently developed.

3.2 Discrete and “ad-hoc” models

In spite of the considerable solutions which can be derived from
continuous approaches, an interesting natural treatment of a masonry structure,
which deals more directly with its discontinuous nature, is offered by its

numerical modelling.
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The numericd modelling of masonry structures shows objective
difficulties, due to distinct issues:
- The typologica characteristics of such structures don’'t alow
referring to simplified static schemes.
- The materiadl mechanical properties yield to a non-linear
behaviour, whose prediction can result to be misleading.
- The incomplete experimental characterization of the masonry
makes the calibration of numerical models quite uncertain.
However, they will be exposed, in the follows, three different modelling
approaches in which each single structural masonry element is studied and the
actual distribution of blocks and joints can be accounted for [30]: the finite
element method with micro-modelling, the finite element method with
discontinuous elements (FEMDE) and the discrete element method (DEM).

1. Modelling with FEM
Basically, two different approaches have been adopted to model with FEM

the masonry behaviour: the ‘micro-modelling’ or ‘two-materials approach’ and
the macro-modelling or ‘equivalent-material approach’. Since this latter
regards the masonry structure as a homogeneous equivaent continuum, it is
referred to the group of continuous models. So, it will be illustrated in the
following section.

As regards the former approach, the discretization follows the actual
geometry of both the blocks and mortar joints, adopting different constitutive
models for the two components. Particular attention must be paid in the
modelling of joints, since the diding at joint level often starts up the crack
propagation. Although this approach may appear very straightforward, its
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major disadvantage comes from the extremely large number of elements to be
generated as the structure increases in size and complexity.

Hence, the use of micro-models becomes unlikely to use for the global
analysis of entire buildings, aso considering the fact that the actual distribution
of blocks and joints might be impossible to detect unless invasive
investigations are performed, [30].

2. Modédling with FEMDE
In this approach, the blocks are modelled using conventional continuum

elements, linear or non-linear, while mortar joints are smulated by interface
elements, the ‘joint elements’, which are made up of two rows of superimposed
nodes with friction constitutive low, (see Fig. 3.1).

@ Element joints
- Gauss Points
¢
+ + + +
+ " + +
@

e s T B S

Figure 3.1 Degeneration of the continuum element into “joint element”.

The introduction of the joint is easy to implement in a software programme,
since the nodal unknowns are the same for continuum and joint elements,
though for the latter the stress tensor must be expressed in terms of nodal
displacements instead of deformation components.

Two magjor concerns balance the apparent simplicity of this approach, [30]:



Chapter I11 - Mechanics of masonry structures: experimental, numerical
and theoretical approaches proposed in literature 148

Block mesh and joint mesh must be connected together, so that they
have to be compatible, which is possible only if interface joints are
identically located. This compatibility is very difficult to ensure when
complex block arrangements are to be handled, like in 3D structures.
The joint element is intrinsically able to model the contact only in the
small displacement field. When large motion is to be dealt, is not
possible to provide easy remeshing in order to update existing contacts
and/or to create new ones.

3. Modelling with DEM
The above-mentioned limitations are overcome by the DEM (discrete
element method).

This methodology originated as distinct element method in geotechnical and
granular flow applications (Cundall, 1971) and it is based on the concept that
individual material elements are considered to be separate and are (possibly)
connected only along their neighbours by frictional/adhesive contact. Here,
elements were considered rigid, but later developments (Munjiza et a, 1995)
included the addition of element deformations and fracturing, which has
permitted a more rigorous treatment of both the contact conditions and fracture
requirements. The incorporation of deformation kinematics into the discrete
element formulation has also led naturally to a combined finite/discrete element
approach in which the problem is analyzed by a combination of the two
methods.

With present day computationa power, large scale discrete element
models can be considered, also for industrial applications in different fields.
About 10-50,000 elements are routinely employed, [56].
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In this approach, therefore, the structure is considered as an assembly of
distinct blocks, rigid or deformable, interacting through unilateral elasto-plastic
contact elements which follow a Coulomb dlip criterion for simulating contact
forces. The method is based on a formulation in large displacement (for the
joints) and small deformations (for the blocks), and can correctly simulate
collapse mechanisms due to diding, rotations and impact.

The contacts are not fixed, like in the FEMDE, so that during the analyses
blocks can loose existing contacts and make new ones. Once every single block
has been modelled both geometrically and mechanically, and the volume and
surface forces are known, the time history of the block’s displacements is
determined by explicitly solving the differential equations of motion. In
particular, high viscous damping is used to achieve convergence to static
solution or steady failure mechanism, [30].

In other words, two main features of the DEM method lead to its use for
the analysis of masonry structures by means of the Cundall’ s software program
UDEC-Universa Distinct Element Code, [18]. One is the allowance for large
displacements and rotations between blocks, including their complete
detachment. Other is the automatic detection of new contacts as the calculation
progresses.

Another advantage of this approach is the possibility of following the
displacements and determining the collapse mechanism of structures made up
of virtually any number of blocks, [30], [51]. On the contrary, it must be
considered that the finite elements used for the internal mesh of the blocks,
when deformable, show poor performance, so the method is not accurate for
the study of stress states within the blocks.

The discrete element anaysis is particularly suitable for problems in
which a significant part of the deformation is accounted for by relative motion
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between elements. Hence, masonry provides just a natural application for this
technique since its significant deformation occurs at joints or contact paints, i.e.
the deformation and failure modes of these structures are strongly dependent on
the role of the joints. This approach is, therefore, as aready mentioned, well
suited for collapse analysis and may thus provide support for studies of safety
assessment, for example of historical stone masonry structures under
earthquakes. It has been recently applied by Guiffré et al (1994) for the design
of masonry walls.

The representation of the interfaces between blocks relies on sets of point
contacts. Adjacent blocks can touch aong a common edge segment or at
discrete points where a corner meets an edge or ancther corner.

Jaint ¢lemnent

L
8 Verlex-adge cantacl

Juint element Paint contacts

(tvpical FEM option) {Iypical DEM aptien)
Figure 3.2 Joints e ements vs. “point contacts’.

Different types of contacts can be handled, depending on the initial
geometry and on the displacement history during the analysis, [30]. Typically,
the general types of contacts are:

- faceto-face (FF)
- edge-to-face (EF)
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vertex-to-face (VF)
edge-to-edge (EE)
vertex-to-edge (VE)

vertex-to-vertex (VV)

Facesto=face Face-to-face

(represented by I VF and 2 EE) (represented by 2 WF and 2 EE)

Figure 3.3 Different types of contacts.

All of them can be represented by sets of point contacts of two elementary
types: VF and EE (see Fig. 3.3).

At each contact, the mechanical interaction is represented by a force,
resolved into a normal and a shear component. Contact displacements are
defined as the relative displacements between two blocks at the contact point.
In the elastic range, contact force and displacements are related through the
contact stiffness parameters (normal and shear).

The discrete element techniques allow describing the masonry constitutive
behaviour if an accurate stress-strain relationship is employed for each
constituent material, which is, then, discretized individually and by taking in
account the necessary parameters to define the contact mechanical behaviour;
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since the contact forces are thought to follow a classical Mohr—Coulomb
criterion, the following parameters must be assigned:

- kn: normal stiffness

- ks: shear tiffness

- Nt: tensile strength

- f: friction angle

- m: dilatancy angle

- ¢: cohesion

This numerical approach concurs to investigate, numerically, some
distinctive aspects of masonry which are closely related to the behaviour of its
micro-constituents and its geometry (bond patterns, thickness of joints), such as
anisotropy in the inelastic range and the post peak softening, [44]. In particular,
since masonry is analyzed as an assembly of blocks connected each other by
interfaces, such numerical technique also yields the investigation of the
interactions between the single constituents. In order to do this, frictional
properties and appropriate congtitutive laws of interfaces are often included in
the numerical models. Hence, this approach is able to provide a realistic and
rigorous analysis in which the exact joint positions are considered.

Severa attempts have been made to categorise, in the framework of the
discrete models, the computational approaches for structural masonry, where
its inherent discontinuous nature (unit, joints, interface) need to be recognized.
Perhaps, the most appropriate categorization comes from the “Delft School”,
[9], [38], where the following principal modelling strategies are identified:
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Figure 3.4 Modelling strategies

a) Detailed micro-modelling: units and joint are represented by continuous
elements, whereas unit/mortar interfaces are modelled by discontinuous
elements.

b) Smplified micro-modelling: “geometrically expanded” continuum units,
with discontinuum elements covering the behaviour of both mortar
joints and interfaces.

It has to be underlined that a three-dimensional micro-modelling analysis
of a masonry panel involving only a very simple geometry would require a
large number of elements in order to enable accurate modelling of each joint
and masonry unit.

Hence, the Micro-modelling approaches appears to be too onerous for the
analysis of single masonry walls and, in practice, not feasible for the analysis
of structures with a large number of masonry panels. However, to overcome
this computationa difficulty, a different way of tackling the problem is often
considered: the Macro-modelling approach, in which masonry is modelled by
an equivalent continuous material, as shown in the following section.



Chapter I11 - Mechanics of masonry structures: experimental, numerical
and theoretical approaches proposed in literature 154

3.3 Continuous Models

The accuracy of the discrete approaches, described in the previous section,
is much higher than of the continuous ones, because they are able to yield a
detailed investigation of the microscopic problem. Even though they show this
advantage, according to what it has been already underlined, they also show the
disadvantage to be too expensive in terms of computational costs and,
moreover, the corresponding high number of degrees limits the applicability,
[45]. So, whoale buildings are almost impossible to simulate by means of such
micro-models.

On the contrary, in the framework of numerical modelling and according to
the traditional continuous finite element theory, masonry can also be analyzed
like a continuum homogeneous media which, by taking in account the block
and the mortar properties in its constitutive law, is able to represent the
mechanical behaviour of the discrete and composite starting material.

This approach is caled, in literature, Macro-modelling approach. The
macro-modelling assumes that the homogeneous equivalent materia is
discretized with a finite element mesh which does not copy the wall organism,
but obeys the method’ s own criteria.

Smeared, homogenous

Figure 3.5 Moddlling strategies
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c) Macro-modelling: all the three constituents of structural masonry are
represented by an equivalent continuum

The here considered macro-models don’'t make distinction between blocks
and mortar joints but they smear the effect of joint presence through the
formulation of the constitutive modelling of the fictitious equivalent material.
Such a congtitutive model has to reproduce an average mechanica behaviour of
masonry. This assumption bypasses the physical characteristics of the problem.

Hence, obviously, these models can not be as accurate as micro-models can
be, nevertheless their main advantages are:

- the enormous reduction of the computational cost, that makes
possible the numerical analyses of complex structures such as
bridges and even buildings, cathedrals, castles and so on, and

- the capability to investigate the global response of the masonry
structures without the computing effort needed in the micro-
modelling.

The use of a discretization technique based on continuous models implies
the previous definition of a carefully tuned constitutive characterization of the
equivalent continuous material, which depends on the analysis of masonry
micro-structure and averages the macroscopic mechanical behaviour of the
structural masonry. To thisam, two different ways have been considered:

- Phenomenological and experimental approaches

- Homogenization Theory based approaches

In the following subsections, major details are given on this topic by starting
from the description of first gpproach. This latter provides valuable information
used to establish, via phenomenological considerations or via experimental
testing, empirically and semi-empirically based methodologies for the design of
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masonry structures. However, such an approach finds its limits in the
dependence of the results by the conditions in which the data are obtained.

3.3.1 Phenomenological and experimental approaches

Some continuous models which have been proposed for masonry are based
on phenomenological laws. In phenomenological anaysis, the constitutive
response of the masonry is determined by experimental tests, [57]. One of the
most adopted phenomenological constitutive law for masonry is the so-called
“no-tension material”. According to this model, the masonry is schematized as
a homogeneous eastic material which cannot support tensile stresses.

This prevalent feature that distinguishes masonry structures and makes them
dissimilar from actual concrete and steel structures was first introduced
explicitly by Heyman in 1966, [31], [32]. He proved, after a number of
practical studies carried on with specia reference to monumental buildings,
that proneness to disease or collapse is much more dependent on the activation
of cracking mechanisms than on the probability of crushing in compression of
masonry. He also proved, on the contrary, that localised fractures do not
usually affect the performance of the skeleton, as can be observed in many
existing masonry buildings. In other words, fractures should be considered as a
physiological feature of the masonry material, unless they are so large as to
compromise the local resistance of the material elements, or so well organised
that a collapse mechanism may be activated.

The logical concluson was that the material model should include
fracturing as an intrinsic pattern for the stress-strain relationships. Moreover,
the structural model should be sensitive to the presence of collapse mechanisms
in the neighbourhood of the actual equilibrium configuration.
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Some authors have tried to develop a formal theoretical framework for such
phenomena, just based on the assumption that the materia model, that is
intended to be an "analogue” of real masonry, cannot resist tensile stress, but
behaves elastically (indefinitely) under pure compression, [7], [6], [19], [14],
[66], [20].

It is noted that these conditions give a well-defined specification of the
admissible domain for stresses, but allow complete freedom for the path of
fracture growth. This means that, in building up the stress-strain relationships
for inelastic deformation (fractures, in this case), one is free to include the most
appropriate assumptions. Hence, one deals with Standard NRT (Not-Resisting-
Tension) material or with Non-standard NRT material, depending on the
circumstance that the materia is assumed to fracture according to a pattern
similar to the Drucker's postulate, or not.

In the NNRT (Non-Standard NRT) case, one can imagine even more
patterns.

In the framework of such no-tension structures, with reference to the danger
of their collapse, a specia extension of Limit Analysis has been developed in
literature alowing to formulate basic theorems quite analogous to the
kinematical and static theorems of classical Limit Analysis, thus giving the
possibility to establish effective procedures to assess structural safety versus
the collapse limit state, [6], [14]. Specia problems, such as the non-existence in
highly depressed arches of collapse mechanisms involving exclusively
unilateral hinges, have been identified, and attention has been drawn on the
necessity to include the eventuality that sliding mechanisms occur between
stones by inadequate friction. More in genera, an analysis of the class of
structural problems with unilateral constitutive relations has been employed by
formulating a general model and by proving its consistency. The authors of this
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analysis, moreover, have exposed two iterative methods for the numerical
solution of this class of problems, [61].

However, as regards the masonry, the basic assumption to study via
phenomenologica approach this kind of structures, we underline again, is that
no-tension stress fields are selected by the masonry through the activation of an
additional inelastic strain field, i.e. the fractures. Hence, the stress-strain
relationship for NRT materialsis of the form:

E=E.,+E, =ST+E;, (3.3.1-1)
or in the inverse one:

T:C(E- Ef):CE (3.3.1-2)

where:
S = compliance tensor
C = diffnesstensor

Since in a NRT solid, the equilibrium against external loads is required to
be sdatisfied by admissible stress fields, which imply pure compression
everywhere in the solid, and by assuming stability of the material in the
Drucker’s sense, compatibility of the strain field can be ensured, indeed, by
superposing to the elastic strain field an additional fracture field, that does not
admit contraction in any point and along any direction.

This means that the stress tensor T in equation (3.3.1-1) must be negative
semi-definite everywhere in the solid, while the fracture strain field E, is
required to be positive semi-definite.

In other words, it has to be verified:
_ .. 1E, positive jE, 30
semi - definitef S ®q “al r, (3313
1T negative T, £0

where:
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r, = theset of directions through the generic point in the solid

a= oneof such directions

E; = the tensile fracture inelastic strain that is assumed to superpose to the

elasticone E_, in order to anneal tensile stresses, if possible.

Solution stress and strain fields obtained by the authors are proven to satisfy
classical variational principles, like the minimum principles of Complementary
and Total Energy functionals, respectively on the compatibility and equilibrium
side, [6]. Moreover, the solution paths are based on constrained optimisation of
the energetic functionals, al'so enhancing some peculiar features that distinguish
structural patterns from each other.

For ulterior details on this kind of approach, the reader is referred to the
existing literature in such framework, [6], [7].

3.3.2 Homogenization theory based approaches

In this second subsection, the homogenization theory based approaches are
described. They regard the masonry as a heterogeneous biphasic medium,
consisting in units (brick or stones) and mortar joints, from which a
homogeneous equivalent material is obtained, by using homogenization
techniques. With this task, they provide an analytical definition of the average
mechanical properties of structural masonry.

However, it has to be underlined that, in this framework, the most of
homogenization techniques proposed in literature adopt the hypothesis of
“periodic-structure” for masonry. This leads to assume units, head and bed
mortar joints of equa dimensions and elastic properties. Moreover, these
components must be arranged in a periodic pattern. Nevertheless, this
hypothesis can be accepted for new structures only. The periodic approach,
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indeed, is surely incorrect for a very large number of existing masonry
structures, which vice versa have a great cultural and socia interest such asin
restoring historical buildings. So, in order to apply the homogenization theory
to old masonry, which are characterized by chaotic or semi-periodic patterns, a
different approach is necessary, [13].

In the chapters 1 and 2, it has been highlighted that the study of composite
materials is, in general, referred to the analysis of an RVE that represents,
statistically, the microstructure of such materials. Well, in the case of a periodic
composite material, like masonry one, the homogenization techniques are
based on the identification of a particular RVE, which is able to generate the
whole examined structure through opportune trandations. This kind of RVE is
defined, in literature, the masonry periodic cell or the masonry basic cell.

However, given the complex geometry of the basic cell, a closeform
solution of the homogenization problem seems to be impossible, which leads,
basically, to three different lines of action.

The first oneisto handle the brickwork structure of masonry by considering
the salient features of the discontinuum within the framework of a Cosserat
continuum theory, e.g. Muhlhaus (1993), [46]. Particular attention is given to
the interface problem. This approach is considered a very elegant solution, but
nevertheless very complex both from a mathematical point of view and from
the point of view of the development of a systematic methodology for the
homogenized properties identification. Hence, the step towards the real
application of such an approach is still to be done.

The second one aims at substituting the complex geometry of the basic cell
with a smplified microstructure geometry so that a close-form solution of the
homogenized problem can be possible. This approach is, in literature, well
known as engineering approach. Keeping in mind the objective of performing a
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non-linear analysis at the structural level, Geymonat [27], Pande et a. [58],
Maier et a. [40] and Pietruszczak and Niu, [60], introduced homogenization
techniques in such approximate manner. In spite of the fact that these
simplified approaches present some limits in the solution accuracy, asit will be
illustrated in the follows, they are used by severa authors and, nevertheless,
perform satisfactorily in the case of linear elastic analysis. In non-linear field,
on the contrary, they lead to unacceptable results.

The third one, e.g. Anthoine, [5] and Urbanski et a. [65], is to apply
rigorously the homogenization theory for periodic media to the basic cell in a
sole step. Because of the complexity of the exact geometry of the basic cell, it
becomes necessary to find the solution problem by using an approximate and
numerical method such as the finite element method. Since the complete
determination of the homogenized constitutive law requires an infinite number
of computations, in a nonlinear range, the theory has been used to determine
the macro-parameters of masonry and not, actually, to carry out analysis at the
structural level.

3.3.2a A homogenization approach by Pietruszczak & Niu

These authors have proposed a mathematical formulation for describing the
average mechanical properties of a periodic structural masonry, [60].

The object of such approach is to present an aternative solution method to
the discrete one that becomes quite impractical in the context of large-scale
masonry buildings.

The conceptua approach is based on the framework already outlined by
Pietruszczak (1991) which regards a representative volume element of
structural masonry as a composite medium consisting of the brick matrix
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intercepted by the sets of head and bed joints. Thus, the presence of discrete
sets of mortar joints results in a strong directional dependence of the average
mechanical properties. The estimation of them is the main interest of the
authors.

Therefore, let us consider a typical element of structural masonry, i.e. a
brick panel, as shown schematically in the following figure:

Figure 3.6 Geometry of a structural masonry panel

Let it be subjected to a uniformly distributed load. On the macroscale, the
panel is regarded, as already mentioned, as a two-phase composite: brick units
interspersed by two orthogonal sets of joints filled with mortar.

In order to describe the average mechanical properties of the system, the
authors propose a simplified homogenization procedure, consisting in
addressing the influence of head and bed joints separately, i.e. in invoking the
concept of a superimposed medium. It is worth to notice that a homogenization
process which is performed in several steps (in this case two steps) leads to
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results depending on the sequence of steps chosen. Moreover, it doesn't take
into consideration the geometrical arrangement of the masonry: two different
bond patterns yield the same results, [27]. This leads to results that are
unacceptable in non-linear range.

With reference to the following figure, it has been considered first a
medium (1), consisting in the brick matrix with a family of head joints. The
head joints are treated as aligned, uniformly dispersed weak inclusions
embodied in the matrix. In particular, they are considered in the form of

monotonically aligned rectangular parallel epipeds.

Figure 3.7 Medium (1)

The average properties of the medium (1) can be represented by a
congtitutive relation, as:

B0 =gl (332.a1)

where the volume average of stress rate 'F(l) in the medium (1) is considered

in vectorial form, as given by:

_ T
0 =fal) o) 9 98 <0 20) (33222)
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and so also for the volume average of strain rate & in the medium (2):

= T

B0 ={a) 4 ¢, 6f) ¢} (3322a3)
while gf ® H is the volume average of 6x6 stiffness matrix in the medium (1).

In particular, if both bricks and head joints are isotropic, then the
homogenized medium (1) can be regarded as an orthotropic elastic-brittle

material. In such a case, the components of 8'5(1)8 can be estimated from

Eshelby’s (1957) solution to an ellipsoidal inclusion problem combined with
Mori-Tanaka s (1973) mean-field theory, [60].

The whole masonry panel can now be represented by a homogenized
medium (1), stratified by a family of bed joints, considered as a medium (2). It
is shown in the following figure:

Homogenized medium

/]

|
/

Bed joints

Figure 3.8 Medium (2): medium (1) intercepted by bed joints
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The bed joints are regarded as continuous plane of weakness. In other
words, they run continuously through the panel and form the weakest link in
the microstructure of the system. In particular, the bed joints are considered as
an elasto-plastic medium, (2), with mechanical properties defined by:

£ = 36(2) 8@ (2) (3.3.2.a-4)

By assuming that both constituents (1) and (2) exist smultaneously and are

perfectly bonded, the overall stress and strain rate averages, ® and B, canbe
derived from the averaging rule (Hill, 1963):

£ =g f,EO (33.2.25)
T= R0+ 1,50 (3.3.2.26)
where f, and f, arethe volume fractions of both constituents, defined as:

_ h t

= - = 332.a7
Yh+t' % h+t (33.227)

and where h and t represent the spacing and the thickness of bed joints,
respectively.

The assumption of perfect bonding between the constituents and the
equilibrium requirements provides additional kinematics and static constraints,

given by:

g pEY =g g (33228)

[d]E® =[d]#@ (332.a9)

where:
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The constraints (3.3.2.a-8) and (3.3.2.a-9), as applied averages, are rigorous
provided that t = h.

It is evident that the field equations listed above, (3.3.2.a-1), (3.3.2.a-4),
(3.3.2&5) and (3.3.2.a-6), together with the constraints (3.3.2.a-8) and

(3.3.2.2-9), provide a set of 30 equations for 30 unknowns, eg. ®, BV, £

B® and B® . Thus the problem is mathematically determinate. Moreover, it
can be noticed that the number of unknowns can be reduced by introducing
certain ssimplifying assumptions pertaining to the kinematics of bed joints. For
example, the formulation can be employed by expressing the local deformation
field in bed joints in terms of velocity discontinuities rather than strain rates

B | thereby reducing the number of unknowns to 27.
In order to solve a so-posed problem and, so, provide an explicit form of the
average constitutive relation, it is convenient to introduce the following

identity:
[d]E0 =[d] & UBY = eF Vi gED + F O Ud] €D =12 (332a11)
where:
€ Gl Cl € G Gl
3':1(')8=é § CY Cla &lu=ecl) Cf) Cllu G32a12)
=0y ~0 ~unHu €<i) ~i) ~@HU
9 o ol 9 o ol

By using the equations (3.3.2.a-11) and the (3.3.2.a-8), the static constraint
(3.3.2.a-9) can now be expressed in the following form:
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A (1) Y4 P (1) _(1)_/ (2) 14 * N A (2) 1 —(2) _
6" e e + &F, VU d] B = ¢F7 De" gt + €F 7 U[d | B (33.22:13)

By means of the representation (3.3.2.a-13) and the decomposition

(3.3.2.a-5), the strain rates in both constituents can be uniquely related to B
Therefore, in view of the cinematic constraints (3.3.2.a-8), the set of equations
(3.3.2.a-5) reduces to:

[d]&®) = fi[d] B -%[d] g (332.a14)

Substitution of the eguation (3.3.2.a-14) in the (3.3.2.a-13), after some
simple algebra, resultsin:

[a] 80 =[m] € (332.a-15)
where;
-1
o8 f W ERCh e (08 a (1)) gy ol
[M]:88F§1)3+T:8F§2)H; %'f_ngz(Z)H[d]+(gFl(z)H_ & Oi)g i (332.2-16)

Thus, in view of eguation (3.3.2.a-5), the following relationship is obtained:

B0 =g, pE (332.a17)
where:

él 0 0 0 0 Ou
é 1
éM 11 MlZ Ml3 Ml4 MlS Ml6 l:l

gl\_/l éo 0 1 0 0 ou (332219

=é G 3.2.a

H éM21 M,, My, M, My M26[j
€o 0 o0 o0 1 ou
é 1]

éM3l M32 M33 M34 M35 M36g

and the components of [ M ] are defined by the equation (3.3.2.a-16).
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The strain rates in bed joints can be expressed in a similar functional form
to that of equation (3.3.2.a-17). Indeed, after substituting the equation
(3.3.2.a17) in (3.3.2.a-5), one obtains:

E® =g, pe (3.3.2.2-19)

where:

eM, j= (; [ ]'_SM HZ (3.3.2.2-20)

and [1 ] represents the unit matrix (6x6).

Finaly, the overall stress rate averages B remains to be determined. It can
be obtained from equation (3.3.2.a-6). Indeed, the substitution of the equations
(3.3.2.a-17) and (3.3.2.a-19) in (3.3.2.a-6), results in:

F={rnehiempr?y(1]- L)€ eaza2y
Since the following relation:
T=gChe (332222

represents the average constitutive relation for the entire composite system, it is
obtained that:

QCEI:{ Duem, g+ &P ]- f,6M, l‘il)} (3.3.2.2-23)

As expected, the macroscopic behaviour depends on the mechanical
properties of both constituents and their volume fractions. In the follows, the
average eastic properties of the masonry are established in detail.

By remembering, indeed, the assumed hypothesis of orthotropic behaviour
of the medium (1), the constitutive matrix of the equation (3.3.2.a-1) assumes
the form:
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The nine independent elastic constants are functions of the properties of
both constituents (brick and head joints) as well as the cross-sectional aspect
ration and the volume fraction of the inclusions.

The authors use the results reported by Zhao and Weng (1990) for the
estimation of the average eastic properties of the medium (1) considered in
equation (3.3.2.a-24). These latter authors have identified the average eastic
constants of an orthotropic composite reinforced with aligned elliptic cylinders.
The egtimates, as already mentioned, are based on Eshelby’s solution to the
ellipsoidal inclusion problem combined with Mori-Tanaka s mean field theory,
in order to deal with the finite concentration of inclusions. For the algebraic
expressions of such elastic constants the reader is referred to the original
publication, [60].

By considering now that the bed joints are isotropic, the constitutive matrix
of the equation (3.3.2.a-4) assumes the form:
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Thus, given the representations (3.3.2.a-24) and (3.3.2.a-25), the matrices

éF," U and &F," I defined in the equation (3.3.2.2-12) reduce to:
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The substitution of the (3.3.2.a-26) in the equation (3.3.2.a-16) yields, after
some algebraic manipulations:

4 =2 A _ ~2 _ & U
qai-cl) 1c0 (@2-¢) v o ol
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where:
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a=Cl+-t h C2: b=Cl +LC§?; c=CY +i6§j) (3.3.2.2-28)
f2 f2 f2

Thus, by means of the definitions (3.3.2.a-24), (3.3.2.a-25) and (3.3.2.a-27),

the components of the macroscopic constitutive matrix can be determined by

means of the equation (3.3.2.a-23). So, the composite masonry pane is an
orthotropic body (on a macro-scale) with a stiffness matrix g(_: H whose nine

components are defined asit follows:

Gu=(rel +1.02)- Ci;qi) szzfllmjflquz):
C. =18 +1.67)- H CM:fllcﬁ+i1(2)'(2));
R g
o (cgéc@%(q))cg) 2
G, =( 1 +1,6)- (Q(ZZ)C;?]);(Z%)CQ)
e S ) o
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3.3.2b Homogenization theory for periodic media by
Anthoine

In this paragraph, it will be exposed the homogenization theory for periodic
masonry proposed by A. Anthoine, [5].

Hence, the starting step is to choice the basic cell, which, together with the
associated frame of reference, depends strongly on the geometry of the
considered composite material. Therefore, typical “masonry like” patterns are
analyzed and, consequently, appropriate basic cell are chosen.

For example, they can are, here, exposed some basic cells, proposed by the
author, for different, smple and complex, masonry patterns, [5].

]
[ ]

"

\“x\‘\
™

Il

]

F |

ENGLISH BOND 1/3 RUNNING BOND

T 1= [

DUTCH BOND FLEMISH BOND

Figure 3.9 Basic cell and frame of reference for more complex bond patterns.
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In particular, it can be said that, for two-dimensional periodic media, i.e. for
three-dimensional media under the plane stress or plane strain assumption, the
periodicity of the arrangement may be characterized by a plane frame of

reference (V,,V,), where v, and v, are two independent vectors having the

following property:

- the mechanical characteristics of the media are invariant aong any
trandation myv, +myv,, where m and m, are integers, as it is shown in

the following figure.

:2V2 '2V1 2V2 'V1

VitV
L 4
2V,

}/Vz \Vl -\,

e

Figure 3.10 Two-dimensional running bond masonry (plane stress) and
frame of reference

As a consequence, it is enough to define the mechanical properties of the
media in the domain S of the basic cell. In particular, the following properties
can be considered:

- for agiven frame of reference (V;,V, ) , al the possible associated cells have

the same area |§|, where:
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S =|v, Uy,| (3.3.2b-1)

- theboundary dS of acdl S can always be divided into two or three pairs
of identical sides corresponding to each other through a trandation along
V,, V, or Vv, -V, (two such sides will be said opposite), as it is shown in

the following figure 3.11.

Ea

Three pairs of nppnsitezides

—

Two pairs of opposite sides

Figure 3.11 Two different cells associated to the same frame of reference and
having, respectively, two and three pairs of opposite sides.

However, it is worth to underline that neither the frame of reference, nor the
cell, are uniquely defined: the same cell, S leads to different masonry patterns
when associated to different frames of reference; and so aso, for a given frame
of reference more cells can be used, but it is worth choosing that one with the
least area and, if possible, with symmetry properties. Such minimum cells and
associated frames of reference will be called basic cell.
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In literature, a distinction is often made between rectangular and hexagonal
patterns. the formers admit an orthogonal basic frame, whereas the latter ones
do not; so, the first ones can be seen as particular cases of the second ones.

In particular, the more common masonry patterns are anayzed by the
author, [5]: stack bond or running bond. In this case, she proposes a cell, made
up of one brick surrounded by half mortar joint, as a “good” basic cell, as
shown in the following figure 3.12.
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Figure 3.12 Frame of reference, basic cell and opposite sides for common
masonry patterns: d=0 for stack bond; d=I for running bond.

The reference frame is then composed by the vectors v, and Vv, that satisfy

the following relations:
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v, =2l
174G (3.3.2.b-2)
v, =de, +2he,

where:
2l = the length of the brick plus the thickness of the head joint
2h = the height of the brick plus the thickness of the bed joint
d = the overlapping
So, according to the above shown figure, the different frames that can be
determined in function of the variation of the parameter d yields to different
bond patterns. In fact, it is:
d=0 P stack bond pattern

d=1 P running bond pattern

d= %I P another kind of running bond pattern, and so on...

The first two bond patterns are here considered.

The boundary dS of the chosen cell is, so, composed of three pairs of
opposite sides, if d* O (running bond pattern), or of two pairs of opposite
sides, if d =0 (stack bond pattern). In particular:

d! 0P the opposite sides are the vertical ones, the upper left with the

lower right, the upper right with the lower |eft.

d =0 b theopposite sides are the parallel sides of the rectangle according

to the definition of the opposite sides, given before.

Once it is established the appropriate basic cell, the homogenization
procedure can be performed.

Here, the author proposes a different approach to the homogenization

problem for periodic continuum media that aims to overcome the limits of the
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smplified homogenization techniques, previously described. Indeed, several
limits can be adduced to these approximate procedures:
a homogenization process which is performed in several steps, by
introducing the head joints and the bed ones in different times, leads to
results depending on the order of the successive steps. Moreover, it
doesn't take into consideration the geometrical arrangement of the
masonry: two different bond patterns yield the same resuilts, [27].
a homogenization procedure which is itself approximated (for example,
self-consistent method in [60]) or based on a simplified geometrical
arrangement of the media (mortar joints being treated as interfaces or
ellipsoidal inclusions,[60]) leads to results that are unacceptable in
non-linear range.
another approximation lies in the fact that the finite thickness of
masonry has never been taken into account: the masonry has aways
been considered or infinitely thin, in the sense of a two-dimensional
media under the plane stress assumption, [58], [40], or infinitely thick,
in the sense of athree-dimensional bulk [60], [58].

The idea of the homogenization procedure by Anthoine is that one to derive
the in-plane characteristics of masonry through a rigorous application of the
homogenization theory for periodic media, i.e. by performing a procedure that
is in one-step and on the exact geometry, according, therefore, to the actual
bond pattern of the masonry and, when considering the three-dimensional
media, to its finite thickness. So, first, an appropriate cell and frame of
reference are chosen. Here, it will be illustrated the case of two-dimensional
media.

So, let us consider a masonry specimen W, subjected to a macroscopically

homogeneous plane stress state T, .



Chapter I11 - Mechanics of masonry structures: experimental, numerical
and theoretical approaches proposed in literature 178

A stress state is said to be globally (or macroscopically) homogeneous over
the domain W if al the included basic cells within W undergo the same
loading conditions. Redlly, there aways is an approximation in the fact that the
perturbations near the boundary d W imply that the more externa cells of the
specimen are not subjected to the same loading conditions as those ones lying
in the centre. This difficulty is overcome according to the Saint-Venant
principle: cells lying far enough from the boundary are subjected to the same
loading conditions and so they also show the same deformation. In particular,
two joined cells must still fit together in their common deformed state.

In mechanical terms, this yields that:

1. the stress vector has to be continuous when passing from a cell to the
next one. Since passing from a cell to the next one that is identical is
the same thing that passing from a side to the opposite one in the same
cell, this condition can be written in the form:

the vectors T n are opposite on opposite sidesof dS (3.3.2.b-3)

because the external normal n are opposite. Such a stress field T is said to be
periodic on dS, while the external normal n and the stress vector Tn are said
to be anti-periodicon dS.
2. dtrains are compatible, i.e. neither separation nor overlapping occurs.
In order to satisfy the compatibility, the displacement fields on the two
opposite sides must be equa up to arigid displacement. Such a strain
field E issaidto be periodicon dS. So, in the case of the stack bond
pattern, shown in the figure 3.13, this condition can be written in the
form:

hh], u(l,x,)- u(-1,%)=U - Rxg

[_
[- |,|], u(x,h)- u(x,-h)=V +Sce, (3.3.2.b-4)

X |
i

X
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where:

U and V = trandation vectors

R and S = rotation constants

e
)

Figure 3.13 Displacement fields for arectangular cell

Since each corner of the cell belongs both to the vertical and the horizontal
side and since it must undergo the same displacement, the equation (3.3.2.b-4)

has to be compatible when written for the extreme values of X, and X,:

x,=hP u(l,h)- u(-1,h)=U - Rhe,
x,=-hp u(l,-h)- u(-1,-h)=U + Rhe,
x =P u(l,h)- u(l,-h)=V +ge,

x =-1P u(-1,h)- u(-1,-h)=V -Se,

(3.3.2.0-5)

The relations (3.3.2.b-5) can be ensured only if Rand Sare zero constants.
What has been written for the stack bond pattern can be reformulated for the
running bond pattern, shown in the following figure 3.14:
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e ~
Parallelogram cell S

Figure 3.14 Displacement fields for a parallelogram cell

Now, the reference basic cell is a paralelogram cell; so the system
(3.3.2.b-4) changesto:

" & Xz 1%,
1 [-hnh], ua?+ - u x2 =U - RS xzel+—%_
i 8 &7 M0 3321

"% 1 [-1L1], u —+xl ho. ug-—+><1 h =V + e,

Anaogoudly, displacements at corners are consistent only if R and S are
zero constants.
Taking into consideration the zero values of Rand S the systems (3.3.2.b-4)
and (3.3.2.b-6) assume the form:
"x,1 [-hh], ua?+d—xz,x29- u&| +d—X2,x29=U
2h ' 2 8 2

e (33.2b-7)

"x T [-11], u8—+x1 ho- ug-—+xl h =V

where:

d = the overlapping
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Such a displacement field U is said strain-periodic because it leads to a
periodic strain field.
A so done displacement field u may always be written in the following
form:
"a,b =lor 2,% (%,%) = EanX, +UP (x,%,) U0 33258)
U u(x,%)=Ex+uf(x,%)
where:
Eab = constants
u® = periodic displacement field, in the sense that it assumes equal values on
the oppositesidesof dS.
By the equation (3.3.2.b-8), it can be obtained that:

u” (%, %)= u(x,%)-Ex (3.3.2.0-9)
By comparing the equation (3.3.2.b-8) with the equation (3.3.2.b-7), it is
deduced that:
Eu=U,/2
Ex=U,/2
En =(V,- U,d/2l)/2h
Ex»=(V,-U,d/2)/2h

(3.3.2.b-10)

From the relations (3.3.2.b-10), it can be noted that, for example, the
component En represents the mean elongation of the cell along the X, axis
and, so, E can be considered as the mean strain tensor of the cell. It can be

demonstrated by considering the definition of the average of the strain
components in the domain of the basic cell. Therefore, it is:



Chapter I11 - Mechanics of masonry structures: experimental, numerical

and theoretical approaches proposed in literature 182
ean (U) :|—c‘p , (u)ds (3:3.2.b-11)
S

where:

€ab (u) = the average value, marked by the symbol _, of the generic strain
component €,,

a,b= 12

S= the area of the basic cell

Since, the generic strain component, obtained as the symmetric part of the

gradient of U, isgiven by the following expression:
€ (U) =(Eao +U7, +Eva +uf, ) /2 (3.3.2.b-12)

and for the assumed symmetry of E (only the symmetric part of it is
considered, being the anti-symmetric part of it correspondent to arigid rotation
of the cell and being the rigid displacements disregarded), it is:

&, (U) = Ean +(u, +uf, )/2 (3.3.2.b-13)
the relation (3.3.2.b-11) becomes:

e (U) = Eab+_duab uf, )ds=Ea + duanb+ubna)d| (3.3.2.b-14)

295
Since u® is a periodic vector fields and n is an anti-periodic one on dS,

the product u’n, represents an anti-periodic scaar field on dS. Thus, in the

(3.3.2.b-14), theintegral in d S is equal to zero because the assumed values on
the opposite sides cancel each other. This means that:
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€ab (U) = Eab (3.3.2.b-15)
and, as it was above mentioned, E turns out to coincide with the average of
E (u) onthecal.

By substituting the (3.3.2.b-15) into the (3.3.2.b-9), it is obtained:

u® (%, %)= u(x,%)-E (u)xx (3.3.2.b-16)

At this point, it can be stated that, if T is periodic and U is strain-periodic

on the boundary dSof the cell, it is possible to study the problem within the

single cell rather than on the whole specimen. If the specimen is subjected to

the macroscopically homogeneous stress state T, above defined, such a posed

problemto solveis:

T=T,
divT =0 onS
T periodiconqS (Tn anti - periodicon{S) (3.3.2.b-17)
E=f*(T)
u- E x periodic on 1S
where:
T=1ds (3.3.2.0-18)
|S| S
with:

T = the average value of the stress tensor in the domain of the basic cell
In particular, in this prescribed stress problem (the macroscopically

homogeneous stress state T, is the assigned data of the problem), no body

forces are considered and the constitutive law f is a periodic function of the
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gpatial variable X that describes the mechanical behaviour of the different
materials in the composite cell.

Naturally, the same problem can be considered as a prescribed strain one;
such asimilar problem is written in the following form:

E =E,

u- E,»x periodic on S

T =f(E) (3.3.2.b-19)
divT =0 onS

T periodiconqS (Tn anti - periodicon{S)
where the assigned data of the problem is the macroscopically homogeneous

strain state E,, and analogously to the equation (3.3.2.b-18) it is:
— 1 <
E=—CEGs (3.3.2.b-20)
Sl

By passing, first, through a“localization” problem that concurs to determine

the local (microscopic) fields T, u and E from the globa (macroscopic)
field T, or E,, the unknown macroscopic fields T and E are then evaluated.
In particular, in the case of stress prescribed problem, they will be obtained
T =T, and E accordi ng to the equation (3.3.2.b-20); dudly, in the case of
strain prescribed problem they will be obtained T accordi ng to the equation
(3.3.2b-18)and E = E,.
At this point, the global (macroscopic) constitutive law of the composite

material, that is the T, - E, reationship, can be built by repeating the above

described procedure for different valuesof T, and E,.
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Such a procedure is said homogenization process because the actua
composite specimen, subjected to the prescribed macroscopically homogeneous
loading, can be, now, substituted with a fictitious homogenized material
obeying to the found global congtitutive law without changing its mechanical
Macroscopic answer.

This result has a remarkable importance since, while the discretization of
the original composite masonry structure is prohibitive, the discretization of the
same structure, subjected to the same loads but replaced by the homogeneous
material, is more advantageous.

It has again to be underlined, however, that the homogenization theory is
applied only under the assumption that the loading conditions are equa (or
enough similar) for adjacent basic cells. This happens if two cases are possible:

1. orthe size of the basic cell is quite small when compared with the size
of the structure, so that, at a structural scale, two adjacent cells have
almost the same position and, therefore, the same loading.

2. orthe basic cdl is“not so smal” when compared with the size of the
structure, but the macroscopic stresses induced by the structural loads
don't vary (or vary sowly) within the structure.

It is worth to state that, in presence of concentrated loads and boundary
conditions, high gradients or even singularities can be generated in the
macroscopic stress field. In these cases, also very small adjacent cells can
undergo to different load conditions, so local analyses in such critical regions
have to be performed on the origina composite material.

If the two constituents of the masonry basic cell are considered linear elastic
and perfectly bonded, the two “localization” problems, the prescribed stress
one shown in the (3.3.2.b-17) and the prescribed strain one shown in the
(3.3.2.b-19), can be rewritten in the respectively following forms:
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dvT =0 onS

E(u)=C*:T

T periodiconS (Tn anti - periodiconqS) (3.3.2.b-21)
u- (C™*:T)xx periodic on 1S

T =T,

where:
<C'1:T> =E (u) = the average value of the strain tensor in the basic cell
and

C ' =S= the known elastic compliance tensor of the constituents in plane
stress.
For the prescribed strain problem:
div(C:E(u))=0 onS
T=C:E(u)
C:E(u) periodicon{S (C: E (u)>n anti - periodiconfS) (3.3.2.b-22)
u- E,(u)=x periodic on 1S
E=E,
where:
C = the known elastic stiffness tensor of the constituentsin plane stress.
The problem (3.3.2.b-22) may be rewritten intermsof u” .
In order to make it, let us to consider the equation (3.3.2.b-13), that in a
tensorial form becomes:
E(u)=E+E(u") (3.32.b-23)

Therefore, by substituting the (3.3.2.b-23) in the (3.3.2.b-22), it is obtained:
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dv(C:E)+dv(C:E(w))=0 ons

T=C:(E+E(up))

C:(E+ E(up)) periodicon S (C:(E+ E(up))m arti - periodicons) (3-3-2.0-24)
u® periodic on 1S

E=F

When the boundary of the basic cell is congtituted by the same materia in
each its point and when the two constituents of the cell are homogeneous

materias, and so, the stiffness tensor C is constant on each component, the

third condition in the (3.3.2.b-24), (C:(E+ E(up))m is anti-periodic on

dS, reduces to (C:(E(up))m. The solution of such a posed problem is a
periodic displacement field that yields a periodic stress field on dS and is in
equilibrium with the concentrated body forces f , induced at the interfaces |
by the uniform average strain tensor E:

f= div(c : E) =(c"- c"):Exnd (3.3.2.b-25)
where:

C™ = stiffness tensor, in plane stress, of the mortar

C" = dtiffnesstensor, in plane stress, of the brick
n= thenormal oriented from the brick to the mortar (seefigure 3.15)

d, = the Dirac distribution on the interface | (seefigure 3.15)
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Figure 3.15 Body forces concentrated at the interface of the constituents
(brick and mortar).

For the linearity of problems (3.3.2.b-21) and (3.3.2.b-24), the superposition
principle (S.P.) can be considered valid.

Therefore, both for the prescribed stress problem and the prescribed strain
problem, the given symmetric second-order tensors, respectively T, and E,

|ab

are assigned as linear combination of three elementary tensors , Where a

and b belong to the range [1,2].

In particular, for the problem (3.3.2.b-21), if T?" isthe elementary solution
obtained for T, = 12", then for T, =T2"1?", the solution is:
T =TT (3.3.2.b-26)
This solution can be rewritten in the following form:
T =BT, (3.3.2.b-27)
where:
B = afourth-order tensor, called the tensor of stress concentration, because it
givesthelocal stressfield T in terms of the average stressfield T,,.
Finaly, the average value of the strain state E is given by:

E=(E) :<C'1:T> :<C'1: B:TO> :<C'1: B>:T0 :<C'1: B>:'_I' (3.32.0-28)
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So, it may be deduced that:

c'= <C'l ; B>
or (3.3.2.0-29)
S=(s:B)

where:

C = S=the macroscopic (homogenized) tensor of elastic compliances of the

equivalent (homogeneous) two-dimensional plane stress material.
Analogously, for the problem (3.3.2.b-22), if U*® is the elementary solution
obtained for E, = 12", thenfor E, = E3°12", the solution is:
u=u*E>’ (3.3.2.b-30)
and the local strain field is given by the following relation:
E(u)=E(u™E")=E(uw’)E" =E™E®  (332b-3))

E?° = E(uab) = the local strain field obtained for the elementary solution
when E, = 12"
The equation (3.3.2.b-31) can be rewritten in the following form:
E = AE, (3.3.2.b-32)
where:

A = afourth-order tensor, caled the tensor of strain localization, because it

givesthelocal strain field E interms of the average strain field E.
Finaly, the average value of the stress state T is given by:
T=(T)=(C:E)=(C:A:E,) =(C:A):E,=(C:A):E (3.3.2.b-33)
So, it may be deduced that:
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C=(C:A) (3.3.2.b-34)
where:

C= the macroscopic (homogenized) tensor of elastic stiffness of the
equivalent (homogeneous) two-dimensional plane stress material.

All what has been said for the two-dimensiona (plane stress) periodic
masonry may be generalized to the case of the three-dimensional periodic
masonry, having two or three directions of periodicity, where its actua finite
thickness is taken into account. Because this problem is out of our interest, for
more details on such topic, the reader is referred to the proposed procedure in
literature by A. Anthoine, [5].

It, however, appears quite interesting to illustrate, here, the main results and
considerations that the author obtains from her numerical analysis, in linear
elasticity, on bi-dimensional and three-dimensional masonry specimens. In
both cases, comparisons are done between her proposed formulation and the
other simplified approaches, existing in literature. Some of these ones have
already mentioned, at the start of this section.

In particular, they may be divided in two groups. the two-dimensional
approaches and the three-dimensional ones. The formers, in order of increasing
approximation and decreasing complexity, are:

- the method proposed by Maier et al (1991); the homogenization
approach is performed in three steps for running bond masonry patterns
and in two steps for stack bond masonry patterns.

- the method proposed by Pande et al (1989); the homogenization
approach is performed in two steps, head joints being introduced first.

- avaiant of the Pande method; the homogenization approach is yet
performed in two steps, but the steps are inverted: bed joints are
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introduced first. In the case of stack bond patterns, this method is
equivalent to Maiers one.

- The multi-layer approximation proposed by Maier et al (1991); the
head joints are disregarded and, therefore, the masonry is considered as
composed of alternating layers of mortar (bed joints) and brick. The
homogenization approach is so performed in one step.

The latter ones, again in order of increasing approximation and decreasing
complexity, are:

- the method proposed by Pande et al (1989)

- theinverse of it

- the multi-layer approximation

The methods belonging to both two groups, differently from the formulation
proposed by Anthoine, don’'t need finite element calculations, but, for their
simplicity, they can be implemented analytically.

In the follows, in Table 3.1 and in Table 3.2 are summarized the direct
comparisons, about the macroscopic properties, between the different methods,
respectively for the two-dimensional methods and for the three-dimensional
ones:
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TWO- DIMENSIONAL E.(MPa) E,(MPa) Ny G(MPa)
HOMOGENIZATION
Stack bond 8530 6790 0.196 2580
Running bond 8620 6770 0.200 2620
Running bond in three steps 9208 6680 0.2045 2569

(Maier et al., 1991)

Running or stack bond in
two steps, head joints first 8464 6831 0.2182 2569
(Pande et a., 1989)

Running or stack bond in

two steps, bed joints first 8587 6768 0.1948 2569
(“Pande  inverted” or

“Maier” for stack bond)

Multi-layer 9646 6950 0.2077 2782

(Maier et al., 1991)

Table 3.1 Elastic constants of the homogenized material; two-dimensional

methods.
TWO- DIMENSIONAL E.(MPa) E,(MPa) Ny G(MPa)
HOMOGENIZATION
Stack bond 8600 7000 0.200 2580
Running bond 8680 6980 0.204 2620
Running or stack bond in
two steps, head joints first 8566 7066 0.1974 2569

(Pande et al., 1989)

Running or stack bond in

two steps, bed joints first 8676 7006 0.1995 2569
(“Pande inverted”)
Multi-layer 9647 7198 0.2098 2782

Table 3.2 Elastic constants of the homogenized material; three-dimensional
methods.
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All the results are presented in terms of four material elastic coefficients, E ,
E,,n, and G,.

From the Table 3.1, the first two rows obtained with the Anthoine's
formulation yield that the different bond pattern, stack bond or running bond,
has very little influence (less than 1% difference) on the homogenized elastic
properties. This influence is, however, stronger on the local displacements and
stress fields, [5]. Moreover, yet from the Table 3.1, it can be noted that the
other four simplified methods lead to quite acceptable results. The less accurate
is the multi-layer approach (the simplest one) where the homogenized elastic
coefficients are overestimated. This was logical, since head joints are
substituted by a stiffer material (the brick). The more elaborated approach
(homogenization in three steps, Maier et al (1991)), instead, doesn’t reveal
itself the more accurate.

The Table 3.2, substantially, suggests the same considerations as deduced
by Table 1, about the global elastic behaviour of masonry, as obtained through
the different methods.

It is interesting to underline that, for a given bond pattern and for a given
method, the two-dimensional approach aways gives lower values of the elastic
constants than the three-dimensional one. This fact is quite obvious, since the
plane stress assumption neglects the thickness of the wall, by weakening it. In
spite of this consideration, the two- and the three-dimensional approaches yield
quite similar results on the homogenized elastic coefficients (less than 4%
difference).

However, strong differences can be, instead, pointed out in the local stress
fields. In particular, this fact is not relative to the in-plane components

(S11:512:5 5,), but to the out-of-plane ones (S 15,S 5,5 53) , Which are, by
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definition, equal to zero in the two-dimensional approach. For this reason, even
if the homogenized elastic constants are only dlightly modified in the two
approaches, it is worth to consider this strong difference in a non-linear

analysis. by neglecting the stress component S, in the two-dimensional

method, some failure situations may be not encountered.

It is, therefore, most probable that the conclusions drawn in the elastic
range, in the two-dimensional approaches, are wrong in a non-linear range. In
fact:

- the plane assumptions may lead to quantitatively wrong results
(under-estimation of the ultimate load) and to qualitatively wrong
results (erroneous failure mechanism)

- the bond pattern may strongly influence the failure mechanism and
consequently the failure load; for example, in the stack bond
masonry the cracks may develop easily in the aligned head joints,
while in the running bond masonry they need to pass through or
around the brick.

Of course, if a non-linear analysis has to be performed, the problems
(3.3.2.b-21) and (3.3.2.b-22) have to be solved for a macroscopic loading
history and with damage or plasticity constitutive laws. Since the superposition
principle doesn’t apply anymore, the complete determination of the constitutive
law requires an infinite number of computations. The reader is referred to
Suquet (1987).

3.3.2.c A homogenization procedure by A. Zucchini - P.B.
L ourenco

In the framework of the third homogenization approach shown in the
previous paragraph, an interesting analysis has been employed by the authors
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A. Zucchini and P.B. Lourenco, [67]. They have proposed a new micro-
mechanical model. By taking in account the actual deformations of the basic
cell of a periodic masonry arrangement, this micro-mechanical model includes
additional internal deformation modes which are neglected in the standard two-
step homogenization procedure, which is based on the assumption of
continuous perpendicular head joints. The authors show that these mechanisms,
which result from the staggered alignment of the bricks in the composite, are
important for the medium globa response and for reducing the maximum
errors in the calculation of the homogenized elastic moduli when large
difference in mortar and brick stiffness are expected. Indeed, one of the goals
of this approach is constituted just by the overcoming the limitations presented
in the standard two-step homogenization technique, often known in literature as
smplified homogenization approach that, we remember, are:

0 Large erors which occurred if great differences of stiffness
between unit and mortar are presented. For the cases in which non-
linear analysis is employed, and where the ratio stiffness of unit
(brick) on stiffness of mortar becomes larger (>10), this smplified
approach leads to non-acceptable errors.

0 The standard two-step homogenization technique does not take
into account the pattern of units and mortar joints (running bond
and stretcher bond lead to the same result).

0 The results depend on the order in which the two steps are
executed.

In particular, the analysis is employed for a single leaf masonry wall, with
typical periodic arrangement in stretcher bond and the hypothesis of linear
elastic-brittle behaviour is assumed, so that the S.P. may be used until the
collapse. The unit-mortar interface is not considered in the model. On the
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contrary, the full three-dimensional behaviour is examined and the attention is,
finaly, given to a comparison between the results from a detailed finite
element analysis (FEM) and the proposed micro-mechanical homogenization

model, in order to demonstrate the efficiency of the proposed solution, [67].

Hence, such a micro-mechanical model is obtained by extracting a basic
periodic cell, which can rebuild the whole structure by making opportune

trandations of it, as shown in figure below.

I

[ 1 ] [ ]

L] [
y L1

I | I I

X

basic cell (R.V.E.) Homogenized cell

Figure 3.16 Definition of masonry axes and of chosen micro-

mechanical model

It has been chosen a right-oriented x-y-z Cartesian coordinate system and

the following components for the basic cell are considered:

- Headjoaint (2)
- Unit (b)

- Crossjoint (3)
- Bedjoint (1)

The following figure shows, in detail, the geometry of the basic cell, with

the definition of its dimensions and of adopted symbols.
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Basic sell (R.V.E)

Figure 3.17 Adopted basic cell and geometric parameters

The assumed hypothesis of linear elasticity concurs to the possibility to
study the elastic response of the model for a generic loading condition as linear
combination of the elastic responses to six elementary loading conditions: three
cases of normal stresses and three cases of simple shear (prescribed stress
homogenization).

For each of these cases, and — as a consequence — for each constituent of
the cell, suitably chosen components of the stress and strain tensors are
assumed to be of relevance for the stress-strain state of the basic cell. In
particular, such choose derives by observing the basic cell deformations, which
are calculated, previoudy, with a finite element anaysis under the same
loading conditions. In the figure 3.18 are reported the deformed configurations
resulting from the FEM analysis, [67].
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,tp_\- (b)

(d)

Figure3.18 (a) finite element mesh, (b) deformation for compression in
x-direction, (c) deformation for shear xy, (d) deformation
for shear xz

As an example, therefore, in the case of uniform normal stress in x
direction, the assumed deformation mechanism and, as a consequence, the
chosen stress components are shown in the figure below.
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Figure3.19 Normal stress loading in x-direction

Analogoudly, for the case of uniform normal stress in y direction, the

assumed deformation mechanism and, as a consequence, the chosen stress
components are shown in figure below.
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Figure3.20 Normal stressloading in y-direction

In a so-posed elastic problem, the number of unknowns is larger than in a
usual homogenization procedure, since the second-order effects are considered

by taking in account, as already mentioned, the additional deformation
mechanisms, given by:
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Vertical normal stress s i,y in the bed joint, when the basic cell is
loaded with in-plane shear s | .

In-plane shear s iy in the bed joint, when the basic cell is loaded
with a horizontal in-plane normal stress s 2.

Out-of-plane shear S 31,2 , in the bed joint, when the basic cell is|oaded

with an out-of-plane shear stress s 2 .

In order to define uniquely the unknown internal stresses and strains of
each component, a set of equilibrium, compatibility and constitutive equations,
for each loading case, has to be imposed, as it follows. Brick, bed joint, head
joint and cross joint variables will be indicated respectively by the superscripts

b, 1, 2 and 3. The mean value of the normal stress s, and the normal strain
e, in the unit will be indicated, respectively, by S and €. The prescribed
uniform normal (macro) stresses on the faces of the homogenized basic cell in

the x-, y- and z-direction will be indicated, respectively, by s 3, s 0, and s .

- Uniform normal stressloading casein x, y or zdirection.

No other stresses, except S ,, S, and s ,,, are applied on the boundary of
the basic cell. In this case, al shear stresses and strains for each component are
neglected, except the in-the-plane shear stress and strain (s Xy,exy) in the bed
joint and in the brick, asillustrated in the above figure 3.19. We remember that
the shear strain component, eiy, is one of the deformation mechanisms here

considered and, instead, neglected by the standard two step homogenization
procedure, since depending on the geometrical arrangement of the bricks in the
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masonry pattern. Furthermore, the non-zero stresses and strains are assumed to
be constant in each basic cell constituent, except the normal stress s 2 in the
brick, which must be a linear function of x in order to account for the presence
of the shear stress component S i’y The latter, moreover, requires the

introduction of a couple for the momentum equilibrium of one-fourth of the
brick in the basic cell (see figure 3.19) which derives from the neighbouring cell
along y-axis. The symmetric brick quarter of the cell above, indeed, reacts at the
centre line of the brick with a couple due to a self-equilibrating vertical stress

distribution, s;’y, which is neglected in the model. This is shown in the

following figure 3.21.

bl
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Figure 3.21 Norma stress loading in x-direction: unit equilibrium (couple
moment equa to self-equilibrating vertical stress distribution).
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Is has to be underlined, yet, that, in order to assure the brick equilibrium,

the shear stress s i’y has to be a linear function of y and, in order to assure the

bed joint equilibrium, a shear stress s iy has to be introduced also for the |eft

and right sides of such joint.
Under these hypotheses, the following equilibrium equations, at internal or
boundary interfaces, can be written:
@ Limit equilibrium equation at internal interface brick-head joint

s2=§>-st —— (33.2.c-1)
where:

s 2x = average value of the normal stressin the brick. It is given by:
=X X (3.3.2.c-2)

with:
s ™ = the normal stressin the left side of the brick
s 2% = the normal stress in the right side of the brick

For the equilibrium of the brick, moreover, the following relation has to be
verified:

bl 1 b2
hs o +(1-t)s}, =hs (3.3.2.¢-3)

where the authors assume that the shear acts only on the bed-brick interface

(- t). Hence, some equilibrium conditions at the interfaces are not satisfied.

From the (3.3.2.c-2) and (3.3.2.c-3), it is obtained that:

v Iz—ht (3.3.2.c-4)

shl=g?P_g

b
XX XX

and:
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s2=g? +sll'—t (3.3.2.c-5)
XX - XX Xy 2h . . .

which have been used in the equation (3.3.2.c-1).

@ Limit equilibrium equation at internal interface brick-bed joint
b —_ o1
S, =Sy, (3.3.2.c-6)

@ Limit equilibrium equation at right boundary
rsfx+2tsfx+h'§§fx+s§y2—2: 2(h+t)s 2, (33.2.c7)
7]

@ Limit equilibrium equation at upper boundary
Is) +ts 2 =(1+t)s ), (33.2.c-8)
@ Limit equilibrium equation at front boundary
2hs 2 +2(1- t)ts, +2Ahs ), +4t’s S =gth+2(1 +t)t+2hgs 2 (3.3.2.c-9)
Anaogoudly, the following compatibility equations can be written:
@ Compatibility equation at upper boundary
2te), +he) =he? +2te] (3.3.2.c-10)
@ Compatibility equation at right boundary
te? +1e, =2ted +(I- t)ej, (3.3.2.c-11)
@ Compatibility equation at front boundary
ed =el (33.2.c-12)
@ Compatibility equation at front boundary
e =e? (3.3.2.c-13)
In the above equations, the unknown stresses and strains in the cross joint
can be eliminated by means of the following relations:



Chapter I11 - Mechanics of masonry structures: experimental, numerical

205 and theoretical approaches proposed in literature
EZ
3 2
=
El
3 1
E3
S 32 = ES i—z
s?=s! (3.3.2.c-15)
XX XX :

The equations (3.3.2.c-14) assume that the cross joint behaves as a spring
connected in series with the bed joint in the x-direction, connected in series
with the head joint in the y-direction and connected in parallel with the bed
joint in the z-direction. The equation (3.3.2.c-15) represents the equilibrium at
the cross-bed joint interface. It can be noted that the stress-strain state in the
cross joint does not play a mgjor role in the problem, because of its usualy
small volume ratio, [67].

By coupling with the nine linear elastic stress-strain relations in the brick,
head joint and bed joint the above considered equilibrium and compatibility
equations, a linear system of 18 equations comes out. In particular, the
constitutive equations assume the following form:

@ Constitutive linear elastic equations

1 N
K _ k k k
eXX—E— -nk(SW+SZZ)H

k XX

1 .
e';yzgg';y-nk(srx+sfz)ﬂ k=b12  (332c16)

1 . N
k — k k k
en‘@?u'”k(sxﬁsw)ﬂ
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In this linear system, the unknowns are the six normal stresses and strains of
each of the three components (brick, head joint and bed joint) and the shear
stress and strain in the bed joint, for atotal of 20 unknowns.

Therefore, two additional equations are necessary to solve the problem.
These ones can be derived introducing the shear deformation of the bed joint:
the elastic mismatch between the normal x strains in the brick and in the head
joint is responsible for the shear in the bed joint because of the staggered
alignment of the bricks in the masonry wall. This mechanism, shown in the
following figure, leads to the approximated relation:

@ Compatibility equation
ey :% széthb - e ;“teff ; efx;l o (3.3.2.c-17)

which isvalid in the hypothesis that the bed joint does not slip on the brick and

the e” is assumed linear in x-direction. In particular, it would be verified that:

b2 _ =b 1 (I - t)
e. =e_+s 3.3.2.c-18

but, usually, the second term in the right-hand side can be neglected.
Another one additional equation is the elastic stress-strain relation:
@ Constitutive linear elastic equation
s, =2G'e, (33.2.¢-19)
Hence, a linear system of 20 equations and 20 variables is finaly obtained.
Since a symbolic solution, nevertheless obtained, was too complex for the
practical purposes, the linear system has been solved numericaly. So, the
internal stresses and strains are obtained for uniaxial load in the i-direction,
given by:
sf=1 s)=0®i? | i, i=xYy,z (3.32.20)
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Once the unknowns are found, the shear stress in the brick can be obtained
by means of the internal equilibrium equation:

b b b

0 (33.2.c:21)
X Ty 1z
which leads to:
sb =gt 8§ YO 3.3.2.c-22

At this point, the homogenized Y oung's moduli and Poisson’s coefficient of
the basic cell are, finally, obtained by forcing the macro-deformation of the
model and of the homogenized material to be the same, meaning that both
systems must contain the same strain energy.

By assuming an orthotropic behaviour, the Young's moduli and the
Poisson’ s coefficients are given by:

(2]
: o
D

i H ij

H
==L n, :—’,j Li=XxVy,z (3.3.2.c-23)
where:
e = homogenized strain, obtained for a prescribed stress case.

In particular, it is obtained that:

L I-t+2tEY/E®

el =el,
|+t
2 2 3 b
e |h+2tE°/E’)+he
e, = W( / ) » (3.3.2.c-24)
|+t
el =¢P

The procedure for determining the homogenized shear moduli is analogous
to the previous one.
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- In-plane shear modulus G,y

No other stresses, except S fy are applied on the boundary of the basic cell.
In this case, al stresses and strains are neglected, except the in-the-plane shear

stress and strain (s Xy,exy) in each basic cell component, and the normal stress

and strain components s and €], in the bed joint. We remember that this

latter is one of the strain components here considered and, instead, neglected by
the standard two step homogenization procedure. Furthermore, the non-zero
stresses and strains are assumed to be constant in each basic cell constituent,

except the shear stress s | in the brick, which must be alinear function of x in

order to account for the presence of the normal stress component si,y in bed

joint. The deformation of the basic cell is approximated in the following figure.
=

- - C

1 ¢= t
Figure 3.22 Model assumptions for xy shear

Under these hypotheses, the following equilibrium equations, at internal or
boundary interfaces, can be written:
@ Limit equilibrium equation at upper boundary
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ts2 +1sy =(t+1)s (3.3.2.c-25)

@ Limit equilibrium equation at internal interface brick-head joints

I
2 &b 1
S xy =S Xy +%S vy (332C—26)
@ Limit equilibrium equation at internal interface brick-bed joints
=b _~1
Sy =Sy (3.3.2.c-27)
where:

s_fy = the mean value of si’y in the brick

The normal strain eiy is derived from geometric considerations on the

deformation mechanism illustrated in the figure 3.22 where all the geometric
guantities can be defined. So, neglecting the second-order terms, it is

straightforward to obtain:
2t- 2t _Dy+(t/1)Dy » »_Dy Dy
el @ @ : e’-e =—2+—2 (332c28
w @ 2t @ 2t v 2 ( )
This leadsto:
@ Compatibility equation
1 — 42 =b
e, =€,- €, (3.3.2.c-29)

By coupling with the four linear elastic stress-strain relations in the brick,
head joint and bed joint the above considered equilibrium and compatibility
equations, a linear system of 8 equations comes out. In particular, the
constitutive equations assume the following form:

@ Constitutive linear elastic equations

si =E'(e}- e} (33.2.¢-30)

sy =2G'e;, k=b12 (3.3.2.c-31)
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In this linear system, the unknowns are the three shear stresses and strains
of the three basic cell components (brick, head joint and bed joint) and the

normal stress and strain, s, and €] , in the bed joint, for a total of 8

W
unknowns.

By solving the obtained linear system, the internal stresses and strains are
found.

At this point, the homogenized shear modulus, G, , of the basic cell is,

finally, given by:
0
G, =% = '(H')(tzh) (3.3.2.6-32)
2 d(t+h) (t41- kt)(Ih- t )+t(t+|)(t+|- k)
G? G G
where:

ex'; = homogenized strain, obtained for a prescribed stress case and given by:

h t? U
150 2\ 1 2 =b R _
I +texy) 1 +ie,, + (eXy exy) i +tH (3.32.c-33)

(O

1
H__
exy_h+t.. Xy

(¢

and k is defined asit follows, [67]:

1 b
k= [E+anG” (332.0-34)
IE'+anGt+EN S8 40
| +t&§G% 4

In analogous manner, the other two homogenized shear moduli are
determined.

- In-plane shear modulus Gy,
No other stresses, except S fz , are applied on the boundary of the basic cell.

In this case, all stresses and strains are neglected, except the in-the-plane shear
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stress and strain (s ,,,e,,) in each basic cell component, and the shear stress

and strain components s, and €], in the bed joint. We remember that this

latter is one of the strain components here considered and, instead, neglected by
the standard two step homogenization procedure. Furthermore, the non-zero
stresses and strains are assumed to be constant in each basic cell constituent,

except the shear stress s ? , which must be a linear function of x in order to
account for the presence of the shear stress component S 31,2 in bed joint. The

deformation of the basic cell is approximated in the following figure 3.23.

4umm
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Figure 3.23 Model assumptions for xz shear

Under these hypotheses, the following equilibrium equations, at internal or
boundary interfaces, can be written:
@ Limit equilibrium eguation at right boundary

& -t 0
hog +( )Sl S+2st +hs 2 :2(t+h)s° (3.3.2.c-35)
T e N
e 1]



Chapter I11 - Mechanics of masonry structures: experimental, numerical
and theoretical approaches proposed in literature 212

@ Limit equilibrium equation at internal interface brick-head joints

(1- t)s L (3.3.2.c-36)

@ Compatibility equation at internal interface brick-bed joints

el =¢e’ (3.3.2.c-37)
Moreover the shear strain e; is derived from geometric considerations on

the deformation mechanism illustrated in the figure 3.23 where al the
geometric quantities can be defined. So, it can be found to be verified the
following compatibility equation, [67]:

@ Compatibility equation

el :%(e2 -ep) (3.3.2.c-38)

By coupling with the four linear elastic stress-strain relations in the brick,
head joint and bed joint the above considered equilibrium and compatibility
equations, a linear system of 8 equations comes out. In particular, the
constitutive equations assume the following form:

@ Constitutive linear elastic equations

s}, =2G', (3.3.2.c-39)

sk =2G'ef k=Db,1,2 (3.3.2.c-40)
In this linear system, the unknowns are the three shear stresses, s ,,, and

strains, €, , of the three basic cell components (brick, head joint and bed joint)
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and the shear stress and strain, s, and e, in the bed joint, for a total of 8

yz?
unknowns.

By solving the obtained linear system, the internal stresses and strains are
found.

Hence, the homogenized shear modulus G,, of the basic cell is, finally,

given by:
0 t+1)(tG" + hG"
G, =% = (ae4r2c(;b+| tZSl _ (332.c41)
© (oo S
& AG*+(1-1)G"
where:

e = homogenized strain, obtained for a prescribed stress case and given by:

2 b
w_te, tleg

3.3.2.c-42
oY ( )

e

- In-plane shear modulus G,

0
yz?

No other stresses, except S |, are applied on the boundary of the basic cell.
In this case, al stresses and strains are neglected, except the in-the-plane shear
stress and strain (syz,eyz) in each basic cell component, assumed to be

constant everywhere. The deformation of the basic cell is approximated in the

following figure.
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Figure 3.24 Model assumptions for yz shear

Under these hypotheses, the following equilibrium and compatibility

equations, at internal or boundary interfaces, can be written:
@ Limit equilibrium equation at upper boundary
(3.3.2.c-43)

2 b _— 0
ts2 +Is) =(t+1)s,
@ Limit equilibrium equation at internal interface brick-bed joints
b —a1
S,,=Sy, (3.3.2.c-44)
@ Compatibility equation at internal interface brick-head joints
b 42
e,=e, (3.3.2.c-45)
By coupling with the three linear elastic stress-strain relations in the brick,
head joint and bed joint the above considered equilibrium and compatibility
equations, a linear system of 6 equations comes out. In particular, the

constitutive equations assume the following form:
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@ Constitutive linear elastic equations
s, = 2G"ey, k=012 (3.3.2.c-46)
In this linear system, the unknowns are the three shear stresses s, and the

three shear strains e, of the three basic cell components (brick, head joint and

bed joint), for atotal of 6 unknowns.
By solving the obtained linear system, the internal stresses and strains are
found.

Hence, the homogenized shear modulus G, of the basic cell is, finally,

given by:

0 b 2
S +h ,IG"+
G,=—2= ALY Gb 16 - (3.3.2.c-47)
2, t+l tG’+hG
where:
e; = homogenized strain, obtained for a prescribed stress case and given by:
1 b
o = te,, +he,,
¥ t+h
For more details, the reader is referred to [67].
However, we want to underline, here, the most results obtained from the

(3.3.2.c-48)

authors. Their described model has been applied to a real masonry basic cell
and compared with the results of the previous accurate FEM analysis. In the
finite element analysis and the analytica model, the properties of the
components have been taken absolutely equal.

The same elastic properties have been adopted for the bed joint, head joint
and crossjointE, = E, = E; =E_;n, =n, =n, =n_ . Different stiffness ratios

between mortar and unit are considered.



216

Chapter I11 - Mechanics of masonry structures: experimental, numerical
and theoretical approaches proposed in literature

This has allowed assessing the performance of the model for inelastic

behaviour. In fact, non-linear behaviour is associated with (tangent) stiffness

degradation and homogenisation of non-linear processes will result in large

stiffness differences between the components. In the limit, the ratio between

the stiffness of the different componentsis zero or infinity.

The material properties of the unit are kept constant, whereas the properties

of the mortar are varied. In particular, for the unit, the Young's modulus Eb is

20 GPa and the Poisson’s ratio is 0.15. For the mortar, the Young's modulus is

varied to yield a ratio Eb/Em ranging from 1 to 1000 while the mortar

Poisson’sratio is kept constant to 0.15 and equal to that one of the unit.

The adopted range of Eb/Em is very large (up to 1000). Note that the ratio

Eb/Em tends to infinity when softening of the mortar is complete and only the

unit remains structurally active.

The elastic properties of the homogenised material, calculated by means of

the proposed micro-mechanical model, are compared with the values obtained

by FEM analysis, in the figures 3.25 and 3.26.
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results for different stiffness ratios: (a) Young's moduli, (b)

Figure 3.25 Comparison between the micro-mechanical model and FEA
Poisson’sratio and (c) Shear moduli.

The agreement is very good in the entire considered range Eb/Em. In

particular the figure 3.26 yields the relative error of the elastic parameters

predicted by the proposed model and show that it is always less than 6%.
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Figure 3.26 Comparison between the proposed micro-mechanical model
and the simplified model

The thinner curves in Fig. 3.26 yield the results of a simplified model ( E,

only), which is derived from the model presented in the paper, [67], where the
additional deformation mechanisms of the bed joint have not been taken into
account. The simplified model, therefore, neglects the main effects due to the
misalignment of the units in the masonry wall and coincides with the full
model when the units are aligned in the wall. For this reason, such a simplified
model appears closer to the standard two-step homogenisation techniques.
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The figure 3.26a also includes the results of the standard two-step
homogenisation of Lourenco (1997), showing that it leads to non-acceptable

errors up to 45% for the estimation of Young's modulus E, in x-direction.

Less pronounced differences are found in the estimation of young's moduli in
y- and z- directions, but they are not reported in the figure, see Lourenco
(1997).

For large ratios Eb/Em the simplified model predicts value of E,, n,, and

G,, much smaller than the actual values obtained by FEM analysis. The large

and increasing errors of such model on these variables (up to 50%) indicate that
for much degraded mortar the neglected deformation mechanisms of the bed
joint contribute significantly to the overall basic cell behaviour.

In spite of the fact that Lourenco’s approach overcomes the limits of the
standard two-steps homogenization, it is worth to notice that the proposed
homogenized model is obtained on a parametrization-based procedure
depending on a specific benchmark FEM model (i.e. selected ratios between
elastic coefficients and geometrical dimensions), so it shows a sensitivity to
geometrical and mechanica ratios!
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CHAPTER IV

Proposal of modified approaches:. theoretical models

4.1 Introduction

In this chapter, some possible new procedures for modelling masonry
structures, in linear-elastic field, are proposed, starting from the results of
literature approaches.

In the previous chapter 3, a genera account on such existing
homogenization techniques has been shown. In particular, it has been
underlined that they can be basically divided in two approaches. The first one
employs an approximated homogenization process in different steps by
obtaining, on the contrary, a close-form solution (for example, Pietruszczak &
Niu, 1992). The second one employs a rigorous homogenization process in one
step by obtaining, on the contrary, an approximated numerical solution (for
example, Lourenco & al, 2002). Moreover, also the limits for each one of the
two approaches have been highlighted in the chapter 3.



221 Chapter 1V — Proposal of modified approaches: theoretical approaches

Hence, the main object of this chapter is to obtain hew homogenization
techniques which are able to overcome the limits of the existing ones, in both
approaches. More in detail, two procedures have been proposed: a simplified
two-step homogenization (S.A.S. approach) and a rigorous one-step
homogenization (Statically-consistent Lourenco approach).

4.2 Statically-consistent L ourenco approach

As first approach, a new proposal for the analysis of masonry structures is
given, starting from some results aready reached by A. Zucchini and P.B.
Lourenco and mentioned in the previous chapter 3, [67]. In that work, the
authors have employed a numerical strategy to analyze masonry walls, by using
a propaedeutic micro-mechanical approach to determine constitutive properties.

Hence, in the present section, by recalling Lourenco’s stress-prescribed
homogenization technique, a new rigorous one-step homogenization procedure
is proposed. In particular, the overall material properties of the representative
volume element (RVE) are determined as functions of both the elastic
coefficients of the phases and the geometry of the arrangement, under the
hypothesis of orthotropic behaviour. By developing a new modified
constitutive model for masonries, it will be seen that the proposed approach
leads to a statically-consistent solution for the elastic homogenization problem,
but it doesn’t take into account for compatibility conditions at the constituent
interfaces. However, by means of equilibrium considerations, a different stress
distribution in each masonry component, which is more accurate than
Lourenco’s one, is obtained.

The micro-mechanical model used in the analysis is the same than the one
considered by the authors. For clearness of exposition, it is shown again in the
following figure:
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I

[ 1 ] [ ]
L] [
L 1L 1L ]
I | I I

basic cell (R.V.E.) Homogenized cell

Figure 4.1 Definition of masonry axes and of chosen micro
mechanical model

Such micro-mechanical model is obtained by extracting a basic periodic
cell from single leaf masonry in stretcher bond.

It has been considered a right-oriented x-y-z Cartesian coordinate system
and the following components for the basic cell are considered:

- Headjoint (a)

- Unit (b)

- Crossjoint (c)

- Bedjoint (d)
and for the symmetry of the assembly, we also have:

- Crossjoint (e)

- Unit (f)

- Headjoint (g)

The following figure shows, in detail, the geometry of the basic cell, with
the definition of the dimensions and of adopted symbols.
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\

\

( T~

Figure 4.2 Adopted basic cell and geometric parameters

We have maintained the assumed hypothesis of linear elasticity so that it is
possible to study, yet, the elastic response of the model for a generic loading
condition as linear combination of the responses to six basic loading
conditions: three cases of normal stresses and three cases of simple shear
(prescribed stress homogeni zation).

For each of these cases, and — as a consequence — for each constituent of
the cell, selected components of stress tensor are involved. In particular, it is
done the hypothesis that the stresses vary as bi-linear functions upon the
coordinates.

As an example, in the case of uniform normal stress both in x and in'y
directions, the assumed stress components are taken as shown in the figures
below.
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Figure 4.3 Seected components of the stress tensor for prescribed-stress

loading conditions
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For both these load conditions, a plane stress state is considered: al shear

and normal stress components that involve z—direction are neglected and non-
zero stress components, s, .S, ,S,, , are assumed bi-linear functions in X

and y in each constituent of the cell. So, it can be written:

S )((r:() = Ao(p) + Al(p) X + Az(p) Xy + As(p) XX Xy (4.2-1)
S(p)ZB(p)+B(p)><X+B(p)><y+B(p)><XXy (4.2-2)
Xy 0 1 2 3 '
S(p):C(p)+C(p)><X+C(p)><y+C(p)><XXy (4.2-3)
vy 0 1 2 3 :

where the “p” index runs between “a” and “g” .

With these hypotheses, for these cases, the number of constants to
determine is 84, which are 12 unknown constants for each component.

In order to define uniquely the above written functions, a set of equilibrium
equations has to be imposed.

In particular, by fixing the origin of the right-oriented loca x-y-z
coordinate system, each time, in according to our convenience, for the single
constituent of the cell, the following relations can be written:

- indefinite equilibrium equations, in absence of volume force:

s®,, =0 with i, j={x, y} (4.2-4)
- limit equilibrium eguations on the boundary of the basic cell, in weak
form:
OsPadw= §tPdw "p (4.2-5)
MmEP) P
with:
p=abcef,g

=Xy
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ML = the boundary faces of the generic p element.

a = the components of the unit vector, normal to the boundary faces.

t? = the uniform macro-stresses applied on boundary faces of the

homogenized basic cell, for the generic p element.
- equilibrium equations at the interfaces between the constituents:

O s dw= ¢ s @ dw (4.2-6)

where“p” and “q" are two contact elements and where:

WP = theinternal faces of the generic p element.

a = components of the unit vector, normal to the interna surfaces.

Moreover, they are written local equilibrium equations for the unloaded
boundary faces and globa equilibrium equations, in a weak form, for
translation and rotation of the whole basic cell:

- local equilibrium equations for the globa cell, on the unloaded

boundary faces:
s; =0 "xy withi,j=xy (4.2-7)
- wesak equilibrium equations for translation and rotation of the whole
basic cell:
Os; dw=0 (4.2-8)
w
and:
Osixdw=0 "k (4.2-9)

where:
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w=a W, (4.2-10)

=

n Qox

1
with:

W=the boundary surface of the whole basic cell, obtained as the summeation

of four boundary faces shown in the following figure 4.4.

W,

™,
Figure 4.4 Boundary surface of the basic cell

Finally, in order to satisfy the conditions of polar symmetry, the following
equations are considered:

- polar-symmetry punctua conditions:
s;(P)=s;(P) (4.2-11)

where P’ is the polar-symmetric point of P, obtained fixing the origin of the
right-oriented local x-y-z coordinate system in the centre of mass of the whole
system.

Solving this system of linear equations in the unknown constants, the stress
components, for each constituent of the basic cell, are obtained.

In particular, for the compression in x direction, it can be written:

0

siP=-5° (4.2-12)
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(P —a (P =
Sy =S, =0 (4.2-13)

where:

s2 = the uniform normal macro-stress applied on the faces of the

*
homogenized basic cell in x direction.
This result tells us that the sole non-zero stresses are constant in each basic
cell component.
In analogous manner, for the compression in y direction, it is obtained:

(M =_g0
Sy =-S,, (4.2-14)
s =g =0 (4.2-15)
Xy XX :
where:
s‘y)yz the uniform norma macro-stress applied on the faces of the

homogenized basic cell in'y direction.

Alsointhis case, non-zero stresses are everywhere constant.

In the last loading case, i.e. the basic cell loaded with a uniform normal
stress, that one in z direction, the procedure is ssimplified, because of the a
priori hypothesis that the sole stresses that can play a significant role are the z-
direction normal stresses.

So, in particular, it can be written:
sP=-5? (4.2-16)

where:

s2 = the uniform normal macro-stress applied on the faces of the

homogenized basic cell in z direction.
All other stress components are neglected.
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At this point, known the stress functions, strain ones, in each component,
can be derived by considering alinear elastic and isotropic stress-strain relation
of al the components.

That means:

XX XX

1 N

1 . :
el :Fg P-nPsP+s Py withp=a,b,...,g (4.2-17)

1 N
e® = = & (»_nP(s (P +s x))H

zZ yz4

Here, in the follows, they are presented the values of the strains, induced by
the different load conditions. Since in al the three load cases, the stress state is
a mono-dimensiona one and the non-zero stress component value is equal to
the applied load, generalizing the results, it can be written:

S 0(p) n (p)

(p) = "1 _
& Y d; E(p)shh

(4.2-18)

where:

G E® n( = material properties of the single basic cell constituent. In
particular, itis:

G" = Lame modulus

E(® = Young modulus

n® = Poisson modulus

For the average theorem, when boundary conditions are applied in terms of
uniform stresses on the considered RVE (basic cell) and by naming with s i

the average value of stressin it, the following relation can be considered:
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_ 1 .
Si=y G dv =s/ (4.2-19)
\Y

according to what has been studied in the Chapter 1.
In the (4.2-19), V stands for the volume of the basic cell.

The average value of strain, Eij , instead, is defined as:

(4.2-20)

> N
Oc

PO _182 Ao
€ij —V\paijdv =V 0e;”dv

Br=ay(p

OO

where:

V(P = the volume of the single basic cell constituent.

So, the properties of the homogenized cell can be determined through the
following relation between the average values of stress and strain, by
establishing, at the most, the hypothesis of an orthotropic behaviour. In detail,

the components of fourth order homogenized tensor of compliances are found:
= Eij e -
Sin =d;dy—5 Wwithi, j=x,y,z (4.2-21)
S hk

where:

d; = components of Kronecker delta

This procedure concurs to find the inverse of homogenized Y oung’s moduli
and the Poisson’ s coefficients for the homogenized RVE.

An anaogous procedure can be used to determine the homogenized shear
moduli, as:

gjhk = (1' d; ) >(1' dhk) Xse—g withi, j,hk=xy,z (4.2-22)

hk
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In this case, the analysis carried out in this paper has lead to the same results
of those ones reached by Lourenco e Zucchini, [67]. For this reason, the
procedure that we have employed for determining the homogenized shear
moduli will be not shown here, but we only illustrate the obtained results.

In particular, the fourth order compliance tensor, so determined, assumes
the following form:

e%lll 3122 5133 O O O 8
e§1122 Szzzz §2233 0 0 0 u
S=g s Sz S 0O 0 with xo1y°2203 (4223
g0 0 0 §,; 0 0y
€0 0 0 0 §, OY
60 0 0 0 0 8,4
where
3111:§2222:§3333:
_hd hAo tae h h 24 2% 2>¢ 2>¢0 (4.2-24)
" Eb Ef % Ea Eg Ed Ec Ed Eey a3
2x(h+t)| +t)
Sir =S =Sy =
htna htnb 2t*nc 2fI-t)tad 2x°ne hinf htng (42.0)
_ B B Ec Ed Ee Ef =0
2{h+t) Al +t)
(h+1) % 46D +(1-t)Gd 6
_ % 4>xGarh+(1-1)>Gd 4
Sy = = (4.2-26)
2G,, 2t +1) t>Gd +h>Gb)
= 1 1 t+] t>Gb+h>Gd
Sy = (4.2-27)

2G,, 2>Gd t+h [ xGb+t>Ga
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5, =L __ 40hGIO(hey) +Edd Xl +)XGdh+Go)
272G, 25Gd h +t){Ed>GbA? +GaxEd # t +4:Gb>h (] +1)))
. bGaxhGbx (| +t) +Gd xhAt -t2))

2>Gd Xh+t) XEd >GbA? +GaxEd 4 % + 4>Ghh (| +1)))

(4.2-28)

These results suggest a hexagonal material symmetry.

By comparing the proposed homogenization technique with Lourenco’s
one, it can be said that:

LOURENCO & AL. APPROACH - proposes a homogenized model
obtained on a parameterization-based procedure depending on a specific
benchmark FEM model (i.e. selected ratios between elastic coefficients and
geometrical dimensions), so it shows a sensitivity to geometrical and
mechanical ratios! Moreover, the numerical estimate of the homogenized
coefficients gives some not symmetrical moduli, so a symmetrization becomes
necessary!

LOURENCO MODIFIED APPROACH (Statically-consistent approach) -
proposes a parametric homogenized model not depending on specific selected
ratios between elastic coefficients and geometrical dimensions, so it shows a
more generalized applicability. Moreover, since the approach implies a
statically-consistent solution, it results extremely useful for its applicability
according to the Static Theorem: a statically admissible solution guarantees the
structure to be in security as regards the collapse.

4.3 SAS approach: two-step procedur e consistency

In the follows, it will be shown an application of the SA.S. theorem in
order to homogenize the masonry material.
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Since the description of this theorem has been already highlighted in the
Section 8 of the Chapter 1, we will limit here to expose the proposed
homogenization procedure.

In particular, it is considered a single leaf masonry wall in stretcher bond.
From it, abasic cell (RVE) is considered, asillustrated in the figure, below:

m,

m,

Figure4.5 Basic cdl (RVE)

The different constituents of the RVE are indicated, respectively, with:
m, m,, m,, m,, m, M, = the mortar components
b,b,,b, = the unit components

The homogenization approach, which we use, remarks the standard
simplified two-step technique. This means that a homogenization process is
operated first in one direction, then in the orthogonal one. In such a way,
masonry basic cell can be seen as alayered material.

So, by calling with homogenization y ® X the approach that homogenizes
first in x-direction, then in y-direction and with homogenization X® Yy the
other approach that homogenizes first in y-direction, then in x-direction, both
cases are analyzed.
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1. Homogenization y -> X

In order to simplify the procedure, it is supposed that the homogenization in
x-direction was already effected. Therefore, the above illustrated masonry RVE
can be considered as the layered material shown below:

m
p—L
m,
P, —
y m
X

Figure4.6 Layered materia (RVE)

In order to apply the SA.S. theorem, generally it is required that two
conditions have to be satisfied, [24]. These are:

a detT" =0 "xT W (4.3-1)
AT H H \[IKT; —_ n LT
b. €7 (u™ )R (x)=0 "xi W (4.3-2)
where:
T = the stress tensor of the reference homogeneous material.

W =domain occupied by the reference homogeneous material.

W = domain occupied by the inhomogeneous material (RVE).
For this layered materia, it is clear that the materia inhomogeneity is

defined by a function j (X) that is a constant function, but piecewise
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discontinuous from a phase to another one, and it is clear that theNj -direction

is coincident with the y-direction. In this particular case, as aready seen, the
above written two conditions become:

c. detT" =0, "x1 W, 0 (4.3-3)
H _ A
d T Mo = 0 x|l ‘I]W(p]q) (4.3-4)
where:
1]W( = interface surface between two faces p and q.

p.q)

This means that it is not necessary to have a stress tensor T" everywhere
plane in the reference homogeneous material, but only in each point belonging
to the interface surfaces, and that the eigenvector associated with the zero
eigenvalue of the stress tensor T™ has to be coaxial with the unit normal
vector to the tangent plane to the interface.

For simplicity, it will be however considered a plane stress tensor T" in
each point of the homogeneous reference body.

So, by assuming the homogeneous reference body coincident with an
orthotropic characterization of the mortar, a strain prescribed homogenization
in y-direction is operated. The sole non-zero components of the stress tensor

T" haveto be:

sh10,sM10,s10

(4.3-5)
H _ H _ H _
s,=0,s,=0 s,=0
because they are in the respect of the condition (4.3-2).
According to the S.A.S. theorem, for the generic phase “i” of the

inhomogeneous material, it can be written:



Chapter IV — Proposal of modified approaches: theoretical approaches 236

c' =j c"
u' =u" with i =m, p,,m,, p,,m; (4.3-6)
T' =), T"

where:

C',u',T! = respectively, the stiffness tensor, the displacements solution and

the stress tensor of the generic phase of the inhomogeneous
materia (RVE).
C",u", T" = respectively, the stiffness tensor, the displacements solution
and the stress tensor of reference homogeneous material.
Let us assume that the stress tensor is constant everywhere in the
homogeneous reference domain and let us to consider the stress components
separately each from the other, for example:

sh10,s1=0 s=0 (4.3-7)

So, by using the Voigt notation, the stress tensor T™ can be written in the
form of avector, [24]. In generd, it is:

(4.3-8)

g
I
B O BOG GO G

R8I W8INTIERT
(o Y ey e} e en en¥ eni ¥ ent Y entd

In the particular case that the sole non-zero stress component isthe s ', it

is
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(4.3-9)

—
T
1
am D D DD DDD m\
O O O O Oy
OO OO\

where it has been assumed:
1°x; 2°y, 3° z (4.3-10)

By cdling S" the fourth order compliance tensor of the homogeneous
reference orthotropic material, it can be written in the following form:

N
T

o

11 Sﬂzz SFZ:SS O
S;ZZ S;SB O
Scll_f;33 O

S;;SZ

=

wn
T
I
o

(4.3-11)
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By remembering that the assumed homogeneous reference orthotropic

material is the mortar, the compliance tensor S™ can be written as:
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where the symbol (m) indicates the mortar and where, for symmetry, it has to
be:
ng _ng’ . ng’ _n® . nld _ng.
El(m) Eém) ! El(m) Eém) ! Eém) Eém) !

The strain tensor, for the same material, is, therefore, obtained through the

(4.3-13)

following relation:
E" =s".T" (4.3-14)
In the case that the sole non-zero stress component isthe s ! and by using

the Voigt notation, the strain tensor E" is:
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(4.3-15)

m
T
|
(D: (D> (D> D> D> D> D> D> D> P> D> D> (D> D~
>
3
(7]
T

For the second equation of (4.3-6), itis:
E =E" with i=m,p,m, p,,m (4.3-16)
that means that everywhere in each phase (m, p,m, p,,m,) of the

inhomogeneous material the strain tensor is equal to the strain tensor E™ of the
homogeneous reference material, so the compatibility is automatically satisfied
in each point of the RVE.

Moreover, being the strain tensor constant in each point of the
inhomogeneous material, it is aso possible to write:

E =E" (4.3-17)
where:
El = average value of the strain tensor in the homogeneous material.

The equilibrium conditions are, instead, guaranteed by the S.A.S. theorem.
According toit, in fact, it is obtained that:
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X I

OO OO\

O O oo w

T with i =m, p,,m;, p,, My (4.3-18)

‘ﬂ
—
I
1
> D> D> D> D> D> (D> (DD
o

This means that everywhere in each phase (m, p,m,, p,,m,) of the
inhomogeneous material the stress tensor is equa to j , times the stress tensor

T of the homogeneous reference material.
By indicating the average value of the stress tensor in the inhomogeneous

material with T, it can be calculated as:

—1 _ 1 < |
T —VQT dv (4.3-19)

where:
V = the whole volume of the RVE.
The equation (4.3-19) is equivaent to write:

T :Vlé QT'dv  withi=m,p,m,p,m (4.3-20)
By remembering that:
Q T'dv =TV (4.3-21)
where:
Til = average value of the stress tensor in the generic phase of the RVE

V. = volume of the generic phase of the RVE

So, the equation (4.3-20) can be rewritten in the form:
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T =), T" withi=m,p,m, p, m (4.3-22)

where it has been considered that:

=Y T =T =T (4.3-23)
\
with:
f. = the volumetric fraction of the generic phase, weighed upon the whole
inhomogeneous volume.

The average stress tensor, Tl , therefore, has the following form:

-h
(2]

H
XX

|
@ D> D> D> D> D> D> D> (D~

with i=m, p,m, p,,m; (4.3-24)

O O O O o
[(eYaYalaY o a oy oy o

At this point, it is possible to obtain the homogenized compliance tensor for
the inhomogeneous layered material, shown in figure 4.6, by means of the
relation:

E =S :T (4.3-25)
with:

_ y® X
SI '= S = homogenized compliance tensor of the inhomogeneous layered

material where the symbol “y® X" recals the two-step
homogenization process, here considering that we first
homogenize in x-direction and then in y-direction.

By considering in explicit form the equation (4.3-25), it can be written:
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N 4l — — NEPSIIN
CennY €S Su»  Sum 0 0 0 U& U
e'a e oz aé "a
U € Sxz S 0 0 0 U& U
e’a e " u€ "u
Gl € Sazss 0 0 0 U6&u
e u=¢é = e Pu  (4.3-26)
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By taking into account the equations (4.3-17) and (4.3-24), for the assumed

hypothesis (4.3-7), the first column of the homogenized compliance tensor §|
is calculated. In particular, it is obtained:

éilll:_;(m);
fi &

_ _ (m)

Soon1 = S = - % with i =m, p,,m,, p,,m, (4.3-27)
i)i—2

S L

83311 - SEI.133 - '—(m)’
fi B

By repeating the same procedure for the other two stress conditions, it is
possible to determine adding compliance coefficients.
In particular, let usto assume now the following stress condition:

sh=0,s110 s"=0 (4.3-28)
So, by using the Voigt notation, the stress tensor of the homogeneous

reference material, T™ , becomes:



243 Chapter 1V — Proposal of modified approaches: theoretical approaches

(4.3-29)
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The strain tensor, for the same material, is, therefore, obtained through the
relation (4.3-14), that yields, in Voigt notation:

(mg H
13 Szz

e

(Mg H
23SZZ

E™

>

=}

(4.3-30)
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For the same considerations, already done before, it is till worth to write:
E/ =E" with i=m,p,m, p,,m, (4.3-31)

and:

E =g (4.3-32)
Then, according to the S.A.S. theorem, it is now obtained that:
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¢ 0y
e u
e 9.4
_oow_§sp0
T =) T"=e"_“q withi=m,p,m,p, m (4.3-33)
¢ Ou
é pu
e 0
e u

and by proceeding analogously to what has been aready done, it can be
written, again:

T =fj,T" withi=m,p,m,p,m
(4.3-34)

The average stress tensor, Tl , inthis case, has the following form:

¢ 0 U
é u
e 0
=! efijiS;l:l e
=a a withi=m,p,m,p,,m (4.3-35)
e 0 ¢
¢ 0 U
é u
e 0 ¢

By taking into account the equations (4.3-32) and (4.3-35), for the assumed
hypothesis (4.3-28), the third column of the homogenized compliance tensor

§| is calculated. In particular, it is obtained:

6 g NS
Siizz = Sgann = - e
fi B
_ _ (m)
S|2233 = Sé,szz =- fjnzé(m) ; with i=m, p,m, p,,m; (4.3-36)
J B
— 1
513333 =

fij iEém) ’
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Finally, let us assume the following stress condition:
sh=0,s1=0 s/10 (4.3-37)
So, the stress tensor of the homogeneous reference material, T", becomes:
é0
g0

—
T
I
o

(4.3-39)

ocooooaoaac
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About the strain tensor, for the same material, the relation (4.3-14) yields, in
Voigt notation:

¢ 01

é a

e 0 ¢

¢ 0 d

é a
E"=g 0 (4.3-39)

égH 0

¢ amy

§2631 l;l

€ 0 i

Again, it isstill worth to write:
El =E" with i=m,p,m, p,,m (4.3-40)
and:

E =E" (4.3-41)

Moreover, according to the SA.S. theorem, it is now obtained that:



Chapter IV — Proposal of modified approaches: theoretical approaches 246

T =) T" = with i =m, p,,my, p,,my (4.3-42)

W o o o o

g I

ocoooooaoaac
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and by proceeding analogously to what has been aready done, it can be
written, again:

T =fj,T" withi=m,p,m,p,m
(4.3-43)

The average stress tensor, Tl , inthis case, has the following form:

with i = m, P, Mg, Py, 1My (43'44)

“»n © O O O
g I

ocooooaoaac
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By taking into account the equations (4.3-41) and (4.3-44), for the assumed
hypothesis (4.3-37), another coefficient of the homogenized compliance tensor

§| is calculated. In particular, it is obtained:

= _ 1 o
Ssm—m with i =m, p,m, p,,m; (4.3-45)

—I
In this way, for the symmetry of the compliance tensor S , only three
coefficients remain undeterminable, and the tensor assumes the form:
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(4.3-46)
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where:
L T L A LTS IV f R (4.3-47)
By considering that the mortar is the reference orthotropic homogeneous
material, it is:

Jm =lm=im =1 (4.3-48)
being the phases m, m,,m, coincident with the mortar.
Moreover, it can be considered that the two partitions, p, and p,, have the

same volumetric fraction weighed upon the RVE volume V :

f,=f, (4.3-49)
So, the equation (4.3-47) can be rewritten in the form:
o=t (i i ) (4.3-50)
with:
V.
fro. =t frat fe= % (4.3-51)

and where:
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fmm = the volumetric fraction of the horizontal mortar, weighed upon the

whole RVE volume, V .

It is worth to underline that the found elastic coefficients represent an exact
solution to the homogenization problem, and, therefore, both compatible and
equilibrated solution, according to the S A.S. theorem, [24].

Moreover, it must be said that the S.A.S. theorem also yields the stiffness
tensor for the generic phase “i” of the inhomogeneous material (RVE), shown
infigure 4.6, as.

Ci =j ,C" withi=m,p,m,p,m (4.3-52)

from whose:

S =%S“ with i =m, p,,my, p,,m (4.3-53)

So, the compliance tensors for the partition p, and p, can be obtained as it

follows:
é 1 n{m n{m U
e =m T em T e 0 0 0 ¢
é] plEl J plEl J plEl l:j
€ m m a
é_ i nZ1L(m) i l(m) i r123(m) 0 0 0 u
ey, = B u
& m (m) u
e Ny _ N, 1 u
& Em i gm i gm 0 0 a

Slpl :é J pl% J pl% J pl% l] (43-54)
é 1 a
é n a
é 1 a
& 0 0 0 ——= 0 q
é a plQl l]
é 1 U
& 0 0 0 0 0 U
e 4,G' ¢
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and:
é 1 ni nim u
ST LET i w0 0 0
9 P2 P2 P2 U
g’ i néT)(m) i 1(m) i ng‘)(m) 0 0 H
A ;
& [ Em - [ E" [ EP 0 0 0 4 (4.3-55)
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where:

S'pl = compliance tensor of the partition p,

S'pz = compliance tensor of the partition p,

At this point, it is possible to explicit the constants j , and | , related to
the partitions p, and p,, obtained by means a homogenization process in x-

direction of the elements b, m,,b, and m,,b,,m,, respectively, asit is shown

in the figures below:

b, b, b,
YI
X
a b

Figure4.7 @) Partition py; b) Partition p,.
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So, let us consider for example the partition p, .

For this layered materia, it is clear that the Nj -direction is coincident,
now, with the x-direction and, analogously to the previous case, the material
inhomogeneity is yet defined by a function j (x) that is a constant function,
but piecewise discontinuous from a phase to another one.

For analogous considerations to those previous ones, it will be again

considered a plane stress tensor T" in each point of the homogeneous
reference body.

So, by remembering that the orthotropic homogeneous reference body is
coincident with the mortar, a strain prescribed homogenization in x-direction is

operated. The sole non-zero components of the stress tensor T™ , now, have to
be:

sh10,s810, s10
" i . (4.3-56)
S=08,=0 s,=

because they are in the respect of the condition (4.3-2).
According to the SA.S. theorem, for the generic phase “j” of the partition

P, , it can be written:

ch=j C"
uk =u" with j=b,m,,b, (4.3-57)
Th=j 7"

where:

CP,ul, T = respectively, the stiffness tensor, the displacements solution

and the stress tensor of the generic phase of the partition p,

of the RVE.
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C",u",T" = respectively, the stiffness tensor, the displacements solution
and the stress tensor of reference homogeneous material.
Let us assume, again, that the stress tensor is constant everywhere in the
homogeneous reference domain and let us to consider the stress components
separately each from the other, for example:

s;,10,s,=0 s,=0 (4.3-58)

So, by using the Voigt notation, the stress tensor T" of the homogeneous
material can be written in the form of the following vector:

—
T
I

(4.3-59)

MD: D D D D D CD(A‘D) [}
©O 0o og;O
oooooooaocy

where it has been assumed:
1°x, 2°y, 3° z (4.3-60)
The strain tensor, for the same material is obtained by means the following
relation:
E" =s".T" (4.3-61)

In the case that the sole non-zero stress component isthe s ;,*y , by using the

Voigt notation and by remembering the (4.3-12), the strain tensor E" is:
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(Mg H Y
Ni’S y U
E”
u
H U
Sy a
EM q
nmg H 4 (4.3-62)
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For the second equation of (4.3-57), it is:
E*=E" with j=h,m,h, (4.3-63)
It means that everywhere in the phases b, m,,b, of the inhomogeneous
material the strain tensor is equal to the strain tensor E™ of the homogeneous

reference material, so the compatibility is automatically satisfied in these
phases of the RVE.

Moreover, being the strain tensor constant in each point of the partition p,,
it isaso possible to write:
E” =EM =E" (4.3-64)

where:

E™ = average value of the strain tensor in the partition p, .

The equilibrium conditions are, instead, guaranteed by the S.A.S. theorem.
According toit, in fact, it is obtained that:
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s T

ocooooaoaac
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=T = with j=b,m,b, (4365

0
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This means that everywhere in the phases by, m,, b, of the partition p, the

stress tensor is equal to | ; times the stress tensor T" of the homogeneous

reference material.

By indicating the average value of the stress tensor in the partition p, with

Tpl , it can be calculated as:

= O Thav (4.3-66)
V,

where:
V,, = thevolume of partition p, of the RVE.

The eguation (4.3-66) is equivalent to write:

T =Vié QTfdv  with j=b,m,b, (4.3-67)
moio
By remembering that:
O TPV =TV, with j=h,m,b, (4.3-68)

where:

T,Fll = average value of the stress tensor in the generic phase j of the RVE,

with j=h,m,,b,.
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V, = volume of the generic phasej of the RVE, with j =b, m,,b,

So, the equation (4.3-67) can be rewritten in the form:

—_—b _ . H . -
T =fj,T" with j=b,m,b, (4.3-69)
where it has been considered that:
. V. — .
f=—L; Ti=Tr=j TH (4.3-70)
V
Py
with:
f J.' = the volumetric fraction of the generic phase “j”, weighed upon the

volume of the partition p, .

The average stress tensor in the partition p,, T™, therefore, has the

following form:

="
n <

S I

ocooooaoaac

with j =h,m,,b, (4.3-71)

—
|
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At this point, it is possible to obtain the homogenized compliance tensor for
the inhomogeneous layered partition P, , shown in figure 4.7a, by means of the

reation:

T (4.3-72)
with:
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s" =S = homogenized compliance tensor of the inhomogeneous layered
partition P, where the symbol “ x” recalls the homogenization

process, which isin x-direction.
By considering in explicit form the equation (4.3-72), it can be written:

i —— S —p o
CenY €S Su» S 0 0 0 U& U
e u e ue u
b A —n —p Pl
SexU € Sxz  Sos 0 0 0 U& U
e u e ue u
AP A =P T &= P
CexU € Sazss 0 0 0 U& U
& =6 . € "4 (4373)
CeU € Sa32 0 0 Usgju
e u e _ ae u
Gyl € Sym Saimr 0 U& U
e u e _, ae
el E 212 €5 12§

By taking into account the equations (4.3-64) and (4.3-71), for the assumed
hypothesis (4.3-58), the second column of the homogenized compliance tensor

S™ iscaculated. In particular, it is obtained:

e (™
Slp1122 = 5211 =- #(m),
=
=P 1 . .
S2222 :ﬁ’ with j=b,m,,b, (4.3-74)
i
o (M
Ssz = Spozz = - ﬁ,
fjl Es

By repeating the same procedure for the other two stress conditions, it is
possible to determine adding compliance coefficients.
In particular, et us assume now the following stress condition:

s;,,=0,s710, s,=0 (4.3-75)
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So, by using the Voigt notation, the stress tensor of the homogeneous

reference material, T™ , becomes:

(4.3-76)
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The strain tensor, for the same material, is, therefore, obtained by means the
relation (4.3-61), that yields, in Voigt notation:

EH =

D: (> > (D> (D> D> D> (D> D> P> D> D> D) D

N
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sh U (4.3-77)
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0
For the same considerations, already done before, it is till worth to write:
E*=E" with j=h,m,h, (4.3-78)
and:
E" =EM =E" (4.3-79)

Then, according to the S.A.S. theorem, it is now obtained that:
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and by proceeding analogously to what has been already done, it can be
written, again:

=gt

T =1j,T" with j=b,m,b, (4.3-81)

The average stress tensor, T , inthis case, has the following form:

¢ 0 0
é G
¢ 0
—p 6fj s™u o
Tpl—é’J‘ “a with j=b,m,b, (4.3-82)
e 0
¢ 0 U
é G
e 0 ¢

By taking into account the equations (4.3-79) and (4.3-82), for the assumed
hypothesis (4.3-75), the third column of the homogenized compliance tensor

S™ iscaculated. In particular, it is obtained:

_ _ (m)
51?33 253%11:- L(m),
=
= _= ngy T
8233 = S?%ZZ =- ﬁ, with ] = blarnZabZ (43-83)
= 1
551333 :—(m)’
=

Finaly, let us assume the following stress condition:
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s;,,=0,s7=0 510 (4.3-84)

H
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So, the stress tensor of the homogeneous reference material, T, becomes:
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About the strain tensor, for the same material, the relation (4.3-61) yields, in
Voigt notation:

¢ 0 u

s 0y

¢ 0
E" :gs; ﬂ (4.3-86)

¢ 0

g€ 0§

Again, it isstill worth to write:
E*=E" with j=hb,m,b, (4.3-87)
and:

E” =EM =E" (4.3-88)

Moreover, according to the SA.S. theorem, it is now obtained that:
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=T = with j=b,m,b, (4389
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and by proceeding analogously to what has been aready done, it can be
written, again:

V] _ X H . .

T =fj,T" withj=b,m,b (4.3-90)

The average stress tensor, T , inthis case, has the following form:

¢ 0 1
é a
e 0 g
—p € 0 u .
T =e,.. ,a Wwith j=b,m,b (4.3-91)
éfj] Sy
e 0 G
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By taking into account the equations (4.3-88) and (4.3-91), for the assumed
hypothesis (4.3-84), another coefficient of the homogenized compliance tensor

S™ iscaculated. In particular, it is obtained:

_ 1 o
S =—————  Wwith j=b,m, 4.3-92

In this way, for the symmetry of the compliance tensor §pl, only three
coefficients remain undeterminable, and the tensor assumes the form:
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I (43-93)
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where:
fii;= fblj b, T fmzj m, T szj by (4.3-94)

By considering that the mortar is the reference orthotropic homogeneous
material, it is:

] m, =1 (4.3-95)

being the phase m, coincident with the mortar, while it will be:
where:
] , = thebrick elastic ratio

Moreover, it can be considered that the two constituents,b, and b,, of the
partition p, , have the same volumetric fraction weighed upon the volumeV,, of
the partition:

fo, = fo, (4.3-97)

So, the equation (4.3-94) can be rewritten in the form:
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.

fj = 2fb'1j b+ fr'nz (4.3-98)

By comparing the (4.3-93) with the (4.3-54) and by imposing their
equivalence, that is:

s, =s™ (4.3-99)

it is obtained that:

ip =i =20+, (4.3-100)

Then, a ssimilar homogenization process in x-direction has been executed for

the other partition p,, shown in the figure 4.7b. Because of the analogy of the

procedure, it is here shown the result, only, that is the compliance tensor s

A m) m)
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with:
Y/ ,
f, = V—k with k =m,,b,, m, (4.3-102)
P2

and where:



Chapter IV — Proposal of modified approaches: theoretical approaches 262

fk' = the volumetric fraction of the generic phase “k’, weighed upon the

volume of the partition p,.
So, it can be written:

T k= fond me * fogd by + Tongd g (4.3-103)

By considering, again, that the mortar is the reference orthotropic
homogeneous materiadl, it is:
Jmy I mg =1 (4.3-104)
being the phases m, and m, coincident with the mortar, while it will be:
i b, =i b (4.3-105)
Moreover, it can be considered that the two constituents, m, and m, of the
partition p,, have the same volumetric fraction weighed upon the volumeV,
of the partition:
froy = Fing (4.3-106)
So, the equation (4.3-103) can be rewritten in the form:
fj o =2, + oy (4.3-107)
By comparing the (4.3-101) with the (4.3-55) and by imposing their
equivalence, that is:
s =s” (4.3-108)
it is obtained that:
i p, = fd =20, + T (43-109)

According to the geometry of the RVE, it can be considered that:
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(4.3-110)
and so, it can be written:

jp1:j pzsz:fr;\/ert-*-ftjb

with:
V \VA
fre, == and f =_t
VP1 VP1
where:

V. . = thevolume of the vertical mortar in asingle row.

Mer
Vb' =  thevolume of the brick in asingle row.
So, the equation (4.3-50) can be rewritten in the form:
fil i ="t t2f4 p
thet is:
B =ty #2000 (frs + f o)
By considering that:

2f :Vpl +Vp2 — 2vp1

P Vv Vv

2f =1

m, m,

2f,, = f,,

(4.3-111)

(4.3-112)

(4.3-113)

(4.3-114)

(4.3-115)

and by remembering the (4.3-51) and the (4.3-112), the equation (4.3-114) can

be rewritten in the form:
fil i =fnt iy

where:

(4.3-116)
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fo=0r

At this point, it is possible to write the homogenized compliance tensor of

the RVE asit follows:
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(4.3-118)

It has to be underlined, again, that the found elastic coefficients represent a

solution to the homogenization problem that is both exact and very simple. The

exactness is given according to the S.A.S. theorem, [24]. The simplicity is

related to the fact that the homogenized compliance tensor is obtained from that

one of the reference homogeneous material by multiplying for a scalar factor

f **, depending from the geometry of the micro-constituents and from the

elasticratio ] .
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2. Homogenization X ® Yy

Analogously to what has been done for the homogenization y-> x , in order
to smplify the procedure, it is supposed that the homogenization in y-direction
was aready effected. Therefore, the illustrated above masonry RVE can be
considered as the layered material shown below:

X

Figure4.8 Layered materia (RVE)

For this layered material, it is clear that the Nj -direction is coincident with
the x-direction and that the materia inhomogeneity is defined by a function
] (x) that is a constant function, but piecewise discontinuous from a phase to
another one.

For analogous considerations to those previous ones, also in this case, it will
be considered a plane stress tensor T" in each point of the homogeneous

reference body (the orthotropic mortar), so that T" satisfies the condition
4.3-2).
So, a strain prescribed homogenization in x-direction is operated. The sole

non-zero components of the stresstensor T | in this case, have to be:
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Sy10,s210 5,10
5w (4.3-119)
sx=0,s5=0 s2=0

just because they are in the respect of the condition (4.3-2).
According to the SA.S. theorem, for the generic phase “q" of the
inhomogeneous material, shown in figure 4.8, it can be written:

c! =j c"
u, =u" with g=s,s,,5,,5,,S (4.3-120)
T

where:

CyrlUg, Ty = respectively, the stiffness tensor, the displacements solution and
the stress tensor of the generic phase of the inhomogeneous
material (RVE), shown in figure 4.8.

C",u", T" = respectively, the stiffness tensor, the displacements solution

and the stress tensor of reference homogeneous material.

By reiterating the procedure used for the homogenization y ® X, itispossible

to obtain the homogenized compliance tensor for such inhomogeneous layered

material, by means of the relation:

E =S :T (4.3-121)

where:
E =E" (4.3-122)
T = fj T with g=s,s,5,5,5 (4.3-123)

with:
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E = the average value of the strain tensor in the inhomogeneous layered
material, shown in figure 4.8.

T = the average value of the stress tensor in the inhomogeneous layered
material, shown in figure 4.8.

X® y
S = homogenized compliance tensor of such inhomogeneous layered

wnll
i

material, where the symbol “X® y” recdls the two-step
homogenization process, here considering that we first homogenize
in y-direction and then in x-direction.

By considering in explicit form the equation (4.3-121), it can be written:

I—l AY I—l _l _l AY I_l AY
u P P ue- u
St S Stz Suss 0 0 0 g eSuyg
& u é =l =l uaé'ua
ez a Sxwz S 0 0 0 g6 2y
& u é =I uaé=
& xn(_é Sazss 0 0 0 ﬂx§ 33( 43124
&, u"é — uUé_, u (4.3-124)
éexpl é Saxz 0 0 ué& U
e:l u e =l l:I g:l l:I
e U € Sym Saim 0 UG yU
e, u € —, ue_u
el & Sizizl] & 12

By considering the non-zero stress components (4.3-119) separately each
one from the other, and by taking into account the equations (4.3-122) and
(4.3-123), the second and the third column of the homogenized compliance

=I
tensor S are obtained, and so, also the coefficient Ssz2 . In particular, for the

second column, it is obtained:
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=l =l n(m)
Sz = Som1 =- #(m)
fd &
= 1 .
S = with g=s,s,S,,S,, 4.3-125
2222 fq]q>E§m) q %%Sj 485 ( )
=I =I (m)
Ssszp = Sopzz = - L(m)
f o *Es

For the third column, it is obtained:

=l =l n (m)
Si133 = Saann =- #(m)
fj 8
=I =I n (m)
So233 = Saa =- A(m)
qu =
=l 1
Saszz = o=
fd
(4.3-126)
and then:
=l 1
Saxz = PRV
21 "Gy
(4.3-127)

In this way, for the symmetry of the compliance tensor S, only three
coefficients remain undeterminable, and the tensor assumes the form:
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s ng” ngy v
UL T ——C—m T T e 0 0 0y
é (m) U
e L s g 0 04
? fql qEZ fq] qEz H
5.8 - 0 0 0 U (43108
S :é qu qE?Em) G .
¢ a
€ 1 o U
2 2fj GP v
é q32 l:l
é =I l]
é Sm Saim 0 0
é =l l]
e S
where:
qu q= fslj st fszj s, T fs3- s; T fs4j s, T fss- ss (4.3-129)

It can be considered, now, that the three partitions, s, S; and S, have the

volumetric fractions, weighed upon the RVE volume, V , that are in the
following relation:
fo, =2f, =2f (4.3-130)
while the partitions s, and s, have the same volumetric fraction, weighed
upon the RVE volume, V :
fo=f (4.3-131)

where:

(=S t=12345 (4.3-132)
St V 1 Y .

Moreover, it can be considered that, for the geometric symmetry, it is:
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js, =i
o (4.3-133)
J S, =] Sy
So, the equation (4.3-129) can be rewritten in the form:
fg q=2f (i s, *i s, )+ 256 s, (4.3-134)

It is worth to underline, again, that the found elastic coefficients represent
an exact solution to the homogenization problem, and, therefore, both
compatible and equilibrated solution, according to the S.A.S. theorem, [24].

Moreover, as dready said for the homogenization y® X, the SA.S.

theorem aso yields the stiffness tensor for the generic phase “q" of the
inhomogeneous layered material, shown in figure 4.8. By recalling the first
equation of the (4.3-120), it is:

Cy=i C" with g=85,5,5,5,5 (4.3-135)
from whose:
-1

q ] .

S S" with q=s,s,,s,,S,, S, (4.3-136)

So, the compliance tensors for the partitions s, S,, S;, S, and S, can be

obtained as it follows:
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é 1 n{m n{ u
SLET IR ET L E 0
él s St St a
& _m (m u
e. na(m) i 1(m) i nB(m) 0 o d
g 1B JsBE = H
2 nm (m) .
g’ T m n@(m) : 1(m) 0 0 H 4.3-137)
SI é J stEs J stEs J stEs G ( '
e 1 a
& 0 0 0 & O 0
¢ 45 y
e 1 i
e 0 0 0 0 -~ 0 U
é 3 s Gi ﬂ
é
~ 1 -
é a
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g IR
with t1 [1,5]

At this point, it is possible to explicit the constants | s where t is within

the range [1-5], related to the partitions S, S,, S;, S, and S, obtained by

means a homogenization process in y-direction of the elements
{mP b, e, g}, (e, b mes, b} (i, mp, me, o)

{o b, me, bt i} and {m®, b7, mie, me*, m} , respectively, asit is

shown in the figure below.
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Figure4.9 a) partition s;; b) partition s,; €) partition s;; d) partition sg;

€) partition ss.

So, let us consider for example the partition s, .

For this layered material, it is clear that the Nj -direction is coincident,

now, with the y-direction and, analogousdly to the previous case, the material

inhomogeneity is yet defined by a function j (x) that is a constant function,

but piecewise discontinuous from a phase to another one.

For analogous considerations to those previous ones, it will be again

considered a plane stress tensor T" in each point of the homogeneous

reference body.

So, by remembering that the orthotropic homogeneous reference body is

coincident with the mortar, a strain prescribed homogenization in y-direction is

operated. The sole non-zero components of the stress tensor T™ , now, have to

be:

)
ST T

[N

o o
w om

[y

ST NI
11
o O

nw o
NRIKT

[N

I
o o

(4.3-138)
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because they are in the respect of the condition (4.3-2).
According to the S.A.S. theorem, for the generic phase “r” of the partition

S,, it can be written:
cp =j,c"
u*=u"  with r=m®, b¥, m}, m}, m> (4.3-139)
=) T

where:

C*,u*, T2 = respectively, the stiffness tensor, the displacements solution and

the stress tensor of the generic phase of the partition s of the
RVE.
C",u", T" = respectively, the stiffness tensor, the displacements solution

and the stress tensor of reference homogeneous material.
By reiterating the procedure until here used, it is possible to obtain the

homogenized compliance tensor for the inhomogeneous layered partition s,

shown in figure 4.9a, by means of the relation:

=S

1 :Sl :Sl
E =S :T (4.3-140)
where:
=Sl H
E =E (4.3-141)
and:
T =£] T with r=m®, b, m®, md,m  (43-142)
with:

=S

E = the average value of the strain tensor in the inhomogeneous layered

partitions,, shown in figure 4.9a
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=S

T = the average value of the stress tensor in the inhomogeneous layered
partitions,, shown in figure 4.9a

=s;

y
S =S =homogenized compliance tensor of the same inhomogeneous layered
partitions, where the symbol “y” recals the homogenization

process, which isin y-direction.
In (4.3-142) it has been considered that:

f :\%; T =T =) T withr=m®, b, m?, m*, m' (4.3-143)
S1
with:
f,' = volumetric fraction of the generic phase “r”, weighed upon the volume

V,, of the partition s,

V. = volume of the generic phase “r” of the partition S

By considering in explicit form the equation (4.3-140), it can be written:

é:Sl l:l é:Sl =S =S l:l é:Sl u
ey é51111 Sz Suss 0 0 0 a&ug
é&su é =51 =S U é==u
ez a Sz S 0 0 0 g6 2y
é:sl l:l é =S l:l é:sl u
& xn(_é Sazss 0 0 0 ﬂx§ 1 43144
& 08 s, 0e.u (43149
éexpl é Saxz 0 0 ué&au
§=31 lil ? =S lil §=31 lil
G U € Sym Saimw 0 UGz U
e u e ue u
A—S) l:l A =S l:l A—S) l:l
5312 ] 8 S22 % 2

By considering the non-zero stress components (4.3-138) separately each
one from the other, and by taking into account the equations (4.3-141) and
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(4.3-142), the first and the third column of the homogenized compliance tensor

S ' are obtained, and so, also the coefficient 53131. In particular, for the first

column, it is obtained:

=l 1
Sun _W
=l =l n(m) - S S S S S
S»i1 = Sux = - ﬁ with r =m™*, b*, m*, m,m* (4.3-145)
rJr—2
= =l n(m)
Saz11 = Snsz = - %
fi B

For the third column, it is obtained:

=I =I n (m)
Si133 = Saann =- L(m)
fl B
= = n (m)
Soaz = Sgaw =- L(m) (4.3-146)
fr] rEZ
= 1
Saazz = —
f  Es
and then:
=l 1
Saiz = e ~m)
2 fr] rG3l
(4.3-147)

:Sl
In this way, for the symmetry of the compliance tensor S , only three
coefficients remain undeterminable, and the tensor assumes the form:
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é 1 ng” n{ u
€ Em T F M i g M 0 0 ¢
éfrJ rEi frJ rEl frJ rEl U
é =s; nm U
é S S— T 0 0 0O u
é frJ rE2 l:l
é 1 u
=@ — 0 0 0 G (4.3-148)
—é fl B a
é —s u
é Saop 0 O u
e ,
e - u
e m 2760 %
? =S l;]
& S22
where:

frj r = fr;flj nfl + ft;lslj b131 + fr;‘slj n§1 + f‘Slj mfl + fnv*bslj anl (43_149)

m,
By considering that the mortar is the reference orthotropic homogeneous
material, it is:

=] ¢ =] ¢ =1 3-
I R (43150

o )
being the phases m™ coincident with the mortar, while it will be:

] e =l (4.3-151)

where:
] , = thebrick elastic ratio

Moreover, it can be considered that the constituents, m*, m;* and my*, of
the partitions; , have the volumetric fractions, weighed upon the volumeV = of

the partition, that are in the following relation:

fo=2f,=2f (4.3-152)
m m My
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while, for the constituents b and m;*, it can be written:

ft'fl =f (4.3-153)
So, the equation (4.3-149) can be rewritten in the form:
fji =4 frm + fq (1+j,) (4.3-154)

By comparing the (4.3-148) with the (4.3-137) and by imposing their
equivalence, that is:
s. =S’ (4.3-155)
it is obtained that:

(4.3-156)

Moreover, because the partitions S, and S, have the same micro-structure,

as already considered in the first equation of the (4.3-133) , it will be:

| _:Sl _:S5 al i .
Sg=S =S =5,P g7 (4.3-157)
This consideration yields that:
io=ie :4fr;ﬁ + ft;fl (1+j ) (4.3-158)

Then, asimilar homogenization process in y-direction has been executed for
another partition, S,, shown in the figure 4.9b. Because of the analogy of the

=%
procedure, it is here shown the result, only, that is the compliance tensor S
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¢ 1 np  np ;
S EM TR M fy EM 0 0 04
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é =S (m) u
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é ful uEZ u
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S =3 £j EM i ( )
é _s, G
é Seon 0 0
e . ;
€ G
& m 2] GD G
¢ U
& Szzf]
where:
fd o= fal o fad o ¥ Foal ot fa o+ fal 0 (43-160)
and:
f, =\\//“ with u=m>, b, m*, b*,m> (4.3-161)
S,
with:

f = the volumetric fraction of the generic phase “u”, weighed upon the

u

volume of the partition s, .

By considering, again, that the mortar is the reference orthotropic
homogeneous materidl, it is:

o= =1 (4.3-162)

being the phases M, m* and M coincident with the mortar, while it will
be:

o =0 s =1 (4.3-163)
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Moreover, it can be considered that the constituents, M, m* and mg, of
the partitionss,, have the volumetric fractions, weighed upon the volumeV; = of
the partition, that are in the following relation:

fr'@ = 2fr'1152 = 2fr'%52 (4.3-164)
while, for the constituents b and k5%, it can be written:
fo="F (4.3-165)

So, the equation (4.3-160) can be rewritten in the form:
f,=4f o +2f., (4.3-166)
By comparing the (4.3-159) with the (4.3-137) and by imposing their
equivalence, that is:
S! =S (4.3-167)
it is obtained that:
s =fi. (4.3-168)
Moreover, because the partitions S, and S, have the same micro-structure,

as already considered in the second equation of the (4.3-133) , it will be:

=S =S A A
S,=S =S =S_bPj,=j, (4.3-169)
This consideration yields that:
s =) = o ¥ 2M0, (4.3-170)

Finally, the same homogenization process in y-direction has been executed

for the partitions;, shown in the figure 4.9c. The obtained compliance tensor

=s
S is
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& Em T E® T g™ O 0 0 ¢
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S =g fj EM i (4.3-171)
é S 0 0
¢ 1 v
€ a
é Im 2fv‘j ] (;n) u
e _, U
& Szo
where:
v =fal st fad ot fal atfad o fad o (43172)
and:
f, =\\//V with v=m>, m¥, m>, b, m> (4.3-173)
s,
with:

f = the volumetric fraction of the generic phase “v’, weighed upon the

v
volume of the partition s,.
Again, it is possible to write:

o= = =1 (4.3-174)

being the phases m®, m*, m® and m coincident with the mortar, while it
will be:

] % = (4.3-175)
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Anaogously to the previous case, it can be considered that the

congtituents, >, m>® and m, of the partitions,, have the volumetric
fractions, weighed upon the volumeVg of the partition, that are in the

following relation:

fr'nsss = 2fr'rfs = 2fr'%53 (4.3-176)

while, for the constituents my* and b5* , it can be written:

fr'nzss = ft;;s (4.3-177)
So, the equation (4.3-172) can be rewritten in the form:
Tl =4f o+ e (1) (4.3-178)
Becausg, it is:
fo=1fg
moon (4.3-179)
fbsss = fbfl
it is obtained that:
fji,=1j, (4.3-180)

By comparing the (4.3-171) with the (4.3-137) and by imposing their
equivalence, that is:
S. =S (4.3-181)
it is obtained that:
=fj, (4.3-182)
and so:

is =g =i =4 atfa(lti,) (4.3-183)



Chapter IV — Proposal of modified approaches: theoretical approaches 282

By substituting the (4.3-158), the (4.3-170) and the (4.3-183) in the equation
(4.3-134), and by operating some manipulation according to the definition of
the involved volumetric fractions,, it is reached that:

A A Vi | Ve
i =1 +4-% (1+j )+8-""+4
d a Vv Vv (14) Vv Vv

i, (4.3-184)

So, according to the geometry of the RVE, it can be written that:
16me1 + 8me2 =V,
4be1 = 4Vm§1 =V (4.3-185)
4be1 + 4Vblsz =V,

rizz

where:

me = the volume of the horizontal mortar in the RVE.

VmVer = the volume of the vertical mortar in the RVE.
\V4

t
, = thevolume of the bricks in the RVE.

V the volume of the representative element.

So, the equation (4.3-184) can be rewritten in the form:
\/ \/ V.
fj =—Toiz g et 4 7b; 4.3-186
q] q V V V J b ( )
By considering that:
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fm = f"brizz + fn\/ert
f - V”\/ert
Myert V
4.3-187

f - V"brizz ( )
Morizz V

V,
f=me

where:
f.. = the volumetric fraction of the mortar, weighed upon the volume V of the
RVE.
f, =the volumetric fraction of the brick, weighed upon the volume V of the

RVE.
The equation (4.3-186) becomes:

fd q=Tutfdo (4.3-188)
At this point, it is possible to write the homogenized compliance tensor of
the RVE asit follows:

(m) (m)
Ny, Ny

&l
gSun -

u

< - = 0 0 0y
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& 1 n{m u
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é B B u

g L 0 0 0 ;
- = U (4.3-189
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wheref =(f_ +fj ).

By comparing the equation (4.3-118) with the equation (4.3-118), it is noted
that the found elastic coefficients of the homogenized compliance tensor
obtained after the homogenization process y ® X are equal to those ones of

the homogenized compliance tensor obtained after the homogenization process
X® Yy . This means that the proposed two-step homogenization appears to be a

consistent procedure, which, differently from the standard two-step
homogenization approaches found in literature, doesn't lead to results
depending on the order of the step execution.

So, by unifying the two results, a more complete homogenized compliance
tensor is obtained:

é 1 n{ n{ u
Cemy T (151)]: - (lr?w)f 0 0 0 ¢
SEMF TEM E ;
e 1 n{m u
é o - 0 0 0u
e E"f E,"f a
€ 1 u
Hom _ é =M 0 0 0 u
grom = & E0f G (4.3-190)
é a
& 1 0
é 2G;,f u
€ 1 G
e Sym u
8 2G\ U
e omU
e S1Hzlz u
with:
SH™ = the found complete homogenized compliance tensor.

It has to be underlined that there is a sole elastic coefficient remaining

unknown.
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By comparing the proposed homogenization technique with Pietruszczak &
Niu's one, it can be said that:

PIETRUSZCZAK & NIU APPROACH - implies an approximated
homogenization procedure in two steps, whose results are dependent on the
sequence of the steps chosen. It represents the limit of this kind of the existing
approaches.

S.A.S. APPROACH - employs a parametric homogenization which results
consistent in the two-step process, by implying exact solutions in some
direction. Hence, the proposed procedure overcomes the limit of the simplified
approaches. Moreover, it has to be underlined, yet, the simplicity of the
procedure which yields to obtain the homogenized compliance tensor from that
one of the reference homogeneous material, by multiplying for a scalar factor

f ** depending on the geometry of the micro-constituents and on the eastic

raio, j .
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CHAPTER V

Remarks on finite element method (F.E.M.)

5.1 Introduction

The procedure of subdividing a complex system into its components, or
elements, whose behaviour is more easily described, represents a natural path
followed in every science branch, as well as the engineering one.

Such a treatment, defined as “discrete problems’, is often used in order to
overcome the difficult solution of the “continuous problems’, where a complex
mathematical continuous model is hold by local differential equations.
However, both mathematics and engineers have developed general techniques
that are directly applicable to the differential equations of the *continuous
problems’, aswell as:

- approximations to the finite differences.
- weighted residua techniques
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- appropriate techniques on the determination of the stationariness
of some functional.

On the other side, engineers study the problem by establishing an analogy
between the elements of the discrete model and the portions of the continuous
domains. For example, in the solids mechanics area, Mc Henry, Hremikoff e
Newmark have shown, in the early fifty years, that suitable solutions to the
elastic problem of the continuum can be obtained by means of substitution of
little portions of such medium with an assembly of simple elastic beams. Later,
Argyris and Turner also demonstrated that the mechanical behaviour of the
continuum can be obtained by analyzing the elements in which it is subdivided.

With the use of persona computers, furthermore, the “discrete problems”
are easily solved even if the number of elements, necessary to obtain a suitable
model, is enough great.

The term “finite element” was born for direct analogy.

The goal of this chapter is to show that the finite element method
corresponds to a continuum discretization, based on consistent mathematical
models.

Standard methodologies are developed, in the last years, in the analysis of
discrete problems. The civil engineering, for the structures, first estimates the
relations between forces and displacements for each element of the structure
and then provides to assembly the whole system by means of a well defined
procedure: it requires establishing the local equilibrium for each node or each
connection point of the structure. The solution of the unknown displacements
becomes, o, feasible.

It is possible to define some systems of standard discretization. The
existence of a unified treatment of the discretization standard problem allows
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us to define the finite element procedure as an approximation method for the
continuous problems, so that:
- the continuum is divided into a finite number of parts (elements)
whose behaviour isindividualized by a finite number of parameters
- the solution of the whole system is obtained by assembling its

single constituent elements.

5.2 Structural elements and systems

In order to introduce the general concept of the discrete systems, it is
initially considered, for example, the structure of figure 5.1 with a linear
mechanical behaviour, [59].

The connexions are given by hinges, so that the moments cannot be
transferred. It is assumed that, from pulled apart calculations, the
characteristics of each element are exactly known. Hence, if a typical element,
marked with (1) and associated to the nodes 1, 2, 3, is analyzed, the forces
acting on such nodes are univocaly defined by the same nodal displacements.
Both forces and displacements are defined by appropriate components (U, V, u,
V) in aglobal coordinate system. The distributed load is named p. Furthermore,
it is presumed an initial deformation, for example due to a thermal variation.
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Figure5.1 Typical structure constituted from interconnected elements.

By listing the forces acting on all nodes (in the examined case, node 3) of
the elements (in the examined case, element 1) in matrix form, it is obtained:

e
| |
i Gy G =
| |
TQip

q =

—_)——

U,
'y, etc (5.2-1)
v, p
and for the corresponding nodal displacements:
W 0

1= , & 5.2-2
& v C (5.2-2)

ml—\
I
—_— — —— —/
R
T T
—_— — —

By considering a linear-elastic behaviour of the element, the characteristic
relations assume the form:
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q' =K'a' +f) +f; (5.2-3)
where:
f; = the nodal forces necessary to balance the distributions of acting loads
on the element.

f1 = thenodal forces necessary to balance the reactions due, for example, to

€o
thermal strains.

K'a' = the nodal forces due to the nodal displacements.
At the same manner, the preliminary anaysis lets to define a unique
distribution of stresses and internal reactions in a specific point, in terms of

nodal displacements.

Hence, the stresses are defined by means of a matrix s ' and relations

having the following form:
1 14l 1 1
s =Sa +s,;+s, (5.2-4)
wherethe last two terms are, respectively, the stresses due to the distribution of

load on the eement and the stresses due to the initial strains when the
displacement results to be constrained.

The matrix K°® and the matrix S° are known, respectively, as stiffness
matrix and stress matrix of the element.

The rdations (5.2-3) and (5.2-4) have been illustrated in an example of
three nodes element, with interconnection points that are able to transfer only
two force components. However, the same considerations and the same
definitions can be applied to a genera case.

The dlement 2 has only two interconnection points, but in genera it is
possible to have a higher number of such points. Moreover, if the connections
arerigid and built-in, the three components of the generalized forces and of the
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generalized displacements corresponding to moments and rotations,
respectively, have to be considered. For rigid connections in three-dimensional
structures, the number of components for each nodeis six.

la; u

ig; a
i

q° = and a®= | (5.2-5)
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where g7 and & have the same components number of the freedom grades.

These quantities are connected the ones with the others.
The stiffness element matrix is always a square matrix and it assumes the

form:
6Ki Kj . KU
Ke:g' 8 (5.2-6)
&, N
where:

K% = are square submatrices | x |, with 1 the number of force components

which have to be considered at nodes.
For example, it can be considered a hinged beam, having an uniform section
A and Young's modulus E, in atwo-dimensional problem, asit is shown in the
following figure.
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Figure 5.2 Hinged beam.

The examined beam is subjected to an uniform lateral load p and to a
uniform thermal deformation:
e=aT (5.2-7)
By denoting with %, y; and X, , Y, the extreme nodes coordinates, the beam
length is defined as:

L= \/[(Xn - xS +(yo- vi)] (5.2-8)
and its slope with regards to the horizontal axis as:
b = tan'lu (52_9)
X, - X

At nodes, only two components of the forces and of displacements have to
be considered.
The nodal forces dueto lateral loads are:
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|U,u i-senby
Iy, o I I

e_lV|| 1COSb|pL

f = — 5.2-10
0y ) ez

nl
fv,p 1 cosb p
and represent the components of the reactions on the beam, pL/2.

In order to block the thermal strain g, , an axia force is necessary (EaTA),

whose components are:
iUya  i-cosbi
R
fo I, Y=71 o VERTA) (-211)
-I- U " -I- -I- -I-
v, b t senb p
The element displacements are, finally:
iu
Iy !
a®={ 'y (5.2-12)
Pt
fvp

They cause an elongation equal to (u, - u, Jcosb +(v, - v )senb . This one,
multiplied for EA/L, yields the axial forces whose components can be found
again.

By using a matrix notation, it s obtained:

< C

Keae =

—_— o ——— —

< C

ol S =
1
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\

/

é ows'b senb cosb -oos'b - snboosbUiy U
EAS snb cosb sn’b -snboosb  -sn’b l“lIVJ|
=—¢ , , al 3'/(5.2-13)
L€ -cosb -snboosb cos b senbcosb Upu
e 2 2
& snboosb  -sn’b senb cosb sn’b ufvnb

The general components of the equation (5.2-3) have been established by
means of the analysis of an elementary case. It is very simple to obtain the
stressin a genera element section in the form given by (5.2-4).

For example, if our attention is focused on the middle section C of the
beam, the extreme stress in the fibres is determined by the axia forces and
bending moments acting on the element. By using the matrix notation, it can be

written:
. _15:0
SC_%SZEC
Egosb -snb cosb snby, j1gpld j4 (5.2-14)
=Igoosb -senb oosb senbEfiJr% ?T thaT
where:

d = half deepness of the section.
| = inertial moment of the area.

All the terms in the (5.2-4) can be easily known.

For more complex eements, more advanced analytical procedures have
been required, but the results are formally identical.

It is worth to notice that the complete stiffness matrix, obtained for the
simple examined element, results to be symmetric. This is the consequence of
the energy conservation and its corollaries (the well known Maxwell-Betti

theorem).
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The properties of the elements are assumed by considering smple linear
reations. Generally, smilar relations could be also established for non-linear
materials.

5.3 Assembly and analysis of a structure

Let us consider the whole structure of the figure 5.1. In order to obtain the
complete solution, both the following conditions have to be satisfied:

a- compatibility
b- equilibrium
A general system of nodal displacements a, having the form:
a,u
I IIZ
a=i 'y (53-1)

i
ta.p

and built by taking into account al the structure elements, satisfies
automatically the first condition.

In this way, the equilibrium condition within the single element is satisfied,
while it is necessary to establish the equilibrium condition at structure nodes.
The resulting equations will carry the unknown displacements, so that the
structural problem is determined after founding such displacements.

The interna elements forces or the stresses can be easily attained from the
equation (5.2-4) by using priori-established characteristics for each element.

Let us consider that the structure is loaded with external nodal forcesr, in
addition to distribute loads acting on the single elements.
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ra

1
Y (5.3-2)
p

tr.p

The generic force ri, moreover, must have the same number of components

i

)
=
:

than those ones of the reactions of the examined €l ements.
For example, in this case, since the hypothesis of hinged nodes has been
done, itis:

NC

r.= : X (5.3-3)
Y
However, in order to generalize the problem, an arbitrary number of
components are taken into consideration.
If the equilibrium conditions for a general node i are imposed, each r;
component is equal to the summation of the components of the forces acting on
the elements concurred in the node.

Hence, by considering all the components of the forces, it is obtained:
m
n=aar=di+q’+.. (5.3-4)
e=1
where:
q; = the force contribute to the node i from the element 1.

q’ = the force contribute to the node i from the element 2.

Only the elements concurred in the node evidently give a non-zero
contribute to the forces. For not losing in generdity, the summation is here
thought to be extended to al elements.
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By substituting in the eguation (5.2-3) the forces contribute to the nodes i
and by noting that the nodal variables a; are common (so that the index e can

be omitted), it is obtained:

=K B KL Al (639)
€em1 %] €e1 %] e=1

where:
fe=f +fg (5.3-6)
and where the summation is again pertained to the sole elements concurred in

the nodei.
By assembling the equations, relative to al nodes, it is ssmply obtained:

Ka=r-f (5.3-7)
where the submatrices are:
& e
K i = a—lK ; (5.3-8)
& e
f.=af (5.3-9)
e=1

and where the summation includes all elements.

Such arule for assembling is very suitable because as soon as a coefficient
is determined, for atypical element, this one can be immediately introduced in
its own location within the global stiffness matrix of the structure.

This general process can be easily extended and generalized to any process
which adopts the finite e ements methodol ogy.

It is worth to be noted, moreover, that the structure is constituted by
different elements and that, in order to carry out the matrix summation, all the
matrices must have the same dimensions. Furthermore, the single matrices to
sum have to be constructed with the same number of components of forces and
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displacements. For example, if a force component is able to transfer moments
a a node and if another hinged node is coupled with it, it is necessary to
complete the dtiffness matrix by inserting appropriate null coefficients
corresponding to rotations or moments.

5.4 Boundary conditions

The system of equations resulting from the (5.3-7) can be solved afterwards
having substituted the pre-determined displacement field. In the example of the
figure 5.1, where both the displacement components of nodes 1 and 6 are equal
to zero, this means the substitution of:

a, =a, = : o (5.4-1)
TO[\;
This is equivalent to reduce the number of equilibrium equations (12 for this
case) by deleting the first and the last couple and, so, by reducing to eight the
number of unknown displacements.

It is always suitable, nevertheless, to include all nodes when assembling the
equations according to the relations (5.3-7). Obviously, without a number
minimum of constrained displacements, (that is a number minimum of
constrains which blocks the rigid displacement of the structure), it is not
possible to solve the system, since the displacements cannot univocally be
determined. Such an obvious physical problem can be mathematically read in
the fact that the matrix K becomes singular and has not an inverse matrix.

The assignment of suitable displacements, after the phase of the assembly,
allows obtaining a unique solution by deleting suitable rows and columns from

the various matrices.
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If al the equations of a system are assembled, the assumed form is the
following one:
Kya +Kpa, +..=r, - f,

(5.4-2)
Kya +Ka,+...=r,-f,

It is well known that, if some displacements as a, = a; are s, the external

forces r; cannot be set and they remain unknown. The first equation can be

deleted and the a; value can be substituted in the remaini ng equations.

Such a computational process is uncomfortable and the same result can be

reached by adding a very large number, al , to the coefficient K, and then by

rectifying with aa the right member of the equation r, - f,.

If a is quite greater than the other stiffness coefficients, such a correction

really substitutes the first equation of the (5.4-2) with the following one:
aa, =—aa (5.4-3)
which represents the required condition.

The whole system remains symmetric and only few and little changes are
necessary in the computational sequence. Such a procedure is employed for the
assigned displacements. It was introduced by Payne and Irons.

When dl the boundary conditions have been introduced, the system
equations can be solved according to unknown displacements and strains.
Hence, the internal forces for each element are obtained.

5.5 General model

In order to straighten the topic discussed in this chapter, we consider an
example where five elements are interconnected, as shown in the figure 5.3.
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Figure 5.3 An assembly example for the stiffness matrix.

The first step is to determine the element properties from geometry and
loads.

For each element, the tiffness matrix, and so the corresponding nodal
forces, are found in the form given by the (5.2-3). Each element isidentified by
its own number and by nodal connections. For example:

element 1 connection 134
element 2 142
element 3 52
element 4 3674
element 5 4785

Tabe5.1 Nodal connections.
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By assuming that the properties are evaluated in a global reference system,
the stiffness values and the forces can be introduced in their location in the
globa matrix (see fig. 5.3b). Each shaded square represents a single coefficient

or submatrix of akind K .

The second step is the assembly of the fina equation. According to the
equation (5.3-8), this is obtained by means of a ssimple summation of all
numbers set in the apposite spaces of the global matrix.

The result is shown in the figure 5.3c, where the coefficients are blackened.

All the non-zero coefficients are edged within the BAND, which can be a
priori-calculated from the nodal connections.

In a computer programming, only the elements located to one side of the
diagona have to be memorized.

The third step is the input of the boundary conditions in the assembled
matrix.

The fourth step is the solution of the system with any methodology.

5.6 The systems of standard discretization

In the standard discretization systems, either structural ones or other
different ones, it isworth:

1) A set of parameters, caled a, can be detected. These parameters
simultaneously describe the behaviour of each element e and of the whole
system. They are called system parameters.

2) For each element, a set of quantities g;° can be calculated, in function of the
system paramaters &, as shown in the following equation:

q° =q°(a) (5.6-1)
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Such relations can generally be non-linear, but in alot of cases they assume
alinear form, of akind:

q; =K, a, +K,a, +...+f° (5.6-2)
3) The system of equationsis obtained by a simple sum:
g o
r=adi (5.6-3)
e=1

In the linear caseg, it is obtained:

Ka+f =r (5.6-9)
so that:
_8 e
Ky=aKj
s (5.6-5)
f, = é fe
e=1

From such system, after the suitable boundary conditions have been
imposed, the solutions in the variables a are found.

It is noticed that these statements are very general and they include
structural problems, hydraulic or electronic ones, etc. Generally, there is neither
linearity nor the symmetry of the matrices, even if both linearity and symmetry
naturally comein alot of problems.

5.7 Coordinate transfor mations

It is often suitable to establish the characteristics of a single element in a
coordinate system different from the one in which the external forces and
displacements of the assembled structure will be measured.
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A new coordinate system can be used for each element, so it becomes a
simple problem of transformation of the force and displacement components
contained in equation (5.2-3) in another coordinate system.

Obvioudly, the passage from the local reference system to the global one has
to be carried out before to employ the assembly.

The local coordinate system in which the element properties have been
evaluated is marked by the superscript ¢

The displacement components can be transformed through a suitable matrix
of the direction cosines L with:

a=La (5.7-1)
The corresponding force components have to carry out the same work in the
systems:
q'a=q" a (5.7-2)
By considering the (5.7-1), it is obtained:
q'a=q"' La (5.7-3)
or
q=L"q' (5.7-4)

The set of the transformations given by the (5.7-1), (5.7-2), (5.7-3) and
(5.7-4) is called controvariant.
The dtiffness matrix could also be obtained in the loca reference system,

and so opportunely transformed. It can be, therefore, written:

g=K'a (5.7-5)
Fromthe (5.7-1), (5.7-3), (5.7-4) and (5.7-5), it is obtained:
qg=L'K'La (5.7-6)

or in the globa coordinate system:
K=L"K'L (5.7-7)
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The above mentioned transformation results to be very useful. This fact can
be verified by calculating the stiffness values of the previous example
(structure with hinged nodes) in the local reference system.

Generally, the problem is to substitute a group of parameters a, in which the
system of equations has been written, with another one b by means of a
transformation matrix T. Hence, it is obtained:

a=Tb (5.7-8)
In the linear problem, the system of equations assumes the following form:
Ka=r-f (5.7-9)
and, by substituting, it can be written:
KTb=r-f (5.7-10)
By pre-multiplying for T', it is obtained a new system:
(T"KT)o=TTr- T7f (5.7-11)

where the equations symmetry is preserved if the matrix K is symmetric.
However, sometimes the matrix T is not a square matrix and the (5.7-8)
represents an approximation in which a large number of parameters a is
constrained.
Evidently, the system of equation (5.7-10) has more equations than those
closely necessary in order to solve the transformed group of parameters b and
the final expression (5.7-11) shows a reduced system which rounds the original

one.

5.8 General concepts

The approximation process of a continuum behaviour by means of “finite
elements’ (whose behaviour is quite similar to the actua structure make
“discret€’) was introduced, in the first place, on mechanical structures.
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In a lot of engineering problems, the solution of the stress and strain
distributions in an elastic continuum is required and different problems can be
encountered: plane stress field, plane strain field, solids with an axia
symmetry, plates, shells, three-dimensional solids and so on.

In all cases, the number of interconnections between each finite element and
its contiguous ones, through imaginary boundaries, is infinite. For this reason,
it is very difficult to understand, in afirst approach, how some problems may
be discretized.

Such adifficulty, however, can be overcome in the following manner:

1. The continuum is divided, by imaginary lines or areas, in afinite number of
elements.

2. The elements are assumed to be interconnected by means of a discrete
number of nodal points located on their boundary. The nodal displacements
are the unknown quantities of the problem.

3. A set of functions is selected to univocally define the displacement field
within each “finite element” in terms of the nodal displacements.

4. The displacement functions univocally define the strain field within the
element in terms of nodal displacements. Such strain field, together with
some initial strains and with material properties, define the stress state in
the element and on its boundary.

5. A force system, acting on nodes, in equilibrium with the boundary tractions
and some distribute loads, is obtained by means of the stiffness relation
(5.2-3).

Finaly, the solving procedures follow the general models described in the
previous paragraphs.

Obvioudly, in a first approach, it is not aways easy to select displacement
functions which satisfy the requirement of continuous displacements between
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contiguous elements. This means that the compatibility conditions on boundary
can be violated. On the contrary, the compatibility conditions within each
element are obvioudly satisfied, due to the uniqueness of the displacement
underlying their continuous representation.

Furthermore, the equilibrium conditions are satisfied only in a global form,
due to the equivalent point-wise forces at nodes. Hence, local violations to the
equilibrium conditions can rise within the element and its boundary.

The choice of the element form and of the displacement functions form is
depending by the engineer’ s genius and, evidently, the approximation degree in
the resultsis strongly dependent by this choice.

Such atill now described approach is known as displacement formulation. It
is equivalent to minimize the total potential energy of the system in terms of an
assigned displacement field. The right definition of such displacement field
provides a convergence in the results.

The acknowledgment of the equivalence between the finite element method
and a minimization procedure for the total potential energy has been guessed
late.

However, Courant in 1934 and Prager at Synge in 1947 suggested methods
essentialy identical.

It is worth to notice that the finite element method allows to be extended to
various continuum problems where it is possible to have variationa

formulations.

5.9 Direct formulation of the Finite Element Method

In this paragraph, some indications are given in a more detailed
mathematical form, in order to obtain the characteristics of a finite element. It
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is preferred to obtain the results in a generalized form, which is, so, applicable
to various situations.

In order to avoid difficult concepts, the general relations are illustrated by
means of very simple examples regarding the analysis of plane stress fields for
athin structure.

A generd region is divided in triangular elements, as shown in the figure
5.4.

Figure 5.4 Plane stressfield for aregion divided in triangular elements.

5.9.1 Shapefunctions

A typica finite element, e, is defined by the nodes i, j, m,... etc. and by
boundary lines. The displacement vector u in a point within the element is

approximated by a column vector (.
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Ia; u
u»i=3 Na =[N,,N,,. 1y =nNa® (5.9.1-1)

where:

N; = pre-established functions depending on the nodes coordinates
a°=nodal displacements for a particular element.

In plane stress field, it is obtained, for example:

Tulx y)i
v(x y)b

This represents the column vector (horizontal and vertical displacements) of a

u= (5.9.1-2)

typica point within the element. Moreover, it alsois:
iua
=i (5.9.1-3)
)

which represents the column vector of the corresponding nodal displacements
(nodei).

The functions N;, N;, N, are chosen so that they provide the respective
nodal displacements when the corresponding node coordinates are introduced
in the equation (5.9.1-1).

In generadl, it can be written:

Ni (X, y,) =1 (identity matrix) (5.9.1-4)
while:
N; (xj VY ) =N; (xm, ym) =0, ec (5.9.1-5)
which is aways satisfied by suitable linear functionsin x and y.
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If both displacement components are identically interpolated, it can be
written:

Ni=N; | (5.9.1-6)
where N; is obtained by the (5.9.1-1), by noticing that Ni=1 for the vertex with
coordinates x;, y; but it is equal to zero for the other ones.

In the case of triangular elements, the more obvious linear interpolation is
shown in the following figure.

Figure5.5 Shape function for triangular elements.

The function N is named shape functions and they are very important, as it
will be seen, in the analysisto finite elements.

5.9.2 Strain fields

By the knowledge of all displacements within the element the strain field
can be determined everywhere, in each element point, according to the
following matrix relation:

e=Su (5.9.2-1)
where:

S = asuitable linear operator.
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By considering the equation (5.9.1-1), the (5.9.2-1) is approximated as:
e=Ba (5.9.2-2)
with:
B =SN (5.9.2-3)
For plane dtrain fields, the strain values are obtained in terms of
displacement fields by means of the well-known relations which define the

operator S:
\| ﬂu u éﬂ l:l
. 1T — 1 é&— 0uq
te g eopoelx o a
e=te, y=I v {',:go BT (5.9.2-4)
J\g i i ﬂy i é ﬂyﬁv
Sopifu v 21 T

fry w™ph &y g
If the shape functions, N;, N; N, are already established, the matrix B can
be easily reached. If alinear form is assumed for such functions, the strain field
is constant everywherein the element.

5.9.3 Stressfields

Generally, an element is subjected to initial strains, on its boundary, due, for
example, to temperature gradients. Such strains are denoting with €.

The stresses are caused by the difference between the actua strains and the
initial ones. Furthermore, it is suitable to assume that there was also an initial
stress state in the element, due to residual stresses s , ,which can be measured
but cannot be known if the material stress history is unknown.

Hence, for alinear-elastic behaviour, they are assumed the following stress-
strain linear relations:
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s =D(e- g,)+s, (5.9.3-1)
where:
D = dadtic stiffness matrix which contains the material properties.
For plane stress fields, there are only three stress components, denoted with:

Is, 0
s=is,y (5.9.3-2)

The matrix D is simply obtained from the stress-strain for an isotropic
material:

s (5.9.3-3)

Hence, it is obtained:

é u
D=——& 1 o0u (5.9.3-4)

1-u“é 1-uu

g % 21

2 4

5.9.4 Equivalent nodal forces

Let us assign the following nodal forces:
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u
i
'y (5.9.4-1)

which are statically equivalent to the boundary tractions and to the element
distribute loads.

Each force g7 has the same number of components than the corresponding

nodal displacements @, and also the same directions.

The distribute mass forces b are defined as forces on unit volume at an
element point and they have directions corresponding to those ones of the
displacements u in such point.

For example, in a plane stress state, the nodal forces are:

q¢ = 'V;E (5.9.4-2)

where the components U and V correspond to the displacement directions u and

v, whileit is:

b i
b={ 'y (5.9.4-3)
byg

—_ — —

where b, and by, are the mass force components.
In order to found the statically equivalent nodal forces, it can be imposed a

virtual displacement, da®, at nodes and then the externa work has to be

balanced to the internal one.
According to the equations (5.9.1-1) and (5.9.2-2), the assignment of the

virtual displacement da® implies the following displacements and strains,

respectively:
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du=Nda® and de=Bda°® (5.9.4-4)
The external work can be written in the following matrix form as:
da®' g° (5.9.4-5)
while the interna work for unit volume is given by:
de's - du'b (5.9.4-6)
or
da"(B's - N'b) (5.9.4-7)

By integrating the internal work in the element volume V¢ and, then, by
balancing the two works, it is obtained:

% )
da®’ g° = da®' (Cévc‘jBTst - N'bdV = (5.9.4-8)
e ve %]

The equation (5.9.4-8) is valid for each virtual displacement and, therefore,
it hasto be verified the following relation:

q°= (B'sdV- N'bdVv (5.9.4-9)
Ve Ve

By taking into consideration the equation (5.9.3-1), the equation (5.9.4-9)

can be written in the following form:

g°=K*®a®+f°® (5.9.4-10)
where:
K*®= ¢p'DBdV (5.9.4-11)
v
and

fe=- N'bdV - B De,dV + B's,dV (5.9.4-12)
Ve

Ve Ve
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In the last equation, the three terms in the right hand represent the forces
due, respectively, to the mass forces, to the initial strains and to the initial
stresses.

If the initial stress field is self-equilibrated, like in the case of residual
stresses, the contribute of such forces in the (5.9.4-12) is identically null. For
this reason, their estimation is often omitted.

In the particular case of plane stress field for triangular elements, the matrix
B doesn't depend on the coordinates, so the volume integra becomes
particularly simple.

The structure interconnection and the structure solution, given by the
elements assembly, follow the simple procedures until now described.

Generally, nodal concentrated forces can be applied at nodes, and so the

matrix:

—_
N

—G— =

(5.9.4-13)

— —— — —

P
fr.p
is added up to the equivalent nodal forces.

If some boundary displacements are individualized, they can be satisfied by
establishing some of the nodal parameters a.

Let us consider that the boundary is subjected to distribute loads t for unit
area. Thus, aload condition at the nodes of an element having a boundary face
A® has to be taken into consideration. By means of the virtual work principle, it
isread as:

- ON"tdA (5.9.4-14)
Ae
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It is worth to notice that t must have the same number of u components in
order to satisfy the (5.9.4-14).

Once the noda displacements are determined from the global structure
solution, the stress field in some elements points are found by means of the
equations (5.9.2-2) and (5.9.3-1), that is:

s =DBa’- De, +s, (5.9.4-15)
where the terms of the equation (5.2-4) areimmediately recognized. The stress
matrix is given by:

S° =DB (5.9.4-16)
and the stresses:
S, =-De, +s, (5.9.4-17)
have to be summed.

In the (5.9.4-15) there are not the stresses due to the distribute load, s,

because the internal element equilibrium has not been considered, since only
global equilibrium condition have been established.

5.10 Generalization to the wholeregion

In the previous paragraph, the virtual work is applied to the single elements
and it is introduced the concept of the equivalent nodal forces. The assembly
follows the traditional approach of the direct equilibrium.

The idea of considering the contribute of the noda forces on the element
substitutes the actual interactions in the continuum. If such introduction of
nodal forces which are equivalent to nodes is quite obvious from an
engineering point of view, it is less obvious from the mathematical one.
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The reasoning previously done can be directly applied on the whole
continuum. However, each element has to be separately considered, yet. Thus,
the equation (5.9.1-1) can be read as applied on the whole structure, and so it
assumes the following form:

u=Na (5.10-1)
where a comprises al the nodal displacements and where:
Ni =N¢ (5.10-2)
if the point i isinternal to a particular element ewhileitis:
Ni =0 (5.10-3)
if the point i is not internal to a particular element e.
The matrix B is also defined and it is considered that the shape functions

are defined on the whole region V. For simplicity, we omit the superscript

g H. For virtua displacements da, the sum of the internal and external work

for the whole region assumes the following form:

- da'r = (plu"bdV + ¢flu"tdA - ¢ple’sdV (5.10-4)
\% A \%

In the equation (5.10-4), the quantities da, du, de are arbitrary only if they
derive from continuous displacements. Let us assume, for simplicity, that such
guantities are simple variations according to (5.9.2-2) and (5.10-1). Hence, by
considering the (5.9.3-1), an algebraic system is obtained:

Ka+f =r (5.10-5)
where:

K = ¢B'DBdV (5.10-6)
\%

and
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f=-N"bdV - N"tdA- B'De,dV +B's,dV  (5.10-7)
\% A \% \%

The integrals are calculated on the whole volume V and on the whole
surface A.

It is obvious that:

K;=aKe f=afe (5.10-8)
since, for the property of the definite integrals, it is:
Jlav=3a ¢ v (5.10-9)
\% Ve

The same thing is true for the area integrals.

The assembling rules are so obtained without building the interaction forces
between the elements.

By considering the equation (5.10-4) and by making it equal to the sum of
each element contributes, it is implicitly assumed that there are not
discontinuities between adjacent elements. In other words, it is required that the
integrated terms in the equation (5.10-9) are continuous functions. Such terms
derive from the function N; used to define the displacement u. (eg. (5.10-1)).
Hence, for an example, if the strains are obtained by the first derivatives of the
function N, the latter have to be continuous, that is, it has to be a C, class
function. In some more general problems, the strain can be defined by means of
the second derivatives of the function N. In such cases, it is required that the
function N and its derivatives have to be continuous, that is, they have to be C;

class functions.
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5.11 Displacement method as the minimum of thetotal potential energy

The virtual work principle used in the previous paragraphs guarantees the
satisfaction of the equilibrium conditions, in the pre-established limits of the
displacement model. If the number of the parameters a, defining the
displacement field, increases beyond some limits, then all the equilibrium
conditions can be assured since the approximation is very close to the redlity.

Hence, the equation (5.10-4) can be rewritten in a different form if the
virtual quantities da, du, de are considered as variations of the actua ones. For

example, it becomes:

O_

dEE‘T N T Ty
éa r+qg bdv+gi tdA dw (5.11-1)
\% A

7]
where:

W = external forces potential

Thisistrueif r;, b, t are conservative.
The last terms of the equation (5.10-4) for elastic materials can be written in
the following form:

dU = ¢yle’sdVv (5.11-2)
\%

where:
U = elastic system energy.
For a linear-elastic material, whose behaviour is described in the equation
(5.9.3-1),itis:
U= % (e’ DedV - (p'De,dV + (p's dV (5.11-3)
\Y \Y \Y

where:
D = elastic symmetric matrix
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By considering the equation (5.10-4), it can be simply written:
du+w)=dP)=0 (5.11-4)

where:
P =tota potential energy.

This means that, if the equilibrium is assured, the total potential energy is
stationary for admissible displacement variations.

The equations previously obtained (from the (5.10-5) to the (5.10-8)) are
simply the result of such variations with respect to constrained displacements
of afinite parameters number a . It can be written:

=0 (5.11-5)

It is demonstrated that in condition of eastic stability, the total potential
energy is not only stationary but it touches a minimum. So, the finite element
method looks for a minimum within an assumed displacement model.

It is worth to notice that the actua equilibrium requires an absolute

minimum of the total potential energy P .

5.12 Convergence criterions

By assuming accurate shape functions, the endless system grades of
freedom are contained and the minimum of the total potential energy can be not
found independently from the refinement of the mesh.
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In order to assure the convergence to the correct result, some requirements
have to be satisfied.

For example, the shape functions must be able to represent the
displacements distribution in a form which has to be the closest one to the
actual distribution. This means that the shape function must be chosen
according to determined criterions:

CRITERION 1: The shape functions have to be so to describe a null strain
state. This occursin case of rigid displacements.
CRITERION 2: The shape functions have to be so to describe a constant
strain state. It is worth to notice that the second criterion includes the first
one, since the rigid displacements yield a particular case of constant strain
field, which is null everywhere.
Both the criterions have to be satisfied if the elements dimension, at the limit,
tends to zero. By imposing such criterions on finite sizes, a greater solution
accuracy isyielded.
CRITERION 3: The shape functions have to be chosen so that the interface
strains result to be finite. This criterion implies a certain continuity of
displacements cross the elements.

5.13 Error discretization and conver gence classes

Generdly, the approximation in the displacement field given by the
equation (5.9.1-1) makes the solution to be exact, in the limits in which the h
element dimension decreases. In some cases, the exact solution is obtained with
a finite number of subdivisions (or with a single element) if the used
polynomial growth exactly complies with the solution. So, if the exact solution



321 Chapter V — Remarks on finite element method (F.E.M)

is, for example, a square polynomial and if the shape function includes all the
sguare terms, the approximations will yield just the exact solution. This latter
can always be expanded in series in the around of a point or a node with a
polynomial growth, asakind:

Au, o Hu; 0
u=u, +¢c—=X- X )+e—=ly-Vy,)+.. 5131
. gﬂXa( ) g."y{a(y y.) (5.13-1)

If a polynomial expression with p grade is used within an h dimension
element, it can locally comply with the expansion in Taylor’s series. Moreover,
if x and y have the same order of magnitude than h, the u error will be of the

order O(h®*™). Thus, for example, for a plane stress field where a linear

expression of p=1 grade is used, an order O(h®) convergence class is

expected and the error in displacement field is reduced to 1/4 for a halved
mesh.
With analogous reasoning, the strains (or stresses) which are given by the

m-th derivative of the displacement can converge with an error of O(h”™* ™)
(in the above cited example where m=1 the error is O(h) ).

The elastic energy given by the square value of the stresses converges with
an error of O(h*"™ ™) or, in case of plane stress field, O(h?).

In alot of problems, the simple determination of the convergence order is
sufficient to extrapolate the correct result.

Hence, if the displacements converge with an error of O(h*) and two
approximate solutions u' and u” are obtained with a mesh size of h and h/2, it
can be written:

ut-u_ O(h*) _
u’-u 0O(h/2)?

(5.13-2)



Chapter V — Remarks on finite element method (F.E.M.) 322

where u is the exact solution.

The discretization errors are not the only possible in the finite elements
computation, since the rounding errors produced by the electronic computer on
the decimal digits have to be summed to the discretization ones. Such errors are
minimized if computers which use a great number of significant digits are used.

5.14 Analysisof athree-dimensional stressfield

In this paragraph, the finite element method is applied to a generic three-
dimensional stress state.

The simplest element in three-dimensions is the tetrahedral one, which is a
four nodes element, whose characteristics are analyzed in the follows.

5.14.1 Displacement functions

Let us consider the tetrahedral element i, j, m, p in the reference system
X,y,z, asit is shown in the following figure.

Figure5.6 A tetrahedral volume.
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Itis:
Tua

us=jvy (5.14.1-1)

twh
where a linear function is assumed like displacement function, as given in the
following equation:
u=a, ta,x+azy+a,z (5.14.1-2)
By making equal the displacement values at node, four equations are
obtained, given by:
u =a,+a,x +a,y +a,z (5.14.1-3)
where the coefficients from a, to a , can be evaluated.

It is possible to write the solution by using aform as akind:

1 da +hx+cy+dz)y, +(aj +ij+ij+de)“1’ + 0
u=-——¢@ u (514.1-4)
6V 8am +bmx+cmy+dmz)um+(ap+bpx+cpy+dpz)upg
with:
él X Yi Z|U
a
X y Z. -
\/ = g' ! ! hu .14.1-
6V = det & x v 2.0 (5.14.1-5)
é a
él XP yP ZPQ

where the value V represents the tetrahedral volume. Furthermore, it is:



Chapter V — Remarks on finite element method (F.E.M.) 324

éx; vy, zu é vy, zu
_ .8 a _ & a
g _dEtéXm Ym Zm[:] bi - dEtg' Ym Zm[:]
e y Z ':l @ y Z ':l
gxf’ Pt gl PP (141
ex;, 1 zu ex; vy 1
_ é a _ é I
G =-detgx, 1 z. d =-detgX, Yo 1
& 1 7,4 & Y, 1

where the constants can be defined by means of an index rotation, in order p, i,
j,m.

The ordination of the nodal numbers p, i, j, mis done in counter clockwise,
as shown in the figure 5.6.

The displacement element is defined by twelve nodal displacements

ComponentS:
ia
[
e 1 aj I,
a =j aV (5.14.1-7)
omi
tap
with
Tua
a =ivy ec (5.14.1-8)

1w b
The displacement of an arbitrary point can be written in the form:
u=[IN;, IN;, INy, IN,]&° (5.14.1-9)
where the shape functions are defined as:
_a +tbhx+cy+dz

NI
6V

etc (5.14.1-10)

with
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| = identical matrix.

The used displacement functions obviously satisfy the required continuity at
the interface between two different elements, as natural consequence of their
linearity.

5.14.2 Strain matrix

The six strain components are all considerable in the three-dimensional
analysis. Hence, the strain matrix is so defined:

uu

fix
v

=Su (5.14.2-1)

where the standard Timoshenko’ s notation is assumed.
By using the equations (5.14.1-3) and (5.14.1-9), it is easily verified that:
e=Ba°=[B,,B,,B,,B,[a° (5.14.2-2)

where
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Moo o)
< fIx
e N u
eo — ou éb 0 Ou
é Ty a é a
(:3 O O TINl u éo C' Ol:l
B—g EE— 1 €0 0 dd (5.14.2-3)
TEN NG J g eV b oy o
gﬂy ix 3 €0 d cu
N. N. s "
éo L Lu g, 0 bg
é 1z Ty
éLNi 0 Mu
g9z awx t
Theinitia strain field is written in the form:
lag®u
Il
pagq-y
e, =120 {, (5.14.2-2)
.I. O .I.
i o
I I
t 0 b

with
a = coefficient of thermal dilation

g° = mean raise of temperaturein the element.

5.14.3 Elasticity matrix

In case of complete anisotropy, the matrix D contains 21 independent
constants. Generally, it is:
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nw uOu un
N X

(72}
I

D(e- e,)+s, (5.14.3-1)

x
<

O iR — =l e
1

<
N

—lml ] —N—tl ] —
~—+ ~—+ ~—+

X

In case of isotropic material, the matrix D is described in function of only

two independent elastic constants, E and u , and it assumes the following form:

é u u u

1 — —— 0 0 0

?1 1-u 1-u u

¢ . y

S 1 — 0 0 o Y

€ 1-u u

e u

E(L-u) & 1 0 0 0 u (51432

TEE e M o :
1+u)(1- 1) é ¥
e 2(1- U) a

€ 1- 4

e u

a 2(1' U) a

¢ 1- 2u 0

e u

€ 2(1-u)q

5.14.4 Stiffness, stress and loads matrix

The stiffness matrix is defined by means of the equation (5.9.4-8) and it can
be easily expressed since the stresses and the strains within the element are
constants. The general stiffness submatrix is given by:

Ki=B/DB,V® (5.14.4-1)
where:
V¢ = tetrahedral volume.



Chapter V — Remarks on finite element method (F.E.M.) 328

The nodal forces, due to the initial strain field, have the following form:
f¢=-B/De,\V°® (5.14.4-2)
Theforces due to the initial stress field have an analogous form.
The mass distribute forces are expressed in terms of the components b, b,
b,. It is possible to show that the nodal forces equivalent to the distribute mass

ones result equal each others and they are equal to ¥ of the resulting force in

case where the mass forces are constant.



Chapter VI — Computational analyses 329

CHAPTER VI

Computational Analyses

6.1 Introduction

In the previous chapter, it has been studied the finite element method from a
theoretical point of view. Hence, it has been seen that the FEM can be thought
as a mathematical model able to include in it the continuum theories. Such
method, in fact, overcomes the difficulties of the analysis of a continuum solid
structural response by operating a discretization of the same continuum. This
means, as already seen, that the solid is divided in a finite number of elements,
whose structural behaviours are known. Such elements, when assembled with
accurate relation laws among the nodes, are able to yield the global behaviour
of the primitive solid, even if approximately. Obviously, the solution is as
much close to the actual mechanical response as the mesh is heightened.
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After having introduced these fundamental and essential notes on the
F.E.M. theory, the goda of this chapter will be to show some computational
analyses, carried out by means of the calculation code Ansys, in its version 6.0.

This software offers a large number of appliances in a lot of engineering
fieldsand it is just based on the mathematical F.E.M. model.

In the follows, the used micro-mechanical model and the effected analyses
will be described. Since, in linear-elastic field, a numerical analysis can
efficacioudly replace an experimental test, such finite element analyses have
been employed in order to compare the analytical results obtained by our
proposed homogenization techniques, shown in the chapter 4, and the literature
data.

6.2 Micro-mechanical model

The micro-mechanical model used in the finite element anayses is the
same one considered in the S.A.S. homogenization approach and illustrated in
the chapter 4. In particular, it is constituted by a periodic basic cell extracted
from a single leaf masonry wall in stretcher bond, as shown in the figure
below:

[ L 1] | )

L LET ]
[ ]

[T 1T n ) m
T

Figure 6.1 Definition of masonry axes and of chosen micro
mechanical model.
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where m stands for the mortar components and b stands for the brick ones.
The assigned dimensions are so that the equivalence in the volumetric
fractions, between the above mentioned model and the one considered in the
Lourenco-Zucchini analysis and in the statically-consistent L ourenco approach,
is obtained.
In particular, the two models must have the following dimensions:

/8

//7

NNN\NNN\\K

//////

+ gt/B

A\

Figure 6.2 Equivalence in the volumetric fractions between the two
micro mechanical models.

The input data considered in the analysis are:
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E, =2*10° daN/cm’ brick dimensions:
E. =2*10" daN/cn? | =21cm; h=5cm; s=10cm
n, =n, =0.15; EE =10 mortar tickness: t=1cm (6.2-1)

m

mode! dimensions:

|, =22cm; |, =12cm; |, =10cm
with:
E, = Young modulus for the brick, considered isotropic
E,, = Young modulus for the mortar, considered isotropic

n, = Poisson modulus for the brick

n,, = Poisson modulus for the mortar
S= Thickness of the brick in z-direction

|_ = Dimension of the micro-mechanical mode in z-direction

The assumed hypothesis of linear elasticity lets to study the elastic response
of the model for a generic loading condition as linear combination of the elastic
responses for six elementary loading conditions. In particular, both stress-
prescribed and strain-prescribed F.E.M. analyses have been carried out.

In the following paragraph, the results obtained with the stress-prescribed
analysis will be described.

However, it is first illustrated, in the figure below, the finite element model
which has been used in the numerical analysis.
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ELEMENTS

MAT NUM

Figure 6.3 Finite element model-mesh.

The element type considered was the structural solid 45, in particular the
brick 8 nodes. The mesh was obtained by a process of regular subdivisions of
all model lines, by taking into account a mesh size of 0.5 cm. Thus, the model
has been discretized in a number of the elements n equal to 21120.

6.3 Stress-prescribed analysis

In the stress-prescribed analyses, the goa has been to abtain the overall
compliance tensor by means of six numerical analyses. Since an orthotropic
mechanical behaviour is considered, only nine elastic coefficients will be
independent and different from zero.

By using the Voigt notation, so that:
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e®e, e®2, s 0®s, s5,0s,
e,®e, e® 2%, s,®s, s;®s, (6.3-1)
e,® e, e® 2%, s;®s, s,®s,

the stress-strain relation can be written in the following form:

N
N
|

e, U ésl Sz §13 0 0 Ol;lgsll;l
0 e S S 0 0582
&,u 65, S, S5, 0 0 0U&L
Sog=ar » we_"u (6.3-2)
& e0 0 0 S, 0 0g&s.g
&U € 0 0 o0 § o0Ué&U
"y (:30 % _ gé_ﬂ;l
€0 60 0 0 0 0 S0

where the superscript g_ﬂ means that the above written equations refer to the

average values of the corresponding quantities within the considered RVE.

By applying the six loading conditions one at atime, it is possible to obtain
the single columns of the compliance tensor, one at atime too, according to the
following relation:

§=— 1i,j=123456 (6.3-3)

I|<'D|

(7]

More in detail, both homogenized compliance coefficients and physic ones
are determined, as described in the follows.

- Homogenized elastic compliances
In the chapter 1, it has been seen that, for the average theorem, when the
boundary conditions are applied in terms of uniform stresses on the considered

RVE (basic cell), the following relation furnishes the average stress value in
the RVE volume:
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Vic‘yjdv =s® j=123456 (6.3-4)

Sj= i
v

where V stands for the volume of the basic cell and s ? is the generic stress-

prescribed component.
The same result is attained if the above shown RVE is considered subjected,

for an example, to a unit stress component S ? ,1.e
p=si=-1 (6.3-5)

Hence, the resulting force F; on loaded face is obtained by:

sHAD (6.3-6)

Qos

F =

J

_<
1
=

where:

m = the number of the elements in which the loaded face is discretized.
A" = the area of the generic element

S J.“) = the average value of the j-stress component, for the generic e ement

Since the used mesh size is constant everywhere, all the areas of the
elements are equal, too. So, the equation (6.3-6) can be rewritten in the form:

m m F.
AR s p & &) ="
F,=Aas;'Pas, = A (6.3-7)
=1 r=1
By dividing both members for the elements number m, it is obtained:
ié"ls_}'):izib s,=p=s; (6.3-8)
m o mA Aot

where:

SAJ» = the average value of the j-stress component on the examined loaded face

A, =theareaof such loaded face
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The equation (6.3-8) remains undtered if it is multiplied and divided for |,

where | isgiven by:

| = (6.3-9)

n
m
and with:

n = the number of the elements, equal to 21120, in which the whole RVE has

been discretized.
Since such operation yields the average value of the j-stress component within

the whole RVE, it is obtained that:
— —_ 0
sj—p—sj—-l (6.3-10)

At this point, it occurs to calculate the volume average value of strain, e,

obtained as:

Qo5
0]

@I
1
o

(6.3-11)

where:
n = the number of eementsin which the whole RVE is discretized and equal
to 21120.

€ (") = the average value of thei-strain component, for the generic element.

Hence, the properties of the homogenized cell can be determined by means
of equation (6.3-3). In detail, in the follows, the found coefficients of the
homogenized tensor of compliances are shown for the six loading conditions:

- case of compression in x-direction:
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= & _ "
S, =—=7,9840
S1
§21=§:- 1,0910°°
S, (6.3-12)
S, =3=-09540°
S1
§41:§51:§61:
- case of compression in y-direction:
= _€ _ .
S,=—=-10940
SZ
S, :§:12,6>§_0 6
S» (6.3-13)
S, = =-10440°
SZ
§42 _SSZ S62
case of compression in z-direction
= & _ .
S;=—=-0.9540
S3
S, =2 =-10440°
S, (6.3-14)
S, =2 =6,640°
S3
Se=S:=5,=0

- case of shear stressin zy-plane:
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+=5,=5,=0
§44=§—1:14,78>§LO6
S.=85,=0
- case of shear stressin zx-plane:
Ss=S.=S=S,=0
§55:§—55:9,19>§_o6
S, =0

- case of shear stressin xy-plane:
§16:§26:§36:§46:§§6:O
5, =% =159%0°

6

(6.3-15)

(6.3-16)

(6.3-17)

Hence, the homogenized compliance tensor assumes the following form:

6798 -109 -095 O
g- 1.09 126 -1.04 O
6095 -1.04 66 0

S ™=10°a

FEM. & 0 0 0 14.78
€ o 0 0 0
é
) 0 0 0

- Physic elastic compliances

o O
o O

(6.3-18)

o
0 o o o
oo oo ooo oo

[{e]

The procedure used for determining the physic elastic compliances is

analogous to the one used for determining the homogenized compliance tensor.

In order to find the volume average stress value on the boundary faces, the

equation (6.3-8) can be again used. Thus, it is, yet:
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=~ — —c 0 —
S;=p=s;=-1 (6.3-19)
At this point, it occurs to calculate the volume average value of nominal

strain, ei . In case of normal strain components, it is obtained as:

~ D

e = I—' (6.3-20)
where:
|, = the characteristic RVE lengths
ﬁi = the average characteristic lengths variation, equal to:

e
Dl == (6.3-21)
m

where:
m =  the number of the elements for the generic loaded surface.
Ui(r) = the average value of the i-displacement component for the generic

element.
Analogoudly, the average value of the nominal shear strain components can
be obtained.
Hence, the properties of the homogenized cell can be determined by means
of the equation (6.3-3). In detail, in the follows, the found coefficients of the
physic tensor of compliances are shown for the six loading conditions:

- case of compression in x-direction:
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S, =-%=8,0540°
Sl
S =% =_11340°
'S, (6.3-22)
§31=Se =-0,9740°
S =S

" (6.3-23)

X (6.3-24)
S,=3-68%0°

S3
S0 =8, =8, =0

- case of shear stressin zy-plane:
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$,=5,=5,=0
S, =24 =15 0740 (6.3-25)
S 4
S, =5,=0
- case of shear stressin zx-plane:
S5=S5=55=55=0
= _ €
S, =—2=86140° (6.3-26)
S 5
S5 =0
- case of shear stressin xy-plane:
§16:§26:§36:§46:§§6:O
_ e 6.3-27
S, =5 =14,5440° (6.3.21)
6
Hence, the physic compliance tensor assumes the following form:
6805 -113 -097 O 0 0 u
g- 113 126 -11 0 0 0 ;
6097 -11 68 0 0 0 u
S "™ =10°g 0 (6.3-28)
FEM g O 0 0 1507 O 0 4
€ o 0 0 0 861 o0 U
e u
e 0 0 0 0 0 14.54(

6.4 Strain-prescribed analysis

In the strain-prescribed analyses, the goa has been to obtain the overall

stiffness tensor by means of six numerical analyses. Since an orthotropic
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mechanical behaviour is considered, only nine elastic coefficients will be
independent and different from zero.

By remembering the Voigt notation, the stress-strain relation can be written
in the following form:

N

i5_1@ A_11 C_:12 C_:13 0 0 0 l;l :_1@
_ U ez = = ue_u
Sy & S» G 0 0 03y
&0 & C. ¢ 0 és.0
a%=§”cﬂ = 00 Ou@m (6.4-1)
S 60 0 0 C, 0 0Geyg
e’y é _ue’qg
&.0 60 0 0 0 0 C.5é.4

where the superscript g_ﬂ means that the above written equations refer to the

average values of the corresponding quantities within the considered RVE.

By applying the six loading conditions one at atime, it is possible to obtain
the single columns of the stiffness tensor, one at a time too, according to the
following relation:

C =

1

@ | O

i,j=12,3456 (6.4-2)

J
More in detail, both homogenized stiffness coefficients and physic ones are
determined, as described in the follows.

Homogenized eastic stiffness
In the chapter 1, it has been seen that, for the average theorem, when the
boundary conditions are applied in terms of surface displacements on the
considered RVE (basic cell), the following relation furnishes the average strain
valuein the RVE volume:
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_ 1.
e :\7er dv =e/ (6.4-3)

where V stands for the volume of the basic cell and e? is the generic strain
component so that:

e’ xx =u’ (6.4-4)
with:

u® = prescribed surface displacement.

More in detail, in order to found the homogenized stiffness tensor, the
average strain value within the RV E volume is obtained as:

e
. (6.4-5)
n

— 0_
e =e =

Qo

.u‘

where:
n = the number of eementsin which the whole RVE is discretized and equal
to 21120.

e J.“) = the average value of the j-strain component, for the generic element.

At this point, it occurs to calculate the average value of str%,g i, Obtained
as.

n
S &
_as;

s =12 (6.4-6)
n

where:

S i‘” = the average value of the i-stress component, for the generic element.
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Hence, the properties of the homogenized cell can be determined by means
of equation (6.4-2). In detail, in the follows, the found coefficients of the
homogenized stiffness tensor are shown for the six loading conditions:

- case of normal strain in x-direction:

(7]
N

C, =21=0.13%0°
el
= _ S_z _ 5
C,, =22 =0.01340
g (6.4-7)
C, =22 =0.02%0°
el
641 = 651 = 661 = O
- case of normal strain in y-direction:
C, =>1=0.01340°
eZ
= S_z _ 5
C,, =22 =0.0840
g, (6.4-8)
C, =>2=0014%0°
eZ
642 = _52 = 662 = O
- case of normal strain in z-direction:
C, =321 =0.0240°
e3
~ S_Z — 6
C,, =22 =0.014%0
g, (6.4-9)
C, =23 =017:40°
e3

- case of shear strain in zy-plane:
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14 = C_:24 = C_:34 =
C, =24 =0.0740° (6.4-10)
e4
C.=C, =0

- case of shear strain in zx-plane:

=0.1140° (6.4-11)

(6.4-12)

Hence, the homogenized stiffness tensor assumes the following form:

6013 0013 002 O O 0
20.013 008 0014 0 O O 3
vom . €002 0014 017 0 0 004

C ™=10¢ 0 (6.4-13)
FEM. a0 0 0 007 0 0y
é o 0 0 0 011 oU
e u
& 0 0 0 0 0 006]

Physic elastic compliances
The procedure used for determining the physic elastic stiffness coefficients
is analogous to the one used for determining the homogenized stiffness tensor.

It occurs to calculate the volume average value of nomina strai n,E i-In

case of normal strain components, it is obtained as:



346

Chapter VI — Computational analyses

where:

(6.4-14)

|, = the characteristic RVE lengths

u; = the unit prescribed displacement

Anaogoudly, the volume average value of the nominal shear strain

components can be obtained.

At this point, it occurs to
obtained as:

where:

calculate the average value of nominal stress, S ,

s =

F
L 6.4-15
TA ( )

F. = theresulting force on the loaded surface

A =theareaof the loaded surface

Hence, the properties of the homogenized cell can be determined by means
of equation (6.4-2). In detail, in the follows, the found coefficients of the
physic stiffness tensor are shown for the six loading conditions:

- case of normal strain in x-direction:

C, =>1=0.1340°
el
C, =22 =0.01340°
e (6.4-16)
C, =23 =0.02:40°
el
641 = _51 = 661 = O
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- case of normal strain in y-direction:

C, =-%=0.013%40°

eZ
C, =32 =0.08:40°

g, (6.4-17)
C, =22 =0.014%0°

eZ

C, =321 =0.0240°

e3
C, =22 =001440°

&, (6.4-18)
C,=22=017%0°

e3

. =C,=C,, =
C, = S;—: =0.0740° (6.4-19)
C,=C, =0
- case of shear strain in zx-plane:
C;=C,.=C,.=C, =0
Cy = 5:—5 =0.1140°
eS
Cy: =0

- case of shear strain in xy-plane:
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16 2626 :636 :646 :656 =0

6.4-21

0.06%40° ( )
e6

Hence, the homogenized stiffness tensor assumes the following form:

€0.13 0.013 0.02 0 0 0

u
go.013 008 0014 0 O O 3
€002 0014 017 O 0 00U
C ™ =10°¢ q (6422
FEM. a0 0 0 007 0 0y
€ o 0 0 0 011 oU
e u
&0 0 0 0 0 006

It is worth to notice that the homogenized and the physic stiffness tensor are
equal. It is due to the linearity of the problem.

The reader is referred to the appendix to this chapter for the plotting of the
obtained results.

6.5 Numerical Voigt and Reuss estimation

In the chapter 1, general concepts were illustrated about the Reuss and
Voigt estimations of the overall elastic stiffness and compliance coefficients.
Moreover, it was underlined that such estimations are extremely useful bounds
since the actual overall moduli of a heterogeneous materia lie somewhere in an
interval between the Reuss and Voigt estimates.

Thus, in order to obtain the Reuss and Voigt elastic tensors, mortar and
brick volumetric fractions are calculated for the simple above illustrated RVE.
For clearness of exposition, this latter is shown again, in the following figure

6.4, with its numerical characteristic dimensions. The unit of measurement is
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the centimetre. Since the examined basic cell referrers to a single leaf masonry

wall, the characteristic length in z-direction (1, =10cm) doesn’t influence the

volumetric fractions. Hence, the figure 6.4 shows the RVE in xy-plane.

10.5 1 10,5
[ip]
o
[Ip]
oo
ip]
0.5 005
cll 0
ek

Figure 6.4 Utilized RVE (xy-plane) in F.E.M. analysis.

The volumetric fractions can, so, be determined as:
f. 2% i =mortar, brick (6.5-1)

where:

A = mortar and brick surface in xy-plane

A = RVE surface in xy-plane
By operating some calculation, it is obtained that:
f,=0.2

6.5-2
f, =08 (652)
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with:
f., = mortar volumetric fraction
f, = brick volumetric fraction

By remembering that the overall compliance tensor obtained in the Reuss
approximation is given as.
SR=1fS™+fS" (6.5-3)
where the superscript R just stands for Reuss and where:
S™ = mortar compliance tensor

S® = brick compliance tensor

Since both mortar and brick are considered homogeneous isotropic
materials, the Reuss compliance tensor shows, evidently, only three elastic
coefficients different from zero, and only two of these are independent. By
taking in account the assumed numerical datain (6.2-1), the Reuss compliance
tensor assumes the following form:

614 -21 -21 0 0 O

g- 21 14 -21 0 0 O 3

. 821 -21 14 0 0 04
ST=10"ga a (6.5-9)

ao 0 0 161 0 0,

éo 0 0 0 161 o0U

e u

&0 0 0 0 0 161

From it, the Reuss stiffness tensor can be determined as the inverse of the
Reuss compliance one. Thus, it assumes the following form:
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€.08 001 001 O

0 0u

20.01 008 001 O O 03

X /g1 . €001 001 008 0O O 0
CR=(s%) =10¢ 4 (6.5-5)

g0 0 0 006 0 0y

€o 0o o0 o0 006 O0U

e u

§0 0 0 0 0 006]

Anaogous procedure is employed for determining the overall siffness

tensor in the Voigt approximation. It is given as:
C'=fC"+fC° (6.5-6)

where the superscript V just stands for Voigt and where:
C™ = mortar stiffness tensor
C" = brick stiffness tensor

Also the Voigt stiffness tensor shows, evidently, only three elastic
coefficients different from zero, and only two of these are independent. By

taking in account the assumed numerical datain (6.2-1), yet, the Voigt stiffness
tensor assumes the following form:

€.17 003 003 O

0 0y
20.03 017 003 0 O 03

o 10° @03 003 017 0O O 04U 657)
S0 0 0 014 0 0y '
€o 0 0 0 014 o0
e u
&0 0 0 0 0 0149

From it, the Voigt compliance tensor can be determined as the inverse of the
Voigt stiffness one. Thus, it assumes the following form:



352 Chapter VI — Computational analyses

6621 093 093 0 0 0
20.93 621 093 0 O O 3
1 6093 093 621 0 O 0
s’ =(c') =10°¢ 0 (658)
a0 0 0 714 0 0y
€ o 0 0 0 714 oU
e u
& 0 0 0 0 0 714§

6.6 Numerical resultsfor the analyzed homogenization techniques

In the chapter 3, an account of the literature data on masonry
homogenization procedures has been analyzed and, in this framework, some
techniques have been studied more in detail. Then, in the following chapter 1V,
starting from those literature approaches, two theoretical homogenization
procedures have been proposed: the statically-consistent Lourenco approach
and the SA.S. one.

The goal of this chapter is to obtain the numerical results from these
proposed techniques and, then, to compare them with the ones obtained from
the most recent literature approach: the onestegp Lourenco-Zucchini
homogenization.

6.6.1 Numerical resultsfor Lourenco-Zucchini approach

It is shown, in the following figure 6.5, the RVE adopted by the authors
Lourenco and Zucchini with its numerical characteristic dimensions. It is worth
to remember that the assigned dimensions are so that there is equivalence, in
the volumetric fractions, between such RVE and the examined F.E.M. model.
In particular, the model has the following dimensions:
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el

)

/

//

AN

el

Figure 6.5 Lourenco’'s RVE in xy-plane.

The unit of measurement is the centimetre. Since also this examined basic
cell referrers to a single leaf masonry wall, the characteristic length in z-

direction (I, =10cm) doesn’t influence the volumetric fractions. Hence, the
figure 6.5 shows the RVE in xy-plane, again.

Let us recall the analytical results, which are abtained by the authors. Thus,
itis
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5. - gl gt |- t+ 2 EV/EC
111 s )(()X XX I +t
é(sgx) e(2)<s9x> (h+ 2 E(z)/ E(3)) + he(b)(SQX)
§2 W =W W
-1} | +t
a6%)
= e, _ s
%311 = S 0o eg)
2osy | +t
§(S o) e(z)(s;‘?w (h+ 2t E(z)/E(S)) + I,,e(b)(s;‘?w
§2 —W =W W
222 s Sy I +t
—(s9) o
— e, _ %)
%322 = 0o es)
S yy
&2) 0 /O
Sleszexx =e(l)(szz)|'t+2tE /E
o |+t
569 @@ (h+2tE@/E)+ he®%
§2 —w W W
233 s ;)Z I +t
569
= e, _ _ie»
%333 = SO —eif)
= _€, t+l  tGP+hGW
S "sY (2+h)GP IGP +G?
(" ¢
_ & € 4GP +(1-1)60
%131 =—X§ = 1 b
Se 2(t+1)(tG® +hG®)
M) (£ -K)(Ih- 1) t(e+1)(e+1- k)
§1 ey _ G® + G® + G®
sy 2(t+1)(t+h) (6.6.1-1)
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By taking into account the numerical data given by the equation (6.2-1) and
by substituting the numerical value of the strains which the authors have
obtained for each basic cell constituent, the overall compliance tensor is finally
determined. It assumes the following form:

6747 -102 -092 O 0 0y
g- 054 683 -05 O 0 O 3
L, . 6091 -092 613 0 0 ou
St4=10°a G (6.6.1-2)
a 0 0 0 149 0 0y
€ o 0 0 0 815 ou
e u
& 0 0 0 0 0 15§

where the superscript = “ stands for Lourenco-Zucchini.
From it, also the overall stiffness tensor is obtained as the inverse of the

overall compliance one. Hence, it assumes the following form:

6014 0024 0023 0 O
20.013 015 0014 O 0

0
0
€0.022 0026 0.17 0 0 0
0
0

c-? =(s+%) " =10° (6.6.1-3)

0 0 0 0067 O
0 0 0 0 012
0 0 0 0 0 0064

oo oo ooaac

@: D> D> D> D>

6.6.2 Numerical results for the statically-consistent Lourenco-
approach

The RVE adopted in this proposed approach is the same one used by
Lourenco and Zucchini. For clearness of exposition, it is shown here, again,
with its numerical characteristic dimensions:
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21 11]

Figure6.6 Utilized RVE (xy-plane) in Lourenco modified approach.

The unit of measurement is the centimetre again.
Let us recall the anaytical results which we have aobtained with this
homogenization procedure. Thus, it is:

§1111 = §2222 = §3333 =
hi hid s h h 24 2 2t 246

e X — - om0 T (6.6.2-])
Eb Ef E Ea Eg Ed Ec Ed Eeg
2x(h+t)1 +t)
Sz =S =S =
h>t>na+h>¢ >nb+2>t2>nc+2>(| - t)>t*1d+2>t2>ne+h>¢>nf +h>t>ng (6.6.2-2)
_ B B E Ed Ee E H

2{h+t) | +t)
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(h+1) a%)(4>Gb><h+(|-t)>Gd +|2
= 1 % Gaxh+(1-t)>Gd g
Syy = = (6.6.2-3)
2>G,, 2Xt+1)Xt>Gd +h>Gb)
1 _ 1 S+ 1>Gb+h>xGd
2>G, 2xGd t+h I>Gb+t>Ga

S, = (6.6.2-4)

R 45Gh>Gd shxt xh+1)
26, 2Gdxh+t){Ed>ChA’ +GaxEdA % +4Chsh(] +1))

+

] (6.6.2-5)
o B +0) (G oh + Got) +4Garh G X +1) +Gdx(hA -t')

2>Gd xh+t) XEdxGbA” +Gax(Ed A st +4>Gorxhx(| +1)))

By taking into account the numerical data given by the equation (6.2-1), the
overall compliance tensor is finally determined. It assumes the following form:
g2 -21 -21 0 0 ou
€21 142 -21 0 o oY
s _.-e&21 -21 142 0 0 00
$°=10°4 0 (6.6.2:6)
60 0 0 1499 0 0y
€0 0 0 0 81
0

5 ouU
e u
0 0 0 0 15(

where the superscript 5 ¢ stands for statically-consistent approach.
From it, also the overall stiffness tensor is obtained as the inverse of the

overall compliance one. Hence, it assumes the following form:

€.074 0.013 0013 O 0

0 u

20.013 0074 0013 O 0 0 3

) €0.013 0013 0074 O 0 0 G

CS—C - (SS—C) 1 =106 é L’J (662'7)

a0 0 0 0067 O 0§

€ o 0 0 0 012 o0U

e u

& 0 0 0 0 0 0064(
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6.6.3 Numerical resultsfor the S.A.S. approach

It is shown, in the following figure 6.7, the RVE adopted in this proposed
approach with its numerical characteristic dimensions. It is worth to remember,
again, that the assigned dimensions are so that there is equivalence, in the
volumetric fractions, between such RVE and the examined F.E.M. model.

In particular, the model has the following dimensions:

10.5 1 10.5
]

ip]
)
ip]
Ip
[a)

L 05 21 | [H0.5
(@)

Figure6.7 Utilized RVE (xy-plane) in S.A.S. approach.

The unit of measurement is the centimetre again.
Let us recall the analytical results, which we obtained with this
homogenization procedure. Thus, it is:
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é= ng” ny u

S = 0 0 0y

& SHUBE S a

e 1 ny u

¢ T Em 0 0 0 u

é S S a
s =¢ = u 6.6.3-1
& ECf G ( )

é a

A 1 7’

€ PG 0d

é 2G;,f u

é =, a

é m SdlSl O l:l

e S U

e 212U

where:

f=(f,+fj,) (6.6.3-2)

By taking into account the numerical data given by the equation (6.2-1), the
overall compliance tensor is finally determined. It assumes the following form:

6613 -092 -092 0 0 0
2092 613 -092 0 0 O
gos _1qe8092 02 613 0 0 0
S0 0 0 705 0 0
€0 0 0 0 705 O
&0 0 o0 0 0 70

(6.6.3-3)

oo oo ooaac

5

where the superscript S**

stands for S.A.S. approach.
From it, also the overall stiffness tensor is obtained as the inverse of the

overall compliance one. Hence, it assumes the following form:
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CSA.S - (SSA.S)-l :106

¢0.17 0.03 0.03
20.03 017 003 O

6.7 Comparisons for numerical results

€.03 003 0.17
e
g0 0 0
€0 0 o
e
§0 0 O

0

0

0.14

0
0

0.

O b O O O O

m, O O O O O
ooooooooc

(6.6.3-4)

In this paragraph, a comparison between the numerical results, obtained by

the examined homogenization techniques, illustrated in the previous sections, is

made. In particular, it is worth to notice that the numerical estimate of the

homogenized coefficients proposed by Lourenco et al. furnishes a not

symmetrical elasticity tensor, asit is shown in the following table.

FEMHM SHF;;::;_ REUSS voier | (AVERACE | Lourenco | LODRENCO S.A.S.

;:::' vame | E v | Vale 5 v | Vale E v | Vame = S | Value E‘;f;"' ":};" E';f;“' Value E‘;:"
%108 7.98 794 | 05 | 14 | 754 | 621 | 222 | 10.105 | 266 | 7.47 | 64 | 142 | 779 | 6.13 | 232
S,,*108 109 | 114 | 46 | 21 | 927 | -093 | -147 | -1515 | 39 |2 64 | 21 | 927 | 092 |-156
S ;%108 095 | 084|116 | 21 | 121 |-093| 21 | 1515 | 505 | 092 | 32 | 21 | 121 [ 092 | 32
S,,*106 109 | -114| 46 | 21 | 927 |-093|-147 | 515 | 39 | ] 505 | 21 | 927 | 092|156
$,*106 126 128 | 16 | 14 | 111 | 621 | -507 | 10105 | -198 | 683 | 458 | 142 | 127 | 613 | 513
S,,*106 104 |09 |15 [ 21 | 102 | -093 | -106 | 1515 | 457 | 3 s19 | 21 | 102 | 092|115
S, *106 095 | -084|-116 | 21 | 121 |-093| 21 | -1515 | 595 | 001 | 42 | 21 | 121 [ 092 32
S,,*¥106 104 | 092|115 | 21 | 102 |-093 | -106 | -1515 | 457 | 415 | 21 | 102 | 092 | -115
$3;*108 66 606 | 82 | 14 | 112 | 621 | -59 | 10105 | 531 | 613 | 7.1 | 142 | 115 | 613 | 71
S44*106 1478 143 | 32 | 161 | 89 | 714 | 517 | 1162 |-214 | 149 | 08 | 149 | 08 | 705 | 523
S45*106 919 900 | -1l | 161 | 752 | 7.14 | 223 | 1162 | 264 | 815 | -113 | 815 | -113 | 7.05 | 233
S5+ 108 159 167 | 503 | 161 | 13 | 704 | 551 | 1162 |-269 | 15 | 57 | 15 | 57 | 7.05 | 357

Table 6.1 Comparisons.
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Hence, in order to ensure consistency to the model a symmetrization of
Lourenco’s elasticity tensor should be suggested.

Thus, in the following tables, a new comparison is made between the
numerical results obtained by the proposed homogenization techniques and
those ones obtained by means of the effected Lourenco’'s tensor
symmetrization, with reference to al the employed F.E.M. analyses. In each
table, the procedure which furnishes the numerical reference results is marked
with ared ring and our proposed techniques are in red fonts.

FEMH®L £ = AVERAGE LOURENCO | LOURENCO
FE{M strain-prescr. REVSS Yolox VOIGT/REUSS SYM MODIFIED S.AS8.
SLIess-
PIESCL. /| Value E";‘;"' Vahie E";‘;"' Value E‘;:;"' Vahe E‘;“' Value E:;’;"' V;‘;“ E';::" Vahe E‘;::"
Sn"‘l()6 7.98 794 -05 14 754 | 621 | 222 | 10105 | 266 | 7.47 6.4 142 | 779 | 613 | -232
Su*][)d -1.09 -1.14 4.6 -21 927 | 093 | -147 | -1.515 39 -0.78 | 284 | 21 927 | -092 | -156
513*106 -0.95 0.84 | -11.6 -21 121 | 093 | 21 -1.515 | 595 | 091 | 42 2.1 121 | -092 | 32
Sm"‘ll)6 -1.09 -1.14 4.6 -2.1 927 | 093 | -147 | -1.515 39 -0.78 | 284 | 2.1 927 | -092 | -156
SH*IOﬁ 126 12.8 16 14 11.1 621 | -50.7 | 10.105 | -198 | 6.83 | 458 | 142 | 12.7 | 6.13 | -51.3
S,_;"‘]U“ -1.04 092 | -115 -211 102 | 093 | -106 | -1515 | 457 | -0.71 | -31.7 | -2.1 102 | -0.92 | -11.5
8,,*106 095 084 | -116 | 21 | 121 | 093 | 21 | -1515 | 595 | 091 | 42 | 21 | 121 |-092| -32
532*106 -1.04 092 | -115 221 102 | 093 | -106 | -1515 | 457 | 071 | -31.7 | 21 102 | -092|-115
SB"‘]O6 6.6 6.06 | -82 14 112 | 621 -59 | 10,105 | 53.1 | 6.13 | -7.1 14.2 115 | 6.13 | -7.1
o "
S_H'"]Oﬁ 1478 143 -32 16.1 89 714 | 517 1162 | 214 14,9< 0.8 )l4,9< 0. )7,05 -523
o R o T
555*106 9.19 9.09 -1l 16.1 752 | 7.4 | 223 11.62 264 | 8.15 | -11.3 | 815 | -11.3 | 705 | -233
S“*loﬁ 159 16.7 5.03 16.1 13 7.14 | 551 1162 | 269 15 -5.7 15 -5.7 7.05 | -55.7

Table6.2 Comparisons.
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FEMPHYS £ AVERAGE LOURENCO | LOURENCO
F];:il::ss_ P REVSS Yolox VOIGT/REUSS SYM MODIFIED S.AS8.
PIESCL. /| Value E':;:" Vahie E';:" Value E‘;:;"' Vahe E‘;“' Value E:;’;"' V;‘;“ E';:“' Vahe E‘;::"
Sn"‘l()6 8.05 794 | -137 14 739 | 621 | 229 | 10105 | 255 | 7.47 -12 142 | 764 | 613 | -239
Su*][)d -1.13 -1.14 | 0.88 -21 858 | 093 | -17.7 | -1.515 | 34.1 | -0.78 -31 2.1 858 | -092 | -186
513*106 -0.97 0.84 | -134 -21 116 | 093 | 4.1 -1.515 | 562 | 091 | 62 2.1 116 | -092 | 52
Sm"‘ll)6 -1.13 -1.14 | 0.88 -2.1 858 | -093 | -17.7 | -1.515 | 34.1 | -0.78 -31 221 858 | -092 | -186
Su*][)ﬁ 126 12.8 1.59 14 11.1 621 | -50.7 | 10.105 | -198 | 6.83 | 458 | 142 | 12.7 | 6.13 | -51.3
Sm"‘l()6 -1.1 092 | -164 -211 909 | 093 | -155 | -1515 | 377 | -0.71 | -355 ) 2.1 90.9 | -0.92 | -16.4
831*1[)6 -0.97 0.84 | -134 -21 116 | 093 | 4.1 -1.515 | 562 | 091 | 62 2.1 116 | -092 | -52
Su*loﬁ -1.1 092 | -164 221 909 | 093 | -155 | -1515 | 377 | 071 | 355 | 21 909 | -092|-164
SB"‘]O6 6.8 6.06 | -10.9 14 106 | 621 -8.7 | 10,105 | 486 | 6.13 | 99 [ 142 109 | 6.13 | -99
o o
S“*][)ﬁ 15.07 143 | 511 16.1 684 | 714 | 526 | 1162 | -229 14,9< -11 )l4,9< 11 )7,05 -532
o o T
555*106 8.61 9.09 | 557 16.1 869 | 7.14 | -17.1 11.62 35 8.15 53 8.15 53 7.05 | -18.1
S“*loﬁ 14.54 16.7 14.9 16.1 10.7 | 7.14 | 509 | 11.62 | -20.1 15 3.16 15 32 7.05 | -51.5
Table6.3 Comparisons.
FEMHM s AVERAGE LOURENCO LOURENCO
FEMH% stress-prescr. REUSS Yorer VOIGT/REUSS SYM MODIFIED S.AS8.
strain-
Preser /1 Vale E;:“' Value I‘;‘;‘" Value E‘;‘:"’ Vilue E‘;’;"’ Value Ef;:" Value I‘;’:" Vilue I';;"
Cy*104 0.13 013 0 0.08 385 0.17 308 0.125 38 0.14 7.7 0074 | 431 | 0.17 | 308
gy
Cp*10% 0.013 0.013 0 0.01 231 0.03 131 0.02 538 0.019 | 462 0,013( 0 >0,03 131
] , S,
C*10% 0.02 0.021 5 0.01 -50 0.03 50 0.02( 0 )0.023 15 0.013 35 0.03 50
S
CH'IC“5 0.013 0.013 0 0.01 231 0.03 131 0.02 538 0.019 | 46.2 0,013( 0 >0,03 131
Cp,*10% 0.08 0.082 25 0.08 < 0 ) 0.17 113 0.125 56.2 0.15 875 | 0074 | 75 | 0.17 112
,
Cy*10% 0.014 0.015 | 7.14 0.01 286 | 0.03 114 0.02 129 0.02 429 ( 0013 | 71 0.03 114
el
Cy *1046 0.02 0.021 5 0.01 -50 0.03 50 0.02 OJ' 0.023 15 0013 35 0.03 50
Cy,*106 0.014 0.015 7.14 0.01 286 0.03 114 0.02 429 0.02 429 | 0013 -71 0.03 114
C..*10%6 0.17 0.16 -59 0.08 | 529 | 017 < 0 ‘) 0.125 | 265 | 0.17 (r 0 )0.074 -56.5 | 0.17 " 0 B
= et SR
Cyy*10% 0.07 0.068 [ 2.9 006 | -143 | 0.14 100 0.1 429 | 0.067 | 43 | 0.067 | 43 0.14 100
ij'lc“6 0.11 0.11 ] 006 | 455 | 0.14 273 0.1 9.09 | 012 9.09 0.12 9.09 | 0.14 | 273
e
Ce™10% | 005 | 0063 | 5 0.05( 0 Dois |133| o1 |667 |o00s4 | 67 | 0064 | 67 | 0.4 | 133
R

Table 6.4 Comparisons.
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/ FEMFPHYS H AVERAGE LOURENCO LOURENCO
FEMP\ stress-presct REVSS: voreT VOIGT/REUSS SYM MODIFIED S.AS.
strain- .
W Value E‘;’:" Value E‘;:"' Value E‘;f:" Value E’;’:" Value E‘;f:" Value E‘;’:" Value E‘;;"'
C,*106 0.13 0.13 0 0.08 | 385 | 017 30.8 0.125 38 0.14 7.7 0.074 | 43.1 | 0.17 | 308
Cp*1046 0.013 0.013 0 0.01 2231 0.03 131 0.02 538 | 0.019 | 462 0,013( 0 ) 0.03 131
a—
Cy3*10% 0.02 0.02 0 0.01 50 | 003 | 50 0.02 ( 0 )0,023 15 | 0013 | 35 | 003 | 50
]
C)J‘IC\"s 0.013 0.013 0 0.01 231 0.03 131 0.02 53.8 | 0.019 | 46.2 0.013( 0 0.03 | 131
pr——
Cp,*104 0.08 0.082 25 0.08 < 0 > 0.17 113 0.125 563 0.15 875 0074 | 75| 017 | 113
Cy»*10% | 0014 | 0015 | 7.14 | 001 | -286 | 003 | 114 | 002 | 429 | 002 | 429 | 0013 | -7.1 | 003 | 114
e ]
C3*10% 0.02 0.02 0 0.01 50 | 003 | 50 0.02 < 0 )0,023 15 | 0013 | 35 | 003 | 50
,
C,*106 0.014 0.015 | 7.14 0.01 286 | 0.03 114 0.02 429 0.02 429 | 0013 | 71 0.03 114
Cy5*106 0.17 0.15 | -1L.8 0.08 | 529 0.17( 0 ‘, 0125 | 265 | 0.17 < 0 -‘> 0.074 | 56.5 | 0.17 ‘f' 0 R
i S, .
Cyy*106 0.07 0.066 | 5.7 006 | -143 | 0.14 100 0.1 42.9 | 0.067 | -43 | 0.067 | 43 0.14 100
ij'lﬂ's 0.11 0.12 9.09 006 | 455 | 0.14 273 0.1 909 | 0.12 9.09 0.12 9.09 | 0.14 | 273
& s e
Cg*10 0.06 0.069 15 0.06 ( 0 > 0.14 133 0.1 66.7 | 0.064 6.7 0.064 6.7 0.14 | 133
. VR

By observing differences among the elastic coefficients shown in
comparison-tables, it is worth to notice that, due to consistency, some elastic
moduli appear to be closer than those proposed by L ourenco.

Asaresult, it is possible to determine an elasticity tensor obtained by means
of those parametric terms, yielded by the examined homogenization
procedures, which are closer to the reference numerical data. Such elasticity
tensor is, so, defined on the knowledge of elastic ratios as well as of

Table6.5 Comparisons.

geometrical parameters characterizing the RVE.
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APPENDI X

- Stress-prescribed analyses: compression in x-direction

DISPLACEMENT

NODAL SOLUTION

Figure2 Normal strain in x-direction.
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NODAL SOLUTION

Figure4 Normal stressin x-direction, 0<s , <|- 0.6].
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- Stress-prescribed analyses: compression in y-direction
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Figure5 Deformed configuration.
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Figure6 Normal stressin y-direction.
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Figure 8 Displacement in y-direction.
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- Stress-prescribed analyses. compression in z-direction
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Figure 10 Normal stressin z-direction, | ]j <s, <|- 1.3|.



369 Chapter VI- Computational analyses

SOLUTION

Figure 12 Displacement in z-direction.
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- Stress-prescribed analyses: shear in xy-plane

DISPLACEMENT
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Figure 13 Deformed configuration.

Figure 14 Vector-plot for displacement.
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SOLUTION

SOLUTION

Figure 16 Shear strainin xy-plane, 0.4*107° <e, <0.6*10°°.
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- Stress-prescribed analyses: shear in xz-plane

Figure 18 Shear stressin xz-plane.
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NODAL SOLUTION

NODAL SOLUTION

Figure 20 Displacement in x-direction.
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- Stress-prescribed analyses: shear in yz-plane

DISPLACEMENT

IMX =.001641

Figure 21 Deformed configuration.

NODAL SOLUTION

Figure 22 Shear stressin yz-plane.
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Figure24 Shear straininyz-plane, 0.4*10° <e , <0.5*10°°.
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- Strain-prescribed analyses: hormal strain in x-direction

Figure 25 Deformed configuration.

VECTOR

Figure 26 Vector-plot for displacement.
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NODAL SOLUTION

Figure 28 Normal stressin x-direction.
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Strain-prescribed analyses: normal strain in y-direction
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Figure29 Normal stressin y-direction.
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Figure 31 Normal strain in y-direction.



380

..; .
= N
ﬂaﬂnﬂ\lﬂlﬂxwwuwwmmmmﬁ&mmmﬂmw‘wﬁmi
= =
e ,
e e e -
e e e s 5 s M
% ===
e =
I _w‘_..»mwxw
il

.

Iy
"
Bl
o
o
Ed
o
B
™

Figure 32 Deformed configuration.

plot for displacement.
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Strain-prescribed analyses: normal strain in z-direction

DISPLACEMENT

Figure 33 Vector
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NODAL SOLUTION

Figure 34 Normal stressin z-direction.
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Figure 35 Normal strain in z-direction.
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- Strain-prescribed analyses: shear strain in xy-plane
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Figure 37 Shear stressin xy-plane.
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Figure 41 Shear strain in xy-plane.
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- Strain-prescribed analyses: shear strain in xz-plane

DISPLACEMENT

Figure 43 Vector-plot for displacement.
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NODAL SOLUTION

Figure 45 Shear stressin xz-plane.
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Strain-prescribed analyses: shear strainin yz-plane

Figure 46 Deformed configuration.
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Figure 47 Vector-plot for displacement.
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Figure49 Principa stress s .
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NODAL SOLUTION

NODAL SOLUTION

Figure 51 Shear strain in zy-plane.
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CHAPTER VII

Design codes for masonry buildings

7.1 Introduction

The most effective use of masonry construction is seen in load bearing
structures wherein it performs a variety of functions, namely, supporting loads,
subdividing space, providing thermal and acoustic insulation and so on.

Until 1950's there were no engineering methods of designing masonry for
buildings and thickness of walls was based on Rules-of-Thumb tables given in
Building Codes and Regulations, [21]. As result, walls used to be very thick
and masonry structures were found to be very uneconomical. Hence, since
intensive theoreticall and experimental research has been conducted in
advanced countries, factor affecting strength, stability and performance of
masonry structures have been identified, which need to be considered in
design.
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Recently mechanized brick plants, moreover, are producing brick units
having nominal strength which ranges from 17.5 to 25 N/mm? and, so,
sufficiently greater than the ordinary manufactured ones, with strength of only
0.07 to 0.1 N/ mm?. Therefore, nowadays, it is possible to construct 5 to 6
storeyed load bearing structures at costs which are less than those of RC
framed structures, [21].

The use of reinforcement in masonry can further improve its load carrying
capacity and above all its flexure and shear behaviour under earthquake |oads.
In particular, masonry units are being manufactured in shapes and sizes that
make reinforcement embedding in masonry less cumbersome.

With these developments, structural design of load bearing masonry
buildings has been undergoing considerable modifications as underlined by the
changes which are taking place in the masonry guidelines throughout the
world.

In this framework, the object of this chapter is to furnish a short summary
and a comparison of the different codes from a number of countries, which are
referred to the design of masonry structures.

7.2 Review of masonry codes

A brief description and the mgor highlights of the various codes are
presented below and the comparison between them is summarized in tables,
related to design approach, member sizing and details, as given in the follows,
[21].

§ BUILDING CODE REQUIREMENTS FOR MASONRY
STRUCTURES
(ACI 530-02/ASCE 5-02/TMS 402-02)
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This code has been drawn up by the joint efforts of the American Concrete
Ingtitute, the Structural Engineering Institute of the American Society of the
Civil Engineers and the Masonry Society, [2], [3]. Such a code covers the
design and the construction of masonry structures, by providing minimum
requirements for the structural analysis and by using both allowable stress
design as well as limit state design for unreinforced and reinforced masonries.
An empirical design method applicable to buildings meeting specific location
and construction criteriais also included.

§ INTERNATIONAL BUILDING CODE 2000

The International Building Code (IBC 2000) has been designed to meet the
need for a modern, up-to-date building instrument addressing the design of
building systems through requirements emphasizing performance, [34]. This
model code encourages the international consistency in the application of
provisons and it is available for adoption and use by jurisdictions
internationally.

The provisions of this code for the design of masonry members have been
heavily borrowed from ACI 530-02, ASCE 5-02, TMS 402-02.

§ EUROCODE 6: DESIGN OF MASONRY STRUCTURES (DD
ENV 1-1-1996: 1996)
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The Eurocode 6 has been published by the European Committee for
Standardization (CEN) and it is to be used with the National Application
Document (NAD) of member countries, [22].

This code provides a general basis for the design of buildings and civil
engineering works in unreinforced and reinforced masonry made with clay and
concrete masonry units imbedded in mortar. It adopts the limit state design
method.

However, Eurocode 6 doesn’'t cover the specia requirements of seismic
design: provisions related to such requirements are given in Eurocode 8,
Design of Structures in Seismic Regions.

The designer should consider the relative contribution of concrete infill and
masonry in resisting load and, where the concrete infill makes a much greater
contribution to the load resistance than the masonry, Eurocode 2 should be
used and the strength of masonry should be ignored, [21].

§ TESTO UNICO-NORME TECNICHE PER LE COSTRUZIONI
(C.S.LL.PP.30-05-2005)

Such a code covers the design and the construction of masonry structures, in
order to guarantee pre-established safety coefficients. It adopts the limit state
design for unreinforced and reinforced masonries. In particular, the
constructions have to satisfy the following requirements:

0 safety towards ultimate limit state — overcoming of an ultimate limit

state is not reversible and provides a structural collapse.

0 safety towards serviceability limit state — overcoming of a serviceability

limit state can be or not be reversible. In the first case, the damage or
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the deformations will disappear when the externa actions which have
caused such an overcoming will stop. In the second case, the damage
and deformations will be permanent and unacceptable; this limit state is
identified with damage limit state.

0 strength towards accidental loads.

§ NEW ZEALAND STANDARD — CODE OF PRACTICE FOR
THE DESIGN OF CONCRETE MASONRY STRUCTURES (NZS
4230: Part 1: 1990)

The New Zealand Standard has been prepared under the direction of the
Building and Civil Engineering Divisonal Committee for the Standards
Council, established under the Standards Act 1988. It is set in two parts: Code
and Commentary, [55].

Such acodeislargely dictated by seismic considerations. In this framework,
it is intended to provide a satisfactory structural performance for masonry
structures during a major earthquake. Minimum reinforcing requirements for
different structural systems and the reinforcing and separation of non-structural
elements will limit non-structural damage during moderate earthquakes.

The NZS 4230 adopts a design philosophy based on strength design, using
reinforced masonry only. It contains cross-references to NZS 3101, which is
the primary code for the seismic design of structure.
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§ INDIAN STANDARD: CODE OF PRACTICE FOR
STRUCTURAL USE OF UNREINFORCED MASONRY (IS
1905-1987)

The Indian Standard on masonry design has been first published in 1960
and later on revised in 1969, 1980 and 1987, [35]. This latter has been
reaffirmed in 1998. A separate handbook to this code, SP 20 (S&T), 1991, is
also available, [21].

Such a code provides recommendations for structural design aspect of load
bearing and non-load bearing walls of unreinforced masonry only, by using a
design procedure based on the allowable stress design, along with several
empirical formulae.

These guidelines are referred to IS 4326 for strengthening unreinforced
masonry building for seismic resistance and it doesn’t provide any calculation
for the design of reinforcement.

7.3 Comparison on design philosophies

In this section, design philosophies of various codes have been compared
with regard to their design assumptions and assumed factor of safety.

§ EMPIRICAL DESIGN

Empirical rules for the design of masonry structures were developed by
experience and, traditionally, they have been used as a procedure, not as a
design analysis for sizing and proportioning masonry elements, [21].

This method predates any engineering analysis and the effect of any steel
reinforcement, if used, is neglected. However, this design procedure is
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applicable to very simple structures with severe limitations on building height
proportions and on horizontal loads, due to wind and earthquake.

Empirical design method is still being continued in ACI 530-2002 and, with
some changes, in IBC 2000. The Indian Standard also mixes empirical
procedure with allowable stress design method.

§ ALLOWABLE STRESS DESIGN

This method states that, under the working loads, the stresses developed in a
member must be less than admissible ones.

In case of unreinforced masonry, it is assumed that tensile stresses, not
exceeding the allowable limits, are resisted by masonry material, while in the
case of reinforced structures masonry tensile strength is neglected.

The ACI code has followed this approach for both reinforced and
unreinforced masonry, while the IS code has applied it only to unreinforced
masonry. On the contrary, such a design method doesn't find place in Eurocode
and in the New Zealand Standard.

§ STRENGTH DESIGN OR LIMIT STATE DESIGN

This method requires masonry members be proportioned so that the design
strength equals or exceeds the required strength.

Design strength is the nomina strength multiplied by a strength reduction
factor, j. The required strength shall be determined in accordance with the
strength design load combinations of alegally adopted building code, [21].

The ACI code has adopted this procedure, as well as the IBC 2000 and the
New Zealand code, with more emphasis on the reinforced masonry rather than
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unreinforced ones. The Eurocode 6 specifies a limit state design for collapse
and serviceability, wherein instead of strength reduction factors, partial safety
factors for loads and materials are specified separately. In particular, partial
safety factor for loads depends on the load combinations and partial safety
factor for materials depends on the type of masonry units and the failure mode.
Also the Italian code (T.U. 30/03/2005) adopts the ultimate and serviceability
limit state design, for reinforced and unreinforced masonry.
In these codes, the strength of reinforced masonry members is calculated by
basing on the following hypothesis:
a There is strain continuity between the reinforcement, grout and

masonry.
b. The maximum compressive strain (e,,,) a the extreme masonry

compression fibre shall be assumed to be 0.0035 for clay masonry
and 0.0025 for concrete one. The New Zealand code also specifies
that the maximum usable strain will be 0.008 for confined concrete

masonry.

c. Reinforcement stress below specified yield strength (fy) shal be
taken as E_ times steel strain. For strain greater than the ones

corresponding to (fy), stress in reinforcement shall be taken equal

to(fy).

d. The tensile strength of masonry shall be neglected in calculating
flexural strength but shall be considered in calculating deflection.
e. Masonry stress of 0.80 times the compressive strength of masonry,

f... (ACI code) or 0.85f_ (IBC 2000, New Zealand Standards)

shal be assumed uniformly distributed over an equivalent
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compression zone bounded by the edges of the cross section and a
straight line located parallel to the neutral axis at a distance of
a=0.80c or a=0.85c respectively from the fibre of the
maximum compressive strain, as shown in figure 7.1. In particular,
a is defined as the depth of equivalent compression zone at
nominal strength and C is the distance from extreme compression
fibre to neutral axis. The value of uniformly distributed masonry

stress for confined masonry, as specified in New Zealand Standards,

is 0.9Kf,_ up to a distance a=0.96c, as shown in figure 7.1

where K isafactor greater than 1, for increase in masonry strength
due to confinement provided by confining plates.

Masonry stress 0.8 £ Masonry stress 0.8
uniformly distributed uniformly distributed

ACT code NZS (unconfined masonry only),
’ IBC 2000

Figure 7.1 Equivalent rectangular masonry stress distribution.

7.4 Comparison of the key concepts for unreinforced masonry

In this section, provisions of both allowable stress and strength (limit state)
design, specified in various codes, will be discussed and compared with
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reference to unreinforced masonry subjected to axial compression, flexure and
shear. The Italian code will be exposed separately.

741 Allowable stressdesign

7.4.1a Axial compression

Masonry is generaly subjected to axial compression due to vertical loads,
dead and live ones.
Compression tests of masonry prisms are used for determining specified

compressive strength of masonry f_, which is further modified for

m )
denderness, eccentricity, shapes of cross-section and so on, in order to derive
allowable compressive stress values.

In ACI code, calculated compressive stress, f,, should be less than the
alowable compressive stress F,, which is obtained by multiplying f_ with
0.25 and denderness ratio R. In particular, the factor 0.25 accounts for
material uncertainty and reduces f_ to working stress level. R is the capacity

reduction factor for slenderness, as given in the following eguations, [21]:

.2
R=1- 8" 0 ¢ hite 29 (7.41a-1)
&40t
.2
R= g’%? for h/t>?29 (7.4.1a-2)
%]

where:
h = height of masonry structural element

t = thickness of masonry structural element
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Slenderness can affect capacity either as a result of inelastic buckling or
because of additional bending moments due to the deflection. Applied axial

load must be less than 25% of the Euler buckling load, P,, as given in the

following relation:

2
p=P E;*'“ gi Eg (7.41a-3)

where:

e= theeccentricity of the axial load

E,, = modulus of elasticity of masonry in compression

|, = moment of inertia of net cross-sectional area of a member

Hence, according to ACI code, the permissible value is function of the
slenderness ratio whereas the limiting value of axia load is depending on both
slenderness ratio and eccentricity of the axial load.

In 1S: 1905 code a stress reduction factor, K, is multiplied with the basic
compressive stress for slenderness ratio of the element and also the eccentricity
of loading. The basic compressive stress is valued both from prism tests and a
standard table which is based on compressive strength of unit and mortar type.
A limit to the maximum slenderness ratio for aload bearing wall is considered,
depending on the number of storeys and the type of mortar.

7.4.1b Axial compression with flexure

Masonry is generally subjected to flexural stresses due to eccentricity of
loading or application of horizontal loads, as well aswind or earthquake.
According to ACI code, if a member is subjected to bending only,

calculated bending compressive stress f, should be less than allowable
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bending stress F, in masonry, taken as 0.33f _, which is 1.33 times the basic

compressive stress allowed for direct loads (0.25 f ). This increase is due to

the restraining effect of less highly strained compressive fibres on those ones of
maximum strain and is supported by experiment.

For combined axial and flexural loads, a masonry member is acceptable if
the sum of the quotients of the resulting compression stresses to the alowable
stresses does not exceed 1, as given in the following relation and figure:

L + i £1 (7.4.1b-1)

a I:b

e

- 1.0
I.ll_.'.. |:'||

Figure 7.2 Interaction diagram for unreinforced masonry using allowable
stress design.

The unity formula (7.4.1b-1) iswidely used and very conservative.

IS: 1905 code checks bending compression and tensile stresses
independently against permissible values. The permissible values for bending
compression are obtained first by increasing the basic compressive stress by
25% and then reducing it for the eccentric loading causing flexure. The code
furnishes permissible loads for three eccentricity values, [21]:

(@ e<t/24
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(b) t/24<e<t/6
(c) t/6<e

An applied moment can be converted into equivalent eccentricity.
7.4.1c Shear

Masonry is generally subjected to shear stresses due to in-plane lateral wind
or seismic forces. So, masonry load bearing walls also act as shear walls to
resist to such akind of load.

The lateral load carrying capacity of shear wall structures mainly depends
on their in-plane resistances because the in-plane stiffnessis far greater than its
out-of-plane stiffness. Three modes of shear failure in unreinforced masonry
arepossible, [21]:

(a) Diagonal tension crack form through the mortar and masonry units.
(b) Sliding occurs along a straight crack at horizontal bed joints.
(c) Stepped cracksform, alternating from head joint to bed joint.

The ACI code recognizes these modes and addresses them while specifying

permissible shear stresses. For prevention of diagonal cracks, in-plane shear

stress should not exceed 0.125,/ f, . For dliding failure, the allowable shear

stress is based on a Mohr-Coulomb type failure criterion and for preventing
stepped cracks, different values of permissible shear stress are given for various
bond masonry patterns, [21].

The IS: 1905 code, instead, only takes into account the dliding failure by

specifying that the allowable shear stress F, =0.1+s /6, which is a Mohr-

Coulomb typefailure criterion, where s  is average axial stress. However, this
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linear relation is valid up to axial compression of 2.4 MPa, at which it reaches
the maximum limiting value of 0.5 MPa, [21].

74.2  Strength design or limit state design

7.4.2a Axial Compression

According to ACI code, the nominal axia strength is based on compressive
strength of masonry, modified for unavoidable minimum eccentricity and
slenderness ratio, in addition to the strength reduction factor. The expression
for effect of the denderness is the same asin allowable stress design.

Eurocode 6 aso considers the effect of slenderness and eccentricity by
using capacity reduction factor. However, this capacity reduction factor is
based on eccentricity not only at the ends of member but also at middie one-
fifth, wherever the moment may be maximum, [21].

7.4.2b Axial Compression with Flexure

According to al codes, the two failure modes of wall considered are parallel
and perpendicular to bed joints. The codes require the section to be checked by
calculating axia and flexural strength.

7.4.2c Shear

The ACI code considers the previously discussed three modes of failure for
evaluating the nomina shear strength of masonry.

Anaogously, the IBC 2000 also considers those factors for determining the
masonry nominal shear strength and differs only in magnitude from the ACI
code.



Chapter V11- Design codes for masonry buildings 403

On the contrary, Eurocode 6 only considers a sliding mode of shear failure

and prescribes an equation of Mohr-Coulomb type (F, =0.1+0.4s ).

7.5 Comparison of the key concepts for reinforced masonry

In this section, provisions of both allowable stress and strength (limit state)
design, specified in various codes, will be discussed and compared with
reference to reinforced masonry subjected to axial compression, flexure and
shear.

Reinforced masonry is a construction system where steel reinforcement, in
the form of reinforcing bars or mesh, is embedded in the mortar or placed in the
holes and filled with concrete or grout, [21].

By reinforcing masonry with steel reinforcement, the resistance to seismic
loads and energy dissipation capacity can be improved significantly. In such
reinforced structures, tension is developed in masonry but it is not considered
to be effective in resisting design loads:. reinforcement is assumed to resist all
the tensile stresses.

751 Allowable stressdesign

Only the ACI code contains provisions on alowable stress design for
reinforced masonry.
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7.5.1a Axial Compression

In ACI code, the alowable axial compressive load (P,) in reinforced

a

masonry shall not exceed (0.25f, A, +0.65A,F,)R, which is obtained by

adding the contribution of masonry and reinforcement, and where:

A, = net cross-sectional area of masonry
A, = total area of longitudinal reinforcing steel

F, = dalowable tensile or compressive stress in reinforcement

The second term in the addition is the contribution of the longitudinal steel.
In particular, the coefficient 0.65 was determined from tests of reinforced
masonry columns. The coefficient 0.25 provides a factor of safety of about 4
against the crushing of masonry. Strength is further modified for denderness

effects by the factor R, which is the same for unreinforced masonry.

7.5.1b Axial Compression with Flexure

For combined axial compression and flexure, the unity formula for
interaction is not used in designing masonry members in case of reinforced
masonry, since it becomes very conservative.

In such cases, emphasis has been to compute nonlinear interaction diagram
taking the effect of reinforcement and compression behaviour of masonry into
account. The eguations and the assumptions used for developing the axial 10ad-
bending moment interaction diagram are very similar to those ones used in the
analysis and design of reinforced concrete members. Interaction diagrams thus
produced permit a rapid graphical solution.
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7.5.1c Shear

The shear resistance of masonry also increases when reinforcements are
added. However, they are effective in providing resistance only if they are
designed to carry the full shear load.

According to ACI code, the minimum area of shear reinforcement is given

by the following relation:

(7.5.1c-1)

where:

A, = cross section area of shear reinforcement.
Vg = shear strength provided by reinforcement.

d = distance from extreme compression fibre to centroid of tension
reinforcement.

This can be derived by assuming a 45° shear crack extended from the
extreme compression fibre to the centroid of the tension steel, summing the
forces in the direction of the shear reinforcement neglecting the doweling
resistance of the longitudina reinforcement, [21]. However, the shear stress
shall not exceed the permissible shear stress of masonry, which depends on the

M /Vd, ratio for shear walls, where:
M = maximum moment at the section under consideration.
V = shear force.
d, = actua depth of masonry in direction of shear considered.
Such a ratio is the product of h/d, ratio and a factor depending on end

restraints, as shown in the following figure.
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Figure 7.2 Significance of M/Vd, factor.

75.2  Strength design or limit state design

7.5.2a Axial Compression

The nomina strength of a member may be caculated by using the
assumptions of an equivalent rectangular stress block. Slenderness effect on
axia load carrying capacity is also taken into account, except in IBC 2000.

In New Zealand Standards, nominal axial strength of aload bearing wall is

given by 0.5f AR, where R is always equal to gl (h/40t)28 and where

A, isthe gross cross-sectiona area of masonry.
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7.5.2b Axial Compression with Flexure

The nominal axial and flexure strength, for combined axial compression and
flexure, are computed similar to RC members with the design assumptions as
discussed earlier, which vary from one code to another.

According to ACI code and IBC 2000, the maximum usable strain €, shall

be 0.0035 for clay masonry and 0.002 for concrete masonry. In wall design for
out-of-plane loads, according to both the codes, the required moment due to the
lateral loads, eccentricity of axia load and lateral deformation are assumed
maximum at mid-height of the wall. In certain design conditions, like large
eccentricities acting simultaneously with small latera loads, the design
maximum moment may occur elsewhere. When this occurs, the designer
should use the maximum moment at the critical section.

In Eurocode 6, the maximum tensile strain in reinforcement should be
limited to 0.01. According to this code, no redistribution of the moment is
allowed with normal ductility steel. In this case the ratio of depth of neutral
axis to the effective depth should not be greater than 0.4. Redistribution of
moments in a continuous beam should be limited to 15% when high ductility
steel isto be used.

The New Zedland Standards, which deals with only concrete masonry,

specifies that e,,, shall be 0.0025 for unconfined masonry and 0.008 for

confined masonry. Confinement is provided to the masonry walls to impart
ductility to them, [21].
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7.5.2c Shear

Shear force is assumed to be resisted by both, masonry and reinforcement.

The formulas given in the ACI code and IBC 2000 to derive nominal shear
strength of masonry and reinforcement are empirically derived from research.
The concept of the minimum shear reinforcement is to help restrain growth of
inclined cracking and provide some ductility for members (by confining
masonry) subjected to unexpected force or catastrophic loading.

In Eurocode 6, there is a maximum limit to the shear strength provided by

masonry and shear reinforcement together, which is given by 0.3f bd/g,,,
[21], where:
b= width of the section.
d = distance from extreme compression fibre to centroid of tension
reinforcement.
g,, = partial safety factor for materials.
In the New Zealand Standards, it is mentioned that for masonry members

subjected to shear and flexure together with axial load, the shear stress

provided by the masonry shall be multiplied by the factor (1+12P,/A,f, ),

where the axial load, P, is negative for tension and where P, is the factored
axial load, [21].

It is evident that the shear strength provided by masonry, V, , will decrease
because of a reduction of aggregate interlock resulting from axial tension. The
code considers instances where shear transfer is required by shear friction

along aknown or likely crack path. Resistance to sliding along a potential shear
failure plane is provided by frictional forces between the diding surfaces. The
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frictional forces are proportioned to the coefficient of friction and the total

normal force acting across the joint, which may be provided by axial force, P,,
and distributed reinforcement, A, f , where A, is the area of shear friction
reinforcement. The effective clamping force across the crack will be
As T, +P,. Thus the dependable factored shear force, V,, which can be
transmitted across the crack by shear friction, is j m, (A,f f, + Pu) ,Where | is
the strength reduction factor and m, is the coefficient of friction. Thus, the
required area of shear friction reinforcement shall be computed from:
1 eV, 0

A =—gc——-PR=x (7.5.2c-1)
fLEmi G

During the placing of grout, if the interface has been intentionally

roughened, m =1; else m istakento be0.7.

7.6 Discussion

Presently, most design codes prefer Limit State Design approach because of
better reliability and economy, which is a maor departure from the
conventional empirical design method. Moreover, for reinforced masonry, only
the ACI code contains provisions based on allowable stress values, whereas all
other codes follow only Limit State Design approach. The International
Building Code 2000 specifies some minor changes to the ACI code in the form
of design assumptions and strength reduction factors.

For allowable strength of masonry shear walls, ACI code emphasizes on the

aspect ratio and boundary conditions by a parameter M/Vd, . Also the
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strength of masonry is based on prism tests, instead of placing reliance on
standard tables, which relate it to the strength of unit and type of mortar. The
advantage of prism test is that the prisms are built of similar materials under the
same conditions with the same bonding arrangement as in the structure.

The design approach in IS: 1905-1987 is semi-empirical, which combines
allowable stress design with rules of thumb for unreinforced masonry only,
especially for stresses arising from vertical and moderate lateral loads, such as
wind. The permissible stress values are not directly linked to prism test values
and do not address the strength and ductility of masonry members under large
lateral loads due to earthquakes. Neither limit state methodology has been
adopted in this code nor there are any provisions related to reinforced masonry
for any design philosophies. So, this code should be expanded to incorporate
such provisions.

It is worth to underline that, among such these codes, only the New Zealand
Standard contains provisions on ductility of masonry structures and confined
masonry. Regarding shear, it contains provisions on shear friction
reinforcement and also considers the case when masonry members are
subjected to shear and flexure together with axial tension. These sdlient
features are not covered in other documents, [21].

7.7 The Italian code (T.U. 30/03/2005)

They will be exposed, in this paragraph, the main aspects of the Italian
code- T.U. 30/03/2005. The interested reader is referred, for major details, to
[63].

The first aspect regards the determination of the characteristic resistances
for masonry and its constituents. In particular, it is:
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@ Compressive characteristic strength for masonry element, f,,, in
the direction of vertical loads (UNI EN 772-1), in the case of 30
examined specimens, is obtained asit follows:
f,. = f,, - 1.64s (7.7-1)
where:
f,, = the arithmetic media of the resistances of the elements.
s= the mean square deviation.

When the number n of the examined specimens is between 10 and 29, the
coefficient S assumes the following k values:

n 10 12 16 20 25
k 213 2.06 1.98 1.93 1.88

Table 7.1 Mean square deviation.

When the number n of the examined specimens is between 6 and 9, the
compressive characteristic strength is assumed equa to the minimum value

between:
a  0.7f,,(N/mn?)

b. the minimum value of the unit resistance of the single specimen.
When masonry is congtituted by natural elements, the compressive
characterigtic strength of the element is assumed, conventionally, equal to:

f, =0.75f, (7.7-2)
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@ Compressive characteristic in-plane strength for masonry element,

f, » in the orthogonal direction of vertical loads (UNI EN 772-1) is

obtained as it follows:

f, =0.71, (7.7-3)

m

@ Compressive characteristic strength for mortar, f_, (UNI EN 998-

2) isgiven by the following table 2:

Class M25 | M5 | M10 | M15 | M20 | Md
Compressive

strength 25 5 10 15 20 d

N/rnrnz

Table 7.2 Compressive characteristic strength for mortar.

where d is a compressive strength 3 25 N/mm?, declared by the producer.

@ Compressive characteristic strength for masonry, f,, is given by
the following relation:
f, =1 -ks (7.7-4)
where:
f., = averageresistance
S= deviation estimate

k = acoefficient is dependent from the number n of the specimens, [63].
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Compressive characteristic strength for masonry, f,, can be also obtained
according to the compressive characteristic strength of the masonry elements,

f..» and to the mortar category, as shown in the following tables 3 and 4:

Compressive Mortar type

strength f_ for

artificial masonry M 15 M 10 M 5 M 25

elements N/mm’
2.0 12 12 12 12
3.0 2.2 2.2 2.2 2.0
5.0 35 34 33 3.0
75 5.0 4.5 4.1 3.5
10.0 6.2 53 4.7 4.1
15.0 8.2 6.7 6.0 5.1
20.0 9.7 8.0 7.0 6.1
30.0 12.0 10.0 8.6 7.2
40.0 14.3 12.0 10.4 -

Table 7.3 Compressive characteristic strength for masonry - Artificial

elements.
Compressive Mortar type

strength f_ for

natural masonry M 15 M 10 M5 M 25

elements N/mm’
20 1.0 1.0 1.0 1.0
3.0 22 22 22 2.0
5.0 35 3.4 3.3 3.0
75 5.0 45 4.1 35
10.0 6.2 5.3 4.7 4.1
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15.0 8.2 6.7 6.0 5.1

20.0 9.7 8.0 7.0 6.1

30.0 12.0 10.0 8.6 7.2
3 40.0 14.3 12.0 104 --

Table 7.4 Compressive characteristic strength for masonry — Natural
elements.

@ Shear characteristic strength for masonry in absence of normal
stresses, f, . isgiven by the following relation:
f,o=07f, (7.7-5)
where:
f,, = average shear resistance.
Shear characteristic strength for masonry, f,,, can be aso obtained

according to the compressive characteristic strength of the masonry element,

f. » and to the mortar category, as shown in the following tables:

Compressive strength
f, for artificial brick Mortar type Fuo
elements
£15 £M15 0.2
>15 £M15 0.3

Table 7.5 Shear characteristic strength for masonry — Artificial brick
elements.
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Compressive
strength f, for Mortar type f
artificial concrete
dements

M15 M10,M5 0.1

£3
M2.5 0.1
M15 M10,M5 0.2

>3
M2.5 0.1

Table 7.6  Shear characteristic strength for masonry — Artificial

concrete elements.
Compressive
strength f, for Mortar type fuo
natural elements

M15, M10,M5 0.1

£3
M25 0.1
M15, M10,M5 0.2

>3
M25 0.1

Table 7.7 Shear characteristic strength for masonry — Natural
elements.

@ Shear characteristic strength for masonry in presence of normal

stresses, f, , isgiven by the following relation:

f,=f,,+04s, (7.7-6)

where:
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S = average normal stress, due to the vertical loads acting on the examined

n

section.

@ Elastic secant modulus, E, isgiven by the following relation:
E =1000f, (7.7-7)

@ Elastic tangentia modulus, G, is given by the following relation:
G=04E (7.7-8)
The second aspect regards the specification of the provisions for the
structural organization of a masonry building and for the structural analysis of
unreinforced and reinforced masonry with reference to both allowable stress
and limit state design.

7.7.1  Structural organization

A bearing masonry building has to be conceived as a three-dimensional box
where the bearing walls, the ceilings and the foundations are opportunely
connected each other in order to resist to the vertical and horizontal loads, [63].

The thickness of the masonry walls cannot be less than:

- masonry in artificial resistant full elements: 120 mm
- masonry in artificial resistant half-full elements: 200 mm
- masonry in artificial resistant perforated elements: 250 mm
- masonry in squared stone: 240 mm
- lined masonry: 400 mm

The following tables relate a classification for the artificial brick and

concrete elements:
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Brick elements Hole per centage f
Full j £15% f £900mm?
Half full 15%<j £45% | f £1200mny
Perforated 45%<] £355% | f £1500mn
Table 7.8 Brick eements classification.
Concrete
Hole percentage
elements A£ 90000mn? | A> 90000 mm?
Full ] £15% £10A £15A
Half full | 15%<] £ 45% £10A £15A
Perforated | 45% <] £ 55% £10A £15A
Table7.9 Concrete elements classification.
where:
] = hole percentage.

f = average area of asingle hole section.

A= the gross area of the element face, which is delimited by its perimeter.

The conventional thinness of the masonry walls has to be defined according

to the following equation:

where:

| =hy/t

h, = free bending length of thewall equal to r h.

h=interna level height.

r = lateral factor of constraint (see table 10).

(7.7.1-1)
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t = thickness of the wall.

with:

r
h/a£05 1

05<h/afl0 3/2 -hla
1.0<h/a U[1+(h/a)* 2]

Table7.10 Lateral factor of constraint.

a = wheelbase between two transversal walls.

In any case, the conventional thinness of the masonry walls cannot result more
than 20, [63].

7.7.2  Structural analyses and resistance controlling

The structural analyses can be non linear analyses or linear ones, these | atter

being obtained by assuming the secant value for the elastic moduli. For each

structural element, they must yield:

the axial load given by the vertical loads and, for buildings with
height more than 10 m, the variation of the axial load given by the
horizontal actions.

the shear force given by the vertical and horizontal 10ads.

the eccentricity of the axial loads.

the bending moments given by the vertical and horizontal loads.

The actions have to be combined so to determine the most disadvantageous

load conditions for the single resistance controlling. However, it has to be
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considered the reduced probability of a simultaneous intervention of all actions
with their most unfavourable values, like the in force codes prescribe, [63].
Two hypotheses are considered in a strength controlling: the assumption
that the sections remain plane and the masonry tensile strength is neglected.
Each masonry wall has to be verified with reference to both allowable stress
and limit state design, under the following load conditions:
(a) axia compression with flexure for lateral loads
(b) axia compression with flexure for in-plane loads
(c) shear for in-plane loads
(d) concentrated loads

The design strength f, to be used in the cases (a), (b) and (d) is:
i (7.7.2-1)
where:

f, = compressive characteristic strength for masonry.

g, = patia safety coefficient on the masonry compressive strength. It is

equal to 2 or 2.5 depending on the kind of resistant elements, artificial
or natural, [63].

Orq = Partia safety coefficient (see table 11).

The design strength f, to be used in the case (C) is:

f
fq :—""i (7.7.2-2)
gm gR,d
where:
f, = shear characteristic strength for masonry, in presence of normal

stresses, calculated in function of the f, .
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g, = partia safety coefficient on the masonry compressive strength. It is

equal to 2 or 2.5 depending on the kind of resistant elements, artificia

or natural, [63].
Orq = Partial safety coefficient (see table 11).

Calculation
Ord
method
Allowable stress 32
Limit state design 312

Table7.11 Partial safety coefficient g -

7.7.3 Allowable stress design for unreinforced masonry
7.7.3a Axial Compression with Flexure

The strength controlling is satisfied if:
Nd

- A£ f (7.7.3a1)
1t

S =

where:
N, = design axial force.

restrictive coefficient of the strength for longitudinal eccentricity.

F, =
F ., = redtrictive coefficient of the strength for transversal eccentricity.
f, = design compressive strength for masonry.

A= areaof thewall section.
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7.7.3b Shear for in-planeloads

The strength controlling is satisfied if:

t = ;/—TA £1, (7.7.3b-1)

where:

f,y = design shear strength for masonry.
V, = design shear force.

b = choking coefficient of the wall.
A= net areaof thewall section.

7.7.3c Concentrated loads

The strength controlling is satisfied if:

s = Ndc

£ f, (7.7.3c-1)

Cc

where:

N, = design value of the concentrated load.

(=2
1

amplifying coefficient of the concentrated loads.

—h
o
1

design compressive strength for masonry.

>
I

support area.
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7.7.4  Limit state design for unreinforced masonry

7.7.4a Axial Compression with Flexure for out-of-plane loads

The strength controlling is satisfied if:
Ny £Ng =F, f,A (7.7.4a1)

where:
N, = designaxia force.

Ny, = design strength.

F. restrictive coefficient of the strength for load transversal eccentricity

and for the wall thinness.
f, = design compressive strength for masonry.

A= areaof the wall section.

7.7.4b Axial Compression with Flexure for in-plane loads

The strength controlling is satisfied if:

N, & 0
My £ Mg, :lﬁgl- N, + (7.7.4b-1)
2 AE Aaf, gy

where:

M, = design bending moment.
N, = design axial force.

My, = design strength.

t= wall thickness.

| = wall length.
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f, = design compressive strength for masonry.

A= areaof thewall section.
a £ 0.85; itisarestrictive coefficient of the strength.

7.7.4c Shear for in-planeloads

The strength controlling is satisfied if:
V, £V =bAf, (7.7.4c-1)

where:

V, = design shear force.

Vg, = design strength.
f,y = design shear strength for masonry.

A= areaof thewall section.

b = choking coefficient of the wall.

7.7.4d Concentrated loads

The strength controlling is satisfied if:
Ny £ Ngi. = b A, (7.7.40-1)

where:

N4 = design concentrated force.
Ny = design strength.
f, = design compressive strength for masonry.

A. = support area
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b.= amplifying coefficient for the concentrated loads.

It has been illustrated, here, a short review of the Italian code. For more
detail on it, the reader isreferred to [63].
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CONCLUSIONS

The present work deals with the mechanic characterization of masonries
(heterogeneous materials) via micro-mechanical approach, in linear-elastic
field. In order to provide a definition of the constitutive laws for masonry, both
the aspects of inhomogeneity and anisotropy are taken into consideration, since
the first one is due to the biphasic composition and the second one is due to the
geometrical arrangement of the constituents within the masonry RVE.

In this framework, both heuristic and thermodynamical approaches, which
are used in literature in order to study the heterogeneous materials, are
described. In particular, the attention has been focused on the latter one and,
more in detail, on the homogenization techniques and micro-mechanical
analyses which are furnished by the scientific literature, with reference to
masonries.

By applying the homogenization theory to the masonry materia, it is
possible to obtain a “homogeneous equivalent material” whose mechanical
properties are able to average the actual and variable ones of the heterogeneous
medium. Hence, by means of mathematical operations of volume averaging
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and consistency, the global mechanical behaviour of masonry can be
determined, depending on its micro-structure geometry and on the known
elastic properties of its micro-constituents.
The present work has, so, two main objects:
to furnish a general account on the homogenization procedures for
periodic masonries existing in literature in linear-elastic field and,
contemporaneoudly, to underline the advantages and disadvantages for
each one of them. More in detal, the existing homogenization
procedures can be basically divided in two approaches. The first one
employs a simplified homogenization process in different steps for
obtaining, on the contrary, a close-form solution (Pietruszczak & Niu,
1992, for example). The second one employs a rigorous
homogenization process in one step for obtaining, on the contrary, an
approximated numerical solution (Lourenco & al, 2002, for example).
to furnish some possible proposals for modelling periodic masonry
structures, in linear-elastic field, by starting from the results of literature
approaches, in order to obtain new homogenization techniques able to
overcome the limits of the existing ones. More in detail, two procedures
have been proposed: a simplified two-step homogenization (S.A.S.
approach) and a rigorous one-step homogenization (Lourenco modified
approach-statically consistent).
By comparing the homogenization techniques, it can be said that:
PIETRUSZCZAK & NIU APPROACH - implies an approximated
homogenization procedure in two steps, whose results are dependent on the
sequence of the steps chosen. It represents the limit of this kind of the existing
approaches.



Conclusions 427

S.A.S. APPROACH - employs a parametric homogenization which, on the
contrary, results consistent in the two-step process, by implying exact solutions
in some directions. Hence, the proposed procedure overcomes the limit of the
above mentioned simplified approaches.

LOURENCO & AL. APPROACH - proposes a homogenized model which
is obtained on a parameterization-based procedure depending on a specific
benchmark FEM model (i.e. selected ratios between elastic coefficients and
geometrical dimensions); so it shows a sendtivity to geometrical and
mechanical ratios! Moreover, the numerical estimate of the homogenized
coefficients gives some not symmetrical moduli, so a symmetrization becomes
necessary!

LOURENCO MODIFIED APPROACH - proposes a parametric
homogenized model which, on the contrary, is not dependent on specific
selected ratios between elastic coefficients and geometrical dimensions, so it
shows a more generalized applicability. Moreover, since the approach implies a
statically-consistent solution, it results extremely useful according to the Static
Theorem.

Some computational analyses (stress and strain-prescribed) are finally
carried out by means of the calculation code Ansys, in its version 6.0, in order
to compare the analytical results obtained by our proposed homogenization
techniques with the literature theoretical and experimental data. Such
comparison has yielded the elaboration of useful tables. They contain both the
elastic homogenized moduli, which are obtained by means of the different
examined homogenization techniques, and the estimate of the errors from
which each procedure is affected. By observing differences among the elastic
coefficients which are shown in the comparison-tables, it is worth to highlight
that:
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- due to consistency, some proposed elastic moduli appear to be closer than
those ones yielded by L ourenco.

- asaresult, it is possible to determine an eagticity tensor by means of those
parametric moduli, yielded by the examined homogenization procedures,
which are closer to the reference numerical data. Such elasticity tensor is,
so, defined on the knowledge of elastic ratios as well as of geometrical
parameters characterizing the RVE.

The last chapter, finaly, deals with a review of the international codes
referred to the design of masonry structures. In this framework, the goa is to
furnish a short summary and a comparison between the examined codes
different from a number of countries. This review will be particularly useful in
apossible continuation of the research activity, whose perspectives are:

= the extension of the proposed strategies to post-elastic range.

= theintroduction of anisotropic failure criteria.

= the comparison of the proposed models with the experimental data, by
considering the possibility of applying them to reinforced masonry walls.
Hence, in this framework, a comparison between the theoretical constitutive

characterizations, obtained by means of the examined homogenization

procedures, and that ones yielded by the examined codes will be made.
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