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Chapter 1

Liveness Detection

B iometric systems are more and more often used for authentica-
tion in various security applications. By relying on physiological

attributes of each individual they offer simplicity of use and reliability
at the same time, avoiding typical problems of systems based on the use
of passwords, which can be forgotten, transferred or stolen. Fingerprint,
face, and iris are the biometric traits most frequently used in present
authentication systems [134]. Of course, biometric systems have their
own weaknesses, in particular they are relatively vulnerable to some so-
phisticated forms of spoofing. For example, fingerprint-based systems
are among the most commonly used and, for this very same reason,
more subject to attacks. Indeed, early systems could be easily fooled by
fake fingerprints, reproduced on simple molds made of materials such as
silicone, Play-Doh, clay or gelatin [88, 37]. Likewise, iris-based systems
can be attacked with fake irises printed on paper or on wearable plastic
lenses [87, 113], while face-based systems can be fooled with sophisti-
cated 3D masks (easily bought online once a few photos of the subject
are provided) or, again, with faces printed on paper [67] or, also, with
video reproduced on mobile and tablet devices [16].

Clearly, these attacks have elicited a race towards some reliable
anti-spoofing systems, and in particular towards liveness detection tech-
niques, which use various physiological properties to distinguish between
real and fake traits. Fig.1.1 shows the typical placement of a liveness
detection module in the context of a biometric authentication system.
In principle, besides being reliable, blocking attackers and allowing le-
gitimate users in the systems, liveness detection methods should posses
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Figure 1.1: A typical biometric authentication system equipped
with a liveness detection module. Once the biometric trait has been
acquired a feature extraction process followed by a classification step
labels the image as fake or live. Only in this last case the image is
considered for the recognition phase.

other important properties [82], being non-invasive, user friendly, fast,
and low cost.

A large number of methods have been proposed in recent years to
combat spoofing [83, 122]. Some of them rely on the detection of vitality
signs at the acquisition stage. Hence they require additional hardware
embedded in the sensor which verifies vitality by measuring particular
intrinsic properties of a living trait, such as temperature, odor, sweat,
blood pressure, or reflection properties of the eye [4, 105], sometimes
also in response to specific stimuli [69]. By combining multiple sources
of information, this approach turns out to be more resilient to specific
attacks, providing a very good reliability. However, it is a relatively
expensive and rigid solution, potentially vulnerable to attacks not con-
sidered at design time.

On the contrary, software-based methods, based on signal-processing
techniques, are certainly more appealing, for their reduced cost and
invasiveness, and their higher flexibility. They try to detect liveness by
analyzing synthetic image features that are peculiar of vital biometric
traits and not easily reproduced on fakes. In some cases, features are
singled out based on a deep study of the physics of the problem and/or
a careful analysis of the statistical behaviour of the captured images.
A large number of such methods have been proposed in recent years
[30, 92, 107, 125, 2, 59, 17, 93, 126, 96, 86, 127, 84, 36, 36], based on
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clever and well-founded ideas, testifying on the relevance and difficulty
of this problem. As an example, a few methods base their decision
on some ridge-valley characteristics peculiar of live fingerprints. Other
techniques are based on more generic features, like the energy observed
in certain frequency bands, computed globally on the whole image.

In parallel with these approaches, based on global and high-level im-
age descriptors, techniques based on local descriptors (LD) have been
taking hold recently [94, 40, 47, 124, 143, 31]. LDs, as the name suggest,
describe the statistical behavior observed locally in very small patches
of the image by means of histograms (frequencies of occurrence, empiri-
cal probability distributions) collected over the ensemble of all patches.
These histograms are then used as features to classify the image by
means of conventional classification tools. LD-based approaches have
been used in a large number of image classification problems, from im-
age mining and retrieval [154], to texture classification [102, 137], face
recognition [1, 12], steganalysis [35], forgery detection [6, 18], image
quality assessment [91], always with impressive results.

It is somewhat surprising that these alternative methods, showing
often little or no data-specific clues, overcome so easily the physics-based
approaches. On the other hand, liveness detection, as all tasks related
with digital security, can be seen as a game with two players, and it is
only reasonable to expect that methods based on macroscopic features
will be sooner or later tricked by smart attackers, equipped with better
materials and better knowledge of the specific biometric traits statistics.
Local descriptors represent a natural evolution towards the discovery of
microscopic features that are more discriminating and also harder to
tamper with. Till now, however, only general-purpose descriptors have
been usually considered for the liveness detection task, while image and
video descriptors conceived specifically for these very specific biometrics
traits can provide a still better performance.

The thesis is organized as follows

Chapter 2 introduces a general framework which describes most
of the local feature-based techniques for different biometric traits:
fingerprint, iris and face. In particular, two possible approaches are
presented depending on whether features associated with a pixel are
quantized independently or jointly.
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Chapter 3 presents the main contributions of this work to the
liveness detection research topic. In particular, it has been proposed
a new local descriptor designed for the fingerprint liveness detection
task, namely LCPD (Local Contrast Phase Descriptor). In addi-
tion, a method based on rich local features later compacted using
the Bag-of-Words paradigm is presented. Particular attention is
given also to the design of liveness detection tools for mobile devices
implementation, for which suitable low-complexity features are adopted.

Chapter 4 describes the experimental results obtained for vari-
ous biometric traits. In this analysis, carried out on publicly available
datasets, we have always considered homogeneous basic tools for clas-
sification (e.g. linear-kernel SVM) and adopted the same experimental
protocol, so as to put all competing solutions on the same ground. To
measure the robustness of the approach based on the Bag-of-Words
paradigm, results for a cell image multi-class classification task are also
presented.

Chapter 5 draws some conclusions, summarizing the results ob-
tained for each specific biometric traits, and proposes future work
guidelines.



Chapter 2

State of the art

T here is a large body of literature on biometric spoofing, especially
thanks to the competitions held in recent years [85, 144, 40, 11]

which provided publicly available databases to test performance. In
the following we will review the literature on liveness detection for fin-
gerprint, iris and face images. The majority of techniques follow the
paradigm shown in Fig.2.1, differing mainly in the type of features ex-
tracted. We will first describe techniques based on dynamic features,
which require multiple acquisitions. Then we will focus on techniques
based on a single sample image, distinguishing between the approaches
that analyze the image as a whole, extracting global features, and those
that extract local features at each pixel to summarize them eventually
in a single feature vector, typically by means of histograms.

2.1 Dynamic features

Assuming that multiple acquisitions are allowed, some peculiar char-
acteristics of living bodies can be exploited to detect spoofing. For
fingerprints, some intrinsic characteristics of the skin can be used, like
perspiration, deformation or elasticity [107, 2, 86]. Likewise, for irises,
controlled light reflection, pupil dynamics, and pupil constriction have
been used as a basis for spoofing countermeasures [105, 56]. Eye blinking
has been used also for face liveness detection, as well as the movement
of lips [57, 106]. Other techniques based on motion analysis rely on the
observation that a 3D face generates a 2D motion which is higher at the
center (e.g., nose) than in peripheral regions, (e.g., ears), while a trans-

5
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lated photograph generates a constant motion field. In [65], for example,
face parts are detected by a model-based Gabor decomposition, and the
trajectories of various parts are evaluated by optical flow estimation. A
different approach is followed in [62] based on the fact that face and
background follow different motion models, in a live video, contrary to
what happens in the presence of a moving photo. Finally, in [108] the
authors base liveness detection on a spatio-temporal dynamic texture
information, which combines facial appearance and motion.

Although these methods may be highly reliable, they require addi-
tional hardware and/or an increased processing time. Moreover, the
user may experience an increased waiting time before being granted ac-
cess. In addition, in some cases, the attack is intrinsically resilient to
such countermeasures, like when a human attacker wears cosmetic lenses
with fake irises.

2.2 Global features

A common approach consists in detecting the (expected) lower quality
of images relative to fakes w.r.t. those originated by live samples. A
warning is due on the fundamental hypothesis, though, since technolog-
ical improvements, for materials, printers, etc., may, in time, frustrate
the whole approach [53].

In [92], among the first techniques based on this principle, fingerprint
coarseness is used as a discriminative feature, exploiting the imperfec-
tions in materials used for the fakes. The analysis is performed in the
wavelet domain. A denoised version of the image is subtracted from the
original one, then, the variance of the noise residual is estimated from
the wavelet subbands corresponding to fine details along the various
orientations, and used as a measure of coarseness.

Fourier analysis has been used for iris and face images. In particular,
with reference to fakes based on printed images, Daugman [22] suggested
to analyze the image in the Fourier domain to reveal the periodic pattern
of dots left by the printer, while the reduced high-frequency content in
photographs of faces has been used in [72]. In [127], ridges and valleys
are extracted using a mask, and separate related features are computed
both in the spatial and in transform (Fourier, wavelet) domains.

Always following the idea that spoofing produces low quality images,
[36] considers some fundamental properties of fingerprints, like ridge
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strength, continuity and clarity, collecting a set of ten discriminative
quality-based features for fake detection. The same principle guides the
definitions of the measures proposed for iris images, where properties
like focus, blur, contrast are considered [39]. The same idea can be
applied to different kind of attacks, like for example the print attack for
iris- or face-based systems, exploiting the roughness of the paper surface
to spot fake images. In [38] generic image quality measures, such as
image sharpness, structural distortions, are considered as features, with
no reference to any specific biometric trait, and can be therefore used
indifferently for fingerprint, iris and face images.

In the literature, much attention has been also devoted to the phase,
which is able to better preserve the correlation between neighboring
samples [104] and, when evaluated locally, can give a more precise local-
ization of patterns. Short-time Fourier transform (STFT) and the more
general Gabor filter banks both capture well this type of information.
Especially the latter has been extensively used to characterize textural
information in different areas, and in particular for biometric feature
identification [26, 149, 148]. The differences arising in inter-ridge dis-
tances, ridge frequencies and widths between live and fake fingerprints
seem to be well captured by textural features extracted using Gabor
filters, as shown in [93]. However, in this last work only global features
are considered using second order statistics.

Morphology-based and perspiration-based features have been taken
into account in [84], where a proper feature selection approach is also
adopted.

Another large class of methods is based on the analysis of textures.
In fact, biometrical traits are often characterized by abundant and strong
textural information. This is certainly true for fingerprints, with their
regular ridge-valley patterns1, but also for irises, where there are rich
patterns of furrows, ridges, and pigment spots. Therefore, methods
based on statistical texture analysis can be reasonably expected to pro-
vide good results. For example, textural features related to inter-ridge
distances, and ridge frequencies and widths, extracted using Gabor fil-
ters [93], seem to discriminate well between live and fake samples. Like-
wise, distinctive textural features of the iris are defined in [52], where

1The fingerprint pattern is comprised of ridges, touching the sensor plane, and val-
leys, which remain far from it, and this ridge-valley structure typically looks different
for fake and live images.
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four features extracted from the gray level co-occurrence matrix have
been derived. Transform-based methods drawn from the texture classi-
fication literature can be easily adapted to deal with fingerprints which,
due to their strong regular structure, can be assimilated to textures
themselves. These methods work on the energy spectrum of textures,
assuming that different classes of texture exhibit different distributions
of energy in the transform domain [111]. In [59] and [17], in particular,
it was observed that the different ridge-valley periodicity of live and fake
fingerprints translates into easily captured differences in their spectral
ring patterns. Live fingerprints have higher energy content in the ring
patterns than their fake counterparts, a property readily used for reli-
able classification. Other features related to spectral energy distribution
have been proposed with reference to different transforms, like wavelet
[125] and ridgelet [96], with similar results.

2.3 Local features

In the last few years the analysis of micro-textures has gained large popu-
larity for a number of image processing tasks. To this end, the fine-scale
statistical behavior is observed locally in small patches of the image,
typically after some form of high-pass filtering meant to emphasize the
high-frequency content. This form of textural analysis has proven very
effective for liveness detection.

Some techniques for the detection of biometric spoofing are based
on the Local Binary Patterns (LBP), a descriptor first proposed in 2002
[102] for texture classification and then gaining a long score of successes
in very different and challenging tasks, such as face recognition [1], fin-
gerprint recognition [110], camera identification [10], or image forgery
detection [27]. These results testify on the potential of these tools and,
more in general, on the effectiveness of the patch-processing that is a
dominant paradigm in all branches of image processing and machine
vision, from image denoising [21, 29], to no-reference measures of im-
age quality [91], to texture classification [73]. In LBP the variations
observed in a circular neighborhood of each image pixel are computed
and encoded in a scalar, then a feature vector is built by computing
the histogram of occurrences of such scalars over the whole image. LBP
first appears in the fingerprint liveness detection literature in a 2008
paper [95] where wavelet-domain energy features are complemented by
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the LBP descriptor. In 2009 [54] proposes the use of LBP to detect iris
spoofing based on contact lenses. The iris is divided into six relevant
subregions, these are rectified, and LBPs are extracted at various scales.
Finally the Adaboost algorithm is used to learn the most discriminative
regional LBP features. In [58], following [81], a multiscale version of
LBP was proposed. The LBP operator was applied with large radii, af-
ter a regularizing low-pass Gaussian filtering, so as to take into account
long-range dependencies. More recently, [143] divides the eye image in
three regions: pupil, iris and sclera, using LBPs at multiple scales for
each of them. The potential of LBP descriptor has been explored also
for face liveness detection. In 2011 the method proposed in [80] divides
the images in blocks, a combination of different LBP operators, obtained
by varying sampling and scale, are then extracted from each block, and
eventually concatenated. Further studies, conducted in [16], show that
a similar performance can be obtained also by processing the whole im-
age. Some extensions of LBP have been also investigated in [31] for
the more challenging problem of detecting attacks by 3D face masks.
Performance analysis highlights again the good performance obtained
by the LBP descriptor, even by considering a single frame of a video.
An interesting variant of LBP is proposed in [150], in the context of iris
spoofing detection, where the SIFT descriptor is used to sort the LBP
elementary features (two-pixel differences) in order of importance, defin-
ing a new rotation-invariant version. Instead, in [48] LBP is evaluated
on the residual images, obtained through a proper high-pass filtering,
for print-based and screen-based attacks in the context of a iris mobile
biometric identification system.

In the literature, much attention has been also devoted to the local
phase, which is able to better preserve the correlation between neigh-
boring samples and can give a more precise characterization of patterns,
especially when considering iris images [23]. Short-time Fourier trans-
form (STFT), and the more general Gabor filter banks, both capture
well this type of information. In [41] we find the first attempt to use
the local phase for fingerprint liveness detection. It is based on the LPQ
(Local Phase Quantization) descriptor, proposed in [103], which has a
structure similar to LBP, but encodes some phase information extracted
through a short-time Fourier transform of the local patch, rather than
gradients. A new descriptor combining contrast-based and phase-based
information, has been proposed in [47], obtaining very good results in
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Figure 2.1: Feature extraction step. This process associates at
the pixel of the image a feature vector. In general, the process
can be sparse (only for some selected pixels) or dense (for each
pixel). In our framework we consider dense approaches where the
neighborhood of each pixel, x, is analyzed to extract a discriminative
feature vector: F(x) = [F1(x), F2(x), · · · , FN (x)].

fingerprint liveness detection. Gabor filters are used in [140], for the
detection of fakes based on contact lenses. Iris-texton features are ex-
tracted using a Gabor filter bank and K-means clustering. A further
improvement of this technique is proposed in [124] for the more general
iris classification task. A novel texture representation method, called Hi-
erarchical Visual Codebook (HVC), is used to encode the texture prim-
itives of iris images, while dense SIFT descriptors are used to encode
the gradient information of the local iris region. Eventually, K-means
is used to extract compact features. Another approach [42], recently
proposed for fingerprint liveness detection, considers a variant of SIFT
and HOG called HIG (Histogram of Invariant Gradients) with the aim
of preserving robustness to variations in gradient positions.

Other local descriptors, of course, do not fit in the above classes.
In [45], for example, intra- and inter-band dependencies of wavelet co-
efficients are exploited to detect fake fingerprints. Another interesting
evolution is represented by the BSIF (Binarized Statistical image Fea-
tures) descriptor [60]. BSIF was used in [40] for fingerprint liveness
detection with very competitive results. Rather than using a fixed set
of filters, BSIF learns its own using the statistics of image patches and
maximizing the statistical independence of the filter responses. Some
very recent works have considered deep learning for biometric spoofing
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detection. In particular, Convolutional Neural Networks (CNN) have
been considered in [97] and [145] for the specific task of fingerprint and
face liveness detection, respectively, while in [90] they have been applied
to handle different biometrics traits. A CNN is a multi-layered represen-
tation, where each layer is obtained through a proper convolution and
local pooling. This procedure allows to extract patterns and hence find
deep representational connections. The filter weights can be learned di-
rectly from the data (although random weights are considered in both
[97] and [90]) and a large number of hyper-parameters, like number of
layers and filter sizes, must be optimized in the training phase, which
makes this approach computation-intensive.

Despite the excellent results obtained, these proposals show little or
no effort to adapt the descriptors to the specific fingerprint problem,
and the experimental results do not point out any killer features, re-
lated to some physical or statistical trait of the data. A common effort,
however, is to combine several descriptors [41, 43], as also done in other
fields, using information coming from the space, frequency, and orienta-
tion domains [70], or concatenating the LBP and LPQ features [153]. In
particular, in [43] we tested several popular descriptors for the liveness
detection problem, i.e., LBP, LPQ and WLD, the Weber local descrip-
tor [14] based on orientation and differential excitation. In that context,
we also tested the descriptors obtained by concatenating the basic ones,
that is, by forming a new feature of length

∑
iNi by simply putting

together several features of length Ni. Experiments were extremely in-
formative. A first striking result, already mentioned in the Introduction,
was the gap in performance gain provided by all classifiers based on local
descriptors w.r.t. all other classifiers. Moreover, we observed a further
significant gain when we tried some simple concatenations of descrip-
tors. This was not obvious, a priori, because adding features increases
dimensionality, a problem to be dealt with through some feature selec-
tion techniques. The performance improvement indicates that the new
features are indeed discriminative or, more precisely, that the selected
concatenation allows for a better exploration of the whole data space.

However, not all concatenations provided an equally good perfor-
mance, and this shed some light on their respective importance. In
particular, results showed that the phase-oriented features encoded by
the LPQ descriptor hold a major discriminative power for this task. In
hindsight, this is no surprise, considering the quasi-sinusoidal local be-
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havior of fingerprint images, and the paramount importance of the phase
in the Fourier-domain description of signals. Nonetheless, LPQ by itself
scores worse than its concatenation with either LBP or WLD, indicating
that some more information is required to complement the phase, very
likely related with the local amplitude patterns encoded by LBP and by
the first component of WLD.

This analysis of the literature, with the experimental results reported
therein, confirmed that features based on a local analysis of textures are
among the most promising for the liveness detection task. They can
help telling apart different classes of images based on features that the
human eye cannot catch. On the other hand, textures, and especially
micro-textures, are everywhere, which suggest these features can be used
with success in a wide range of situations.

A large number of computer vision tasks require some form of im-
age classification. However, feeding a classifier with the images as they
are is not only unwieldy, but also ineffective. In fact, studies on the
mechanisms of early vision in mammals, proved that high-level tasks re-
quire, as a first fundamental step, the extraction of some local high-pass
features, much more informative than sheer intensity.

These observations well explain the current quest towards compact
and effective image descriptors based on expressive local features. A
key step in this direction can be traced back to [71] where, to recog-
nize surfaces made of different materials, a vector of features F(x) =
[F1(x), F2(x), · · · , FN (x)] was associated with each pixel x, where each
feature is obtained as the output of a specific linear filter. The potential
of this paradigm, depicted in Fig.2.1, was soon recognized, and a large
number of image descriptors based on local features were proposed in
the following years, some of which are briefly reviewed in the reminder of
this Section. As for compactness, however, we are now given N feature
planes in place of a single (possibly multi-band) image. Therefore, fur-
ther steps are necessary, see Fig.2.2, where the feature vector associated
with a pixel is converted into a scalar by means of quantization, and a
synthetic descriptor is eventually built by computing the histogram of
these scalars (coded features) over the whole image.

This brief summary of concepts skips, obviously, countless important
issues and details. In the following, however, we will focus on the crucial
feature coding step, classifying descriptors in two big families, depending
on whether the features associated with a pixel are quantized indepen-
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dently or jointly. The pros and cons of the two solutions, depicted in
Fig.2.2, are easily understood:

• with the independent quantization of features, the components of
a feature vector are quantized separately, and the corresponding
indexes are combined to obtain the scalar local descriptor; this
solution is very simple, hence preferable for low-power contexts,
or when a fast response is required;

• with the joint quantization of features the vector of features is
quantized as a whole, through a suitable partition of the feature
space (think of K-means clustering) and the partition index repre-
sents the local descriptor. Vector quantization (like more advanced
solutions [13]) is relatively complex, and requires a careful train-
ing phase; on the other hand, exploiting joint dependencies can be
expected to provide a better performance.

In the following, we explore some of the most well-known image descrip-
tors fitting in these two classes. Our selection of methods, however,
takes into account also on the availability of software code to carry out
the reproducible experiments discussed in the Section.

2.4 Independent Quantization of Features

2.4.1 LBP

Let x be a generic pixel, and ηi(x) the i − th of P neighbors sampled
uniformly on a circle of radius R centered on x, resorting to interpolation
when the neighbor position does not coincide with a pixel site. The basic
features used in LBP are simply the directional differences

Fi(x) = I(x)− I(ηi(x)) (2.1)

These features are quantized independently, with a fixed 2-level sym-
metric quantizer, obtaining the indexes

Ci(x) =

{
0 Fi(x) ≤ 0
1 otherwise

(2.2)

that is, a string of bits, represented synthetically by the integer

C(x) = LBP(x) =

P−1∑
i=0

Ci(x)2i (2.3)
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Figure 2.2: This figure shows the two different paradigms: In-
dependent Quantization of Features (up) and Joint Quantization
of Features (down). In the first case each component of the fea-
ture vector is scalar quantized, typically with a two-level quantizer.
Instead, in the second case a vector quantization is used. The re-
sulting image descriptor is an histogram which represents number of
occurrences of the code C(x), which can assume values in a broader
range when the features are vector quantized.

In the basic version of LBP, these quantities are not subject to further
processing, leading to a feature vector of length 2P , h = hist(C), where

h(i) =
∑
x

δ(C(x)−i) (2.4)

with δ(i) = 1 for i = 0 and 0 otherwise. Typically, R ≤ 3, corresponding
to very small neighborhoods, and P goes from 8 to 24.

Despite its simplicity, LBP has proven very powerful in a number of
applications, to begin with texture classification considered in the semi-
nal work [102]. In the very same work, some variants of LBP have been
proposed as well. In the rotation-invariant version, all strings presenting
the same pattern after a circular shift are collected together, obtaining
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not only some invariance to local rotations, but also shorter vectors.
Note that, in general, reducing the length of the feature vector (without
sacrificing descriptive power) can improve significantly both the training
and the classification phases. In this same direction goes the uniform
version, which encodes individually only strings with no more than two
0-1 or 1-0 transitions, corresponding to relatively regular local patterns,
pooling all the others (rarely occurring) in a single codeword. By so do-
ing, the feature length is drastically reduced and becomes manageable
also for P = 24. As a consequence, a further multi-resolution variant
can be considered, where multiple uniform LBP features, obtained for
different values of R and P , are concatenated, enriching the description
and covering a larger image patch.

2.4.2 CoA-LBP and Ric-LBP

Multi-resolution LBP testifies of a first effort towards the use of larger
neighborhoods, so as to exploit richer and longer-range dependencies.
The problem, of course, lies in the length of the feature vector which
grows rapidly as more features are included.

A simple solution is found with the CoA-LBP (Co-occurrence of
Adjacent LBPs [99]). The name is self-explaining: after extracting C,
K bi-dimensional histograms hk are computed, with

hk(i, j) =
∑
x

δ(C(x)−i , C(x+∆k)−j) (2.5)

These histograms are then vectorized, and concatenated to form the
final feature h. The k-th bi-dimensional histogram accounts for co-
occurrences of couples of LBP’s separated spatially by the vector ∆k,
thereby exploiting dependencies at a somewhat extended range. In
[99], four such histograms are computed, with LBP’s taken at distance
‖∆k‖ = 3 along directions 0o, 45o, 90o, and 135o. To reduce the fea-
ture length, P = 4 is considered for the basic LBP, obtaining eventually
features of length 1024 (without considering symmetries).

Ric-LBP [100] is a further evolution, where couples of LBP’s corre-
sponding to rotated configurations are pooled together, obtaining some
feature length reduction.
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2.4.3 LPQ

Local Phase Quantization (LPQ) was proposed originally for texture
classification in the presence of blurring [103]. Following the description
in [103], the patch surrounding the target pixel x is analyzed in the
frequency domain by means of a short-time Fourier transform (STFT),

Îx(u) =
∑
y

I(y)w(y − x)e−j2πu·y (2.6)

where x,y are bi-dimensional spatial coordinates, u indicates bi-
dimensional spatial frequencies, w(·) is a compact window that enforces
locality of the transform, and Îx(·) is the output STFT around x. Af-
terwards, only four frequencies are considered, u0 = (α, 0), u1 = (α, α),
u2 = (0, α), and u3 = (−α, α), with α� 1, corresponding to the direc-
tions 0o, 45o, 90o, and 135o. The basic features of LPQ are the phases
of the selected coefficients, that is

Fi(x) = ∠Îx(ui)

For each of these frequencies, the phase Fi(x) is computed and quan-
tized with a 2-bit uniform quantizer in [−π, π]. Finally we obtain an 8-
bit feature [q1, . . . , q8] that are represented as integer values in the range
[0− 255]:

C(x) = LPQ(x) =
8∑
i=1

qi 2i−1

In all practical applications, w(·) is a square window (with or without
Gaussian smoothing) with odd side N , and a = 1/N . Therefore the
LPQ feature encodes information on the phase of the lowest-frequency
plane-waves oriented at 0, 45, 90, and 135 degrees w.r.t. the horizontal
axis. With proper choice of the parameters, the features Fi(x) can be
viewed alternatively as the output phases of four Gabor filters oriented
along directions 45o apart. This is a sensible choice (as amply supported
by experimental results) as is well-known that, in the Fourier transform,
the phase spectrum is more informative than the amplitude spectrum.
With the given dimensionality constraints, these quantized phases pro-
vide therefore a very informative local description of the image.

This interpretation suggests that LPQ can be effective in describing
images characterized by a local wave-like behavior, like fingerprint and,



2.4. Independent Quantization of Features 17

to some extent, iris images. A rotation-invariant version of LPQ has also
been proposed in [103], where the patch is preliminary rotated along a
characteristic direction β(x) computed in advance.

The LPQ descriptor can be further refined by considering its
rotation-invariant version, LPQri, described in [103]. The idea is
straightforward: rather than using the original patch to compute the
STFT, a rotated version of it is used, which is aligned along a charac-
teristic direction β(x) computed from the patch itself. By doing so, the
LPQri provides a description of the patch which does not depend on its
random local orientation but only on its intrinsic properties. This idea
is particularly compelling for the case of fingerprint images given the
plane-wave local appearance of patches.

In more detail, for each pixel x, Fx(u) is computed on M points
placed uniformly on a circle of radius r, namely, at the frequencies

vi = (r cosφi, r sinφi), with φi = 2πi/M, i = 0, . . . ,M − 1 (2.7)

obtaining the vector [Fx(v0), · · · , Fx(vM−1)]. Then, the sign of the imag-
inary part of this vector is retained, say [c0, · · · , cM−1], and the char-
acteristic orientation β(x) is eventually computed as the phase of the
complex quantity

b(x) =
M−1∑
i=0

cie
jφi (2.8)

With this definition, due the symmetry properties of the Fourier trans-
form, the characteristic orientation of a patch rotated by θ can be ap-
proximated as β(x) + θ [103], with a precision depending only on M .
We obtained a satisfactory performance with M=36. Moreover we set
N=9, as it guarantees for all datasets to include two nearby ridges in
the analysis window w(·), and a = 1/N .

2.4.4 WLD

The Weber LD is built starting from two dense fields of features, orien-
tation and differential excitation. The orientation is simply the angle of
the local gradient

F1(x) = θ(x) = angle(∇I(x)) (2.9)

where the sign is chosen so as to obtain the correct angle formed by the
gradient with the reference axis, while the differential excitation writes
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Figure 2.3: Patch processing of the LPQ descriptor.

as:

F2(x) = ξ(x) =
I3x3(x)− I(x)

I(x)
(2.10)

where I3x3(x) indicates the sample average of I over the 3 × 3-pixel
square centered on x. The numerator is the difference between the
intensity of the target pixel and the average intensity of its neighbors,
therefore the feature is zero in flat areas of the image and grows larger
in the presence of discontinuities. However, the very same difference
can have a quite different perceptual importance depending on where it
occurs in the image: it can be barely distinguishable in a high intensity
region, and quite significant instead in low-to-medium intensity regions.
This observation is captured by the well-known Weber’s law that states
that the just-noticeable difference between two stimuli is proportional
to the magnitude of the stimuli. In accordance with this principle, this
difference is normalized to the pixel intensity itself.

The angle is quantized uniformly with N1 output levels in the range
[−π, π], while the excitation is quantized non-uniformly, to take into
account the high-dynamics and the unbounded range induced by the
ratio, using a uniform N2-level quantizer in [−π/2, π/2] after an arctan
nonlinearity.

The outputs are then concatenated in a single integer

C(x) = WLD(x) = C1(x)N2 + C2(x) (2.11)

with values in [0, N1N2 − 1]. Typical values are N1 = 8 and N2 = 120,
for a feature vector with length of 960 features.
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The rationale of WLD is to take into account jointly the local ori-
entation of the gradient and the local activity of the neighborhood, in-
voking the Weber law on the psychophysics of vision which states that
the visibility of features depends indeed on the local contrast. It may
be argued that psychophysics is not relevant in machine learning, unless
some model of the human visual system is incorporated in the classi-
fier, but classifying local neighborhoods based on their activity seems
nonetheless a good idea, which enhances the descriptive power of the
gradient, as confirmed by experiments [14, 43].

2.4.5 BSIF

The path followed so far testifies of an intense effort towards the se-
lection of the local features that more compactly and effectively catch
the relevant micro-textural characteristics of the image. In [60] there
is an interesting deviation w.r.t. this path, since the features are not
manually designed anymore, but obtained automatically to satisfy some
desired requirements.

The proposed descriptor, called BSIF (Binarized Statistical Image
Features) keeps the same structure of LBP, with N local features Fi(x),
obtained by filtering the input patch, binary quantized and finally com-
bined into a single scalar C(x). However, the filters themselves are not
known in advance, but designed so us to maximize the statistical inde-
pendence of the outputs Fi(x).

Of course, independent features may be expected to be more infor-
mative than dependent ones. Moreover, they can be quantized indepen-
dently with little performance loss w.r.t. the case of joint quantization.

2.5 Joint Quantization of Features

2.5.1 SIFT, DAISY

The Scale-invariant Feature Transform (SIFT) is one of the most famous
and successful descriptors, used for a variety of computer vision tasks.
As the name suggests, one of its main properties is the scale invariance,
namely, the ability to provide a meaningful description of a region that,
up to a certain extent, remains the same as the scale of observation
changes. A detailed description of SIFT is out of the scope of this work,
we will instead try to convey some very general concepts, fitting in the



20 2. State of the art

Figure 2.4: Examples of different sampling grids: rectangular
grid with bilinear weights (SIFT), polar grid with gaussian weights
(DAISY) and log-polar grid with gaussian weights (SID).

scheme outlined in Fig.2.1, sacrificing precision for the sake of synthesis.
The reader is referred to [78] for more details.

First of all, it is important to note that SIFT has been conceived
originally as a keypoint-based descriptor. By this, we mean that it
tries to characterize each pixel of interest (the keypoints) with a high-
dimensionality feature vector, rich enough to enable the accurate and re-
liable matching of keypoints. Therefore, for each keypoint x, SIFT char-
acterizes a whole subimage centered on x, not just a small neighborhood,
by means of a suitable histogram-based feature vector. To make an ex-
ample with simpler LDs, for each point x one might extract a subimage
centered on x, and compute the corresponding 256-component LBP fea-
ture vector. This would provide a set of local features F1(x), . . . , F256(x)
associated with the point.

In SIFT, this local feature vector is the estimated histogram of the
gradient direction, quantized uniformly to 8 bins in the [0, 2π] range.
This histogram is computed on a very small patch of 4×4 pixels, but
various expedients are taken to smooth it (using a suitable weighting
scheme) and improve its significance [78]. Moreover, to provide also a
spatial characterization of dominant directions around the keypoint, 16
such histograms are actually computed on neighboring patches covering
a total area of 16×16 pixels. All such histograms are concatenated to
form a set of 128 features associated with x.

As said before, armed with such a rich description, one can reliably
match keypoints within a single image (for example, to detect copy-move
forgeries) or across different images (for example to register mosaics of
photos). However, if the goal is to characterize the whole image using
dense SIFT descriptors, computed for all pixels or on a regular sampling
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grid, these local features must be necessarily summarized, before an
histogram can be computed. The typical solution is to resort to the
Bag-of-Words / Bag-of-Features paradigm, that is, more technically, to
the vector quantization of the local features, as shown in the bottom
part of Fig.2.2. Given a training set of SIFT features, large enough
to well represent the source, one can easily design a vector quantizer
that operates jointly on the vector of local features, associating with
each vector the index of the (128-dimensional) cell it belongs to. These
indexes can be regarded as a summary of the rich feature-vector, but
they are scalars, allowing for the computation of the usual histogram-
based feature vector h representing the whole image.

Given the huge success of SIFT a number of descriptors have been
proposed to improve upon it under some respects. One of the most
interesting is DAISY [130], characterized by an efficient computational
scheme, of special interest for use in dense modality, and by a different
organization of the spatial neighborhoods, placed on concentric rings
(from which the name, see also Fig.2.4) rather than on a rectangular
grid, obtaining also a better robustness to rotations.

2.5.2 SID

Just like scale invariance, also rotation invariance can be an important
feature of a descriptor, useful for a number of applications. In copy-
move forgeries, for example, objects are often rotated and resized before
copying, but this should not prevent the descriptor from discovering
similarities. Invariance properties, however, are important also in the
context of image description, as they allow to obtain more compact
and expressive feature vectors, to the benefit of classification accuracy.
These properties are guaranteed to a good extent by the Shift-Invariant
Descriptor (SID) proposed in [64] and refined in [63]. SID has already
proven extremely powerful in such diverse applications as fingerprint
liveness detection [46] and cell classification [51]. We provide here a
brief description of SID, but the reader is referred to [63] for a more
thorough treatment and analysis.

The basic idea is straightforward. Consider two images obtained
from one another through a rigid shift I2(x) = I1(x+∆x) (let us neglect
boundary issues). Their Fourier transforms Î1 and Î2 will be identical
but for a phase term and, therefore, the modulus of the Fourier trans-
form is a shift-invariant representation of an image. However, we are
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not interested in shift-invariance, but rather in invariance to rotations
and rescaling. All we have to do, therefore, is to resample the image
on a log-polar grid around its center (see Fig.2.4), extracting samples
at logarithmic increasing distance from the center along radii with uni-
form angular separation. The modulus of the Fourier transform of this
resampled image will be rotation- and scale-invariant. It is worth under-
lining that, contrary to what happen with SIFT, where the scale must
be estimated in advance, scale invariance in SID is intrinsic and does not
require any further processing. Of course, there are a number of impor-
tant issues to deal with in order to obtain a meaningful and expressive
local descriptor C(x). First of all, the Fourier transform is taken not
on the original image but on directional derivatives. Then, a suitable
adaptive smoothing scheme is necessary to avoid aliasing. Therefore,
the SID descriptor is actually computed through the following steps:

1. log-polar transformation;

2. multiscale smoothing;

3. computation of directional derivatives;

4. 2d discrete Fourier transform.

In the following we will analyze each of these steps.

Log-polar transformation

The log-polar transformation is a non linear and non uniform sampling
of the spatial domain. This mapping is extensively used in image regis-
tration and turns out to be similar to the sampling pattern of the human
visual front-end [115]. Note that this spatial grid has been already used
in [89] to increase robustness and distinctiveness of the SIFT descriptor
and has been shown to give good performance in [141].

The log-polar mapping has the interesting property that rotations
and rescalings relative to the center correspond to mere translations
[75], a feature that will be exploited to build the rotation and scale
invariant descriptor. Samples will be taken around the target point
x = (x1, x2) of the image f along K directions, at angles θ1, θ2, · · · , θK
with θk = 2πk/K and at N distances from the center r1, r2, · · · rN with
ri/ri−1 = ρ > 1. The measures on the sampling grid can be rearranged
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Figure 2.5: Log-polar grid and spatially varying filtering kernels.

using a N ×K matrix:

hx(n, k) = f(x1 + rn cos θk, x2 + rn sin θk)

Multiscale smoothing

In order to avoid aliasing caused by the irregular sampling, it is nec-
essary to remove high frequency components by band-pass filtering the
image before extracting features from it. This is done by using gaussian
filters with spatially varying standard deviations [64, 130], proportional
to the distance from the center of the log-polar sampling grid, σn = αrn,
as shown in figure 2.5. Note that in [74] it is shown that a scale-space
representation can be obtained through convolution with gaussian ker-
nels of different size. Moreover this guarantees that scaling the image
only scales the features and does not distort them in any other way.
Hence:

hx(n, k) = fσn(x1 + rn cos θk, x2 + rn sin θk)

where fσn is the sampled field f smoothed with a gaussian kernel with
standard deviation σn.

Computation of directional derivatives

To compute the descriptor, filtering and sampling operate on directional
gradients, rather than on the original values, as already proposed in
[130] to construct the DAISY descriptor. This is a common practice
when building descriptors to provide invariance to intensity changes.
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Interestingly, this approach is in qualitative agreement with the results
of biological evolution. Neurophysiological studies by have shown that
there are receptive fields in the mammalian retina and visual cortex,
whose measured response profiles can be well modelled by Gaussian
derivatives up to order four [75].

In particular, in [63] directional derivatives are computed with po-
larization, i.e. separating the negative and positive parts. In order to
ensure that image rotation amounts to feature translation directional
derivatives need to be aligned with the ray directions. Hence the direc-
tional derivatives on ray k and scale n are computed for D orientations:
θk,d = 2πk/K + 2πd/D. In addition, since the amplitude of spatial
derivatives decreases with scale, due to the scale-space smoothing, the
output is rescaled by the kernel’s standard deviation [75]:

hd,±x (n, k) = σnf
θd,k,±
σn (x1 + rn cos θk, x2 + rn sin θk)

where (·)± are the operators such that (a)+ = max(a, 0) and (a)− =
min(a, 0), This way, we have now a total of 2D K×N matrices for each
point.

2d discrete Fourier transform

A common problem that emerges in the computation of local descriptors
is the variability of the signal scale. The standard approach to cope
with this is scale selection, which consists in estimating a characteristic
scale and rotation around the few image or shape points where scale
estimation can be performed reliably. The log-polar sampling strategy
allows to construct a descriptor which is invariant w.r.t. rotation and
scaling. This is already done in the context of image registration, but on
a global rather than local scale. Here, due to the time-shifting property
of the Fourier transform, and to the log-polar sampling, by considering
only the amplitude of the Fourier transform we obtain a rotation and
scale invariant descriptor [64, 63]. Actually, thanks to the symmetry
properties of the Fourier transform we can keep only N × (K/2 − 1)
points for each matrix. Concatenating all components in a single vector
will form eventually a local descriptor of dimension DN(K − 2).



Chapter 3

Main contributions

T his chapter describes the main research contributions given in this
thesis work to the liveness detection task. In Sec.3.1 we explore

the use of a Wavelet-Markov descriptor for fingerprint liveness detection,
while in Sec.3.2 show that the simple concatenation of multiple inde-
pendent descriptors can significantly improve upon each of them. This
issue is studied in more depth in Sec.3.3, where a new local descriptor
is proposed based on the joint analysis of suitable elementary features.
Instead in Sec. 3.4 we propose an approach to deal with the iris live-
ness detection on mobile devices. Finally in Sec.3.5 we present a robust
technique based on the SID descriptor and the Bag of Words paradigm,
to deal with different biometric authentication systems spoofing.

3.1 Wavelet-Markov features

Inspired by the work of [55], we compute a local descriptor based on
co-occurrences in the wavelet transform domain. We carry out a three-
level wavelet transform of the original image A0, obtaining a total of
13 subbands, that is, the image A0 itself and, for each level l=1,2,3,
the approximation Al, and the detail subbands, H l, V l and Dl, along
the horizontal, vertical and diagonal directions, respectively, as shown
in Fig. 3.1.

Then, being X any one of the above mentioned subbands, and (i, j)
generic coordinates, we compute a feature vector F for classification by
performing the following processing steps:

1. Xij ←− round(abs(Xij));

25
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2. Rij = Xij − X̂ij ;

3. Rij ←− truncT (Rij);

4. Frs =
∑

X 1(Rij = r,Ri+di,j+dj = s).

As step 4 shows, our local descriptor is based on second-order probabil-
ities (by which the Markov label), estimated by means of co-occurrence
matrices. However, rather than the actual value Xij , we use its residual

(step 2) w.r.t. a suitable prediction X̂ij . Residuals account for local de-
viations from the expected behavior, a much more valuable information
than the original values to detect anomalies. Likewise, we use abs(Xij)
rather than Xij because wavelet coefficients are only weakly correlated,
while their moduli exhibit stronger dependencies. The rounding and
truncation operations serve to limit the number of possibile pairs (r, s),
and hence the feature vector length, equal now to (2T + 1)2.

The feature vector depends on three main quantities, the subband
X, the predictor P , and the displacement (di, dj). We consider co-
occurrences only along adjacent pixels in the horizontal (di = 1, dj = 0)
and vertical (di = 0, dj = 1) directions, since pixels farther apart or
on the diagonal show weaker dependencies. Then, we consider three
classes of predictors, symbolically shown in Fig. 3.1, that account for
dependencies across position (green), scale (red), and orientation (blue).
As an example, the orientation predictor depicted in blue in the figure,
predicts D1

ij from H1
ij , that is, from the same-position pixel taken from

a same-level detail subband having different orientation. By considering
only the simplest combinations of subband, predictor, and displacement,
we end up with 82 feature vectors, each one with (2T + 1)2 Markov
features. Preliminary experiments proved that T=4 guarantees the best
trade-off between performance and complexity, leading to a grandtotal
of over 6000 features.

In this work we use a Support Vector Machine, with a radial basis
functions kernel, as classifier. Given the limited size of the available
training sets we need to reduce the feature vector dimensionality before
performing classification. To this end, we resort to PCA feature re-
duction and choose the number of features that guarantees the smallest
overall classification error by using a cross-validation procedure. In all
cases, less than 100 PCA components were selected.
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Figure 3.1: The pyramid of approximations and details subbands
used in the algorithm. The colored arrows and circles indicate the
various types of dependencies exploited for prediction: across posi-
tion (blue), scale (red), and orientation (green).

3.2 LPQ and WLD concatenation

To perform the fingerprint liveness detection task, we simply extract
from each training fingerprint image its WLD, and then use all such
descriptors to train a linear kernel SVM classifier. In Fig.3.2 the two
fields of the WLD are depicted for a live and a fake samples, while
in Fig.3.3 are shown the respective histograms, spotting a noticeable
difference between the two classes samples in some bins values. This
approach is versatile, indeed we can expand the features used simply
concatenating the corresponding histograms. The performance is then
assessed on some publicly available datasets provided in the context of
the Fingerprint Liveness Detection Competitions LivDet 2009 [85] and
LivDet 2011 [144]. Each dataset is divided into a training set and a test
set in which the evaluation results are obtained. In order to generate
unbiased results, no overlap is present between training and test sets
(i.e., samples corresponding to each user are included in only one of the
sets).

First of all, techniques based on local descriptors outperform most of
the times those based on global features. Among the local descriptors,
WLD appears to be much better than LBP and somewhat better than
LPQ on the LiveDet09 datasets, see also Tab.4.4 in Section 4, but not so
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Figure 3.2: Live (top) and fake (bottom) fingerprints with the
corresponding differential excitation and gradient orientation fields.

on the (more challenging) LiveDet11 datasets, where it performs mostly
on par with the others except for the ItalData set, when it is much worse.
In all cases, the best performance is obtained by using some combination
of local descriptors. On the LiveDet09 datasets it is always the concate-
nation WLD+LPQ while on the LiveDet11 datasets two combinations
are almost equally good, LBP+LPQ and, again, WLD+LPQ. However,
combining multiple local descriptors is not always a good idea, and in
fact the LBP+LPQ combination does not always improve the perfor-
mance of the best of the two, and only slightly when this happens. On
the contrary, the WLD+LPQ combination works always much better
that both WLD and LPQ, indicating that these descriptors must some-
how complement one another, thus greatly improving their discriminat-
ing ability.
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Figure 3.3: Histograms corresponding to the live (top) and fake
(bottom) fingerprints of Fig.3.2

3.3 LCPD

In the previous subsection we analyzed the effect of concatenating sev-
eral descriptors summing up their dimensionality, observing a signif-
icant performance gain [43]. Here, following also [14, 76], we set to
combine individual features so as to exploit their dependencies. Even-
tually, our proposed descriptor is based on a spatial-domain component,
inspired to the homologous component of WLD, and a phase compo-
nent, which is the rotation-invariant version of LPQ, ending up with the
Local Contrast-Phase Descriptor (LCPD) illustrated below. In the next
three subsections we provide details on the two components and on their
combination.

3.3.1 Spatial-domain component

Local descriptors in the spatial domain work typically on the residual
obtained through some high-pass filtering of the image. In fact, informa-
tion on the local image behavior is contained mostly in the variations of
the amplitude, while low-pass trends are of little or no interest and can
be neglected. However, variations with the very same amplitude may
have a very different importance depending on where they occur in the
image: they can be regarded as little more than structured noise in a
high intensity region, and be instead quite significant in low-to-medium
intensity regions. In the context of vision, this observation is captured
by the well-known Weber’s law which states that the just-noticeable
difference between two stimuli is proportional to the magnitude of the
stimuli themselves. This is clarified by the example of Fig.3.4: the local
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Figure 3.4: Importance of contrast. The images show smoothed
sinusoidal patterns with peak amplitude A, over a flat background
with amplitude B. (a) A=25, B=100; (b) A=25, B=200; (c) A=50,
B=200.

sinusoidal pattern is clearly visible in image (a) and barely distinguish-
able in image (b) although variations have the very same amplitude in
both images, with a peak of 25 gray-levels. In (a), however, the contrast
is twice as large as in (b) - 25/100 as opposed to 25/200 - and equal
to the contrast in (c), 50/200. Although Weber’s law has to do with
psychophysics, it is generally true that the contrast, more than the am-
plitude variation itself, conveys valuable information on the local image
behavior. Of course, this is very relevant for the fingerprint case, because
the amplitude properties of the acquired images can change significantly
with the hardware and with the specific acquisition.

This principle is taken into account in the Weber Local Descriptor
(WLD) proposed in [14]. In WLD two complementary pieces of informa-
tion are combined, local contrast ξ(x) and local orientation θ(x). Since
our phase component, described in next subsection, conveys the same
type of information as θ(x), and in a more effective way, we will neglect
this latter in the following.

The local contrast, called differential excitation in [14] writes as:

ξ(x) = arctan

[
1

f(x)

7∑
i=0

(fi − f(x))

]
(3.1)

where f(x) is the value of the image in the target pixel x, while the fi’s
are the values of the neighbors in a 3× 3 patch surrounding x, as shown
below  f0 f1 f2

f7 f(x) f3
f6 f5 f4


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LoG
1

f(x) arctan Q

Figure 3.5: Constrast-based field block-diagram. The image is
LoG filtered and normalized by the value of the central pixel. Fi-
nally the non-linearity is applied and the output is finally quantized.

The summation implements the high-pass filtering, in particular by
means of a 3×3 Laplacian filter. Then the result is normalized to the
intensity of the target pixel to compute the contrast. Due to this normal-
ization, the resulting feature has unbounded range. Therefore to obtain
an integer-valued feature with a finite range, a non-uniform quantization
is needed. In alternative, uniform quantization can still be used after
a suitable non-linear transformation, which is why the arctan operator
is considered. A mid-thread quantizer is used, with an odd number of
levels S, in order to count 0 among the possible output values.

Among the many candidate amplitude components for our descrip-
tor, ξ(x) provided consistently the best performance. The only variation
that provided a significant improvement was the use of a smoothing filter
before the Laplacian, so in the end we used the well-known LoG filter
(Laplacian of Gaussian) as also proposed in [76] with a 5 × 5 window
and σ = 0.5 The optimal value of S changes with the dataset, and is set
through cross-validation on the training set.

3.3.2 Transform-domain component

A fingerprint image can be thought of as a system of oriented textures,
where the gray levels along ridges and valleys can be modeled locally
as a sinusoidal-shaped wave along a direction normal to the ridge ori-
entation, while the ridge frequency varies slowly throughout the image.
The frequency domain is therefore perfectly suited to extract a com-
pact and informative description of a signal that exhibits such a strong
quasi-periodic behavior.

Here, we will resort to the rotation invariant Local Phase Quantiza-
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Figure 3.6: Live (top) and fake (bottom) fingerprints with the
corresponding contrast and quantized phase fields.

tion (LPQri) descripted in section 2.4.3.

3.3.3 Combination

In Fig.3.7 we show the main processing steps of the proposed liveness
detection method. The image under test is analyzed, in parallel, in the
spatial and in the transform domain. For each pixel x two features are
computed, the local contrast ξ(x) and the LPQri(x) feature, called here
φ(x). These couples, collected over the whole image, populate a two-
dimensional histogram LCPD(ξ(x), φ(x)), of dimension S × 256. As a
consequence, the intensity of each cell corresponds to the frequency of a
certain (quantized) contrast-phase couple. All the rows of the histogram
are finally concatenated together to form a 1D-histogram. Fig.3.8 shows
some of the rows of the bi-dimensional histogram, before concatenation.
Since the overall dimensionality is typically too large to obtain good
results, a feature selection block follows. The usefulness of the feature
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Frequency descriptor
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Spatial descriptor

2D histogram

Live

Fake

Features

selection

Figure 3.7: LCPD block-diagram.

selection will be experimentally evaluated in the next Section. Eventu-
ally, the output feature vector is fed into a SVM classifier with a linear
kernel which makes the decision.

In Fig.3.6 we show ξ(x) and φ(x) for a live (up) and a fake (bottom)
fingerprint. Despite the low quality of these images, corrupted also by a
significant noise, the fields of features appear to capture quite accurately
the relevant features of these images.

3.4 LBP from the residue image

Nowadays mobile devices are equipped with biometric authentication
systems which should protect sensible data, like for example contacts and
private photo or, more important, personal credentials for bank account.
In particular a reliable and low-cost solution could be to exploit the front
camera sensor for iris recognition, avoiding additional hardware needed
for fingerprint scanning. However a robust liveness detection system is
necessary to protect such data from any person who can gain access to
someone else’s mobile device.
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Figure 3.8: Histograms corresponding to a live (top) and a fake
(bottom) fingerprints.

3.4.1 Local Binary Patterns for mobile devices

In order to build a very-low complexity iris liveness detector, suitable
for implemention on a mobile device, we rely on the LBP descriptor.
LBP encodes the information on the variations of intensity occurring
between the image pixels and their neighbors. In more details, for each
target pixel, x, P neighbors are sampled uniformly on a circle of radius
R centered on x. These neighbors are then compared with x, taking
only the sign of the difference, and forming thus a vector of P binary
values, which is eventually converted to an integer. In formulas,

LBPP,R(x) =
P−1∑
i=0

u(xi − x) 2i

where xi is the i-th neighbor of x, and u(t) = 1 when t ≥ 0 and 0 other-
wise. The resulting feature provides information on the level of activity
in the target-pixel area. By scanning the whole image, a field of integers
is obtained, which is then summarized by a histogram, accounting for
the frequency of occurrence of each feature. The parameter P controls
the quantization of the angular space, while the radius R determines the
spatial resolution of the operator. With R = 1, considering P = 4 and
P = 8, we obtain the first two configurations shown in Fig.3.9. Note
that, since the neighbors are located on a circle surrounding the target,
they do not always correspond to actual pixel values (see the diagonal
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Figure 3.9: Some neighborhood systems used by LBP. The first
two configurations are circular symmetric, with R=1 and P=4 (left)
and with R=1 and P=8 (center). In the second case some neighbors
(red) do not correspond to actual pixels and must be computed
by interpolation. The last configuration does not exhibit circular
symmetry but does not require interpolation.

neighbors in the central configuration of Fig.3.9), in which case they
must be computed by interpolation.

When P is large (fine angular resolution) the resulting feature vector
has a considerable length. Besides the increased complexity, this fact
implies that many patterns occur very rarely in the image, and their
frequency of occurrence is an unreliable feature. Therefore, to improve
performance, some more compact versions of LBP have been proposed.
The circular symmetry allows for the definition of a rotation invariant
version of the descriptor [102], recalled by the superscript ri

LBPriP,R(x) = minn∈{0,...,P−1}

P−1∑
i=0

u(xi − x) 2[(i+n)modP ]

Since each rotation-invariant pattern corresponds to several original pat-
terns, this new descriptor is more compact than the original one, and
can be more accurately characterized. Moreover, in [102] it was also ob-
served that the so called uniform patterns, LBPu2P,R(x), characterized by
just two transitions, from 0 to 1 and back, account for the vast majority
of occurrences in natural textures. For a given value of P , only P + 1
uniform and rotation-invariant patterns exist, as opposed to a total of
2P generic patterns. Keeping only such patterns, and pooling all the
remaining ones in a “left-over” pattern, leads to a very compact and
reliable image descriptor.

Besides these basic descriptors, with fixed R and P , in [102] a mul-
tiscale version of LBP was also proposed, using various (R,P ) combi-
nations, (1, 8), (2, 16), and (3, 24), and uniform and rotation-invariant



36 3. Main contributions

patterns, for a feature vector of length 54. Likewise, in the vast litera-
ture on LBP, a number of more complex variants have been proposed,
not considered here for brevity.

3.4.2 Emphasizing local patterns

When trying to design highly discriminative features for a given ap-
plication, it is very important to have a good statistical model of the
images of interest and, especially, to work in the most appropriate do-
main. Once in these favourable conditions, one can effectively look for
the distinctive features that enable a reliable classification. This general
rule certainly applies to the iris liveness detection case. To gain insight
about this, Fig. 4.5 shows three live iris images and the correspondent
fakes taken from the MobBIOFake Database [116]. It should be clear
that telling apart lives from fakes in this original domain is not a trivial
task.

Working on the original intensity images might actually hide dis-
criminative local alterations, preventing correct classification. Ways to
improve the discrimination ability of LBP have been proposed in [151]
and [148], where the local descriptor is computed on the magnitude
and phase, respectively, of some Gabor filter outputs. In [152] LBP
is computed after applying a Sobel filter along the vertical and hori-
zontal directions in order to better enhance the edge information. The
conjecture at the basis of such variants is that high-order derivative fea-
tures contain more detailed and more discriminative information. This
concept is well formalized in [147], through the use of local derivative
patterns (LDP). LDP can capture the change of derivative directions
among local neighbors, obtaining a better performance w.r.t. LBP, at
the price of a higher complexity. In particular, the nth-order LDP is a
binary string describing, through co-occurrences, the local behavior of
(n − 1)th-order directional derivatives. Since there are several possible
directions to take into account, the resulting code is 32 bit long for each
pixel.

Similar ideas are used in steganalysis where a message hidden in the
image data must be detected. In this context, features are extracted
after some form of high-pass filtering, since fine details hold most of the
information of interest. Typically, the low-pass content is suppressed by
means of a predictor [32, 155, 109], obtaining the so-called prediction-
error image, or also residual image, which can be more easily modeled
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Figure 3.10: Live (left) and fake (right) iris images from the Mob-
BIOfake database (top), with the corresponding residual images
(bottom).
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Figure 3.11: Block-diagram for the feature extraction step of the
proposed method.

and analyzed. In [35] a large number of filters, of different order and
dimension, are tested for this task. The same approach has been also
used for camera identification [142] and forgery detection [18], confirming
that working on fine details of images is extremely promising.

It is fair underlining that the use of some high-pass versions of the
image has been already considered in biometric spoofing detection. In
[92], for example, in the context of fingerprint liveness detection, a de-
noised version of the image is subtracted from the original one, and the
variance of the noise residual in detail wavelet subbands is computed as
a measure of coarseness, and used for classification. Since a very simple
denoising filter is used, this noise residual does not differ much from the
prediction residuals considered in the previous cases, containing high-
frequency signal components useful for detection. Similarly, in [38] the
majority of features proposed for iris liveness detection are evaluated on
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the difference between the input image and a smoothed version. Local
descriptors, however, hold a much stronger description power with re-
spect to features computed globally, as proven by the technique recently
proposed in [45], working on wavelet-domain residuals like [92] but pro-
viding a much better performance. It is worth pointing out that the use
of residuals to help in distinguishing microstructures has been also used
in other research fields like in [118] for material recognition.

Fig.3.10 provides some immediate insight on the value of the residual
image. A live and a fake iris are shown together with their image resid-
uals. While the original images do not exhibit striking differences, the
live residual is much richer of details than the fake residual, suggesting
that classification must be viable in this domain. One must therefore
rely of fine-grain details, seemingly invisible alterations of the natural
characteristics of the image, in order to detect the attack.

3.4.3 Liveness detection algorithm

Following the above discussion, the proposed algorithm comprises three
steps:

1. computation of the high-pass image residual;

2. feature extraction based on a suitable LBP descriptor;

3. classification through SVM with a linear kernel.

We selected LBP as our basic tool because of its high descriptive
power (confirmed by preliminary experiments) and, not least, its limited
hardware requirements, in terms of both CPU and memory. LBP is
computed on the residual obtained by means of a very simple high-pass
filter already successfully used in steganalysis [61, 35]. In particular,
w.r.t. the 3× 3 neighborhood of the target pixel x shown below x0 x1 x2

x7 x x3
x6 x5 x4


the residual r is computed as

r = x− 1

2

∑
i odd

xi +
1

4

∑
i even

xi
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To avoid fractional coefficients, all quantities are actually multiplied by
4.

Note that, while LBP encodes first-order spatial variations computed
on two-pixel supports, the use of a preliminary high-pass filters amounts
to considering higher-order statistics computed on a larger support, as
shown in the example below w.r.t. the main diagonal difference

0 −1 2 −1
1 0 −3 2
−2 3 0 −1

1 −2 1 0


Turning to LBP, in order to meet the complexity constraints im-

posed by mobile devices, we use two simplified configurations which
avoid interpolation, the only step requiring floating point operations,
and hence the most onerous of the whole feature computation. In par-
ticular, we consider either only the 4-connected {x1, x3, x5, x7} or all the
8-connected {x0, . . . , x7} neighbors. Therefore, in the first case we sam-
ple the angular space quite roughly, and in the second case renounce rig-
orous rotation invariance. Despite the seemingly crude simplifications,
the experimental analysis presented in next Section will fully support
these choices.

Finally, we used a properly trained support vector machine (SVM)
with a linear kernel for the actual classification. The overall procedure
is outlined pictorially in Fig.3.11.

3.5 SID and Bag-of-Features

Bag of Words model (BoW) has shown its superiority over many con-
ventional global features for image classification. The idea underlying
BoW was originated by text classification [129] where the frequency of
words was used as a feature for training a classifier. In this context the
BoW is a set of words belonging to different topics. Given a text one can
count the occurrence of each word in the BoW, obtaining the histogram
of the BoW which features the text under examination. Texts that deal
with different topics result in very different distributions that can tell
them apart.

This approach has been then successfully used in image processing,
since images can be treated as texts and thus words are represented by
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image patches. To define words it is necessary to extract a vector of
features from a large set of patches. These local descriptors are then
clustered into groups, for example by using k-means, and each group is
then represented by a centroid, the codeword, that now acts as a word.
Finally, the image is represented by the histogram of these codewords.
Each patch of the image under test is compared with those of the BoW to
find the most similar one, in terms of Euclidean norm, thus incrementing
the respective bin of the histogram of the BoW. This is equivalent to
count the amount of patches belonging to each of the clusters defined
from the BoW.

A first technique of this kind was proposed for the task of image re-
trieval [154]. Following this approach, however the same object may not
be recognized in different images due to some changes in visualization
like scaling or rotation. For this reason later works exploit local descrip-
tors which are robust with respect to such visualization changes. The
approch, sometimes named Bag of Features, works on local descriptor of
the patch instead of the patch itself to build up the BoW and to compute
the distribution that characterizes each image. This approach was first
exploited for texture classification [136] in which the local descriptors are
the response of a filter bank. For each texture class the author compute
10 centroids via k-means algorithm to build up the BoW and then the
classification is obtained comparing the BoW histogram of the image un-
der test with the ones obtained from the training images. More recently,
numerous [techniques/variants] have been proposed with the aiming of
improving performance with respect to the basic approach. Main contri-
butions of the scientific community are in two different ways: to improve
local features, so as to achieve better local description of the image, or
to improve global image features, overcoming the limits of the vector
quantization.

Among recent local descriptors, those extracted on keypoints (e.g.
SIFT [78]) are gaining more relevance for various computer vision appli-
cation, such as object recognition, image retrieval or 3D reconstruction.
This due to the fact that keypoints are able to catch the global appear-
ance of the images. This allows us, for example, to recognize an object
in different images taken from various points of view. However, in our
application we aim to classify very similar images (e.g. live and fake ac-
cess attempts) based on fine details that make the difference. Therefore
we compute the local descriptors in a dense fashion for all the pixels of
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the image. Then we resort to a global descriptor of the image using the
BoW histogram with a learned vector quantization, in fact the BoW is
computed each time from the training data, so that the classifier can
better adapt to the specific data.

Among the dense descriptors recently proposed, SID [63] exhibits in-
variance to rotation and scale change and is computed in a very efficient
way. For this reasons we adopted the SID features in the BoW envi-
ronment. We have adopted this approach for the liveness detection ap-
plication [44, 46], achieving both effectiveness and robustness. However
the success of this approach is strictly related to the data. To correctly
compare the histograms one should be sure that each sub-histogram
contains information about the same part of the images. This means
that same part of the images should appear in the same sub-regions of
the partition, thus the images should be co-registered. Moreover, in our
application the discriminant information between live and fake class is
in the relationship between adjacent pixels, that is the same in all the
regions of the image.

For these reasons, in [68] the authors propose to partition the image
in regions with finer resolution and to compute sub-histograms of BoW
for each of this region, thus keeping spatial information in the global
image descriptor. A similar approach has been already proposed in [120].
In [135] it is shown that a soft-assignment of the vector to the more
similar elements of the BoW can improve performances with respect
to the classical hard-assignment (vector quantization). For each feature
vector of the image under test we obtain a vector of weights representing
the similarity with each element of the BoW. We have adopted this
approach in [51] for image classification task. More recently [146, 139]
new techniques have been proposed to compute this weights in the sparse
representation domain, further increasing the descriptive power.





Chapter 4

Experimental results

I
n this Chapter we present the results of several experiments carried
out to assess and compare the methods discussed so far on several

liveness detection tasks. To show the generality of the proposed ap-
proaches based on local image descriptors, we also present the results for
a cell images classification application. Software code is available online
for all considered descriptors (see Tab.4.23), except for the comparisons
with state-of-the-art approaches (whose performance results are drawn
by the referred papers) present in the top part of each table. Experi-
ments are carried out on publicly available datasets so as to guarantee
fully reproducible research. Since we aim at comparing the discrimi-
native power of the various descriptors, we fix all other experimental
conditions, accepting also a possible (slight) impairment of performance
w.r.t. the implementation used in the original paper. So, we use al-
ways a linear SVM classifier, which does not require parameter tuning,
and avoid any feature selection procedure. No preliminary segmentation
step is applied to fingerprint, finger veins and iris images for the two-
class classification task of the liveness detection, where the background
is very specific and constant, and can be assumed not to modify the
relevant statistics. On the contrary, we propose a segmentation tech-
nique to exploit sclera information for the three-class lens classification
task which significantly improves performances w.r.t. the state of the
art. Segmentation is explicitly required also for one of the face datasets
(Replay-Attack) to avoid biases, and a mask of size going from 64×64
to 80×80 pixels, including the face, is provided with the images. There-
fore, we used segmentation also for the other available dataset (3DMAD)

43
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building a square mask including the face, based on the position of the
eyes, provided with the images. Finally, we use K-means clustering with
Euclidean distance for the joint quantization of features (300 clusters
for each class when not specified), although the use of more advanced
techniques [13] appears as one of the most promising topics for future
research.

All results for two-class classification problems are in terms of Half
Total Error Rate, HTER = (FGR+FFR) / 2, where FGR[FFR] is the
False Genuine[Fake] Rate, that is the percentage of fake[genuine] sam-
ples mis-classified as genuine[fake]. For multi-class classification prob-
lems we report per class Accuracy and the mean accuracy among classes.
For some challenging cases we also plot the Receiver Operating Curves
(ROC) in order to gain better insights into the relative performance
and robustness of descriptors. Finally, we provide some hints on com-
putational complexity through CPU-times, instead a deeper complexity
analysis is presented for application on mobile devices for which this
aspect is crucial.

4.1 Fingerprint

Datasets description

For fingerprint images, performance has been tested on several datasets
made available in the context of the LivDet 20091 [85], LivDet 20112

[144] and LivDet 20133 [40] competitions. For this last dataset we avoid
using the Crossmatch dataset, since as explicitly said on the web-site it
was affected by an acquisition problem and cannot be used for assessing
the performance of a liveness detection algorithm.

All datasets, whose characteristics are summarized in Tab.4.1 - 4.3
respectively, comprise disjoint training and test sets. They differ from
one another under many respects, number of subjects and samples, sen-
sor (hence, image size and resolution), number and type of materials
used for spoofing and, most important, modality of fingerprint repro-
duction, consensual (with the cooperation of the user) or not. Clearly,
the consensual modality allows for better fakes, and hence is more chal-
lenging for the liveness detection module. This can be also appreciated

1http://prag.diee.unica.it/LivDet09/
2http://people.clarkson.edu/projects/biosal/fingerprint/index.php
3http://prag.diee.unica.it/fldc/
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DATASET LivDet2009

Scanner Biometrika CrossMatch Identix

Model No. FX2000 V300LC DFR2100

Res. (dpi) 569 500 686

Image size 312x372 480x640 720x720

Live Samples 1986 4000 3000

Fake Samples 1986 4000 3000

Total subjects 50 254 160

Materials 1 3 3

Co-operative Yes Yes Yes

Table 4.1: Characteristics of the datasets used in LivDet2009.

DATASET LivDet2011

Scanner Biometrika Italdata Sagem Digital Persona

Model No. FX2000 ET10 MSO300 400B

Res. (dpi) 500 500 500 500

Image size 312x372 640x480 352x384 355x391

Live Samples 2000 2000 2000 2000

Fake Samples 2000 2000 2000 2000

Total subjects 200 92 200 82

Materials 5 5 5 5

Co-operative Yes Yes Yes Yes

Table 4.2: Characteristics of the datasets used in LivDet2011.

in Fig.4.1, which shows live and fake samples drawn from two con-
sensual (Biometrika-2009 and Biometrika-2011) and a non consensual
(Biometrika-2013) datasets. In the first two cases, live and fake samples
are much more similar to one another. Another important aspect which
impact the quality of the fake images is the type of material used, due
to this we will present a per-material performance analysis.
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DATASET LivDet2013

Scanner Biometrika Italdata Swipe

Model No. FX2000 ET10 -

Res. (dpi) 569 500 96

Image size 312x372 480x640 1500x208

Live Samples 2000 2000 2500

Fake Samples 2000 2000 2000

Total subjects 50 50 100

Materials 5 5 4

Co-operative No No No

Table 4.3: Characteristics of the datasets used in LivDet2013.

Figure 4.1: Some examples of live (up) and fake (down) finger-
prints coming from Biometrika for the three databases used.
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Reference Biometrika Crossmatch Identix

position 10.33 3.58 0.36

scale 14.94 11.80 1.78

orientation 5.42 6.65 0.76

position+scale 9.86 2.92 0.33

position+orientation 5.12 3.43 0.29

scale+orientation 7.98 5.48 0.62

all (proposed) 5.36 2.82 0.33

Table 4.6: Results on LivDet2009 for the wt-Markov feature
using PCA and RBF kernel SVM. Different contributions of the
features are reported.

Experimental results

Numerical results are reported in Tab.4.4. For each descriptor we pro-
vide a reference, either the paper where it was first used for liveness
detection or, when this never happened, the paper where it was orig-
inally proposed. We also report two examples of features concatena-
tion, namely LBP+LPQ and WLD+LPQ, combining complementary
information of local texture analysis and local phase of the image in a
straightforward manner. Together with the error rate, we show the rank
observed for each dataset. This is important when we consider averages,
in the last columns, because the average error rate depends very much
on the most challenging datasets, while the average rank is more robust
to outliers. In addition, we mark with a star the best result and all re-
sults with a statistically insignificant (p = 0.05) difference with respect
to it. External performance references are given by the winner of the
competition (first row), by two techniques not based on local descriptors
[84, 38], by one using a variant of SIFT and HOG [42] and by the CNN
technique proposed in [97], and based, like [90], on the implementation
of [15], but tested on all datasets. Note that some of these algorithms
provide results only for one of the available datasets, hence some data
are missing. Of course, in some cases the experimental protocol differs
from ours. For example, to further reduce the error rate, [97] uses PCA
for feature reduction and non-linear SVM for classification.

A first remark concerns the very good performance of LD-based tech-
niques in general. Most descriptors guarantee an average error rate be-
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Figure 4.2: ROCs for the Italdata 2011 dataset.

low 10%, and three of them below 5%. The large gap w.r.t. the winner of
the 2009 and 2011 competitions testifies on the great advances observed
in this field in the last few years, mostly due to the use of local descrip-
tors. LCPD provides the best average performance and the best average
rank, although results are slightly worse than in the original paper [47]
where feature selection is also used. This is even more relevant for wt-
Markov features, in fact in the original paper [45] PCA is adopted to
dramatically reduce the features dimensionality from 6000 to less then
100, then an RBF kernel SVM is trained. For comparison, we report
in Tab.4.6 the original paper results for each features configuration and
the final proposed approach. LCPD was developed explicitly for this
biometric traits, trying to capture its peculiarities through dedicated
expressive features. The good discriminant power of those local fea-
tures, based on local contrast and phase, is confirmed by the runner-up
that is the concatenation of WLD and LPQ. Nonetheless, the unspecific
SID follows very closely, showing the importance of invariance properties
and the adaptivity of the BoW approach. Fourth comes BSIF, suggest-
ing that adaptive filters can provide a further boost. Putting together
the best peculiarities of these approaches is not easy, but certainly an
interesting avenue for next research. In Fig.4.2 we show the ROCs of the
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descriptors for the very challenging Italdata-2011 dataset, which shows
SID to provide not only a good but also robust performance.

In order to gain a deeper insight on the influence of each material
used to create the spoofed fingerprint, in Table 4.5 we present the total
number of errors, aggregated over all descriptors, for each of the material
used in Livedet2011 and Livedet2013 datasets. Note that each dataset
includes 200 fakes for each type of material except Swipe where the
number is 250. It appears that fakes made of silicone seem easier to
detect, while those made of gelatin pose a more severe threat to the
system. Note, however, that there is also a strong dependence on the
specific sensor as well as on the type of spoofing (consensual or not). For
example, with the same sensor and the same material, errors increase
dramatically if the procedure is consensual.

4.2 Finger Veins

The vulnerability of finger vein recognition to spoofing attacks has
emerged as a crucial security problem in the recent years mainly due
to the high security applications where this technology is used.

Among all biometric technologies, finger vein recognition is a fairly
new topic, which utilizes the vein patterns inside a person’s finger. This
technology is widely used in the financial sector for its intrinsic robust-
ness to spoofing attack. The fact that the vein pattern used for identifi-
cation is embodied inside the finger prevents the data to be easily stolen,
contrary to face that can be captured with a camera or fingerprints
that can be collected from latent prints. However, acquiring images
of finger vein patterns is not impossible. In fact recent works shown
that finger vein biometrics is vulnerable to spoofing attacks, pointing
out the importance to investigate counter-measures against this type of
fraudulent actions. The goal of the 1st Competition on Counter Mea-
sures to Finger Vein Spoofing Attacks is to challenge researchers to cre-
ate counter-measures effectively detecting printed attacks. The submit-
ted approaches have been evaluated on the Spoofing-AttackFinger Vein
Database and the results are presented in [131].
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Figure 4.3: Some examples of live (up) and corresponding
printed fake (down) finger veins images. The leftmost are ex-
tracted from the full subset, while the rightmost came from the
cropped subset.

Dataset description

The Spoofing-Attack finger vein database4 [132] consists of 440 index
finger vein images of both real-access and attacks attempt to 110 differ-
ent identities. The total number of images in the database is 880 (240
in the training set, 240 in the development set and 400 in the test set.)
It is important to highlight that clients that appear in one of the data
sets (train, dev or test) do not appear in any other set. The established
protocol assert to use the training set in order to train the anti-spoof
classifier and the development set for threshold estimation. Finally, the
test set was used to report the final performance. The competition
were split into 2 different sub-tasks according to the visual information
available: full printed images and cropped images. Two live samples
and their correspondent fakes are shown in Fig.4.3. This classification
scheme makes-up a total of two protocols that can be used for studying
the performance of counter-measures to finger vein attacks. Both full
and cropped protocols are designed to use prior information based on
trained classifiers or non trained approaches where the decision is taken
based just on the input.

4https://www.idiap.ch/dataset/fvspoofingattack
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Experimental results

We propose two different approaches to handle cropped and full images,
both based on the use of local descriptors.

For cropped images we extract the LBP [102] over residual (high-
pass version) of the image with 3× 3 integer kernel as described in [48],
in order to improve the discrimination ability of LBP and better explore
the image statistics. In particular, for a 3 × 3 neighbourhood of the
target pixel x shown below: x0 x1 x2

x7 x x3
x6 x5 x4

 (4.1)

the residual r is computed as:

r = x− 1

2

∑
i odd

xi +
1

4

∑
i even

xi (4.2)

To avoid fractional coefficients, all quantities were multiplied by 4.
Note that, while LBP encodes first-order spatial variations computed on
two-pixel supports, the use of a preliminary high-pass filters amounts to
considering higher-order statistics computed on a larger support. LBP
is then evaluated on the residual image r by considering 8 neighbours
sampled uniformly on a circle of radius 1. The resulting vector is formed
by 256 features. For full images indeed we used the concatenation of Lo-
cal Phase Quantization (LPQ) [41] and Weber Local Descriptor (WLD)
[14]. Since these two descriptors extract information on the patch in dif-
ferent domains we complement one another and can give better results
in terms of discrimination ability [43]. The resulting combined vector is
formed by 1,216 features.

Finally, for both the approaches we train an SVM with linear kernel
as classifier.

Results of the contest are shown in Tab.4.7, where is indicated with
GRIP-PRIAMUS the team name for the proposed approach. Perfor-
mances are evaluated in term of HTER and, in case of a tie, decidability
d′, a measure of the classes separability, that is defined as:

d′ =
|µ1 − µ2|√
1
2

(
σ21 + σ22

) (4.3)
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The results are compared with a baseline approach, a texture-based
algorithm implemented in Python5 that exploits subtle changes in the
finger vein images due to printed effects computing a global feature in the
frequency domain. To recognize the static texture, the Fourier Trans-
formation is extracted from the raw image after applying an histogram
equalization. Then the percentage of energy in a vertical subband, that
is weakly manifested in fake images, is computed obtaining a score in
[0, 1].

For full protocol, 3 over 4 approaches (including the proposed one)
reach perfect performances, however the baseline one achieves best de-
cidability among the participants. Meanwhile the crop protocol seems
to be a harder task to address, indeed only the proposed approach still
achieves perfect performances. In particular the baseline achieves worst
performances in this case, showing also the weakness of global features
in certain cases. Please refer to [131] for a more detailed performances
analysis.

Team Protocol
Development Test

FAR FFR HTER d’ FAR FFR HTER d’

Baseline

Full

0.00 0.00 0.00 9.75 0.00 0.00 0.00 11.17
GUC 0.00 0.00 0.00 5.46 0.00 8.00 4.00 4.47

CVSSP 0.00 0.00 0.00 9.05 0.00 0.00 0.00 8.06
GRIP-PRIAMUS 0.00 0.00 0.00 11.10 0.00 0.00 0.00 8.03

Baseline

Cropped

4.17 40.83 22.50 1.58 11.00 30.00 20.50 1.82
GUC 0.00 0.00 0.00 5.09 1.50 4.00 2.75 3.81

CVSSP 0.00 0.00 0.00 6.68 0.00 2.50 1.25 5.54
GRIP-PRIAMUS 0.00 0.00 0.00 6.28 0.00 0.00 0.00 5.20

Table 4.7: Results of the 1st Competition on Counter Measures
to Finger Vein Spoofing Attacks for the development set and
the test set. The proposed approach, namely GRIP-PRIAMUS,
reach perfect classification performances on both databases. For
the full, best performances in terms of decidability are obtained
from the baseline, while for the cropped database the proposed
approach ranks first.

5https://pypi.python.org/pypi/antispoofing.fvcompetition icb2015
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4.3 Iris

Biometric authentication systems, based on fingerprints, face, iris, or
other distinctive traits, provide security with little involvement on part
of the user [134]. Iris-based systems [79, 25, 8], in particular, are very
popular thanks to their high reliability in both identification and veri-
fication tasks. The iris pattern is unique for each individual, even for
identical twins, and so rich of distinctive features that a casual wrong
identification is rarely observed. Moreover, as an internal organ of the
eye, the iris is well protected from the environment and stable with age
[24].

However iris scanning authentication systems are not free from at-
tack. Two different spoofing approaches are possible: those based on a
printed version of the iris image or using contact lens to modify the iris
pattern of the subject.

Datasets description

For iris liveness detection we follow the same experimental protocol used
for fingerprints, so we point out, here, only significant differences. the
most important being the spoofing modality, which can be based on
printed iris images or cosmetic contact lenses.

There are two datasets available for the first type of attack, ATVS6

[113] and Warsaw7 [20]. In the same category we find two datasets
acquired using mobile devices: MObBioFAKE8 [117] and MICHE [28]
dataset. Even very simple descriptors, suitable for an implementation
on mobile devices, provide a perfect accuracy on these datasets [48]. Due
to this here we do not report the performances of all the descriptors for
these latters datasets.

ATVS database has been created using iris images from 50 users
of the BioSec baseline database. After a preprocessing, the images are
printed on a piece of paper and then presented at the iris sensor, ob-
taining the fake image. The authors accurately control the quality of
the fake samples exploring a wide range of settings including two dif-
ferent printers, various paper types and a specific enhancement of the
image before the print. Therefore, data for the experiments consists of

6http://atvs.ii.uam.es/
7http://people.clarkson.edu/projects/biosal/iris/registration.php
8http://mobilive2014.inescporto.pt/
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100 distinct eyes acquired in two different sessions for a total of 800 iris
images, and its corresponding printed fakes.

Similar acquisition procedure has been carried out for the Warsaw
database. The data was collected for 237 volunteers for a total of 426
authentic eyes, ending up with 1274 images. Based on all authentic im-
ages, the authors prepared the printouts and then checked their fraud-
ulent power in a commercial ET-100 camera, thus discarding those fake
images exhibiting poor quality. The printouts that passed the verifica-
tion step successfully, were then photographed by the AD100 camera.
The total number of printout images is 729 acquired from 243 distinct
eyes and partitioned into “low resolution” printouts prepared with the
HP LaserJet 1320, and “high resolution” printouts, prepared with the
Lexmark c534dn.

The MobBIO Multimodal Database [116] comprises biometric data
from 100 volunteers, each one contributing 16 images (8 of each eye).
The samples were acquired by an Asus Transformer Pad TF 300T, using
the back camera, version TF300T-000128, with 8 MP of resolution and
autofocus. The iris images, of size 250×200 pixels, were captured in very
different conditions in order to consider a large variability of scenarios.
The MobBIOfake dataset [117] is composed by 800 iris images from
MobBIO and their corresponding fake copies, and is already divided
into a training and a test set, each composed by 400 live images and
400 fake ones. The fakes were obtained from printed images of the
original ones. A contrast enhancement was applied to improve their
quality, then the images were printed using a professional printer and
high quality photographic paper and eventually acquired using the same
portable device and in similar lighting conditions as the original ones.
Examples of iris images belonging to this dataset and the relative fake
images are shown in Fig.4.5.

In the MICHE dataset described in detail in [28] we considered two
different type of attacks: printed-iris images and screen-iris ones. In par-
ticular, by referring to the first scenario 75 subjects participated to the
test for a total of 338 live iris images of dimension 4128×2322 pixels ac-
quired by a Samsung Galaxy S4, forty of these images were then printed
on a high-quality device and used as fakes to test the system. Besides
the printed-iris attack, explicit object of this investigation, we consid-
ered also another scenario to gather some information on robustness,
where the attack is carried out by presenting the iris image reproduced
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on the screen of an iPad-mini with a 1024 × 768 pixel resolution. For
this scenario we collected 640 fake and 640 live images of dimension
3264 × 2448 pixels by means of an iPhone 5. Examples of iris images
belonging to this dataset and the relative fake screen images are shown
in Fig.4.6.

Four datasets are instead relevant to the second type of attack,
Notredame9 I and II, and IIIT10 Cogent and Vista. Images of irises
with soft contact lenses are considered as genuine, because the iris pat-
tern is still visible through the lenses, enabling correct identification.
Those datasets will be used also in the next Section with the aims of
detect the specific contact lens in a three-class classification problem.

The Notredame Contact Lens Detection database is divided into two
datasets. Dataset I consists of a training set of 3000 images and a ver-
ification set of 1200 images, all acquired with an LG 4000 iris camera.
Instead dataset II consists of a training set of 600 images and a ver-
ification set of 300 images, all acquired with an IrisGuard AD100 iris
camera. Both datasets are divided equally into three classes:

1. no contact lenses,

2. soft, non-textured contact lenses,

3. textured contact lenses.

In particular, textured contact lenses of various colors and coming
from three different suppliers are represented. Moreover for each image
a manual segmentation of the iris region is provided. Samples images
are shown in Fig.4.13.

The IIIT-D Contact Lens Iris database is divided into two dataset
captured using two iris sensors: Cogent dual iris sensor (CIS 202) and
VistaFA2E single iris sensor. For each subject, images without lens,
with soft lens, and with textured lens are captured. The database is
comprised of 6570 iris images pertaining to 101 subjects (both left and
right eyes). Like Notredame dataset, contact lenses of various colors and
different manufacture are represented. The database contains a mini-
mum of three images for each iris class in each of the above mentioned
lens categories for both the iris sensors.

9http://www3.nd.edu/ cvrl/CVRL/Data Sets.html
10https://research.iiitd.edu.in/groups/iab/irisdatabases.html
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DATASET Warsaw ATVS

Printers (dpi) HP LaserJet 1320 (600) HP Deskjet 970cxi (600)

Lexmark c534dn (1200) LaserJet 4200L (1200)

Camera IrisGuard AD100 LG Iris Access EOU3000

Image size 480x640 480x640

Live Samples 1274 800

Fake Samples 729 800

Total subjects 237 50

Total Eyes 243 100

Table 4.8: Characteristics of printed iris datasets.

DATASET MobBIOFake MICHE MICHE

Attack type Print Print iPad mini screen

Camera
Asus Transformer Samsung S4

iPhone 5
Pad TF 300T iPhone 5

Image size 250x200 4128x2322 3264x2448

Live Samples 800 338 640

Fake Samples 800 40 640

Total subjects 100 75 75

Total Eyes 200 150 150

Table 4.9: Characteristics of printed iris datasets.

The reader can refers to [143] for a detailed description of Notredame
and IIIT-D datasets. Information on all these datasets is provided in
Tab.4.8 - 4.10, while Fig.4.4 - 4.7 show examples of live and fake images
obtained from both printed irises or cosmetic contact lenses.

Notredame, Warsaw and MobBIOfake datasets are already divided
in training and test sets, hence we made a two-fold cross validation both
on Cogent and Vista and on ATVS, so as to compare our results with
[38]. Instead for MICHE dataset, due to the low amount of fake printed
samples, we performed a leave-one-out per subject cross-validation pro-
cedure.
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DATASET ND-I ND-II Cogent Vista

Camera LG 4000 IG AD100 CIS 202 VistaFA2E

Image size 480x640 480x640 480x640 480x640

Live Samples 2800 600 2306 2010

Fake Samples 1400 300 1160 1005

Total subjects 213 69 101 101

Total Eyes 287 89 202 202

Lens Manifactur. 3 3 2 2

Lens Colors 4 4 4 4

Table 4.10: Characteristics of contact lens iris datasets.

Figure 4.4: Some examples of live (up) and printed fake (down)
iris images coming from ATVS and Warsaw.

Experimental results

Numerical results are reported in Tab.4.11. In this case, SID is by
far the best descriptor, ranking often first, and proving hence to work
well with different biometric traits (note that it has been also used for
contact-lens iris classification giving again very good performance [44]).
The fingerprint-specific LCPD, however, keeps providing a good per-
formance, probably because of deep structural similarities between the
discriminative micro-textures found in fingerprint and iris images. In
general, it seems that printed irises can be reliably recognized as fakes by
SID and some other descriptors. Cosmetic contact lenses, as expected,
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Figure 4.5: Some examples of live (top) and fake (bottom)
printed iris images coming from MobBIOfake database.

pose more serious problems, especially for the IIT datasets. In Fig.4.8
we show the ROC curves for the Cogent dataset, with SID consistently
superior to all other descriptors.

Experimental results for mobile devices application

For the application over mobile devices, the proposed approach [48]
performances has been assessed using ad-hoc datasets previously pre-
sented. In this Section we analyze the performance of a number of
LBP-based image descriptors over several image databases used in the
iris liveness detection field. We consider the three neighborhood sys-
tems of Fig.3.9, that is circular (identified with symbol o), cross (+),
and square (2), always with R = 1. For each one, we consider the ba-
sic (basic), rotation-invariant (ri), uniform (u2) and rotation-invariant
uniform (riu2) features. As said before, we neglect all complex LBP
variants, with the only exception of the multiresolution (MR) LBP on
circular neighborhoods, with rotation-invariant uniform (riu2) features,
included for comparison.

Results for MobBIOfake database for all considered LBP-based de-
scriptors are reported in Tab.4.12 in terms of Half Total Error Rate
(HTER). For each descriptor, we consider two versions, with features
computed on the original, and on the residual images. From the anal-
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Figure 4.6: Examples of live (top) and fake (bottom) screen iris
images from MICHE database.

ysis of results, two facts emerge clearly: i) descriptors computed on
the original images do not provide a satisfactory performance, and ii)
almost all descriptors computed on residuals provide a near-perfect per-
formance. However, it seems advisable not to use the rotation-invariant
uniform features which, though very short, lead to some performance
impairment. Looking for the best descriptor, in these conditions, is
meaningless, since all those with an average error below 0.48 (marked
with a star) are statistically indistinguishable (p < 0.05). Several of
these descriptors compute very fast, and are therefore very appealing
for implementation on a mobile platform.

To gain insight about the absolute significance of these results,
Tab.4.13 reports the performance obtained by the methods participating
in the 1st Mobile Iris Liveness Detection Competition on the same test
set (MobBIOfake) used to obtain the results shown in Table 4.12. Only
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Figure 4.7: Some examples of live (up) and contact lens fake
(down) iris images coming from Notredame, Cogent and Vista.

% N.dame I N.dame II Cogent Vista Warsaw ATVS average

IQA-based [38] (-) (-) (-) (-) (-) 2.2 (-) (-)

CNN [90] (-) (-) (-) (-) *0.2 (-) (-) (-)

LBP 3.6 (11) 2.8 (6) 20.6 (10) 8.9 (10) 1.9 (5) *0.0 (1) 6.3 (7.2)

CoA-LBP 0.8 (8) 3.3 (8) 9.9 (2) *1.9 (1) 26.9 (11) *0.0 (1) 7.1 (5.2)

Ric-LBP 2.6 (10) 9.3 (11) 14.5 (5) 3.6 (5) 4.6 (7) *0.0 (1) 5.8 (6.5)

WLD *0.0 (1) 3.0 (7) 32.9 (11) 10.0 (11) 10.1 (9) 0.5 (11) 9.4 (8.3)

LPQ 0.4 (7) 2.0 (4) 16.4 (7) 7.0 (8) 1.4 (4) *0.0 (1) 4.5 (5.2)

BSIF *0.0 (1) 2.5 (5) 17.9 (9) 4.5 (6) 23.1 (10) *0.0 (1) 8.0 (5.3)

LCPD *0.1 (4) *0.8 (3) 11.0 (3) *3.1 (3) 7.1 (8) *0.0 (1) 3.7 (3.7)

Keypoint SIFT 1.8 (9) 4.8 (10) 15.1 (6) 5.6 (7) 2.0 (6) *0.1 (1) 4.9 (6.5)

Dense SIFT *0.2 (6) 3.5 (9) 13.9 (4) *2.5 (2) 0.5 (2) *0.0 (1) 3.4 (4.0)

DAISY *0.0 (1) *0.5 (2) 17.2 (8) 8.8 (9) 0.9 (3) *0.1 (1) 4.6 (4.0)

SID *0.1 (4) *0.0 (1) *6.2 (1) 3.5 (4) *0.0 (1) *0.0 (1) 1.6 (2.0)

Table 4.11: Performance comparison for iris images. The best
result on average is reported in bold. * denotes a statistically
significant difference (p < 0.05) with respect to the runner-up.

the two best ranking methods are comparable with the residual-based
LBPs considered here. We also include, as a very recent literature ref-
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Figure 4.8: ROCs for Cogent dataset.

on image on residual
LBP desc. FGR FFR HTER FGR FFR HTER

o-basic 9.25 0.25 4.75 0.00 0.00 *0.00
o-ri 8.75 0.75 4.25 0.00 0.00 *0.00
o-u2 11.25 0.75 6.00 0.25 0.25 *0.25
o-riu2 18.50 1.00 9.75 1.50 1.75 1.63

2-basic 3.50 0.25 1.88 0.00 0.00 *0.00
2-ri 17.00 1.75 9.38 0.00 0.00 *0.00
2-u2 5.75 0.25 3.00 0.25 0.25 *0.25
2-riu2 29.00 3.75 16.38 3.00 1.00 2.00

+-basic 26.25 2.00 14.13 0.00 0.25 *0.13
+-ri 30.25 3.50 16.88 1.00 0.50 0.75
+-u2 27.00 3.25 15.13 0.00 0.00 *0.00
+-riu2 30.25 3.50 16.88 1.00 0.50 0.75

MR-riu2 8.50 0.25 4.38 0.50 0.00 *0.25

Table 4.12: Performance of LBP descriptors on MobBIOfake.

erence, the technique proposed by [38], which does not provide better
results.

These data, although encouraging, should be taken with caution. Of
course, results may depend on the type of attack and on the experimental
conditions, so we proceeded to experiments with two more datasets to
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FGR FFR HTER

1st (IIT Indore) 0.00 0.50 *0.25

2nd (GUC) 0.00 0.75 *0.38

3rd (Federico II) 0.00 1.25 0.63

4th (LIV-IC-UNICAMP) 2.00 0.50 1.25

5th (IrisKent) 3.75 0.25 2.00

6th (HH) 7.00 29.25 18.13

Galbally 2014 2.25 0.25 1.25

Table 4.13: Performance of methods participating in the 1st
Mobile Iris Liveness Detection Competition.

HQ print screen
LBP desc. FGR FFR HTER FGR FFR HTER

o-basic 0.00 0.00 *0.00 0.16 0.00 0.08
o-ri 0.00 0.00 *0.00 0.31 0.16 *0.23
o-u2 0.00 0.00 *0.00 0.31 0.00 *0.16
o-riu2 0.00 0.00 *0.00 0.94 0.00 *0.47

2-basic 0.00 0.00 *0.00 0.16 0.00 *0.08
2-ri 0.00 0.00 *0.00 0.31 0.00 *0.16
2-u2 0.00 0.00 *0.00 0.31 0.00 *0.16
2-riu2 0.00 0.00 *0.00 4.22 0.47 2.34

+-basic 0.00 2.50 1.25 3.28 0.31 1.80
+-ri 0.00 2.50 1.25 8.13 3.44 5.78
+-u2 0.00 0.00 *0.00 3.44 0.31 1.88
+-riu2 0.00 2.50 1.25 8.13 3.44 5.78

MR-riu2 0.00 0.00 *0.00 0.31 0.16 *0.23

Table 4.14: Performance of residual-based LBP descriptors on
MICHE.

study robustness to changing conditions.

Results for MICHE dataset are reported in Tab.4.14 considering now
only the residual-based descriptors. They mostly confirm what was al-
ready observed for the MobBIOfake database, except for the descriptors
with cross configuration, which now performs a little bit worse than the
others. In any case, several simple residual-based LBP descriptors guar-
antee a near-perfect detection, even for the case of screen-based attack
which, however, is a more challenging task.
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4.4 Contact lens classification

A weak point of iris-based system is the use of contact lenses, widespread
among users, which affects the performance of recognition systems. The
impairment is quite significant in the case of cosmetic lenses, charac-
terized by a colored iris pattern, however it may be not negligible also
for transparent lenses, as recently shown in [3]. To guarantee the best
possible performance, therefore, it is important to detect whether the
user wears contact lenses, and of which type, colored or transparent.

We propose a new machine-learning technique for detecting the pres-
ence and type of contact lenses in iris images. Following the usual
paradigm, we extract the regions of interest for classification, compute
a feature vector based on local descriptors, and feed it to a properly
trained SVM classifier. Major improvements w.r.t. current state of the
art concern the design of a more reliable segmentation procedure and
the use of a recently proposed dense scale-invariant image descriptor.
Experiments on publicly available datasets show the proposed method
to outperform significantly all reference techniques.

Introduction

Most of the research on contact lens classification topic is focused on
colored lenses, starting from the pioneering work of Daugman in 2003
[24] where printed irises are detected based on the periodicities left by
the dot-matrix printers used to fabricate them. However, approaches
based on the low quality of fakes become soon ineffective as technology
advances. Recent successful approaches are based therefore on local de-
scriptors, which are extremely effective for the analysis of microtextures,
because they capture the fine-scale statistical behavior observed locally
in small patches of the image. Indeed, the iris, with its complex struc-
ture, provides abundant textural information to exploit for classification
purposes.

In [140] different measures are proposed: iris edge sharpness, iris-
texton features based on Gabor filters and features based on co-
occurrence matrix. Local binary patterns (LBP), extracted at multiple
scales, are instead used in [54], while in [150] the SIFT descriptor is used
to guide the LBP encoding procedure after a preliminary denoising. In
[124] dense SIFT descriptors are used starting from the gradient image.
Variants of LBP are adopted again in [143] for the full 3-class problem:
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no-lenses, colored lenses, transparent lenses.

Besides the specific descriptor used, these techniques differ signifi-
cantly in the pre-processing phase, typically involving a segmentation
step, designed to select one or more regions of the eye image where rele-
vant information can be extracted, and to discard data of no diagnostic
value. In [140] and [124] the features are extracted only from the iris
region, resampled in polar coordinates (a process called normalization
in this field) so as to deal with more manageable rectangular images. In
[54] the normalized iris is divided into six-subregions, corresponding to
different scales of observation and orientation, computing and concate-
nating features for each region. In [150], instead, no normalization is
applied, in order not to distort the original patterns, and features are
computed in a square region bounding the iris, thereby including part of
the sclera. The importance of collecting information also from the sclera
and the pupil regions is explicitly recognized in [143] where, after nor-
malization, LBP features are extracted independently from all regions
and concatenated. [143] is especially valuable also because the Authors
describe some iris image databases available online to asses the perfor-
mance of competing techniques, establishing thus a solid experimental
protocol.

In this section, therefore, we consider [143] as our main reference,
dealing with the same 3-class problem, and keeping the same general
framework based on segmentation and local descriptors. With respect
to [143], however, our algorithm differs under several important respects:
we use a real segmentation algorithm, that excludes eyelids and avoids
normalization, taking into account only information belonging to the iris
and part of the sclera; then, we replace LBP with the more sophisticated
scale-invariant descriptor (SID), recently proposed in [63], and already
applied with success to several classification problems [46, 44, 51], finally,
we use the more effective Bag of Words (BoW) paradigm. Experimental
results on the same datasets used in [143] confirm the superior perfor-
mance of the proposed method.

In the rest of the section we describe the proposed segmentation,
local descriptor, and classification procedure. Then we provide experi-
mental evidence of the method’s performance, and draw conclusions.
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a b c
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Figure 4.9: Steps of the segmentation algorithm: (a) original
image, (b) median filtering, (c) edge detection, (d) iris boundaries
detection, (e) eyelids detection, (f) sclera regions identification.

Segmentation

The goal of our segmentation algorithm is to extract the iris and the
sclera regions, which both convey precious information for the classifica-
tion task. To this end, we aim at identifying the iris-sclera and iris-pupil
circular boundaries, and then the boundaries with the upper and lower
eyelids.

Our algorithm is inspired in the recent work of [114], based on the
Circular Hough Transform (CHT) [5]. Given the well-defined structure
of the regions of interest, [114] follows a parametric approach, where a
circle of suitable center and radius is fit to the each boundary of interest,
partially detected by means of an edge detection step. In our implemen-



68 4. Experimental results

Figure 4.10: Regions used for classifications: (a) ideal iris, (b)
detected iris, (c) detected sclera, (d) detected iris+sclera.

tation, as in [114], we adopt the well-known Canny edge detector [9].
Preliminarily, however, we apply a large-window median filter on the
image, so as to flatten out the iris pattern while preserving the strong
iris-sclera and iris-pupil edges, thereby preventing the detection of use-
less edges in the region of interest. When looking for iris boundaries, we
assign larger weights to vertical edges than to horizontal ones, in order
to de-emphasize the edges related to upper and lower eyelid boundaries.

The core of the algorithm is in the Circular Hough Transform, which
outputs a 3d matrix of coefficients, C(x, y, r), where x and y are image
coordinates and r a distance. The value of C(x, y, r) says how well the
detected image edges are matched by a circle with center (x, y) and
radius r. Therefore, the largest values in this matrix should correspond
to the desired circular structures.

Needless to say, due to noise and occlusions, false alarms may oc-
cur. To reduce them, one can make a judicious use of the available
prior information. First of all, assuming that the images are acquired in
controlled conditions, with the pupil pretty well centered (which holds
for our datasets), or that they are centered afterwards through some
simple pre-processing, the CHT coefficients can be safely multiplied by
Gaussian weights w(x, y) which penalize circles centered in the periph-
eral areas of the image. A more important point, however, and major
difference of our algorithm w.r.t. [114], is that we look jointly for the
two iris boundaries, that is, we try to identify two concentric circles,
the iris-pupil and the iris-sclera boundaries, with significantly different
radii. Although this condition might not fully hold, because pupil and
iris can happen not to be perfectly concentric, this approach allows us to
avoid most false alarms because we look for a very particular structure
which can hardly arise due to spurious detected edges. For each candi-
date center (x, y), we look for the two largest maxima of C(x, y, r) along
the radius coordinate r, with the further constraint that the selected
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radii, r1 < r2, are at least ∆r pixels apart. Eventually, we appoint as
center of iris and pupil the pixel for which the sum of these two values
is maximum.

The localization of upper and lower eyelid boundaries is performed
following closely the approach in [114], to which the reader is referred for
details. In particular, in this case, the horizontal edges are emphasized,
and the results obtained by the iris boundary detection are used to help
localizing the upper and lower eyelids. Finally, to single out a significant
portion of the sclera, a further ring concentric with the first two is built,
with radius r3 = αr2, and α > 1. The region delimited by the circles of
radius r2 (outer iris boundary) and r3 is then intersected with the region
between the two eyelids. All these processing steps are summarized in
Fig.4.9, while Fig.4.10 shows, for a typical test image, the various regions
of interest and the ideal segmentation accompanying the image in the
annotated database. It can be easily appreciated that the detected iris
region is very close to the ideal segmentation.

Segmentation accuracy can be assessed by computing the F-measure
between the detected region and the ideal circular ring provided with
the dataset

F =
2 TP

2 TP + FP + FN
(4.4)

where TP, FP and FN are, respectively, the true positive, false positive
and false negative pixels in the detected mask. We set segmentation
parameters as r1 ≥ 30, r2 ≤ 210,∆r ≥ 25 and α = 4/3. In Fig.4.11 we
show the histogram of the F-measures obtained for the NotreDame II
dataset with the proposed algorithm (red bars). For almost all images
the F-measure is very close to 1 (perfect segmentation), while errors
rarely occur. On the contrary, the algorithm of [114] is affected by
frequent errors, and the corresponding histogram (blue bars) is generally
shifted towards smaller values of F-measure.

In this work we will adopt the Scale-invariant descriptor (SID) [63]
previously described in Sec.2.5.2. In Fig.4.12 a block-scheme of the patch
processing that yields to the global image descriptor is depicted.

Experimental results

To perform the classification task we considered the Bag of Words (BoW)
model. The idea underlying BoW was originated by text classification
where the frequency of words was used as a feature. This approach



70 4. Experimental results

Figure 4.11: Histograms of F-measure values obtained with
the proposed and reference segmentation algorithm on the
Notredame II database.

has been then successfully applied to the image processing field. To
define words in this context it is necessary to extract suitable features
associated with each pixel or patch. These local descriptors are then
clustered, for example by using vector quantization, and each cluster
is then represented by its centroid, the codeword, that now acts as a
visual word. Finally, the image is represented by the histogram of these
codewords. In our implementation, for each of the three classes, 200
codewords are computed for a total of a 600 dictionary elements.

We extracted the feature vectors for each pixel in the previously
segmented regions, i.e. iris or sclera, where information about the lens
may be present. These features are then vector quantized using the
partitions defined by the dictionary, obtaining the histogram used as
input of the SVM linear classifier.

The performance of the proposed method has been assessed on the
publicly available datasets described in [143], we refer to that paper
for their thorough description, reporting here only the characteristics
of interest for the experiments. In particular, the NotreDame-I and II
datasets are provided with an ideal segmentation of the iris, which is not
available for the IIIT-D Cogent, and IIIT-D Vista datasets. Moreover,
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Figure 4.12: Feature extraction procedure. For each patch,
four directional derivatives are computed on each point of the
log-polar sampling grid, then four 2d Fourier transforms are com-
puted, whose absolute values represent the local feature vector;
this is vector quantized, and the histogram of the quantization
indexes over the whole image forms the final feature vector.

the NotreDame datasets are divided explicitly in training and test sets,
while the other do not present such separation, in which case we use
two-fold cross validation in the experiments.

We consider three classes: no-lens, colored-lens and transparent-lens
(some examples are shown in Fig.4.13), however, for uniformity with
[143], in the tables we use the symbols N, for no-lens, S, for soft (that is
transparent) lens, and T, for textured (that is, colored) lens. For each
experiment, we compute the confusion matrix with generic entry Pr(i|j),
the probability to decide for class i given that the sample belongs to class
j. However, for brevity, we report in the tables only the diagonal entries,
that is, the probability of correct decision for each class, together with
their average.

Tab.4.15 reports the results obtained with the proposed algorithm
and various choices of the region where the SID feature is computed:
whole image with no segmentation, iris with the ideal segmentation
provided with the datasets (only for the ND datasets), iris with real
segmentation, sclera with real segmentation, iris and sclera with real
segmentation. The textured lenses are detected in all cases with very
high accuracy, with very limited dependence on the region used for SID.
In the other cases, instead, the performance varies significantly with the
region, and the sclera seems to be extremely important for a correct
detection. Nonetheless, the joint use of iris and sclera provides a further
gain in performance, up to 3 percent points. Using only the iris, instead,
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Figure 4.13: Examples of iris with no lense (left), cosmetic lens
(middle) and transparent lens (right).

leads to much worse performance. Notice that the ideal and real seg-
mentation of the iris lead to very similar results, confirming the quality
of our segmentation algorithm.

In Tab.4.16 we show again the performance of the proposed algo-
rithm in its best configuration (iris+sclera) in comparison with the state-
of-the-art methods proposed in [143], using plain LBP descriptor [101]
and two ad hoc variations of it, LBP+PHOG (Pyramid of Histograms
of Orientation Gradients) [7] and mLBP, which is the multiscale version
of LBP. The proposed method guarantees always the best average accu-
racy, with a gain with respect to the best competitor which exceeds 10
percent points on the average.

4.5 Face

Datasets description

Research on face liveness detection is definitely less mature than in
the two preceding fields. Among the available databases we used the
3DMAD dataset11 [31], based on wearable 3d masks, and the Replay-
Attack dataset12 [16], that considers printed and screen based fakes
(made by mobile phones or tablets). Moreover, each attack subset can
be sub-classified in two different groups based on the strategy used to
hold the attack replay device: hand-based or fixed-support. Details on
the datasets are provided in Tab.4.17, and examples of live and fake
samples are shown in Fig.4.14. The Replay-Attack database comprises
three separate subsets for training, development and testing, which we
used following the protocol suggested in [16]. For 3DMAD, instead, we

11http://www.idiap.ch/dataset/3dmad
12http://www.idiap.ch/dataset/replayattack
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Dataset Class Image Ideal Iris Sclera Iris + Sclera

NotreDame I

N-N 78.00 86.00 85.50 93.50 95.75
T-T 100.00 99.75 100.00 99.00 99.75
S-S 61.75 71.75 67.25 77.50 84.00

Avg. 79.92 85.83 84.25 90.00 93.17

NotreDame II

N-N 71.00 66.00 60.00 84.00 79.00
T-T 98.00 98.00 99.00 99.00 99.00
S-S 53.00 49.00 63.00 71.00 78.00

Avg. 74.00 71.00 74.00 84.67 85.33

Cogent

N-N 62.43 - 66.72 81.85 79.80
T-T 93.13 - 95.63 87.06 95.54
S-S 58.02 - 59.57 76.46 76.29

Avg. 71.19 73.97 81.79 83.88

Vista

N-N 68.65 - 64.88 88.98 87.77
T-T 95.29 - 99.19 96.19 98.59
S-S 65.56 - 58.95 85.91 82.99

Avg. 76.50 74.34 90.36 89.78

Table 4.15: Classification accuracy of the proposed algorithm
as a function of the region where the feature vector is computed.

performed a leave-one-out per subject cross-validation as in [31]. Re-
call that the protocol for Replay-Attack requires to consider a small
region cropped from the face (of dimension 64×64 to 80×80 pixels), and
we used this procedure for 3DMAD as well, to avoid biases (note that
otherwise almost all the descriptors give a perfect detection).

Experimental results

Results are reported in Tab.4.18. In this case we do not report average
values, which have a limited significance for just two datasets. However,
CoA-LBP appears as the best descriptor, in this case, followed by SID
which can be therefore considered a robust and discriminative descriptor
for biometrics spoofing. It is also clear that the Replay-Attack database
is more challenging, calling for the use of temporal information, as al-
ready done in [66] and in [108], where the average error reduces to 5.1
and 7.6, respectively. In Tab.4.19 we show also the results obtained by
considering individually each type of attack (printed, and screen based
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Dataset Class LBP LBP+PHOG mLBP Proposed

NotreDame I

N-N 70.00 81.25 85.50 95.75
T-T 97.00 96.25 96.50 99.75
S-S 60.15 65.41 45.25 84.00

Average 75.73 80.98 75.58 93.17

NotreDame II

N-N 42.00 42.00 81.00 79.00
T-T 100.00 96.00 100.00 99.00
S-S 54.00 60.00 52.00 78.00

Average 65.33 66.00 77.67 85.33

IIITD Cogent

N-N 65.53 59.73 66.83 79.80
T-T 89.39 91.87 94.91 95.54
S-S 42.73 52.84 56.66 76.29

Average 66.40 68.57 73.01 83.88

IIITD Vista

N-N 53.37 49.49 76.21 87.77
T-T 98.64 99.42 91.62 98.59
S-S 50.90 59.32 67.52 82.99

Average 68.04 69.84 80.04 89.78

Table 4.16: Classification accuracy of proposed and reference
techniques on the available databases. Best results in bold.

DATASET 3D-MAD Replay-Attack

Camera Microsoft Kinect Apple Macbook

Image size 480x640 240x320

Live Samples 1700 3787

Fake Samples 850 11869

Total subjects 17 50

Frames per video 10 15

Table 4.17: Characteristics of 3DMAD and Replay-Attack
datasets.

on mobile and high-definition tablets). Besides CoA-LBP and SID, also
basic LBP performs well on these more homogeneous data. The high-
definition images captured with the tablets represent clearly the most
difficult dataset to deal with.
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Figure 4.14: Some examples of live (up) and fake (down) im-
ages coming from 3D-MAD database (left) and Replay-Attack
database (right).

4.6 Cells classification

This work deals with the design of a classification method for cells ex-
tracted from Indirect Immunofluorescence images. In particular, we pro-
pose to use a dense local descriptor invariant both to scale changes and
to rotations in order to classify the six categories of staining patterns
of the cells. The descriptor is able to give a compact and discrimina-
tive representation and combines a log-polar sampling with spatially-
varying gaussian smoothing applied on the gradients images in specific
directions. Bag of Words is finally used to perform classification and
experimental results show very good performance.

Introduction

Indirect Immunofluorescence (IIF) images are generated by the interac-
tion of biological tissue with special sources of light in order to generate
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% 3DMAD Replay-Attack

IQA-based [38] 15.2 (7)

LBP 1.4 (8) 12.8 (4)

CoA-LBP *0.0 (1) *9.4 (1)

Ric-LBP *0.2 (4) 14.7 (6)

WLD 5.2 (11) 17.5 (10)

LPQ 4.7 (10) 21.7 (11)

BSIF *0.0 (1) 12.6 (3)

LCPD 2.1 (9) 14.0 (5)

Keypoint SIFT 0.3 (5) 25.2 (12)

Dense SIFT *0.0 (1) 17.0 (8)

DAISY 0.4 (6) 17.2 (9)

SID 1.4 (7) *10.5 (2)

Table 4.18: Performance comparison for face images. The best
result is reported in bold. * denotes a statistically significant
difference (p < 0.05) with respect to the runner-up.

a fluorescent image responses. It is commonly used to diagnose autoim-
mune diseases by identifying specific patterns created by Anti-Nuclear
Antibodies (ANAs) in the patient serum. Due to its effectiveness in the
recent years the demand of diagnostic tests for systemic autoimmune dis-
eases has rapidly increased. Currently the classification of the staining
patterns is based on visual inspection by physician, however it is time-
consuming and highly dependent on the analyst experience. It would be
desirable to automate the process, but a comprehensive computer-aided
diagnosis system for IIF is not yet available [34].

The recent contest on cells classification has given a strong impulse
in the development of effective and specific algorithms for the recogni-
tion task of Human Epithelial type 2 (HEp-2) cell patterns [34, 33]. In
particular, several works rely on the use of local descriptors, like the
well-known local binary pattern (LBP) [102] (or its variants) and the
SIFT descriptor [78]. This is the case for example of [123] where these
descriptors are both used and combined with other ad hoc ones, or of
[128] where the Co-occurrence of Adjacent LBP (CoALBP) has been
considered in combination with SIFT. It is worth noting that CoALBP
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% Replay-Attack

Type Printed Mobile HighDef

IQA-based [38] 7.9 3.2 *12.1

LBP *2.8 *0.6 *13.4

CoA-LBP *3.5 1.6 *13.9

Ric-LBP 4.3 2.5 16.3

WLD 5.5 4.6 20.2

LPQ 8.5 9.3 23.1

BSIF *2.9 1.6 17.2

LCPD 4.3 4.5 16.0

Keypoint SIFT 14.6 23.9 26.8

Dense SIFT *3.9 4.9 18.9

DAISY 5.9 15.1 33.2

SID *3.5 5.4 *14.1

Table 4.19: Results on Replay-Attack database considering in-
dividually the different types of attack. The best result is re-
ported in bold. * denotes a statistically significant difference
(p < 0.05) with respect to the runner-up.

was used by the top competitor of the contest [34]. Indeed, this ap-
proach was improved in [98] where a rotation invariant co-occurrence
among adjacent LBPs (RiC-LBP) is proposed. In this way it is possi-
ble to deal with local image rotations. Indeed, constructing a rotation
invariant descriptor seems to be desirable, as also noted in [119], where
a rotationally invariant feature is proposed.

In this paper we follow this same path by resorting to a dense scale
and rotation invariant descriptor [63]. This descriptor shares some com-
mon characteristics with the DAISY descriptor [130], like the use of an
irregular grid and convolutions of the gradients in specific directions with
spatially varying filters. The main difference lies essentially in the use
of the Fourier transform amplitude to obtain a scale and rotation invari-
ant descriptor. This approach was already used by the same Authors
in [64], where the SID descriptor was proposed. It is worth nothing
that there is an interesting similarity between the construction of the
descriptor proposed in [63, 130] and the biological vision. In fact, as
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(a) Centromere (b) Homogeneous (c) Nucleolar

(d) Speckled (e) NuMem (f) Golgi

Figure 4.15: Examples different staining patterns.

stated in [74] the scale-space representation, which is built by convo-
lution with a family of Gaussian kernels and derivatives of increasing
width, closely resemble receptive field profiles registered in neurophysi-
ological studies of the mammalian retina and visual cortex. Note that,
even if this descriptor is not specifically designed for the problem of IIF
image classification, performance measured in terms of the mean-class
accuracy are very good.

In the following section we will describe the dense local descriptor
while in section 3 we will show the experimental results and make some
comparison with recent state-of-the-art approaches. Finally, section 4
draws conclusions.

Experimental results

Bag of Words model (BoW) has shown its superiority over many con-
ventional global features for image classification, hence we used it in this
context.
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For the descriptor used in this work we set α = 0.14, N = 16 rays,
K = 10 rings and D = 4. This setting turns out to be a good compro-
mise between performance and computational complexity (note that the
feature extraction can be computed very efficiently [130]). In this way
we obtain eventually a local descriptor of length 560. We computed the
euclidean distance between this feature vector (truly we extracted the
feature vectors inside the segmentation map) and the 600 codewords of
the dictionary to build the histogram that will be the input of the SVM
linear classifier.

The proposed approach has been tested on the dataset provided by
the ICPR 2014 contest13 both for task1 and for task2. Task 1 is devoted
to cell level classification. In particular, it consists of 13596 images for
the training phase coming from 419 patient positive sera and catego-
rized by trained physicians into six patterns: centromere, homogeneous,
nucleolar, speckled (coarse and fine), nuclear membrane and golgi. An
example of staining pattern for each class is shown in Fig.4.15. Task
2, instead, considers the problem of specimen level classification. It
was collected from 1001 patient sera with positive ANA test and each
specimen image belongs to one of the following pattern classes: homo-
geneous, speckled, nucleolar, centromere, golgi, nuclear membrane and
mitotic spindle. All experimental results are reported in terms of Mean
Class Accuracy (MCA):

MCA =
1

K

K∑
k=1

CCRk =
1

K

K∑
k=1

TPk
TPk + FNk

, (4.5)

where K = 6 is the number of classes, CCRk is the correct classification
rate for the class k that is defined as the ratio between True Positive
samples of the class k (TPk) and the total amount of samples of that
class computed here as the sum of True Positive and False Negative
sample (TPk + FNk). In Fig.4.16 the average features vectors (i.e. the
histograms of BoW) for each staining pattern are shown, proving the
good discriminant power of the proposed features.

In Table 4.21 we report the classification results for phase 1 ob-
tained with the technique based on the rotation and scale invariant de-
scriptor on the training set by performing a leave-one-out per subject
cross-validation procedure. The confusion matrixs for phase 1 and 2

13http://i3a2014.unisa.it/
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Figure 4.16: Examples of Bag of Words average histogram per
cells staining patterns (from up to down): centromere, golgi, ho-
mogeneous, nucleolar, nuclear membrane, speckled. The BoW
is composed using 100 centroid for each class. The average his-
tograms show a good discriminant power of the features, indeed
for each class it is possible to note an high value of the histograms
for those bins corresponding to the same class and low values for
the others. However we note a partial overlap between classes
Homogeneous (blue) and Speckled (magenta).

are shown respectively in Tab.4.20 and Tab.4.22 and shows a very high
correct classification rate (CCR) for all classes. Only for the Golgi cells,
belonging to the less represented staining pattern, there a significant er-
ror, nearly 35%, mostly due to wrong classification as Nucleolar cells. A
certain amount of misclassification errors involve class Homogeneous and
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% Centr. Homog. Nucleolar Speckled Nuc. memb. Golgi

Centr. 82.96 0.11 3.21 13.46 0.04 0.22

Homog. 0.04 82.04 1.40 14.39 1.80 0.32

Nucleolar 2.08 1.31 92.42 2.04 0.81 1.35

Speckled 12.33 12.36 3.60 70.79 0.60 0.32

Nuc. memb. 0.00 4.62 0.77 0.59 92.93 1.09

Golgi 0.41 4.97 20.72 3.45 4.97 65.47

Table 4.20: Confusion matrix for the proposed algorithm (cell
level classification). The final result is the recall mean value and
is equal to 81.10%.

% Centr. Homog. Nucleolar Speckled Nuc. memb. Golgi avg

[102] LBP 73.73 48.32 49.58 37.69 59.78 1.93 45.17

[102] LBPri-MR 76.80 61.03 64.67 51.18 74.50 14.09 57.04

[98] RiCLBP 80.04 70.41 70.21 65.77 76.90 26.10 64.91

[78] SIFT 84.82 79.47 84.57 72.55 88.95 41.16 75.25

[130] DAISY 76.43 72.09 77.29 64.11 81.75 54.42 71.02

Proposed
w/o invariance

84.13 76.02 88.99 68.24 88.32 62.98 78.11

Proposed 82.96 82.04 92.42 70.79 92.93 65.47 81.10

Table 4.21: Comparison of the proposed approach with other
state-of-the-art descriptors.

Speckled, accordingly to the average features vectors shown in Fig.4.16.
The reader can refers to [77] for a detailed performances analysis.

However, looking at the results provided by a number of other de-
scriptors, reported in table 4.21, it is clear that recognizing the Golgi
cells is an intrinsically difficult task, and the proposed descriptor works
indeed much better than all the competitors gaining about 10% points
over DAISY and more than 20% over SIFT. Also for several other classes
of cells (e.g. Nucleolar, Nuclear membrane) a significant improvement
is observed, leading to an average performance gain going from 6%
over SIFT to about 35% over LBP. Note that also for SIFT (computed
densely) and DAISY we use exactly the same strategy of classification
by means of BoW, while for LBP and its variants a linear SVM.
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% Centr. Homog. Nucleolar Speckled Nuc. mem. Golgi Mit. sp.

Centr. 98.04 0.00 0.00 1.96 0.00 0.00 0.00

Homog. 0.00 83.02 0.00 9.43 0.00 0.00 7.55

Nucleolar 0.00 2.00 96.00 0.00 0.00 0.00 2.00

Speckled 1.92 9.62 0.00 86.54 0.00 0.00 1.92

Nuc. mem. 0.00 4.76 0.00 0.00 90.48 0.00 4.76

Golgi 0.00 0.00 0.00 0.00 0.00 100.00 0.00

Mit. sp. 0.00 26.67 0.00 6.67 13.33 0.00 53.33

Table 4.22: Confusion matrix for the proposed algorithm (spec-
imen level classification). The final result is the recall mean value
and is equal to 86.77%.

To study the importance of scale and rotation invariance, the table
shows also the results obtained avoiding the last step which gives the
invariance property. Results are very good also for this solution, but
scale and rotation invariance properties guarantee an extra gain of 3%
point. Note that also the rotation invariant and multiresolution version
of LBP (LBPri-MR) [102] has a significant again over the basic solution,
and RiCLBP [98] further improves.

In addition, for the proposed descriptor we considered a different
BoW cardinality for each class, and in particular 200 for Centromere
and Nuclear membrane, 100 for Nucleolar and Speckled, and 50 for Golgi
and Homogeneous. Since soft-assignment can improve performance, as
shown in [135], we followed this path by considering gaussian weights.
Using the described approach we were able to obtain a mean class ac-
curacy of 81.76 % on the training set.

Finally, in Table 4.22 we report the results obtained for specimen
level classification. Although they are very promising (MCA is equal to
86.77 %), we have not yet optimized the method for this second task,
and we expect to obtain further improvements.

4.7 Complexity

In Tab.4.23 we report the average CPU-time observed on a desktop
computer for the feature extraction and coding phases of the various
descriptors considered. These numbers must be taken with more than a
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descriptor size feature extraction time coding time implementation

LBP 54 0.001 0.39 Matlaba

CoA-LBP 3072 0.041 0.14 Matlabb

Ric-LBP 408 0.116 0.26 Matlabb

WLD 960 1.502 1.31 Matlaba

LPQ 256 1.507 0.03 Matlaba

BSIF 4096 0.027 0.02 Matlabc

LCPD 2304 1.621 2.19 Matlabd

Keypoint SIFT 600 0.735 0.07 Ce

Dense SIFT 600 0.794 0.72 Ce

DAISY 600 0.984 1.16 [Matlab / C]f

SID 600 0.918 3.26 [Matlab / C]g

ahttp://www.cse.oulu.fi
bhttp://www.cvlab.cs.tsukuba.ac.jp/∼nosaka
chttp://www.ee.oulu.fi/∼jkannala/bsif/bsif.html
dhttp://www.grip.unina.it
eVLFeat toolbox, version 0.9.18 [138]
fhttp://cvlab.epfl.ch/software/daisy
ghttp://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html

Table 4.23: Average CPU-times (in seconds) for 480 × 640-
pixel images on a 3.40 GHz 64 bit desktop computer with 8 GB
memory.

grain of salt, because they refer to implementations provided by different
programmers with different programming languages and different care
for efficiency. For example, SIFT is well-known to be computation inten-
sive, but the implementation provided in [138] is efficient enough to put
it on par with much simpler descriptors. Nonetheless, knowing that it
can run in dense modality in less than 2 seconds is valuable information.
In any case, even the slower descriptors like SID and LCPD, run in less
than 4 seconds, while simpler ones, like LBP, take much less, down to the
light-speed 50-ms BSIF, giving solid guarantees on their applicability in
low-power context, such as mobile phone authentication.

A deeper analysis has been conducted for the approaches proposed
for implementation on mobile devices. In Tab.4.24 we report, for each
LBP descriptor, the length of the corresponding feature vector and the
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LBP desc. length sums mul.s tests CPU-time

o-basic 256

20 16 8 0.2464
o-ri 36
o-u2 59
o-riu2 10

2-basic 256

8 0 8 0.1002
2-ri 36
2-u2 59
2-riu2 10

+-basic 16

4 0 4 0.0548
+-ri 6
+-u2 15
+-riu2 6

MR-riu2 54 156 144 48 1.8979

Table 4.24: Complexity and feature length for LBP-based de-
scriptors. CPU times are evaluated in µs/pixel.

theoretical complexity in terms of number of operations per pixel. In
the computation of complexity, we count 4 multiplications for each in-
terpolated sample. With some approximations, these could be replaced
by shifts, but the square configuration can be seen itself as an approxi-
mation of the circular one, so we just neglect this option. Using look-up
tables, no further operation is needed to compute rotation-invariant and
uniform features. The table shows clearly that only MR-LBP requires
a significant computational load, while LBP is already relatively simple
with the circular configuration, and much simpler with square and cross
configurations. These data are confirmed by the average CPU-times
observed on a 2.20 GHz 64 bit desktop computer with 6 GB memory.



Conclusion

B iometric authentication systems are quite vulnerable to sophisti-
cated spoofing attacks. To keep a good level of security, reliable

spoofing detection tools are necessary, preferably implemented as soft-
ware modules. The research in this field is very active, with local descrip-
tors, based on the analysis of micro-textural features, gaining more and
more popularity, thanks to their excellent performance and flexibility.

In this thesis work, after carrying out a review of state of the art
regarding image descriptors applied in different contexts, we have pro-
posed new local descriptors and LD-based techniques to address the
liveness detection task for fingerprint, iris, and face images. We have as-
sessed the potential of these descriptors comparing their performances
on public available datasets with a number of recently proposed tech-
niques. The analysis shed some light on the relative pros and cons of
the various proposed solutions, pointing out the most interesting lines of
development, and laying a solid ground for further investigations. In this
analysis, special attention was devoted to generality, the robustness with
respect to uses in different domains, which is a very appealing property
in liveness detection [38] considering the large array of biometric traits
that have been proposed for authentication purposes. To this aims, the
proposed approach based on SID and the Bag of Words paradigm has
proven especially valuable. Indeed, it has been used wuith equally good
results also in a very different context, concerning cell image classifica-
tion.

The main lesson learnt through the experimental analysis is that they
work very well. For example, in case of fingerprint, all tested descriptors
improve w.r.t. the winner of the LivDet competition of just 4 years ago,
and some reduce the average error by as much as 75%.

Future research in this field must necessarily start from this point.
On the other hand, we could not single out a descriptor performing uni-
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formly better than the others. Although SID looks very promising and
stable over all case studies, the fingerprint-specific LCPD performs in-
deed better on fingerprints, showing that some space remains for clever
design. A significant example is the proposed technique for the classi-
fication of contact lens, for which information coming from the sclera
allowed to distinguish between transparent-lens and no-lens access, out-
performing the state of the art. Likewise, for application on mobile de-
vices, where complexity is a key issue, variants of the basic LBP worked
best. Of course, new descriptors appear by the day in the literature,
some of which look especially well-suited to the liveness detection task
like, for example, those proposed in [121] and in [133].

However, although designing better and better descriptors is cer-
tainly of interest, it is very likely that more significant improvements
come from a sensible decision-level fusion of existing ones. This will
be a main topic of our future research. Another issue deserving deeper
investigation is robustness to imprecise training. All descriptor-based
classifiers, in fact, require training on a large set of images describing
the source. While learning the sensor characteristics may make sense,
overfitting to certain types of spoofing is very dangerous, as new at-
tacks may go totally undetected. An interesting approach tackling this
problem has been recently proposed in [112], where the detector auto-
matically adapts to spoofs fabricated using novel materials. This work
and others following this same path can be precious for scientists and
engineers alike.
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