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Credo di poter affermare che nella ricerca scientifica  

né il grado di intelligenza né la capacità di eseguire  

e portare a termine il compito intrapreso  

siano fattori essenziali per la riuscita 

 e per la soddisfazione personale.  

Nell'uno e nell'altro contano maggiormente  

la totale dedizione e il chiudere gli occhi  

davanti alle difficoltà: in tal modo possiamo affrontare  

i problemi che altri,  

più critici e più acuti, non affronterebbero. 

Rita Levi-Montalcini 

 

 

I believe I can state that in medical research 

neither intelligence nor the capability  

of accomplishing a task 

is essential for personal satisfaction. 

In both it is compulsory to ignore  

inherent difficulties in order to tackle problems  

that sharper and more critical people wouldn’t face.   

Rita Levi-Montalcini 
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Abstract 

 

Recent findings indicate that the number of cardiac primitive cells in the adult human heart 

increases significantly in pathological conditions. The fact remains, however, that those 

cells fail to accomplish cardiac tissue regeneration in chronic pathological conditions in 

vivo. Similarily, therapeutic stem cell delivery, either intravenous, intracoronary or 

intramyocardial, and activation, for instance by genetic modification or local growth factor 

injection, have yielded moderate and controversial results that make stem cell-based 

myocardial regeneration still merely an experimental approach to cardiac disease treatment. 

Adverse effects of underlying pathology, with cellular senescence and microenvironment 

modifications, might be responsible for such outcome. 

 

The aims of the present research were to characterize cardiac primitive cells in the normal 

and pathological (ischemic cardiopathy) adult human heart, to produce and characterize 

cardiac fibroblast-derived extracellular matrix in vitro, and to characterize cardiac primitive 

cells cultured in the presence of this substrate in terms of their survival, proliferation, 

migration, and maturation. These findings should then lead to the identification of the 

biochemical signalling molecules, i.e. bioactive components of cardiac extracellular matrix, 

to be integrated in the scaffolding bioartificial materials and allow the evaluation of the 

bioactivity of scaffolds incorporating extracellular matrix  proteins. Thus, the final aim of 

the study was to develop bioactive scaffolds populated with cardiac primitive cells for the 

regeneration of infarcted myocardial tissue, based on bioactive and tissue-specific 
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molecules, exerting the same biochemical signals of the natural extracellular matrix during 

heart development and regeneration. 

 

Cardiac primitive cells and cardiac fibroblasts were isolated from samples of cardiac tissue 

derived from donor hearts and from hearts explanted due to ischemic cardiopathy in 

patients with end-stage heart failure. The population of cardiac primitive cells and the 

extracellular matrix deposited by cardiac fibroblasts in vitro were characterized by 

immunohistological methods, immunoblotting, immunoabsorbent enzymatic assay, or    

RT-PCR. Cardiac primitive cells from normal and pathological hearts were cultured in the 

presence of normal and pathological cardiac fibroblast-derived matrix, cardiac fibroblast-

conditioned medium, or polyurethane scaffolds functionalized with gelatin or laminin-1 and 

their proliferation, apoptosis, migration and maturation were evaluated by BrdU 

incorporation assay, TdT assay, scratch wound assay and RT-PCR, respectively. 

 

The results of the study highlighted the role of microenvironment in cardiac regeneration. 

Changes that take place in chronic pathological conditions should be taken into 

consideration when planning stem cell-based therapy. Cardiac fibroblast-derived matrix can 

be used for in vitro studies of the interactions between components of extracellular matrix 

and cardiac primitive cells responsible for cardiac self-renewal in normal and pathological 

conditions. The goal of regenerative medicine and tissue engineering to regenerate 

damaged myocardium can be achieved by further investigations into cell-matrix 

interactions at different stages of cardiac ischemic disease progression. 
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1. Introduction 

 

1.1. Cardiac stem cells and cardiac primitive cells 

 

Stem cells have been defined as a cell population capable of generating identical progeny 

through an unlimited number of cell divisions, while retaining the ability to respond to 

physiological demands by producing daughter cells committed to differentiation [1]. The 

presence of dividing stem cells has been observed in organs considered to be terminally 

differentiated, such as brain and heart [2]. Multipotent stem cells in adult tissues, including 

the human myocardium, have been identified by the expression of stem cell markers 

originally employed to identify cells of the hematopoietic lineage. Among these markers 

the main one is CD117, also known as c-kit in mice. It is a tyrosine kinase receptor found 

on stem cells, mast cells, germ cells, and melanocytes. The c-kit ligand, stem cell factor, is 

vital for normal hematopoiesis, melanogenesis, gametogenesis, and the growth and 

differentiation of mast cells. C-kit-expressing bone marrow-derived stem cells differentiate 

into blood and vascular endothelial cells and play a crucial role in the amplification and 

mobilization of progenitor cells [3]. Stem cells with the capacity to differentiate into three 

major cardiac cell types - cardiomyocytes, smooth muscle cells and endothelial cells have 

been described in both embryonic [4,5,6] and adult heart tissue [7]. These cells have been 

characterized by an array of membrane, cytoplasmic and nuclear antigens, yet the 

expression of different markers could be associated simply with the degree of stem cell 

differentiation. Despite different phenotype description in various studies, it is widely 

acknowledged that the cardiac hematopoietic lineage-negative (CD45-negative, CD34-
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negative) putative stem cells express neither muscle nor endothelial cell markers at an 

undifferentiated stage [8], while their committed progenies express cell specific 

transcription factors and cytoplasmic proteins. In particular, progenitors and precursors 

were identified in the adult human heart by the expression of cardiac cell lineage specific 

markers. These included transcription factors such as myocyte enhancer factor 2C,     

(MEF-2C) and Nkx2.5 (in cardiomyocyte progenitors), GATA-6 (in smooth muscle cell 

progenitors) and external transcribed spacer (Ets-1, in endothelial cell progenitors), while 

the cytoplasmic proteins α-sarcomeric actin (α-SA) and ventricular α/β myosin heavy chain 

(MHC), smooth muscle actin (SMA), factor VIII (FVIII) and vascular endothelial growth 

factor receptor (VEGFR) were the markers of the precursors for cardiomyocytes, smooth 

muscle and endothelial cells, respectively [9].  

 

Recent findings indicate that the number of CD117-positive cells in the adult human heart 

increases significantly in ischemic cardiomyopathy and pressure overload [10,11,12,13]. 

The fact remains, however, that those cells fail to accomplish cardiac tissue regeneration in 

chronic pathological conditions in vivo. Adverse effects of underlying pathology, with 

cellular senescence and microenvironment modifications, might be responsible for such 

outcome. 

 

The above-mentioned evidences pointed to a shift in paradigm concerning the biology of 

the heart and put forward potential therapeutic strategies for the failing heart. Cardiac 

primitive cells seem to be a promising target in the therapy of acute and chronic heart 

disease, where cardiac regeneration may be accomplished by enhancing the normal 
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turnover of myocardial cells by stimulation of resident stem cells [14] or by transplantation 

of stem cells with cardiac differentiation potential derived from other sources [15]. Among 

mechanisms of the stimulation of cardiac regeneration the role of the injected cell - 

cytokine - resident cell axis has attracted attention of researchers and clinicians [16]. 

Several studies demonstrated that bone marrow-derived mesenchymal stem cells injected 

and incorporated into the myocardium released factors that acted in a paracrine manner to 

support local angiogenesis and activate tissue residing progenitor cells [17]. Interestingly, 

similar effects were exerted even by cell-free culture supernatant recovered from hypoxia-

treated mesenchymal stem cell cultures [18]. Hence, determination of the growth factors 

and cytokines secreted by these cells and identification of their specific receptors on cardiac 

stem cells could provide more direct methods for boosting proliferation, survival and 

differentiation of cardiac progenitor cells. Since both the phenotype of CPCs and profile of 

bioactive cytokines in the local environment in which they accumulate differ between 

normal and pathological conditions, the characterization of cardiac tissue and cardiac stem 

cells in healthy heart and at different stages of heart failure should help in identifying the 

best approach for cardiac regeneration, possibly integrating cell transplantation with the 

stimulation of environmental factors that regulate biological properties of cardiac stem 

cells. 

 

Stem cells are stored in niches formed by cellular and extracellular components that 

constitute the microenvironment in which stem cells are maintained in a quiescent state. 

After activation, stem cells replicate and migrate out of the niches to sites of cell 

replacement where they differentiate and acquire the adult phenotype. Niche homeostasis is 
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controlled by stem cell symmetric and asymmetric division, which preserves the proportion 

of multipotent stem and committed primitive cells within the parenchyma. In the niches, 

stem cells are connected to the supporting cells which anchor stem cells to the niche and 

modulate growth signals from the surrounding tissue [19]. Hence, the niche constitutes a 

dynamic entity in which the control of stem cell function depends on the complex 

interaction between intrinsic and extrinsic factors. According to one study [19], cardiac 

niches contained lineage negative cells nested together with cardiac progenitors and 

precursors. In close proximity to lineage negative cells, myocytes and fibroblasts were 

commonly visible. Within the niches, stem cells were connected to the supporting cells by 

gap and adherens junctions composed of connexins and cadherins, respectively. The 

recognition that junctional complexes are present between CSCs and myocytes or 

fibroblasts suggests that these cell types act as supporting cells within the cardiac niches. 

Conversely, endothelial cells and smooth muscle cells did not exert this role. 

 

Niche and tissue microenvironment assure survival and control biological activity of stem 

cells and their progeny. Extracellular matrix, with growth factors stored within it, 

contributes to this microenvironment. Several cardiac pathologies, including myocardial 

ischemia, are associated with qualitative and quantitative alterations in matrix composit ion 

[20]. In the setting of increased wall stress, injury, or disease, the extracellular matrix can 

undergo a series of dynamic changes that at first lead to favorable chamber remodeling and 

functional adaptation, but over time can impair diastolic and systolic function due to 

excessive deposition of interstitial fibrous tissue. These pathological alterations in 

extracellular matrix structure/function are considered central to the evolution of adverse 
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cardiac remodeling and the development of heart failure. Therefore it seems reasonable that 

the role of extracellular matrix and, even more importantly, the effects of the modifications 

of its composition ongoing in pathological conditions should be studied and taken into 

consideration when planning the use of cardiac primitive cell-mediated tissue regeneration. 

 

1.2. Cardiac extracellular matrix 

 

Cardiac extracellular matrix is made of two basic structural organizations: the basal lamina, 

which surrounds individual myocytes and blood vessels, and the interstitial matrix which 

provides structural support for higher order cardiac myocyte organization as well as for 

larger blood vessels in the myocardium [21]. Exctracellular matrix, as a non-cellular 

component, is responsible for the physical maintenance of all cardiac cells, namely 

cardiomyocytes, fibroblasts, endothelial cells, and vascular smooth muscle cells. 

Extracellular matrix plays a role in numerous cellular processes and the concept that it has a 

passive role to play in cellular activity has been refuted. It provides not only essential 

physical scaffolding for the cellular constituents but also sends crucial biochemical and 

biomechanical cues that are required for tissue and cell morphogenesis, differentiation and 

homeostasis [22,23].   

 

In heart tissue, extracellular matrix is essential for proper cardiac structural integrity and 

pump function, arranging a framework for myocytes, fibroblasts, and endothelial cells, and 

transmitting mechanical forces and signals to myocardial fibers [24]. Moreover, the 

extracellular matrix is an important mediator of growth-related factors and cytokines and 
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participates in modulating the cardiac phenotype during development and hypertrophy. 

Therefore, the disruption of extracellular matrix homeostasis is indeed a key factor for the 

progression of cardiac dysfunction [24].  

 

Taking its structure into consideration, the extracellular matrix can be described as a 

network of multiple matrix proteins. These proteins provide the necessary support to cells 

and tissues forming the principal component of the extracellular matrix. Its constitutive 

proteins can be categorised as either structural or non-structural. Examples of structural 

proteins include collagens and elastin, while fibronectin, laminin and tenascin are instances 

of non-structural proteins, also known as glycoproteins. The fibrillar components of the 

extracellular matrix are organised into a recognisable three-dimensional structure. Various 

collagens form the framework of both the basement membrane and interstitial matrix, while 

the non-fibrillar proteins bind to this scaffold, communicating with surrounding cells via 

integrins [25]. Other important components of the extracellular matrix include growth 

factors and a family of matrix metalloproteinases (MMPs). 

 

In short, the term cardiac extracellular matrix encompasses the following components:  

- collagens (e.g., fibril-forming collagens and non-fibril forming collagens), the most 

abundant structural components of the extracellular matrix. These proteins are produced 

primarily by fibroblasts. Deposition of collagen indirectly modifies structural and 

functional properties of connective tissue within organs, which on one hand determines and 

guarantees the proper function of some tissues, e.g. cartilage and bone, but on the other 
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hand, impedes correct function of others, such as muscle or epithelium, due to interstitial 

fibrosis. 

- glycoproteins (e.g., fibronectin, elastin, laminins, tenascins) and proteoglycans, essential 

in various extracellular matrix functions. Recently, proteins with a role that goes beyond 

the structural and mechanical support have been distinguished among other extracellular 

matrix components and termed matricellular proteins. This group encompasses proteins that 

modulate cell function by interacting directly with cells or by modulating the activity of 

soluble factors present in extracellular microenvironment, thus influencing cell migration, 

proliferation, and differentiation [26]. Moreover, these proteins present unique expression 

pattern, with high levels during organogenesis, virtual absence in normal adult tissue, and 

re-expression in response to injury and tissue regeneration. In the heart, osteopontin, 

osteonectin, thrombospondins, tenascin, and CCN family are the matricellular proteins 

identified so far [27]. Given these properties, extracellular matrix, and matricellular 

proteins in particular, can drive cardiac tissue regeneration, described in adult human heart 

in infarction or pressure overload [28].  

- matrix metalloproteases (MMP-2 and MMP-9) that guarantee constant extracellular 

matrix remodelling. This constant brakedown process makes extracellular matrix a dynamic 

structure [25], capable of adaptation and response to factors and mechanisms activated in 

tissues in different physiological and pathological conditions. 

- extracellular matrix receptors, mainly integrins. They conduce cell interaction with 

adhesive glycoproteins, including laminin and tenascin, and proteoglycans, allowing cell 

adhesion [25]. The interactions between extracellular matrix, cell membrane and 



16 

 

cytoskeleton through integrins might be particularly important during cardiac remodeling 

[29].   

The structure, properties and functions of several extracellular matrix components with 

particular significance in cardiac tissue engineering is described in the following section. 

 

1.2.1. Collagens 

Collagen is the most abundant protein within the body and is found amassed in the 

extracellular matrix of connective tissues such as tendon and skin. It is the predominant 

form of structural protein found within the extracellular matrix, providing not only tensile 

strength but also playing a role in other cell processes such as adhesion and migration [30].  

During development, collagen can be detected first (data from the chick embryo, [31]) in 

the incomplete basal lamina that is secreted beneath the epiblast, where it provides the 

substrate for the migration of cells during gastrulation. The organization of the cardiac 

collagen network in an organ is established shortly after birth and this extracellular matrix 

architecture persists in the normal adult heart. However, changes in the organization and 

composition of the extracellular matrix are a structural milestone in the development and 

progression of heart failure, irrespective of etiology. 

 

Fibrillar collagen expression, synthesis and post-translational modification are fundamental 

roles of the fibroblast. To date, nearly 30 types of collagen have been distinguished [32].  

Each protein contains three polypeptide (α) chains, displaying an extended polyproline-II 

conformation, a right-handed supercoil and a one-residue stagger between adjacent chains 

[33]. Each polypeptide chain has a repeating Gly-X-Y triplet in which glycyl residues 
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occupy third position and the X and Y positions are frequently occupied by proline and     

4-hydroxyproline, respectively. These repeats allow the formation of a triple helix, which is 

the characteristic structural feature of the collagen superfamily. Each member of the 

collagen family contains at least one triple-helical domain (COL), which is located in the 

extracellular matrix, and most collagens are able to form supramolecular aggregates. 

Besides triple-helical domains, collagens contain non triple-helical (NC) domains, used as 

building blocks by other extracellular matrix proteins [34].  

The classical fibril-forming collagens include collagen types I, II, III, V, and XI. These 

collagens are characterized by their ability to assemble into highly orientated 

supramolecular aggregates with a characteristic suprastructure [35]. In particular, collagen 

types I and III are predominant interstitial collagens in the heart and surround cardiac 

myocytes and the coronary microcirculation, providing structural integrity for the 

cardiomyocytes [29]. Type I collagen makes up approximately 85% and type III collagen 

11% of total collagen in the heart [36]. The collagen type I triple helix is usually formed as 

a heterotrimer by two identical α1(I)-chains and one α2(I)-chain. The triple helix of type II 

collagen is composed of three a1(II)-chains forming a homotrimeric molecule similar in 

size and biomechanical properties to that of type I collagen. 

 

Type III collagen is a homotrimer of three identical α1(III)-chains. It is an important 

component of reticular fibres in the interstitial tissue of the lungs, liver, dermis, spleen, and 

vessels. This molecule often contributes to mixed fibrils with type I collagen and is also 

abundant in elastic tissues [37]. Types V and XI collagens are formed as heterotrimers of 

three different α-chains (α1,α2,α3). It is remarkable that the α3-chain of type XI collagen is 



18 

 

encoded by the same gene as the α1-chain of type II collagen and only the extent of 

glycosylation and hydroxylation differs from α1(II). Although it is not finally sorted out, a 

combination of different types V and XI chains appears to exist in various tissues and they 

share similar biochemical properties and functions with other members of this family. Type 

V collagen typically forms heterofibrils with types I and III collagens and contributes to the 

organic bone matrix, corneal stroma and the interstitial matrix of muscles, liver, lungs, and 

placenta. It is also expressed in the heart and evidence supports its role in providing a core 

for fibrillar collagen assembly [38]. Type IV collagen is the most important structural 

component of basement membranes integrating laminins, nidogens and other components 

into the visible two-dimensional stable supramolecular aggregate. Other collagens (e.g. 

types VI, IX, XII and XIV) associate with fibril surfaces or (collagens types XII and XVII) 

are transmembranous proteins [25]. 

 

Recent studies of collagen receptors shed light on their expression and effects of their 

activation on cell biology. For a long time, integrins were considered to be the only class of 

cell surface receptors that could transmit signals into cells by binding extracellular matrix 

components. Recently, however, discoidin domain receptors (DDRs) with cytosolic 

tyrosine kinase activity have been identified, that, unlike other receptor tyrosine kinases 

which bind mostly soluble peptid-like growth factors, were activated by collagens [39]. 

Hence, cells contain at least two types of collagen receptors: integrins and DDRs. The 

collagen receptor integrin subfamily is composed of heterodimers α1β1, α2β1, α10β1, and 

α11β1. DDRs are the tyrosine kinase receptors of collagen expressed by epithelial (DDR1) 

and mesenchymal cells (DDR2). While integrin β1 and DDR1 are both required for cell 
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adhesion on collagen, their roles in epithelial cell differentiation during development and 

disease progression seem to counteract each other, with integrin β1 favoring transition to 

mesenchymal and DDR1 inducing differentiation towards epithelial phenotype [40]. 

Although not directly contrasting, but nevertheless still distinct effects, were observed upon 

activation of specific integrins in the presence of collagen [41]. The complexity of these 

interactions and their possible effects on biological properties of cells is further augmented 

by yet another variable: the expression of integrins and DDRs differs between 

physiological and pathological conditions. These changes can be considered a result of 

microenvironment modification but, in the light of the aforementioned functions of the 

collagen and collagen receptors, at the same time they themselves may determine, for 

instance, fibrosis or cancer progression. Interaction of fibrillar collagen with epithelial cells 

mediated by integrin beta1 can favour epithelial-mesenchymal transition [42]. In 

consequence, epithelial cells lose their polarity and adhesion, while acquiring migration and 

invasion capabilities. This process has been found to represent one of the mechanisms of 

tumour progression and interstitial fibrosis, but it also plays essential role in tissue and 

organ development [43]. Recently, epithelial-mesenchymal transition has been implicated 

in adult organ regeneration, as at least some populations of cardiac stem cells may derive 

from epicardial mesothelium [44].  

 

Since collagen is the most abundant component of the extracellular matrix, a significant 

amount of effort has been spent on the use of collagen gels (most often from tropocollagen 

type I) for creating tissue constructs. When cells are added to collagen gels, the virtuous 

cycle starts, with the mechanical properties of construct being modified by biological 
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activity of cells being modified by mechanical properties of construct. Importantly, over the 

long term, original collagen is progressively degraded and additional components are 

secreted and incorporated into the matrix. All these processes are highly dependent on 

collagen concentration, medium composition, cell number, cell type and culture conditions 

(discussed in [45]). Collagen-based cellullarized scaffolds have been recently used in 

regenerative medicine, including skin replacement in full thickness burn wounds [46]. 

Other applications, such as bone substitutes or artificial blood vessels and valves, are being 

extensively investigated, in order to define the best combination of mechanical and 

biological properties of the constructs. 

 

1.2.2. Fibronectin 

Fibronectin is a dimeric glycoprotein (with the subunits that range in size from 230 kDa to 

270 kDa) found in the extracellular matrix of most tissues, it is located within the basement 

membrane, that serves as a bridge between cells and the interstitial collagen meshwork and 

influences diverse processes including cell growth, adhesion, migration, and wound repair 

[23]. This major constituent of the extracellular matrix is deposited as an insoluble complex 

by polymerization of either the cellular dimer, synthesized and secreted locally, or the 

soluble in plasma circulating dimer synthesized in the liver. It is assembled into a fibrillar 

matrix in all tissues and throughout all stages of life [47].  

 

Cell adhesion to fibronectin depends on the RGD (abbreviation for the tripeptide sequence 

of Arg-Gly-Asp) motif that binds to α5β1 integrin. Additionally, several other integrins 

were shown to bind to the RGD motif of fibronectin, including all members of the αV 
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subfamily, α8β1, α9β1 and the platelet-specific αIIbβ3 integrin. The integrin α5β1 is the 

principal receptor involved in the process of fibronectin matrix assembly which together 

with the RGD region of fibronectin promotes binding of cells to this protein [48]. The 

fibronectin matrix is associated with the actin cytoskeleton of cells through integrin 

activity. The functional properties of the fibronectin fibrillar matrix are diverse and 

represent a prime example of how extracellular matrix protein assembly functions. First, 

fibronectin fibrils possess binding sites for multiple matrix components, which are used to 

orchestrate the assembly of several other proteins, including collagen I and III, fibulin-1, 

fibrinogen, thrombospondin-1, latent Transforming Growth Factor-β (TGF-β) binding 

protein-1 (LTBP-1), decorin and biglycan. Second, fibronectin fibrils provide structural 

support for cell adhesion and similarly to the adhesion receptors, most notably integrins, 

transduce signals that promote cytoskeleton dynamics, cell migration, cell proliferation and 

apoptosis. Finally, fibronectin controls the availability of growth factors, for example by 

regulating their activation from latent complexes as shown for TGF-β [49].  

 

Fibronectin expression is a critical factor in cardiac extracellular matrix, particularly in 

developing myocardium and in response to injury. Fibronectin levels have been found to be 

higher in neonatal hearts when compared to adult. In the cardiovascular system, fibronectin 

is synthesized by many cell types but not by the cardiomyocytes. Recently, expression of 

fibronectin was shown to influence cardiac progenitor cell response after myocardial 

infarction in adult mice [50]. 

 

1.2.3. Laminin 
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Laminin is one of the main components of the basement membrane. The molecule appears 

to weigh between 200 and 400 kDa and is composed of three disulphide linked chains that 

form characteristic cross shape. It is an heterotrimeric glycoprotein consisting in one α, one 

β, and one γ chain, in various combinations. Five α, three β, and three γ chains that 

represent distinct gene products have been identified in vertebrates. Twelve distinct laminin 

isoforms have been isolated and the trimers are named according to their trimeric 

composition of α, β, and γ chains [51].  

 

The largest chain is the α-chain, which contains the long arm on the C-terminal end and a 

short arm on the N-terminal end. The short arm of α chains displays great diversity in 

length. The C-terminal end of the long arm consists of the LG 1-5 domains, which are 

involved in interactions with cellular receptors such as integrins and dystroglycans, with 

proteins anchored in the plasma membranes of cells or microorganisms, thereby relaying 

biochemical and mechanical signals between intracellular and extracellular molecular 

networks. The N-terminal end of the short arm is also capable of binding to integrin 

receptors, although it is more associated with polymerization of the molecule [52]. The β 

and γ chains are involved in interactions with molecules in the extracellular matrix. 

Notably, the C-terminal region of laminin β chains may modulate the integrin binding 

affinities of laminins and integrin-mediated interactions of laminins are important for 

several cellular activities inasmuch as they activate specific signaling networks governing 

adhesion, migration, differentiation [53]. Some not yet well-defined parts of laminins are 

thought to interact with small molecules such as growth factors and cytokines. This 
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function is thought to be important for sequestration and storage of these small molecules 

and for regulating their distribution, activation, and presentation to cells. 

 

Laminin isoforms are synthesized by a wide variety of cells, such as epithelial cells, 

smooth, skeletal, and cardiac muscle cells, endothelial cells, in a tissue-specific manner. 

Laminins have astonishing variety of effects on adjacent cells, including cell adhesion, cell 

migration, and cell differentiation. They exert their effects mostly through integrins, many 

of which recognize laminins, via the integrin binding domain residing predominantly in the 

α chain [54]. At least eight different integrins (α1β1, α2β2, α3β1, α6β1, α6β4, α7β1, α9β1, 

αvβ3) can bind to laminin [51]. The biological effects of the laminins are to a large extent 

mediated by surface receptors that bind laminin matrices to intracellular signaling 

pathways. Laminin-1 (α1β1γ1) is the first extracellular matrix protein to be expressed 

during embryonic development, and it has been observed that heart organogenesis does not 

proceed in the absence of this protein [55]. The absence of laminin-2 (α2β1γ1), an isoform 

typical of muscle tissue, causes congenital muscular dystrophy with cardiac involvement 

[56]. In the adult heart, laminin-1 and laminin-2 were found to protect from apoptosis and 

stimulate proliferation of CPCs in vitro [10]. 

 

1.2.4. Tenascin  

Tenascins are a family of multimeric glycoproteins characterized by an N-terminal globular 

domain and heptad repeats, which facilitate multimerization; one or more tenascin-type 

epidermal growth factor (EGF)-like repeats; a series of fibronectin type III domains, and a 

C-terminal fibrinogen-related domain [57]. There are six isoforms of the tenascin gene 
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products: tenascin-C, X, R, Y, W, and N. Two members of the tenascin family, tenascin-C 

and -X, modulate cell migration, adhesion and growth [58]. These two isoforms are 

expressed in connective tissues, tendons, dermis, heart, kidney, vascular smooth muscle 

and by astrocytes and Schwann cells during neural development. 

 

The complex domain structure of the tenascins predicts that the molecule is capable of 

interacting with a variety of extracellular matrix proteins. This indeed appears to be the 

case. Cell surface receptors for tenascins include integrins, cell adhesion molecules of the 

Ig superfamily, a transmembrane chondroitin sulphate proteoglycan (phosphacan) and 

annexin II. Tenascin-C also interacts with extracellular proteins such as fibronectin and the 

lecticans, a class of extracellular chondroitin sulphate proteoglycans including aggrecan, 

versican, and brevican. Furthermore, tenascins are recognized and cleaved by extracellular 

matrix proteases including serine proteases and matrix metalloproteases [25]. 

 

The patterns of expression of tenascins are rather complex. In particular, during 

embryogenesis the rate of tenascin synthesis changes significantly. In combination with the 

effects of tenascin on cell behaviour, this indicates that tenascin in the extracellular matrix 

might have an important function during morphogenesis in determining whether or not 

specific cells will adhere to the matrix, and in doing so receive cues which modulate cell 

differentiation, migration, proliferation, or apoptosis [25]. Tenascins are not expressed in 

normal adult tissues, however, as typical of matricellular proteins, they re-appear in a 

variety of pathological situations in response to some growth factors or mechanical stress 
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applied to cells in vitro or tissues in vivo. Tenascin-C expression is found in wound healing 

and in neovascularization accompanying, for example, tumour growth. 

 

Specific roles of Tenascin-C in heart morphogenesis have long been anticipated based on 

its strictly regulated temporal expression at specific sites closely associated with cell 

migration, especially fibroblast migration and epithelial-mesenchymal/mesenchymal-

epithelial transition. Tenascin-C is implicated in recruitment of cardiac myofibroblasts [59], 

differentiation of cardiomyocyte precursors, valve and coronary vessel formation. 

Following myocardial infarction, it can promote myocardial repair and prevent ventricular 

dilation by recruiting myofibroblasts to the site of injury and enhancing collagen fiber 

contraction. On the other hand, tenascin-C may also promote adverse myocardial 

remodeling. This protein has been shown to up-regulate MMP-2 and MMP-9 expression in 

a number of cell types, enhance inflammatory responses through activation of NFκB and 

cytokine upregulation, and inhibit the strong linkages that occur between cardiomyocytes 

and connective tissues [60].  Although these functions serve to clear damaged tissue and 

release residual cardiomyocytes from connective tissue for subsequent cell rearrangement, 

they may also contribute to progressive degradation of extracellular matrix and slippage of 

myocytes within the myocardial wall, ultimately resulting in left ventricle wall thinning and 

dilation. Accordingly, high serum levels of tenascin-C in patients following myocardial 

infarction have been associated with a greater incidence of adverse cardiac remodeling and 

poor prognosis, supporting the view that excessive and sustained increments of tenascin-C 

could lead to detrimental myocardial remodeling [61]. 
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Another and the largest member of the same family is tenascin-X. It is expressed much 

more widely than other tenascin members, predominantly in heart, skeletal muscle and gut. 

It has been shown that tenascin-X in combination with vascular endothelial growth factor-B 

enhances endothelial cell proliferation [62]. It plays a central role in organizing and 

maintaining the structure of tissue supporting muscles, joints, organs, and skin. Tenascin-X 

causes also the formation of collagen fibrils and regulates the structure and the stability of 

elastic fibers within the extracellular matrix [63]. 

 

1.2.5. Matrix Metalloproteinases (MMPs) 

MMPs are zinc-dependent endopeptidases that normally contribute to tissue remodeling in 

several physiological processes including development, hormone-dependent tissue 

remodelling, and tissue repair [64]. MMPs are the key group of protease enzymes involved 

in disintegration of the extracellular matrix and are effective in their capacity to break down 

the matrix, as part of the on-going remodelling of the extracellular matrix. According to the 

extracellular protein substrate, myocardial MMPs are classified into 4 groups: collagenases 

(MMP-1 or interstitial collagenase, MMP-8 or neutrophil collagenase, and MMP-13 or 

collagenase 3), gelatinases (MMP-2 and MMP-9), stromelysins (MMP-3, MMP-10 and 

MMP-11) and membrane-type MMPs (MT-MMPs). Gelatinases, MMP-2 and MMP-9 are 

the most abundant MMPs in the heart, as they are found in cardiac myocytes, fibroblasts 

and endocardial and subendocardial layers. Gelatinases degrade fibrillar collagen (types I, 

II and III) as well as collagen type IV, fibronectin and laminin. MMP-1, MMP-8 and 

MMP-13, as indicated by their name (collagenases), have a high affinity for fibrillar 

collagen, as well as other extracellular matrix proteins, such as proteoglycans, aggrecan, 
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versican and perlican. Stromelysin substrates include membrane proteins, elastin and 

proteoglycans. Finally, MT-MMPs degrade all membrane proteins as well as other 

extracellular matrix components [64].  

 

Matrix metalloproteinases are synthesized as inactive zymogens and secreted into the 

extracellular space as pro-enzymes, by both cardiac myocytes and fibroblasts. This 

proenzyme form needs to be activated by proteolytic removal of its pro-domain in order to 

induce proteolysis of other proteins. MMP expression is rapidly induced by a variety of 

cytokines and growth factors that participate in events associated with tissue remodelling; 

however, MMP activity is controlled at several levels, including transcription, proteolytic 

activation, localization and interaction with inhibitors. Recent evidence suggests that 

secreted MMPs localize at least transiently to the cell surface by interacting with cell 

surface adhesion receptors and proteoglycans. Importantly, MMP proteolytic activity can 

activate latent secreted growth factors, e.g. MMP-2 and -9 can activate TGF-β, while 

several MMPs can release IGF from IGFBPs, and cell surface growth factor precursors, 

including TGF-α and EGF [65]. Thus, from being thought to primarily provide a 

mechanism to degrade extracellular matrix proteins and regulate mechanical resistance to 

cell migration, MMPs are now being recognized as major regulators of normal cell 

physiology and cell-matrix interactions. 

 

Many MMPs participate in the physiological remodeling after a tissue injury, however 

overexpression of these enzymes and an excess extracellular matrix turnover can also have 

unfavorable effects. It can be illustrated by the events taking place after acute coronary 
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artery occlusion leading to cardiomyocyte death. An inflammatory cascade is triggered with 

activation of several pro-inflammatory cytokines, including IL-1 and TNF-a that induce 

migration and proliferation of leukocytes in the infarct region. In this inflammatory stage, 

proinflammatory cytokines promote activation of MMPs and extracellular matrix 

degradation. MMPs do not only degrade extracellular matrix but also regulate release and 

activation of several cytokines and growth factors, including TGF and VEGF thus, 

participating in the regulation of neovascularization. Although the presence of active 

MMPs is essential for the healing process after acute myocardial infarction, excessive 

degradation of extracellular matrix by MMPs resulted in an adverse remodeling and a 

marked LV dysfunction, thereby increasing the risk of complications such as congestive 

heart failure, aneurysm formation and infarct rupture. Indeed, the MMP-8 and MMP-9 

levels were significantly higher in human hearts with ruptured infarcts than in control 

myocardial infarct tissue [66]. 

 

1.2.6. Integrins 

The integrin family consists of a large multi-adhesive extracellular matrix molecules that 

bind different proteins, including extracellular matrix molecules, growth factors, cytokines, 

and MMPs. They are a major class of receptors involved in cell adhesion that control 

development. Beside mediating cell adhesion, integrins transmit signals across the plasma 

membrane that regulate cell migration, cell survival and growth and are implicated in 

pathogenesis of several pathologies, such as cancer and thrombosis [67]. 
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Integrins, heterodimeric type I transmembrane proteins, consist of α and β subunits. The 

family is composed of 18 α subunits and 8 β subunits that can assemble into 24 different 

heterodimers. The integrin subunits range in size from 80 to 180 kDa. Each subunit 

contains a single transmembrane domain (TMD) and a short cytoplasmic tail. The integrins 

can be grouped based on ligand-binding properties or their subunit composition. In the 

cardiac myocytes, the integrin heterodimers most highly expressed are α1β1, α5β1 and 

α7β1, which are predominantly collagen, fibronectin and laminin binding receptors, 

respectively [68]. A key facet of outside-in signaling, relevant to the extracellular matrix, is 

the ability of integrins to transduce mechanical information into biochemical signals. 

Indirect activation by specific integrin expression and clustering can transmit extracellular 

biochemical inputs along the intracellular signalling pathways that regulate cell 

proliferation, survival, and migration. The expression profile of integrin subunits in the 

same cell population can change in qualitative and quantitative manner depending on 

microenvironmental conditions. As a result, extracellular matrix can influence cell and 

tissue development and overall cellular function. 

 

1.3. Tissue engineering 

 

Tissue engineering is a concept that first emerged in the early 1990s to provide solutions to 

severe injured tissues or organs. Robert Langer and Joseph P. Vacanti defined tissue 

engineering as "an interdisciplinary field that applies the principles of engineering and life 

sciences toward the development of biological substitutes that restore, maintain, or improve 

tissue function or a whole organ" [69]. Since then, two main strategies have been adopted: 
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cell-based, where cells are manipulated to create their own environment before transplanted 

to the host, and scaffold-based, where an extracellular construct is created to mimic in vivo 

structures. 

 

Basic component of an engineered tissue is a scaffold that acts as a temporary template, 

guiding cell organization, growth and differentiation and providing structural stability and a 

3D environment where cells can produce new biological tissue [70]. Cells are cultured in 

vitro under precisely controlled culture conditions on a porous three‐dimensional material 

that acts as scaffold for cell growth and proliferation. Once being implanted in the human 

body, the scaffold is eventually bioresorbed and the space occupied by it is replaced by new 

tissue produced by cells [71]. The officially accepted definition considers a scaffold as a 

“support, delivery vehicle or matrix for facilitating the migration, binding or transport of 

cells or bioactive molecules used to replace, repair or regenerate tissues” [72]. While the 

extracellular matrices are the native scaffolds of the human body, tissue engineering 

scaffolds are intended to provide the temporary structural support and biochemical or 

biomechanical signals needed to transform unassociated cells into human organs. 

 

Scaffolds may be created from various types of materials, including natural and synthetic 

polymers and inorganic substances. These materials should be biocompatible and cell 

"friendly" (i.e. they must not elicit harmful response from the biological environment and 

should enhance cell adhesion and survival both in vivo and in vitro), have mechanical 

properties consistent with those of the tissue it replaces, degrade at a rate matching that of 

new tissue formation, be bioresorbable, have proper surface properties to promote cell 
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adhesion, migration, proliferation and differentiation in order to obtain an entirely 

colonized 3D cell construct as well as to promote extracellular matrix formation; last but 

not least scaffolds should have the optimum architectural properties in terms of pore size 

and permeability in order to allow efficient delivery of nutrients and removal of metabolites 

[73]. In order to meet these guidelines in scaffold configuration, many classes of 

biomaterials have been pursued [74]: metals (Ti and its alloys, stainless steels, Au, Ag, 

Co‐Cr alloys are used for joint replacements, bone plates and screws, dental implants, 

surgical instruments), ceramics (aluminium oxides, calcium phosphates, hydroxyapatite, 

bioglasses are used for dental implants, femoral heads, coating of orthopaedic devices), 

natural polymers derived typically from the extracellular matrix (proteins such as collagen, 

gelatin, fibrin, starch; polysaccharides, such as hyaluronic  acid,  alginate,  chitin; and 

bacterial polyesters, such as polyhydroxybutyrate, polyhydroxyvalerate are widely used to 

produce scaffolds either as pure materials or in combination with synthetic polymers or 

inorganic substances), synthetic polymers (e.g. polyammides, silicon rubber, polyesters, 

polyurethanes, polytetrafluoroethylene, polymethylmetharylate, PGA, polylactic acid, and 

poly-E-caprolactone have been extensively used in tissue engineering applications and for 

sutures, blood vessels, catheters, devices for drug delivery, contact lenses). In particular, 

polyurethanes are a large group of polymers widely used in the biomedical and industrial 

field. Biocompatible polyurethane (PU) was synthesized from degradable and 

biocompatible building blocks: PCL diol, BDI and L-lysine ethyl-ester-dihydrochloride 

chain extender. This formulation was previously demonstrated to produce biomaterials as 

optimal substrates for myoblast adhesion, spreading and proliferation [75]. Finally, hybrid 

scaffolds are the combination of synthetic and biologic materials to form a scaffold that 
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uses the advantages of both. These scaffolds can be made in a variety of ways, such as 

coating biologic material onto a synthetic one, electrospinning a biologic and synthetic 

material together, or using biologic microspheres with a synthetic patch [76].  

 

Once a scaffold has been formed, several strategies can be applied to immobilize short 

peptide sequences on material surfaces, including covalent tethering of the functional 

groups, plasma treatment, functionalizing the substrate with amine or thiol groups to 

enhance peptide tethering, and photopolymerizing polymers with the peptide sequences 

[77]. Indeed, nowadays the main objective of tissue engineering is to make the scaffold as 

much biomimetic as possible, not only in terms of three-dimensional structural features and 

mechanical properties, but also from a chemical point of view. The dynamic composition of 

extracellular matrix acts as a reservoir for soluble signaling molecules and mediates signals 

that control migration, proliferation, and differentiation of cells during growth, 

development, wound repair, and tissue regeneration. These microenvironmental signals are 

generated from growth factors, cell- extracellular matrix, and cell-cell interactions, as well 

as from physical, chemical and mechanical stimuli. Consequently, approaches to tissue 

engineering focus on the need to provide cell populations with signals to promote cell 

proliferation and differentiation [78]. For this reason, the extracellular matrix is inevitably 

taken as a benchmark. Since extracellular matrix protein fibers (with diameter in the range 

of 50–500 nm) are 1-2 orders of magnitude smaller than the cells, they are able to contact 

directly with cells in three dimensional orientations which may be a crucial factor in the 

selection for scaffold coating. The incorporation of those proteins is considered a valid 

approach to confer bioactivity to the scaffold and it is commonly achieved through either 
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bulk or surface functionalization. In the bulk functionalization, biomolecules are 

incorporated within the polymer matrix and they are released in the surrounding 

environment either by diffusion or via scaffold degradation [79]. The surface of scaffolds 

can be covered with peptides or proteins by plasma-mediated grafting [80].  

 

Biological scaffolds composed of extracellular matrix or covered with a single protein have 

been used for the repair of a variety of tissues including skin, articular cartilage, tendons, 

bone, bladder, esophagus, trachea and myocardium, often leading to tissue-specific 

constructive remodeling with minimal or no scar tissue formation. In particular, myocardial 

tissue engineering has been proposed as an option to replace the scarred non-contractile 

fibrous tissue formed post-infarction. Such approach offers the possibility to combine cells 

and extracellular matrix and thereby provides a mechanical support to the diseased 

myocardium, the proper environment for transplanted cells and increased delivery 

efficiency [81]. The basic myocardial tissue engineering paradigm is to seed cells capable 

of forming cardiomyocytes onto a biocompatible material in vitro, followed by 

implantation of the construct on or in the infarcted region of the failing heart. The grafted 

tissue will in turn direct new tissue formation as the cells integrate with the native tissue 

while the scaffold degrades over time [79]. To reach this goal, the incorporation of 

extracellular matrix-derived peptides and proteins into biomaterials has been proposed to 

mimic biochemical signals [82]. The use of whole proteins, such as fibronectin and 

laminin, which are cell adhesion proteins of the extracellular matrix, is limited by their low 

stability and availability, and their high cost [83]. Alternatively to whole heavy proteins, 
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synthetic fragments of fibronectin, vitronectin, and stromal derived factor-1 were employed 

as potential adhesive sequences for cardiomyocytes. 

 

Recently, new polyurethanes have been synthesized, incorporating extracellular matrix 

peptides and bioactive molecules (growth factors). Aminoacid sequences have been 

introduced in polyurethane chains to control the enzymatic degradation process of the 

resulting scaffolds [84]. The key advantage of this polymer is its elastic behaviour, in that it 

is able to withstand strong deformation forces and to return to its original size upon 

removal of stress. Hence, the use of elastomeric polyurethane circumvents the problems 

related to material stiffness and myocardium contractility. In a recent work, polyurethane 

scaffolds for myocardial tissue engineering were obtained using melt-extrusion technique. 

Bi-layered scaffolds 0°/90° lay-down pattern were fabricated with highly reproducible 

quality of the computer-designed architecture, demonstrating polyurethane suitability for 

melt-processing. Human CPCs were found to adhere on the scaffolds showing a spread 

geometry and retaining their viability and proliferation potential [84]. Optimization of 

scaffold geometry and surface chemical composition is in progress to obtain scaffolds with 

the best properties for myocardial tissue engineering. 
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2. Scope of the study 

 

Recent discovery of tissue-resident adult stem/progenitor cells has led to an explosion of 

interest in the development of novel stem cell-based therapies for improving the 

regenerative capacity of endogenous immature cells or transplanted cells for the repair of 

tissues damaged by disease. The fact remains, however, that those cells fail to accomplish 

cardiac tissue regeneration in chronic pathological conditions in vivo. Similarily, 

therapeutic  stem cell delivery, either intravenous, intracoronary or intramyocardial,  and 

activation, for instance by genetic modification or local growth factor injection, have 

yielded moderate and controversial results that make stem cell-based myocardial 

regeneration still merely an experimental approach to cardiac disease treatment. Adverse 

effects of underlying pathology, with cellular senescence and microenvironment 

modifications, might be responsible for such outcome. 

 

The adult heart is mainly composed of terminally differentiated cells, but it is not a 

terminally differentiated organ since it harbors stem cells supporting its regeneration. 

Cardiac stem cells exist in vivo in a specialized microenvironment which assures their 

survival and regulates their proliferation and differentiation. The supporting cells, 

extracellular matrix with growth factors stored within it, and physical characteristics of the 

surrounding structures, all contribute to cardiac niche. The concept of stem cell niche sees 

the microenvironment as the major determinant of stem cell maintenance and explains the 

dependence of stem cells upon their microenvironment. In the niche, stem cells interact 
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with various extracellular matrix components. With the myocardial tissue engineering in 

mind, the extracellular matrix would be, by definition, an ideal bioactive scaffold construct. 

 

In the last decade, several tissue engineering approaches have been proposed for the 

regeneration of infarcted myocardial tissue, with the development of cardiac patches being 

one of them. Cardiac patches have been designed to provide initial mechanical support to 

the damaged tissue, thus reducing remodelling, to support the attachment, proliferation, 

migration and differentiation of both endogenous and exogenous cells and to gradually 

degrade over time as the cells form their own extracellular support structures. The choice of 

the scaffold biomaterial plays a key role in tissue engineering strategies. Particularly, the 

scaffold should exhibit a biomimetic behaviour with respect to the tissue to be regenerated, 

in order to direct the organization, growth and differentiation of cells. 

 

New findings in stem cell biology have suggested that stem cells are a potential source of 

heart muscle cells and can be used to rebuild or replace damaged heart tissue. The most 

common approach in regenerative medicine is to grow cells in vitro on scaffolds to get the 

required three-dimensional tissues. Given these premises, the aim of the present research 

was to characterize cardiac primitive cells in the normal and pathological heart, to produce 

and characterize cardiac fibroblast-derived extracellular matrix in vitro, and to characterize 

cardiac primitive cells cultured in the presence of this substrate in terms of their survival, 

proliferation, migration, and maturation. These findings should then lead to the 

identification of the biochemical signalling molecules, i.e. bioactive components of cardiac 

extracellular matrix, to be integrated in the scaffolding bioartificial materials and allow the 
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evaluation of the bioactivity of such scaffolds incorporating extracellular matrix  proteins. 

Thus, the final aim of the study is to develop bioactive scaffolds, populated with cardiac 

primitive cells, for the regeneration of infarcted myocardial tissue, based on bioactive and 

tissue-specific molecules, exerting the same biochemical signals of the natural extracellular 

matrix during heart development and regeneration. 
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3. Materials and methods 

 

3.1. Materials 

 

Cardiac tissue samples were obtained from normal and pathologic human hearts. Samples 

of atrial appendages from normal hearts (n=24, mean age 50.4±4.1 years, 14 males, 10 

females) were collected from the donor heart waste fragments, i.e. tissue trimmed off from 

the heart while adjusting atrium size and form at the time of organ transplantation. 

Pathological samples were taken from the corresponding region of explanted hearts of 

patients with end-stage heart failure due to ischemic cardiomyopathy undergoing heart 

transplantation (n=22, mean age 55.8±3.1 years, 16 males, 6 females, mean ejection 

fraction 25±1%). Specimens were collected without patient identifiers in accordance with 

the protocols approved by Monaldi Hospital. 

 

3.2. Isolation of fibroblasts and cardiac primitive cells 

 

Cardiac tissue samples were dissected, minced, and enzymatically disaggregated by 

incubation in 0.25% trypsin and 0.1% (w/v) collagenase II (Sigma-Aldrich, St. Louis, MO, 

USA) for 30 minutes at 37
o
C. The digestion was stopped by adding a double volume of 

Hank’s balanced salt soltution (HBSS) supplemented with 10% fetal bovine serum (FBS). 

This preparation was further disaggregated by pipetting and tissue debris and 

cardiomyocytes were removed by sequential centrifugation at 100g for 2 minutes, passage 

through 20𝜇m sieve, and centrifugation at 400g for 5 minutes. Cell population was seeded 
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on culture dishes in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-

12, Sigma-Aldrich) supplemented with 10% FBS (Sigma-Aldrich), basic fibroblast growth 

factor (Peprotech, Rocky Hill, NJ, USA), glutathione (Sigma-Aldrich), penicillin and 

streptomycin (Life Technologies, Paisley, UK). Cell population was cultured for time 

interval ranging from 1 to 2 week. Once the adherent cells were more than 75% confluent, 

they were detached with 0.25% trypsin-EDTA (Sigma-Aldrich) and cell suspension was 

used for isolation of fibroblasts and cardiac primitive cells by immunomagnetic cell sorting 

(Miltenyi Biotec Bergisch Gladbach, Germany). In particular, fibroblasts were purified by 

positive selection with anti-fibroblast MicroBeads and passage through MS columns placed 

in magnetic field, followed by incubation of the collected negative fraction with anti-

human-CD117 MicroBeads and positive selection of CD117-positive cardiac primitive 

cells. 

 

3.3. Extracellular matrix deposition and denudation in vitro 

 

Cardiac fibroblasts were seeded (15 ×10
3
cells/cm

2
) on gelatin-coated culture plates in 

DMEM supplemented with 10% FBS and cultured in confluent state for up to 21 days, 

allowing for extracellular matrix deposition, according to the modified and optimized 

protocol used for the culture of cardiac primitive cells. Successively, fibroblasts were 

removed by 5-minute incubation with a solution of 0,5M NaCl and 10mM Tris-base, 

followed by short incubation with 1% SDS. The denudation process was observed at an 

inverted phase contrast microscope (Olympus Italia, Segrate, Italy). When cells were no 



40 

 

longer discernible, the solution was diluted and removed, followed by gentle washing of 

culture plates with PBS. 

 

3.4. Culture of CD117-positive cardiac primitive cells 

CD117-positive cardiac primitive cells, isolated and purified as described above (section 

3.2), were plated at a density of 4x10
3 

cells/cm
2 

in DMEM/F-12 (Sigma-Aldrich) 

supplemented with 10 % FBS (Sigma-Aldrich), basic
 
fibroblast growth factor (Peprotech),

 

glutathione (Sigma-Aldrich), penicillin and streptomycin
 
(Life Technologies). CD117-

positive cells at
 
first or second passage were used for characterization and subsequent 

experiments. 

 

3.5. Characterization of cardiac extracellular matrix and cardiac primitive cells  

 

3.5.1. Immunofluorescent staining 

Fibroblast-derived cardiac matrix obtained in vitro was fixed in 4% paraformaldehyde for 

20 minutes at room temperature. After blocking with 10% donkey serum, plates were 

incubated with primary antibody against fibronectin (rabbit polyclonal anti-human, Sigma-

Aldrich), collagen IV (mouse monoclonal anti-human, Sigma-Aldrich), tenascin-C (rabbit 

polyclonal anti-human, Santa Cruz Biotechnology, Dallas, TX, USA), or laminin (mouse 

monoclonal anti-human, Sigma-Aldrich) and specific secondary antibodies conjugated with 

fluorescein or rhodamine (Jackson ImmunoResearch Europe, Newmarket, UK); F-actin 

was stained with rhodamine phalloidin (Sigma-Aldrich).  
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Cardiac primitive cells were fixed in 4% paraformaldehyde for 20 minutes at room 

temperature and incubated with 10% donkey serum. Cells were incubated with primary 

anti-human antibodies against Ki67 (monoclonal mouse, Novocastra Laboratories Ltd., 

Newcastle, UK), Notch (monoclonal mouse, Abcam, Cambridge, UK), α-sarcomeric actin, 

von Willebrand factor (vWF), smooth muscle actin, (all mouse monoclonal, Sigma-

Aldrich), Nkx 2.5 (rabbit polyclonal, Chemicon), Ets-1 (rabbit polyclonal, Santa Cruz 

Biotechnology), or GATA-6 (goat polyclonal, Santa Cruz Biotechnology), followed by 

secondary antibodies conjugated with fluorescein or rhodamine (Jackson ImmunoResearch 

Europe). Nuclei were counterstained with DAPI (Merck Millipore). 

 

Stained area of culture dish was mounted in Vectashield (Vector Labs). Microscopic 

analysis was performed with a Leica DMLB microscope equipped with epifluorescence 

EL6000 system (Leica Microsystems). Pictures were taken with digital camera connected 

to the microscope (Leica DFC345FX) and then merged with the software Leica Application 

Suite. 

 

3.5.2. Electrophoresis and immunoblotting 

Protein extracts were prepared from cardiac matrix (Cm) secreted by fibroblasts derived 

from normal (CF-N) and pathological (CF-P) hearts. Cardiac matrices were harvested by 

scraping in PBS and then incubated on ice in a lysis buffer containing 50 mM Tris-HCl (pH 

7.4), 5 mM EDTA, 250 mM NaCl, 0.1% Triton X-100 supplemented with proteases 

inhibitors (1 mM DTT, 2 mM PMSF, 2 µg/ml aprotinin and 10 µg/ml leupeptin). Lysates 

were centrifuged and protein concentration in the supernatants was  determined using    
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Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA). Albumin from bovine 

serum (BSA, Sigma-Aldrich) was used to construct the standard curve. Lysates containing 

30µg of proteins were size-fractionated by electrophoresis on 8% SDS-polyacrylamide gel 

and transferred onto a polyvinylidene difluoride (PVDF) membrane (Merck Millipore). 

Molecular weight markers were loaded onto each gel as a weight indicator. The membranes 

were blocked and then incubated with one of the following antibodies: tenascin-X, 

lamininα1, lamininα2, fibronectin, and collagen I, or α-actinin (for loading control), 

followed by horseradish peroxidase-labelled secondary IgG (all from Santa Cruz 

Biotechnology).  

 

In the same manner, protein extracts were prepared from CD117-positive cells isolated 

from normal and pathological hearts. Lysates containing 30µg of proteins were size 

fractionated by electrophoresis on 8% SDS-polyacrylamide gel and transferred onto a 

nitrocellulose membrane. Lysates of the whole cardiac tissue and molecular weight markers 

were loaded onto each gel as a positive control and weight indicator, respectively. The 

membranes were blocked and then incubated with one of the following antibodies: myosin 

light chain 1, myosin light chain 2, factor VIII, smooth muscle actin, or α-actinin (for 

loading control), followed by horseradish peroxidase-labeled secondary IgG (all from Santa 

Cruz Biotechnology). 

 

Antibody binding was visualized by chemiluminescence (Amersham Biosciences, 

Piscataway, NJ, USA) and autoradiography (Eastman Kodak Company, Rochester, NY, 
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USA). The intensity of individual bands was determined using ImageJ software 

(http://rsb.info.nih.gov/ij/). 

 

3.5.3. RNA isolation and PCR-Array 

Total RNA was isolated from cardiac CD117-positive cells derived from normal hearts 

using standard RNA extraction protocols (NucleoSpin RNA II, Macherey-Nagel, Duren, 

Germany). The pooled RNA from this reference was used for competitive hybridization 

against the RNA from samples of heart of patients with end-stage ischemic cardiomyopathy 

obtained in the same manner. All RNA samples were quality checked and were considered 

suitable for gene expression profiling experiments. The process of gene expression analysis 

using PIQOR
TM

 Stem Cell Microarrays was performed by Miltenyi Biotec. To exclude 

labeling bias, the researchers remained unaware as to the protocol of the experiment and the 

real significance of the samples received for analysis. Sample labelling was performed 

using Cy3 (green) for normal and Cy5 (red) for pathological heart samples. Following the 

overnight hybridization to PIQOR
TM

 Stem Cell Microarray Human Antisense in the          

a-Hyb
TM

 Hybridization Station, fluorescence signals were detected using the laser scanner 

ScanArray
TM

 Lite (PerkinElmer, Waltham, MA, USA). Data were analyzed by Gene 

Functional Classification Tool available from Database for Annotation, Visualization, and 

Integrated Discovery [85]. 

 

The same samples of RNA were also analyzed with Human TGFb/BMP Signaling Pathway 

RT
2 

Profiler
TM 

PCR-Array (SA Biosciences, Frederick, MD, USA),
 
according to the 

manufacturer’s protocol. For the cDNA
 
synthesis, 1µg of total RNA was used with RT

2 
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First
 
Strand Kit. Next, the cDNA was mixed with RT

2 
SYBR

 
Green Mastermix and real 

time RT-PCR was performed.
 
The relative expression of the products was determined

 
from 

raw data using ∆∆Ct method.  

 

3.5.4. RT-PCR and Real Time RT-PCR 

Total RNA was extracted from normal and/or pathological cardiac primitive cells plated on 

control plates, cardiac fibroblast-derived matrix-covered plates and polyurethane scaffolds 

using the RNeasy RNA Isolation kit (QIAGEN, Hilden, Germany) according to 

manufacturer's instructions. The isolated RNA was dissolved in RNase-free water, and the 

final concentration of RNA was determined in a Qubit fluorometer (Invitrogen). A total 

amount of 100ng RNA from cells cultured on scaffolds and 1 μg of RNA from cells plated 

on culture dishes was retrotranscribed into cDNA with QuantiTect Reverse Trascription Kit 

(QIAGEN). Total  RNA  was  quantified  with  a  spectrophotometer  and  the quality  was  

evaluated  by  gel  electrophoresis  with  ethidium  bromide  staining. All primers (reported 

below) were designed with Primer3 software (http://frodo.wi.mit.edu). 

 

Gene Forward Primer Reverse Primer 

Amplicon 

Length 

(nt) 

GAPDH 5’-CACCATCTTCCAGGAGCGAG-3’ 5’-TCACGCCACAGTTTCCCGGA-3’ 372 

NKX2.5 5’-CCTCAACAGCTCCCTGAC-3’ 5’-CTCATTGCACGCTGCATA-3’ 162 

α-SA 5’-TCGGGACCTCACTGACTA-3’ 5’- GGGCTGGAAGAGTGTCTC-3’ 282 

VEGFR2 5’-GATGTGGTTCTGAGTCCGTCT-3’ 5’- CATGGCTCTGCTTCTCCTTTG-3’ 560 

FVIII 5’-CAGCCTCTACATCTCTCAGTT-3’ 5’-ATGCGAAGAGTGCTGCGAATG-3’ 210 

GATA6 5’- GCCCCTCATCAAGCCGCAGAA-3’ 5’- TCTCCCGCACCAGTCATCACC-3’ 378 
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RT-PCR was carried out using 5Prime HotMasterMix (5Prime, Hamburg, Germany) and 

RNA expression was analyzed by comparing the control transcript (GAPDH) and the 

transcript of interest when their amplification was in the exponential phase. The PCR 

products were size-fractionated by electrophoresis in 2% agarose gel. The DNA bands were 

visualized and photographed under UV light exposure with FireReader XS D-55 imaging 

system equipped with 1D software (UVItec Limited, Cambridge, UK). The intensity of 

individual bands was determined using ImageJ software (http://rsb.info.nih.gov). 

 

Real Time RT-PCR was performed using RealMasterMix SYBR ROX (5Prime) according 

to manufacturer’s protocol. DNA amplification was carried out using Mastercycler ep 

realplex
4S

 (Eppendorf), the thermal cycling conditions included an initial denaturation for 2  

min at 95 °C and 40 cycles consisting of a denaturation step at 95 °C for 15 sec, an 

annealing step at 58 °C for 15 sec and an extension step for 30 sec  at 68  °C. The detection 

was performed by measuring the binding of the fluorescence dye SYBR Green I to double-

stranded DNA. All samples were tested in triplicate with the housekeeping genes (GAPDH 

and RPL13A) to correct for variations in RNA quality and quantity. Melt curve analyses 

were conducted to assess uniformity of product formation, primer dimers formation, and 

amplification of non-specific products. Linearity and efficiency of PCR amplification were 

assessed using standard curves generated by increasing amounts of cDNA. Comparative 

quantification of target genes expression in the samples was performed based on cycle 

threshold (Ct) normalized to housekeeping genes, using the ΔΔCt method (Livak and 

Schmittgen, 2001).  
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3.5.5  Evaluation of proliferation and apoptosis of cardiac primitive cells  

Normal and pathological heart-derived CD117-positive cells were starved in serum-free 

medium for 24h. For evaluation of proliferation, quiescent cells were then incubated with 

the complete medium or cardiac fibroblast-conditioned medium for 24h, and 5-bromo-2’-

deoxyuridine (BrdU) 10µM was added for 1h. Incorporation of BrdU was evaluated using 

BrdU Labeling and Detection Kit (Roche Diagnostics, Basel, Switzerland) according to the 

manufacturer’s protocol. The cells were fixed in acidic ethanol and incubated with anti-

BrdU monoclonal antibody in incubation buffer containing nucleases. After incubation with 

anti-mouse-Ig-fluorescein, the nuclei were counterstained with DAPI and the stained area 

of culture dish was mounted in Vectashield (Vector Labs, Burlingame, CA, USA). 

 

For evaluation of apoptosis, cells were incubated with 3% hydrogen peroxide in the 

complete medium or cardiac fibroblast-conditioned medium for 24h and fixed in 1% 

paraformaldehyde. The fragmentation of DNA was detected using the ApopTag Plus 

Fluorescein In Situ Apoptosis Detection Kit (Merck Millipore) based on terminal 

transferase dUTP nick end labeling, according to the manufacturer’s protocol. Nuclei were 

counterstained with DAPI (Merck Millipore) and the stained area of culture dish was 

mounted in Vectashield (Vector Labs, Burlingame). For evaluation of apoptosis of cells 

seeded on polyurethane scaffold, cells were stained only with DAPI and the signs of the 

apoptotis, such as nuclear condensation and apoptotic bodies formation was looked for on 

microscopic observation.  
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Microscopic analysis was performed with a Leica DMLB microscope equipped with 

epifluorescence EL6000 system (Leica Microsystems, Wetzlar, Germany). Pictures were 

taken with digital camera connected to the microscope (Leica DFC345FX) and then merged 

with the software Leica Application Suite 3.6. 

 

3.5.6. Evaluation of migration of cardiac primitive cells 

For the evaluation of migration of cardiac primitive cells in the presence of fibroblast-

derived cardiac matrix, cells were grown to confluence and a thin scratch was introduced 

on culture plates with a pipette tip, producing a cell-free zone (scratch-wound assay). The 

plates were observed at an inverted phase contrast microscope (Olympus Italia) and 

photographed with computer assisted digital camera (Soft Imaging System) at five distinct 

points, previously marked along the scratch on every culture plate, at various time points. 

Cell migration was quantified by measuring the width of the cell-free zone (distance 

between the edges of the scratched cell monolayer) at every time point with Cell A Imaging 

Software for Life Sciences Microscopy (Soft Imaging System). 

 

3.6. Cardiac fibroblast-conditioned medium 

 

3.6.1. Preparation 

Conditioned medium was prepared by culturing cardiac fibroblasts in DMEM 

supplemented with 10% FBS in confluent state. The medium was collected every three 

days and diluted (1:3) with DMEM/F-12 (Sigma-Aldrich) supplemented as previously 

reported. Normal and pathological heart-derived cardiac primitive cells were starved in 
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serum-free medium for 24 h and then incubated with cardiac fibroblast-conditioned 

medium for 72h before proceeding to the evaluation of proliferation and apoptosis. 

 

3.6.2. Characterization 

The composition of cardiac fibroblast-conditioned medium was analyzed with RayBio® 

Human Cytokine Antibody Array. The array membranes with primary antibodies were 

blocked and incubated with undiluted conditioned medium obtained from culture of 

fibroblasts from normal or pathological heart. After washing, the membranes were 

incubated with a cocktail of biotin-conjugated antibodies, followed by incubation with 

HRP-conjugated streptavidin in blocking buffer. Signals were detected by 

chemiluminescence and autoradiography. 

 

3.7. Cardiac primitive cell culture and evaluation on polyurethane scaffold 

 

3.7. 1. Cardiac primitive cell seeding 

Pathological heart-derived cardiac primitive cells were seeded onto each polyurethane 

scaffold (6mm diameter), previously sterilized by UV exposure for 20 min and placed in 

96-well flat bottom cell culture plates. Cells were also seeded on 96-well conventional 

tissue culture plates as a control. Cells were cultured on control scaffolds, gelatine-coated 

scaffolds and laminin-1-functionalized scaffolds for 7, 14 and 21 days. The constructs were 

observed with an inverted phase contrast microscope (CKX41; Olympus Italia) equipped 

with a digital camera (Color View IIIu Soft Imaging System). 
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3.7.2. Embedding and sectioning of cell-scaffold constructs 

Constructs were fixed in 4% paraformaldehyde for 20 minutes at room temperature. Next, 

scaffolds were incubated with 30% sucrose at 4
o
C

 
overnight and embedded in tissue 

freezing medium (TFM, Leica Biosystems) in disposable moulds specifically designed for 

cryosectioning (Bio-optica). To ensure quick freezing the disposable moulds were 

immersed in liquid nitrogen until TFM turned white. Frozen specimens were stored at -

80
o
C until cryosectioning. Slices of 10μm were cut in the cryostat at −20°C and 

cryosections were placed onto a microscope slide. Sections were stained as described in 

section 3.5.1. 

 

3.8. Statistical analysis 

All numerical data are presented as mean±SEM. Statistical differences between groups 

were evaluated with Student’s two-tailed unpaired t-test; p< 0.05 was considered 

significant. 
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4. Results 

 

4.1. Culture of cardiac primitive cells in standard conditions 

 

4.1.1. Characterization of CPC population  

CD117-positive cells were isolated from primary cardiac cell culture by immunomagnetic 

cell sorting (as described in Materials and Methods section 3.2). Purity of sorted cells was 

determined by immunofluorescence and reached 98%. The culture consisted of CD117-

positive cardiac lineage-negative cells and CD117-positive cells that expressed markers of 

commitment towards cardiac cell lineages. Fluorescent immunolabelling revealed the 

presence of progenitors and precursors of three cardiac cell lineages (Fig.1): cardiomyocyte 

(with progenitors expressing transcription factor Nkx2.5 and precursors expressing α-

sarcomeric actin in the cytoplasm), endothelial (with progenitors expressing transcription 

factor Ets-1 in the nuclei and precursors expressing also FVIII in the cytoplasm), and 

smooth muscle cells (with progenitors expressing transcription factor GATA6 in the nuclei 

and precursors expressing also smooth muscle actin in the cytoplasm). 

 

4.1.2. Commitment and maturation of CPCs from normal and pathological hearts 

The commitment and maturation of cardiac CD117-positive CPCs was examined at protein 

and mRNA level. The population of CD117-positive cells from adult human heart consisted 

of CPCs at different stages of their differentiation. The expression of the transcription 

factor Nkx2.5 identified putative cardiomyocyte progenitors. Cardiomyocyte precursors 

differed from progenitors by the expression of cytoplasmic proteins, such as α-sarcomeric 
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actin and cardiac myosin light chain. By way of analogy, endothelial and smooth muscle 

cell progenitors were identified by the expression of transcription factor Ets-1 and GATA6, 

respectively, while the precursors of the respective cell lineages expressed also factor VIII 

or smooth muscle actin in the cytoplasm. Consequently, we identified progenitors and 

precursors of cardiomyocytes, endothelial and smooth muscle cells in both CPC-N and 

CPC-P in vitro (Fig.1). Quantification of cells of different cardiac cell lineages (expressed 

as a percentage of positive cells in each maturation stage for every lineage among all 

CD117-positive cells in culture), based on the immunofluorescent staining of the 

abovementioned specific markers, revealed significant differences between the normal and 

pathological cell populations. In particular, the population of CD117-positive CPC-N was 

composed of twice as many precursors as progenitors (11.57 ±2.28 % and 22.58±0.87 %, 

respectively; n=3, p<0.05). On the contrary, the progenitors were about three times more 

numerous than precursors among CPC-P (46.82±10.42 % and 16.79±2.42 %, respectively; 

n=3, p<0.05). Of note, the proportion of committed cells (i.e., cells expressing at least one 

of the nuclear or cytoplasmic markers of differentiation toward one of the cardiac cell 

lineages) among the CD117-positive cells increased 1.86-fold (p<0.05) in the pathological 

conditions (Fig.2). Accordingly, compared with CPC-N, there was a higher expression of 

Nkx2.5, α-sarcomeric actin, and myosin light chain; VEGFR-2 and factor VIII; GATA6 

and smooth muscle actin in the CPC-P (Fig.3). 

 

Gene expression in cardiac CD117-positive CPC-N and CPC-P was examined by stem cell-

specific PCR-based microarray employing 942 genes relevant for human stem cells and 

their differentiation; 936 genes passed the quality control, i.e., the spots were free of 
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hybridization artefacts and their signal intensity was satisfactory. We confined our analysis 

to the genes with at least 1.7-fold differential expression and we identified alterations in the 

expression of 77 genes, of which 38 were transcriptionally downregulated (Tab.1) and 39 

were upregulated (Tab.2) in CPCs from hearts with ischemic cardiomyopathy (i.e. CPC-P). 

The classification based on the gene functional annotation returned developmental process 

as the top category for downregulated genes (Fig.4a). Additionally, these genes were 

annotated in the following groups: nervous system development and neurogenesis, skeletal 

development, bone and cartilage development. The downregulated genes included snail 

homolog 1 (SNAI1), jagged 1 (JAG1), ephrin-B1 (EFNB1), all involved in the early stages 

of developmental processes, and Mdm2, p15, p16, clustered in cell cycle control functional 

group. Genes upregulated in CPC-P belonged to the groups termed organ development and 

cell differentiation (in particular, mesenchymal cell differentiation and heart development), 

as well as response to wounding, external stimuli, and stress (Fig.4b). Interestingly, the 

upregulated transforming growth factor β3 (TGFβ3), hepatocyte growth factor (HGF), 

endothelin receptor type B (EDNRB), and mesoderm-specific transcript (MEST) belonged 

to epithelial–mesenchymal transition and mesenchymal cell differentiation functional 

groups. The results of microarray for the selected genes of interest were validated and 

confirmed by real time RT-PCR. 

 

Since the microarray analysis revealed the upregulation of genes involved in TGFβ receptor 

signalling pathway and its regulation in the adult human hearts with ischemic 

cardiomyopathy, we next focused on TGFβ-mediated signal transduction and examined the 

expression of TGFβ/BMP signaling pathway-related genes in PCR-based array (Fig.5). In 
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CPCs from pathological heart, the mRNA of TGFβ1 was upregulated with respect to 

normal CPCs, together with the transcription factors ID1 and c-Myc, while that of activin A 

receptor type II-like 1 (ACVRL1) was downregulated. Interestingly, the transcriptional 

expression of interleukin 6 (IL6) and integrin β5 (ITGB5) increased, while that of integrin 

β7 (ITGB7) decreased significantly in the pathological conditions. 

 

4.1.3. Proliferation and apoptosis of CPCs from normal and pathological hearts 

Proliferation of CD117-positive CPCs was assessed by the BrdU incorporation in the S-

phase of cell cycle (Fig.6a). Among the CPCs isolated from adult human hearts with 

ischemic cardiomyopathy (i.e. CPC-P), the proportion of proliferating cells reached 

29.08±3.12 % and was 2.15 times higher compared to that of the normal CPCs (13.55±1.17 

%, n=3, p<0.05). However, the CPC-P were 2.48 times more susceptible to apoptosis 

(Fig.6b): oxidative stress in vitro induced apoptosis in 1.7±0.3 % of CPC-N and in 

4.21±0.66 % of CPC-P (n=3, p<0.05).  

 

Since the proper balance between symmetric and asymmetric stem cell division is crucial 

for both stem cell population maintenance and tissue homeostasis, we have identified 

actively cycling cells expressing Ki67 and analyzed Notch distribution in cells undergoing 

cytokinesis (Fig.7). In the CPC-N, symmetric and asymmetric divisions were equally 

frequent, whereas in CPC-P the symmetric to asymmetric division ratio was almost 1:2 

(n=3, p<0.05). 

 

4.2. Culture of cardiac primitive cells in the presence of cardiac fibroblast-derived matrix 
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4.2.1. Cardiac matrix composition 

Fibroblasts isolated from samples of adult human heart were cultured in confluent state 

allowing for cardiac extracellular matrix deposition in vitro (Fig.8). Incubation with basic 

solution of 0,5 M NaCl and 10mM Tris-base to extract soluble proteins, followed by 

incubation with 1% SDS induced membrane permeabilization and cell lysis, resulting in the 

removal of fibroblasts. Denudated matrix adhered to culture plate; its presence was 

observed at phase contrast microscope (Fig.9a), while its composition was revealed by 

indirect immunofluorescent staining of representative extracellular matrix glycoproteins 

and fibrillar proteins (Fig.9b): laminin, tenascin, fibronectin, and collagen. 

 

Analysis of biomatrix composition by electrophoresis and immunoblotting revealed the 

differences in the composition of cardiac matrix produced by fibroblasts derived from 

normal (Cm-N) and pathological hearts (Cm-P). While Cm-N consisted mainly of collagen 

I and laminin-2, Cm-P was characterized by a higher content in  tenascin-X and laminin-1 

(Fig.10). 

 

In the living tissue, the amorphous component of the extracellular matrix (so called 

interstitial fluid) is a site of deposition, diffusion and storage of numerous growth factors 

and cytokines secreted by local cells. This environment is substituted by culture medium in 

vitro and it is in the culture medium that the fibroblasts secrete soluble extracellular matrix 

components. Hence, the composition of culture medium conditioned in vitro by fibroblasts 

derived from normal (CF-N) and pathological (CF-P) hearts was evaluated by human 

cytokine antibody array. Comparison of the intensities of signals (Fig.11) quantified by 
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densitometry reflected the relative expression levels of cytokines secreted by CF-N and CF-

P in the culture medium (Tab.3). Among the identified cytokines, those that reached higher 

concentration in the medium conditioned by CF-P with respect to CF-N were RANTES 

(23.7-fold), MCP-3 (21-fold), IGFBP1 (23.2-fold), EGF (1.8-fold), and Il-6 (2.3-fold 

difference, all n=3 in duplicate, p<0.05), while the concentration of others was higher in the 

medium conditioned by CF-N: SCF (1.5-fold), TGF-β3 (2.7-fold), BMP4 (4.4-fold 

difference, all n=3 in duplicate, p<0.05). 

 

4.2.2. Biological characteristics of CPCs in the presence of normal and pathological cardiac 

matrix  

Our model of cell culture in vitro allowed us to study the synthesis and secretion activity of 

cardiac fibroblasts isolated from normal or pathological adult human heart. The soluble 

factors synthesized by fibroblasts conditioned the medium used for fibroblast maintenance, 

while the fibrillar and non-fibrillar proteins were deposited as cardiac matrix on culture 

plates. Both extracellular matrix components were further analyzed by immunochemical 

methods (see above), and their biological function was tested on CPCs cultured in the 

presence of cardiac fibroblast-deposited extracellular matrix or cardiac fibroblast-

conditioned medium. 

 

First, fibroblast-derived cardiac matrix was used as a substrate for the culture of CPCs in 

vitro. Given the differences in cardiac matrix composition, revealed earlier by 

immunoblotting, two types of cardiac matrix, i.e. Cm-N, produced by fibroblasts isolated 

from the fragments of adult human normal heart, and Cm-P, produced by fibroblasts 
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isolated from the fragments of adult human hearts with ischemic cardiopathy, were used in 

this part of the study, enabling us to compare the effects of cardiac extracellular matrix 

typical of normal and pathological conditions on CPC proliferation, apoptosis, and 

migration in vitro. 

 

Proliferation of CPC-P on Cm-P was 1,4-fold higher with respect to control (n=3, p<0.05) 

and 1,7-fold higher with respect to Cm-N (n=3, p<0.05). Although the percentage of 

proliferating cells was always significantly lower in the respective population of CPC-N, 

similar trend was noted when these cells were cultured on Cm-N and Cm-P (Fig.12a). The 

presence of fibroblast-derived cardiac matrix protected both populations of CPCs from 

apoptosis provoked by oxidative stress (n=6, p<0.05 with respect to control), although no 

statistically significant advantage of specific cardiac matrix type was evident (Fig.12b). 

Only in CPC-P an influence of Cm on migration speed could be observed, with its highest 

value on Cm-N; in the presence of Cm-P, it was similar to that of control but significantly 

slower when compared with the speed of migration on Cm-N (n=9, p<0.05) (Fig.12c). 

 

The effects of extracellular matrix on cell maturation were studied by real time RT-PCR on 

CPCs cultured in the presence of extracellular matrix typical of normal and pathological 

heart for 14 days. Of note, the expression of several markers of cardiomyocyte (NKX2.5, 

MYH6), endothelial (ETS1, FVIII) and smooth muscle (GATA6, SMA) cell lineage at 

baseline in the population of CPC-P was significantly higher with respect to CPC-N 

(Fig.13). In the presence of cardiac matrix typical of pathological heart the expression of 

Nkx2.5 increased in CPC-N (with the effect of Cm-N being higher than that of Cm-P), but 
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not in CPC-P. For the endothelial cell lineage, the expression of transcription factor ETS1 

increased, but at the same time that of cytoplasmic FVIII decreased moderately in CPC-P in 

the presence of Cm-P. While the expression of both those endothelial markers was much 

lower in CPC-N at baseline, in the presence of Cm-P their expression increased 

significantly. Similar differences between CPC-N and CPC-P regarded also the expression 

of smooth muscle cell precursor and progenitor markers (GATA6 and SMA). The presence 

of cardiac extracellular matrix in vitro, independently of its type, increased the expression 

of GATA 6 and SMA in CPC-N, while in CPC-P the maturation state of smooth muscle 

primitive cells was influenced by the type of cardiac matrix. In particular, an increase in the 

expression of GATA6 was noted in the presence of Cm-N, while SMA gene expression 

reached the highest value in the presence of Cm-P (Fig.14). 

 

Second, we examined the effects of fibroblast-conditioned medium on CPC proliferation 

and apoptosis. As for the previous experiment, the observation that both the composition of 

culture medium conditioned by fibroblasts and the characteristics of CPCs were 

significantly different in the normal and pathological conditions was taken into 

consideration, hence four groups of culture plates were prepared and tested. The proportion 

of control CPC-N incorporating BrdU was not statistically different from that of CPC-N in 

the presence of medium conditioned by CF-N, but increased 1.6-fold when these cells were 

incubated in the medium obtained from CF-P culture (n=3, p<0.05). Proliferation of CPC-P 

was not significantly influenced by the presence of either type of cardiac fibroblast-

conditioned medium (Fig.15a). Apoptosis rate of CPC-N diminished 2-fold when these 

cells were cultured in the medium conditioned by CF-N, while the effect of CF-P was not 
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statistically significant(Fig.15b). By contrast, in the presence of medium conditioned by 

CF-P apoptosis of CPC-P diminished 3.5-fold with respect to control (n=3, p<0.05). 

 

4.3. Culture of cardiac primitive cells on biomimetic scaffolds 

 

4.3.1. Scaffold seeding 

CPCs cultured in the presence of the scaffolds were observed using optical and confocal 

fluorescent microscopy; the latter was performed after labelling fixed cells with phalloidin 

and antibodies against Ki67. On the third day of culture, cells were found to adhere to 

scaffolds and cover the surface of the scaffold trabeculae spreading across the pores 

(Fig.16a). The proliferation-associated protein Ki67, which is expressed by cells in late G1, 

S, G2 and M phases, but not in resting cells in G0, was present in cell nuclei. Confocal 

image analysis revealed that the cells stretched out in three dimensions, between the 

trabeculae of the same and of the adjacent scaffold layers (Fig.16b).  

 

4.3.2. Proliferation and apoptosis of CPCs on biomimetic scaffolds 

Laminin-1 predominates among the laminin forms during early embryogenesis and further 

organogenesis. Its unique role is underlined by the fact that embryogenesis will not proceed 

in the absence of this form of laminin [86].  Moreover, it has been found to be re-expressed 

in heart regeneration following tissue damage [10]. With the aim to stimulate CPCs with 

the biomimetic properties of synthetic scaffold used for cell delivery, those scaffolds were 

functionalized with laminin-1 and their effects on proliferation and apoptosis of CPCs were 

compared with control scaffolds (not functionalized and functionalized with gelatin). 
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Proliferation of CPC-P cultured on polyurethane control, gelatine- and laminin-1-

functionalized scaffolds were assessed at two time points by identifying  actively cycling 

cells expressing Ki67 (Fig.17a). At all time points (7 and 14 days), the rate of Ki67-positive 

cells was highest in the presence of laminin-1-functionalized scaffolds. This difference was 

particularly evident at 7 days, when the proportion of cycling cells was 3.3-fold higher 

(18.75±3.89%) with respect to both non-coated (5.6±1.15%) and gelatin-coated 

(5.66±0.4%) polyurethane scaffolds (n=3, p<0.05). Similarly, apoptosis of CPC-P was 2.4-

fold and 1.4-fold lower at 7 days in the presence of laminin-1-functionalized scaffolds then 

non-coated and gelatin-coated scaffolds, resepctively (n=3, p<0.05) (Fig.17b). 
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5. Discussion 

 

5.1. Progenitors and precursors of cardiac cell lineages in normal and pathological heart 

 

In any self-renewing organ, there is an established tissue maintenance program that is 

responsible for the continuity of organ structure and function throughout life: damaged or 

aged and apoptotic cells are substituted by the differentiating progenies of stem cells 

residing in organ-specific niches. While previous studies described an increase in CD117-

positive CPCs number following cardiac tissue damage [10], the present study of 

chronological age-matched CPCs in the normal and pathological conditions revealed that 

CPCs from the adult human pathological heart are committed to cardiac tissue specific fate: 

on the one hand genes related to stemness and multipotentiality, and those involved in 

neurogenesis, osteogenesis, chondrogenesis, and skeletal muscle development were 

downregulated; on the other hand there was an upregulation of genes and proteins whose 

expression correlates with cardiac tissue-specific development, differentiation, and 

maturation. Moreover, the activation of TGFb/BMP signaling pathway may correspond to 

epithelial–mesenchymal transition and mesenchymal cell differentiation. This possibility is 

corroborated by two recent findings: first, the induction of the epithelial–mesenchymal 

transition in epicardial cells from adult human heart gave rise to CD117-positive cardiac 

cells in vitro [44]; second, epicardially-derived cells can give origin to endothelial, smooth 

muscle [87], and arguably, cardiomyocyte precursors in vivo [88]. Despite the evident 

commitment of numerous cardiac progenitors, the number of more mature CPCs, i.e. 

cardiac lineage precursors was relatively low in ischemic heart [89]. Two possible 
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explanations offer themselves, namely that the differentiation program is inhibited and the 

early committed cells are destined to apoptosis in the pathological conditions or, 

alternatively, the cells continue on their route to terminal differentiation and maturation, 

which is associated with a loss of CD117 antigen expression. The results of the present 

study support the former; in fact, the rate of apoptosis among CPC-P was significantly 

higher with respect to CPC-N and the same was also true in the CD117-negative fraction of 

CPCs (data not shown). The extent of stem cell activation in pathological heart injury, 

when massive cardiac cell necrosis and apoptosis ensue, is presumably much higher than 

that providing for a physiological "wear and tear" repair. As such, cardiac stem cell 

activation in ischemic heart can be analogous to that occurring during organ development, 

when a formation of numerous fast-cycling transient amplifying primitive cells occurs and 

proliferation and apoptosis of the progenitors and precursors of different cell lineages are 

strictly regulated and coordinated in order to form a functionally competent tissue [90]. The 

results of the present study suggest that stem cell-mediated cardiac regeneration can be 

governed by the same principle: in pathological conditions, cardiac stem cells undergo 

asymmetric division (which was found to be the prevalent form of division of CPC-P) and 

give origin to numerous fast-cycling progenitors of cardiac cell lineages; apoptosis of these 

progenies can be imposed by the developmental program activated in cardiac tissue as a 

result of damage. In fact, the disruption of this program and, in particular, the inadequate 

incidence of apoptosis, can be responsible for cardiac malformation and impede the 

remodelling of developing tissue [91]. Alternatively, the incapacity of CPCs from 

pathological hearts to reach terminal differentiation can depend on the adverse effects of 

the microenvironment and the extrinsic stimuli that the cells endure in the pathological 
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conditions, resulting from changes in left ventricle loading conditions, neurohormonal 

activation, and alterations in tissue perfusion and metabolism, which affect repair and 

remodelling of the myocardium as a whole [92]. Another study that compared biological 

characteristics of cardiac stem cells from normal and pathological adult heart [93] pointed 

out that telomere shortening was a major trigger of cellular senescence and stem cell pool 

functional exhaustion. As a matter of fact, it was already reported that stem cell 

characteristics, including the expression and function of telomerase, were critically 

influenced by extrinsic signals derived from their environment [94]. Moreover, while the 

multipotent stem cells express telomerase, the CPCs are no longer able to preserve their 

telomeric DNA; hence the balance between proliferation and differentiation has to be 

tightly controlled in order to allow these cells to contribute to cardiac regeneration and to 

restore cardiac structure and function. 

 

Extracellular matrix composition and structure, as well as a myriad of growth factors and 

cytokines that are stored and selectively or sequentially activated as a result of interactions 

with matrix components, all contribute to the maintenance of stem cell pool and to the 

commitment and terminal differentiation of stem cell progenies. The biological 

characteristics of the microenvironment change profoundly in the ischemic heart disease 

[95], influencing and modifying the characteristics of cardiac stem cells and CPCs. An 

interesting example of the extracellular matrix role in stem cell biology is the expression of 

integrins, transmembrane cell adhesion receptors that bind to extracellular matrix ligands, 

cell surface ligands, and soluble ligands to mediate the outside–inside signaling. From the 

analysis of PCR-based array in our study, it is apparent that the expression of integrin β7 
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(ITGβ7) is downregulated in CPCs in the pathological conditions. The effects of such a 

downregulation were recently revisited in hematopoietic stem cells [96]. ITGβ7 mutant 

mice displayed a transient increase of colony-forming unit progenitors in the bone marrow 

coupled with a proportional increase in the number of precursor cells in the peripheral 

blood. However, following tissue damage induced by exposition to phenylhydrazine, a 

number of splenic erythroid colony-forming units decreased with respect to control and 

anemia ensued. By way of analogy, cardiac stem cells in the pathological conditions could 

give rise to fast-cycling transient amplifying progenitors of cardiac cell lineages, which 

subsequently increase in number. Still, as indicated by the results of the present study, it 

appears that these cells fail to accomplish differentiation process, do not acquire functional 

competence and, as obsolete, are removed by apoptosis. 

 

In conclusion, a series of biological events seems responsible for the failure of CPCs to 

reach terminal differentiation and functional competence in pathological hearts. From the 

foregoing discussion, it would seem that both intrinsic tissue regeneration program and 

microenvironmental cues regulate the proliferation/differentiation balance of CPCs. The 

results of our study indicate that this balance is disturbed in chronic ischemic heart disease. 

Hence, our next efforts were aimed at studies of the effects of microenvironmental changes 

on CPCs. 

 

5.2. Cardiac matrix in the normal and pathological heart and its effects on cardiac primitive 

cells 
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An organized extracellular matrix is necessary for the arrangement of cells and thus for the 

maintenance of structure in any given tissue; this intricate interlocking mesh of fibrillar and 

nonfibrillar proteins and glycosaminoglycans also determines tissue biomechanical 

properties. Numerous cell types are able to synthesise and secrete extracellular matrix 

components, and their activity is regulated and changes in response to various stimuli, such 

as inflammation, biomechanical stress, and tumorigenesis [97], while already deposited 

extracellular matrix proteins are targeted by specific enzymes, metalloproteinases, that are 

responsible for the continuous remodelling of matrix and allow cell movement and size 

adaptation. In any necrotic tissue, fibronectin and collagen deposition is responsible for 

scar formation, which preserves wall integrity and thickness, but can be deleterious for 

tissue and cell function. Also in the ischemic heart disease or cardiac pressure overload, 

cardiomyocyte hypertrophy is accompanied by interstitial fibrosis, while the necrotic tissue 

is substituted by a scar. However, in the chronic conditions such remodelling increases wall 

stiffness, contributes to cardiomyocyte slippage, and worsens the contractile properties of 

the myocardium [24].  On these bases, it is evident that secretory activity of fibroblasts, 

which exceed in number any other cell type in the myocardium, influences myocardial 

function: it is determinant in normal, but it can be detrimental in pathological conditions. 

Hence, the synthetic and secretory activity of cardiac fibroblasts isolated from normal or 

pathological adult human heart was studied in the present model of fibroblast cell culture in 

vitro. The soluble factors conditioned the medium used for fibroblast maintenance, while 

the fibrillar and nonfibrillar proteins were deposited as cardiac matrix on culture plates. 

Both extracellular matrix components were analyzed by immunochemical methods, while 

their biological function was tested on CPCs in vitro. 
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Several authors have described the changes of cardiac stem/primitive cells biological 

properties in pathological conditions or aging [93,89], but the contribution of 

microenvironment has not been considered and sufficiently acknowledged due to the lack 

of an appropriate model for cell-matrix interaction studies. The molecular constituents of 

extracellular matrix play major role in the responses of cells to their local 

microenvironment. Both direct stimulation of the specific receptors by growth factors 

stored in extracellular matrix and indirect activation by specific integrin expression and 

clustering can transmit extracellular biochemical inputs along the intracellular signaling 

pathways that regulate cell proliferation, survival, and migration. As a matter of fact, the 

expression of integrin subunits in the same cardiac primitive cell population changes in 

qualitative and quantitative manner depending on cell culture substrate (Cm-N or Cm-P, 

data not shown). From the above observations it follows that the composition of 

extracellular matrix must be taken into consideration when planning cardiac regeneration 

based on stem/primitive cell transplantation or activation. 

 

In mammals, nearly 300 proteins (among which collagen subunits, proteoglycans, and 

glycoproteins) have been identified as components of extracellular matrix [98]. So far, only 

few of them have been recombinantly expressed or purified and are available for the studies 

of their role in cell biology in vitro. Although the extracellular matrix of each tissue 

contains similar components, the combination of proteins and proteoglycans is tissue-

specific [99], therefore it is arguable that only cardiac extracellular matrix should provide 

the proper biological and chemical cues for myocardial regeneration. Synthesis and 
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deposition of extracellular matrix in the myocardium occurs principally by cardiac 

fibroblasts and is influenced by neurohumoral activation and bioactive factors. Moreover, 

cardiac fibroblasts are able to sense mechanical stresses and signals from the surrounding 

extracellular matrix via integrins and may modify their secretory activity accordingly [100], 

influencing other interstitial and parenchymal cells [101]. In the present study, the effects 

of both amorphous and fibrillar components typical of cardiac microenvironment were 

characterized and their influence on CPC was studied in vitro. It is possible to envisage that 

both types of CPCs, normal and pathological, could be used for myocardial regeneration in 

different biological and clinical settings. The results of the present study indicate that in 

order to augment the proliferation of CPC-N in vitro or in vivo, one should consider the use 

of matrix components resulting from activity of fibroblasts already stimulated by the 

pathological conditions, while the protection of CPC-N from apoptosis could be 

accomplished by the components of matrix typical or particularly present in the normal 

heart. If CPC-P were to be used in cell therapy, the cardiac matrix already present in 

pathological conditions could protect these cells from apoptosis, however, the proliferation 

of these cells cannot be influenced (further increased) by cardiac fibroblast-derived matrix 

components. Interestingly, migration of CPC-N was not significantly influenced by matrix 

type (normal or pathological), while that of CPC-P increased only on matrix deposited by 

fibroblasts typical of normal heart. Considering the variations and interactions among 

extracellular matrix constituents, the possible influence on cardiac primitive cells is 

difficult to predict. Hence, the model of extracellular matrix production by cardiac 

fibroblasts and its use as a substrate for cardiac primitive cell culture described in the 

present study may fill this gap and improve the results of cell transplantation. 
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5.3. Biomimetic scaffolds seeded with cardiac primitive cells 

 

Multicellular structures rely on the presence of extracellular matrix to provide scaffolding 

for cells and tissue compartments. The extracellular matrix structure has implications for 

both the cellular activity and mechanical performance of the tissue. The goal of tissue 

engineering is to develop constructs that are functionally equivalent to lost or damaged 

tissues. Hence, tissue engineering strategies are generally aimed at tissue regeneration 

mediated by purposely designed three-dimensional matrices (scaffolds) regulating cell 

function. This approach at tissue regeneration requires the design of appropriate scaffolding 

biomaterials with suitable three-dimensional architecture as well as the presence of 

molecules on the scaffold/biomaterial able to interact with cells via outside-inside 

signalling. So far, blends between synthetic polymers, such as polyurethane and 

polycaprolactone and natural proteins, such as gelatin, collagen and chitosan, were reported 

for the preparation of porous scaffolds for cardiac tissue engineering [102]. Segmented 

polyurethanes are particularly attractive, being elastomeric biomaterials with tunable 

mechanical properties, processability and good biocompatibility [103]. 

 

As previously reported, laminin-1 is the first glycoprotein expressed during early 

embryogenesis [104] and it is re-expressed in adult heart regeneration following tissue 

damage [10]. For this reason, its properties as a coating of polyurethane scaffold seeded 

with CPCs were tested in the present study. Indeed, laminin-1 coating increased the 

proliferation and survival rate of CPCs with respect to polyurethane scaffold without 
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coating or coated with gelatin. In the light of the results of the present study, the approaches 

based on the modification of biomaterials with bioactive molecules (such as native long 

chain proteins or short peptide sequences derived from intact extracellular matrix, which 

can incur specific interactions with cell receptors) should benefit from the description of 

biological characteristics of cells in the presence of naturally-derived cardiac matrix 

mimicking myocardial microenvironment. 
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6. Conclusions 

 

The results of the study highlighted the role of microenvironment in cardiac regeneration. 

In the era of stem cell based tissue regeneration and tissue engineering, the choice of 

natural biological components and biomimetic materials used for myocardial regeneration 

should be based on their specific role on cardiac cell biology. Moreover, changes that take 

place in chronic pathological conditions should be taken into consideration when planning 

stem cell-based therapy. This study indicated the potential use of cardiac fibroblast-derived 

matrix for in vitro studies of the interactions between components of extracellular matrix 

and cardiac primitive cells responsible for cardiac self-renewal. Biochemical stimulation of 

CPCs by extracellular matrix fibrillar and amorphous components can be applied to study 

how the combination of these factors lead to changes in CPC phenotype and function in 

normal and pathological conditions. The goal of regenerative medicine and tissue 

engineering to regenerate damaged myocardium can be achieved by further investigations 

into cell-matrix interactions at different stages of cardiac ischemic disease progression. 

 

The extent to which the composition of the biological matrix substrate or scaffold coating 

can be modified in order to promote cell growth, survival  and differentiation remains 

controversial. Although we are constantly aiming at nature mimicking in organ 

regeneration, this goal is still far from being reached. It can be argued that in this particular 

field, progress can be achieved by aiming high but not over demanding.  Step by step, 

ensuing knowledge should deepen our understanding of the biochemical cues that regulate 
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cardiac primitive cell survival, proliferation, migration, and differentiation, and as a result 

guide cardiac tissue regeneration. 
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Figure 1. Immunofluorescent staining of cardiac CD117-positive cell population in vitro, 

indicating the presence of cardiomyocyte, endothelial and smooth muscle cells. 
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Figure 2. Quantification of progenitors (Prog) and precursors (Prec) of cardiac cell lineages 

in the population of cardiac primitive cells from normal (CPC-N) and pathological hearts 

(CPC-P). * p<0,05 vs Prog; # p<0,05 vs CPC-N. 
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Figure 3. Expression of cardiac lineage specific proteins evaluated by electrophoresis and 

immunoblotting in the population of cardiac primitive cells from normal (CPC-N) and 

pathological heart (CPC-P). 
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Table 1. List of genes that were transcriptionally downregulated in the population of 

cardiac primitive cells from pathological heart with ischemic cardiopathy with respect to 

normal heart, as evaluated by PCR-based stem cell specific microarray. 
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Table 2.  List of genes that were transcriptionally upregulated in the population of cardiac 

primitive cells from pathological heart with ischemic cardiopathy with respect to normal 

heart, as evaluated by PCR-based stem cell specific microarray. 
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Figure 4. Functional classification of genes which expression was downregulated (A) and 

upregulated (B) in the population of cardiac primitive cells from pathological heart with 

ischemic cardiopathy with respect to normal heart, as evaluated by PCR-based stem cell 

specific microarray. 
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Figure 5.  Changes in the expression of TGFβ/BMP signalling pathway related genes (red - 

upregulated, green - downregulated) in the population of cardiac primitive cells from 

pathological heart with ischemic cardiopathy with respect to normal heart, as evaluated by 

PCR-based array. 
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Figure 6. Proliferation (A) and apoptosis (B) of cardiac primitive cells from normal (CPC-

N) and pathological heart (CPC-P) in vitro. * p<0,05 vs CPC-N. 
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Figure 7. Representative images of asymmetric (upper) and symmetric (lower) division of 

cardiac primitive cells in vitro, as evidentiated by immunofluorescent staining of Ki67 and 

Notch. 
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Figure 8. Immunofluorescent staining of cardiac fibroblast during matrix synthesis and 

deposition in vitro. 
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Figure 9. Cardiac matrix observed at phase contrast microscopy during fibroblast removal 

(A) and immunofluorescent staining of proteins typical of extracellular matrix deposited in 

vitro by cardiac fibroblasts (B). 
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Figure 10. Expression of proteins typical of extracellular matrix deposited in vitro by 

cardiac fibroblasts from normal (CF-N) and pathological heart (CF-P). 
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Figure 11. Membrane immunoabsorbent assay results indicating relative concentration of 

factors secreted in the medium (conditioned medium) by cardiac fibroblasts from normal 

(CF-N) and pathological (CF-P) heart. 
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Table 3. Changes in the concentration (red - decrease, green - increase) of factors secreted 

in the medium by cardiac fibroblasts from pathological heart with respect to normal heart, 

as evaluated by densitometric analysis of membrane immunoabsorbent assay results. 
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Figure 12. Proliferation (A), apoptosis (B) and migration (C) of cardiac primitive cells from 

normal (CPC-N) and pathological (CPC-P) hearts cultured on dishes covered with albumin 

(control, CTR) or cardiac matrix deposited by fibroblasts from normal (CF-N) or 

pathological (CF-P) heart. * p<0,05 vs CTR; # p<0,05 vs CF-N. 
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Figure 13. Differences in the expression of cardiac lineage specific genes in the population 

of CPC-P with respect to CPC-N cultured in standard conditions. 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Differences in the expression of cardiac lineage specific genes in the population 

of cardiac primitive cells from (A) normal (CPC-N) or (B) pathological (CPC-P) heart 

cultured in the presence of cardiac matrix derived from fibroblasts from adult human 

normal (Cm-N) or pathological (Cm-P) heart or with respect to standard (CTR) conditions, 

as evaluated by RT-PCR. 
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Figure 15. Proliferation (A) and apoptosis (B) of CPC-N and CPC-P cultured in the 

presence of medium conditioned by CF-N- and CF-P. * p<0,05 vs CTR; # p<0,05 vs CF-N. 
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Figure 16. Representative images of polyurethane bi-layered scaffold seeded with cardiac 

primitive cells observed at phase contrast microscope (A) and after immunofluoresent 

staining of actin filaments and Ki67 (B). 
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Figure 17. Proliferation (A) and apoptosis (B) of CPC-P cultured on polyurethane control 

scaffold (PU), polyurethane scaffold functionalized with gelatin (PU-Gel), or polyurethane 

scaffold functionalized with laminin-1 (PU-Ln1) for 7 or 14 days. * p<0,05 vs 7d;               

# p<0,05 vs PU. 
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