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ABSTRACT 

 

Aims: Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an 

important step in signaling of cardiac hypertrophy. The molecular mechanisms 

by which CaMKII integrates with other pathways to develop cardiac 

hypertrophy are incompletely understood. We hypothesize that CaMKII 

association with extracellular regulated kinase (ERK), promotes cardiac 

hypertrophy through ERK nuclear localization. 

 

Methods and results: In H9C2 cardiomyoblasts, the selective CaMKII 

peptide inhibitor AntCaNtide, “its penetratin” conjugated minimal inhibitory 

sequence analog tat-CN17β, and the MEK/ERK inhibitor UO126 all reduce 

phenylephrine (PE)-mediated ERK and CaMKII activation and their 

interaction. Moreover, AntCaNtide or tat-CN17β pretreatment prevented PE 

induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the 

hypertrophy responses. To determine the role of CaMKII in cardiac 

hypertrophy in vivo, spontaneously hypertensive rats were subjected to 

intramyocardial injections of AntCaNtide or tat-CN17β. Left ventricular 

hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We 

observed that the treatment with CaMKII inhibitors induced similar but 

significant reduction of cardiac size, left ventricular mass, and thickness of 

cardiac wall. The treatment with CaMKII inhibitors caused a significant 

reduction of CaMKII and ERK phosphorylation levels and their nuclear 

localization in the heart. 

 

Conclusion: These results indicate that CaMKII and ERK interact to 

promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction 

offers a novel therapeutic approach to limit cardiac hypertrophy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

1. BACKGROUND 
 

1.1 Cardiovascular Hypertrophy 

 

Cardiovascular disease remains the number one cause of mortality in 

the Western world, with heart failure representing the fastest growing subclass 

over the past decade (Kannel et al. 2000; Hobbs 2004; Levy et al. 2002; 

Zannad et al. 1999). 

Heart failure is defined as a deficiency in the capability of the heart to 

adequately pump blood in response to systemic demands, which results in 

premature fatigue, dyspnoea, and/or oedema. It is typically induced by a 

number of common disease stimuli, including: long-standing hypertension; 

myocardial infarction or ischemia associated with coronary artery disease; 

valvular insufficiency and stenosis; myocarditis due to an infectious agent; 

congenital malformations; familial hypertrophic and dilated cardiomyopathies; 

and diabetic cardiomyopathy (Klein, L. et al. 2003;  Lips et al. 2003). Most of 

these stimuli first induce a phase of cardiac hypertrophy in which individual 

myocytes grow in length and/or width as a means of increasing cardiac pump 

function and decreasing ventricular wall tension (inducing a state of 

'compensated hypertrophy') (Berenji et al. 2005; Haider et al. 1998). However, 

in the long term, myocardial hypertrophy predisposes individuals to heart 

failure, arrhythmia and sudden death. 

Cardiac hypertrophy is an adaptive response to pressure or volume 

stress, mutations of sarcomeric (or other) proteins, or loss of contractile mass 

from prior infarction. Hypertrophic growth accompanies many forms of heart 

disease, including ischemic disease, hypertension, heart failure, and valvular 

disease. In these types of cardiac pathology, pressure overload-induced 

concentric hypertrophy is believed to have a compensatory function by 

diminishing wall stress and oxygen consumption ( Sandler and Dodge 1963; 

Rackley and Rolett 1968; Grossman et al. 1975). At the same time, ventricular 

hypertrophy is associated with significantly increased risk of heart failure and 

malignant arrhythmia (Levy D et al. 1990; Koren et al. 1991). 

In the 1960s, Meerson and colleagues (Meerson 1961) divided 

hypertrophic transformation of the heart into 3 stages: (1) developing 

hypertrophy, in which load exceeds output, (2) compensatory hypertrophy, in 

which the workload/mass ratio is normalized and resting cardiac output is 

maintained, and (3) overt heart failure, with ventricular dilation and 

progressive declines in cardiac output despite continuous activation of the 

hypertrophic program. The late-phase “remodeling” process that leads to 

failure is associated with functional perturbations of cellular Ca2+ homeostasis 

(Bers 2002) and ionic currents, (Armoundas et al. 2001; Hill 2003) which 

contribute to an adverse prognosis by predisposing to ventricular dysfunction 

and malignant arrhythmia. Significant morphological changes include 

increased rates of apoptosis (Haunstetter and Izumo 2000), fibrosis, and 

chamber dilation. Even though the dichotomy between adaptive and 
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maladaptive hypertrophy has been appreciated for more than a century, (Osler 

1892) mechanisms that determine how long-standing hypertrophy ultimately 

progresses to overt heart failure are poorly understood. 

At the cellular level, cardiomyocyte hypertrophy is characterized by an 

increase in cell size, enhanced protein synthesis, and heightened organization 

of the sarcomere. Classically, 2 different hypertrophic phenotypes can be 

distinguished: (1) concentric hypertrophy due to pressure overload, which is 

characterized by parallel addition of sarcomeres and lateral growth of 

individual cardiomyocytes, and (2) eccentric hypertrophy due to volume 

overload or prior infarction, characterized by addition of sarcomeres in series 

and longitudinal cell growth (Dorn et al.  2003). At the molecular level, these 

changes in cellular phenotype are accompanied by reinduction of the so-called 

fetal gene program, because patterns of gene expression mimic those seen 

during embryonic development. 

Hypertrophy that occurs as a consequence of pressure overload is 

termed “compensatory” on the premise that it facilitates ejection performance 

by normalizing systolic wall stress. Recent experimental results, however, call 

into question the necessity of normalization of wall stress that results from 

hypertrophic growth of the heart. These findings, largely from studies in 

genetically engineered mice, raise the prospect of modulating hypertrophic 

growth of the myocardium to afford clinical benefit without provoking 

hemodynamic compromise. 

To accomplish this goal, it is essential to identify molecular events 

involved in the hypertrophic process (Frey and Olson 2003; Akazawa and 

Komuro 2003), and to identify commonalities and differences in the signaling 

systems that promote pathological hypertrophy versus physiological 

hypertrophy (Katz 1990). Especially critical is elucidation of mechanisms 

underlying the maladaptive features of hypertrophy, such as arrhythmogenicity 

and transformation to heart failure. 

Biomechanical stress can be produced in the myocardium by means of 

2 types of noxious events: mechanical stretch and the release of neurohormonal 

factors (Díez et al. 2001). The mechanical stress induced by the physical 

stretching of adult and neonatal cardiomyocytes is sufficient to induce a 

phenotypic and genetic hypertrophic response, even in the absence of humoral 

and neuronal factors (Sadoshima and Izumo 1997). Despite its 

pathophysiological importance, little is known about how this biomechanical 

stress is perceived by the cardiomyocyte and how this is translated into 

prohypertrophic intracellular signals. Although the mechanical stimulus 

activates multiple messengers and intracellular signaling pathways, we do not 

know for certain which are activated directly and which are stimulated through 

other agents. Nor is the time sequence of the events clear since the initial 

moment of second messenger activation has not been determined 

systematically. 

It is traditionally assumed that, in order for a mechanosensitive 

molecule to quantify plasma membrane stress, there should be some type of 
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interaction between the two. Stress has long been recognized as a biochemical 

regulator of the activity of many types of cells such as, for example, the 

skeletal myocyte (Huxley 1974), in which the force generated on the 

membrane is sufficient to alter a number of enzyme activities (Sheetz 2001). 

As a result, several types of molecules have been proposed as candidates to 

fulfill this role, in particular the ion channels (Matsuda et al. 1996; Sasaki et al. 

1994), integrins (Ross and Borg 2001), and tyrosine kinases (Sadoshima et al. 

1996). The sarcomeric Z disc has been the object of increasing interest as a 

candidate to carry out the task of mechanotransduction for several years now 

(Epstein and Davis 2003; Knoll et al. 2002). Mouse cardiomyocytes lacking 

the MLP protein (muscle LIM protein), which is normally present in the Z disc, 

exhibit a selective absence of the response to mechanical stretch, but respond 

normally to G protein-coupled receptor agonists; on the other hand, in humans, 

a MLP gene mutation results in telethonin/ T-cap bond breakage, which leads 

to dilated cardiomyopathy (Knoll et al. 2002; Frey et al. 2000) recently 

reported a novel family of proteins specific for sarcomeric Z-disc of striated 

muscle, referred to as calsarcins, which are capable of interacting with both 

telethonin/T-cap and calcineurin, a circumstance that indicates a possible role 

as a link between the capture of the mechanical stimulus and hypertrophic 

signaling. 

Despite our limited knowledge concerning its receptors and 

transduction pathways, the importance of the mechanical stimulus in triggering 

the hypertrophic process is supported by a large body of evidence from studies 

of different types. In addition, it is now accepted that mechanical stress acts as 

the initial stimulus in the series of events that results in in vivo myocyte growth 

(Komuro 2001). This has led to the search for better experimental models that 

enable us to faithfully mimic the in vivo situation of the cardiomyocyte, 

resulting in the availability of a considerable number of methodological 

approaches for the mechanical stimulation of these cells. 

The changes in the myocardium of a hypertensive patient occur not 

only in left ventricle, which is directly exposed to the hemodynamic overload, 

but in the interventricular septum and right ventricle, as well (Díez et al. 2001). 

On the other hand, the infarcted myocardium presents phenotypic alterations in 

regions far from the necrosed tissue. This evidence indicates that, together with 

the mechanical component that acts in the myocardial region that is directly 

subjected to stress, humoral factors intervene, exerting their action in a more 

diffuse manner (Díez et al. 2001). There are a number of humoral factors that 

can act as a hypertrophic stimulus in the cardiomyocyte, and the consequences 

of their activation differ. A first group consists of the growth factors 

(transforming growth factor-beta [TGF-β , fibroblast growth factor [FGF], and 

insulin-like growth factor [IGF], among others) (Oudit et al.  2004; Lupu et al.  

2001) which, through their action in membrane receptors with tyrosine kinase 

activity, activate an intracellular second messenger cascade which ultimately 

leads to a normal growth pattern, characteristic of postnatal myocyte growth 
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(also referred to as eutrophy) and of physiological or adaptive hypertrophic 

growth. 

A second type of humoral stimulus involved in cardiomyocyte growth 

comes from the stimulation of heptahelical G-protein-coupled receptors, 

particularly the beta 1-adrenergic receptors for epinephrine and norepinephrine, 

the AT1 receptor for angiotensin II (Ang II) and the ET receptor for 

endothelin-1, all of which have been related to the development of pathological 

CH and its eventual progression to heart failure (Molkentin and Dorn 2001; 

Hunter and Chien 1999). In experimental models and clinical syndromes of 

heart failure, antagonists and synthesis inhibitors of these receptors have 

modulated the hypertrophic response and improved the prognosis (Mehra et al. 

2003). Of these receptors, that most widely studied has been Ang II. In fact, it 

is now accepted that, together with its regulation of the vasomotor tone and 

extracellular fluid, the interaction of Ang II with its type 1 receptors (AT1) 

mediates the response of the myocardial cells to biomechanical stress, 

involving both those that lead to hypertrophy and those implicated in 

remodeling (Kajstura et al. 1995). It should be pointed out that, while the 

different heptahelical receptor agonists share a common signaling pattern, there 

are considerable differences in the cardiac response to these agents, and 

individual roles for catecholamines versus renin-angiotensin in the cardiac 

hypertrophic response still remain to be defined (Dorn and Force 2005). 

Both the cardiomyocytes and the blood vessels possess 

mineralocorticoid receptors, the stimulation of which can activate important 

physiological and pathological mechanisms. Peripheral infusion of aldosterone 

in rats receiving a sodium-rich diet leads to cardiac hypertrophy and fibrosis, 

an effect that is independent of the increased arterial pressure (Young et al. 

1995). The mechanism responsible for CH secondary to aldosterone 

administration is being investigated. Aldosterone has been reported to increase 

AT1 receptor density, involving both the mRNA and cardiovascular tissue 

protein (Robert et al. 1999), and that treatment with losartan partially prevents 

aldosterone-induced CH and myocardial fibrosis in rats (Takeda et al. 2002). 

On the other hand, aldosterone also appears to be related to an increase in the 

activity of the phosphatase, calcineurin, which, as will be dealt with later on, is 

implicated in the hypertrophic process; the treatment of rats with FK506, a 

calcineurin inhibitor, partially prevents the prohypertrophic effects of 

aldosterone. Moreover, a number of studies indicate that aldosterone has a 

direct profibrotic effect, which would be related to the activation of 

inflammatory mediators and necrotic changes (Takeda 2004; Rocha and  

Funder  2002; Brilla et al. 1990). These events appear to be responsible, at least 

in part, for the clinical effect of eplerenone, a selective mineralocorticoid 

receptor antagonist, in patients with heart failure and left ventricular 

dysfunction secondary to acute myocardial infarction (Pitt et al. 2003). 

Inflammatory cytokines have been the object of increasing interest in 

the field of cardiovascular research. Through their local action, they play a role 

not only in the pathogenesis of atherosclerosis, but in the cardiac dysfunction 
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that accompanies systemic sepsis, viral myocarditis and other diseases, as well 

(Blum  and Miller  2001; Wollert and Drexler 2001). 

One of the cytokines that has received the most attention is interleukin-

6 (IL-6) (also known as cardiotropin 1), a 185-amino acid polypeptide that has 

a number of biological functions, both proinflammatory and antiinflammatory, 

mediated by its binding to its receptor (IL-6R) and to glycoprotein 130 (gp 

130) (Kanda and Takahashi 2004). Results relating IL-6 to the development of 

CH have been published for a number of years. In this regard, it has been 

reported that neonatal cardiomyocytes cultured in vitro increase in size when 

exposed to increasing doses of IL-6, and that overactivation of the gp 130 

signaling pathway leads to CH in mice (Hirota et al. 1995). These findings 

have been extended in later works in which an increase in IL-6 expression has 

been reported in the myocardium of patients with CH who died from 

myocardial infarction, an increase which would appear to be related to the 

pathogenesis of the observed hypertrophy (Kaneko et al.1997). 

It is essential to stress the fact that, here, the different stimuli have been 

described separately for explanatory reasons, but that this separation does not 

exist in the real pathophysiological situation, in which there is an intricate 

network of interconnections among these elements, a circumstance that 

complicates their study considerably and requires caution when interpreting the 

reported phenomena. On the other hand, we should not overlook the fact that 

two thirds of the cells of the normal heart are nonmuscle cells, mostly 

fibroblasts (Maisch 1995; Weber 2004), whose role in the pathogenesis of 

several pathological processes, such as CH and myocardial remodeling, 

appears to be crucial (Creemers et al. 2001; Weber  et al.1989). In response to 

different types of stress, these cells present phenotypic changes, with the 

expression of markers characteristic of smooth muscle cells. For this reason, 

they are referred to as myofibroblasts, which produce and release substances 

such as growth factors, cytokines, extracellular matrix (ECM) proteins and 

proteases (Tomasek et al. 2002; Powell et al.1999). Both fibroblasts and 

myofibroblasts play an important role in regulating the synthesis and 

degradation of the ECM, the composition and amount of which is the result of 

a fine balance between collagen synthesis (and, to a lesser extent, the synthesis 

of other proteins) and the activity of metalloproteases and tissue inhibitors of 

metalloproteases (Manabe et al. 2002). The disturbance of this delicate balance 

can lead to fibrotic changes that, together with CH, fibroblast proliferation and 

cell death, constitute the phenomenon of remodeling (Swynghedauw 1999). 

The "dialogue" between fibroblasts and cardiomyocytes appears to play 

a role in both the physiological situation and the pathogenesis of CH and other 

diseases. For example, the mechanical stretch of cardiomyocytes induces Ang 

II release which, in turn, provokes the release of a number of growth factors 

and cytokines on the part of fibroblasts and myofibroblasts, which affect 

themselves through autocrine mechanisms, and other cell types, including 

cardiomyocytes, in a paracrine manner. Thus, the available evidence indicates 

that, just as the paracrine agents released by cardiac fibroblasts are relevant in 
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the induction of the hypertrophic response of the cardiomyocyte, the paracrine 

activities of the latter are also important for the regulation of fibroblast function 

(Vatner et al. 2000; Matsusaka et al. 1999). Moreover, the heart has other cell 

types, like endothelial cells, pericytes, smooth muscle cells and immune system 

cells, which also participate in this communications network and probably play 

a role in the pathogenesis of myocardial remodeling, which, in turn, can affect 

the course and progression of CH to heart failure (Braunwald and Bristow 

2000). 

 

1.2 Intracellular Signaling pathway 

 

1.2.1 Activation of G-protein-coupled receptors. 

 

Angiotensin II,endothelin-1 and catecholamines (α-adrenergic) bind to 

specific seven-transmembrane-spanning receptors that are coupled to 

heterotrimeric G proteins of the Gαq/α11 subclass. These G proteins are 

coupled to phospholipase Cβ (PLCβ). This coupling induces the generation of 

diacyl glycerol (DAG), which functions as an intra cellular ligand for protein 

kinase C (PKC), leading to PKC activation, and production of inositol-1,4,5-

trisphosphate (Ins(1,4,5)P3). Accumulation of Ins(1,4,5)P3  leads to the 

mobilization of internal Ca
2+

 by directly binding to the Ins(1,4,5)P3  receptor 

located in the endoplasmic reticulum or the nuclear envelope. Recently, the 

generation of  Ins(1,4,5)P3  and the associated liberation of internal Ca
2+

 stores 

was shown to mediate hypertrophic signaling through calcineurin–NFAT 

activation or calmodulin dependent kinase (CaMK)–HDAC inactivation 

(Wilkins and Molkentin 2004; Wu et al. 2006). A landmark study showing that 

a compartmentspecific pool of Ca
2+

 near the nuclear envelope regulates CaMK 

activity and HDAC nuclear cytoplasmic shuttling through Ins(1,4,5)P3- 

receptor-regulated Ca
2+

release. Activation of Gαq/α11 is also a potent inducer 

of MAPK signalling in cardiac myocytes, although the exact mechanism of 

MAPK coupling has not been described (Clerk and Sugden 1999). Studies in 

genetically modified mouse models have confirmed that Gαq/α11 coupling is a 

necessary event in the induction of pathological cardiac hypertrophy, whereas 

IGF-I signalling regulates physiological cardiac hypertrophy, as well as the 

growth of the heart during normal development (see below). The 

overexpression  of wild-type Gαq (or an activated form of Gαq ) in the heart 

induced a uniform profile of cardiac hypertrophy that resulted in heart failure 

and showed increased propensity towards apoptosis (Adams et al. 1998; 

D’Angelo et al. 1997). Shows that simple overexpression of the Gαq subunit of 

the heterotrimeric G protein was sufficient to drive pathological cardiac 

hypertrophy in the mouse (Fan et al. 2005; Mende et al. 1998). In support of 

these results, transgenic mice that express a 54-amino-acid Gαq/α11-inhibitory 

peptide in the heart showed specific attenuation of pressure-overload 

hypertrophy and downregulation of MAPK signaling (Akhter et al. 1998). First 

study showing that Gαq/α11 protein function is necessary for mediating cardiac 
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hypertrophy in an animal model of pressure-overload-induced hypertrophy 

(Esposito et al. 2002). 

 Shows that inhibition of pressure-overload hypertrophy through two 

separate means in genetically altered mice did not lead to decompensation and 

heart failure, indicating that hypertrophy might not be necessary for cardiac 

compensation. The combined disruption of the genes that encode the Gαq - and 

Gα11-subunits also compromised the capability of the myocardium to undergo 

hypertrophy following pressure overload (Wettschureck et al. 2001). Heart 

specific and combined disruption of the genes that encode Gαq and Gα11 

inhibited the cardiac hypertrophic response following pressure-overload 

stimulation.]. Similarly, the overexpression of the GTPase-activating protein 

RGS4 (regulators of G-protein signalling) in the heart, which inactivates Gαi - 

and Gαq –subfamily members, reduced pressure-overload-induced cardiac 

hypertrophy (Rogers et al. 1999). Inhibition of the hypertrophic response in 

these models (with the exception of the RGS4 transgenic mice) did not impair 

cardiac function, indicating that Gαq -dependent hypertrophy is not required 

for functional compensation (Akhter et al. 1998). First study showing that 

Gαq/α11 protein function is necessary for mediating cardiac hypertrophy in an 

animal model of pressure-overload-induced hypertrophy (Esposito et al. 2002). 

Shows that inhibition of pressure-overload hypertrophy through two separate 

means in genetically altered mice did not lead to decompensation and heart 

failure, indicating that hypertrophy might not be necessary for cardiac 

compensation (Wettschureck et al. 2001). Heart specific and combined 

disruption of the genes that encode Gαq and Gα11 inhibited the cardiac 

hypertrophic response following pressure-overload stimulation.Therefore, 

inhibiting specific GPCRs or the Gαq/α11-subunits themselves are attractive 

therapeutic strategies for treating pathological cardiac hypertrophy. GPCR 

agonists were also shown to induce cardiac hypertrophy through the shedding 

of heparin-binding epidermal growth factor (HB-EGF) by the metalloprotease 

ADAM12 (Asakura et al. 2002). In this manner, EGF could then signal through 

the EGF receptor (EGFR) to induce hypertrophy in conjunction with 

downstream signaling effectors. Similar to this paradigm, the receptor tyrosine 

kinase ERBB2 heterodimerizes with ERBB3 or ERBB4 and binds to 

neuregulin, whereby it transmits a signal by itself or through transactivation by 

EGFR, gp130, and GPCRs (Gschwind et al. 2001). Treatment with Herceptin, 

a recombinant  antibody that blocks ERBB2 signalling (Garratt et al. 2003), as 

well as the cardiac-specific deletion of ERBB2 both lead to cardiomyopathy, 

showing the critical importance of this signaling effector in the maintenance of 

myocyte integrity and growth (Crone et al. 2002; Ozcelik et al. 2002). 
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1.2.2 Mek1 And 2 Extracellular Signal-Regulated Kinase1 And 2 

Pathway 

 
Two separate ERK isoforms have been described, ERK1 and ERK2, 

that are coordinately phosphorylated and activated by a wide array of 

mitogenic stimuli (Garrington and Johnson 1999).  

The major upstream activators of ERK1 and 2 MAPKs are two MAPK 

kinases (MAPKKs), MEK1 and MEK2, which directly phosphorylate the dual 

site in ERK1 and 2 (Thr-Glu-Tyr). Directly upstream of MEK1 and 2 in the 

MAPK-signaling cascade are the MAPKK kinase (MAPKKK) Raf-1, A-Raf, 

B-Raf, and MEKK1–3 (Garrington and Johnson 1999). 

In response to agonist stimulation or cell stretching, ERK1 and 2 

become activated both in cultured cardiac myocytes and in isolated perfused 

hearts (Yamazaki et al. 1993; Bogoyevitch et al. 1994.) 

Endothelin-1 and fibroblast growth factors stimulate the mitogen-

activated protein kinase signaling cascade in cardiac myocytes: the potential 

role of the cascade in the integration of two signaling pathways leading to 

myocyte hypertrophy (Clerk et al. 1994; Post et al. 1996; Zou et al. 1996;  

Bogoyevitch et al. 1996; Clerk et al. 1998). These observations have implicated 

ERK1- and 2-signaling factors as regulators of the hypertrophic response. In 

support of this notion, transfection of a constitutively active MEK1-encoding 

construct (immediate upstream activator of ERK1 and 2) augmented ANF 

promoter activity in cultured cardiomyocytes, whereas a dominant-negative 

MEK1-encoding construct attenuated activity (Gillespie-Brown et al. 1995). 

Using antisense oligonucleotides, Glennon et al demonstrated that ERK 

signaling is necessary for PE-induced cardiomyocyte hypertrophy in culture 

(Glennon et al. 1996). Similarly, using the MEK1 inhibitor PD98059, Clerk et 

al reported that the ERKs were required for sarcomeric organization induced 

by hypertrophic agonists (Clerk et al. 1998). However, this same study also 

concluded that PD98059 did not prevent cellular hypertrophy in response to 

agonist stimulation, suggesting that ERKs play a more specialized role in 

cardiomyocyte hypertrophy. 

Although the Ras-Raf-1-MEK1/2-ERK1/2-signaling pathway may 

regulate certain intracellular responses to a hypertrophic agonist, a large 

number of studies have disputed the importance of this pathway in the 

regulation of cardiac hypertrophy. Thorburn et al demonstrated that, although 

Ras-Raf-1-ERK activation was suffi- cient to augment c-Fos and ANF 

promoter activity in cardiomyocytes, inhibition of these signaling factors did 

not antagonize hypertrophic morphology or cytoskeletal organization in 

response to the agonist (Thorburn et al. 1994; Thorburn et al. 1994). However, 

Post et al reported that neither dominant-negative ERK1 and 2 nor PD98059 

were sufficient to block PEinduced ANF promoter activity in cultured 

cardiomyocytes, suggesting that ERKs are not even important for inducible 

gene expression. In a subsequent study, transfection of an activated MEK1 

encoding expression plasmid was shown to induce c-Fos, but not ANF or 
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myosin light-chain-2V promoter activity in cultured cardiomyocytes (Thorburn 

et al. 1995). More recent studies with the MEK1 inhibitor PD98059 also 

suggest a minimal role for ERKs in cardiac hypertrophy (Ramirez et al. 1997; 

Zechner et al. 1997; Choukroun et al. 1998) Intriguingly, one study has even 

suggested that ERK activation in response to ANF treatment was associated 

with prevention of cardiomyocyte hypertrophy (Silberbach et al 1999). 

Although there is clearly a lack of consensus regarding the necessity of ERK 

signaling as a hypertrophic mediator, overwhelming evidence implicates ERKs 

as immediate downstream effectors of the hypertrophic response. However, the 

effector functions of activated ERKs have yet to be fully explored in cultured 

cardiomyocytes, nor have conclusive genetic or in vivo approaches been used 

to date. In the future, it will be interesting to examine the association between 

ERK signaling and cardiac hypertrophy using transgenic or knockout model 

systems in the mouse. 

 

1.3 CaMKII 

 

CaMKs are serine/threonine kinases that are regulated by Ca
2+

 liganded 

calmodulin (CaM). Myosin light chain kinase (MLCK) and phosphorylase 

kinase are Ca
2+

/CaM dependent protein kinases which are dedicated to a 

particular substrate (Hudmon et al. 2002). Elongation factor-2 (EF-2) kinase 

(originally termed CaMKIII) is also a kinase dedicated to the phosphorylation 

of a single substrate (Nairn AC et al 1985). In contrast, CaMKI, CaMKII and 

CaMKIV are multifunctional CaMKs. CaMKI and CaMKIV are monomeric 

enzymes which are activated through phosphorylation by an upstream CaMK 

kinase (CaMKK) following their binding to Ca
2+

/CaM (Lee and Edelman 

1994; Tokumitsu et al. 1995). CaMKI has broad tissue distribution and is 

cytoplasmic in mammalian cells (Soderling 1999), although a C-terminally 

truncated form of CaMKI can go to nucleus and phosphorylate and activate 

transcription factors when expressed in mammalian cells (Sun et al. 1996; 

Passier et al. 2000). While CaMKI has been shown to be present in the heart, 

its function in this tissue remains to be determined since it is not upregulated 

during hypertrophy (Uemura et al. 1998; Colomer et al. 2003). CaMKIV has 

restricted expression being found largely in neuronal tissues, T lymphocytes 

and testis (Soderling 1999), and undetectable in the heart (Colomer  et al. 2003;  

Miyano et al. 1992). CaMKIV, while present in the cytoplasm, is 

predominantly localized in the nucleus (Jensen et al. 1991), implying a role for 

CaMKIV in transcriptional regulation and gene expression. In contrast to 

CaMKI and CaMKIV, the ubiquitously expressed CaMKII is a homo- or 

heteromultimer of 6–12 subunits consisting of α, β, γ or δ subunits, each 

encoded by a separate gene (Braun and Schulman 1995; Kanaseki et al. 1991). 

The α and β subunits are mainly restricted to neuronal tissues while the γ and δ 

subunits are ubiquitous (Tobimatsu and Fujisawa 1989). Alternative splice 

variants of the CaMKII subunits have been identified and several of them (i.e. 

αΒ, γΑ and δΒ) contain nuclear localization signals (NLS) which target them to 
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the nucleus. The subcellular localization of heteromultimers of CaMKII is 

determined by the ratio of the cytoplasmic to nuclear targeted subunits 

(Srinivasan et al. 1994). 

Many signals have risen and fallen in the tide of investigation into 

mechanisms of myocardial hypertrophy and heart failure (HF). In our opinion, 

the multifunctional Ca and calmodulin-dependent protein kinase II (CaMKII) 

has emerged as a molecule to watch, in part because a solid body of 

accumulated data essentially satisfy Koch's postulates, showing that the 

CaMKII pathway is a core mechanism for promoting myocardial hypertrophy 

and heart failure. Multiple groups have now confirmed the following: (1) that 

CaMKII activity is increased in hypertrophied and failing myocardium from 

animal models and patients; (2) CaMKII overexpression causes myocardial 

hypertrophy and HF and (3) CaMKII inhibition (by drugs, inhibitory peptides 

and gene deletion) improves myocardial hypertrophy and HF. Patients with 

myocardial disease die in equal proportion from HF and arrhythmias, and a 

major therapeutic obstacle is that drugs designed to enhance myocardial 

contraction promote arrhythmias. In contrast, inhibiting the CaMKII pathway 

appears to reduce arrhythmias and improve myocardial responses to 

pathological stimuli. 

CaMKII is a serine–threonine kinase that exists as an elaborate 

holoenzyme complex consisting of a pair of hexameric stacked rings . There 

are four CaMKII gene products (α, β, γ, δ). These CaMKII isoforms have 

different tissue distribution and may have subtle differences in Ca
2+

/CaM 

sensitivity and activation kinetics, but, at present, understanding of the 

potentially specific roles for various CaMKII isoforms is incomplete. The 

predominant, though not exclusive, form in myocardium appears to be 

CaMKIIδ. Two major splice variants of CaMKIIδ are expressed in the adult 

heart, CaMKIIδB (Zhang et al. 2002; Zhang et al. 2007) and CaMKIIδC 

(Zhang et al. 2007; Zhang et al. 2003; Sag et al. 2009), the former containing 

an 11 amino acid nuclear localization sequence (Edman and Schulman 1994). 

It appears that CaMKIIδ is functionally significant for myocardial pathology, 

as it was recently shown that targeted deletion of CaMKIIδ is sufficient to 

prevent adverse consequences of transaortic banding, a surgical model of 

pathological afterload augmentation (Backs et al. 2009; Ling et al. 2009). Each 

of the dozen CaMKII monomers that compose the holoenzyme consists of 

three domains. Under basal conditions CaMKII activity is submaximal because 

the N-terminus catalytic domain is constrained by the pseudosubstrate region 

within the regulatory domain. CaMKII indirectly senses increases in 

intracellular Ca
2+

 by binding calcified calmodulin (Ca
2+

/CaM) at the CaM-

binding region in the regulatory domain, which is adjacent to the 

pseudosubstrate region. Ca
2+

/CaM binding reorders CaMKII so that the 

catalytic domain is not constrained by the pseudosubstrate domain. During 

brief, low frequency increases in intracellular [Ca
2+

], CaMKII deactivates after 

Ca
2+

/CaM unbinds from the regulatory domain. Under resting conditions, the 

regulatory and catalytic domains are closely associated with one another, 
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blocking substrate binding and resulting in autoinhibition of the kinase. 

Inspection of the crystal structure of the autoinhibited kinase reveals that 

neighboring regulatory domains form dimeric coiled-coil pairs that block 

substrate and ATP binding (Rosenberg et al. 2005). If intracellular calcium 

concentration rises (halfmaximal activation requires [Ca
2+

] 1.0 M) (Rostas and 

Dunkley 1992) calcified calmodulin (Ca
2+

/CaM) binds to CaMKII at the 

regulatory domain. Ca
2+

/CaM binding disrupts the association of the regulatory 

and catalytic domains, causing a conformational shift that exposes the catalytic 

domain for substrate binding and relieves autoinhibition (189). If CaMKII 

activity is sustained by lengthy or frequent calcium transients in the presence of 

ATP, CaMKII undergoes intersubunit autophosphorylation at Thr-287. The 

addition of a phosphate group at this residue within the regulatory domain 

increases the affinity of Ca
2+

/CaM for CaMKII over 1,000-fold (Meyer et al. 

1992). Moreover, phosphorylation at Thr-287 prevents reassociation with the 

catalytic domain. As a result, Thr-287 phosphorylation can permit persistent 

CaMKII activity even after the dissociation of Ca
2+

/CaM  from the kinase. 

Autophosphorylation at Thr-287 is a critical feature of CaMKII function, as it 

allows the kinase to translate changes in calcium concentration or transient 

frequency into sustained enzyme activity. Indeed, CaMKII is known as the 

“memory molecule” in part because recent calcium conditions within the cell 

are reflected in the shift between Ca
2+

/CaM-dependent and Ca
2+

/CaM-

independent activity. Interestingly, new evidence from computer modeling and 

CaMKII crystal structure indicates that activation via autophosphorylation may 

be cooperative (Chao et al. 2010), a function of intersubunit capture of 

regulatory domains rather than simple coincidence detection. To return to basal 

inactivation, Thr-287 phosphorylation must be removed by the action of 

phosphatases, including protein phosphatase (PP)1 and PP2A (220). As protein 

phosphatases are themselves subject to complex regulation, for instance, by 

oxidative stress (Howe et al. 2004) it becomes clear that a number of 

mechanisms work in tandem to modulate CaMKII activity in vivo. 

 

1.4 Role of Ca
2+

 Signaling in Gene Expression and Cardiac 

Hypertrophic Growth 

 

Ca
2+

 is a well-established regulator of transcriptional changes in gene 

expression (Hardingham and Bading 1998). Changes in intracellular Ca
2+

 also 

have been suggested to mediate cardiac hypertrophic responses (Frey et al. 

2000). Modulations in Ca
2+

 levels would need to be transmitted to the nucleus 

to affect transcriptional regulation of genes associated with cardiac 

hypertrophy. The nuclear isoform of CaMKII (CaMKIIδB) would, therefore, be 

the isoform predicted to play a predominant role in Ca
2+

-mediated 

transcriptional gene regulation. Both Ca
2+

 and CaM can translocate into the 

nucleus and could activate nuclear localized CaMKII (Heist and Schulman 

1998). There also is evidence for independent regulation of nuclear Ca
2+

 via 

IP3 receptors localized in the cell nucleus (Malviya and Rogue 1998). CaMK 
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and calcineurin have been shown to play critical and often synergistic roles in 

transcriptional regulation in cardiomyocytes (Passier Zeng et al. 2000). There 

is growing evidence that the amplitude, frequency, source, and subcellular 

localization (spatial and/or temporal modes) of Ca
2+

 signals are determinants of 

distinct transcriptional responses (Berridge 1997; Dolmetsch et al. 1997, 

allowing regulation of diverse cellular processes in response to the same 

second messenger (Ca
2+

). In this regard, it may be important to note that 

CaMK is activated by high and transient Ca
2+

 spikes and its activity is 

dependent on Ca
2+

 spike frequency (Hudmon and Schulman 2002), whereas 

calcineurin responds to low, sustained Ca
2+

 plateaus (Dolmetsch et al. 1997). 

 

1.4.1 The Effect of CaMK on Gene Transcription 

 
CaMK has been suggested to regulate gene expression via activation of 

several different transcription factors, including activation protein 1 (AP-1) 

(Gullberg and Chatila 1996), CAAT-enhancer binding protein (C/EBP) 

(Wegner et al. 1992), activating transcription factor (ATF-1) (Sun et al. 1996), 

serum response factor (SRF) (Misra et al. 1994), cAMP-response element 

binding protein (CREB) (Sheng et al. 1991), and myocyte enhancer factor 2 

(MEF2) (Passier Zeng et al. 2000). CaMKII and CaMKIV have been shown to 

activate CREB by phosphorylation of Ser133 (Matthews et al. 1994). 

Surprisingly, CREB phosphorylation does not appear to be altered in 

transgenic mice expressing CaMKIIB (Zhang et al. 2002) or CaMKIV (Passier 

Zeng et al. 2000), both of which localize to the nucleus. Therefore, 

phosphorylated CREB cannot account for the long-term changes in cardiac 

function in these mice. Another transcription factor, MEF2, is upregulated 

during cardiac hypertrophy (Kolodziejczyk et al. 1999; Lu McKinsey and 

Nicol 2000) and has been suggested to act as a common endpoint for 

hypertrophic signaling pathways in the myocardium (Kolodziejczyk et al. 

1999; Lu McKinsey and Nicol 2000). Studies using transgenic overexpression 

of CaMKIV demonstrate that MEF2 is a downstream target for CaMKIV 

(Passier Zeng et al. 2000). The mechanism by which CaMK signaling activates 

MEF2 in vivo remains to be determined but recent studies have suggested that 

MEF2 interacts with class II histone deacetylases (HDACs) and other 

repressors that normally limit expression of MEF2-dependent genes. CaMKI 

and CaMKIV activate MEF2 by dissociating HDACs and other repressors (Lu 

McKinsey et al. 2000). Most recently, SRF has been shown to be activated by 

CaMKIV in a similar manner (i.e., by dissociating HDACs) (Davis et al. 2003). 

Both MEF2 and SRF activation have been demonstrated to occur in response to 

activation of the noncardiac CaMKI and IV isoforms.  

 

1.5 The Role of CaMK in Hypertrophic Growth 

 
Studies from a variety of in vivo preparations — including hypertensive 

rat hearts, coronary artery-ligated rabbit hearts, and transverse aortic-
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constricted (TAC) mouse hearts — have demonstrated increased CaMKII 

expression and activity in hypertrophied myocardium (Currie and Smith 1999; 

Boknik et al.  2001; Hagemann et al. 2001; Zhang et al. 2003). Studies using 

isolated cardiomyocytes and CaMK inhibitors KN-62 or KN-93 also suggested 

that CaMKII was involved in cardiomyocyte hypertrophy induced by agonists 

such as endothelin-1, leukemia inhibitory factor (LIF), and phenylephrine (Sei 

et al. 1991; Ramirez et al. 1997; Kato et al. 2000; Zhu et al. 2000). Several 

transgenic mouse models subsequently confirmed a role for CaMK in 

activation of the hypertrophic gene program and development of hypertrophy. 

Transgenic mice overexpressing calmodulin were generated nearly 10 years 

ago and shown to develop severe cardiac hypertrophy (Gruver et al. 1993; 

Hagemann et al. 2000). This subsequently was demonstrated to be associated 

with an increase in the autonomous activity of CaMKII in vivo (Colomer and 

Means 2000). Pronounced hypertrophy also develops in transgenic mice that 

overexpress CaMKIV (Passier et al., 2000). This is associated with specific 

changes in gene expression. However, CaMKIV knockout (KO) mice still are 

able to develop hypertrophy after TAC (Colomer et al. 2003), presumably 

because CaMKIV is not one of the major CaMK isoforms present in the heart 

(Edman and Schulman 1994; Colomer et al. 2003). Since hypertrophic growth 

is associated with a specific program of altered gene expression, and CaMKII 

is implicated in this response, It has been hypothesized that CaMKII isoforms 

expressed in the nucleus would selectively regulate hypertrophic transcriptional 

responses. In support of this, we reported that transient expression of the 

nuclear δB isoform of CaMKII in neonatal rat ventricular myocytes induced 

expression of the atrial natriuretic factor (ANF) gene, an established indicator 

of cardiomyocyte hypertrophy, as indicated by enhanced transcriptional 

activation of an ANF-luciferase reporter gene and increased ANF protein 

(Ramirez et al. 1997). The nuclear localization signal of CaMKIIδB was shown 

to be required for this response, as transient expression of CaMKIIδC did not 

result in enhanced ANF expression. Indeed, CaMKII heteromultimers formed 

predominantly of δC subunits were excluded from the nucleus and failed to 

induce ANF expression (Ramirez et al. 1997). These findings are consistent 

with the observation that constitutively active CaMKI and CaMKIV, which 

enter the nucleus, induce a hypertrophic response in cardiomyocytes in vitro 

(Passier Zeng et al. 2000). It has also been reported that hypertrophic growth 

occurs in transgenic mice that overexpress the CaMKIIδB isoform, which is 

highly concentrated in cardiomyocyte nuclei (Zhang et al. 2002). 

 

 

 

 

 

 

 

 



21 

 

2. Aims of the study 

 

Activation of Ca
2+

/Calmodulin protein kinase II (CaMKII) is an 

important step in signaling of cardiac hypertrophy.  

The molecular mechanisms by which CaMKII integrates with other 

pathways to develop cardiac hypertrophy are incompletely understood.  

We hypothesize that CaMKII association with extracellular regulated 

kinase (ERK), promotes cardiac hypertrophy through ERK nuclear 

localization. 
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3. Materials and Methods 

3.1. Peptide synthesis 

The synthesis of CaM-KNtideβ analogs was performed according to 

the solid phase approach using standard Fmoc methodology in a manual 

reaction vessel (Atherton et al. 1989). Nα-Fmoc-protected amino acids, 

Rinkamide-resin, HOBt, HBTU, DIEA, piperidine and trifluoroacetic acid 

were purchased from Iris Biotech (Germany). Peptide synthesis solvents, 

reagents, as well as CH3CN for HPLC were reagent grade and were acquired 

from commercial sources and used without further purification unless 

otherwise noted. The corresponding first amino acid, NαFmoc-Xaa-OH, was 

linked on to the resin previously deprotected by a 25% piperidine solution in 

DMF for 30 min. The following protected amino acids were then added 

stepwise. Each coupling reaction was accomplished using a 3-fold excess of 

amino acid with HBTU and HOBt in the presence of DIEA (6 eq.). The Nα-

Fmoc protecting groups were removed by treating the protected peptide resin 

with a 25% solution of piperidine in DMF (1 × 5 min and 1 × 25 min). The 

peptide resin was washed three times with DMF, and the next coupling step 

was initiated in a stepwise manner. The peptide resin was washed with DCM 

(3 × 25), DMF (3×), and DCM (3×), and the deprotection protocol was 

repeated after each coupling step. 

The N-terminal Fmoc group was removed as described above, and the 

peptide was released from the resin with TFA/TIS/H2O (90:5:5) for 3 h. The 

resin was removed by filtration, and the crude peptide was recovered by 

precipitation with cold anhydrous ethyl ether to give a white powder and then 

lyophilized. 

3.2. Peptides: purification and characterization 

All crude cyclic peptides were purified by RP-HPLC on a 

semipreparative C18-bonded silica column (Phenomenex, Jupiter, 

250 × 10 mm) using a Shimadzu SPD 10A UV/VIS detector, with detection at 

210 and 254 nm. 

The column was perfused at a flow rate of 3 ml/min with solvent A 

(10%, v/v, water in 0.1% aqueous TFA), and a linear gradient from 10 to 90% 

of solvent B (80%, v/v, acetonitrile in 0.1% aqueous TFA) over 40 min was 

adopted for peptide elution. Analytical purity and retention time (tR) of each 

peptide were determined using HPLC conditions in the above solvent system 

(solvents A and B) programmed at a flow rate of 1 ml/min using a linear 

gradient from 10 to 90% B over 25 min, fitted with C-18 column Phenomenex, 

Jupiter C-18 column (250 × 4.60 mm; 5 μm). 
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All analogs showed >97% purity when monitored at 215 nm. 

Homogeneous fractions, as established using analytical HPLC, were pooled 

and lyophilized. 

Peptides molecular weights were determined by ESI mass spectrometry. 

ESI-MS analysis in positive ion mode, were made using a Finnigan LCQ Deca 

ion trap instrument, manufactured by Thermo Finnigan (San Jose, CA, USA), 

equipped with the Excalibur software for processing the data acquired. The 

sample was dissolved in a mixture of water and methanol (50/50) and injected 

directly into the electrospray source, using a syringe pump, which maintains 

constant flow at 5 μl/min. The temperature of the capillary was set at 220°C. 

3.3. CaMKII activity assay 

In all CaMKII assays, purified or endogenous CaMKII was incubated 

with Ca
2+

/CaM; EGTA was used as a negative control. Active recombinant 

full-length alpha CaMKII (Signal Chem, La Jolla) was incubated for 30 min at 

30 °C with 1 mmol/L CaCl2 and 1 μmol/L CaM in 10 μl of a reaction 

mixture (50 mmol/L HEPES pH 7.5, 10 mmol/L MgCl2, 0.5 mmol/L 

dithiothreitol (DTT), 100 nmol/L microcystin, 0.1 mmol/L non-radiolabeled 

ATP) (Chin et al. 1997). In a second reaction step, an aliquot from the first 

reaction was incubated with 200 μM of Autocamtide-2 as a substrate for 

CaMKII and the different peptides at concentration of 5 μM, in presence of 

0.2 μCi/μl of Easy Tides Adenosine 5′-triphosphate [γ32P]-ATP (Perkin 

Elmer) for 30 min at 30 °C; EGTA was added to quantify CaMKII 

autonomous activity. 32P-incorporation was determined by spotting 20 μl of 

the reaction to Whatman P-81 phosphocellulose paper, and subsequently 

washing in 75 mM phosphoric acid. Dried filters were counted on a Beckman 

LS 6000 scintillation counter. 

 

3.4. Isolation of ventricular cardiomyocytes for in vitro 

experiments. 

 

Adult rat ventricular myocytes were isolated from 12 week old 

Wistar/Kyoto rat hearts by a standard enzymatic digestion procedure as 

previously described (Ciccarelli et al. 2011; O'Connell et al. 2007). Briefly, 

animals were anesthetized with isofluorane (2% v/v) and 0.5 ml of 100U.I./ml 

heparin injected (i.p.). After 5 min, chest was opened and heart removed by a 

transverse cut between aorta and carotid arteries, then cannulated to the 

perfusion system. Heart was initially perfused (NaCl 120 mmol/L, KCl 14.7 

mmol/L, KH2PO4 0.6 mmol/L, Na2PO4 0.6 mmol/L, MgSO4 1.2 mMol/L, 

HEPES 10mmol/L, Glucose 5.5 mmol/L, butendionemonoxime 10 mmol/L) 

for 4 min followed by enzymatic digestion with Collagenase type II 

(Worthington, 1 mg/ml of perfusion buffer) for 12 min. At the end of 
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perfusion, a spongy, flaccid heart was detached from the cannula, atria and 

right ventricle removed and then cut in small pieces with scissors. Digested 

prep was filtered and a cell pellet obtained by centrifugation (300 rpm, 2 min.), 

which has been then resuspended in lysis buffer for western blot. 

 

3.5. Cell culture 

 

Cardiomyoblasts H9C2 were cultured in Dulbecco’s minimal essential 

medium (DMEM, GIBCO) supplemented with 0.1 g/L fetal bovine serum 

(FBS, GIBCO) 200 mg/mL L-glutamine, 100 units/mL penicillin, and 10  

mg/mL streptomycin (Sigma-Aldrich), at 37°C in 0.95 g/L air-0.05 g/L CO2. 

The H9C2 were studied between passages 4 and 10. Serum-starved cells were 

exposed to PE (100 nmol/L, Sigma Aldrigh) at different time points, in the 

presence and absence of the CaMKs inhibitor KN93 (10 µmol/L, 

methossibenensulphonamide, Seikagaku), in the presence and absence of the 

selective CaMKII inhibitor, AntCaNtide (5 µmol/L) and the tat-CN17 β (5 

µmol/L). Next, in order to study the effect of ERK inhibition on PE mediated 

CaMKII activation, we pre-treated the cells for 30 min with the MAP Kinase 

inhibitor UO126 (10 µmol/L, Promega). 

 

3.6 Cell Infection 

 

H9C2 cells at ≈ 70% confluence were incubated 1 h at 37°C with 5 mL 

DMEM containing purified adenovirus at a multiplicity of infection (moi) of 

100:1, encoding either the kinase-dead (CaMKII-DN, rCaMKIIalpha, K42M, 

impaired ATP binding pocket), or the wild type (CaMKII-WT,rCaMKIIalpha) 

variant of CaMKII or the empty virus as a negative control (Ctr) (Cipolletta et 

al. 2010). 24 h after the infection, the cells were used for the experiments. 

These adenoviruses were expanded using the AdEasy system from Qbiogene as 

described previously (Kahl et al. 2004). 

 

3.7. Nuclear Extracts Preparation 

 

H9C2 were washed in ice-cold phosphate buffer (PBS) and resuspended 

in hypotonic buffer [10 mmol/L Hepes pH 7.9; 10 mmol/L KCl; 0.1 mmol/L 

EDTA; 0.1 mmol/L EGTA; 0.1 mmol/L NaVO3; 1 mmol/L DTT; 0.5 mM 

PMSF]. Cells were lysed by adding 0.1 g/L Nonidet P-40 and vortexing 

vigorously. Nuclei were pelleted by centrifugation at 12000 rpm for 30 min. 

Supernatant (cytosol) was saved for analysis. The nuclei were resuspended in 

hypertonic buffer [20 mmol/L Hepes pH7.9; 400 mmol/L NaCl; 1 mmol/L 

EDTA; 1 mmol/L EGTA; 0.2 g/L Glycerol; 0.1 mmol/L NaVO3; 1 mmol/L 

DTT; 0.5 mmol/L PMSF] and rocked 30 min on a shaking platform at 4°C. 

The samples were centrifuged at 14000 rpm for 5 min and the supernatants 

(nuclear extracts) were saved. Protein concentration was determined by using 



25 

 

the Bradford method (Bio-Rad). Cytosol and nuclear extracts were confirmed 

by WB by using anti-Actin and anti-Histone 3 antibodies. 

 

3.8 Western Blot and Immunoprecipitation Analysis 

 

H9C2, where indicated, were stimulated with PE 100 nmol/L at 

different times as indicated in each experiment. Alternatively, the cells were 

pre-treated with the appropriate inhibitor (KN93 10 µmol/L, and AntCaNtide 5 

µmol/L,) for 30 min before stimulation with PE. Rat isolated cardiomyocytes 

and H9C2 cells were lysed in ice-cold RIPA/SDS buffer [50 mmol/L Tris-HCl 

(pH 7.5), 150 mmol/L NaCL, 0.01 g/L NP-40, 0.0025 g/L deoxycholate, 2 

mmol/L Na3VO4, 0.2 g/L sodium, 2 mmol/L EDTA, 2 mmol/L PMSF, 5 

µg/mL leupeptin, 5 µg/mL pepstatin]. Protein concentration was determined 

using BCA assay kit (Pierce). Endogenous total CaMKII or CaMKII specific 

isoforms were immunoprecipitated with 5 µL of anti-CaMKII antibody  or 

anti-CaMKII isoforms specific antibodies (α, β, δ, γ) and 25 µL of 

protein G plus/protein A agarose beads/1 mg total cell extract (Santa Cruz) for 

three hours at 4°C. The samples were then washed twice with lysis buffer, 

twice with 1×phosphate-buffered saline, and resuspended in 1×SDS gel 

loading buffer. The immunoprecipitated kinases were either used to assay 

activity, or resolved on SDS-PAGE in order to visualize the associated proteins 

by WB and specific antibodies. Equal amounts of total cellular extracts or 

immunocomplexes were electrophoresed on 4-12% SDS-PAGE gel (NOVEX) 

and transferred to a nitrocellulose filter (Immobilon P; Millipore Corporation, 

Bedford, MA). The membranes were blocked in Tris buffered saline containing 

0.002 g/L Tween 20 (TBST) and 0.05 g/L nonfat dry milk. After blocking, the 

membranes were washed three times in TBST and then incubated overnight at 

4°C in TBST containing 5% BSA with primary specific antibody:  total 

ERK1/2 (1:1000; Millipore, CA), total CaMKII (1:1000, Santa Cruz, CA), 

CaMKIIα, δ, γ (1:1000 Santa Cruz, CA), CaMKIIβ (Zymed, Invitrogen Inc, 

CA), phospho-tyrosyne p44/p42 ERK (1:1000 Santa Cruz, CA), Actin 

(1:1000; Santa Cruz, CA),  Histone 3 (1:1000 Santa Cruz, CA), and phospho-

CaMKII antibody (pT286) (Zymed, Invitrogen Inc, CA). The blots were 

washed three times in TBST incubated in appropriate HRP-conjugated 

secondary antibodies (1:2000, Santa Cruz, CA) diluited in TBST containing 

5% nonfat dry milk and incubated for 1 h at room temperature. After 3 

additional washes with TBST, immunoreactive bands were visualized by 

enhanced chemiluminescence using the ECL-plus detection kit (Amersham 

Biosciences) and quantified by using ImageQuant software (Amersham 

Biosciences). 

 

3.9 Real Time PCR 

Total RNA from H9C2 cell line and isolated ventricular 

cardiomyocytes was isolated using Trizol reagent (Invitrogen) and cDNA was 
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synthetized by means of Thermo-Script RT-PCR System (Invitrogen), 

following the manufacturer instruction. After reverse transcription reaction, 

real-time quantitative polymerase chain reaction (PCR) was performed with the 

SYBR Green real time PCR master mix kit (Applied Biosystems, Foster City, 

CA, USA). The reaction was visualized by SYBR Green Analysis (Applied 

Biosystem) on StepOne instrument (Applied Biosystem). Primers for gene 

analysis were as follows: 

• ANF: For 5’cgtgccccgacccacgccagcatgggctcc3’, Rev 

5’ggctccgagggccagcgagcagagccctca3’; 

• 18S: For 5’gtaacccgttgaacccatt3’, Rev 

5’ccatccaatcggtagtagcg3’; 

• CaMKII α: For 5’cctgtatatcttgctggttggg3’; Rev 

5’ttgatcagatcctt-ggcttcc3’;  

• CaMKII β: For 5’tcaagccccagacaaacag3’; Rev 

5’ttccttaatgccgt-ccactg3’; 

• CaMKII γ: For 5’aaacctgtggatatctgggc3’; Rev 

5’ctggtgatggg-aaatcgtagg3’; 

• CaMKII δ: For 5’atagaagttcaaggcgaccag3’; Rev 

5’cagcaaga-tgtagaggatgacg3’;  

• Actin: For 5'ggcatcgtgatggactccg3'; Rev 5'gctggaaggtg-

gacagcga3'. 

 

 

3.10 In vivo study 

3.10.1 Animals 

13-weeks-old normotensive Wistar Kyoto (WKY, n=7) and 

spontaneously hypertensive (SHR, n=20) male rats (Charles River, Calco, LC, 

Italy) which had access to water and food ad libitum were used in these 

experiments. The animals were anesthetized by vaporized isoflurane (4%). 

After the induction of anesthesia, rats were orotracheally intubated, the inspired 

concentration of isoflurane was reduced to 2% and lungs were mechanically 

ventilated (New England Medical Instruments Scientific Inc., Medway, MA, 

USA) as previously described and validated (Kirchhefer et al. 1999; Kato et al. 

2000; Colomer et al. 2000). SHRs were divided into three groups: SHR-

AntCaNtide (n=8) SHR- tat-CN17β (n=7) and SHR-Control (n=5). The 

untreated WKY rats (n=7) were used as the control. The chest was opened 

under sterile conditions through a right parasternal mini-thoracotomy, to 

expose the heart. Then, we performed three injections (50 µl each) of 

AntCaNtide (50 µg/kg), tat-CN17β (50 µg/kg) or NaCl 0.9%, as control, into 

the cardiac wall (anterior, lateral, posterior, apical) (Kirchhefer et al. 1999; 

Colomer et al. 2000). Finally, the chest wall was quickly closed in layers using 

3-0 silk suture and animals were observed and monitored until recovery. This 
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procedure was performed once week for 3 times. One week after last treatment, 

rats were weighed and then euthanized. Hearts were immediately harvested, 

rinsed 3 times in cold PBS and blotted dry, weighed, divided in left and right 

ventricles, and then rapidly frozen in liquid nitrogen and stored at -270°C until 

needed for biochemical studies. Animal procedures were performed in 

accordance with the guidelines of the Federico II University of Naples 

Institutional Animal Usage Committee. The investigation conforms to the 

Guide for the Care and Use of Laboratory Animals published by US National 

Institute of Health (NIH Publication 85-23, rev. 1996) and approved by the 

Ethics Committee of the Federico II University. 

 

3.10.2 Echocardiography 
 

Transthoracic echocardiography was performed at day 0, 7, 14 and 21 

after surgery, using a dedicated small-animal high-resolution ultrasound system 

(VeVo 770, Visualsonics Inc. Toronto, ON, Canada) equipped with a 17.5 

MHz transducer (RMV-716). The rats were anaesthetized by isoflurane (4%) 

inhalation and maintained by mask ventilation (isoflurane 2%). The chest was 

shaved by appling a depilatory cream (Veet, Reckitt Benckiser, Milano, Italy) 

(Liang et al. 2000). LV end-diastolic and LV end-systolic diameters (LVEDD 

and LVESD, respectively) were measured at the level of the papillary muscles 

from the parasternal short-axis view as recommended (Lu et al. 2009). 

Intraventricularseptal (IVS) and left ventricular posterior wall thickness (PW) 

were measured at end diastole. LV fractional shortening (LVFS) was 

calculated as follow: LVFS = (LVEDD – LVESD)/LVEDD x 100. Left 

ventricular ejection fraction (LVEF) was calculated using a built-in software of 

the VeVo 770 (Kato et al. 2000). Left ventricular mass (LVM) was calculated 

according to the following formula, representing the M-mode cubic method: 

LVM=1.05×[(IVS+LVEDD+LVPW)3-(LVEDD)3]; LVM was corrected by 

body weight. All measurements were averaged on 5 consecutive cardiac cycles 

and analyzed by two experienced investigators blinded to treatment (G.S. and 

A.A.). 

 

3.10.3 Blood Pressure measurement and evaluation of cardiac 

performance 

 

Blood pressure (BP) was measured as previously described  (Kato et al. 

2000; Illario et al. 2013) and the record of both systolic (SBP) and diastolic 

(DBP) was taken using a pressure transducer catheter (Mikro-Tip, Millar 

Instruments, Inc.; Houston, TX, USA). The catheters already placed in the 

ascending aorta were then advanced further into LV to record the maximal and 

minimal first derivatives of pressure over time (dP/dtmax and dP/dtmin), as 

indexes of global cardiac contractility and relaxation10. To take into account 

the effects of differences of SBP on cardiac contractility, we also corrected 
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dP/dtmax by peak systolic pressure (dP/dtmax/SBP) as previously described 

(Colomer et al. 2003).  

 

3.10.4 Histology 
 

Four weeks after AntCaNtide (50 µg/kg), tat-CN17β (50 µg/kg) or 

NaCl 0.9%, intra-cardiac injection, the hearts were immersion fixed in 10% 

buffered paraformaldehyde. The tissues were embedded in paraffin, cut at 5 

µm, and processed. For Masson trichrome staining of collagen fibers, slides 

were stained with Weigert Hematoxylin (Sigma-Aldrich, St. Louis, MO) for 10 

minutes, rinsed in PBS (Invitrogen) and then stained with Biebrich scarlet-acid 

fuchsin (Sigma-Aldrich) for 5 minutes. Slides were rinsed in PBS and stained 

with phosphomolybdic/phosphotungstic acid solution (Sigma-Aldrich) for 5 

minutes then stained with light green (Sigma-Aldrich) for 5 minutes. Slides 

were rinsed in distilled water, dehydrated with 95% and absolute alcohol and a 

coverslip was placed. For the analysis of cardiomyocites size, Masson 

trichrome staining sections were used (Kato et al. 2000). The areas (µm2) of 

~100 cardiac myocites per heart were measured with the public domain Java 

image processing program Image (Cipolletta et al. 2010). 

 

3.11 Statistical Analysis 

 

One-way ANOVA was performed to compare different groups 

followed by a Bonferroni post-hoc analysis. Two-way analysis of variance was 

applied to analyze different parameters among the different groups. A 

significance level of p<0.05 was assumed for all statistical evaluations. 

Statistics were computed with dedicated software (GraphPad Prism, San 

Diego, California). All values in figures are presented as mean±SEM of at least 

3 independent experiments. Data from immunoblots were quantified by 

densitomentric analysis.  
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 4. Results 

4.1 Synthesis, purification and identification of peptide 

Peptides were synthesized according to the solid-phase approach using 

standard Fmoc methodology in a manual reaction vessel (Atherton et al. 1989). 

The purification was achieved using a semipreparative RP-HPLC C18 bonded 

silica column. The purified peptides were 98% pure as determined by 

analytical RP-HPLC. The correct molecular weight of the peptides was 

confirmed by mass spectrometry and amino acid analysis. The synthesized 

analogs and their physicochemical characteristics are summarized in Tables 1 e 

3. The ability of these compounds to inhibit the CaMKII activity was assayed 

in vitro using the autocamtide-2 (AC2) as phosphorylation substrate. AC2 is a 

highly selective synthetic peptide substrate for CaMKII derived from the 

autophosphorylation site of a subunit of CaMKII (Hanson et al. 1989; Chin et 

al. 1997). In this assay the reference compound CaM-KNtideb, showed a 

maximal inhibitory activity at concentration in the range 1 e 5 mM (Figure 1). 

Accordingly, we evaluated the inhibitory potencies for all analogs at a 

concentration of 5 mM. These data are summarized in Tables 1e3. As first 

series, we synthesized a scramble analog of the CaM-KNtideb sequence and 

seven peptides that cover the entire CaM-KNtideb sequence. Each short 

peptide had the sequence shifted of five residues, both from N- and C-terminal 

side (compounds 1e7). The shortest peptide that retained good inhibition of 

CaMKII (>75%) was the fragment containing amino-acids 1e17 (peptide 5, 

named now CN17b). All further truncations at the C-terminus by 4 amino acids 

or more (peptides 6 and 7) and any truncation at the Nterminus by 5 amino 

acids or more (peptides 1e3) showed minimal or no inhibition. CN17b seems to 

be slightly more potent than the corresponding analog S12 

(KRPPKLGQIGRSKRVVI, termed CN17a), described by Vest et al., which 

inhibit <70% CaMKII activity at 5 mM. These results confirmed that CaM-

KNtideb sequence containing an Ala residue at position 12 was an effective 

starting point to develop novel agents with CaMKII inhibitor activity. 
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Figure 1. Dose/response curves for CaM-KNtide and peptides tat-CN17b and ant-CN17b. Data 
are indicated as percent of inhibition over untreated; error bars represent ±standard deviation 
(SD). 
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4.2 Analisys of signal transduction 

CaMKII is involved in the activation of the most important signaling 

pathway regulating cell proliferation: the Ras/Raf/MEK/ERK signaling 

pathway. Illario et al. demonstrated the existence of a cross-talk between 

Ca2+/CaM/CaMKII and Ras/Raf/MEK/ERK pathways (Illario et al. 2003; 

Illario et al. 2005). Accordingly, ant-CaNtide is able to significantly affect 

CaMKII-mediated cell proliferation, by down regulating ERK activation. As 

tat-CN17b affected cell proliferation, we investigated whether it is also able to 

interfere with ERK activation.With this aim, we evaluated the expression of 

Erk, phospho(p)Erk, CaMKII, and phospho(p)CaMKII in cardiomyoblast 

(H9C2) and colon cancer (HT-29) cell lines by western blot (Figure 2A and B). 

Cells were serum starved over night in 0.5% DMEM/BSA and treated for 30 

min with 10% of FBS, with or without CaMKII inhibitor tat-CN17b. As shown 

in Fig. 4A and B, serum stimulation induced both CaMKII and ERK activation, 

which was altered by treatment with different concentrations of tat-CN17b. 

Densitometry measurements of immunoblots analyzing the levels of depicting 

pCaMKII and pERK in H9C2 and HT29 cells were performed using Image J 

software (NIH) (Figure 2C and D). In H9C2 cells (Figure 2A and C), ERK 

phosphorylation was down-regulated in a dose-dependent manner, whereas in 

HT-29 cells tat-CN17b at 100 nM induced the maximal down-regulation of 

ERK phosphorylation (Figure 2B and D). These results suggest that the peptide 

interferes with cell proliferation by regulating, at least, the Ras/Raf/MEK/ERK 

signaling pathway. 
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Figure 2. Immunoblots for Erk, phospho(p)Erk, CaMKII, and phospho(p)CaMKII in (A) 
H9C2 and (B) HT-29 cells stimulated with serum and treated with 0.1, 1, and 5 mM tat-CN17b 
for 30 min. The respective densitometry analysis (C) and (D) are shown. Signal densities of 
bands represent individual and average values ±SD from 3 experiments. 
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4.3 Expression of isoforms of CaMKII in H9C2 cells and 

cardiomyocytes 

The kinase Ca
2+

/ calmodulin dependent are crucial transducers of Ca
2+

; 

signaling, I therefore, examined the expression of CaMKII isoforms in cells 

systems used. H9C2 cells express CaMKII α, β and γ isoforms, similar to adult 

ventricular myocytes. Interestingly, the β isoform is the most abundant, where 

as CaMKIIα, γ and δ are only detectable after immunoprecipitates from H9C2 

cells or purified rat cardiomyocytes (Figure 3A). These results were confirmed 

by RT-PCR analysis (Fig. 3B). 
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Figure 3. CaMKII isoforms 

A. To evaluate the expression of CaMKII isoforms in H9C2s, a cell line of cardiac 
myoblasts, and ventricular adult myocytes from WKY rats, the total cell lysates were 
immunoprecipitated using anti-CaMKII antibody or anti-CaMKII α, β, γ or δ specific antibodies 
and together to total samples were analyzed by western blot with anti-CaMKII α, β, γ or δ 
antibodies as indicated. Total extracts from rat brain, mouse brain and mouse heart were used 
as controls. 

B. Total RNA from H9C2 cell line and isolated ventricular cardiomyocytes was 
extracted with standard methods. RT-PCR for CaMKII α, β, γ and δ was performed as indicated 
above. The representative graph indicates the relative amounts of transcripts for CaMKII 
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isoforms (α, β, γ and δ) in H9C2s and ventricular adult myocytes WKY rats. Cycle threshold (Ct) 
values from 3 independent experiments were normalized to the internal β-actin control. The ratio 
of fold change was calculated using the Pfaffl method. * = p<0.05 vs CaMKII; # = p<0.05 vs 
CaMKII. 
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4.4 The inhibition of CaMKII significantly reduces the activation of 

ERK induced by phenylephrine. 

 

To evaluate the effect of CaMKII inhibition on Erk activation induced 

by PE, H9C2 cells were treated with CaMKs inhibitor (KN93), specific 

inhibitors of CaMKII (AntCaNtide and AntCaNtide minimal inhibitory 

sequence tat-CN17β). The activation of CaMKII induced by PE is significantly 

reduced following treatment with inhibitors (Figure 4A). The results also show 

that both the specific inhibitor of CaMKs, KN93, the specific inhibitors of 

CaMKII, inhibit ERK phosphorylation induced by PE (Figure 4B). 

Furthermore, inhibition of ERK obtained by treatment with the inhibitor of 

Mek/Erk pathway (UO126) reduced the CaMKII phosphorylation (Figure 5A 

and 5B). These results suggest that a specific role of CaMKII in 

cardiomyocytes, and in particular that stimulation with PE in H9C2 active Erk 

in a Ca2
+
/CaMKII dependent mode. 

 

4.5 The activation of CaMKII regulates its association with Erk. 

The mutual interaction between CaMKII and Erk was evaluated by co-

immunoprecipitation: the two kinases were associated in basal condition, and 

this interaction increased after stimulation with PE. The association was 

significantly inhibited after treatment with inhibitors of CaMKs (KN93), 

CaMKII (AntCaNtide and tat-CN17β). Furthermore, inhibition of ERK 

obtained by treatment with the inhibitor of Mek/Erk pathway (UO126) and the 

inhibition of CaMKII obtained by ANT 1-17 inhibits the interaction of both 

kinases (Figure 5C and 5D). These results confirm that the activation of 

CaMKII promotes its association with active Erk (Figure 4C and 4D). 

 

 

4.6 Inhibition of CaMKII regulates the subcellular 

compartmentalization of CaMKII and Erk. 

To evaluate the effect of the activation of CaMKII on the subcellular 

localization of the kinase and ERK, H9C2 cells were treated with PE, after 

stavation, in the presence and in the absence of inhibitors. The PE induced the 

accumulation/localization of CaMKII in the nucleus. Treatment with inhibitors 

(KN93, AntCaNtide and tat-CN17β), significantly reduced the nuclear 

localization of both kinases (Figure 4E and 4F). Furthermore, inhibition of 

ERK obtained by treatment with the inhibitor of Mek/Erk pathway (UO126) 

significantly reduced the nuclear localization of ERK and CaMKII (Figure 5E 

and 5F). These results support the hypothesis that the activation of CaMKII 

promotes nuclear localization of both kinases. 
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Figure 4. Activation of CaMKII pathway in H9C2 cardiomyoblasts. 

To investigate the role the cross talk between CaMKII and ERK on cardiac 
hypertrophy, we assessed the effect of CaMKII inhibition on PE-induced ERK activation. H9C2s 
were pretreated with KN93 (5 µmol/L) or AntCaNtide (10 µmol/L) and tat-CN17β (10 µmol/L) for 
30 minutes and then stimulated with PE (100 nmol/L for 15 minutes). 

A. H9C2 total cell lysates were analyzed by Western blotting (WB) for 
phosphothreonine 286 CaMKII (pCaMKII) and total CaMKII (CaMKII), with specific antibodies. 
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Data from immunoblots were quantified by densitometric analysis (DA). pCaMKII levels were 
corrected by total CaMKII densitometry. * = p<0.05 vs Ctrl; # = p<0.05 vs PE. 

B. Total H9C2 cell extracts were be subjected to WB analysis to visualize 
phosphotyrosine (pERK1/2) and total ERK (ERK1/2) cell content using anti-pERK1/2 or anti-
total ERK1/2 antibodies. pERK1/2 levels and were corrected by total ERK1/2 densitometry. * = 
p<0.05 vs Ctrl; # = p<0.05 vs PE. 

C. The H9C2 total lysates were immunoprecipitated using anti-CaMKII antibody. The 
protein samples underwent WB procedure to visualize ERK and evaluate the association with 
CaMKII. The experiments were normalized by WB for total CaMKII. ERK1/2 levels were 
corrected by CaMKII densitometry. * = p<0.05 vs Ctrl; # = p<0.05 vs PE. 

D. To confirm the interaction between CaMKII and ERK in H9C2, total cell lysates were 
immunoprecipitated using anti-ERK1/2 antibody, and subjected to WB using anti-CAMKII 
antibody. CaMKII levels were corrected by ERK1/2 densitometry. * = p<0.05 vs Ctrl; # = p<0.05 
vs PE. 

E. Nuclear extract from H9C2s were prepared as indicated in the Methods. Nuclear 
extracts were analyzed by WB for total CaMKII with selective antibody. CaMKII levels were 
averaged and normalized to histone 3 densitometry. * = p<0.05 vs Ctrl; # = p<0.05 vs PE. 

F. To evaluate nuclear ERK localization, the nuclear extracts were analyzed by WB for 
total ERK with specific antibody.. ERK1/2 levels were normalized to histone 3 densitometry. *, P 

< 0.05 vs. Ctrl; #, P < 0.05 vs. PE. Data from all immunoblots were quantified by densitometric 
analysis Each data point in all graphs represent the mean±SEM of 3 independent experiments. 
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Figure 5. Inhibition of ERK pathway downregulates PE-induced CaMKII 
activation in H9C2 cardiomyoblasts 
 
A. H9C2 cardiomyoblasts were exposed to UO126 (10 µmol/L) for 30 minutes, and 

then stimulated with 100 nm phenylephrine (PE) for 15 minutes. Total cell extracts were 
analyzed by western blot for phosphothreonine 286 CaMKII (pCaMKII) and CaMKII with specific 
antibodies. pCaMKII levels were corrected by CaMKII densitometry. *, P < 0.05 vs. Ctrl; #, P < 
0.05 vs. PE. 
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B. H9C2s were stimulated with PE after pretreatment with UO126 (10 µmol/L for 30 
minutes). Total lisates were analyzed by WB for pERK with specific antibody. pERK1/2 levels 
were corrected by ERK1/2 densitometry. * = p<0.05 vs Ctrl. 

 
C. H9C2s were stimulated with 100 nmol/L PE for 15 minutes following 30 min 

pretreatment with UO 126 (10 µmol/L). CaMKII was immunoprecipitated from cell lysates using 
a specific anti-CaMKII antibody, and ERK (ERK1/2) was visualized by WB to evaluate its 
association with CaMKII. ERK1/2 levels were corrected by CaMKII densitometry. * = p<0.05 vs 
Ctrl. 

 
D. To confirm the interaction between CaMKII and ERK in H9C2s, total cell lysates 

were immunoprecipitated using anti-ERK1/2 antibody, and subjected to western blot using anti-
CAMKII antibody. CaMKII levels were corrected by ERK1/2 densitometry.* = p<0.05 vs Ctrl. 

 
E. After pharmacological inhibition of ERK and stimulation with PE, nuclear extract 

from H9C2s were prepared as indicated in the methods section. Nuclear extracts were analyzed 
by WB for total CaMKII with specific antibody. CaMKII levels were averaged and normalized to 
histone 3 densitometry. *, P < 0.05 vs. Ctrl. 

 
F. To confirm the effects PE induced ERK nuclear localization after pretreatment with 

UO126, nuclear extracts were analyzed by WB for total ERK1/2 with specific antibody. ERK1/2 
levels were normalized to histone 3 densitometry. *, P < 0.05 vs. Ctrl. Data from all immunoblots 
were quantified by densitometric analysis Each data point in all graphs represent the 
mean±SEM of 3 independent experiments. 
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4.7 Activation of CaMKII and Erk regulates the expression of ANF 

induced by phenylephrine. 

The expression of ANF is commonly considered an indicator of cardiac 

hypertrophy. To evaluate the effect of CaMKII on the expression of ANF, 

H9C2 cells were stimulated with PE, after stavation, in the presence and in the 

absence of CaMKs inhibitors (KN93) and the selective inhibitors oc CaMKII 

(AntCaNtide and tat-CN17β), as well as the inhibitor of Mek/Erk pathway 

(UO126). Stimulation with PE induced an increased expression of ANF from 

baseline, that was significantly reduced by treatment with the inhibitors (Figure 

6). On the other hand, CaMKIIDN infection significantly reduces ANF levels 

(Figure 6A). To confirm the effectiveness of CaMKIIWT and CaMKII-DN 

infection in H9C2s, the total cell lysates were subjected to western blot 

analysis for CaMKII (Figure 6B). Finally, the efficacy of CaMKII inhibitors to 

prevent PE induced hypertrophic responses in H9C2s, is confirmed by KN93 

such as AntCaNtide and tat-CN17β significantly reduction of the levels of 

expression of ANF induced by PE (Figure 6C). A similar result is obtained by 

the inhibition of ERK pathway with UO126 (Figure 6C). These data are 

consistent with the crosstalk between CaMKII and ERK pathways, and suggest 

the existence of a correlation between the activation of CaMKII-ERK pathway 

and ANF activation. 
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Figure 6. CaMKII/ERK-dependent regulation of the hypertrophy marker ANF. 

A. H9C2 cells at  70% confluence were incubated 1 h at 37°C with 5 mL DMEM containing 
purified adenovirus at a multiplicity of infection (moi) of 100:1, encoding either the kinase-dead (CaMKII-DN, 
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rCaMKIIdelta, K42M, impaired ATP binding pocket), or the wild type (CaMKII-WT, rCaMKIIdelta) variant of 
CaMKII or the empty virus as a negative control (Ctr). 48 h after the infection, the cells were stimulated with 
PE 100 nM for 24 h. Total RNA was isolated from H9C2s using TRIzol reagent, and cDNA was synthesized 
by means of a Thermo-Script RT-PCR System, following the manufacturer’s instruction. Then ANF gene 
expression was evaluated by real-time PCR. Results are expressed as mean±SEM from 3 independent 
experiments. The ratio of fold change was calculated using the Pfaffl method[34]. * = p<0.05 vs Ctrl; # = 
p<0.05 vs PE. 

B. The H9C2s infected with adenoviruses encoding wilde type CaMKII (CaMKII-WT) and kinase 
dead CaMKII (CaMKII-DN) were stimulated with PE 100 nM for 24 h. Total cell lisates were analyzed by WB 
for total CaMKII with specific antibody. CaMKII levels were corrected by Actin densitometry. Data from the 
immunoblots were quantified by densitometric analysis .* = p<0.05 vs Ctrl # = p<0.05 vs PE. Each data 
point in all graphs represent the mean±SEM of 3 independent experiments. 

C. H9C2 cells were pretreated with CaMK inhibitor KN93 (5 µmol/L), the selective inhibitors 
AntCaNtide (10 µmol/L) and tat-CN17β (10 µmol/L) and ERK specific inhibitor pathway UO126 (10 µmol/L) 
for 30 minutes and then stimulated with PE (100 nmol/L) for 24 hours. cDNA was synthesized from RNA 
obtained from H9C2s as indicated above. The ANF gene expression was evaluated by real-time PCR. 
Results are expressed as mean±SEM from 3 independent experiments. The ratio of fold change was 
calculated using the Pfaffl method. * = p<0.05 vs Ctrl; # = p<0.05 vs PE. 
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4.8 Inhibition of CaMKII reduces left ventricular hypertrophy in 

hypertensive rats (SHR) 

To confirm that CaMKII inhibition prevents the left ventricular 

hypertrophy (LVH), we used Spontaneous Hypertensive Rat (SHR), an animal 

model of hypertension-induced LVH and in normotensive Wistar Kyoto rats 

(WKY). AntCantide, tat-CN17β or a saline solution were injected in the 

cardiac wall of the SHR and WKY. LVH was evaluated weekly for 4 weeks by 

echocardiography.  

Both AntCantide and tat-CN17β treatments reduced 

interventricular septum (IVS) thickness (Figure 7A) and Left Ventricular Mass 

(LVM)/body weight (BW)  (Figure 7C). At the end of the observation period, 

heart weight (HW)/BW ratio saccordingly showed a significant reduction 

(Figure 7B). A similar beneficial effect could be observed on left ventricle 

function, assessed by ultrasound. Indeed, Lelf Ventricular Ejection Fraction 

(LVEF) and Lelf Ventricular fractional shortening (LVES), are depressed in 

the SHR control group with respect to the WKY rat and normalized after 

treatment with either AntCantide or tat-CN17β (Figure 7D). To rule out 

changes in hemodynamics as a possible mechanism of regulation of LVH, we 

measured blood pressure in rats after 3 injections and verified that there were 

no effects of treatments in the hypertrensive states of the 3 SHR groups. 

(Figure 7E). Biochemical analysis confirmed the reduction of LVH induced by 

AntCantide and tat-CN17β, as assessed by the expression of the hypertrophy 

marker gene ANF. (Figure 7F). Histological analysis of SHR cardiomyocytes 

showed common elements of hypertension-induced LVH, including increased 

cell size and augmented interstitial fibrosis compared to WKY. Both 

parameters  were significantly reverted after treatment with either AntCantide 

or tat-CN17β (Figure 7G, 7H, 7I). Finally, CaMKII expression levels were 

increased after the treatment with AntCantide and tat-CN17β in SHR compared 

to WKY rat (Figure 8A), on the other hand,  CaMKII and ERK 

phosphorylation were reduced by AntCantide and tat-CN17β (Figure 8B and 

8C). In the hypertrophic hearts, the nuclear accumulation of CaMKII  (Figure 

8D) and ERK (Figure 8E) was also enhanced, as well as the interaction 

between both kinases (Figure 8F and 8G). We can confirm that CaMKII 

inhibition by AntCantide or tat-CN17β blocked both Erk phosphorylation, 

CaMKII/Erk interaction and the nuclear localization of both kinases. 
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Figure 7. The effect of CaMKII selective peptide inhibitors in vivo in SHRs. 
 

A. SHR rats were subjected to intracardiac injection at the age of 14 week and 
repeated after 7 and 14 days. Transthoracic echocardiography was performed at each drug 
administration and once more at the day of euthanasia in 7 untreated WKY rats, 8 AntCaNtide 
SHRs and 7 tat-CN17β SHRs, and 5 control SHRs (SHR) using a dedicated small-animal high-
resolution-ultrasound system (Vevo 770, VisualSonics). ANTCaNtide-SHRs and tat-CN17�-
SHRs the reduction of interventricularseptal (IVS) thickness compared to SHR (*P<0.05 vs 
WKY; #P<0.05 vs SHR). 
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B, C. At the end of treatment, rats were weighed and then euthanized. Hearts were 
immediately removed, rinsed 3 times in cold PBS and blotted dry, weighed and then rapidly 
frozen. The HW/BW ratio (B) and LVM/BW ratio (C) were measured in ANTCaNtide-SHRs and 
tat-CN17β- SHRs and compared to WKY and SHR hearts (*P<0.05 vs WKY; #P<0.05 vs SHR). 

 
D. Left ventricular ejection fraction (LVEF) at the end of the treatment was calculated 

using VeVo770 to evaluate cardiac performance. All measurements were averaged on 5 
consecutive cardiac cycles and analyzed by two experienced investigators blinded to treatment. 
No differences were observed in LVFS and LVEF in ANTCaNtide and tat-CN17β SHRs when 
compared with SHR (*P<0.05 vs WKY). 

 
E. To evaluate the involvement of BP values in CaMKII–dependent regulation of 

cardiac hypertrophy, SBP and DBP values were assessed weekly in AntCaNtide- and tat-
CN17β- treated and control. The pressure values in the graph represent the average of the 
measurements made in the course of 4 weeks of treatment (*P<0.05 vs WKY). 

 
F. At the end of the treatment the total RNA was isolated from myocardial sample using 

TRIzol reagent, and cDNA was synthesized by means of a Thermo-Script RT-PCR System, 
following the manufacturer’s instruction. ANF gene expression was evaluated by real-time PCR 
in AntCaNtideand tat-CN17β-SHR rats compared with WKY and SHR (*P<0.05 vs WKY). 
Results are expressed as mean±SEM from 3 independent experiments. The ratio of fold change 
was calculated using the Pfaffl method. 

 
G. Paraffin-embedded sections of control and treated hearts were stained by Masson’s 

trichrome staining to evaluate collagen fibers. The treatment with AntCaNtide and tat-CN17β 
reduced fibrosis compared with SHR. 

 
H. Cardiomyocytes size was measured by Image J software, and means of areas are 

showed in the histogram ((*P<0.05 vs WKY; # P<0.05 vs SHR). Images are representative of 3 
independent experiments (magnification ×60; black bar = 100 µm) 

 
I. Fibrotic areas were measured by Image J software, and percent of fibrotic areas 

compared to WKU are shown in the histogram (*P<0.05 vs WKY). Images are representative of 
3 independent experiments.                     
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Figure 8. Activation of CaMKII/ERK pathway in vivo in SHR 
 
A. Three weeks after the injections, samples from WKY, SHR- AntCaNtide, SHR- tat-

CN17β, and SHR-Control total lysates were prepared from the left ventricular samples. Whole 
lysates were subjected western blotting analysis with anti�CAMKII antibody. CAMKII levels 
were corrected by Actin    densitometry.* = p<0.05 vs WKY. 

 
B. To assess CAMKII phosphorylation levels in LV after CaMKII inhibitors 

pretreatment, total lysate samples from WKY, SHR-AntCaNtide, SHR- tat-CN17β, and SHR-
Control were analyzed by WB for anti-phosphothreonine 286 CaMKII antibody (pCaMKII). 
pCaMKII levels were corrected by Actin densitometry.* = p<0.01 vs 0’. 
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C. Total cell extracts of LV from WKY, SHR-AntCaNtide, SHR- tat-CN17β, and SHR-

Control were analyzed by WB with anti-pERK (pERK1/2) or anti- total ERK ½ (ERK ½). pERK½ 
levels were corrected by total ERK½ densitometry. * = p<0.01 vs Ctr; # = p<0.01 vs WKY. 

 
D. To evaluate the effects of CaMKII inhibition on CaMKII subcellular 

compartmentalization, nuclear extract from WKY, SHR, SHR-AntCaNtide and SHR-tat-CN17β 
were prepared as indicated above. Nuclear extracts were analyzed by WB for total CaMKII with 
specific antibody. CaMKII levels were averaged and normalized to histone 3 densitometry.*, P < 
0.05 vs. WKY. 

 
E. The nuclear extract from WKY, SHR, SHR-AntCaNtide and SHR-tat-CN17β were 

analyzed by WB for total ERK with specific antibody to test the effects of CaMKII inhibitors on 
ERK subcellular compartmentalization. CaMKII levels were averaged and normalized to histone 
3 densitometry.*, P < 0.05 vs. WKY. 

 
F. To examine the association between CaMKII and ERK in the left ventricule from 

SHR following intracardiac injections, total cell lysate from WKY, SHR, SHR-AntCaNtide and 
SHR-tat- CN17β, total lysates were immunoprecipitated using anti-CaMKII antibody and 
subjected to WB with anti-ERK antibody. ERK levels were averaged and normalized to IgG 
densitometry. *P < 0.05 vs. WKY. Data from all immunoblots presented here were quantified by 
densitometric analysis Each data point in all graphs represent the mean±SEM of 3 independent 
experiments. 
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5. DISCUSSION 

 

Cardiac remodeling is generally accepted as a determinant of the 

clinical course of heart failure (HF). Defined as genome expression resulting in 

molecular, cellular and interstitial changes and manifested clinically as changes 

in size, shape and function of the heart resulting from cardiac load or injury, 

cardiac remodeling is influenced by hemodynamic 

load, neurohormonal activation and other factors still under investigation 

(Cohn JN et al. 2000). The calcium calmodulin-dependent protein kinase II 

(CaMKII) is a multifunctional serine/threonine kinase enriched 

incardiomyocytes. CaMKII regulates the physiology of excitation-

contraction coupling (Maier and Bers, 2007) and plays a role in the 

pathophysiology of structural heartdisease, hypertrophy, and arrhythmias 

(Anderson, 2005; Hund and Rudy, 2006). CaMKII directly contributes to 

protein phosphorylation, a dynamic post-translational modification important 

for multiple cellular functions such as membrane excitability, cellular 

Ca
2+

 homeostasis, metabolism, vesicle secretion, gene transcription, protein 

trafficking and cell survival and differentiation. Neurohormonal signals 

elevated in heart disease can stimulate CaMKII activity. Of interest, β-

adrenergic (W. Z. Zhu, et al. 2003) and Ang II (Erickson, et al. 2008) receptor 

stimulation both independently result in CaMKII activation. Likewise, 

CaMKII inhibition reverses the hypertrophic and anti-apoptotic effects of these 

agonists, respectively (Erickson, et al., 2008; Sucharov, et al., 2006; R. Zhang, 

et al., 2005). Angiotensin II,endothelin-1 and catecholamines (α-adrenergic) 

bind to specific seven-transmembrane-spanning receptors that are coupled to 

heterotrimeric G proteins of the Gαq/α11 subclass. These G proteins are 

coupled to phospholipase Cβ (PLCβ). This coupling induces the generation 

of diacylglycerol (DAG), which functions as an intracellular ligand for protein 

kinase C (PKC), leading to PKC activation, and production of inositol-1,4,5-

trisphosphate (Ins(1,4,5)P3. Accumulation of Ins(1,4,5)P3  leads to the 

mobilization of internal Ca
2+

 by directly binding to the Ins(1,4,5)P3  receptor 

located in the endoplasmic reticulum or the nuclear envelope. Recently, the 

generation of  Ins(1,4,5)P3  and the associated liberation of internal Ca
2+

 stores 

was shown to mediate hypertrophic signaling through calcineurin–NFAT 

activation or calmodulin dependent kinase (CaMK)–HDAC inactivation 

(Wilkins, B. J. &Molkentin, 2004; J. Wu, X. et al. 2006). Activation of 

Gαq/α11 is also a potent inducer of MAPK signalling in cardiacmyocytes, 

although the exact mechanism of MAPK coupling has not been described 

(Clerk, et al 1999). In response to agonist stimulation or cell stretching, ERK1 

and 2 become activated both in cultured cardiac myocytes and in isolated 

perfused hearts (Yamazaki T, et al 1993). Moreover ANG II, via AT1 

receptors, carries out its functions via MAP kinases (ERK 1/2, JNK, 

p38MAPK), receptor tyrosine kinases [PDGF, EGFR, insulin receptor], 

and nonreceptor tyrosine kinases [Src, JAK/STAT, focal adhesion kinase 

(FAK)]. AT1R-mediated NAD(P)H oxidase activation leads to generation of 
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reactive oxygen species, widely implicated in vascular inflammation and 

fibrosis. ANG II also promotes the association of scaffolding proteins, such 

as paxillin, talin, and p130Cas, leading to focal adhesion and extracellular 

matrix formation. These signaling cascades lead to contraction, smooth muscle 

cell growth, hypertrophy, and cell migration, events that contribute to normal 

vascular function, and to disease progression. (Puja K. et al 2007 ). 

In the present study, we provide for the first time the compelling 

evidence that pharmacological selective inhibition of CaMKII results in the 

reduction of cardiac hypertrophy both in vitro and in vivo models. Indeed, so 

far the role of CaMKII in LVH was essentially demonstrated by gene deletion 

strategies (Anderson et al. 2011). Here we demonstrate that peptides designed 

on the CaMtide sequence can inhibit CaMKII and block hypertrophy 

responses. Furthermore, our data indicate that a crosstalk between CaMKII and 

ERK occurs also in cardiac myocytes and promoted cardiac hypertrophy. Our 

data exploit the pathogenetic role of CaMKII in the settings of cardiac myocyte 

hypertrophy, showing that a targeting strategy based on selective peptides can 

prevent this maladaptive response of the heart. Since CaMKII is present in 

humans in 4 isoforms, namely CaMKIIα, CaMKIIβ,CaMKIIγ and CaMKIIδ 

and the adult heart is composed of ∼56% myocytes, 27% fibroblasts, 7% 

endothelial cells, and 10% vascular smooth muscle cells (Banerjee et al. 2007), 

we felt the urge to characterize the expression of CaMKII isoforms in our 

cardiac myocyte models, namely the H9C2 myoblasts and adult rat ventricular 

cardiomyocytes. Both H9C2 and adult rat cardiomyocytes express CaMKII α, 

β, γ and δ isoforms, and this finding is in accordance with previous literature 

(Tobimatsu and Fujisawa 1989; Singer et al. 1997; Edman and Schulman 1994; 

Baltas et al. 1995; Mayer et al. 1995; Tombes et al. 2003), Albeit other reports 

suggest that the heart does not express CaMKII α and �β� isoforms 

(Tobimatsu and Fujisawa 1989). Of note, though, our results indicate that the 

most abundant CaMKII isoform in adult rat cardiomyocytes is CaMKIIβ, since 

CaMKII α, δ and γ are only detectable when concentrated by 

immunoprecipitation. These data contradict the notion that CaMKIIδ is the 

most important CaMKII isoform in the heart. By a critical perusal of the 

literature, it appears that this assumption is based on early reports that analyzed 

CaMKII expression by mRNA expression from mRNA extracted by the whole 

heart (Colomer et al. 2003; Lu et al. 2010; Little et al 2009; Hagemann et al. 

2001). On the contrary, we evaluated expression of the isoforms using 

commercial, validated antibodies which are of wide use by researcher in the 

field and that recognizes in rat the respective isoforms of CaMKII. 

Furthermore, our results are obtained in cultured cardiac myoblasts or freshly 

isolated ventricular myocytes; we also compared the relative expression in 

these cells with the most abundant source of CaMKII isoforms in the body of 

the rat, the brain. Therefore, we are convinced that differences in the model 

used and dissimilarities 17 between mRNA and proteins may account for the 

divergences observed between our and previous reports. Our data do not 

exclude that less expressed isoforms of CaMKII might play a role in LVH; on 
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the contrary, we believe that our results point in particular to the nuclear 

isoforms of CaMKII. On this regard, we confirm that CaMKIIδ is the most 

important nuclear isoform in cardiac myocytes. Our data, furthermore, indicate 

that the recently described mechanism of stimulation of nuclear transcription 

by CaMKII activation of ERK is possibly relevant also in the setup of LVH. In 

particular, we demonstrate that inhibition of CaMKII results in the loss of ERK 

accumulation within the nucleus. These data are in agreement and help to 

reconcile previous literature. In particular, it has been observed that nuclear 

inhibition of CaMKII does not prevent hypertrophy in response to 

physiological stimulation (Li et al. 2006). On the contrary, another report 

shows that CaMKII isoforms deletion results in attenuation of hypertrophy 

(Anderson et al. 2011; Mani et al. 2010). According to our results both findings 

can co-exists, since the crosstalk between ERK and CaMKII takes play in the 

cytosol and favors accumulation of ERK in the nucleus. Selective inhibition of 

nuclear CaMKII isoform will not prevent ERK to enter the nucleus and 

determine activation of ERK dependent transcription factors related to 

hypertrophy (Proud 2004). The mechanism of inhibition of CaMKII with 

CaMKII-INB based peptide represents an alternative strategy based on the 

sterical inhibition of a conformational change of the kinase which is needed for 

its activation, rather than with the occupation of the ATP pocket (Sumi et al. 

1991). Although previously used for proof of concept studies, these peptides, 

and in particular AntCaNtide, were never used before in vivo. CaMKII 

selective inhibition with both AntCaNtide and tat-CN17β efficiently reduced 

the hypertrophy of cardiac myocytes, as well as the remodeling of the heart. 

We therefore considered antCaNtide as a leading compound, and identified its 

minimal inhibitory sequence, that resides in residues 1-17 (Gomez-Monterrey 

et al. 2013). The novel tat-CN17β peptide recapitulates the inhibitory 

properties of the parental AntCaNtide peptide, both in vitro and in vivo, and the 

shorter sequence poses the basis for the identification of the minimal inhibitory 

sequence and the future molecular design of pharmacological inhibitors. 
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6. CONCLUSIONS 

 

This study confirms that the crosstalk between CaMKII and ERK 

sustains the activation of both kinases in vitro and in vivo in cardiac myoblasts 

and hypertrophic hearts.  

CaMKII-ERK interaction offers a novel therapeutic approach to limit 

cardiac remodeling.  
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