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Introduction

A topic of great interest in the Remote Sensing, Signal Processing,
and Synthetic Aperture Radar (SAR) communities is change detection.
This is the ability to identify temporal changes within a given scene
starting from a pair of co-registered SAR images representing an area
of interest [1–3]. Incoherent and coherent change detection are the two
main approaches that have been proposed in the open literature to pro-
cess the image pair. The former attempts to detect changes in the mean
power level of a given scene exploiting only the intensity information
from the available images (thus neglecting phase information [4–6]): dif-
ferencing and rationing are well-known techniques in this context [7].
The latter jointly uses both amplitude and phase from the reference and
the test data to detect possible changes in the region of interest. In [4,5],
a thorough comparison between incoherent and coherent change detec-
tion strategies, including the Maximum Likelihood Estimate (MLE) of
the SAR coherence parameter, is performed based on high resolution
(0.3 m×0.3 m) SAR images. In [7], several techniques for change de-
tection have been presented and compared based on their probability
of error and on results obtained using repeat-pass ERS-1 SAR data.
In [6,8–10], the multi-polarization signal model for the SAR change de-
tection problem is laid down, the detection problem is formulated as
a binary hypothesis test, and a decision rule based on the Generalized
Likelihood Ratio Test (GLRT) is developed. Moreover, the performance
analysis [9] of the GLRT is given in the form of Receiver Operating Char-
acteristics (ROC), namely detection Probability (Pd) versus false alarm
Probability (Pfa), quantifying the benefits of the multi-polarization in-
formation in SAR change detection. A complementary approach to the
GLRT is considered in [11] based on the use of perturbation filters and
a separated treatment between polarimetry and amplitude.
A detection scheme based on canonical correlations analysis is applied
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IV Introduction

to scalar EMISAR data in [12, 13], whereas, in [14], a mutual informa-
tion based framework is developed to address coherent similarities be-
tween multichannel SAR images. Starting from the multi-polarization
data model developed in [8] and [9], a new and systematic framework
for change detection based on the theory of invariance in hypothesis
testing problems [15, 16] is proposed. This is a viable mean to force
some desired properties to a decision statistic at the design stage and
has already been successfully applied in some different radar detection
problems [17–19]. Otherwise stated, the principle of invariance allows to
focus on decision rules which exhibit some natural symmetries implying
important practical properties such as the Constant False Alarm Rate
(CFAR) behavior. Besides, the use of invariance leads to a data reduc-
tion because all invariant tests can be expressed in terms of a statistic,
called maximal invariant, which organizes the original data into equiv-
alence classes. Also the parameter space is usually compressed after
reduction by invariance and the dependence on the original set of pa-
rameters become embodied into a maximal invariant in the parameter
space (induced maximal invariant).

Therefore, the thesis is organized as follows:

• In Chapter 1, with reference to the multi-polarization SAR change
detection problem, we first determine a maximal invariant statistic
in terms of the eigenvalues of a data dependent matrix constructed
using both test and reference images. Then, we design the Most
Powerful Invariant (MPI) receiver, as the Neyman-Pearson detec-
tor computed from the maximal invariant statistic, and show that
no Uniformly MPI (UMPI) test exists, namely the optimum in-
variant detector is not implementable. Hence, we focus on sub-
optimum invariant receivers based on different functions of the
maximal invariant such as arithmetic mean, harmonic mean, max-
imum and minimum entries. Remarkably, the GLRT in [8], [9],
belongs to the proposed class of receivers. At the analysis stage,
we assess the performance of the considered invariant decision rules
in correspondence of a two-channel polarization diversity providing
detection probability contours, for a given false alarm level, ver-
sus the induced maximal invariant which turns out bi-dimensional.
We also conduct a performance comparisons with the benchmark
MPI test showing that some analyzed receivers can outperform
the GLRT and achieve a detection probability close to that en-
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sured by the clairvoyant MPI structure. Besides, we consider ROC
curves and assess the impact of the polarimetric information on
the detection performance. Finally, to validate the behavior of
the considered tests on real SAR images, we use a high resolution
change detection dataset, available from Air Force Research Lab-
oratory (AFRL) [20, 21] and collected from an X-band SAR. The
conducted analysis highlights the detectors capability to operate
successfully in real environments; some of these new detectors have
the interesting feature to directly discriminate between car arrivals
and departures without any additional Radar Cross Section (RCS)
comparison.

• In Chapter 2, we exploit the block-diagonal structure for the po-
larimetric covariance matrix introduced in [22] and devise a deci-
sion rule based on the GLRT criterion. Remarkably, it ensures the
CFAR property with respect to the unknown polarimetric covari-
ance provided that it complies with a certain design structure. The
benchmark clairvoyant optimum detector and the GLRT derived
in [9] (without the exploitation of the special covariance struc-
ture forced by polarization diversity) are used as benchmark at
the analysis stage to assess the performance of the new struc-
tured GLRT. The analysis, conducted both on simulated as well
as on real high resolution SAR data, shows the effectiveness of the
structured GLRT and its superiority over the classic unstructured
GLRT is some scenarios of practical interest.

• In Chapter 3, starting from the framework proposed in Chapter
1, we introduce the capability to account for a possible scale mis-
match factor. The new approach is able to produce scale-invariant
decision rules, providing advantages in terms of robustness to in-
tensity mismatches and/or miscalibrations and false alarm rejec-
tion with respect to those considered in Chapter 1. This is an im-
portant property as images over the same scene can exhibit differ-
ent intensity scales due to different observation angles and propa-
gation properties. As a matter of fact, there are situations in Earth
Observation where a change detector without scale-invariance is
doomed to fail. A classic example is the sea where different sea
states can trigger a detector without scale invariance. Another ex-
ample may be a ground surface that shows very different moisture
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conditions (due for instance to rain). The mentioned effects can
often lead to false alarms in a change detection structure that is
not designed to be robust with respect to such scale variations.
We also compute the GLRT detector and prove that it belongs to
the class of scale-invariant decision rules. Interestingly, with refer-
ence to two-polarimetric channels, it is tantamount to comparing
the condition number of a data-dependent matrix with a suitable
threshold. From a technical (detection theory) point of view, the
derivations of the GLRT receiver for the considered problem are,
to the best of authors knowledge, a new result together with the
analytic expressions of Pfa and Pd (developed in Appendix B) and
the determination of the maximal invariant statistic. At the anal-
ysis stage, we assess the performance of the considered invariant
decision rules in correspondence of a two- (and three-) channel
polarization diversity providing detection probability contours, for
a given false alarm level, versus the induced maximal invariant
which turns out one- (bi-) dimensional, ROC curves and the value
of the Pfa for different scale values. The analysis, conducted both
on simulated as well as on real high resolution SAR data, high-
lights the capability of the proposed detectors to provide scale
invariance and, at the same time, ensuring satisfactory detection
performances.

At the end of each chapter, some conclusions and possible future
tracks are given.



Notation

a column vector;
a(i) i-th element of the column vector a;
ai i-th column vector;
A matrix;
A(i, k) (i, k)-th entry of the matrix A;
(·)T transpose operator;
(·)∗ complex conjugate operator (component-wise complex

conjugate if the argument is a matrix or a vector);
(·)† transpose conjugate operator;
tr(·) trace of the square matrix argument;
det(·) determinant of the square matrix argument;
diag(·) vector formed by the diagonal elements of

the matrix argument;
Diag(·) diagonal matrix formed by the components of

the vector argument;
I identity matrix;
0 matrix with zero entries;
1N N × 1 vector with all the entries equal to one;
� generalized matrix inequality: for any Hermitian matrix A,

A � 0 means that A is a positive definite matrix;
H++
N set of N ×N Hermitian positive definite matrices;
R++ set of positive real numbers;
GL(N) General Linear group of degree N over the field of complex numbers:

is the set of N ×N non-singular matrices together with the operation
of ordinary matrix multiplication.
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Chapter 1

Invariant Rules for
Multi-Polarization SAR
Change Detection

This chapter deals with coherent (in the sense that both amplitudes
and relative phases of the polarimetric returns are used to construct the
decision statistic), multi-polarization SAR change detection assuming
the availability of reference and test images collected from N multiple
polarimetric channels. At the design stage, the change detection problem
is formulated as a binary hypothesis testing problem and the principle of
invariance is used to come up with decision rules sharing the Constant
False Alarm Rate (CFAR) property. The maximal invariant statistic
and the maximal invariant in the parameter space are obtained. Hence,
the optimum invariant test is devised proving that a Uniformly Most
Powerful Invariant (UMPI) detector does not exist. Based on this, the
class of sub-optimum invariant receivers, which also includes the Gen-
eralized Likelihood Ratio Test (GLRT), is considered. At the analysis
stage, the performance of some tests, belonging to the aforementioned
class, is assessed and compared with the optimum clairvoyant invariant
detector. Finally, detection maps on real high resolution SAR data are
computed showing the effectiveness of the considered invariant decision
structures. Precisely, in Section 1.1 we deal with the formulation of the
multi-polarization SAR change detection problem, whereas, in Section
1.2, we address maximal invariant and induced maximal invariant de-
sign. In Section 1.3, we devise the MPI test and show that a UMPI

1
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detector does not exist for the present problem. Thus, we consider the
design of sub-optimum invariant decision rules. In Sections 1.4 and 1.5,
we assess the performance of the introduced invariant tests respectively
on simulated and on real multi-polarization SAR images. Finally, in Sec-
tion 1.6, we draw conclusions and outline some possible future research
tracks.

1.1 Problem Formulation

A multipolarization SAR sensor measures for each pixel of the image
under test N ∈ {2, 3} complex returns, collected from different polari-
metric channels (for instance HH and VV for N = 2; HH, VV, and HV
with reference to N = 3). The N returns from the same pixel are stacked
to form the vectorX(l,m), where l = 1, . . . , L and m = 1, . . . ,M (L and
M represent the vertical and horizontal size of the image, respectively).
Therefore, the sensor provides a 3-D data stack X of size M × L × N
which is referred to in the following as a datacube and is illustrated in
Figure 1.1.

Figure 1.1: Construction of the datacube.

For SAR change detection applications, we suppose that two dat-
acubes X (reference data) and Y (test data) of the same geographic



1.1 Problem Formulation 3

area are available; they are collected from two different sensor passes and
are accurately pixel aligned (co-registrated). We focus on the problem
of detecting the presence of possible changes in a rectangular neighbor-
hood A, with size K = W1 ×W2 ≥ N , of a given pixel. To this end, we
denote by RX (RY ) the matrix whose columns are the vectors of the
polarimetric returns from the pixels of X (Y ) which fall in the region

A and SX = RXR
†
X (SY = RYR

†
Y ).

The matrices RX and RY are modeled as statistically independent
random matrices. Moreover, the columns of RX (RY ) are assumed sta-
tistically independent and identically distributed random vectors1 drawn
from a complex circular zero-mean Gaussian distribution with positive
definite covariance matrix ΣX (ΣY ). From the physical point of view
this is tantamount to assuming a fully developed speckle [23,24]. Under
the aforementioned settings, the change detection problem in the region
A can be formulated in terms of the following binary hypothesis test{

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY
(1.1)

where the null hypothesis H0 of change absence is tested versus the
alternative2 H1.

Exploiting the Gaussian assumption, we can write the joint proba-
bility density function (pdf) of RX and RY as

fRX ,RY
(RX ,RY |H1,ΣX ,ΣY ) =

1

π2NK det(ΣXΣY )K
exp

{
−tr

(
Σ−1X SX + Σ−1Y SY

)}
.

(1.2)

Using the Fisher-Neyman factorization theorem [25], we can claim that
a sufficient statistic for (1.1) is represented by the two sample Grammian
matrices SX and SY which are statistically independent and follow a

1As to the spatial independence among the polarimetric returns from different pix-
els, it may be somewhat limiting especially in the presence of spatial oversampling and
after the processing operations required by geocoding. Nevertheless, this assumption
is usually met in many multilook SAR signal processing techniques to grant analytic
tractability. The goodness of the approximation is a-posteriori assessed when testing
the processors on real data.

2This testing problem is also well known in statistical literature with reference to
real observations [15, Ch. 8].
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complex Wishart distribution, i.e. [26]

fSX (SX |H1,ΣX) =

cW
det(ΣX)K

exp
{
−tr

(
Σ−1X SX

)}
det(SX)K−N , SX � 0

(1.3)

fSY (SY |H1,ΣY ) =

cW
det(ΣY )K

exp
{
−tr

(
Σ−1Y SY

)}
det(SY )K−N , SY � 0

(1.4)

with cW a normalization constant. From the sufficient statistic, we can
evaluate the optimum Neyman-Pearson (NP) detector as the Likelihood
Ratio Test (LRT),

fSX ,SY (SX ,SY |H1,ΣX ,ΣY )

fSX ,SY (SX ,SY |H0,ΣX)
=

fSX (SX |H1,ΣX)fSY (SY |H1,ΣY )

fSX (SX |H0,ΣX)fSY (SY |H0,ΣX)

H1
>
<
H0

T0,A ,

where the first equality stems from the statistical independence between
SX and SY ; T0,A is the detecton threshold set to ensure a given Pfa
value. Substituting the pdfs of SX and SY in the LRT, after stan-
dard algebra and statistical equivalences (also absorbing irrelevant data-
independent terms in the threshold), it can be recast as

tr
[(

Σ−1X −Σ−1Y
)
SY
] H1
>
<
H0

T0 (1.5)

where T0 is the suitable modification of the original detection thresh-
old. Evidently, test (1.5) is not Uniformly Most Powerful (UMP) and,
consequently, it is not practically implementable because it requires the
knowledge (clairvoyant detector) of both ΣX and ΣY which, in realistic
applications, are usually unknown.

1.2 Data Reduction and Invariance Issues

Both hypotheses under test are composite or, in other words, H0 and
H1 are equivalent to a partition of the parameter space Θ into the two
disjoint sets



1.2 Data Reduction and Invariance Issues 5

Θ0 =
{
ΣX = ΣY , (ΣX ,ΣY ) ∈ H++

N ×H++
N

}
Θ1 =

{
ΣX 6= ΣY , (ΣX ,ΣY ) ∈ H++

N ×H++
N

} (1.6)

This formulation emphasizes that the individual values of the nui-
sance parameters are irrelevant: one must only discern to which hypoth-
esis they pertain, namely whether the covariances are equal or not. This
suggests that we can cluster the data considering transformations that
leave unaltered:

a. the two composite hypotheses, namely the partition of the param-
eter space;

b. the families of distributions under the two hypotheses.

This goal can be achieved through the Principle of Invariance [16]. Ac-
cording to such a principle, we look for transformations that preserve
the formal structure of the hypothesis testing problem and, then, for
decision rules invariant to them. Such a principle also acts as a data re-
duction technique leading to a reduced observation space of significantly
lower dimensionality than the original one.

It is not difficult to prove that our testing problem is invariant under
the group of transformations G acting on the sufficient statistic as:

G =
{
g : SX → BSXB

† , SY → BSYB
† , B ∈ GL(N)

}
. (1.7)

In fact, the families of distributions are preserved because if SX
(SY ) is Wishart distributed also BSXB

† (BSYB
†) is Wishart with

the same scalar parameters and matrix parameter BΣXB
† (BΣYB

†),
where B ∈ GL(N). Moreover, the original partition of the parameter
space is left unaltered since if ΣX 6= ΣY then BΣXB

† 6= BΣYB
† and

if ΣX = ΣY then BΣXB
† = BΣYB

†.

1.2.1 Maximal Invariant Design

The invariance property induces a partition of the data space into
orbits (or equivalence classes) where, over each orbit, every point is
related to every other through a transformation which is a member of
the group G. Any statistic that identifies different orbits in a one-to-
one way significantly reduces the total amount of data necessary for
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solving the hypothesis testing problem and constitutes the compressed
data set to be used in the design of any invariant detector. These kind
of statistics are called maximal invariants since they are constant over
each orbit (invariance) while assuming different values on different orbits
(maximality).

Formally, a statistic T(SX ,SY ) is said to be a maximal invariant
with respect to the group of transformations G if and only if

• Invariance: T(SX ,SY ) = T[g(SX ,SY )], ∀g ∈ G.

• Maximality: T(SX1 ,SY1) = T(SX2 ,SY2) implies that ∃ g ∈ G
such that (SX2 ,SY2) = g(SX1 ,SY1).

Notice that there are many maximal invariant statistics, but they are
equivalent in that yield statistically equivalent detectors. Moreover, all
invariant tests can be expressed as a function of the maximal invariant
statistic [15, 27], which for the problem of interest is provided by the
following

Proposition 1: A maximal invariant statistic for problem (1.1) with
respect to the group of transformations (1.7) is the N -dimensional vector
of the eigenvalues λ1, . . . , λN of

SXS
−1
Y . (1.8)

Proof. The invariance of λ1, . . . , λN follows because the eigenval-
ues of BSXB

†(BSYB
†)−1 = BSXS

−1
Y B

−1 are the same as those of
SXS

−1
Y . As to the maximality, we have to prove that if SX,1S

−1
Y,1 and

SX,2S
−1
Y,2 share the same eigenvalues then there exists a non-singular ma-

trix B such that SX,1 = BSX,2B
† and SY,1 = BSY,2B

†. To this end,

denoting by Λ̄ = Diag
(

[λ1, . . . , λN ]T
)

and exploiting Theorem [28,

Corol. 4.6.12, p. 250], we can claim that there exist two non-singular
matrices B1 and B2 such that

B1SX,1B
†
1 = Λ̄ , B1SY,1B

†
1 = I ;

B2SX,2B
†
2 = Λ̄ , B2SY,2B

†
2 = I ;

Hence,

SX,1 = B−11 B2SX,2B
†
2(B

−1
1 )† = BSX,2B

† ,

SY,1 = B−11 B2SY,2B
†
2(B

−1
1 )† = BSY,2B

† ,
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with B = B−11 B2, and the proof is thus completed.

Interestingly the principle of invariance realizes a significant data
reduction: the maximal invariant statistic is a real N -dimensional vector
whereas the original sufficient statistic is composed of the two N × N
Grammian matrices SX and SY . For instance, with reference to three
polarimetric channels, the original sufficient statistic is composed of 18
real entries whereas in the compressed domain (i.e. after reduction by
invariance) the maximal invariant is just 3-dimensional.

1.2.2 Induced Maximal Invariant Design

The data transformation induces a parameter transformation which
leaves unaltered the two composite hypotheses. In other words, by the
principle of invariance, the parameter space is also partitioned into or-
bits and, usually, involves a reduced set of parameters. The relevant
parameters are embodied into any induced maximal invariant, namely
any function of the parameters that is constant over each orbit of the
parameter space (invariance) but assumes different values over different
orbits (maximality).

For the case at hand, an induced maximal invariant is composed of
the eigenvalues δ = [δ1, . . . , δN ]T of the matrix:

ΣXΣ−1Y . (1.9)

The proof of this claim can be done following the same steps as in the
proof of Proposition 1 and is omitted for the sake of compactness.

The previous claim highlights that the principle of invariance yields
a significant reduction of the number of the parameters: in fact, the
induced maximal invariant is an N -dimensional vector while the original
parameter space was composed of the two covariance matrices ΣX and
ΣY .

We explicitly observe that in the reduced parameter space the parti-
tion corresponding to the two composite hypotheses of the test (1.1) is
Ξ0 = {1N}, relative to ΣX = ΣY , and Ξ1 = {1N}, relative to ΣX 6= ΣY ,
where {1N} is the set of the N -dimensional column vectors with at least
one entry different from 1. The structure of Ξ0, which now corresponds
to a simple H0 hypothesis, clearly shows that all invariant receivers that
process a maximal invariant statistic through a transformation indepen-
dent of δ1, . . . , δN , achieve the CFAR property.
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1.3 Design of the optimum and sub-optimum
Invariant Detectors

This section is devoted to the design of the optimum and sub-optimum
invariant detectors. Sub-section A deals with the design of the MPI de-
tector for the problem of interest and the existence of a UMPI test. Since
no UMPI detector exists, Sub-section B introduces some sub-optimum
invariant architectures.

1.3.1 Design of the Most Powerful Invariant Detector

Based on the Neyman-Pearson criterion, the MPI test can be ob-
tained as the LRT based on any maximal invariant [16, 29], which, as
already pointed out, provides sufficient information for constructing any
invariant decision rule. It is thus necessary, for further developments, to
introduce the pdf of the devised maximal invariant under both the H0

and the H1 hypothesis [26]:

fΛ(Λ|H1,∆) =

cN,K det(∆)−K1F̃0(2K;−∆−1,Λ) det(Λ)K−N
N∏
j=1

∏
i<j

(λi − λj)2 ,

(1.10)

fΛ(Λ|H0) = fΛ(Λ|H1, I) =

cN,K det(I + Λ)−2K det(Λ)K−N
N∏
j=1

∏
i<j

(λi − λj)2 ,
(1.11)

where3 Λ = Diag
(

[λ1, λ2, . . . , λN ]T
)

with λ1 ≥ λ2 ≥ · · · ≥ λN > 0,

∆ = Diag (δ), 1F̃0(·; ·, ·) denotes the hypergeometric function of matrix
argument [26, eq. (88)], and cN,K is a normalization constant.

Hence, the LRT can be written as

fΛ(Λ|H1,∆)

fΛ(Λ|H0)
=

1F̃0(2K;−∆−1,Λ)

det(I + Λ)−2K

H1
>
<
H0

T , (1.12)

3With a slight notation abuse we continue to indicate with λi, i = 1, . . . , N , the
ordered (in descending order) eigenvalues.
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where T denotes the detection threshold, set to ensure a given Pfa
level.

In order to proceed further, we focus on the case N = 2 and ex-
ploit expression [30, eq. (51)] to recast 1F̃0(2K;−∆−1,Λ) as a rational
function

1F̃0(2K;−∆−1,Λ) =

c2 det


(

1 +
λ1
δ1

)1−2K (
1 +

λ1
δ2

)1−2K

(
1 +

λ2
δ1

)1−2K (
1 +

λ2
δ2

)1−2K


(λ1 − λ2)

(
− 1

δ1
+

1

δ2

) , δi 6= δj ,

(1.13)

with c2 a constant with respect to λi and δi.

Moreover for δ1 = δ2 = δ, the splitting formula [26, eq. (92)], yields

1F̃0(2K;−∆−1,Λ) = det

(
I +

Λ

δ

)−2K
, δi = δj = δ . (1.14)

Otherwise stated,

1F̃0(2K;−∆−1,Λ) =



c2

[(
1 +

λ1

δ1

)1−2K (
1 +

λ2

δ2

)1−2K

−
(
1 +

λ1

δ2

)1−2K (
1 +

λ2

δ1

)1−2K
]

(λ1 − λ2)
(
−

1

δ1
+

1

δ2

) δi 6= δj

(
1 +

λ1

δ

)−2K (
1 +

λ2

δ

)−2K

δ1 = δ2 = δ

(1.15)

As a consequence, after standard statistical equivalences, the MPI
test can be recast as
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[
(1 + λ1)

(δ1 + λ1)

(1 + λ2)

(δ2 + λ2)

]2K [(δ1 + λ1) (δ2 + λ2)

λ1 − λ2

]
+

−
[

(1 + λ1)

(δ2 + λ1)

(1 + λ2)

(δ1 + λ2)

]2K [(δ2 + λ1) (δ1 + λ2)

λ1 − λ2

]
×

× sign (δ1 − δ2)
H1
>
<
H0

TA , δ1 6= δ2

(1.16)

(1 + λ1) (1 + λ2)

(δ + λ1) (δ + λ2)

H1
>
<
H0

TB , δ1 = δ2 = δ (1.17)

with TA and TB suitable modifications of the original detection thresh-
old in (1.12).

The derived expression of the MPI test clearly highlights that it
cannot, in general, be implemented unless the induced maximal invariant
is known (clairvoyant detector): unfortunately, such hypothesis is not
realistic, especially for the SAR change detection problem. In other
words, the MPI detector, which provides the best performance for a
given ∆? is not, in general, optimum for different values of ∆, namely no
UMPI detector exists. Nevertheless the MPI detector is still noteworthy
since its performance upper bounds those of any other invariant receiver,
operating under the same signal and disturbance models, and hence can
be used to assess the loss of any implementable, although sub-optimal,
invariant test. Before concluding, we highlight that the case N = 3 can
be dealt with a similar technique (the derivations are given in Appendix
A).

1.3.2 Maximal Invariant-based Detectors

The lack of an UMPI test suggests to investigate invariant decision
rules based upon different strategies. However, there is no criterion for
choosing a priori a receiver instead of another. An intuitive rule to
select invariant tests for our problem could be based on the following
asymptotic observation. For large values of K, the eigenvalues of S−1X SY
tend to δi, i = 1, . . . , N ; hence decision rules



1.3 Design of the optimum and sub-optimum Invariant
Detectors 11

h(λ1, . . . , λN )
H1
>
<
H0

T , (1.18)

1. are very effective to discriminate deviations δi � 1, when h(·, . . . , ·)
is an increasing function of the arguments. However they perform
poor when δi are smaller than 1.

2. are very effective to discriminate deviations δi � 1, when h(·, . . . , ·)
is a decreasing function of the arguments. Nevertheless they per-
form poor when δi is greater than 1.

3. in principle could achieve good detection levels for both δi � 1

and δi � 1, when h(·, . . . , ·) complies with h
(

1
λ1
, . . . , 1

λN

)
=

h (λ1, . . . , λN ).

On the other hand one cannot analyze all possible reasonable detec-
tors; so in the following, we focus on six decision rules, which, based on
extensive numerical analysis, are seen to achieve satisfactory detection
performance.

GLRT

This approach is equivalent to replacing the unknown parameters in
the likelihood ratio with their maximum likelihood estimates, under each
hypothesis [31]. Interestingly, under very mild technical assumptions,
the GLRT is invariant [32]. For the present problem it has been proposed
in [8, 9]4 and is given by

max
ΣX

max
ΣY

fSX ,SY (SX ,SY |H1,ΣX ,ΣY )

max
ΣX

fSX ,SY (SX ,SY |H0,ΣX)

H1
>
<
H0

T1 , (1.19)

with T1 the detection threshold. After optimizations and monotonic
transformations, (1.19) can be shown statistically equivalent to

N∏
i=1

(1 + λi)
2

λi

H1
>
<
H0

T1 , (1.20)

4With reference to real observations it is derived in [15, Ch. 8].
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where the same symbol T1 has been used to denote the modified detec-
tion threshold. Interestingly, the GLRT complies with condition 3 that
was given at the beginning of the section, namely we expect the GLRT
capable to achieve good detection levels both when δi � 1 and δi � 1.

Arithmetic and Armonic Mean Based Detectors

These decision rules are respectively given by

N∑
i=1

λi

H1
>
<
H0

T2 , (1.21)

N∑
i=1

1

λi

H1
>
<
H0

T3 , (1.22)

where T2 and T3 are the detection thresholds. The former complies
with condition 1 whereas the latter with condition 2. As a consequence
(1.21)5 is suitable to detect deviations δi � 1 while (1.22) δi � 1.

From (1.21) and (1.22) it is also possible to construct another deci-
sion rule satisfying condition 3 merely summing the decision statistics,
i.e.

N∑
i=1

(
1

λi
+ λi

) H1
>
<
H0

T4 , (1.23)

with T4 the detection threshold. Before concluding this paragraph we
highlight that (1.21) can be also obtained substituting in the optimum
LRT detector (1.5) the sample covariance matrices 1

KSX and 1
KSY in

place of ΣX and ΣY respectively. Otherwise stated, the arithmetic mean
based detector can be interpreted as an adaptive implementation of the
LRT.

Maximum and Minimum Eigenvalue Based Detectors

These tests are respectively based on the following comparisons(
λ1 +

1

λN

) H1
>
<
H0

T5 , (1.24)

5This detector is also known as The Hotelling-Lawley trace and has been discussed
for change detection purposes in [33].
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max

(
λ1 ,

1

λN

) H1
>
<
H0

T6 , (1.25)

with T5 and T6 the decision thresholds. An intuitive explanation to the
decision rules is based on the following arguments: the former term, λ1,
dominates for large deviations δi � 1, whereas, the latter term, 1

λN
, if

δi � 1. Hence, (1.24) and (1.25) are supposed to perform well both for
δi � 1 and δi � 1.

1.4 Performance Analysis on Simulated Data

This section presents the performance analysis via computer simu-
lated data of the detectors introduced in Section IV. It is organized in
two sub-sections. The first analyzes Pd, for a given Pfa, versus the in-
duced maximal invariant which represents the set of relevant parameters
ruling the Pd’s behavior (otherwise stated, different pairs of covariance
matrices (ΣX ,ΣY ) sharing the same induced maximal invariant δ lead
to the same detection performance). The second shows standard ROCs
for a given value of δ. Finally, the impact of the number of polarimetric
channels used to perform change detection is studied.

1.4.1 Detection Probability versus the Induced Maximal
Invariant

The analysis is conducted in terms of Pd for a given Pfa level, as-
suming zero-mean complex circular multivariate Gaussian observations
with equal (distinct) covariance matrices under H0 (H1). For compari-
son purposes, the MPI test is used as a benchmark to the performance
of any feasible invariant receiver. Finally a square inspection window is
considered, namely W1 = W2 = W .

The case of two polarizations is chosen because forN = 2 the induced
maximal invariant, which rules the performance of any invariant detec-
tor, is bi-dimensional. This means that contour plots of Pd versus the
components of the induced maximal invariant δ1 and δ2 completely char-
acterize the detection performance of receivers (1.20) - (1.25). Specifi-
cally, the curves can be interpreted as follows. Given a pair of true covari-
ance matrices (ΣX ,ΣY ), compute the bi-dimensional induced maximal
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invariant δ, and from the countours read the value of Pd corresponding
to a given Pfa level.

In the present analysis, Monte Carlo simulation is used to set the
detection thresholds assuming 100/Pfa independent runs and Pfa =
10−4. Moreover, 5000 independent trials are used to estimate Pd.

Figures 1.2, 1.3, and 1.4, show the contours corresponding to W = 3.
They highlights that receivers complying with condition 3 in sub-section
1.3.2 are capable of detecting deviations δi either � 1 or δi � 1. More-
over, (1.23), (1.24), and (1.25) achieve a comparable detection perfor-
mance level, namely Pd ≥ 0.9 for δi 6∈ [10−1.3 , 101.3], i = 1, 2, while the
same level of performance is achieved by (1.20) for δi 6∈ [10−1.36 , 101.36],
i = 1, 2.

A different behavior is shown by tests (1.21) and (1.22); the former
operates with a satisfactory detection performance when δi 6∈ [0 , 101.3],
i = 1, 2, whereas the latter when (δ1, δ2) ∈]0 , 10−1.3]2. This is a useful
feature as, it will be shown on real data, tests (1.21) and (1.22) can be
used for post-detection classification, namely to discriminate between
δi � 1 and δi � 1.

In Figures 1.5 and 1.6, the performance of the considered invariant
tests is compared with the benchmark MPI receiver. For this test W = 3
and four different cuts of the detection probability surface (Pd versus δ1
and δ2) are considered: δ2 = δ1, δ2 = 0.75δ1, δ2 = 0.50δ1, and δ2 =
0.25δ1. The curves highlight that tests (1.21) and (1.22) respectively
optimized to the specific situation δ � 1 (1.21) and δ � 1 (1.22) slightly
outperform the other detection rules; additionally, their performance is
near to the optimum curve in the region δ1 > 10 (1.21) and δ1 < 0.1
(1.22). However, their Pd is close to zero when δ1 < 10 (1.21) and
δ1 > 0.1 (1.22). All the remaining receivers follow the same performance
behavior as the benchmark curve.

The case W = 5 is not reported for conciseness, however it highlights
that increasing W leads to better detection performances. Moreover,
the performance gap between the considered invariant detectors and the
MPI test is smaller than that observed for W = 3. This was expected
and can be explained observing that a greater number of homogeneous
data vectors have been used to construct the Grammians SX and SY
whose scaled versions ( 1

K scale factor) are unbiased and consistent esti-
mates of the covariance matrices ΣX and ΣY .
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(a) Detector (1.20):
∏N
i=1

(1 + λi)
2

λi
.

(b) Detector (1.21):
∑N
i=1 λi.

Figure 1.2: Pd contours versus log δ1 and log δ2 for N = 2 and W = 3.
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(a) Detector (1.22):
∑N
i=1

1

λi
.

(b) Detector (1.23):
∑N
i=1

(
1

λi
+ λi

)
.

Figure 1.3: Pd contours versus log δ1 and log δ2 for N = 2 and W = 3.



1.4 Performance Analysis on Simulated Data 17

(a) Detector (1.24):

(
λ1 +

1

λN

)
.

(b) Detector (1.25): max

(
λ1 ,

1

λN

)
.

Figure 1.4: Pd contours versus log δ1 and log δ2 for N = 2 and W = 3.



18
Chapter 1 Invariant Rules for Multi-Polarization SAR

Change Detection

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(δ
1
)

P
d

 

 

Detector MPI
Detector (1.20)
Detector (1.21)
Detector (1.22)
Detector (1.23)
Detector (1.24)
Detector (1.25)

(a) δ1 = δ2.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(δ
1
)

P
d

 

 

Detector MPI
Detector (1.20)
Detector (1.21)
Detector (1.22)
Detector (1.23)
Detector (1.24)
Detector (1.25)

(b) δ1 = 0.25δ2.

Figure 1.5: Pd versus log δ1 for N = 2 and W = 3. Detector (1.20):
∏N
i=1

(1+λi)
2

λi
,

detector (1.21): ∑N
i=1 λi, detector (1.22): ∑N

i=1
1
λi

, detector (1.23): ∑N
i=1

(
1
λi

+ λi

)
,

detector (1.24):
(
λ1 + 1

λN

)
, detector (1.25): max

(
λ1 ,

1
λN

)
.



1.4 Performance Analysis on Simulated Data 19

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(δ
1
)

P
d

 

 

Detector MPI
Detector (1.20)
Detector (1.21)
Detector (1.22)
Detector (1.23)
Detector (1.24)
Detector (1.25)

(a) δ1 = 0.5δ2.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(δ
1
)

P
d

 

 

Detector MPI
Detector (1.20)
Detector (1.21)
Detector (1.22)
Detector (1.23)
Detector (1.24)
Detector (1.25)

(b) δ1 = 0.75δ2.

Figure 1.6: Pd versus log δ1 for N = 2 and W = 3. Detector (1.20):
∏N
i=1

(1+λi)
2

λi
,

detector (1.21): ∑N
i=1 λi, detector (1.22): ∑N

i=1
1
λi

, detector (1.23): ∑N
i=1

(
1
λi

+ λi

)
,

detector (1.24):
(
λ1 + 1

λN

)
, detector (1.25): max

(
λ1 ,

1
λN

)
.
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1.4.2 Standard ROC Analysis

The analysis is conducted in terms of ROC curves (namely Pd versus
Pfa) for a fixed value of the induced maximal invariant δ = [1/2, 1/2, 1/2]T ,
corresponding to the pair of covariance matrices exploited in [9]. Of
course, any other covariance pair with the same value of δ leads to the
same ROCs, while a different value of δ leads to different ROCs. For
comparison purposes, the benchmark ROC of the clairvoyant MPI de-
tector and that of the detector proposed in [9] are also plotted. The de-
tector proposed in [9] is an adaptive implementation of the LRT, whose
expression in terms of the maximal invariant statistic is

N∑
i=1

(
1

λi
− ln

1

λi

) H1
>
<
H0

TH . (1.26)

In order to set the detection threshold, Monte Carlo simulations
are used assuming 100/Pfa independent runs. In the simulations 5000
independent trials were used to estimate the Pd. Figures 1.7 and 1.8
show, respectively, the ROCs of the considered receivers for two6 and
three polarimetric channels considering the cases W = 3 and W = 5.

In all the analyzed cases, the ROC highlights that the Armonic Mean
based Detector (1.22) outperforms the counterparts and the loss with
respect to the benchmark curve is acceptable for almost all the pa-
rameters values chosen in the simulation. The GLRT (1.20) and the
detector (1.23) achieves almost the same performance levels and come
third and are ranked just after detector (1.26). Considering the Arith-
metic Mean based Detector, its Pd for the given value of δ is completely
unsatisfactory which is not surprising and is actually anticipated by
the theory, since the decision statistic belongs to the class 1) of sub-
section 1.3.2. Summarizing, the simulation curves evidently show that
the GLRT (1.20) is often outperformed by the counterparts and, as pre-
dicted by the theory, there is not a detector which uniformly outperforms
the others.

6For the covariance pairs in [9] the HH, VV, and HV polarimetric channels are per-
fectly equivalent because the induced maximal invariant exhibits equal components.
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Figure 1.7: Pd versus Pfa considering N = 2. Detector (1.20): ∏Ni=1
(1+λi)

2

λi
, detector

(1.21): ∑N
i=1 λi, detector (1.22): ∑N

i=1
1
λi

, detector (1.23): ∑N
i=1

(
1
λi

+ λi

)
, detector

(1.24):
(
λ1 + 1

λN

)
, detector (1.25): max

(
λ1 ,

1
λN

)
, detector (1.26): ∑N

i=1

(
1
λi

− ln 1
λi

)
.
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(b) W = 5.

Figure 1.8: Pd versus Pfa considering N = 3. Detector (1.20): ∏Ni=1
(1+λi)

2

λi
, detector

(1.21): ∑N
i=1 λi, detector (1.22): ∑N

i=1
1
λi

, detector (1.23): ∑N
i=1

(
1
λi

+ λi

)
, detector

(1.24):
(
λ1 + 1

λN

)
, detector (1.25): max

(
λ1 ,

1
λN

)
, detector (1.26): ∑N

i=1

(
1
λi

− ln 1
λi

)
.
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The effects on the performance of the number of processed polari-
metric channels are studied in Figures 1.9 and 1.10. For conciseness the
analysis is limited to the ROC curves of detectors (1.20), (1.22), (1.25)
and (1.26), which are reported for W = 5, N = 3, N = 2, and N = 1.
Based on footnote 4, the curves for N = 1 can be either interpreted as
the ROC of the HH, VV, or the HV channel. It is also worth mentioning
that for N = 1 no UMPI detector exists. In fact, for N = 1, the MPI
receiver

SX
SY

sign(δ − 1)
H1
>
<
H0

TA,1 ,

requires the knowledge of the induced maximal invariant δ = ΣX/ΣY .
The analysis of the curves in Figures 1.9 and 1.10 shows that the

detection performance for a given Pfa level improves as N increases.
For example, with reference to detector (1.20) and a Pfa of 10−3, a Pd
of 0.18 is achieved for N = 1, while for N = 2 and N = 3 the Pd
results to be 0.27 and 0.32 respectively. This is in accordance with the
intuitive observation that the higher the polarimetric information about
the scene, the better the performance.

So far, all the numerical analysis performed in this sub-section was
based on the induced maximal invariant value δ = [1/2, 1/2, 1/2]T .
Thus, in order to provide an average behavior of the ROC curves for
the considered detectors, the following simulation is conducted:

1. 500 random values7 of the induced maximal invariant are selected
(modeling the entries of δ as independent and identically dis-
tributed uniform random variables within the intervals (0, 1), (1, 2)
and (0, 2)). The corresponding three simulation setups will be re-
ferred to in the following as case 1, case 2, and case 3;

2. the ROC curve of a given detector is evaluated in correspondence
of each induced maximal invariant realization;

3. for each detector, the previously obtained 500 ROC curves are
averaged for a specific simulation setup (i.e. case 1, 2, or 3).

The results are displayed in Figures 1.11, 1.12, and 1.13, where, for
conciseness, only the full polarization case is shown.

7The seed of the rand MATLAB function is set to the initial state so as to guarantee
the reproducibility of the curves.
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Figure 1.9: Pd versus Pfa for W = 5.
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Figure 1.10: Pd versus Pfa for W = 5.
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Figure 1.11: Case 1: Pd versus Pfa. Detector (1.20): ∏Ni=1
(1+λi)

2

λi
, detector (1.21):∑N

i=1 λi, detector (1.22): ∑N
i=1

1
λi

, detector (1.23): ∑N
i=1

(
1
λi

+ λi

)
, detector (1.24):(

λ1 + 1
λN

)
, detector (1.25): max

(
λ1 ,

1
λN

)
, detector (1.26): ∑N

i=1

(
1
λi

− ln 1
λi

)
.
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(a) N = 3, W = 3.
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Figure 1.12: Case 2: Pd versus Pfa. Detector (1.20): ∏Ni=1
(1+λi)
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, detector (1.21):∑N

i=1 λi, detector (1.22): ∑N
i=1

1
λi

, detector (1.23): ∑N
i=1

(
1
λi

+ λi

)
, detector (1.24):(

λ1 + 1
λN

)
, detector (1.25): max

(
λ1 ,

1
λN

)
, detector (1.26): ∑N

i=1

(
1
λi

− ln 1
λi

)
.
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Figure 1.13: Case 3: Pd versus Pfa. Detector (1.20): ∏Ni=1
(1+λi)
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, detector (1.21):∑N

i=1 λi, detector (1.22): ∑N
i=1
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(
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− ln 1
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.
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As expected, when the induced maximal invariant is simulated ac-
cording to case 1, the ROC curves agree with those shown in Figures
1.7 and 1.8 with detector (1.22) performing better than the counterparts
and (1.21) providing the poorest performance.
On the contrary, when case 2 is considered, a different behaviour of the
ROC curves is observed. In particular, in the hierarchy detectors (1.21)
and (1.22) switched their positions compared to the previous case (this
agrees with the theoretical considerations at the beginning of sub-section
1.3.2). Finally, when case 3 is simulated, the ROC curves results in be-
tween the two previous situations. This can be explained observing in
case 3, the performance can be obtained as the average of that in case
1 and 2.

Summarizing this last analysis confirms that there is not a detec-
tor able to able to uniformly outperform the others. This implies that
a battery of detectors could be considered with a suitable aggregation
logic or some a priori knowledge (if any) about the characteristics of
the operating polarimetric environment could be exploited to select the
most suitable decision rule. Otherwise stated, based on the operating
scenario (urban, sea, foliage) and the targets (car, tank, boats) of tacti-
cal interest for change detection, it is possible to exploit a priori models
for the polarimetric covariance matrices which allow to gain some infor-
mation about the expected induced maximal invariant. Based on this
last vector, the most suitable detector can be selected with in the class
of proposed invariant rules (for instance using the plots of Figures 1.2,
1.3 and 1.4 if N = 2).

1.5 Testing on Real Data

In this section the performance analysis of the algorithms proposed
in Section 1.3 is presented.

The analysis was performed using real X-band data; the dataset
used is the Coherent Change Detection Challenge dataset acquired by
the Air Force Research Laboratory (AFRL) [20,21]. The airborne SAR
used to acquire the dataset employed a coherent receiver with 640 MHz
bandwidth and dual-polarized mode. The depression angle was of 45
degrees for all the images to scene centre. The data is in the form of
focused complex images with a range and cross-range resolution of 0.3
m. The overall dataset provides 10 complex images for each of the three
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available polarizations (HH, VV, and HV), acquired the same day. The
original images size is of 4501 × 4501 pixels and have been coherently
aligned to a single reference (per polarization) with the help of Digital
Elevation Map (DEM) information [20,21].

For our analysis we focus on two acquisitions from the entire dataset.
Unfortunately the ground truths of the data is not available (e.g. the
actual changes between two different acquisitions), so the selection of
two passes providing the opportunity to generate a sufficiently accurate
ground truth is required. Hence two passes satisfying this requirement
have been identified: the acquisition named “FP0124” is used as refer-
ence pass, while the acquisition “FP0121” is used as a test pass. From
the two acquisitions the area with the highest activity (changes) between
the images has been selected, this region is represented by a sub-image
of 1000 × 1000 pixels (i.e., L = M = 1000) and is composed of several
parking lots which are occupied by numerous parked (i.e., stationary)
vehicles. Figure 1.14 shows the reference and test sub-images for the
HH mode.

For this particular scenario the changes between the reference and
test images (denoted by X and Y respectively), occurred during the
time interval between the two acquisitions can be distinguished in two
cases:

• a vehicle is present in X but is not present in Y , i.e., the vehicle
has departed from its parking space (pixels relative to this kind of
event will be referred to in the following as departures);

• a vehicle is not present in X but is present in Y , i.e., the vehicle
has arrived in an empty parking space (pixels relative to this kind
of event will be referred to in the following as arrivals).

Using the cases defined above, a total of 34 changes between X
and Y can be visually identified (by flickering the two images). In the
analysis the straight line crossing the test image has not been considered,
as its nature does not represent an arrival. However, as it is visible in
the test image (but not visible in the reference image) we expect it to
be detected as a change. The obtained ground truth is shown in Figure
1.15, where the black regions represent the departures and the white
ones indicate the arrivals.
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(a) Reference image.

(b) Test image.

Figure 1.14: Reference and test images gathered in HH mode.
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In particular, denoting by K the set of pixels that correspond to
changes, the ground truth can be represented as a matrix G whose
entries are given by

G(l,m) =

{
1 if (l,m) ∈ K l = 1, . . . , L

0 otherwise m = 1, . . . ,M .
(1.27)

In Figure 1.16-a the ground truth mask G(l,m) is shown. Although
the acquisitions were performed during the same day and the images
were registered, the returns from a scatterer contribute differently to
neighbour pixels, for example a slightly different aspect angle can pro-
duce a different amount of energy spill-over. These relative differences
in the imaged data can lead to false alarms in the change detection re-
sults. In order to prevent false alarm caused by pixel contamination by
target returns, we consider a guard area around each arrival-departure.
This allows the definition of an extended ground truth (see Figure 1.16-
b) used in the following to compare the performance of the considered
detection algorithms.

Figure 1.15: Ground truth superimposed to the reference image.
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(a) Ground truth.

(b) Ground truth with guard cells.

Figure 1.16: Ground truth without/with the addition of guard cells.
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In order to assess the performance of the detectors both the number
of detected changes and the change detection maps are presented. For
the i-th receiver, the corresponding map of changes Ci, is a L × M
matrix whose (l,m)-th entry is the i-th decision statistic considering the
N ×N sample Grammian matrix SXl,m (SYl,m) evaluated considering a
square neighbourhood8 with size W ×W of the pixel (l,m) of X (Y ).

The detection map corresponding to Ci, is then defined as

Di(l,m) =


1 if Ci(l,m) > Ti l = 1, . . . , L

0 otherwise m = 1, . . . ,M .

(1.28)

where Ti denotes the detection threshold. In the analysis presented
in this section, the thresholds are set to ensure Pfa = 10−3 in the com-
plement of the extended ground truth area, namely, in the region where
no changes occur (there are no true positives). This means that, for
each detector, after computing the decision statistics (for each pixel be-
longing to the complement of the extended ground truth), the threshold
has been selected in order that

10−3 × total number of available statistics (trials) ,

are greater than the threshold. This ensures that all the comparisons
refer to the same Pfa level, namely the number of threshold crossings
in the complement of the extended ground truth is exactly the same for
all the analyzed detectors.

Finally, are considered the cases of N = 1, N = 2, and N = 3 which
correspond, respectively, to process the single polarimetric channel (HH,
VV, or HV), to jointly consider a polarization pair (HH-VV, HH-HV, or
VV-HV), or to jointly consider all the available channels (HH, VV and
HV). In particular, for each detector, starting from Di, and denoting
by KG the set of the pixels that correspond to changes in the extended
ground truth area, performances are given in term of the number of
detections belonging to KG, i.e. considering the cardinality of the set

Di = {Di(l,m) : Di(l,m) ∈ KG, }
8We notice that, in order to obtain Ci of size L × M we include a frame of ε

pixels width of both reference and test images with ε = W−1
2

, in order to be able to
compute the statistics on the image borders. By doing so, W must be odd.
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where G represents the number of guard cells used to generate the ex-
tended ground truth map. In this analysis G = 5 is selected, meaning
that around each set of pixels representing a change a 5 pixel frame is
included.

The number of detections for each receiver corresponding to an actual
change present in the extended ground truth are summarized in Table
1.1.

As expected, the common trend is that the performance improves
by increasing W . Besides, as to the effects of polarization, the following
remarks are in order:

• processing either VV or HV channel leads in general to better per-
formances than processing the HH polarization; the cross-polarized
returns provides the highest number of correct detections for the
single channel processing (the sole exception is receiver (1.26) for
W = 5; in this case the VV channel leads to the best choice). The
high discrimination capability of the cross-polarized returns can
be explained observing that in the presence of a car target there
are dihedrals which significantly depolarize the incident radiation.
On the contrary the depolarization effect is much limited in the
absence of car since the parking area is much more similar to a flat
plane. Moreover, the intuitive reason of the better performances
achievable with the VV polarization compared with those obtained
with the HH one, resides in the dependence of the polarization re-
turn on the specific change considered (absence or presence of the
car object in the image) and on its geometry (height extension and
acquisition geometry).

• with reference to two polarimetric channels, jointly processing the
pair VV-HV seems the best choice for almost all the considered
decision rules (with exceptions represented by detectors (1.21), for
W = 5, for which the HH-VV pair is the most suitable choice, and
detector (1.26), for W = 9, for which polarization diversity does
not seem to provide detection improvements).

• a suitable two channel polarization diversity can outperform the
single channel processing (the sole exception is detector (1.26) for
W = 9);

• processing three polarimetric channels does not always improve
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the results obtained using two polarizations; the possible improve-
ment depends both on the parameter W as well as on the specific
decision rule. In particular for W = 9, it appears more convenient
the use of a polarization diversity of order two with the pair VV-
HV (the sole exception is detector (1.21) whose correct detections
increases exploiting the full polarimetric information).

The change detection maps obtained for the case with W = 5 and
N = 3 for the detectors (1.20) - (1.25) are shown in Figures 1.17, 1.18,
and 1.19, whereas, the corresponding maps of changes are shown in Fig-
ures 1.20, 1.21, and 1.22. Based on them as well as on the results in
Table 1.1, it can be observed that detector (1.25) ensures the best perfor-
mance for W = 5, whereas detector (1.20) outperforms the counterparts
for W = 9. Moreover, for W = 3, additional results (not reported in the
table for conciseness) highlights that the best performance is obtained
exploiting detector (1.25) processing with the pair VV-HV.

Of particular interest are the tests (1.21) and (1.22): from the corre-
sponding detection maps it is easy to recognize that the former identifies
the departures, whereas, the latter identifies the arrivals. This behaviour
is also clearly visible in the maps shown in Figure 1.21. In fact, for the
detector (1.21) the departures presents higher values and the arrivals the
lower ones, while for the detector (1.22) the dual behaviour is obtained.

Additionally, although the detector (1.25) is outperformed by detec-
tors (1.20) and (1.23), it allows us to discriminate between the depar-
tures and the arrivals based on the argument of the max in (1.25). In
particular if the first argument in (1.25) is selected, the change corre-
sponds to a departure, while it corresponds to an arrival if the second
argument is selected. By considering the additional information coming
from the maximum argument in (1.25) it is thus possible to discrimi-
nate the departures from the arrivals detected by the receiver (1.25); in
Figure 1.23-b this enhanced detection map is shown together with the
ground truth.
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W = 5

N = 1

HH 4512 3977 2301 4512 4512 4512 2301

VV 5190 3941 2485 5190 5190 5190 2759

HV 5557 4043 2796 5557 5557 5557 2818

N = 2

HH-VV 5372 5129 2337 5103 4877 4980 2300

HH-HV 6088 4932 3019 5969 5597 5778 2946

VV-HV 6425 4962 3396 6540 6165 6553 3274

N = 3 HH-VV-HV 6492 5513 2884 5901 5463 5644 2819

W = 9

N = 1

HH 5671 5426 2765 5671 5671 5671 2797

VV 7712 5627 3684 7712 7712 7712 5564

HV 7854 5653 3798 7854 7854 7854 5055

N = 2

HH-VV 6544 6591 2664 5852 5334 5433 2601

HH-HV 8034 6381 3692 7525 6889 7140 3593

VV-HV 9009 6773 4580 8994 8355 9005 5086

N = 3 HH-VV-HV 8300 7049 3389 7120 6233 6386 3255

Table 1.1: Number of correct detections in the extended ground truth. All the comparisons have been done using the same Pfa
level, namely the number of threshold crossings in the complement of the ground truth is exactly the same for all the detectors.
The best detector, for the considered dataset and Pfa level, is thus the one ensuring the highest number of detections within the
ground truth region (number of pixels in the ground truth region where the decision statistic is over the threshold).
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(a) Detector (1.20):
∏N
i=1

(1 + λi)
2

λi
.

(b) Detector (1.21):
∑N
i=1 λi.

Figure 1.17: Change Detection maps for W = 5 and N = 3.
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(a) Detector (1.22):
∑N
i=1

1

λi
.

(b) Detector (1.23):
∑N
i=1

(
1

λi
+ λi

)
.

Figure 1.18: Change Detection maps for W = 5 and N = 3.
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(a) Detector (1.24):

(
λ1 +

1

λN

)
.

(b) Detector (1.25): max

(
λ1 ,

1

λN

)
.

Figure 1.19: Change Detection maps for W = 5 and N = 3.
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(a) Detector (1.20):
∏N
i=1

(1 + λi)
2

λi
.

(b) Detector (1.23):
∑N
i=1

(
1

λi
+ λi

)
.

Figure 1.20: Maps of changes in dB for W = 5 and N = 3.
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(a) Detector (1.21):
∑N
i=1 λi.

(b) Detector (1.22):
∑N
i=1

1

λi
.

Figure 1.21: Maps of changes in dB for W = 5 and N = 3.
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(a) Detector (1.24):

(
λ1 +

1

λN

)
.

(b) Detector (1.25): max

(
λ1 ,

1

λN

)
.

Figure 1.22: Maps of changes in dB for W = 5 and N = 3.
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(a) Ground Truth.

(b) Detector (1.25).

Figure 1.23: Ground truth and enhanced detection map considering W = 5 and

N = 3 for detector (1.25): max

(
λ1 ,

1

λN

)
. On both images in black and white are

shown the departures and the arrivals respectively.
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(b) False Alarms

Figure 1.24: Number of correct detections in the extended ground truth (a) and
number of false alarms in the complement of the extended ground truth (b) versus

F . Detector (1.20): ∏N
i=1

(1+λi)
2
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, detector (1.23): ∑N
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)
, detector (1.25):
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(
λ1 ,

1
λN

)
, detector (1.26): ∑N

i=1

(
1
λi

− ln 1
λi

)
.
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1.5.1 Assessing the Impact of an Aggregation Procedure

In this section are analyzed the effects of an aggregation strategy
after single pixel detection so as to eliminate isolated false alarms and
confirm true detections, which due to the typical car size and system
resolution, appear quite clustered (see the detection maps of Figure 1.17,
1.18, and 1.19). More precisely, a window of size 5 × 5 slides along the
horizontal and the vertical dimensions of the detection maps (which, as
already highlighted are binary images: “0” no detection, “1” detection).
Then, for a given pixel localized at the center of the moving window and
labeled with “1”, a detection is associated if the number of “1” in the
window is greater that a certain integer “fill parameter” (denoted by F
and complying with 1 ≤ F ≤ 25).

These kind of logics look like n-of-m aggregation techniques [34,
Ch. 3] and can be interpreted as a post-detection binary integration
within the reference window. As to the pixels on the image edge (namely
those laying on the first/last two rows or columns), no aggregation is
performed because they never fall at the center of the moving window.
Otherwise stated, it is simply confirmed the “0” or “1” value in the
original detection map.

The case of three polarimetric channels is considered and the effect
of the fill parameter is studied in Figure 1.24 for detectors (1.20), (1.23),
(1.25) and (1.26).

The conducted deleted analysis highlights that Pd is not very sen-
sitive to the fill parameter when it ranges between 5% to 40% of the
window size. A similar result was also found in [9] with reference to
single channel change detection. Interestingly, there exists a range of
values for the parameter F (precisely 1 ≤ F ≤ 10) where Pd is almost
flat while Pfa decreases as F increases. This suggests that a fill param-
eter value between 8 and 10 can be reasonably used in the aggregation
procedure, reducing the number of false alarms while keeping (almost)
constant the number of true positives.

1.6 Conclusions

Multi-polarization SAR change detection has been considered in this
chapter. The problem has been formulated as a binary hypothesis test
and the principle of invariance has been applied to design decision rules
exhibiting a special symmetry, which is a sufficient condition to ensure
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the CFAR property. A maximal invariant statistic is found and the
optimum invariant detector has been computed showing that it is not
UMPI and, as a consequence, not practically implementable. Hence,
some sub-optimum invariant tests, whose decision statistics are given
in terms of the obtained maximal invariant, have been introduced and
assessed both on simulated data and on real high resolution SAR im-
ages. The conducted analysis has shown that some of them represent a
viable mean to deal with the change detection problem. An important
result relates to the performance obtained considering the VV-HV po-
larization. This particular choice (for the considered real dataset) often
resulted to provide superior performance compared with all the other
single and multi-polarization cases. Moreover, it is also possible to ex-
ploit suitable invariant tests for post-detection classification purposes.
In particular, from the available real data, to discriminate between car
arrivals and departures in the parking area without any additional RCS
comparison. Possible future research tracks will consider the extension
of the framework relaxing the Gaussian requirement for the data as well
as the analysis on other datasets acquired by a different system, pos-
sibly at different resolutions (different performance behaviors could be
observed on different datasets). Moreover, in order to deal with possible
amplitude and phase calibration errors, future investigations will deal
with the design of decision rules robust to miscalibration effects. The
idea is to achieve this goal by imposing other invariances at the price
of some detection losses. Finally, it would be interesting to investigate
the joint use of multi-frequency and multi-polarization data to further
improve the effect of diversity.





Chapter 2

Unstructured Versus
Structured GLRT for
Multi-Polarization SAR
Change Detection

This chapter deals with coherent (in the sense that both amplitudes
and relative phases of the polarimetric returns are used to construct the
decision statistic), multi-polarization SAR change detection assuming
the availability of reference and test images collected from N multiple
polarimetric channels. The problem is formulated as a binary hypothesis
testing problem and a special block-diagonal structure for the polarimet-
ric covariance matrix is forced to design a detector based on the Gen-
eralized Likelihood Ratio Test (GLRT) criterion. It is shown that the
considered decision rule ensures the Constant False Alarm Rate (CFAR)
property with respect to the unknown disturbance covariance. At the
analysis stage, results on both simulated and real multi-polarization
SAR images show the effectiveness of the proposed decision rule and
its superiority against the traditional unstructured GLRT in some sce-
narios of practical interest. Precisely, the chapter is organized as follows.
The multi-polarization SAR change detection problem is formulated and
the GLRT proposed in [9] is reported in Section 2.1. In Section 2.2 the
derivation of the structured GLRT is introduced while, in Section 2.3,
the performance is assessed. Finally, in Section 2.4, conclusions are
provided.

49
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2.1 Problem Formulation

In the following we suppose the availability of two datacubes X (ref-
erence data) and Y (test data) of the same geographic area as considered
in Section 1.1.

Herein, we only consider the case of three polarimetric channels and
that the available returns from the same pixel are stacked in the specific
order HH, VV, and HV. Furthermore, the columns of RX (RY ) are
assumed statistically independent and identically distributed random
vectors drawn from a complex circular zero-mean Gaussian distribution
with positive definite covariance matrix ΣX (ΣY ), complying with the
structure introduced in [22], i.e.

ΣX ∈ Ξ (ΣY ∈ Ξ),

where

Ξ =

{
Σ ∈ H++

N : Σ =

(
Σ1 0
0 σ2

)}
, (2.1)

With these assumptions, the problem of detecting the presence of
possible changes in a rectangular neighbourhood A, with size K = W1×
W2 ≥ N , of a given pixel can be formulated in terms of the following
binary hypothesis test {

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY
(2.2)

where the null hypothesis H0 of change absence is tested versus the
alternative H1. Exploiting the Gaussian assumption together with the
covariance structure (2.1), we can write the joint probability density
function (pdf) of RX and RY as1

fRX ,RY
(RX ,RY |H1,ΣX,1ΣY,1, σ

2
X,1, σ

2
Y,1) =

1

π6K detK(ΣX,1) detK(ΣY,1)σ2KX,1σ
2K
Y,1

×

exp

{
−tr

(
Σ−1X,1SX,1 + Σ−1Y,1SY,1

)
−
σ̂2X,1
σ2X,1

−
σ̂2Y,1
σ2Y,1

}
,

(2.3)

1The inverse of a block-diagonal matrix in the class Ξ still belongs to Ξ. This
property is used to compute tr

(
Σ−1
X SX

)
and tr

(
Σ−1
Y SY

)
.
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and

fRX ,RY
(RX ,RY |H0,ΣX,1, σ

2
X,1) =

1

π6K det2K(ΣX,1)σ4KX,1
×

exp

{
−tr

[
Σ−1X,1(SX,1 + SY,1)

]
−
σ̂2X,1 + σ̂2Y,1

σ2X,1

}
,

(2.4)

where SX and SY are partitioned as

SX =

[
SX,1 SX,2

S†X,2 σ̂2X,1

]
SY =

[
SY,1 SY,2

S†Y,2 σ̂2Y,1

]
, (2.5)

and σ̂2X,1 and σ̂2Y,1 are scalars.
In [9], the GLRT has been devised without considering the special struc-
ture (2.1) for ΣX and ΣY . The resulting detector, referred to in the
following as unstructured GLRT, is

det2(SX + SY )

det(SX) det(SY )

H1
>
<
H0

TU , (2.6)

where TU is the detection threshold set to ensure a given Pfa level.
In the next section, we exploit the special covariance structure (2.1)
induced by polarization diversity and derive the structured GLRT.

2.2 Structured GLRT Design

This approach is equivalent to replacing the unknown parameters
in the likelihood ratio with their maximum likelihood estimates, under
each hypothesis [31]. Specifically, the structured GLRT is the decision
rule (2.7), and after substituting the pdfs defined in (2.3) and (2.4), we
get (2.8).

max
ΣX,1,ΣY,1,σ2

X,1,σ
2
Y,1

fRX ,RY
(RX ,RY |H1,ΣX,1ΣY,1, σ

2
X,1, σ

2
Y,1)

max
ΣX,1,σ2

X,1

fRX ,RY
(RX ,RY |H0,ΣX,1, σ

2
X,1)

H1
>
<
H0

TS,0 .

(2.7)
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max
ΣX,1,ΣY,1,σ

2
X,1

,σ2
Y,1


exp

[
−tr

(
Σ−1
X,1

SX,1 + Σ−1
Y,1

SY,1

)
−
σ̂2X,1

σ2
X,1

−
σ̂2Y,1

σ2
Y,1

]
π6K detK(ΣX,1) det

K(ΣY,1)σ
2K
X,1

σ2K
Y,1



max
ΣX,1,σ

2
X,1


exp

[
−tr

[
Σ−1
X,1

(SX,1 + SY,1)
]
−
σ̂2X,1+σ̂2Y,1

σ2
X,1

]
π6K det2K(ΣX,1)σ

4K
X,1



H1
>
<
H0

TS,0 . (2.8)

Hence, performing the maximizations over the parameters we can
recast (2.8) in the equivalent form

det2K(SX,1 + SY,1)

detK(SX,1) detK(SY,1)

(
σ̂2X,1 + σ̂2Y,1

)2K
(
σ̂2X,1σ̂2Y,1

)K H1
>
<
H0

TS,1 , (2.9)

with TS,1 a modified version of TS,0. Finally, after a monotonic trans-
formation, we get the following equivalent form of the GLRT

det2(SX,1 + SY,1)

det(SX,1) det(SY,1)

(
σ̂2X,1 + σ̂2Y,1

)2
σ̂2X,1σ̂2Y,1

H1
>
<
H0

TS , (2.10)

with TS the modified detection threshold. It can be proved that
(2.10), ensures the CFAR property with respect to both ΣX,1 and σ2X,1
(see Appendix B which also provides a stochastic representation for the
fast simulation of the detector). Otherwise stated, the detection thresh-
old ensuring a given False Alarm Rate (FAR) can be set independent of
the two aforementioned parameters.

2.3 Performance Analysis

This section presents the performance analysis for the proposed de-
cision rule for both simulated and real data.

2.3.1 Performance Analysis on Simulated Data

This sub-section presents the performance analysis via computer sim-
ulated data of the detectors introduced in Sections 2.1 and 2.2. In
particular, the standard ROCs are computed for the unstructured and
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structured GLRTs and compared with the benchmark performance of
the optimum Neyman-Pearson detector. In order to set the detection
threshold, Monte Carlo simulations are used assuming 100/Pfa indepen-
dent runs. Additionally, 105 independent trials are exploited to estimate
Pd. As in [9] the theoretical covariance matrices considered to estimate
the Pd are:

ΣX =

 1 0.5 0
0.5 1 0
0 0 0.2

 ΣY = 2ΣX ,

while ΣY = ΣX was considered to estimate the Pfa.

The optimum receiver assumes that the actual covariance matrices
are known, and can be expressed as:

tr
[(

Σ−1X −Σ−1Y
)
SY
] H1
>
<
H0

T, (2.11)

which resorting to the special structure of ΣX and ΣY leads to

tr
[(

Σ−1X,1 −Σ−1Y,1

)
SY,1

]
+

(
1

σ2X,1
− 1

σ2Y,1

)
σ̂2Y,1

H1
>
<
H0

T. (2.12)

The obtained ROCs for the cases of W = 3, 5 and 7 are shown in
Figures 2.1, 2.2 and 2.3 respectively. In all cases the structured GLRT
outperforms the unstructured one, while the optimum receiver provides
the benchmark performance. For example for the case of W = 5 with a
Pfa of 10−4 the Pd assumes value of 0.1386 for detector (2.6) while it is
0.2822 for detector (2.10) and 0.9913 for the detector (2.12). Moreover
it is worthwhile to note that for all the detectors the Pd improves as
W increases for a given Pfa. This effect is principally due to the more
accurate estimation of the covariance matrices which exploits more ho-
mogeneous data.
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Figure 2.1: Pd versus Pfa for W = 3.
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Figure 2.2: Pd versus Pfa for W = 5.



2.3 Performance Analysis 55

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
fa

P
d

 

 

 Structured
 Unstructured
Optimum

Figure 2.3: Pd versus Pfa for W = 7.

2.3.2 Testing on Real Data

In this subsection, the performance analysis on the real data de-
scribed in Chapter 1 is presented. In particular, the thresholds are set
to ensure Pfa = 10−3 in the complement of the extended ground truth
area, namely, in the region where no changes occur (there are no true
positives). This means that, for each detector, after computing the
decision statistics (for each pixel belonging to the complement of the
extended ground truth), the threshold has been selected in order that

10−3 × total number of available statistics (trials) ,

are greater than the threshold. This ensures that all the comparisons
refer to the same Pfa level, namely the number of threshold crossings
in the complement of the extended ground truth is exactly the same for
all the analysed detectors. In Table 2.1 the number of correct changes
detected using receivers (2.6) and (2.10) for the cases with W = 3,
W = 5, and W = 7 are reported.
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W

Detector 3 5 7

Unstructured GLRT (2.6) 3802 6492 7533

Structured GLRT (2.10) 4949 6655 7387

Table 2.1: Number of correct detections for W = 3, 5 and 7.

From Table 2.1 it is clear that the structured GLRT outperforms
the unstructured GLRT for the smaller window sizes (W = 3 and 5)
whereas the unstructured GLRT outperforms the structured GLRT for
the larger window size of W = 7 when it is able to detect more changes in
the image. This last result can be justified in terms of a covariance model
mismatch in the sense that the off-diagonal entries (1, 3) and (3, 1) of
the polarimetric covariance matrix which in the theoretical model have
been set to zero might not be exactly zero in reality (even if very close to
that value). Additionally there might be some other deviations from the
theoretical model for instance due to environmental non-homogeneities.
Last results presented are example of detection maps for detectors (2.6)
and (2.10) for the case of W = 3 in Figure 2.4-a and in Figure 2.4-b
respectively. From the detection maps the higher number of detection
achievable with the detector (2.10) is appreciable.

2.4 Conclusions

The block-diagonal structure for the polarimetric covariance matrix
is exploited in this chapter to derive a decision rule based on the GLRT
criterion. The proposed approach ensures the CFAR property with re-
spect to the unknown polarimetric covariance. The structured GLRT
detector has been compared with the unstructured GLRT, with analysis
on both simulated and real full-polarimetric SAR data. The performance
analysis confirmed that a structured approach can provide increased per-
formance with particular benefits when a small amount of homogeneous
data is available. Future work will concentrate on the performance anal-
ysis on other datasets, the study of model sensitivity to mismatches, and
the development of an invariant framework accounting at the maximal
invariant design stage of the block-diagonal structure of the polarimetric
covariance matrix.
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(a) Detector (2.6).

(b) Detector (2.10).

Figure 2.4: Detection maps for W = 3.





Chapter 3

Forcing Scale-Invariance in
Multi-Polarization SAR
Change Detection

This chapter considers the problem of coherent multi-polarization
SAR change detection starting from the availability of image pairs ex-
hibiting possible power mismatches/miscalibrations. The principle of
invariance is used to characterize the class of scale-invariant decision
rules which are insensitive to power mismatches and ensure the Con-
stant False Alarm Rate (CFAR) property. A maximal invariant statistic
is derived together with the induced maximal invariant in the parame-
ter space which significantly compress the data/parameters domain. A
Generalized Likelihood Ratio Test (GLRT) is synthesized both for the
cases of two- and three-polarimetric channels. The performance of the
proposed scale-invariant structures is compared to those from two non-
invariant counterparts using both simulated and real radar data. The
results highlight the robustness of the proposed method and the per-
formance tradeoff involved. Precisely, in Section 3.1, we deal with the
formulation of the multi-polarization SAR change detection problem. In
Section 3.2, the maximal invariant for the scale-invariant SAR change
detection problem is established. The design of the GLRT and other
scale-invariant receivers is presented in Section 3.3, whereas, in Section
3.4, the performance of the introduced invariant tests is shown on both
simulated and real multi-polarization SAR images. Finally, conclusions
are provided in Section 3.5.

59
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3.1 Problem Formulation

In the following, starting from the framework proposed in Chapter
1, we focus on the problem of change detection when the image pairs
involved in the change detection procedure can exhibit possible power
mismatches/miscalibrations. To this end, the change detection prob-
lem in the region A can be formulated in terms of the following binary
hypothesis test {

H0 : ΣX = γΣY

H1 : ΣX 6= γΣY
(3.1)

where the null hypothesis H0 of change absence is tested versus
the alternative H1 and the parameter γ > 0 models possible received
power variations between two different acquisitions from the same scene
(mainly due to misalignment of the flight paths as well as channel prop-
agation effects).

Exploiting the Gaussian assumption, we can write the joint proba-
bility density function (pdf) of RX and RY as

fRX ,RY
(RX ,RY |H1,ΣX ,ΣY ) =

1

π2NK det(ΣXΣY )K
exp

{
−tr

(
Σ−1X SX + Σ−1Y SY

)}
.

(3.2)

Using the Fisher-Neyman factorization theorem [25], we can claim that
a sufficient statistic for (3.1) is represented by the two sample Grammian
matrices SX and SY which are statistically independent and follow a
complex Wishart distribution, i.e. [26]

fSX (SX |H1,ΣX) =

cW
det(ΣX)K

exp
{
−tr

(
Σ−1X SX

)}
det(SX)K−N , SX � 0

(3.3)

fSY (SY |H1,ΣY ) =

cW
det(ΣY )K

exp−
{

tr
(
Σ−1Y SY

)}
det(SY )K−N , SY � 0

(3.4)

with cW a proper normalization constant. From the sufficient statistic
we can evaluate the optimum Neyman-Pearson (NP) detector as the
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Likelihood Ratio Test (LRT), which, after standard algebra and statis-
tical equivalences, can be recast as

tr

[(
Σ−1Y
γ
−Σ−1X

)
SX

] H1
>
<
H0

T0 , (3.5)

where T0 is the detection threshold. Evidently, test (3.5) is not Uni-
formly Most Powerful (UMP) and, consequently, it is not practically
implementable because it requires the knowledge of ΣX , γ, and ΣY

which, in realistic applications, are usually unknown.

3.2 Data Reduction and Invariance Issues

Both hypotheses under test are composite or, otherwise stated, H0

and H1 are equivalent to a partition of the parameter space Θ into the
two disjoint sets

Θ0 =
{
ΣX = γΣY , (ΣX ,ΣY , γ) ∈ H++

N ×H++
N ×R++

}
Θ1 =

{
ΣX 6= γΣY , (ΣX ,ΣY , γ) ∈ H++

N ×H++
N ×R++

} . (3.6)

This formulation indicates that the individual values of the nuisance
parameters are irrelevant: one must only discern to which hypothesis
they belong to, namely whether the covariances are proportional or not.
This observation highlights that we can cluster the data considering
transformations that leave unaltered:

a. the two composite hypotheses, namely the partition of the param-
eter space;

b. the families of distributions under the two hypotheses.

This can be achieved through the Principle of Invariance [16] by which
we look for transformations that preserve the formal structure of the
hypothesis testing problem and, then, for decision rules invariant to
them while also acting as a data reduction technique (i.e., leading to an
observation space of significantly lower dimensionality than the original
one).
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It is not difficult to prove that our testing problem is invariant under
the group of transformations G acting on the sufficient statistic as1:

G =
{
g : SX → BSXB

† , SY → aBSYB
† , B ∈ GL(N) , a ∈ R++

}
.

(3.7)
In fact, the families of distributions are preserved because if SX (SY )
is Wishart distributed then BSXB

† (BSYB
†) is also Wishart with

the same scalar parameters and matrix parameter B†ΣXB (aB†ΣYB),
where B ∈ GL(N) and a > 0. Moreover, the original partition of the
parameter space is left unaltered since if ΣX 6= γΣY then BΣXB

† 6=
aγBΣYB

† and if ΣX = γΣY then BΣXB
† = aγ1BΣYB

†.

3.2.1 Maximal Invariant Design

The invariance property induces a partition of the data space into
orbits (or equivalence classes) where, over each orbit, every point is
related to every other through a transformation which is member of
the group G. Any statistic that identifies different orbits in a one-to-
one way significantly reduces the total amount of data necessary for
solving the hypothesis testing problem and constitutes the compressed
data set to be used in the design of any invariant detector. This kind of
statistics are called maximal invariant since they are constant over each
orbit (invariance) while they assume different values on different orbits
(maximality).

Formally, a statistic T(SX ,SY ) is said to be a maximal invariant
with respect to the group of transformations G if and only if

• Invariance:
T(SX ,SY ) = T[g(SX ,SY )], ∀g ∈ G.

• Maximality:
T(SX1 ,SY1) = T(SX2 ,SY2) implies that ∃ g ∈ G such that

(SX2 ,SY2) = g(SX1 ,SY1) .

Notice that there are many maximal invariant statistics, but they are
equivalent in that they yield statistically equivalent detectors. Moreover,
all invariant tests can be expressed as a function of the maximal invariant

1The proof that (3.7) is a group is given in Appendix C.
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statistic [15, 27], which for the problem of interest is provided by the
following

Proposition 1: A maximal invariant statistic for problem (3.1) with
respect to the group of transformations (3.7) is the (N − 1)-dimensional
vector (

λ2
λ1
,
λ3
λ1
. . .

λN
λ1

)
, (3.8)

where λ1 ≥ λ2 ≥ . . . ≥ λN are the eigenvalues of SXS
−1
Y .

Proof. The transformation group G can be obtained as composition
of the sub-groups

D =
{
d : SX → BSXB

† , SY → BSYB
† , B ∈ GL(N)

}
(3.9)

and

E =
{
e : SX → SX , SY → aSY , a ∈ R++

}
. (3.10)

As a consequence, the maximal invariant can be obtained in two steps,
each corresponding to a sub-group of G [16]. To this end, a maximal
invariant under the group D has been derived in Chapter 1 and is given
by the eigenvalues λ1, . . . , λN of SXS

−1
Y . Additionally, ∀e ∈ E, namely

∀a > 0, if the eigenvalues of SX,1S
−1
Y,1 are equal to those of SX,2S

−1
Y,2,

then the eigenvalues of a−1SX,1S
−1
Y,1 coincide with those of a−1SX,2S

−1
Y,2.

Now, define the group E? of scale change acting on y = (y1, . . . , yN )T ∈
(R++)

N
as

E? =

{
e? : y → 1

a
y , a ∈ R++

}
, (3.11)

and observe that a maximal invariant with respect to this last group E?

is
y2
y1
, . . . ,

yN
y1

. (3.12)

Hence, [16, Prop. 2, p. 288] implies that

λ2
λ1
, . . . ,

λN
λ1

, (3.13)

is a maximal invariant under G.

As desired, the principle of invariance produces a significant data
reduction: the maximal invariant statistic is a real N -dimensional vector
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whereas the original sufficient statistic is composed by the two N × N
Grammian matrices SX and SY . A nice physical/intuitive meaning of
the eigenvalues of SXS

−1
Y , which are involved in the computation of the

maximal invariant, stems from the observation that they are solutions
to suitable optimization problems involving the generalized Rayleigh
quotient (i.e. extrema of the backscattering ratio varying the scattering
mechanism [35]).

3.2.2 Induced Maximal Invariant Design

The data transformation induces a parameter transformation which
leaves the two composite hypotheses unaltered. In other words, by the
principle of invariance, one partitions also the parameter space into or-
bits and, usually, deals with a reduced set of parameters. The relevant
parameters are embodied into any induced maximal invariant, namely
any function of the parameters that is constant over each orbit of the
parameter space (invariance) but assumes different values over different
orbits (maximality).

For the case at hand, an induced maximal invariant is composed of(
δ2
δ1
, . . . ,

δN
δ1

)
, where δ = [δ1, . . . , δN ]T , δ1 ≥ δ2 ≥ . . . ≥ δN , are the

eigenvalues of the matrix:

ΣXΣ−1Y . (3.14)

The proof of this claim can be done following the same steps as in the
proof of Proposition 1 and it has been omitted for the sake of com-
pactness. The physical interpretation of the induced maximal invariant
components follows from the observation that they are related to the
spread among the backscattering ratios associated with two different
scattering mechanisms.

The previous observation highlights that the principle of invariance
also yields a significant reduction of the number of the parameters: in
fact, the induced maximal invariant is an (N − 1)-dimensional vector
while the original parameter space was composed of the two covariance
matrices ΣX , ΣY and γ.

We explicitly observe that in the reduced parameter space the par-
tition corresponding to the two composite hypotheses of the test (3.1)
is Ξ0 = {1N−1}, relative to ΣX = γΣY , and Ξ1 = {1N−1}, relative
to ΣX 6= γΣY , where {1N−1} is the set of the (N − 1)-dimensional
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column vectors with positive elements and at least one entry differ-
ent from 1. The structure of Ξ0, which now corresponds to a simple
H0 hypothesis, clearly shows that all invariant receivers that process
a maximal invariant statistic through a transformation independent of

(ω1, . . . , ωN−1) =

(
δ2
δ1
, . . . ,

δN
δ1

)
, achieve the CFAR property with re-

spect both γ and ΣX .

3.3 GLRT Derivation

This section is devoted to the derivations of the GLRT detector for
the considered problem. Precisely, the following decision rule is consid-
ered

max
ΣX

max
ΣY

exp
[
−tr

(
Σ−1X SX + Σ−1Y SY

)]
(π)2NK detK(ΣX) detK(ΣY )

max
γ>0

max
ΣY

exp

[
−tr

(
Σ−1Y

(
SX
γ

+ SY

))]
(π)2NKγNK det2K(ΣY )

H1
>
<
H0

T , (3.15)

which, after the optimizations over ΣX and ΣY at the numerator and
over ΣY at the denominator can be recast (after some algebra and sta-
tistical equivalences) as,

min
γ>0

[
γNdet2

(
SX
γ

+ SY

)]
det(SX) det(SY )

H1
>
<
H0

T1 , (3.16)

or equivalently as

min
γ>0

γNdet2

S− 1
2

Y SXS
− 1

2
Y

γ
+ I


det(S

− 1
2

Y SXS
− 1

2
Y )

H1
>
<
H0

T1, (3.17)

where T1 is a suitable modification of the original threshold, T , in (3.15).
In order to proceed further, we have to distinguish between the cases of
two- (N = 2) and three- (N = 3) polarimetric channels.



66
Chapter 3 Forcing Scale-Invariance in

Multi-Polarization SAR Change Detection

3.3.1 Case N = 2

Forcing N = 2 in (3.16) yields

min
γ>0

[
γ2
(
λ1
γ

+ 1

)2(λ2
γ

+ 1

)2
]

λ1λ2

H1
>
<
H0

T1 . (3.18)

It is now necessary to compute

min
γ>0

[
1

γ

(
λ1λ2 + γ2 + (λ1 + λ2)γ

)]2
. (3.19)

Standard arguments on optimization of univariate functions provide the
optimal point γopt,2 =

√
λ1λ2. As a consequence, the GLRT becomes(√

λ1
λ2

+ 1

)2(√
λ2
λ1

+ 1

)2 H1
>
<
H0

T1 . (3.20)

Observing that the left hand side of (3.20) is a monotone increasing func-

tion of

√
λ1
λ2

for

√
λ1
λ2
∈ [1,+∞[, the GLRT (3.20) turns out equivalent

to

λ1
λ2

H1
>
<
H0

T2 , (3.21)

with T2 the modified threshold. Two important comments are now in
order. First, test (3.21) is equivalent to comparing the condition number

of the matrix S
− 1

2
Y SXS

− 1
2

Y with a detection threshold to establish the
presence of changes in the considered scene. Second, the GLRT statistic
is a maximal invariant.

3.3.2 Case N = 3

Forcing N = 3 in (3.16) yields

min
γ>0

[
γ3
(
λ1
γ

+ 1

)2(λ2
γ

+ 1

)2(λ3
γ

+ 1

)2
]

λ1λ2λ3

H1
>
<
H0

T . (3.22)
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It is thus necessary to solve the optimization problem

min
γ>0

[
γ

3
2

(
λ1
γ

+ 1

)(
λ2
γ

+ 1

)(
λ3
γ

+ 1

)]2
= min

γ>0
f3(γ) . (3.23)

Since

lim
γ→+∞

f3(γ) = +∞ , lim
γ→0

f3(γ) = +∞ , (3.24)

and f3(γ) is continuous in ]0 ,+∞[, the minimum is achieved in corre-
spondence of γopt ∈]0 ,+∞[. Moreover, finding the optimum value of
f3(γ) is equivalent to minimizing its logarithm, i.e.

log f3(γ) =
3

2
log γ +

3∑
i=1

log

(
λi
γ

+ 1

)
. (3.25)

Computing the derivative of log f3(γ), γ ∈]0 ,+∞[, and equating it to
zero yields

3

2
−

3∑
i=1

λi
λi + γ

= 0 , (3.26)

which is tantamount to solving

γ3 +
1

3
(λ1 +λ2 +λ3)γ

2− 1

3
(λ1λ2 +λ1λ3 +λ2λ3)γ−λ1λ2λ3 = 0 . (3.27)

This is a third order equation with real coefficients. Descartes’ rule of
signs implies that it shares one positive real root which necessarily coin-
cides with the optimal point of (3.23). Additionally, Tartaglia formula
can be exploited to get the analytic expression of the optimizer γopt,3.

Precisely, denoting by a =
1

3
(λ1+λ2+λ3), b = −1

3
(λ1λ2+λ1λ3+λ2λ3),

c = −λ1λ2λ3, p = −a2/3 + b, q = 2a3/27− ab/3 + c, the optimal point
is the real positive number chosen among the three roots of (3.27) given
by

−a
3

+
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

where 3
√

(·) and
√

(·) are complex roots2.

2Given a complex number y = ρ exp(jθ) the n-th roots are uk =

ρ
1
n
[
cos
(
θ
n

+ 2πk
n

)
+ j cos

(
θ
n

+ 2πk
n

)]
, k = 0, 1, . . . , n− 1.
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Summarizing, the GLRT can be computed as[
γ3opt,3

(
λ1
γopt,3

+ 1

)2( λ2
γopt,3

+ 1

)2( λ3
γopt,3

+ 1

)2
]

λ1λ2λ3

H1
>
<
H0

T . (3.28)

An equivalent expression in terms of the maximal invariant can be also
obtained. From (3.27), it is not difficult to prove that

γopt,3 = λ1h

(
λ2
λ1
,
λ3
λ1

)
, (3.29)

with h(·, ·) a suitable bi-dimensional real function of two real variables.
Hence, the GLRT statistic as function of the maximal invariant can be
obtained substituting (3.29) in (3.28).

3.3.3 Additional Suboptimum Invariant Detectors

This section presents additional sub-optimum invariant detectors
with reference to the fully polarimetric processing (i.e. N = 3). They
exploit suitable combinations of the maximal invariant components and,
based on extensive numerical analysis, are seen to achieve satisfactory
detection performances. Two chosen combination rules are the standard
arithmetic mean and geometric mean which respectively lead to the tests

λ1
λ2

+
λ1
λ3

H1
>
<
H0

Ta, (3.30)

λ1
λ2

λ1
λ3

H1
>
<
H0

Tb, (3.31)

where Ta and Tb are the detection thresholds set to ensure a specified
level of Pfa.

Moreover, based on the observations that unbalances among the

eigenvalues of Σ
− 1

2
Y ΣXΣ

− 1
2

Y are representative of changes between the
reference and test images; and an index to quantify eigenvalues’ unbal-
ances is the deviation of the arithmetic mean from the geometric mean3,

3 If A is a positive definite matrix N × N matrix, the following inequality holds

true [det(A)]
1
N ≤ 1

N
tr (A). Equality holds if and only if A = I [28, p. 477].
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the following decision rule is also considered

tr

(
S
− 1

2
Y SXS

− 1
2

Y

)
det

1
3

(
S
− 1

2
Y SXS

− 1
2

Y

) =

(
λ2
λ1

λ3
λ1

)− 1
3
(

1 +
λ2
λ1

+
λ3
λ1

) H1
>
<
H0

Tc, (3.32)

where Tc is the detection threshold.
In the next section the performance of the previously introduced

invariant (and hence CFAR) decision rules is compared with the GLRT
(3.28) both on simulated and on real data.

3.4 Performance Analysis

This section presents the performance analysis of the proposed scale-
invariant detectors for both simulated and real data. In particular, Pfa
and Pd are obtained through Monte Carlo simulations4. Then real data
is used to demonstrate the capability of the new algorithms to operate
in real challenging environments.

3.4.1 Performance Analysis on Simulated Data

This section presents the performance analysis via computer sim-
ulated data of the detectors introduced in Section IV. Three different
studies are performed to assess the properties of the proposed receivers.

The first is conducted in terms of Pd for a given Pfa level, assum-
ing zero-mean complex circular multivariate Gaussian observations with
equal (but not proportional) covariance matrices under H0 (H1). By do-
ing so, all the information characterizing the set of polarimetric SAR im-
ages is contained in the covariance matrix. This is equivalent to assign-
ing a) diagonal elements: power information, b) off-diagonal elements:
correlation information. Different number of polarizations and size of
the square inspection window are considered. Monte Carlo simulation
is used to set the detection thresholds assuming 100/Pfa independent
runs and considering a Pfa = 10−4. The value of Pd is estimated using
5000 independent trials.

The first study refers to N = 2, in this case the maximal invariant,

4The only exception where an analytic performance derivation can be carried on
is the GLRT for N = 2 (3.21). See Appendix D for details.
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which completely governs the performance of any invariant detector, is
one-dimensional. This means that the Pd plots versus the induced max-
imal invariant ω1 = δ2/δ1 ≤ 1 completely characterize the performance
of detector (3.21). Otherwise stated, the reported performances holds
for any pair of covariances (ΣX ; ΣY ) sharing the same induced maxi-
mal invariant. This is a consequence of the fact that the performance
of invariant detectors depends on the pair (ΣX ; ΣY ) only through the
induced maximal invariant.

In Figure 3.1-a and Figure 3.1-b the values of Pd for W = 3 and W =
5 are drawn versus ω1. For W = 3 the receiver (3.21) provides a Pd ≥ 0.9
for ω1 6∈

[
10−1.8 , 1

]
. The case W = 5 makes use of a greater number of

homogeneous data vectors in the Grammians SX and SY whose scaled
versions (1/K scale factor) are unbiased and consistent estimates of
the covariance matrices ΣX and ΣY . For this situation a Pd ≥ 0.9 is
achieved for ω1 6∈

[
10−1.02 , 1

]
. A similar analysis is performed for N = 3

and W = 3, shown in Figures 3.2 and 3.3. In this case the contours
showing Pd are functionally dependent on two variables (namely the
two components of the induced maximal invariant ω): ω1 = δ2/δ1 ≤ 1,
and ω2 = δ3/δ1 ≤ 1. In Figure 3.2-a the contour plot for detector (3.28)
is shown; for this scenario Pd ≥ 0.9 is guaranteed if ωi 6∈ [10−2.11, 1],
i = 1, 2. The results for detector (3.30) are shown in Figure 3.2-b, in
this case an acceptable Pd is achieved for ωi 6∈ [10−2.14, 1], i = 1, 2. For
the decision rules (3.31) and (3.32), whose results are displayed in Figure
3.3-a and Figure 3.3-b, a Pd ≥ 0.9 is guaranteed for ωi 6∈ [10−2.83, 1], and
ωi 6∈ [10−2.46, 1], i = 1, 2, respectively. The contour plots for N = 3 and
W = 5 are shown in Figures 3.4 and 3.5; the main difference with the
case W = 3 is the increase in the detection performance, as observed for
the N = 2 analysis. In particular the region in the (ω1, ω2) space where
Pd is greater than 0.9 grows, for example for the decision rule (3.28) the
region is now described by the values ωi 6∈ [10−1.1, 1], i = 1, 2.

The second analysis is conducted in terms of ROC curves (namely
Pd versus Pfa) for a fixed value of the induced maximal invariant ω =
[0.04, 0.03]T , corresponding to the pair of covariance matrices:

C1 =

 16 0 0.7
0 0.2 0

0.7 0 1

 C2 = 2

 4 0 0.1
0 1.5 0

0.1 0 6

 .

Of course, any other covariance pair with the same value of ω leads
to the same ROCs, while a different value of ω leads to different ROCs.
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Figure 3.1: a) Pd versus logω1, N = 2 and W = 3; b) Pd versus logω1, N = 2 and
W = 5.
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Figure 3.2: Pd contours versus logω1 and logω2 for N = 3 and W = 3.
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Figure 3.3: Pd contours versus logω1 and logω2 for N = 3 and W = 3.
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Figure 3.4: Pd contours versus logω1 and logω2 for N = 3 and W = 5.
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Figure 3.5: Pd contours versus logω1 and logω2 for N = 3 and W = 5.
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For comparison purposes, the ROC of the detector (1.20) and of that
in [9] are also reported. Specifically, the decision rule proposed in [9] is
an adaptive implementation of the LRT, whose expression in terms of
the eigenvalues λ1, . . . , λN is

N∑
i=1

(
1

λi
− ln

1

λi

) H1
>
<
H0

TH , (3.33)

whereas the GLRT (1.20) is

N∏
i=1

(1 + λi)
2

λi

H1
>
<
H0

Tg . (3.34)

In order to set the detection thresholds, Monte Carlo simulations
were used assuming 100/Pfa independent runs. Additionally, 100000
independent trials were exploited to estimate the Pd.

Figure 3.6 shows the ROCs of the considered receivers for both two-
and three-polarimetric channels and W = 3. In particular Figure 3.6-a
shows the two-polarization case while Figure 3.6-b refers to the N = 3
case. In all the analyzed situations, the ROC highlights that the scale-
invariant detectors are outperformed in terms of Pd by the two receivers
proposed in Chapter 1 and in [9] if W = 3. However, as soon as W = 5
all the receivers provide the unit Pd value for Pfa ∈ [10−4, 1]. This
behaviour is actually expected as, at the design stage, we are requiring
“more invariance” than the detectors in Chapter 1 and in [9]. In fact, the
new decision rules exhibit an additional scale invariance attempting to
robustify the CFAR property with respect to possible scale mismatches
between the reference and test images. In other words, as it will also
be clearer at the end of this sub-section, with the new approach we are
trading off detection performance with an improved CFAR behavior.

The final analysis assesses the benefits of the proposed approach in
terms of CFAR property. The study is conducted considering a nominal
Pfa = 10−4 in the presence of observations with equal covariance matri-
ces (i.e. assuming C1 = C2). To estimate the actual Pfa the covariance
matrix C1 is the same used for the ROC analysis while C2 is selected as
C2 = αC1 with α ∈ [0.5, 2]. The nominal threshold for a Pfa = 10−4 is
then used to estimate the actual Pfa for each detector.
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Figure 3.6: Pd versus Pfa.
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In Figures 3.7 and 3.8, respectively, Pfa versus α for N = 2 and
N = 3 with inspection window sizes W = 3 and W = 5, is shown. Also
for this analysis the curve for the detector (3.34) and for the detector
(3.33) proposed in [9] are represented. In all the considered situations
the invariant detectors show a stable actual probability of false alarm
at 10−4 (all their Pfa curves overlap with the horizontal line at 10−4).
The detectors (3.34) and (3.33) exhibit poor capability in handling scale
variations between the reference and test images, providing an actual
Pfa different from the nominal value when a scale variation is present
(α 6= 1). For example, in the case N = 3 and W = 5, the detector
in (3.34) exhibits an actual Pfa of 0.139 for α = 2 while the proposed
invariant rules are still able to perform with an actual Pfa of 10−4 as
predicted by the developed theory.

3.4.2 Performance Analysis on Real Data

In the following a CFAR analysis based on the previously described
real data is conducted. To this end, the thresholds are set to ensure
Pfa = 10−4 in the complement of the extended ground truth area,
namely, in the region where no changes occur (there are no true posi-
tives). This means that, for each detector, after computing the decision
statistics (for each pixel belonging to the complement of the extended
ground truth), the threshold has been selected in order that

10−4 × total number of available statistics (trials),

are greater than the threshold. This ensures that all the comparisons
refer to the same nominal Pfa level, namely the number of threshold
crossings in the complement of the extended ground truth is exactly
the same for all the analysed detectors. Then exploiting the previously
computed thresholds the actual Pfa is estimated applying a scaling

√
α

to the test image for α ∈ [0.5, 2].

In Figures 3.9 and 3.10, respectively, the Pfa versus α for N = 2 and
N = 3 with inspection window sizes of W = 3 and W = 5, is shown.
The behaviours of the detector (3.34) and of the detector (3.33) are also
displayed.
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Figure 3.7: Pfa versus α considering N = 2.
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Figure 3.8: Pfa versus α considering N = 3.
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Figure 3.9: Pfa versus α considering N = 2.
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Figure 3.10: Pfa versus α considering N = 3.
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Confirming the simulated analysis, in all the situations, the invari-
ant detectors show to provide a stable probability of false alarm. The
detectors (3.34) and (3.33), show poor ability to keep a constant false
alarm rate in the presence of scale variations between the reference and
test images. Specifically, they exhibit an actual Pfa different from the
nominal value when a scale variation is present (α 6= 1).

For the same scenarios the number of correct detections in the ex-
tended ground truth has been evaluated. The results are shown in Fig-
ures 3.11 and 3.12; as expected, the scale-invariant detectors provide
constant performance for different values of α, but in this case they are
outperformed by the detectors (3.34) and (3.33).

The final analysis investigates the effects of an aggregation strategy
after single pixel detection in order to eliminate isolated false alarms and
confirm true detections, which are to the typical car size and system res-
olution, appear quite often. More precisely, a window of size 5×5 slides
along the horizontal and the vertical dimensions of the detection maps
(which, as already highlighted are binary images: “0” no detection, “1”
detection). Then, for a given pixel localized at the center of the moving
window and labelled with “1”, a detection is associated if the number
of “1” in the window is greater that a certain integer “fill parameter”
(denoted by F and complying with 1 ≤ F ≤ 25).

These kind of logics look like n-of-m aggregation techniques [34,
Ch. 3] and can be interpreted as a post-detection binary integration
within the reference window. As to the pixels on the image edge (namely
those laying on the first/last two rows or columns), no aggregation is
performed because they never fall at the center of the moving window.
In other words, it is simply confirmed the “0” or “1” value in the original
detection map.

The case of three-polarimetric channels, with W = 5 and α = 1 is
considered and the effect of the fill parameter is studied in Figure 3.13
for detectors (3.28), (3.30), (3.31) and (3.32). This analysis highlights
that all the proposed receivers are sensitive to the fill parameter value.
Otherwise stated to get a lower number of false alarms through the
aggregation procedure, it is necessary to accept some detection loss.
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Figure 3.11: # of Correct Detections versus α considering N = 2.
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Figure 3.12: # of Correct Detections versus α considering N = 3.
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Figure 3.13: Number of correct detections in the extended ground truth (a) and
number of false alarms in the complement of the extended ground truth (b) versus
F .
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3.5 Conclusions

In this chapter multi-polarization scale-invariant change detection
from SAR images has been considered. The problem has been formu-
lated as a binary hypothesis test and the principle of invariance has
been applied to synthesize decision rules. This framework allows to
both enhance the robustness of the detectors with respect to intensity
miscalibration effects and to force the CFAR feature at the design stage.
A maximal invariant statistic, which fully characterizes the class of in-
variant tests, as well as the induced maximal invariant were determined
with reference to the processing of two- or three-polarimetric channels.
Moreover, the GLRT is computed; interestingly for two-polarimetric
channels the test is equivalent to comparing the condition number of
a data-dependent matrix with a suitable detection threshold. Further
decision rules have been also introduced as combinations of the maximal
invariant components.

At the analysis stage, the proposed framework has been assessed
both on simulated data and on real high resolution SAR images. The
conducted study has shown the capability of the novel decision rules to
provide the CFAR property even in the presence of power mismatches
among the different acquisitions. The tradeoff between robustness and
detection performance has also been discussed. Future work will per-
form an analysis of the new detectors as well as of possible polarimetric
extensions of other decision rules such as that in [36], in the presence of
other real datasets collected under different environmental and operating
conditions.





Appendix A

In this appendix the MPI detector is derived with reference to the
case of N = 3 polarimetric channels. To this end, it is necessary to
distinguish among three cases.

• Case 1: δ1 6= δ2 6= δ3. Using [30, eq. (51)], 1F̃0(2K;−∆−1,Λ)
can be recast as a rational function

1F̃0(2K;−∆−1,Λ) =

c3 det

[(
1 +

λj
δi

)2−2K
]
i,j=1,...,3

3∏
j=1

∏
i<j

(
− 1

δi
+

1

δj

)
(λi − λj)

(A.1)

with c3 a constant with respect to λi and δi. Thus the MPI detector
becomes

det

[(
1 +

λj
δi

)2−2K
]
i,j=1,...,3

3∏
j=1

(1 + λj)
−2K

∏
i<j

(
− 1

δi
+

1

δj

)
(λi − λj)

H1
>
<
H0

TA,3 . (A.2)

• Case 2: δ1 = δ2 6= δ3 or δ1 6= δ2 = δ3 or δ1 = δ3 6= δ2. Let us
focus on δ1 = δ2 6= δ3 (the other two cases are equivalent to the
considered one). Denoting by δ = δ1 = δ2 and exploiting [37, eq.
(106)] the following equality chain holds true

89
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1F̃0(2K;−∆−1,Λ) =
c3

3∏
j=1

∏
i<j
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(A.3)

As a consequence the MPI test becomes
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(A.4)

• Case 3: δ1 = δ2 = δ3. Using the splitting formula [26, eq. (92)],
yields,
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1F̃0(2K;−∆−1,Λ) = det

(
I +

Λ

δ

)−2K
, δ1 = δ2 = δ3 = δ .

(A.5)

Hence, after standard equivalences, the MPI test (1.12) becomes

3∏
j=1

(
1 + λj
δ + λj

) H1
>
<
H0

TC,3 . (A.6)
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Appendix B

To prove the CFAR property it is sufficient to observe that, under
H0,

• SX and SY are identically distributed complex Wishart random
matrices with scale parameter K and matrix parameter ΣX [26];

• σ̂2X,1 and σ̂2Y,1 admit the following stochastic representation:

σ̂2X,1 = σ2χ1, σ̂2Y,1 = σ2χ2 (B.1)

with χ1 and χ2 two complex Chi-square random variables with K
degrees of freedom.

Moreover SX , SY , χ1, and χ2 are statistically independent.

It follows that the left hand side of (2.10) can be rewritten as

det2
[
Σ

1
2
X

(
S̃X,1 + S̃Y,1

)
Σ

1
2
X

]
det

(
Σ

1
2
XS̃X,1Σ

1
2
X

)
det

(
Σ

1
2
XS̃Y,1Σ

1
2
X

) (χ1 + χ2)
2

χ1χ2
, (B.2)

or equivalently as

det2
(
S̃X,1 + S̃Y,1

)
det
(
S̃X,1

)
det
(
S̃Y,1

) (χ1 + χ2)
2

χ1χ2
, (B.3)

with S̃X,1 and S̃Y,1 two independent and identically distributed com-
plex Wishart random matrices with scale parameter K and identity ma-
trix parameter.
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The stochastic representation in (B.3) highlights that the decision
statistic in (2.10) can be expressed in terms of random variables whose
marginal pdf (and, hence, also their joint pdf due to the statistical in-
dependence) is functionally independent of ΣX . This implies that the
CFAR property is achieved.



Appendix C

In this appendix we show that the set of transformations G is a
group. To this end we define the group multiplication [16, p. 569] which
with any two elements of G

g1 = [B1, a1 : B1 ∈ GL(N), a1 > 0] ∈ G ,

g2 = [B2, a2 : B2 ∈ GL(N), a2 > 0] ∈ G ,
associates the element

g3 = [B1B2, a1a2 : B1B2 ∈ GL(N), a1a2 > 0] ∈ G ,
called product and denoted as g1 g2. It is easy to show that

• group multiplication obeys the associative law, i.e.

(ga gb) gc = ga (gb gc) , ∀ga , gb , gc ∈ G ;

• the element

e1 = [IN , 1] ∈ G ,

is the unique identity, namely g e1 = e1 g = g, ∀g ∈ G;

• ∀g ∈ G there exists the unique inverse

g−1 = [B−1, a−1 : B−1 ∈ GL(N), a−1 > 0] ∈ G

such that g g−1 = e1 .

Hence G satisfies the conditions which define a group [16, p. 569].
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Appendix D

This appendix is devoted to the derivation of the Pfa and Pd for the
GLRT exploiting N = 2 polarimetric channels. Under either H0 and
H1, the test statistic in (3.21) is the standard condition number of a
matrix following the so-called F distribution [26]. We begin providing
its Cumulative Distribution Function (CDF) under both hypotheses in
the following

Proposition 2: Under H0, the CDF of the test statistic (3.21) can
be written as

F 0
η (x) =

β

γ2K

[∫ +∞

0

λK−2

(1 + λ/γ)2K

∫ xλ

λ

uK

(1 + u/γ)2K
du dλ−

2
λK−1

(1 + λ/γ)2K

∫ xλ

λ

uK−1

(1 + u/γ)2K
dudλ+

λK

(1 + λ/γ)2K

∫ xλ

λ

uK−2

(1 + u/γ)2K
dudλ

]
,

(D.1)

with β = (2K−1)
[(K−2)!]2

∏2K−2
r=K r2. Under H1,

F 1
η (x) = υβ

∫ +∞

0

2∑
`=1,k 6=`

(−1)`+1λK−2

(1 + λ/δ`)
2K−1

[∫ xλ

λ

uK−2(u− λ)

(1 + u/δk)
2K−1du

]
dλ,

(D.2)
where υ = 2K−1

δK−1
1 δK−1

2 (δ2−δ1)
, β is the same as in (D.1), and δi, i = 1, 2, is

the i-th eigenvalue of ΣXΣ−1Y .
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Proof. The CDF of the condition number of a matrix-variate whose
joint eigenvalues distribution can be written as [38, Formula (6)]

f(λ) = K det(Φ(λ)) det(Ψ(λ))

2∏
`=1

ξ(λ`) , (D.3)

can be obtained exploiting [38, Formula (9)]. By inspection of the cor-
responding joint distribution of λ1 and λ2 under H0, i.e. ( [26, Formula
(98)] with Ω = γI)

p(λ1, λ2) = β/γ2K
2∏
i=1

λK−2i

(1 + λj/γ)2K
(λ2 − λ1)2 , (D.4)

and, respectively, under H1 (see again [26, Formula (98)])

p(λ1, λ2) = υβ

2∏
i=1

λK−2i det((1 + λj/δi)
1−2K)(λ2 − λ1) , (D.5)

it is immediate to verify that both the above laws are in the form (D.3).
Henceforth, under H0, the CDF takes the form

F0(x) = β

∫ +∞

0
{det(F1(λ)) + det(F2(λ))}dλ , (D.6)

where the entries of the 2 × 2 matrices F1 and F2 are listed below,
skipping for simplicity the subscript of λ:

(F1)1,1 =
λK−2

(1 + λ/γ)2K
, (F1)1,2 =

λK−1

(1 + λ/γ)2K
,

(F1)2,1 =

∫ xλ

λ

uK−1

(1 + u/γ)2K
du, (F1)2,2 =

∫ xλ

λ

uK

(1 + u/γ)2K
du,

and

(F2)1,1 =

∫ xλ

λ

uK−2

(1 + u/γ)2K
du, (F2)1,2 =

∫ xλ

λ

uK−1

(1 + u/γ)2K
du,

(F2)2,1 =
λK−1

(1 + λ/γ)2K
, (F2)2,2 =

λK−2

(1 + λ/γ)2K
.
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Under H1, instead, the CDF can be expressed as

F1(x) = υβ

∫ +∞

0
{det(G1(λ)) + det(G2(λ))}dλ , (D.7)

where the entries of the 2× 2 matrix Gi, i = 1, 2, are given by

(G1)1,1 =
λK−2

(1 + λ/δ1)
2K−1 , (G1)1,2 =

λK−1

(1 + λ/δ1)
2K−1 ,

(G1)2,1 =

∫ xλ

λ

uK−2

(1 + u/δ2)
2K−1du, (G1)2,2 =

∫ xλ

λ

uK−1

(1 + u/δ2)
2K−1du,

and

(G2)1,1 =

∫ xλ

λ

uK−2

(1 + u/δ1)
2K−1du, (G2)1,2 =

∫ xλ

λ

uK−1

(1 + u/δ1)
2K−1du,

(G2)2,1 =
λK−2

(1 + λ/δ2)
2K−1 , (G2)2,2 =

λK−1

(1 + λ/δ2)
2K−1 .

Hence, basic algebra leads to Proposition 2 statement.

As an immediate consequence of Proposition 2, we can now prove
the following

Proposition 3: Pfa and Pd of the GLRT (3.21) are given by

Pfa = 1− β [J (0)− 2J (1) + J (2)] , (D.8)

where β is the same as in Proposition 2, T2 is the detection threshold
and, for ` = 0, 1, 2,

J (`) =

∫ +∞

0

zK+`−2

(1 + z)2K

∫ T2

z

yK−`

(1 + y)2K
dydz, (D.9)

and by

Pd =1− (2K − 1)υβ

∫ +∞

0
zK−2

[∫ T2

z

yK−2(y − z)
(1 + y)2K−1

dy

]
×[

δ2K−12

(1 + z/ω)2K−1
− δ2K−11

(1 + zω)2K−1

]
dz,

(D.10)
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with ω = δ1/δ2.

Proof. Proposition 3 follows immediately from Proposition 2, ex-
panding the determinant in the argument of (D.4) and (D.5) for Pfa and
for Pd, respectively. As expected, Pfa does not depend on the scaling
factor γ and Pd only depends on ω = δ1/δ2, after replacing υ by its
expression as function of δi’s, i = 1, 2.
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