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ABSTRACT 

 

The process of drug discovery, by which new potential medicines are discovered, 

is a long and intricate path that can be approached with many different strategies. 

For a long time, drugs have been discovered by studying secondary metabolites 

produced by plants and other organisms mainly as defense or as a way to interact 

with competitors and mutualists. During recent years, high-throughput screening 

(HTS) of large compounds libraries has become very popular since it promised to 

drastically fasten the process of hit identification though requiring consistent 

initial investments. However, despite the rise of combinatorial chemistry as an 

integral part of the lead discovery process, natural products still play a major role 

as starting material for drug discovery. In fact, a 2012 report1 found that of the 

175 small molecule new chemical entities developed as anticancer agents since 

1940s, 48.6% were natural derived or semi synthetic derivatives of natural 

products. 

During my PhD, I had the chance to work in different laboratories thus gaining 

knowledge in different fields ranging from natural products chemistry to HTS by 

NMR, two approaches that converge in the common purpose of identifying and 

optimizing pharmacologically active molecules. 

At the department of Pharmacy, in Naples, under the guidance of Prof. D’Auria 

and Prof. Zampella, I focused on isolation, characterization and synthetic studies 

of naturally-occurring compounds working on two different projects: isolation and 

characterization of secondary metabolites from natural sources; and design, 

synthesis and pharmacological evaluation of dual agonists of bile acid receptors.  

The investigation of bioactive natural products from the Indian soft coral 

Sinularia inelegans led to the isolation of a novel norcembranoid, named 5-epi-

norcembrenolide, along with twelve known compounds, which were characterized 

by means of high resolution mass spectrometry and 1D and 2D NMR 

experiments. All the isolated compounds, including sinuleptolide and 5-epi-

sinuleptolide for which anti-inflammatory and antiviral activities had already been 

reported, are actually under pharmacological investigation to evaluate their 

antimicrobial activity and binding to nuclear receptors. 
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As regards dual agonists of bile acid receptors, the project involved a preliminary 

synthetic study in order to produce the reference compound INT-767 and several 

analogs that were all synthesized starting from the commercially available 

chenodeoxycholic and ursodeoxycholic acids. Semi synthetic derivatives were 

tested in vitro and in vivo to evaluate their activity on the bile acid receptors FXR 

and GP-BAR1. One of the compounds turned out to be the most potent dual 

FXR/GP-BAR1 agonist so far reported and docking studies elucidated its binding 

mode in the ligand binding domains of the two receptors revealing the structural 

requisites to achieve potent GP-BAR1/FXR dual agonism. This study is relevant 

for further investigations on the functional mechanism of these two receptors and 

for the design of novel dual GP-BAR1/FXR agonists, providing new opportunities 

for the treatment of enterohepatic and metabolic disorders.  

The second part of my thesis was carried out at Sanford-Burnham Medical 

Research Institute, in San Diego, California, tutored by prof. Pellecchia and Dr. 

Barile. I applied a new screening technique known as HTS by NMR - which 

involves a target-based screening of combinatorial libraries using NMR as 

detection method - to the study of protein-protein interactions. 

The research conducted on the BIR3 domain of XIAP, an inhibitor of apoptosis 

protein, resulted in the identification of an inhibitor with a potency comparable to 

the one of the clinical candidate GDC-0152 by Genentech (Kd~30 nM), which 

went through a phase I clinical trial as anticancer agent, but endowed with a more 

favorable thermodynamic profile and a higher binding specificity. The compound 

was subjected to a process of medicinal optimization and three prodrugs are 

currently being tested to evaluate their ability of delivering the active molecule 

inside the cells.  

At the same time, I studied the ligand binding domain of EphA3, a tyrosine kinase 

receptor overexpressed in several types of cancer and involved in stem cells 

maintenance. The EphA3-LBD has been expressed for the first time in a soluble 
13C-Met-labeled form. By using HTS by NMR as screening method we identified 

first small molecule EphA3 binders endowed with good selectivity between the 

homolog receptors EphA3 and EphA4, and with dissociation constants against 

EphA3 in the range of 5-10 µM. These binders will be further optimized in order 
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to afford a useful tool to deepen our knowledge of EphA3 pathological role in 

cancer development. 
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INTRODUCTION 

 

The search for small molecule therapeutics for the treatment of diseases has 

played a critical role in drug discovery for many years. In fact, the use of herbs 

and natural extracts for healing purposes goes back thousands of years; however, 

it has only been in the past half century or so that searching for new drugs has 

become a proper science. In 1900, one-third of all deaths were caused by three 

main diseases - pneumonia, tuberculosis, and diarrhea - that are today preventable 

and/or treatable thanks to scientific research. Among them, pneumonia is the only 

one remaining a common cause of death, which is now usually due to more 

complex conditions such as cardiovascular diseases and cancer. The availability 

of drugs to control infections, hypertension, hyperlipidemia, and to some extent 

even cancer, together with improved sanitation and vaccination, increased the life 

expectancy during the twentieth century from less than 50 years in 1900 to more 

than 77 years in 2000. These are certainly great achievements for the scientific 

society but still many life-threatening conditions are in need of a cure and plenty 

of new drugs are being developed to provide it. 

The process of drug discovery, by which new potential medicines are discovered, 

is a long and complex procedure. Developing a new drug from the original idea to 

the launch of a finished product can take 12–15 years and cost more than $1 

billion.2 Briefly, a drug discovery programme initiates because there is a disease 

or clinical condition without suitable medications available and this unmet clinical 

need represents the driving motivation for a new project.  
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Figure 1. Drug discovery process from target identification and validation to filing of a compound 
and the approximate timescale for these processes. FDA, Food and Drug Administration; IND, 
Investigational New Drug; NDA, New Drug Application. Image taken from Alzheimer’s Drug 
Discovery Foundation. 

 

The initial research (pre-discovery phase), often occurring in academia, aims at 

developing a hypothesis that the inhibition or activation of a specific protein or 

pathway will result in a therapeutic effect for a disease state. The outcome of this 

activity is the selection and validation of a target which brings to the lead or drug 

discovery phase. During lead discovery, a rigorous research results in finding a 

drug-like small molecule or a biological therapeutic, typically defined 

development candidate that, after intensive and iterative optimization, will 

progress into preclinical and, if successful, into clinical development and 

ultimately will become a marketed medicine (Figures 1 and 2). 

 

 

Figure 2. Overview of drug discovery screening assays. Picture taken from Hughes et al., Br J 

Pharmacol. 2011.2 
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My research has been focused on the hit identification and hit-to-lead 

optimization processes. A ‘hit’ molecule can be defined as a compound which has 

the desired pharmacological activity in a preliminary screen and whose activity is 

confirmed upon deeper retesting. A variety of approaches exist to identify hit 

molecules but they can be basically divided into two main groups: phenotypic and 

target-based screening. The former measures the effects that compounds induce in 

cells, tissues or pathology models, while the latter looks at the effect of 

compounds on isolated target proteins via in vitro assays. At the beginning, drug 

discovery was mainly performed by phenotypic assays which don’t require  

previous knowledge of the molecular basis of diseases. Traditionally, many drugs 

have been discovered by phenotypic screening of natural extracts and identifying 

the single molecules responsible for the activity. On the other hand, since the 

beginning of the genomics era in the 1990s, the main focus of drug discovery has 

been on drug targets, leading to the so called “rational” drug design. Tremendous 

advances have been made in the development of new tools to identify compounds 

interacting with protein targets, for example high-throughput target-based 

screening assays specifically designed for protein families such as G protein-

coupled receptors and kinases. Structure-based tools that can be used to aid lead 

identification and optimization for some targets have also been developed, 

including X-ray crystallography and computational modeling and screening 

(virtual screening). All these progresses were made thanks to huge investments in 

drug research and development (R&D) in recent decades. However, the number of 

innovative new medicines approved per year by the US Food and Drug 

Administration (FDA) has not increased as expected, bringing investors to 

question the effectiveness of the new approaches.  

In the 10 years between 1999 and 2008, 100 new molecular entities (NMEs) were 

discovered through target-based approaches, 58 NMEs were discovered using 

phenotypic-based approaches, 18 NMEs were derived from modifications of 

natural substances and 56 agents were biologics.3  These data show how new 

technologies, such as high-throughput target-based screening, are noteworthy for 

the science progression but also that traditional approaches such as natural 

products chemistry are still valuable and productive. Newman and Cragg 
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periodically publish a review about the impact of natural products as source of 

new drugs.1 From the data they presented, it is clear that the utility of natural 

products as sources of novel structures, but not necessarily the final drug entity, is 

still alive and thriving. For example, from the 1940s to date, 175 new small 

molecules were found to work as anticancer agents and 48.6% of them are either 

natural products or directly derived from them. 

During my PhD course, I was lucky enough to have an insight into the different 

approaches described so far so that I can claim quite a deep knowledge of the drug 

discovery process. In the following chapters, I will describe in details my research 

work in the natural products chemistry and in the target-based high-throughput 

screening fields. My results demonstrate how both approaches have been 

successfully applied in the discovery of pharmacologically active small molecules 

that represent lead compounds for the development of a variety of therapeutic 

agents. 
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CHAPTER 1 

ISOLATION AND STRUCTURAL CHARACTERIZATION OF MARINE 

NATURALLY-OCCURRING COMPOUNDS 

 

Nature represents an endless arsenal of new bioactive molecules and the study of 

secondary metabolites has historically been of immense benefit in the drug 

discovery process. The study of terrestrial natural-occurring compounds can easily 

be traced back to the beginning of the XIX century when scientists aimed at the 

discovery of the molecules responsible for the pharmacological activity of plants 

used for centuries by the popular medicine. On the other hand, the natural 

products chemistry associated with marine species only emerged over the past 65 

years mainly as a result of the improvement of collection techniques such as scuba 

diving. 

Oceans cover more than 70% of the earth’s surface and contain more than 

300,000 species of plants and animals. 4 , 5  The diversity in species is 

extraordinarily rich on coral reefs and the Indo-Pacific Ocean exhibits the world’s 

greatest tropical marine biodiversity. This huge level of biodiversity lead to a 

massive number of interactions between different organisms that  is directly 

related to the abundance and the activity of secondary metabolites produced by 

the above-mentioned organisms. These secondary metabolites, supposed to be the 

result of evolutionary pressure such as predation or competition for space and 

resources, are shaped into structurally diverse and usually stereochemically 

complex compounds, many of which belonging to novel chemical groups never 

found before in terrestrial organisms. They often possess specific and pronounced 

biological activity that has been demonstrated in antitumor, anti-inflammatory, 

analgesia, immunomodulation, allergy, and anti-viral assays. 6  Secondary 

metabolites are mainly produced by marine invertebrates (sponges, tunicates, soft 

corals), often with the contribution of symbiotic microorganisms such as bacteria, 

cyanobacteria and fungi, even though the effective role of microorganisms to the 

secondary metabolism of marine invertebrates has not been fully understood yet. 

The production of secondary metabolites represents a strategy for survival and, 

since a potent biological activity should be considered as a rare molecular 
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property, the wider is the number of secondary metabolites produced by an 

organism, the more chances it has to win the evolutionary competition. For this 

reason, it is not surprising that a thorough chemical analysis of a single marine 

invertebrate, carried out with non-destructive spectroscopic techniques, can afford 

tens or even hundreds of secondary metabolites. 

Summarizing, simple natural organisms, as marine invertebrates, are able to 

generate new chemical structures through a multitude of different pathways and 

thus, natural products constitute a potentially infinite source of chemical diversity, 

unmatched by any synthetic chemical collection or combinatorial library. Natural 

libraries are valuable as starting point to design and develop new therapeutics and 

to gain preliminary structure-activity relationships data. However, it should be 

addressed that the discovery of a new bioactive natural molecule represents just 

the starting point of the long path leading to a marketable drug so that natural 

products are often referred to as “lead compounds”. The identification of a lead 

compound must be followed by a deep investigation of the mode of action and the 

drug-likeness of the molecule. In this context, the most interesting and promising 

natural products are small to medium molecular weight compounds. 

In spite of the difficulties associated with the limited availability of the 

compounds under investigation, which is strictly related to the limited supply of 

the biological material correctly protected for environmental concerns, some 

interesting results have been obtained. Through the combined efforts of marine 

natural product chemists and pharmacologists, an remarkable array of promising 

compounds have been identified so far. Some of these molecules are either at 

advanced stages of clinical trials or have been selected as promising candidates 

for pre-clinical evaluations. The majority of these compounds show antimicrobial 

and/or anticancer activities. Just to cite an example, trabectedin is the first 

approved anticancer drug derived from marine sources. The extract from the sea 

squirt Ecteinascidia turbinata was found to have anticancer activity back in 

1969. 7  In 2007, after almost 40 years of investigations and technology 

improvements, the EMEA gave the authorization for the marketing of trabectedin 

for the treatment of advanced soft tissue sarcoma. 
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1.1 RESEARCH STEPS 

Marine sampling starts with freeze-drying of the collected material until taken 

back to the laboratory. Samples are frozen at – 20° C till they are ready to be 

processed. Usually, a room temperature extraction affords the crude extract that is 

fractionated by liquid-liquid partitioning procedures followed by separation and 

isolation of the individual components using chromatographic techniques (liquid 

chromatography, column chromatography and high performance reversed phase 

liquid chromatography). Structural elucidation of isolated compounds is carried 

out using spectroscopic techniques, especially 2D nuclear magnetic resonance 

(NMR) and mass spectrometry (MS). 

Summarizing, the steps for the study of natural-occurring compounds can be 

outlined as follows: 

1. Isolation and purification of compounds from biologic material; 

2. Structural determination of isolated compounds; 

3. Determination of absolute and relative stereochemistry of new compounds. 

 

1.1.1 ISOLATION AND PURIFICATION PROCEDURES 

Extraction is the crucial first step in the analysis of marine organisms, because it 

is necessary to extract the desired chemical components for further separation and 

characterization. Proper actions must be taken to assure that potentially active 

constituents are not lost, distorted or destroyed during the preparation of the 

extracts. Basic operations include steps such as pre-washing and grinding to 

obtain a homogenous sample and to improve the kinetic of extraction increasing 

the contact of the sample surface with the solvent system. The election solvent is 

methanol or a mixture methanol-chloroform (2:1). Usually, three overnight 

extractions with fresh solvent are sufficient for a quantitative recovery of the 

constituents, affording the so called crude extract. 

The isolation of the constituents poses several problems, because many 

compounds may only be present in sub-milligram amount.  The nature of the 

separation problem varies considerably, from the isolation of small quantities 

(milligrams or less) for structure determination purposes to the isolation of larger 

amounts (hundreds of milligrams to gram quantities) for comprehensive 
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biological studies and semi-synthetic optimization. For these purposes, a good 

selection of different techniques and approaches is essential. 

Several partitioning procedures can be applied however, the election method is 

typically the modified Kupchan’s partitioning methodology, 8  which allows to 

fractionate the crude extract into four enriched extracts. During the process, the 

constitution of the aqueous phase is adjusted sequentially as follows (Figure 3):  

• The methanol extract is dissolved in a mixture of 10% H2O/MeOH and 

partitioned against n-hexane; the so obtained hexane extract is rich in 

lipophilic compounds.  

• The water content (% v/v) of the aqueous phase is adjusted to 30% and 

partitioned against CHCl3; compounds with medium polarity (peptides, 

macrolides, polyfuntionalized sterols, and so on) are usually found in 

this fraction. 

• The aqueous phase is concentrated to remove any trace of MeOH and 

then extracted with n-BuOH; this extract contains polar compounds 

and salts.  

The obtained fractions (n-hexane, CHCl3, n-BuOH and H2O extracts) can be 

tested in preliminary bioassays to identify interesting pharmacological activities 

or analyzed by NMR looking for chemical diversity. 

The most promising extracts are further fractioned through sequential 

chromatographic methods. At an early stage, methods with a high loading 

capacity and cheap stationary phases are required. These have traditionally been 

column chromatography on silica gel or liquid-liquid methods. On the other hand, 

following steps take advantage of smaller scale and more performing techniques 

like HPLC.  
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One of the preparative techniques I used in my research is the Medium Pressure 

Liquid Chromatography (MPLC). This is a liquid-solid chromatography in which 

the liquid mobile phase is forced through the solid stationary phase at medium 

pressure. As far as resolution is concerned, MPLC lies somewhere between flash 

chromatography and semi-preparative HPLC, being faster than flash 

chromatography and having a higher loading capacity compared to HPLC. The 

solid stationary phase can be a direct phase, like silica gel, or a bonded phase (RP-

8, RP-18). MPLC works under a pressure of 5-40 bar and can easily be loaded 

with samples in the range of 100 mg-100 g.  

High Performance (or High Pressure) Liquid Chromatography (HPLC) with direct 

or reversed-phase, is the most common chromatographic method and can be used 

with both analytical and preparative purposes. Usually, HPLC is applied as last 

step in the purification process affording compounds with a purity of 98-99%, 

suitable for biological tests. 

 

1.1.2 STRUCTURAL CHARACTERIZATION METHODS 

Structural characterization of complex organic structures is accomplished in a 

non-destructive way, with sub-milligram samples through the combined use mass 

spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). 

Figure 3. Modified Kupchan's partitioning procedure. 
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MS is an analytical technique used to determine 

the molecular mass of a compound on the basis of 

the mass-to-charge ratio (m/z ratio) of ions 

produced from the molecules. A very accurate 

measurement of the molecular mass (high 

resolution mass spectrometry) can also provide 

the molecular formula of interest. Even being a 

destructive method, it just requires few 

micrograms of compound. A mass spectrometer can be schematized as follows: 

the source converts sample molecules into ions in the gas phase, the analyzer 

separates them according to their m/z ratio and the detector records the individual 

ion current intensities at each mass giving the mass spectrum. Many different 

types of sources, as well as analyzers, can be used. The compounds described later 

were analyzed by electrospray (ESI) mass spectrometry. The ESI source is 

particularly useful in generating ions from polar compounds or macromolecules. 

The sample is simply prepared by dissolving the compound in a volatile solvent 

like H2O, MeOH, or CH3CN and volatile acids, bases or buffers are often added to 

the solution. The solution is forced through an electrospray needle to which a high 

potential difference is applied (Figure 4). This causes the spraying of droplets 

with a surface charge of the same polarity of the needle. Droplets are repelled 

from the needle towards the source sampling cone on the counter electrode. As 

evaporation of the solvent occurs, droplets shrink till they reach the Rayleigh 

limit, that is the point that the surface tension can no longer sustain the charge, 

then a "Coulombic explosion" occurs and droplets are ripped apart. The explosion 

generates smaller droplets that repeat the process until ionized molecules escape 

from the droplets by electrostatic repulsion. Electrospray is a very mild ionization 

method and its major disadvantage is that very little, usually no fragmentation at 

all, is produced. Therefore, the requirement of more complex mass spectrometry 

studies (e.g. tandem MS where the analyte molecules can be fragmented) for a 

complete structural elucidation. 

NMR is the most important spectroscopic technique used for structure 

characterization of the isolated compounds. In addition to standard 1D 1H and 13C 

Figure 4. ESI source 
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NMR spectra, a combination of 2D NMR experiments allows to fully characterize 

even extremely complex molecules. 

COSY (COrrelation SpectroscopY) is a homonuclear 2D experiment that allows 

the identification of protons that are scalarly coupled, spin systems, and is very 

useful when the multiplets overlap or when extensive second-order couplings 

complicate the 1D spectrum. 

TOCSY (TOtal Correlation SpectroscopY) shows the correlations between all 

protons within a given spin system, not only between geminal or vicinal protons 

as in COSY. Correlations are outlined between distant protons as long as there are 

couplings between every intervening proton. This is extremely useful to identify 

protons on sugar rings in oligosaccharides or amino acids in peptides: all protons 

on a given sugar ring will have a correlation with all other protons on the same 

ring but not with protons on different rings. 

ROESY (Rotating-frame Overhauser Effect SpectroscopY) outlines spatial 

proximity so, protons that are not directly bonded but are close in space (1-3 Å) 

usually show a ROE correlation. ROESY is really valuable to determine relative 

stereochemistry and conformational exchange. ROE is similar to NOE (Nuclear 

Overhauser Effect), being related to dipolar coupling between nuclei, and 

depending on the geometric distance between the nuclei. While NOE is positive 

for small molecules and negative for macromolecules, ROE is always positive. 

Therefore, the ROESY experiment is particularly useful for medium-size 

molecules, which would show a NOE close to zero. 

The HSQC (Heteronuclear Single Quantum Correlation) is a 2D NMR correlation 

in which only one-bond proton-carbon couplings (1JCH) are observed. Instead, 

HMBC (Heteronuclear Multiple Bond Correlation) identifies 2,3JCH coupling 

costants, with 3J correlations usually stronger than 2J. 

 

1.1.2.1 STEREOCHEMISTRY DETERMINATION 

The determination of absolute and relative stereochemistry is crucial for the 

characterization of natural compounds. The stereochemistry involves the study of 

the relative spatial arrangement of atoms within molecules, their three-

dimensional position in space. The stereochemistry of a molecule is a fundamental 

concept inextricably linked to molecular recognition. In fact, biological activity is 
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strictly related not to the planar structure but to the 3D arrangement of the 

molecule. It is now widely recognized that enantiomeric drugs may have different 

interactions with the human system, thus behaving very differently as regards 

their activity, toxicology, adsorption, metabolism, pharmacokinetics and 

bioavailability. 9  Thus, knowledge of the stereochemistry is important to 

understand the biological activity, the drug-receptor interaction, and also in case 

there is the needing to synthesize greater amount of the product. The majority of 

natural products has one or more stereogenic centers. Usually, in a step-by-step 

structural elucidation, the first objective is the identification of relative 

stereochemistry of chiral centers. Then, after the elucidation of absolute 

stereochemistry even at a single stereogenic carbon, it will be possible to infer the 

absolute configuration of the entire structure. Structural information from NMR 

experiments comes primarily from the chemical shift of a nucleus that is sensitive 

to the environment and is influenced by geminal and vicinal nuclei. Coupling 

constants (J) between pairs of protons separated by three or less covalent bonds 

can be measured. The value of a three-bond J contains information about the 

intervening torsion angle (θ). This is called Karplus relationship10 and has the 

form: 
3J = A cos θ2+B cos θ + C 

 

where A, B, and C are empirically derived constants for each type of coupling 

constant. The value of these couplings is generally smaller when the torsion angle 

is close to 90° (3JH-H~0-1.5 Hz) and larger at angles of 0° and 180° (usually 

J180°>J0°). Thus, it is relatively easy to discriminate between axial-axial and axial-

equatorial or equatorial-equatorial correlations of two protons within a six-

membered ring because the 3Jax-ax is about 7-9 Hz while 3Jax-eq and 3Jeq-eq are 

around 2.5 Hz. Moreover, it is possible to distinguish between cis and trans 

configuration of double bond protons (3Jcis~6-12 Hz, 3Jtrans~14-20 Hz). 

The other major source of structural information are NOE11 and ROE12, sensitive 

probes for short intra-molecular distances. NOE can be observed upon irradiation 

on a specific nucleus during the acquisition phase. In this way, the relaxation 

times of all the protons surrounding the irradiated one, even though not belonging 

to the same spin system, are influenced and this effect reflects into peaks intensity 
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changes. NOE intensity is proportional to the inverse of the sixth power of the 

distance separating two protons, so it decreases very quickly with distance and 

only protons that 2.5Å or less apart can be detected. NOEs are classified 

according to the location of the two protons involved. Intra-residual NOEs occur 

between protons within the same residue, whereas sequential, medium, and long 

range NOEs occur respectively between protons on residues sequentially adjacent, 

separated by 1, 2 or 3 residues, and separated by four or more residues in a 

polypeptide sequence. NOE effects cannot be evidenced for large molecules in 

which case ROESY can be used. 

 

1.2 SINULARIA INELEGANS 

Alcyonaceans, or soft corals, are among the most prolific producers of secondary 

metabolites in the marine environment with diterpenes and sterols as the majority 

of isolated compounds. As part of my research activity, I carried out a study of the 

secondary metabolites from a specimen of the soft coral Sinularia inelegans, 

kindly provided by Dr. Lisette D'Souza from the CSIR-National Institute of 

Oceanography, India.  

 

 

Soft corals are colonies of small animals known as polypoid cnidarians (shortened 

to polyps). These polyps rarely exceed 5 mm in diameter and are arranged in soft, 

Figure 5. Sinularia sp. 
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fleshy, irregularly shaped colonies of up to 1 meter in size.13  Special organs, 

called amebocytes, secrete calcium carbonate spicules which give rigidity and 

support to the colony. Spicules differ in shape and size within each genus and are 

actually the only way to identify different soft coral species.14 

Sinularia corals are abundant on reefs in the Indo-Pacific Ocean including Fiji, 

Tonga, Solomon islands, Indonesia and the great barrier reef. The genus Sinularia 

consists of almost 90 species of which more than 50 have been chemically 

evaluated. 15  Metabolites which have been reported from the genus Sinularia 

include sesquiterpenes, diterpenes, polyhydroxylated steroids, and polyamine 

compounds. The peculiar structure and potential medicinal value of these 

metabolites have drawn increasing attention from chemists and pharmacologists. 

Cembranes are the most frequent secondary metabolites isolated from various 

Sinularia species. They are believed to have an important role within the chemical 

defense arsenal against other reef organisms. 16  Anti-inflammatory, 17 

antimicrobial, 18  cytotoxic, 19  and antiviral 20  activities have been disclosed for 

members of the cembrane class. Their structures are based on a 14-membered 

diterpenoid, named cembrane, and are characterized by an isopropyl- and three 

methyl-substituted 14-membered rings, with structural changes in the position of 

double bonds, epoxidation, allylic and isopropyl oxidation, and carbon 

cyclization. Cembranoids can be divided into  five categories according to the 

following structural features: 

1) Isopropyl(ene)-type cembranoid diterpenes:  the alteration in the structure of 

these diterpenes lies in the migration or increase of double bonds and a high 

degree of oxidation and hydroxylation (see grandilobatin A,21 figure 6); 

2) γ-lactone-type cembranoid diterpenes:  they play a crucial role in the soft coral 

Sinularia. Many of them showed cytotoxicity and antitumor activity. In addition, 

the 5-membered lactone ring is the fundamental active center of the molecule (see 

sinularolide A,22 figure 6); 

3) δ-lactone-type cembranoid diterpenes: to date only one compound belongs to 

this class (flexilarin A,23 figure 6); 

4) ε-lactone-type cembranoid diterpenes: ε-lactone-type cembranoid diterpenes 

often possess anti-cancer activities, especially compounds with a β-exocyclic 
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double bond. A large number of these diterpenes were reported from S. flexibilis 

(see sinulaflexiolide B,24 figure 6); 

5) casbane-type cembranoid diterpenes: are strictly related to the cembrane 

structure and only differ for the presence of a dimethyl-cyclopropyl moiety rather 

than the isopropyl residue fused to the 14-membered ring. Casbane diterpenes are 

extremely rare in nature and are usually found in some species of plants (see 

microclavatin,25 figure 6). 

Norcembranoids are those that lack a C18 carbon substituent in comparison with 

C20-cembranoids. The most common norcembranoid diterpenes are the 14- 

membered macrocyclic 3(2H)-furanone-based norcembranoids (see scabrolides 

E,26 figure 6). 

 

 

 

1.2.1 ISOLATION AND STRUCTURAL CHARACTERIZATION OF 

NORCEMBRANOIDS 

A sample of Sinularia inelegans (order Alcyonacea, family Alcyoniidae) was 

collected in the Indian Ocean, immediately frozen and lyophilized. The crude 

methanolic-chloroformic (2:1) extract, provided by Dr. Lisette D'Souza, was 

Figure 6. Some cembranoids and norcembranoids isolated from Sinularia sp. 
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fractionated according to the Kupchan partitioning procedure8, affording four 

extracts.  

The extracts were analyzed by NMR and the chloroformic extract, which seemed 

very rich in metabolites, was purified by MPLC (CH2Cl2:MeOH), followed by 

reverse-phase HPLC (MeOH aqueous 45%) to give one new compound, named 5-

epi-norcembrenolide (1) and twelve known C-4 norcembranoids (2-

13)27,28,29,30,31,32,33,34 (figure 7).  

The isolated known compounds were: seven 14-membered macrocyclic 

norcembranoids (norcembrenolide 2
31

,
 sinuleptolide 3

35, 5-epi-sinuleptolide 4
33, 

scabrolide C 5
27, scabrolide D 6

27, leptocladolide B 7
30 and 5-epi-norcembrene 

8
31); two tetracyclic norcembranoids (scabrolide A 927 and yonarolide 10

29); one 

C19-norcembranoid diterpene (ineleganolide 11
28); one tryciclic carbocycle  

norcembranoid (kavaranolide 12
34); one eudesmene derivative (1β,6α-dihydroxy-

4(14)-eudesmene 13
32). The structures of the above mentioned compounds were 

defined by detailed analyses of their spectroscopic data (1D-2D NMR and MS) in 

comparison with values reported in literature. 
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1.2.2 STRUCTURAL DETERMINATION OF 5-EPI-NORCEMBRENOLIDE 5 

5-epi-norcembrenolide (1) was isolated as a white amorphous solid. Its molecular 

formula of C20H26O6, implying eight degrees of unsaturation, was established by 

high-resolution ESI-MS based on the pseudo molecular ion [M + H]+ at m/z 

363.1763. The gross structure was deduced from detailed analysis of the 1H NMR 

spectroscopic data (Table 1), aided by 2D NMR experiments (1H-1H COSY, 

HSQC, HMBC and ROESY). 

 

 

 

 

 

Figura 7. New (1) and known norcembranoids isolated from Sinularia inelegans 
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Table 1. 1H and 13C NMR data (700 MHz, d6-DMSO) of 5-epi-norcembrenolide (1).  
 

 δH 
a
 δC 

1 2.71 m 40.1 
2 2.65 s 

2.37dd (13.4, 4.0) 
44.6 

3 - 208.0 
4α 2.31 dd (20.1, 5.4) 46.4 
4β 2.75 dd (13.7, 1.5)  
5 4.48 d (11.3) 76.8 
6 - 213.8 
7α 2.68c  48.9 
7β 2.50b 48.9 
8 - 79.8 
9α 3.10 d (13.0) 50.1 
9β 2.32c  50.1 
10 - 206.6 
11 3.51 d (18.0) 

3.42 d (16.8) 
43.5 

12 - 129.0 
13 6.69 t (6.9) 141.3 
14 2.16 q (8.0) 

2.25 m 
29.4 

15 - 145.6 
16 4.68 s 

4.85 s 
112.9 

17 1.69 s 20.6 
18 1.34 s 27.1 
19 - 167.0 
20 3.63 s 52.2 

 

The 13C NMR data confirmed the presence of 20 carbons, including three ketone 

signals at δC 206.6, 208.0 and 213.8, one methyl ester carbonyl signal at δC 167.0, 

one trisubstituted double bond (δC 129.0 and 141.3) and one disubstituted double 

bond (δC 112.9 and 145.6). The carbonyl and the olefinic carbons accounted for 

six degrees of unsaturation; hence the compound was bicyclic. Analysis of the 1H 

NMR spectrum revealed an isopropenyl group [δH 1.69 (3H, s), 4.68, (1H, s) and 

4.85 (1H, s)], a deshielded olefin proton at δH 6.69 (1H, t, J = 6.9 Hz) and a O-

methyl singlet at δH 3.63. 

Careful analysis of the COSY spectrum allowed to build up four different spin 

systems (figure 8), a small one made up by protons H2-4 and H-5; a large one 

a Coupling constants are in parenthesis 
and given in hertz. 1H and 13C 
assignments were aided by COSY, 
HSQC and HMBC experiments; b 

overlapped with the solvent signal; c 

overlapped with other signals. 
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comprising H-11 to H2-14 and then H-1 and H2-2. The linkage between C-11 and 

C-13 across the quaternary C-12 was determined by the allylic coupling H2-11 to 

H-13, as well as the linkage of the iso-propenyl residue (C-15 to C-17) to H-1 was 

inferred by the allylic coupling of H2-16 and H3-17 to H-1. The two additional 

spin systems consisted of two diasterotopic isolated methylenes H2-7 (δH 2.50, 

2.68) and H2-9 (δH 2.32, 3.10) flanked by quaternary carbons. The location of the 

three ketone functions at C-3, C-6 and C-10 was easily inferred from HMBC 

correlations H-5/C-3, C-4, C-6, C-7; H2-2/C3, H2-4/C-2, C-3, C-5, C-6 and H2-

9/C-7, C-8, C-10, C-11 and C-18, and H211/C10, C12. The carboxyl ester group 

was placed at C-12 on the basis of HMBC correlations H2-11/C-12, C-19 and H-

13/C-12, C-19. The chemical shift values of C-5 and C-8, together with MS data, 

were indicative of the ether linkage between these two centers to form a 

tetrahydrofuranone ring, common to several norcembranoids from Sinularia.37 

These data, together with additional HMBC correlations (figure 8) defined the 

planar structure of 5-epi-norcembrenolide (1). The relative stereochemistry of 

compound 1 was deduced from the analysis of some key dipolar couplings 

evidenced by the ROESY spectrum (figure 8). 

 

 
Figure 8. (a) COSY connectivities (bold bonds) and key HMBC correlations (black arrows); (b) 

key ROE correlations (colored arrows) for compound 1. 
 

The ROE correlations between H-5/H-4α/H-7α and H-9α suggested that they are 

syn to each other. Furthemore, the correlations H3-18 and H-7β/H-9β indicated that 

the methyl substituent at C-8 is located on the β-face. Hence, H-5 and CH3-18 are 

trans to each other, that is in contrast with NMR data previously reported for 

norcembrenolide31, co-occurring in the same specimen, which has H-5 and CH3-18 
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both on the same face. By analogy with sinuleptolide and 5-epi-sinuleptolide, co-

occurring  in the same specimen, whose 1R absolute stereochemistry was defined 

by application of the Mosher's method, 36  we assigned the 1R configuration. 

Therefore, the stereostructure of 5-epi-norcembrenolide (1) was determined as 

depicted in figure 7.  

 

Hypothesis on biosynthetic pathways for macrocyclic C19-norcembranoids, like 

sinuleptolide, have been reported previously by Li et al.
37 They speculated that the 

C19 macrocycle could derive from the furanobutenolide-based macrocyclic 

compounds38 (C, figure 9), by far the largest group of C20-cembranoids found in 

the marine milieu, through the pathway shown in figure 9. Following this 

pathway, many compounds with a similar nucleus can be generated, such as 

sinuleptolide, norcembrene, leptocladolides , scabrolides and so on. Epimers at C5 

presumably result from alternative, facially selective, hydrations and/or oxidations 

of the C7–C8 alkene bonds in the precursors C and D during their biosynthesis 

from furanocembranoids. Structure G is also the precursor for polyciclyc 

norcembranoids such as ineleganolide. We can also suppose that norcembrenolide 

and 5-epi-norcembrenolide derive from 5-epi-sinuleptolide and sinuleptolide 

respectively. Sinuleptolide (3) can be converted into the corresponding 1,3-diene 

(H) by a 1,4-elimination process between C11 and C14, even though macrocyclic 

norcembranoids containing alkene functionality at C13–C14, e.g. compound H, 

have not yet been reported. The β-keto-ester functionality in 5-epi-

norcembrenolide (1) could be produced in vivo from the 1,3-diene unit between 

C11 and C14 in H. Thus, deprotonation at C10 in H accompanied by 

isomerisation to the enol lactone intermediate I, followed by lactone ring-opening 

and methanolysis, leads to 1 (figure 9). In a similar way, 5-epi-sinuleptolide 

would lead to generation of norcembrenolide (2). 
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Figura 9. Proposal for the biosynthetic origin of 1 

 

1.2.3 CONCLUSIONS  

The investigation of bioactive natural products from the Indian soft coral 

Sinularia inelegans led to the isolation of a novel norcembranoid, named 5-epi-

norcembenolide (1) along with twelve known compounds (2–13) which were 

characterized by means of high resolution mass spectrometry and 1D and 2D 

NMR experiments. Many norcembranoids have been previously reported to exert 

cytotoxic effects against the proliferation of several cancer cell lines39 and also to 
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have anti-inflammatory 40 ,34 and antiviral activities against human 

cytomegalovirus (HCMV)41 and Chikungunya virus (CHIKV)34. The most active 

compounds of the series are sinuleptolide and its C5 epimer, probably due to the 

α,β-unsaturated γ-lactone functionality. However, more exhaustive studies are 

needed to fully understand norcembranoids therapeutic potential. To this extent, 

all the isolated compounds are actually under pharmacological investigation to 

evaluate their antimicrobial activity and binding to nuclear receptors. 
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CHAPTER 2 

DESIGN, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP 

OF BILE ACIDS DERIVATIVES 

 

Bile acids (BAs) are the main components of bile and are produced from 

cholesterol catabolism. Primary bile acids, cholic acid (CA) and 

chenodeoxycholic acid (CDCA), are synthesized by the liver and then converted 

into secondary bile acids, deoxycholic and lithocholic acids (LCA), by the 

bacteria residing in the colon. Even though their physiologic role is mostly linked 

to nutrient metabolism and absorption,42 BAs have recently been identified as key 

signaling molecules endowed with both genomic and non-genomic effects 

induced by the interaction with a number of nuclear receptors (FXR, PXR, CAR, 

VDR, LXRs) and G-protein-coupled receptors such as TGR5. 

Farnesoid-X-receptor (FXR) is highly expressed in liver, intestine, kidney, adrenal 

glands, and adipose tissue and its main function is to maintain bile acids 

homeostasis. In fact, primary bile acids, like CDCA and its conjugated, are the 

most potent endogenous ligands.43,44 FXR activation results in the formation of an 

heterodimer with the retinoid-x-receptor (RXR) that binds to specific response 

elements on the promoter of target genes, thus modulating the expression of 

enzymes/proteins involved in bile acid synthesis, transport, conjugation, and 

excretion. Activation of FXR inhibits BAs synthesis and protects against their 

toxic accumulation via increased conjugation in liver and increased secretion into 

bile canaliculi, thereby promoting bile flow. These effects can be beneficial in the 

prevention of gallstone formation 45  and in the treatment of cholestatic liver 

diseases such as primary biliary cirrhosis,46  in which case targeting FXR can 

protect the liver from the development of fibrosis and cirrhosis via multiple 

pathways.47,48 Besides the canonical function of bile acid sensor, FXR possesses 

several and pharmacologically interesting actions linked to lipids49 and glucose 

homeostasis.50 FXR activation, enhancing fibroblast growth factor 15 secretion in 

the small intestine, increases metabolic rate, reduces body weight, and reverses 

diabetes in mice fed high-fat diets and in leptin-deficient mice.51 FXR agonists 
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have been demonstrated to exert anti-fibrotic and anti-inflammatory52  effects, 

therefore they could be valuable for the treatment of common human diseases 

such as metabolic syndrome and cancer.53 

TGR5 (or M-BAR) is a member of the rhodopsin-like superfamily of G-protein-

coupled receptors54 also called GP-BAR1 (G-protein-coupled bile acid receptor 

1). GP-BAR1 is mainly expressed in liver, small intestine, colon, adipose tissue, 

and skeletal muscle cells as well as in macrophages/monocytes. Upon ligation by 

secondary bile acids, lithocolic acid (LCA) and taurolithocolic acid (TLCA),55,56 

GP-BAR1 triggers intracellular signals that allow the regulation of energy 

expenditure and glucose homeostasis. 57  In fact, GP-BAR1 activation in 

enteroendocrine L cells stimulates the secretion of glucagon-like peptide 1 (GLP-

1), an insulinotropic factor that enhances insulin release, gastrointestinal motility, 

and appetite.58 Besides, this receptor has an importat role in immunology and 

inflammation as it is able to reduce lipopolysaccharide (LPS) induced release of 

pro-inflammatory cytokines in animal models.59 In rodent models of colitis, GP-

BAR1 expression increases in inflamed tissues while its absence is linked to an 

increased intestinal permeability and enhanced susceptibility to colitis 

development.60 Furthermore, GP-BAR1 seems to be crucial in maintaining the 

integrity of gastric and intestinal mucosa thanks to its protective action against 

gastrointestinal injury caused by non-steroidal anti-inflammatory drugs (FANS).61 

 

2.1 DUAL AGONISTS OF NUCLEAR AND MEMBRANE BILE ACID 

RECEPTORS 

Bile acids are potent signaling molecules that, through the activation of the 

nuclear receptor FXR and the membrane G protein-coupled receptor GP-BAR1, 

modulate their own homeostasis but also inflammation and lipid and glucose 

metabolism. These two receptors have already shown promising pharmacological 

activities. FXR activation inhibits BAs synthesis and has anti-inflammatory 

effects in atherosclerosis, inflammatory bowel disease and experimental 

cholestasis, whereas GP-BAR1 activation, via cAMP-mediated pathways, reduces 

proinflammatory cytokine production in macrophages and Kupffer cells. In 

addition, FXR and GP-BAR1 mutations have been identified in intrahepatic 

cholestasis of pregnancy and primary sclerosing cholangitis PSC, respectively. 
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Because FXR and GP-BAR1 have partially overlapping activities, ligands 

endowed with dual activity toward these receptors represent an interesting 

strategy to target entero-hepatic and metabolic disorders. 62 , 63  It has been 

previously reported that INT-767 (6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-

23-yl-23-triethylammonium sulfate, 14, figure 10), one of the first dual FXR/GP-

BAR1 agonist identified, exerts beneficial therapeutic mechanisms on liver 

inflammation and fibrosis in rodent models of metabolic syndrome.64,65,66,67 

 
Figure 10. Previously reported dual GP-BAR1/FXR agonist. 

 

My research activity was aimed at the development of FXR/GP-BAR1 dual 

agonists. Using INT-767 as template, my research group synthesized a new 

generation of dual bile acid receptor agonists among which compound 31 was 

revealed to be the most potent dual agonist of bile acid receptors so far identified. 

We believe this compound could pave the way towards the creation of a new 

therapeutic class for the treatment of diabetes.68 We also elucidated its binding 

mode in the two receptors through a series of computations using the homology 

model of GP-BAR1 and the X-ray structure of FXR. Our study provide  

comprehensive structure-activity relationships for GP-BAR1/FXR dual 

modulation and is valuable for further investigations on bile acid receptors mode 

of action. 

 

2.2 TOTAL SYNTHESIS OF INT-767 

Even though INT-767 activity as dual GP-BAR1/FXR agonist65,66 has been 

previously reported, to date no efficient synthetic procedure has been published. 

Therefore, my research work started with the total synthesis of INT-767 (14) so 

that we could have a positive control for biological assays. We derived compound 

14 from the commercially available chenodeoxycholic acid (CDCA, 15). Main 

differences between the two compounds are: the side chain that is C24 with a 



Chapter 2 

29 

 

carboxyl group in CDCA and C23 with a sulfate end-terminus group in INT-767; 

and the 6-ethyl substituent on ring B of compound 14. The synthesis, reported in 

scheme 1, was realized over 15 steps and proceeded with a overall yield of 20%.  

The starting material (CDCA, 15) was regioselectively oxidized to the C7 

hydroxyl group69 using a mild oxidizing agent (sodium hypochlorite) and then the 

carboxylic acid at C24 was esterificated to give the methyl ester of 7-

ketolithocholic acid (16) (65% chemical yield over two steps). We used in-situ 

generated lithium diisopropylamide (LDA) on compound 16 to produce  a silyl 

enol ether intermediate70 that underwent a Knovenagel aldolic addition to afford 

the methyl 3α-hydroxy-6-ethylidene-7-keto-5β-cholan-24-oate 17 (77% yield). 

The use of low temperature (-78°C) and a strong base (LDA) accounted for the 

selectivity of enolate formation on C6. Hydrogenation of the exocyclic double 

bond, realized with H2 on Pd/C, proceeded in a stereoselective way affording 

exclusively the 6α-ethyl functionality that has an equatorial disposition 

demonstrated by the large coupling constant observed for the axial H-6 proton 

signal at δH 2.83 (dd, J = 13.0, 5.5 Hz). Subsequently, alkaline hydrolysis of 

methyl ester group on the side chain gave the acid 3α-hydroxy-6α-ethyl-7-keto-

5β-cholan-24-oic (19, quantitative yield). We protected the hydroxyl group on C3 

by Fisher’s esterification with formic acid and acetic anhydride71 (quantitative 

yield) and then the performate derivative (20) was subjected to “Beckmann 

rearrangement” 72 with the purpose of shortening the side chain of one carbon unit 

from C24 to C23.  Prolonged alkaline treatment of 23-nitrile derivative 21 allowed 

to hydrolyze the nitrile to carboxylic acid and simultaneously deprotect the 3-

hydroxyl group, affording 6α-ethyl-24-nor-7-ketolithocholic acid (22) (69% three-

step chemical yield). C23 methyl ester derivative 23 was produced by sodium 

borohydride reduction of the C7-ketone followed by methanol/p-toluenesulfonic 

acid treatment (two steps, 89% yield). Again, this reduction was stereoselective as 

well as the previous one and 7α-hydroxy configuration was confirmed by 1H 

NMR spectrum. In fact, the shape of H-7 (δH 3.62, br s) was consistent with an 

equatorial disposition for this proton and the axial α-orientation of the hydroxyl 

group. Final steps aimed at modifying the side chain. First, we protected the 

alcoholic functions at C3 and C7 as tert-butyldimethylsilyl derivatives then, 

methyl ester at C23 was reduced with lithium borohydride to a primary alcohol 
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that was finally sulfated with triethylammonium–sulfur trioxide complex at 95 °C 

(72% three-step chemical yield). Compound 14 was retrieved as 

triethylammonium salt after removal of hydroxyl protecting groups (MeOH/HCl) 

and purification by reversed-phase solid extraction on a C18 cartridge. HR 

ESIMS, negative ion mode m/z 471.2795 (calculated 471.2780 for C25H43O6S), 

and NMR data (see experimental section) confirmed the chemical structure 

reported. 

We also synthesized a derivative (25) of INT-767 characterized by three sulfate 

groups, respectively at C3 on ring A, C7 on ring B and C23 on the side chain, 

using compound 23 as starting material (scheme 1). 

 

Scheme 1.Total synthesis of INT-767 and its trisulfate derivative 25. 
Reagents and conditions: (a) NaBr, TBABr, NaClO 10%, MeOH/AcOH/H2O/AcOEt 3:1:0.25:6.5; 
(b) p-TsOH, MeOH dry, 65% over two steps; (c) DIPA, n-BuLi, TMSCl, TEA dry, THF dry, −78 
°C; (d) acetaldehyde, BF3(OEt)2, CH2Cl2, −60 °C, 77% over two steps; (e) H2, Pd/C, THF/MeOH 
1:1, quantitative yield; (f) NaOH 5% in MeOH/H2O 1:1 v/v, quantitative yield; (g) HCOOH, 
HClO4, 81%; (h) TFA, trifluoroacetic anhydride, NaNO2; (i) KOH 30% in MeOH/H2O 1:1 v/v, 
86% over two steps; (j) NaBH4, THF/H2O 4:1 v/v; (k) p-TsOH, MeOH dry, 89% over two steps; 
(l) 2,6-lutidine, tert-butyldimethylsilyl trifluoromethanesulfonate, CH2Cl2, 0 °C, 78%; (m) LiBH4, 
MeOH dry, THF, 0 °C, 95%; (n) Et3N·SO3, DMF, 95 °C; (o) HCl 37%, MeOH, 87% over two 
steps; (p) LiBH4, MeOH dry, THF; (q) Et3N·SO3, DMF, 95 °C, 72% over two steps. 
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2.3 TOTAL SYNTHESIS OF INT-767 DERIVATIVES 

We used the commercially available CDCA (15) and ursodeoxycholic acid 

(UDCA) for the development of a series of INT-767 related compounds in order 

to investigate the structural requisites for dual GP-BAR1/FXR agonism and to 

increase the agonism potency with reference to the starting compound (14). 

Therefore, we modified the bile acid scaffold at different levels: 

a) the side chain length; 

b) the presence of sulfate groups on the side chain and on rings A and B of the 

tetracyclic nucleus; 

c) the configuration at C7; 

d) the alkylation at C6. 

 

2.3.1 CHENODEOXYCHOLAN SULFATE DERIVATIVES 

The same synthetic procedure was applied on the methyl esters of both 

chenodeoxycholic acid (26) and 6-ECDCA (27) to produce C24 mono and 

trisulfate derivatives, alkylated (compounds 31 and 33) or not (compounds 30 and 

32) on C6. The methyl ester was reduced (LiBH4, MeOH/THF) affording the triol 

(28, 29) in high chemical yield (96%, scheme 2). Then, exhaustive sulfation 

(Et3N·SO3) afforded a mixture of mono and trisulfate derivatives that were 

purified by HPLC. 

 

Scheme 2. Chenodeoxycholan Sulfate Derivatives. 
Reagents and conditions: (a) LiBH4, MeOH dry, THF, 0 °C; (b) Et3N·SO3, DMF, 95 °C. 
 

Starting from CDCA methyl ester 26 we also realized the elongation of the side 

chain from C24 to C26 thanks to a Swern oxidation73/C2 Horner74 homologation. 

First, we protected C3 and C7 hydroxyl groups as tert-butylsilyl ethers and  then 

LiBH4 reduction afforded alcohol 34 (scheme 3). At that point, the sequence of 
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Swern/Horner reactions gave the conjugate bis-homo ethyl ester 35. This was 

subjected to double bond reduction and silyl deprotection to afford ethyl ester 36 

(61% yield over six steps). Once again we repeated the steps of LiBH4 reduction, 

sulfation and HPLC separation to afford pure mono (38) and trisulfate  (39) 

derivatives (scheme 3). 

 

 

Scheme 3. Bis-homochenodeoxycholan Sulfate Derivatives. 
Reagents and conditions: (a) 2,6-lutidine, tert-butyldimethylsilyl trifluoromethanesulfonate, 
CH2Cl2, 0 °C, 83%; (b) LiBH4, MeOH dry, THF, 0 °C, quantitative yield; (c) DMSO, oxalyl 
chloride, TEA dry, CH2Cl2, −78 °C; (d) LiOH, TEPA, THF dry, reflux, 91% over two steps; (e) 
H2, Pd(OH)2, degussa type, THF/MeOH 1:1, quantitative yield; (f) HCl 37%, EtOH, 81%; (g) 
LiBH4, MeOH dry, THF, 77%; (h) Et3N·SO3, DMF, 95 °C. 
 

2.3.2 URSODEOXYCHOLAN SULFATE DERIVATIVES 

A similar sequence of reactions was carried out on ursodeoxycholic acid (UDCA) 

that differs from other BAs for the β-orientation of the hydroxyl group at the C7 

position which seems to be responsible for the lack of activity on FXR.43,44,75 

Hence, the modification of the 7β-hydroxylcholanoid scaffold would afford 

selective GP-BAR1 agonists. 

UDCA methyl ester 40 was protected with TBS triflate and reduced at C24 to give 

intermediate  41 that was used to produce mono- di- and tri-sulfated compounds. 

The sequence of sulfation and deprotection gave ursodeoxycholan sulfate 42 (55% 

chemical yield in four steps, scheme 4, steps a−d), whereas removal of the silyl 

protecting groups followed by sulfatation gave a mixture of ursodeoxycholan 

derivatives (43, 44, 45) differing in the sulfation pattern and efficiently separated 

by HPLC (scheme 4). The C2 homologation of the side chain, already reported for 

chenodeoxycholan derivatives, afforded bis-homoursodeoxycholan derivatives 

(48, 49, 50). 
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Scheme 4. Ursodeoxycholan Sulfate and Bis-homoursodeoxycholan Sulfate Derivatives. 
Reagents and conditions: (a) 2,6-lutidine, tert-butyldimethylsilyl trifluoromethanesulfonate, 
CH2Cl2, 0 °C; (b) LiBH4, MeOH dry, THF, 0 °C, 80% over two steps; (c) Et3N·SO3, DMF, 95°C; 
(d) HCl 37%, MeOH, 69% over two steps; (e) HCl 37%, MeOH, 96%; (f) Et3N·SO3, DMF, 95°C; 
(g) DMSO, oxalyl chloride, TEA dry, CH2Cl2, −78 °C then LiOH, TEPA, THF dry, reflux, 40% 
over two steps; (h) H2, Pd/C, THF/MeOH 1:1, quantitative yield; (i) LiBH4, MeOH dry, THF, 
88%; (j) Et3N·SO3, DMF, 95°C; (k) HCl 37%, MeOH, 75% over two steps; (l) Et3N·SO3, DMF, 
95°C. 
 

2.4 PHARMACOLOGICAL EVALUATION 

The synthetic derivatives described so far were tested for their activity on FXR 

and GP-BAR1. We performed luciferase reporter assays to evaluate 

transcriptional activity in HepG2 cells transfected with human FXR and in HEK-

293T cells transfected with human GP-BAR1.  

As regards the activity on FXR, we used INT-767 and 6-ECDCA, already 

reported as potent FXR agonists, as reference compounds. As shown in figure 11, 

the synthesized compounds were tested for both agonistic and antagonistic 

activity. We found out that compounds 31 and 38, 6-ethylchenodeoxycholan 

sulfate and bis-homochenodeoxycholan sulfate respectively, are potent inducers of 

FXR transactivation. Specifically, compound 31 transactivates FXR with a 

potency comparable to INT-767 and 6-ECDCA. None of the tested compounds 

showed FXR antagonistic activity (figure 11B). 
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Figure 11. Transactivation assays on FXR.  
(A) HepG2 cells were transfected with pSG5-FXR, pSG5-RXR, pCMV-βgal, and 
p(hsp27)TKLUC vectors. Cells were stimulated with 10 µM all tested compounds and with 1 µM 
compound 14. CDCA (15) (10 µM) was used as a positive control. Results are expressed as the 
mean ± standard error: (*) p < 0.05 vs nontreated cells (NT). (B) HepG2 cells were transfected 
with pSG5-FXR, pSG5-RXR, pCMV-βgal, and p(hsp27)TKLUC vectors. Cells were stimulated 
with CDCA, 10 µM, in combination with 50 µM tested compounds. Results are expressed as the 
mean ± standard error: (*) p < 0.05 vs nontreated cells (NT); (#) p < 0.05 vs CDCA. 
 
For GP-BAR1 biological assays, taurolithocolic acid (TLCA), the most potent 

endogenous agonist for the receptor, was used as reference while forskolin, which 

increases cAMP in a receptor-independent manner, was used as positive control. 

Results of transactivation of CREB-responsive elements in HEK-293T transiently 

transfected with the human GP-BAR1 revealed that compounds 31 and 38 were 

potent inducers of cAMP-luciferase reporter gene (figure 12) and compound 31 

had a potency comparable to that of TLCA. Besides, none of the tested 

compounds was able to induce cAMP-luciferase reporter gene in the absence of 

GP-BAR1, thus indicating that their activity was GP-BAR1 mediated. 
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Figure 12. Activation of GP-BAR1.  
HEK-293T cells were co-transfected with human GP-BAR1 and a reporter gene containing a 
cAMP responsive element in front of the luciferase gene. At 24 h after transfection, cells were 
stimulated with 10 µM compounds. Luciferase activity served as a measure of the rise in 
intracellular cAMP following activation of GP-BAR1. TLCA (T, 10 µM) stimulates cAMP 
production in a GP-BAR1 dependent manner. Forskolin (F, 10 µM) stimulated cAMP production 
independently of GP-BAR1. Results are expressed as the mean ± standard error: (*) p < 0.05 vs 
nontreated cells (NT). 
 

Compounds 31 and 38 were both dual agonists however, 31 was the most potent 

one, thus we investigated its activity in more details. Concentration-response 

curves for compound 31 are reported in figure 13. Compound 31 has an EC50 of 

~1 µM against FXR (panels A and B) and an EC50 of ~0.2 µM against GP-BAR1 

(panels C and D). Both values are comparable to those previously reported for the 

reference dual agonist 14.66 Moreover, the efficacy of 31 was superior to that of 

CDCA (852%) and TLCA (112%) tested simultaneously, thus indicating that 

compound 31 is a potent GP-BAR1/FXR dual agonist.  
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Figure 13. Concentration–response curves for compound 31. 
(A, B) HepG2 cells were trasfected with human FXR and stimulated with increasing 
concentrations of 31 (0.01, 0.1, 1, and 10 µM). (C, D) HEK-293T were transfected with human 
GP-BAR1 and stimulated with increasing concentration of 31 (0.1, 1, and 10 µM). CDCA (10 µM) 
was used as a positive control to evaluate the FXR transactivation. TLCA (10 µM) was used as a 
positive control to evaluate the GP-BAR1 activity. Results are expressed as the mean ± standard 
error: (*) p < 0.05 vs nontreated cells (NT). 
 

To further investigate the FXR-mediated effects of compound 31, we realized a 

gene expression analysis in HepG2 cells focusing on three FXR regulated genes: 

small heterodimer partner (SHP), organic solute transporter (OST) α and bile salt 

export pump (BSEP). Results shown in figure 14 (panels A−C) confirmed 

previous transactivation data and proved that compound 31 is a potent FXR 

agonist that enhances the expression of FXR target genes more efficiently than 

CDCA (15), FXR endogenous ligand, and similarly to 6-ECDCA, the most potent 

FXR steroid ligand so far available.76,77 

We have also examined the effects of 31 on GP-BAR1 in GLUTAg cells, 78 that 

are generally considered a suitable model to evaluate the interactions between GP-



Chapter 2 

37 

 

BAR1 and its ligands. They are an intestinal enteroendocrine cell line that 

overexpresses GB-BAR1 and reacts to receptor binding by a robust generation of 

cAMP followed by release of glucagon-like peptide 1 (GLP-1). As illustrated in 

figure 14, panel D, compound 31 is significantly more potent that TLCA and 6-

ECDCA in increasing intracellular concentration of cAMP in GLUTAg cells. As 

expected, the three tested compounds caused a robust increase of GLP-1 

concentrations in cell supernatants (panel E). 

Releasing of GLP-1 from the intestine is an interesting pharmacological effect 

that has been proved to be beneficial for the treatment of type 1 diabetes. In fact, 

incretin mimetics that are able to activate GLP-1 receptor have been used in 

diabetes therapy for many years. However, concerns on their safety have emerged 

recently since they seem to be associated with an increased risk of pancreatitis and 

pre-cancerous findings.79,80,81,82,83 The fact that 31, a compound that is structurally 

different from incretins, releases GLP-1 from the intestine could result in 

beneficial effects without incurring in the risks associated with the long-acting 

GLP-1 derivatives. 

Finally, the ability of 31 to modulate FXR was further investigated in FXR−/− 

cells. As reported in figure 14, panel F, while 6-ECDCA and compound 31 

increased BSEP expression in primary hepatocytes isolated from wild type mice, 

this effect was lost when hepatocytes were prepared from FXR−/− mice, 

confirming that their activity was FXR-mediated. 
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2.5 DOCKING STUDIES 

We investigated the binding mode of compounds 14 and 31, the most potent dual 

agonists identified, in both FXR and GP-BAR1 and elucidated the structural 

requirements for dual GP-BAR1/FXR agonism. While the X-ray structure of FXR 

was already available, the tridimensional structure of GP-BAR1 has not been 

determined yet. Therefore, we applied the homology modeling techniques to build 

a tridimensional model of GP-BAR1 using the adenosine A2A receptor (PDB code 

2ydo)84 as template structure because of its high sequence identity (20%) and 

similarity (55%) values (figure 15A and figure 15B).  

Binding mode of INT-767 (14) in GP-BAR1 and FXR. To take into account the 

receptor flexibility, 10 different GP-BAR1 conformations, obtained from the MD 

simulation on the apo form of the receptor, were considered for the docking 

Figura 14. Pharmacological evaluation on derivative 31, the most potent GP-BAR1/FXR dual 
agonist so far identified. 
(A–C) Real-time PCR analysis of mRNA expression of FXR target genes (A) SHP, (B) OSTα, and 
(C) BSEP in HepG2 cells primed with CDCA, 6-ECDCA and compound 31. Values are 
normalized relative to GAPDH mRNA and are expressed relative to those of non treated cells 
(NT), which are arbitrarily set to 1: (*) p < 0.05 vs NT. (D, E) Effect on intracellular generation of 
cAMP and GLP-1 release in GLUTAg cells. The data are the mean ± SE of four to five 
experiments: (*) p < 0.05 vs NT. (F) Compound 31 stimulates BSEP expression in wild type 
hepatocytes but lose its efficacy in hepatocytes obtained from FXR–/– mice. Data are the mean ± 
SE of four experiments: (*) p < 0.05 vs control and (**) p > 0.05 vs wild type cells. 
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calculations of compound 14. Docking solutions, obtained with the AutoDock4.2 

docking program (AD4.2),85 showed the ligand occupying the region underneath 

the extracellular loop II. However, most of the best scored binding poses didn’t 

match with the previously reported requirements for the binding of bile acid 

derivatives to GP-BAR1.86 The inaccuracy of docking calculations was probably 

due to the high flexibility of the protein that has different conformations in the apo 

form and in the agonist-bound state. To overcome this limitation, we had to step 

up the computational strategy and consider the full receptor flexibility. 87,88 ,89 

Hence, we ran molecular dynamics (MD) simulations on the 14/GP-BAR1 

complex embedded in a POPC bilayer surrounded by explicit water. In this 

calculation, the docking pose that fulfilled most of the aforementioned structural 

requisites for the binding was selected as starting conformation. Then, the ligand 

binding pose was refined by steered MD simulations to optimize distance and 

orientation of the ligand-protein interactions. The obtained complex was 

equilibrated and underwent an over-100 ns MD simulation during which the 

whole system was fully flexible. The ligand binding conformation, depicted in 

figure 15C, was stable throughout the whole simulation, as shown by the low 

rmsd value reported in figure 15D, with all the ligand-protein interactions 

conserved and was in full agreement with the structural features required for GP-

BAR1 binding.86
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In details, the ligand 3α-hydroxyl and 7α-hydroxyl groups are involved in key H-

bonds with Glu169 and Asn93, and interact via a water molecule with Tyr240 and 

Tyr89, respectively. These interactions bring the sulfate side chain pointing 

toward helices I, II, and VII where the ligand establishes water-mediated 

interactions with the side chains of Ser21 and Ser267 and with the backbone CO 

groups of Leu68 and Leu71. The steroidal scaffold further stabilizes the binding 

through several hydrophobic interactions with Leu71, Phe83, Leu174, and 

Trp237. The 6-ethyl group deepens in a hydrophobic pocket, made up by Leu97, 

Phe138, Leu173, and Leu174, whose shape and lipophilicity suggest the 

importance of having short and hydrophobic chains at the C-6 position to achieve 

Figure 15. Tridimensional model of GP-BAR1 and binding mode of 14.  
Side (A) and top (B) views of the tridimensional model of the GP-BAR1 receptor embedded in 
the POPC bilayer. The receptor is shown as gray cartoons. Lipids are depicted as yellow sticks. 
The ligand binding cavity (B) is shown as transparent orange surface. Residue numbers were 
assigned according to the amino acid sequence of hGP-BAR1. (C) Binding mode of 14 obtained 
through over 100 ns long MD simulation. The ligand and interacting residues are represented as 
yellow and gray licorice, respectively, while the GP-BAR1 receptor is shown as gray cartoons. 
Water molecules are displayed as spheres, while all the hydrogens are omitted for clarity 
reasons. (D) The rmsd plot of the ligand heavy atoms during the production MD run. Prior to 
the rmsd calculations, trajectory frames were aligned using the coordinates of the Cα carbons of 
the transmembrane helices. 
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optimal GP-BAR1 agonist activity. The proposed binding model is further 

substantiated by recent mutagenesis data,90 reporting a decrease of the binding 

affinity for ligands similar to 14 in Asn93Ala, Glu169Ala, and Tyr240Ala mutant 

forms of GP-BAR1.  

To elucidate the binding mode of 14 to FXR ligand binding domain (FXR-LBD), 

computations were performed on the crystal structure of the FXR-LBD from 

Rattus norvegicus (rFXR) in complex with 6-ECDCA and GRIP-1 coactivator 

peptide NID-3 (PDB code 1osv). 91  The homology between rFXR-LBD and 

human FXR-LBD (hFXR-LBD) is very high (95%) and all the residues of the 

binding pocket are conserved among the two species. Docking studies, realized 

again with the AutoDock4.2 software, showed compound 14 bound to the cavity 

formed by helices H3, H5, H7, H11, and H12 (figure 16). The sulfate group 

establishes key salt-bridges with the Arg328 guanidinium group, while the 

steroidal scaffold is responsible for several hydrophobic interactions with the side 

chains of Met262, Met287, Ala288, and Trp466. In addition, the 3α-OH and 7α-

OH H-bond with Tyr358 and His444, and with the Ser329 and Tyr366, 

respectively. The 6-ethyl substituent is fundamental to further stabilize the 

binding pose thanks to its hydrophobic contacts with Tyr358, Ile359, Phe363 and 

Tyr366. Overall, the binding mode is very similar to that experimentally found for 

6-ECDCA.91 In fact, like 6-ECDCA, 14 induces a conformational change in the 

protein, making it capable of accommodating coactivator peptides, thus inducing 

the transcription of target genes. Moreover, the carboxylate group of 6-ECDCA as 

well as the sulfate moiety of 14 are essential for the activation of FXR through 

their salt-bridges with the Arg328 side chain. 

 



Chapter 2 

42 

 

 

Structural requisites for dual GP-BAR1/FXR agonism. We performed docking 

calculations in the GP-BAR1 and FXR binding sites also on compound 31, the 

most potent dual agonist identified in our study. The GP-BAR1 conformation 

obtained from the MD simulation on the 14/GP-BAR1 complex was used. The 

Ramachandran analysis assured the quality of the structure showing 100% of 

residues in allowed conformational regions. The binding poses of compound 31 

were found to be very similar to those of 14 in the two receptors (figure 17). 

Comparing these results, we were able to define the structural requirements for 

dual GP-BAR1/FXR agonism. In fact, although the two receptors are structurally 

very different, the active ligands show common structural features. In particular, 

derivative 31, which only differs from INT-767 because of a one carbon unit 

longer side chain, can engage direct (i.e., not water-mediated) H-bonds with 

Ser21, Ser267, and Ser270 on helices TM1 and TM7 of GP-BAR1 receptor 

(figure 17A), thus explaining the improved agonist profile of 31 in comparison 

with 14. In the FXR binding site, the sulfate group of both 31 and 14 engages a 

salt-bridge interaction with the side chain of Arg328 but, in compound 31  it can 

also interact with the Arg261 side chain further stabilizing the binding (figure 

Figure 16. Binding mode of 14 in FXR. 
The ligand is depicted as yellow sticks, respectively. FXR is shown as orange (helices H3, H4, and 
H12) and gray cartoons. Amino acids involved in ligand binding are shown as orange sticks. 
Hydrogens are omitted for clarity. 
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17B). Moreover, derivative 31 is able to H-bond with the backbone NH of 

Met262 in the loop connecting helices H1 and H2. Shorter side chains, as in the 

case of 6-ECDCA, are still able to activate the receptors because they can interact 

with at least one serine residue in GP-BAR1 and with Arg328 in FXR. Comparing 

docking results for different ligands, we realized that the sulfate group on the side 

chain is better than the carboxylate, being able to establish a larger number of 

interactions with both water molecules and surrounding residues. Finally, a 

negatively charged group is strictly required to activate FXR through salt-bridge 

interactions with Arg328 or/and Arg261, while it seems not necessary to activate 

GP-BAR1, for which a polar group able to form H-bond interactions is sufficient. 

 

On the other side, the configuration and the position of the ethyl and hydroxyl 

groups at C6 and C7, respectively, are important for the dual activity. In fact, the 

most potent compounds (14 and 31), have both these groups in the α 

configuration. In GP-BAR1, the 6α-ethyl group engages in non polar interactions 

that are important to stabilize the protein-ligand complex. Indeed, compounds 

lacking the 6α-ethyl group exhibit a lower activity (e.g., compare 6-ECDCA vs 

CDCA and 30 vs 31). As for GP-BAR1, the absence of the 6α-ethyl group leads to 

less active agonists also for FXR. Actually, compound 38, that lacks the 6-ethyl 

group, is less active than 14 and 31 in transactivation assays on both GP-BAR1 

Figura 17. Binding mode of 31 in GP-BAR1 and in FXR. 
(A) Conformation obtained from MD simulations on the 14/GP-BAR1 complex. (B) Conformation 
obtained from MD simulations within rFXR-LBD (PDB code 1osv). Compound 31 is represented 
as cyan sticks. The receptors are shown as gray and orange (helices H3, H4, and H12 in FXR) 
cartoons. Amino acids involved in ligand binding are depicted as gray (in GP-BAR1) and orange 
(in FXR) sticks. Hydrogens are omitted for clarity. 
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and FXR (figure 11A and 12). However, the 6-ethyl deficiency is partially 

overcome by the presence of a longer side chain that tightly interacts with the 

serine residues on helices TM1 and TM7 in GP-BAR1 and with the Arg261 and 

Arg328 side chains in FXR. 

Furthermore, the introduction of additional sulfate groups on rings A and B of the 

steroidal scaffold leads to a loss of activity towards both receptors (compare 14 vs 

25, 38 vs 39, and 31 vs 33 in figures 11 and 12). This could be ascribed to the 

excessive bulkiness and negative charge of these groups that negatively influence 

the binding. 

Finally, as shown in figures 11 and 12, all UDCA derivatives (42–45 and 48-50) 

were inactive toward both receptors demonstrating that the configuration at C7 

plays a fundamental role to properly accommodate the molecule in the binding 

sites of the receptors. In fact, the 7-βOH group cannot interact with Tyr89 and 

Asn93 on TM3 in GP-BAR1 and with Ser329 and Tyr366 in FXR. The loss of 

these interactions, together with the lack of the 6α-ethyl substituent on the UDCA 

scaffold, can explain the inability of these derivatives to activate either GP-BAR1 

or FXR in transactivation assays. 

 

2.6 CONCLUSIONS 

In the present study, bile acid derivatives have been developed leading to the 

identification of compound 31, the most potent GP-BAR1/FXR dual agonist 

reported so far. In particular, 31 transactivates FXR and increases the expression 

of FXR-regulated genes in the liver. Moreover, 31 is a potent GP-BAR1 agonist 

whose potency was evaluated HEK-293T cells transfected with the membrane 

receptor. In vivo and in vitro studies have shown that 31 increases the intracellular 

concentration of cAMP in a GP-BAR1-depent manner and stimulates the release 

of the potent insulinotropic hormone GLP-1 in GLUTAg cells, a cell line known 

to respond to GP-BAR1 ligands. This effect makes of 31 a promising lead 

compound for the treatment of insulin-dependent conditions including diabetes. 

Furthermore, the binding mode of 31 in the LBD of the two receptors was 

elucidated through a series of computational studies. These simulations also 

revealed the structural requisites to achieve potent GP-BAR1/FXR dual agonism. 

Despite its potent GP-BAR1 activity, 31 maintains the ability to stimulate FXR 
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and FXR-target genes including BSEP which remains a potential drawback since 

FXR activation worsens liver injury in rodent model of cholestasis. In conclusion, 

this study is relevant for further investigations on the functional mechanism of 

these two receptors and for the design of novel dual GP-BAR1/FXR agonists, 

providing new opportunities for the treatment of enterohepatic and metabolic 

disorders. 
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CHAPTER 3 

FRAGMENT-INSPIRED HTS BY NMR OF COMBINATORIAL 

LIBRARIES: APPLICATION TO ANTAGONISTS OF PROTEIN-

PROTEIN INTERACTIONS 

 

High-throughput screening by NMR is an innovative target-based screening 

strategy, developed by prof. Pellecchia,92 that improves the traditional fragment-

based ligand discovery (FBLD) approach by combining the robustness of protein 

NMR spectroscopy as the detection method and the basic principles of 

combinatorial chemistry to enable the screening and deconvolution of large 

libraries of fragments (>105 compounds). 

FBLD, also known as fragment-based drug discovery (FBDD), has become 

popular as an alternative to high-throughput screening (HTS) drug discovery in 

both academia and big pharmaceutical companies.93,94,95,96 The two approaches 

FBLD and HTS have always been in contrast one each other. In fact, FBLD is 

based on the concept that chemical space can be more efficiently probed by 

screening collections of small fragments rather than libraries of larger molecules 

that instead are usually preferred by HTS campaigns. Moreover, the FBLD 

approach, focusing on fragment molecules (molecular weight is usually less than 

250 Da) is able to identify binders with low affinity to their target but endowed 

with high binding efficiency per atom. Therefore, the screening techniques 

employed in FBLD are much more sensitive and reliable than HTS bioassays, 

usually flawed by false positive and artifacts. On the other hand, HTS approaches 

have been widely used in industries because of the advantage of testing large 

libraries rapidly and, despite the young age of this technique that was first cited in 

1991, many recently approved drugs, such as the anti-HIV Etavirine 97  and 

anticancers like Gefitinib and Erlotinib,
98  derive from the optimization process of 

HTS hits.99 

HTS by NMR has been able to overcome the limitations of both approaches and 

to combine their advantages. This new technique is based on the screening of 

large libraries of fragments, preassembled on a common backbone, using NMR 
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spectroscopy as the screening method. In order to make the process amenable to 

NMR time-scale, it is crucial to minimize the number of samples to be screened. 

Therefore, the library is assembled in mixtures that can be easily deconvoluted 

thanks to the positional scanning approach, meaning that in each mixture one 

position of the common backbone is fixed while the others are populated by all 

possible residues.100,101,102,103 For example, a library made up by three fragments 

linked together on a common backbone has three positions of diversity. If we 

select 100 different residues that can occupy each of three positions, the library 

will include 106 molecules (100×100×100). Conversely, arranging the library in a 

positional scanning fashion, the same residues can be evaluated by testing only 

100+100+100 mixtures. Thus, we would be able to evaluate 106 compounds by 

testing only 300 samples, a number that can be screened by NMR in a very 

reasonable time. Binding information is usually obtained by measuring chemical 

shift variations of 15N and/or 13C-labeled proteins. The chemical shift of a given 

nucleus represents its local environment, which can be perturbed upon the binding 

of a compound in its proximity, causing the corresponding signal in the protein 

spectrum to change position. Since each mixture contains a dominating 

concentration of the fixed fragment, we assume that this has to be the main 

responsible for the observed chemical shift perturbations. Therefore, mixtures 

containing most effective fragments at a given position would produce the largest 

changes in the NMR spectra of the target. As a result, most potent binders are 

deduced from the combination of the mixtures producing the highest chemical 

shift perturbations at each position. Consequent synthesis and testing of individual 

compounds would result in the identification of the most active compounds 

among the possible 106 molecules. These hits are immediately amenable to 

subsequent hit-to-lead optimization backed up by robust NMR-based binding 

data, without any concern about artifacts that can be readily recognized by NMR 

and without the need of establishing the structure of the protein complex to guide 

fragment linking or growing, as usually happens in FBDD.  
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Figure 18. Schematic representation of HTS by 
NMR approach. The library is arranged in a 
combinatorial positional scanning fashion. (1) In 
the example reported, a three-position 
combinatorial library is prepared with n fragments 
(F1,F2,…Fn). This requires the synthesis of 
3n mixtures, each containing n2 molecules. Such 
mixtures are tested using protein-based NMR 
assays (2) so that preferential binding fragments at 
each position are deduced (3). Consequently, 
individual compounds with proper combinations 
of the most active fragments are synthesized and 
tested (4) for follow-up hit to lead optimizations. 
Picture taken from Barile and Pellecchia, Chem. 

Rev., 2014.104 
 
 
The use of NMR as detection method is 

associated with many other advantages. 

First of all, because NMR is an unbiased 

screening technique, ligands for different 

areas of the protein surface could be 

identified simultaneously, possibly 

defining new protein’s hot spots and/or 

allosteric sites. Furthermore, most of the 

previous positional scanning assay studies 

were based on either fluorescence or 

absorbance readouts,105,106 thus requiring 

a specific knowledge of the protein 

function for assay establishment that is 

not necessary anymore since NMR can 

detect any protein regardless of its 

function. Moreover, the HTS by NMR 

approach not only identifies preferred 

scaffolds and initial hit compounds, but 

also determines their binding affinity and, in most cases, provides initial structural 

information about the site of binding allowing for more direct follow-up hit-to-

lead optimizations. In fact, given that resonance assignments for the protein are 

known, perturbation of protein NMR signals can be used to identify the residues 

interacting with the binder. Finally, as already mentioned, aggregators and other 



Chapter 3 

49 

 

reactive small molecules are responsible for false positives that affect screening 

results from most spectrophotometric assay platforms 107 , 108  and even other 

biophysical screening techniques such as surface plasmon resonance.109 However, 

since NMR data allow to assess integrity and folding of proteins, compounds (or 

mixtures in the primary screens) causing aggregation or protein denaturation are 

readily identified and rejected. 

HTS by NMR has been previously applied in a de novo ligand discovery project 

against the ligand-binding domain (LBD) of the EphA4 tyrosine kinase receptor 

leading to the discovery of a compound endowed with good affinity (IC50=3.4 

µM) and high selectivity for EphA4 that represents a lead compound for the 

development of EphA4 antagonists. 

During the months I spent at Sanford-Burnham Medical Research Institute in San 

Diego, tutored by Prof. M. Pellecchia and doctor E. Barile, I successfully applied 

an extension of the HTS by NMR approach, which has been called Fragment-

Inspired HTS by NMR, to the investigation of protein-protein interactions. I 

focused on two different targets: the BIR3 domain of the antiapoptotic protein 

XIAP and EphA3, a tyrosine kinase receptor involved in cells migration and 

differentiation. 

The fragment-inspired HTS by NMR is characterized by a positional scanned 

library assembled after a previous identification of a binding fragment which will 

act as an anchoring point. Indeed the library is built by keeping the anchoring 

fragment fixed at one position, while all the other positions are randomized as 

previously described for the more general HTS by NMR approach. In this way, a 

library containing hundred thousand derivatives of that single fragment can be 

promptly screened by NMR which is able to unambiguously identify the most 

effective fragments in the neighboring positions. This implies the method can 

provide a quick avenue for the non trivial purpose of fragment growing or linking 

that is actually the most time-consuming step in the traditional FBLD campaigns. 

For this reason, we are confident that the approach may find general and 

widespread utility in hit optimization and fragment maturation projects. 
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Three-dimensional structures of the BIR3 domain in complex with peptides and 

full-length binding partners (caspase-9 and SMAC) have been derived by both X-

ray and NMR123,124 showing that the binding to BIR3 is dependent solely on the 

tetrapeptidic sequence AVPI or AVPF and its N-terminus.120,125  Many studies 

have also reported the absolute requirement for Ala at the N-terminus and for a 

Pro as third residue, which together are sufficient for binding to BIR3. 

The identification of a consensus motif resulted in the generation of few small 

molecule inhibitors of XIAP that entered the clinical trials as anticancer agents 

(figure 20).126,127,128 The first inhibitor came from the Wang laboratory at the 

University of Michigan who identified SM-406, taken into phase I clinical trials in 

partnership with Ascenta. Soon after, Genentech identified GDC-0152, the first 

SMAC mimetic that entered clinical trials in June 2007, while Novartis identified 

LCL161, a potent orally available SMAC mimetic. Maybe inspired by the fact 

that SMAC itself is a dimer in solution and it can bind both the BIR2 and BIR3 

domains of XIAP simultaneously, a bivalent antagonist called Birinapant, able to 

engage the two BIR domains at the same time, came out by Tetralogic. Looking at 

the chemical structures of the above mentioned inhibitors, is readily noticed how 

similar they are to each other, differing very slightly from the original consensus 

motif. 

 

Figure 40. Selection of XIAP antagonists under clinical investigation.122 

 



Chapter 3 

52 

 

Because the interaction of XIAP-BIR3 with its binding partners has been so well 

characterized, we chose this protein as target for a proof of concept application of 

the Fragment-Inspired HTS by NMR. Our results not only demonstrated the 

feasibility of the approach but also led us to the discovery of a new class of potent 

XIAP inhibitors, which significantly differ from all the previously reported 

antagonists. 

 

3.1.1 LIBRARY, SCREENING AND RESULTS 

Knowing the AVPF consensus motif to bind XIAP-BIR3 and giving the absolute 

requirement for an alanine at the N-terminus, we used a tetra-peptoid library with 

the N-terminal alanine as anchoring point. The following positions were occupied 

by 46 residues, selected among natural and non natural amino acids, assembled on 

a common backbone in a positional scanning fashion and yielding compounds 

with an average molecular weight of about 450 Da. The choice of using non 

natural amino acids was crucial to sample a wider chemical space thus affording 

innovative results. The library was made up by 138 mixtures (46+46+46), each 

containing 2,116 compounds (1x46x46). Herein, the construction of this peculiar 

library allowed the NMR screening of almost 100,000 compounds 

(46x46x46=97,336) in just a few days. Usually, the screening of the mixtures can 

be realized with one-dimensional (1D) 1H-NMR spectra monitoring a region 

below than 1 ppm, which contains the 1H aliphatic resonances from methyl groups 

of protein residues and that is rarely populated by aspecific signals from organic 

small molecules.129,104 However, because of the high expression yield in E. coli 

cells, we decided to perform also 2D [1H,15N]-HSQC experiments that required a 

greater amount of protein but allowed a better evaluation of the mixtures 

effectiveness concurrently giving insights on the changes occurring on the protein 

binding surface. Samples were prepared with 25µM protein in presence of each of 

the 138 mixtures at an overall concentration of 500µM which, assuming a hit rate 

as low as 1-2%, afforded a minimum protein/ligand ratio of 5:1. Binding mixtures 

were promptly identified since they caused a dramatic change of the protein 

spectrum, with most of the peaks experimenting large shifts and new peaks 

appearing. To rank order all the fragments in each relative position, we took into 

account the chemical shift variation (∆δ) of selected sensitive peaks and the 



 

numbers of new pea

residues we were ab

sequence of GDC-

ordering the hits, we d

For example Ile is kno

replaced and a numbe

we found that D-amin

However, the most in

position, the most eff

or cyclohexylglicine,

investigated before in

synthesis of a single 

screened residues, wh

Pro-4-fluoro-Phe (com

Figure 21. 1D 1H and 2

 

peaks occurring in each spectrum. Among t

 able to identify both the consensus motif 

-0152 (Ala-cyclohexylGly-Pro-Phe). Moreo

e derived and confirmed some previously repo

known to be more effective than Val in P2, Pro

ber of aromatic residues are well tolerated in 

ino acids. are not allowed in P2 while they are

 interesting outcome of this screening was tha

effective residue in perturbing the BIR3 spectr

e, but a new unexpected residue of phospho

 in this context. All the considerations abov

le peptide representing the most effective com

which was a tetra-peptide having sequence A

ompound 51, figure 21). 

d 2D [1H,15N]-HSQC spectra of XIAP-BIR3 domain in a
presence (blue) of compound 51 (1:1 ratio). 

Chapter 3 

53 

 the most active 

 AVPF and the 

reover, by rank-

ported SARs.130,131 

ro in P3 cannot be 

in P4. In addition, 

are tolerated in P3. 

hat for the second 

ctrum was not Val 

photyrosine, never 

ove, led us to the 

ombination of the 

 Ala-phosphoTyr-

 

n absence (red) and 



 

The dissociation cons

was calculated via is

peptide AVPF and th

174 nM while compo

of GDC-0152 that 

experiments also prov

complex formation. W

binding (∆G), the tw

contributions. In fac

resulting mostly from

51 demonstrates a 

Kcal/mol), probably d

receptor, that is comp

inhibitors to have si

changes usually arise

molecular structuring

desolvation and are ty

Summarizing, the syn

the most potent fragm

affinity to the target p

clinical candidate GD

Figure 22. Thermodynam

nstant (Kd) value of compound 51 binding to 

isothermal titration calorimetry (ITC) along 

 the reference compound GDC-0152. AVPF 

pound 51 demonstrated exactly the same disso

t is 33 nM. Besides confirming the poten

rovided insights into the nature of the forces res

. We found out that, while having the same G

two peptides show completely different entha

act, while GDC-0152 exhibits an entropy-dr

om hydrophobic interactions (∆H=0.17 Kcal/m

a much more favorable enthalpy contribu

y due to specific interactions of the phosphate

mpletely compensated by an entropic loss resu

similar binding affinities (figure 22). Compe

rise from conformational entropy losses asso

ng induced by hydrogen bonds formation and/

 typical of binders with nanomolar affinity. 

ynthesis of just one peptide, resulting from the

gments identified by HTS by NMR, afforded a

t protein in the nanomolar range and comparab

DC-0152. 

 
 

amic profiles of selected BIR3 binders: GDC-0152, AV
51. 

Chapter 3 

54 

to the XIAP-BIR3 

g with the natural 

F showed a Kd of 

ssociation constant 

ency of 51, ITC 

responsible for the 

e Gibbs energy of 

halpy and entropy 

driven interaction 

l/mol), compound 

ibution (∆H=0.32 

ate group with the 

esulting in the two 

pensating entropy 

ssociated with the 

d/or by a reduced 

the combination of 

 a compound with 

rable to that of the 

VPF and compound 



Chapter 3 

55 

 

 

3.1.2 LEAD OPTIMIZATION 

Since compound 51 showed a very promising activity, it was subsequently used as 

a starting point for iterative optimizations. At this lead optimization stage we used 

ITC to validate the compounds and measure their affinity to the target. First, we 

investigated the importance of the C-terminal residue by synthesizing three 

derivatives (52-54) reported in table 2. ITC measurements showed that the Phe 

residue has a slightly better activity (Kd=24 nM) than the 4-fluoro-Phe present in 

our library so we proceeded to further optimize compound 52.  
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Table 2. Analogs derived from optimization of P4 position and their relative dissociation 
constants. 

 

Our main issue was that the phosphate group, which is responsible for the great 

enthalpic contribution to the binding, is usually associated to undesirable 

pharmacokinetic properties, in particular it is subjected to a fast hydrolysis in 

blood and, due to the negative charge, cannot permeate cell membranes. In order 

to improve the drug-likeness of our compounds, we tried to replace the phosphate 

group with a bioisoster that could retain compound activity while extending its 

half-life. Six analogs of compound 52, namely compounds 55-60, were 

synthesized (table 3) but most of them showed a drastic reduction in the activity 

except for compound 59 bearing the isosteric and isoelectronic phosphonate 
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group. Compound 59 was equally active (Kd=49 nM) compared to the parent 

compound and also retained the strong enthalpic contribution to the binding 

(∆H=0.29 Kcal/mol). Moreover, due to its chemical nature, compound 59 is 

chemically and enzymatically more stable than the corresponding phosphate. 

Indeed, the CH2-P bond, different from the O-P linkage, is not susceptible to 

phosphodiesterase and phosphatase mediated hydrolysis which often causes a 

short duration of action. 

Cmpd 
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Table 3. Compound 52 analogs varying by different residues in P2 position. The corresponding Kd 
derived by ITC measurements are also reported. 

 

Next, we focused on the improvement of oral absorption and membrane 

permeation. In fact, it is well known that drugs containing a phosphate, 

phosphonate or phosphinate functional group carry one or two negative charges at 

physiological pH values making them very polar thus unable to undergo passive 
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diffusion across cellular membranes. Moreover, because of their high polarity, 

these agents often exhibit a low volume of distribution and, therefore, are 

subjected to efficient renal clearance as well as possibly biliary excretion. Many 

approaches have been investigated to enhance cellular bioavailability of organic 

phosphates and the majority of them involves masking the phosphoryl moiety 

with prodrug protecting groups that can be removed enzimatically within the 

cell.132 A simple ethyl derivatization is usually not advisable since the cleavage of 

the protecting groups would be very slow due to the absence of specific enzymes. 

However, the hydrolysis becomes faster when the alkyl size increases and when a 

spacer group, like a methylene, is introduced because enzymes such as carboxyl-

esterases get involved. The pivaloyloxymethyl (POM) moiety is an esterase-

cleavable group that has found wide utility in protecting phosphate and 

phosphonic acid functionality in peptide mimetics.133 The first acyloxyalkyl group 

is cleaved by an esterase-like enzyme to release one phosphonic acid group. The 

phosphonate monoester formed, carrying a negative charge, is a poor substrate for 

a common esterase however the second prodrug moiety can fall off rapidly 

through a simple chemical hydrolysis. In this way only one enzyme is needed to 

trigger release of both moieties and the efficiency of delivering the phosphonate 

diacid is high.134 After these considerations, we synthesized two prodrugs: the 

phosphonate monoester (61) and the diester (62) with POMs protecting groups. 

The monoester, which is still negatively charged, cannot permeate the lipidic 

bilayer but retains activity on XIAP (Kd=83 nM) while the diester is inactive in 

vitro. In another approach we linked a polyethylene glycol residue to the C-

terminus of the peptide (compound 63, table 4) in order to increase the global 

lipophilicity of the molecule and make the partition in lipids easier. Compounds 

61-63 will be shortly tested in cells to evaluate their ability to permeate membrane 

cells and to investigate the ability of the POM prodrugs to deliver the active 

molecule inside the cells.  
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Table 4. Prodrugs of compound 59 and their relative dissociation constants. 

 

3.1.3 COMPUTATIONAL STUDIES  

To disclose the molecular basis for the highly specific binding of compound 59 to 

the BIR3 domain of XIAP we performed docking studies on both 59 and GDC-

0152 in order to outline the differences between the binding poses of the two 

peptides. For these calculations the X-ray resolved structure of the cIAP1/XIAP 

chimeric BIR3 domain (PDB code 3UW4)134 was used. Docking computations 

revealed that the terminal ammino group of the N-methyl-Ala, that is common to 

the two peptides, salt-bridges with Glu311, while the CO of the same residue H-

bonds with Trp315. These are the only interactions that are shared by both 

peptides while the rest of the molecule arranges in very different poses. As regard 

GDC-0152, the binding to the protein is mediated by few H-bonds with the 

backbone of the molecule and some hydrophobic interactions with the Pro. 

Instead, the binding of compound 59 is supported by two H-bonds between the 

phosphate group of the peptide and Arg300 and Trp302 of the protein, 

interactions that are totally lacking in the binding pose of GDC-0152. It is likely 

that the binding to the phosphate group forces the protein into a conformational 

rearrangement that accounts for the previously observed entropy loss. 
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3.2 DISCOVERY AND OPTIMIZATION OF HIT COMPOUNDS 
BINDING EPHA3, A TYROSINE KINASE RECEPTOR INVOLVED IN 
ANGIOGENESIS AND METASTASIS FORMATION. 

The Eph receptor family is the largest among tyrosine kinases and is unique in 

that both the ligands and receptors are membrane bound providing the possibility 

for bidirectional cell-cell signaling. Fourteen Eph receptors have been identified 

in vertebrates. They are divided into two subclasses which differ primarily in the 

structure of their ligand binding domains. EphA receptors usually bind GPI-linked 

ephrin-A peptides while EphB receptors show greater affinity for transmembrane 

ephrin-B ligands. However, interactions are promiscuous within each class and 

some Eph receptors can also bind to ephrins of the other class.137 Upon binding 

with the ephrins, receptor-ligand complexes assemble into clusters which are 

responsible for signals that affect both of the contacting cells. Depending on the 

cellular context, including the identity of the Eph-ephrin receptor-ligand pairs and 

their relative density on interacting cells,138 the binding results in either repulsion 

or adhesion between the two cells. Cellular repulsion, that is the most common 

response, requires disruption of the receptor-ligand complexes that is brought 

about either by enzymatic cleavage of the tethered ephrin ligands or by 

endocytosis of Eph-ephrin complexes. These mechanisms allow the regulation of 

many different phenomena such as organ development, tissue remodeling, 

neuronal signaling, insulin secretion and bone metabolism.139,140 Moreover, the 

involvement of Eph/ephrin-signaling in tumorigenesis has been extensively 

investigated due to frequent upregulation of Eph receptors in numerous cancer 

types.141,142,143 
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genetic and biochemical methods while pharmacological approaches, crucial to 

understand acute Eph inhibition effects, have been hampered by the lack of potent 

and selective inhibitors.151 To date, KB004,152 a Humaneered® antibody, is the 

only agent known to bind EphA3 and is actually in phase 2 of clinical trials for the 

treatment of hematologic malignancies. 

My research project had the ambitious purpose of finding selective small 

molecule inhibitors of EphA3 receptor. We expressed for the first time the ligand 

binding domain (LBD) of EphA3 in a 13C-Met-labeled form allowing NMR 

studying of the protein in presence of best ligands. Next, starting from compounds 

with high affinity for EphA4,92 a receptor sharing high sequence identity with 

EphA3, we developed new EphA3 inhibitors endowed with good selectivity and 

affinity for the target. These compounds pave the way to the creation of useful 

pharmacological tools to deepen our knowledge of EphA3 pathological role in 

cancer development. 

 

3.2.1 EPHA3-LBD EXPRESSION  

My work started with the expression of the LBD of EphA3 which has never been 

reported before. First attempts using a gene encoding for the LBD sequence (28-

207) cloned downstream to a His-tag and following the standard procedures for 

expression in E. coli, were unsuccessful since the protein was insoluble and 

accumulated in inclusion bodies. Formation of inclusion bodies could result from 

the failure to control misfolded or unfolded proteins depending on their propensity 

to trigger a cellular stress response, when recombinant protein is expressed at high 

rates, or when the protein is expressed under unfavorable protein-folding 

conditions.153,154,155 In order to increase the solubility and to aid the proper folding 

of the protein, we explored different strategies. First, we lowered the bacterial 

growth temperature after induction from 37°C to 18°C. This decreases the rate of 

protein synthesis and usually more soluble protein is obtained. Then, since the 

protein contains five Cys residues, we employed Rosetta-gami B (DE3) and 

SHuffle T7 Express Competent E. coli cells, two strains created to enhance the 

formation of target protein disulfide bonds in the bacterial cytoplasm. However, 

since the protein was still insoluble we thought to mutate the gene. One strategy 

consisted in replacing the Cys202 with an Ala residue and then in mutating some 
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hydrophobic residues with highly soluble aminoacids (Arg, Glu and Lys) in key 

positions. Finally, we tried the addition of fusion partners.156,157 Commercially 

available fusion tags include thioredoxin (Trx)158 and glutathione-S-transferase 

(GST) 159  that could enhance solubility since the fusion polypeptide is highly 

soluble. Moreover, Trx has an intrinsic oxido-reductase activity that catalyzes 

disulfide bond formation (Trx), while GST can protect its target protein from the 

proteolytic degradation, stabilizing it into the soluble fraction.160 The combination 

of conditions that gave the greatest amount of soluble protein was the gene 

sequence GST-His10-TEV-LBD(29-201) trasformed in SHuffle T7 Express 

Competent cells. The fusion protein was purified by Ni+-affinity chromatography 

thanks to the His-tag included in the sequence. Then, an enzymatic cleavage with 

a double mutant TEV protease161 followed by further purification afforded the 

pure EphA3-LBD. More details on the expression and purification protocols are 

reported in the experimental section. More difficulties arose when we tried to 

express the 15N-labeled protein required for NMR studies. Since SHuffle T7 

Express E.coli cells grew very slowly in the minimum broth (M9) containing 
15NH4Cl and produced insufficient amounts of recombinant protein. To overcome 

this limitation, we chose to express the protein selectively labeled with 13C on the 

methyl of the methionines. This was easily attained by supplementing the 

enriched bacterial growth medium with an excess of labeled Met just prior to the 

induction of protein expression.162,163 

 

3.2.2 BINDERS DESIGN AND OPTIMIZATION  

From a previous HTS by NMR of a tetrapeptidic library, EphA4 inhibitors92 with 

affinity in the low micromolar range for the target had been identified. 

Considering the high homology of sequence between the ligand binding domains 

of EphA4 and EphA3 (73% identity), we examined these compounds (64-71, 

figure 25) in order to select the one with highest affinity and selectivity towards 

EphA3 to use as starting compound for EphA3 binding optimization process. 

Initial tests were realized through 1D 1H NMR experiments of the EphA3-LBD in 

absence and in presence of the peptides in a 1:10 molar ratio by monitoring the 

aliphatic region of the spectra below 0.7 ppm since no spectral overlapping 

between ligand and protein resonances occurred in this region.129 Largest 
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variations in chemical shifts were observed for compound 65 that has a L-Trp as 

C-terminal residue, while the most active compound against EphA4 was 64 with a 

C-terminal D-Trp.  

 

 

 

 

 

Cmpd 

n° 

R Kd versus 

EphA4 (µM) 

64 D-Trp 4 

65 L-Trp 21 

66 D-Ile 26 

67 L-Ile 44 

68 D-Val 25 

69 L-Val 96 

70 D-Leu 60 

71 L-Leu 87 

 

Figure 25. Selected peptides with corresponding binding constants versus EphA492 and aliphatic 
region of 1D 1H-NMR spectra of EphA3-LBD in absence (red) and presence (other colors) of 
selected peptides (1:10 molar ratio). Arrows indicate protein peaks sensitive to ligand binding. 
 

Using 65 as hit compound, we went through an iterative optimization process 

analyzing the SARs for each of the five positions in the sequence so that we could 

infer the structural requisites to gain selectivity on EphA3 receptor. Being Trp the 

most active residue in P5 position, we synthesized seven nor-Trp-derivatives (72-

78), tested again by 1D 1H-NMR experiments analyzing the aliphatic region. 

Cmpd 

n° 

R 

72 Tryptamine  

73 5-F-tryptamine  

74 5-OMe-tryptamine  

75 5-OH-tryptamine  

76 5-Cl-tryptamine  

77 6-OMe-tryptamine  

78 Naphtalen-ethane-amine  

 

Figure 26. Analogs derived from optimization of position P5. 

ß-Ala-5-hydroxyl-Trp-4-Cl-Phe-4-pyridylalanine 

67 

64 

65 

DMSO 
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5-OMe-tryptamine and 5-Cl-tryptamine were the most active residues in this 

position so we compared the activity of derivatives 74 and 76 to compound 65 by 

means of 2D [1H-13C]-HSQC experiments that allowed a better evaluation of the 

binding. The LBD of EphA3 has three methionines, that we had labeled with 13C, 

of which only two (Met74 e Met155) are close enough to the binding site so that 

they experiment a variation in chemical shift upon ligand binding. Therefore, the 

HSQC spectra reported in figure 27, showing just three signals, were very simple 

to analyze and gave unambiguous results. 

 

Figure 27. 2D-[1H,13C]-HSQC experiments of the EphA3-LBD in absence (red) and in presence 
of compounds 65 (blue), 74 (green), 76 (light blue). 

 

Since compound 74 seemed the best candidate among the three, it was also tested 

by ITC showing a dissociation constant of about 5µM. However, while ITC is 

perfect to detect and characterize binding of very potent ligands (Kd<1 µM), it is 

far less reliable for detecting weaker binders and, in our case, ITC experiments 

were not fully reproducible probably due to the low enthalpic contribution to the 

binding. Hence, we estimated the dissociation constant of the complex by 

measuring the chemical shift variation upon ligand titration.164,165 This method is 

very sensitive to weak binding events and is the election technique for ligands that 

bind with fast off rates on the NMR time scale (as a rule of thumb, Kd ranging 

from 1 µM to 1 mM or above). The binding curve for compound 74 was 

determined by titrating the peptide into a sample of 15N-EphA3-LBD, acquiring 
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[15N-1H]-HSQC spectra at different ligand:protein ratios till the protein was 

saturated, and monitoring the chemical shift changes of the backbone amide. The 

Kd was then calculated and resulted in a value of 9.94 µM. 

Then, we investigated the role of the N-terminal residue. In fact, from previous 

studies on EphA4, emerged that this receptor tolerates only Ala or β-Ala as first 

residue while the presence of bulkier amino acids prevents the binding event. By 

testing compounds 79-84 (table 5) we demonstrated that the presence of methyl 

functionalizations on the first amino acid, makes the peptide able to discriminate 

between the two receptors, since compounds 82 and 83 with a 3-amino-3-

methylbutanoic acid and 3-amino-2,2-dimethylpropionic acid respectively as first 

residue, retain good affinity for EphA3 while unable to bind EphA4. Moreover, 

we found out that significant modifications introduced in the positions two, three 

and four of the peptoid negatively influenced the binding to both receptors. 
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Table 5. Analogs derived from optimization of position P1. 

 

3.2.3 CONCLUSIONS 

In the present study, the ligand binding domain of EphA3 has been expressed for 

the first time in a 13C-Met-labeled form. By using HTS by NMR as screening 
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method we identified first small molecule EphA3 binders, which are endowed 

with good selectivity between the two homolog receptors EphA3 and EphA4, with 

dissociation constants against EphA3 in the range of 5-10 µM. These binders will 

be further optimized in order to afford a useful tool to deepen our knowledge of 

EphA3 pathological role in cancer development. 
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EXPERIMENTAL SECTION 

I. EXPERIMENTAL PROCEDURES FOR SINULARIA INELEGANS 

 

High-resolution ESI-MS spectra were performed with a Micromass Q-TOF mass 
spectrometer. ESI-MS experiments were performed on an Applied Biosystem API 
2000 triple–quadrupole mass spectrometer.  Specific rotations were measured on a 
Jasco P-2000 polarimeter. 1H (500 and 700 MHz) and 13C (125 and 175 MHz) 
NMR spectra were measured on Varian INOVA spectrometers. J values are in 
hertz, chemical shifts (δ) are reported in ppm. and were referenced to the residual 
solvent signal (CHCl3: δH 7.26, δC 77.0; CHD2OD: δH 3.30, δC 49.0; 
CHD2SOCD3: δH 2.50, δC 39.5). Homonuclear 1H connectivities were determined 
by the COSY experiment; one-bond heteronuclear 1H-13C connectivities by the 
HSQC experiment; two- and three-bond 1H-13C connectivities by gradient-HMBC 
experiments optimized for a 2,3

J of 8 Hz. Thin-layer chromatography (TLC) was 
performed on Alugram silica gel G/UV254 plates. Medium pressure liquid 
chromatography was performed on a Büchi apparatus using a silica gel (230-400 
mesh) column. HPLC was performed using a Waters Model 510 pump equipped 
with Rheodine injector and a differential refractometer, Waters model 401. 
 
Organic material and separation of individual norcembranoids. A sample of 
Sinularia inelegans (order Alcyonacea, family Alcyoniidae) was collected in the 
Indian Ocean, off shore from Mandapam,  Tamil Nadu, India (Lat - 9° 17' 16"N 
Long - 79° 07' 55"E) in December 2010. The sample was frozen immediately after 
collection and lyophilized. A voucher specimen is deposited  under the accessing 
number 14S009 at CSIR-National Institute of Oceanography, India. The 
lyophilized material was extracted with methanol:chloroform (2:1) at room 
temperature and the crude methanolic:chloroformic extract (34.75 g) was subjected 
to a modified Kupchan's partitioning procedure as follows. The methanol extract 
was dissolved in a mixture of MeOH/H2O containing 10% H2O and partitioned 
against n-hexane. The water content (% v/v) of the MeOH extract was adjusted to 
30% and partitioned against CHCl3. The aqueous phase was concentrated to 
remove MeOH and then extracted with n-BuOH.  The CHCl3 extract (5.3 g) was 
chromatographed by MPLC (CH2Cl2/MeOH) and 23 fractions were collected and 
combined on the basis of their similar TLC retention factors. Fraction 9, eluted 
with CH2Cl2/MeOH 96:4 (645.3 mg) was purified by HPLC on a Nucleodur C18 
column (3µm, 150×4.60 mm, flow rate 1.0 mL/min) with 45% MeOH/H2O as 
eluent to give 0.9 mg of kavaranolide (12) (tR=8.4 min), 3.2 mg of scabrolide A (9) 
(tR=9.3 min), 2.6 mg of ineleganolide (11) (tR=14.7 min), 1.4 mg of scabrolide C 
(5) (tR=23.1 min), 0.4 mg of yonarolide (10) (tR=25.3 min), 0.6 mg of 5-epi-
norcembrene (8) (tR=29.5 min), 0.4 mg of scabrolide D (6) (tR=34.2 min), 0.4 mg 
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of leptocladolide B (7) (tR=43.2 min), 0.9 mg of 5-epi-norcembrenolide (1) (tR=45 
min), 1.8 mg of norcembrenolide (2) (tR=51.6 min) and 0.4 mg of 1β,6α-
dihydroxy-4(14)-eudesmene (13) (tR=55.8 min). Fraction 11, eluted with 
CH2Cl2/MeOH 93:7 (194 mg) was purified by HPLC on a Nucleodur C18 column 
(3µm, 150×4.60 mm, flow rate 1.0 mL/min) with 45% MeOH/H2O as eluent to 
give 1.3 mg of 5-epi-sinuleptolide (4) (tR=17.5 min) and 3.6 mg of sinuleptolide 
(3) (tR=20.5 min). 
5-epi-norcembrenolide : white amorphous solid; [α]D

25 +70.0 (c 0.04, 
chloroform); 1H and 13C NMR data in d6-DMSO given in table 1, chapter 1; MW 
for C20H26O6: 362.4, HRMS (ESI): 363.1763 [M+H]+. 
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SPECTROSCOPIC DATA  

 

1H-NMR spectrum (700 MHz, d6-DMSO) of compound 1 

 

 

 

COSY spectrum (700 MHz, d6-DMSO) of compound 1 
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HSQC spectrum (700 MHz, d6-DMSO) of compound 1 

 

 

 

HMBC spectrum (700 MHz, d6-DMSO) of compound 1 
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ROESY spectrum (700 MHz, d6-DMSO) of compound 1 

 

 

 

1H-NMR spectrum (400 MHz, d6-DMSO) of compound 2 
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1H-NMR spectrum (400 MHz, d6-DMSO) of compound 3 

 

 

 

 

1H-NMR spectrum (400 MHz, d6-DMSO) of compound 4 
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1H-NMR spectrum (700 MHz, d6-DMSO) of compound 5 

 

 

 

 

1H-NMR spectrum (400 MHz, d6-DMSO) of compound 6 
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1H-NMR spectrum (700 MHz, d6-DMSO) of compound 7 

 

 

 

 

1H-NMR spectrum (700 MHz, d6-DMSO) of compound 8 

 

 

 

 



Experimental Section I 

76 

 

1H-NMR spectrum (700 MHz, d6-DMSO) of compound 9 

 

 

 

 

1H-NMR spectrum (700 MHz, d6-DMSO) of compound 10 
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1H-NMR spectrum (400 MHz, d6-DMSO) of compound 11 

 

 

 

1H-NMR spectrum (400 MHz, d6-DMSO) of compound 12 
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1H-NMR spectrum (700 MHz, d6-DMSO) of compound 13 
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II. EXPERIMENTAL PROCEDURES FOR FXR/GP-BAR1 DUAL 

AGONISTS 

 
Chemistry. For specific rotations, ESI-MS, NMR and HPLC data see 
experimental section of Sinularia inelegans, pag.68.  
Reaction progress was monitored via thin-layer chromatography (TLC) on 
Alugram silica gel G/UV254 plates. Silica gel MN Kieselgel 60 (70–230 mesh) 
from Macherey-Nagel Company was used for column chromatography. All 
chemicals were obtained from Sigma-Aldrich, Inc. Solvents and reagents were 
used as supplied from commercial sources with the following exceptions. 
Tetrahydrofuran, dichloromethane, diisopropylamine, and triethylamine were 
distilled from calcium hydride immediately prior to use. Methanol was dried from 
magnesium methoxide as follows. Magnesium turnings (5 g) and iodine (0.5 g) 
are refluxed in a small (50–100 mL) quantity of methanol until all of the 
magnesium has reacted. The mixture is diluted (up to 1 L) with reagent grade 
methanol, refluxed for 2–3 h, and then distilled under nitrogen. All reactions were 
carried out under argon atmosphere using flame-dried glassware. The purity of all 
of the intermediates, checked by 1H NMR, was greater than 95%. The purity of 
tested compounds was determined to be always greater than 95% by analytical 
HPLC analysis as reported for each compound. 
Compounds 16 and 17 were prepared as previously reported.69,70  
Methyl 6α-Ethyl-3α-hydroxy-7-keto-5β-cholan-24-oate (18). A solution of 
methyl 3α-hydroxy-6-ethyliden-7-keto-5β-cholan-24-oate 5 (1.3 g, 3.06 mmol) in 
dry THF/dry MeOH (50 mL, 1:1 v/v) was hydrogenated in the presence of 
palladium, 5 wt %, on activated carbon (50 mg). The flask was evacuated and 
flushed first with argon and then with hydrogen. The mixture was stirred at room 
temperature under H2 for 8 h. The catalyst was filtered through Celite, and the 
recovered filtrate was concentrated under vacuum to give 18 (1.13 g, quantitative 
yield). An analytic sample was obtained by silica gel chromatography, eluting 
with hexane/EtOAc 8:2 and 0.5% of triethylamine. [α]25

D −3.7 (c 0.5, CHCl3). 
Selected 1H NMR (400 MHz, CDCl3): δ 3.67 (3H, s), 3.57 (1H, m), 2.57 (1H, t, J 
= 11.5 Hz), 2.37 (1H, m), 2.24 (1H, dd, J = 6.6, 9.6 Hz), 2.20 (1H, m), 1.22 (3H, 
s), 0.93 (3H, d, J = 6.2 Hz), 0.85 (3H, t, J = 7.3 Hz), 0.67 (3H, s). 13C NMR (100 
MHz, CDCl3): δ 215.1, 178.4, 71.6, 56.3, 51.3, 50.6, 50.4, 47.5, 46.4, 44.4, 43.8, 
40.4, 38.2, 36.6, 36.3, 35.2, 32.4, 32.0, 30.6, 29.3, 25.8, 23.5 (2C), 22.8, 18.8, 
12.5, 12.0. HRMS-ESI m/z 433.3323 [M + H] +, C27H45O4 requires 433.3318. 
6α-Ethyl-3α-hydroxy-7-keto-5β-cholan-24-oic Acid (19). Compound 18 (1.1 g, 
2.5 mmol) was hydrolyzed with a methanol solution of sodium hydroxide (5%, 30 
mL) in H2O (6 mL) overnight under reflux. The resulting solution was then 
concentrated under vacuum, diluted with water, acidified with HCl, 6 N, and 
extracted with ethyl acetate (3 × 50 mL). The collected organic phases were 
washed with brine, dried over anhydrous Na2SO4, and evaporated under reduced 
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pressure to give 19 in quantitative yield (1.1 g). An analytic sample was obtained 
by silica gel chromatography, eluting with CH2Cl2/MeOH 95:5. [α]25

D −21.5 (c 
0.35, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 3.46 (1H, m), 2.83 (1H, 
dd, J = 13.0, 5.5 Hz), 2.50 (1H, t, J = 11.2 Hz), 2.34 (1H, m), 2.20 (1H, m), 1.22 
(3H, s), 0.96 (3H, d, J = 6.6 Hz), 0.81 (3H, t, J = 7.3 Hz), 0.71 (3H, s). 13C NMR 
(100 MHz, CD3OD): δ 215.5, 187.0, 71.7, 56.4, 53.3, 52.2, 51.2, 50.5, 45.4, 43.8, 
40.4, 36.8, 36.6, 35.3, 32.6, 32.3, 32.0, 30.6, 29.3, 25.6, 23.9, 23.0, 20.8, 18.8, 
12.5, 12.3. HRMS-ESI m/z 419.3164 [M + H] +, C26H43O4 requires 419.3161. 
6α-Ethyl-3α-formyloxy-7-keto-5β-cholan-24-oic Acid (20). A solution of 19 
(1.0 g, 2.6 mmol) in 30 mL of 90% formic acid containing 90 µL of 70% 
perchloric acid was stirred at 47–50 °C for 6 h. The temperature of the heating 
bath was lowered to 40 °C. Then 24 mL of acetic anhydride was added over 10 
min, and the mixture was stirred for additional 10 min. The solution was cooled to 
room temperature, poured into 50 mL of water, and extracted with diethyl ether. 
The organic layers were washed with water to neutrality, dried over Na2SO4, and 
evaporated to give 940 mg of 20 (81%). An analytic sample was obtained by 
silica gel chromatography, eluting with CH2Cl2/MeOH 95:5. [α]25

D −25.9 (c 0.56, 
CH3OH). Selected 1H NMR (400 MHz, CDCl3): δ 7.99 (1H, s), 4.79 (1H, m), 2.71 
(1H, dd, J = 5.9,12.8 Hz), 1.29 (3H, s), 0.93 (3H, d, J = 6.3 Hz), 0.80 (3H, t, J = 
7.2 Hz), 0.66 (3H, s). 13C NMR (100 MHz CDCl3): δ 212.5, 180.0, 160.6, 73.2, 
54.8, 51.9, 50.6, 49.9, 48.9, 43.6, 42.6, 38.9, 35.7, 35.1, 33.8, 30.9, 30.7, 
30.3,28.2, 27.6, 25.9, 24.5, 23.4, 21.8, 18.8, 12.0, 11.9. HRMS-ESI m/z 447.3116 
[M + H] +, C27H43O5 requires 447.3110. 
6α-Ethyl-3α-formyloxy-7-keto-24-nor-5β-cholan-23-nitrile (21). Crude 20 (930 
mg, 2.08 mmol), 6.7 mL of cold trifluoroacetic acid, and 1.8 mL (15.6 mmol) of 
trifluoroacetic anhydride were stirred at 0–5 °C until dissolution. Sodium nitrite 
(435 mg, 6.3 mmol) was added in small portions. After the addition was complete, 
the reaction mixture was stirred first at 0–5 °C for 1 h, then at 38–40 °C for 2 h. 
On completion, the mixture was neutralized with NaOH, 2N, and then the product 
was extracted with 50 mL of diethyl ether (3 × 50 mL), followed by washing with 
brine and dried over anhydrous Na2SO4. The ether was removed under reduced 
pressure to afford 860 mg of 21 in quantitative yield, which was subjected to the 
next step without any purification. 
6α-Ethyl-3α-hydroxy-7-keto-24-nor-5β-cholan-23-oic Acid (22). Crude 
compound 21 (860 mg, 2.08 mmol) was refluxed with 30% KOH in about 50 mL 
of methanol/water, 1:1. After the mixture was stirred for 48 h, the basic aqueous 
solution was neutralized with HCl, 6N. Then methanol was evaporated and the 
residue was extracted with AcOEt (3 × 50 mL). The combined organic layers 
were washed with brine, dried, and evaporated to dryness to give white solid 
residue 22 (723 mg, 86%). An analytic sample was obtained by silica gel 
chromatography, eluting with CH2Cl2/MeOH 95:5. [α]25

D −25.2 (c 0.22, CH3OH). 
Selected 1H NMR (400 MHz, CD3OD): δ 3.46 (1H, m), 2.82 (1H, dd, J = 6.4, 12.6 
Hz), 1.25 (3H, s), 1.25 (3H, d ovl), 0.81 (3H, t, J = 7.3 Hz), 0.74 (3H, s). 13C 
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NMR (100 MHz, CD3OD): δ 215.7, 177.6, 71.7, 56.3, 53.3, 51.2, 50.6, 50.5, 45.3, 
43.8, 42.5, 40.4, 36.8, 35.3, 35.0, 32.6, 30.5, 29.4, 25.6, 23.9, 22.9, 20.9, 19.6, 
12.5, 12.3. HRMS-ESI m/z 405.3008 [M + H] +, C25H41O4 requires 405.3005. 
Methyl 6α-Ethyl-3α, 7α-dihydroxy-24-nor-5β-cholan-23-oate (23). Compound 
22 (715 mg, 1.7 mmol) was dissolved in a solution of tetrahydrofuran/water (50 
mL, 4/1 v/v) and treated at 0 °C with NaBH4 (320 mg, 8.5 mmol). After 1 h, water 
and MeOH were added dropwise during a period of 15 min at 0 °C with 
effervescence being observed. Then after evaporation of the solvents, the residue 
was diluted with water, acidified with HCl, 1N, and extracted with AcOEt (3 × 50 
mL). The combined organic phases were washed with brine, dried over anhydrous 
Na2SO4, and evaporated under reduced pressure. The crude residue was purified 
by flash chromatography on silica gel, using dichloromethane/methanol, 9:1, as 
eluent, to afford 640 mg of 3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-oic 
acid (93% yield). [α]25

D +3.7 (c 1.48, CH3OH). Selected 1H NMR (400 MHz, 
CD3OD): δ 3.62 (1H, br s), 3.30 (1H, m ovl), 0.97 (3H, d, J = 7.9 Hz), 0.88 (3H, 
s), 0.87 (3H, t ovl), 0.70 (3H, s). 13C NMR (100 MHz, CD3OD): δ 177.8, 73.2, 
71.2, 57.5, 51.7, 46.9, 43.9, 43.8, 42.5, 41.6,41.0, 36.7, 35.1, 34.5, 34.4, 31.3, 
29.4, 24.6, 23.8, 23.5, 21.9, 19.6, 12.3, 12.0. HRMS-ESI m/z 407.3166 [M + H] +, 
C25H43O4 requires 407.3161. The above compound (640 mg, 1.6 mmol) was 
dissolved in 50 mL of dry methanol and treated with p-toluenesulfonic acid (1.5 g, 
8.0 mmol). The solution was left to stand at room temperature overnight. The 
mixture was quenched by addition of NaHCO3 solution until neutrality. Most of 
the solvent was evaporated, and the residue was extracted with EtOAc. The 
combined extract was washed with brine, dried with Na2SO4, and evaporated to 
give 23 as an amorphous solid (645 mg, 96%). An analytic sample was obtained 
by silica gel chromatography, eluting with hexane/EtOAc 6:4. [α]25

D + 0.95(c 
0.96, CHCl3). Selected 1H NMR (400 MHz, CD3OD): δ 3.61 (3H, s), 3.62 (1H, s 
ovl), 3.28 (1H, m), 0.95 (3H, d, J = 6.9 Hz), 0.88 (3H, s), 0.87 (3H, t, J = 7.2 Hz), 
0.69 (3H, s). 13C NMR (100 MHz, CD3OD): δ 175.7, 73.2, 71.2, 57.8, 51.8, 51.6, 
46.9, 43.9, 43.8, 43.1, 42.3, 41.5, 41.0,36.7, 35.2, 35.1, 34.4, 31.2, 29.3, 24.5, 
23.8, 23.5, 21.9, 19.6, 12.3, 12.0. HRMS-ESI m/z 421.3322 [M + H] +, C26H45O4 
requires 421.3318. 
Methyl 3α,7α-Di(tert-butyldimethylsilyloxy)-6α-ethyl-24-nor-5β-cholan-23-

oate (24). To a solution of 23 (600 mg, 1.4 mmol) in 20 mL of CH2Cl2 at 0 °C 
were added 2,6-lutidine (14.3 mmol, 1.6 mL) and tert-butyl 
dimethylsilyltrifluoromethanesulfonate (4.2 mmol, 960 µL). After the mixture was 
stirred for 24 h at 0 °C, the reaction was quenched by addition of aqueous 
NaHSO4 (1 M, 50 mL). The layers were separated, and the aqueous phase was 
extracted with CH2Cl2 (3 × 50 mL). The combined organic layers were washed 
with NaHSO4, water, saturated aqueous NaHCO3, and brine. Purification by flash 
chromatography on silica gel using hexane/ethyl acetate, 9:1, and 0.5% of 
triethylamine as eluent gave 24 (722 mg, 78%) as a clear, colorless oil. [α]25

D 
+2.44 (c 0.62, CHCl3). Selected 1H NMR (400 MHz, CDCl3): δ 3.69 (1H, br s), 
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3.48 (3H, s), 3.40 (1H, m), 1.02 (3H, d, J = 6.3 Hz), 0.90 (3H, t, J = 7.3 Hz), 0.89 
(3H, s), 0.86 (18H, s), 0.70 (3H, s), 0.042 (12H, s). 13C NMR (100 MHz, CDCl3): 
δ 176.3, 74.1, 72.9, 56.0, 51.6, 51.6, 49.4, 45.1, 43.2, 42.4, 41.9, 41.5, 40.8, 35.7, 
34.9, 34.1, 33.9, 31.8, 31.3, 26.7, 26.6, 25.7 (3C), 25.6 (3C), 24.4, 24.0, 23.0, 
19.3, 18.8, 12.0, 11.9, −3.0 (2C), −2.8 (2C). HRMS-ESI m/z 641.5051 [M + H]+, 
C38H73O4Si2 requires 641.5047. 
6α-Ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23yl-23-triethylammonium 

Sulfate (14). Dry methanol (133 µL, 3.3 mmol) and LiBH4 (1.7 mL, 2 M in THF, 
3.3 mmol) were added to a solution of 24 (722 mg, 1.1 mmol) in dry THF (15 
mL) at 0 °C under argon, and the resulting mixture was stirred for 8 h at 0 °C. The 
mixture was quenched by addition of NaOH (1 M, 2.2 mL) and then allowed to 
warm to room temperature. Ethyl acetate was added, and the separated aqueous 
phase was extracted with ethyl acetate (3 × 30 mL). The combined organic phases 
were washed with water, dried (Na2SO4), and concentrated. Purification by silica 
gel (n-hexane/ethyl acetate 8:2) gave C23 alcohol derivative as a colorless oil 
(650 mg, 95%). [α]25

D −0.25 (c 0.5, CH3OH). Selected 1H NMR (400 MHz, 
CDCl3): δ 3.70 (1H, m), 3.67 (1H, br s), 3.60 (1H, m), 3.37 (1H, m), 0.94 (3H, d, J 
= 6.4 Hz), 0.87 (3H, s), 0.87 (3H, t, ovl), 0.86 (18H, s), 0.66 (3H, s), 0.042 (12H, 
s). 13C NMR (100 MHz, CDCl3): δ 73.6, 71.2, 61.0, 56.6, 50.8, 45.6, 43.0, 41.5, 
40.3, 39.9, 36.0, 35.8, 34.4, 33.5, 33.2 (2C), 31.3, 28.6, 26.2 (7C), 23.9, 23.4, 
22.5, 21.0, 19.0, 12.0, 11.8, −4.3 (2C), −4.4 (2C). HRMS-ESI m/z 621.5093 [M + 
H]+, C37H73O3Si2 requires 621.5098. The triethylamine–sulfur trioxide complex 
(906 mg, 5 mmol) was added to a solution of C23 alcohol (620 mg, 1 mmol) in 
DMF dry (7 mL) under an argon atmosphere, and the mixture was stirred at 95 °C 
for 24 h. The solution was then concentrated under vacuum. To the solid 
dissolved in methanol (30 mL) was added three drops of HCl, 37% v/v, and the 
mixture was stirred for 5 h at room temperature. At the end of reaction, silver 
carbonate was added to precipitate chloride. Then the reaction mixture was 
centrifuged and the supernatant was concentrated in vacuo. The residue was 
poured over a RP18 column. The fraction eluted with H2O/MeOH (1:1) gave 
compound 14 as a white solid (500 mg, 87%). A sample (20 mg) was subjected to 
purification by HPLC on a Nucleodur 100-5 C18 (5 µm, 10 mm i.d. × 250 mm) 
with MeOH/H2O (65:35) as eluent (flow rate 3 mL/min (tR = 24.8 min)). [α]25

D 
+2.9 (c 0.17, CH3OH). 1H and 13C NMR data in CD3OD are given in table 6. HR 
ESIMS m/z 471.2775 [M – Na], C25H43O6S requires 471.2780. 
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Table 6. 1H and 13C NMR data (700 MHz, CD3OD) for 14 

 
Compound 25. To a solution of 23 (30 mg, 0.07 mmol) in dry THF (5 mL) at 0 
°C, dry methanol (20 µL, 0.5 mmol) and LiBH4 (250 µL, 2 M in THF, 0.5 mmol) 
were added. The resulting mixture was stirred for 8 h at 0 °C. The mixture was 
quenched by addition of NaOH (1 M, 240 µL), and then ethyl acetate was added. 
The separated aqueous phase was extracted with ethyl acetate (3 × 30 mL). The 
combined organic phases were washed with water, dried (Na2SO4), and 
concentrated. Purification by silica gel (CH2Cl2/MeOH 9:1) gave triol derivative 
as a white solid (27 mg, quantitative yield). [α]25

D +1.97 (c 0.5, CH3OH). Selected 
1H NMR (400 MHz, CDCl3): δ 3.67 (1H, br s), 3.60 (2H, m), 3.43 (1H, m), 0.93 
(3H, d, J = 6.6 Hz), 0.88 (3H, s), 0.87 (3H, t, J = 7.1 Hz), 0.67 (3H, s). 13C NMR 
(100 MHz, CDCl3): δ 73.2, 71.2, 60.8, 57.9, 51.7, 51.6, 46.9, 43.9, 43.1, 41.5, 
41.0, 39.8, 36.7, 36.6, 34.5, 34.4, 34.2, 31.2, 29.3, 24.5, 23.7, 23.5, 21.9, 19.5, 
19.3, 12.2, 12.0. HRMS-ESI m/z 393.3367 [M + H] +, C25H45O3 requires 
393.3369. Triethylamine–sulfur trioxide complex (127 mg, 0.7 mmol) was added 
to triol (27 mg, 0.07 mmol) in DMF dry (10 mL) under an argon atmosphere, and 
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the mixture was stirred at 95 °C for 48 h. The reaction mixture was quenched with 
water (1.6 mL), and the solution was poured over a C18 silica gel column to 
remove excess Et3N·SO3. The fraction eluted with H2O/MeOH (9:1) gave a 
mixture, which was further purified by HPLC on a Nucleodur 100-5 C18 (5 µm, 
10 mm i.d. × 250 mm) with MeOH/H2O (35:65) as eluent (flow rate 3 mL/min) to 
give compound 25 as a white solid (47 mg, 72%). [α]25

D −2.3 (c 0.24, CH3OH). 
Selected 1H NMR (400 MHz, CD3OD): δ 4.62 (1H, br s), 4.11 (1H, m), 4.03 (2H, 
m), 3.19 (18H, q, J = 7.2 Hz), 1.30 (27H, t, J = 7.2 Hz), 0.99 (3H, d, J = 6.5 Hz), 
0.96 (3H, s), 0.93 (3H, t, J = 7.4 Hz), 0.71 (3H, s). HR ESIMS m/z 833.4322 [M – 
Et3NH], C37H73N2O12S3 requires 833.4326. 
Chenodeoxycholan Sulfate Derivative Synthesis. Methyl 3α,7α-Dihydroxy-5β-

cholan-24-oate (26). A mixture of CDCA (15, 100 mg, 0.25 mmol) and p-
toluenesulfonic acid (237 mg, 1.25 mmol) in dry methanol (10 mL) was left to 
stand at room temperature for 1 h. The mixture was quenched by addition of 
NaHCO3 solution until neutrality. Most of the solvent was evaporated, and the 
residue was extracted with EtOAc. The combined extract was washed with brine, 
dried with Na2SO4, and evaporated to give the desired methyl ester as colorless 
amorphous solids (102 mg, quantitative yield). An analytic sample was obtained 
by silica gel chromatography, eluting with CH2Cl2/MeOH 95:5. [α]25

D +7.81 (c 
2.33, CHCl3). Selected 1H NMR (400 MHz, CDCl3): δ 3.73 (1H, br s), 3.57 (3H, 
s), 3.30 (1H, m ovl), 2.26 (1H, m), 2.13 (1H, m), 0.84 (3H, d, J = 6.0 Hz), 0.82 
(3H, s), 0.60 (3H, s). 13C NMR (100 MHz, CDCl3): δ 174.4, 71.2, 67.6, 55.3, 51.0, 
49.8, 42.0, 41.1, 39.2, 38.8 (2C), 34.9, 34.8, 34.5, 34.2, 32.3, 30.5, 30.4, 29.9, 
27.7, 23.0, 22.3, 20.1, 17.7, 11.2. HRMS-ESI m/z 407.3165 [M + H] +, C25H43O4 
requires 407.3161. 
3α,7α,24-5β-Cholantriol (28). Methyl ester 26 (100 mg, 0.25 mmol) was 
dissolved in dry THF (5 mL) at 0 °C in the presence of dry methanol (70 µL, 0.84 
mmol) and LiBH4 (875 µL, 2 M in THF, 1.75 mmol). After 8 h, a solution of 1 M 
NaOH (500 µL) was added and then allowed to warm to room temperature. Ethyl 
acetate was added, and the separated aqueous phase was extracted with ethyl 
acetate (3 × 30 mL). The combined organic phases were washed with water, dried 
(Na2SO4), and concentrated. Purification by silica gel (CH2Cl2/MeOH 95:5) gave 
triol derivative 28 as a colorless oil (90 mg, 96%). [α]25

D +0.82 (c 2.07, CH3OH). 
Selected 1H NMR (400 MHz, CDCl3): δ 3.80 (1H, br s), 3.56 (2H, m), 3.40 (1H, 
m), 0.91 (3H, d, J = 6.0 Hz), 0.87 (3H, s), 0.63 (3H, s). 13C NMR (100 MHz, 
CDCl3): δ 71.8, 68.4, 63.2, 56.0, 50.3, 42.5, 41.5, 39.6, 39.3 (2C), 35.5, 35.3, 
34.9, 34.5, 32.8, 30.5 (2C), 29.3, 28.2, 23.6, 22.7, 20.5, 18.6, 11.7. HRMS-ESI 
m/z 379.3216 [M + H] +, C24H43O3 requires 379.3212. 
3α,7α-Dihydroxy-5β-cholan-24-yl-24-sodium Sulfate (30). At a solution of triol 
28 (40 mg, 0.1 mmol) in DMF dry (3 mL) was added triethylamine–sulfur 
trioxide complex (36 mg, 0.2 mmol) under an argon atmosphere, and the mixture 
was stirred at 95 °C for 1 h. Most of the solvent was evaporated, and the residue 
was poured over a RP18 column to remove excess SO3·NEt3. The fraction eluted 
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with H2O/MeOH 1:1 gave a mixture that was further purified by HPLC on a 
Nucleodur 100-5 C18 (5 µm, 4.6 mm i.d. × 250 mm) with MeOH/H2O (65:35) as 
eluent (flow rate 1 mL/min) to give 35 mg (73%) of compound 18 (tR = 11.2 min). 
[α]25

D +4.93 (c 0.05, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 3.95 
(2H, t, J = 6.4 Hz), 3.78 (1H, br s), 3.30 (1H, m ovl), 0.96 (3H, d ovl), 0.95 (3H, 
s), 0.70 (3H, s). HR ESIMS m/z 457.2627 [M – Na], C24H41O6S requires 
457.2624. 
5β-Cholan-3α,7α,24-tryl-3,7,24-sodium Trisulfate (32). The triethylamine–
sulfur trioxide complex (91 mg, 0.5 mmol) was added to a solution of triol 28 (40 
mg, 0.1 mmol) in dry DMF (3 mL) under an argon atmosphere, and the mixture 
was stirred at 95 °C for 3 h. Most of the solvent was evaporated, and the residue 
was poured over a RP18 column to remove excess SO3·NEt3. The fraction eluted 
with H2O/MeOH, 9:1, gave a mixture that was further purified by HPLC on a 
Nucleodur 100-5 C18 (5 µm, 4.6 mm i.d. × 250 mm) with MeOH/H2O (35:65) as 
eluent (flow rate 1 mL/min) to give 20 (44 mg, tR = 8 min, 65%). [α]25

D +4.78 (c 
0.12, CH3OH). 1H NMR (400 MHz, CD3OD): δ 4.45 (1H, br s), 4.15 (1H, m), 
3.95 (2H, t, J = 6.5 Hz), 2.35 (1H, d, J = 12.5 Hz), 2.3 (1H, d, J = 14.0 Hz), 0.97 
(3H, d ovl), 0.97 (3H, s), 0.70 (3H, s). HR ESIMS m/z 661.1395 [M – Na], 
C24H39Na2O12S3 requires 661.1399. The same sequence of reactions and 
purification procedure was carried out on 6α-ethylchenodeoxycholic acid (27) to 
give a mixture of compounds 31 and 33. Purification by HPLC on a Nucleodur 
100-5 C18 (5 µm, 4.6 mm i.d. × 250 mm) with MeOH/H2O (65:35) as eluent 
(flow rate 1 mL/min) gave compound 31 (tR = 22.0 min) as a white solid (15 mg). 
Purification by HPLC on a Nucleodur 100-5 C18 (5 µm, 4.6 mm i.d. × 250 mm) 
with MeOH/H2O (35:65) as eluent (flow rate 1 mL/min) gave compound 33 (tR = 
24.0 min) as a white solid (27 mg). 
6α-Ethyl-3α,7α-dihydroxy-5β-cholan-24-yl-24-sodium Sulfate (31). [α]25

D 
+3.18 (c 0.51, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 3.96 (2H, t, J = 
6.3 Hz), 3.65 (1H, br s), 3.30 (1H, m ovl), 0.97 (3H, d, J = 6.5 Hz), 0.92 (3H, s), 
0.90 (3H, t, J = 7.0 Hz), 0.70 (3H, s). 13C NMR (100 MHz, CD3OD): δ 72.2, 70.9, 
69.6, 56.4, 50.5, 45.9, 42.5, 41.1, 39.9, 39.6, 35.7, 35.6 (2C), 35.4, 33.4, 32.0, 
31.9, 29.3, 28.2, 23.6 (2C), 23.1, 20.5, 18.9, 12.2, 11.9. HR ESIMS m/z 485.2935 
[M – Na], C26H45O6S requires 485.2937. 
6α-Ethyl-5β-cholan-3α,7α,24-tryl-3,7, 24-sodium Trisulfate (33). [α]25

D −1.9 (c 
0.23, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 4.55 (1H, br s), 4.09 
(1H, m), 3.96 (2H, t, J = 6.0 Hz), 0.97 (3H, d, J = 6.4 Hz), 0.92 (3H, s), 0.90 (3H, 
t, J = 7.0 Hz), 0.70 (3H, s). HR ESIMS m/z 689.1715 [M – Na], C26H43Na2O12S3 
requires 689.1712. 
Bis-homochenodeoxycholan Sulfate Derivatives. 3α,7α-Di(tert-

butyldimethylsilyloxy)-5β-cholan-24-ol (34). 2,6-Lutidine (290 µL, 2.5 mmol) 
and tert-butyl dimethylsilyltrifluoromethanesulfonate (171 µL, 0.75 mmol) were 
added at 0 °C to a solution of methyl ester 26 (100 mg, 0.25 mmol) in 10 mL of 
CH2Cl2. After the mixture was stirred for 2 h at 0 °C, the reaction was quenched 
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by addition of aqueous NaHSO4 (1 M, 50 mL). The layers were separated, and the 
aqueous phase was extracted with CH2Cl2 (3 × 50 mL). The combined organic 
layers were washed with NaHSO4, water, saturated aqueous NaHCO3, and brine. 
Purification by flash chromatography on silica gel using hexane/ethyl acetate, 
99:1, and 0.5% of triethylamine as eluent gave the corresponding methyl ester 
(131 mg, 83%) as a clear, colorless oil. To a solution of methyl ester (100 mg, 
0.16 mmol) in dry THF (5 mL) at 0 °C were added dry methanol (45 µL, 1.12 
mmol) and LiBH4 (560 µL, 2 M in THF, 1.12 mmol). The resulting mixture was 
stirred for 3 h at 0 °C. The mixture was quenched by addition of 1 M NaOH (320 
µL) and then ethyl acetate. The organic phase was washed with water, dried 
(Na2SO4), and concentrated. Purification by silica gel (hexane/ethyl acetate 8:2) 
gave compound 34 as a white solid (97 mg, quantitative yield). [α]25

D +7.47 (c 
0.12, CHCl3). Selected 1H NMR (400 MHz, CDCl3): δ 3.82 (1H, br s), 3.47 (2H, t, 
J = 6.5 Hz), 3.41 (1H, m), 0.93 (3H, d, J = 6.0 Hz), 0.88 (9H, s), 0.88 (3H, s ovl), 
0.86 (9H, s), 0.65 (3H, s), 0.08 (6H, s), 0.04 (6H, s). 13C NMR (100 MHz, 
CDCl3): δ 72.8, 69.7, 63.4, 56.3, 50.1, 42.5, 42.0, 40.7, 40.6, 39.8, 36.0, 35.8, 
35.2, 34.8, 32.4, 32.2, 31.2, 29.7 (3C), 28.3, 26.3 (3C), 26.0 (3C), 24.1, 23.0, 20.7, 
18.8, 12.0, −2.2, −4.4, −4.5, −5.4. HRMS-ESI m/z 607.4946 [M + H] +, 
C36H71O3Si2 requires 607.4942. 
Ethyl 3α, 7α-Di(tert-butyldimethylsilyloxy)-25,26-bis-homo-5β-chol-24-en-26-

oate (35). DMSO (4.18 mL, 0.75 mmol) was added dropwise for 5 min to a 
solution of oxalyl chloride (14.7 mL, 0.37 mmol) in dry dichloromethane (5 mL) 
at −78 °C under argon atmosphere. After 30 min, a solution of 34 (90 mg, 0.15 
mmol) in dry CH2Cl2 (2 mL) was added dropwise and the mixture was stirred at 
−78 °C. After 30 min, Et3N dry (6.83 mL, 0.75 mmol) was added dropwise to the 
solution and the mixture was allowed to warm to room temperature. After 1 h, the 
reaction was quenched by addition of aqueous NaHSO4 (1 M, 50 mL). The layers 
were separated, and the aqueous phase was extracted with CH2Cl2 (3 × 50 mL). 
The combined organic layers were washed with saturated aqueous NaHSO4, 
saturated aqueous NaHCO3, and brine. The organic phase was then dried over 
Na2SO4 and concentrated to give the corresponding aldehyde (90 mg, quantitative 
yield) as a colorless oil, which was used without any further purification. To a 
solution of aldehyde (0.15 mmol) in THF dry (10 mL) was added LiOH (250 mg, 
10.5 mmol) and TEPA (triethylphosphonoacetate, 2.07 mL, 10.5 mmol). The 
reaction mixture was stirred for 45 min at room temperature and then quenched 
with water (10 mL). The mixture was then extracted with EtOAc (3 × 30 mL), and 
the organic phase was concentrated in vacuo. Flash chromatography 
(hexane/EtOAc, 99:1) afforded pure 35 (92 mg, 91% over two steps). [α]25

D +3.31 
(c 0.5, CHCl3). Selected 1H NMR (400 MHz, CDCl3): δ 6.93 (1H, dt, J = 5.1, 15.6 
Hz), 5.78 (1H, d, J = 15.6 Hz), 4.1 (2H, m), 3.77 (1H, br s), 3.38 (1H, m), 0.91 
(3H, d ovl), 0.90 (9H, s), 0.90 (3H, s ovl), 0.87 (9H, s), 0.61 (3H, s), 0.06 (6H, s), 
0.03 (6H, s). 13C NMR (100 MHz, CDCl3): δ 178.5, 149.8, 120.8, 72.5, 69.5, 59.9, 
55.8, 49.9, 42.3, 41.8, 40.5, 40.4, 39.5, 35.6 (2C), 35.0, 34.6, 34.3, 32.2, 30.9, 
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29.6, 29.1 (2C), 28.0, 26.0 (3C), 25.8 (3C), 23.8, 22.7, 20.5, 18.4, 14.2, 12.0, −2.4, 
−4.5, −4.6, −5.6. HRMS-ESI m/z 675.5207 [M + H] +, C40H75O4Si2 requires 
675.5204. 
Ethyl 25,26-Bis-homo-3α,7α-dihydroxy-5β-cholan-26-oate (36). Compound 35 
(90 mg, 0.13 mmol) and THF dry (15 mL) were mixed and deoxygenated with 
flowing nitrogen for 5 min. The catalyst Pd(OH)2 (5 mg, mmol), 20 wt % on 
carbon (Degussa type), was added. The mixture was transferred to a standard 
PARR apparatus and flushed with nitrogen and then with hydrogen several times. 
The apparatus was shacked under 50 psi of H2. After 2 h, the reaction was 
complete. The catalyst was filtered through Celite, and the recovered filtrate was 
concentrated under vacuum to afford 92 mg of ethyl ester in quantitative yield, 
which was subjected to the next step without any purification. To the ethyl ester 
dissolved in ethanol (30 mL) was added 1 mL of HCl, 37% v/v, and the mixture 
was stirred for 5 h at room temperature. At the end of reaction, silver carbonate 
was added to precipitate chloride. Then the reaction mixture was centrifuged and 
the supernatant was concentrated in vacuo to give the desired ethyl ester 36 (50 
mg, 81% over two steps) as a colorless amorphous solid. An analytic sample was 
obtained by silica gel chromatography, eluting with CH2Cl2/MeOH 95:5. [α]25

D 
+6.72 (c 0.25, CHCl3). Selected 1H NMR (400 MHz, CDCl3): δ 4.1 (2H, q, J = 7.0 
Hz), 3.8 (1H, br s), 3.38 (1H, m), 2.29 (2H, t, J = 6.7 Hz), 1.24 (3H, t, J = 7.0 Hz), 
0.94 (3H, d, J = 6.6 Hz), 0.92 (3H, s), 0.68 (3H, s). 13C NMR (100 MHz, CDCl3): 
δ 175.4, 72.8, 69.0, 61.4, 57.4, 51.5, 43.6, 43.1, 41.0, 40.7, 40.3, 37.0, 36.7, 36.5, 
35.8, 35.2, 34.8, 34.0, 31.3, 29.3, 26.6, 26.5, 24.6, 23.5, 21.8, 19.3, 14.6, 12.3. 
HRMS-ESI m/z 449.3635 [M + H]+, C28H49O4 requires 449.3631. 
25,26-Bis-homo-3α,7α,26-5β-cholantriol (37). Ethyl ester 36 (40 mg, 0.09 
mmol) was reduced with LiBH4 (2 M in THF dry, 135 µL, 0.27 mmol) and dry 
MeOH (11 µL, 0.27 mmol) in dry THF at 0 °C for 5 h. The mixture was quenched 
by addition of 1 M NaOH solution (180 µL), and then ethyl acetate was added. 
The organic phase was washed with water, dried (Na2SO4), and concentrated. 
Purification by silica gel (CH2Cl2/MeOH 9:1) gave compound 37 as a white solid 
(28 mg, 77%). [α]25

D +15.0 (c 0.32, CH3OH). Selected 1H NMR (400 MHz, 
CDCl3): δ 3.82 (1H, br s), 3.61 (2H, t, J = 6.6 Hz), 3.43 (1H, m), 0.89 (3H, d, J = 
6.0 Hz), 0.88 (3H, s), 0.64 (3H, s). 13C NMR (100 MHz, CDCl3): δ 71.8, 68.4, 
62.8, 56.0, 50.4, 42.5, 41.4, 39.6 (2C), 39.4, 35.8, 35.6, 35.2, 35.0, 34.5, 32.8 
(2C), 30.5, 28.2, 26.1, 25.8, 23.6, 22.7, 20.5, 18.6, 11.6. HRMS-ESI m/z 407.3523 
[M + H]+, C26H47O4 requires 407.3525. 
25,26-Bis-homo-3α,7α-dihydroxy-5β-cholan-26-yl-26-sodium Sulfate (38) and 
25,26-Bis-homo-5β-cholan-3α, 7α, 26-tryl-3,7,26-sodium Trisulfate (39). The 
triethylamine–sulfur trioxide complex (132 mg, 0.7 mmol) was added to a 
solution of triol 37 (28 mg, 0.07 mmol) in DMF dry (3 mL) under an argon 
atmosphere, and the mixture was stirred at 95 °C for 3 h. Most of the solvent was 
evaporated, and the residue was poured over a RP18 column to remove excess 
SO3·NEt3. The fraction eluted with H2O/MeOH 1:1 gave a mixture that was 
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further purified by HPLC on a Nucleodur 100-5 C18 (5 µm, 4.6 mm i.d. × 250 
mm) with MeOH/H2O (65:35) as eluent (flow rate 1 mL/min) to give 4 mg of 
compound 38. The fraction eluted with H2O/MeOH (9:1) gave a mixture that was 
further purified by HPLC (Nucleodur 100-5 C18, 5 µm, 4.6 mm i.d. × 250 mm), 
with MeOH/H2O (35:65) as eluent (flow rate 1 mL/min), to give 33 mg of 
compound 39. 
25,26-Bis-homo-3α,7α-dihydroxy-5β-cholan-26-yl-26-sodium Sulfate (38). 

[α]25
D +9.13 (c 0.05, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 3.98 

(2H, t, J = 6.5 Hz), 3.79 (1H, m), 3.31 (1H, m ovl), 0.95 (3H, d, J = 6.8 Hz), 0.93 
(3H, s), 0.63 (3H, s). HR ESIMS m/z 485.2939 [M – Na], C26H45O6S requires 
485.2937. 
25,26-Bis-homo-5β-cholan-3α,7α,26-tryl-3,7,26-sodium Trisulfate (39). [α]25

D 
+1.35 (c 1.13, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 4.45 (1H, br s), 
4.13 (1H, m), 3.98 (2H, t, J = 6.5 Hz), 0.95 (3H, d, J = 6.6 Hz), 0.93 (3H, s), 0.69 
(3H, s). HR ESIMS m/z 689.1716 [M – Na], C26H43Na2O12S3 requires 689.1712. 
Ursodeoxycholan Sulfate and Bis-homoursodeoxycholan Sulfate Derivatives. 

3α,7β-Di(tert-butyldimethylsilyloxy)-5β-cholan-24-ol (41). To a solution of 
methyl 3α,7β-dihydroxy-5β-cholan-24-oate (2 g, 5 mmol) in CH2Cl2 dry (50 mL) 
was added at 0 °C 2,6-lutidine (49 mmol, 5.72 mL) and tert-butyl 
dimethylsilyltrifluoromethanesulfonate (15 mmol, 3.43 mL). After 2 h, the 
reaction was quenched by addition of aqueous NaHSO4, 1 M. The layers were 
separated, and the aqueous phase was extracted with CH2Cl2 (3 × 50 mL). The 
combined organic layers were washed with NaHSO4, saturated aqueous NaHCO3, 
and finally water. The organic phase was then dried over Na2SO4 and 
concentrated to give the corresponding methyl ester 40 (3.10 g, quantitative yield) 
as a colorless oil, which was used without any further purification. Dry methanol 
(600 µL, 15 mmol) and LiBH4 (7.50 mL, 2 M in THF, 15 mmol) were added to a 
solution of methyl ester (3.10 g, 5 mmol) in dry THF (15 mL) at 0 °C under 
argon, and the resulting mixture was stirred for 8 h at 0 °C. The mixture was 
quenched by addition of NaOH (1 M, 10 mL) and then allowed to warm to room 
temperature. Ethyl acetate was added, and the separated aqueous phase was 
extracted with ethyl acetate (3 × 30 mL). The combined organic phases were 
washed with water, dried (Na2SO4), and concentrated. Purification by silica gel 
(n-hexane/ethyl acetate 99:1) gave compound 41 as a colorless oil (2.40 g, 80%). 
[α]25

D +21.7 (c 0.49, CHCl3). Selected 1H NMR (400 MHz, CDCl3): δ 3.61 (2H, 
m), 3.50 (2H, m), 0.88 (3H, d, ovl), 0.88 (3H, s), 0.88 (9H, s), 0.83 (9H, s), 0.60 
(3H, s), 0.003 (6H, s), −0.01 (6H, s). 13C NMR (100 MHz, CDCl3): δ 72.7, 72.5, 
61.0, 55.5, 55.4, 44.0, 43.8, 42.8, 40.0, 39.0, 38.8, 38.0, 37.8, 35.4, 35.1, 34.1, 
32.8, 31.8 (2C), 30.8, 28.7, 27.3, 26.4 (3C), 25.9 (3C), 23.5, 21.2, 19.0, 12.1, −2.8 
(2C), −4.6 (2C). HRMS-ESI m/z 607.4947 [M + H]+, C36H70O3Si2 requires 
607.4942. 
3α,7β-Dihydroxy-5β-cholan-24-yl-24-sodium Sulfate (42). To a solution of 
compound 41 (100 mg, 0.16 mmol) in DMF dry (7 mL) was added 58 mg of 
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triethylamine–sulfur trioxide complex (0.32 mmol). The mixture was stirred at 95 
°C for 4 h. Then the solution was concentrated under vacuum. To the solid 
dissolved in methanol (30 mL) was added three drops of HCl, 37% v/v, and the 
mixture was stirred for 3 h at room temperature. At the end of reaction, silver 
carbonate was added to precipitate chloride. Then the reaction mixture was 
centrifuged and the supernatant was concentrated in vacuo. The residue was 
poured over a RP18 column. The fraction eluted with H2O/MeOH (7:3) gave 53 
mg (69% over two steps) of compound 42. [α]25

D +15.3 (c 0.97, CH3OH). 
Selected 1H NMR (400 MHz, CD3OD): δ 3.96 (2H, t, J = 6.6 Hz), 3.48 (2H, m), 
0.97 (3H, d, J = 6.4 Hz), 0.96 (3H, s), 0.71 (3H, s). 13C NMR (100 MHz, 
CD3OD): δ 72.3 (2C), 69.6, 57.0, 56.4, 44.8, 43.0 (2C), 41.2, 40.7, 37.3 (2C), 
36.7, 36.0, 35.5, 32.7, 30.6, 29.8, 27.8, 26.5, 23.3, 22.6, 20.0, 12.0. HR ESIMS 
m/z 457.2621 [M – Na], C24H41O6S requires 457.2624. 
5β-Cholan-3α,7β,24-tryl-3,7,24-sodium Trisulfate (43), 7β-Hydroxy-5β-

cholan-3α,24-diyl-3,24-sodium Disulfate (44), and 7β,24-Dihydroxy-5β-

cholan-3α-yl-3-sodium Sulfate (45). To compound 41 (100 mg, 0.16 mmol) 
dissolved in methanol (30 mL) was added 500 µL of HCl, 37% v/v, and the 
mixture was stirred for 2 h at room temperature. At the end of reaction, silver 
carbonate was added to precipitate chloride. Then the reaction mixture was 
centrifuged and the supernatant was concentrated in vacuo to give 60 mg (96%) of 
the desired triol as colorless amorphous solids. An analytic sample was obtained 
by silica gel chromatography, eluting with CH2Cl2/MeOH 95:5. The 
triethylamine–sulfur trioxide complex (118 mg, 0.65 mmol) was added to a 
solution of triol (50 mg, 0.13 mmol) in DMF dry (3 mL). The mixture was stirred 
at 95 °C for 2 h. Then the solution was concentrated under vacuum. The residue 
was poured over a RP18 column. The fraction eluted with H2O/MeOH (99:1) 
gave a mixture that was further purified by HPLC on a Nucleodur 100-5 C18 (5 
µm, 10 mm i.d. × 250 mm) with MeOH/H2O (35:65) as eluent (flow rate 3 
mL/min) to give 13 mg of 43 and 8 mg of 44. The fraction eluted with 
H2O/MeOH (1:1) gave a mixture that, purified by HPLC on a Nucleodur 100-5 
C18 (5 µm, 10 mm i.d. × 250 mm) with MeOH/H2O (65:35) as eluent (flow rate 3 
mL/min), afforded 14 mg of 45. 
5β-Cholan-3α,7β,24-tryl-3,7,24-sodium Trisulfate (43). [α]25

D +20.6 (c 0.08, 
CH3OH). 1H NMR (400 MHz, CD3OD): δ 4.28 (1H, m), 4.21 (1H, br s), 3.96 (2H, 
t, J = 6.7 Hz), 0.98 (3H, s), 0.97 (3H, d, J = 6.8 Hz), 0.71 (3H, s). HR ESIMS m/z 
661.1395 [M – Na], C24H39Na2O12S3 requires 661.1399. 
7β-Hydroxy-5β-cholan-3α,24-diyl-3,24-sodium Disulfate (44). [α]25

D +35.7 (c 
0.11, CH3OH). 1H NMR (400 MHz, CD3OD): δ 4.23 (1H, m), 3.96 (2H, t, J = 6.7 
Hz), 3.48 (1H, m), 0.98 (3H, s), 0.97 (3H, d, J = 6.8 Hz), 0.71 (3H, s). HR ESIMS 
m/z 559.2015 [M – Na], C24H40NaO9S2 requires 559.2011. 
7β,24-Dihydroxy-5β-cholan-3α-yl-3-sodium Sulfate (45). [α]25

D +37.4 (c 0.08, 
CH3OH). 1H NMR (400 MHz, CD3OD): δ 4.23 (1H, m), 3.50 (2H, m), 3.48 (1H, 
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m), 0.97 (3H, s), 0.96 (3H, d, ovl), 0.71 (3H, s). HR ESIMS m/z 457.2627 [M – 
Na], C24H41O6S requires 457.2624. 
Ethyl 3α,7β-Di(tert-butyldimethylsilyloxy)-25,26-bis-homo-5β-chol-24-en-26-

oate (46). Compound 46 (450 mg, 40% over two steps) was synthesized, starting 
from compound 41 (1.0 g, 1.6 mmol), by analogous procedures to those detailed 
above for compound 35. [α]25

D +11.7 (c 0.58, CHCl3). 
1H NMR (400 MHz, 

CDCl3): δ 6.9 (1H, dt, J = 7.3, 15.5 Hz), 5.78 (1H, d, J = 15.5 Hz), 4.1 (2H, q, J = 
7.3 Hz), 3.64 (1H, m), 3.50 (1H, br s), 1.26 (3H, t, J = 7.3 Hz), 0.91 (3H, d, ovl), 
0.90 (3H, s), 0.86 (18H, s), 0.62 (3H, s), 0.04 (6H, s), 0.03 (6H, s). 13C NMR (100 
MHz, CDCl3): δ 167.0, 150.0, 120.9, 72.7, 72.5, 60.0, 55.5, 54.9, 43.9, 43.7, 42.8, 
39.9, 38.8, 37.9, 37.8, 35.3 (2C), 35.1, 34.3, 34.1, 30.9 (2C), 30.8, 28.9, 27.3, 26.4 
(3C), 25.9 (3C), 23.5, 21.2, 18.6, 14.3, 12.1, −2.8, −3.4, −4.6 (2C). HRMS-ESI 
m/z 675.5207 [M + H] +, C40H75O4Si2 requires 675.5204. 
3α,7β-Di(tert-butyldimethylsilyloxy)-25,26-bis-homo-5β-cholan-26-ol (47). A 
solution of compound 46 (400 mg, 0.6 mmol) in THF dry/MeOH dry (10 mL/10 
mL, v/v) was hydrogenated in the presence of palladium, 5 wt %, on activated 
carbon (10 mg). The flask was evacuated and flushed first with argon and then 
with hydrogen. After 2 h, the reaction was complete. The catalyst was filtered 
through Celite, and the recovered filtrate was concentrated under vacuum to give 
the ethyl ester, which was used without any further purification. Dry methanol (73 
µL, 1.8 mmol) and LiBH4 (900 µL, 2 M in THF, 1.8 mmol) were added to a 
solution of ethyl ester (400 mg, 0.6 mmol) in dry THF (15 mL) at 0 °C under 
argon, and the resulting mixture was stirred for 8 h at 0 °C. The mixture was 
quenched by addition of 1 M NaOH (1.2 mL) and then allowed to warm to room 
temperature. Ethyl acetate was added, and the separated aqueous phase was 
extracted with ethyl acetate (3 × 30 mL). The combined organic phases were 
washed with water, dried (Na2SO4), and concentrated. Purification by silica gel 
(n-hexane/ethyl acetate 99:1) gave compound 47 as a colorless oil (334 mg, 88% 
over two steps). [α]25

D +9.3 (c 0.4, CHCl3). 
1H NMR (400 MHz, CDCl3): δ 3.75 

(2H, m), 3.65 (1H, m), 3.52 (1H, m), 0.92 (3H, s), 0.89 (3H, d, ovl), 0.89 (18H, s), 
0.64 (3H, s), 0.05 (6H, s), 0.04 (6H, s). 13C NMR (100 MHz, CDCl3): δ 72.7, 
72.5, 63.2, 55.5, 55.1, 43.9, 43.7, 42.8, 40.0, 38.8, 38.0, 37.8, 35.9 (2C), 35.6, 
35.2, 34.1, 30.9 (2C), 30.8, 30.3, 29.7, 28.6, 27.3, 26.4 (3C), 25.9 (3C), 23.5, 21.2, 
18.8, 12.1, −2.8, −3.3, −4.6 (2C). HRMS-ESI m/z 635.5257 [M + H]+, 
C38H75O3Si2 requires 635.5255. 
3α,7β-Dihydroxy-25,26-bis-homo-5β-cholan-26-yl-26-sodium Sulfate (48). 

Compound 48 (180 mg, 75% over two steps) was synthesized, starting from 
compound 47 (300 mg, 0.47 mmol), by procedures analogous to those detailed 
above for compound 42. [α]25

D+14.7 (c 0.17, CH3OH). Selected 1H NMR (400 
MHz, CD3OD): δ 3.98 (2H, t, J = 6.5 Hz), 3.47 (2H, m), 0.96 (3H, s), 0.95 (3H, d, 
J = 6.0 Hz), 0.71 (3H, s). HR ESIMS m/z 485.2935 [M – Na], C26H45O6S requires 
485.2937. 
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25,26-Bis-homo-5β-cholan-3α,7β,26-tryl-3,7,26-sodium Trisulfate (49) and 

25,26-Bis-homo-7β-hydroxy-5β-cholan-3α,26-diyl-3,26-sodium disulfate (50). 

The triethylamine–sulfur trioxide complex (214 mg, 1.2 mmol) was added to a 
solution of compound 48 (60 mg, 0.12 mmol) in DMF dry (3 mL). The mixture 
was stirred at 95 °C for 5 h. Then the solution was concentrated under vacuum. 
The residue was poured over a RP18 column. The fraction eluted with 
H2O/MeOH (7:3) gave a mixture that was further purified by HPLC, on a 
Nucleodur 100-5 C18 (5 µm, 10 mm i.d. × 250 mm) with MeOH/H2O (35:65) as 
eluent (flow rate 3 mL/min), to give 49 and 50, 8 and 5 mg, respectively. 
25,26-Bis-homo-5β-cholan-3α,7β,26-tryl-3,7,26-sodium Trisulfate (49). [α]25

D 
+3.34 (c 0.34, CH3OH). Selected 1H NMR (400 MHz, CD3OD): δ 4.30 (1H, m), 
4.23 (1H, m), 3.98 (2H, t, J = 6.6 Hz), 0.98 (3H, s), 0.95 (3H, d, J = 6.1 Hz), 0.70 
(3H, s). HR ESIMS m/z 689.1715 [M – Na], C26H43Na2O12S3 requires 689.1712. 
25,26-Bis-homo-7β-hydroxy-5β-cholan-3α,26-diyl-3,26-sodium Disulfate (50). 

[α]25
D +24.2 (c 0.11, CH3OH). 1H NMR (400 MHz, CD3OD): δ 4.23 (1H, m), 

3.96 (2H, t, J = 6.3 Hz), 3.48 (1H, m), 0.97 (3H, s), 0.95 (3H, d, J = 6.6 Hz), 0.70 
(3H, s). HR ESIMS m/z 587.2329 [M – Na], C26H44NaO9S2 requires 587.2324. 
 

Transactivation. HepG2 cells were cultured at 37 °C in minimum essential 
medium with Earl’s salts containing 10% fetal bovine serum (FBS), 1% l-
glutamine, and 1% penicillin/streptomycin. The transfection experiments were 
performed using Fugene HD (Promega) according to manufactured specifications. 
Cells were plated in a 24-well plate at 5 × 104 cells/well. For FXR mediated 
transactivation, HepG2 cells were transfected with 75 ng of pSG5-FXR, 75 ng of 
pSG5-RXR, 100 ng of pCMV-β-galactosidase, and 250 ng of the reporter vector 
p(hsp27)-TK-LUC containing the FXR response element IR1 cloned from the 
promoter of heat shock protein 27 (hsp27). For GP-BAR1 mediated 
transactivation, HEK-293T cells were transfected with 200 ng of pGL4.29 
(Promega), a reporter vector containing a cAMP response element (CRE) that 
drives the transcription of the luciferase reporter gene luc2P, with 100 ng of 
pCMVSPORT6-human GP-BAR1, and with 100 ng of pGL4.70 (Promega), a 
vector encoding the human Renilla gene. In control experiments HEK-293T cells 
were transfected only with vectors pGL4.29 and pGL4.70 to exclude any 
possibility that compounds could activate the CRE in a GP-BAR1 independent 
manner. At 24 h post-transfection, cells were stimulated 18 h with CDCA (15) at 
10 µM, 14 (1 and 10 µM), 6-ECDCA and compounds 25, 30–33, 38, 39, 42–45, 
and 48–50, 10 µM; in another experimental setting, cells were primed with the 
combination of CDCA (15) at 10 µM and compounds 25, 30, 32, 33, 34, 42–45, 
and 48–50 (50 µM). After treatments, cells were lysed in 100 µL of lysis buffer 
(25 mM Tris-phosphate, pH 7.8; 2 mM DTT; 10% glycerol; 1% Triton X-100), 
and 20 µL of cellular lysate was assayed for luciferase activity using the luciferase 
assay system (Promega). Luminescence was measured using Glomax 20/20 
luminometer (Promega). For FXR mediated transactivation, luciferase activities 
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were normalized for transfection efficiencies by dividing the luciferase relative 
light units by β-galactosidase activity expressed from cells co-transfected with 
pCMVβgal. For GP-BAR1 mediated transactivation, luciferase activities were 
normalized with Renilla activities. To realize dose–response curves for compound 
31, cells were transfected as described previously and then treated with increasing 
concentrations of 31 (0.01, 0.1, 1, and 10 µM). Luciferase activities were assayed 
and normalized as described above in order to calculate EC50. GLUTAg cells were 
kindly donated by Dr. D. J. Drucker, Banting and Best Diabetes Centre, 
University of Toronto, Toronto General Hospital, 200 Elizabeth Street MBRW-
4R402, Toronto, Canada M5G 2C4. FXR–/– mice were originally donated by Dr. 
F. Gonzalez, Laboratory of Metabolism, Center for Cancer Research, National 
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, U.S., 
as previously reported. 166  Cells were plated in a 24-well plate at 5 × 104 
cells/well, and the transfection experiments were performed using Fugene HD 
(Promega) according to manufactured specifications. 
 

Real-Time PCR. PCR was performed using Primers, and experimental conditions 
were as described previously.167  
 

cAMP and GLP-1 Measurement. cAMP and GLP-1 release in GLUTAg cells 
were measured as described previously.61  
 

Homology Modeling. The crystal structure of human adenosine A2A receptor 
(PDB code 2ydo)84 was used as template to build the homology model of human 
GP-BAR1. First a multiple alignment of the sequence of different GPCRs 
(adenosine receptors, histamine H2 receptor, sphingosine 1-phosphate receptors, 
cannabinoid receptors, muscarinic acetylcholine receptors, dopamine receptor, 
rhodopsin, etc.) was performed using ClustalW 168 , 169  to identify the most 
conserved regions along the GP-BAR1 sequence (Swissprot ID code q8tdu6). 
Then we chose as template the agonist conformation of the adenosine A2A 
receptor that shows one of the highest sequence identity and similarity values, 
20% and 55%, respectively (figure 28). The alignment between the model (GP-
BAR1) and the template (A(2A)R-GL31) primary sequence was refined 
considering highly conserved amino acid residues among GPCRs. In particular, in 
the extracellular region, where the ligand binding site is located, the presence of 
the disulfide bond between Cys85 and Cys155 of the extracellular loop II (EL2) 
and the transmembrane helix III (TM3), respectively, was considered. Finally, 
using Modeller, version 9.11,170 we built the tridimensional structure of the GP-
BAR1 receptor. The homology model of GP-BAR1 was embedded in a POPC 
phospholipids bilayer to mimic the physiological environment and submitted first 
to minimization and then to a 100 ns long MD simulation to check its stability 
(see section on molecular dynamics methods). A geometric validation of the 
tridimensional structure of the receptor used in the docking calculations was 
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carried out using the MolProbity server (http://molprobity.biochem.duke.edu). 
The model shows about 94% of all residues in favored conformational regions 
and 100% in allowed ones according to the Ramachandran analysis and 0% of 
backbone bonds and angles with bad values (figure 29). 
 

 
Figure 28. Alignment of the primary sequence of the template structure, human adenosine A2A 
receptor (PDB code: 2YDO), and the target, human GP-BAR1, used in the homology modeling 
process. Only residues of the template structure resolved by X-ray are reported. The 
transmembrane helices, intracellular and extracellular loops are also shown. For sake of clarity the 
alignment numbering starts from 1, which corresponds to Ser6 and Pro14 in adenosine A2A 
receptor and GP-BAR1, respectively. 

 

Figure 29. Ramachandran plot of the GP-BAR1 structure obtained from the MD simulation on the 
14/GP-BAR1 complex, and used in the docking calculations. The cyan and violet regions represent 
the favored and allowed conformational regions, respectively, as defined by ProCheck. 
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Molecular Docking. Molecular docking calculations in the rFXR-LBD X-ray 
structure (PDB code 1osv)91 and in the three-dimensional model of hGP-BAR1 
were carried out using the AutoDock4.2 software package.85 Ligand 
tridimensional structures were generated with the Maestro build panel.171 For each 
ligand, an extensive ring conformational sampling was performed with the OPLS-
AA force field172 and a 2.0 Å rmsd cutoff using MacroModel (version 9.9)173 as 
implemented in Maestro 9.3.171 All conformers were then refined using LigPrep174 
as implemented in Maestro 9.3. Protonation states at pH 7.0 were assigned using 
Epik.175 Protein structure was prepared through the Protein Preparation Wizard 
through the graphical user interface of Maestro 9.3. Water molecules were 
removed, and hydrogen atoms were added and minimized using the OPLS-2005 
force field.172 Ligands and receptor structures were converted to AD4 format files 
using ADT, and the Gasteiger–Marsili partial charges were then assigned. Grid 
points of 70 × 70 × 70 for FXR and of 65 × 80 × 55 for GP-BAR1 with a 0.375 Å 
spacing were calculated around the binding cavity using AutoGrid4.2. Thus, 100 
separate docking calculations were performed for each run. Each docking run 
consisted of 10 million energy evaluations using the Lamarckian genetic 
algorithm local search (GALS) method. Otherwise default docking parameters 
were applied. Docking conformations were clustered on the basis of their rmsd 
(tolerance = 2.0 Å) and were ranked based on the AutoDock scoring function.85  
 

Molecular Dynamics. The same computational protocol was used to set up both 
the apo GP-BAR1-membrane and the GP-BAR1/1-membrane complexes. A 94 Å 
× 94 Å (in x and y axes) pre-equilibrated POPC phospholipid bilayer was initially 
generated using the membrane-builder tool of CHARMM-GUI.org 
(http://www.charmm-gui.org). In order to place the receptor into the bilayer, a 
hole was generated, and all lipids in close contact (<1 Å distance from any protein 
atoms) were deleted. Each complex was solvated and neutralized using the 
solvation and autoionize modules of VMD 1.9.1.176 The TIP3 water model177 was 
used to treat the solvent. The ff99SBildn,178,179 gaff,180 and lipid11

181 Amber force 
fields were used to parametrize the protein, the ligand, and the lipids, respectively. 
All the simulations were performed with the NAMD 2.8 MD code.182 A 10 Å 
cutoff (switched at 8.0 Å) was used for atom–pair interactions. The long-range 
electrostatic interactions were computed by means of the particle mesh Ewald 
(PME) method183 using a 1.0 Å grid spacing in periodic boundary conditions. The 
SHAKE algorithm was applied to constrain bonds involving hydrogen atoms, and 
thus an integration 2 fs time step interval could be used. Amber charges were 
applied to the proteins and water molecules, whereas the ligand charges were 
computed using the restrained electrostatic potential (RESP) fitting procedure.184 
The ESP was first calculated by means of the Gaussian 03 package185 using a 6-
31G* basis set at Hartree–Fock level of theory, and then the RESP charges were 
obtained by a two-stage fitting procedure using Antechamber.186 The system was 
equilibrated in the NPT ensemble using a target temperature and pressure of 300 
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K and 1 atm, respectively. Harmonic constraints were applied to the protein and 
the ligand, which were gradually released along the equilibration process. 
Production runs were performed in NPT conditions at 1 atm and 300 K. All the 
residue labels were taken from crystal structure of rFXR-LBD with PDB code 
1osv and the wild-type amino acidic sequence of human GP-BAR1. All figures 
were rendered using PyMOL (http://www.pymol.org). The tridimensional model 
of GP-BAR1 is available upon request. 
 

 

Figure 30. Activation of cAMP responsive gene in absence of GP-BAR1. HEK293 cells were 
transfected with a reporter gene containing a cAMP responsive element in front of the luciferase 
gene. Twenty-four hour post transfection cells were stimulated with 10 µM compounds 14-15, 25, 
30-33, 38, 39, 42-45, 48-50. Luciferase activity served as a measure of the activation of cAMP 
responsive element regardless of GP-BAR1. TLCA (T, 10 µM) stimulates cAMP production in a 
GP-BAR1 dependent manner. Forskolin (F, 10 µM) stimulated cAMP production regardless of 
GP-BAR1. Results are expressed as mean ± standard error. *p<0.05 versus not treated cells. 

 

 

Figure 31. Rmsd plot of the GP-BAR1 backbone Cα atoms during the MD run with the receptor 
embedded in the membrane. The receptor was very stable during the whole simulation with a low 
averaged rmsd value (0.54 ± 0.08 A). 
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Figure 32. Binding modes of 6-ECDCA in the GP-BAR1 conformation obtained from MD 
simulations on the 14/GP-BAR1 complex (A) and within the rFXR-LBD (PDB ID: 1osv) (B). The 
ligand is represented as green sticks. The receptors are shown as grey and orange (helices H3, H4 
and H12 in FXR) cartoons. Amino acids involved in ligand binding are depicted as grey and 
orange sticks, in GP-BAR1 and in FXR, respectively. Hydrogens are omitted for clarity. 
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1H-NMR spectrum (700 MHz, CD3OD) of compound 14 

 
 

COSY spectrum (700 MHz, CD3OD) of compound 14
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HSQC spectrum (700 MHz, CD3OD) of compound 14 

 
HMBC spectrum (700 MHz, CD3OD) of compound 14 

 



Experimental Section II 

99 

 

1H-NMR spectrum (700 MHz, CD3OD) of compound 25 

 

 

 

 
 
 
 

1H-NMR spectrum (400 MHz, CD3OD) of compound 30 
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1H-NMR spectrum (400 MHz, CD3OD) of compound 31 

 

 
 
 
 
 

1H-NMR spectrum (400 MHz, CD3OD) of compound 32 
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1H-NMR spectrum (400 MHz, CD3OD) of compound 33 

 

 

 

 
 
 
 

1H-NMR spectrum (400 MHz, CD3OD) of compound 38 
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1H-NMR spectrum (400 MHz, CD3OD) of compound 39 

 

 

 

 
 

 

 
1H-NMR spectrum (700 MHz, CD3OD) of compound 42 
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HSQC spectrum (700 MHz, CD3OD) of compound 42 

 
HMBC spectrum (700 MHz, CD3OD) of compound 42 
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1H-NMR spectrum (700 MHz, CD3OD) of compound 43 

 

 

 

 
 
 
 

1H-NMR spectrum (700 MHz, CD3OD) of compound 44 
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1H-NMR spectrum (700 MHz, CD3OD) of compound 45 

 
 
 
 

1H-NMR spectrum (400 MHz, CD3OD) of compound 48 
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1H-NMR spectrum (400 MHz, CD3OD) of compound 49 

 

 

 

 
 
 
 

1H-NMR spectrum (400 MHz, CD3OD) of compound 50 
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III. EXPERIMENTAL PROCEDURES FOR XIAP-BIR3 INHIBITORS 

 

Protein Expression and purification. The BIR3 domain of the human XIAP was 
prepared on the basis of previously reported data.187 The BIR3 domain cDNA 
fragment (residues 253–347, confirmed by sequencing) was cloned into a pET15b 
vector (Novagen) and then transformed into E. coli BL21(DE3) Gold cells 
(Novagen). The transformed cells were transferred into LB medium and grown at 
37°C. When optical density reached 0.6, 1 mM isopropyl 1-thio-D-
galactopyranoside (IPTG) was added into the culture that continued to grow at 
18°C overnight. The overexpressed protein was purified using Ni+-affinity 
chromatography (HisTrap HP by GE Healthcare Life Sciences). Uniformly 15N-
labeled protein for NMR studies was prepared with a similar procedure by 
growing bacterial cells in a minimal medium containing 15NH4Cl for 15N labeling 
and a trace amount of Zn(OAc)2 required to get a proper folded protein. The final 
protein buffer was MES 50mM, NaCl 100mM, TCEP 1mM, Zn(OAc)2 50uM, 
pH=6. 
 

Library. The positional scanning library was produced by PEPSCAN PRESTO 
BV (The Netherlands). The library is tetrapeptidic with a fixed alanine at N-
terminus and then arranged in a positional scanning fashion having one fragment 
fixed and all the other positions systematically populated by all the possible 
combinations. The A-XXX library is made up of 46 residues at each of the three 
diversity positions and includes L (11), D (12), and modified (23) amino acids 
(table 7) arranged in a total of 138 mixtures, each containing 2,116 compounds. 
All mixtures are N-terminal free and C-terminal amidated. 

 

NMR Spectroscopy. NMR spectra were acquired on 600 and 700 MHz Bruker 
Avance spectrometer equipped with either TCI probe and z-shielded gradient coils 
or a TCI cryoprobe. All NMR data were processed and analyzed using 
TOPSPIN2.1 (Bruker Biospin, Billerica, MA, USA) and SPARKY3.1 (University 
of California, San Francisco, CA, USA). Compound binding was detected at 27°C 
by comparing the 2D-[15N, 1H]-HSQC spectra of 25 µM XIAP-BIR3 in the 
absence and presence of mixtures at 500 µM as overall concentration. 
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Table 7. Residues used to build the A-XXX-NH2 library. 

1 β-Alanine U 1-aminocylopropane-1-
carboxylic acid 

2 β-cyclohexyl-L-Ala a D-Ala 
3 β-cyclohexyl-D-Ala d D-Asp(OtBu) 
4 β-(3-pyridyl)-L-Ala e D-Glu(OtBu) 
5 4-fluoro-L-phenylalanine f D-Phe 
6 β-cyclopropyl-L-Ala i D-Ile 
7 4-fluoro-D-phenylalanine k D-Lys(Boc) 
8 p-phenyl-L-Phe l D-Leu 
9 D-homophenylalanine m D-Met 
B L-cyclopropylglycine p D-Pro 
J L-cyclopentyl-Gly v D-Val 
O L-cyclohexyl-Gly w D-Trp(Boc) 
P L-Pro y D-Tyr(tBu) 
Z L-homolys(Boc) Y L-Tyr(tBu)H 
b D-Nle W L-Trp(Boc) 
j L-HomoArg(Pbf) D L-Asp(OtBu) 
o O-Benzyl-L-Serine E L-Glu(OtBu) 
u β-L-HomoTrp(Boc) K L-Lys(Boc) 
z L-Tyr(HPO3Bzl) R L-Arg(Pbf) 
c γ-aminobutyric acid V L-Val 
g δ-aminovaleric acid I L-Ile 
h D-tetrahydroisoquinoline-1-

carboxylic acid(d-Tiq) 
L L-Leu 

C L-Dap(Dnp) S L-Ser(tBu) 
 
Peptide Synthesis. Unless otherwise indicated, all anhydrous solvents were 
commercially obtained and stored in Sure-seal bottles under nitrogen. All other 
reagents and solvents were purchased as the highest grade available and used 
without further purification. Mass spectral data were acquired on Shimadzu 
LCMS-2010EV for low resolution and on Bruker Daltonics Autoflex II MALDI 
TOF/TOF.  Purity of all compounds was obtained in a HPLC Breeze from Waters 
Co. using an Atlantis T3 3µm 4.6x150 mm reverse phase column. The eluant was 
a linear gradient with a flow rate of 1 ml/min from 95% A and 5% B to 5% A and 
95% B in 15 min followed by 5 min at 100% B (Solvent A: H2O with 0.1% TFA; 
Solvent B: acetonitrile with 0.1% TFA). The compounds were detected at λ=254 
nm or 220 nm. Compounds 51, 52 and 55-63 were synthesized manually using 
standard Fmoc peptide synthesis protocol with the Rink amide resin (0.61 meq/g). 
An example of the synthetic procedure applied to prodrugs 61 and 62 is reported 
in scheme 5. For each coupling reaction (for 0.1 mmol scale), 4 eq of Fmoc-amino 
acid, 6 eq of coupling agents (Oxyma Pure and DIC), 6 eq of DIEA in DMF dry 
(5 mL) were used. The coupling reaction was allowed to proceed for 2 h. Fmoc 
deprotection was performed by treating the resin-bound peptide with 20% 
piperidine in DMF  (4 mL DMF, 1 mL piperidine) for 30 min in two times. After 
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each coupling reaction or Fmoc deprotection, the resin-bound peptide was washed 
with DMF (5 mL, 6 times) and DCM (5 mL, 6 times) respectively.  For 
phosphotyrosine, mono benzyl protected phosphotyrosine (from Chem-impex) 
was used which was removed during cleavage reaction. For POM protection 
(compounds 61-62):  iodomethyl pivalate (6 eq), DMAP (10 mol%), DIEA (8 eq) 
in DMF dry were stirred  at room temperature 24 h. The reaction was repeated 
twice using fresh same reagents and solvent. The phosphonic function in 
compounds 59 and 60 was introduced as 4-Phosphonomethyl-L-phenylalanine (L-
Pmp) and D-Pmp respectively, without protection on the side chain. To obtain 
prodrug 63, Fmoc-NH-dPEG6-COOH was coupled to the resin before the C-
terminal amino acid using the same coupling mixture described previously. Then 
Fmoc group was removed using 20% piperidine in DMF, all in solid phase. The 
peptide was cleaved from the resin by treatment with a cleavage cocktail 
containing 30% TFA in DCM, 2 % water, 2% triisopropylsilane, 2% phenol for 3 
h. All protecting groups also were removed during this cleavage reaction if any. 
TFA and DCM were removed under reduced pressure and the peptide was 
precipitated in diethyl ether, centrifuged, and washed with diethyl ether prior to 
drying in high vacuum. The crude peptide was purified by preparative reverse 
phase HPLC. The final compound was characterized by NMR and MALDI-Mass.  
All compounds were >95% purity.  
Compounds 53 and 54 were synthesized on a 2-chlorotrityl resin (0.36 meq/g) 
charged with L-Pro using the same coupling and deprotecting conditions reported 
above. Peptides were cleaved from the resin maintaining the protecting groups by 
treatment with a solution of acetic acid, trifluoroethanol and dichloromethane 
(1:2:7) affording the free C-terminus. Then the three-peptides were coupled with 
the required ammine and the final compounds were deprotected and purified 
similarly to the other products. 
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Scheme 5. Synthetic scheme for compounds 61 and 62. 
Reagents and conditions: (a) 20% piperidine in DMF, rt, 30 min, repeated twice; (b) Fmoc-L-Phe-
OH, Oxyma Pure, DIC, DIEA, DMF, rt, 2 h; (c) Fmoc-L-Pro-OH, Oxyma pure, DIC, DIEA, 
DMF, 2 h; (d) Fmoc-L-Phe(4-CH2PO3H2)-OH, Oxyma pure, DIC, DIEA, DMF, rt, 16 h; (e) Fmoc-
L-Ala (N-Me)-OH (1.2 eq.) Oxyma pure, DIC, DIEA, DMF, rt, 2 h; (f) Iodomethyl pivalate, 
DIEA, DMAP (10 mol%),  DMF, rt, 24 h, repeated twice; (g)  30% TFA in dicholoromethane, 
phenol, TIPS, H2O, rt, 3 h. The black ball represents the Rink amide resin. 
 
 
Binding Constant Determination by ITC. Isothermal titration calorimetry was 
performed on a VP-ITC calorimeter from Microcal (Northampton, MA, USA). 
Direct titrations were performed at 25°C in MES buffer supplemented with 10% 
DMSO. Experimental data were analyzed using Microcal Origin software 
provided by the ITC manufacturer (Microcal). 
 
Docking studies. Molecular modeling studies were conducted on a Linux 
workstation and a 64 3.2-GHz CPUs Linux cluster. Docking studies were 
performed using the X-ray coordinates of the cIPA1/XIAP chimeric BIR3 domain 
(cXBIR3CS) in complex with GDC-0152 (PDB ID: 3UW4).135 The crystal 
structure was extracted from the Protein Data Bank, and the complexed ligand 
was used to define the binding site for docking of the synthesized peptides. The 
genetic algorithm (GA) procedure in the GOLD docking software performed 
flexible docking of small molecules whereas the protein structure was 
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static.188,189,190 For each compound, 20 solutions were generated and subsequently 
ranked according to GoldScore. Molecular surfaces were generated with 
MOLCAD190 and docked structures analyzed with Sybyl (Tripos Inc., St. Louis, 
MO).
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IV. EXPERIMENTAL PROCEDURES FOR EPHA3 INHIBITORS 

 

Protein Expression and purification. The Ligand Binding Domain of EphA3 
(residues 29–201) was expressed as fusion protein with glutathione-S-transferase 
(GST). The cDNA encoding for the sequence GST-His10-TEV-LBD(29-201) was 

cloned into a modified pET32b vector (Novagen) and then transformed into 
SHuffle® T7 Express Competent E. coli cells (New England Biolabs). Trasformed 
cells were transferred into Luria-Broth medium and grown at 30°C. When optical 
density reached 0.8, 1 mM isopropyl 1-thio-D-galactopyranoside (IPTG) was 
added to the culture that continued to grow at 18°C for 12 hours. The fusion 
protein was purified using Ni+-affinity chromatography (HisTrap HP by GE 
Healthcare Life Sciences). The protein was dialyzed to remove imidazole and to 
buffer exchange to 25 mM CHES, 150 mM NaCl, pH= 9.0, buffer required for the 
following cleavage realized with a double mutant (L56V/S135G) TEV protease161 
(molar ratio 10:1) shaking overnight at 5°C. The LBD was released and purified 
again by reverse Ni+-affinity chromatography to remove the GST-His10 fragment. 
Uniformly 15N-labeled protein for NMR studies was prepared with a similar 
procedure by growing bacterial cells in a minimal medium containing 15NH4Cl for 
15N labeling. 13C-Met-labeled protein was obtained by supplementing the LB 
medium with an excess of the labeled methionine (200 mg/L of culture) 5 minutes 
before the induction of protein expression.191,192 The final protein buffer was 20 
mM TRIS, 150mM NaCl, pH=8.0. 
 
NMR Spectroscopy. NMR spectra were acquired as described in Experimental 
section III, pag. 107. Compound binding was detected at 27°C by comparing the 
1D 1H spectra of 10 µM EphA3-LBD in the absence and presence of compounds 
at mole ratio 1:10, respectively. For 2D-[13C, 1H]-HSQC experiments we used 20 
µM of 13C-Met-labeled protein and compounds were added at a molar ratio 1:5. 
Dissociation equilibrium constants (Kd) were derived by titrating the peptide into 
a 30 µM sample of 15N-labeled EphA3-LBD and acquiring [15N-1H]-HSQC 
spectra at different ligand:protein ratios, starting from 1:0.5 till the protein was 
saturated. Titration analysis was done by fitting chemical shift data into the 
following quadratic equation: 164,193  
 

 
 

where ∆δobs is the observed chemical shift perturbation value at each titration 
point, ∆δmax is the maximum chemical shift perturbation value of the fully 
complexed protein and [L]0 and [P]0 are the total concentrations of ligand and 
protein, respectively. 
 
Peptide Synthesis. Peptide synthesis has been performed manually using standard 
Fmoc peptide synthesis protocol with the Rink amide or the 2-chlorotrityl resin. 
For general reaction conditions see scheme 5, pag. 110. All final compounds were 
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purified to >95% purity, as determined by a HPLC (Breeze HPLC system from 
Waters Co. using an Atlantis T3 reverse-phase column: 3µm; 4.6×150mm). Mass 
spectral data were acquired on Shimadzu LCMS-2010EV for low resolution and 
on Bruker Daltonics Autoflex II MALDI TOF/TOF. 
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