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Part I: Introduction 

 

Chapter I: Gram negative cell envelop; structure and functions of polysaccharide 

components of the outer membrane 

 

1.1 Bacterial cell wall structure 

 

All living organisms are classified into three macro-groups namely Archea, Bacteria 

and Eukaryotes. Archea and Bacteria are also classified as Prokaryotes, which differ 

from Eukaryotes for the lack of nucleus
1
. Typically, Archea group includes all 

microorganisms that live in habit conditions that are unusual for the other 

microorganisms, such as critical pH values, high salinity or pressure. Bacteria are a 

group of microorganisms that are divided into two subclasses, Gram-negative and 

Gram-positive, depending on the different behaviour to colorimetric Gram test. This 

different response to Gram test is directly related to a different organization of the cell 

wall structure between the two microorganisms. Gram-positive bacteria cell walls are 

made up of a bilayed phospholipidic membrane surrounded by a thick layer of 

peptidoglycan (PGN). On the other hand Gram-negative bacteria produce a thin layer 

of peptidoglycan followed by an additional asymmetric phospholipidic belayed 

membrane, the outer membrane (OM). The inner surface of this membrane is 

constituted by glycerophospholipids while the external part is composed of trans-

membrane proteins and, for 75%, by lipopolysaccharides (LPSs)
2
 (figure 1.1). 

Bacteria can also produce a third glycopolymer, the capsule polysaccharide (CPS), an 

high molecular weight polymer constituted by an oligosaccharide repeating unit, 

which presents different sugars joined together by specific linkages.  

Surrounding the external surface of cell membrane PGN, LPSs and CPSs are strongly 

involved in different mechanisms, like adhesion, colonization and infection of host 
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organisms, thus the knowledge of oligosaccharidic moiety is fundamental to 

understand bacterial infection mechanism. 

 

 

Figure 1.1: Structural differences between Gram positive (A) and Gram negative (B) cell envelope. 

 

1.2 Lipopolysaccharide; structure, function and biosynthesis 

 

Lipopolysaccharides are amphiphilic molecules, marker for Gram-negative 

microorganisms, and essential for bacterial survival. Structurally LPS can be divided 

in three regions, each of which has a different biological property: an external 

polysaccharide (O-chain), which is covalently linked to an oligosaccharide part 

(core), in turn, linked to a glycolipid portion (Lipid A). The O-chain polysaccharides, 

when present, are usually characterized by regular polysaccharide with repeating units 

consisting up to eight monosaccharides. Core region is composed by one to three 

residues of 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo) a distinctive acid 

monosaccharide for all bacterial Core oligosaccharide, and heptose and hexose. Lipid-

A is the highest conserved moiety in LPSs, produced by different species belonging to 
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the same bacterial genus. It is composed by a disaccharide backbone of glucosamine 

phophorylated and acylated with a variable number and type of fatty and hydroxyl-

fatty acid chains
2
 (figure 1.2). 

 

 

Figure 1.2: Gram negative bacteria LOS and LPS structure. 

 

The biosynthesis of LPS is a complex process involving various steps that starts in the 

plasma membrane and finishes with the translocation of LPS to the outer membrane. 

In general, the Core oligosaccharide is assembled on Lipid-A, while O-antigen is 

independently assembled and then linked to Lipid-A-Core oligosaccharide. The lipid-

A biosynthesis has been elucidated for Escherichia coli
4
(figure 1.3). All the steps are 

catalyzed by an enzyme that is present in a single copy in the whole genome. In the 

first step the UDP-GlcNAc acyltransferase (LpxA) promotes the acylation of 

nucleotide UDP-GlcNAc on C-3 of GlcNAc with a 3-hydroxymyristic acid. Different 

enzymes catalyze the tetra acylation of glucosamine disaccharide backbone; at this not 

yet complete Lipid-A two Kdo residues are then added forming Kdo2-IVA. This is 

further acylated to obtain hexa acylated lipid-A. 
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Figure 1.3: Biosynthetic pathway of Kdo2-lipid A in E.coli K12 
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1.3 Lipid-A; structure and biological activity 

 

Lipid A is the most conservative portion of LPS: its structure is conserved, with a few 

variation, among different bacterial strains that belong to the same family. Generally 

its structure is composed of a disaccharide of glucosamine, GlcN, -1,6-linked. The 

reducing glucosamine (GlcN I) is phosphorylated at reducing position, while the non 

reducing (GlcN II) presents a phosphate group at position 4. Both GlcN residues are 

acylated with primary 3-hydroxy fatty acids at positions 2 and 3 and hydroxyl group 

can be further acylated by second acylic chains
5
(figure 1.4).  

 

Figure 1.4: Schematic representation of Lipid A structure 

 

Biologically, Lipid A is the real endotoxin moiety of LPS because it is recognized by 

innate immune system receptors from the pattern recognition receptors (PRRs), as 

pathogen associated molecular pattern (PAMPs). The inflammation mechanism 

(figure 1.5) involves interaction between Lipid A and Toll-like receptors 4 (TLR4); 

this is a complex mechanism that requires several accessory molecules
6,7

. Initially, 

LPS is linked to a serum protein, LBP (lipid binding protein), that forms a complex 

with the Lipid A moiety of LPS, removing it from the outer membrane and therefore 

delivering the LPS to the glycoprotein mCD14. mCD14 mediates interaction of LPS 

with TLR4-MD2 complex (MD2 is a glycoprotein essential for the formation of 
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complex between LPS and TLR4). Interaction of LPS with TLR4 triggers the 

inflammatory cascade, leading to the production of several effectors molecules, such 

as cytokines and interleukins. 

 

 

Figure 1.5: Gram negative infection: LPS recognition 

 

It has been demonstrated that the bioactivity of lipid A is strictly dependent on its 

primary structure: variation in number, distribution of fatty acids or presence of polar 

groups strongly influence the three-dimensional arrangements and biological 

properties of these endotoxins. Lipid A, indeed, may act as agonistic or antagonistic 

molecule. In the latter case, in moderate concentration, it does not cause an 

inflammatory response. A lipid-A with agonistic action, instead, stimulates 

inflammatory response that can induce septic shock and cellular death. The toxicity of 

these molecules is dependent by their capacity of interaction with innate immune 

system receptors. These interactions are correlated, principally, to two structural 

parameters: the molecular shape of endotoxin and the tilt angle between the 

disaccharide backbone and the acyl chains (figure 1.6). The former reflects the three-

dimensional structure assumed by LPS in the lipid bilayer and how it is exposed 

toward the external environment; while the tilt angle reveals the inclination of lipid A 

in respect to membrane surface
8
. These physical parameters reflect the exposure of 
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hydrophobic task to the receptors, thus the endotoxin affinity for the hydrophobic 

binding site of the innate immune receptors. 

 

 
Figure 1.6: The inclination of sugar backbone in  respect to the membrane surface (tilt angle) depends 

on the number and the distribution of acyl chains. 

 

1.4 The Core oligosaccharide and O-specific chain  

 

The core is composed of oligosaccharidic moiety, which include up to fifteen residues, 

directly linked to C-6 of Glc II. It is divided into two regions: the Inner core directly 

linked to Lipid A and the Outer-core that provides an attachment site for the O-chain 

The Inner core is more conservative and presents always a peculiar residue, the Kdo 

which is directly involved in the linking with lipid A; often there are also heptose 

residues functionalized by phosphate, phosphoethanolamine. The Outer core region is 

the most exposed portion, often branched, and is characterized by high structural 

variability with respect to the inner core. It is commonly composed by neutral sugars, 

however it might contain also amino and acid residues. 

In the rough bacteria the core oligosaccharide is the most exposed portion and it is 

recognized by adaptive immune system.  

The O-chain is the polymeric portion of LPS and is produced only in the smooth-type 

bacteria. Its molecular weight can reach up to 60 kDa and the repeating unit contains 
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different kinds of monosaccharides often decorated by non carbohydrate substituent. 

The location of O-chain at the cell surface places it at the interface between the 

bacterium and its environments; variations of the  structure can be used to modulate 

the response of the bacterium to external factors. It has also a protective role by 

preventing phagocytosis up-taking and by masking bacterial virulence factors from 

host recognition. 

 

1.5 Capsular polysaccharides (CPSs) 

 

Bacteria can also produce an additional external polysaccharide. It can be directly 

linked to bacterial cells membrane, capsular polysaccharide (CPS), or does not present 

visible means of attachment to cell membrane, exopolysaccharide (EPS). In contrast 

to O-Chain, CPSs are characterized by differ type of linkage to cell surface and size, 

and tend to form a thick layer which surrounds cell membrane, masking O-chain to 

the immune system receptors. 

Capsular polysaccharides are CPSs, they have a high molecular weight and they are 

generally composed of repeating oligosaccharides in which different sugars are 

connected by specific linkages and sometimes can be functionalized by organic or 

inorganic molecules. This results in multiple serotypes established for many bacterial 

species and implies an enormous variability of serotypes for many bacterial species.  

Capsule Polysaccharides are not ubiquitous structures, but they can be found on the 

cell surface of both Gram-positive and Gram-negative bacteria and they often 

constitute the outermost layer of the cell. The polysaccharide capsule is not essential 

for bacterial to survival, but it performs many important functions. Consequently to its 

location, CPS might mediate direct interactions between the bacterium and its 

immediate environment and might protect the cell from it. In addition, since Capsule 

Polysaccharides are highly hydrated molecules with 95% of water, they can prevent 
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bacterial cell desiccation. One more function of Capsule Polysaccharides is to promote 

the formation of a biofilm that assists the colonization process and the adherence of 

bacteria to several surfaces. Surrounding bacterial cell membrane CPS could be 

directly involved in bacterium-host interactions; in many phytopathogenic bacteria, 

indeed, the expression of CPSs is essential for virulence
9
.  

The polysaccharidic capsule often results immunogenic in humans, representing good 

candidates for the development on new vaccines
10

. In addition, they are not-toxic, 

easy to be isolated and purified with high yield, and have conserved and chemically 

definite structures. To date several vaccines based on the CPS of Neisseria 

meningitidis, Streptococcus pneumoniae and Haemophilus influenzae type b have 

been developed
11

. However, the immune response generated by CPS is T-independent 

(TI) with no immunologic memory and produces an inadequate response in infants, 

which are the most vulnerable to bacterial infections. To overcome this limitation a 

new class of glycoconjugate vaccines were developed, in which capsular 

polysaccharide is linked to a protein carrier generating a T-dependent (TD) response 
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Chapter II: Preparation of liposomes using oligosaccharides from Rhizobiaceae 

family 

 

Introduction 

 

This topic is developed in collaboration with Prof. L. Paduano’s team. The aim of this 

project is to use oligosaccharides from bacteria to functionalize Ru(III)-liposome, in 

order to increase their life-time in the body and to promote, eventually, a target 

specific delivery.  

Ruthenium complexes have attracted much interest as a promising alternative to 

platinum, showing a remarkable antitumor and antimetastatic activity (some of these 

complexes are in II clinical trial)
 1

.  

In this context, liposomes and nanoparticles containing Ru(III) complexes appear 

perfect candidate for the drug delivery and theranostic for the following different 

reasons
2
: 

1) Transport larger amounts of metal inside the blood stream;  

 

2) They are “stealth” to the human immune system, specifically increasing the 

complex permanence time in the blood; 

 

3) Are selective toward cancer cells recognized by protein receptors specifically 

over-expressed by cancer tissues. 

It is known that when these aggregates are decorated with amphiphilic molecules, they 

show both enhanced biocompatibility and half-time life in blood stream
3
.  

This project is introduced on the basis of this context: functionalize Ru-based 

liposomes with an amphiphilic molecule produced by bacteria that belongs to 

Rhizobiaceae family. This class of bacteria produces LPS without inflammatory 
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activity on human cells. In particular, lipooligosaccharide by Rhizobium rubi
T
 was 

selected because this bacterium produces a LOS, which displays on the outer core the 

human Lewis B domain
4
. In this context, a partially delipidated derivative was used 

and liposomes with up to 40% of LOS were obtained and analyzed: Cryo-TEM and 

DLS analyses showed that they present a ”monomodal hydrodynamic rays (RH)“ 

distribution and a classical spherical structure. 

Future in vivo experiments will disclose the perception of these aggregates to prove if 

the occurrence of the Lewis B epitope enhances the compatibility of these particles, as 

surmised
5
. Preliminary biological tests show that these aggregates decorated with 

LOSs from Rhizobium rubi
T
 show similar toxicity of POPC-Ru(III)-complex. 

Ru(III)-liposomes with different percentage of LOS were formulated following lipid 

film method. These aggregates were composed by three different components: 

 

1. Ru(III) complex: ToThyRu  

2. POPC (1-palmitoyl-2-oleylphophosphatidylcholine) 

3. Partially delipidated LOS from Rhizobium rubi
T
 

 

ToThyRu [(3-(4-pyridylmethyl)-3′-O-oleyl-5′-O-(benzyloxy)hexaethylene glycol-

acetyl-thymidine-RuCl4DMSO]-Na
+
, figure 2.1) is an amphiphilic-Ru complex that is 

able to form supramolecular aggregates. It is composed by a core of pyrimidine 

deoxyribo-Thymidine. The ribose is functionalized on the secondary hydroxyl groups 

with fatty acids chains to confer amphiphilicity and resistance to these aggregates to 

enzymatic degradation. Finally, nucleobase is linked to a pyridine, which is able to 

chelate the Ru (III) complex
6
. ToThyRu mixed with POPC forms variety of 

supramolecular system such as liposomes and cubic phase. It is well known that when 

these supramolecular aggregates are decorated with amphiphilic molecules, they show 

a more marked biocompatibility and half-time life. It is the role of LOS from 

Rhizobium rubi
T
, a natural amphiphilic molecule, able to self-assemble liposome with 

ToThyRu and POPC
6
.  
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Figure 2.1: Structure of ToThyRu and POCP reagents 

 

2.1 Extraction purification and partially delipidation of LOS produced by Rhizobium 

rubi
T
  

 

Rhizobium rubi
T
 cells were extracted according to PCP and hot water-phenol 

extractions; LOS was recovered in the PCP phase. SDS-PAGE gel shows mobility 

that is typical of a low molecular weight molecule, characteristic of 

lipooligosaccharide species.  

The structure of core oligosaccharide produce by Rhizobium rubi
T
 was already studied 

by Gargiulo et al
4
., and was chosen for the decoration of liposomes because it 

produces an oligosaccharide with a terminal part presenting a tetrasaccharide 

composed by Fuc, Gal and GlcNAc linked in the same way of Lewis B domain (figure 

2.2). 

  

ToThyRu

O

O

O O

P

O

O
O O-

N+

1-palmitoyl-2-oleoylphophosphatidylcholine (POPC)
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Figure 2.2: Structure of LOS produced by Rhizobium rubi
T
; in red is evidenced tetrasaccharide unit 

identical to human Lewis B domain. 

 

In order to verify purity grade of LOS, chemical analyses were done. The figure 2.3 

shows the chromatogram of acetylated methyl glycosides obtained by LOS. As shown 

in the figure, it is possible to identify all monosaccharides reported for these 

molecules
4
. 

 

Figure 2.3: Chromatographic profile of acetylated methyl glycosides obtained by LOS of Rhizobium 

rubi
T 
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Since preliminary preparation of liposome with pure LPS produced a poly modal 

liposome distribution pure LOS was partially delipidated with hydrazine to obtain a 

de-O-LOS (figure 2.4). 

 

 

Figure 2.4: Schematic representation of mechanism of de-O-lipidation of LOS from Rhizobium rubi
T
. 

 

2.2 Preparation of liposomes 

 

Ru-containing samples have been prepared by dissolving a suitable amount of the Ru-

complex in pure chloroform, in order to get a concentration of 1 mg/mL. For pseudo-

ternary systems containing POPC, an appropriate amount of this phospholipid was 

added to the Ru-complex solution, in order to have the pre-fixed molar ratio. LOS was 

dissolved in a solution of CHCl3:MeOH:H2O (15:8:2) to get again a solution 1 

mg/mL. Sonication and slight warming favoured sample dissolution. These solutions 

were transferred, in a fixed ratio, in a round-bottom glass tube and through 

evaporation of the solvent and vacuum desiccation a thin lipid film was obtained. The 

samples have been hydrated with water or FBS (section 6.10), the solutions were 

vortexed and the suspension was sonicated and repeatedly extruded through 

polycarbonate membranes, for at least 15 times. The molar ratio of Ru was 10%, 

while the amount of POCP and LOS was changed to obtain different liposomes with 

different percentage of LOS; as showed in table 2.1. 

O

O
NH O

HO

O
NH

O

O
O

HO
O

O

O

OH

O

HO

O P

O

O-

O-

-O P

O

O -

O

O

HO

O

HO
NH O

HO

HO
NH

O

O

HO
O P

O

O-

O-

-O P

O

O -

O

O

HO

REMAINING PART OF LPS REMAINING PART OF LPS

1) Hydrazine (25 mg/mL)

2) 37 C, 2h

3) Precipitation cold acetone



23 
 

 

Molar ratio ToThyRu POPC LOS 

ToThyRu:POPC 10 90 0 

ToThyRu:POPC:LOS 10 85 5 

ToThyRu:POPC:LOS 10 70 20 

ToThyRu:POPC:LOS 10 60 30 

ToThyRu:POPC:LOS 10 50 40 

Table 2.1: Composition of different liposomes formulates 

 

2.3 DLS and Cryo-TEM analyses of liposomes 

 

     2.3.1 DLS analyses 

 

The size of aggregates was obtained by DLS measurement, which was carried out in 

the range 45°-110° using a concentration of samples of 1 mg/mL. 

The fluctuations of the scattered light, as a time function, are originated by Brownian 

motion of the particles present in the solution that randomly changes their position 

over time. In a dynamic light scattering experiment, it is important to define the auto-

correlation function of the electric field of the scattered light in time: 

 
However, the electric field magnitude was impossible to determine instrumentally. In 

fact, it is more simple to introduce the intensity autocorrelation function of scattered 

light g
(2)

(τ): 

 
In case of mono-dispersed systems, the expressions of the two auto-correlation 

functions are the following: 
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Where q is scattering vector and D is diffusion coefficient. Plotted ln(g (1) (τ)) as a 

function of τ, we obtain a straight line to a negative slope, the value of which, in both 

cases, is given by: 

 

The parameter Γ depends on the angle of observation (θ appears in the definition of 

the scattering vector, q). However, the system in question is not mono-dispersed; Γ is 

expressed in series of powers of q
2
: 

 

The first term of the series is considered zero, the second coefficient represents the 

diffusion coefficient (D), while the third coefficient is connected to the poly-dispersity 

of the system under examination (P). The next higher order terms are neglected. So, 

considering a series of measures at different angles, it is possible to report the results 

on a graph like Γ vs q
2
.  For particles that in solution give aggregates of spherical 

shape; it is possible to derive the hydrodynamic radius RH, using the Stokes-Einstein 

relation: 

 
  

The equation reported above for mono-dispersed systems was applied for all 

liposomes obtained; in order to evaluate the effect of the Rubi
T
-LOS on the liposome 

structure, also analyses on liposomes formulated without LOS were done. Figure 2.4 

shows hydrodynamic rays distribution for different system; by the interpolation of 

distribution it was possible to obtain data, as reported in Table 2.2. 



25 
 

 
Figure 2.4: Hydrodynamic rays distribution at 25°C and =90°C for the different liposomic systems. 

 

Samples  % of LOS D ± error (cm2/s) RH± error (nm) 

POPC 0 6.3·10-8 ± 0.8·10-8 38.8 ± 4.9 

ThoThyRu:POPC 0 2.9·10-8 ± 0.1·10-8 82.9 ± 0.4 

ThoThyRu:POPC:LOS 5 2.8·10-8 ± 0.1·10-8 87.4 ± 1.9 

ThoThyRu:POPC:LOS 20 2.9·10-8 ± 0.1·10-8 82.8 ± 1.6 

ThoThyRu:POPC:LOS 30 3.1·10-8 ± 0.1·10-8 79.4 ± 1.5 

ThoThyRu:POPC:LOS 40 3.8·10-8 ± 0.2·10-8 66.2 ± 3.8 

ThoThyRu:POPC:LOS 100 3.5·10-8 ± 0.1·10-8 69.6 ± 2.6 

Table 2.2: Diffusion coefficient and hydrodynamic rays obtained from DLS analyses for different 

ToThyRu:POPC:LOS systems in water. 

 

Hydrodynamic rays of aggregates with increasing of LOS concentration tend to 

decrease. The slight size reduction of aggregates can be attributed to sterically 

hindered, caused by the high volume occupied by polar heads of LOS and the increase 

of negative charge on the liposomal surface. The results show a monomodal 

hydrodynamic rays distribution, unless of the sample ToThyRu:POPC:LOS 10:50:40 

which presents a bimodal distribution. The smaller population, about 13 nm, describes 

1 10 100 1000 10000

40% LOS

30% LOS

5% LOS

20% LOS

100% LOS

D.L.S. spectra recorded for different liposome system with 

different concertration of LOS;

RH (nm)
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the presence of micelle aggregates, this tendency of LOS to form micelles in solution 

was also demonstrated by DLS analysis LOS, 1 mg/mL, in water (figure 2.4). 

In order to analyze the aggregates in a physiological environment fetal bovine serum 

(FBS) was chosen as a biological matrix. As the starting serum solution contained 

same proteins that caused scattering, this solution was dialyzed, to avoid aggregates in 

the same range of liposomes. 

As a result, the serum solution showed the same characteristics of pH and ionic 

strength compared to the starting solution, without interferences. The treated serum 

was used for hydration of the lipid films of ThoThyRu:POPC:LOS 10:70:20 and 

compared with the same systems in water. Table 2.3 and figure 2.5 demonstrate that 

liposomes present similar hydrodynamic rays distribution in both the solvent. 

 
Figure 2.5: : Hydrodynamic rays distribution at 25°C and =90°C for the system 

ThoThyRu:POPC:LOS 10:70:20 in aqueous solvent (continue line) and in fetal serum bovine (dotted 

line). 

 

 

 

 

1 10 100 1000

In water

In serum

RH (nm)

D.L.S. spectra for the system ToThyRu/POPC/LOS 10:70:20 

recorded at 90  in water and in Fetal Bovine Serum.

10000
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Samples  SOLVENT D ± error (cm2/s) RH± error (nm) 

ThoThyRu:POPC:LOS (20%) H2O 2.9·10-8 ± 0.1·10-8 82.8 ± 1.6 

ThoThyRu:POPC:LOS(20%) FBS 3.4·10-8 ± 0.1·10-8 71.4 ± 0.8 

Table 2.2: Diffusion coefficient and hydrodynamic rays obtained from DLS analyses  

ThoThyRu:POPC:LOS (20%) hydrated  in water and in fetal serum bovine. 

 

     2.3.2 Cryo-TEM investigations 

 

The shape and size distribution of liposomal systems were observed through Cryo-

TEM technique, in order to obtain high-resolution images directly in their original 

environment. The samples investigated by electron microscopy were prepared with 

lipid film method. About 50 µl of liposomes solution were placed on a grid containing 

a film of carbon. Subsequently, the solution was dried with a filter paper and then 

frozen by placing the grid in a container of ethane (-184 °C). The grid with the frozen 

sample was placed in the sample holder. Figure 3.6 shows Cryo-TEM image for 

ThoThyRu:POPC:LOS 10:85:5 and confirms that this aggregates presents a 

monomodal hydrodynamic rays distribution. 
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Figure 2.6: Cryo-TEM image for system ThoThyRu:POPC:LOS 10:85:5. 
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2.4 In vitro cytotoxicity tests 

 

The in vitro cytotoxicities of different aggregates of MCF-7 cancer cells (human 

breast adenocarcinoma cancer cell line) and J774 (murine macrophages) have been 

determined by MTT (3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyltetrazolium bromide) 

assay and total cell count. Figure 2.7 shows toxicological tests on different Ru-

aggregates.Firstly toxicity of POCP was analyzed and predictably liposomes 

composed exclusively of POCP showed no significant interference with the cell 

viability and cell proliferation. Starting from these preliminary experiments, the cells 

were then treated for 48h (MCF-7) and 24h (J774) with different concentrations (10, 

25, 50, and 100 M) of POPC:LOS (90:10), POPC:ToThyRu (90:10) and 

POPC:ToThyRu:LOS (70:10:20). The evaluation of the “cell survival index” suggests 

that liposomes formulated with LOS produce cytotoxic effect substantially similar to 

that composed by only POPC and ToThyRu on MCF-7 line cells. On J774 line cells, 

instead, when LOS was added, the aggregates show more marked toxicity. In order to 

verify if there is a part of LOS that could enhance toxicological power, the same tests 

were conducted on dephosphorylated LOS, on Lipid A and Core region. Figure 2.8 

shows the results on the different cellular lines and the different parts of LOS show 

similar activities on the same cell line and in both case a vitality greater that 50% is 

observed. 
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Figure 2.7: Concentration/effect curves and cell survival index. Cell survival index, evaluated by MTT assay and total cell count, in MCF-7 (part a) and J774 (part b) cell lines 

incubated with different Ru-containing formulations. Data are expressed as percentage of untreated control cells. Biological tests were performed by Prof. Carlo Irace from 

department of pharmacology of University of Naples. 

 

 

Figure 3.8: Concentration/effect curves and cell survival index. Cell survival index, evaluated by MTT assay and total cell count, in MCF-7 (part a) and J774 (part b) cell lines 

incubated with different part of LOS: LOS, dephophorylated LOS (de-(P)-LOS), Core region and Lipid-A . Data are expressed as percentage of untreated control cells. Biological 

tests were performed by Prof. Carlo Irace from department of Pharmacology of University of Naples. 
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2.5 Conclusions 

 

The aim of this project was to study the formulation and physical-chemical 

characterization of supramolecular aggregates based on Ru (III) complex and 

lipooligosaccharide (LOS), which have antitumor activity. The idea is to analyze new 

liposomal class systems containing, for the first time, a LOS (lipooligosaccharide), 

partially delipidated, to make it "stealth" against the immune system. The presence of 

LOS in the liposomal bilayer gives different structural and functional properties than 

classical liposomes formulation. The idea infers from the ability to create a membrane 

that shows the same characteristics of low permeability and high resistance, typical of 

the cell wall of Gram-negative bacteria, in order to increase the stability and lifetime 

of aggregates. The supramolecular systems analyzed are structurally characterized by 

the presence of amphiphilic molecules: a zwitterionic lipid, POPC; a Ru(III) complex 

ToThyRu, and lipooligosaccharide produced by Rhizobium rubi
T
. The latter, since 

preliminary formulations with native LOS have led to obtaining poly-modal 

distribution of liposomes, was partially delipidated by hydrazine. 

All liposomal systems have been investigated through combined experimental 

strategy, including dynamic light scattering (DLS), Cryo-TEM analyses and biological 

tests. 

In this context, the results suggest that the LOS insertion in the liposomal formulation 

changes the size and structure of aggregates but not their citotoxycity.  
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Chapter III: Identification and structural analysis of the Capsular 

polysaccharides from different clinical isolates of Acinetobacter baumannii, 

strains A74, D36, F4, D78, D46 

 

Introduction 

 

This work is in collaboration with dr. J. Kenyon at the University of Sidney, she 

works on the elucidation of genes responsible for LPS and CPS biosynthesis in 

Acinetobacter bacteria, a Gram-negative species relevant in nosocomial infections. 

The final purpose of this work is the understanding of how these bacteria trigger 

inflammation and how they escape the host immune system, together with the idea to 

understand the biosynthetic pathway of CPS. 

Acinetobacter baumannii causes in immuno-compromised patients severe nosocomial, 

bloodstream, pneumonia and septicaemia
1
. This class of bacteria presents a 

particularly property of resistance to the most commonly used antibiotics. It produces 

lipopolysaccharides (LPSs) and capsular polysaccharides (CPSs)
 2 

which display a 

crucial rule in the pathogenicity mechanism. CPSs are high molecular weight 

polymers constituted by an oligosaccharide repeating unit in which different sugars 

are connected together by specific linkages.  

The primary role of CPS is to protect bacterial cell from external environment and to 

prevent its desiccation. Furthermore, capsular polysaccharides promoting formation of 

biofilms show a fundamental role in the bacteria adhesion and host colonization. The 

knowledge of CPS structure is fundamental for the elucidation of infection mechanism 

and for the development of new glycoconjugates vaccines. 

So far, attention was focused on five different strains of Acinetobacter baumannii 

isolated from different Australian hospitals: A. baumannii A74, D36, F4, D46 and 

D78. The structures of CPSs produced by these different strains of Acinetobacter 

baumannii were resolved on the basis of chemical and spectroscopical analyses. 
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3.1 Isolation of different CPSs 

 

Capsular polysaccharides produced by different strains of Acinetobacter baumannii 

were found in the water phase of hot water-phenol extraction. They were purified 

from proteins, nucleic acid and LPS by enzymatic hydrolysis and centrifugation. 

 

3.2 Chemical and structural analyses of CPS from A. baumannii A74
3 

 

Acinetobacter baumannii A74 produces a branched capsular polysaccharide 

constituted by D-glucose (D-Glcp), D-galactose (D-Galp), N-acetyl-D-glucosamine (D-

GalpNAc) and pseudaminic acid (Pse5Ac7Ac) linked as shown in figure 4.1. The 

complete oligosaccharidic sequence was elucidated on the basis of chemical and 

spectroscopical analyses.  

 
Figure 3.1: Structure of the repeating unit of the CPS from A. baumannii A74. Labels reflect those reported in 

Table 3.1 
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     3.2.1 Chemical analyses of CPS 

 

Acinetobacter baumannii A74 cells were extracted according to PCP and hot water-

phenol extractions. CPS was recovered in the water phase and purified from nucleic 

acid, proteins and LOS by enzymatic treatment and centrifugation (section 6.7). SDS-

PAGE gel, stained with alcian blue and silver nitrate, shows the presence of a 

polysaccharide molecule with a molecular weight greater than LPS of Escherichia coli 

055:B5 used as standard (figure 3.2) 

 
Figure 3.2: SDS-PAGE (stacking gel 5%, separating gel 12.5%) stained with alcian blue, a, and alcian 

blue and silver nitrate, b, of A standard of E. coli 055:B5, B 10 g. of crude material obtained in water 

phase, and C 10 g of enzyme treated water phase. 

 

Chemical analysis disclosed the occurrence of three different hexoses: glucose, 

galactose and galactosamine, all with the D configuration and linked at position 6, 3, 6 

and 3, respectively. An additional component was detected in the acetylated methyl 

glycosides mixture, with the fragmentation pattern compatible with that of a 5,7-

diacetamido-3,5,7,9-tetradeoxy-2-keto-nonulosonic acid, later identified as 

pseudaminic acid (5,7-diacetamido-3,5,7,9-tetradeoxy-2-keto-L-glycero-L-manno-

nonulosonic acid). Kdo, the marker of lipopolysaccharide, was not found or it was 

below the detection limit of the instrument
4
. 

First NMR inspection of the CPS returned a proton spectrum with very broad signals 

(figure 3.3 part a), specifically the anomeric protons were at high field suggesting the 

occurrence of sugars  configured only. The spectrum also contained three N-acetyl 

signals at ca. 2 ppm, two protons of a deoxy position at 1.60 and 2.15 ppm and one 

A B C A B CA B C A B C

a) b)
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methyl group at 1.15 ppm, these last three signals together with two of the N-Acetyl 

groups were consistent with Pse. Nevertheless, the quality of the 2D NMR spectra was 

poor and prevented any structural assignment. Assuming that Pse was internal to the 

polysaccharide chain, CPS was treated with 1% AcOH in order to cleave selectively 

the backbone at level of the Pse residue (section 6.6.1), and to obtain a depolymerized 

product with improved spectroscopic properties. The acid treated polysaccharide 

fulfilled this last expectation (figure 3.3 part b); even though it was later found that 

Pse was not an internal residue but a terminal substituent. Pse was removed only 

partially creating some heterogeneity in the polymer; nevertheless, this did not prevent 

the interpretation of the NMR spectra and determination of the polysaccharide 

structure was accomplished. 

 

 

Figure 3.3: 
1
H NMR spectra (600 MHz, D2O) of CPS after a) enzymatic purification and b) after mild 

acid hydrolysis. Signals of impurities are crossed and the temperatures used are indicated on the spectra 

 

     3.2.2 NMR analyses of hydrolyzed CPS  

 

The 
1
H NMR spectrum (figure 3.3 part b) contained two signals in the anomeric 

region (5.00–4.00 ppm) in an approximate ratio of 1:2; these signals were labelled 

with letters (A–C) in the order of their decreasing chemical shifts, and letter D was 

assigned to Pse residue.  
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Analysis of the 2D NMR spectra of the polysaccharide permitted the assignment of all 

proton and carbon chemical shifts (Table 3.1, structure in figure 3.1) 

As for A, the anomeric proton resonated at 4.68 ppm, indicating the configuration of 

the anomeric centre, also confirmed by the inter residues NOEs with H-3 and H-5. In 

the TOCSY spectrum (figure 3.5 part b), H-1 of A had only three correlations due to 

the null H-4/H-5 coupling, typical of the galacto ring stereochemistry, C-2 resonated 

at 52.7 ppm indicating a nitrogen bearing carbon, and H-2 chemical shift (4.05 ppm) 

proved the acetylation of the amino function. Therefore, A was a N-acetylated -

galactosamine and the low field shift of its C-3 signal (80.7 ppm) with respect to the 

standard value (72.3 ppm) proved glycosylation at this position (figure 3.4)
 5

.  

With regard to the broad signal at ca. 4.50 ppm, TOCSY spectrum was not 

informative because it contained the correlations from B and C residues; conversely, 

information were recovered from H-2 protons of these units because these did not 

overlap with any other signal in the spectrum (Inset in figure 3.5 shows COSY 

spectrum detailing the H-1/H-2 cross peaks of C and B residues). 

With regard to B, its H-2 (3.59) displayed on three cross peaks in TOCSY spectrum, 

with H-2, H-3 and H-4, as occur for a galacto configured residue; complete 

identification of protons H-5 and H-6 was possible on the basis of NOESY 

correlations. Residue B, indeed, was a galactose,  configured on the basis of the 

diagnostic anomeric signal chemical shift (4.48 ppm) and because H-1 showed the 

expected NOEs with H-3 and H-5; carbon chemical shift indicated that B was 

substituted at both O-3 and O-6. 

With regard to C, a close view to H-1/H-2 cross peak in the COSY spectrum (inset in 

figure 3.5) evidenced that it was composed by two different residues, labelled C and 

C’, with the second resonating at a higher field. Following COSY spectrum 

connectivities, it resulted that C and C’ had the same H-2 and H-3 protons, but 

differed for H-4 (figure 3.5 part b). H-4 of C appeared in the not-crowded region of 

the spectrum (3.37 ppm) and its TOCSY connectivities were used to discriminate the 
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other protons of this unit from those of C’. This signal displayed in TOCSY spectrum 

five distinct cross peaks instead of six, suggesting that two ring protons of this residue 

overlapped: of these five densities, three were assigned to H-1/H-4, H-2/H-4 and H-

3/H4 correlations, and therefore attention was focused on the other two left, which 

connect H-4 to the signals at 3.92 and 3.70 ppm. In the gHSQC spectrum (figure 4.4) 

these signals belonged to a hydroxyl-methyl carbon at 62.1 ppm, given as C-6 of C. 

H-6 protons displayed a correlation with signal at 3.45 ppm which overlapped with H-

3 and was assigned to H-5. 

C was identified as glucose on the basis of the excellent magnetization propagation 

seen for proton H-4 in the TOCSY spectrum; starting from this proton, indeed, is 

possible to identify all protons of the ring.  configuration of the anomeric centre was 

supported by the low field chemical shift of the anomeric proton and by the large 
3
JH1-

H2 value (8.3 Hz). 

With regard to C’ analysis started from H-4 signal at 3.54 ppm which present a 

correlation with signal at 3.67 ppm assigned to H-6 on the basis of its carbon chemical 

shift at 63.4 ppm; this modest chemical shift at low field was diagnostic of the 

occurrence of a ketose residue. H-6’ chemical shift was found by analyzing of gHSQC 

spectrum that correlate with the same carbon signal of H-6. H-5 (3.53 ppm), instead, 

was inferred at the end of the analysis because its carbon was the only one left 

unattributed in the gHSQC spectrum. 

Consequently, C’ signals were also identify as a glucose residue,  configured at the 

anomeric centre. C and C’ residues differed at C-6 position: this carbon atom was 

found at 62.1 ppm in C, indicating a not substituted residue, while C-6 of C’ was at 

63.4 ppm due to the presence of a ketose at C-6 position; this result is in agreement 

with the occurrence of a 6-linked glucose in the chemical analysis of the intact CPS. 

Assignment of D started from the diastereotopic methylene protons at high field (2.15 

and 1.60 ppm), which correlated in the COSY spectrum with H-4 (4.26 ppm) and with 

a further signal in the TOCSY spectrum, at 4.23 ppm and assigned to H-5. The other 
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resonances of the nonulosonic acid were determined by starting from the methyl 

signal at 1.15 ppm; the gHMBC spectrum correlated this methyl group with a carbon 

at 68.1 ppm assigned to C-8 and with a carbon at 54.9 given to C-7; the corresponding 

protons were found in the gHSQC spectrum at 4.24 and 4.20 ppm, respectively, and 

COSY spectrum linked H-7 to H-6 which was at 3.85 ppm. Determination of all the 

carbon chemical shift of D evidenced that both its amino groups were N-acetylated, as 

confirmed by the long range correlation of H-5 and H-7 with a carbonyl (175.9 and 

175.0, respectively), and comparison of the carbon chemical shifts of this sugar with 

those published
6,7 

identified this residue as an unsubstituted pseudaminic acid, a 

configured at the anomeric centre. 

Sequence among the residues was inferred analysing the NOESY spectrum (figure 3.4 

part a), which displayed these key correlations: H-1 of A with H-3 and H-4 of B; H-1 

of B with H-3 of A; H-1 of C’ with both H-6 and H-4 of B. NOEs from C were barely 

visible, but this was due to the low amount of this residue with respect to C’, as 

deduced comparing the intensity of its H-4 (3.37 ppm) with the signal at 3.28 ppm 

which included H-2 protons from both C and C’. It was assumed that this residue was 

linked in the same fashion as C’. As for residue D, meaningful NOEs were not 

detected in the NOESY spectrum and it was placed at O-6 of C’ because of the mild 

chemical shift displacement of this carbon atom. The not-substituted glucose C was an 

artefact due to the partial removal of D during the mild acid hydrolysis treatment of 

the CPS. These data, combined with the linkage analysis and with the carbon chemical 

shift analysis permitted the elaboration of the structure of the repeating unit of the 

polysaccharide, shown in figure 3.1 chemical shifts are reported in Table 3.1. The 

CPS has backbone where Gal and GalNAc alternate and are -(13) linked, further 

elongated at C-6 with a-Pse-(26)--Glc disaccharide. 

As showed in figure 3, part a, besides the NOEs listed above, this other effects were 

detected: H-1 of A with its own H-4 and H-6. H-1 of C’ with H-5 of A (or with its H-

6’’, which is coincident); for this correlation it was not possible to find an explanation 
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and assuming that spin diffusion effects were minimized, our hypothesis is that they 

arise from the secondary conformation of the polymer.  

 

 

Figure 3.4:(600 MHz; 298 K): zoom of gHSQC (black) and HMBC (grey) spectra of acid hydrolyzed 

CPS from baumannii A74. Attribution of most of the cross peaks is indicated near the corresponding 

density.
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Figure 3.5: (600 MHz, 298 K) Expansion of NOESY (part a) and TOCSY (part b) spectra of CPS from A. baumannii A74. Attribution of most of the 

cross peaks is indicated nearby the corresponding density. Inset: COSY spectrum detailing the H-1/H-2 cross peaks of C group of signals (upper part) 

and B residue (lower part). The C group of signals includes two anomeric protons, C and C’: these are related to a glucose unit that is not 

stoichiometrically substituted at C-6 by Pseudaminic acid, as effect of the mild acid hydrolysis of the CPS. When Pse is present, glucose is substituted at 

O-6 and its anomeric signal is C’1.  NOE effect marked with an asterisk is not deductable from the primary structure of the CPS; it could be due to spin 

diffusion phenomena or, more probably, from the secondary conformation of the polysaccharide. 
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  1 2 3 4 5 6 6’ 

A 
1H 4.68 4.05 3.90 4.19 3.70 3.78 x 2 - 

3--GalNAc  
13C 104.2 52.7 80.7 69.4 76.0 62.3 - 

B 
1H 4.48 3.59 3.72 4.15 3.86 3.98 3.86 

3,6--Gal 
13C 105.9 71.1 82.7 69.8 74.5 71.1 - 

C 1H 4.48 3.28 3.46 3.37 3.45 3.92 3.70 

t--Glc 
13C 104.8 74.4 76.9 70.9 77.2 62.1 - 

C’ 1H 4.47 3.28 3.46 3.54 3.53 3.67 3.53 

6--Glc 
13C 104.8 74.4 76.9 70.5 76.0 63.4  

  3 4 5 6 7 8 9 

D 
1H 2.15; 1.60 4.26 4.23 3.85 4.20 4.24 1.15 

t-a-Pse 
13C 36.6 66.1 50.0 71.8 54.9 68.1 16.9 

Table 3.1. Proton (600 MHz) and carbon (150 MHz) chemical shifts of CPS obtained by A. baumannii A74, 

measured at 298 K. Spectra were calibrated with respect to internal acetone (1H: 2.225 ppm, 13C: 31.45 ppm). 

Structure of the repeating unit of the CPS is in figure 3.1. 
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3.3 Chemical and spectroscopical analyses of CPS from A.baumannii D36
8 

 

Acinetobacter baumannii D36 produces a branched capsular polysaccharide 

constituted by D-glucose (D-Glcp), N-acetyl-D-galactosamine (D-GalpNAc), N-

acetyl-D-fucosamine (D-FucpNAc) and L-glycero-L-altro nonulosonic acid 

(Aci5NAc7NAc) linked, as shown in figure 3.6. The complete oligosaccharidic 

sequence was elucidated on the basis of chemical and spectroscopical analysis.  

 
Figure 3.6: Structure of the repeating unit of the CPS from A. baumannii D36. Labels reflect those reported in 

Table I. 
 

CPS produced by A.baumannii D36 presents particular 2-nonulosonic acid L-

glycero-L-altro isomers (Aci5Ac7Ac). Although this monomer was obtained by 

synthetic approach and totally characterized
4
 this is the first case in which this 

residue was isolated as a component of a glycoconjugates produced by bacterium. 

It was reported that 2-nonulosonic acid are fundamental constituents of bacterial 

glycoconjugates and show particular roles in immune recognition and epitope 

specificity. 5,7-diamino-2-nonulosonic acid are directly involved in gastrointestinal 

tract colonization; H. pylori and C. jejuni, flagellated bacteria, present flagellins 

heavily O-glycosylated with nonulosonic acid and this functionalization is 
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fundamental for colonization mechanism. In addition, pseudoaminic acid is a 

constituent of O-specific chain polysaccharide (OPSs) of P. aeruginosa, S. Boydii
9
 

and in CPSs of A. Baumannii
1
. Legionaminic acid occurs in OPSs of different 

bacteria strains like P. fluorescens, L. pneumophila
10

, and A. baumannii. 

5NAc7NAcNONlA is a constituent of LPS produced by two different strains of 

Vibrio parahaemolyticus and it is directly involved in the serological activity of 

this bacteria
11

. 

 

     3.3.1 Chemical analyses of CPS 

 

CPS from A. baumannii D36 was isolated after enzymatic hydrolysis of the crude 

material present water phase of hot phenol/water extraction. SDS-PAGE gel, 

stained with alcian blue and silver stain, showed the presence of a polysaccharide 

with a molecular weight greater than LPS of Escherichia coli 055:B5 used as 

standard. Chemical analysis disclosed the presence of two different amino sugars: 

fucosamine and galactosamine, linked at position 3 and at positions 3 and 6 

respectively as deduced by applying the methylation protocol for neutral sugar
2
. 

Octyl glycoside analysis shows that galactosamine presents D configuration while 

fucosamine was present in the two possible configuration D and L. Analysis of 

methyl glycoside acetylated mixture also shows that a 5,7-diacetamindo-3,5,7,9-

tetradeoxy-2-keto-nonulosonic acid, later identified by NMR analysis and by its 

optical rotation as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glyicero-L-altro non-2-

ulosonic acid residue, is present. Substitution pattern for this residue was not 

determined by GC-MS analysis because the protocol used was not suitable for acid 

residues. 

Pure CPS proton spectrum (figure 3.7 part a) presents very broad signals; it is 

possible to indentify two anomeric signals at low field, ca 5 ppm, suggesting an a 

configuration, three different signal at ca 2 ppm attributable to N-acetyl groups, 
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and a signal at ca 1.2 ppm belonged to methyl groups of FucNAc and L-glycero-L-

altro residue. Analysis of 2D-NMR spectra of polymer did not lead to any 

conclusive information because of their poor quality, signal densities were 

generally rather broad and mostly lost in the baseline noise. One information was 

found by the analysis of gHSQC spectrum of CPS (spectrum not shows); this 

contains a carbon signal of a hydromethylene group at 64 ppm, this value 

compared to typical value (60-62 ppm) indicated a glycosylation with a ketose 

residue; therefore combining this information with those obtained by chemical 

analysis, it was deduced that nonulosonic acid was linked as terminal residue to C-

6 of GalNAc.  

Starting from this information, to improve the spectra resolution, enzyme treated 

CPS was hydrolyzed with a solution of AcOH 6% (section 6.6.2). Acid treated 

mixture was purified on a BioGel P-10 column using NH4HCO3 50mM as eluent 

and using a RID as detector. Chromatographic profile shows the presence of two 

different species. They were collected, freeze dried and analyzed by 
1
H-NMR 

(figure 3.7 part b and c); in the void volume of column was eluted a linear 

oligosaccharide in which nonulosonic residue was totally removed. The second 

species instead, result to be a monosaccharide mixture containing L-glycero-L-

altro-5,7-diacetammido-3,5,7,9-tetradeoxy-2-nonulosonic acid. 
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Figure 3.7: 1H NMR spectra (600 MHz, D2O) of CPS after (a) enzymatic purification (b) and (c) after mild 

acid hydrolysis chromatographic purification. Spectra temperatures used are indicated on the spectra  

 

     3.3.2 NMR analyses of hydrolyzed CPS  

 

Analysis of 2D spectra of acid treated CPS permitted the assignment of all proton 

and carbon chemical shift (Table 3.2, structure figure 3.6). Proton at 5.01 ppm was 

assigned to residue A and its chemical shift suggests a a configuration. This proton 

presents only three TOCSY (figure 3.9 part b) correlations with protons H-2 and H-

3 and H-4 respectively, due to the null H-4/H-5 coupling, characteristic of galacto-

configured sugars. Proton and carbon chemical shift of C-2 also underline that it is 

directly linked to an N-acetyl group. Complete proton and carbon assignment of 

this residue was possible starting from H-3 and following NOE correlation. 

Therefore residue A was identified as a N-acetyl a-galactosamine; the low 

chemical shift of its C-3 at 73.8 ppm confirms glycosylation at this position as 

showed by methylation analyses.  

The broad signal at ca 4.9 ppm contains H-1 signals from both B and C sugars; 

complete proton assignment was possible starting from H-2 signal, which did not 

overlap with outer signals in this spectrum. These residues, as showed by TOCSY 

propagation from H-2, result to be galacto configured sugars. C-2 signals resonated 

at ca 49.3 ppm indicating a nitrogen-bearing carbon, and H-2 at 4.35 ppm proved 
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the acetylation of amino group. This signal showed correlation with two protons at 

3.81 ppm and 4.09 ppm, identified as H-3 of residue B and residue C respectively.  

TOCSY and NOESY analyses showed that these residues are N-Acetyl fucosamine 

and permitted the allocation of all carbons and protons chemical shift. 

Oligosaccharide sequence was resolved on the basis of NOESY correlations, while 

HMBC did not contain any useful information. H-1 of residue A shows a NOE 

correlation with H-3 and H-4 of residue C (figure 3.8 part b); this had to be linked 

to B which in turn had to be linked to A. Combining results obtained by chemical 

and NMR analyses, it was possible to obtain the complete oligosaccharidic 

sequence as follows: 

→3)-a-FucNAc-(1→3)-a-D-GalNAc-(1→3)-a-FucNAc-(1→ 

 
Figure 3.8: (600 MHz, 318 K) Expansion of the NOESY (a) and TOCSY (b) spectra of CPS from 

A. baumannii D36. Attribution of most of the cross peaks is indicated near the corresponding 

density.  
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Figure 3.9: (600 MHz; 318K): zoom of gHSQC (black) overlap to HMBC (grey) spectra of acid 

treated CPS from A. baumannii D36. Attribution of most of the cross peaks is indicated near the 

corresponding density. 
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  1 2 3 4 5 6 

A 
1H 5.08 4.37 3.40 4.12 3.93 3.76 x 2 

3-a-D-GalNAc  
13C 99.6 49.8 73.5 65.6 72.5 62.6 

B 
1H 4.95 4.35 3.81 3.81 3.94 1.25 

3-a-D-FucNAc 
13C 94.7* 49.3 74.3 72.2 68.5 16.5 

C 1H 4.95 4.34 4.09 3.96 4.10 1.22 

3-a-D-FucNAc 
13C 99.8* 49.3 74.3 72.1 68.2 16.5 

Table 3.2: Proton (600 MHz) and carbon (150 MHz) chemical shifts of acid hydrolyzed CPS obtained by A. 

baumannii D36, measured at 318 K. Spectra were calibrated with respect to internal acetone (1H: 2.225 ppm, 
13C: 31.45 ppm). Structure of the repeating unit of the CPS is in figure 4.6.* attribution interchangeable. 

 

     3.3.3 Molecular mechanics calculations  

 

Determination of fucosamine C residue absolute configuration by Molecular 

Mechanic calculation approach.  

 

Since octyl glycoside analysis shows the presence of both 3 linked D and L α-

FucNAc, molecular mechanic analyses were performed on the different possible 

glycosidic junctions. We investigated the conformational space for the glycosidic 

angles of pure hydrolyzed CPS by MD simulations with Macromodel Software 9.3 

using MM3* force field. Two different disaccharides, a-D-GalpNAc-(13)-a-L-

FucpNAc (referred as DG-LF) and a-D-GalpNAc-(13)-a-D-FucpNAc (referred 

as DG-DF), were built, and for each of them, flexible maps were obtained by 

incrementally changing the two dihedral angles,  and , by steps of 20° in order 

to evaluate their preferential conformation. As a result, two flexible maps were 

obtained (Figure 3.10) and the ensemble of conformers generated by the program 

for each disaccharide entity was used to simulate the NOEs and the averaged inter-
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proton distances. Starting from minimum, in these maps optimal dihedral angles 

were obtained, if two forms were possible the lowest energy was considered, and 

minimized again with the MM3* force field. The two structures were built up 

taking the N-Acetyl group in the typical trans disposition. 

 

 
Figure 3.10: MAESTRO flexible maps calculated for the different glycosidic junction. 

 

These results were used to simulate inter residue <r
-6

> distances NOEPROM. Table 

3.3 shows calculated inter-proton distances compared to experimental distances. 

Distance analysis started from H-1 proton of residue A, which present clear 

correlation with H-3 and H-4 of reside C (figure 3.5 part a). Integration of these 

NOE correlations permits to obtain inter residue distances
12

. Comparison of these 

results with those obtained from NOESY spectrum indicated that D-GalNAc is 

linked on C-3 of an L-FucNAc. As showed in Table 3.3, in this case simulated 

distances are in agreement with those obtained from NOESY spectrum 

extrapolation; on contrary the other possible disaccharide, DG-DF, shows inter 

residual distances non compatible with results obtain by NOESY spectrum 

analysis.  
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Distance Ǻ Exp. Calc 

DG-LF 

Calc. 

DG-DF 

A1-C3 2.69 2.45 2.78 

A1-C4 3.76 3.43 2.23 

Table 3.3: Experimental (NOESY estimate error 5-10%) and calculated (from MD simulation) 

inter-proton distances for the different glycosidic junction. Because of severe overlap, only 

distances experimentally derivate from NOE contact are reported 

 

     3.3.4 NMR analysis of monosaccharide mixture 

 

gHSQC spectrum (figure 3.11 part a) of monosaccharide mixture show the 

presence of several signals; interesting is the high field region between 37 ppm and 

44 ppm ca that is attributable to H-3 methylenic carbons of four different 

nonulosonic residues; these residues were labeled (D-G).  

NMR analysis started from these signals. Diastereotopic protons at 1.88 and 2.21 

were assigned to H-3 methylenic protons of residue D (C-3 at 40.4 ppm). These 

were coupled in COSY spectrum (not shown) with H-4 (3.88 ppm) while TOCSY 

spectrum (not shown) displayed from H-3 with a proton at 4.14 ppm later identified 

as H-7. Analysis of HMBC spectrum, figure 3.11, disclosed that H-3 protons 

correlated with C-2 (97.9 ppm), C-1 (177.3 ppm), C-4 (69.0 ppm) and with a 

carbon at 55.6 ppm later identify as C-5. Starting from C-9 signal, at 1.16 ppm and 

19.7 ppm respectively, is possible, via long range correlation, to identify C-8 (67.6) 

and C-7 (55.1). The same approach was followed for the other residues.  

Identification of different residue was done by comparing proton and carbon 

chemical shift with those present in bibliography
3
. In this way residues D and F 

were identified as sodium form of a and  anomers of L-glycero-L-altro-

nonulosonic acid respectively on the basis of JH,H coupling constant, proton and 

carbon chemical shift
6
. 
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As for residue E, carbon and proton chemical shifts were not found in 

bibliography. This residue was again in pyranose form, since was present a 

correlation H-6/C2, but the  
2
JH3,H3’, 

3
JH3,H4 and 

3
JH3’,H4 values (14.7, 6.3 and 4.9 Hz 

respectively) diverged consistently from those of A (12.9, 3.9 and 4.3 Hz) and C (12.7, 

4.5 and 11.2 Hz) for which the ring conformation is a 2C5 chair. 

Interesting is that H-5 was found at 4.18 ppm, shifted at a lower field respect H-5 

of D (3.88 ppm) and F (3.83 ppm) suggesting that, as for Kdo residues, this group 

was transformed into an acetimido one forming an 1,5 intramolecular lactam. It 

was reported, indeed, for Kdo that acid conditions can promote intramolecular 

cyclization between anomeric acidic function and nitrogen of -NAc group on C-5. 

More bibliography data report that in this case Kdo adopts a skew-boat 

conformation with a 
3
JH3,H3 = 14.5 Hz; value that is rather close to that found for E 

(14.7 Hz)
 13

. The other Kdo coupling constants values (
3
JH3,H4and 

3
JH3’,H4) 

diverge from those of B, but this can be due a different skew conformation of the 

pyranose ring of B induced by the sequence and by the different stereochemistry 

the three atoms C-4/C-5/C-6 with respect to those of Kdo. In general, acidic 

conditions promote formation of intramolecular lactones when the appropriate 

structural requirements are met, and for B an imidolactam is supposed; the 

reactivity of an acetamido function in this reaction is not unexpected as 

documented by the formation of cyclic succinimido or aspartimido intramolecular 

derivatives
14

. 

With regard to residue G; its HMBC spectrum presents a correlation between H-3 

protons and a carbon at 205 ppm attributable to a keto form of anomeric signal. 

The chemical shift of C-4 (71.4 ppm) and C-8 (71.7 ppm) diverged from those of 

acetaminic residue and displaced at lower field, as if both O-substituted. A possible 

explanation is given looking reactivity of ulosonic acids after prolonged mild acid 

treatments. Kdo, indeed, upon prolonged mild acid treatment transforms into it 4,7- 

and 4,8-anhydro derivates; the 4,7-anidro is less plausible, as for acinetaminic acid, 

because cyclization process would involve the poorly nucleophilic acetamido 
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function at C-7
15

. In contrast, formation of the 4,8-anhydro is operated by hydroxyl 

at C-8 as occur for Kdo. This hypothesis was supported by the analysis of scalar 

coupling constants; the large value of 
3
JH4,H5 (9.7 Hz) indicated the these protons 

were in trans diaxial position, as occurred for H-7 and H-8 (
3
JH7,H8 =10.4 Hz) while 

the small value of 
3
JH5,H6 indicated that H-6 was in equatorial position of the six-

membered ring. These values of scalar coupling constants is in agreement with 

structure hypothesized for 4,8-anhydroderivative of acinetaminic acid. Chemical 

shifts of all residues are reported in Table 3.4, structures in figure 3.11 part b. 

 
Figure 3.11: Part a: (600 MHz; 398K);  zoom of gHSQC (black) overlap to HMBC (grey) spectra of 

monosaccharide mixture obtained by acid treatment of CPS from A. baumannii D36. Attribution of most of the 

cross peaks is indicated near the corresponding density. 

Part b: Structures of the 5,7-diacetamido derivatives of acinetaminic acid obtained after acid hydrolysis. Capital 

letters refer to those used for NMR attribution.a-Aci: a anomer of Aci; -Aci:  anomer; lac-Aci: 1,5-lactam 

form of -Aci; 4,8-∆-Aci: 4,8-anhydro form of Aci. 
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  1 2 3 4 5 6 7 8 9 

D 
1H - - 2.21-1.88 3.88 3.88 3.83 4.13 4.09 1.16 

a-Aci 
13C 177.3 97.9 40.4 69.0 55.6 73.8 55.1 67.6 19.7 

E 
1H - - 2.30-1.85 3.95 4.18 3.84 4.15 3.77 1.27 

lac-Aci 
13C 176.8 98.7 37.6 67.2 53.1 79.1 56.4 69.4 19.3 

F 1H - - 2.61-1.60 3.79 3.83 3.52 4.10 4.06 1.19 

-Aci 
13C 175.9 98.2 41.9 69.7 55.7 75.8 55.7 67.5 19.6 

G 
1H - - 3.02-2.81 4.19 3.87 3.92 3.73 3.79 1.13 

4,8-∆-Aci 
13C - 205.3 43.55 71.2 53.7 68.4 55.4 71.7 18.6 

Table 3.4: Proton (600 MHz) and carbon (150 MHz) chemical shifts of different Acinetaminic residues (Aci, is 

used as abbreviation of Aci5Ac7Ac) obtained by acid treatment of CPS from A. baumannii D36, measured at 

318 K. a-Aci: a anomer of Aci; -Aci:  anomer; lac-Aci: 1,5-lactam form of -Aci; 4,8-∆-Aci: 4,8-anhydro 

form of Aci. 
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3.4 Chemical and spectroscopical analyses of CPS from A.baumannii F4 

 

Acinetobacter baumannii F4 produces a linear capsular polysaccharide constituted 

by D-galactose (D-Galp), N-acetyl-D-galactosamine (D-GalpNAc) and 

pseudoaminic (Pse5NAc7NAc) acid linked as showed in the figure 3.12. The 

complete oligosaccharidic sequence was resolved on the basis of chemical and 

spectroscopical analysis.  

 

Figure 3.12: The structure of the repeating unit of the CPS from A. baumannii F4. For each residue, 

the chemical structure is drawn together with its abbreviated name, the label used in Table 3.5. 

 

     3.4.1 Chemical analyses of CPS 

 

Pure CPS from Acinetobacter baumannii F4 was isolated after enzymatic treatment 

of the crude material present in the water layer of the hot water phenol extraction. 

In order to eliminate any LOS contamination, this was ultracentrifuged; CPS was 

found in the supernatant while LOS was found in the precipitate. The 

polysaccharide was labelled below pure-CPS. 

Chemical analysis disclosed the occurrence of Gal and GalNAc, linked at position 

6 and position 3 respectively following methylation protocol for neutral sugars
2
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An additional component was detected in the acetylated methyl glycosides mixture, 

with the fragmentation pattern compatible with that of a 5,7-diacetamido-3,5,7,9-

tetradeoxy-2-keto-nonulosonic acid, later identified as pseudaminic acid (5,7-

diacetamido-3,5,7,9-tetradeoxy-2-keto-L-glycero-L-manno-nonulosonic acid)
1
.  

First NMR inspection of the pure CPS returned a proton spectrum with well-

defined signals (figure 3.13). It was possible to identify a signal at 5.04 ppm 

attributable to an anomeric proton having a a configuration and two signals at 4.47 

ppm and 4.42 ppm respectively attributable to two different anomeric protons with 

a  configuration. The spectrum contained also three N-acetyl signals at ca. 2 ppm, 

two protons of a deoxy position at 1.63 and 2.55 ppm and one methyl group at 1.21 

ppm, these last three signals together with two of the N-Acetyl groups were 

consistent with Pse.  

 
Figure 3.13: 

1
H NMR spectrum (600 MHz, D2O, 310K) of pure-CPS after. Signals of impurities are 

crossed and the temperatures used are indicated on the spectra.  

 

Since also 2D NMR spectra showed a good quality, pure CPS was directly 

analyzed for the structural assignment.  

 

     3.4.2 NMR analyses of CPS  

 

The 
1
H NMR spectrum, as shown in figure 3.13, contained three signals in the 

anomeric region (5.00–4.00 ppm) in an approximate 1:1:1 ratio; these signals were 

labelled with a letter (A–C) in the order of their decreasing chemical shifts, and D 

was given to Pse residue.  
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Analysis of the 2D NMR spectra of the polysaccharide permitted the assignment of 

all proton and carbon chemical shifts (Table 3.5).  

For A H-1 in the TOCSY spectrum had only two correlations due to the null H-

4/H-5 coupling typical of the galacto ring stereochemistry H-5 was identified 

because of the intra-residue H-5/H-3 and H-5/H-4 cross peaks present in the 

NOESY spectrum. C-2 resonated at 49.9 ppm indicating a nitrogen bearing carbon, 

and H-2 chemical shift (4.27 ppm) proved the acetylation of the amino function. 

Therefore, A was a N-acetylated a-galactosamine and the low field shift of its C-3 

signal (78.9 ppm) with respect to the standard value (72.3 ppm)
3
 confirmed 

glycosylation at this position.  

With regard to residue B, its H-1 (4.47 ppm) shows only three cross peaks in the 

TOCSY (not shown) spectrum with H-2, H-3, H-4, as occurs for a galacto-

configured residue, for which magnetization in not propagated further than H-4.  

This residue was identified as -galactose on the basis of anomeric chemical shift 

and because this proton showed the expected NOEs with H-3 and H-5; more and 

C-6 carbon chemical shift, at 71.0, proved glycosylation at this position.  

The same behaviour was found for residue C, which was identified as a  

galactose. With regard to glycosylation position, C-6 carbon chemical shift is at 

65.2 ppm; this modest shift at low fields was diagnostic of the occurrence of ketose 

sugar.  

Assignment of D started from the diastereotopic methylene protons at high field 

(2.55 and 1.63 ppm), which correlated in the COSY spectrum with H-4 (3.86 ppm) 

and with a further signal in the TOCSY spectrum, at 4.29 ppm and assigned to H-5. 

The resonances of the other protons were determined by starting from the methyl 

signal at 1.21 ppm. The HMBC spectrum correlated this methyl group with a 

carbon at 70.2 ppm assigned to C-8 and with a carbon at 54.9 given to C-7; the 

corresponding protons were found in the gHSQC spectrum at 4.10 and 4.01 ppm, 

respectively, and COSY spectrum linked H-7 to H-6 which was at 4.06 ppm. 
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Determination of all the carbon chemical shift of D evidenced that both its amino 

groups were N-acetylated, as confirmed by the long range correlation of H-5 and 

H-7 with a carbonyl (175.3 and 174.9, respectively), and comparison of the carbon 

chemical shifts of this sugar with those published identified this residue as 

Pseudaminic acid configured at the anomeric centre
4
. C-4 chemical shift, 73.1 

ppm suggests a glycosylation at this position. HMBC spectrum analysis permitted 

also the identification of C-2 and C-1 at 102.8 ppm and 174.2 ppm respectively.  

Oligosaccharide sequence was elucidated by the analysis of long range correlation; 

HMBC spectrum (figure 3.14), indeed, shows a correlation between C-1 of residue 

A and C-4 of residue D, more starting from anomeric signals of residue B and C is 

possible to find a correlation with C-3 of residue A and C-6 of B respectively. 

These results were confirmed by the analysis of NOESY spectrum, which 

displayed these key correlations: H-1 of A with H-3 and H-3’ of D, H-1 of B with 

H-3 and H5 of A, H-1 of C with H-6 of B. 

These data, combined with the linkage analysis and with the carbon chemical shift 

analysis allowed elaboration of the structure of the repeating unit of the 

polysaccharide, reported in figure 3.12. 
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  1 2 3 4 5 6 6’ 

A 
1H 5.04 4.27 3.85 4.24 4.18 3.76  3.76 

3-a-GalpNAc  
13C 96.7 49.9 78.9 69.9 72.3 62.9 - 

B 
1H 4.47 3.35 3.64 3.95 3.83 3.81 4.11 

6--Galp 
13C 105.1 72.0 73.9 70.1 75.1 71.0 - 

C 1H 4.42 3.55 3.64 3.95 3.79 3.60 3.93 

6--Galp 
13C 105.8 72.0 73.9 70.1 74.8 65.2 - 

  3 4 5 6 7 8 9 

D 
1H 1.63; 2.56 3.86 4.29 4.06 4.01 4.10 1.21 

4--Pse 
13C 34.4 73.1 48.8 74.8 54.9 70.2 18.3 

Table 3.5: Proton (600 MHz) and carbon (150 MHz) chemical shifts of CPS obtained by A. 

baumannii F4, measured at 310 K. Spectra were calibrated with respect to internal acetone (
1
H: 

2.225 ppm, 
13

C: 31.45 ppm). Structure of the repeating unit of the CPS is in figure 3.12. 

 

 
Figure 3.14: (600 MHz, D2O, 298 K) Expansion of gHSQC spectrum (black) overlapped to HMBC 

spectrum (grey) of pure CPS from A. baumannii F4. Attribution of most of the cross peaks is 

indicated nearby the corresponding density. The structure of the repeating unit of the CPS is 

reported in Figure 4.14 together with the labels used. 
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3.5 Chemical and spectroscopical analyses of CPS from A. baumannii D46 

 

A. baumannii D46 CPS is a branched polysaccharide with a backbone composed by 

GalNAc, Gal and Glc residues, all of them D configured (Figure 3.15). Its structure 

was resolved on the basis of the NMR and chemical analyses 

 

 
Figure 3.15: The structure of the repeating unit of the CPS from A. baumannii D46. For each 

residue, the chemical structure is drawn together with its abbreviated name and the label used in 

Table 3.6.  

 

     3.5.1 Chemical analyses of CPS 

 

CPS produced by Acinetobacter baumannii D46 was obtained after enzymatic 

treatment of the crude material present in the water phase of hot water phenol 

extraction. In order to eliminate LOS contamination enzymatic treated 

polysaccharide was ultracentrifuged, CPS was found in the supernatant (figure 3.16 

part a). and  labelled pure-CPS. 

Chemical analyses disclosed the occurrence of Gal, Glc and GalNAc, all of them 

with a D configuration. The methylation protocol for neutral sugars reveals a 

terminal Glc, two different Gal residues, linked at position 4 and position 6 

respectively and two GalNAc residues: one linked at position 3 and another linked 

at positions 4 and 6 
2
. Kdo, the marker of lipopolysaccharide, was not found.  
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First NMR inspection of the pure CPS returned a proton spectrum with well 

defined signals (figure 3.16 part a). It was possible to identify two signals at 5.03 

ppm and 4.97 ppm, attributable to two anomeric protons having aconfiguration 

and three signals at 4.70 ppm, 4.56 ppm and 4.42 ppm, attributable instead to three 

anomeric protons having a  configuration. The spectrum also contains two N-

acetyl signals at 2 ppm.  

 

 
Figure 3.16: 

1
H NMR spectra of CPS after (a) enzymatic purification and ultracentrifugation 

(400MHz, 298K) and (b) after smith degradation (600 MHz, 298K). Spectra were calibrated with 

acetone as internal standard (2.225 ppm). 

 

     3.5.2 NMR analyses of CPS  

 

The 
1
H NMR spectrum (figure 3.16 part a) contains five signals in the anomeric 

region (5.30–4.00 ppm) in an approximate 1:1 ratio; each signal is labelled with a 

letter (A–E) in the order of their decreasing chemical shifts.  

The 2D NMR spectra analysis of the polysaccharide permitted the complete 

assignment of proton and carbon chemical shifts (Table 3.6, structure in figure 

3.15). According to the Table 3.6, the A proton resonates at 5.03 ppm, indicating 

the aconfiguration of the anomeric centre. In the TOCSY spectrum, H-1 of A has 

correlations only with protons H-2, H-3 and H-4 the absence of other correlation 

can be the consequence of a peak cancellation due to a small J3,4 coupling constant 

characteristic of a galacto ring stereochemistry. The NOESY spectrum allowed the 

complete attribution of ring protons. The gHSQC techniques used to assign the 
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corresponding 
13

C; in particular, the C-2 resonates at 49.8 ppm suggesting the 

presence of a nitrogen bearing carbon, and the H-2 chemical shift (4.38 ppm) 

proves the acetylation of the amino function. Moreover, A is a N-acetylated a-

galactosamine and the low field shift of its C-3 signal (78.7 ppm) in comparison to 

the standard value (72.3 ppm)
3
 confirms the glycosylation at this position, figure 

3.17. In the residue B, the H-1 (4.97 ppm) shows only two cross peaks in the 

TOCSY spectrum with protons H-2 and H-4, H-3 resonated at the same value of H-

2, as is typical in a galacto configuration of sugar ring. The complete assignation 

was possible by the analysis of NOESY and HMBC spectra. This residue is 

identified as a-galactose on the basis of anomeric chemical shift, according to the 

C-3 carbon chemical shift at 80.5 ppm that proves glycosylation at this position.  

The same behaviour is found for residue C, which is identified as a -GalNAc: C-2 

chemical shift at 53.8 ppm indicates a nitrogen bearing carbon. The glycosylation 

in the C-4 and C-6 position is confirmed by the carbon chemical shift at 77.1 and 

69.2 ppm respectively.  

Residue D shows, again, the classical behaviour of a galactose residue. H-1 shows 

three TOCSY correlations with protons H-2, H-3 and H-4 respectively; complete 

assignation was possible by the analysis of NOESY spectrum. Chemical shift of C-

6 at 67.3 ppm confirms the glycosylation at this position. 

Residue E is identified as a terminal glucose. It is possible to identify all proton 

ring starting from the anomeric signal at 4.42 ppm and by COSY and TOCSY 

correlations. The methylation analysis, with the comparison between the carbons 

chemical shift and those reported in bibliography
3
, proves that the residue E is an 

external residue.  

Oligosaccharide sequence was elucidated on the basis of NOESY correlations, 

which displayed these key correlations: H-1 of A with H-4 of C, H-1 of B with H-

6’ and H-6 of D, H-1 of C with H-3 and H-4 of B, H-1 of D with H-3 and H-4 of 
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A; H-1of E with H-6 and H-6’ of C; HMBC spectrum (figure 3.17) shows 

correlation between C-1 of E and C-6 of C. 

These data, combined with the linkage analysis and with the carbon chemical shift 

analysis permitted the elaboration of the structure of the repeating unit of the 

polysaccharide, reported in figure 3.15.  

To confirm the oligosaccharidic sequence, a periodate degradation was 

performed
16

. The 
1
H NMR spectrum (figure 3.16 part b) of degraded product 

contains three signals in the anomeric region (5.30–4.00 ppm) in an approximate 

1:1 ratio; each signal is labelled with a letter (A–C) in the order of their decreasing 

chemical shifts. The analysis of 2D spectra of oligosaccharide (Figure 3.18 gHSQC 

spectrum) permitted the complete assignment of proton and carbon chemical shift 

(Table 3.7, structure in figure 3.19) and confirmed the structure of pure CPS, as 

reported in figure 3.15. 

 

Figure 3.17: (400 MHz, D2O, 298 K) Expansion of gHSQC spectrum (black) overlapped to HMBC 

spectrum (grey) of pure CPS from A. baumannii D46. Attribution of most of the cross peaks is 

indicated nearby the corresponding density. The structure of the repeating unit of the CPS is 

reported in Figure 3.15 together with the labels used. 
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Figure 3.18: The structure of the oligosaccharide obtained by Smith degradation of the pure CPS 

from A. baumannii D46. For each residue, the chemical structure is drawn together with its 

abbreviated name and the label used in Table 3.7. 

 

 

Figure 3.19: (600 MHz, D2O, 298 K) Expansion of gHSQC spectrum of oligosaccharide obtained 

by Smith degradation of pure CPS from A. baumannii D46. Attribution of most of the cross peaks is 

indicated nearby the corresponding density. The structure of the repeating unit of the 

oligosaccharide is reported in Figure 5 together with the labels used. The signals crossed are 

impurity.    
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  1 2 3 4 5 6 6’ 

A 1H 5.03 4.38 4.13 4.31 4.41 3.70 3.70 

3-a-GalpNAc  
13C 99.8 49.8 78.7 69.2 71.4 61.6 - 

B 1H 4.97 3.91 3.91 4.20 3.93 3.91 3.75 

3-a-Galp 13C 100.2 68.5 80.5 70.4 71.8 62.2 - 

C 1H 4.70 4.03 3.83 4.06 3.90 4.01 3.85 

4-6--GalpNAc 13C 104.5 53.8 71.4 77.1 73.4 69.1 - 

D 1H 4.56 3.54 3.64 4.03 3.91 3.88 3.74 

6--Galp 13C 105.7 71.6 73.7 69.7 74.8 67.3 - 

E 1H 4.42 3.28 3.47 3.40 3.40 3.91 3.74 

t--Glcp 13C 104.1 74.2 76.8 70.5 77.1 61.6  

Table 3.6: Proton (400 MHz) and carbon (100 MHz) chemical shift of CPS obtained by A. 

baumannii D46, measured at 298 K. Spectra were calibrate with respect to internal acetone (
1
H: 

2.225 ppm; 
13

C: 31.45 ppm). Structure of the repeating unit of the CPS is in figure 3.15. 

 

  1 2 3 4 5 6 6’ 

A 1H 4,95 4,02 4,06 4,06 4,4 3,78*2 - 

t-a-GalpNAc  
13C 100,1 53,9 68,5 69,4 72,0 61,6 - 

B 1H 4,92 3,9 3,99 4,19 3,94 3,96 3,63 

3-a-Galp 13C 100,1 68,9 80,3 70,7 71,9 63,8 - 

C 1H 4,71 4,01 3,82 4 3,74 3,69*2 - 

4--GalpNAc 13C 104,8 53,9 71,7 77,9 71,9 61,6 - 

D 1H - - - 3,73*2 3,97 3,76 3,57 

glycerol 13C - - - 62,5 71,9 69,9 - 

Table 3.7: Proton (600 MHz) and carbon (150 MHz) chemical shift of oligosaccharide obtained by 

periodate oxidation of pure CPS from A. baumannii D46, measured at 298 K. Spectra were calibrate 

with respect to internal acetone (
1
H: 2.225 ppm; 

13
C: 31.45 ppm). Structure of the repeating unit of 

the oligosaccharide is in figure 3.18. 
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3.6 Chemical and spectroscopical analyses of CPS from A.baumannii D78 

 

The structure of capsular polysaccharide (CPS) produced by Acinetobacter 

baumannii D78, a nosocomial pathogen, was elucidated by means chemical and 

spectroscopical analysis. 

A. baumannii D78 produces a branched polysaccharide constituted by GalpNAc, 

QuipNAc and PyrGalpNAc, all of them D configured (figure 3.20) 

 

  

Figure 3.20: The structure of the repeating unit of the CPS from A. baumannii D78. For each 

residue, the chemical structure is drawn together with its abbreviated name and the label used in 

Table 3.8. 

 

     3.6.1 Chemical analyses of CPS 

 

CPS produced by Acinetobacter baumannii D78 was obtained by enzymatic 

treatment of crude material present in water phase of hot phenol-water extraction. 

Enzyme treated material was ultracentrifuged two times, to eliminate LOS 

contamination, and CPS was found in supernatant. 
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Chemical analysis disclose the presence of QuiNAc, GalNAc, all of them D 

configured, as deducible, applying methylation protocol for neutral sugar
2
, linked 

at position 4 and at positions 4 and 6 respectively. Also a GalNAcA and a Pyr-

GalNAc were found and the linkage position was identified by the analyses of 

NMR spectra. 

Kdo, the marker of lipopolysaccharide, was not found or it was below the detection 

limit of the instrument. 

First NMR inspection of the pure CPS returned a proton spectrum with broad 

signals (figure 3.21 part b), however it was possible to identify four anomeric 

protons, in the region between 5.40 and 4.70, and four N-acetyl signals at ca. 2 

ppm. In the aliphatic proton region, between 1,0 ppm and 1,5 ppm, resonate two 

different methyl signals: one at ca. 1.2 ppm attributable to the methyl group of 

QuiNAc; the second, at 1.5, attributable instead, to a methyl group of a pyruvic 

acid. 

Since 2D spectra of pure-CPS do not present well defined signals, a mild acid 

hydrolysis was performed, in order to eliminate pyruvic acid (section 6.6.3). As 

showed by integration of methyl signals, only the 40% of pyruvic acid was 

hydrolysed (figure 3.21) obtaining a polysaccharide composed of an alternation of 

pyruvated and not pyruvated forms. However it was possible to resolve the 

structure of both by the analysis of 2D spectra. Starting from this information, it 

was possible to assign also the spectrum and to resolve the structure of native 

polysaccharide (figure 3.20). 
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Figure 3.21: 
1
H NMR spectra (600 MHz, 318K, D2O) of CPS after a) after mild acid hydrolysis and 

b) enzymatic purification. Signals of impurities are crossed. 

 

    3.6.2 NMR analyses of CPS  

 

The 
1
H NMR spectrum of acid treated polysaccharide (figure 3.21 part a) contained 

five signals in the anomeric region (5.30–4.00 ppm) in an approximate 1:1 ratio; 

these signals were labelled with a letter (A–E) in the order of their decreasing 

chemical shifts. 

Analysis of the 2D NMR spectra of the polysaccharide permitted the assignment of 

all proton and carbon chemical shifts (Table 3.8, structure in figure 3.20). 

As for A, the proton resonated at 5.27 ppm, indicating the aconfiguration of the 

anomeric centre. In the TOCSY spectrum (figure 3.22 part b), H-1 of A had only 

three correlations with protons H-2, H-3 and H-4 as occurs for a galacto-

configured residue. Complete attribution of ring protons was possible by the 

analysis NOESY spectrum (figure 3.22 part b) and gHSQC was used to assign the 

corresponding 
13

C; particularly C-2 resonating at 50.0 ppm suggest the presence of 

a nitrogen bearing carbon, and H-2 chemical shift (4.24 ppm) proved the 

acetylation of the amino function. HMBC spectrum showed a correlation between 

C-5 and a density at 172 ppm suggesting the presence of an acid group at position 

C-6 as anticipated by MGA analysis. Therefore, A was a N-acetylated a-
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galactosaminuronic residue and the low field shift of its C-4 signal (77.6 ppm) with 

respect to the standard value
3
 confirmed glycosylation at this position, figure 4. 

With regard to residue A’, its H-1 (5.27 ppm) showed only two cross peaks in the 

TOCSY spectrum with protons H-2, H-3 and H-4 indicating, also in this case, a 

galacto configuration of sugar ring. Total assignation was possible by the analysis 

of NOESY and HMBC spectra. This residue also appeared to be a 4-GalNAcA 

residue. 

Residue B was identified as a a-GalNAc, C-2 chemical shift at 50.8 ppm indicates 

a nitrogen bearing carbon. With regard to glycosylation position C-4 and C-6 

carbon chemical shift at 67.5 ppm and 63.9 ppm respectively proved glycosylation 

at these positions. The same behaviour was found for residue C, indeed, its H-1 

presents only TOCSY correlation with protons H-2 and H-3/H-4, characteristic of 

galacto configured ring and carbon chemical shifts of C-4 and C-6, respectively at 

67.5 ppm and 63.9 ppm confirming glycosylation at these positions, as showed also 

by methylation analysis. 

Residue D was identified as a a-QuiNAc, starting from anomeric signal, at 4.75 

ppm, following COSY and TOCSY correlation it was possible to identify all 

protons ring. C-2 chemical shift, 53.6 ppm, demonstrated a nitrogen bearing 

carbon, while C-3 resonating at 80.0 ppm confirmed glycosylation at this position.  

Residue E was identified as a terminal GalNAc-Pyr residue; in the high field region 

of 
1
H spectrum, it was possible to find at 1.54 ppm a singlet attributable to a methyl 

group. In HMBC spectrum is possible to identify a correlation between this 

substituent and two densities at 101 ppm and 176 ppm, respectively, attributable to 

a quaternary carbon and acid group of a pyruvic substituent
17

. Anomeric proton of 

this residue shows TOCSY correlation only with H-2, H-3 and H-4, indicating a 

galacto configuration of carbohydrate ring. The assignation was possible using 

NOESY and HMBC spectrum. The configuration of acetal carbon atoms was 

possible on the basis of bibliography data
12

; chemical shifts of CH3 substituent, 
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indeed, at 1.54 ppm and at 26 ppm and the absence of NOESY correlations 

between this and other ring protons confirm an axial orientation of methylenic 

group.  

With regards to residue F, it was identified as a terminal GalNAc on the basis of 

TOCSY correlations and bibliography data. 

The order of residue was inferred analyzing NOESY spectrum (figure 3.22 part a), 

that displayed these key correlations: H-1 of A with H-3 of D and H-1 of A’ with 

H-3 of D; H-1 of B with H-4 of A; H-1 of C with H-4 of A’;H-1 of D with H-4 of 

C and with H-4 of B; H-1 of E with H-6 an d H-6’ of B and H-1 of F with H-6 and 

H-6’ of C. The presence of two different oligosaccharides is related to a partially 

hydrolysis of pyruvic substituent as showed also from integration of 
1
H-NMR 

spectrum (figure 3.21 part a). 

 

 
Figure 3.22: (600 MHz, 318 K, D2O) Expansion of NOESY (a) and TOCSY (b) spectra of acid 

treated CPS from A. baumannii D78. Attribution of most of the cross peaks is indicated nearby the 

corresponding density. Letter labels reflect those reported in Table 3.8.  
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Starting from the information obtained from the analysis of spectra of acid treated 

CPS; it was possible to resolve broadly the spectra of a pure-CPS and to obtain its 

structure as reported in figure 3.20.  

 

 
Figure 3.23: (600 MHz, D2O, 318 K) Expansion of gHSQC spectrum acid treated CPS from A. 

baumannii D78. Attribution of most of the cross peaks is indicated nearby the corresponding 

density. The structure of the repeating unit of the CPS is reported in Figure 1 together with the 

labels used.  
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  1 2 3 4 5 6 6’ 
A 

1H 5.27 4.24 3.97 4.34 4.30 - - 

4-a-GalpANAc 
13C 100.0 50.0 67.7 79.2 71.6 173  

A' 
1H 5.27 4.16 3.92 4.29 4.28 - - 

4-a-GalpANAc 
13C 100.0 50.0 67.3 79.6 71.5 173 - 

B 
1H 4.95 4.26 4.08 4.10 4.44 3.67 3.29 

4-6-a-GalpNAc 
13C 99.8 50.8 67.5 76.0 70.1 63.9  

C 
1H 4.92 4.24 4.08 4.10 4.44 3.67 3.29 

4-6-a-GalpNAc 
13C 99.8 50.8 67.5 76.0 70.1 63.9  

D 
1H 4.75 4.01 3.87 3.36 4.26 1.21  

4-a-QuipNAc 
13C 98.9 53.6 80.0 77.3 69.0 17.2  

E 
1H 4.69 4.20 3.91 4.14 3.60 3.88*2  

t-Pyr-a-GalNAc 
13C 97.9 50,6 67.7 71.8 63.1 66.0  

F 
1H 4.65 4.08 3.84 3.90 3.76 3.73 3.64 

t-a-GalNAc 
13C 97.6 50.8 68.2 69.2 71.8 62.6  

Pyruvate 
1H 1.54 - -     

 
13C 26.0 101 176     

Table 3.8: Proton (600 MHz) and carbon (150 MHz) chemical shifts of oligosaccharidic mixture 

obtained by mild hydrolysis of pure CPS from A. baumannii D78, measured at 298 K. Spectra were 

calibrate with respect acetone as internal standard(
1
H: 2.225 ppm, 

13
C: 31.45). Structure of the 

repeating unit of the CPS is in figure 3.20. 
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3.7 Conclusions 

 

This work was conducted in collaboration with dr. J. Kenyon at the University of 

Sidney. The principal aim of this collaboration was the elucidation of biosynthetic 

pathway of CPSs produced by different nosocomial strains of Acinetobacter 

baumannii. In this contest fundamental is the knowledge of CPS polysaccharide 

structure; so far this work was conducted on five different strains of Acinetobacter 

baumannii isolate from different Australian hospitals: A. baumannii A74, D36, F4, 

D46 and D78. The analysis of different CPSs structures was performed on the basis 

of chemical and spectroscopical data. 

Starting from enzyme treated polysaccharides chemical analyses disclosed the 

presence of sugars reported in table 3.9. 

 

Strain   RESIDUES   

A74 3-D--GalpNAc 3,6-D--Galp 6-D--Glc t-a-Pse5Ac7Ac - 

D36 3-a-D-FucpNAc 3-L-a-FucpNAc 3,6-D-a-GalpNAc t-a-Aci5Ac7Ac  

F4 3-D-a-GalpNAc 6-D--Galp 6-D--Galp 2--Pse5Ac7Ac - 

D46 6-D--Galp 3-D-a-GalpNAc 4,6-D--GalpNAc t--D-Glcp 3-D-a-Galp 

D78 4-D-a-GalApNAc 3-D-a-Quip 4,6-D-a-GalpNAc t-Pyr-D-a-GalpNAc  

Table 3.9: monosaccharides identified in different strain of A.baumannii 

 

NMR analyses allowed the establishment of the CPS repeating unit for all these 

strains. Interesting was the presence in all the polysaccharides of galacto 

configured residues and in three of them of a 5,7-diamino-2-nonulosonic acid 

isomers. A. baumannii D36 produced a CPS containing an L-glycero-L-altro 

nonulosonic acid (Aci5NAc7NAc) stereoisomer which was for the first time 

isolated by a bacterial source
8
. 
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Chapter IV: Identification and structural analysis of the Lipopolysaccharides 

from different bacteria present in C.S.C.M .(Crypt Specific Core Microbiota) 

 

Introduction 

 

This work was conducted in collaboration with Prof. Sansonetti of Pasteur Institute 

of Paris, which isolated different type of bacteria from the crypt of healthy mice. 

Intestinal crypt is the place in the intestine where cells replication happens and, on 

the contrary of the intestinal lumen, was considered a sterile environment. These 

regions of intestine shielded against bacteria colonization by the combination of 

various defenses strategies like the mucus at the top of the crypt and by a rich 

cocktail of antimicrobial molecules.  

Prof. Sansonetti introduced the concept of Crypt-Specific Core Microbiota 

(C.S.C.M.) indicating a panel of different bacteria capable to colonize murine 

colonic crypt
1
. 

The existence of CSCM opens many questions, and the main point regards the role 

of bacterial CPSs and LPSs in the host immune system evasion of these bacteria. In 

this project, I have isolated all these molecules (LPS and CPS (when present)) from 

three different CSCM strains: Acinetobacter parvus 11G, Stenotrophomonas 

maltophilia BRT12, Delftia acidovorans CM30F. In this context the structure of 

the O-antigen from LPS produced by Stenotrophomonas and Delftia and the 

structure of LOS produced by Acinetobacter parvus 11G were resolved. 

These molecules were tested on different cells in order to verify their inflammatory 

power and if did exist a competition between the different molecules which could 

explain how this bacteria can survive in colonic intestinal crypt.  
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4.1 Isolation purification and characterization of the LPS produced by 

Stenotrophomonas maltophilia BRT 12. 

 

Stenotrophomonas maltophilia is an aerobic, non-fermentative, motile, Gram-

negative bacterium, which was initially classified as Pseudomonas maltophilia. It 

is an opportunistic pathogen causing bacteremia, pneumonia, and intra-abdominal 

and mucocutaneous infections in debilitated and immunocompromised patients
2
.  

In this work the structure of LPS Stenotrophomonas maltophilia strain BRT12 was 

discussed. This bacterium produces a branched capsular polysaccharide constituted 

by D-mannose (D-Manp), L-rhamnose (L-Rhap), and L-fucose (L-Fucp) linked as 

shown in figure 4.1.  

 

 

Figure 4.1: Structure of the repeating unit of the O-Chain of LOS from S. maltophilia BRT12. 

Labels reflect those reported in Table 4.1 
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4.2 Chemical and structural analyses of LPS 

 

     4.2.1 Chemical analyses of LPS 

 

Cells of Stenotrophomonas maltophilia BRT12 were extracted according to the 

PCP and hot water–phenol extractions and LPS was found in the precipitate of PCP 

extraction; precipitation of LPS in this phase could be related to its lipophilic 

nature. SDS-PAGE analysis showed the characteristic ladder pattern of LPS 

molecules (figure 4.2).  

 
Figure 4.2: SDS-PAGE (stacking gel 5%, separating gel 12%) stained with silver nitrate of A: 

standard of E. coli O55:B5 (12 g) and precipitate of PCP extraction B (12 g) 

 

Chemical analyses disclosed the occurrence of several monoses, Kdo was found, 

but as main components D-mannose (D-Manp), L-rhamnose (L-Rhap), and L-fucose 

(L-Fucp) were found attributable as constituents of O-Chain repeating unit. 

Methylation analysis detected the presence of 2,4 and terminal rhamnose, 3-fucose 

and 3-mannose
3
.  

LPS was treated with a solution of AcOH 1% to separate Lipid-A from Core region 

breaking bond between Kdo and C-6 of Glc-(II) of Lipid-A.  

Fatty acid methyl esters analysis, performed on Lipid-A showed the presence of 

several fatty acids; as showed in figure 4.3. 

A B
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Figure 4.3: Fatty Acid Methyl Esters chromatogram for Stenotrophomonas maltophilia BRT12. 

 

 
 

     4.2.2 NMR analysis of LPS 

 

1
H-NMR spectrum of acid treated LPS disclosed the diagnostic signals relative to 

the repeating unit of the O-Chain (figure 4.4): three protons in the anomeric area 

(in ratio 1:2:1 respectively) and three doublets in high field region of spectrum 

attributable to methyl signals of 6-deoxy-hexose residues. All residues were 

labelled in order of decreasing chemical shift with a letter (A-D) and the analysis of 

the homo- and heteronuclear 2D spectra led to assignment of all proton and carbon 

chemical shifts (table 4.1). 

 

Figure 4.4: (600 MHz, 298K, D2O) 
1
H NMR spectrum of the O-Chain repeating unit of S. 

maltophilia BRT12. 

 

abundance

time

5.0 4.0 3.0

a
ce

to
n

e

2.0 ppm



81 
 

Residue A was classified as a-Rha; the manno configuration explained the weak 

scalar correlation in the DQ-COSY spectrum relating H-2 to its vicinal protons (H-

1 and H-3) and one strong between H-3 and H-4. C-2 (77.8 ppm) and C-4 (77.50 

ppm) resonated in the down field region of HSQC (figure 4.5) spectrum and were 

identified as linked positions. 

Signal at 5.04 ppm included both  residues B and C, later identified as a-Rha 

anda-Fuc, respectively, on the basis of small value of 
3
JH1-H2 of B and 

3
JH3-H4 of C. 

In the DQ-COSY spectrum this signal presented two different correlations with H-

2 of B and H-2 of C at 4.07 ppm and 3.90 ppm, respectively; starting from each H-

2 proton, it was possible to discriminate between two residues. The aconfiguration 

of A, B, and C was inferred by the H-1 chemical shift and by comparing the C-5 

chemical shift with respect to the standard value of methyl deoxypyranoside 
 4

. 

Therefore residue B was an a-Rha and  comparison between its carbons chemical 

shifts and those reported in bibliography, proved that it was terminal in agreement 

with methylation analysis. Residue C, instead, was an a-Fuc and the low field shift 

of its C-3 signal (78.5 ppm) with respect to the standard value (72.3 ppm) proved 

glycosylation at this position (figure 4.5)
4
. 

Residue D was identified as an a-Man on the basis of weak value of 
3
JH1-H2 and 

3
JH2-H3 coupling constants; complete assignation was possible analyzing TOCSY 

and COSY correlation and the low field shift of its C-3 (78.6 ppm) confirmed 

glycosylation in this position.  

Oligosaccharide sequence was elucidated by the analysis of long range correlation; 

HMBC spectrum (figure 4.5 part a)  showed these keys correlations: H-1 of residue 

A and C-3 of residue D, H-1of B with C-3 of C, H-1of C with C-2 of A and H-1 of 

D with C-4 of A.  

These data, combined with the linkage analysis and with the analysis of carbon 

chemical shifts allowed elaboration of the structure of the repeating unit of the 

polysaccharide, reported in figure 4.1. 
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Figure 4.5: (600 MHz, D2O, 298 K) Part a: Expansion of anomeric region of gHSQC spectrum 

(black) overlapped to HMBC spectrum (grey) of O-Chain repeating unit of LPS from S. maltophilia 

BRT12.  

Part b: Part a: Expansion of gHSQC spectrum of O-Chain repeating unit of LPS from S. maltophilia 

BRT12.  

Attribution of most of the cross peaks is indicated nearby the corresponding density. The structure 

of the O-Chain repeating unit is reported in Figure 4.1 together with the labels used. 
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  1 2 3 4 5 6 6’ 

A 
1H 5.10 4.03 4.10 3.77 4.04 1.36 - 

2,4-a-Rhap 
13C 94.8 77.8 70.9 77.5 69.1 18.3 - 

B 
1H 5.04 4.07 3.86 3.48 3.83 1.29 - 

t-a-Rhap 
13C 103.5 71.4 71.3 73.2 70.3 17.9 - 

C 1H 5.04 3.90 4.02 3.89 4.39 1.20 - 

3-a-Fucp 
13C 98.9 68.4 78.5 73.0 68.3 17.8 - 

D 
1H 4.89 4.29 3.72 3.64 3.38 3.94 3.76 

3-a-Man 
13C 101.6 68.1 78.6 66.3 77.4 62.1 - 

Table 4.1: Proton (600 MHz) and carbon (150 MHz) chemical shifts at 298K in D2O measured for 

O-Chain of S. maltophilia. Spectra were calibrated with respect to internal acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Structure of the repeating unit of the O-Chain is in figure 4.1 
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4.3 Isolation and purification of LPS from Delftia acidovorans CM30F 

 

Delftia acidovorans in an aerobic, non-fermentative, Gram-negative bacterium 

involved in several diseases like corneal ulcers, infection of urinary tract and 

respiratory diseases
5
. The structure of O-antigen portions of the LPS produced by 

Delftia acidovorans strain CM30F was elucidated on the basis of chemical and 

spectroscopical analyses. This bacterium produces an O-chain constituted by D-

glucose (D-Glcp), N-acetyl-D-glucosamine (D-GlcpNAc), and L-rhamnose (L-

Rhap), linked as shown in figure 4.6.  

 

Figure 4.6: Structure of the repeating unit of the O-Chain of LPS from D. acidovorans 30F. Labels reflect 

those reported in Table 4.2. 

 

The structure of Lipid-A was resolved on the basis of MALDI-TOF analysis and it 

presented a conserved biphophorylated disaccharide backbone substituted by C8:0 

(3OH) and C10:0 (3OH) as primary fatty acids substituted with a C12:0 and C16:0 

(figure 4.10). 

 

     4.3.1 Chemical analyses of LPS  

 

Cells of Delftia acidovorans CM30F were extracted according to hot water–phenol 

protocol and LPS was recovered in both phase; these were purified by enzymatic 

treatments and ultracentrifugation (section 6.2.3.3). Chemical analyses disclosed 
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the presence of D-Glcp, D-GlcpNAc, L-Rhap and Kdo. Methylation analysis 

detected, as main residues, 3-Rha, 2,4-Glc and t-GlcNAc
2
. Fatty acid methyl esters 

analysis showed the presence of several fatty acids: 8:0 (3OH), 10:0 (3OH), 12:0, 

14:0, 16:1
9
, 16:0, 18:1

9
, 18:0.  

 

     4.3.2 NMR analyses of LPS 

 
1
H-NMR of O-chain spectrum (figure 4.7 part a) presents very broad signals; it is 

possible to indentify five anomeric signals, several overlapped signals at 1.3 ppm 

due to the methylenic groups of rhamnose units and a signals at ca. 2 ppm can be 

attributable to N-acetyl groups. gHSQC spectrum of O-chain (figure 4.9) contained 

a carbon signal of a hydromethylene group at 65 ppm and its protons were at 4.12 

ppm and 4.54 ppm respectively, these proton and carbon chemical shifts value 

compared to typical value (60-62 ppm and 3.60-3.90 ppm) suggested the presence 

of an acetyl group on this carbon (
1
H 2.05 ppm, 

13
C 23.0 ppm). Starting from this 

information, to simplify the spectrum attribution, O-Chain was deacetylated with 

NH4OH (NH3 28%) and purified on a BioGel P-10 column using NH4HCO3 50mM 

as eluent and a RID as detector. Deacetylated O-Chain was eluted in the void 

volume of column; it was collected, freeze-dried and analyzed by NMR (figure 4.7 

part b). 

 

Figure 4.7: 
1
H NMR spectra (600 MHz, 298K, D2O) of pure O-Chain repeating unit of pure LPS 

produced by Delftia acidovorans 30F(part a) and of deacetylated O-Chain polysaccharide (part b).  

5.0 4.0 3.0 2.0 ppm
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1
H-NMR spectrum of deacetylated O-chain (figure 4.4 part b) contained the 

diagnostic signals relative to repeating unit of the O-Chain: three anomeric signals 

(5.20-4.80 ppm), and one doublet (1.27 ppm) attributable to the methyl group of 

rhamnose unit. All residues were labelled in order of decreasing chemical shift with 

letter (A-C), and the analysis of the 2D NMR spectra of the polysaccharide 

permitted the assignment of all proton and carbon chemical shifts (Table 4.2, 

structure in figure 4.6). 

Residue A was identified as a 2,4-a-Glc on the basis of TOCSY and COSY 

correlations. H-1 of A, indeed, presented characteristic TOCSY correlations of a 

gluco configured residue. The a configuration was inferred on the basis H-1 

chemical shift. HSQC spectrum (figure 4.8) analysis permits the attribution of all 

carbon and confirmed glycosylation in positions C-2 (84.4 ppm) and C-4 (76.1 

ppm)
2
. 

Residue B was classified as 3-a-Rha; the manno configuration explained the weak 

scalar correlation in the DQ-COSY spectrum relating H-2 to its vicinal protons (H-

1 and H-3) and one strong between H-3 and H-4. Complete residue assignation was 

possible analyzing NOESY, TOCSY and gHSQC spectra; chemical shift of C-3 

confirmed glycosylation at this position. The a configuration of anomeric centre 

was deducted on the basis of chemical shift and comparing C-5 chemical shift with 

respect to the standard value of methyl deoxypyranoside (69.4)
4
. With regard of 

residue C it was classified as a t--GlcNAc; following COSY and TOCSY 

correlation was possible to assign all residue chemical shifts. gHSQC spectrum 

permitted to identify carbon chemical shift and confirm that C-2 (56.84 ppm) was a 

nitrogen bearing carbon
3
. The  configuration of anomeric centre was confirmed by 

chemical shift and by the intra-NOEs correlation of H-1 with H-3 and H-5. 

Repeating unit sequence was elucidated on the basis of NOESY correlations, which 

displayed these key correlations: H-1 of A with H-3 of B, H-1 of B with H-4 of A, 

H-1 of C with H-1 of B, suggesting an a-(1→2)-linkage, and H-2 of B. 
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These data, combined with the linkage analysis and with the carbon chemical shift 

analysis, permitted the elaboration of the structure of the repeating unit of the 

polysaccharide, reported in figure 4.6.  

Starting from information obtained by analysis of NMR spectra of deacetylated O-

Chain was possible to resolve also structure of native O-Chain, gHSQC in figure 

4.9. The presence of several anomeric signals suggested that GlcN’s acetylation on 

carbon C-6 was not quantitative, integration of C-5 densities, indeed, of 6Ac-GlcN 

and GlcN (residues E and F respectively) suggested a substitution degree of 60%, 

and that repeating unit of O-Chain was composed of alternative acetylated and not 

acetylated forms. 

 
Figure 4.8: (600 MHz, D2O, 298 K) Expansion of gHSQC spectrum of deacetylated O-Chain 

repeating unit of LPS from D. acidovorans 30F. Attribution of most of the cross peaks is indicated 

nearby the corresponding density. The structure of the O-Chain repeating unit is reported in Figure 

4.6 together with the labels used. 
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Figure 4.9: (600 MHz, D2O, 298 K) Expansion of gHSQC spectrum of pure O-Chain repeating unit 

of pure LPS from D. acidovorans 30F. Attribution of most of the cross peaks is indicated nearby the 

corresponding density. Chemical shifts in table 4.3 
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  1 2 3 4 5 6 6’ 

A 
1H 5.33 3.61 3.91 3.63 4.02 3.83 3.76 

2,4-a-Glcp 
13C 97.1 82.4 71.2 78.1 71.9 60.9 - 

B 
1H 4.92 4.26 3.80 3.54 4.06 1.27 - 

3-a-Rhap 
13C 101.4 68.4 77.5 71.4 70.2 17.9 - 

C 1H 4.67 3.75 3.57 3.44 3.45 3.95 3.77 

t--GlcNp 
13C 104.4 56.8 74.9 71.0 77.2 62.0 - 

Table 4.2: Proton (600 MHz) and carbon (150 MHz) chemical shifts at 298K in D2O measured for 

deacetylated O-Chain of LPS from D. acidovorans. Spectra were calibrated with respect to internal 

acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Structure of the repeating unit of the O-Chain is in figure 

4.6 

 
  1 2 3 4 5 6 6’ 

A 
1H 5.23 3.60 3.1 3.64 4.10 3.84 3.79 

2,4-a-Glcp 
13C 96.54 82.7 71.0 78.0 71.8 61.4 - 

B 
1H 5.28 3.59 3.91 3.61 4.01 3.83 3.78 

2,4-a-Glcp 
13C 97.0 83.12 71.0 77.6 71.83 61.4 - 

C 1H 4.92 4.23 3.44 3.49 3.94 1.29 - 

3-a-Rhap (OMe) 
13C 101.7 67.3 80.8 71.4 70.3 17.6 - 

D 
1H 4.88 4.19 3.75 3.55 4.08 1.27 - 

3-a-Rhap 
13C 101.3 68.6 78.2 71.4 70.1 17.9 - 

E 
1H 4.67 3.77 3.58 3.46 3.70 4.12 4.54. 

t--6Ac-GlcNp 
13C 104.4 56.7 74.8 71.4 74.5 65.1 - 

F 
1H 4.67 3.75 3.57 3.43 3.48 3.74 3.94 

t--GlcNp 
13C 104.4 56.9 74.6 70.8 77.2 62.0 - 

G 
1H 4.93 4.25 3.80 3.55 4.08 1.27 - 

3-a-Rhap 
13C 107.8 68.4 77.6 71.42 70.15 17.9 - 

Table 4.3: Proton (600 MHz) and carbon (150 MHz) chemical shifts at 298K in D2O measured for 

pure O-Chain of LPS from D. acidovorans. Spectra were calibrated with respect to internal acetone 

(
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Structure of the repeating unit of the O-Chain is in figure 4.6 

 

     4.3.3 Structural characterization of Lipid-A 

 

The Lipid A of Delftia acidovorans CM30F was structurally defined trough 

MALDI-TOF mass spectrometry. Ion negative spectrum (figure 4.10) of Lipid A 

showed three main groups of signals labelled A, B and C; attributed to tetra-, 

penta- and hexa-acylated species of Lipid A respectively (composition in table 4.4). 

The base peak C3 (m/z 1463.95) was composed of two C8:0(3-OH), two C10:0(3-

OH), one C12:0 and one C16:0 and a phosphate group. This sample differed from 
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C4 for the lack of a second phosphate group, and to group of signals C2 for the 

replacement of the C16:0 unit by one C14:0; while C1 presented the replacement 

of the C12:0 by one C10:0(3OH).  

 

 
Figure 4.10: Linear ion negative MALDI-MS spectrum of Lipid A from Delftia acidovorans 30F. 

Peaks attribution is reported in table 4.3, structure in upper part of figure 4.12. 

 

 

The structure of tetra-acylated Lipid-A was simply elucidated by the analysis of 

secondary fragmentations; in figure 4.11 is shown MALDI-MS-MS spectrum of 

A3 (m/z 1111.66). This lipid-A was composed by three fatty acids 3OH, which had 

to be primary, and one 16:0. Position of different fatty acids was elucidated 

analyzing the ions originated by the second fragmentation. Most relevant 

fragmentations are ions at m/z 923.7, due to a cleavage of C10:0(3OH) from C-3 of 

GlcN-(II), and ion at m/z 855.6 due to a cleavage of 16:0 from C-3 of C8:0(3OH) 

N-linked to GlcN-(I). 
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Figure 4.11: Linear ion negative MALDI-MS-MS spectrum of specie A3 belonged to Lipid A from 

Delftia acidovorans 30F. Peaks attribution is reported in table 4.4. 
 

These information together with analysis of FAME permitted to resolve MALDI-

MS-MS spectrum of C-3 (figure 4.12) and to identified structure of hexa-acylated 

Lipid-A. 

 

 
Figure 4.12: Linear ion negative MALDI-MS-MS spectrum of specie C3 belonged to Lipid A from 

Delftia acidovorans 30F. Peaks attribution is reported in table 4.4. 

OP

O

O

N

O

O

O

O

O

O

O

N

O

O

O

O

O
O

O

O

O

624.4

672.4

C10

C8

C8

C16

923.7

855.6

500 600 700 800 900 1000

Mass (m/z)

0

10

20

30

40

50

60

70

80

90

100

%
 In

te
n

s
it

y

923.7

624.4

905.7

849.6
672.4

904.7855.6

666.5

A2
1,3

- C10 OH

- H2O (met.)

- C16

- C10 OH
- C16

parent ion m/z 1111.66

P

P

OH
OH

750 870 990 1110 1230 1350

Mass (m/z)

0

10

20

30

40

50

60

70

80

90

100

%
 In

te
n

s
it

y

1276.0

1263.9

1105.7

1087.7

1207.81024.6 1294.0836.4
1019.6 1075.7854.4

parent ion m/z 1463.9

- C10 OH

- C10 OH

- C12

- C16

OP

O

O

N

O

O

O

O

O

O

O

O

N

O

O

O

O

O

O

O
O

O

O

O

1276.0

1294.0

C10

C8

C12

C8

C16

C10

1263.9

1207.86

- C10 OH
- C10 OH

- C10 OH
- C12

- C10 OH
- C16

P

P

OH



92 
 

 
Species N acyl Phosphate and fatty acids composition Ion (m/z) 

A1 4 2 x 8:0(3-OH), 10:0(3-OH), 12:0, P 1055.60 

A2 4 2 x 8:0(3-OH), 10:0(3-OH), 14:0, P 1083.63 

A3 4 2 x 8:0(3-OH), 10:0(3-OH), 16:0, P 1111,66 

    

B1 5 2 x 8:0(3-OH), 2 x 10:0(3-OH), 12:0, P 1225.72 

B2 5 2 x 8:0(3-OH), 2 x 10:0(3-OH), 16:0, P 1293.82 

B3 5 2 x 8:0(3-OH), 2 x 10:0(3-OH), 12:0, 2 x P 1305.69 

    

C1 6 2 x 8:0(3-OH), 2 x 10:0(3-OH), 16:0, P 1282.79 

C2 6 2 x 8:0(3-OH), 2 x 10:0(3-OH), 12:0, 14:0, P 1345.92 

C3 6 2 x 8:0(3-OH), 2 x 10:0(3-OH), 12:0, 16:0, P 1463.95 

C4 6 2 x 8:0(3-OH), 2 x 10:0(3-OH), 12:0, 16:0, 2 x P 1543.91 

Table 4.4: Tetra-, penta- and hexa-acylated species of Lipid A from D. acidovorans CM30F 

indentified in the ion negative MALDI-TOF spectrum (figure 4.10). The two glucosamine units 

have been omitted for clarity. 
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4.4 Isolation and purification LPS from Acinetobacter parvus 11G 

 

Acinetobacter parvus is a Gram-negative species associated with nosocomial 

infections. It is an opportunistic pathogen causing bacteremia, pneumonia, septic 

shock, and pyrexia in debilitated and immuno suppressed patients
6
. 

The sequence of Core oligosaccharide of the LOS produced by Acinetobacter 

parvus strain 11G was resolved on the basis of chemical and spectroscopical 

analyses. This bacterium produces a branched oligosaccharide constituted by D-

glucose (D-Glcp), D-galactose (D-Galp) D-glucosamine (D-GlcN), and 3-deoxy-

manno-oct-2-ulosonic acid (Kdo) linked as shown in figure 4.13.  

 

 

Figure 4.13: Complete structure of the Core oligosaccharide of LOS produced by A. parvus 11G. 

Labels reflect those reported in Table 4.5. 
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     4.4.1 Chemical analyses of LPS 

 

Acinetobacter parvus cells were extracted according to PCP method and LPS was 

found in the precipitate of PCP. Chemical analysis disclosed the presence of D-

Glcp, D-Galp D-GlcpN, and Kdo. Methylation analysis detected t-Glc, 4,6-Glc, 2-

Gal and t-GlcN. Kdo substitution pattern was not determined by GC-MS analysis 

because the protocol used was not suitable for acid residues
3
. 

Fatty acid methyl esters analysis (chromatogram figure 4.14) disclosed the 

presence of several fatty acids: 12:0, 12:0 (2OH), 12:0 (3OH), 16:1
9
, 16:0, 18:1

9
, 

and 18:0.  

 
Figure 4.14: Fatty Acid Methyl Esters chromatogram for Acinetobacter parvus 11G. 

 

     4.4.2 NMR analyses of LPS 

 

The complete structure of the Core oligosaccharide was deducted on the basis of 

the NMR spectroscopic data acquired for product isolated by alkaline degradation 

of LOS (section 6.8). 

1
H-NMR spectrum of the delipidated LOS (figure 4.15) contained six anomeric 

signals, labelled in order of their decreasing chemical shift with letters (A-F), and 

three multiplets in the high field region of the spectrum due to two Kdo residues; 

labelled Kint and Kext. The analysis of the 2D NMR spectra of the polysaccharide 

abundance

time
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permitted the assignment of all proton and carbon chemical shifts (Table 4.5, 

structure in figure 4.13). 

 

Figure 4.15: 
1
H NMR spectrum (600 MHz, 308K, D2O) of delipidated LOS from Acinetobacter 

parvus. 

 

With regard to residues A and D their anomeric protons (5.65  and 4.86 ppm, 

respectively) showed six different correlations, characteristic of gluco configured 

residues, and on the basis of ring protons and carbon resonances these residues 

were recognised as the two glucosamines which composed the backbone of the 

Lipid-A moiety of LOS. Residue B was identified as a glucose and chemical shifts 

of C-4 (80.7 ppm) and C-6 (68.6 ppm) confirmed glycosylation at this residue; the 

a configuration of anomeric proton was confirmed on the basis of chemical shift. 

Anomeric proton at 4.91 ppm was attributed to residue C; it presented in TOCSY 

spectrum all inter residue correlations characteristic of a gluco configured ring; C-2 

resonated at 58.3 ppm indicating a nitrogen bearing carbon. Therefore residue C 

was identified as a -glucosamine. The methylation analysis, with the comparison 

between the carbons chemical shift and those reported in bibliography
3
, proved that 

this was a terminal residue. Residue E showed the classical behaviour of a 

galactose residue. H-1 had three TOCSY correlations with protons H-2, H-3 and H-

4 respectively; complete assignation was possible by the analysis of T-ROESY 

spectrum and glycosylation at C-2 carbon was confirmed by the lowfield 
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displacement of its chemical shift (80.2 ppm). Analysis of the two Kdo residues 

started from diastereotopic methylenic protons H-3eq and H-3ax in the high field 

area of proton spectrum. Exploring scalar connectivities, for each Kdo, it was 

possible to identify only H-4 and H-5 due to the small coupling constant value 

3
JH5,H6. Identification of H-6 proton was possible by analyzing T-ROESY 

spectrum, in which intra NOEs correlations H-5/H-6 and H-4/H-6 were present. 

Identification of protons H-7 and H-8, for each residue, was possible following 

scalar connectivities. gHSQC spectrum (figure 4.16) permitted attribution of all 

carbon chemical shifts and chemical shifts of C-5 (74.8 ppm) and C-4 (72 ppm) 

demonstrated that Kint was glycosylated at this position. C-4 chemical shift, in 

particular, compared to typical value (68-70 ppm) suggested a glycosylation with a 

ketose residue. The presence of an inter-residue NOE contact in 2D T-ROESY 

spectra between H-3eq of Kint and H-6 of Kext was diagnostic for a α-(2→4) 

linkage
4
. 

 

 

Figure 4.16: (600 MHz, D2O, 298 K) Expansion of gHSQC spectrum of pure Core region of LPS 

from A. parvus 11G. Attribution of most of the cross peaks is indicated nearby the corresponding 

density. Chemical shifts in table 4.4 
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Complete sequence elucidation (figure 4.15) was possible by analyzing NOEs and 

long range correlations; HMBC spectrum (figure 4.17) showed the following key 

correlations: H-1 of C with C-2 of E; H-1 of E with C-6 of B; H-1 of F with C-4 of 

B; H-1 of D with C-6 of A, H-1 of B with C-5 of Kest.  

 

  1 2 3 4 5 6 6’ 

A 
1H 5.64 3.93 3.91 3.62 4.16 3.75 4.30 

6-a-GlcpN-1P 
13C 91.7 55.9 70.9 70.9 73.4 71.1 - 

B 
1H 5.30 3.58 3.97 3.96 4.35 4.08 4.62 

4,6-a-Glcp 
13C 100.1 73.0 72.3 80.7 70.5 68.6 - 

C 1H 4.91 2.91 3.61 3.38 3.48 3.77 3.94 

t--GlcpN 
13C 102.6 58.3 74.9 71.3 77.8 61.9 - 

D 
1H 4.86 3.04 3.84 3.73 3.72 3.46 3.70 

6--GlcpN-4P 
13C 100.9 56.9 73.7 74.7 75.5 63.8 - 

E 
1H 4.59 3.80 3.88 3.92 3.69 3.73 3.73 

2--Galp 
13C 102.6 80.2 74.5 70.2 76.33 64.1 - 

F 
1H 4.53 3.34 3.46 3.46 3.44 3.75 3.92 

t--Glcp 
13C 104.1 74.3 76.9 70.7 77.3 61.9 - 

 
 

3 4 5 6 7 8 8’ 

Kext 
1H 1.81/2.08 4.00 4.01 3.72 4.00 3.77 3.94 

t-a-Kdop 
13C 35.9 67.3 68.1 73.2 71.7 64.1 - 

Kint 
1H 2.01/2.10 4.10 4.32 3.75 4.04 3.67 3.90 

5,4-a-Kdop 
13C 35.9 72.1 74.8 73.6 70.1 64.6 - 

Table 4.5: Proton (600 MHz) and carbon (150 MHz) chemical shifts at 308K in D2O measured 

Core oligosaccharide of LOS produced by A. parvus 11G. Spectra were calibrated with respect to 

internal acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Structure of the repeating unit of the O-Chain is 

presented in figure 4.6 
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4.5 Biological tests 

 

Different tests were done to establish the biological activity of pure LOSs from 

different bacteria belonging to C.S.C.M. and to verify competition between 

different bacteria. Commercially available HEK293 hTLR4 cells were stably 

transfected with LPS-recognising molecular complex CD14, MD-2 and TLR-4 and 

have been stimulated with different concentration of LPSs (0.1, 0.5, 1, 10 and 100 

ng/mL) from Acinetobacter parvus 11G, Stenotrophomonas maltophilia BRT12 

and Delftia acidovorans CM30F. LPS produced by E. coli serotype O111:B4, that 

act as an antagonist on TLR4/MD2 was used at the same concentration as a 

positive control; while non-incubated HEK293 hTRL4 were used as a negative 

control. Analyses were performed monitoring activation grade of NF-B and 

cytokine CXCL8. The results (figure 4.18) showed that the two strains of 

Acinetobacter show a concentration dependent behavior similar to E. coli; in 

contrast, S. maltophilia and D. acidovorans did not show a potent 

immunostimulatory activity.  
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Figure 4.18: NF-B and cytokine CXCL8 production of HEK293 hTLR4 stimulated with 

enhancing concentration of A. parvus, S. maltophilia, D. acidovorans. Part a: NF-B activation 

upon stimulation of HEK293 hTLR4 after 4h with different LPSs concentration (0.1, 0.5, 1, 10 and 

100 ng/mL) using hexa-acylated LPS from E. coli as positive test. Part b: CXCL-8 secretion after 

stimulation of HEK293 hTLR4 after 4h with different LPSs concentration (0.1, 0.5, 1, 10 and 100 

ng/mL) using hexa-acylated LPS from E. coli as positive test. p<0.05 after Student t-Test. 

Biological activity of A. radioresistens was also tested; complete structural analysis currently 

understudy. Biological tests were performed by Prof. M. L. Bernardini from department of Biology 

and Biotechnology of University of Rome “La Sapienza”. 

 

These results suggest the possibility of the existence of a competition in the 

stimulation of the innate immune system between the different bacteria. It could be 

possible that S. maltophilia and/or D. acidovorans act  antagonist of Acinetobacter. 

In this context competition tests were performed; in particular the activation grades 

of NF-B and cytokine CXCL8 were monitored. Cells were incubated for 1h with 

different concentration of LOS from A. parvus (1, 10 and 100 ng/mL) and for 4 h 

(a

(b
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with 10 ng/mL of LPS from S. maltophilia or D. acidovorans. Results are showed 

in figure 4.19 and suggested that LPS from S. maltophilia could act as an 

antagonist of biological activity of LPS produced by A. parvus.  

 

 

Figure 4.19: Fold NF-B activation (part a): CXCL-8release (part b) upon stimulation of HEK293 

hTLR4 after 1h with 1, 10, 100 ng/mL of A. parvus LOS and the exposed with 10 ng/mL of LPS 

from S. maltophilia or D. acidovorans (4h). 

Biological tests were performed by Prof. M. L. Bernardini from department of Biology and 

Biotechnology of University of Rome “La Sapienza”. 
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4.6 Conclusions 

 

This work was conducted in collaboration with Prof. Sansonetti of Pasteur Institute, 

Paris, with the intent to characterize the cell membrane glycidic constituents 

produced by three bacteria isolated from mice intestinal crypt. 

In this context lipopolysaccharides from Stenotrophomonas maltophilia, Delftia 

acidovorans and Acinetobacter parvus were extracted, purified and characterized 

by chemical and spectroscopical approaches.  

With regards to Stenotrophomonas maltophilia, the repeating unit of O-Chain was 

resolved on the basis of chemical and spectroscopical analysis. This bacterium 

produced a branched polysaccharides composed by D-mannose (D-Manp), L-

rhamnose (L-Rhap), and L-fucose (L-Fucp) linked as showed in figure 4.1. FAME 

analysis revealed the presence of several fatty acids: 10:0, 12:0, 11:0 (3OH), 12:0 

(3OH), 14:0, 13:0 (3OH), 15:0
i
, 15:0, 16:1

9
, 16:0, 17:0, 18:1

9
, 18:0 and 20:0. 

Delftia acidovorans, instead, produced an O-Chain composed by D-glucose (D-

Glcp), N-acetyl-D-glucosamine (D-GlcpNAc), and L-rhamnose (L-Rhap), linked as 

shown in figure 4.6. Lipid-A structure was elucidate by the analysis of MALDI-MS 

and MALDI-MS-MS. It presented a conserved biphophorylated disaccharide 

backbone peculiarly substituted by C8:0 (3OH) and C10:0 (3OH) as primary fatty 

acids substituted with a C12:0 and a C16:0 (figure 4.10).  

With regards to Acinetobacter parvus this bacterium produced a 

lipooligosaccharides and the structure of the Core region was resolved on the basis 

of chemical and spectroscopical analysis. This bacterium produces a branched 

oligosaccharide constituted by D-glucose (D-Glcp), D-galactose (D-Galp) D-

glucosamine (D-Glc), and 3-deoxy-manno-oct-2-ulosonic acid (Kdo) as shown in 

figure 4.13. Fatty acid methyl esters analysis (chromatogram figure 4.14) showed 

the presence of several fatty acids: C12:0, C12:0 (2OH), C12:0 (3OH), C16:1
9
, 

C16:0, C18:1
9
, C18:0.  
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In order to verify if a competition existed between different bacteria in the 

stimulation of immune innate system receptors, biological tests were performed. 

Analyses were conducted monitoring activation grade of NF-B and cytokine 

CXCL8 in HEK293 hTLR4 cells. As shown in section 4.5, S. maltophilia and D. 

acidovorans did not show a concentration dependent immunostimulatory activity in 

contrast of LPS from A. parvus. Also, the competition assay performed indicated 

that there exists a competition in the biological activity between A. parvus and S. 

maltophilia. 
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Chapter V: Preparation of the building block for the synthesis of new 

glycoconjugates with potential activity against HIV-1 

 

Introduction 

 

The principal aim of this work is the preparation of building blocks for the 

synthesis of new aggregates having biological activity against HIV-1. Indeed, a 

monoclonal antibody named 2G12 was recently isolated that recognized mannose 

oligosaccharide repeating units present in glycoprotein gp-120 which surrounds the 

capsid of surface of HIV-1 virus and inhibits its proliferation. Unfortunately this is 

originated only after the HIV infection
1
.  

The mature gp120 is a glycosylated molecule containing high-mannose as well as 

hybrid and complex oligosaccharide structures, where it is possible to distinguish 

three different domains, referred to as D1, D2 and D3. (figure 2.1)
 2
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Figure 2.1. The cluster of terminal α-D-Man-(1→2)-α-D-Man residues of the high mannose glycan 

displayed from gp120 protein. The key part in the recognition process by mAb 2G12 is played from 

the D1 (mainly) and D3 arms. 

2G12 interacts with the cluster of a-D-Man-(1→2)-a-D-Man residues on gp-120 

and is able to act also on infected cells. 

Indeed, these glycans may be used for the design of an HIV vaccine component to 

elicit ‘‘2G12-like’’ antibodies. This project is introduced in this context whose 
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principal goal is the preparation of building blocks for the synthesis of new 

glycodendrimers with potential activity against HIV-1 virus. 

The focus is to link an oligosaccharide of mannose on a carrier of chitosan via click 

reaction in order to obtain a multivalent system that expose the mannose epitope 

and could stimulate biological activity of 2G12 antibody. Chitosan and mannose 

oligomers will be coupled using Huisgen reaction, a Cu(I) catalyzed 1,3-dipolar 

cycloaddition of azides and terminal alkynes to form 1,2,3-triazoles. This reaction 

was chosen because it is strongly selective and could be done in water solvent 

without any kind of protecting group on the reactives 
3
. According to the strategy 

chosen, the azide carrier was a low molecular weight derivative of chitosan, while 

the alkyne derivative was prepared using yeast mannan as starting material.  

Chitosan oligomers were chosen as carrier due to their biological activity and for 

the presence of several free amino functions, which can be converted to azides 

groups through diazo transfer reaction
4
.  

Starting from chitosan polymer, pure chito-azidoligomers of different size were 

obtained. The reducing end of the chitoligomers was hydrogenated in the 

corresponding alditol to prevent collateral reactions at reducing end. 

All reactions were done consecutively, without any intermediate or 

chromatographic purification of the sample. Chito-azide-oligomers mixture was 

directly purified via HPLC chromatography, yielding to the isolation of oligomers 

of different length and with different types of alditols units in pure form. It was 

possible to obtain a family of azide chito-oligomers, which are excellent precursors 

in click chemistry for the synthesis of new glycoconjugates 

Manno oligosaccharides were obtained by extract from S. cerevisiae; this 

polysaccharide was chosen because it presents a backbone of a-(16) residues 

decorated with a-(12)-linked mono- to trisaccharide side chains, with a small 

percentage of a-13)-mannose units located at the terminal part of the longest 

branches
5
. 
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Starting from manna polysaccharide following a procedure of acetolysis and thio-

glycosilation it was possible to obtain a mixture of mannose oligosaccharide 

presenting at pseudo-anomeric function and a propargyl moiety. This mixture was 

deacetylated by mild basic hydrolysis and purified following three different 

chromatographic procedures from which nine different mannose oligosaccharides 

with a length up to four units of mannose were obtained. 

 

5.1 Preparation of a carrier of chitoazido oligomers
6 

 

Chitosan is a linear polymer of -(1→4)-linked 2-amino-2-deoxy-D-glucose and 2-

acetamido-2-deoxy-D-glucose units in varying proportions. Although present in 

biomass, this polysaccharide is preferentially obtained by alkaline N-deacetylation 

of chitin (homopolymer of -(14) bound GlcNAc), a structural polysaccharide 

present in the exoskeleton of arthropods and in the cell-wall of many fungi’s. 

The peculiar physiochemical and biological properties confer to chitosan a vast 

range of applications in food, agriculture, medicine and drug delivery. However, its 

insolubility at neutral pH and its high viscosity in aqueous solution restrict its 

application. This problem is partially circumvented nowadays by making more 

soluble chitosan derivates or working with chitosan oligomers, which display 

interesting antibacterial, antitumorogenic and biological properties
7,8,9

. 

Indeed, reduction in chitosan’s molecular weight facilitates its manufacture into 

various biomedical devices, thanks to its decreased viscosity; low molecular weight 

chitosan has been shown to effectively complex DNA and prevent nuclease 

degradation in addition to improving gene expression of luciferase plasmid.  

In this frame, this work deals with preparation of chitosan oligosaccharides 

derivatives of defined length (figure 5.1), in pure form and functionalized with an 

azido function useful for further modification of the oligosaccharide scaffold 

according to the click chemistry approach
10

. 
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Figure 5.1: Different oligosaccharides obtained from chitosan later a treatment of acid hydrolysis, 

reduction, azidation and HPLC purification.  

 

     5.1.1 Hydrolysis of chitosan polymers and derivatization of free amino function 

with an azide group 

 

Chitosan polysaccharide was partially depolymerized under acid conditions with 

concentrated HCl. Strong acid hydrolysis conditions were preferred to other 

approaches (nitrous acid or enzymatic treatments
2
) because in this case the 

resulting chito-oligomers possess a higher number of free amino functions. 

Chitooligosaccharide mixture was isolated with cold acetone, centrifugation and 

freeze-drying. Figure 5.2 shows 
1
H-NMR spectrum of acid treated chitosan; there 

were different diagnostic signals: at ca 2 ppm is possible to identify methyl signals 

of the N-acetyl groups, at ca. 3.2 and 3.4 the H-2 protons of the non acetylated 

GlcN; in the region between 3.40 and 4.20 ppm are located carbinolic protons, and 

in the region between 4.50 and 5.8 ca. are located anomeric protons. At this point 

the group of signals at 4.8 correspond to H-1 of non-reducing glucosamines while 

signals at 5.04, 5.40 and 5.53 were attributed to H-1 protons of reducing 

glucosamines. Comparing the signal’s integration of H-2 of free Glc (0.09 and 

0.01) with signal’s integration of acetyl protons of GlcNAc (0.01) makes it possible 

to establish the percentage of free NH2 groups:  

NH2-free = (
𝐼𝐻−2(𝐺𝑙𝑐𝑁 )

𝐼𝐻−2(𝐺𝑙𝑐𝑁 )+ 
1

3
 𝐼𝐶𝐻3

) = 97% 

 

Equation 1: percentage of free amino group in the chitooligosaccharides mixture. 

1: n = 0, R
2

= N
3

2: n = 1, R1 = N3, R2 = NH2

3: n = 1, R1 = N3, R2 = AcNH

4: n = 1, R1 = N3, R2 = N3

5: n = 2, R1 = N3, R2 = NH2

6: n = 2, R1 = N3. R2 = AcNH

7: n = 2, R1 = N3, R2 = N3

8: n = 3, R1 = N3, R2 = N3

9: n = 4, R
1

= N
3,

R
2

= N
3

O

HO
HO N3

O

OH

O

HO R1

O

OH

OH

HO R2

OH

n

OH
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Similarly, by comparison of area of non reducing anomeric protons with reducing 

anomeric protons, applying equation 2, it is possible to establish the degree of 

polymerization (DP) of the oligosaccharide mixture: 

Equation 2: degree of depolymerisation of chitooligo mixture 

 

Figure 5.2: 
1
H-NMR spectrum (600 MHz in D2O, 318 K) of chito-oligomers obtained from 

hydrolysis with concentrated HCl; integrals are reported for key protons and areas are used in 

formulas 1 and 2 to evaluate the acetylation and the depolymerization degrees, respectively.  

 

To prevent parasite reactions at the reducing centre of the molecules, the mixture 

was treated with NaBH4 in neutral conditions. The reaction was performed at 

pH=7.0, in a buffer AcOH/AcONa, to ensure the solubility of the substrate, which 

otherwise precipitated at the alkaline pH generated from the reducing reagent. Free 

amino groups of reduced chito-mixture were azidated with imidazol-1-sulfonyl-

azide hydrochloride and sodium carbonate at pH=7.0 in phosphate buffer
11

. 

Reaction was conducted for 3h, at room temperature and quenched with few drops 

of ethanolamine. The mixture was directly purified by HPLC chromatography. 

 

DP = (
𝐼𝑛𝑜𝑛  𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔  𝑝𝑟𝑜𝑡𝑜𝑛𝑠

𝐼𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔  𝑝𝑟𝑜𝑡𝑜𝑛𝑠
) + 1= 5 
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     5.1.2 Chromatographic purification of different chito-oligomers 

 

The mixture of oligochitoazides was purified into its components via HPLC on 

octyl reverse phase using as eluent a solution composed by H2O/CH3OH (0.1% 

TFA) in gradient of methanol. Chromatographic profile, as shown in figure 5.3, 

confirms the presence of several peaks, which were collected and analyzed via 
1
H-

NMR spectrum. The fraction eluted within 5 minutes did not contain any material 

of interest as determined with 
1
H-NMR analysis; these fractions contained mostly 

NMR silent products, as salts, and imidazol-1-sulphonyl azide hydrochloride 

related by products. 

 

 
Figure 5.3: Expansion of RP8-HPLC profile measured at 206 nm (solid line) of the azide 

glucosamine oligoalditol mixture; separation was performed with 0.1% aqueous TFA–MeOH 

gradient (broken line); proton spectra were measured for all peaks and the most relevant ones are 

labeled with a number. *: byproduct from Stick reagent. 
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     5.1.3 NMR analysis of different chito-oligomers 

 

1
H-NMR spectra for all HPLC fractions were recorded, as shown in figure 5.4, and 

peaks 1-9 were divided into three different subgroups on the basis of functional 

group linked on C-2 of alditol residue. 

The first group comprehended oligosaccharides 1, 4, 7, 8, 9 (structure figure 5.1; 

spectrum figure 5.4); in contrast to other species, the NMR spectrum of these 

oligosaccharides does not present signal in the region between 4.2 and 4.5. These 

species, as showed by proton spectrum, were eluted in increasing order of length 

and were identified as fully azidates chitooligosaccharides.  

In this contest, as example, is discussed attribution of product 4; in the anomeric 

region two signals are present, at 4.64 ppm and 4.59 ppm, labelled with letter A 

and B respectively, attributable to two  anomeric signals on the basis of their 

chemical shift and their JH1-H2.  

Residue A was identified as a 4--GlcN3 on the basis of TOCSY and COSY 

propagation and presents NOEs interactions between H-1 and H-3 and H-5 

characteristic of a configured sugar. HSQC spectrum (figure 5.5) analysis permits 

the attribution of all carbon and confirms the C-4 (78.9 ppm) was linked; C-2 

chemical shift at 67 ppm instead at 58 ppm confirms that amino function was 

converted into an azide group. The same approach was followed in the attribution 

of residue B that was identified as a terminal GlcN3. 

 
Figure 5.4: 

1
H-NMR spectra of the three groups of chitoazide oligosaccharide alditols isolated 
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Figure 5.5: (

1
H 600 MHz, 

13
C 150 MHz) expansion of the HSQC spectrum measured at 305 K, in 

D2O, of 4 (see structure in figure 5.1). The densities of the ring protons and carbons are attributed 

using the same labels of table 1. 

Residue C was identified as alditol moiety and its attribution started from signal at 

3.92 ppm and 66.9 ppm, which was recognized as H-2 because it is situated on an 

azide bearing carbon. This shows COSY correlation with methylenic protons at 

3.91 ppm and 3.65 ppm generated by reduction of anomeric reducing function. 

Totally assignation (Table 5.1) and oligosaccharidic sequence was performed on 

the basis of TROESY and HMBC interactions: B-A-C. 

 

Table 5.1: proton (600 MHz) and carbon (150 MHz) chemical shift of 4, measured at 305 K. A and 

B residues are in the pyranosidic form and  configured at the anomeric centre. Spectra are 

calibrated with respect to internal acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Residues sequence : B-

A-C 
  1 2 3 4 5 6 

A 
1H 4.64 3.44 3.65 3.78 3.61 3.99; 3.89 

4--GlcN3 
13C 101.9 67.0 73.9 78.9 75.9 61.0 

B 
1H 4.59 3.39 3.51 3.47 3.47 3.91; 3.74 

t--GlcN3 
13C 102.4 67.2 75.5 70.5 77.4 61.7 

C 
1H 3.91; 3.65 3.92 3.92 3.86 3.98 3.76; 3.92 

4-GlcN3-alditol 
13C 62.4 66.9 70.4 78.6 71.9 63.2 

 



112 
 

A similar strategy was applied for the NMR attribution of products 1, 7, 8, 9 which 

were identified as disaccharide- , tetrasaccharide-, penta-, and esasaccharide-alditol 

respectively (figure 5.1). 

The second group of samples comprehended 2 and 5 (structure figure 5.1; spectrum 

5.4) that present as a common feature the occurrence of a doublet at 4.16 ppm, 

absent in the first group. Assignation of oligosaccharidic sequence started from 

anomeric signals and followed the same approach of the other group; with regard to 

residue C characterization started from signal at 4.16 ppm correlated with a carbon 

at 67.0 ppm, later identified as a C-3, which presents a COSY correlation with a 

nitrogen bearing proton at 3.74 ppm and 56.2 ppm. This last carbon was identified 

as a free amino group. Complete chemical shifts assignation and oligosaccharidic 

sequence was possible on the basis of TROESY and HMBC spectra. In this way 

samples 2 and 5 were identified as trisaccharide- and tetrasaccharide alditol, 

respectively. 

 

  1 2 3 4 5 6 

A 
1H 4.65 3.47 3.67 3.80 3.64 3.98; 3.91 

4-GlcN3 
13C 102.1 66.8 74.1 78.5 76.0 60.8 

B 
1H 4.59 3.39 3.50 3.47 3.46 3.91; 3.74 

t-GlcN3 
13C 102.3 67.3 78.6 70.7 77.4 61.7 

C 
1H 3.94; 3.83 3.74 4.16 3.94 3.95 3.93; 3.80 

4-GlcNH2-alditol 
13C 60.2 56.2 67.0 79.0 71.5 63.1 

Table 5.2: proton (600 MHz) and carbon (150 MHz) chemical shift of 2, measured at 298 K. A and 

B residues are in the pyranosidic form and  configured at the anomeric centre. Spectra are 

calibrated with respect to internal acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Residues sequence : B-

A-C 
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Figure 5.6: (
1
H 600 MHz, 

13
C 150 MHz) expansion of the HSQC spectrum measured at 298 K, in 

D2O, of 2 The densities of the ring protons and carbons are attributed using the same labels of table 

5.2. 

 

With regard to samples 3 and 6, characteristic is the multiplet present at 4.3 ppm 

ca. attributable to H-2 of alditol moiety. This group of samples differs from 

previous because it presents on the alditol moiety a N-acetylated amino function. . 

Samples 3 and 6, indeed, were identified as trisaccharide- and tetrasaccharide-

alditol. Figure 5.7 and table 5.3 show HSQC and chemical shift of sample 3. 

 



114 
 

 
Figure 5.7: (

1
H 600 MHz, 

13
C 150 MHz) expansion of the HSQC spectrum measured at 288 K, in 

D2O, of 3. The densities of the ring protons and carbons are attributed using the same labels of table 

5.3. 

 

  1 2 3 4 5 6 

A 
1H 4.65 3.43 3.65 3.80 3.60 3.99; 3.90 

4-GlcN3 
13C 101.9 67.1 73.9 78.4 75.8 61.0 

B 
1H 4.59 3.50 3.50 3.47 3.46 3.91; 3.74 

t-GlcN3 
13C 102.2 67.2 75.5 70.5 77.1 61.6 

C 
1H 3.70; 3.66 4.27 3.99 3.89 3.97 3.91; 3.77 

4-GlcNAc-alditol 
13C 62.8 54.3 68.9 79.1 72.1 63.2 

Table 5.3: proton (600 MHz) and carbon (150 MHz) chemical shift of 3, measured at 288 K. A and 

B residues are in the pyranosidic form and  configured at the anomeric centre. Spectra are 

calibrated with respect to internal acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm). Residues sequence : B-

A-C 
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5.2 Conversion of yeast mannan polysaccharide in mannose oligosaccharides with 

a thiopropargyl linker at anomeric position
12

 

 

Saccharomyces cerevisiae belongs to the group of facultative fermenting yeasts. 

These yeasts exhibit alcoholic fermentation under oxygen-limited conditions. The 

ability of S. cerevisiae to ferment specific sugars is a major factor that 

differentiates it from other yeasts. 

A polysaccharide, composed entirely of D-mannose, was extracted from the cell 

wall of yeast Saccharomyces cerevisiae
12

 and found that its mannan is closely 

associated with cell wall protein. Several investigations on the structure of yeast 

mannan have been reported. Methylation studies show that the molecule is highly 

branched
13

, with one end group and one branch point for every three mannose 

units, and that the polysaccharide contains α-(1→2), less α-(1→3), and α-(1→6) 

linkages. For these reasons, the mannan from S. cerevisiae was chosen as font of 

mannose α-(1→2)-linked oligosaccharides.  

Starting from yeast mannan polysaccharide; mannose oligosaccharides, having 

different length and functionalized with a propargyl linker were obtained, purified 

and characterized. Nine different oligosaccharides from mono- to tetrasaccharides 

presenting a propargyl linker were obtained and characterized (figure 5.8) 

 

Figure 5.8: Oligosaccharides isolated after chemical manipulation of yeast mannan polysaccharide. 
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     5.2.1 Acetolysis of yeast mannan 

 

Yeast mannan was fully acetylated, then dissolved in acetic anhydride/acetic acid 

solution and cleaved with sulfuric acid. At the end of the treatment, the mixture 

was poured on ice, neutralized with solid sodium carbonate and extracted with 

chloroform. The organic layer was filtered on a small silica gel plug and volatiles 

were roto-evaporated. The mixture was directly used without any purification of 

the components. 

 

     5.2.2 Preparation of thiomannopropargyl-oligosaccharides  

 

Propargyl appendage was linked to mannooligosaccharides acetylated mixture by a 

thioglycosidation
14

 (sections 6.15, 6.16 and 6.17). Fully acetylated mannose 

oligosaccharides mixture was at first converted in glycoside iodides and then in S-

isothiouronium salt. This sample in presence of an alkyl bromide, in this case 

propargyl bromide, forms thioglicosydes. As a result a complex mixture of fully 

acetylated thiopropargyl mannooligosaccharides was obtained. Purification of 

single components followed three different strategies: A) silica gel chromatography 

of the mixture, deacetylation and RP8-HPLC, B) deacetylation and RP8-HPLC, C) 

deacetylation, size exclusion chromatography and RP8-HPLC. 
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     5.2.3 Purification of different mannose oligosaccharides 

 

              5.2.3.1 Silica gel chromatography of the fully acetylated mixture and RP8-

HPLC purification of deacetylated fractions (Method A)  

 

The crude mixture of acetylate 

thopropargyl-oligosaccharides 

was purified on silica gel 

chromatography using a mixture 

of hexane/ethyl acetate in gradient 

of ethyl acetate yielding three 

different fractions: Fr-A, Fr-B and 

Fr-C. Each fraction was analyzed 

by 
1
H-NMR spectrum and 

appeared as a mixture of products. 

Each fraction was fully 

deacetylated under mild alkaline conditions and each deacetylated fraction 

(labelled Fr-dA, Fr-dB and Fr-dC) was purified by HPLC chromatography using an 

octyl reverse phase (RP8) column, and a mixture of H2O/MeOH (95/5) as eluent 

(section 6.17.1).  

Figure 5.9 shows chromatographic profile, recorded at l=206 nm. This profile 

shows the occurrence of several peaks, which were collected and analyzed via 
1
H-

NMR (figure 5.12).  

Fr-dA yielded oligosaccharides 1 and 2; Fr-dB yielded 3 and 4 and Fr-dC yielded 

4, 5 and 6 Compound were collected and global yield, table 5.5 for each kind of 

purification, was compared to starting polysaccharide material: 1 (2.8%); 3 

(12.8%), 4 (2.5%), 5 (9.5%), 6 (2.2%), figure 5.8. 

 

min4 6 8 10

mAU   
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3

4

125

Figure 5.9: expansion of RP8-HPLC profile

measured at 206 nm of deactylated Fr-B; separation

was performed with 95:5 v/v water/MeOH; peak

labels correspond to the structures reported in figure

5.8.
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              5.2.3.2 Deacetylation of the oligosaccharide mixture and RP8-HPLC 

purification (Method B) 

 

Fully acetylated mixture was 

deacetylated under mild 

conditions and deacetylated 

mixture was directly purified by 

RP8-HPLC chromatography 

using water as eluent. 

Chromatographic profile, figure 

5.10, shows several peaks, which 

were collected and analyzed by 

1
H-NMR (figure 5.12). As 

showed by chromatogram, this 

purification permits to isolate eight different species: 1 (9.6%), 2 (0.7%), 3 

(13.0%), 4 (5.5%), 5 (8.2%), 6 (3.4%), 7 (0.7%), 8 (0.7%). Yields are scaled to the 

corresponding amount of starting material (Table 5.4). 

 

              5.2.3.3 Deacetylation, size exclusion chromatography and RP8-HPLC 

purification of oligosaccharide mixture (Method C) 

 

Thiopropargyl-oligosaccharide mixture, after a deacetylation, was purified on a 

size-exclusion chromatography (Bio-Gel P-2) using water as eluent and a RID as 

detector. Chromatographic profile (figure 5.11) shows the occurrence of seven 

peaks (labeled D-L); these were collected, freeze-dried and analyzed via protonic 

spectrum. 
1
H-NMR analysis was focused on the occurrence of the doublet at ca 3.5 

ppm, characteristic of the methylene group of the propargyl glycoside. This was 

found in fractions F, G, H, containing a mixture of propargyl 
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Figure 5.10. Expansion of RP8-HPLC profile

measured at 206 nm of deacetylated oligosaccharide

mixture; labels on the peaks correspond to the

structures reported in figure 5.8
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mannooligosaccharides, and in Fr-I containing essentially a-

thiopropargyldisaccharide 3 (figure 5.8) in 95% purity. On the contrary, fractions D 

and E did not show these signals and were not considered further.  

 

Figure 5.11: chromatographic profile of size exclusion purification profile of totally deacetylated 

mixture. 

Other fractions were purified on by RP-8 HPLC using H2O/MeOH (95/5 v/v) as 

eluent; Fr-F yielded sample 8 and 9, Fr-G yielded 5, 6 and 8, Fr-H yielded 3, 4, 5 

and 6, Fr-L yielded 1 and 2. Oligomers from different purification were pooled and 

the global yield (Table 5.4) scaled to corresponding amount of starting material: 1 

(4.6%), 2 (0.3%), 3 (14.8%), 4 (2.5%), 5 (6.5%), 6 (3.1%), 8 (3.6%), 9 (1.5%). 

 

Samples Method 

 A B C 

1 2.8 9.6 4.6 

2 -- 0.7 0.3 

3 12.8 13.0 14.8 

4 2.5 5.5 2.5 

5 9.5 8.2 6.5 

6 2.2 3.4 3.1 

7 -- 0.7 -- 

8 -- 0.7 3.6 

9 -- -- 1.5 

Table 5.4: Percent yields, scaled to the corresponding starting yeast mannan (w/w), observed for the 

thiopropargyl mannooligosaccharides 1-9 (Figure 5.8) using the three different purification 

protocols. 
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      5.2.4 NMR analysis of different mannose oligosaccharides obtained 

 

NMR spectra were recorded for all products isolated (figure 5.12 shows 
1
H-NMR 

spectra for all samples). All spectra disclose a set of common signals: at 3.35 ppm 

ca. a multiplet attributable to the diastereotopic methylene protons of the 

thiopropargyl moiety, its carbon at 20 ppm; the sulfur-linked carbon atom at 84 

ppm ca for both aand -anomers and H-5 of the -configured residues that 

resonate nearby the methylene protons of propargyl linker.  

The complete characterization of all products, 1-9, was possible on the basis of 

information from 2D NMR experiments (Table 5.5 reports protons and carbons 

chemical shifts for all samples) and the same approach was followed for all 

samples. The total characterization of sample 5 is discussed as follows. 

 
Figure 5.12: (600 MHz, 298K) 

1
H-NMR spectra of the propargyl oligomannothioglycosides 

obtained in the course of this study. Structures are listed in figure 1. Signals with an asterisk are 

impurities 
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Product 5 presented three anomeric protons at 5.75, 5.31 and 5.04 ppm, which were 

labelled with letters A, B and C, respectively; each anomeric proton correlated in 

the HSQC spectrum with its carbon atom, and of relevance the highly shielded 

value of C-1 of A which was found at 83.9 ppm, characteristic of a sulfur-bearing 

carbon atom.  

Starting from each anomeric proton, COSY spectrum returned a very weak 

correlation with the corresponding H-2, due to manno configuration of the sugar 

ring; starting from this proton TOCSY spectrum displayed all the correlations of 

the sugar ring protons. Indeed, COSY and TOCSY spectra interpretation led to 

assign all the proton chemical shift resonances for each residue. These data were 

integrated from the HSQC spectrum and analysis of the carbon chemical shifts 

disclosed that C was a-configured at the anomeric centre and terminally located, 

due to the agreement of its carbon chemical shifts with those reported for the a-

methyl-mannopyranoside
15

. Similarly, A was a-configured and the low field value 

of its C-2 (81.2 ppm) with respect to the standard value (71.2 ppm), indicated that 

this residue was O-2 substituted. The same behaviour was found for B which 

appeared as a a-2 substituted mannose; C-2 79.9 ppm.  

With regard to the propargyl moiety D, its methylene protons were found at 3.46 

and 3.37 ppm and correlated with a carbon signal at 18.7 ppm; these H-1 protons 

were further correlated in the HMBC spectrum with the anomeric carbon of residue 

A, and importantly with the two carbons on the alkyne appendage, at 81.1 ppm and 

73.2 ppm. This last signal was identified as the terminal alkyne carbon on the basis 

of literature data, and it was not detected in the HSQC spectrum (figure 5.13), due 

to chemical exchange of its proton with the deuterium of the NMR solvent.  

Finally, HMBC and ROESY spectra confirmed the residue sequence, namely C-A-

B-D. 

 



122 
 

 
Figure 5.13: (

1
H 600 MHz, 

13
C 150 MHz) expansion of the HSQC spectrum measured at 298 K, in 

D2O, of 5. The densities of the ring protons and carbons are attributed using the same labels of table 

5.5. 
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Unit Position 1 2 3 4 5 6 7 8 9 

Linker 1 3.42; 

3.31 

3.62; 

3.35 

3.47;3.

37 

3.62; 

3.43 

3.46; 

3.37 

3.61; 

3.44 

3.48; 

3.37 

3.46; 

3.36 

3.61; 

3.42 

  18.7 19.1 18.8 19.2 18.7 19.3 18.8 18.8 19.1 

 2 -- -- -- -- -- -- -- -- -- 

  81.1 81.1 81.1 81.1 81.1 81.1 81.1 81.1 81.1 

 3 -- -- -- -- -- -- -- -- -- 

  73.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2 

ManI 1 5.46 5.06 5.75 5.14 5.75 5.14 5.76 5.75 5.14 

  85.0 84.6 83.6 83.9 83.5 83.9 83.2 83.3 83.4 

 2 4.04 4.06 4.13 4.23 4.10 4.19 4.13 4.11 4.19 

  72.7 73.1 81.7 79.4 81.5 79.9 81.7 81.7 80.0 

 3 3.73 3.70 3.85 3.88 3.85 3.86 3.84 3.85 3.87 

  72.5 74.9 72.0 75.9 72.2 75.9 72.8 72.0 75.1 

 4 3.67 3.61 3.75 3.65 3.75 3.65 3.75 3.74 3.64 

  68.3 67.8 68.5 67.9 68.4 68.1 68.4 68.2 68.1 

 5 3.93 3.45 3.94 3.49 3.94 3.49 3.89 3.94 3.48 

  74.5 81.6 74.9 82.1 74.8 82.1 74.4 74.6 82.2 

 6 3.74; 

3.85 

3.73; 

3.92 

3.80; 

3.88 

3.94; 

3.72 

3.91; 

3.98 

3.94; 

3.72 

3.86; 

3.81 

3.87; 

3.81 

3.71; 

3.93 

  61.8 62.3 62.2 62.4 62.0 62.1 62.0 61.9 62.5 

ManII 1 -- -- 5.04 5.30 5.31 5.52 5.03 5.32 5.52 

  -- -- 103.8 102.8 102.1 101.4 103.7 102.0 101.4 

 2 -- -- 4.07 4.10 4.10 4.15 4.23 4.11 4.15 

  -- -- 71.3 71.4 79.9 79.6 70.9 79.8 79.8 

 3 -- -- 3.86 3.88 3.97 3.98 3.96 3.97 3.98 

  -- -- 71.9 71.5 71.4 71.4 79.4 71.0 71.3 

 4 -- -- 3.66 3.71 3.71 3.75 3.77 3.73 3.76 

  -- -- 68.1 67.7 68.2 67.9 67.5 68.1 67.8 

 5 -- -- 3.84 4.04 3.83 4.01 3.94 3.83 4.02 

  -- -- 74.6 74.6 74.5 75.8 74.7 74.4 74.5 

 6 -- -- 3.78; 

3.91 

3.88; 

3.80 

3.89; 

3.72 

3.86; 

3.77 

3.93; 

3.76 

3.90; 

3.78 

3.88; 

3.80 

  -- -- 62.2 62.0 62.4 62.0 62.3 62.0 62.2 

ManIII 1 -- -- -- -- 5.04 5.05 5.15 5.03 5.03 

  -- -- -- -- 103.6 103.4 103.5 103.3 103.1 

 2 -- -- -- -- 4.07 4.07 4.07 4.22 4.22 

  -- -- -- -- 71.1 71.3 71.3 71.6 71.0 

 3 -- -- -- -- 3.84 3.84 3.89 3.95 3.95 

  -- -- -- -- 71.6 71.6 71.5 79.0 79.2 

 4 -- -- -- -- 3.62 3.67 3.63 3.73 3.78 

  -- -- -- -- 68.1 68.1 68.1 67.4 67.5 

 5 -- -- -- -- 3.78 3.73 3.79 3.80 3.76 

  -- -- -- -- 74.5 74.3 74.5 74.5 74.5 

 6 -- -- -- -- 3.88; 

3.72 

3.86; 

3.75 

3.91; 

3.78 

3.92; 

3.73 

3.75; 

3.91 

  -- -- -- -- 62.4 62.1 62.1 62.2 62.4 
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ManIV 1 -- -- -- -- -- -- -- 5.15 5.14 

  -- -- -- -- -- -- -- 103.3 103.6 

 2 -- -- -- -- -- -- -- 4.07 4.07 

  -- -- -- -- -- -- -- 71.1 71.3 

 3 -- -- -- -- -- -- -- 3.88 3.87 

  -- -- -- -- -- -- -- 71.4 71.5 

 4 -- -- -- -- -- -- -- 3.63 3.63 

  -- -- -- -- -- -- -- 68.0 68.2 

 5 -- -- -- -- -- -- -- 3.77 3.79 

  -- -- -- -- -- -- -- 74.4 74.5 

 6 -- -- -- -- -- -- -- 3.99; 

3.75 

3.78; 

3.74 

  -- -- -- -- -- -- -- 62.1 62.1 

Table 5.5: (600 MHz, 298 K, D2O) Proton and carbon chemical shift of 1-9, spectra are calibrated 

with acetone (
1
H: 2.225 ppm, 

13
C: 31.45 ppm) as internal standard. Mannose units in the mono- or 

oligosaccharides sequence are denoted with roman number superscript with Man
I
 as the pseudo-

reducing unit linked at propargyl group via a thioglycosidic bond. 

 

5.3 Conclusions 

 

This part of the work was carried out to synthesize the building blocks for the 

preparation of new glycoconjugates having biological activity against the HIV-1. In 

particular, chemical procedures for preparation, purification and characterization of 

different chitoazidooligosaccharides and mannose alkyn- oligosaccharides having 

different length and different grade of functionalization were optimized. 

An inexpensive and rapid method to obtain pure glucosamine oligomers of 

different size starting from chitosan polymer was developed. The free amino 

groups were transformed in azide by diazo transfer reaction without any kinds of 

protecting groups. 

Mixture obtained was directly purified by HPLC using a RP-8 column and 

monitoring elution profile at 206 nm. In this way, it was possible to divide these 

molecules in three different groups on the basis of functional group linked at C-2 of 

glucitol extremity (figure 5.1).  
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All products obtained were analyzed by NMR spectroscopy and a valuable set of 

chemical shift were obtained. These molecules will be used as a carrier for 

mannose (1→2) oligosaccharides. 

Mannose epitopes were obtained from mannan polymer, which were obtained from 

mannan yeast extract. This was depolymerized with an acetolysis treatment to 

obtain a mixture of peracetylated oligosaccharides which were used directly for the 

introduction of an iodide group at pseudo anomeric end. Glycosyl iodides obtained 

were treated with thiourea and the propargyl bromide, obtaining thiopropargyl 

glycosides with a length up to four units of mannose (figure 5.8).  

The purification of mixture was done by three different chromatographic 

approaches yielding different oligosaccharides as showed in Table 5.4.  

These molecules were analyzed by NMR spectroscopy and represent a good library 

of a-(1→2) mannoses with an alkyn group suitable in click chemistry. 
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Part III: Experimental  

 

Chapter VI: Experimental method 

 

6.1 General (ELECTROPHORESYS, NMR, MALDI; GC-MS, DLS, 

CROMATOGRAPHIC PURIFICATION, HPLC) 

 

Samples were run on discontinuous SDS-PAGE (Sodium Dodecyl Sulfate 

Polyacrylamide Electrophoresis) with the Mini Protean III Bio-Rad system run at 

150 constant voltages. Samples were run on 5 % stacking gel and 15 % separating 

gel, using LPS of E. Coli O55:B5 as standard. Gels were stained according to the 

silver stain procedure for Lipopolysaccharide
1
, and Alcian blue fixative for 

negative charged polysaccharides
2
.  

NMR analyses of pure CPS were performed on a Bruker 400 MHz and on a Bruker 

600 MHz equipped with a cryo-probe. Spectra were recorded at different 

temperatures depending on different samples and are reported in the corresponding 

section. Acetone was used as internal standard (
1
H 2.225 ppm, 

13
C 31.45 ppm). 2D 

spectra (DQF-COSY, TOCSY, NOESY, gHSQC,  gHMBC and HSQCTOCSY) 

were recorded using Bruker software (TopSpin 3.1). Homonuclear experiments 

were recorded using 512 FIDs of 2048 complex with 32 scans per FID and for 

TOCSY spectrum a mixing time of 120 ms was applied. HSQC and HMBC spectra 

were acquired with 512 FIDs of 2048 complex point and 40 scans per FID for 

HSQC and 50 scans per FID for HMBC. 

Spectra were processed and analyzed using a Bruker TopSpin 3 program. 

All GC-MS analyses were performed with a Hewlett–Packard 5890 instrument, 

equipped with a SPB-5 capillary column (Supelco, 30 m x 0.25 i.d. flow rate, 0.8 

mL/min, He as a carrier gas). EI mass spectra were recorded with ionization energy 

of 70 eV and  ionizing current of 0.2 m A. The temperature program used for the 
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analyses was the following: 150 °C for 5 min, 150→280 °C at 3 °C/min, 300 °C for 

5 min.  

DLS analysis were conducted using Laser quantum SMD 6000 working at λ=5325 

Å and at 50 mW; analysis were conducted in a thermostatic bath at 25°C. 

Analytical thin layer chromatographies (TLCs) were performed on aluminium 

plates pre-coated with Merck Silica Gel 60 F254 as adsorbent. TLCs were 

developed with 10% H2SO4 in EtOH and warmed up to 130 °C.  

The chromatography column was loaded with Merck Kieselgel 60 (63–200 mesh). 

All chemicals were used as received.  

HPLC purifications were performed on a octyl reverse phase (RP8) column 

(Supelco 59354-U, 25 cm  4.6 mm i.d.) mounted on an Agilent 1100 HPLC 

instrument, equipped with a binary pump and an UV/vis detector. Separation was 

achieved working at a flow rate of 0.8 mL/min, and monitoring the eluate reading 

at 206 nm. Elution conditions differed for the purification strategy selected are 

reported in the corresponding sections. Size exclusion chromatography was run 

using Biogel and Sephadex gels as adsorbent, as described in the respective 

sections, using a RID detector (Knauer 2310). 

 

6.2 Cell membrane constituents extraction. 

 

     6.2.1 Rhizobium rubi
T
  

Rhizobium rubi
T
 DSM 6772 was grown in liquid shake culture in Nutrient Broth 

(NB No.4, SIGMA-ALDRICH, cod.03856) medium at 28°c for 40h. Cells were 

collected by centrifugation (8000 rpm, 4°C, 15 min) and freeze-dried (yield 0.13% 

g/l).  

Cells (3.1g) were extracted according to ether petroleum:chloroform:phenol 90% 

(8:5:2 v:v:v)
 3

 method. Cells were suspended in the PCP solution at room 
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temperature for 1 hour; mixture was centrifuged (8000 rpm, 4°C, 15 min) in order 

to separate supernatant from pellet. This procedure was repeated three times. 

After removal of the volatile solvents under vacuum, LOS was precipitate with 

water. Precipitate was dialyzed (cut-off 12000 Da) against water and freeze-dried 

(2.3% yield gLOS/gcells). 

The remaining pellet was extracted following hot water:phenol (1:1 v:v) 

extraction
4
, pellet was suspended in 40 mL of water and an equal volume of 90% 

phenol mixture was incubated at 70°C, with stirring, for 1 hour. Phenol-water 

separation was performed by spinning at 4°C. Phenol phase was extracted two 

more times with hot water. To eliminate phenol all phases were dialyzed against 

water (cut-off 12000 Da) and finally freeze-dried. LOS was recovered only in the 

PCP phase. 

 

         6.2.1.1 De-O-acylation of LOS from Rhizobium rubi
T 

 

LOS from Rhizobium rubi
T
 was de-O-acetylated with dry hydrazine. 70 mg of dry 

LOS were suspended in dry hydrazine (25 mg/mL) stirred at 37°C for 1 h. De-O-

acetylated LOS was recovered by precipitation with cold acetone. Supernatant was 

separated from precipitate by centrifugation (8000 rpm, 4°C, 15 min) and 

precipitate was dried under air flux at 37°C; subsequently it was washed again with 

acetone (this procedure was repeated for tree times). At the end precipitate was 

and freeze-dried; 41 mg (58% yield gde-O-LOS/gLOS ) of de-O-acetylated were 

obtained.  
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     6.2.2 Acinetobacter baumannii clinical isolates A74, D36, D78, D46 , F4 

 

Acinetobacter baumannii A74, D36, D78, D46 and F4 are multidrug resistant 

(MDR) clinical isolates representative of a clonal lineage causing nosocomial 

infections on immune compromise people. These strains were isolated from 

different Australian hospitals. 

They were cultivated in Luria Broth (LB) for 16 h at 37°C and cells were collected 

by centrifugation(8000 rpm, 4°C, 30 min). The cell pellet was resuspended in 0.9% 

saline, autoclaved and then freeze-dried (average yield ca 0.3 g/l for all strains). 

Isolation of LOS was performed on dry cells, by PCP extraction (section 8.2.1) 

(A74 yield 0.16 %,   D36 yield: 0.05% gLOS/gcells; D78 yield: 0.17% gLOS/gcells; D46 

yield: 0.18% gLOS/gcells; F4 yield: 0.05% gLOS/gcells). The remaining pellets were 

extracted according to hot water: phenol extraction (section 8.2.1) and for all 

strains preliminary electrophoresis and chemical analyses showed the presence of 

polysaccharidic material attributable to a capsule polysaccharide in the water 

phases (A74 yield : 15% gCPS/gcells, D36 yield: 14% gCPS/gcells; D78 yield: 12% 

gCPS/gcells; D46 yield: 19% gCPS/gcells; F4 yield: 14% gCPS/gcells), phenol phases were 

not investigated.  

CPSs were purified from nucleic acids, proteins and LOS by enzymatic treatment 

and, except for A74 and D36, ultracentrifugations. 

Water phase was solved in the digestion buffer (100 mM TRIS, 50 Mm NaCl, 10 

mM MgCl2, buffer at pH 7.5) at a concentration of 5 mg/mL, and treated with 

DNAse (2 % wenzyme/wcrude CPS, SIGMA-ALDRICH cod. DN25) and RNAse (2% 

wenzyme/wcrude CPS, SIGMA-ALDRICH cod. R5503) at 37°C, with stirring, over 

night. Subsequently, Proteinase K (1% wenzyme/wcrude CPS, SIGMA-ALDRICH cod. 

P5147) was added and solution was heated at 60 °C for 10 hours. After dialysis 

(cut-off 12000 Da) the sample was freeze-dried (ca 50 % yield gCPS/gwater phase for 

each sample) 
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After dialysis, enzyme treated water phase, was solved in distilled water and 

ultracentrifuged (30000 rpm, 4°C, 3h), precipitate was separated from supernatant.  

The CPS-containing supernatant were pooled and ultracentrifuged again (30000 

rpm, 4°C, 16h). Pure-CPS was found for some bacteria in supernatant but also in 

some case in the precipitate; as descripted in the respective sections (A74 yield: 

8.3% gpure-CPS/gcells; D36 6.6% gpure-CPS/gcells; D78 7.1% gpure-CPS/gcells; A388 6.8% 

gpure-CPS/gcells; D46 4.7% gpure-CPS/gcells; F4 5.5% gpure-CPS/gcells). 

 

     6.2.3 Acinetobacter parvus 11G, Stenotrophomonas maltophilia (BRT112), 

Delfia acidovorans (30F) 

 

           6.2.3.1 Acinetobacter parvus 11G 

 

Acinetobacter 11G cells (8.0 g) were extracted according to PCP and hot 

water/phenol (1/1 v/v) extractions (section 8.2.1). LOS 62 mg (0.8 % yield g/gcells) 

was found in PCP phase. Remaining pellet was extracted via hot water/phenol 

extraction; obtaining 1.225 g (15.2% yield g/gcells) from the water phase and 405 

mg (5.1 % yield g/gcells) from phenol phase. Since preliminary analysis showed that 

LOS with a good degree of purification was found only in PCP precipitate only this 

sample was used for the chemical and spectroscopic analyses. 

 

           6.2.3.2 Stenotrophomonas maltophilia (BRT112) 

 

Stenotrophomonas maltophilia (BRT112) cells (11.5 g) were extracted according to 

PCP and hot water:phenol methods (8.2.1). In the PCP phase were obtained 70 mg 

(0.6 % yield g/gcells) of LPS (precipitation of LPS in this phase could be related to 
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its lipophilic nature). Remaining pellet was extracted by hot water:phenol 

extraction. In this case it was not possible to separate water phase from phenol 

phase; mixture was dialyzed, freeze dried and 1.613 g (14.1 % yield g/gcells) were 

obtained. Since preliminary analyses showed the presence of LPS, this sample was 

centrifuged (8000 rpm, 4°C, 20 min) and precipitate (544 mg 4.7% yield g/gcells) 

was separated from supernatant. This was ultracentrifuged (30000 rpm, 4°C, 1h) 

obtaining 254 mg of precipitate (2.2 % yield g/gcells) while supernatant was 

ultracentrifuged again (40000 rpm, 4°C, O.N.). 657 mg (5.7 % yield g/gcells) of 

supernatant and 190 mg (1.6 % yield g/gcells) of precipitate were obtained. All 

samples were analyzed by SDS page and LPS was found in the last precipitate. 

 

           6.2.3.3 Delftia acidovorans (30F) 

 

Delftia acidovorans (30F) cells (13.7 g) were extracted according to PCP 

extraction and hot water/phenol protocols (8.2.1). LOS was not found in PCP 

phase. The remaining pellet was then extracted by hot water:phenol extraction 

obtaining 0.460 mg (3.6 % yield g/gcells) from water phase and 850 mg (6.2% yield 

g/gcells) from phenol phase. Preliminary SDS-PAGE and 
1
H-NMR analyses showed 

the presence of LPS contaminated by a large amount of nucleic acids and proteins 

in both phases. 

Crude material present in water phase was purified by enzymatic treatment (section 

8.2.2) and 127 mg of LPS (0.9 % yield g/gcells) were obtained. 

Crude material from phenol phase, was also purified via enzymatic hydrolysis. 

After dialysis, enzyme treated phenol phase was solved in distilled water and 

centrifuged (8000 rpm, 4°C, 15 min); precipitate (28 mg , 0.20% yield g/gcells) was 

separated from supernatant. The latter was ultracentrifuged (30000 rpm, 4°C, 1h) 

obtaining 54 mg of precipitate (0.4 % yield g/gcells), while supernatant was further 

ultracentrifuged (30000 rpm, 4°C, 5h); supernatant (170 mg, 1.2% yield g/gcells) 
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was then separated from precipitate (71 mg, 0.5% yield g/gcells). To obtain LPS 

with a high grade of pureness, precipitate was suspended in ca 2 mL of water and 

ultracentrifuged again (40000 rpm, 4°C, O.N.) to obtain 61 mg of precipitate (0.4% 

yield g/gcells) and 8 mg of supernatant ( 0.05% yield g/gcells). All the samples 

obtained from this purification were analyzed by SDS-PAGE. 

 

6.3 Methyl glycosides acetylated M.G.A. and fatty acid methyl esters F.A.M.E
5
. 

 

Total fatty acid content and monosaccharide composition were determined by 

treating the crude material obtained by extractions (1 mg) with methanolic HCl 1 

M at 80 °C for 16 h. The solution was extracted three times with an equal volume 

of n-hexane; the top layers (n-hexane) were combined and dried. Fatty acids methyl 

esters (FAME) were analyzed directly by GC-MS. The bottom layer (methanol) 

was dried and the O-methyl glycosides were acetylated with dry pyridine (100 μl) 

and Ac2O (50 μl) at 80 °C for 20 min. The mixture of acetylated O-methyl 

glycosides was analysed by GC-MS.  

 

6.4 Partially methylated alditol acetates A.A.P.M
5
. 

 

Glycosyl-linkage analysis was performed derivatizing monosaccharides as partially 

methylated alditol acetates (PMAA) and analysed by GC-MS
6
, 1-2 mg of sample 

was solubilized in dry DMSO (1 mL) and then powered NaOH (100 mg) was 

added to promote the sugars deprotonation (3 h, 25 °C). Solution was treated with 

200 μl of iodomethane (from 0°C to 25 °C, 16 h) and per-O-methylated 

lipopolysaccharide was extracted by adding water and chloroform to the reaction 

mixture. The organic layer was washed with 50 mL of water, dried under vacuum, 
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dissolved in 2 M TFA. After 1 h at 120 °C, it was dried and acid traces were 

removed by isopropanol washing and drying. Partially methylated 

monosaccharides were converted in alditols by reduction with NaBD4 in ethanol (1 

h, 25 °C), followed by borates treatment with methanol and AcOH. Methylated 

alditols were finally acetylated (150 l of Pyr, 150 l of Ac2O, 80 °C, 30 min.) 

and salts removed with water-chloroform extraction. 

 

6.5 Octyl glycosides acetylated 

 

The absolute configuration was determined by GC-MS analysis of the chiral 2-

octyl
7
 derivatives. Starting from M.G.A., samples were treated with 200 μl of 2-(-)-

octanol and 14 l of CH3COCl at 60°C over night. Excess of octanol was 

eliminated under air flux; then octyl glycosides were acetylated with 200 l of Pyr 

and 100 μl of acetic anhydride at 80°C for 30 minutes. The mixture of octyl 

glycosides acetylated was analyzed by GC-MS. 

 

6.6 Mild acid hydrolysis of CPSs 

 

Protonic spectra of pure CPSs from A.baumanni A74, D36 and D78, as showed in 

figure 3.3 part a, in figure 3.7 part a, and in figure 3.21 part a, returned very 

broadly signals. In order to obtain  structures easier to be analyzed by NMR, pure 

CPSs were depolymerised by mild acid treatment. 
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     6.6.1 Mild hydrolysis and purification of CPS from Acinetobacter baumannii 

A74 

 

Purified CPS (10 mg) was hydrolyzed in aq. 1% AcOH (100°C, 2 h). The 

precipitate was removed by centrifugation and the supernatant was lyophilized and 

purified by size exclusion liquid chromatography run in water on a BioGel P-10 

column (Bio-Rad, flux = 14 mL h
−1

, d = 1.5 cm, h = 110 cm), the eluate was 

monitored by an on-line refractive index detector (Knauer K-2301) and fractions 

were pooled according to the chromatographic profile recorded. CPS (6.3 mg, 63 % 

yield ghydrolyzedCPS/gpureCPS) was recovered in the void volume of the column and 

used for NMR analysis, while Pse5Ac7Ac monosaccharide was eluted later
8
. 

 

     6.6.2 Mild hydrolysis and purification of CPS from Acinetobacter baumannii 

D36 

 

Pure CPS (10 mg) was hydrolyzed with 1mL of aq. acetic acid 6% (5 h, 100°C). 

The precipitate was removed by centrifugation and supernatant was firstly freeze 

dried and then purified on BioGel P-10 gel (Bio-Rad, flux = 10 mL h
-1

, d = 1.5 cm, 

h = 100 cm) using ammonium bicarbonate 50 mM as eluent. Chromatographic 

profile was monitored by an on-line refractive index detector (Knauer K-2301) and 

fractions were pooled according to chromatographic profile. CPS (1.5 mg, 15 % 

yield ghydrolyzedCPS/gpureCPS) was recovered in the void volume of column while a 

monosaccharide mixture (1 mg, 63 % yield ghydrolyzedCPS/gpureCPS) containing L-

glycero-L-altro-5,7-diacetammido-3,5,7,9-tetradeoxy-2-nonulosonic acid was 

recovered later
9
. 
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     6.6.3 Mild hydrolysis and purification of CPS from Acinetobacter baumannii 

D78 

 

Enzyme treated CPS (18 mg) was hydrolyzed with 1 mL of TFA 0.1M (2 h, 

100°C). The precipitate was removed by centrifugation and supernatant was firstly 

freeze dried and then purified on BioGel P-10 gel (Bio-Rad, flux = 10 mL h
-1

, d = 

1.5 cm, h = 60 cm) using water as eluent. Chromatographic profile was monitored 

by an on-line refractive index detector (Knauer K-2301) and fractions were pooled 

according to chromatographic profile. CPS (6.0 mg, 33 % yield 

ghydrolyzedCPS/gpureCPS) was recovered in the void volume of column.  

 

6.7 Computational analysis 

 

Molecular Mechanic calculations were performed using MM3
*
 force field 

implemented on Maestro 9.0. MM3* force field was chosen because when 

compared to regular MM3, it performs the treatment of electrostatic interaction in 

terms of charge-charge interaction instead of dipole-dipole interactions
10

. The 

molecular mechanic approach was used to optimize dihedral angles,  and , for 

each glycosidic junction. For each disaccharide entity, both Φ and Ψ were varied 

incrementally using a grid step of 20°. Φ is defined as H1-C1-O-Caglycon and Ψ as 

C1-O-Caglycon-Haglycon. Calculation was done using a dielectric constant ε, of 80, to 

mime water solvent. Flexible maps were calculated employed DRIVE utility 

(modulated with a DEBG option 150, which causes the program to start each 

minimization from the initial input file).  

Different flexible maps were obtained for each glycosidic junction using 2D-plot 

function implemented in Maestro program. The conformation ensemble generated 

during the process of flexible map construction was used to calculate the simulated 
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intra and inter NOEs and the averaged distances, by using the program 

NOEPROM. 

 

6.8 Total delipidation of different LPSs 

 

In order to obtain oligosaccharidic part of LOS from Acinetobacter 11G, LOS was 

totally delipidated. The de-O-acylation of LOS (40 mg) was performed suspending 

sample in dry hydrazine (25 mg/mL) stirring at 37°C for 1h. De-O-acylated LOS 

was recovered by precipitation with cold acetone. The precipitate was centrifuged 

(8000 rpm, 4°C, 15 min), washed twice with cold acetone, dissolved in water and 

freeze-dried (35% yield). The sample was de-N-acylated with 4 M of KOH (10 

mg/mL) for 16h at 120°C and after neutralization was desalted by gel permeation 

chromatography on a Sephadex G-10 (Pharmacia, 1.5 x 75 cm, eluent water, flow 

12.5 mL/h) column
11

. De-acylated oligosaccharide (4 mg, 10 % yield 

gdelipidatedLPS/gpureLPS) was eluted in the void volume and was directly used for 

spectroscopical analyses. 

 

6.9 Isolation of Lipid A and O-Chain from different bacteria 

 

To obtain O-specific chain and Lipid-A, LPSs from Stenotrophomonas maltophilia 

(BRT112) and Delftia acidovorans (30F) were hydrolyzed with AcOH. 6 mg of 

samples were suspended in 600 l of AcOH 1% and heated at 100°C in order to 

promote the hydrolysis of linkage between Kdo and GlcN II of lipid-A. Heated was 

continued until the formation of white precipitate was observed (2h for 

Stenotrophomonas and 6h for Delftia). Lipid-A (1.1 mg 18% yield glipidA/gpureLPS 

for Stenotrophomonas, 1.0 mg 16.6 % yield glipidA/gpureLPS for Delftia) was obtained 

as precipitate after a centrifugation (8000 rpm, 4°C, 15 min) while O-chain was 
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found in the supernatant(2.1 mg 34.7 % yield gO-chain/gpureLPS for 

Stenotrophomonas, 1.0 mg 10 % yield gO-chain/gpureLPS for Delftia). 

 

6.10 Preparation of Liposomes ToThyRu/POPC/LOS 

 

Liposomes were prepared using lipid film procedure
12

. 

Partially delipidated LOS was dissolved in a mixture of chloroform, methanol and 

water (15:8:2 v:v:v) at a concentration of 1 mg/mL. Dissolution is slow and 

requires a gentle warming (40°C) and a 30 min sonication treatment. Appropriate 

amounts of this solution were transferred in round-bottom glass tubes and added to 

ToThyRu and POPC dissolved in chloroform. A thin film of the lipid was produced 

by evaporating the solvent with dry nitrogen gas. Final traces of solvent were 

removed by subjecting the sample to vacuum desiccation for at least 3h. The 

samples were then hydrated with H2O and vortexed. The obtained suspension was 

sonicated for 3–4 h and repeatedly extruded through polycarbonate membranes of 

100 nm pore sized. Hydration step was performed also in fetal serum bovine 

(Sigma-Aldrich F0804) in order to verify the stability of liposomes in serum.  

 

6.11 Hydrolysis of chitosan polymer and reduction of anomeric function 

 

Chitosan (230 mg, 1.43 mmol of GlcN, Sigma–Aldrich 448869, deacetylation 

degree 10%, MW 612 kDa) was dissolved in 12.5 M aqueous HCl (2.3 mL, Fluka 

96208); the solution was kept at 70 ◦C in a thermostatic oil-bath and after 150 min 

the reaction vessel was cooled at room temperature, treated with 3 volumes of ice 

cold acetone. Chitosan oligosaccharides were recovered by centrifugation (5000 

rpm, 4°C, 15 min), washed three times with cold acetone and dissolved in water; 
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the resulting solution was neutralized adding few drops of 5 M aqueous NaOH and 

freeze-dried (179 mg, 1.11 mmol of GlcN, 77.9% yield)
13

. 

To reduce anomeric function chito-oligosaccharides (50 mg) were dissolved in 0.5 

M AcOH/AcONa buffer (5.0 mL, pH 7.0) and reduced with NaBH4 (3 mg) at room 

temperature over night; the reaction was quenched by adding with few drops of 

HCl 1 M and water was roto-evaporated adding MeOH. 

 

6.12 Azidation of chitosan free amino function 

 

Reduced chitooligosaccharide mixture (50 mg, 0.310 mmol) was dissolved in 10 

mL of phosphate buffer 1M together with K2CO3  (72.4 mg, 1.7 eq.), CuSO4·5H2O 

(0,77 mg, 0.01 eq.), and imidazole-1-sulfonyl azide hydrochloride (78.1 mg, 1.2 eq; 

Stick reagent). The mixture was stirred at room temperature for 3 hours, and the 

excess of Stick reagent was quenched with few drops of ethanol-amine
14

. The 

solution was directly purified by HPLC chromatography. 

 

6.13 Chromatographic purification chito oligomers 

 

Chromatographic separation of the mixture was achieved using an RP-8 column, 

working at a flow rate of 0.8 mL/min, and using a water-methanol gradient (in both 

solution we introduced 0.1% v/v of TFA 99% Sigma-Aldrich 411564), eluent B 

(methanol) changed from 5% to 40% in 30 minutes, then immediately reached and 

stayed at 100% for 20 minutes to return then to 5%, the initial injection conditions.  

Fractions were collected from column, and freeze-dried after that methanol was 

removed with rotary evaporator. After 
1
H NMR investigation, the following 

products were indentified (figure 6.1) and these yields were observed: 1 (6.8 mg, 
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yield 13.60%), 2 (1.6 mg, 3.2%), 3 (4.3 mg, 8.6%,), 4 (5.0 mg, 10%), 5 (2.8 mg, 

5.6%), 6 (2.2 mg, yield 4.4%), 7 (4.8 mg, 9.6%), 8 (3.0 mg, 6.0%), 9 (3.3 

mg,6.6%)
15

 structure of different oligomers is reported in figure 5.1. 

 

6.14 Acetolysis of mannan polymer 

 

Vacuum dried mannan (574 mg) from Saccharomyces cerevisiae (M7504 Sigma-

Aldrich) was acetylated stirring overnight at 100°C in pyridine (20 mL) and acetic 

anhydride (20 mL). Solvents were removed under vacuum, and brown oil was 

obtained (840 mg). a-(1→6)-bonds were then cleaved dissolving the crude 

acetylated polysaccharide in acetic anhydride (20 mL) with acetic acid (20 mL) and 

concentrated sulfuric acid (2 mL). The solution was stirred at 40°C overnight, 

poured on ice, then CHCl3 (approx. 100 mL) was added and the slurry was 

neutralized with powdered NaHCO3 until no effervescence was observed. The 

organic layer was concentrated and discolored by filtration on a small silica plug 

(about 10 grams), eluted with 95:5 v/v CHCl3/MeOH. At this stage, a mixture of O-

acetylated oligosaccharides (840 mg) was obtained and used for the successive 

reaction without any further purification. 

 

6.15 Preparation of thiomannopropargyl-oligosaccharides 

 

840 mg (1.2 mmol considering a medium DP=2 with molecular weight of 678 

g/mol) of O-acetylated oligosaccharides were dissolved in CH2Cl2 (5.0 mL) and 

treated with 487 mg (1.9 mmol, 1.6 eq.) of I2 (57652 Sigma-Aldrich), and 303 l 

(1.9 mmol, 1.6 eq.) of Et3SiH (230197 Sigma-Aldrich). The reaction was stirred at 

room temperature and monitored by TLC eluted with 1:2 v/v hexane/ethyl acetate; 
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glycosyl iodides spot on TLC was UV-visible, while unreacted acetylated 

oligosaccharide, when present in the reaction mixture, gave a TLC spot visualized 

only by charring the silica plates with 10% H2SO4 in ethanol. The reaction was 

complete after 6 h and then the solution was diluted to 50 mL with CH2Cl2 and 

washed with aqueous sodium carbonate containing sodium thiosulfate. The organic 

phase was washed with water, dried over anhydrous Na2SO4, filtered and 

concentrated. 

The resulting mixture of acetylated glycosyl iodides was dissolved in CH3CN (5.0 

mL) and then treated with 137 mg (1.8 mmol, 1.5 eq) of thiourea (T8656 Sigma-

Aldrich), and the solution was heated at 60°C and stirred at this temperature for 3.5 

h. TLC showed the formation of polar products which did not migrate in the 

condition reported above, confirming the consumption of the glycosyl iodide. The 

solution was cooled to RT and treated with 267 l (2.4 mmol, 2 eq.) of CHCCH2Br 

(P51001 Sigma-Aldrich, 80% w/v in toluene) and 669 l (4.8 mmol, 4 eq.) of Et3N 

(T0886 Sigma-Aldrich). The mixture was stirred for 2h at room temperature and 

TLC, eluted with 1:2 v/v hexane/ethyl acetate and charred with 10% H2SO4 in 

ethanol, showing three different products
16

. 

 

6.16 Purification of different mannose oligosaccharides
17 

 

     6.16.1 Silica gel chromatography of the fully acetylated mixture and RP8-HPLC 

purification of deacetylated fractions 

 

The crude reaction mixture (150 mg) was purified by silica gel chromatography 

(hexane/ethyl acetate mixture from 4:1 to 1:4 v/v) to afford three fractions 

containing the alkyl thioglycosides, named Fr-A (10.2 mg; 6.7%), Fr-B (26 mg; 

17.3 %), and Fr-C (41 mg; 27.3%). Fractions were deacetylated by treatment with 
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MeOH/H2O/NH4OH (1:0.9:0.1 v/v/v) at 37°C for 2h. Volatiles were roto-

evaporated and the products were recovered freeze drying the remaining water.  

Deacetylated fractions Fr-dA, Fr-dB, and Fr-dC were purified via RP8-HPLC; the 

column was equilibrated and run isocratically with 5% MeOH in water; each 

sample was dissolved in water (10 mg/mL), centrifuged (5000 rpm, 10 min.), and 

passed through 0.2 m filters; 100 l, equivalent to 1 mg, was injected during each 

run.  

After freeze-drying, the following yields, scaled to the amount of the starting 

polysaccharide, were observed (Figure 6.8, 1 (3.1 mg, 2.8 %), 3 (14.1 mg, 12.8 %), 

4 (2.8 mg, 2.5 %), 5 (10.4 mg, 9.5 %), 6 (2.4 mg, 2.2 %). 

 

     6.16.2 Deacetylation of the oligosaccharide mixture and RP8-HPLC purification 

 

The crude reaction mixture (20 mg) was deacetylated as above (11.3 mg) and 

directly purified via RP8-HPLC; the sample was dissolved in water (1 mg/mL), 

centrifuged (5000 rpm, 10 min.), and passed through 0.2 m filters; 100 l, 

equivalent to 100 g, was injected each run. 

Chromatographic profile (Figure 5.10) showed the occurrence of several peaks, 

which were collected and analyzed via 
1
H NMR in order to identify the 

thiopropargyl oligosaccharides. 

This purification allowed the isolation of most of the thiopropargyl 

oligosaccharides; after freeze-drying the following yields, scaled to the amount of 

the starting polysaccharide, were observed (structures in figure 5.8): 1 (1.4 mg, 

9.6 %), 2 (0.1 mg, 0.7 %), 3 (1.9 mg, 13.0 %), 4 (0.8 mg, 5.5 %), 5 (1.2 mg, 8.2 %), 

6 (0.5 mg, 3.4 %), 7 (0.1 mg, 0.7 %), 8 (0.1 mg, 0.7 %). 
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     6.16.3 Deacetylation, size exclusion chromatography and RP8-HPLC 

purification of oligosaccharide mixture 
 

The crude reaction mixture (120 mg) was deacetylated as described above. The 

mixture (65 mg) was first purified on a Biogel P-2 column where seven fractions 

were obtained (Figure 6.5) :Fr-I contained 3 (11 mg) with a good grade of purity, 

Fr-D and Fr-E did not contain propargyl-derived oligosaccharides while for the 

other fractions the HPLC purification was needed. 

Fr-F, G, H and L were purified via RP8-HPLC using 5% MeOH in water as eluent. 

Each sample was dissolved in water (10 mg/mL), centrifuged (5000 rpm, 10 min.), 

and passed through 0.2m filters; 100 l, equivalent to 1 mg, was injected each 

run. 

This procedure afforded products (Figure 5.8): 1 (4.0 mg, 4.6 %), 2 (0.3 mg, 0.3 %) 

3 (13.0 mg, 14.8 %), 4 (2.2 mg, 2.5 %), 5 (5.7 mg, 6.5 %), 6 (2.7 mg, 3.1 %), 8 (3.2 

mg, 3.6 %), 9 (1.3 mg, 1.5 %), with yields scaled to the amount of the starting 

polysaccharide. 
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