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Abstract 

In this thesis, three kind of multiphase flow have been investigated with microfluidics methods, 

confocal microscopy and rheology: i) phase inversion emulsification, ii) emulsion interfacial 

tensiometry and iii) arylamine synthesis (based on a solid-liquid multiphase system).  

Multiphase systems are ubiquitous in industrial application, being emulsion one of the most 

relevant multiphase system. Emulsion microfluidics has been exploited as a mean to investigate 

emulsion morphology and flow behavior along with other well established technique such as 

optical microscopy and rheology. Phase inversion emulsification (the phenomenon by which the 

dispersed phase is switched into the continuous one) is one of the most popular route to obtain 

nano-sized droplet or capsules with tailored features and sometimes could also represent an 

inconvenient related with process operations, being the crude oil pipeline transportation one of 

the main example. Experimental techniques  such as, rheology, confocal microscopy and 

microfluidics were used in order to obtain deep insight on such emulsification process. 

Microfluidic techniques have been applied also to characterize emulsion interfacial properties. 

Some limitations, e.g., droplet with surfactant covered interface, are related with the latter. 

Pendant drop tensiometry and capillary pressure tensiometry were used in order to elucidate and 

develop such droplet based microfluidic methodologies.  

A microreactor for the handling of a multiphase reactive flows for the synthesis of a 

pharmaceutical valuable arylamine via Buchwald-Hartwig reaction ( one of the most exploited 

reaction pathway in pharmaceutical industries) has been developed obtaining better performance 

with respect to the classical batch operations. 

 

The phase inversion emulsification, especially from the flow behavior point of view, has been 

investigated. The emulsion morphology has been characterized in detail by direct observation in 

confocal microscopy within microfluidic channels. Long term stable nanoemulsions (average 

drople size equals to 170 nm) with great energy saving have been obtained. Higher emulsions 

stability is associated with both small droplet size and low polydispersity of the droplet size 

distribution. Confocal microscopy can be exploited to follow the time evolution of the phase 

inversion process. Confocal imaging clearly shows bicontinuous structure formation in 

emulsification, that signs the two phases point of inversion. Rheological test showed an 

increased viscoelastic behavior in the proximity of the inversion. Cylindrical microchannel 

coupled with laser scanning confocal microscopy gave the opportunity to investigate tiny detail 

of multiphase system morphology. 

In the second part of the thesis, a method to measure interfacial tension in microfluidic 

divergent flow of emulsion was shown. Lowering of the interfacial tension due to droplet 

confinement has been noted and taken into account by scaling droplet deformation parameter. 

Results are comparable with literature data only in the case of pure droplet interface, while in 
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the case of interface covered or partially covered with surfactants, microfluidic technique is not 

able as pendant drop to evaluate properly interfacial tension, maybe due to the effects of 

interfacial Marangoni flow and wetting effect in confined droplet flow as well as the effect of 

droplet interface elasticity that are not taken into account in the microfluidic model. 

In the final part we developed a microfluidic apparatus capable to deal with multiphasic reactive 

flow for the synthesis of a valuable pharmaceutical arylamine. Continuous flow microreactors 

exhibit a large number of advantages compared to traditional batch and macroscale flow 

reactors, such as the significant enhancement of transport phenomena, the safety of operation, 

the precise control of residence time, the possibility of automation and the ease of scale-up by 

operating several devices in parallel. Thus, the choice of a microfluidic approach for chemical 

synthesis meets sustainable and green chemistry requirements in terms of productivity, process 

handling, economic savings and operational safety. The microreactor, coupled with a highly 

active Palladium-N-heterocyclic carbene (NHC) catalyst, enabled the full conversion of the 

reagents within twenty minutes, even at very low catalyst concentrations. The influence of the 

microreactor operating parameters on the synthetic performance has been investigated showing 

that a slight increase in temperature allows faster conversion even at low catalyst loadings. 

1. Introduction 

1.1 Emulsion  

Multiphase systems are for sure emulsions, i.e., mixtures of two immiscible liquids in which 

one is usually present as droplets (dispersed phase) immersed into the other one (continuous 

phase). Emulsion are ubiquitous in many industrial applications, e.g., in the food and 

biomedical sectors. Typically, one phase is organic(the oil phase),and the other is an aqueous 

solution. In some cases, the two phases are continuously interpenetrated into each other, thus 

making it impossible to distinguish between the dispersed and the continuous phase. These 

emulsions are referred to as co-continous or bicontinuous. Due to oil/water immiscibility, 

emulsions tend to be phase separated at thermodynamic equilibrium, hence emulsion stability is 

one of the main problems in several industrial applications. Many phenomena drive phase 

separation, e.g., creaming and sedimentation due to density difference of the phases, 

coalescence when two droplet merge into one [1, 2], flocculation when droplets tend to 

aggregate in clusters, Ostwald ripening when the smaller droplets diffuse into the bigger ones 

through the continuous phase [1-4]. As shown by Stoke’s sedimentation law,  
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Fig.1: forces acting on sedimentating droplet 

 

𝑣 =
−2𝑟2(𝜌𝑑−𝜌𝑐)𝑔

9𝜇𝑐
    (1) 

      

where: v is the sedimentation velocity, r is the droplet radius, ρc is the continuous phase density, 

ρd is the dispersed phase density, g is the standard gravity, μc is the continuous phase viscosity. 

By equation (1) it’s clear what are the methods of retarding gravitational phase separation: 

i) reducing the density difference between the phases 

ii) lowering droplets radius 

iii) increasing continuous phase viscosity  

are all factors acting to hinder phase separation, making the emulsion meta-stable, i.e., the 

separation process “is slow enough” [5]. Such kinetic stability can also be achieved by 

exploiting surfactants, which are amphiphilic molecules stabilizing droplets by lowering 

interfacial tension and eliciting Marangoni stresses [6]. The role of surfactants and amphiphiles 

in general in lowering interfacial tension [7-11], their adsorption behavior as well as the 

interface behavior both in static and dynamic conditions [12-25] have been widely studied. 

Emulsions having fine droplet size are more stable against phase separation and widely 

exploited in application also due to their capability to incorporate hydrophilic or hydrophobic 

species. Such small-sized emulsions are mainly divided in two broad categories: nanoemulsions 

and microemulsions. Nanoemulsions have a size range between 20 nm – 200nm [26], can be 

almost transparent or rather turbid and are kinetically stable. Microemulsions are 

thermodynamically stable (interfacial tension nearby zero [27]) and transparent with droplet size 

ranging from 10 to 100 nm. Although this terminology is rather confusing and not always 

agreed upon in the literature [28], it can be stated that microemulsions exhibit smaller droplet 

size respect to nanoemulsion and are thermodynamically stable, while nanoemulsions are 

kinetically stable. 
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1.2 Emulsion phase inversion (EPI) 

Several methods are used to obtain emulsions with stability levels suitable to industrial 

applications. Phase inversion emulsification is a  popular technique characterized by low energy 

requirements. In this process, an inversion between the continuous and the dispersed phase is 

achieved by either changing temperature or composition, thus obtaining finely dispersed 

emulsions in a more sustainable way with respect to the classical high energy mixing 

emulsification routes. 

The phase inversion pathways have been described as catastrophic or transitional. The former is 

a term introduced by Salager [29] to describe emulsion inversion reached by changing the 

water/oil ratio (this is also referred to as phase inversion composition or PIC, and emulsion 

inversion point or EIP) [30]. The term catastrophic comes from Dickinson [30-33], following 

the hypothesis that catastrophe theory might be useful to describe emulsion phase inversion. 

Despite all the efforts, catastrophe theory can only predict qualitative features of catastrophic 

phase inversion, but it cannot be used as a predictive model [30, 34]. This is due to the lack of a 

kinetics coupled thermodynamic approach as opposed to a mere thermodynamic one [34]. In 

transitional phase inversion the inversion is considered to be brought about by changing the 

surfactant affinity for the two phases [30, 35], e.g., non-ionic surfactants becoming more 

lipophilic when heated (phase inversion temperature or PIT). The latter assumption was stated 

clearly by Shinoda in 1968 [36]. 

However, in spite of the widespread use and the extensive investigation of phase inversion 

(dating from the pioneering work of Shinoda, who in turn refers to earlier work of Langmuir), 

its governing mechanisms are still debated. As stated by Nienow [37] and Orr [38], 

notwithstanding all the efforts made in order to model the catastrophic phase inversion, and 

phase inversion in general, satisfactory models are not available. One of the key issues is the 

high number of variables, such as concentration of surfactant(s), oil and water, temperature, 

agitation rate, flow type, vessel geometry, surface wetting, electrostatic charge [33]. The main 

approaches to model phase inversion in the literature can be related to three main areas: phase 

behavior, interfacial properties and flow-induced morphological changes, such as droplet 

breakup and coalescence. Most studies focus on one of these areas at a time and their interplay 

is still to be fully elucidated. 

1.2.1 Nanoemulsions by EPI  (for delivery systems) 

In the last few decades an increasing interest in the formation of nanoemulsions (NEs) [26-28, 

39-42] has been developing within the food [43, 44], biomedical [45, 46] and cosmetic [47-49] 

industries due to the advantages of NEs compared to conventional emulsions, like the small 

droplet size, high kinetic stability and optical transparency. Nanoemulsions are non-equilibrium 

dispersions with mean droplet radius between 20 and 200 nm; the droplets are so small that they 
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only scatter light waves weakly and then they tend to be transparent and can be incorporated 

into optically transparent products.  

A comprehension of nanoemulsion formation methods [50], like phase inversion emulsification, 

is especially relevant for nanoparticles [51] generation for drug delivery systems [52-54]. In 

fact, the formation of nanoparticles (spheres or capsules) containing bioactive compounds, like 

vitamins, proteins, and drugs such as insulin, is deeply affected by the nano-emulsification 

method. Depending upon the method of preparation, nanoparticles can be divided into two main 

families: nanospheres [55-58], which have a homogeneous structure, and nanocapsules, which 

exhibit a typical core-shell structure. A main challenge in the formulation of nanoparticles is 

adapting their structure to drug delivery ability. The drug can be dissolved, entrapped, 

encapsulated or attached to nanoparticle matrix. Phase inversion emulsification is particularly 

suitable for the formation of nanocapsules, in which the drug is confined to a cavity surrounded 

by a membrane made of polymers [59] or lipids [60], because it allows to prevent the potential 

degradation of encapsulated molecules during processing or during oral delivery, where the 

harsh conditions of gastrointestinal tract play against. It has been widely demonstrated that these 

structures are useful for delivering a multitude of biocompatible agents [61, 62]. Moreover they 

can increase the bioavailability of poorly water soluble ingredients encapsulated within them 

[52, 63-65]. A common way to produce nanocapsules is the phase inversion nanoencapsulation 

(PIN). PIN nanocapsules are fabricated in a one-step process by preparing a mixed solution of 

polymer (e.g., PLGA) and drug (e.g., Zn-insulin) in a solvent such as methylene chloride and 

dispersing the so-obtained solution into a non-solvent (usually petroleum ether) present in larger 

quantity. Hence, the continuous phase is switched from solvent continuous to non-solvent 

continuous. Nanospheres with drug inside are spontaneously formed and then collected by 

vacuum filtration, frozen and lyophilized to remove excess solvent and water [192]. Further 

examples have been provided by McClements [66], who used phase inversion method [64] to 

produce food-grade nanoemulsions enriched with vitamin E acetate [67-69], that is an esterified 

form of the oil soluble Vitamin E (tocopherol) widely used in pharmaceutical, food and 

cosmetic products.  

The use of nanoemulsions for encapsulation of medicines and their controlled delivery into the 

human body has been the focus of many researchers on this topic [70-75]. It has been 

underlined that the penetration rate of drugs using NEs is much higher than when using 

conventional macroemulsions and other carriers [70]. Recently, NEs have also been used in 

bacteriophage therapy [76], that is a an important alternative to antibiotics in the current era of 

multidrug resistant pathogens. In particular it has been demonstrated the in vitro antimicrobial 

efficacy of Bacteriophage K when stabilized in an oil-in-water nanoemulsion compared to 

simple delivery as an aqueous dispersion [77]. 
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1.2.2 EPI in cosmetics 

Nanoemulsions formed by phase inversion method are by far one of the most advanced 

nanoparticle systems for cosmetic industry [78, 79]. Unlike macroemulsions, they are much 

more stable systems and then suitable for skin care products like water-like fluids, easily 

adsorbed by the skin, or gel-like fluids, obtained by increasing the oil content or by adding 

thickening agents (usually polymers) [49]. Recently, phase inversion method has been used for 

the formation of nano-gels systems, used in sun care products and in anti-aging creams, and 

emulsion-based wet wipes used for makeup removal and for baby care [48] 

1.2.3 EPI of particle-stabilized system 

The use of solid particles as stabilizers in emulsions has been dated since the pioneering work of 

Pickering [80], who noted that emulsions (for this reason called Pickering emulsions) could also 

be stabilized by particles at the interface (Fig. 2) [81]. Recently there has been an upsurge of 

interest in using solid particles in the emulsification process [81-86], especially in food industry 

to stabilize products, like ice crystals in ice cream and fat particles in whipping cream [87]. 

Colloidal particles (micro and nano) behave in many ways like traditional surfactant molecules 

[88]: they can spontaneously accumulate at the interface between two immiscible fluids (liquid–

gas or liquid–liquid) and therefore they are surface-active, but they offer distinct advantages 

compared to surfactants. For example, at variance with surfactants that adsorb and desorb on a 

relatively fast timescale, particles adsorb irreversibly to interfaces [89] due to their wettability. 

The latter can be quantified by the contact angle with the interface [90]. If particles are 

hydrophilic the angle which is measured through the water phase, is normally < 90° and a 

larger fraction of the particle surface resides in water, giving rise to O/W emulsion. On the other 

hand, for hydrophobic particles (W/O emulsions tend to be stabilized.

Particles stabilize emulsions according to two main mechanisms: i) particles form a dense film 

(monolayer or multilayer) around the dispersed drops impeding coalescence, ii) additional 

stabilization arises when the particle-particle interactions form a 3-D network of particles in the 

continuous phase surrounding the drops. It is clear that nanoparticles affect the emulsification 

process in a different way from surfactants [88, 91] . 
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Fig. 2: Picture of particles at fluid-fluid interface; B and C images are close-ups of figure A and B respectively, 

where void spaces size among particles can be observed. (image taken from reference [81, 91]) 

 

The phase inversion method is widely used to produce particle-stabilized emulsions from oil in 

water to water in oil and viceversa [82, 92, 93]. Unlike emulsions stabilized by a single 

surfactant type, those made with small particles can be inverted by varying particle 

hydrophobicity or simply by increasing the volume fraction of the dispersed phase, as shown by 

Binks and Lumsdon [82]. They showed that emulsions stabilized by hydrophobic silica can be 

inverted from w/o to o/w upon increasing w, and emulsions stabilized by hydrophilic silica can 

be inverted from o/w to w/o upon increasing the volume fraction of oil, o. 

They also studied, for their system, the effect of oil type on emulsion formation and showed that 

unlike emulsions stabilized by surfactants, where there is a chemical interaction between oil and 

surfactant structure, in systems stabilized by hydrophobic particles (w/o) the oil type does not 

affect the final product.  

However, when particles have very low or very high they are not very surface active, then 

surface modifications are required. A way is to use the so-called Janus particles, which are 

peculiar nanoparticles showing, similar to surfactants, hydrophilic and hydrophobic faces. 

Another way, much easier and less expensive than the previous one, is to modify the wettability 

of particles by interaction in aqueous media with amphiphilic compounds, as shown by Binks 

[94, 95], who demonstrated that the wettability modifications of the nanoparticles via 

interaction with amphiphilic species depend on both the particle surface properties and the 

structure of the surfactant. 

Recently, phase inversion emulsification has been used to produce new particle-stabilized 

materials in which air or water become encapsulated and the adsorbed particle layer provides a 

means to control the release of gaseous or liquid components [92]. 

1.2.4 Waterborne dispersion of polymer resins 

Phase inversion emulsification method has been found to be an highly effective technique for 

the formation of waterborne dispersions of polymer resins [96-100]. Such epoxy resins are 

widely used in various applications, like in biomedical field [101] and in microelectronics [102]. 

Starting from a mixture of an epoxy resin with an emulsifier, the addition of water drives the 

phase inversion until the formation of a dispersion where water phase, made of small droplets, 

becomes the continuous phase. Size and morphology of the emulsified waterborne particles 

could be controlled by the type and concentration of emulsifiers and by emulsification 

temperature. A physical model of phase inversion has been proposed to predict the effects of 

these parameters on the process. In particular, phase inversion process is completely 

accomplished when the temperature is relatively low and the emulsifier concentration relatively 

high and in this case all water droplets coalesce and become the continuous phase at the phase 
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inversion point (fig. 3). In comparison, when both the emulsification temperature and the 

emulsifier concentration are high, there is an irreversible coalescence of water droplets before 

the phase inversion point and not all water droplets are inverted into the continuous phase, thus 

inducing the formation of a complex W/O/W structure (fig.9). 

 

Fig. 3: Morphological evolution during complete phase inversion (image taken from reference [97]) 

 

 

Fig. 3: Morphological evolution during incomplete phase inversion (image taken from reference [97]) 

By following the studies based on this model, a new method to encapsulate nanoparticles (fig.3) 

with polymers to prepare waterborne nanocomposite dispersion has been investigated [100]. 
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1.3 Multiphase flow in porous medium – a relevant issue for petroleum 

industry 

The water present within oil reservoir, as well as the water (or other liquid phases) injected into 

the oil reservoir with the aim to squeeze out oil from the well, makes emulsions ubiquitous in 

upstream operations. Emulsions are liquid-liquid metastable systems composed at least of two 

immiscible phases. Surface active molecules like low molecular weight fatty acids, naphtenic 

acids and asphaltenes are usually present within crude oil, thus changing rheological and 

chemical behavior [103]. Even if the emulsion phases are newtonian, emulsion flowing through 

porous media show non-newtonian behavior like shear thinning (i.e, viscosity lowering with 

increasing shear rate), due to the presence of the interfaces between dispersed and continuous 

phase. Obviously, if one of the phases is intrinsically non-newtonian, the non-newtonian 

emulsion behavior is  enhanced [104]. Emulsions transport in porous media is often studied by 

adopting a multiphase generalization of Darcy's law [105, 106] : 

𝐯α = −
krα

ηα
K(∇Pα − ρα𝐠)        (2) 

where vα represents the flux of a fluid phase, kr is the relative permeability and the subscript α 

denotes each phase. The local pressure difference at the fluid-fluid interface can be relevant 

because interfaces are highly curved due to small size of pores within porous medium [107]. 

When emulsion interfacial tension is pretty high and droplets size is comparable with pore size, 

the flow is unable to displace droplets from pores, making the droplets entrapped, even if the 

continuous phase can partially flow, thus leading to enormous difference in the volume flow 

rate of the two phases. Also wettability plays a key role in droplets entrapment: Torok et al. 

[108] studied the spontaneous segregation in the absence of external viscous forces and at low-

tension conditions of polydispersed oil-in-water emulsion in porous media, monitoring the 

change in the separated oil volume. A vertical experimental porous medium was exploited 

founding the appearance and rise of three pseudo-phases. The first, with the relevant fraction of 

oil in the system, rising with high steady state velocity. The second, made of the remaining part 

of emulsion and characterized by an unsteady and decreasing velocity, the third with the 

segregation of the mobile oil particles in the phase microstructures. According to the 

mechanism proposed by Torok et al., the decreased probability of coalescence in pores and 

dispersion within pores connections are responsible for the displacement of mobile phases at 

low-conditions. The pore network, the size distributions of oil droplets, their density and the 

lengths of paths play a strong role in this case. When droplets size is similar to pores size, 

droplets are usually defined "confined". Confined droplets differ from plugs because the 

presence of a continuous phase layer near the solid wall, that is lacking in the case of slug 

formations. Confined droplets flow has been widely studied in the literature [109-116]. The 

main effects of confinement respect to the unconfined case of the same droplets are the 
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enhanced droplets deformability, as shown in Figure 4, an hindered breakup and a more 

homogeneous droplet size distributions after breakup [109, 111, 112].  

 

Fig. 4:  Transient drop deformation at Ca= 0.4 and a/h=0.07 (left sequence) and 0.5 (right sequence) as observed 

along the vorticity direction in a parallel flow apparatus. A droplet of the same material is much higher deformed in 

the confined case (right sequence) respect  to the unconfined one (left sequence). Image from [109]. 

 

By numerical simulation it has been shown (Figure 5A) how a droplet is squeezed through 

narrow pores having size comparable to the droplet, i.e., another case of confinement. The 

droplet is squeezed if Ca number is adequately high, while is entrapped if Ca number is too low. 

In Figure 5B the same consideration were applied for multiple droplets through a narrow pore 

simulated by a bed of solid spheres [114, 115]. Emulsion flow through porous media can be 

highly affected by the changes in the droplet size distribution caused by breakup and 

coalescence phenomena. The droplet entrapment mechanism can also cause permeability 

reductions in sandpacks medium, as reported in the case of diluted oil-in-water emulsion by 

filtration model-based numerical simulations [117]. 
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  Fig. 5.A: Single Droplet motion squeezing between three non-touching spheres for Ca = 1.5, where U∞ t/as is a time 

scaled according to the velocity of the external flow and the sphere radius. B.Many droplets squeezing through a 

Random Loose Packing Algorithm of solid spheres at Ca = 0.006, where t is a time scaled according to the Carman–

Kozeny velocity and the sphere radius. Image from [114] and [115]. 

 

However, filtration model seems to be not good enough to predict pore-scale permeability 

fluctuations and the reduction of absolute permeability that are not seldom phenomena during 

emulsion transport in porous media [118]. To overcome this matter, Cortis and Ghezzehei [118] 

introduced a continuous time random walk based approach that gives good fitting between 

predictions and experimental data. Romero et al. [119] also pointed out the limitation of 

filtration model. In their  work on oil-in-water emulsion through porous media they developed a 

network model that takes into account droplet confinement, permeability effect and dispersed 

phase droplet size. The model well describe the oil-in-water emulsion flow of their experiments. 

Hysteresis and fluid entrapment in emulsion displacement through porous media was 

approached by Hilfer [120] by introducing the concept of a percolating and a non-percolating 

phase. Doster and Hilfer [121] studied in an analitically tractable hyperbolic limit this theory. 

NMR (nuclear magnetic resonance) is also suitable to studye mulsion in porous media. 
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Godefroy and Callaghan [122] reported how nuclear magnetic distance is useful to characterize 

water and oil dynamics and microemulsion systems. In this work is outlined how the exchange 

spectra of the phases can be exploited to get insights on coalescence phenomena. The residual 

oil distribution during waterflooding of the wellbore can also be studied by NMR [122]. Bryan 

et al. [123] reported how low field NMR is suitable for emulsion in porous medium monitoring, 

in particular, to verify how emulsion production is related with flow and injection pressure. 

1.3.1 Oil Recovery 

In the last few decades research on petroleum recovery has been widely intensified due to the 

increased global demand. Improved methods for enhancing oil recovery (EOR) by injecting 

appropriate agents not normally present in the reservoir, such as chemicals, solvents, oxidizers 

and heat carriers in order to induce new mechanisms for displacing oil, as defined by Bavière in 

1991[124], have been thoroughly studied [125-127]. EOR methods can be divided in three 

categories, based on chemical, thermal and miscible methods. One of the three methods, based 

on chemical interactions between the injected fluid and the reservoir fluid, can be applied by 

using as injecting fluid surfactant solutions used to reduce interfacial tension between oil and 

water. However, this method can fail due to the low viscosity of surfactant solutions, then 

microemulsions, nano-emulsions [128] or high concentrated surfactant solutions can be a valid 

alternative inducing a very low interfacial tension [127, 129], which provide the proper 

conditions to ensure the trapped oil displacement in the porous reservoir and a successful final 

recovery [130]. Recently, some experiments to investigate the efficiency of nanoemulsions in 

EOR in terms of particle size distribution of dispersed oil droplets in water and experiments by 

using nanoemulsion as displacing fluid for EOR were performed [126]. Finally, within  the field 

of oil recovery, phase inversion can be exploited to obtain reversible emulsion drilling fluids 

[131].  

1.3.2 Drilling and fracturing 

Another application of emulsion can be found in the wellbore drilling process, that is the first 

step to spill oil from underground. This is performed by rotary drilling using a drilling fluid 

[132] ], forming a low film on the freshly created wellbore surface [132] and the right 

physicochemical characteristics to avoid chemo-mechanical breakage of clay-rocks, swelling 

shales [132]. Water based mud often containing smectite clay colloids, such as the most utilized 

bentonite and montmorillonite [132]. In order to maximize wellbore productivity Haudybert-

Ayet and Dalmazzone [133] realized a water based mud containing a surfactant molecule 

engineered to pass through a drill-in fluid with the following characteristics: i) prevent the 

irreversible adsorption of the fluid polymers on the reservoir surface area, ii) increase flow area, 

iii) promote compatibility between the brine filtrate with formation crude, and iv) reduce the  

adhesion properties between filter cake particles to enhance the ease of wellbore clean up during 
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displacement and natural cake “lift-off” during the onset of production. Oil based mud emulsion 

[132], due to the reduced permeation of oil respect to water towards wellbore walls, have 

demonstrated their utility in drilling operation. 

Within underground reservoir, oil and/or gas are entrapped between rocks. Hydraulic fracturing 

is the typical route to release oil and gas from the rocks [132]. Mainly, fracturing fluids are 

made of natural polymers, such as guar, cross-linked by borate or transition metal (Zr, Ti) 

complexes to form viscoelastic gels [132] [134] [135]. Fluids have the role to transmit hydraulic 

pressure towards rocks to create fractures. Sand and other ceramic particles (‘proppant’) are 

present within the gel to give a complex porous medium which keeps the fractures open after 

the removal of the imposed fluid pressure [132]. A limitation of these fluids is the low level of 

hydraulic conductivity once the complex pack inside fracture is formed. The problem has been 

solved by using wormlike micellar solution. A wormlike micelle is an elongated, cylindrical 

surfactant micelle [136-144]. Wormlike phases are able to give a proper gel-like behavior [136, 

137] but, what makes them valuable is that once this elongated micelles come into contact with 

the oil, they become spherical micelles or microemulsions [132] (whit a consistent elasticity 

loss), thus permitting a good hydraulic pressure conductivity. Chu et al. [139] have recently 

reviewed wormlike micelles applications in oil production reporting that wormlike micelles can 

be used in drilling, gravel packing, oil well stimulation, tertiary oil recovery. Maybe, the best 

known surfactant able to give wormlike micelles with a lot of co-surfactant is the cetyl-

trimethylammonium bromide (CTAB) [141-146]. Indeed, its use during hydraulic fracturing is 

well established [132]. 

1.3.3 Enhanced Oil recovery (EOR) by liquid phases 

Aqueous alkali-surfactant solutions are injected into the oil reservoir to lower interfacial tension 

and increase oil recovery respect to the simple water flooding [123, 147-149]. Macroemulsion 

injection have also been used for oil recovery. Engelke et al. [150] modeled macro-emulsion 

flow injection by the changes of relative permeability curves with and without oil droplets 

dispersed in the aqueous phase. Low salinity water injection and surfactant flooding are two 

important tools to enhance oil recovery. Johannessen and Spildo [151] coupled these two 

techniques founding that low salinity surfactant flooding process at moderately low interfacial 

tensions it is better than an injection of an optimal salinity surfactant solution at ultralow 

interfacial tensions. A review on the ultralow interfacial tension surfactant solutions for 

injection can be found in the work of Salager et al. [152]. Chu et al. [139] reported that 

wormlike micellar solutions led to an optimized oil and gas asset performance along with an 

improved oil recovery in many wells spacing from South America, North America, North Sea, 

Caspian Sea, Middle East Sea to China. Furthermore,  micro-emulsion injection [153, 154] into 

oil reservoir were exploited with the same purpose.  
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The study of surfactant adsorption behavior [7, 8, 11, 14, 15, 18, 155-162] behavior is a key-

step in the oil recovery process, allowing the optimization of the injection of surfactant mixture. 

Bera et al. [163] studied the adsorption of some surfactants commercially available, such as 

SDS (Sodium dodecylsulphate, anionic surfactant), CTAB (cethyltrimethylammonium bromide, 

cationic surfactant) and Tergitol 15-S-7 (an ethoxylated C11-15 secondary alcohol, non-ionic 

surfactant) onto reservoir sand surface. Langmuir, Freundlich, Redlich and Sips adsorption 

isotherms were exploited to best fit experimental results. Also salt and pH effect has been take 

into account. In the same study, the interaction between sand particles and surfactants has been 

characterized by Fourier transform infrared spectroscopy (FTIR). Bera et al. [163] also reported 

the experimental evidence of a high level adsorption of cationic surfactant onto sand surface, 

low level of anionic surfactant adsorption onto the same sand, non-ionic surfactants having 

intermediate behavior. It is clear that this particular injected solutions affect physico-chemical 

properties of the emulsion already present within porous media, mainly because they are rich of 

surfactants.  

1.3.4 Emulsion phase inversion in porous medium 

Other important phenomena that occur during the flow of emulsions in a porous medium are 

dynamic blocking and phase inversion. The former happens when the emulsion flow is stopped 

despite a constant pressure gradient. Khasanov et al. [164] developed a two phase filtration 

model that takes into account microdroplets deformation and microdroplets friction in order to 

predict the dynamic blocking. The intriguing aspect here is that also when droplet are order of 

magnitude less than pore size, dynamic blocking could occur. Maybe, the key role is played by 

microdroplets deformation. Regarding saturation (relative volume fraction of a fluid phase) in 

porous medium, Boersma et al. [165] studied capillary behavior of multi-phase systems 

(experimentally and numerically) founding that saturation distribution depends on the oil type 

and on the presence of surface active molecules. One of the main risk of emulsion flow through 

porous medium is emulsion phase inversion thus leading to porous medium plugging [152].  

1.3.5 Transportation of heavy crude oil 

Nowadays over 65% of the world overall energy resources come from hydrocarbons. With the 

increasing global demand and progressive decrease of light crude oil reserves, the interest in 

heavy and extra-heavy oil has been growing [166, 167]. In the past, these fluids were not much 

exploited because of their high viscosity that can cause problems in pipeline transportation. 

Thus, in order to facilitate mobility of such oils, several methods to reduce their viscosity have 

been investigated. One method consists in diluting the system with lighter oils or in producing 

emulsions of heavy oil in water [166]. The first method is quite used even if it requires light oils 

that are not always available close to production plants and then dilution change oil composition 

which can be difficult to be separated at the end of the process. An alternative method that 
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consists in transporting these fluids as emulsions in the form of crude oil droplets by using 

water as continuous phase, have been successfully used [168, 169]. In this case easier pumping 

due to a less viscous final system and the lack of contact between the crude oil and the pipe 

walls which results in less erosion and precipitation in pipes has been found. However, a further 

understanding of the mechanisms for the formation of emulsions is then critical to avoid 

blockage of the system, that can occur when increasing the oil content resulting in a phase 

inversion of the system leading to fine water droplets which are afterwards very difficult to 

separate [170]. 

1.4 Microfluidics 

1.4.1 Emulsion Microfluidics 

Microfluidics is the science and technology that gives the opportunity to study and develop the 

fluid physics, chemistry and biology at the micro-scale [171, 172] [173]. Microfluidics and 

microconfined flow are well established methods to study soft matter properties, e.g, red blood 

cells [174], vesicles [175, 176], capsules and droplets deformation and flow dynamics [177, 

178] [179]. 

Emulsion microfluidics is gaining growing interest due to compatibility with many chemical 

and biological reagents,  the capability to carry out automated experiments, precise control of 

droplet, manipulation of individual droplets such as coalescing droplets, mixing of their 

contents, and sorting in combination with fast analysis tools [177, 179, 180]. Droplet-based 

microfluidics is a key topic in multiphase systems microfluidics. Seemann et al. [179] reviewed 

a wide range of application, e.g.: device fabrications, droplet formation, biology and biophysics 

in droplets.  

 

 

Fig. 6: Schematic of the stabilizing function of a molecular surfactant (a) having a polar head and a hydrophobic tail 

andinterface stabilization by solid particles (b), where the position at the fluid/fluid interface is given by the contact 

angle θ of one of the fluid phases. Image from [179] 
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Fig. 7: Schematic of various T-junction geometries. (a) ‘regular T-junction’ geometry where the dispersed phase is 

injected perpendicular into a stream of continuous fluid. (b) ‘Head on’ geometry where the dispersed and the 

continuous phases are injected from opposite sides. (c) ‘Active T-junction’ allowing variations of the geometry by air 

pressure and temperature control of the dispersed phase. Image from [179] 

 

Fig. 8: A step-emulsification device. In the narrow duct behind the oil/water channel junction, a quasi-two-

dimensional aqueous jet has formed within the oil as the carrier phase. At the ‘step’ the channel widens, forcing the 

aqueous filament into an effectively three-dimensional setting. Decay into droplets is the immediate effect. Image 

from [179] 

 

A key issue in droplet based microfluidics is flow topology inside droplets moving in a 

microchannel: 

 

 

Fig. 9: Droplet of length l in a microchannel of width w. Neither the speed of the droplet, nor the topology of the 

streamlines are a priori known (dashed lines mark the unknown streamlines outside the droplet). Qc is the flow rate, 

A is section. The continuous liquid can bypass the droplet (β=ud=uc< 1) or the droplet can outrun the average speed 

of the continuous phase (β>1). Image from [181] 
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Fig. 10: Flow profile in a droplet flowing in a microfluidic channel as measured by PIV. The channel height (z 

=50μm) is half the channel width. Image from [182] 

 

 

Fig. 11: A diagram illustrating the transition from the simple to more complicated pattern of flow in droplets in 

square capillaries, λ is the viscosity ratio, Ca is the capillary number. Image from [181] 

1.4.2 Microfluidics to study oil recovery issue 

Microfluidic models are a valuable tool that helps to improve the understanding of flow and 

transport phenomena at both microscale and macroscale. Examples can be found in the 

manipulation of instabilities in fluid-fluid systems in a Hele-Shaw cell [183-186] and in the 

diffusion process by using nano- and micro- fibrous media [187]. 

 

Fig. 12: A schematic of the experimental set-up of a non-uniform Hele–Shaw cell with a constant depth gradient, to 

study viscous fingering. The depth of the cell h(x), with h(x)<<W and h(x)<<L,varies linearly in the direction of fluid 

motion; dh/dx=α. Image from [183] 

 

 

Nilsson et al. [188] exploited microfluidic devices (made of polydimethylsiloxane, PDMS) to 

outline how fluids shear thinning, shear thickening and viscoelastic behavior in general, affects 

oil recovery. They implemented a microfluidic device containing a sandstone media, testing 

water, a surfactant solution (CTAB the surfactant), a shear thinning fluid thickener (Flopaam) 

and a shear thickening solution containing nanoparticles as injected fluid. They reported that 

water is the worst fluid for this kind of operation and showed a high level of oil recovery by 
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using shear thickening solution. For all the performed experiments they imposed a shear rate of 

10 s
-1

, because they considered this number the typical shear rate value within sandstone media 

during oil recovery processes. The authors also pointed out that, for any injected viscoelastic 

solution, a two stages process is the best way to increase oil production, being the water 

injection the first stage and the viscoelastic solution injection the second one. Eventually, 

Nilsson et al. demonstrated how amicrofluidic device can be exploited to study EOR issues, the 

small scale giving a cheap and fast route to study multiphase fluid through porous media in 

many conditions. 

 

 

Fig. 13: Schematic diagram of the small sandstone device used in these experiments. The inlet is any of the three 

ports on the left, and flow goes from left to right. The two ports aside the main chamber are available for pressure 

drop measurements, and the port to the right is the outlet port. The lower image is what the sandstone portion looks 

like when filled with the Miglyol oil dyed with sudan blue. Image from [188]. 

 

 

1.5 Microfluidics of multiphase reactive flows 

It is known that the two kind of approach for synthesis of chemicals are continuous flow 

operations and batch one, the latter often coupled with segmented unit operations [189]. 

Pharmaceutical industry has been historically based on batch processes for the productions of 

chemicals but nowadays both at a research and industry level an upsurge of interest has been 

devoting to continuous flow operations [189-194]. Such processes have been identified as 

indispensable in order to match the goals required by green chemistry [189, 190, 195], ensuring 

increased level of productivity, process handling, economics savings and operations safety. 

Recent improvements in sustainable production, flow chemistry and green chemistry have been 

provided by microfluidics [196]. This technology is continuously gaining ground in a broad 

range of applications such as biotechnology [174, 197], fluid mechanics [171-173] and chemical 

processes, where paved the way to make use of devices able to miniaturize reactive flows [180, 

198]. Apparently, some cons are related with reactive flow confinement. E.g., in classical 
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macro-scale operations mixing and heat-transfer are governed by turbulence and diffusivity with 

the former playing a key role (Re >> 1000), whereas in microfluidics turbulence is hampered 

and mixing is mainly diffusive (Re < 200). Nevertheless, the loss of turbulence is compensated 

by a higher surface over volume ratio and the possibility to manipulate small amount of fluid 

thus giving more controlled and harnessed reaction pathways, a mandatory requirement in the 

experimentation of new drugs where high-throughput and small samples are needed [180, 191].  

At a glance, there are many microreactors related enabling technologies in organic synthesis 

e.g., solid phase arrested synthesis, new heating techniques, accessibility of exothermic and 

runaway reactions, new solvent systems (including supercritical fluids and solvent free one), 

less waste due to high selectivity, reactions in droplets [199, 200] and the ease of scale-up just 

running several devices in parallel. Many examples of the microreactors superior performance 

in terms of safety, yield, selectivity and reaction rates with respect to traditional batch 

operations have been reported in photochemistry, electrochemistry, for the Haswell’s Aldol 

Reaction, Wittig reaction, some additions, reductions, oxidations, halogenations, metalations, 

heterocycle formation and cross-coupling reactions [201-204]. Most of the performance 

improvements are due to a rapid heat transfer and mixing and a precise temperature control 

[201]. Regarding cross-coupling, Pommella et al. [202], recently demonstrated the 

overwhelming capability of a microreactor respect to a batch one in getting a simple arylamine 

via Buchwald-Hartwig synthesis, i.e., a cross-coupling reaction. The term coupling refers to a 

reaction where two hydrocarbons fragments are coupled exploiting a metal catalyst. They are 

named homo-coupling when the two coupled fragments are identical, e.g., C-C, whereas cross-

coupling involves two different fragments such as C-N. The most exploited catalyst for cross 

coupling is Palladium and many reactive pathways have been identified and developed 

exploiting it to produce organic and organometallic compounds. Starting from the seminal 

works of Heck, Stille, Suzuki-Miyaura, Sonogashira, Kumada, Negishi, Hiyama and Buchwald-

Hartwig provided deep insight and developments on such synthesis. Buchwald-Hartwig 

amination reaction involves the coupling of an aryl halide and an amine in the presence of base 

and a Pd-based catalyst creating a new C–N bond, i.e., an aromatic amine is synthesized. What 

makes B-H amination ubiquitous, is the key-role of aromatic amines in many fields such as 

pharmaceuticals, agrochemicals, photography, pigments and electronic materials [205]. The 

choice and optimization of the catalyst is a key-step in the development of such synthesis and a 

decisive contribution to this field has been provided by Nolan and coworkers [206-208]. 

Pommella et al. [202], exploited a two feed microreactor to synthesize a simple arylamine by B-

H amination using a palladium-N-heterocyclic carbene (NHC) complex as catalyst 

1.6 Scope of the thesis 

In this work, many multiphase systems related issues such as emulsion phase inversion, droplet 

interfacial properties and microfluidic reactive flows will be investigated by rheological (bulk 



25 

 

and interfacial), microfluidic and confocal microscopy means. Regarding emulsion phase 

inversion, a detailed experimental campaign will be conducted in order to identify the key-

parameters acting on emulsion properties, confocal microscopy and microfluidics will be 

exploited as an optical sectioning tool to highlight the finest morphological detail of the 

emulsion; eventually rheological measurements will be used to relate macroscopical properties 

to the microscopical features of the emulsion. Droplet interfacial properties will be measured by 

microfluidic means and compared with well-established techniques such as pendant drop 

tensiometry. Eventually,  a four-feed microreactor will be developed in order to synthesize an 

arylamine by coupling a secondary amine with an arylbromide via Buchwald-Hartwig synthesis. 

Microreactor performance insight will be provided in terms of reaction kinetics and conversion 

degree.  

2 Theoretical Background 

 

2.1 Phase behavior and its role in phase inversion 

Phase behavior plays an essential role in studying emulsions properties. In general, amphiphilic 

molecules like surfactants or phospholipids show characteristic cooperative association in 

aqueous solutions leading to supermolecular structures such as micelles in a given surfactant 

concentration range. Hydrophobic interactions are the driving force of the phenomenon and are 

important for a thermodynamic description[209, 210]. The polar head groups of surfactants are 

indeed hydrated to allow appreciable water-amphiphile contact in the micelles [209]. An 

isotropic micellar solution is also named L1 [211] or L2 if made of reverse micelles [211]. For 

higher surfactant concentrations surfactant self-assembly leads to lyotropic liquid crystalline 

phases, i.e., larger equilibrium structures with high degree of organization such as hexagonal 

(long rods of surfactants forming hexagonal pillars, HI or HII if made of reverse micelles) [209, 

212], reverse anisotropic nematic N2 [213], discontinuous cubic (spherical aggregates packed 

with a cubic symmetry) [209], bicontinuous cubic (spherical interconnected aggregates packed 

with a cubic symmetry), Q or V, with relevant example in case of inverse cubic bicontinuous 

structure like gyroid G type (Ia3d denoted Q
230

), diamond D type (primitive lattice Pn3m [214] 

denoted Q
229

) and the primitive type (body centered lattice Im3m denoted Q
224

)[212]. In turn, 

these different structures give rise to differences in macroscopic properties, such as viscosity, 

which is lower in discontinuous structures with respect to bicontinuous ones [212]. Some of the 

most ubiquitous structures are lamellar (where sheets of amphiphiles are separated by thin water 

layers, Lα), sponge-like (interconnected lamellar phases, L3), vesicles [175, 176, 215], also 

known as L4 phases [216] when unilamellar, and bicontinuous microemulsion phases (D) [217-

221]. Most of these phases sometimes display peculiar optical properties such as birefringence 
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[51][175, 176, 211, 222-224] and are often in equilibrium with a micellar phase. A possible way 

to rationalize amphiphile aggregation is based on the  critical packing parameter (V/la)[225], 

where V is the volume of the surfactant hydrophobic group, l the length of the hydrocarbon 

chain, a the cross-sectional area of the surfactant hydrophobic core. When CPP=1, surfactant 

film has no tendency to curve and surfactant bilayers are favored. In particular, planar 

aggregates are found in the range ½<CPP≤1, whereas, for CPP<<1, micelles having 

hydrocarbon chains towards the internal part are favored, showing cylindrical aggregates for 

⅓<CPP<½ and spherical ones for CPP<⅓. Reverse micelles, i.e. with water inside, are favored 

for CPP>1.  

 

Fig. 14: Several phase structure at different critical packing parameter and HLB [225]. 

A classification for systems showing microemulsion phases in the case of surfactants-water-oil 

system has been given by Winsor [226] who stated the existence of four cases: 

type 1: the surfactants are soluble in water and an o/w microemulsion is formed (Winsor I). The 

water phase is rich of surfactants and coexist with an oil phase where surfactants are only 

present as monomers at small concentration. 

type 2: the opposite case of the first. The surfactant is oil soluble and a w/o microemulsion is 

formed, being this phase in equilibrium with a water phase with tiny amount of surfactants 

(Winsor II). 

type 3: a three phase system where a surfactant rich middle phase is an equilibrium with two 

excess phases, one aqueous and one organic both having small amount of surfactants within 

them (Winsor III or middle phase microemulsion). 

type 4: a single phase isotropic micellar solution, formed by using a sufficient quantity of 

amphiphile.  

A seminal work on the role of phase behavior in phase inversion is due to Kozo Shinoda [36, 

227] who studied temperature related phase behavior issues during phase inversion. He found 

that non-ionic surfactants are affected by temperature induced modification of the hydrophilic 

head, making non-ionic surfactant more hydrophobic and oil soluble by increasing temperature, 
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thus inducing a change in the curvature of the surfactant interfacial arrangement [36] (Figure 

15). In particular, he reported a zero interfacial tension and flat curvature nearby the inversion 

zone [36]. Building on these results, a large number of studies have been performed [228]. 

Phase diagram in form of triangles where each vertex represents one of the component (oil, 

water and surfactant or mixture of them) are often exploited to describe the phase behavior. In 

PIT, the starting system is a water-in-oil emulsion (or viceversa) with nonionic surfactants and 

by changing the temperature the phases are inverted, so that the point representing the system 

on the phase diagram changes accordingly. In between the two emulsions, a so-called single 

phase region (possibly in equilibrium with an excess oil and water phase) extending from the 

water side to the oil side of the phase diagram corresponds to the intermediate system 

morphology, which is described as one of the phases already mentioned, such as a bicontinuous 

microemulsion [229] or a lamellar phase L. Both are favored due to their zero average 

curvature [230]. By the way, the bicontinuous microemulsion that could rise during the 

inversion process is really relevant for applications because able to develop nanoemulsion by its 

dilution [231] or is exploited as template for nanoparticles production [232-234]. In the 

inversion process, the transition from oil-in-water morphology to a bicontinuous microstructure 

and eventually to water droplets in an oil phase can be attributed to a change of the curvature of 

the amphiphilic monolayer from convex to concave passing through flat as depicted in Fig. 1 for 

a PIT process [230].  

 

Fig.15: Emulsion inversion pathway with related interface curvature (image taken from reference [230]) 

The interfacial tension is sensitive to the change of curvature and optimum solubilization of oil 

into the aqueous phase is obtained at minimum interfacial tension occurring when the interface 

is flat [229]. Non-ionic surfactants have ethylene oxide (EO) groups as hydrophilic head. The 

interaction of EO groups with water decreases by increasing temperature and modifies the 

configuration of the EO groups usually inducing a shrinkage of their area [235]. As a result, 

CPP increases thus favoring a curvature change. Similarly, Strey [236] reported that for non-

ionic surfactants within the CiEj (alkyl polyglycolethers [237], also known as CiEOj, or Brij) 

family, the mean interfacial curvature H (defined as H= (c1+c2)/2, with c1 and c2 principal 

curvatures) changes monotonically with temperature from positive (Winsor I system) to 

negative (Winsor II system) passing through a bicontinuous microemulsion (Winsor III system, 

or D phase) corresponding to a minimum in the interfacial tension. A similar pathway is also 
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suggested by Solans and coworkers [230, 238], who in addition highlighted the possibility to get 

a lamellar liquid crystalline phase Lα associated with the zero curvature domain. Anton et al. 

[74] proposed that fine oil droplets are produced by surfactant molecules migration from the 

organic phase to the aqueous phase which happens when the two immiscible phases are put in 

contact [74, 239]. The relevance of phase behavior in the development of phase inversion has 

been proposed for ionic nanoemulsions [240] as well. Pizzino et al. also reported the influence 

of phase behavior on emulsion of C10E4, water and n-heptane with further investigation on water 

oil ratio effect and temperature [241]. All these ways to interpret phase inversion are based on 

Shinoda’s seminal work.  

Regarding systems exploiting a mixture of ionic and non-ionic surfactants  the intermediate 

phase has been found to be more likely an high internal phase emulsion or a structure 

resembling that of a polyhedral foam rather than a bicontinuous microemulsion [229]. 

Moreover, apart from varying temperature, a change in the interfacial tension could be obtained 

by adding a co-surfactant to the solution [229], thus exploiting the so-called synergism effect 

[236] where the use of a couple of surfactants lowers the interfacial tension with respect to a 

system having only one surfactant. This synergic effect to induce phase inversion is also 

exploited in PIC (see below), where one of the components is gradually added to the system 

while mixing [230]. In conclusion, the PIT process can be summarized in the following steps as 

recently done by Friberg et al. [242]: by decreasing temperature, once the upper temperature of 

the PIT range is reached, the original water in oil phase becomes a bicontinuous microemulsion 

in equilibrium with an oil rich phase with low amount of surfactants and water. In a way, this 

intermediate phase is swollen having absorbed part of the water and it disintegrates partly 

giving rise to small oil droplets when  leaving the PIT range. 

Concerning PIC, Wang et al. [243] and Roger et al. [244] stated that a hydration-driven change 

of curvature upon water addition which reduces oil solubilization leading to oil supersaturation 

and droplet nucleation, is the fundamental step in PIC (catastrophic) emulsification 

development [243, 244].Thus, a mechanism analogous to the temperature-induced curvature 

change in PIT has been proposed to explain PIC as well. Similarly, in previous works, other 

authors have indicated that adding water leads to the formation of water droplets which get 

easily elongated by the action of mixing flow thanks to the vanishing value of interfacial tension 

[238, 245, 246] and merge together to give lamellar structures eventually decomposing in fine 

oil droplets (Fig. 16).  



29 

 

 

Fig. 16 Emulsion PIC pathway (image taken from reference [66]) 

 

Mercuri et al. [247] mix oil with surfactant to water in one step and observe a swelling of the 

organic phase which gives rise to regions of w/o microemulsions and then liquid crystalline 

phases at the droplet boundaries [239, 247]. Eventually, fragments of such lyotropic liquid 

crystalline phases break off from the droplet boundary migrating into the aqueous phase, thus 

dissociating into fine oil droplets. The differences in the observed behavior and in the proposed 

mechanisms can be partially attributed to the fact that the corresponding experiments were done 

at different values of a few important parameters in phase inversion emulsification, i.e., water 

addition rate, oil to surfactant ratio, oil content and phase behavior of the system. Hence, further 

work is needed in order to generalize the fine oil droplets formation mechanism involved in PIC 

phase inversion [239]. 

Phase inversion evolution (along with the effect of phase behavior) also affects the morphology 

of the final emulsion, which is an important parameter for industrial applications, being related, 

for example, to emulsion stability. For example, it is reported how, in an agitated vessel, a five 

times greater water addition rate acts to change nanoemulsion size from about 90 nm to 130 nm 

[230, 248]. Other key variables affecting the final emulsion morphology are: i) oil type [239], ii) 

surfactants type [239], iii) surfactants to oil ratio [239, 246, 249], iv) initial surfactant location 

[239], v) water to oil ratio [250]. Peculiar phase inversion pathways can be optimized in order to 

obtain microemulsions, nanoemulsions and bicontinuous emulsions with desired features [26, 

40, 231, 246, 248, 251-257].  

2.2 Phase Inversion in Emulsification maps 

A macroscopic physico-chemical approach has been widely exploited by Salager and Sajjadi 

[35, 250, 258, 259] in order to describe the inversion phenomenon. For the sake of clarity, we 

shortly review some basic definitions that are commonly encountered when dealing with 

emulsification maps. A “normal” emulsion obeys to the so called Bancroft’s rule [35] (“the 

phase in which an emulsifier is more soluble constitutes the continuous phase”), whereas an 

“abnormal” emulsion does not [35]. HLB (hydrophilic lipophilic balance), a concept introduced 

by Griffin in 1949 [260] and then partially revised by Davies [261]is an index of the affinity of 
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a surfactant towards the oil (HLB <10) or towards the water (HLB>10). According to this 

classification, any oil-water emulsion, depending on the oil nature, has an ideal HLB to be 

stable. Thus an optimal formulation could be obtained by choosing properly the surfactant HLB. 

Alternative ways to obtain an optimal formulation are triggering the affinity of the surfactant 

towards the phase to be stabilized by changing temperature [35] (if the surfactant is temperature 

sensitive), or changing salinity, or alcohol content, or adding particles.  

Salager et al. aimed at taking into account the physicochemical and composition variables of the 

system by introducing a generalized variable called SAD (surfactant affinity 

difference).“Formulation variables” depend on the nature of the components [250], while 

“composition variables” are the compounds weight or volume fractions [250].The SAD is the 

difference between the standard chemical potentials of the surfactant in the oil and water phase 

[250]: 

SAD = μw* - μ0* = ΔGoil-water = -RT ln Kp                                                        (3) 

This relationship can be expressed as a function of the formulation variables, which for systems 

containing  ionic and non-ionic surfactants respectively becomes [250]: 

SAD/RT = ln(S) – K * ACN – f(A) +  - aTΔT + Constant                                       (4) 

SAD/RT = α – EON + b*S – k * ACN – ϕ(A) + cTΔT + Constant                                   (5) 

where the formulation variables are Kp (the partition coefficient of the surfactant between water 

and oil at the corresponding temperature), S (the salinity, wt% NaCl in the aqueous phase), 

ACN (the alkane carbon number or the equivalent EACN if the oil is not an alkane (hence, is 

depending on the oil phase in general), f(A) and ϕ(A) (functions of the alcohol type and content), 

 and α (the characteristic parameters of the surfactant structure, where α depends on the 

lipophilic group of the surfactant), EON (the average number of ethylene oxide groups per 

molecule of nonionic surfactants), b, k, K, aT, cT (empirical constants that depend on the nature 

of the system) and ΔT (temperature deviation from 25°C). The value of the “Constant” is the 

SAD/RT calculated at the “optimum formulation” and its calculation can be found in the work 

of Salager et al. [84] as well. A formulation-composition bidimensional map shows how the 

composition of the mixture at which the emulsion inverts changes with SAD. In a nutshell, 

when SAD is positive the surfactant has more affinity for the oil and the favored emulsion is a 

normal emulsion, in particular an o/w microemulsion Winsor type I, but when the content of the 

"preferred continuous phase" for the surfactant is too low, the favored emulsion becomes an oil 

in water emulsion, i.e., an abnormal emulsion. The contrary in case when SAD is negative, 

whereas SAD=0 when the affinity for the phases is equal. Again, the interfacial tension is 

minimum for SAD=0 (balanced system). 

In later works [258, 259] the SAD variable has been replaced by a more general formulation 

concept, the so called HLD (hydrophilic-lipophilic deviation from the optimum formulation 

obtainable by the HLB number), because for nonionic surfactants SAD is different from zero at 
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the optimum formulation. It is defined as HLD= (SAD-SADref)/RT where SADref refers to the 

optimum formulation [262]. The HLD is a dimensionless parameter that characterize the 

behavior of a surfactant within a specific surfactant-oil-water mixture and depends on surfactant 

type, oil type, and aqueous phase properties such as pH, ionic strength and co-solvent [239]. For 

HLD<0 surfactant has more affinity for water, and form micelles that can stabilize o/w 

emulsion. The opposite occurs for HLD>0. When HLD=0 the affinity is towards both the 

aqueous and the oil phase and a bicontinuous microemulsions or liquid crystalline phase can be 

formed [239]. A formulation composition map with the HLD on the y axis and the water to oil 

ratio on the x axis can be exploited to rationalize an emulsification process based on phase 

inversion [239]. The HLD equation, for a system containing a ionic and non-ionic surfactant 

respectively is as follows [93,98]: 

HLD = lnS – k ACN + σ – aT (T-25)                                                        (6) 

HLD = k *  + b*S – k * ACN + t (T-25) + a * A                                            (7) 

where = (α – EON)/k 

α, k and t are surfactants parameters, b and a are constants characteristic of each type of salt and 

alcohol, S and A, the salt and alcohol concentration. The use of HLD it is convenient because at 

the “optimal formulation” HLD=0. 

In the diagram below (Fig. 17), a bidimensional formulation-composition map is showed, where 

B indicates an oil rich phase, C a water rich phase and A an intermediate phase and +  and – 

terms refer to HLD sign. 

 

Fig. 17: Bidimensional formulation–composition map illustrating emulsion types (image taken from reference [263]) 

Moving vertically in the diagram represents a variation in the formulation of the system, while 

moving horizontally represents a variation in composition, i.e. water to oil ratio. The horizontal 

line corresponding to HLD=0 is referred to the flat curvature where the interfacial tension is 

minimum (Windsor III ). Following the inversion line, which appears as a stair on the diagram, 

a transitional phase inversion is a process occurring between two kinetically stable normal 

emulsions (A
+
, A

-
, B

+
, C

-
), whereas a catastrophic phase inversion involves a transition between 

a normal and an abnormal emulsion (B
-
 and C

+
) [35]. 

When water to oil ratio is varied between B
-
 and C

+
 (abnormal emulsions) or between A

+
 e C

+
 to 

cross the inversion line (according to a catastrophic inversion), phase inversion could suffer a 
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delay (emulsion inversion does not take place immediately) due to multiple emulsion formation. 

It follows that vertical lines are replaced by an “uncertainty area” on the diagram, i.e., is not 

possible to exactly identify inversion line vertical branches location, but it is known that they 

fall in a certain region of the map identified by a triangular shaded area. These areas may also 

be seen as zones of hysteresis. A coupled variation of formulation and composition can slant the 

vertical branches of the inversion line, but doesn’t affect the horizontal branch, which can be 

narrowed by lowering surfactants concentration, by increasing stirring energy or viscosity of 

one of the phases [250]. 

As stated by Salager et al., experimental work is still needed to characterize the effect of the 

mixing protocol onto catastrophic phase inversion emulsification and some efforts in this 

respect have been done in recent years by Salager and coworkers by studying some effects. 

Regarding the effect of stirring intensity on the catastrophic inversion frontier [264], it has been 

reported that for an intermediate stirring the inversion frontier is reached straightforward while 

for low stirring or high stirring regimes the formation of multiple emulsions could delay the 

inversion process. Moreover, the effect of the internal phase addition rate has been shown to be 

relevant in inversion frontier. If addition is slow the phase inversion can happen in smaller or 

larger time scales depending on the formation of multiple emulsions. For high addition rate the 

phase inversion seems to be delayed but happens in short time scales without displaying 

multiple emulsion morphology [265]. The conditions to trigger emulsion from abnormal to 

normal have been investigated in general [266]. The inversion from abnormal o/w to normal 

w/o emulsions by stirring and without the internal phase addition [263] has been also shown to 

be affected by multiple emulsion development. The use of continuous stirring has been 

exploited to generate high internal phase emulsions [267]. 

2.3 Multiple emulsions during phase inversion 

As mentioned above, multiple emulsions genesis during catastrophic phase inversion has been 

investigated by many authors [268-272], and recently Liu et al. [251] summarized different 

explanations suggested by Groeneweg et al [272], Sajjadi et al. [273] and Klahn [274] et al. 

Groeneweg et al. attributed multiple emulsion formation to the enclosing of the film between 

colliding droplets, with the film becoming the inner droplet. Sajjadi et al. attributed the 

inclusion of the dispersed phase into the continuous one to the shear-induced deformation of the 

droplets. The observation of Sajjadi [273] is based on a previous idea of Ohtake et al. [275] and 

is consistent with the droplet shear deformation theory developed by Taylor [276] (where it is 

showed that shear droplet deformation increases with droplet diameter and decreases with 

interfacial tension). It is considered that surfactant at droplet interface can develop a concave 

interface, and that these concavities are enhanced by deformation thus permitting the continuous 

phase to migrate into the internal one. Klahn et al. [274] have also taken into account the 

importance of the escape process of the inclusion during multiple emulsion formation within 
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phase inversion phenomena, reporting that the inclusion must be counteracted by an escape 

process of inner droplets back into the continuous phase, depending on the drainage time scale 

of the film between the inclusion of an o/w droplet. If the drainage is fast enough on the time-

scale of the inclusion-interface contact, escape will take place and will hamper phase inversion. 

Mira et al. [264] attributed multiple emulsion creation during inversion to the low curvature 

interfaces which exhibit high local deformation, thus favoring the encapsulation of other 

droplets. Such emulsification pathway is far from thermodynamic equilibrium and the effect of 

the water addition rate should be relevant. Nevertheless, this parameter is usually neglected in 

most of the work dealing with catastrophic phase inversion. Bouchama et al. pioneered the 

study of the effect of the volume by which the dispersed phase is added on catastrophic 

emulsification. The latter should be not confused with the addition rate. E.g., by keeping the 

same addition rate (in terms of ml/min), the addition of water drop by drop can affect the system 

depending on the drop volume. Bouchama et al. reported that if water is added to a mixture of 

oil and surfactant by pouring continuously an amount less than the 0.2% of the entire mixture 

volume, the inversion locus happens for higher water volume fraction respect to the case of a 

larger amount of water addition and is independent from addition rate and stirring intensity, 

whereas, for larger aliquots of water addition, inversion is anticipated (it occurs for lowers 

volume fractions) by increasing addition rate or, equivalently, by increasing stirring energy. 

Bouchama et al. attributed this behavior to the formation of multiple emulsions, i.e., the 

inclusion of continuous phase in the droplets. During the formation of multiple emulsion there is 

a self-amplifying growth of the dispersed phase until inversion occurs. When water is added by 

larger volume, the probability to create multiple emulsion is enhanced increasing addition rate, 

thus permitting an inversion of the phases for lower water volume fraction added. An opposite 

effect has been reported by Zambrano et al. [265]. In this case, the higher addition rate caused a 

delayed but more rapid phase inversion whereas, for lower addition rate, inversion is anticipated 

but takes longer time scale. The authors attributed this different behavior to the formation of 

multiple emulsion that occurs in the case of low addition rate only. The disagreement between 

the two works could be due to many reasons, e.g., surfactants type and concentration exploited 

was different as well as the oil type and the water/oil ratio. It is clear that quantitative prediction 

of phase inversion time delay and overall time of inversion are limited to specific systems and 

experimental conditions. Nevertheless, the formation of multiple emulsion seems to play a 

relevant role in catastrophic phase inversion [277], as reported since the works on  of Brooks 

and Richmond [270, 271] regarding systems containing surfactants. Bouchama et al. [30] well 

summarized the seminal contributions of Brooks and Richmond and Pacek et al. regarding the 

role of multiple emulsion formation during inversion. In particular, Brooks and Richmond 

stated that the effective volume fraction of the dispersed phase is higher than its actual volume 

when multiple emulsion are formed thus permitting phase inversion for lower dispersed phase 
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volume fraction respect to the cases where multiple emulsions are not formed. Pacek et al.[278] 

stated that inversion is possible when continuous phase droplets entrapped into the inner part of 

the multiple droplets reach a critical packing volume. Eventually, Jahanzad et al. [253] 

identified the formation of multiple emulsion as a prerequisite for phase inversion. Phase 

inversion could also be triggered by varying pH of the system. Besnard et al. [114] recently 

showed multiple emulsions formation just before emulsion inversion when pH is varied from 

1.5 to 7.3 in a sytem water-toluene stabilized by a copolymer, i.e., PS48-b-(PS31-co-

PDMAEMA60). 

  

  

Fig.18: Fluorescent microscopy images. Evidence of multiple emulsions formation prior to phase inversion. The oil 

phase is red labeled by Nile Red. Scale bars represent 20 m (image taken from reference [279]) 

 

2.4 The role of interfacial mechanical properties 

The interfacial physical properties, such as bending, flexibility and elasticity, are not explicitly 

considered in the phase behavior approaches described above. These properties, however, are 

expected to play a key role in emulsion formation and phase behavior as shown by the work of 

Helfrich or based on his approach [236, 280-284], such as the ones by De Gennes and Taupin 

[245], Zemb [285-288] and coworkers, Gompper and coworkers [289, 290] and Cates [291-293] 

and coworkers. The Helfrich approach is based on the assumption that the bending energy is the 

most relevant property for the interface mechanical properties and its contribution to interfacial 

tension, in the case of bicontinuous microemulsion (the typical intermediate phase during 

inversion) can be expressed as proposed by Strey [236]: 

σ= 2H
2
(k+𝑘̅)+ 𝑘̅c1c2                                                                                                           (8) 
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where k is the bending rigidity (also known as bending elastic modulus, bending modulus or 

splay),  𝑘̅ the saddle splay modulus (or saddle splay elastic constant), c1 and c2  the principle 

curvatures and H the mean curvature. De Gennes and Taupin approach is based on the role of 

persistence length on interface flexibility. The work of Gompper and Cates is mainly based on 

the elasticity theory of Ginzburg and Landau. It is intriguing to note that similar approaches 

have been also used to describe membrane properties in general, e.g., in the case of bilayer 

interfaces which are found in biological cells, such as red blood cells [174, 294-298] and lipid 

membranes [299-305]. In figure 19 a schematic representation of compression and expansion 

forces resulting from a bilayer bending. 

 

Fig. 19: Curvature schematic of a bilayer (image taken from reference [298]) 

Concerning the Helfrich approach, Kabalnov and Wennerstrom [306], revisited the oriented 

wedge theory previously developed by Harkins and Langmuir [306] (the original “oriented 

wedge theory” was also exploited by Harkins and Keith [307] to explain the inversion of 

emulsions, an approach that was however criticized later [306]), tried to outline the role of 

phase behavior, interfacial physical properties such as bending rigidity and spontaneous 

curvature in the evolution of PIT method. To quantify the role of interface bending rigidity and 

curvature they exploited the Helfrich’s approach [280]. Here, a relevant role is attributed to the 

bending elasticity of the interfacial surfactant layer that is taken into account in the spontaneous 

curvature H0. According to this theory, the inversion pathway is divided in the following steps: 

1) oil in water emulsion, 2) emulsion breakage, 3) water in oil system. The passage from one 

step to the other is dictated by the change in spontaneous curvature elicited by variation of the 

bending elasticity. The capability of such argument seems to be very powerful in order to 

understand each phenomena related to phase inversion, e.g., some relations between rigid 

surfactant monolayer or multilamellar stabilized system and multiple emulsion development can 

be found. Also the relation between bending and coalescence rate can be explained by this 

theory.  

2.5 Agitated Vessel: effect of process and material properties 

From a macroscopic point of view, often useful in industrial emulsification processes, phase 

inversion has been interpreted and modeled by many authors as a dualistic dynamical 
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phenomenon between droplets coalescence and break-up [33, 37, 308, 309]. In the light of this 

consideration, phase inversion has been studied in agitated vessel and tube flow to predict 

morphology (average droplet diameter and mean Sauter diameter d32 so far) of the emulsion 

obtained. Phase inversion affects mass, momentum and heat transfer efficiency so it is of 

fundamental relevance to be studied. 

Generally, in an agitated vessel, break-up is predominant nearby the impeller zone and inhibited 

in wall proximity, being the opposite for coalescence. Phase inversion is reached when 

coalescence rate overwhelm break-up rate over the majority of the vessel. In such a process-

related approach, the role of temperature, flow regime, wetting, interfacial tension, viscosity, 

density, geometry and material of the vessel and of the impeller on breakup and coalescence has 

been discussed and reviewed [30, 33, 37, 277, 309-312]. 

In a system of two immiscible liquids a range of volume fractions exists beyond which both 

components may be the continuous phase. This range is known as "ambivalent range", the 

extension of which depends on how the dispersion is produced, on the volume fractions of the 

dispersed phase and the initial energy level of the system [33].The region of ambivalence is a 

metastable region, thus, any perturbation of the system can result in a reversal of the phase 

boundaries. There is a large range of volume fraction (between 0.3 oil in water and 0.3 water in 

oil) where each phase can be the continuous one depending on how the dispersion is produced 

[37]. In the work of Yeo et al. the example of water-hexane system is reported. The 

ambivalence region is delimited by two curves, the upper and the lower one. Above the upper 

curve, dispersion of water in hexane will occur, while below the lower curve of ambivalence, a 

dispersion of hexane in water will be present. It is clear that for a fixed amount of hexane 

nearby the ambivalence zone, hexane will tend to be the continuous phase by increasing the 

agitation speed. Above a certain value, the agitation speed will not affect more this phenomena, 

i.e., ambivalence curves are initially monotonically decreasing by increasing the agitation speed 

but after a certain point they become independent on the agitation speed. 

Some efforts, since the studies of Ostwald [30, 33], have been done in order to understand 

which is the critical transition for the inversion of the dispersed phase into the continuous one. 

In the work of Ostwald it is assumed that the transition occurs when the system reaches a 

critical packing of its inclusions, in this case the droplets. By assuming that droplets are rigid 

equal sized spheres, the phase inversion may occur as a complete coalescence of the dispersed 

phase, when the volume fraction of that phase reaches the maximum efficiency of aggregation. 

This volume fraction is given by the Ostwald index that corresponds to the efficiency of 

aggregation of the spheres in a cubic structure in which the particles cover 74% of the space 

available and the remaining 26% is occupied by the external phase. In this theory, both droplet 

deformability and the formation of multiple emulsions, thus lowering the expected volume 

fraction for which phase inversion occurs, is not taken into account. Apart from the limitation of 
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using equal sized droplets, this model does not provide prediction on phase inversion induced 

solely by increasing agitation speed or by the action of flow. 

2.5.1 Stirring speed 

The input power of the impeller (related to the cube of the rotation speed) transmits mechanical 

energy to the liquid in form of turbulent motion, causing the breakage of a phase into small 

droplets, thereby increasing the interfacial area between the two phases, and facilitating transfer 

of matter. Yeo et al. [33] have reported that the lower limit of ambivalence decreases as higher 

agitation speed is used; i.e. at higher agitation speed, phase inversion occurs at lesser amount of 

the dispersed phase. This trend has been explained by stating that a greater stirring speed 

provides a greater initial energy to the droplets, which leads to an increase in the phenomenon 

of coalescence, and therefore to a larger average size of the drops. The upper curve shows a 

shifting upward with increasing agitation speed. This trend of the curve of ambivalence has 

been explained by considering the secondary dispersions (multiple emulsions). The greater is 

the speed used, the smaller will be the droplets of the dispersed phase (water) that are formed 

and the greater will be their tendency to coalesce, reducing the amount of continuous phase (oil) 

that is trapped. 

It is noted that the inversion of the dispersion of oil in water occurs at lower values of the 

dispersed phase respect to the inversion of the dispersion of water in oil and this has been 

explained by the presence of an electrostatic charge on the droplet (will be explained better in 

the next paragraph). Yeo et al. also reported that with increasing agitation speed, the difference 

between the average size of the oil drop in water and the average size of the droplet of water in 

oil, is reduced by an amount that is related to the amount of the external phase (oil ) trapped in 

the dispersed phase (water) in a dispersion of oil in water, thus confirming the presence of 

secondary dispersions. In all cases, increasing the stirring speed of the inversion curve tends to 

an asymptotic value, i.e., the volume fraction of the organic phase reaches a constant value. For 

this transition, asymptotic linear relations of the organic phase for the two curves have been 

proposed as a function of the Weber number We, which is a dimensionless number relating 

inertia-induced droplet breakup with the restoring action of interfacial forces. The Weber 

number can be also seen as the ratio [37] tbreak-up/(/ddroplet), where tbreak-up is the characteristic 

break-up time,   is  the interfacial tension, ddroplet the droplet diameter. The asymptotic relations 

reported by Yeo et al. [33] are the following: 

-higher inversion curve 

                                                            (9) 

-lower inversion curve 
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                                                             (10) 

The impeller Weber is defined as follow:  



 32

Ic

I

DN
We 

                                                                    (11) 

where ρc is the density of the continuous phase (Kg/m
3
), N is the rotation speed (r.p.m), DI 

impeller diameter (m) and σ is the interfacial tension (N/m). Usually We is defined in terms of 

v
2
l (v, fluid velocity; l, tube characteristic length) rather than N

2
DI

3
, but in agitated vessel is 

more convenient to use the impeller Weber. (9) and (10) are valid for WeI within 350-4000. 

Usually many relations are available to characterize droplet break-up and what is usually given 

by these models is the range of sizes of the droplets produced and the Sauter mean diameter d32 

[37]. The latter is defined as the area-volume mean and links the area of the dispersion to its 

volume or mass and is related to the specific surface area of the droplets, a, by the relation a= 

6/d32, where  is the volume fraction of the dispersed phase [37]. The effect of different types 

of impellers on droplet size is reported in the work of Nienow [37]. 

Mira et  al. reported a series of studies showing the increased phase inversion point by 

increasing agitation speed both with and without surfactants. Coupling the role of surfactants 

and agitation speed, nontrivial results come out. As reported by Mira et al. [264], phase 

inversion could be favored either by low energy stirring and high energy stirring, being 

inhibited by intermediate energy stirring. The explanation they gave is based on the low 

curvature interfaces configuration in the low energy case due to the presence of big droplets. 

The presence of such droplets could favor multiple emulsion creation and hence phase 

inversion. In the case of high energy stirring big droplets and low curvature interfaces are not 

favored anymore but the high agitation energy speed-up the surfactant adsorption from the bulk 

to the interface thus permitting the formation of droplets inside droplets, which the authors 

consider as the leading inversion mechanism. In the intermediate energy stirring regime droplets 

are not big enough and surfactant adsorption also is not fast enough, thus, for both reasons, 

phase inversion is inhibited. However, a major role is also played by the HLD. When HLD<0 

(that corresponds to HLB>11, i.e. hydrophilic system) the system is largely insensitive to rate of 

addition and stirring energy, because phase inversion is already fast enough due to faster 

surfactant adsorption of the hydrophilic surfactant. On the other hand, when HLD>0 (HLB<10) 

the system is largely affected by addition rate and stirring speed. Similar results have been 

reported also by Tyrode et al. [266] 

2.5.2 Wetting 

Wetting refers to the propensity of the vessel/impeller material to be wet by one of the phases 

[313]. Especially in the absence of surfactants, the vessel material can influence phase inversion 
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[33]. Wetting is affected by surface roughness [314], heterogeneity of the surface [314], 

temperature [314], trace elements [314] and is in turn related to viscosity, interfacial tension and 

density of the phases [314]. It was observed that wetting influences the frequency of collision of 

the droplets and thereby coalescence, resulting in a change of the inversion process [33]. In 

agitated vessel break-up occurs in the vicinity of the impeller while coalescence occurs initially 

in the region farthest from it. However, if the impeller is mainly wet from the dispersed phase, 

there is the possibility that droplets approaching the impeller can coalesce, thus affecting the 

mechanisms of coalescence and breakup [33]. In a stainless steel vessel/impeller, which is 

water-wetted, phase inversion from oil continuous to aqueous continuous occurs at much lower 

concentrations of oil when compared to a preferentially oil-wetted Plexiglass tank and impeller 

[37]. This aspect could be relevant in scale-up issue because usually lab-equipment are made of 

Plexiglass or glass while pilot and industrial scale are usually made of stainless steel (one 

should also take into account that area to volume ratio is higher in lab-scale equipment with 

respect to industrial one [37]). 

2.5.3 Density 

If the density of the aqueous phase and of the oil is similar, there are no particular effects on the 

phase inversion, whereas when high densities differences are present, phase inversion is 

promoted due to the increase in the relative velocities between dispersed and continuous phases 

[33]. If dispersed phase is less dense than the continuous one, the delay time to reach inversion 

gets shorter with increasing speed as the centrifugal force is strengthened, while if the dispersed 

phase is denser, the trailing vortices tend to centrifuge out the droplets and consequently delay 

time increases, limiting catastrophic inversion [37]. 

2.5.4 Viscosity 

Usually, if the dispersed phase is more viscous than the matrix, break-up is slowed down [37]. 

High viscosity ratios between the phases cause secondary dispersions [33]. The tendency of a 

phase to disperse decreases with its viscosity. The increase in the viscosity of the two liquids, 

increases the time of drainage, corresponding to a lower coalescence rate that gives a wider 

ambivalence zone, thus inhibiting phase inversion. Moreover, the agitation is less efficient when 

the dispersed phase is next to the phase inversion locus. The system viscosity assumes a 

maximum value in the vicinity of the point of inversion, which is an indication of when the 

system is next to inversion. 

2.5.5 Interfacial tension 

As observed by Yeo et al. [33] the lower the interfacial tension, the greater the resistance of the 

system to the inversion, as a drop undergoes a break-up when the kinetic energy transmitted to 

droplet by turbulent eddies exceeds the droplet interfacial energy, which is linked to the 

interfacial tension. Therefore a reduction of the latter enhances droplet break-up. In addition a 
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lower interfacial tension causes a decrease of the drainage time of the film between two 

approaching droplets through the Marangoni effect, i.e. the continuous phase liquid flows back 

into the film to suppress interfacial tension gradients due to droplet deformation [315-318]. 

Hence  surfactants hinder coalescence with respect to break-up causing an enlargement of the 

region of ambivalence and therefore a higher resistance of the system to the inversion. Even 

impurities, such as solid particles can change the inversion process by lowering the interfacial 

tension. 

2.5.6 The role of electrostatic charge 

In the review of Yeo et al. [33], the role of electrostatic charge has been thoroughly reported and 

is summarized here. The charge on the surface of the droplets may inhibit the coalescence 

process, since electrostatic effects due to the presence of hydroxide ions at the interface 

significantly stabilize the dispersions, irrespective of the presence or absence of surfactants. The 

presence of these ions allows to explain why the phase inversion of oil in water occurs at lower 

values of the inversion of water in oil. This asymmetric behavior assumed by a liquid-liquid 

system is due to the fact that the droplets carry a charge due to the great difference between the 

dielectric constants of the two immiscible phases. It is this difference that makes the interaction 

of the drops of oil in water different from the interaction of the drops of water in oil. The drops 

of oil in water show a repulsion due to overlap of electrical double layers who inhibit 

coalescence. Conversely, drops of water in oil do not exhibit this effect, and their higher 

coalescence efficiency can generate multiple emulsions. 

2.5.7 Phase inversion time delay  

Since the electrical conductivity of water-in-oil emulsions compared to oil-in-water ones differs 

by several orders of magnitude, the conductivity can be used to determine the type of emulsion 

and the area of phase inversion [33, 264]. Delay time (the time to reach the phase inversion 

point) can vary from zero (instant inversion) to infinity (the inversion does not occur, i.e., the 

dispersion is stable).  

The inversion takes place in an extremely small range of time as seen from the steep variation of 

electrical conductivity at the inversion point. During the initial delay, droplet size grows with 

time. In proximity of the inversion point, a certain critical concentration of droplets is reached 

where coalescence ultimately leads to phase inversion. Hence, effects promoting break-up lead 

to an increase of the delay time, and the opposite happens when coalescence is favored. 

Intuitively, time delay is lower with higher agitation speed if coalescence is enhanced and it 

increases by increasing phase viscosity or surfactant concentration because both these variables 

inhibit coalescence rate. A proposed relationship to predict the delay-time is [33]: 

  
0.133.066.0048.0  trdI DVt                                                                             (12) 
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ϕd the dispersed phase volume fraction, , V the vessel volume (m
3
), trD is the turbulent diffusion 

coefficient that characterizes the eddies diffusion in a turbulent system and is obtained from this 

equation: 

   𝐷𝑡𝑟 = 𝛼′ ∗ 𝜀̅0.33 ∗ 𝜆′ 1.33                                                                                 (13) 

with 𝜀 ̅the average energy supplied per unit mass (J/Kg), λ’ eddy length (m) and α’ dimensional 

constant. As reported in the section regarding multiple emulsions formation during inversion, 

the latter could affect time delay thus leading to results not predictable with the above described 

approach. 

2.5.8 Predicting the phase inversion point 

A theoretical link between the point of phase inversion and physico-chemical parameters would 

reduce the amount of trial and error to predict the inversion point of a given system. The various 

proposals for possible relationships, reported by Yeo et al. [33],  are as follows: 

i) The organic phase volume fraction at inversion (
io, ) is inversely proportional to 

the power )(WattP delivered to the system [319]: 

P
ioio


  '

,,                                                                                      (14) 

Where '

,io  is the asymptotic value of the organic phase volume fraction at high impeller speed 

(is a constant), and α is a constant 

3NKP m (power delivered to the system)                                       (15) 

)1( dcddm    (mixture average density)                                        (16) 

Where K is a constant, ρm the mixture average density, ρd the dispersed phase density, ρc the 

continuous phase density, εd the dispersed phase volume fraction. 

ii) a relation to estimate ambivalence region width W  based on the criterion that the 

curves of the upper and lower inversion are linearly related to Weber number and 

(see (9) and (10) ) is directly affected by interfacial tension σ: 
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                                (17) 

 

iii) based on the criterion that the total energy of the system should be minimized and 

thus the phase inversion is a spontaneous process, two relations are proposed for the 

higher 
U

io,  and lower curves of inversion 
L
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ηc is the continuous phase viscosity, the ηd dispersed phase viscosity, ρc the 

continuous phase density, Δρ the density difference between the phases. FrI is the 

impeller Froude number Fr1=N
2
D I

 3
/g and relates inertia with gravity. ReI is the 

impeller Reynolds. DI is the impeller diameter, g the gravitational acceleration. 

 

iv) The limits of the region of ambivalence depend primarily on the coefficient of 

kinematic viscosity between the two phases, and the volume fraction of the 

dispersed phase inversion is given by the following relationship 
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Where ηc is the continuous phase viscosity, the ηd dispersed phase viscosity, ϕd,i the dispersed 

phase volume fraction at the inversion point. The relation and is obtained assuming that the 

coalescence drives phase inversion and is affected by viscous forces rather than inertial ones. 

All of these expressions do not take into account the mass transfer which affects the limits of 

ambivalence region and phase inversion. 

Yeo et al. [320] exploited a stochastic model to predict the phase inversion locus using a Monte 

Carlo technique, but its validity fails to catch the ambivalence region. However, Yeo et al. [321] 

later developed a simple analysis for agitated vessels based on the criterion of the interfacial 

minimization  thus providing a relation capable to localize the inversion locus also in the 

presence of the ambivalent region (we will describe in the next section how the concept of 

“interfacial minimization” has been exploited by many authors to model phase inversion, in 

particular from Brauner and Ullmann [308] to describe phase inversion in tube flow): 

          
𝜙𝑜,𝑖

1−𝜙𝑜,𝑖
=

𝑑32 𝑜/𝑤

𝑑32 𝑤/𝑜
                                                               (21) 

ϕo,i is the inversion holdup, d32 the mean Sauter mean diameter, appropriately calculated for 

each morphology [321]. They found qualitative agreement with the experimental results of 

Selker & Sleicher [322]. The model is not able to take into account the effect of the agitation 
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speed, so is limited to the case where the agitation speed is high enough to prevent settling. As 

the same authors stated, further developments of the model, such as the use of viscosity model 

adequate for each case, could be done in order to fit a larger set of experimental results. Hu et al. 

[312, 323] developed a two region model where a relation for break-up rate and coalescence rate 

are provided. Here it is assumed that phase inversion happens when coalescence frequency 

overwhelm breakup frequency. A particular radial distribution function has been exploited in 

order to take into account coalescence in the case of concentrated droplets. The effect of 

interfacial tension, viscosity, density and impeller size on the width of the ambivalent region is 

considered in the model. Good agreement has been found for the upper limit of the ambivalent 

zone, whereas the lower one is often underestimated. 

Salager et al. [250, 258, 266] argued that this kind of kinetic competing phenomena approach 

(i.e., breakup vs coalescence), even if satisfactory from a mere physical point of view, is still 

difficult to handle for quantitative features, being dependent on too many variables yet not fully 

mastered. 

2.6 Tube Flow 

In the chemical and petroleum industries, mixtures of oil and water are transported for long 

distances in horizontal pipes by means of pumping systems. During pipeline transportation of 

very viscous crude oil, water is introduced in  order to reduce pumping energy required to 

transport oil through the ducts. Moreover, to extract oil from oil wells, aqueous solutions 

(viscoelastic surfactant solutions, nanoemulsions etc.) are always injected into the reservoir to 

push out oil. So water is ubiquitous and in some conditions a water in oil mixture can revert into 

an oil in water one during pipeline flow. The design of these ducts and of the pumping 

equipment requires an analysis of the flow patterns of the two phases and the related pressure 

drop. There are several flow patterns each of which is governed by different mechanisms and 

pressure gradients. A further complication is the non-Newtonian rheological behavior of oil-

water systems. The phase inversion plays a key-role in all of the above mentioned applications 

and flow pattern developments. In the oil industry the lack of adequate relations to predict phase 

inversion hinders process optimization [38]. 

The main flow patterns of oil-water systems in a tube can be classified as follows: 

Segregated flow: the two phases of the fluid flow in separate layers on both surfaces 

Slug Flow: in which a liquid phase flows like a confined spherical or elongated droplet in 

another liquid phase 

Dispersed flow: in which a fluid is dispersed into droplets within a continuous phase of another 

fluid 

Yeo et al. [33], reviewed phase inversion in tube flow and in agitated vessel. More recently, 

Brauner and Ullmann [308] reviewed phase inversion in tube flow and they also reported, in the 

same paper, a novel developed model describing phase inversion in tubes. This model exploit 
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the so-called surface free energy minimization approach (a literature review on the previous 

works that exploited such approach can be found in the work of Brauner and Ullmann) coupled 

with a model for droplet size in dense dispersions. The main idea is that the system switch the 

morphology from oil-in-water (water-in-oil) towards water-in-oil (oil-in-water) once the 

opposite morphology is associated with a lower free energy. Their considerations start with the 

definition of the oil-water surface energy (per unit volume of the mixture): 

𝐸𝑜𝑤 =
6𝜎𝜀𝑑

𝑑32
                                                             (22) 

Where  is the oil-water interfacial tension (considered the same in the case of water-in-oil 

dispersion), εd is the dispersed phase volume fraction, d32 the Sauter mean drop diameter. Then, 

a formulation for the overall surface energy in case of an oil-water dispersion is given: 

𝐸𝑆𝑜𝑤
=

6𝜎𝜀𝑜

(𝑑32)𝑜/𝑤
+ 𝑠𝑤𝑠                                                                (23) 

Where εo is the oil volume fraction, (d32)o/w is the Sauter mean diameter in the oil in water 

dispersion, ws the water-solid surface tension coefficient and s the surface area per unit volume, 

with s = 4/D for smooth pipe. An analogous relation is given for the water-oil dispersion where 

the oil volume fraction is replaced by the water volume fraction, i.e., (1- εo), the water in oil 

dispersion Sauter mean diameter considered as well as oil-solid surface tension coefficient. In 

both overall surface free energy relations is assumed that solid surface is completely wetted by 

the continuous phase. At the phase inversion point both morphologies, i.e., oil-in-water and 

water-in-oil are dynamically stable, hence the respective overall surface energies are equal. 

Moreover, considering Young’s equation: 

𝑜𝑠 = 𝑤𝑠 + 𝑐𝑜𝑠                                                                (24) 

where  is the liquid-solid wettability angle, ws the water-solid surface tension, os the oil-solid 

surface tension, a relation for phase inversion point could be obtained: 

𝜀𝑜
𝐼 =

[/𝑑32]𝑤/𝑜+
𝑠

6
𝑐𝑜𝑠

[/𝑑32]𝑤/𝑜+[/𝑑32]𝑜/𝑤
                                                           (25)   

Where εo
I
 is the oil volume fraction at the inversion point, 0 ≤  < 90° corresponds to a surface 

which is preferentially wetted by water (hydrophilic surface), whereas for 90° <  ≤ 180° the oil 

is the wetting fluid (hydrophobic surface). d32 can be approximated to d32=dmax/kd, with kd, a 

constant depending on the fluids system, falling in the range 1.5-5. Considering that Azzopardi 

& Hewitt [324] reported a kd value equal to 5 when the system is composed of a large number of 

droplets, assuming that interfacial tension is constant also after phase inversion and given the 

solid-liquid wettability negligible effects (i.e., =90° or s nearby zero that holds for large pipe 

diameter, where do, dw << Dtube). Brauner and Ullmann came up with a simplified relation for 

the phase inversion point: 

𝜀𝑜
𝐼 =

𝑑𝑜/𝑑𝑤

1+𝑑𝑜/𝑑𝑤
                                                               (26) 
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With do and dw representing the maximum drop size in the oil-water and in the water-oil 

dispersion respectively. The final part of the model development is related with the possible 

relations for do and dw. The authors exploited the continuous phase dmax provided by H-model 

developed by Brauner [325]. In this relations, do and dw both depend on mixture velocity, pipe 

geometry, surface tension, whereas the ratio between them does not. Eventually, a simple 

version of the phase inversion point equation could be written: 

𝜀𝑜
𝐼 =

𝜌̅𝑣̅0.4

1+𝜌̅𝑣̅0.4
                                                                (27) 

𝑣̅  is the kinematic viscosity ratio of the two phases, i.e., vo/vw, 𝜌̅ the ratio between the two 

phases density. Brauner and Ullmann compared their model to previously published 

experimental works both in laminar and turbulent flow and found qualitative agreement. The 

authors made also some model arrangements in order to fit experimental data of phase inversion 

in static mixer (published by Tidhar et al. [326]) and found quantitative agreement. One of the 

limitation of such approach is the absence of surfactants assumption, hence the typical role of 

phase behavior cannot be faced by similar models. 

Ngan et al. [327] suggested an intuitive method to predict phase inversion in tube based on the 

idea that phase inversion happens at the phase fraction where the difference in viscosities 

between the two possible dispersions, oil continuous and water continuous is zero. The authors 

exploited a large set of viscosity correlation (as a function of the dispersed volume fraction) in 

order to fit experimental data and found that viscosity models of concentrated suspension and 

solution are good enough to fit the inversion locus. Also this model could be hardly exploited in 

system containing large amount of surfactants where usually viscosity behavior is completely 

different by changing surfactant type. Poesio and Beretta [309] interpreted phase inversion in a 

tube by using what they called a “minimal dissipation approach”. The development of the model 

is based on the idea that the system chooses the configuration having the minimal energy cost, 

i.e., the one with lower pressure drop. Here, the basic idea is similar to the one proposed by 

Brauner and Ullmann [308], where it is analogously stated that the system invert in order to 

minimize the overall surface free energy. Starting from a water-in-oil emulsion in turbulent flow 

and then diluting with water, after a certain dispersed phase volume fraction, the pressure drop 

of the water-in oil system is much higher than the corresponding oil-in-water mixture having the 

same percentage of oil, so the system tends to invert phases from water-in-oil into oil-in-water. 

In a nutshell, by adding one phase into another in tube flow, pressure drop arises and phase 

inversion is occurring when the pressure drop maximum is reached, after this point pressure 

drops back until the final morphology is obtained (an oil-in-water if the initial emulsion was 

water-in-oil). This evidence has been showed also by Piela et al. [328]. Poesio and Beretta 

calculated pressure drop starting from the consideration that: 

∆𝑝 = 𝐿 ∙ 𝑑𝑝/𝑑𝑥                                                                    (28) 
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where ∆p is the pressure drop, L the tube length, and dp/dx the derivative of pressure over the 

space. The latter expressed as: 

𝑑𝑝

𝑑𝑥
= 2𝑓𝑚

𝜌𝑚𝑈𝑚
2

𝐷
                                                                     (29) 

where 𝑈𝑚 = 4 (
𝑚̇0

𝜌0
+

𝑚̇𝑤

𝜌𝑤
) /𝜋𝐷2 is the mixture velocity, 𝜌𝑚 = 𝜌𝑤𝜖𝑤 + 𝜌0𝜖0, is the mean 

mixture density, D is the pipe diameter, 𝜖𝑤 the volume fraction of water and 𝜖0 = 1 − 𝜖𝑤 the 

volume fraction of oil. For the mixture friction factor they assumed, similar to Blasius: 

𝑓𝑚 =
𝐶

𝑅𝑒𝑚
𝑛                                                                            (30) 

with C and n depending on flow regime and the mixture Re number defined by using an 

effective viscosity. If the flow is laminar 𝑅𝑒𝑚 ≤ 2300 C=64 and n=1, if the flow is turbulent 

𝑅𝑒𝑚 ≥ 2300, C=0.079, and n= 0.25. 

For the viscosity they exploited a relation proposed by Ball and Richmond [329]: 

𝜇𝑚 = 𝜇𝑐(1 − 𝐾𝜖𝑑
)

−5/(2𝐾)
                                                         (31) 

Where 𝜇𝑐 is the continuous phase viscosity, 𝜖𝑑 the discrete phase hold-up, and 1/K can be 

interpreted as the maximum packing fraction and is retained nearby 1 for densely packed 

monodispersed deformable droplets. Hence, 1/K is 1. Once all these variables are defined, dp/dx 

is calculated as a function of hold-up volume fraction. The calculation is done twice, the first 

time, starting from the water-in-oil phase and increasing water volume fraction, the second time 

starting from the oil-in-water phase by increasing oil volume fraction. The two so-obtained 

curves cross each other for a certain volume fraction, and this volume fraction is taken as the 

phase inversion point. Analytically, it comes out that the phase inversion point can be calculated 

by the following expression: 

𝜖𝑤
𝐼 =

1

1+(
𝜇0
𝜇𝑤

)
2/5                                                                         (32) 

 

𝜖0
𝐼 =

1

1+(
𝜇0
𝜇𝑤

)
−2/5                                                                       (33) 

These expression are valid both for laminar and turbulent flow, and do not depend on density of 

the phases, velocity and tube diameter. As pointed out by the authors what is missing is to take 

into account wettability and interfacial tension, thus not allowing to predict the existence of the 

ambivalent region. 

Poesio and Beretta [309] compared their modelling approach with the experimental data given 

by Arirachakaran [330], Nadler and Mewes [331] and Brauner and Ullmann [308] finding a 
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good agreement only with Nadler and Mewes. Poesio and Beretta compared also their model 

with the pipe flow experimental data of many authors, collected by Brauner and Ullmann. Here, 

the discrepancy between the minimal approach dissipation rate and the experimental data is 

much higher than the above mentioned cases mainly because the model does not consider the 

existence of the ambivalence region. Poesio and Beretta tried also to model ambivalent region 

by using a two parameter (K1 and K2, dependent on material wettability and maximum droplet 

packing)  viscosity formulation obtained by fitting experimental data of Ioannou et al. [332]. 

They found good agreement of their model (containing the novel formulation for viscosity) and 

data of Iannou et al., also in the ambivalent region, but they limited the comparison of the novel 

model formulation only to the experimental data of Iannou et al. It seems that the minimal 

approach dissipation rate could be good enough for a rough prediction of phase inversion in 

tube, with limitations for the prediction of the ambivalent region. Moreover, we cannot say 

whether this model could be suitable for system rich of surfactants.  

The hampering issue in development of phase inversion theoretical modeling is the difficulty 

into identify the leading mechanism responsible for the inversion. As pointed out by Hu et al. 

[333] , one key-step could be identified in the evolution of drop size during the process. 

Population balance equations (PBE) [334] describes how populations of “entities” interact with 

their environment, generally assumed to be continuous. Such “entities” could be particles, 

droplets [335], or ensemble of systems of state being represented by a vector. The overall 

description of the system is provided by the equations of conservation of mass, momentum and 

energy (related to the continuous phase), coupled with the PBE (related to the “entities” phase). 

Usually, detailed description of the fluid dynamics and mixing is required to solve PBE within 

computational fluid dynamics code [336]. Moving from this considerations, Hu et al. [333] 

applied  population balance equations to model phase inversion in tube thus showing a 

qualitative agreement of the simulated droplet size with the experimental one. The existence of 

the ambivalent region in terms of the distance from the tube inlet, rather than function of the 

dispersed volume fraction, has been also predicted by their simulations. PBE have not yet 

exploited to predict phase inversion when surfactants phase behavior plays a key-role, and we 

cannot even say if they are suitable for this aim. Usually, PBE are not capable of dealing with 

the surfactants interfacial behavior. 

Piela et al. [328, 337, 338] studied phase inversion in tube without added surfactants. They 

studied the phenomena in direct, continuous and discontinuous experiments. In a direct 

experiment the two phases are fed simultaneously in the tube. In the continuous way, the 

dispersed phase is injected gradually into the other phase, until it becomes the continuous one. 

In the discontinuous approach a pure water phase is flowing through the pipe, and at a certain 

moment it is changed to a pure oil phase (or vice versa),  so that in a certain region of the 

mixing zone phase inversion will occur. They demonstrated how the continuous feeding way is 
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useful to induce phase inversion at higher values of the dispersed phase respect to the direct 

experiment; moreover, they showed, by taking images of the morphology at transition, that both 

continuous, discontinuous and direct feeding have the same morphological transitions, with the 

dispersed phase present always as a dispersion of nearly spherical droplets at the starting and at 

the end of the inversion  process. On the contrary, the intermediate phase has a morphology rich 

of multiple droplets and “pockets” containing droplets, with an evolution towards the inverted 

isolated droplets morphology induced mainly by coalescence, break-up and escaping 

phenomena. They also stated in a later work [339] that the creation of such morphology, i.e.,  

multiple emulsions of oil in water in oil droplets (the so called “pockets”)  along with  a 

dispersion of clean oil drops in water is due to the presence of surface active substance already 

present in the liquids, with an affinity towards oil rather than water. During the continuous 

experiment they showed that the critical volume fraction of the dispersed phase (the volume 

fraction to achieve inversion) is not dependent on Reynolds number, Froude number, Weber 

number and on the dispersed phase injection velocity as long as the latter is sufficiently large (2 

m/s) [311, 337, 339]. Piela et al. [337] also showed that the ambivalence region is unique for a 

specific water-oil mixture. Their final statement is that phase inversion critical volume fraction 

is dependent only on the injected phase volume fraction and that the effect of surfactant [339] is 

only to shift the ambivalent range and does not alter the linear relationship between critical 

volume fraction and injected phase volume fraction. It has to be noted that the surfactant used 

by Piela et al. was at low concentration, nearby CMC; it is not clear whether larger surfactant 

concentrations could have an impact on the ambivalent region.  

Piela et al. [311] exploited the classical Ginzburg-Landau mean-field theory of phase transitions 

in thermodynamics to describe phase inversion phenomenon. The external filed driving phase 

transition is considered to be the shear stress caused by the pressure drop over the pipe. By 

considering the friction factor f as function of the injected phase volume fraction, they modeled 

the existence of the ambivalent region. They found agreement between experimental 

ambivalence region and predicted one [311], thus corroborating the experimental results that for 

such a mixture the ambivalence region depends on the injected phase volume fraction and it is 

independent on the Reynolds, Froude, and Weber numbers and also independent on the 

injection rate, as long as the mixture velocity is large enough. Moreover, they pointed out that 

when the oil type is changed or when a surfactant is added, the ambivalence region changes and 

two new experiments (one starting from oil and the other from water) need to be performed. 

However, this model was not compared with other literature studies, especially when large 

amount of surfactant are exploited. 

Recently, the key-role of coalescence during phase inversion has been elucidated by 

microfluidic means by Bremond et al. [340]. However, surfactant concentration used was 0.3% 
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wt and given the use of a larger surfactant amount for phase inversion emulsification, further 

investigations are needed to understand what happens in concentrated amphiphile regimes. 

 

Fig. 20: Coalescence during phase inversion process, emulsion with hydrophobic surfactant Span80 (image taken 

from reference [298, 340]) 

2.7 Droplet in microfluidic channel 

Concerning interfacial tension measurement of the emulsion flowing in the chip produced by 

soft-litography,  a dynamical interfacial tension measurement model, based on the previous 

work of Rallison [341-343] developed by Hudson et al. [344, 345] was used: 

 

αc (
5

2+3
̇ − u

D

x
) = σ

D

a0
   (34) 

 

α = (
(2+3)(19+16)

40(+1)
)   (35) 

 is the ratio between the water viscosity (dispersed phase) and the oil viscosity (continuous 

phase),  D is the deformation parameter (the difference of major and minor axis of the deformed 

droplet, respectively a and b, divided by their sum), x is the droplet position along the flow axis, 

 is the extension rate, σ is the interfacial tension, a0 is the undeformed droplet radius. 

By  transitional droplet edge detection (from the deformed droplet shape to the undeformed 

one), is possible to plot the left hand meber of the Eq. (34) vs D/a0. The slope of of the line 

fitting experimental data gives the value of the  interfacial tension between oil and water phase. 

A correction on droplet deformation has been adopted. Confined droplet are much more 

deformed with respect to unconfined ones. The confinement correction consist into reduce the 

deformation parameter in order to get rid of the confinement effect. Mulligan et al.[346] 

reported the value of droplet deformation parameter for a droplet in confined and unconfined 

case in similar geometry with respect to us.  
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2.8 Pendant Drop 

The study of the adsorption of surfactants and rheology at liquid/liquid interfaces is interesting 

for many technological applications, including oil recovery, emulsification procedures, 

pharmaceuticals, food and counter-flow extraction [347] 

The basis of this method reside Young-Laplace equation, which in conditions of thermodynamic 

equilibrium expresses a relationship between the curvature of an interface and the pressure 

difference between the two fluids at that point, according to a coefficient that is precisely the 

interfacial tension: 

𝛥𝑝 = 𝜎 (
1

𝑅1
+

1

𝑅2
)         (36) 

In which Δp  is the pressure between the two phase, interfacial tension and R1 and R2 curvature 

radii. A thorough description of the technique can be found elesewhere (see cited articles of 

Miller et al.) 

 

Fig 21: a pendant drop in a pendant drop apparatus – rising drop configuration. 

 

By a thin needle is made literally hang a drop of the fluid to higher density in a vessel 

containing the fluid to lower density (in this way it is avoided that the drop curtain formed to 

rise upward to density difference). One can also work in the “reverse” mode, using a bent needle 

to "U", with the end facing upwards instead of downwards suspended and taking a drop of the 

fluid to lower density in a vessel containing the fluid to higher density: this variant of the 

method, whose theoretical treatment is identical to the first case, is called Rising Drop or 

Emerging Drop. The drop will assume a well-defined shape in function of its size, temperature, 

pressure difference between the two phases and interfacial tension, and then with the addition of 

various hypotheses not so restrictive, it is possible with a few simple experimental 

measurements (and more complex mathematical calculations) to obtain the value of IFT. 

A pendant drop (a rising drop, more precisely) technique has been used in this work to 

characterize adsorption behavior of a non-ionic surfactant, Brij58, at soybean oil vs water 

interface. Also interfacial rheology has been performed. Brij58 (also known as polyethylene 

glycol hexadecyl ether or polyoxyethylene (20) cethyl ether or C16EO20 or C16E20) is a 

hydrophilic nonionic surfactant. Brij surfactants, in general, have a lot of applications in 

pharmaceutical industries, detergency and emulsification.[348, 349]  
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Interfacial properties of Brij surfactants have been widely studied in the literature by pendant 

drop technique, capillary pressure tensiometry. While, some insights on Brij58 adsorption 

behavior and its interfacial properties at high concentrations still lack. [237, 350, 351]. 

 

 

3 Experimental Section 

3.1 Materials 

Light mineral oil, Drakeol7®, was purchased by Penreco, polyoxyethylene sorbitan monooleate, 

C64H124O26, (1.06-1.09 g/ml, 1310 g/mol, Tween 80) and sorbitan monolaurate, C18H34O6, 

(1.032 g/ml, 346.46 g/mol, Span 20) were used as emulsifiers and purchased by Sigma Aldrich. 

Deionized water from Millipore was used throughout. Water is added dropwise to a solution of 

oil and surfactants and mixed in a beaker on a magnetic stirrer at low energy (about 250 rpm) 

and at room temperature (T ~ 23 °C). Eventually, any sample is taken from the beaker and 

analysed in microfluidic channel or by placing some drop of the sample on glass slides. 

Alternatively, a beaker with a thin bottom glass slide (125 micron) is used directly under the 

confocal microscope to visualize directly the morphology of the obtained emulsion. 

Regading microfluidic and pendant drop interfacial tensiometry interfacial tensiometry the non-

ionic surfactant Brij58, soybean oil and water were exploited. The surfactant Brij58 (average 

MWn=1124 g/mol, HLB=16) was purchased by Sigma-Aldrich®. Soybean oil was purchased 

by Sigma-Aldrich® and, to get rid of its impurity, it has been purified with Florisil® resins  

(Fluka, 60-100 mesh, by Carl Roth) prior to start the experimental measurement procedure. A 

mixture of oil and Florisil® in proportion 2:1 w/w was shaken mildly for 3 h and then filtered 

with Millex® filters (0.1μm PDVF). Ultrapure water, obtained by using a Milli-Q water 

purification system (0.054 μS), was used. All glassware was washed with sulfuric acid and 

Milli-Q water before drying in the oven. The measurements were done with the drop profile 

analysis tensiometer PAT-1 (Sinterface, Germany). A hook needle, which contain the lesser 

dense phase (soybean oil), was placed inside a cuvette containing the aqueous surfactant 

solution. Surface dilatational rheology results are obtained from the surface tension response to 

a sinusoidal area oscillation. 

By soft-litography technique has been possible to obtain a very small chip (see fig. 22) made of 

polydimethylsiloxane (PDMS) containing the microchannels having convergent-divergent 

geometry. 
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Fig. 22: Microfluidic chip 

 

Fig. 23: Microfluidic channel 

A convergent-divergent geometry is needed to obtain a divergent flow able to deform droplet. 

Microchannel section is rectangular and the smallest microchannel section is 8 µm x 15 µm. 

Afterwards, a hole for the inlet and one for outlet was created in the chip. Micropump was used 

to realize the requested pressure drop. An emulsion of soybean oil in water containing 1% wt of 

Brij58 has been tested in the microfluidic channel for the IFT measurement. A pure interface 

second solution, i.e.,  distilled water in silicone oil (η= 20 cSt) has been tested as well. 

The components of Buchwald–Hartwig arylamination in microreactor considered in this work 

consist in an aryl bromide coupled with a secondary amine in an toluene using a Palladium-

based pre-catalyst and a metal alkoxide as base to form an arylamine. The aryl bromide ((R)-8-

Bromo-5-methyl-1,2,3,4-tetrahydronaphthalen-2-ylamine)-(S)-1-(phenylethyl)amine) (1) has 

been obtained by mixing (R)-8-Bromo-5-methyl-1,2,3,4-tetrahydronaphthalen- 2-yl)-(S)-1-

(phenylethyl)amine Hydrochloride (2) (20 g, 52.6 mmol) with H2O (32 mL, 1.6 mL/g) and 50% 

NaOH (aq) (12 mL, 152.5 mmol) in a round-bottomed flask fitted with a reflux condenser and a 

magnetic stirrer. Toluene (100 mL, 5 mL/g) was added, and the resulting mixture has been 

heated to 60 °C and stirred. At first, the mixture appears to be very heterogeneous. Once the 

material has been dissolved, the mixture has been cooled to room temperature and the stirring 

has been stopped. At this point two liquid layers are present. By pouring them into a separating 

funnel it has been possible to remove the bottom aqueous layer. The top layer (organic) has 

been distilled under vacuum by using rotary evaporator in order to remove toluene and any 

water remaining. This provided 1 as a crystalline solid. The Palladium-based pre-catalyst 

[Pd(IPr⁄)(cin)Cl] (3) has been prepared according to a procedure reported in a previous paper 

[352]. Potassium tert-pentoxide (KOtAm) was received as a solution 1.7 M in toluene (Aldrich) 

and used as base, 1-methylpiperazine (Aldrich, 99%), 4,4’- di-tert-butylbiphenyl (Aldrich, 99%) 

and toluene (Aldrich, anhydrous, 99.8%) have been used as purchased. 
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3.2 Methods  

3.2.1 Rheological measurements 

The rheological measurements of the sample were carried out at room temperature by two stress 

controlled rotational rheometer. An MCR 301 rheometer (Anton Paar Instruments). A cone-

plate 1°/75 mm geometry was used loading 2,5 ml of solution. The second stress-controlled 

rheometer is a Bohlin Instruments CVO 120, with cone-plate geometry, D=60mm, 4°. Both 

continuous and oscillatory flow tests were performed. 

3.2.2 Microchannel flow 

The analysis of the fluid dynamics od droplets under capillary flow was performed by using an 

experimental apparatus made up of silica micro-capillaries with a circular section. Those were 

bought by Polymicro Technologies. In particular, the experiments were run by using micro-

capillaries with an inner diameter Dc equals to 100 μm respectively. A syringe pump (Harvard 

11 Plus) was used in order to inject the HLAS solution in the micro-capillaries. The syringe 

pump and the micro-capillaries were connected by suitable connections. Images of emulsion 

flowing inside the micro-capillaries were acquired by a high speed video camera (Phantom 640) 

and analysed later. During all the experiments, observations were performed in bright field and 

confocal microscopy, using 63x optics. Finally the whole apparatus is placed on a vibration-

isolated table as shown in Figure 24. 

 

Fig. 24. Experimental apparatus used for the capillary flow. 

3.2.3 Confocal microscopy 

An investigation of the emulsion morphology was performed by the Laser Scanning Confocal 

Microscopy (LSCM) technique. A fluorescent marker, Rhodamine B , 1 g/ml, was added to 

emulsion to make the hydrophilic part fluorescent. Another fluorescent marker, Nile Red 1 

g/ml, was added to highlight the hydrophobic part of the solution. A 3D reconstruction of the 
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emulsion using a commercial software of image analysis software package (Image Pro Plus 7 ) 

has also been done. The confocal microscope was a Zeiss LSM 5 PASCAL. It is made by the 

transmitted light microscope Axiovert 200 M equipped with a high resolution digital camera 

AxioCam and a high magnification optics (63x) were used. The module of the laser comprises a 

first Ar laser emitting at three different wavelengths (458,488, 514 nm) and a second HeNe laser 

emitting at a wavelength of 543 nm. The scanning module comprises a confocal pinhole with a 

variable diameter and a channel equipped with high sensitivity PhotoMultiplier Tubes (PMT) 

for the detection of the signal. There is also an additional channel for detecting the transmitted 

light. 

 

3.2.4 Continuous flow reactor 

The components of Buchwald–Hartwig arylamination considered in this work consist in an aryl 

bromide coupled with a secondary amine in toluene using a palladium-based pre-catalyst and a 

metal alkoxide as base to form an arylamine. The aryl bromide ((R)-8-Bromo-5-methyl-1,2,3,4-

tetrahydronaphthalen-2-ylamine)-(S)-1-(phenylethyl)amine) (1) has been obtained by mixing 

(R)-8-Bromo-5-methyl-1,2,3,4-tetrahydronaphthalen-2-yl)-(S)-1-(phenylethyl)amine 

Hydrochloride (2) (20 g, 52.6 mmol)with H2O (32 mL, 1.6 mL/g)and 50% NaOH (aq) (12 mL, 

152.5 mmol) in a round-bottomed flask fitted with a reflux condenser and a magnetic stirrer. 

Toluene (100 mL, 5 mL/g) was added, and the resulting mixture has been heated to 60 °C and 

stirred. At first, the mixture appears to be very heterogeneous. Once the material has been 

dissolved, the mixture has been cooled to room temperature and the stirring has been stopped. 

At this point two liquid layers are present. By pouring them into a separating funnel it has been 

possible to remove the bottom aqueous layer. The top layer (organic) has been distilled under 

vacuum by using rotary evaporator in order to remove toluene and any water remaining. The 

latter process provided (1) as a crystalline solid. The palladium-based pre-catalyst 

[Pd(IPr)(cin)Cl] (3) has been prepared according to a procedure reported in a previous paper 

[352]. Potassium tert-amylate(KOtAm) was received as a solution 1.7 M in toluene (Aldrich) 

and used as base, the amine, i.e., 1-methylpiperazine (Aldrich, 99%), 4,4’- di-tert-butylbiphenyl 

(Aldrich, 99%) and toluene (Aldrich, anhydrous, 99.8%) have been used as purchased.  

1 L of the effluent is injected in splitless mode in a Shimadzu GC-FID 2010 GC, equipped 

with a non-polar capillary column (BPX5 10 m, i.d. 0.1 mm 0.1 lm film thickness from SGE) 

and He as gas carrier. The linear velocity is 50 cm/s, and the injector and FID detector 

temperature is set to 320 °C and 360 °C, respectively. 
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4 Results and Discussions 

4.1 Phase Inversion Emulsification 

 

By phase inversion composition methodology, long term stable nanoemulsions characterized by 

very low average diameter, i.e. 170 nm, and narrow droplet size distribution has been obtained. 

At such so small size, it has been possible to observe droplets Brownian motion. 

 

 

Fig. 27: optical image of the finished emulsion and correspondent droplet size distribution,  water weight fraction is 

76%. 

   

According to the aforementioned method, emulsion have been produced by adding water 

dropwise to the solution of oil and surfactants, in this way an initial w/o emulsion  has been 

formed.  

In order to obtain emulsion as much as possible stable, three main parameters have been varied, 

i.e., surfactant ratio (mass ratio between the two surfactants), oil to water ratio ( mass ratio 

between oil and water), surfactant to oil ratio (mass ratio between surfactants and oil). Most 

stable emulsion have been found for surfactant ratio equal to 1, oil to water equal to 0.24, and 

surfactant to oil ratio equal to 0.33. 

 Compounds used for emulsion phase inversion test are Newtonian, as outlined by rheometry 

tests (see fig. 28): 
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Fig. 28: Flow curves of the mineral oil, and the non-ionic surfactants.  

 

The emulsion preparation starts with a solution 75%wt minearl oil, 12,5 % wt Span 20, 

12,5%wt Tween 80. The mixture oil plus surfactants is Newtonian and remains Newtonian till 

the amount of water added reaches the 10%wt of the overall solution. 

Fig 29: On the left, flow curve of the initial mixture, i.e., oil plus surfactants. On the right, flow curve of the sample 

with 5%wt of water added. It is evident the Newtonian behavior of both. 
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At 10%wt of water added non-newtonian behavior starts to be exhibited (see fig. 30), By adding 

a fluorescent dye into the aqueous phase (Pommella et al., 2012) (thus, the aqueous phase is red 

colored and the oil phase is dark), confocal light scanning microscopy was useful to follow 

emulsion morphology evolution induced by a linear and continuous increase in water 

concentration. 

                 

Fig. 30: on the left: static image of the emulsion at rest when water added is at 10%wt, population of isolated 

droplets. On the right, evidence of non-Newtonian behavior of the sample. 

 

Despite the gradual alimentation of water, a sudden change in morphology, often named 

"catastrophic" event, was observed around the 20 wt% of water concentration, thus showing a 

bicontinuous morphology structure. Proceeding with the water feeding, the bicontinuous 

structure disappeared quite fast, leading to the formation of an o/w emulsion. Therefore, around 

to the 20 wt% of water concentration, phase inversion has been reached. Rheometry test at the 

phase inversion point showed a non-Newtonian behavior (see the shear thinning in the flow 

curve, fig. 31) and the visco-elastic behavior of the sample due to the interconnected structures 

typical of bicontinuous structures, well outlined by parallelism of linear viscoelasticity 

parameters, G’ (elastic modulus) and G’’ (viscous modulus) with G’ > G’’ in the frequency 

sweep test without preshear, with the same considerations in the test with pre-shear but with 

G’’>G’ (see fig. 32). 
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Fig. 31: On the top left: flow curve of the sample at 20% wt of water. Shear thinning behavior. On the top right, 

confocal miscopy image, emulsion at rest,  population of crowded, overlapped droplets. On the bottom, polarized 

optical image of the emulsion at rest showing birefringence pattern typical of a liquid crystalline phase.  

 

By using a glass cylindrical microchannel having 100 micron of internal diameter, it has been 

possible to obtain an optical sectioning of the emulsion at 20%wt flowing (soon after stopped 

emulsion flow within it), thus unraveling tiny details of the microstructure. An interconnected 

bicontinuous structure is evident (fig. 31 bis). 
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a) 

 

b)  

Fig. 31 bis: a) optical sectioning by laser scanning confocal microscopy of the emulsion at 20% of water added. On 

the left, an optical slice nearby the bottom of the microchannel. On the right, an optical slice nearby the maximum 

cord legth, i.e., the diameter. b) a 3D reconstruction obtained by z-stack image acquisition. 

 

 

The sample at 20% of water added has particular rheological behavior. We remind that here the 

composition is as follows: 20% water, 10% Span 20, 10% Tween 80, 60% mineral oil. Here, the 

effect of a strong flow, that has been simulated by applying a preshear before the oscillatory 

measurement, is to induce G’’>G’ (the opposite with respect to the case without preshear, see 

figure 32). Hence, a more viscous system has been obtained. Nevertheless, if one take a look to 

the normal stresses, the first normal stress difference N1 appears to be highly positive as outlined 

by the Weissenberg effect, (being the first normal stress difference the difference between Txx 

and Tyy respectively the first and the central component of the stress tensor). In the latter, 

microfluidics has been a unique tool to demonstrate the origin of such rheological behavior. As 

we can see in the figure 33, where we fed a rectangular glass microchannel with the fluid, the 

evident effect of flow is to disaggregate the clusters of droplets, shrink droplet size and align the 

so-obtained small droplets. An alignment of such structure corresponds to a an increase in the 

first normal stress difference[353]. 
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Fig 32: Frequency sweep of the sample with 20%wt of water. With a preliminary preshear of 500 s-1 for 30 s and 

without preshear. 

 

 

 

 

                          

     

Fig 33: On the top left, an image of the beaker where the sample at 20%wt water is produced. Note viscoelastic 

effect, i.e, Weissenberg effect. On the top right we plotted first normal stress difference, N1,  of the sample vs shear 

rate. Every point has been acquired after 30 s about to get a steady state value. On the bottom, flow startup of the 

sample at 20% water added. The mechanism of droplet shrinkage and alignment is outlined thanks to a rectangular 

microfluidic channel (50 micron x 1 mm) under the field of view of confocal microscope. 
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At 50%wt of added water, emulsion is inverted and much more dispersed than the initial one. 

Here rheological behavior is slightly shear thinning (see fig. 34). 

 

 Fig 34: emulsion at 50% of water added. Shear thinning in the final part of the flow curve. 

 

The small-sized droplet-like morphology of such sample could be seen in fig.35. 

 

Fig. 35: confocal image, water weight fraction is 50%. 

 

Then, water has been fed until to the final water concentration. By a zoom of the confocal image 

at 76%wt of water it has been possible to visualize the presence of droplets in droplets (fig. 37). 

Maybe, the intermediate bicontinuous structure could favor trapping of one phase into the other, 

leading to the formation of droplet in droplet inclusion. The obtained nanoemulsion has a 

composition: 75% water, 3% Span 20, 3% Tween 80, 19% mineral oil. 
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Figure 36: confocal image when water weight fraction is 76%. 

 

 

Fig. 37: confocal image, water weight fraction is 76%, zoom of the Figure 7. Note multiple emulsions 

 

The rheological behavior of the final emulsion is clearly Newtonian (see fig. 38). 

 

Fig 38: A Newtonian behavior is showed by the final nanoemulsion produced, where the water is 76%wt.  

 

Resuming emulsification pathway in a nutshell, there is an initial increase in viscosity of the 

sample, till a maximum close to the phase inversion point, followed by a monotonic decrease till 

the final composition. The overall viscosity behavior is depicted in fig. 39: 
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Fig. 39: Viscosity behavior during the emulsification pathway. The peak correspond to the viscoelastic solution at 

20% of water. 

 

 

4.2 Droplet Interfacial rheology 

4.2.1 Microfluidic method 

As soon droplet comes out from smallest microchannel section going then into the divergent 

and larger section (the microchannel has been shown  in the methods section), droplet shape is 

first deformed then recovers the spherical shape. By image analysis of the transient droplet 

retraction process, it has been possible to experimentally measure the deformation parameter, 
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droplet position, droplet velocity. Fluids properties such as viscosities are known. Hence, the 

model described in theoretical background chapter could be exploited to perform the droplet 

interfacial tension measurement. Once data are collected, the first hand member of eq. 34:  

 

αc (
5

2 + 3
̇ − u

D

x
) = σ

D

a0
 

can be reported on the y axis of a cartesian diagram where the term D/a0 can be reported on the x 

axis. Thus, the slope of the obtained curve is equal to the interfacial tension. The experimental 

values of  D vs x, and ̇ vs x, are fitted with a third order polynomial. In this way, the so-

obtained  polynomial function could be used directly in eq. 34. In addition, to get rid of an 

additional contribution  to droplet deformation due to confinement, our D experimental data 

have been reduced by a value provided in a manuscript of Mulligan and Rothstein (as described 

in the method section), where the confined droplet superior deformation with respect to 

unconfined droplet case has been reported. According to the Hudson model,  if we plot the first 

hand member of equation 34 against D/ao a line could be obtained being the slope of this line 

the droplet interfacial tension. Our results, showed a curve that could be fitted by two different 

lines with a different slope and we considered the detected interfacial tension as the average 

between the slope of the two fitting lines. 

 

Fig. 40: Interfacial tension water in silicon oil 20 cSt. 

 

 In the case of the pure interface droplet (i.e., water in silicon oil, figure 40) , we obtained an 

interfacial tension value comparable with the one obtained from the literature, i.e., 23 mN/m 

measured vs 20 mN/m from the literature. In the case of droplet with an interface rich of 

surfactant (soybean oil in water +1% wt of Brij58), figure 41, we obtained a value much lower 

than the one reported in the literature thus we decided to further investigate the system by 

pendant drop and capillary pressure tensiometry, an argument that will be discussed in the next 

chapter. 
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Fig. 41: Interfacial tension for soybean oil droplet in water+Brij58. 

4.2.2 Pendant Drop 

Pendant drop measurements and capillary pressure interfacial rheology have been performed at 

Max-Planck Institute für Kolloid- und Grenzflächenforschung, Potsdam, Germany under the 

supervision of  Dr. Reinhard Miller.  

We will initially show how dynamic interfacial tension of an oil droplet immersed in low 

concentrated water + Brij58 solution appears: 

 

 

Fig. 42: interfacial tension vs time at 9*10-7 M of Brij58 in water. 

 

Figure 42 shows the protocol used to study the adsorption process of adsorbed Brij58. 
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 Fig. 43: Adsorption dynamics for 10-9 M Brij58 in water (red line), 9*10-7 M (black line), 4.5*10-3 M (cyan line). 

 

Figure 43 shows the adsorption dynamic for different concentrations of Brij58  at the soybean 

oil-water interface. It is interesting to note that at 9*10
-3

 M the equilibrium interfacial tension, 

6,5 mN/m, is reached within a few seconds. Moreover, at 4,5*10
-3

 M, the static interfacial 

tension is already 6,5 mN/m, thus probing that further addition of surfactant beyond a certain  

value does not affect static interfacial tension. The constant value at the lowest studied 

surfactant concentration probed the high purity of the studied soybean oil. 

 

Fig. 44: interfacial tension adsorption isotherm for Brij58. 

 

Fig. 44 shows interfacial tension adsorption isotherm for Brij58 at the interface soybean oil 

water. Critical micellar concentration is around 10
-6

 M. 
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 Fig. 45: Dilational interfacial elasticity vs Brij58 concentration at 0,1 Hz. 

 

In Fig. 45 it is shown the droplet interface dilational elasticity vs Brij58 concentration, with a 

maximum between 10
-6

 M and 10
-5

 M. The dilational interface elasticity is zero at low 

surfactant concentration and zero at high surfactant concentration for two different reasons. At 

low concentration, surfactant is not enough to give elasticity to the interface. At the higher one, 

surfactant at the interface is too much to be diluted by expansion/compression at low 

frequencies typical of the pendant drop apparatus. Thus, surfactant interface packing is very 

tough and difficult to be displaced. This is a well-known phenomenon for CmEOn surfactants 

[237]. Pendant drop apparatus, where the maximum allowable frequency of deformation is more 

or less 1 Hz, are able to study interfacial rheology of emulsion with low concentration of 

surfactants. 

By a preliminary study with capillary pressure tensiometer  (CPT), which represent an evolution 

of the pendant drop system, it has been possible to test the interfacial elasticity of the droplet 

having 1% of surfactant concentration in the bulk phase. Such technique is capable to reach 100 

Hz of oscillation and by properly getting rid of hydrodynamic effect one can come up with the 

interface elasticity of highly concentrated interface. Its description has been widely reported in 

the literature [354, 355]. In the next figure 46 is shown the value of the dilational interface 

elasticity E has obtained by CPT: 
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Fig. 46: Oil droplet dilational interface elasticity at high frequency, CPT measurement. Brij58 concentration in the 

water phase equal to 1% wt. 

 

It is evident from such high dilational interface elasticity that key-role in droplet deformation is 

no more played only by interfacial tension but also by the aforementioned parameter and a 

microfluidic method based on the idea that droplet retraction is governed by interfacial tension 

solely it will obviously fail in the characterization of such dynamic. 

4.3 Microreactor for cross-coupling reactive flows 

In this work, the following reaction will be conducted [356, 357]:  

 

Scheme 1: left: amination reaction; right: palladium-based pre-catalyst. 

 

A four-feed microreactor has been developed using our two-feed reactor, disclosed previously, 

as a benchmark to compare four-feed vs two-feed performance and to optimize overall reaction 

performance. In Figure 47, a brief graphical description of the two feed-configuration is 

provided. The details of the two-feed configuration has been reported in a previous paper 

dealing with a similar reaction[202].  
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Figure 47: Scheme of the 2-feed continuous flow microreactor[202]. 

 

In such a configuration, a mixture of aryl bromide (1), amine (N-methylpiperazine), and base 

(potassium tert-amylate) is dissolved in toluene in the presence of an internal standard  (4,4’- di-

tert-butylbiphenyl) and fed in by syringe pump (Harvard Pump 11 Plus Dual). A solution of the 

catalyst (3) in toluene is loaded in a second syringe, placed on the same syringe pump, in order 

to impose the same flow rate. Both solutions were prepared inside a glove-box under inert 

atmosphere in the concentrations reported in Table I. The two syringes are connected to the 

stainless steel tubular reactor (inner diameter 2 mm, length 70 cm) by a stainless steel T-

junction (inner diameter 1 mm), also used to ensure a suitable mixing of the two solutions. The 

concentrations reached in the tubular reactor are reported in Table I. In particular, a 1mol% 

(mmol of catalyst/mmol of Aryl bromide), corresponding to a molarity of 9.6 *10
-4

 (mmol of 

catalyst/ml of solution) of (3) (relative to aryl bromide 1) has been investigated, with 0.1 M of 

aryl bromide, 1.1 molar ratio of amine/aryl bromide and 1.05 molar ratio of base/aryl bromide. 

The microreactor and the T-junction are heated in a thermostatic bath at 50 °C, while both the 

syringes containing substrates and catalyst are kept at room temperature.  

 

Table I: Molecular weights and concentrations in the syringes and in the reactor for the 2-feed configuration. 

 

In the case of the four-feed microreactor, the catalyst, reagents, base and additional solvent have 

been separated into four different streams. The way in which the four streamlines are mixed has 
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been varied and its effect on conversion will be reported and discussed below. The typical 

concentrations for each stream are reported In Table II for the 4-inlet case. 

 

Table II: Molecular weights and concentrations in the syringes and in the reactor for the 4-feed configuration. 

 

In order to make the two-feed tubular reactor more flexible in terms of variation of the 

component feed, allowing alteration of concentration or delayed feed of some components, a 

previously developed 2-feed continuous flow tubular microreactor[202] has been modified to 

incorporate four separate feeds. Such multi-feeding allows the independent control of all reagent 

streams. A variety of 4-inlet configurations have been investigated, as shown in Figure 48. Four 

syringes are placed two by two on two syringe pumps and are connected to the tubular reactor 

by using different junctions: i) a series of a T-junction and a cross-junction (both stainless steel, 

configuration 1); ii) two T-junctions feeding a third one connected to the reactor (configuration 

2); a 4-inlets/1-outlet junction (stainless steel) in series with a porous membrane (porous size 20 

m), to facilitate mixing (configuration 3). The compounds fed in each syringe, together with 

the concentration are reported in Table II, where the final concentrations in the tubular reactor 

are reported. The reagents are injected into the microreactor with four syringes placed on two 

syringe pumps. In particular, the flow rate has been varied from 1.1 ml/h to 70 ml/h, in order to 

have different residence times and, consequently, different conversion degree. The microreactor 

and the T-junction are heated in a thermostatic bath at 50 °C, (not reported in the sketches for 
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the sake of brevity) while both the syringes containing substrates and catalyst are kept at room 

temperature.  

 

 

 

 

Figure 48:Schematics of different configuration used to increase the flexibility of the flow reactor. 

 

In Figure 49, the conversion profile as a function of the fluid residence time within the reactor 

has been analyzed by gas chromatography for each four-feed configuration  and compared with 

the two-feed reactor, for a given temperature (50° C) and 1 % mol of (3). The percentage 

conversion is referred to the aryl bromide, that is the limiting reactant, and it is calculated as 

[(molArBr
IN

 – molArBr
OUT

)/ molArBr
IN

]*100, where molArBr
IN

 is the amount of ArBr before the 

reaction and molArBr
OUT

 is the amount of ArBr after the reaction[358]. In order to highlight the 

occurring of blocking in the different setups, short residence times are reported. The overall 

conversion profile is reported for the case of the reaction run in the two-feed reactor, where the 

reaction reaches completion in 40 minutes, conversion being expressed in terms of percentage 

of aryl bromide converted. From the conversion obtained by using the four-feed reactor 
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arranged as in configuration 1 it is evident that the first data are available at ten minutes, as 

blocking of the reactor occurs at shorter residence time. A similar event happens for 

configuration 2 and 3. Thus, while in the two-feed configuration the reactor works without any 

blocking problems, the use of a four-feed configuration results in the blocking of the reactor at 

high flow rates (or, in other words, low residence time i.e., less than 10 minutes). This 

phenomenon could be attributed to a combination of two factors: the higher concentration of the 

catalyst as compared to the two-feed system, and the less efficient mixing, leading to 

incomplete solubilization of the solid compounds. Moreover, potassium bromide is a by-product 

of the reaction and its formation, even for low degree of conversion of the reagents, could also 

play a role in microreactor blocking. It should be noted that even when the reaction runs without 

any blocking (i.e. time higher than 10 minutes for conf. 1 and 3 and time higher than 15 minutes 

for conf. 2), the conversion is lower than is obtained in the two-feed system. In the table 

contained in Figure 49 the operating conditions and conversion for the four-feed configurations 

are reported. 

 

Figure 49: Conversion degree as a function of time for the four-feed configurations showed in Figure 2 in 

comparison with the two-feed system at short residence time. The overall conversion of the reaction run in the two-

feed reactor is reported in the inset. In the table, black arrows indicate that the conversion degree is lower (one arrow) 

and much lower (two arrows) compared with the two-feed reactor system 

 

Thus, it was necessary to modify the way in which the microreactor feeding streams are 

connected in order to obtain a more efficient performance in terms of mixing (and hence of 

conversion), employing a revised four-feed system (configuration 4), which is shown in Figure 

50. In this case, the mixing is performed in a stainless steel 2 mm i.d. junction, with four inlets 
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and one outlet, the reaction taking place in the stainless steel tubular microreactor. As 

previously described, the microreactor and the junction are heated in a thermostatic bath (three 

different temperatures, 50°C, 60°C and 70°C have been investigated), while the four syringes 

containing substrates, catalyst, base and solvent are at room temperature.  

 

Figure 50: Scheme of the four-feed continuous flow microreactor developed and optimized in this work. 

 

This configuration proved to be the most suitable one, returning performances equal to the 

simplest two-feed system, as shown in Figure 51, where the conversion as a function of 

residence time at 50 °C at the same final concentration (1 % mol catalyst, 0.1 M of (1)). The 

two sets of data show an identical reactivity in the two configurations. Indeed, the completion of 

the reaction has been observed with a time of 45 minutes at a catalyst concentration of 1mol%. 

Error bars represent the standard deviation of the measurements, which is mainly due to 

possible errors occurring during the weighing process of the reagents. The presence of potential 

by-products is precluded by the absence of any significant peaks with the exception of the given 

reagents and the expected product in the chromatograms. Reagent adsorption to the 

microreactor walls is negligible, as tested by conducting reactions involving the reagent mixture 

in the absence of the catalyst, and noting the constant concentrations. One of the differences 

between the two main configurations (i.e two and four feed) is the dilution of the reagents in the 

syringes. In order to retain the same overall concentration within the tubular reactor, the 

concentrations in the individual four-feed streams are higher with respect to the two-feed case. 

It is possible that the higher reagent concentrations within the syringes can lead to clogging of 

the microreactor at high flow rates where the retention time in the junction is lower than the 

characteristic time for diffusion. Configuration 3 gave the worst performance with respect to 

reactor blocking at high flow rates, despite being identical to configuration4 apart from the 

presence of a porous membrane. In configuration 3, the use of the porous membrane, exploited 

to promote efficient mixing, failed for this purpose, because of the very small (i.e., 20 m) pore 

size in the membrane. In addition to this, such mixing worsens at high flow rates as this 
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hampers conversion, as reported in Figure 51, in which it is clear that the lower residence time 

results in a lower conversion degree. 

 

Figure 51: Comparison between 2-feed and 4-feed (configuration 4) reactor operating at 50°C with 0.1 mol% of pre-

catalyst 

 

Once the best microreactor streamlines configuration was identified, the reactor operating 

conditions were optimized. First, the effect of catalyst concentration on reaction rate was 

investigated. In Figure 52,the conversion profiles are shown for several pre-catalyst 

concentrations in the microreactor. It can be seen that increasing the catalyst loading allows 

better performance. In fact, at the highest catalyst loading (1-0.5 mol%), the reaction is almost 

complete (98%) after 60 min and 120 min respectively, while for lower catalyst concentration 

(0.25 mol%), complete conversion is never reached. Decreasing the catalyst concentration 

shows a dual advantage: first, the use of the microreactor allows the achievement of a sufficient 

level of reactivity by using a small amount of catalyst; second, the reduction in the amount of 

precious metal catalyst reduces the overall cost. It is worth noting that a reduction of expensive 

reagents is an important foundation of the sustainable chemistry approach. Thus, it is possible to 

run the reaction with half the amount of catalyst without having a detrimental effect on the 

process performance in terms of conversion and avoiding the blocking phenomenon. However, 

slightly longer residence times are required.  
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Figure 52: Conversion profiles for different catalyst loading at 50 °C with a concentration in the reactor of 0.1 M of 

Aryl bromide (toluene 32.6 mL). The continuous lines represents the full conversion. 

 

 

Reaction rate is affected by aryl bromide concentration as well. We investigated four different 

concentrations in the range 0.01 – 0.1 M, the concentration of catalyst being constant at 9.6*10
-

4
M (mmol of catalyst/mL of solution). The conversion of aryl bromide (1) as a function of the 

residence time is reported in Figure 53, highlighting that a decreasing concentration of (1) 

increases the reaction rate leading to a complete conversion in five minutes with 0.01 M of aryl 

bromide. 

 

Figure 53: Conversion for different Aryl bromide concentration at 50 °C with a concentration in the reactor of 

9.6*10-4 M of catalyst. The continuous lines represents the complete conversion. 

 

Since the concentration of catalyst is kept constant, it is changing relative to the amount of ArBr 

(i.e. if at 0.1 M the concentration of catalyst is 1 mol% relative to ArBr, then at 0.01 M of ArBr, 

the same amount of catalyst is now 10 mol %). This could explain why a faster reaction rate at 

lower ArBr concentrations is found.  
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A typical approach for the reduction of reaction time is to perform reactions at higher 

temperatures. In the four-feed microreactor, full conversion is achieved in 10 minutes at 70 °C, 

whereas 1 hour is needed at 50 °C (Figure 54a). Because of the higher solubility of the solid 

compounds, a higher reaction temperature also prevents reactor blocking (also known as 

clogging), that is due to solid compounds bridging. Microreactor clogging is an issue often 

encountered when dealing with multiphase flow [202, 359-361]. Increasing the temperature in a 

microreactor and, at the same time, decreasing the catalyst concentration (Figure 54b) represents 

an enormous advantage since it is possible to obtain a very fast reaction (less than 20 minutes) 

with half the amount of catalyst, ensuring very precise controlled temperature, without by-

product formation. This could minimize environmental impact when considering the energy 

contribution in a life-cycle analysis.  

 

Figure 54: Conversion profiles for different temperature concentration in the reactor for 1% (top) and 0.5 % of 

catalyst (bottom). The continuous lines represent the complete conversion. 
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5 Conclusions 

In this work, three multiphase systems related issues such as emulsion phase inversion, droplet 

interfacial properties and microfluidic reactive flows have been investigated by rheological 

(bulk and interfacial), microfluidic and confocal microscopy means.  

Regarding emulsion phase inversion, a detailed experimental campaign have been conducted in 

order to identify the key-parameters acting on emulsion properties, confocal microscopy and 

microfluidics have been exploited as an optical sectioning tool to highlight the finest 

morphological detail of the emulsion; eventually rheological measurements were used to relate 

macroscopical properties to the microscopical features of the emulsion. Droplet interfacial 

properties have been measured by microfluidic means and compared with well-established 

techniques such as pendant drop tensiometry. Eventually,  a four-feed microreactor has been 

developed in order to synthesize an arylamine by coupling a secondary amine with an 

arylbromide via Buchwald-Hartwig reaction.  

 

During emulsion phase inversion, the emulsion morphology has been characterized in detail by 

direct observation in confocal microscopy. Long term stable emulsions with great energy saving 

have been obtained. Higher emulsions stability is associated with both small droplet size and 

low polydispersity of the droplet size distribution. Confocal microscopy can be exploited to 

follow the time evolution of the phase inversion process. Confocal imaging clearly shows 

bicontinuous structure formation in emulsification, that signs the two phases point of inversion. 

Furthermore, this bicontinuous one, could trap one of the two phase into the other, thus creating 

inclusion of droplets in droplets. Rheological test showed an increased viscoelastic behavior in 

the proximity of the inversion, with different behavior showed between the in-flow emulsion 

and the static one, in which elastic modulus is overwhelming the viscous one in static condition, 

whereas is the opposite for the in-flow measurement  (that could simulated by imposing a pre-

shear to the sample). Fine glass cylindrical microchannel having 100 micron of internal 

diameter, coupling with laser scanning confocal microscopy gave the opportunity to investigate 

tiniest detail of multiphase system morphology. 

In the second part, a method to measure interfacial tension in microfluidic divergent flow of 

emulsion was shown. Lowering of the interfacial tension due to droplet confinement has been 

noted and taken into account by scaling droplet deformation parameter. Results are comparable 

with literature data only in the case of pure droplet interface, while in the case of interface 

covered or partially covered with surfactants, microfluidic technique is not able as pendant drop 

to evaluate properly interfacial tension, maybe due to the effects of interfacial Marangoni flow 

and wetting effect in confined droplet flow as well as the effect of droplet interface elasticity 

that are not taken into account in the microfluidic model. 
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Eventually we developed a microreactor for arylamine synthesis. The use of a continuous flow 

tubular microreactor provides minimization of potential hazards, due to the small internal 

volume of the reactor, and allows safe operation at high process temperatures. These features 

are recognized as fundamental in sustainable flow chemistry. In this work, a home-made 

continuous flow microreactor has been optimized for the Buchwald–Hartwig aryl amination, 

using a homogeneous well-defined palladium NHC complex. The aryl bromide exploited is a 

key intermediate in pharmaceutical process and the optimization of the operating conditions 

along with the microfluidic synthesis of the related arylamine is reported for the first time in this 

work. Pommella et al.[202] demonstrated the significant performance of a microreactor 

compared to a batch process in the synthesis of a related molecule. Thus, to the best of our 

knowledge, we have reported for the first time a flow synthesis of an important pharmaceutical 

intermediate with an optimized process configuration in which independent streams allow for 

perfect process handling and control of the chemical synthesis. 

A comparison between a classical two-feed reactor and a novel, more flexible four-feed flow 

system has been provided, as well as an optimization of the operating parameters. The 

investigation of the effect of catalyst concentration on the degree of conversion has shown that 

it is possible to reach full conversion even with low catalyst loadings, thus making the process 

of particular interest in terms of cost, both for the low quantity of catalyst required and the 

reduced energy burden of the microfluidic approach. An increase of the reaction temperature, 

together with the decrease of catalyst concentration, allows high levels of reactivity at precisely 

controlled temperatures, due to optimal heat transfer provided by the microreactor as a result of 

the smaller surface to volume ratio with respect to batch and flow macroreactor. Moreover, a 

slight increase in reaction temperature gave full conversion in very short residence times, thus 

permitting a minimized environmental impact in terms of energy contribution in life-cycle 

analysis. 

In addition, we provided a complete methodology to optimize cross-coupling reaction by using 

a home-made continuous flow microreactor. The choice of such a microfluidic approach meets 

requirements of green chemistry, in terms of productivity, process handling, economics savings 

and operations safety.  
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