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Abstract 

 
Human arm motor control has been object of great investigation for 

several decades, during which some issues have been identified as 

themes of high interest. There is a wide number of studies on human 

motor control supporting the theory that reaching and pointing 

movements are the result of sequences of discrete motion units, called 

sub-movements. Evidence for the existence of discrete sub-

movements underlying continuous human movement has motivated 

many attempts to “extract” them. Moreover, to analyze the strategy of 

the reaching movements, gained a great appeal in the rehabilitation 

field. In fact, understanding movement deficits following central 

nervous system lesions and the relationships between these deficits 

and functional ability, is fundamental to the development of successful 

rehabilitation therapies. The goal of sub-movement extraction is to 

infer the sub-movement composition of a movement from kinematic 

data. In the tangential velocity domain, a sub-movement is represented 

as a uni-modal, bell-shaped function. Determining the number, 

relative timing, and amplitude of sub-movements that most closely 

reproduce the original tangential velocity data is a non-linear 

optimization problem difficult to solve. The experimental observations 

suggest that sub-movements are ubiquitous but proof of their 

existence and detailed quantification of their form have been elusive. 

Although several sub-movement extraction algorithms have been 

proposed previously, all of them are subject to finding local, rather 

than global, minima and to producing spurious decomposition results. 

The first section of this thesis, propose a review on the decomposition 

methods developed until now and the several methodologies used to 

extract them.  Furthermore, an hybrid sub-movement decomposition 

method is proposed, based on a robust expectation maximization (EM) 

constrained algorithm and a scale-space approach capable to 

overcome the limitations of the EM algorithm, which is a local 

maximum seeker.  



 

This representation allowed to explore whether the movements are 

built up of elementary kinematic units by decomposing each surface 

into a weighted combination of Gaussian functions.  

Finally, is proposed a new kinematic and electromyographic 

assessment of robot assisted upper arm reaching in hemiparetic 

subjects applying successfully the sub-movement decomposition 

method implemented to carefully analyze their motor and muscle 

strategy.
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Chapter 1 
 

Principles of motor control 
 

Human arm motor control has been object of great investigation for 

several decades, during which some issues have been identified as 

themes of high interest. Among these are problems such as planning, 

execution and learning. This chapter addresses the main paradigms 

that have been used in modeling human arm movement control, and 

details the models that resulted from each approach. 

 

 

  

1.1 Biological motor control 
 

Movement of primates is the result of information processing in a 

complex hierarchy of motor centers within the nervous system, which 

yields three levels of control: the spinal cord, brain stem, and motor 

cortex (Kandel et al, 2000). The highest levels of cortical motor 

control are often associated with the premotor regions, which are the 

lateral ventral cortex, the dorsal premotor cortex and the 

supplementary motor areas. The lowest cortical level is occupied by 

the primary motor cortex. The premotor cortex has a major role in 

coordinating and planning complex sequences of movements. It 

integrates sensory information from the posterior parietal cortex with 

executive inputs from prefrontal lobes. It projects to the primary 

motor cortex, which directly controls simple movements of the limbs. 

Both premotor and primary motor cortex project to the brain stem and 

the spinal cord. The spinal cord is the lowest level of the hierarchical 

organization that is directly responsible for executing movements 
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(Kandel et al, 2000). The premotor cortex has a major role in 

coordinating and planning complex sequences of movements.  

It integrates sensory information from the posterior parietal cortex 

with executive inputs from prefrontal lobes. It projects to the primary 

motor cortex, which directly controls simple movements of the limbs. 

Both premotor and primary motor cortex project to the brain stem and 

the spinal cord. The spinal cord is the lowest level of the hierarchical 

organization that is directly responsible for executing movements 

(Kandel et al, 2000). Human arm motor control has been a subject of 

investigation for several decades, during which some issues have been 

identified as themes of high interest (Flash et al, 2001). Among these 

are problems such as planning, execution and learning. In a broad 

sense, the motor control problem can be stated as the generation of the 

muscle activations that best fit the purpose of a movement or 

manipulation task, given the proprioceptive and external world 

information available through the body sensors. 

 

 

 

1.2 Optimization theory in motor control 
 

Optimization theory has become an important research tool in 

attempts to discover organizing principles that guide the generation of 

goal-directed motor behavior. It provides a convenient way to 

formulate a coarse-grained model of the underlying neural 

computation, without requiring specific details of the way those 

computations are carried out. Generally speaking, this application of 

optimization theory consists of defining an objective function that 

quantifies what is to be regarded as optimum (i.e., best) performance 

and then applying the tools of variational calculus to identify the 

specific behavior that achieves that optimum. This forces us to make 

explicit, quantitative hypotheses about the goals of motor actions and 

allows us to articulate how those goals relate to observable behavior. 

Not all motor behaviors are necessarily optimal but attempts to 

identify optimization principles can be useful for developing a 

taxonomy of the complex motor behavior and gaining insight into the 
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neural processes that produce motor behavior. The complexity of the 

motor control problem is strongly due to the redundancy of the human 

motor system as well as the redundant nature of movement tasks.  

Many optimization-based models in the literature have been 

developed to address the "excess degrees-of-freedom" problem. 

 

“How does the motor system select the behavior it uses from the 

infinite number of possibilities open to it?” 

 

In mathematical parlance, this is an "ill-posed" problem in the sense 

that many solutions are possible. Even in a simple task such as 

reaching a target in free space, a multitude of possible solutions are 

available, each one being a path that takes the hand from the initial to 

the final position. Infinite solutions exist not only for this path but also 

for the velocity profile used to track it (Figure 1). 

 

 

                       
Figure 1. Multiple spaces at which an arm movement is specified. 

 

The freedom to choose both the path and the velocity profile defines 

the underlying redundancy in a movement task. However, redundancy 

arises not only in the nature of movement tasks but also as an intrinsic 

and beneficial feature of the human body, which provides for more 

flexibility to carry out complex tasks.  
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One aspect of this redundancy results from the 7 degrees of freedom 

(DOF) of the kinematic structure of the human arm, which exceeds the 

minimum necessary number (6 DOF) to move the hand in the three 

dimensional space (Gui-gon et al, 2007).  

The problem of kinematic redundancy was first pointed out by 

Bernstei (Bernstein, 1967), and labeled the DOF problem.  

In the perspective of computational model-ing, the kinematic 

redundancy is viewed as a problem since most hand positions can be 

achieved by infinite combinations of the joints.  

The number of possible solutions for move-ment planning increases 

further if muscle commands are considered as an additional variable to 

be predicted by the theoretical models for motor planning. In fact, due 

to the muscle configuration in human arm, several muscles are 

involved in each joint movement and, therefore, it is possible to 

imagine different combinations of muscle activations that produce the 

same torque (Wolpert, 1997).  

These redundancy issues define sub-problems in motor control 

theories that are interrelated according to a hierarchy as depicted in 

Figure 2.  

 

 
Figure 2. Hierarchical levels of specification for a movement. 

 

Even though the structure of this hierarchy is consensual, the sequence 

by which sub-problems are solved is conceived differently by 

different models. Some trajectory formation models postulate that the 

different levels of redundancy can be solved independently and 

usually focus only on the hand trajectory planning. Other models are 

formulated on the basis that these problems are solved interactively 

and simultaneously. This difference defines the first major line 

separating motor control theories, as stated by Todorov (Torodov et al, 

1998).  
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Since the former theories ignore the musculoskeletal system that is 

under control, it is accepted that these cannot aim at explaining 

completely the underlying biologic principles that give rise to the 

apparent behavior. Instead they have the less ambitious goal of 

providing algorithms which produce trajectories that fit well with the 

observed behavior. These theories can therefore be called Descriptive 

Models.  

The latter theories provide computational models which embody all 

the fundamental processes carried out by the CNS (Central Nervous 

System) to produce movement. These models can be assigned the 

label Complete Models. 

 

 

1.3 Optimization theory in motor control 
 

In spite of the complexity that the number of redundancy levels 

suggests, humans show amazingly regularities when generating 

movement. The strong experimental evidence for such regularities has 

led researchers to believe that one unifying principle might be used by 

humans to resolve redundancy and would underlie the observed 

consistency in behavior. The history of motor control research as 

therefore been marked by a search for this unifying principle. Early 

research has focused directly on the kinematic regularities, developing 

theories that were expressed in terms of the kinematic variables and 

therefore fall under the Descriptive Models class. Although they 

showed high predictive accuracy in free movement, these models were 

weak in accounting for tasks where external forces were present.  

However, if a kinematic objective function can be found that leads to 

optimal trajectories that accurately reproduce the patterns of observed 

behavior, it implies that the brain ignores non-kinematic factors in 

selecting and producing that behavior. Nevertheless, a troubling aspect 

of this theory is that it seems to imply that, at least at the higher levels 

of the postulated hierarchy, the brain does not take any dynamic 

considerations into account such as the energy required, the loads on 
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the limb segments or the force and fatigue limitations of its peripheral 

neuromuscular system. 

To circumvent this problem within the framework of optimization 

theory, a second type of objective function may be formulated based 

on dynamic variables (e.g., joint torques, muscle forces, etc., and their 

time derivatives). If a dynamic objective function can be found that 

leads to optimal trajectories that accurately reproduce the patterns of 

observed behavior, it implies that the brain considers dynamic factors 

in selecting and producing that behavior.  

It is also consistent with a theory that neural computations to produce 

movement are executed in parallel, taking all relevant factors (e.g., 

dynamics as well as kinematics) into account simultaneously. Hence, 

this inconsistency in Descriptive Models led researchers to turn to 

dynamic variables to find a unifying principle that would fit a broader 

range of movements. In accounting for the dynamics of the arm, these 

models did address all levels of redundancy, therefore falling under 

the Complete Models category.  

Within this category, the first influential model hypothesized that the 

minimization of torque change was the principle underlying 

movement invariants (Uno et al, 1989). Because this and subsequent 

theories introduced dynamic variables in the optimization procedure, 

they are known as Dynamic Models. 

 

 

1.4 Descriptive models 
 

Descriptive models have the purpose of describing the apparent 

behavior of human motion. Contrarily to Complete models (discussed 

below), descriptive models do not attempt to mimic the underlying 

biological principles that give rise to the observed motion features. 

Instead, these models are computational tools that aim at providing 

predicted trajectories with a good match with experimental ones.  

Among the empirical relations that have been identified in human arm 

movements are: 
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 the Fitts law,  

 the 2/3 power law, 

 the bell shaped velocity profiles in straight movements.  

 

Fitts law concerns rapid, goal directed movements and quantifies the 

observed and rather intuitive relation that exists between the duration 

of this kind of movements with the distance and dimension of the 

target. Mathematically this relation is expressed as follows 

(MacKenzie, 1991): 

 

 

where, MT = movement time, a, b = regression coefficients, A = 

distance of movement from start to target center and W= width of the 

target. 

 

The 2/3 power law states that, in curved movements, the velocity (v) is 

related to the inverse of the curvature radius (k) by the expression:  

 

 

where ƴ is a constant factor which has been experimentally estimated 

as 0.33. This law basically implies that in curved movements the 

velocity decreases with increasing curvature. The original form of the 

power law has the limitation of not being applicable to paths showing 

straight segments or inflection points (in these cases, velocity goes to 

infinity). Additionally, the power law is inaccurate at low velocities 

and cannot predict the velocity reduction at the end of the path 

(Torodov et al, 1998). One common feature to the subsequent models 

is the use of optimal control as the strategy to mimic the biologic 

processes by which human motor control is achieved. It is widely 

accepted that optimization provides a substantiated framework to 

explain human motor control because it may reproduce important 

biological processes, such as learning and natural evolution, that 

enhance behavior much in the same way as an optimization procedure 

does (Torodov et al, 2002). The optimal control methodology requires 

the definition of a cost function, which is based on a quantity that 
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must be minimized in order to achieve the best performance. The cost 

function is usually expressed as an integral of that quantity over a 

period of time. The variables of interest that are used to formulate the 

cost function define the strategy for trajectory planning. 

The bell shaped velocity profile of straight movements is one of the 

most consistent features of human arm behavior. Flash and Hogan 

(Flash et al, 1985) presented a model in which the reproduction of bell 

shaped profiles was a main concern (Figure 3). The authors concluded 

that considering smoothness of movement as the goal underlying 

movement control, some apparent features of arm trajectories are 

explained. 

In order to address the optimization of smoothness, a quantitative 

measure of this property was adopted, which is defined as the 

derivative of acceleration and named as ‘jerk’. Besides the bell shaped 

velocity profile feature, the model was also motivated by the 

observation that reaching movements tend to be performed in a 

straight fashion, regardless of the region in workspace where the 

movement is performed or its orientation. 

 

 
Figure 3. Example of a minimum jerk trajectory. 
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The fact that these position and velocity features seem to be invariant 

exclusively when these variables are expressed in hand coordinates 

(Cartesian space), led the authors to describe minimum jerk in hand 

coordinates instead of joint coordinates.  

For the purpose of addressing planar movements, the magnitude of 

jerk (J) was defined as follows: 

 

where x(t) and y(t) describe the hand position coordinates and a cost 

function based on the square of that quantity was expressed as: 

 

where tf  is the time duration. 

Optimal control theory was applied to this cost function, subject to the 

differential equations of movement and several other constraints 

related to the desired movement.  

These constraints are the initial and final positions and also the time 

duration (tf) for movement execution. In curved or obstacle avoidance 

movements, a via-point was also specified. The differential equations 

of the system are simply the differential relations between position, 

velocity, acceleration and jerk.  

In that study, only planar horizontal movements were addressed 

namely point-to-point movements and curved unconstrained 

movements, which could represent obstacle avoidance situations. 

Applying the optimization procedure to the point-to-point movements, 

the authors found 5th order polynomials describing both x and y 

coordinates, which specified a straight line in space with a 4
th

 order 

polynomial velocity profile.  
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Concerning the curved movements, two 5th order polynomials were 

derived for each coordinate, one specifying the trajectory before 

reaching the via-point and another for the remaining trajectory to the 

final position. The results of this study were extremely consistent with 

empirical trajectories, since the predicted point to point movements 

were straight lines, which is a good approximation of the roughly 

straight observed paths and the velocity profile is bell shaped as the 

empirical ones. In this respect, the predicted velocity profiles for 

curved movements showed a curvature-velocity relation in good 

agreement with empirical movements. In a practical sense, the 

minimum-jerk model is very appealing due to its simplicity and the 

ability to predict the global features of reaching movements. However, 

this model shows inaccuracy when applied in particular situations, 

namely curved movements and through point movements (Torodov et 

al, 1998). Noting that this model may fail to predict the movement 

path but is accurate in predicting the velocity profile, Todorov and 

Jordan presented a variation on this model, called constrained 

minimum jerk model. This model requires that the movement path be 

predefined and focuses on the generation of the velocity profile. 

Contrarily to the original minimum jerk model, it does not aim at 

predicting the path but only the velocity profile. In this aspect, this 

model is similar to the 2/3 power law, since both predict the velocity, 

for a given hand path. This model proposes to minimize the following 

cost function: 

 

where r(s) is the coordinate vector of the path points and s(t) is the 

distance travelled along the path. According to the given cost function, 

the purpose of the model is to minimize jerk under the constraint of a 

path that is pre-defined.  

The model was applied to a number of experimental and simulated 

tasks which evidenced the similarities in speed profiles obtained with 
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this model and the 2/3 power law. However, this model showed 

globally better performance and was intrinsically able to deal with the 

limitations shown by the 2/3 power law. 

 

Commenting on the results of the experiments, the authors mentioned 

above pointed out the fact that the studied movements were of short 

duration (1-2 sec) which may have accounted for the good accuracy of 

the predicted velocities. The authors also remark that the model 

assumes an implicit relation between path and velocity profile and 

thus is valid when applied to a particular movement execution but its 

meaning is lost if applied to an average path of a number of trials. 

The above models are concerned strictly with the description of hand 

trajectories in space, leaving aside the problem of joint trajectories 

prediction. If these models are used in a complete simulation of the 

human arm, additional strategies must be employed in order to 

compute the joints values for each hand position.  

This problem has been addressed by different studies, which focus 

primarily on joint redundancy resolution. Several studies have 

investigated the hypotheses that joint redundancy might be simplified 

by Donders’ law (Marotta et al, 2003). Donders law was formulated to 

describe the redundancy resolution policy observed in the positioning 

of the eye.  

Donders’ law states that any possible vector describing a rotation of 

the eye cannot occupy an arbitrary position in space; instead it is 

constrained to lie in a plane. By applying this law, the number of DOF 

of the eye is reduced from 3 to 2 and any gazing direction is 

univocally related to a rotation vector of the eye. Due to the 

similarities of the problems (excess of DOF) and the fact that both the 

eye and arm are controlled by the CNS, some authors speculated that 

the same law might also be applicable to the positioning of the arm.  

This motivation led to a number of studies which explored the 

usability of Donders’ law in the joint redundancy problem. The 

reported results indicate that the application of Donders’ law in the 



              12                                                      Chapter 1 Principles of motor control                                  

arm is limited and that a more complex strategy that is yet to be 

identified probably is used instead (Marotta et al, 2003). However, in 

particular tasks it was observed that Donders’ law was accurate, which 

indicated that this law may be a special case of that general strategy. 

 

1.5 Complete Models 
 

The most influential model described in the previous section, the 

minimum-jerk model, relies on a cost function based on the kinematic 

variables to find the solution for trajectory planning. Additionally, this 

model focuses only on the generation of trajectories in Cartesian 

space, leaving open the question of how joint space redundancy is 

solved. Complete Models, addressed in this section, comprise theories 

that consider the arm dynamics and therefore include in the cost 

function torques and external forces values. As a consequence of 

dealing with the whole arm dynamics, which is non-linear and 

depends on joint kinematics, a by-product of the minimization of a 

cost function is the resolution of all levels of redundancy. 

 

 

1.6 Dynamic Models 
 

Dynamic models take into account the dynamics of the arm and focus 

on joint torques, external forces and motor commands (Wolpert, 

1997). Three major models were presented and named, according to 

the variable of interest, as ‘minimum torque change’, ‘minimum 

motor command change’ and ‘minimum commanded torque change’. 

Minimum torque change model, the most influential dynamic model, 

was presented in Uno et al (Uno et al, 1989). The authors pointed out 

that kinematic models rely on the improbable assumption of 
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considering that trajectories depend solely on the initial and final 

positions, disregarding the physical apparatus to execute them, or the 

external forces. It has been suggested that movement planning should 

consider dynamic aspects of the arm and the task which led the 

authors to test different dynamic variables inside the cost function.  

The torque change was accepted as the cost function variable that 

yields the best agreement with observed behavior. The cost function 

was defined as: 

 

where zi is the torque generated at joint i. This objective function was 

minimized under the constraints of the musculoskeletal dynamics. For 

the purpose of addressing planar movements, the authors 

approximated the arm dynamics by a two-joint planar robot dynamics, 

with inertial, geometric and viscosity parameters representative of the 

human arm characteristics. Due to the highly nonlinear nature of this 

system, it is much more complex to find the unique optimal trajectory 

in this case than in the kinematic model case, in which the system is 

described by linear kinematic relations. This difficulty was overcome 

by employing a computational iterative method to determine the 

optimal solution. With this method the determination of hand 

coordinates trajectories involves the computation of the lower level 

torques at the joints. This is a fundamental implication of dynamic 

models, in which the three levels of motor control cannot be computed 

in isolation. Instead, the computation of the hand trajectory is 

embedded with the lower levels of joint trajectory and joint torque 

computation. As the output of the movement planning, hand 

trajectory, joint trajectory and torque are produced simultaneously.
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Chapter 2 
 

Composability of the human movement 
 

This chapter focuses on the discretization theory of the arm 

movement. The segmentation of seemingly continuous movements 

into segments has been theorized for many years. These segments may 

be considered as movement “primitives”, or building blocks of more 

complex movements. The existence of these fragments, or sub-

movements as they are called, has been supported by a wide range of 

studies over the past 100 years. Evidence for the existence of discrete 

sub-movements underlying continuous human movement has 

motivated many attempts to “extract” them. Recently, the sub-

movement theory gained a great appeal in the rehabilitation field. In 

fact, understanding movement deficits following CNS lesions and the 

relationships between these deficits and functional ability, is 

fundamental to the development of successful rehabilitation therapies. 

 

2.1 Motor planning and trajectory formation 

 
Over the past decades, research on sensorimotor control and on 

trajectory formation has gained momentum as is evident in new 

journals, conferences, and more highly visible publications. This 

growth in both fundamental and applied motor neuroscience is partly 

spurred by applications to rehabilitation, robotics, and brain-machine 

interfaces. Trajectory Formation is one of the basic functions of the 

neuro-motor controller, such as the compensation of loads, the pursuit 

of moving targets, the appropriate control of impacts (e.g. hitting), and 

the generation of contact forces (e.g. pushing).  
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In particular, reaching, pointing, avoiding, generating scribbles, 

drawing, handwriting and gesturing are different motion paradigms 

which all result in the generation of planar or spatial trajectories of 

different degrees of complexity.  

Further, they require extremely complicated and as yet poorly 

understood computations such as the encoding of target position, the 

coordination between the motions of several limb segments and the 

generation of appropriate muscle patterns [Flash et al,1991]. So, even 

in a simple task such as reaching a target in free space, a multitude of 

possible solutions are available, each one being a path that takes the 

hand from the initial to the final position reach towards a stationary 

target they do not use the full repertoire of possible trajectories but 

produce movements with certain invariant kinematic properties, 

suggesting a tendency to select one trajectory from the many 

available. 

 

2.2 The sub-movements theory 
 

As discussed above, one robust finding that has emerged from several 

works [Hogan,1984; Abend et al, 1982;  Flash et al, 1985] is that, in 

the absence of any overriding requirement such as maximum speed or 

precision, the unimpaired planar reaching motions (or free reaching 

movements) are characterized by a straight path of the hand 

movement in the Cartesian space and by a single-peaked, bell-shaped 

velocity profile. This usually leads to smooth and  accurate 

movements. 

However, several studies noted that reaching more complex 

movements or movements under constraints of time and spatial 

accuracy are often characterized by irregular and asymmetric multi-

peaked velocity profiles. These experimental evidences led to the 

emergence of the theory of the discretization of the movement.  
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There is a wide number of studies on human motor control [Gross et 

al, 2002; Von Hofsten, 1991; Rucci et al, 2007; Rohrer, 2006; 

Collewijn et al, 1988; Dounskaia et al, 2007; Morasso, 1981; Di Pietro 

et al, 2009; Flash et al, 1985; Lee et al, 1997] supporting the theory 

that reaching and pointing movements are the result of sequences of 

discrete motion units, called sub-movements.  

Like primitives in natural and computer languages can be combined to 

generate a grammar of more complex constructs, the central nervous 

system can combine these discrete units to generate a manifold of 

more complex motor behaviors. 

Identifying fundamental building blocks that underlie human 

movement is a major goal of motor control studies. If such a structure 

could be identified and accurately characterized, it would provide the 

ability to scrutinize human movement at a deeper level than has been 

previously possible.  

Moreover, considering any movement as a combination of “primitive” 

blocks leads to interesting theory that lends itself well to a 

mathematical application, especially for the striking analogy with the 

Fourier approach. Evoking Fourier’s theorem, in fact, it is clear that a 

wide range of almost-periodic behaviors may be composed by 

superposition of oscillatory primitives; so, considering the movement 

as a periodic (or not) signal is a very fitting analogy.  

The possibility that observable movements are composed of sub-

movements is by no means a new idea since the search for primitive 

elements that generate actions dates back at least a century. As early 

as 1899, Woodworth noted that voluntary movements appear to be 

accomplished as a series of corrective sub-movements [Woodworth, 

1989].  

Then sub-movements have been observed in a variety of motor tasks, 

such as handwriting [Morasso et al, 1982], slow finger movements 

[Vallbo et al, 1993], and elbow cyclical movements [Doeringer et al, 

1998] and under a number of experimental conditions, such as 

visually guided [Milner et al, 1990; Milner et al, 1992; Burdet et al, 
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1998], blinded [Doeringer et al, 1998], high accuracy [Milner et al, 

1992] and low-accuracy [Di Pietro et al, 2004] tasks. 

While earlier work assumed sub-movements were made at fixed, non-

overlapping intervals [Crossman et al, 1983] or immediately following 

one another [Meyer et al, 1982; Meyer et al, 1988], later work allowed 

for the possibility that the sub-movements overlap the primary 

movement [Flash et al, 1991; Berthier, 1997; Milner et al, 1990; Krebs 

et al, 1999], so considering these discrete blocks as primitive dynamic 

elements of motor behavior [Hogan et al, 2002]. 

The constrained velocity is another variable that leads to the 

insurgence of sub-movements during a reaching movement. For 

example, a fast movement to a fixed target can be thought of as being 

composed of one or more sub-movements, each of which is pre-

programmed and generated by an inverse internal model [Shadmehr et 

al, 2005; Davidson et al, 2000].  

The first of these is called the initial, or primary, sub-movement. 

Then, based upon the output of a forward model and/or visual 

feedback and accuracy requirements, the primary sub-movement may 

be modified slightly near the end (allowing for the delay in the motor 

control system), corrective sub-movements may be made before the 

end of the primary sub-movement (concurrent/ overlapping sub-

movements), or after the primary sub-movement (discrete/non-

overlapping sub-movements).  

These corrective sub-movements cause a deviation from the typical 

bell-shaped velocity profile of a unconstrained movement [Morasso 

1981; Hogan, 1984]. This means that, despite humans seems to have 

little difficulty in moving accurately to a desired position, the 

accuracy declines as movement speed increases [Woodworth, 1899]. 
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2.3 The sub-movements in the rehabilitation 

process 
 

Over the last years, the sub-movement theory gained a great appeal in 

the rehabilitation field. Understanding movement deficits following 

CNS lesions and the relationships between these deficits and 

functional ability, is fundamental to the development of successful 

rehabilitation therapies [Lough et al, 1984]. When a subject with 

spinal cord or orthopedic injury perform a reaching movement, the 

resulting movement differs from that performed by a person with an 

intact nervous system. particularly.  

Damage to areas that contribute to the execution of smooth, 

coordinated movement may result in some type of impairment in the 

quality of the movement. The symptoms most often displayed involve 

an incorrect timing of muscle activation [Carr et al, 1987], the 

addition of involuntary movement as result of the muscle firing 

spontaneously, a lower accuracy of the movement and the occurrence 

of a pathological synergy as compensatory strategy of the motor 

deficit [Gowland et al, 1992; Trombly, 1992; Levin, 1996].  

Krebs [Krebs et al, 1999] observed that movements performed by 

subjects in the early stage of stroke recovery were fragmented and 

highly stereotyped in their shapes. Decomposing movements into 

individual components should reveal the strategy that is used by the 

pathological subjects to perform a motor task. He reported that 

movements made by patients recovering from stroke become 

smoother as recovery proceeds and this was attributed to a progressive 

overlapping and blending of sub-movements.  

Subsequently, progressive changes in sub-movements were again 

proposed as the mechanism underlying progressive changes in 

movement smoothness during motor recovery from stroke and, more 

in general, as a process that characterizes motor recovery from stroke 

(Rohrer et al., 2002; Di Pietro et al, 2009).  
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Chapter 3 
 

Models for the sub-movements 

decomposition 
 

The goal of sub-movement extraction is to infer the sub-movement 

composition of a movement from kinematic data. In the tangential 

velocity domain, a sub-movement is represented as a uni-modal, bell-

shaped function.  

Determining the number, relative timing, and amplitude of sub-

movements that most closely reproduce the original tangential 

velocity data is a non-linear optimization problem difficult to solve. In 

this chapter, at first, formally define optimization problems and 

identify the principle classes of problems. Particularly are summarized 

the characteristics of nonlinear optimization problems and solution 

methods.  

Then, is reported a review on the decomposition methods developed 

until now and the several methodologies used to extract them. 

Furthermore, is proposed a novel sub-movement decomposition 

method based on a EM constrained algorithm.  

This representation allowed us to explore whether the movements are 

built up of elementary kinematic units by decomposing each surface 

into a weighted combination of Gaussian functions. These can be used 

to examine underlying principles of movement generation during the 

execution of a reaching movement. 
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3.1 The optimization problems 
 

Many application problems in engineering decision sciences and 

operations research are formulated as optimization problems.  

Optimization problems (Figure 4) are made up of three basic 

components:  

 a set of unknowns or variables, which can take on continuous, 

discrete, or symbolic values; 

 an objective function to be minimized or maximized, which 

can be continuous or discrete and have linear or nonlinear 

forms.  

 a set of constraints that specify feasible values of the 

variables. The constraints  can also have linear or nonlinear 

forms, can be defined implicitly or explicitly or may not even 

exist. 

The optimization problem entails “finding values of the variables that 

optimize (minimize or maximize) the objective function while 

satisfying the constraints”, 

 

 

 

Figure 1. A classification of the optimization problems. 
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A general minimization problem is defined as follows: 

Given a set D and a function (the objective function)  f : D→ P, find at 

least one point x* ∈ D that satisfies f(x*) ≤ f(x) for all x ∈ D, or show 

the non-existence of such a point. 

 

A mathematical formulation of a minimization problem is as follows: 

                                  minimize f(x)                            (1.1)  

subject to x ∈ D. 

In this formulation x = {x1,x2,……., xn} is an n-dimensional vector of 

unknowns (or variables). The function f is the objective function of the 

problem, and D is the feasible domain of x specified by constraints. 

The codomain P of an objective function as well as its range must be a 

subset of the real numbers (P ⊆ R), 

Definition 1.1 (Global Minimum). A vector, x* ∈ D,  satisfying f(x*) ≤ 

f(x) for all x ∈ D is called global minimizer of  f over D. The 

corresponding value of  f  is called a global minimum.  

Definition 1.2 (Local Minimum). A vector x* ∈ D is called a local 

minimizer of   f over  D if f(x*) ≤ f(x) for all x ∈ D close to x*. The 

corresponding value of  f  is called a local minimum.  

Note that since max  f(D) = - min(- f(D)),  maximization problems can 

be transformed into minimization problems shown in  (1.1).  

Definition 1.3 (Global Optimum). A global optimum x⋆ ∈ D of one 

(objective) function 

f : D → R is either a global maximum or a global minimum. 
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Even a one-dimensional function f : D→ P may have more than one 

global maximum, multiple global minima, or even both in its domain 

X (Figure 5). The correct solution of such an optimization problem 

would then be a set  of all optimal inputs in D rather than a single 

maximum or minimum. Furthermore, the exact meaning of optimal is 

problem dependent. In single-objective optimization, it either means 

minimum or maximum.  

 

 
Figure 2. Global and local optima of a two-dimensional function. 

 

3.1.1 Continuous optimization problems 

 

Optimization problems are classified into continuous and discrete 

problems. A problem is continuous if the unknowns (variables) take 

on continuous real values, i.e.,  D in (1.1) consists of real numbers.  
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A problem is discrete if the unknowns take on discrete, usually integer 

values. 

Continuous optimization problems are further classified into 

constrained optimization and unconstrained optimization based on the 

presence of constraints. Problems without constraints fall into the 

class of unconstrained optimization. 

                                  minimize f(x)                            (1.2)  

subject to x ∈ R
n
. 

There are two types of optimal points of an optimization problem: 

local minima and global minima.  A local minimum has the smallest 

value in a local feasible region surrounding itself, whereas a global 

minimum has the smallest value in the whole feasible domain. In a 

continuous unconstrained optimization problem, an objective function 

is minimized in the real domain. An unconstrained optimization 

problem is uni-modal if its objective function is convex. A uni-modal 

problem has only one local minimum, which is the global minimum at 

the same time.  Uni-modal problems are relatively easy to solve. They 

have been studied extensively for decades. Many algorithms have 

been developed, including gradient descent, Newton’s method, quasi 

Newton’s methods, and conjugate gradient methods. These algorithms 

are very efficient and can solve optimization problems with tens of 

thousands of variables within seconds.  

A problem is multi-modal if its objective function has more than one 

local minimum. General non-linear functions are multi-modal and 

may have many local minima that are not global minima. Multi-modal 

problems are much more difficult and yet plentiful in real 

applications. Although many methods have been developed for multi-

modal problems, most of them are efficient only for subclasses of 

problems with specific characteristics. Methods for general multi-

modal problems are far from optimal. 
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When each dimension of D  in (1.1) consists of real values constrained 

by simple lower and/or upper bounds, the corresponding optimization 

problem is called a simple-bounded continuous optimization problem. 

 

                                  minimize f(x)                            (1.3)  

subject to   l ≤ x ≤ u  

x ∈ R
n
. 

where l and u are constants. 

We put simple-bounded constrained problems in the class of 

unconstrained optimization because simple-bound constraints (for 

example 1 ≤ x ≤ 5) are easy to handle, and algorithms for problems 

without constraints and with simple-bound constraints are similar. The 

remaining problems with nontrivial constraints belong to the class of 

constrained optimization. 

As shown in Figure 4 constrained continuous problems are classified 

into linear and non-linear depending on the form of constraint 

functions. When D in (1.1) is bounded by linear functions, the 

corresponding optimization problem is called a linear constrained 

problem. This class of problems is relatively easy to solve.  Among 

these problems, two types of problems that have been studied 

extensively and solved well are linear programming and quadratic 

programming problems. Efficient algorithms have been developed to 

solve them very well [Dantzig G. B., 1963; Floudas et al, 1995]. 

When D is characterized by non-linear functions, the optimization 

problem is called a non-linear optimization or a non-linear 

programming problem. 

 

minimize        f(x)                            (1.4) 

subject to      h(x) = 0 

g(x) ≤ 0 

x ∈ R
n
. 
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where h(x) represents a set of equality constraints and g(x) a set of 

inequality constraints. In a nonlinear optimization problem, the 

objective function as well as the constraint functions are nonlinear. 

Nonlinear constrained problems are difficult to solve because 

nonlinear constraints may constitute feasible regions that are difficult 

to find, and nonlinear objectives may have many local minima. Many 

application problems fall into this class [Flaudas et al, 1990; Horst et 

al, 1995]. 

 

 

3.1.2 Discrete optimization problems 

 

When the feasible set D in (1.1) consists of discrete values, the 

problem is called a discrete optimization problem. Discrete 

optimization is a field of study in combinatory_ as well as in 

mathematical programming.  A classification of combinatorial 

problems consists of four categories: a) evaluation of required 

arrangements, b) enumeration of counting of possible arrangements, c) 

extremization of some measure over arrangements,  and d) existence 

of specific arrangements [Parlos et al, 1988] Discrete optimization 

usually refers to the third category.   

Some famous examples of discrete optimization problems are as 

follows: 

 Knapsack Problem. Determine a set of integer values  , i=1, 

2, ……., n, that minimize f(x1, x2,…….,xn) subject to the 

restriction g(x1, x2,…….,xn) ≥ b where b is a constant. 

 Traveling Salesman Problem. Given a graph (directed or 

undirected) with specified weights on its edges, determine a 

tour that visits every vertex of the graph exactly once and that 

has minimum total weight. 
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 Bin Packing.  Given a set of weights, wi, 1 ≤ i ≤ n and a set of 

bins,  each with fixed capacity W, find a feasible assignment 

of weights to bins that minimizes the total number of bins 

used. 

 

Discrete optimization problems,  including the above examples, can 

be expressed in the following integer programming (IP) formulation: 

 minimize        f(x)                            (1.5) 

                                                    subject to      h(x) = 0 

g(x) ≤ 0 

                                                                         x ∈ I
n
 

where I represents the integer space. Variable domain D consists of 

integers and is characterized by equality constraints h(x) and 

inequality constraints g(x).   

Notice the similarity of (1.5)  to the formulation of continuous 

constrained optimization problem in (1.4). 

As shown in Figure 4, the discrete optimization problems are 

classified according to the existence of constraints and their 

computational complexity.  

When there is no constraint besides integral requirements of variables, 

the problem is called an unconstrained problem.  

With additional constraints, the problem is called a constrained 

problem. An unconstrained discrete optimization problem has the 

following form: 

                                  minimize f(x)                            (1.6)  

subject to x ∈ I
n
. 
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When D consists of integer values constrained by simple lower and/or 

upper bounds, the optimization problem is called a simple-bounded 

discrete optimization problem: 

                                  minimize f(x)                            (1.7)  

subject to   l ≤ x ≤ u  

x ∈ I
n
. 

As in the continuous case, we associate simple-bounded discrete 

optimization problems with the class of unconstrained problems. 

Algorithms for these problems are similar. The majority of discrete 

optimization problems have some constraints, and few are 

unconstrained optimization problems.  

When domain D and objective f are characterized by linear functions, 

the optimization problem is called an integer linear programming 

(ILP) problem. 

An example of ILP problems is the following inequality-form 

knapsack problem: 

minimize  

subject to   ≥ bj 

= 0 or 1,    and  are integers     i= 1, 2, ……..,n 

Discrete constrained optimization problems have been studied 

extensively in computer science and operations research. Based on 

their computational complexity, there are two important classes of 

discrete optimization problems: Class P and Class NP. Class P 

contains all problems that can be solved by algorithms of polynomial-

time complexity, where P stands for polynomial. Examples of Class P 

problems are matching, spanning trees, network flows, and shortest 

path problems. Class P problems have been well studied. Many 
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discrete problems in real-world applications do not have polynomial-

time algorithms and are more difficult to solve than those in Class P. 

Among them, one important class is NP. Class NP includes all those 

problems that are solvable in polynomial time if correct polynomial-

length guesses are provided. Examples are knapsack, traveling-

salesman, and bin-packing problems.  Problems to which all members 

of NP polynomially reduce are called NP-hard. The Class NP contains 

the Class P as well as a great many problems not belonging to P. 

3.1.3 Challenges in solving non-linear optimization 

problems 

 

Except for trivial cases, nonlinear optimization problems do not have 

closed-form solutions and cannot be solved analytically. Numerical 

methods have been developed to search for optimal solutions of these 

problems. The process of solving an optimization problem becomes a 

process of searching for optimal solutions in the corresponding search 

space. Finding global minima of a nonlinear optimization problem is 

a challenging task. Non-linear constraints form feasible regions that 

are hard to find and difficult to deal with, and nonlinear objectives 

have many local minima that make global minima hard to find and 

verify.  

In solving nonlinear constrained optimization problems, there may not 

be enough time to find a feasible solution when nonlinear constraints 

constitute small feasible regions that are difficult to locate. 

Second, nonlinear objective functions in both constrained and 

unconstrained optimization problems make global minima difficult to 

find. Figure 6 illustrates the challenges of a multi-modal nonlinear 

function. The terrains have different characteristics and cause 

problems for search algorithms that adapt to only a subset of the 

characteristics.  
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Because of large slopes, tall hills are difficult to overcome in gradient-

based search methods. In the search space, gradients can vary many 

orders of magnitude, which make the selection of appropriate step-size 

difficult. Large shallow basins and flat plateaus provide little 

information for search direction, and may take a long time for a search 

by algorithm to pass these regions if the step-sizeis small. Further, 

small local minima are difficult to find.  

 
Figure 3. Illustration of difficulties in optimizing a nonlinear function. There may 

exist local minima in a multi-modal nonlinear function with different characteristics, 

shallow or deep, wide or narrow. 

These difficulties happen in the extraction problem of the sub-

movements in a reaching movements as shown in the section 3.3. In 

nonlinear optimization problems, global optimal solutions are not only 

difficult to find, but also difficult to verify. There is no local criterion 

for deciding whether a local optimal solution is a global optimum. 

Therefore, nonlinear optimization methods cannot guarantee solution 

qualities for general nonlinear problems.  

To summarize, the challenges of general nonlinear optimization 

include the following: 

 Feasible regions bounded by nonlinear constraints may be 

difficult to find; 

 The objective-function terrain of search space may be very 

rugged with many sub-optima; 
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 There may exist terrains with large shallow basins and small 

but deep basins; 

 The dimension of optimization problems is large in many 

interesting applications; 

The objective and constraints are expensive to evaluate. 

 

3.1.4 Characteristics of non-linear optimization 

algorithms 

 

A large number of optimization methods have been developed to solve 

nonlinear optimization problems. Nonlinear optimization methods are 

classified into local optimization and global optimization methods. 

Global optimization methods have the ability to find global optimal 

solutions given long enough time, while local optimization methods 

do not.  

Local optimization methods include gradient descent, Newton’s 

method, quasi Newton’s method, and conjugate gradient methods 

[Arrow et al, 1958; Baldi, 1995; Gorse et al, 1992; Kinsella, 1992; 

Sturua et al, 1991].  

They converge to a local minimum from some initial points. Such a 

local minimum is globally optimal only when the objective is quasi-

convex and the feasible region is convex, which rarely happens in 

practice. For nonlinear optimization problems, a local minimum can 

be much worse than the global minimum.  

To overcome local minima and search for global minima, global 

optimization methods have been developed. 

Global optimization methods look for globally optimal solutions 

[Floudas et al, 1990; Horst et al, 1993; Pardalos et al, 1987]. As stated 

by Griewank [Griewank, 1981], global optimization for nonlinear 

problems is mathematically ill-posed in the sense that a lower bound 

for the global optima of the objective function cannot be given after 

any finite number of evaluations of the objective function, unless the 
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objective satisfies certain conditions, such as the Lipschitz condition, 

and the search space is bounded.  

Global optimization methods perform global and local searches in 

regions of attraction and balancing the computation between global 

and local exploration. A global search method has the mechanism to 

escape from local minima, while a local search method does not. In an 

optimization problem, a region of attraction defines the region inside 

which there is a local minimum and the constraints are satisfied.  

The regions of attraction trap local search methods. In the general 

black-box model, global optimization is performed without a priori 

knowledge of the terrain defined by the objective and the constraints. 

Therefore, global optimization algorithms use heuristic global 

measures to search for new regions of attraction. Promising regions 

identified are further optimized by local refinement procedures, such 

as gradient descent and Newton’s methods. In many real-world 

applications, the computational complexity of finding global optima is 

prohibitive. Global optimization methods usually resort to finding 

good sub-optimal solutions. 

Nonlinear optimization methods employ various search algorithms to 

escape from local minima and search for global optima. The 

characteristics of search algorithms are summarized as follows: 

a) Representation of search space. A search space specifies the range 

of variable assignments that are probed during the process of 

searching for optimal solutions. The search space may contain only 

feasible regions specified by constraints, or may contain some 

infeasible regions as well. The search space of an optimization 

problem can be finite or infinite, which directly affects the 

computational complexity of the corresponding search algorithms. 

b) Decomposition strategies. Some search algorithms work on the 

whole search space directly, while others decompose the large search 

space into smaller ones and then work on them separately. Divide-

and-conquer and branch and bound are two decom-position strategies 
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that have been applied in many search algorithms for both continuous 

and discrete problems. 

c) Heuristic predictor or direction finder. During a search process, 

search algorithms have used many different heuristics to guide the 

search to globally optimal solutions. In branch and bound methods, 

heuristic lower bounds are associated with decomposed smaller sub-

spaces to indicate their goodness. For example, in interval methods, 

interval analyses are used to estimate the lower bounds of a 

continuous region. Similarly, in solving integer programming 

problems, discrete problems are relaxed into continuous linear 

programming problems to obtain a lower bound. The lower-bound 

information is further used to guide the search. In simulated annealing, 

the objective values of neighborhood points provide a direction for the 

search to proceed.  

In genetic algorithms, search directions are obtained from fitness 

values of individuals in a population. Components of individuals with 

high fitness are reinforced, and the search moves in directions formed 

by good building blocks. 

d) Mechanisms to help escape from local minima. To find globally 

optimal solutions, a search algorithm has to be able to escape from 

local minima. Probabilistic methods get out of local minima based on 

probabilistic decisions. For example, simulated annealing methods can 

move in a direction with worse solutions using adaptive probabilities. 

Genetic algorithms escape from local minima through probabilistic 

recombination of individuals and random perturbation of existing 

solutions. 
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e) Mechanisms to handle constraints. To solve constrained 

optimization problems search algorithms have to handle constraints 

efficiently. 

f) Stopping conditions. Some optimization problems can be solved 

optimally in a short amount of time. Unfortunately, most real-world 

applications are large and have high computational complexity, which 

makes optimal solutions impossible to find or verify. Hence, search 

algorithms have to terminate in a reasonable amount of time and settle 

on approximation solutions. The degree of approximation is usually 

proportional to the amount of time available. Better solutions can be 

found given more execution time. 

3.1.5 Overcoming local minima 

 

General nonlinear optimization problems are difficult to solve due to 

the large number of local minima in the search space. Local minima of 

nonlinear objective functions make local searches more difficult.  

Search methods that are trapped by local minima are incapable of 

obtaining good solutions. The mechanism of escaping from local 

minima determines the efficiency of a global search algorithm and the 

solution quality it obtains, and has long been the central issue in 

developing global search methods.  

As discussed above, solution methods for nonlinear optimization 

problems can be classified into local and global methods.  

Local optimization methods, such as gradient descent and Newton’s 

methods, use local information (gradient or Hessian) to perform 

descents and converge to a local minimum. They can find local 

minima efficiently and work best in uni-modal problems. 

Global methods, in contrast, employ heuristic strategies to look for 

global minima and do not stop after finding a local minimum. 

Note that gradients and Hessians can be used in both local and global 

methods.  
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Figure 7 shows a classification of local optimization methods for 

unconstrained non-linear optimization problems. The methods can be 

broadly classified as zero-order, first-order, and second-order methods 

based on the derivative information used during the search. Generally 

higher-order methods converge to local minima faster.  

Zero-order methods do not use derivatives of objective functions 

during optimization. Examples are the simplex search method, the 

Hooke and Jeeves method, the Rosenbrock method, and the conjugate 

direction method.  

First-order methods use first-order derivatives of the objective 

function during the search. Examples are the gradient-descent method, 

the discrete Newton’s method, the quasi-Newton methods, and the 

conjugate gradient methods. 

 

 
Figure 4. Classification of local optimization methods for unconstrained nonlinear 

optimization problems. 

The gradient-descent method performs a linear search along the 

direction of the negative gradient of the minimized function.  

The discrete Newton’s method approximates the Hessian matrix by 

the finite difference of the gradient.  

Quasi-Newton methods approximate the curvature of the nonlinear 

function using information of the function and its gradient only, and 

avoid the explicit evaluation of the Hessian matrix.  
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Conjugate gradient methods combine the current gradient with the 

gradients of previous iterations and the previous search direction to 

form the new search direction. They generate search directions 

without storing a matrix. 

Second-order methods make use of second-order derivatives. They 

include Newton’s method, Levenberg-Marquardt’s method, and trust 

region methods. Local optimization methods converge to local 

minima. For some applications, local optima may be good enough, 

particularly when the user can draw on his/her own experience and 

provide a good starting point for local optimization algorithms. 

However, for man applications, globally optimal or near-optimal 

solutions are desired. In nonlinear optimization, objective functions 

are multi-modal with many local minima. Local search methods 

converge to local minima close to the initial points. Therefore, the 

solution quality depends heavily on the initial point picked.  

When the objective function is highly nonlinear, local-search methods 

may return solutions much worse than the global optima when starting 

from a random initial point. 

To overcome the deficiencies in local search methods, global search 

methods have been developed with global search mechanisms. Global 

search methods use local search to determine local minima, and focus 

on bringing the search out of a local minimum once it gets there. 

Figure 8 shows a classification of nonlinear global optimization 

methods. Methods to solve global optimization problems have been 

classified as either probabilistic or deterministic. Probabilistic 

(stochastic) methods evaluate the objective function at randomly 

sampled points from the solution space. Deterministic methods, on the 

other hand, involve no element of randomness. 
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Alternatively, global optimization algorithms can also be classified as 

reliable and unreliable. Reliable methods guarantee solution quality 

while unreliable methods do not. Probabilistic methods, including 

simulated annealing, clustering, and random searching, fall into the 

unreliable category. Unreliable methods usually have the strength of 

efficiency and better performance in solving large-scale problems. 

 

Figure 5. Classification of unconstrained nonlinear continuous global minimization 

methods. 

 

3.2 Evidence for the sub-movement theory 
 

The idea that motor control is accomplished by combining primitive 

elements is not at all new but the full extent of its ramifications for 

motor control may not yet have been fully articulated. In fact, 

although the experimental observations suggest that sub-movements 

are ubiquitous, proof of their existence and detailed quantification of 

their form have been elusive.  
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The latter is important because if the sub-movement shape was known 

(e.g., the time profile of any measured variable such as velocity), then 

decomposition to extract sub-movements from a continuous-

movement record would be feasible; without it, the problem is 

indeterminate (a classical example of a hard inverse problem) as any 

compactly supported function f(x) can be approximated with arbitrary 

precision in the L2-sense (mean-squared convergence) by a weighted 

sum of ridge functions or radial basis functions [Cybenko, 1989; 

Hornik et al, 1989; Poggio et al, 1990].  

Thus, any of an infinite set of candidate sub-movement shapes could 

fit with little objective basis to choose between them. One way to 

resolve this problem would be to observe the shape of a sub-

movement in isolation. A unique opportunity to do so arose from our 

ongoing work studying the feasibility of applying robotic technology 

to assist neurological recovery.  

Kinematic records of the arm movements of patients recovering from 

a focal brain injury (stroke) showed compelling evidence for the first 

time that early post-stroke recovered motions are composed of 

isolated segments; and that these segments become progressively 

more blended or overlapped as recovery proceeds. 

From the above-mentioned studies, the common factor which can be 

observed in the composition of sub-movements is that the velocity 

profiles of the primary movement and those of both corrective or 

overlapping sub-movements seem to be characterized by constant 

behaviors in terms of duration, shape, mutual overlapping and a 

properly optimized scaling of amplitude and number.  

All these available evidence point toward sub-movements’ existence 

and no other theory has been proposed that can account for 

observations of movement segmentation but there is no obvious way 

to prove their existence.  
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In fact, the nervous central system controls the behavior of complex 

kinematically redundant biomechanical systems but how it exactly 

computes appropriate commands to generate movements is unknown. 

Particularly each individual realization of a motor goal results from 

the choice of one among an infinite number of motor patterns 

[Bernstein, 1967]. On the other hand, even if a movement can be 

decomposed into discrete units, that does not necessarily imply that it 

is was created by summing discrete units. Finally, there is no univocal 

relationship between motor goals and motor patterns, a property first 

noted to be central to the functioning of motor systems by [Lashley, 

1933], which he called motor equivalence. Hence, the  important 

disadvantages of  the composability theory of the movement  is the 

concomitant difficulty of identifying sub-movements unambiguously 

from a continuous motion record, since the sub-movements represent 

only one of the some ways to describe the infinite patterns that can 

describe the reality motor. 

Moreover, it is very difficult to determinate whether what appear to be 

continuous adjustments of the primary movement are prearranged 

planned in this way by the SNC, or if these adjustments are organized 

according to the visual and proprioceptive feedback acquired during 

the execution of a motor task.  

However, a strong contribute to the composability theory of the 

human movement has been reported recently by Hogan [Hogan et al, 

2012] in which is proposed a framework for how humans physically 

interact with and manipulate objects. He stated that despite the 

slowness of the neurons and muscles of the human neuromuscular 

system, humans achieve astonishing dexterity manipulating objects—

and especially using tools—far superior to anything yet achieved in 

robotic systems. This behavior is allowed encoding the movement 

solely in terms of these primitive dynamic actions, so dramatically 

simplifying the control of physical interaction with complex dynamic 

objects and the generation of complex movement. 
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3.3 The importance of a good initial guess in the 

decomposition models 
 

Consequence of the foregoing statement, sub-movement 

decomposition is a non-linear optimization problem: simultaneously 

maximizing goodness of fit and minimizing the number of sub-

movements used, given a sub-movement shape, e.g. minimum-jerk or 

Gaussian and a summing modality, e.g. scalar summation, or vector 

summation.  

Many such models [Hogan, 1984; Crossman et al, 1983; Morasso et 

al, 1982; Flash et al, 1991] have described mechanisms and control 

structures that may underlie the specific motor behavior to compose a 

movement. These models have employed different mathematical 

tools, ranging from Bayesian statistics to nonlinear dynamics and 

optimal feedback control, to name just a few.  

While useful, insights gained thereby have proven difficult to integrate 

with other models (which are often seen as competing theories) and 

more or less impossible to generalize.  

So, given a measured virtual trajectory, there remains the challenge of 

identifying underlying motion primitives. However, since the posited 

underlying discrete commands are not directly available, there is no 

way to verify that a given decomposition is accurate. 

 

“As a non-linear optimization problem, the sub-movement problem 

may have multiple local minima” 

 

However, several optimization methods applied to overcome this 

problem are sensitive to getting caught in local minima and cannot 

guarantee a globally optimal solution. 
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One common approach to identifying sub-movements is to examine 

derivatives of the trajectory to identify local peaks, but that method is 

completely unreliable. Particularly, a composite of two smooth sub-

movements may yield one, two, or three local velocity peaks. 

Any method that uses the number of peaks to estimate the number of 

sub-movements would fail to make an initial guess in the 

neighborhood of the global optimum. Listed below are several 

methods for making initial guesses that have been previously applied 

to sub-movement decomposition. The first two methods are based on 

a subjective selection [Lee et al, 1997] and on identifying  of local 

peaks [Milner et al, 1990]. 

Lee has made initial guesses based on subjective estimation of sub-

movement characteristics. All the parameters of individual sub-

movements are adjusted by hand to provide a reasonable fit to the data 

before to search algorithm was initiated. This method is subject to the 

limitations illustrated in Figure 3; sub-movement characteristics are 

difficult to intuit based on the speed profile, and therefore the initial 

guess is not guaranteed to be near the global optimum. 

Milner, instead, used zero velocity and maximum curvature points 

along individual axes to mark the onset of sub-movements in 3D 

movements. Particularly, the onset of each sub-movement was 

determined by comparing corresponding points on the hand path and 

the velocity trajectory. Sub-movement onsets were so chosen to 

correspond to abrupt changes in hand path direction that corresponded 

to zero crossings or inflections in the velocity. 

 As implemented, Milner’s method is dependent on the choice of 

coordinate system and leads to a somewhat arbitrary division of the 

movement into sub-movements. Using maximum curvature points as 

sub-movement delimiters suffers additionally from the fact that, 

although curvature tends to be maximum between sub-movements, it 

still does not need to be significant. Consecutive sub-movements in 

the same direction may have no clear peak in curvature by which to 

distinguish them. 
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Alternative methods use “greedy” algorithms which first find a sub-

movement that best fits the trajectory in some suitable sense (least 

residual error, highest peaks peed, etc.), then subtract it and repeat the 

procedure on the residual until the error between the sum of sub-

movements and the original trajectory falls below a specified 

threshold. Unfortunately, these methods also yields spurious 

decompositions (Figure3). Even in a simulated “test” case, where a 

sequence of sub-movements is known a-priori and used to compose a 

continuous trajectory, these methods cannot reliably recover the 

underlying sub-movements. Particularly, are now reported the most 

famous greedy algorithm used in this context.  

The Matching Pursuit is a “greedy” algorithm; it finds the best fit for 

a single element at a time, rather than for a set of elements. Matching 

Pursuit iteratively finds the sub-movement which, when subtracted 

from the function, minimizes the residual error. This repeats until 

some minimum error threshold is reached. The limitations of the 

Matching Pursuit algorithm are described in detail by Chen et al. 

[Chen et al, 1998].  

The fact that Matching Pursuit fits a single sub-movement at a time 

does not allow it to optimize the fit for all sub-movements. Simple 

functions composed of as few as two sub-movements are incorrectly 

decomposed, because of the greedy nature of the algorithm, as shown 

by Doeringer [Doeringer, 1999]. 

The Irregular Sampling Radial Basis Function algorithm [Krebs, 

1997] and the method of Berthier [Berthier, 1996] are also greedy 

algorithms. At each iteration, both of these algorithms fit a sub-

movement to the highest speed peak and its local neighborhood, and 

the fit function is subtracted from the original speed profile. As in 

Matching Pursuit, the process is repeated until either an error 

threshold is reached or a maximum number of sub-movements are fit. 

As illustrated in Figure 3, aligning sub-movements with the highest 

speed peak provides no guarantee that the sub-functions chosen 
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actually coincide with those used to construct the original 

function.Another greedy algorithm, High Resolution Pursuit (HRP) 

[Jaggi et al, 1997] is similar to Matching Pursuit in that it minimizes 

the residual error, but differs in that it emphasizes local fidelity of the 

fit and does not necessarily seek out the highest peak. Unfortunately, 

local fidelity of fit is not generally the best way to estimate sub-

movements’ characteristics. Consider for example the movement 

depicted in Figure 9; HRP would likely fail to make an accurate initial 

guess for a speed profile, since the chief characteristics of the speed 

profile do not resemble any of its component sub-movements. 

 

 

Figure 6. The challenge of decomposing a continuous trajectory into sub-movements 

[Rohrer et al, 2003]. The right column  shows simulated speed profiles resulting 

from different combinations of underlying sub-movements. Note that the number of 

peaks does not correspond to the number of sub-movements. The left column shows 

the result of decomposition using “greedy” algorithms. Though the RMS fitting 

error is low, the sub-movements identified do not resemble those used to construct 

the speed profiles. 
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The optimality of the solution for these methods depends heavily on 

the quality of the initial guess; unless the initial guess is in the 

neighborhood of the global minimum, they will not find the best 

solution. In order to reliably find the global minimum and solve the 

decomposition problem accurately, an algorithm capable of global 

nonlinear optimization is necessary.  

To this scope, the Branch-and-Bound global optimization method has 

been developed which avoid spurious decompositions.  

The idea underlying branch-and-bound algorithms is simple: to find 

the global minimum of a function over a bounded parameter space, 

repeatedly divide (branch) the parameter space into subspaces and 

bound the value of the function over each subspace. If the lower 

bound of the function over a subspace is higher than a known value of 

the function elsewhere, that subspace need not be searched further. 

This continues until the location of the solution is known sufficiently 

well. This algorithm requires that each parameter be bounded. The 

application of the branch-and-bound algorithm to sub-movement 

extraction is straightforward. Consider a speed profile, g, and the 

current estimate of the speed profile f(p), given by 

 

 
 

where each λj is a sub-movement, completely described by m 

parameters. p is a vector containing the parameters of all the sub-

movements. If N is the total number of sub-movements, then the total 

number of parameters in p, is given by M = N ∗m.  

The formulation in the above equation assumes scalar summation of 

sub-movements, but could be generalized to other modes of 

combination. The objective function to be minimized is the absolute 

error, ε. With this method it has been shown that (1) the statistics of 

the extracted  sub-movement parameters are robust to the assumed 
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sub-movement shape and (2) the errors introduced by inappropriate 

sub-movement shapes can be detected even in the presence of 

substantial measurement noise (Rohrer et al,2003,2006). 

 

 
Figure 7. Ability of decomposition based on global optimization to discriminate 

different sub-movement shapes underlying a speed profile (Rohrer et al, 2003). 

Solid lines: simulated speed profiles. Dotted  lines: Gaussian sub-movements. 

Dashed lines: minimum-jerk sub-movements. 

However, although this approach, compared to the previous “local 

methods”, more accurately describes the kinematic signatures of sub-

movements, reduces the description error to near zero and provides a 

more plausible biological account of the phenomenon, it introduces a 

new problem for decomposition. Due to the computational demands of 

that approach, has been developed an alternative sub-movement 

extraction algorithm based on the notion of “scattershot” optimization, 

which is local optimization starting from a number of random initial 

conditions. The scattershot algorithm finds the globally optimal sub-

movement composition probabilistically, i.e., the probability of 

finding the globally best fit can be made arbitrarily close to 1 by 

increasing the number of random starting points used in the 

optimization.
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Chapter 4 
 

A robust EM algorithm for the sub-

movements extraction 
 

In this chapter, we will introduce the basics about mixture models. 

Then, we introduce mixture models formally, show how a mixture 

model can be efficiently estimated with the expectation-maximization 

(EM) algorithm. Then we discuss the critical aspects of the EM 

algorithm such as the parameters initialization  and determination of 

the number of components composing a finite mixture. These issues 

are particularly felt in the sub-movements theory where the shape and 

the number of building blocks composing a motor task is not known. 

Finally  we illustrate and apply a robust EM algorithm to decompose 

point-to-point reaching movements overcoming the limitations of the 

local approach of a simple EM. 

 

4.1 Finite mixture models 
 

A finite mixture model is a convex combination of two or more 

probability density functions. By combining the properties of the 

individual probability density functions, mixture models are capable 

of approximating any arbitrary distribution. Consequently, finite 

mixture models are a powerful and flexible tool for modeling complex 

data. Mixture models have been used in many applications in 

statistical analysis and machine learning such as modeling, clustering, 

classification and latent class and survival analysis. 
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4.1.1 Basics 

 

A continuous L-dimensional random variable will be denoted as X = 

(X1, ..., Xl , ..., XL), where Xl corresponds to the lth variable. Lower 

case letters will be used for a particular observation (or realization) x 

= (x1, ..., xl , ..., xL) of a variable X.  

Bold face letters, such as X, will denote a data of N observations of 

variable X or, equivalently, a N × L matrix, where xil is the value of 

the ith observation for the lth variable in X.  

A probability density function (pdf) p(x) is any function defining the 

probability density of a variable X such that p(x) ≥ 0 and 

. By integrating p(x) over an interval, we obtain the 

probability that variable X assumes values in the interval [a, b], that is 

P[a≤ Xi ≤b] =  

For a given pdf p(x), the expectation of X is defined as, 

E[X]=  

In relation to the model parameters, we use the “hat” symbol to 

indicate an estimator. For example  is the estimator of parameter θ. 

 

 

 

4.1.2 Mixture estimation models 

 

Let X = (X1, ..., Xj , ..., XL) be a L-dimensional continuous random 

variable and x = (x1, ..., xL) be an observation of X. A probability 

density function (pdf) of a mixture model is defined by a convex 

combination of K component pdfs, 
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P(X/Ɵ)=  

where  is the pdf of the kth component, αk are the mixing 

proportions (or component priors) and Θ = (α1, ..., αK, θ1, ..., θK) is the 

set of parameters. We assume that 

αk ≥ 0, for k ∈ {1, ..., K},  and 

 

By the property of convexity, given that each   defines a 

probability density function, p(x|Θ) will also be a probability density 

function. The most straightforward interpretation of mixture models is 

that the random variable X is generated from K distinct random 

processes. Each of these processes is modeled by the density 

, and αk represents the proportion of observations from this 

particular process. For example, the mixture in Figure 11 (a) models a 

bimodal density generated by two independent processes. A mixture 

can also, by combining simpler densities, model pdfs of arbitrary 

shapes. For example, with two Gaussian densities as components, we 

can model a skewed density Figure 11 (b), or a heavy tail density 

Figure 11 (c). 

 
Figure 8. Examples of densities modeled by mixtures of two Gaussians pdfs. Green 

lines indicate the individual component densities and red lines the mixture densities. 

In Figure (a), we have a highly overlapping bimodal density, while in Figure (b), we 

depict an unimodal density skewed to the left, while in Figure (c) a density with 
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heavy tails. These are only a few examples representing the power of mixture 

models in modeling densities of arbitrary shapes. 

For a given data X with N observations, the likelihood of the data 

assuming that xi are independently distributed is given by 

p(X/Ɵ)= L(Ɵ/X) = .     (a) 

The problem of mixture estimation from data X can be formulated as 

to find the set of parameters Θ that gives the maximum likelihood 

estimate (MLE) solution 

Θ ∗ = arg max Θ (Θ|X). 

The summation inside the product in (a) prevents the possibility of 

analytical solutions. One alternative is to maximize the complete 

likelihood in an expectation-maximization (EM) approach. 

 

4.1.3 The Expectation Maximization (EM) for the 

Gaussian mixtures 

 

A representation theorem of Lebesgue ensures that each random 

variable is represented as a mixture of distributions continuous and/or 

discrete and/or singular. 

For x ∈ R
d
 we can define a Gaussian mixture model by making each 

of the K components a Gaussian density with parameters µk and Σk. 

Each component is a multivariate Gaussian density 

 

with its own parameters θk = {µk , Σk}. 

The EM algorithm is a very general iterative clustering algorithm for 

parameter estimation by maximum likelihood when some of the 
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random variables involved are not observed i.e., considered missing or 

incomplete.  

The EM algorithm formalizes an intuitive idea for obtaining parameter 

estimates when some of the data are missing: 

i. replace missing values by estimated values,  

ii. estimate parameters.  

iii. Repeat 

                   • step (i) using estimated parameter values as true values, 

and 

• step (ii) using estimated values as “observed” values, 

iterating until convergence. 

This idea has been in use for many years before Orchard and 

Woodbury (1972) in their missing information principle provided the 

theoretical foundation of the underlying idea. The term EM was 

introduced in Dempster, Laird, and Rubin (1977) where proof of 

general results about the behavior of the algorithm was first given as 

well as a large number of applications. Suppose that we have a 

random vector y whose joint density f(y; θ) is indexed by a p-

dimensional parameter θ∈Θ ⊆R
p
 . 

If the complete-data vector y were observed, it is of interest to 

compute the maximum likelihood estimate of θ based on the 

distribution of y.  

The log-likelihood function of y 

log L(θ; y) = l(θ; y) = log f(y; θ), 

is then required to be maximized. 
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In the presence of missing data, however, only a function of the 

complete-data vector y, is observed. We will denote this by expressing 

y as (yobs, ymis), where yobs denotes the observed but “incomplete” 

data and ymis denotes the unobserved or “missing” data.  

 

For simplicity of description, assume that the missing data are missing 

at random (Rubin, 1976), so that 

 

f(y; θ) = f(yobs, ymis; θ)  

                                  = f1(yobs; θ) · f2(ymis|yobs; θ), 

 

where f1 is the joint density of yobs and f2 is the joint density of ymis 

given the observed data yobs, respectively. Thus it follows that 

lobs(θ; yobs) = l(θ; y) − log f2(ymis|yobs; θ), 

 where lobs(θ; yobs) is the observed-data log-likelihood. 

 

EM algorithm is useful when maximizing lobs can be difficult but 

maximizing the complete data log-likelihood l is simple.  

However, since y is not observed, l cannot be evaluated and hence 

maximized. The EM algorithm attempts to maximize l(θ; y) 

iteratively, by replacing it by its conditional expectation given the 

observed data yobs.  

 

This expectation is computed with respect to the distribution of the 

complete-data evaluated at the current estimate of θ. More 

specifically, if θ
(0)

 is an initial value for θ, then on the first iteration it 

is required to compute 

 

Q(θ; θ
(0)

) = Eθ(0) [l(θ; y)|yobs]. 
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Q(θ; θ
(0)

) is now maximized with respect to θ, that is, θ
(1)

 is found 

such that  

Q(θ
(1)

; θ
(0)

) ≥ Q(θ; θ
(0)

) 

 

for all θ ∈ Θ.  

 

 

 

Thus the EM algorithm consists of an E-step (Estimation step) 

followed by an M-step (Maximization step) defined as follows: 

 

E-step: Compute Q(θ; θ
(t)

) where  

Q(θ; θ
(t) 

) = Eθ (t) [l(θ; y)|yobs] . 

M-step: Find θ
(t+1) 

in Θ such that  

Q(θ
(t+1)

; θ
(t)

 ) ≥ Q(θ; θ
(t)

 )  

for all θ ∈ Θ. 

The E-step and the M-step are repeated alternately until the difference 

L(θ
(t+1)

) − L(θ
(t)

 ) is less than δ, where δ is a prescribed small quantity.  

 

 
Figure 9. Example of Expectation Maximization of Gaussian Mixture Models. 
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The computation of these two steps simplify a great deal when it can 

be shown that the log-likelihood is linear in the sufficient statistic for 

θ. In particular, this turns out to be the case when the distribution of 

the complete-data vector (i.e., y) belongs to the exponential family.  

In this case, the E-step reduces to computing the expectation of the 

complete-data sufficient statistic given the observed data. When the 

complete-data are from the exponential family, the M-step also 

simplifies. The M-step involves maximizing the expected log-

likelihood computed in the E-step. In the exponential family case, 

actually maximizing the expected log-likelihood to obtain the next 

iterate can be avoided. Instead, the conditional expectations of the 

sufficient statistics computed in the E-step can be directly substituted 

for the sufficient statistics that occur in the expressions obtained for 

the complete-data maximum likelihood estimators of θ, to obtain the 

next iterate.   

As a general algorithm available for complex maximum likelihood 

computations, the EM algorithm has several appealing properties 

relative to other iterative algorithms such as Newton-Raphson. First, it 

is typically easily implemented because it relies on complete-data 

computations: the E-step of each iteration only involves taking 

expectations over complete-data conditional distributions. The M-step 

of each iteration only requires complete-data maximum likelihood 

estimation, for which simple closed form expressions are already 

available. Secondly, it is numerically stable: each iteration is required 

to increase the log-likelihood l(θ; yobs) in each iteration, and if l(θ; 

yobs) is bounded, the sequence l(θ
(t)

 ; yobs) converges to a stationery 

value. If the sequence θ
(t)

 converges, it does so to a local maximum or 

saddle point of l(θ; yobs) and to the unique MLE if l(θ; yobs) is 

unimodal. A disadvantage of EM is that its rate of convergence can be 

extremely slow if a lot of data are missing: Dempster, Laird, and 

Rubin (1977) show that convergence is linear with rate proportional to 

the fraction of information about θ in l(θ; y) that is observed. 
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4.1.4 Problems of the EM algorithm 

 

Normal mixture are widely used as a modelling tool in many fields of 

study. A major statistical problem arising in their use is that of the 

estimation of the parameters. In fact, it is known that the problems 

arise when the method of maximum likelihood is used to estimate the 

parameter of a mixture of normal distributions. the most popular 

algorithm for computing maximum likelihood estimates  in the normal 

mixture case is the EM algorithm, which has several good 

computational properties, including a low storage requirement and a 

low work cost per iteration. However, the EM algorithm is 

characterized by two critical limitations: 

 Number of Components 

Typical implementations of Expectation Maximization require the 

user to specify the number of model components. This is problematic 

because users do not generally know the correct number of 

components. Choosing too many or too few components can lead to 

over-fitting or under-fitting, respectively (Figure 13). This problem is 

particularly felt in the decomposition problem of the reaching 

movements, where is not known in advance.  The traditional approach 

is to choose the optimal number of components by some cost-function 

based criteria such as Akaike’s information criterion (AIC). However, 

since it is needed to repeat the entire parameter estimation at a number 

of different M, the process of evaluating these criteria incurs in a large 

computational cost. Figueried & Jain [Figueried et al, 2002] 

annihilates the number of components from a large M to obtain 

optimal M*. But how to know which M we start from? Wang [Wang 

et al, 2004] proposed stepwise split-and-merge EM (SSMEM) 

algorithm to choose M and estimate parameters simultaneously.  
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However, the frequent operations of splitting and merging 

components of FMM also lead to large computational cost [Chen and 

Luo, 2004].   

Others methods have been proposed in the literature to estimate the 

number of components in a mixture of Gaussians, among which MDL 

method, Bayesian information criterion and Akaike’s information 

criterion. These estimators are motivated from different theories that 

translate, in practice, to different penalty factors in the formulation 

used to select the best model. The MDL criterion is based upon an 

information-theoretic view of induction as data compression. It is 

equivalent to the Bayesian information criterion, which gives a 

Bayesian interpretation.   

Akaike’s information criterion is a statistical hypothesis test derived 

from a different theoretical perspective: it is an optimal selection rule 

in terms of prediction error; that is, the criterion identifies a finite-

dimensional model that, while approximating the data provided, has 

good prediction properties. The decision of which criterion is more 

meaningful is entirely a matter of interpretation, and depends on the 

specific application). 

 

Figure 10. Results of EM mixture estimation initialized by two and seven 

components. 
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 Parameter Initialization 

Choosing appropriate initial parameter values can have a significant 

effect on the quality of the solution. it is widely acknowledged that 

EM suffers from some issues. Firstly, it is highly sensitive to 

initialization, being a local maximum seeker; secondly, when the 

likelihood function is unbounded (for instance in the case of 

heteroscedastic model) the algorithm may converge to some 

singularities and this causes the failure of the optimization procedure. 

So, EM is not guaranteed to converge to the global maximum of the 

likelihood function but may instead converge to a local maximum. 

Therefore different initial parameter values can lead to different model 

parameters and different model quality. A variety of ways to find 

better local optima have been explored, including heuristic 

initialization of the model parameters (Spitkovsly et al, 2010) random 

restarts (Smith, 2006), and annealing (Smith and Eisner, 2006; Smith, 

2006). 

 

4.2 A robust EM method 
 

In the context of the likelihood approach to mixture modeling, many 

authors used the expectation-maximization (EM) algorithm for 

estimating the parameters of the model. However, it is widely 

acknowledged that EM, in this framework, suffers from some issues. 

Firstly, it is highly sensitive to initialization, being a local maximum 

seeker; secondly, when the likelihood function is unbounded (for 

instance in the case of heteroscedastic model) the algorithm may 

converge to some singularities and this causes the failure of the 

optimization procedure. These phenomena have been well studied for 

normal mixtures and under suitable conditions, constrained global 

maximum likelihood formulations have been proposed, which present 

no singularities and a smaller number of spurious maxima. However, 

these issues may still be observed in mixtures of t distributions. Thus, 
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in order to prevent or reduce such drawbacks, a constrained EM 

algorithm for mixture distributions is now proposed. The algorithm 

used here, defined as a constrained EM by Chen (Chen et al, 1992), is 

altered using simple constraints which increase robustness against 

poor initial guesses while maintaining a low work requirement per 

iteration. The modified algorithm is described and is applied to the 

decomposition problem of the human reaching movements. 

4.2.1 A new sub-movement model 

 

The velocity profiles of the upper limb reaching movements are 

modelled  in order to extract sub-movements composing subject 

overall motion taking cue on the well-known minimum jerk theory 

which states that the shape of the velocity profile of the hand, in point-

to-point human arm movements restricted to a horizontal plane, is 

bell-shaped and symmetrical. So, the velocity  profiles are modeled as 

the summation of Gaussian pulses of various lengths (Chen et al, 

1992) in mathematical terms according to the expression: 
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where αi is the amplitude of the basic function, µi and σi are 

respectively the mean and standard deviation of the Gaussian base 

functions, M is the number of pulses and a constrained-Expectation–

Maximization (CEM)  algorithm  is used for the mixture parameters 

by first computing an estimate of the parameter and then refining the 

estimate by maximizing a likelihood function (maximum-likelihood 

estimation  method, MLE).   
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Essentially, MLE involves estimating the parameters by maximizing 

the likelihood function, l(X;Ɵ), this being simply the joint probability 

of the observations xj regarded as a function of the parameters: 

 

 
where N is the number of observation points and f(xj; ) is a mixture 

of M normal density functions as 

 

The EM algorithm iteratively generates, starting from some initial 

approximation 
 (0)

 , a sequence 
 (r)

 of estimates. 

Each iteration consists of the following two steps. 

E-Step: Estimate the belonging of each observation xj to the Gaussian 

components wi = fi(xj; µi, σi) by calculating the a posteriori 

probabilities according to 

 

where wi is the Gaussian probability density function of the i-th 

component 

 

M-Step: Find  =  (r + 1) to maximize the likelihood function 

according to 
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4.2.2 Constrained optimization 

 

Usually the M-step is an unconstrained maximization but here  the 

EM algorithm is altered using simple constraints which increase 

robustness against poor initial guesses. Particularly, here the M-step is 

performed on the set Ωε, c given by 

Ωε, c =  

where  ε=0.01 and c=0.2 are the constrains introduced on the α and on 

the σ of each component, respectively, while the set Ω 

Ω=

 

is the set of solutions whiteout the constrains introduced by the CEM 

algorithm. 

Summarizing, the two steps of the CEM algorithm are: 
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 Definition of the current maximization model M
r
(Φ) by means 

of the following equation: 

 

M
r
(Φ) 

=

 

    Computation of  (r + 1)=max M
r
(Φ)/ Φ  Ωε, c. 

4.2.3 A new approach for the initial guess  

 

For estimating the initial set of parameters of the Gaussian functions, 

the goal is to find boundaries of the individual components from 

which the initial estimates Φ
(0)

 of these parameters can be determined. 

The above CEM algorithm uses the scale-space filtering approach 

(Babaud, et al, 1986) for detecting the boundaries of one-dimensional 

(l-D) signals and for estimating the initial set of mixture parameters in 

following several steps.  

At first, a Gaussian filter of standard deviation σf it is applied to 

smooth the input velocity profile (VP) signal by convolution, 

obtaining the image-signal velocity (ISV). There are several important 

scale-space concepts that apply to 1-D (or 2-D) signals. It has been 

shown (Babaud, et al, 1986; Florack et al, 1984.  Witkin, 1983; Yuille  

and Poggio, 1986) that the scale space of almost all signals filtered by 

a Gaussian kernel determines the signal uniquely up to a scaling 

constant. The importance of this property lies in the fact that, 

theoretically, for almost all signals, no information is lost by working 

in the space scale.  

Moreover has been shown that the Gaussian kernel does not create 

additional zero crossings as the scale σf increases beyond a certain 

limit and that it is the only filter with this nice scaling behavior [Yuille  

and Poggio, 1986]. 
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In the second step, are recorded the pairs (upper and lower) of turning 

points which are determined from the zero-crossings of the second 

derivative in the ISV. Each pair of turning points are used to define 

the boundaries of each individual component of the mixture. 

Subsequently, these two steps are repeated through the range of scales 

properly chosen. This is due to the fact that by applying different 

scales of Gaussian filtering on one signal, varied numbers of turning 

points can be found from the filtered signals and this means that can 

change the number of components in the Gaussian mixture.  

The plot of the turning-point location of the filtered signal versus the 

scale σf of Gaussian filters applied is called the fingerprint. 

 
Figure 11. The fingerprint diagram (b) of a simulated signal which is a summation 

of two Gaussian pulses (a). In the fingerprint diagram the y-axis is the standard 

deviation of the Gaussian filters σf and the x-axis is the position of turning points in 

terms of percent of time duration of the Gaussian mixture. 

For the Gaussian filter scale chosen, the number of  initial components 

(M) composing the mixture is determined on the fingerprint by the 

number of pairs of turning points for the selected σf.   
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Once determined the number M of components, the initial set of 

mixture parameters Φ
(0)

  can be performed. Particularly,  

 The amplitude αi
(0)

 is the proportion of area covered by the 

mixture relative to the overall area of the mixture.  

 The mean µi
(0)

 of the mixture is the midpoint of the upper and 

lower turning points.  

 The standard deviation σi
(0)

 is half of the width between the 

upper and lower turning points. 

 

The important advantage of the scale-space approach is that it 

provides an initial parameter estimation for the number of 

components, which is difficult to estimate using statistical estimation 

in a noisy environment. This algorithm (scale space approach 

followed by CEM algorithm, without ) has been successfully applied 

to model the linear envelope of the EMG but here was repeated with 

appropriate adjustments. In fact, besides the initialization of the 

parameters, an important difficulty with the mixture model is the 

choosing the number of components that best suits the number of 

clusters (or density categories) present in the image.To find the correct 

number of components in a mixture is an important but very difficult 

problem because no reliable a priori information is not always 

available about the number of density categories in a given velocity 

profile of a reaching movement. Moreover, the appropriate solution 

depends on the amplitude of the noise which corrupt the signal. So, the 

results of the algorithm depend mainly on the initial guess of the 

number of components of the mixture model and may converge to a 

spurious maximum and thus multiple solutions are always present.  

It is not clear how the CEM proposed by Chen come to the initial 

guess of the optimal number of components composing the mixture: 

particularly how to choose the optimal value of standard deviation σf 

of Gaussian filter (which allow to define the initial number M of 

components by means the fingerprint). In our application is proposed 
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the discrete gradient method, which finds the gradient vector a the 

scalar function f with respect to vector, for the initial guess of the 

number of components. In fact, frequently there is no good basis for 

choosing the scale σf of measurement of measurement in advance. It 

may often be desirable to describe the same signal at more than one 

scale in the course of interpreting it. Particularly, the Matlab gradient 

function is applied to the VL to find the pairs of zero-crossings of the 

second derivative which represent our initial guess K of the M-

number of components composing the Gaussian model.  Then the 

Gaussian filter scale σf is increased until the number M of components 

of the mixture, defined by means the relative fingerprint,  is equal to 

the initial guess K. then, these M number can be adjusted by the CEM 

algorithm. Once estimated the M and the mixture parameters Φ
(0)

, all 

these information enter in the CEM algorithm and are adjusted. 

Particularly the M of components defined by means of the discrete 

gradient method and by means of the scale space approach can be 

uploaded (reduced) considering the constrained defined in section 

5.2.2. Following are showed the computing methodology for the 

scale-space approach, EM iteration, and constraints of the algorithm 

(Figure 15). 
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Figure 12. The space-scale approach  and the CEM algorithm for the initial guess of 

the Gaussian functions parameters. 
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4.2.4 Algorithm Performance 

 

The CEM algorithm evolves repeating E-steps and M-steps until 

convergence is reached according to the following equation: 

Max{|i(s+1)- i(s)|/ i(s); |i(s+1)- i(s)|/ i(s); 

|i(s+1)- i(s)|/ i(s) i=1 ... M} 

where s+1 is the current iteration while s is the previous iteration of 

the algorithm. 

The convergence is reached when the above amount is less than 

0.00001 or when the maximum number of iteration M* (see Figure 

15) is reached. 

In order to test the solution-finding performance of the above 

discussed algorithm, four simulated velocity profiles (Figure 16 a)-d) ) 

have been created (gmidstribution – Statistic Toolbox –Matlab 

R2014a), each consisting of two Gaussian sub-movements (blue and 

green shapes) which characteristics which are known beforehand. 

 
Figure 16.  Four simulated velocity profiles composed of two known Gaussian sub-

movements (represented with blue and green filled area). 
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These profiles have been decomposed (Figure 17) by means of our 

algorithm and the performance of the proposed method has been 

evaluated in the sense of root mean square error (RMSE), which was 

computed as. The  lower values of the RMSE, ranging between the 

2% and 5%, indicate a good performance of our method. 

 

Figure 17. Decomposition of the simulated mixture normal density by means of the 

robust-EM. 
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Chapter 5 
 

A novel approach to evaluate the arm 

muscle force 
 

Reaching movements (RM) are produced by transforming parameters 

of the desired movement (e.g., direction, distance, and movement 

time) into appropriate patterns of activity in the muscles of the 

shoulder and elbow. Therefore it is important to study the upper arm 

muscle activity by means of indexes useful to evaluate changes in 

muscle activation and in force muscle. The main assumption is the 

relationship of the EMG signal to the force produced by a muscle but 

a simple equation describing this relationship has not yet been found. 

This is due to the several limitations of the EMG signal processing 

based on its linear envelope (LE). To overcome the drawbacks and the 

physiological variability of EMG and of its LE, so simplifying the 

evaluation of EMG patterns, we adapted the CEM algorithm to the 

description of the LE signal in order to propose a new way to evaluate 

the force muscle. 

 

5.1 The muscle activity in the motor control 
 

The upper-limb reaching movements are very important for the human 

daily activities, such as eating, drinking, brushing teeth, combing hair 

and washing face. These motor tasks are produced by transforming 

parameters of the desired movement (e.g., direction, distance, and 

movement time) into appropriate patterns of activity in the muscles of 

the shoulder and elbow. The basic motions of upper-limb can be 

categorized into eight individual motions and is activated by many 
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kinds of muscles. Some of them are bi-articular muscles and the others 

are uni-articular.  

Therefore it is important to study the upper arm muscle activity by 

means of indexes useful to evaluate changes in muscle activation and 

in force muscle. 

5.2 The electromyographic (EMG) signal 
 

The activity of muscles has been the subject of many studies of 

bioengineers, physiologists, neurophysiologists, and clinicians for 

more than 100 years. Many different methods of gathering and 

interpreting the physiological data and information have been 

developed. The muscle movement in all human beings is controlled by 

the central nervous system. It generates the electrical pulses that travel 

through the motor nerves to different muscles. The neuromuscular 

junction is called innervation zone and is usually situated about the 

middle of the muscle body.  

 

 
Figure 138. Schematic representation of the model for the generation of the EMG 

signal [Basmajian et al., 1985]. 
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Each muscle is composed of a large number of tiny muscle fibers, 

which are organized into so called motor units (MU). Each MU 

gathers all the fibers that are innervated by the same nerve, i.e. axon. 

When electrically excited, fibers produce a measurable electrical 

potential, called action potential (AP), which propagates along the 

fibers to both directions towards muscle tendons and causes the 

contraction of the fibers. The electromyographic (EMG) signal 

results from the spatial and temporal summation of the electric fields 

generated by all muscle fibers (Figure 18). 

 

 

5.3 The relation between EMG and muscle force 
 

After recording EMG signals from a variety of muscles be further 

processed offline. The processing techniques applied to study muscle 

activation patterns depend on the type of analysis performed by the 

researcher and can extract different information from the raw signal. 

In a study analyzing muscle coordination it is common practice to 

extract the linear envelopes (LEs) of the recorded EMG signals. 

This processing technique allows to simplify the data by eliminating 

some unnecessary information (such as the activation of each single 

motor unit, which is visible in the high frequency content), while still 

maintaining enough information to study muscle activation timing and 

amplitude. In the field of biomechanics research,  the main assumption 

is the relationship of the EMG signal to the force produced by a 

muscle, which is related to the amplitude of the EMG signal (Figure 

19). 
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Figure19. Relationship between surface EMG and muscle force during and isometric 

contraction. 

 

However, the relationship between force and surface EMG during 

voluntary contractions is not well understood. Some authors have 

concluded, for various muscles, that the magnitude of the EMG signal 

is directly proportional to muscle strength for isometric and/or 

isotonic contractions with constant speed, but others claim that this 

relationship is not linear (Bilodeau et al., 2003; Gregor et al., 2002; 

Karlsson & Gerdle, 2001). In most cases, the EMG increases non-

linearly with increasing force of muscle contraction (Guimaraes et al., 

1994; Madeleine et al., 2000). This variety of different interpretations 

among researchers not surprising, given the several inherent 

limitations of surface EMG (or of its LE): 

 The measured force of muscle contraction is a result of the 

global activity of the underlying muscle fibers, and surface 

EMG provides information about the electrical activity of 

motor units located in the region near the electrode; in most 

experiments, the catchment area of the electrode does not 

extend sufficiently to detect the signal generated across the 

entire muscle volume.  
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 Surface EMG recordings provide a practical means to record 

from several muscles simultaneously but tend to be unreliable, 

i.e. recordings from a subject performing the same movement 

repetitively tend to have considerable trial-to-trial variability. 

 

 Factors that prevent the direct quantification of muscle force 

from EMG signals include cross-talk, variations in the location 

of the recording electrodes and the involvement of synergistic 

muscles in force generation. The electrical cross-talk of 

adjacent muscles is often considered as a possible factor that 

complicates the determination of the relationship between 

EMG and force. Its influence would manifest most 

prominently when the measured strength of the muscle 

increases. The presence of cross-talk is more dominant in 

smaller muscles where the electrodes (especially the surface) 

must be placed close to the adjacent musculature. The 

complexity of cross-talk is also determined by the anisotropy 

of muscle tissue and homogeneity of the tissues adjacent to the 

muscle. The degree of synergistic action of other muscle 

groups and the amounts of co-contraction between antagonistic 

muscle groups can change the contribution of muscle strength 

in research on the net force measured in the joint. This results 

in a great variability of the EMG traces. 

 

The force muscle could be assess subjectively through using, for 

example, the peak of the LE identified by using a threshold value. The 

main limitation of this approach is that the  threshold level used for 

the peak identification of the LE is mainly dependent on the signal-to-

noise ratio, so determining the trade-off between missed spikes (false 

negatives) and the number of background events that cross the 

threshold (false positives). Moreover, in our opinion, even if correctly 

identified, the peak of the LE gives information to the maximum 

strength developed in a very short period. 
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5.4 The peak Phase as an index of the muscle 

force 
 

In this study to overcome all the above described drawbacks and the 

physiological variability of EMG and of its LE, so simplifying the 

evaluation of EMG patterns, we adapted the CEM algorithm to the 

description of the LE signal. Particularly, we suppose that the EMG 

envelope created by a reaching or grasping movement is a composite 

of phases of activity, i.e. acceleration and deceleration phases, so the  

mixture of Gaussian model, in which the components are pulse-like, is 

an appropriate mathematical model to describe such motor tasks. So, 

using the algorithm described in section 4 of this thesis, the linear 

envelopes (LEs) of several EMG signal recorded during reaching 

movements, are modelled as summation of Gaussian pulses of various 

length and amplitude.  The dominant phase with the largest amplitude 

αi attribute is further defined as the peak activity or peak phase (PA) 

of the LE. In the following we will use the acronym PA to indicate the 

position of peak value of the PA over the reaching movement time 

duration (%). A physical significance of this dynamic index can be 

attributed to the temporal muscle activation and to the phase involving 

a considerable underlying muscle effort while the peak of the LE, 

used increasingly for the assessment of normal and pathological 

muscle activity, gives information to the maximum strength developed 

in a short period. In the next section we will better explain the 

procedure used to define the PA. 
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Chapter 6 
 

A novel approach in rehabilitation field 

of upper arm 
 

In the last few years, the RM derive their growing importance not only 

by the contribution they give to the understanding of the movement 

physiology, but also to their diffusion in rehabilitative field. Upper 

limb RM are in fact the most used motor task in rehabilitation 

treatments of several disorders of the arm and the shoulder of various 

central and peripheral etiology. 

 Despite the increasing effort put in the development of robotic 

systems for neuro-rehabilitation, justified by the big potential of such 

applications as additional end efficient tools for therapy, their clinical 

effectiveness is still being discussed. Many of the systems developed 

to date were designed from an engineering point of view and do not 

meet therapy demands, which is reflected by unsatisfactory clinical 

outcomes.  

Here is proposed a quantitative kinematic and electromyographic 

assessment of robot assisted upper arm reaching. Particularly, we 

study the quality and the motor composition of visually-guided 

reaching movements from people with pathological conditions, such 

as stroke disease, applying the minimum jerk theory and the 

decomposition method proposed in section 4 to identify the sub-

movements and to estimate the force muscle involved. 
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6.1 Limits of the robotic rehabilitation 
 

Reaching movement is a movement executed towards a given target 

and represents a basic movement of the upper extremities, very 

important for independence in daily living activities such as self-

feeding, grooming, dressing and environmental switch operations.  

In the last few years, the RM derive their growing importance not only 

by the contribution they give to the understanding of the movement 

physiology, but also to their diffusion in rehabilitative field. Upper 

limb RM are in fact the most used motor task in rehabilitation 

treatments of several disorders of the arm and the shoulder of various 

central and peripheral etiology. Robotic rehabilitation systems are an 

efficient approach to this problem, as they are well suited to produce 

an intensive, task-oriented motor training as part of an integrated set 

of rehabilitation tools, including also simpler non-robotic solutions. 

In fact, the labor intensive aspects of therapy can be done by the 

robotic system, while the therapist could focus on functional 

rehabilitation during individual training [Rosati, 2010]. Additionally, a 

single therapist could supervise multiple robotic rehabilitation stations 

and work on more than one patient at the same time. In other words, 

robotic systems could help automating the repetitive part of neuro-

rehabilitation in a controlled manner. Besides improving therapy at the 

rehabilitation facility, affordable robotic devices would allow patients 

to continue rehabilitation at home [Harwin et al, 2006].  

The rehabilitation robots developed in the last years can be classified 

roughly in passive systems, which act as support and stabilizer of the 

limb, active systems, relying on actuators to guide the patient through 

predefined movements, and interactive systems, which include more 

sophisticated control paradigms that react to the patient's actions [8]. 

The most commonly used paradigm is to use robotic devices for 
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physically supporting the patient during the execution of certain 

movements [Harwin et al, 2006, Krebs, 2007].  

However, robotic systems offer far more possibilities than just the 

repetition of simple and stereotyped movement patterns. For example, 

they can generate a more complex, multisensory stimulation, they can 

provide the patient with extrinsic feedback containing information on 

his performance during training, or they can create a more engaging 

environment by using virtual reality concepts [Rosati, 2010]. Another 

advantage is that such devices can promote recovery by distorting 

reality. One example is the implementation of an error-augmenting 

strategy, i.e. the application of a force that pushes the patient away 

from the desired trajectory.  

Indeed, preliminary results have shown that this approach can have 

positive effects on the patient's functional recovery [Harwin et al, 

2006]. Moreover, robotic systems can measure and record a variety of 

variables during therapy, such as the patient's position, velocity and 

acceleration, or the amount of support provided by the system 

[Harwin et al, 2006, Rosati, 2010].  

The recorded data can be used for online and offline processing, 

allowing to evaluate several indicators related to the patient's 

performance [Timmermans et al, 2009]. Such measured parameters 

could offer a substantial improvement over current evaluation 

techniques, as they would provide quantitative and objective data in 

contrast with today's most used assessments, which rely heavily on 

subjective judgments made by the clinician [Harwin et al, 2006]. It 

has been reported by various authors that the use of robotic systems in 

neuro-rehabilitation improves the patient's recovery and quality of life, 

especially when the robot-assisted therapy is administered in the sub-

acute phase and when it is combined with traditional treatment 

[Timmermans et al, 2009].  

Moreover, it has been reported by various authors that the use of 

robotic systems in neuro-rehabilitation improves the patient's recovery 

and quality of life, especially when the robot-assisted therapy is 
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administered in the sub-acute phase and when it is combined with 

traditional treatment [Timmermans et al, 2009, Masiero et al, 2007]. 

However, many of these results are contradictory, and not all robotic 

systems have undergone rigorous clinical testing [Rosati, 2010]. 

Furthermore, there is a lack of data showing improvements on 

measures related to activities of daily living (ADL) [Mehrholz et al, 

2012], and some experimental evidence indicates that to date robotic 

training fails to transfer to improvement on the functional level 

[Timmermans et al, 2009]. This may be due to the fact that most of the 

existing robotic devices are programmed to produce simple 

stereotyped movements of the limbs, often not related to the 

functional activities included in measures ADL.  

 

Further, many of the developed systems have been designed from an 

engineering perspective rather than based on therapy demands, and 

most rehabilitation paradigms are based on the repetition of 

stereotypical movements instead of applying more advanced 

principles of motor control and motor learning [Rosati, 2010]. 

 

A pathological subject may improve grip force with the force control 

system of almost all robotic rehabilitation devices but may not be able 

to use that force to pick up a jar [Richards et al, 1999]. 

 

Finally, the biomechanical parameters proposed until today in the 

scientific literature, to evaluate the quality of the movement, are 

related to the specific robot used and to the type of exercise performed 

and are still far to be considered as viable alternatives to the clinical 

scales and there is still lacking of a standardization of quantitative 

kinematic and dynamic indexes and rehabilitation protocols that are 

objectively more effective for the recovery of motor function. 

As a result, the effectiveness of robotic rehabilitation is still being 

discussed [Rosati, 2010]. Even though to date there is not yet enough 

evidence to definitely confirm the efficacy of robotic therapy, the 
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development of these systems is still in an early stage and the potential 

of robotics in rehabilitation is still unexploited [Timmermans et al, 

2009, Masiero et al, 2009].  

The focus is to investigate, using new robust indexes, the quality of a 

reaching movement and to gain a better understanding of how 

kinematic and EMG patterns of the upper limb reaching movements 

are achieved in healthy subjects and how they changes in presence of 

some pathologies, and to apply this information to rehabilitation 

concepts. 

6.2 Reaching movements in stroke disease 
 

Understanding movement deficits following CNS lesions and the 

relationships between these deficits and functional ability is 

fundamental to the development of successful rehabilitation therapies 

(Lough et al., 1984). The impairment of upper limb function is one of 

the most common and challenging sequelae following stroke, and it 

limits the patient’s autonomy in activities of daily living and may lead 

to permanent disability (Nakayama et al., 1994).  

Movement deficits are most evident in the limb contralateral to the 

side of the stroke and are characterized by weakness of specific 

muscles (Bourbonnais and Vanden Noven, 1989); abnormal muscle 

tone (Wiesendanger, 1990); abnormal movement synergies (Bobath, 

1990); lack of mobility between structures at the shoulder girdle 

(Ryerson and Levit, 1987).  

In stroke subjects, goal-directed movements are characterized by 

slowness, spatial and temporal discontinuity and abnormal patterns of 

muscle activation (Gowland et al., 1992; Levin, 1996a). 
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6.3 Design of the experiment 
 

Here is proposed a quantitative kinematic and electromyographic 

assessment of robot assisted upper arm reaching. Particularly, we 

study the quality and the motor composition of visually-guided 

reaching movements from people with pathological conditions, 

applying the minimum jerk theory and the decomposition method 

proposed in section 4 to identify the sub-movements and to estimate 

the force muscle involved. For this study, 5 healthy subjects (50±8 

year old, males) and 5 pathological subject (PS) (males, 45 years old).  

Inclusion criteria for the patients were the following: (1) diagnosis of 

a single, unilateral stroke at least 5 months prior to enrollment verified 

by brain imaging; (2) sufficient cognitive and language abilities to 

understand and follow instructions. 

The protocol has been approved by the scientific technical committee 

of the Research Institute “Salvatore Maugeri Foundation”, Benevento 

(Italy) and the written consent has been obtained from all subjects or 

their guardians. 

The robotic device used in this study was the Multi-Joint-System (in 

the following MJS) of the Tecnobody. Its mechanical arm is provided 

with four “freedom” ranges, giving the patient freedom of joint 

movement in the three fundamental axes of movement (Anterior-

Posterior, Adduction-Abduction, Internal rotation- External rotation). 

Each subject underwent to two trial, each of them consisting of four 

horizontal reaching tasks (Figure . The task required each subject to 

move from the center position to the target and then return to the 

center with a sequence of four reaching movements RM (Table I), 

exploring the shoulder horizontal flexion (SHF) and horizontal 

extension (SHE). Subjects were instructed to perform movements at 

their natural speed. 
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Table I. Description of the four movements  in horizontal reaching task 

 

Moreover, subjects were instructed to make one continuous movement 

to avoid the possibility of having the subject break the task up into 

several discrete subtasks. 

The electromyographic analysis consisted of eight EMG channels 

have been acquired by a wireless BTS Freemg 300 system with 

variable geometry mounting clip surfaces electrode, 16-bit resolution, 

1 kHz sampling rate, in the 20-400 Hz frequency band, over the main 

muscles involved in the above described motor task and exactly: 1) 

clavicular major pectoralis, 2) Trapezius (middle fibers), 3) anterior 

and 4) posterior deltoid. These muscles were selected because of their 

synergistic and agonist/antagonist role, as explained in Table II: 

 

Table II. Activated muscles for the shoulder motions. 

 

Task Task 

Acronym 
Meaning 

Description 

SHE 

EH1 
Extension 

Horizontal 1 

Horizontal extension of the right shoulder from 

the middle position to the outer right 

EH2 
Extension 

Horizontal 2 

Horizontal  extension  of the right shoulder 

from the outer left position to the middle one 

SHF 

FH1 
Flexion Horizontal 

1 

Horizontal  flexion  of the right shoulder from 

the right external position to the middle one  

FH2 
Flexion  

Horizontal 2 

Horizontal  flexion  of the right shoulder from 

the middle position to left external one 

Task Agonist Antagonist 

SHE 
Posterior Deltoid (PD) 

Trapezius (middle fibers) (TM) 

Anteriod Deltoid (AD) 

Clavicular Pectoralis Major (CPM) 

SHF 
Clavicular Pectoralis Major 

Anterior Deltoid 

 Posterior Deltoid 

Trapezius (middle fibers) 
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All surface EMG recordings have been performed according to related 

SENIAM recommendation [European Recommendations for Surface 

ElectroMyoGraphy, deliverable of the SENIAM project. ISBN: 90-

75452-15-2]. To avoid fatigue effects on EMG measurements, 1 min 

of rest was observed between trials. Kinematic and EMG data were 

recorded simultaneously. 

During each trial, subjects were asked to seat on the ergonomic chair 

of the robot with the trunk erected, neck straight fixing the central 

green starting point on the front monitor (green circle with letter “H” 

in Figure 20).  

 

        

 

Figure 14. The visually-guided planar reaching task. 

The arm under test holding the robot grip by the hand in a position 

parallel to the floor at 90° with the trunk, the arm not under test on 

side handle close to the seat. Kinematic task consists on a visually-

guided planar reaching task. A targets were placed at 30° from the 

center target (really the arm reaches the final position covering a 30° 

angle) and visual feedback of both target and robot handle location 

were provided on a computer screen in front of the robot. Since the 

low Index of Difficulty (ID) of the task [Fitts, 1954], it is expected 

one continuous movement with one-peaked velocity profile 

approximately located between around the 50% of the reach. 



              80     Chapter 6   A novel approach in rehabilitation field of upper arm                                  

6.4 Signal processing 
 

Spatial coordinates of the handle position along x and y axes were 

analogically recorded with a 1/10° degree resolution and sampled at a 

sampling rate of 20 Hz. Velocity profiles have been computed using a 

derivative algorithm. Since differentiation degrades signal-to-noise 

ratio, the filter has to be carefully chosen.  

To this aim has been used a Savitzky-Golay filter of third order and of 

frame length 41. Movement’s onset/end times were calculated on the 

velocity profile in correspondence of successive zero crossing. In 

order to avoid to consider false positives, only zero crossings with an 

interval distance equal to the set angular excursion of the specific task 

were accepted.  

Moreover, movement’s onset/end times were used to identify the 

muscle activation zone corresponding to the muscular effort required 

for reaching movements. 

 

6.5 Kinematic evaluation 
 

The quality and accuracy of the movements have been described by 

smoothness index that is a typical kinematic measure in reaching 

movement studies [Jyh-Jong Chang et al, 2008; Zollo et al, 2011; 

Conroy et al, 2011; Teulings et al, 1997]. As it has been frequently 

observed, single-joint movements are characterized by single-peaked, 

bell-shaped speed profiles.  

This finding and the tendency of natural movements to be 

characteristically smooth and graceful, led to suggest the motor 

coordination can be mathematically modelled by postulating the 

voluntary movements are made, at least in the absence of any other 

overriding concerns, to be as smooth as possible.  
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In according with this theory, smoothness is based on the minimum 

jerk theory stating that any single-joint movement can be described by 

a fifth order polynomial p(t) of the form [Flash et al, 1985]:  

 

where F is the final position  at time T (end of the movement). 

 

To produce a maximum smoothness movement, one must minimize 

the jerk cost functional defined as; 

  

where Ɵ is the angular displacement. Jerk is the rate of the change of 

acceleration with respect to time (third time derivative of the 

position). To test the hypothesis that movements to different targets 

and/or of different duration were simply scaled replicas of a standard 

movement, normalized smoothness is considered.  

Several different ways to normalize jerk-based measures have been 

used to reduce dependency on those variables [D’Addio G. et al, 

2012]. In this study, it has been considered the following normalized 

smoothness (NS)  [33] 

 

 

  

where A is the movement amplitude and D its duration. The quality of 

the movement is evaluated introducing the kinematic index Level of 

Smoothness (SL) defined as follows: 

 

  

where  is the NS measured on the subject’s reaching movement (or 

real reaching movement) while  is the NS obtained considering the 
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ideal movement extracted by the minimum jerk theory with p(0)=0 

and p(T)=30°.  

The lower the relative error, the greater the quality of the 

measurement. A zero-value for the SL is related to a perfect match 

between the quality of the movement performed by the subject and the 

quality of the movement predicted by the mathematical minimum jerk 

model. Velocity profiles of each measured reaching movement are 

modelled as summation of Gaussian pulses according to the algorithm 

described in section 4.  

To analyze the motor strategy of the subjects we have considered: 

(I) the number (N) of each sub-movement that is regarded as the 

number of consecutive motion units to be gradually produced to reach 

the target  

 (II) Temporal duration (TD) of each sub-movement, expressed in % 

of the entire movement 

 

6.6 Electromyographic evaluation 
 

The acquired EMG signals have been: 1) high-pass filtered forward 

and backward (zero phase distortion) at 10 Hz to remove motion 

artifact, 2) full wave rectified, and 3) then low-pass filtered forward 

and backward (zero phase distortion) at 5 Hz to create the linear 

envelope (LE) of the rectified EMGs. Algorithms usually proposed 

consider a muscle activation in case of an EMG amplitude higher than 

baseline resting activity plus 3 times its standard deviation for about 

30 ms. However, this solution does not fit the muscular effort required 

to initially hold the arm in the exercise starting position, leading to a 

confounding identification of activation/deactivation muscle’s 

patterns.  
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To overcome the above problem, concerning the baseline activity 

epoch selection, the LEs of the studied muscles are segmented 

considering the onset and end times of the several movements (EH1, 

EH2, IH1, IH2) on the kinematic signals. In this way, only these 

portions of LEs are examined (Figure 21 and 22). 

 
Figure 21. Example of the raw EMG signals of the flexor muscles with their Les. 

The vertical lines are the temporal markers between the different kinematic tasks 

(extension and flexion movements). 

 
Figure 152. Example of the raw EMG signals of the extensor muscles with their Les. 

The vertical lines are the temporal markers between the different kinematic tasks 

(extension and flexion movements). 
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Then, it is considered an amplitude normalization of all Les by peak 

dynamic method (PDM) [Mathiassen et al, 1990], a method that still 

appears to be popular among gait electromyographers [Mirka, 1991; 

Yang J. et al, 1984], dividing each point that constitutes the processed 

EMG by the peak value of the same EMG.  

Further, has been considered a time normalization of Les by linear 

interpolation or decimation to reconstruct each signal epoch with the 

same number of 1024 data points (for a sampling rate of the EMG 

signal of 1 kHz).  The original time scale is then converted in “percent 

of cycle” ranging from 0 to 100% of the motor task. 

Each LE is modelled as summation of Gaussian pulses according to 

the algorithm described in section 4. Aim of this decomposition is to 

identify temporal features of the EMG LE, such as the amplitude, the 

time of occurrence, and the duration of the EMG phasic activity 

during the arm movement.  

As shown in literature [Van Hedel et al, 2006], the decomposition of 

the LE usually generates an high number of phasic activity (here 

named M), so, to simplify EMG LE representation, only the dominant 

phasic activity from each LE are considered. The dominant phases are 

defined as the phases of activity which have a significant percentage 

of the area [Van Hedel et al, 2006] and they are estimated by means of 

two steps.  

First, macro activations areas are automatically detected as the 

intervals where the LE exceeds a threshold, equal to its mean value 

plus three times its standard deviation, for at least 50 ms and therefore 

identifying EMG LE ON-OFF times. 

Then, another threshold is defined as the sum of the LE areas under 

the macro-activations divided by M-1. All the phasic activity with 

area higher than this threshold are defined as dominant phases. By 

using only the dominant phases of each LE and disregarding the 

remaining phases of that LE, the unnecessary data are removed. The 

dominant phase with the largest αi attribute is further defined as the 

peak activity or peak phase (PA) of the LE.  
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The other dominant phases are called major phases (Figure 23). In the 

following we will use the acronym PA also to indicate the position of 

peak value of the PA, expressed in percentage of the task motor. 

 
Figure 23. Example of the analysis of the posteriorr deltoid over the second  

horizontal flexion (EH2). The red line represents the activation zone of the LE; the 

PA is represented in blue line and the major phases in black lines. 

 

6.7 Results 
 

Differences among the SL, sub-movements features and PA values 

within control and pathological groups have been compared using the 

Mann-Withney test (independent samples). 

A total of 80 (4*2*5*2) RM have been recorded. In Figure 24 and 25  

are reported  the trajectories, the velocity , the acceleration and jerk 

profiles of two representative subjects from the comparison group, and 

of two representative stroke patients during the point-to-point 

evaluation task. 



              86     Chapter 6   A novel approach in rehabilitation field of upper arm                                  

 
Figure 24. The trajectory[°], velocity[°/s], acceleration[°/s^2]  and jerk[°/s^3] 

profiles for two representative control subjects during a complete trial. On the x-axis 

are reported the time [s].  
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Figure 25. The trajectory[°], velocity[°/s], acceleration[°/s^2]  and jerk[°/s^3] 

profiles for two representative stroke subjects during a complete trial. On the x-axis 

are reported the time [s]. 

As was to be expected, the movements of the pathological subjects are 

more fragmented and less continuous. Particularly, it can possible to 

note several peaks in the velocity profile, typical behavior in stroke 

disease. In Figure 26 and 27 are represented, respectively, the 

decomposition of the velocity profiles of each horizontal task for one 

healthy and one pathological subject.  
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The original time scale is then converted in “percent of movement” 

ranging from 0 to 100% of the entire movement.  

 

Figure 26. Sub-movements composition of the arm movement into Gaussian 

components for one representative control subject.  a) EH1; b) FH1; c) FH2; d) EH2. 

On the x-axis is reported the temporal length of the movement expressed in %. On 

the y-axis the velocity [°/s]. 

 
Figure 27. Sub-movements composition of the arm movement into Gaussian 

components for one representative pathological subject.  a) EH1; b) FH1; c) FH2; d) 

EH2. On the x-axis is reported the temporal length of the movement expressed in %. 

On the y-axis the velocity [°/sec]. 
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As to was expected, the velocity profiles of the healthy subjects, are 

very close to the uni-modal and bell-shaped profiles predicted by the 

minimum-jerk model. Moreover, the peak velocitv occurred around 

the 55% of the reach, which has been reported for unimpaired 

reaching to target (Bullock & Grossberg, 1988; Hogan, 1984; 

Hollerbach & Flash, 1982; Morasso, 1983: Soechting & Lacquaniti, 

1981).  

We found a single sub-movement in 95% of the analysed trials. In 

pathological conditions, there were significantly more movement 

units, indicating that the continuous strategy was lost. The velocity 

profile performed by pathological subjects exhibit multiple peaks 

which indicate that the movements are produced by repetitive 

accelerations and decelerations. In table III are reported the results of 

the kinematic evaluations related to the SHE task (EH1 and EH2) and 

to the SHF (FH1 and FH2) for both healthy and hemiparetic subjects, 

respectively HS and PS. 

 

Table III. Kinematic indices for both healthy and pathological motion tasks 

 

H
ea

lt
h

y 
su

b
je

ct
s Task SL (mean ±SD) TD(mean ±SD) N (mean ±SD) 

SHE 0.80 ± 0.50 100 1 ± 0 

SHF 0.51 ± 0.48 100 1 ± 0 

P
a

th
o

lo
g

ic
a

l 

su
b

je
ct

s 

Task SL (mean ±SD) TD (mean ±SD) N (mean ±SD) 

SHE 24 ± 20 45 ± 11 4 ± 1 

SHF 18 ± 17 49 ± 13 3 ± 1 
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As shown in figure 28 and 29, the comparison of kinematic indices 

indicated a considerable difference between HS and PS. Moreover it 

was observed higher values during the SHE than the SHF although 

this comparison did not reach significance according. This indicates 

that the PS showed more difficult to perform an extension reaching 

movement than a flexion movement. 

 

 

                

 

  

 

                

Figure 28. Smoothness Level for the SHE and SHF tasks for both HS (white bars) 

and PS (black bars); p<0.0001****  indicates highly significant differences. 

 
Figure 29. Total duration of the sub-movements for the SHE and SHF tasks for both 

HS (grey bars) and PS (black bars); p<0.05*  and p<0.01** indicate respectively  

significant and very significant differences. 
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In order to evaluate the muscle activation timing and the muscle 

forces, the distribution of the occurrences the peak phase has been 

reported for each muscle. The distributions refer to all the RM and all 

the studied muscles in a group (Figure 30). 

 
Figure 30. Distribution of the occurrences of the Peak Phase referred to the 

normalised EMG LEs of all the studied muscles and all the RM. SHE: Shoulder 

Horizontal Extension; SHF: Shoulder Horizontal Flexion; PD=posterior deltoid; 

TM: Trapezius (middle fibers); CPM: Clavicular Pectoralis Major; AD= Anterior 

Deltoid. Black bars: PS; White bars: HS. 

For the healthy subjects the peak phases the extensor (PD and TM) 

and flexors (CPM and AD) muscles substantially lie in the middle / 

terminal  part of  each movement. The distributions for both the 

PD/TM and CPM/AD couple muscles are very similar, suggesting an 

extensor and  a flexor synergy. For pathological patients the 

distribution of the peak phases occurs early. This reveals a global 

advance in maximum muscle effort compared to the healthy subjects. 

These behaviours are due to the inability of the pathological subjects 

to correctly plan and to keep a normal muscle synergy during the 

entire movement.  
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Discussions 
 

Several studies have showed the importance of a clear understanding 

of arm movements. Studies of kinematic, mechanical, and neural 

features of arm reaching movements agree that, in the absence of any 

overriding requirement such as maximum speed or precision, their 

typical characterization consists in to be a straight path with a 

Gaussian-like bell shaped velocity profile (minimum jerk theory). 

However, several studies noted that more complex reaching 

movements or movements under constraints of time and spatial 

accuracy are often characterized by irregular and asymmetric multi-

peaked velocity profiles. These experimental evidences led to the 

emergence of the theory of the discretization of the movement.  

There is a wide number of studies on human motor control supporting 

the theory that reaching and pointing movements are the result of 

sequences of discrete motion units, called sub-movements. Identifying 

fundamental building blocks that underlie human movement is a major 

goal of motor control studies. If such a structure could be identified 

and accurately characterized, it would provide the ability to scrutinize 

human movement at a deeper level than has been previously possible.  

Moreover, considering any movement as a combination of “primitive” 

blocks leads to a interesting theory that lends itself well to a 

mathematical application, especially for the striking analogy with the 

Fourier approach.  
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 As a non-linear optimization problem, the sub-movement problem 

may have multiple local minima. However, several optimization 

methods applied to overcome this problem are sensitive to getting 

caught in local minima and cannot guarantee a globally optimal 

solution. The optimality of the solution for these methods depends 

heavily on the quality of the initial guess; unless the initial guess is in 

the neighborhood of the global minimum, they will not find the best 

solution. In order to reliably find the global minimum and solve the 

decomposition problem accurately, an algorithm capable of global 

nonlinear optimization is necessary. 

Here is proposed a novel sub-movement decomposition method based 

on a robust EM constrained algorithm which assurances a globally 

optimal solution. In fact we overcome the critical aspects of the EM 

algorithm such as the parameters initialization  and determination of 

the number of components composing a finite mixture. Particularly, it 

has been realized an hybrid decomposition algorithm between a purely 

local and a purely global optimization algorithm. 

This representation allowed  to explore whether the movements are 

built up of elementary kinematic units by decomposing each surface 

into a weighted combination of Gaussian functions. The proposed 

method has been capable of finding the optimal decomposition for 

simulated velocity data. These issues are particularly felt in the sub-

movements theory where the shape and the number of building blocks 

composing a motor task is not known.  

Then, applying this new decomposition algorithm it have been defined 

new robust kinematic and electromyographic indexes to analyze the 

strategy of the reaching movements in hemiparetic subjects during a 

robot based rehabilitation of upper arm.  

The obtained results indicated that the decomposition method 

proposed in addition to the SL and PP indexes allowed us to 

meaningfully investigate the motor strategy of movement produced by 

subjects with hemiparesis. 
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