
Facoltà di Ingegneria

Dottorato di Ricerca in Ingegneria Informatica ed Automatica
XXVII Ciclo

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

SOLEIL: Streaming Of Large scale Events

over Internet cLouds

Lorenzo Miniero

Ph.D. Thesis

Tutor Coordinator
Prof. Simon Pietro Romano Prof. Francesco Garofalo

March 2015

Abstract

This Ph.D. Thesis deals with the design and realization of a streaming plat-
form specifically targeted at large-scale and live, low delay, events. The
streaming platform, called SOLEIL (Streaming Of Large scale Events over
Internet cLouds), is conceived to be compliant, at its edge nodes, with the
WebRTC specification, meaning users can take advantage of its capabilities
using a simple browser. Details on both the design and realization processes
are provided, and a thorough experimental campaign will prove the validity
of the achieved results.

Acknowledgments

This thesis wouldn’t have been possible without the help and support by
excellent people.

I cannot start this acknowledgments section without thanking my family.
My parents have always been more than supportive, no matter which path
I decided to take, and deserve this thanks more than anyone else. A huge
hug to my little sisters as well: despite what a doctoral thesis may suggest,
they’re way smarter than me!

Thanks to my tutor, Prof. Simon Pietro Romano: several years have
passed since I first met him to discuss the possibility of starting a Master
Degree thesis with him, and I’ve never stopped learning from him since then.
What he saw in that hippie that made him think I could achieve good results
in my thesis and in research after that I’ll never know: I do know that he
always supported and encouraged me in all my activities, and in all these
years he did make me a better researcher and a better person.

Thanks to the excellent partners I have in the Meetecho adventure: Tobia
and Alessandro, together with Simon, believed in this as much as I did, and
for several years have been the companions of a long trip that is still going on,
and will hopefully keep on going for a long time. All this years confirmed my
certainty that I’ve not only found incredible colleagues, but lifetime friends.

And, last but not least, thank you for taking the time to read this work:
I hope you’ll enjoy going through it just as much as I did in these past three
years, which have been a challenging and exciting journey.

“If I could put it into a very few
words, dear sir, I should say that

our prevalent belief is in moderation.
We inculcate the virtue of avoiding

excesses of all kinds – even including,
if you will pardon the paradox,

excess of virtue itself.”

Contents

Acknowledgments iii

1 Introduction 1

2 SOLEIL: design and architecture 5
2.1 Streaming as an application 5
2.2 Large-scale Streaming as a new use case 10
2.3 Streaming Of Large scale Events over Internet cLouds 13

2.3.1 The root node . 16
2.3.2 The relay node . 17
2.3.3 The leaf node . 19
2.3.4 The master node . 20

2.4 Managing the tree: the SOLEIL protocol 20
2.4.1 Injecting new flows in SOLEIL 21
2.4.2 Handling new subscriptions 23

2.5 Within SOLEIL: relaying the media 24
2.6 At the edge of the topology: the “last mile” 26

3 WebRTC media components 29
3.1 The WebRTC Protocol Suite 30
3.2 Signalling and Negotiation . 32

3.2.1 Session Description Protocol (SDP) 34
3.2.2 Javascript Session Establishment Protocol (JSEP) . . . 35

3.3 Connection Establishment and NAT/Firewall Traversal 38
3.3.1 Session Traversal Utilities for NAT (STUN) 41
3.3.2 Traversal Using Relays around NAT (TURN) 42
3.3.3 Interactive Connectivity Establishment (ICE) 44
3.3.4 An open area for research: TURN over WebSockets . . 44

3.4 Media Transport and Control 46
3.4.1 Real-Time Transport Protocol (RTP) 46
3.4.2 Real-Time Transport Control Protocol (RTCP) 47

CONTENTS vi

3.5 Security Extensions . 49
3.5.1 Datagram Transport Layer Security (DTLS) 49

3.6 Codecs . 51
3.6.1 Audio codecs: G.711 and Opus 52
3.6.2 Video codecs: VP8 and/or H.264 53

3.7 Advanced Functionality . 53
3.7.1 Trickle ICE . 54
3.7.2 RTCP Muxing . 55
3.7.3 BUNDLE . 56
3.7.4 Data Channels . 57

3.8 First WebRTC integration: Meetecho as a “real” use case . . . 59

4 Janus: a general purpose WebRTC gateway 66
4.1 A gateway? Why? . 67
4.2 A programmable approach: MEDIACTRL 70

4.2.1 The MEDIACTRL architecture 72
4.2.2 Control Packages and Extensibility 74
4.2.3 Media Resource Brokering 76

4.3 Janus: a general purpose WebRTC gateway 79
4.3.1 A modular architecture 80
4.3.2 The Plugins interface 83
4.3.3 Interacting with the gateway: multi-transport API . . 85

4.4 Janus as the “last mile”: the Streaming plugin 90

5 Experimentation and Measurements 95
5.1 Design of the experimentation campaign 97

5.1.1 Testing the videoroom plugin 99
5.1.2 Testing the audiobridge plugin 100
5.1.3 Testing the SIP plugin 101
5.1.4 Testing the streaming plugin 101
5.1.5 A real-world scenario: multi-point audio conference . . 104

5.2 Improving the QoE: NACKs and retransmissions 107
5.3 A further instrument for the QoE: Simulcast 113

6 Conclusions and next steps 117

Bibliography 123

Chapter 1

Introduction

Streaming has become a more and more pervasive application scenario in

our lives, whether it’s about on-demand media or live events. Services like

YouTube, Vimeo and others have made streaming easily accessible to the

masses, by providing web interfaces and ease of access to media that were

previously available only through ad-hoc player applications.

This was made possible by the evolution in the technology and proto-

cols used to implement such a functionality. 20 years have passed since the

first streaming applications made available by RealNetworks, and just a few

less since that effort eventually became the first standard protocol for im-

plementing media streaming, the Real Time Streaming Protocol (RTSP). At

the time, the protocols used to implement this functionality required users

to install an ad-hoc application for the purpose of receiving and reproducing

the feeds.

Such a requirement has proven, year after year, harder and harder to

justify. Nowadays, we are all used to use our web browser for pretty much

anything, including things we used desktop application for in the past. While

a few years back we would have relied on a mail client for sending and receiv-

ing e-mails, WebMails have become more and more widespread. The same

applies to document editing, which has started to shift from desktop appli-

cations like the Office Suite to web environments as Google Drive. This evo-

lution from desktop applications to web interfaces has impacted many more

2

applications as well, including those that envisage some form of interaction

with other people: nowadays it’s not at all unusual, for instance, to chat

with friends and colleagues using a website, rather than an instant messag-

ing application. As a result of this change in perspective, users have become

increasingly reluctant to install applications on their systems. Whether they

trust the implementor or not (another factor that has contributed to this re-

luctance), users often expect the applications they need to be available on

some website, one way or another.

While this is often true for most applications, this is not always the case

for multimedia applications, especially for those that have more or less strin-

gent requirements in terms of real-time functionality. In fact, despite the fact

that such applications are indeed currently available to web users, they most

of the time rely on proprietary plugins for the purpose. Almost all of the ap-

plications that provide collaboration features, for instance, have for a long

time relied on plugins like Adobe Macromedia Flash, Microsoft Silverlight or

Java Applets. That’s the case, to name a few, of Google Hangout, Adobe

Connect, the video calls in Facebook made available by the Skype plugin,

and so on. The same also partly applies to multimedia streaming scenarios as

well. Most of the streaming providers still rely on plugins like the ones men-

tioned above, although purely web-based alternatives have become available,

e.g., HTML5 and HTTP-based streaming (HLS and MPEG-DASH), often

involving content delivery networks (CDNs) in order to to ensure an efficient

delivery of popular content to large audiences.

While functional, a plugin-based approach is far but optimal. In fact,

a plugin is, by definition, something that was not natively available in the

browser, and so needs to be implemented by someone else as a third-party

addition and integrated within a web page somehow. This often results in

proprietary libraries that are not able to interact with other components.

Besides, in order to target users on different systems and using different

browsers, such libraries need to have different implementations for the same

functionality: to make a simple example, should a developer be interested

3

in making a plugin available to all potential users, there needs to be a Win-

dows, a Mac OS and a Linux version of such a plugin, while at the same

time targeting both x32 and x64 architectures too; besides, different versions

of the plugin may be needed on different browsers, e.g., Internet Explorer,

Chrome, Firefox, Safari, etc. This is a very complex and demanding task,

one that as a matter of fact several implementors have chose not to pursue.

As a result, it’s not unusual to encounter plugins that are only available on

Windows or on specific browsers, which means that relying on such solutions

for implementing a multimedia streaming application is very likely to lead

to platform-dependency and a complete lack of interoperability. Platform

dependency becomes even more of an issue when we think about mobile de-

vices like smartphones and tablets. In fact, even envisaging a plugin that

covers all desktop environments, there currently is no way to write plugins

for mobile browsers, with the result of having a large basin of potential users

uncovered, unless ad-hoc applications are written for the purpose.

It’s within this framework that I started, together with my colleague To-

bia Castaldi, to investigate some possible alternatives to address the several

shortcomings that have been just identified. More specifically, we decided to

study the WebRTC standardisation effort as a technology enabler to provide

native browser-based multimedia streaming and, more in general, communi-

cation, on a more or less large scale. This effort lead to two doctoral thesis,

carried in parallel by me and my colleague, in order to design a large-scale

streaming architecture that would be standards-compliant, scalable, dynam-

ically deployable and web based. We would address different aspects of the

architecture, in order to eventually merge the efforts into a joint framework.

Chapter 2 introduces this architecture, which we called Streaming Of

Large scale Events over Internet cLouds (SOLEIL), by analyzing the require-

ments we identified and the components implementing the different roles.

Particular focus will be given on the low-latency requirements, while keeping

the quality acceptable from a user’s perspective.

Chapter 3 will instead delve in the details related to the ongoing WebRTC

4

standardisation efforts, by describing the several different requirements that

were targeted and how they were eventually addressed. The chapter will

highlight my contributions in that respect, and describe the preliminary im-

plementation efforts I took care of in a web conferencing environment.

The implementation aspects of SOLEIL will be addressed in Chapter 4,

where the component that will be responsible for the implementation of the

SOLEIL “last mile” towards end-users, Janus, will be described. In particu-

lar, the general purpose and modular architecture of Janus will be introduced,

together with the extensible API.

Experimentation results and enhancements to the platform that came as

a result will eventually be addressed in Chapter 5.

Some final remarks, together with hints on possible next steps, will be

provided in Chapter 6.

Chapter 2

SOLEIL: design and
architecture

Streaming as an application scenario has been around for many years already.

The easiest way to describe it is the transmission of a multimedia source of

information to one or more destination across a network. Such a multimedia

source is usually encoded in order to make the delivery through a network

more efficient, and sometimes encrypted when security and privacy represent

a concern. That said, this very simple definition is often not enough to

describe streaming as a technology. In fact, several different approaches

can be taken to actually implement such a functionality, usually depending

on the requirements of the applications, the constraints of the technology

or other aspects. For instance, a first distinction can be made at the very

transport level: should a stream be transferred to its recipients using unicast

or multicast? Is a simple file transfer enough for the purpose, or would a

progressive delivery be more suit to the purpose?

2.1 Streaming as an application

These and other questions have paved the way to what streaming is today

and how it can be achieved. As it often happens, there’s not a best answer

that fits everything, but it all depends on the kind of scenario the streaming

application wants to tackle. For instance, a multicast delivery of a stream to

Streaming as an application 6

multiple recipients as depicted in Figure 2.1a is a very efficient way to transfer

the same pieces of information from a single source to several destinations,

but has several constraints too: it requires support for a multicast network,

and does not allow for content adaptation or streaming on demand as the

stream is shared among all viewers. At the same time, unicast as depicted

in Figure 2.1b works perfectly when streaming from a single source to a

single destination, but proves more challenging when multiple destinations

need to be reached. Anyway, in recent evolutions of the network multicast-

based streaming has become a less and less widespread solution, usually

limited to LAN-based streaming. The reason for this is basically the above

mentioned limited availability of pure multicast networks, especially outside

the boundaries of private networks. As a consequence of this, all streaming

technologies, both proprietary and standard, make use of unicast streams to

implement streaming to both single and multiple recipients, employing the

required optimization steps at different levels.

A more distinctive difference in streaming application can be highlighted

at a different level. Specifically, one can identify two separate streaming

scenarios that, as a consequence, have completely different requirements and

constraints that different streaming technology usually handle accordingly:

(i) on-demand streams and (ii) live streams. A good overview on the typical

approaches used for video streaming is provided in [1], where the authors

analyze the common requirements in terms of video compression, Quality of

Service (QoS) control, media synchronization mechanisms and distribution.

When talking about on-demand streams, we usually envision pre-recorded

(and possibly pre-encoded) streams that viewers can request and watch on

their own and on their schedule. This is what popular services like YouTube,

Vimeo and others have been making available for some time already, and

what some TV channels like RAI, Mediaset, Sky and others have started to

provide as an additional service too, e.g., to allow viewers to re-watch a TV

show or an event that already occurred on TV. Since we’re talking about

pre-recorded streams that users ask for specifically, the streaming technolo-

Streaming as an application 7

(a) Multicast Streaming

(b) Unicast Streaming

Figure 2.1: Multicast vs. Unicast Streaming

Streaming as an application 8

gies suited to cover these scenarios are usually optimised for a personalised

delivery of those flows. Each viewer has their own streaming context, which

means it has complete control over the playout process, e.g., in terms of paus-

ing, resuming, rewinding the stream and so on. Besides, since the source is

pre-recorded, it is usually pre-encoded as well, in order to furtherly optimise

the delivery process: in fact, the streaming server is this way not required

to also encode the same stream over and over for all interested viewers, but

can just rely on an already encoded stream that only needs to be properly

packetised and transferred in an optimised way. Several different technolo-

gies have been implemented across the years to cover this scenario, and most

of them nowadays allow for a web-based access to such streams, whether us-

ing proprietary technology (Adobe Flash, Microsoft Silverlight) or standard

ones (Real Time Streaming Protocol, HTML5).

A completely different scenario is the one referring to live streams in-

stead. In this case, the source cannot possibly be pre-recorded, as the event

it is capturing is happening in that moment, which means that pre-encoding

the stream is not a viable solution for optimizing either. In fact, as depicted

in Figure 2.2, the approach is to usually have a live source of media, e.g., a

camera, capture a stream to have it encoded on the fly and restreamed by a

streaming server. Besides, a live stream imposes more constraints over the

level of control viewers can enforce on it: you definitely cannot fast-forward

a live event, for instance, and even pausing/resuming has less sense in such

a scenario. That said, live streams represent an application more and more

people are starting to get interested in for several different reasons. Whether

it’s about attending a live conference remotely or simply watching a football

match from the comfort of a couch, the ability to watch a live event us-

ing web technologies has become increasingly important and desirable. Just

as for the on-demand scenario, that are services that have focused on mak-

ing live streaming a working application, especially focusing on scalability

concerns to allow for more people to attend the same event. Specifically, sev-

eral efforts have been devoted across the years on standard and proprietary

Streaming as an application 9

Figure 2.2: Streaming live events: broadcaster and streaming server

Large-scale Streaming as a new use case 10

solutions to allow for such scenarios to take place in a web environment.

Such solutions include proprietary protocols like Adobe’s Real Time Messag-

ing Protocol (RTMP) [2] or Microsoft’s Silverlight [3], both of which require

specific plugins to work, and standard technologies like Dynamic Adaptive

Streaming over HTTP (DASH) [4].

That said, the above solutions, while more or less effective, all suffer from

the same issue: they tend to favor quality over delay, which means you’ll

usually get a good quality stream, but with a sometimes considerable delay,

ranging from 10 seconds to more than a minute. While this may not look

as a serious issue, its impact can be more than noticeable if we consider

some specific contexts. For instance, having a delay in getting a feed from a

webinar or conference may not be very important, but it would be if you’re

watching a live football game instead, especially if the pub down the road

is transmitting the same match on live TV and supporters there exult for a

goal you haven’t seen yet. Besides, a truly live feed allows for a much more

interactive fruition of the media: different users watching the same event may

interact with each other or even with the source of the media itself using out-

of-band mechanisms (e.g., instant messaging or a separate audio/video feed)

exactly while the event is happening, rather than contenting themselves of

commenting whatever happened minutes ago.

These and similar scenarios are among what motivated us in investigating

better solutions for live streaming, and in particular for streaming of events

with a potentially very large audience.

2.2 Large-scale Streaming as a new use case

As anticipated in the previous section, live streaming represents an open field

for research, especially as far as delay is concerned. This scenario becomes

even more relevant when considering a potentially very large audience, since

the amount of viewers for an event implicitly indicate the level of interest for

the event itself, and as a result their level of tolerance for an excessive delay

in the transmission.

Large-scale Streaming as a new use case 11

(a) TV feed

(b) YouTube stream

Figure 2.3: A very large scale event: Felix Baumgartner at the Red Bull Stratos

Large-scale Streaming as a new use case 12

Events like President Obama’s speech or the Superbowl, for instance,

are watched at the same time by millions of people at the same time, all

interested in what’s happening in that specific moment. The same can be said

about similar very popular events, like the famous 39 kilometers jump Felix

Baumgartner made in 2012 as part of a Red Bull Stratos event, a snapshot

of which is depicted in Figure 2.3. This event specifically had a very large

media coverage, and was transmitted live on both regular television and in

streaming, by means of the YouTube Live platform. The live stream, in

particular, which was followed by millions of viewers across the works, was of

very good quality and provided additional interactive pieces of information to

viewers, but also suffered from a considerabile delay, which was in the range

of 60-90 seconds. This means that whatever happened in real-time was only

perceived by streaming viewers more than a minute later, thus affecting in a

very noticeable way the emotional response.

As anticipated in the previous section, scenarios like these strongly moti-

vated us to look into better solutions, specifically targeted at large-scale live

events. Our feeling was that, while delay is in part hardly avoidable when it

comes to events with such a high requirement in scalability, it should not be

excessively sacrificed on the altar of quality, and that the two can proceed

hand-in-hand using specifically tailored architectural choices. In particular,

recent and innovative technologies like WebRTC [5] [6] allow for issues like

delay to be greatly reduced, thanks to protocols that are specifically con-

ceived for a live transmission, rather than adapting to unfit technologies like

HTTP for the purpose.

More precisely, starting from the previous considerations we decided to

work on a framework that woult take into account a set of specific require-

ments, that is:

• an architecture that had scalability in mind;

• compliance with the existing and new standards;

• support for dynamic “deployability”;

Streaming Of Large scale Events over Internet cLouds 13

• web-based access for end users.

The following section will introduce the architecture we conceived to cover

these requirements, called Streaming Of Large scale Events over Internet

cLouds (SOLEIL). More details about the WebRTC technology we based it

upon will instead be provided in Chapter 3.

2.3 Streaming Of Large scale Events over In-

ternet cLouds

In the previous sections we explained how the excessive delay introduced

by current technologies in live streaming greatly affects the expectations

viewers have of such applications. Besides, we hightlighted the requirements

we identified for a new architecture that could address the target scenario

in a scalable and standard way. This motivated us to look into solutions

more apt to the purpose, and eventually lead to the design of a completely

new architecture called Streaming Of Large scale Events over Internet cLouds

(SOLEIL).

The first assumption we started from is that all current web-based stream-

ing technologies are using, in our opinion, the wrong foundation: that is,

considering the constraints typically imposed by what’s made available by

browsers (the main target for implementing viewer applications nowadays),

all of these solutions either recur to ad-hoc plugins with proprietary proto-

cols for the purpose, or fall back to unfit protocols like HTTP for transferring

the media. Both of these approaches, while functional, have several issues

caused by the fact they’re based on reliable protocols originally conceived for

completely different purposes. For instance, while HTTP is an excellent gen-

eral purpose protocol for transferring more or less static information between

a client and a server, it definitely falls short as soon as it is involved in the

streaming of information that needs to be as timely as possible, due to the

overhead it imposes and it being based on the Transmission Control Protocol

(TCP) for reliability. While optimizations like chunked-based transfer help

Streaming Of Large scale Events over Internet cLouds 14

Figure 2.4: SOLEIL architecture: a tree topology

in coping with some of these issues, they do not manage to solve the issue

at its core, that is the protocol is unsuited for the purpose when actual live

streaming is required. Similar issues affect plugin-based solutions as well:

while forcing a user to make use of a proprietary plugin for an application is

already a wrong approach for several reasons (including strict dependencies

on the operating system), such solutions typically try to make use of reliable

protocols as well, since they’re conceived to work in pretty much the same

setups where regular web-based communications work.

For these reasons, the first step we made in conceiving our architecture

was to employ a different technology as the foundation for the streaming

part. One of the requirements identified at the beginning was standards

compliance, which is why we eventually decided to make use of the standard

Real-Time Transport Protocol (RTP) [7] for the purpose. Such a protocol

has been used for years within the context of standards-based Voice over

Streaming Of Large scale Events over Internet cLouds 15

IP (VoIP) technologies, and was the foundation of the legacy Real Time

Streaming Protocol (RTSP) [8] as well. Besides, it currently is the foundation

of the new WebRTC standard technology as well, which allowed us to cover

another of the key requirements, that is a web-based access to the platform

that would make it easier for end users to use it. All this convinced us that

RTP would be the perfect candidate for the purpose: in fact, since it was

conceived to allow for real-time communications among two or more peers, it

would definitely be suited for monodirectional live delivery of streams as well,

with the minimum possible impact on latency and as such delay. Besides,

RTP is by definition coupled with the Real-Time Transport Control Protocol

(RTCP), which is a very effective tool for the monitoring and management

of the status of the multimedia delivery. This provided us with an excellent

means for gathering statistics on the transmission at different levels and, as it

will be explained in the following chapters, also for implementing pro-active

feedback to increase the overall quality of experience.

From this first step, we eventually had to focus on the most suited model

for employing this protocol in the delivery from a single source to a vast

audience of destinations, especially considering the large-scale target we con-

ceived for the platform. After reasoning on this a bit, we decided to partly

re-use some approaches that are well known in literature, even though not

necessarily within the same field. Specifically, since one important require-

ment for the architecture was a way to scale the platform, we decided to

envisage a tree-based topology to increase the scalability of the framework.

A similar topology was for instance introduced in [9], where the authors en-

visaged an architecture to overcome the limiting factor for large-scale media

streaming services based on Source-Specific Multicast (SSM), that is the ex-

cessive RTCP bandwidth being shared among all the receivers.

Unlike the mentioned effort, we conceived a tree-based topology where

each node could have different roles: (i) a root, that is the root of the tree that

originates the stream itself; (ii) several relay nodes at different levels, whose

main purpose is to make the stream they receive available at several different

Streaming Of Large scale Events over Internet cLouds 16

nodes at the same time; (iii) leaf nodes, who are responsible for making

the stream available to the actual viewers. A high level perspective on the

proposed tree topology is depicted in Figure 2.4. Such a tree-based topology,

with nodes that could be added and removed dynamically in order to properly

scale the platform, also allowed us to address the final requirement that we

identified, that is some kind of dynamic “deployability” of the platform.

Apart from this tree topology, which is responsible for the actual deliv-

ery of the media, we can actually envisage an additional logical component,

the so-called master node. This component is responsible for the dynamic

organization of the tree, e.g., to allocate new relay nodes when needed, or

to discipline the injection of a new media flow. It is important to point out

that, due to the nature of such a component, it might or might not be colo-

cated with the root, and might besides be physically partitioned in different

machines in order to have it scale properly in an orthogonal way with respect

to the SOLEIL media distribution network itself.

2.3.1 The root node

As to the root, it’s important to point out that this does not necessarily have

to be the actual source of the multimedia streaming. This is just the root of

the tree, and as such is the node that is either actually originating or just re-

ceiving the live stream that needs to be made available to the audience. As

such, this root constitutes the first point of access to the SOLEIL architec-

ture, and is responsible for starting the delivery of the stream by injecting it

in the first level of relay nodes. This role is depicted in Figure 2.5, in which

an external device, e.g., a camera or a laptop, is capturing and encoding a

stream; this stream is then injected in the SOLEIL infrastructure through

the root node, which takes care of relaying it to the lower branches of the

tree as configured.

Another important aspect to clarify is that a stream will only be injected

once, no matter how many viewers will eventually be attached to it: in fact,

since the source is the same and shared for everyone, the relevant nodes only

Streaming Of Large scale Events over Internet cLouds 17

Figure 2.5: SOLEIL architecture: the root/broadcaster

need to have access to the stream once, in order to be able to properly make

it available to all interested viewers. This allows for a much more optimised

delivery of the streams, using a pseudo-multicast distribution.

We envisaged this approach as some kind of “waterfall” controlled by

“valves”: the “waterfall” source starts at the root and, assuming “valves”

are open at some of the children nodes, as a spring it flows through those as

well, down to the point where one of the “valves” is closed or eventually to

endpoints.

2.3.2 The relay node

The relay nodes, instead, as their name suggests are only meant to relay

the media they receive from their parent node (be it the root or another

relay node) to all their children nodes (which may be another level of relay

nodes or leaf nodes, if the end of the tree has been reached). Their main

purpose is to effectively increase the width of the tree and, as a result, the

very scalability of the stream. In fact, considering each node has limits in

terms of how many destinations it can serve, by adding further levels of relay

nodes you’re actually increasing the number of viewers that can be reached at

the same time, by relying on their additional potential basin of destinations.

Of course, each level of relay nodes adds a small amount of latency to the

distribution, which means this approach should not be taken lightly and

should be properly weighted instead. Figure 2.6 depicts a simplified zoomed

Streaming Of Large scale Events over Internet cLouds 18

Figure 2.6: SOLEIL architecture: the relays

view on the relay node components in the SOLEIL architecture: as the figure

illustrates, the stream coming from the parent (be it another relay node at

an upper level or the root itself) is relayed at the lower levels to other nodes

that are part of the architecture.

An important aspect to consider is that, considering the “waterfall” and

“valves” approach described before, a relay node is only going to relay a

stream if any of its children (be it a relay or leaf node) is interested in

receiving it, that is if there’s any viewer attached to that subtree that is going

to need that stream. This allows for a much more lightweight approach for

what concerns the distribution of the flows, as streams will only be transferred

where they’re needed; besides, this also allows for further optimizations that

may be enforced on the topology, e.g., to aggregate viewers of the same kind

in the same subtree in order not to waste bandwidth. Just as the root, a relay

node only transmits the same stream once per children, no matter how many

recipients are meant to receive it beyond that level. Considering the usage of

RTP for the actual relaying of media streams across node levels, relay nodes

are finally also responsible for gathering hop-by-hop statistics using RTCP,

in order to identify potential issues in the distribution tree at either a local

or more global scale.

These and other aspects will be described in better detail in Section 2.5,

which will introduce the different responsibilities a relay node will have.

Streaming Of Large scale Events over Internet cLouds 19

Figure 2.7: SOLEIL architecture: the leaves

2.3.3 The leaf node

Finally, at the edge of the tree there are the so-called leaf nodes. These nodes

differ from the generic relay nodes in the sense that, while relay nodes simply

relay media to other nodes of the same kind while monitoring statistics along

the way, leaf nodes are instead responsible for making the feeds available to

the actual viewers, and as such using a different technology. In fact, while

the streams are internally relayed using plain RTP/RTCP, the viewers will

need to receive those in another format, especially if they’re supposed to be

able to display them using a regular web browser. Figure 2.7 depicts the

different nature of a leaf node when compared to the responsibilities of a

generic relay node. Specifically, while relay nodes, colored in blue, take care

of relaying the stream originated by the broadcaster using RTP/RTCP, the

leaf nodes, colored in green, have to employ a different technology to reach

their viewers (depicted as generic laptops or computers in the picture, but

those could be heterogeneous devices like smart TVs, phones or tablets as

well), which explains why the related arrows have a different width.

As anticipated before, the technology we identified for the purpose is the

recent standard called WebRTC, which was partly based on legacy VoIP

protocols, properly extended in order to account for the additional require-

ments in terms of effective connectivity establishment, security and privacy.

Considering this peculiar role for leaf nodes, they constitute what may be

Managing the tree: the SOLEIL protocol 20

considered as the SOLEIL “last mile”, as, no matter what happened up to

that point, this is where viewers will physically attach and whence they’ll ex-

pect to receive the actual streams from. This “last mile” will be addressed in

the Section 2.6 more in detail, and will be the main subject of this doctoral

thesis due to its specific requirements and challenges.

2.3.4 The master node

When first introducing the SOLEIL architecture, we mentioned an additional

component that, while not directly involved in the media delivery and as

such not part of the tree topology that takes care of the flows distribution, is

indeed a very important piece of the framework. This component, called the

master node, is indeed what might be better described as the manager or

handler of the SOLEIL distribution architecture. More specifically, it’s the

component responsible for the dynamic management of the tree and possible

recovery actions.

Section 2.4 will introduce the SOLEIL protocol and how it can be used to

dynamically add and remove nodes and flows. For what concerns recovery,

instead, the mechanisms used in SOLEIL for the purpose will be addressed

in Section 2.5.

2.4 Managing the tree: the SOLEIL protocol

One of the requirements we identified when first conceiving the SOLEIL ar-

chitecture was some way to dynamically deploy the components involved in

the process. Considering the tree based topology and the roles identified

within the architecture, this mainly referred to the possibility of dynamically

adding and removing relay and leaf nodes, by starting ad-hoc machine on

the fly for the purpose if needed, and handling subscriptions to the available

streams. This was an important aspect to take into account as, while a scal-

able architecture clearly demands an on-demand availability of new resources

when required, an over-provisioning with more resources than are actually

Managing the tree: the SOLEIL protocol 21

needed for a flow can be problematic as well. For this reason, we conceived a

simple protocol that would allow us to programmatically allocate resources

and update the tree nodes accordingly, in function of incoming requests for a

flow or to react to events on the SOLEIL network. Considering the focus of

this doctoral thesis was not on the architectural aspects of the framework, we

won’t delve into the details of this protocol, that was implemented as a eX-

tensible Markup Language (XML) based one. We will, though, address some

common use cases we wanted to tackle, and the way the SOLEIL protocol

was conceived to handle them.

The main use cases we wanted to address were two: (i) how a device

capturing a stream could inject the flow in SOLEIL, and (ii) how another

node in the SOLEIL network or a viewer could make sure this could be

received. These two use cases have slightly different requirements. The

former, which is addressed in Section 2.4.1, can mostly be seen as a discovery

process: the broadcaster needs a reference root node to send the media frames

to. On the other hand, the latter, described in Section 2.4.2, could be seen

as some form or “reservation”: a node or viewer needs a reference “father”

to get the stream, and in case this node is not receiving the stream as part of

the “waterfall” approach we conceived in SOLEIL, the parent nodes need to

be informed in order to turn the “valves” in the relay nodes and make this

stream available.

2.4.1 Injecting new flows in SOLEIL

Figure 2.8 sketches the way the first use case is handled within the SOLEIL

protocol. More specifically, the figure depicts three different parties in the

communication: (i) a device capturing some media that need to be broadcast,

pictured as a camera; (ii) a master node that the device refers to in order

to get information, depicted in the blue box on the right; (iii) a root node

that can inject flows in the SOLEIL distribution network, sketched as in

Figure 2.5. In this figure, the device is interested in broadcasting the stream

it is capturing. In order to so so, it contacts (1.) the master node, by means

Managing the tree: the SOLEIL protocol 22

Figure 2.8: SOLEIL protocol: injecting a new flow

of an HTTP request, to get the address of a node it can send this stream to.

The master node handles the request and, according to the parameters that

were passed, chooses a root node among the available ones, or spawns a new

instance just for the purpose. The chosen root node is then contacted by the

master node (2.) in order to allocate the required resources: in particular, the

root node starts listening on a couple of ports to receive the RTP stream and

exchange RTCP messages. Once done, a response (3.) is sent to the master

node, which realises the allocation has been successful. At this point, it can

provide the broadcasting device with the final info it requested (4.), including

the network addresses needed to establish the multimedia connectivity. At

this stage, the broadcasting device has all the information it needs to send

the flow as an RTP stream to the chosen root node and to exchange RTCP

feedback and statistics with it, confident that from that moment on the flow

will be injected in the SOLEIL framework and potentially be available to as

many viewers will be interested in it.

As it can be seen in the figure, the communication between device and

master node, and between master and root nodes, are sketched in different

colors. This is done on purpose as, while both steps are actually based on a

Managing the tree: the SOLEIL protocol 23

Figure 2.9: SOLEIL protocol: subscription of a viewer

usage of the SOLEIL protocol, the related semantics and transport protocol

are different. In fact, the device is expected in most cases to be a web-

based component: as such, it makes sense for it to use (1. and 4.) HTTP

or WebSockets as a transport for its requests. On the other hand, the two

inner nodes communicate using a different, still reliable, protocol: this is the

XML-based SOLEIL protocol that was introduced in this section.

2.4.2 Handling new subscriptions

The second case introduced before, instead, is sketched in Figure 2.9. In

this use case, we assume that a flow is already being injected in a SOLEIL

network through a root node, e.g., after a sequence like the one described

above. At this point, a new user decides to watch this stream. The master,

just as before, must choose a node to provide the user with in order to

allow it to receive the stream. In case a leaf node suited for the purpose

is already available (e.g., one that is already receiving the stream and that

is not overloaded) its address can be returned right away. For the sake of

this example, though, we assume that the master node doesn’t have any

candidate available, e.g., because all nodes have too many viewers already or

because none of the available ones is receiving that specific stream as of yet.

Within SOLEIL: relaying the media 24

In order to do so, the master node may decide to spawn some relay and/or

leaf node instances on the fly. What’s important to highlight is that the

request by the user (1.) is in this case handled by the master by contacting

a leaf node (2.) in order to make sure it subscribes to the requested stream

on behalf of the user. As anticipated in the previous section, this is only

needed the first time a viewer shows interest for a specific stream, as after

that the stream becomes available for all viewers that may follow. Since in

this example the chosen leaf node is not receiving the requested stream, it

forwards the same request to its parent, that is the relay node it is going

to receive the media from. This may proceed up some more levels, until the

request reaches a relay node that is already receiving the stream: for the sake

of simplicity, we left out the rest of the tree topology that may be in place,

and just focused on these last nodes. Once done that, the “valves” are open

and the involved nodes can establish the required hop-by-hop RTP/RTCP

trunks (4. and 5.) needed to forward the media and exchange statistics,

which eventually results in the flow being made available to the reference

leaf node.

As in the previous example, different protocols are involved in this se-

quence. Again, the SOLEIL components interact with each other by means

of the custom SOLEIL protocol we devised for the purpose. The user in-

terested in watching the stream, instead, resorts to different technologies for

requesting access to the media, e.g., HTTP or WebSockets. More details on

this interactions with end users will be sketched in Section 2.6.

2.5 Within SOLEIL: relaying the media

As introduced in Section 2.3.2, relay nodes play an important role within the

SOLEIL architecture. It is their responsibility, in fact, to make sure a stream

injected at a root node is made available at the lower levels, and down to

the leaf nodes which will eventually provide the wide audience of end-users

with the stream itself. While it’s true that the main purpose of these relay

nodes is to widen the width of the tree and increase scalability by simply

Within SOLEIL: relaying the media 25

relaying media hop-by-hop across the levels, though, that’s not their only

responsibility.

It is important to recall, in fact, that the multimedia flows being for-

warded by means of RTP can be associated with a control channel by means

of RTCP. This protocol provides invaluable information associated with the

media delivery, specifically with respect to statistics related to the effective-

ness of the transmission, packet loss, jitter and so on. Considering that all

the connections relay nodes establish are hop-by-hop, so that they receive a

flow from their father and then forward it to their children, the availability

of such a control channel becomes of paramount importance in order to eval-

uate the performance of each hop, and possibly intervene in case a broken

or faulty media leg is affecting the performance of the platform as a whole.

In fact, such information may even be forwarded, along or using out-of-band

mechanisms, to the other nodes of the architecture, in order to isolate issues

and allow for a dynamic recovery.

That said, when envisaging a topology with several different relay nodes

communicating with each other, a blind forwarding of such feedback and

statistics messages can be counterproductive, due to the potential waste of

bandwidth and resources that may result from the increasing RTCP traffic.

Besides, RTCP statistics mostly make sense only on the leg they refer to,

and so would be useless on other hops if not to make other nodes aware of

an ongoing issue. As such, we decided to involve, as part of the relay nodes

logic, some form of aggregation of these statistics. This would allow all nodes

to still be aware of potential issues in other areas of the SOLEIL network,

but by means of synthetic information: drill-down information would still be

available by interrogating the affected nodes directly.

The way we designed this was by intercepting the so-called Receiver Re-

ports (RR) in the RTCP messaging. These messages, as specified in [7], allow

a media recipient to provide the media source with information related to

the reception of the multimedia flows, including packet loss, jitter, delay and

others. This means that a node relay can, this way, inform its father of po-

At the edge of the topology: the “last mile” 26

tential issues with the reception of a specific flow. Since each relay node is

both a child of a father node, and in turn father of other children nodes,

such information can then be associated to feedback coming from adiacent

nodes, and more in particular by the creation of aggregated statistics that

take into account a weighted average over the node’s descendants. Finally,

these aggregated statistics can be sent through the SOLEIL protocol to a

separate component, e.g., a round-robin database to only store values for a

well-defined period of time, that can be assigned the task of evaluating them

and, in case, react accordingly. This database can then in turn be exploited

by the master node in order to assess whether or not any recovery action is

needed.

2.6 At the edge of the topology: the “last

mile”

The previous sections introduced the SOLEIL architecture and the several

different roles that can be envisaged within its framework. Specifically, a key

role is placed in the hands of the so-called leaf nodes of the tree, which on

one side are responsible for receiving the streams to broadcast from the upper

levels and layers (the relay nodes) and on the other have to take into account

the different technology required to actually distribute the streams in a way

the end-users will be able to exploit. For this reason, this last level of the

distribution tree can be seen as the “last mile” of the SOLEIL architecture,

with very specific targets and requirements that substantially differ from

what is needed within the SOLEIL distribution network. As anticipated in

this chapter, this is what I focused my doctoral activity upon, as the dynamic

deployability of the architecture has been the target of my colleague Tobia

Castaldi.

Considering the two different technologies employed at the two sides of a

leaf node, the first requirement that can be identified is the ability to act as a

gateway : in fact, on one side (the SOLEIL one) the node will need to be able

At the edge of the topology: the “last mile” 27

Figure 2.10: SOLEIL architecture: the “last mile”

to interact using plain RTP/RTCP and, more in general, the semantics ex-

pected of relay nodes; on the other side, instead, this node needs to be able

to interact with viewers using the web technologies they’ll have available.

As anticipated, we identified as a key technology for the purpose the We-

bRTC standard, which, although still under definition, is already in a more

than usable state and currently exploited in several commercial frameworks

and applications. The WebRTC suite, which will be described in detail in

Chapter 3, allows for the setup of secure real-time multimedia channels in a

dynamic way among two peers: this means that a leaf node will need to be

able to act as one of these peers, in order to negotiate and establish a com-

munication channel with interested viewers, make sure connectivity can be

established in a reliable way, take care of the creation of a secure channel

and, last but not least, feed the viewer with the streams they’re interested

in in a timely way, by properly “translating” from the technology employed

on the SOLEIL side, if needed.

As it will be explained in further detail in the following chapters, WebRTC

does make use of an extended set of the RTP/RTCP suite, which means that

in part the translation process from the SOLEIL side is indeed made easier

and more lightweight. That said, not everything is that easy, and Chapter 3

will idenfity the key issues we had to face with respect to the WebRTC suite.

Figure 2.10 presents a zoomed-in overview of a single leaf node within a

SOLEIL architecture, which in turn highlights the role of the translator such

a node needs to employ and its requirement to implement a final distribu-

tion tree for the interested viewers. Specifically, a stream is receiced by the

SOLEIL infrastructure: in order to make this stream available to a viewer,

At the edge of the topology: the “last mile” 28

an ad-hoc communication channel needs to be established through a network

that may make this hard to accomplish (e.g., in the presence of Network Ad-

dress Translators or Firewalls), and specific protocols need to be involved in

order to setup and properly mantain the channel and the transmission.

Chapter 3

WebRTC media components

What is commonly called “WebRTC” is actually the joint effort of two of

the largest standardisation bodies of the Internet ecosystem: the Real-time

Communication Between Browsers (WebRTC) [5] in the World Wide Web

Consortium (W3C), and the Real-Time Communication in WEB-browsers

(RTCWEB) [6] within the Internet Engineering Task Force (IETF). These

two standardisation bodies, which have worked so far on pretty much ev-

ery standard technology that is currently used on the Internet, are working

together on separate aspects of “WebRTC”. Specifically, while the W3C is

working on aspects related to the presentation and application sides of the

technology (multimedia tracks, JavaScript APIs, hooks in the browsers, etc.),

the IETF is instead responsible for everything that goes on the wire (proto-

cols, signalling and negotiation, security, etc.). The technology as a whole

and the related suite is what is synthetically WebRTC.

The main purpose of the standardisation efforts was to design a standard

suite of protocols and APIs to allow for the realization of real-time multime-

dia scenarios within the context of web browsers, and without any need for

proprietary or ad-hoc plugins. This included a programmatic and secure ac-

cess to media devices (microphones, webcams, screens, etc.) that could be

used for establishing a peer-to-peer communication among parties interested

in interacting with each other. In order to do so, the W3C and IETF have

agreed that a partial re-use of the legacy standard Voice over IP infrastruc-

The WebRTC Protocol Suite 30

ture would be beneficial, especially considering the ongoing efforts that are

still taking place in that respect in the IETF. Specifically, it was agreed that

the foundation for the multimedia delivery would be the Real-Time Trans-

port Protocol (RTP) [7] in its Secure version (SRTP) [10]. To take into

account the several different requirements in terms of quality of experience,

security, privacy and effective connectivity establishment, several extensions

have been proposed among pre-existing solutions and new efforts. Most of

these requirements, which are specified together with typical use cases in

an ad-hoc standard document [11], the related proposed extensions will be

introduced in the next sections.

Considering the network-oriented nature of this doctoral thesis, more rel-

evance will be given to the efforts devoted by the IETF on this, especially

considering my involvement as an active contributor at the IETF in several

Working Groups.

3.1 The WebRTC Protocol Suite

Several different requirements were identified when working on a first draft

of the specification. Specifically, several different aspects were considered,

namely:

• Signalling and Negotiation;

• Connection Establishment and NAT Traversal;

• Media Transport and Control;

• Quality codecs;

and so on. Most of the above mentioned challenges are typical of any

VoIP infrastructure. Signalling, for instance, allows peers to indicate their

willingness to setup a media communication with someone else, while the ne-

gotiation process allows them to agree on a shared set of features to actually

setup the communication channel (e.g., codecs to be used, network-related

The WebRTC Protocol Suite 31

information, etc.). At the same time, once negotiated the communication

channel needs to be physically established: this can at times be a trou-

blesome process, especially whenever Network Address Translators (NAT),

Firewalls or other network filters are in the path between the two parties,

although we’ll see there are standard approaches that can help cope with

those. Once a communication channel is ready, there needs to be an effec-

tive and secure/private way to transfer media packets in a timely way: this

is what the media transport requirement is for. Besides, since the transport

used will be unreliable to minimise the impact of latency and congestion over

the communication, there also needs to be some way to control the delivery,

in terms of both statistics and pro-active feedback the peers can make use

of to evaluate the quality of the transmission. Finally, these media packets

need to be encoded someway, possibly using codecs that have been specifi-

cally conceived for a usage in the Internet, and as such account for a dynamic

management of the available bandwidth.

As anticipated, most of the above mentioned requirements are normally

part of any VoIP specification, be it proprietary or not. From a standardis-

ation point of view, a lot of efforts have been devoted to such issues within

the Real-Time Applications and Infrastructures (RAI) area in the IETF.

This is where, for instance, the Session Initiation Protocol (SIP) [12] pro-

tocol was born, and where all the related specifications including the above

mentioned RTP/RTCP came from. In order to re-use part of these efforts,

the RTCWEB Working Group decided to base the WebRTC specification on

top of some of them, in order to have a valid foundation they could expand

as needed.

The following subsections will go through all of the mentioned require-

ments and how they were addressed from a standardisation/specification

point of view, highlighting the related challenges when it comes to actu-

ally try and implement them within a WebRTC compliant implementation,

which as discussed was the main target of the “last mile” of the SOLEIL

infrastructure.

Signalling and Negotiation 32

3.2 Signalling and Negotiation

As anticipated, among the main operations a technology like WebRTC has

to take into account are signalling and negotiation. While the former, as the

name suggests, basically “signals” the intention by one of the involved peers

to initiate a multimedia communication with somebody else, the latter takes

care of allowing the involved parties to agree on whatever is needed to get

the multimedia connection to work.

Within the IETF, there are two protocols that have been defined with ex-

actly those target in mind: the Session Initiation Protocol (SIP) [12] handles

the signalling requirement, while the Session Description Protocol (SDP) [13]

takes care of the negotiation process. The two protocols, while independent

of each other, are nonetheless quite intertwined when used within the context

of standard VoIP. Specifically, whenever a multimedia session needs to be es-

tablished after a SIP session has started, SDP payloads are exchanged within

the context of SIP messaging. This usually happens within the framework

of the so-called “three-way handshake” that is part of the SIP/SDP specifi-

cation: in its simplest form, a user initiates a SIP session by sending a SIP

INVITE to a different user, and attaches an SDP payload to provide its own

part of the negotiation; the user receives the SIP INVITE, and decides to

accept the setup of the session by replying with a SIP 200 OK and provid-

ing its own SDP payload; the SDP payloads are then matched by the two

users as part of what is called the “offer/answer” pattern, in order to allow

both users to make sure there is a shared set of codecs that can be used,

that both parties can actually establish a network communication with each

other, and so on. This eventually leads to the setup of a multimedia chan-

nel that the involved parties can use to exchange media packets with each

other. Such an approach is depicted in Figure 3.1. For the sake of simplic-

ity, the typical SIP trapezoid is omitted, which means the caller and callee

are assumed to be in direct contact with each other: in a more general sce-

nario, each user would refer to its own SIP proxy, and their respective proxies

would relay the messages among each other while keeping the media trans-

Signalling and Negotiation 33

Figure 3.1: SIP call flow diagram

Signalling and Negotiation 34

fer peer-to-peer. As the figure suggests, the caller, Alice, decides to start a

multimedia session with Bob, the callee. To do so, she makes use of a SIP

INVITE message, which is the method defined in the SIP signalling to orig-

inate a session. This eventually results in Bob accepting the call by means

of a SIP 200 OK message, and to a media channel being established between

the two. Eventually, Bob decides to hangup the communication, and makes

use of the related method made available by the signalling protocol, that is

a SIP BYE request.

3.2.1 Session Description Protocol (SDP)

The steps analyzed in the previous section describe a quite standard be-

haviour, and more or less all VoIP technologies, standard or not, follow a

similar approach. WebRTC does not make a difference, here, and in fact, in

the early stages of the standardisation process, it was decided to keep on re-

lying on SDP as the foundation for the negotiation part. As to signalling, in-

stead, a different approach was chosen. Specifically, while choosing SIP could

have seemed a no-brainer solution, considering how widespread it is and how

it would have allowed for an easier backwards compatibility management, it

was eventually decided not to mandate it or, actually, any specific signalling

protocol whatsover. In fact, while initially some WebRTC authors tried to

specify a very simple JSON-based protocol called RTCWeb Offer/Answer

Protocol (ROAP) [14] for the purpose, and others tried to foster the adop-

tion of an existing protocol like SIP instead, it soon became clear that the

adoption of a specific signalling protocol would have been quite limiting to

WebRTC. The reason for this was a desire not to put excessive contraints on

what had been conceived since the beginning as a web technology and, as

such, inherently dynamic and flexible enough to cover heterogeneous scenar-

ios: in fact, while SIP is quite effective for VoIP-based scenarios, it has some

issues whenever more innovative scenarios need to be tackled, something that

WebRTC advocates had in mind since day one. Since other protocols like

Jingle, the Inter Asterisk eXchange (IAX), H.323, etc., or ROAP itself, all

Signalling and Negotiation 35

Figure 3.2: The WebRTC trapezoid/triangle: no specific signalling

had pros and cons, it was eventually decided to keep the WebRTC specifi-

cation completely agnostic with respect to signalling, leaving the choice for

a signalling protocol to use to web developers, and only mandate a common

protocol for negotiating instead, that is SDP.

3.2.2 Javascript Session Establishment Protocol (JSEP)

That said, some form of signalling is still required, which means that it’s

up to the web application to take that requirement into account, e.g., to

exploit existing signalling protocols for the purpose or to design new ones.

One way or the other, signalling will always travel across one or more web

servers in order to allow two or more parties to setup a WebRTC connec-

tion: this means that WebRTC is still based on one of the base concepts

of the SIP specification, that is the so-called trapezoid. Figure 3.2 depicts a

WebRTC trapezoid where the servers involved for the communication setup

Signalling and Negotiation 36

Figure 3.3: JSEP: peer state transitions

are actually colocated, which means the trapezoid becomes a triangle. Both

parties who want to communicate refer to the same web server (e.g., the

one hosting the WebRTC application), and it’s through that web server that

the signalling, whatever protocol is exploited, will be exchanged. What’s

important to point out is that SDP payloads will be used to negotiate the

WebRTC media channel, which will eventually result, as it will be clearer in

the next sections, in a peer-to-peer multimedia connection, meaning that the

web server which facilitated the signalling and negotiation process will not

be involved anymore.

Of course, in order to allow web developers to implement their own pre-

ferred approach to signalling on top of SDP, it soon became clear that some

standardised way to keep the state would have been needed, and the choice

Signalling and Negotiation 37

came to rely on a standardised JavaScript API for the purpose. The main

debates over this API revolved around the level of depth it should provide:

specifically, whether or not this should be a complex, low-level API allow-

ing web developers to go very deep in the setup and management of media

communications, or whether it should be a much simpler high-level API in-

stead, with basic hooks and wrappers that would masque the complexities of

the media management. While the former was clearly advocated by develop-

ers and researchers with a pre-existing background in VoIP and multimedia

applications, the latter was fostered by the web world instead, which didn’t

have the same familiarity with such a complex ecosystem. In order to keep

both sides happy, the decision was to eventually design a middle-ground API,

something that could be simple enough to use, while at the same time still

be able to allow for more complex scenarios to be covered. Such an API was

called Javascript Session Establishment Protocol (JSEP) [15], although it is

not a real protocol but, as anticipated, just a standardised mechanism for

keeping and managing the signalling state.

JSEP was specifically conceived to allow web developers to create and

manage local and remote SDP payloads, in order to allow for an automated

creation and management of the so-called PeerConnections, that is the ab-

stractions of the multimedia channels that take care of the media transfer.

Since JSEP works on top of SDP, it is very easy to make use of it as the

foundation for any kind of signalling protocol, which means it can be used

in conjunction with existing protocols like SIP, ROAP, Jingle and others, or

new proprietary protocols developed just for the purpose. In case the sig-

nalling protocol does not make use of SDP directly, it is up to the developer

to take care of the required translation to and from SDP in order to comply

with JSEP.

Figure 3.3 describes what the states JSEP handles could be and how they

could transition from one to another according to the events occurring over

the state machine. For instance, a new PeerConnection may be handed a

local SDP, representing the user’s side of the negotiation, and transition to a

Connection Establishment and NAT/Firewall Traversal 38

Figure 3.4: Network Address Translators

state that is expecting the remote SDP to be available as well. As soon as it

is and it is passed to the stack, the state machine can transition to a different

state, e.g., active in case everything was properly set up and it’s time to try

and actually establish a communication channel.

3.3 Connection Establishment and NAT/Firewall

Traversal

Section 3.2.1 described how the signalling and negotiation requirements were

addressed, partially or not, within the WebRTC specification. As antici-

pated, though, these steps only refer to the preliminary setup of a multime-

dia session: specifically, they allow two or more parties to decide to start

a multimedia communication with each other, and provides them with the

means to come to an agreement about how this communication should take

place.

A very important step, though, is actually establishing such a media com-

munication. While this step may be given for granted, as it is often assumed

that two endpoints in the Internet should be able to always be able to in-

Connection Establishment and NAT/Firewall Traversal 39

teract with each other somehow, this is often not that easy, as there can be

several components across a network that may make this step much harder

to accomplish. It is the case, for instance, of Network Address Translators

(NAT) [16] or Firewalls, network components that, willingly or not, can inter-

fere with the normal means for communicating and, in some circumstances,

even prevent such a communication entirely. NATs in particular, although

they don’t filter any packet and as such should in principle not be an ob-

stacle to communication, can actually be troublesome whenever multimedia

interactions are involved. In fact, their purpose is to allow a series of ma-

chines on a private network to all share the same public address: an example

of this is depicted in Figure 3.4, where machines in the Internet can actually

interact with different machines in a private network through a NAT. In or-

der to do so, a NAT has to translate the addresses for every incoming and

outgoing request, so that to make sure, for instance, that a response to a re-

quest originated by a specific machine in the private network can reach the

exact destination although the same public address is used.

While this normally works fine in normal web-based interactions, it is

particularly problematic within the context of multimedia communications,

which are dynamic by nature and as such cannot be easily provisioned by a

network administrator. Specifically, the approaches described in Section 3.2.1

often refer, within the context of the respective protocols, to IP addresses

and ports that may only be valid in a private network, and mean nothing

outside of the context of those “walled gardens”. This would result in broken

information made available to the involved parties, as either peer in the com-

munication may be provided with addresses to set up a communication that

would actually not be reachable at all, e.g., because they’re private addresses

of a LAN or because a restrictive firewall is filtering the communication.

Besides, there are actually different type of NATs deployed in the net-

work, each of which can have a slightly different behaviour when it comes to

translate addresses, and which can result in different problems that need dif-

ferent care. Figure 3.5 highlights the different type of NATs that could be

Connection Establishment and NAT/Firewall Traversal 40

(a) Full Cone NAT

(b) Restricted Cone NAT

(c) Port-Restricted Cone NAT

(d) Symmetric NAT

Figure 3.5: Different type of NATs

Connection Establishment and NAT/Firewall Traversal 41

Figure 3.6: Session Traversal Utilities for NAT (STUN)

deployed in a network, from the least problematic one, the Full Cone NAT,

to the most troublesome of them all, the Symmetric NAT. This is not a new

issue within the context of multimedia communications, and the IETF itself

has for a long time worked on solutions for these problems. In particular,

a suite of protocols have been designed to address these and other issues in

an incremental way, in order to maximise the chances of eventually getting

a working communication channel.

3.3.1 Session Traversal Utilities for NAT (STUN)

The first attempt to solve the issue of NATs in real-time communications was

a protocol called Session Traversal Utilities for NAT (STUN) [17], which was

designed exactly to tackle this kind of scenario. Specifically, as depicted in

Figure 3.6, this protocol allows a user to get information about what address

is seen outside of the context of a LAN: this information can then be involved

within the signalling and negotiation mechanism in order to provide the peers

with correct and usable information.

This protocol works under a simple assumption. All NATs implement a

mapping for outgoing requests, which means that, for a request originated

from a specific private address and port, the NAT will map the address to

another address in the NAT public interface before relaying the request to

the actual recipient. This is needed in order to allow the recipient to reply

to the actual sender: in fact, all the recipient will see is a public address, the

one of the NAT mapped, and has no information about the sender actually

Connection Establishment and NAT/Firewall Traversal 42

being in a private network, just as it has no access to the private address

the sender has, which would have no meaning outside the boundaries of

the private network itself. Since the NAT mapped the two addresses, the

recipient can then simply send a response or a new request to the original

sender by sending it to the public address it received the first message from.

It will be the NAT’s responsibility, then, to inspect its mapping table, and

forward the request to the correct machine in the private network, at the

right private address and port.

This means that, if a user willing to setup a multimedia session wants to

be reachable at a specific private address, it needs to know what mapping

the NAT will create for it. To do so, it can ask an external component what

the public address that has been assigned is: this means that all the user

has to do is to send a request from a specific private address to the external

component, in this case the STUN server. The NAT will receive the request,

create a mapping, and forward the request to the STUN server. The STUN

server, in turn, will see a request coming from a public address, the one the

NAT mapped, and will inform the user in a response about it. This way,

the user will be able to update all the required connectivity information in

both the negotiation and, if needed, signalling protocols in order to allow the

other party in the communication that will need to be established to know

how to reach it. This kind of approach works fine in almost all the NAT

topologies, and more precisely in the presence of Full Cone NATs, Restricted

Cone NATs and Port-Restricted Cone NATs.

3.3.2 Traversal Using Relays around NAT (TURN)

While STUN is indeed effective and works fine most of the times, it does not

work in the presence of symmetric NATs. In fact a Symmetric NAT maps

different ports when contacting different servers from the same private port:

this means that, while a request to a STUN server originated from a specific

port would result in a specific mapping, a different machine trying to contact

that address (e.g., the actual peer the user wants to communicate with) would

Connection Establishment and NAT/Firewall Traversal 43

Figure 3.7: Traversal Using Relays around NAT (TURN)

be blocked. As a result, the information collected via STUN in the presence of

a Symmetric NAT would be useless for the purpose of providing connectivity

information. The only way to get a working connection out of a Symmetric

NAT is to make sure that the same network endpoint used to check the

connectivity is also used to actually handle the communication process. This

is exactly what another protocol defined within the IETF standardisation

efforts, the Traversal Using Relays around NAT (TURN) [18], was designed

for. TURN is a set of extensions to STUN which allow media frames to

be relayed through an external component, that is the TURN server. This

means that, as depicted in Figure 3.7, a user can make use of the TURN

server not only to get connectivity information, but also to actually act as an

intermediary for the media: since the same address is used for both actions,

the Symmetric NAT does not interfece with its operations. That said, since

relaying media is not a cheap operation, both in terms of bandwidth that

needs to be made available and of computational resources, relying on a

TURN relay is usually not advised unless strictly necessary. This is not only

the case of Symmetric NATs, but also of particularly restrictive firewalls.

If a user, for instance, is behind a firewall that filters some specific traffic

like UDP or VoIP-related, a TURN relay may help in allowing the user to

circumvent the filters and still be able to communicate through it as a tunnel.

Connection Establishment and NAT/Firewall Traversal 44

3.3.3 Interactive Connectivity Establishment (ICE)

The previous subsections described how different protocols can help in getting

a multimedia session up and running, according to the different network

topologies that may be in place and, willing or not, make this harder to

accomplish. Specifically, STUN and TURN are key in this process, as they

both allow to get things working in some specific scenarios. That said, it’s

in general quite hard to programmatically figure out the scenario one is in,

and as such it’s not always clear to understand what the right steps to follow

are.

In order to properly orchestrate the STUN/TURN processes, the IETF

also devised a standard mechanism called Interactive Connectivity Estab-

lishment (ICE) [19] which defines the required, incremental steps needed in

order to allow two or more peers to gather and exchange information about

their connectivity details, and then try all of those in a sequential way to

eventually come to a working pair that allows for a communication. Since

ICE is quite effective and commonly deployed in existing VoIP infrastruc-

tures, it was also chosen as the preferred and mandatory way to establish

connectivity within the contect of the WebRTC specification.

Section 3.7 will provide some details about an extension to the base ICE

mechanism, called Trickle ICE, which allows for a much faster and more

reliable approach to connectivity establishment.

3.3.4 An open area for research: TURN over Web-
Sockets

As anticipated in the previous section, a TURN relay can be helpful in

traversing restrictive components like firewalls. In fact, especially if a fire-

wall is filtering ports or protocols that may be vital to setup a multimedia

session, the only way to get a working connection to transport the media

would be some sort of tunnel that is not affected by the filters.

The way this is usually accomplished within deployments is to indeed rely

on a TURN implementation, but properly configured in order to look like a

Connection Establishment and NAT/Firewall Traversal 45

different protocol. For instance, a TURN server may be configured to listen

on ports 80 and/or 443: this means that, in the eyes of a filtering component,

a request addressed to a TURN server may actually look like a simple HTTP

request addressed to a web server, that is something that almost no firewall

tends to block. Other deployments may try and configure a TURN server

to listen on port 53 instead, to trick network filters into thinking the media

traffic is actually DNS traffic instead.

While in principle these approaches tend to work fine, they’re not always

one hundred percent reliable. Specifically, network filters implementing some

form of Deep Packet Inspection (DPI) may still recognise the media traffic for

what it really is, despite the unusual ports being exploited for the purpose,

with the communication attempts being shut down as a result.

Starting from these assumptions, and from an effort I worked upon on

a related subject [20], I recently contributed to a proposal within the IETF

community to define a new transport for TURN. Specifically, the document

my co-authors and I wrote tries to specify a way to transport TURN mes-

sages over a WebSocket connection [21], rather than using a transport pro-

tocol like UDP or TCP directly. This approach would have several benefits:

(i) it would start as a WebSocket upgrade from an HTTP session, meaning

the context of the communication would indeed be an HTTP one, and no

masquing of the intentions would be needed; (ii) it would be simple to im-

plement, as apart from the initial handshake a WebSocket connection acts

exactly as regular sockets, although being message-orianted which is actually

a plus; (iii) it would be network-administrator friendly, since the WebSocket

subprotocol mechanism would allow media communications to be easily iden-

tified, if needed, and as such specific rules to allow them while keeping other

filters in place would be easy to implement.

That said, the proposal is still in its early stages, and has so far not

gathered a complete consensus within the context of the IETF discussions.

Work on this will procede nevertheless, as we do believe this would be an

invaluable instrument in making WebRTC more easily accessible even in

Media Transport and Control 46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=2PX CC M PT sequence number

timestamp

RTP
Header

synchronization source (SSRC) identifier

contributing source (CSRC) identifiers

· · ·

Codec related payload (byte aligned)

. . . optional RTP padding

RTP
Payload

Figure 3.8: Real-Time Transport Protocol (RTP)

edge-case scenarios and topologies where it doesn’t work today.

3.4 Media Transport and Control

Once a media channel has been negotiated and, thanks to ICE, physically

established among two or more peers, media is ready to be exchanged. In

order to do so, a proper transport protocol that takes into account the real-

time requirements of the media exchange is needed, possibly with the aid

of something that also monitors the effectiveness of the delivery and ideally

provides feedback that may be used to improve it.

3.4.1 Real-Time Transport Protocol (RTP)

In previous sections we already anticipated that the WebRTC specification

relies on the well-known RTP/RTCP suite for the purpose. RTP and RTCP

are commonly used within all SIP/SDP and other standard infrastructures,

which means that they constituted the obvious choice for covering the same

requirement in WebRTC as well. The common format of an RTP packet is

depicted in Figure 3.8, which highlights some key pieces of information that

allow for a synchronised delivery and rendering of multiple media streams, in-

Media Transport and Control 47

cluding the timestamp, the sequence number and the synchronization source

identifier (SSRC). While the first two values provide timing related infor-

mation, respectively related to when a media packet should be reproduced

and to the actual ordering of the incoming media packets, the last value is

very important to identify a specific RTP session. As it will be clearer in the

next subsection, this value in particular needs special care whenever differ-

ent RTP sessions are bridged, as will be the case of the SOLEIL architecture,

especially at the leaf nodes.

That said, the WebRTC specification identified several additional and im-

portant requirements, not all of which were covered by the base RTP/RTCP

documents. Specifically, two of the key requirements that were identified

were security and privacy, that is the ability to establish a secure RTP/RTCP

channel that would prevent eavesdropping or manipulations on the exchanged

media. This requirement will be dealt with in Section 3.5. On the other hand,

a great relevance was given to other key aspects like the ability to provide

timely feedback on the communication experience.

3.4.2 Real-Time Transport Control Protocol (RTCP)

RTCP was at first designed as a “sister” protocol to RTP with exactly those

targets in mind: a protocol that could be used in conjunction with RTP

to monitor the streaming sessions and provide statistics related to the me-

dia transfer. Figure 3.9 presents a view on the common header of RTCP

messages, which can indeed be quite specialised as it will be clearer in the

following sections and chapters.

The base mechanisms for providing statistics are the so-called Sender

Reports (SR) and Receiver Reports (RR), which both provide the respective

parties with information on the media transmission, e.g., in terms of lost

packets, jitter, and so on. Nevertheless, RTCP was conceived as an extensible

protocol, meaning several different additional messages have been defined

as well, both in terms of feedback and pro-active requests (e.g., actively

requesting key frames in a video session).

Media Transport and Control 48

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=2P FMT PT Length Common
Header

Message-specific
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3.9: Real-Time Transport Control Protocol (RTCP)

For WebRTC, specifically, some specific requirements were identified, in

order to allow for a high quality and nice experience for end users. While

there already existed solutions, within the IETF, to cover those require-

ments, not all of those are currently very widespread, while some others were

completely missing. In order to properly discipline the RTP/RTCP-related

requirements for WebRTC, the IETF worked on a document to specify what

aspects of the RTP/RTCP specification were mandated and how in the rtp-

usage draft [22]. This document, in particular, highlighted the importance

of RTCP feedback [23], e.g., NACK, PLI, FIR [24], REMB [25], which are

often ignored within the context of traditional VoIP.

Anyway, rather than going through all these requirements, it’s worthwile

to highlight a different aspect that needs special care, especially within a

bridging context as the one envisioned for the SOLEIL “last mile”. In fact,

as anticipated in Section 2.3.3 and Section 2.6, a leaf node in the SOLEIL

architecture is assumed to act as an intermediary between heterogeneous

technologies, specifically between a plain RTP/RTCP feed coming from the

relay nodes and the related WebRTC-based communication channels on the

viewers’ side. As explained, this is only partially an issue, as WebRTC makes

use of RTP/RTCP as well, although in an extended and enhanced fashion.

Nevertheless, considering that even in the simplest approach different RTP

sessions will be bridged, special care must be given to the related SSRC

Security Extensions 49

information in each of them. Specifically, whenever an SSRC or RTP-related

value is modified across two separate RTP sessions, both sessions need to

have both the RTP and RTCP related values updated accordingly in order

to make sure no part of the communication or control is broken. This is

exactly the main target of an IETF specification I co-authored in the STRAW

Working Group, called “Guidelines to support RTCP end-to-end in Back-to-

Back User Agents (B2BUAs)” [26]. This specification, as the title suggests,

provides guidelines for components that act as intermediaries in an RTP-

based communication, and is especially useful within the context of WebRTC-

based implementations as the one we’re interested to design. At the time of

writing, it’s close to becoming an official standard specification as an RFC.

Section 3.7 will provide additional details on some more advanced en-

hancements that were added to the WebRTC specification, namely the usage

of BUNDLE and rtcp-mux as ways to reduce the usage of network resources

and increase the chances of getting a successful connection establishment.

3.5 Security Extensions

The previous section hightlighted the key role of RTP/RTCP and its exten-

sions to cover the media transport and control requirements in WebRTC. It

was also introduced, though, that a key requirement in WebRTC was to also

provide the proper mechanisms to not only establish a functional mechanism

for exchanging media packets in a timely way, but a secure and private one

as well, in order to prevent attacks on the media like eavesdropping, media

manipulation, man-in-the-middle attacks and so on.

3.5.1 Datagram Transport Layer Security (DTLS)

Although the requirement of security and privacy by itself was never really

under discussion, debates on the best way to provide them proved much more

challenging. In general, RTP/RTCP can be easily secured by making use of

its secure extensions, the Secure Real-time Transport Protocol (SRTP) [10].

Security Extensions 50

Figure 3.10: Datagram Transport Layer Security (DTLS)

Codecs 51

Considering the cryptographic nature of these extensions, though, there are

different approaches that can be used to exchange the related information to

actually secure a session. Specifically, there are two main approaches to this:

(i) the Session Description Protocol Security Descriptions (SDES) [27], which

exchanges the key-related information within the SDP in the negotiation pro-

cess, and (ii) Datagram Transport Layer Security (DTLS) [28], which instead

exchanges those keys end-to-end through the media communication channel,

and only makes use of the SDP to advertise the certificate fingerprints. Since

day one, a strong debate was born on which of the two approaches should be

mandated in the WebRTC specification, giving for granted that media secu-

rity in general had to be mandated anyway. Advocates of SDES insisted on

the much wider deployment in existing VoIP frameworks of this approach,

explaining how DTLS-SRTP had basically never been used in VoIP infras-

tructures before. On the other hand, DTLS advocates instead pushed on

the much weaker security that SDES provides with respect to DTLS, since

an out-of-band exchange of cryptographic information is much more prone

to manipulation and attacks. Eventually, DTLS won the fight and SDES

was explicitly ruled out of the specification, which means that all WebRTC-

compliant implementation now must only implement DTLS-SRTP to provide

media security. While an agreeable solution in terms of effective protection,

this proved a challenging requirement on WebRTC implementations, since

DTLS-SRTP is a very recent specification and as such almost never deployed

in the field.

3.6 Codecs

An important aspect in a multimedia application, apart from the protocols

to allow for a transfer of media packets, is how these media are actually going

to be encoded. In fact, in order to allow two or more parties to communi-

cate with each other, they all need to have at least one codec in common to

exchange media information, or otherwise they’d be talking different “lan-

guages”. This applies to both audio and video.

Codecs 52

While SIP/SDP and other signalling/negotiation protocols easily allow

for a dynamic negotiation of such codecs, meaning peers can usually advertise

support for multiple codecs and eventually agree on one they all share support

for, it was decided within the WebRTC specification to also mandate support

for some specific codecs. This was done for a specific reason, that is avoid

scenarios where peers could potentially end up with no shared set of codecs,

thus preventing any chance of communicating with each other. On the other

hand, having at least one or a couple of codecs that all WebRTC compliant

endpoints need to implement would ensure this to never happen.

As it will be explained in the next subsections, while an agreement has

been reached with respect to the codecs to mandate for audio, there’s still

some debate regarding the related choice for video.

3.6.1 Audio codecs: G.711 and Opus

For what concerns audio, two codecs were almost immediately chosen as the

candidates to mandatorily implement in WebRTC: G.711 and Opus [29].

The choice of G.711 was driven by a need to properly interact with legacy

infrastructures, in particular the PSTN (Public Switched Telephone Net-

work). In fact, G.711 is the most widely deployed audio codec in VoIP and

standard telephony infrastructures, since its license expired and it’s very

lightweight and trivial to implement. That said, the also are some cons, as

G.711 is a narrowband (8kHz) with a low compression factor, which means

it has a bad quality from a user experience perspective, while at the same

time consuming a considerable bandwidth.

For this reason, Opus was also mandated as an additional choice for

audio. Opus is a standard codec designed and specified within the contect of

the IETF standardisation efforts, and represents an evolution on pre-existing

codecs like CELT and SILK, from which it derives optimizations in terms of

speech compression and low latency. More specifically, Opus was explicitly

conceived as a high quality Internet codec, which means it can easily adapt to

the available bandwidth and update the resulting quality as a consequence.

Advanced Functionality 53

3.6.2 Video codecs: VP8 and/or H.264

As anticipated, for video the debate was not quite as easy as the one for au-

dio. In fact, different interests played a consistent role in the discussion, and

two main camps eventually ended up advocating two different protocols: (i)

VP8 [30], an open source and license free codec developed by Google, and

(ii), H.264, a patent encumbered but widespread codec developed within the

International Telecommunication Union (ITU) standardisation body. The

discussion has so far mostly addressed the licensing concerns each camp has

on the other proposal, as from a technical standpoint both codecs provide a

comparable high quality experience and performance in terms of both band-

width and resources.

Without delving into the details of a debate that prolonged for many

years since WebRTC was first specified, it is worth pointing out that a tem-

porary agreement has been recently reached with that respect within the

IETF discussions: specifically, it was decided that all endpoints will have to

implement both VP8 and H.264 in the future, unless one of them is explic-

itly and unequivocably identified as a license free solution in the forecoming

future.

That said, VP8 is the only codec currently available in all WebRTC-

compliant implementations, which means it has been, so far, a de-facto stan-

dard for developers and researchers interested in experimenting with the

technology.

3.7 Advanced Functionality

The previous sections introduced some of the key requirements that the We-

bRTC specification identified in order to provide all the required function-

ality. From signalling and negotiation to the establishment of a connection

and then a secure channel, several different protocols are involved in the

setup and management of the lifecycle of a WebRTC PeerConnection. That

said, as anticipated in some of the previous sections, not all of the available

Advanced Functionality 54

Figure 3.11: Trickle ICE compared to “Vanilla” ICE

specifications within the IETF proved to be enough to cover all the required

steps, which means that some additional work needed to be done in order to

address the missing “bricks”.

The main enhancements the IETF introduced in the WebRTC specifica-

tion were Trickle ICE, rtcp-mux, BUNDLE, and Data Channels.

3.7.1 Trickle ICE

Trickle ICE [31] is an important update to the base ICE mechanism for

establishing connectivity. As explained in Section 3.3.3, ICE specifies the re-

quired steps that are needed in order to evaluate the best way to put two

or more peers in contact with each other: a gathering of the so-called candi-

dates where the peer can be reached, their prioritizing and encoding within

the SDP to have them advertised on the other side, the offering and an-

swering to have the peers negotiate the available candidates with each other

and finally a checking phase to try and find the right candidate pairs that

effectively allow for a connection establishment between the involved par-

Advanced Functionality 55

ties. While ICE is quite effective and almost always results in a successful

connection establishment, it can also be a very slow process, especially dur-

ing the gathering phase: in fact, before the candidates can be encoded and

advertised in the SDP, they need to be all gathered, which means that, if

any candidate is taking more time than usual to be collected (e.g., a srflx

candidate on a slow interface), the whole process will be slowed down as a

consequence.

In order to solve this serious issue, which can result in severe delays in

the setup of a communication, Trickle ICE was suggested as a solution. This

approach, which is illustrated in Figure 3.11, starts from the assumption that

you don’t need all candidates to be available to start the checking phase, but

that you can start with what you have and, if that doesn’t work, wait for more

information to arrive later. As such, the idea is that, as soon as a candidate

has been gathered, it is immediately sent on the other side outside of the

context of the SDP negotiation: as a result, the SDP is only used to negotiate

other aspects related to the communication (e.g., ICE credentials, DTLS

fingerprints, codecs and so on), while remote candidates can be received at

any time and paired with the candidates that have been gathered locally in

the meantime. This approach, while not one hundred percent compliant with

the “vanilla” ICE specification, definitely helps in reducing the setup times,

and has as a result been mandated within the WebRTC specification for all

compliant implementations.

3.7.2 RTCP Muxing

rtcp-mux [32] is, instead, a different optimization that can be applied over the

media transport and control channel. Namely, in general RTP and RTCP are

transported over different transport protocols: this means that, in its default

form, different ports and, as a consequence, connections need to be estab-

lished for an RTP session and its related RTCP control channel. This makes

management of the related protocols easier, as it’s trivial to handle RTP

packets and RTCP messages separately, since they’re muxed in completely

Advanced Functionality 56

dfferent transports. That said, this approach also introduces an unneeded

waste of network resources. In fact, since two different transports are re-

quired for the two protocols, this also means that two different ports need to

be allocated and negotiated within the context of a SDP offer/answer. Con-

sidering the usage of ICE for establishing connectivity, this translates to a

duplicate management of candidates for handling the protocols in a sepa-

rate way. While this may not sound like a big issue for a single endpoint,

it definitely can be a problem when envisaging a multimedia session in a

system where different applications are consuming network resources. For

this reason, the IETF recently proposed a solution to this issue, by spec-

ifying a way to actually mux RTP packets and RTCP messages over the

same transport, in order to have the two transports share the same “connec-

tion”. This is what the rtcp-mux specification mandates, which are basically

recommendations to properly mux and demux RTP and RTCP in order to

avoid conflicts, e.g., as in incorrectly interpreting an RTCP message as a

RTP packet or viceversa, which could easily lead to serious problems in the

lifetime of a multimedia session. Considering the noticeable benefit in terms

of network usage (half of the connections can be avoided, thus improving

the setup times and resources waste), the WebRTC specification mandates

support for rtcp-mux.

3.7.3 BUNDLE

The BUNDLE [33] specification tries to cover a similar problem, but re-

lated to different RTP sessions rather than to the muxing of heterogeneous

protocols over the same transport. Specifically, the normal approach when

negotiating multimedia sessions using the SDP standard is to negotiate sep-

arately all the media channels that need to be involved. This means that if,

for instance, the multimedia session will include an audio and a video channel

because the target is a video call, the audio and video channels will be nego-

tiated separately within the context of the same multimedia session. This is

normal and in principle to be expected: in fact, audio and video streaming

Advanced Functionality 57

have typically quite different requirements in terms of required functional-

ity or encodings, which means they should indeed be negotiated separately

in order to avoid ambiguities. Nevertheless, this normally also means that

a separate connection, and as such different transport-related information

like ports to be used for the transmission, would be negotiated. Just as in

the rtcp-mux case, this can easily lead to too many connections being estab-

lished, especially in case several different media are going to be involved in

a session. The consequence is the same, that is a potential waste of network

resources and an increase of the setup times, as a different connection es-

tablishment and secure context setup is required for each involved medium,

while the same connection could be re-used for the purpose, considering that

all the media actually belong to the same session. This is where the BUN-

DLE specification tries to help. The specification describes a way to signal

the fact that more media of different types (e.g., audio, video and/or data

channels) will actually share the same transport. This is not a trivial speci-

fication to implement, as it requires implementations to be able to properly

multiplex and demultiplex not only different protocols like RTP and RTCP,

but also different sessions that use the same protocol. That said, the benefits

in terms of used reources, especially within the context of a WebRTC imple-

mentation that has to mantain several different sessions at the same time,

greatly overcome the concerns related to the BUNDLE complexity, which is

why it has been chosen as one of the mandatory enhancements to implement

for WebRTC-compliant devices.

3.7.4 Data Channels

Finally, one of the most interesting and challenging concepts introduced in

the WebRTC specification are definitely Data Channels [34]. In fact, while

WebRTC was originally conceived to allow for an easy realization of au-

dio/video multimedia sessions natively in a browser, without the need of

plugins of any sort, the specification was soon enriched with a new require-

ment, that is being able to also exchange generic data in real-time in a

Advanced Functionality 58

Figure 3.12: Protocols stack for Web, Media and Data Channels

peer-to-peer fashion.

This may not look like a great or disruptive change, especially consider-

ing that browsers have already been able to exchange generic data with each

other for a long time, using technologies like XHR or WebSockets. That

said, these approaches all rely on the presence of a server component to act

as an intermediary for the data delivery, as one peer sends data to the server

and the server pushes it to the desired recipient. This introduces consider-

able delays and is also problematic whenever privacy is a concern or a user

would rather not have the server have access to the data it’s sending for any

reason (e.g., because the service is not trusted). Data Channels were thus

conceived to cover this exact requirement, that is a purely peer-to-peer mech-

anism for exchanging data in real-time: the availability of a direct connection

between the involved parties solves both the aforementioned issues, that is

the excessive latency, as no intermediary is involved anymore, and the pri-

vacy concerns, as the same secure context used for the media transport can

be re-used for data as well. In fact, all the exchanged data is encrypted end-

to-end, despite the fact that the channel was originally negotiated through

a server. Data Channels are a completely new concept that was introduced

solely for WebRTC, but despite this it is already being used in several differ-

First WebRTC integration: Meetecho as a “real” use case 59

ent contexts as well.

Figure 3.12 illustrates what the protocols stack looks like for, respectively,

legacy web-based technologies, media channels in WebRTC and Data Chan-

nels. As it can be seen in the picture, the above mentioned technologies like

XHR or WebSockets all work on top of a reliable transport protocol like TCP.

Besides, while they can implement security, those secure channels are termi-

nated at the web server they refer to, meaning there’s no end-to-end privacy

or security involved.

On the other end, all the new WebRTC technologies make use of an unre-

liable protocol as UDP for the transport: this allows for a much more timely

and fast delivery of the messages. The connectivity is established in all cases

through ICE, as explained in Section 3.3.3, and security and privacy are

ensured, end-to-end, by the usage of the DTLS protocol, introduced in Sec-

tion 3.5.1. That said, media and data channels in WebRTC are, at this point,

handled differently: specifically, media packets are exchanged by means of

SRTP over a so-called PeerConnection, while the generic data channel mes-

sages are transported over an additional transport protocol called Stream

Control Transmission Protocol (SCTP) [35], and encrypted via the existing

DTLS channel. SCTP optionally allows for features typically provided by

reliable transport protocols, like reliability, ordered delivery and so on. This

means that, while the underlying transport is unreliable, other features can

be envisaged as well at the SCTP level if needed.

3.8 First WebRTC integration: Meetecho as

a “real” use case

As part of the efforts devoted to the development of my doctoral thesis, I’ve

not only studied and contributed to the WebRTC specification from a the-

oretical perspective, but I’ve also tried to gain some first hand experience

with WebRTC-related implementations. In particular, I started looking into

existing and well known multimedia applications, in order to evaluate if and

First WebRTC integration: Meetecho as a “real” use case 60

how they could be made compliant with the WebRTC enhancements. With-

out delving too much into the details of these efforts, as they were mostly

meant to improve my knowledge of the state of the art and start “playing”

with WebRTC before working on the “last mile” as planned, this section will

briefly go through my achievements in that sense.

In order to give a broader purpose to these efforts, I focused my activities

on implementing a WebRTC-based access to the Meetecho [36] web con-

ferencing and collaboration platform. Meetecho is a standards-based con-

ferencing architecture which makes use of standard protocols (like XMPP,

SIP, BFCP, among the others) to provide collaboration features. This ar-

chitecture was at first devised [37] and developed within the framework of

the Network Group of our Computer Science department as an implementa-

tion of the Centralized Conferencing (XCON) IETF Working Group. I was

one of the authors and implementors of the prototype architecture, and to-

gether with some colleagues and professors we co-founded Meetecho, which

eventually became an academic spin-off of the University of Napoli Federico

II.

The motivation for implementing a WebRTC-based access to Meetecho

was simple. In fact, due to the standard nature of the Meetecho architecture,

and especially for its use of SIP/SDP and RTP to provide audio and video,

it could be seen as one of the “legacy” systems a WebRTC endpoint might

want to interact with. For what concerns Meetecho and browsers, we had

already devised a fully web based interface to the functionality provided,

called WebLite. Meetecho WebLite allowed participants to make use of all

features by just making use of a browser: this means that access to all of

the above mentioned standard protocols and functionality was provided by

means of a gateway allowing users to interact with native clients in a seamless

and transparent way. While this was relatively simple to accomplish with just

HTML and JavaScript for most of the envisaged features, for what concerns

audio and video we had so far had to rely on a different approach, namely a

Java Applet that, guided by the application logic in JavaScript, would take

First WebRTC integration: Meetecho as a “real” use case 61

Figure 3.13: The Meetecho WebLite “legacy” architecture

care of the user devices (microphone, webcam), as well as of encoding and

decoding functionality and management of the RTP streams exchanged with

the conferencing server, as sketched in Figure 3.13. This kind of plugin-based

approach is exactly what the WebRTC has been trying to replace since day

one, and as such Meetecho proved an excellent testbed for experimenting

with both WebRTC and “legacy” applications.

Following the requirements identified in this chapter, the first step was

of course to take care of the signalling. As anticipated, Meetecho makes use

of SIP as its signalling protocol to negotiate media streams. SIP is also used

to negotiate a BFCP channel with participants, in order to provide floor

control functionality. Considering the protocol-agnostic nature of WebRTC

with respect to signalling, we chose to make use of the above mentioned

ROAP protocol as a simple and quick solution to provide signalling in the

web interface. We then provided a simple UI to let users decide whether to

negotiate both audio and video or just audio, in order to trigger the signalling

accordingly. For the server side, we implemented the signalling gateway as a

simple web application taking care of signalling messages originated by the

client, and in turn generating SIP INVITEs to our conferencing system as

a consequence. The signalling state was then handled accordingly, e.g., by

providing ROAP answers when a 200 OK to the INVITE would be received or

hanging up either side of the call when the other party closed the session. The

First WebRTC integration: Meetecho as a “real” use case 62

task accomplished by the gateway was of course not only limited to signalling,

as described when going through the several requirements WebRTC imposed.

One of the features WebRTC demands and we were lacking in Meetecho

was SRTP support. As anticipated, this is an absolutely mandatory feature

in WebRTC. In order to fix this requirement, we decided to rely on a more

recent version of Asterisk1, the open source PBX (Private Branch eXchange)

implementation our audio/video features were built upon, which provided

us with native SRTP support, and more specifically its SDES counterpart.

While this worked fine for a while, we soon had to face the mandatory sup-

port for DTLS as a requirement. The support for DTLS-SRTP, though, was

sketchy, so we worked on improving it in order to make it comply with what

browser implementations expected. Another mandatory feature we found

ourselves lacking was ICE. When we first started working on this WebRTC

integration, this was not an issue we could solve by just upgrading Asterisk,

which didn’t provide support for it at the time. As such, we implemented

support for it ourselves. We did so in two different parts of our system.

The negotiation of candidates was taken care of in the above introduced sig-

nalling gateway: in fact, considering our conferencing server was supposed

to be always reachable at a public address, the gathering of candidates could

be definitely simplified, and allow for the gateway to act as an ICE-Lite

peer. The connectivity checks were instead implemented on the Asterisk

side, by modifying the pre-existing STUN protocol implementation in order

to take care of all the required additional attributes like USE-CANDIDATE,

XOR-MAPPED-ADDRESS, MESSAGE-INTEGRITY and so on, and be able

to both respond to connectivity checks and generate checks on its own. This

choice was made in order to keep things as simple as possible for signalling,

and focus on the media challenges instead, while also keeping signalling- and

media-related issues well separated and independently addressable. At this

point, we started looking at possible issues in the negotiation process itself.

We first of all noticed that Asterisk would reject the “RTP/SAVPF” profile

1http://www.asterisk.org

First WebRTC integration: Meetecho as a “real” use case 63

as negotiated by the WebRTC endpoint. Hence, we looked after rewriting

of the SDP descriptions on both directions, in order to make sure that As-

terisk would find RTP/SAVP in the SDP received from the gateway, and

WebRTC would get back the RTP/SAVPF it negotiated in the first place in-

stead. When done with that, we looked after taking care of SDP attributes

that might confuse either side. As anticipated in Section 3.7.2, WebRTC

endpoints try to multiplex RTP and RTCP streams, which is something As-

terisk does not support at the moment. Specifically, Asterisk still assumed

the port used for RTCP to be equal to the RTP port, incremented by one.

In order to make sure the WebRTC endpoint could be aware of this, we im-

plemented the gateway so that, before sending the conferencing server SDP

to the WebRTC endpoint, the SDP was modified with a new media-level at-

tribute (a=rtcp:...) for each involved media with explicit indication of the

port to be used for RTCP. Moving further, as anticipated we chose to demand

the ICE-related negotiation to the gateway rather than to the PBX itself.

To this purpose, we made sure that, before providing the WebRTC endpoint

with any reply or update from the conferencing server, the SDP would be ex-

tended with the ICE additional attributes, namely a session level attribute

to report an ICE-Lite implementation (a=ice-lite) and media level attributes

to convey authentication information (a=ice-ufrag and ice-pwd) and candi-

dates (a=candidate) out of what the PBX negotiated. This of course obliged

us to provide, for each negotiated medium, two different candidates instead

of just one: in fact, as explained before, we would negotiate RTCP explic-

itly on a different port, which had to be reported as a candidate accordingly,

as connectivity checks would need to be achieved for RTCP as well and not

just RTP.

When done with the above mentioned steps, we started looking into in-

teroperability at the encoding level. For audio, this was quite easy at first.

In fact we found out that both WebRTC endpoints and our conferencing

server had a codec in common, specifically G.711 µ-law. That said, we im-

mediately verified G.711 not to be the best choice when it comes to audio:

First WebRTC integration: Meetecho as a “real” use case 64

Figure 3.14: The Meetecho RTCWebLite architecture

in fact, while it did indeed greatly simplify the task of creating a bridge be-

tween WebRTC and our legacy system, the resulting quality experience left

much to be desired. As such, we worked on an integration of the high quality

and standard Opus codec within Asterisk, an effort we released as an open

source patch2 to the community. This effort was subsequently integrated in

the mainstream distribution of Asterisk, and is now part of the official pack-

age. Besides, I had the opportunity of presenting the results of my efforts

during the Technical Plenary3 at the IETF 87 meeting in Berlin, an event

we also streamed via Meetecho using a superwideband (48kHz) audio quality

Opus stream for the benefit of all remote attendees.

For what concerns video, instead, the work to be done was quite differ-

ent. In fact, it is important to notice that while Asterisk provides audio

mixing natively, it does nothing in that sense when it comes to video, which

2https://github.com/meetecho/asterisk-opus
3http://trac.tools.ietf.org/group/iab/trac/wiki/IETF-87

First WebRTC integration: Meetecho as a “real” use case 65

it can only handle with a passthrough approach. To take care of this, we

had long time before designed and implemented a videomixer that could take

care of both transcoding and mixing heterogeneous video streams of differ-

ent formats. Our videomixer, though, only supported “legacy” encodings

like H.261, H.263 (and its extensions) and optionally H.264, but not VP8,

which, waiting for a clear consensus on the MTI video codec in WebRTC,

was and still is the only video codec the reference WebRTC implementations

support. As a consequence, we had to accomplish two different steps: (i) im-

plement a simple passthrough mechanism for VP8 frames in Asterisk, and

(ii) implement full VP8 transcoding features in our videomixer, in order to

allow VP8-compliant endpoints to take advantage of the video composition

our videomixer provided. This process was successful but had a small draw-

back. In fact, our video mixer only supported QCIF and CIF resolutions

with respect to video, while the reference WebRTC endpoint always sent

640x480 video streams. While this would not be a problem on the client side

(the browser showed no issue when presented with a lower resolution incom-

ing video stream) this could indeed be problematic for the videomixer, as it

had to continuously downscale incoming frames from WebRTC endpoints in

order to mix them. To complete the integration, we also implemented sup-

port for the RTCP FIR feedback message in Asterisk: this was needed in

order to allow the videomixer to receive a full frame for a participant when-

ever the participant was to be included in the mix (e.g., when the participant

was granted the video floor by means of BFCP), in order to avoid annoying

artifacts or ghosting effects.

The resulting integrated architecture, which is is depicted in Figure 3.14,

was eventually addressed in a journal article [38] we wrote for the benefit of

the community of researchers that were interested in achieving similar efforts.

Chapter 4

Janus: a general purpose
WebRTC gateway

In Chapter 2 we’ve gone through the SOLEIL architecture, thus identifying

its many challenges and requirements. Among those, we hightlighted the

need for a component that could bridge two very different worlds: on one

side, relays talking plain RTP and RTCP, while on the other side, an audience

of WebRTC-empowered attendees. At the same time, we explained how a

similar approach could be used on the broadcaster side as well, in order to

allow a user to just make use of their browser to inject one or more WebRTC

originated streams into a SOLEIL instance, and have it relayed internally in

the format SOLEIL expects.

Chapter 3 described our efforts in studying and identifying the several

different technologies WebRTC embodies, and the challenges they provide

when having to deal with them. More specifically, we addressed each of

those technologies separately, describing our efforts in getting them to work

in pre-existing, or “legacy”, multimedia frameworks like Meetecho, in order

to foster the realization of simple WebRTC “gateways”, that is tools that

would allow WebRTC users to interact with a non-WebRTC world.

All those considerations and efforts eventually confluted in the design and

realization of a brand new, written from scratch, WebRTC gateway, that

could be used to bridge WebRTC to and from pretty much any pre-existing

technology. The following sections will start from why such a component is

A gateway? Why? 67

Figure 4.1: WebRTC native peer-to-peer communication

needed in the first place, and then move to describe the design process for

this component in detail, to eventually introduce its integration within the

SOLEIL architecture to satisfy the “last mile” requirement.

4.1 A gateway? Why?

Since day one, WebRTC has been seen as a great opportunity by two dif-

ferent worlds: those who envisaged the chance to create innovative and new

applications based on a new paradigm, and those who basically just envi-

sioned a new client to legacy services and applications. Actually, as it often

happens, the actual deployment of WebRTC eventually happened somewhere

in the middle, and it’s not at all unusual to have WebRTC-compliant imple-

mentations that break the peer-to-peer approach and reside on the media

path between them.

As anticipated in Chapter 3, and depicted in Figure 4.1, WebRTC has

been conceived as a peer-to-peer solution: that is, while signalling goes

A gateway? Why? 68

Figure 4.2: One of the peers as a logically decomposed WebRTC gateway (SIP example)

through a web server/application, the media flow is peer-to-peer. Even in

a simple peer-to-peer scenario, though, one of the two involved parties (or

maybe even both) doesn’t need to be a browser, but may very well be an

application, as depicted in Figure 4.2. The reasons for having such an appli-

cation may be several: it may be acting as a Multipoint Control Unit (MCU)

or Selective Forwarding Unit (SFU), a media recorder, an IVR application, a

bridge towards a more or less different technology (e.g., SIP, RTMP, or any

legacy streaming platform) or something else. Such an application, which

should implement most, if not all, the WebRTC protocols and technologies,

is what is usually called a WebRTC Gateway : one side talks WebRTC, while

the other still WebRTC or something entirely different (e.g., translating sig-

nalling protocols and/or transcoding media packets).

That said, there are several reasons why a gateway can be useful. Techni-

cally speaking, MCUs, SFUs and server-side stacks can be seen as gateways

as well, which means that, even when you don’t step outside the WebRTC

world and just want to extend the one-to-one/full-mesh paradigm among

peers, having such a component can definitely help according to the scenario

you want to achieve.

A gateway? Why? 69

Nevertheless, the main motivation comes from the tons of existing and

so-called legacy infrastructures out there, that may benefit from a WebRTC-

enabled kind of access. In fact, one would assume that the re-use of existing

protocols like SDP, RTP and others in WebRTC would make this trivial.

Unfortunately, most of the times that is not the case, as confirmed by our

analisis of the WebRTC media components in Chapter 3 and the several

challenges they posed to a successful integration and deployment. If, for

instance, we just refer to existing SIP infrastructures, even by making use

of SIP as a signalling protocol in WebRTC there are too many differences

between the standards WebRTC endpoints implement and those available in

the currently widely available deployments.

Just to make a simple example, most legacy components don’t support

media encryption, and when they do they usually only support SDES. On

the other end, for security reasons WebRTC mandates the use of DTLS

as the only way to establish a secure media connection, a mechanism that

has been around for a while but that has seen little or no deployment in

the existing communication frameworks so far. The same incompatibilities

between the two worlds emerge in other aspects as well, like the extensive use

WebRTC endpoints make of ICE for NAT traversal, RTCP feedback messages

for managing the status of a connection or RTP/RTCP muxing, whereas

existing infrastructures usually rely on simpler approaches like Hosted Nat

Traversal (HNT) [39] in SBCs, separate even/odd ports for RTP and RTCP,

and more or less basic RTCP statistics and messages. Things get even wilder

when we think of the additional stuff, mandatory or not, that is being added

to WebRTC right now, as BUNDLE, Trickle ICE, new codecs the existing

media servers will most likely not support and so on, not to mention Data

Channels and WebSockets and the way they could be used in a WebRTC

environment to transport protocols like BFCP or MSRP, that SBCs or other

legacy components would usually expect on TCP and/or UDP and negotiated

the old fashioned way.

This brings us back to SOLEIL and the obvious need for a component able

A programmable approach: MEDIACTRL 70

to cover the requirements we just identified being exactly those of some kind

of WebRTC gateway. In fact, all the relays internally work using plain, un-

encrypted, RTP/RTCP traffic, and don’t make use of any specific signalling

protocol besides the synchronization messages SOLEIL endpoints exchange

with each other. On the other end, WebRTC attendees obviously expect to

be able to access those streams somehow, which means we needed a way to

make the SOLEIL world with WebRTC. Besides, considering the dynamic

nature of such a scenario, the WebRTC gateway component needed to also

be “smart” enough, meaning it needed to be programmable and controllable

in order to dynamically handle new users and scenarios without requiring a

complete rewrite of the component.

In order to cope with this requirements, we designed a brand new We-

bRTC gateway called Janus. We explicitly conceived it as general purpose,

meaning we were interested in designing a framework that could be used

with whatever technology (legacy or not) we needed to interact with, with-

out needing to write a new component from scratch later on when the issue

presented itself. Janus, which was released as completely open source soft-

ware 1 less than a year ago, will be introduced in the following sections.

4.2 A programmable approach: MEDIACTRL

Work on the design of Janus actually started much earlier than it saw the

light about a year ago. In particular, we have been working for years on

programmable and controllable Media Server instances within the framework

of the IETF Media Server Control (MEDIACTRL) Working Group. This

WG worked on the specification of a standard, SIP-based, communication

channel between Media Servers (as in the entities taking care of the actual

media manipulation and delivery, the “arm”) and Application Servers (the

entities hosting the application logic, that is what should be done with media

and when/where, the “brain”).

1https://github.com/meetecho/janus-gateway

A programmable approach: MEDIACTRL 71

The motivation for such a work was simple. In fact, within the real-time

multimedia applications ecosystem, users can either interact with others users

directly (e.g., for a video call) or with an application (e.g., an Interactive

Voice Response system, a conference bridge, a call center, etc.), that might

or might not in turn handle other users that may be put in contact with

each other somehow. This means that this application needs to implement

the whole protocols specification (e.g., SIP/SDP, RTP) in order to be able

to interact with users from a technological perspective, while at the same

time be controllable in order to allow the application to decide what media

to provide its users with, or how to handle the media users themselves may

be sending. This already highlights how internally such an application may

be structured, that is, a part that handles the application logic (something

that decides what to do when a user calls in) and a part that handles the

media instead (negotiating the media channels, sending and receiving RTP

packets, and so on).

While from a functional perspective these operations may be seen as

achieved by the same component, as a user calling a conference bridge, for

instance, will think the media mix is coming from there, this is not how such

applications are usually implemented. In fact, most of the times the com-

ponents implementing the application logic and those handling the media

are actually not co-located but distributed across a network, although often

close enough to each other. This allows for a proper separation of responsi-

bilities among different implementations, and besides also allows for scaling

such components separately and as such in a more controllable way.

This was exactly the purpose of the IETF MEDIACTRL Working Group

efforts, to which we participated actively during the latest years by con-

tributing to specifications and providing proof-of-concept implementations

as a support for the design process. The idea was to basically design a

communication channel Application Servers and Media Servers could exploit

for talking to each other in order to implement dynamic and heterogeneous

multimedia applications based on SIP. This would allow Media Server im-

A programmable approach: MEDIACTRL 72

Figure 4.3: Media Server Control architecture

plementors to just focus on the media aspects and provide their services to

third-party Application Server developers, who could in turn just care about

how the media components made available by a Media Server could be com-

bined together in order to implement a new, rich multimedia application.

Considering the dynamic nature of this interaction among components writ-

ten by unrelated entities, it’s quite evident how the choice to work on a

standard framework for the purpose proved quite important.

4.2.1 The MEDIACTRL architecture

The MEDIACTRL Working Group, as anticipated, worked on the definition

of a SIP-based modular framework for media server control. Specifically, the

assumption was that the components handling the application logic and the

components actually manipulating/serving the media would be distributed

and not co-located, which meant that some kind of communication channel

among them was needed in order to allow for the realization of rich multi-

media applications.

A programmable approach: MEDIACTRL 73

In order to achieve the desired result, a generic architecture [40] was first

devised. Figure 4.3 describes the overall architecture that was envisaged for

MEDIACTRL, which involved the following components: (i) an Application

Server implementing the application logic; (ii) a Media Server responsible for

manipulating and handling the media channels; (iii) some User Agents in-

terested in taking advantage of real-time multimedia applications. Within

this framework, the key functionality provided by the MEDIACTRL archi-

tecture was to be the communication channel between the Application Server

and the Media Server. Specifically, since the Application Server is respon-

sible for the application logic, it’s there that the User Agents interested in

the application (e.g., a multimedia conference, a contact center, an Interac-

tive Voice Response application and so on) would send their SIP requests.

The Application Server would then, in turn, forward the media session re-

quests to the Media Server, in order to have the media channels negotiated

and set up between the Media Server itself and the User Agents; at the same

time, a programmable and extensible control channel would be used to in-

struct the Media Server to implement some specific actions on the related

media channels (e.g., play a pre-recorded media file, mute/unmute a user in

a conference, etc.).

As anticipated in the previous section, this would allow for a proper sepa-

ration of responsibilities, as Application Servers could just focus on handling

the interactions with User Agents, while delegating all the media processing

to the Media Servers they’d control. In order to do so, a text-based Control

Channel was designed within the MEDIACTRL framework [41] to allow Ap-

plication Servers and Media Servers to interact with each other. Specifically,

this Control Channel can be negotiated by means of SIP as other media: this

means that an Application Server can just place a SIP call to a Media Server

to negotiate the creation and setup of a new Control Channel, and after the

channel has been created the Application Server can start sending requests

and receiving responses/events from the Media Server.

Of course, since the main purpose of a Media Server is to actually provide

A programmable approach: MEDIACTRL 74

configurable and controllable media processing on SIP dialogs, the availability

of a Control Channel was only the first step. In order to allow a Media Server

to expose some processing functionality and an Application Server to exploit

them, this Control Channel also needed to make available programmable

APIs to control these features. That said, considering the dynamic nature

of multimedia applications, it was decided that these features should not be

“baked in” the MEDIACTRL architecture itself, but delegated to external

packages that could be negotiated and exploited separately.

4.2.2 Control Packages and Extensibility

These external components were called Control Packages, and were specifi-

cally conceived to allow for an easy extensibility of the MEDIACTRL frame-

work. In fact, while there are some well known multimedia application pat-

terns, new application scenarios may appear at any time, meaning a Media

Server should be flexible enough to account for applications it wasn’t de-

signed for initially.

To handle this requirement, the MEDIACTRL specification was designed

to expose an extensible interface these Control Packages could implement in

order to register at a Media Server and expose their services. In order to

make this dynamic and flexible, the Control Channel protocol was designed

to allow for a negotiation of Control Packages after creation (e.g., to allow

an Application Server to check for the presence of a specific package at a Me-

dia Server) and for an opaque transfer of messages between applications and

packages. In fact, it was quite clear that, while each Control Package could

implement its own, package-specific API, this would need to be transported

over a shared communication channel. This is what Figure 4.4 illustrates:

each Control Package message is composed of a generic header and, if present,

an opaque payload. This opaque payload is addressed to a specific package

according to the info made available in the headers, which means the ME-

DIACTRL core can simply act as a dispatcher for these messages between

packages and interested applications, while still being able to expose generic

A programmable approach: MEDIACTRL 75

Figure 4.4: Control Packages and the MEDIACTRL Protocol

media processing on behalf of packages.

During the works on the MEDIACTRL specifications, two different Con-

trol Packages were specified, an effort on which we contributed as part of

the design team. Specifically, an IVR [42] and a Mixer Control Package [43]

were designed. While the IVR package allowed for generic interaction pat-

terns as the playback of pre-recorded media, recording of media sent by users

and interaction with users by means of Dual-tone multi-frequency (DTMF)

tones, the Mixer package was instead focused on bridging media connec-

tions, by involving mixing if required. These two packages, combined with

each other, provided as a consequence all the required bricks to implement

very different and rich multimedia applications. In fact, while a simple IVR

system could be implemented by just relying on features made available by

the IVR Control Package, more complex applications like contact centers,

conference bridges and others could instead be implemented by using fea-

tures made available by both. For instance, a conference bridge application

A programmable approach: MEDIACTRL 76

typically starts with the conference system asking for your name, followed

by a global announcement that tells all participants about the new user join-

ing in and then mixing all the contributions, muting/unmuting if needed.

Such a complex application can indeed be decomposed in several different

simpler operations: (i) the conference system asking for your name could

be a playout followed by a brief recording, features made available by the

IVR package; (ii) the global announcement can in turn be implemented as a

playout of the just recorded message on the conference mix; (iii) finally, the

bridging, mixing and muting features are all available in the Mixer package.

This is a very simple example of the complex interactions that can be

envisaged using the Control Packages as features rather than applications

by themselves. This and other scenarios were covered in a document, called

“Media Control Channel Framework (CFW) Call Flow Examples”, we wrote

as part of the MEDIACTRL standardisation efforts, and that eventually

became an official standard as RFC 7058 [44] a few months ago. Our efforts

on the MEDIACTRL design and implementations were also documented in

a paper [45] that was subsequently extended to become a book chapter [46].

4.2.3 Media Resource Brokering

All the discussions made so far on the MEDIACTRL architecture always

envisaged an interaction between a single Application Server and a Single

Media Server. While this is the most simple and common topology that can

occur within a multimedia deployment, this is not the only way the MEDI-

ACTRL specification can be used. In fact, different Application Servers may

be interested in the services of the same, shared, Media Server, or the same

Application Server may actually refer to multiple Media Servers rather than

a single one. The different topologies one could encounter are depicted in

Figure 4.5. As it can be seen in the figure, in general one can assume that

the most generic topology envisages a battery of Application Servers requir-

ing the services of a pool of Media Servers, thus describing a M:N kind of

relationship.

A programmable approach: MEDIACTRL 77

(a) 1:1 Topology

(b) 1:N Topology

(c) M:1 Topology

(d) M:N Topology

Figure 4.5: Different possible topologies in MEDIACTRL

A programmable approach: MEDIACTRL 78

In order to allow for these kind of interactions to happen, the MEDI-

ACTRL Working Group identified the need for some kind of mechanism for

Application Servers to dynamically discover Media Servers, and for Media

Servers to advertise their presence and the available functionality. The in-

formation from Media Servers needed to also include a more or less detailed

overview on the available resources, in order to allow for a proper distribution

of those across different interested applications.

These requirements were eventually addressed in a separate specification

we worked on, which was called “Media Resource Brokering” [47] and became

an official standard in RFC 6917 a few months ago. This specification defined

a new component, called Media Resource Broker (MRB) that could act as an

intermediary between multiple Application Servers and Media Servers. This

component was designed to allow Media Servers to register at the MRB,

advertise the available functionality in terms of Control Packages, supported

codecs and so on, and keep it up-to-date with respect to the resources still

available (e.g., how many calls are up and how many can still be handled).

The information coming from multiple Media Servers, then, could in turn

be used by interested Application Servers in order to reserve resources they

might need for a multimedia application, e.g., in order to have the MRB

return the addresses of one or more Media Servers that can support a specific

volume of users for a certain application.

Figure 4.6 illustrates an example of how a MRB can indeed serve a re-

quest coming from an Application Server. In this case, the MRB is aware of

three different Media Servers, two of which only implement the IVR pack-

age, while the third one implements the Mixer Package instead. All of those

Media Servers have some “slots” available to handle a few users (e.g., 60

new user agents). According to the requirements provided by an Application

Server in its request (e.g., a Media Server able to support an IVR system

for 100 callers), the MRB can then inspect the available resources and pro-

vide the Application Server with what it needs, in this case the address of a

Media Server it can contact, directly or through the MRB itself, in order to

Janus: a general purpose WebRTC gateway 79

Figure 4.6: Media Resource Brokering

implement the multimedia application.

The interested reader can refer to [48] for a more detailed overview on

how the brokering of media resources can effectively improve the scalability

of real-time multimedia applications.

4.3 Janus: a general purpose WebRTC gate-

way

As anticipated at the beginning of this chapter, the main purpose was to

design and implement a component that could take care of the “last mile”

requirements of a SOLEIL leaf node. Specifically, we highlighted how such

component should be able to act as a WebRTC gateway in Section 4.1, in or-

der to transparently interact with both the SOLEIL distribution network and

WebRTC viewers. Besides, we also noticed how a programmable and control-

lable implementation could help cover heterogeneous scenarios in a flexible

and dynamic way, which is why in Section 4.2 we introduced the efforts we

made on the MEDIACTRL specification within the IETF standardisation

work.

Janus: a general purpose WebRTC gateway 80

Figure 4.7: Bridging to different technologies

Starting from these assumptions, we eventually designed an implemented

a brand new WebRTC gateway called Janus, which we then released as open

source for the benefit of the whole researchers community. As it will be

clearer in the next sections, our contributions in the MEDIACTRL works

proved fundamental for designing a modular architecture for Janus as well,

that is something that could actually turn a specific tool like a WebRTC

gateway into a general purpose multimedia service.

Janus was also introduced to the research community in a paper that

described its architecture and features [49].

4.3.1 A modular architecture

Just as the well known Ancient Rome god had two faces, one looking at the

past and one at the future, our own Janus always has two faces as well: one is

WebRTC (the future), and the other is whatever technology it needs to inter-

act with. As such, it’s conceived to be able to allow for the implementation

of WebRTC-based media streaming, conferencing, recording, gatewaying to

legacy technologies and so on, as depicted in Figure 4.7.

In fact, the Janus gateway was explicitly conceived to be a general pur-

Janus: a general purpose WebRTC gateway 81

pose one. As such, it doesn’t provide any functionality per se other than

implementing the means to set up a WebRTC media communication with

a browser, exchanging JSON messages with it, and relaying RTP/RTCP

and messages between browsers and the server-side application logic they’re

attached to. Any specific feature/application is provided by server side plu-

gins, that browsers can then contact via the gateway to take advantage of

the functionality they provide. Example of such plugins can be implementa-

tions of applications like echo tests, conference bridges, media recorders, SIP

gateways and the like.

The reason for such a modular architecture is simple. We wanted some-

thing that would have a small footprint (hence a C implementation) and that

we could only equip with what was really needed (hence pluggable modules).

That is, something that would allow us to deploy anything ranging from a

full-fledged WebRTC gateway on the cloud to the small nettop/box you build

to handle a specific use case.

The reference architecture is depicted in Figure 4.8. As anticipated, we

designed it as a core with a specific set of responsibilities, and pluggable mod-

ules to provide specific features, namely support for legacy technologies and

protocols. As explained in Section 4.2, we were motivated in following this

approach from our former experiences within the IETF MEDIACTRL Work-

ing Group. As introduced before, this WG was devoted to the definition of a

standard way to implement an effective communication among Application

Servers handling application logic and Media Servers enforcing the related

media manipulation tasks. Communication relied on so-called control pack-

ages, allowing the usage of a generic protocol to drive the communication

between an application and one or more packages providing specific func-

tionality in a pluggable way. Considering the effective approach fostered by

MEDIACTRL, we chose to follow a similar path for Janus as well, with a

core handling the high level communication with users (management of ses-

sions and handles, concepts that will be introduced in the following sections,

and WebRTC-related protocols) and server-side plugins to provide specific

Janus: a general purpose WebRTC gateway 82

Figure 4.8: Janus modular architecture

functionality in a way that is transparent to WebRTC itself, and as such

independent of the web application.

Since this core was meant to implement the whole WebRTC stack in order

to be able to interact with WebRTC-compliant endpoints, we had to take

care of all the related media components, as highlighted in Chapter 3. As

reinventing the wheel is never wise, and considering WebRTC itself is partly

based on top of pre-existing technologies that were opportunely modified

or enhanced to better suit their requirements, we chose to rely on some

well known open source libraries to help us address the media requirements.

Specifically, we chose the libnice2 library to implement the whole ICE process,

the widely deployed openssl3 to take care of DTLS, libsrtp4 to implement the

secure SRTP cryptographic contexts, usrsctp5 as the SCTP stack needed for

Data Channels and finally Sofia-SIP6 as an SDP parser.

As anticipated, we had to tweak their usage in order to satisfy the addi-

2http://nice.freedesktop.org/wiki/
3http://www.openssl.org/
4http://srtp.sourceforge.net/srtp.html
5http://code.google.com/p/sctp-refimpl/
6http://sofia-sip.sourceforge.net/

Janus: a general purpose WebRTC gateway 83

tional requirements imposed by the WebRTC specification, namely Trickle

ICE, BUNDLE and Data Channels as introduced in Section 3.7. This al-

lowed us to focus on the more challenging steps of the design, that is how to

glue these components together and build a core that could be safely shared

among completely heterogeneous modules.

4.3.2 The Plugins interface

Since we were interested in making Janus a general purpose application,

we decided to devise the modular architecture introduced in the previous

section. Specifically, we wanted to have a core that could implement all the

WebRTC suite, and pluggable modules that could implement the application

logic instead, without having to worry about the complexities of the WebRTC

interactions. To do so, we designed a core architecture that recalled what we

had already done in MEDIACTRL with the Control Packages, that is some

kind of interface exposed by the core that external plugins could implement

in order to provide additional features to Janus.

This was exactly what we did when designing the Plugin API in the Janus

core. More precisely, we specified an interface composed of both methods

plugins could expose or callbacks by which they could contact the core. This

included basic methods to get generic versioning information about plugins

and more advanced method and callbacks to receive and relay RTP/RTCP

and data, handle plugin-specific messaging with the applications, and so on.

That said, the modular approach defined in MEDIACTRL and in Janus

are not identical. In particular, while the Control Packages as defined in

Section 4.2.2 could be shared on the same multimedia connection, e.g., to

first play an announcement and then attach the connection to a media con-

ference, in Janus each plugin has complete control over a specific PeerCon-

nection. While at a first glance this may seem limiting, this was actually

done by design and for some specific reasons. In fact, considering the het-

erogeneous and possibly very different nature of the plugins implemented in

Janus, each of those could have some very specific requirements in terms of

Janus: a general purpose WebRTC gateway 84

what they require of a media connection. For instance, a plugin implement-

ing audio mixing and conferencing functionality would only negotiate audio

in a PeerConnection and require some specific codecs to be supported; on

the other hand, a streaming plugin would require different characteristics of

a PeerConnection, which would need to be monodirectional and possibly de-

pending on the capabilities provided by an external encoder. As such, plugins

need to have an important voice as far as negotiation is involved, to ensure

the media channels they’ll be handling are compliant with the functional-

ity they expose. This means that sharing a PeerConnection among different

plugins, while possible, would indeed strongly limit the flexibility on what’s

negotiated, thus constraining it to something that is generic enough to be

shared. We decided not to add any limitations in this aspect, especially con-

sidering our purpose was to provide a modular architecture that could easily

be expanded and enhanced to cover scenarios that were not thought of when

specifying the interface.

This approach also proved actually more flexible that the one conceived

for MEDIACTRL for a different reason. In fact, when MEDIACTRL was

first designed the target was allowing an Application Server to control the

media being served on a single media channel: this meant that a user would

negotiate, by means of SIP, a single audio and/or video channel, and what

would travel across those channels was decided as part of the communication

between the Application Server and the Media Server. This explains why the

modular architecture conceived for Control Packages allowed them to share

the channel, as the same media connection would need to be used for all the

features provided by the packages. On the other hand, this single-channel

approach is quite limiting when envisaged within the context of WebRTC

applications: on the contrary, many applications actually make use of multi-

ple PeerConnections at the same time to provide rich multimedia scenarios,

e.g., in video conferences or similar applications. This multi-PeerConnection

approach convinced us that the plugin approach we chose for Janus could

actually allow for much more flexibility in deploying applications. In fact,

Janus: a general purpose WebRTC gateway 85

different plugins using different PeerConnections could be exploited together

as “bricks” for a much richer user experience: for instance, to implement a

Social TV application, where friends watch and discuss together a TV show,

a streaming plugin used for the TV broadcast could be exploited in con-

junction with a video conferencing plugin to address the video-based users

interaction. At the same time, the same plugins could be combined to imple-

ment a completely different application scenario, e.g., an e-learning platform.

For this reason, we explicitly conceived the plugin API not as a way to

design plugins that would implement a specific application, but only some

specific features or “bricks”. This way, the same plugin can be actually re-

used in several different contexts, and composed, at an application level, with

different plugins as well.

4.3.3 Interacting with the gateway: multi-transport
API

Of course, since Janus is supposed to be a controllable component, it’s es-

sential that it can be interacted with in a programmable way. To do so, we

derived yet another lesson from MEDIACTRL, that is we designed and im-

plemented an API that would take into account the pluggable nature of the

server side modules. As such, the Janus API, which is JSON-based, has a

generic header container, which can be used to interact with the core, while

at need plugin-specific payloads can be attached to interact with each mod-

ule’s application logic. The same applies to asynchronous event notifications

coming from Janus and originated by plugins.

As depicted in Figure 4.9, the API works in a pretty straightforward way:

whenever a user needs to send a message to a specific plugin, it can do so by

specifying the recipient using its handle identifier, and then attach a JSON-

based body that will be delivered by the Janus core to the plugin itself. This

JSON-based body is completely plugin-specific, which means each plugin is

absolutely open to design and implement its own messaging scheme, as long

as it doesn’t break the JSON constraint. Since it’s completely opaque to the

Janus: a general purpose WebRTC gateway 86

Figure 4.9: Janus API: REST, WebSockets and RabbitMQ

Janus core, there’s no other constraint imposed on these messages.

In order to take into account both the extensibility of the protocol and

the need to address the associations among application contexts, PeerCon-

nections and specific plugins, we introduced at the core level the concepts of

sessions and handles. A session is basically an applicative session between

a user/application and the core; a handle instead is the abstraction of a con-

nection between a user/application and a specific plugin, which means, as

explained before, that each handle is actually also the abstraction of a Peer-

Connection between the user/application and the plugin itself. From the core

and API perspective, each user/application usually mantains a single session

with Janus, while the session itself can be used to establish and handle one

or more handles with the same or different plugins. More handles, in fact,

can be established with the same plugin by the same user: to make a simple

example, in a video forwarding plugin, for instance, a user may use a handle

to send their own video in a video conference, and other handles to receive

the video coming from other participants. Besides, the ability to create more

handles with different plugins allows for the plugins-as-features composition

Janus: a general purpose WebRTC gateway 87

Figure 4.10: Janus API example: creating a handle to a plugin

in applications that was previously introduced. All users/applications can

then interact with the specific plugin instance by sending and receiving mes-

sages through the Janus API on the handle itself. An example of how this

approach can be used for interacting with a plugin is depicted in Figure 4.10.

As for the transport to be used to exchange these API messages, we added

support to three of those: (i) an HTTP-based REST API, a (ii) WebSocket

API, and (iii) a RabbitMQ API. The first two can safely be used directly in

a browser, meaning web users can interact with and control a Janus instance

directly from the browser. The third one, instead, was explicitly conceived to

allow server-side applications to control one or more Janus instance, and han-

dle the web based interaction their own way. All the three transport exchange

exactly the same kind of messages, which means they’re just different trans-

Janus: a general purpose WebRTC gateway 88

port for the same protocol. The only difference is in how the REST-based

API handles asynchronous notifications, due to the well known limitations in

push-based mechanisms in HTTP. As with the WebRTC-related components,

we chose to re-use some reliable libraries to support these transports, namely

libmicrohttpd7 for the HTTP REST interface, libwebsockets8 for WebSockets

and rabbitmq-c9 for RabbitMQ interaction.

WebRTC-related interactions instead work a bit differently. Specifically,

although the media will be made available to and from plugins for them

to act upon, the actual WebRTC negotiation process is handled directly by

the core. This can be explained by the fact that it will be Janus to be

responsible for verifying if any connectivity can be established by means of

ICE, of creating a secure media channel by means of DTLS and SRTP, and

eventually exchanging media and data with WebRTC-compliant endpoints.

This process is always the same no matter which plugin or application a

WebRTC PeerConnection will be used for, and as such it made sense to have

this taken care of at the core level. Nevertheless, plugins are not completely

ruled out of the process: specifically, since plugins will be responsible for

actually feeding the PeerConnections with data and/or receiving them from

browsers and other WebRTC-compliant endpoints, it’s very important that

they can speak for what is needed at a negotiation level, in order to make sure

the media they’re going to send and/or receive is compliant with what they

can do. As such, whenever a negotiation offer or answer is received by the core

to setup a new PeerConnection to attach to a plugin, its SDP gets stripped of

all the connectivity and WebRTC-related attributes (see IP addresses, ICE

information, DTLS fingerprints, and so on). This “anonymised” SDP will

eventually only contain media-related information, e.g., what kind of RTCP

feedback is supported, which codecs are being negotiated, their format and

so on, that is, exactly everything plugins actually need in order to figure

out whether they can indeed establish a communication with the WebRTC

7http://www.gnu.org/software/libmicrohttpd/
8https://libwebsockets.org/
9https://github.com/alanxz/rabbitmq-c

Janus: a general purpose WebRTC gateway 89

Figure 4.11: Janus API example: negotiating a PeerConnection with a plugin

Janus as the “last mile”: the Streaming plugin 90

peer. In the same way, plugins can craft an anonymised answer (if they

received an offer previously) or offer (if they’re going to initiate the media

communication) that will then be “enriched” by Janus with all the SDP

attributes needed for a successful setup of a media channel, that is ICE

candidates, credentials, DTLS finterprints, SSRC-retaled attributes and so

on. The whole process that has just been described is depicted in Figure 4.11,

which assumes a session and handle to a specific plugin have already been

setup as per Figure 4.10.

While apparently complicated, as it forces plugins to have to deal with

SDP that is notoriously not a very friendly protocol, this approach allows for

the maximum flexibility in writing new plugins or covering new scenarios,

independently of new codecs or formats that may appear in the future. In

fact, since Janus is completely opaque to the media encoding process (no

transcoding is done at the core, just relaying of media packets and control

messages), pretty much any codec can be successfully negotiated if both the

plugin and the WebRTC-compliant endpoint support it, whether or not this

codec was known at the time Janus was first implemented.

4.4 Janus as the “last mile”: the Streaming

plugin

The last sections hightlighted how this new component we designed and

implemented, Janus, could be used to bridge two heterogeneous multimedia

technologies with each other in an efficient and transparent way. Although

due to its flexibility we eventually ended up integrating Janus in several

multimedia scenarios we didn’t think of initially (more details about this

will be provided in Chapter 6), SOLEIL was of course the first and most

important scenario we wanted to tackle thanks to this new instrument at our

hand.

Specifically, as explained in the previous sections, the target was an im-

plementation that could satisfy the “last mile” requirement, and as such

Janus as the “last mile”: the Streaming plugin 91

make the raw RTP streams provided by the relays in the tree topology above

available to any interested WebRTC attendee. As such, we implemented an

ad-hoc plugin that would take care of multimedia streaming functionality,

using an external component as a SOLEIL relay node as the actual source of

the media. This plugin was conceived to be able to broadcast this incoming

feed to many WebRTC attendees at the same time and without any delays.

As such, a single Janus instance acting as “last mile” for a relay node can

actually be seen as an additional, and last, level of the tree topology that

constitutes the SOLEIL architecture.

From an implementation point of view, the plugin was relatively simple to

realise. In fact, as anticipated in Chapter 3, WebRTC does make use of RTP

and RTCP as its foundations for the media delivery and control, although in

a form that is enriched with additional feedback mechanisms. For what con-

cerns encoding, though, everything works pretty much the same way as with

legacy RTP/RTCP-based technologies like SIP. This means that the media

coming from SOLEIL was already in a format that was intellegible by We-

bRTC peers: all they needed was to be enriched with the WebRTC-related

layers like ICE and DTLS to be exploitable by browsers. Since the Janus

core takes care of this step for us, we just had to make sure every WebRTC

peer attaching to a specific streaming session in the Janus streaming plugin

could receive the frames: this meant taking care of the “anonymised” SDP

negotiation discussed in the previous sections, and exploit the callbacks and

methods made available by the Janus plugin API, which allow plugins to ask

for the delivery of media frames to a specific peer, besides making media sent

by them available to plugins as well. Once done that, all we had to do was

properly taking care of the RTCP messaging on both sides of the communi-

cation: that is, make sure we interacted with a SOLEIL relay node the way

it expects a peer node to do RTCP-wise, while at the same time taking into

account feedback coming from browsers to improve their experience.

Figure 4.12 illustrates a typical sequence diagram for the above mentioned

interaction: assuming a session has been created with Janus and a handle

Janus as the “last mile”: the Streaming plugin 92

Figure 4.12: Janus Streaming plugin example

Janus as the “last mile”: the Streaming plugin 93

attached to the Streaming plugin, the user can, through the Janus API, ask

the plugin to reproduce one of the available streams that is being originated

by the SOLEIL archutecture in the background. This results in the Streaming

plugin forging an SDP that describes the stream, e.g., in terms of codecs and

other media-related configuration. This SDP, which is “anonymised” as it

doesn’t provide any connectivity information, is handled by the core in order

to enrich it with WebRTC-related configuration data, i.e., ICE candidates,

DTLS fingerprint, etc. Besides, the Janus core also initialises the WebRTC

stack, in order to be ready when it’s time to set it up with the user. As

soon as the complete, enriched SDP is ready, it is sent to the user through

the Janus API as a notification, together with any message the plugin may

have provided. At this point, the user has a JSEP offer available, meaning

it can prepare a JSEP answer to complete the negotiation process. This

JSEP answer is sent back to Janus together with a message for the plugin.

The Janus core handles the JSEP answer it just received and uses it to

start the setup of the WebRTC PeerConnection: specifically, the ICE process

for establishing connectivity is started, to which the DTLS handshake will

follow. Both the JSEP answer and the message sent by the user are forwarded

to the plugin, which will complete the preparation of the playout, waiting

for the PeerConnection between the user and Janus to be ready. As soon

as it is, the Janus core notifies the plugin about it, which in turn realises

the user is ready to receive media. As a result of this final callback, the

plugin starts relaying the media it is receiving from the SOLEIL relay node

to the Janus core, addressing it to new user it is meant for, besides all

those who subscribed before. The Janus core, using the secure context and

ICE connectivity information it established before, can at this point enrich

the plain RTP/RTCP packet with the WebRTC layer, and send it over the

PeerConnection to the user, who will in turn decode and render it in its web

page.

An overview of the integration of Janus as the leaf node in the SOLEIL

architecture is depicted in Figure 4.13. As it can be seen in the picture, it

Janus as the “last mile”: the Streaming plugin 94

Figure 4.13: Janus as the leaf node in SOLEIL: “last mile”

refers to the previously introduced Figure 2.10: with respect to that picture,

the green box that acted as a placeholder for the leaf node is replaced by

a Janus instance; besides, the interactions on both sides are hightlighted as

well, with the plain RTP/RTCP coming from the SOLEIL side (a relay node)

and the session, handle and PeerConnection management that is instead

required on the viewers’ side.

As it will be clearer in Chapter 5, this last bit proved very important to

improve the quality of experience for end users, especially in the presence of

considerable packet loss.

Chapter 5

Experimentation and
Measurements

This chapter deals with the experimental campaigns we devised and imple-

mented, in order to evaluate the achieved results from both a functional and

performance perspective. Considering the focus of this doctoral thesis on the

“last mile” of the SOLEIL infrastructure, all of the campaigns were conceived

starting from the assumption that a relay node was more or less successfully

feeding a Janus instance acting as one of the leaf nodes. This allowed us

to focus on the effectiveness of Janus as the “last mile” in the architecture,

which would in turn allow us to properly dimension an actual deployment in

function of the specified target, e.g., in terms of how many viewers should be

supported for a live event.

Considering the web-based nature of the experimental campaign, this

immediately presented us with the first challenge, that is how we could effec-

tively simulate/emulate several different viewers being interested in receiving

a WebRTC-based live event. In fact, the usual tools that are commonly em-

ployed for simulating or generating a high volume of media requests cannot

be exploited for WebRTC scenarios too: most of these tools only focus on

purely web-based technologies, e.g., scenarios that only involve a HTTP- or

WebSockets-based interaction that needs to be stressed out somehow; other

tools, which are more oriented to the evaluation of real-time multimedia in-

frastructures, are not viable either, since they’re mostly targeted at very

96

specific technologies as SIP, and do not take into account the several ad-

ditional requiremements and functionality introduced in WebRTC. For this

reason, it was immediately obvious to us that we could only partly simulate

the client side of the tests, and that we would probably need to rely on actual

browser instances to act as the viewers in our scenarios. Of course, assum-

ing a person would be physically controlling these browser instances was out

of the question, as this would have substantially affected our capability of

scaling the testing campaigns to a high volume of requests we envisioned.

In order to take this requirement into account, we eventually decided

to rely on an approach that would allow us to remotely control a pool of

headless browser instances. We found in the Selenium Framework [50] the

perfect tool for the purpose, as it allowed us to do exactly what we needed,

that is deploy multiple browser instances on server machines, and control

them remotely and in a programmable way in order to have them execute

the web-based interactions required to setup a multimedia session with Janus

and subscribe to a stream originated via SOLEIL. While quite flexible, this

approach also allowed to actually have very realistic results, as all streams

would be actually transported as if real users were actually requesting the

streams.

To take into account the Quality of Experience (QoE) too, we also in-

cluded a subset of real users to the simulated ones, in order to evaluate the

perceived quality in a browser used in a regular way. As it will be clearer in

the next sections, and more specifically in Section 5.2 and Section 5.3, this

allowed us to identify a few areas where some fixes and enhancements were

due, especially with respect to the management of lost packets on either side

of the communication.

At the time of writing, the results presented in this section were also

the basis for a paper, called “Performance analysis of the Janus WebRTC

gateway” [51], that has been recently accepted at the “All-Web real-time

Systems” (AWeS 2015) workshop and is pending publication.

Design of the experimentation campaign 97

5.1 Design of the experimentation campaign

Before moving to the results of the experimentation, and especially to what

we identified as possible improvements on the platform, it is worthwhile to

describe the setup we prepared in order to assess the Janus performance.

The experiments we ran were focused on the server-side CPU, memory

and bandwidth consumption. The testbed we set-up envisaged on the server

side a single Janus instance (v0.0.8) running on a machine equipped with 16

Intel Xeon E5-2640 v2 @ 2.00GHz CPU cores, 32 GB of RAM, and hosting

an Ubuntu 12.04.5 LTS operating system. On the client side, as anticipated,

we leveraged the Selenium 2.0 framework1 in order to simulate the browser’s

behavior: a machine acting as ‘grid master’ dispatched browser allocation

requests to a number of registered hosts, each capable to run browser in-

stances, as depicted in Figure 5.1. Such hosts were all Linux PCs with 8

Intel Core i7-4770S @ 3.10GHz CPU cores and 16 GB of RAM. Selenium

allows to launch and remotely control any browser through the appropriate

“webdriver”. We chose to rely on what at the time of testing was the latest

stable version of Firefox (35.0.1) since, unlike Chrome, it did not implement

the audio-video BUNDLE techniques described in Section 3.7.3: this means

that audio and video streams would not share the same ICE component, thus

doubling the network resources Janus has to use when both audio and video

are negotiated as part of a session. In such a way, we put ourselves in the

“worst case” with respect to the server-side resources. In our tests, we used

“fake” media devices for both audio and video by passing the proper flag to

the getUserMedia() constructor: this allowed us to make the simulations

much easier and lighter to handle on the clients side, as no actual micro-

phone and webcam access would be needed, while still resulting in real audio

and video streams being sent and received.

All tests were conducted over a dedicated gigabit LAN.

The following subsections present the performance figures devised by

exploiting four of the Janus plugins, namely the videoroom plugin in Sec-

1http://www.seleniumhq.com

Design of the experimentation campaign 98

Figure 5.1: Selenium grid

tion 5.1.1, the audiobridge plugin in Section 5.1.2, the SIP plugin in Sec-

tion 5.1.3 and eventually the streaming plugin, the one of the most interest

for the SOLEIL platform, in Section 5.1.4. The reason for not analyzing just

the streaming plugin was simple: we wanted to assess the performance of

Janus in general, and consider whether or not further optimizations to the

role of “last mile” within the SOLEIL architecture could be envisaged by

involving other plugins. Not all plugins were tested, as we were mostly in-

terested in evaluating the performance of different aspects of the platform,

especially with respect to relaying vs. mixing in the Janus framework. Be-

sides, most of the other plugins could actually be considered as sub-cases

of the ones we studied: for instance, the videocall plugin can be seen as

two-participants video rooms when looking at performance, just as the SIP

plugin, from a media relay perspective, is not unlike the streaming plugin we

analyzed.

We studied the system behavior from two different angles: (i) by per-

forming a “stress test”, i.e., letting an ever-increasing number of participants

join the streams, or the rooms in case conferencing scenarios were addressed;

(ii) by reproducing a real-world scenario, i.e., an audio multi-point confer-

ence call with 20 participants. In the former case, we analyzed each plugin

performance individually, while in the latter we used collected data to com-

Design of the experimentation campaign 99

pare different possible approaches to provide the same service, as explained

in better detail in Section 5.1.5.

5.1.1 Testing the videoroom plugin

In this subsection we present the performance figures derived from stress

testing of the Janus videoroom plugin, which can be seen as some sort of au-

dio/video router, forwarding media streams from one or more users to other

participants in a programmable way. Two different roles were envisaged:

subscribers only received remote streams, while publishers both sent and re-

ceived Opus-encoded audio and VP8-encoded video. This is not unlike what

a Janus instance has to take care of when involved in a SOLEIL scenario,

with the difference being that in this case both broadcasters and viewers were

WebRTC-based, and were involved in a communication scenario (e.g., web

conferencing, e-learning, etc.). During our tests, we first made 10 publish-

ers join the videoroom, then we let 140 subscribers join as well. As already

anticipated, the videoroom plugin implements the SFU logic, hence the 150

participants envisaged by this scenario corresponded to 1500 PeerConnnec-

tions maintained by Janus. Figure 5.2 shows the CPU utilization level and

memory occupation in such a scenario. We noticed how memory load in-

creased quadratically with the number of publishers (participants 1 to 10).

This was expected since every time a new publisher joins, Janus creates a

new PeerConnection per each pre-existing participant. Then, it increased in

a roughly linear manner with the number of subscribers. We noticed peri-

odic “steps” in the memory evolution, which we are still in the process of

investigating in further detail through fine-grained profiling techniques. In-

tuitively, we believe such a phenomenon can be ascribed to the intensive use

of dynamic memory allocation both in the core of Janus and in most of its

plugins. With this type of memory management mechanisms, the system

typically reserves memory slots in the heap and starts gradually filling them

up. As soon as it runs short on free memory, it makes a new reservation.

The CPU load, instead, did not follow this pattern and always kept the same

Design of the experimentation campaign 100

Figure 5.2: Videoroom plugin: CPU and memory

growth trend.

Figure 5.3 plots the bandwidth usage. Each publisher sent both Opus

audio and a 640x480 VP8 video, generating around 180kbit/s towards the

server. Hence, the downlink traffic generated by publishers growed linearly

to 1.8Mbit/s. This value slightly increased toward 3Mbit/s as more and

more subscribers joined, accounting for signalling traffic, RTCP feedback and

possible retransmissions on each PeerConnection, as it will be discussed in

Section 5.2. On the other hand, uplink traffic had a quadratic evolution with

the number of publishers, for the same reasons already discussed for memory

load. Then, it increased almost linearly with the number of subscribers.

5.1.2 Testing the audiobridge plugin

When we aimed our stress tests at the audiobridge plugin, we found out that

mixing and transcoding media flows led the CPU load to increase in a roughly

linear way with the number of flows to be mixed. In fact, such operations

are in general quite demanding in terms of CPU resources: 200 participants

in a wideband (16kHz) audio mix took up around 73% of CPU as depicted

Design of the experimentation campaign 101

Figure 5.3: Videoroom plugin: bandwidth

in Figure 5.4. Memory occupation, instead, kept relatively small, as it did

not exceed 150 MB.

Finally, Figure 5.5 shows how uplink and downlink traffic followed the

same trend, as expected.

5.1.3 Testing the SIP plugin

This subsection shows the performance attained when we put under test the

SIP plugin. In this case, each participant joining made Janus generate a

SIP dialog with an external server, namely an Asterisk PBX and its echo-

test application. As Figure 5.6 shows, the CPU level increased linearly. 330

participants took up around 22% of the CPU. The memory consumption,

instead, presented the same behavior already discussed in Section 5.1.1.

For what concerns bandwidth, uplink and downlink levels were exactly

the same, as expected and sketched in Figure 5.7.

5.1.4 Testing the streaming plugin

As already anticipated, the streaming scenario can be seen as a particular

SIP scenario characterised by one-way media flows. As such, the same con-

siderations apply. CPU and memory evolutions we collected are depicted in

Design of the experimentation campaign 102

Figure 5.4: Audiobridge plugin: CPU and memory

Figure 5.5: Audiobridge plugins: bandwidth

Design of the experimentation campaign 103

Figure 5.6: SIP plugin: CPU and memory

Figure 5.7: SIP plugin: bandwidth

Design of the experimentation campaign 104

Figure 5.8: Streaming plugin: CPU and memory

Figure 5.8.

5.1.5 A real-world scenario: multi-point audio confer-
ence

In this subsection, we take a sample real-world scenario, namely a multi-point

audio conference involving 20 participants. Such scenario may be realised

by exploiting either the videoroom, or the audiobridge or the SIP plugin,

with different performance attained as we show in the following. As it will

be described in the next subsections, our aim was mostly to compare the

MCU and SFU approach. While both approaches try and put in contact

more participants at the same time, the way they do this differ. Specifically,

while an MCU usually mixes the contributions it receives in order to provide

participants with a single stream that is actually a composition of them all,

an SFU instead simply relays incoming streams according to a programmable

logic (e.g., who’s allowed to contribute and who’s allowed to receive what).

MCU vs. SFU

In this first comparative example, we implemented the aforementioned audio

conference service by leveraging the videoroom and audiobridge plugins. In

Design of the experimentation campaign 105

Figure 5.9: MCU vs. SFU: CPU and memory

the former case, of course, we disabled video functionality to obtain an audio-

only SFU, i.e., a component that would just relay audio packets to all the

intended recipients instead of mixing them. The latter, as the name suggests,

implements an audio-only MCU instead. Figure 5.9 shows CPU and memory

loads of the two approaches. CPU evolution over time is also depicted in

Figure 5.10, while bandwidth consumption is shown in Figure 5.11.

The results demonstrate that, using a wideband (16kHz) mixer in the au-

diobridge, MCU won over SFU whenever the number of participants went

beyond 8, as it ostensibly required less CPU, memory, and most importantly

bandwidth, as much less PeerConnections were needed. This seems to con-

tradict the general belief that mixing flows requires more resources than just

forwarding them: wideband Opus audio mixing proved to be a lightweight

enough operation that could be more or less easily performed without tak-

ing too many CPU cycles. It is worth remarking that the results provided do

not take into account video flows. Video mixing, in fact, is a quite heavier

task, which would probably lead to completely different outcomes.

Design of the experimentation campaign 106

Figure 5.10: MCU vs. SFU: CPU time evolution

Figure 5.11: MCU vs. SFU: bandwidth

Improving the QoE: NACKs and retransmissions 107

Figure 5.12: Local vs. remote mixing: CPU and memory

Local vs. remote mixing

In this subsection we compare local and remote mixing approaches. We refer

to local as the mixing functionality provided by Janus itself, while remote

are mixing features provided by an external component. To implement such

scenarios, in the former case, we leveraged the Janus audiobridge plugin; in

the latter, we exploited the SIP plugin which in turn forwarded flows to an

Asterisk server taking care of mixing through its ConfBridge application.

As clearly stated by Figure 5.12, remote mixing proved definitely prefer-

able when looking at CPU and memory consumption as key performance

indicators. On the other hand, whenever bandwidth is considered more crit-

ical (e.g., on Amazon AWS instances), local mixing may be the best choice,

as shown in Figure 5.13.

5.2 Improving the QoE: NACKs and retrans-

missions

The figures and evaluations presented in the previous sections were the ones

we collected after several iterations. Specifically, after each test we tried to

Improving the QoE: NACKs and retransmissions 108

Figure 5.13: Local vs. remote mixing: bandwidth

identify potential issues on both the client and server sides, in order to verify

whether or not any improvement could be done on the platform.

The first experimental campaigns, while effective from both a functional

and performance point of view, immediately highlighted a potentially serious

issue in terms of Quality of Experience. From time to time, in fact, real

users would experience issues in how the video they requested was presented

to them as part of the WebRTC session. Specifically, they would sometimes

experience heavy artifacts on the video, and at times the video would freeze

completely. This meant that, while we could be reassured by the ability by

Janus to effectively broadcast the incoming SOLEIL stream to a lot of users

at the same time, there also were issues that prevented this stream from

being actually experienced the way it was supposed to.

By studying the results of the campaigns and some captured data, we

identified the main cause of issue in some packets being lost between the

Janus instance and the affected browser instance. This was indeed to be ex-

pected, since RTP makes use of an unreliable protocol as UDP as its trans-

port. This is a choice made by design, as UDP allows for a much more timely

and effective delivery of media packets, no congestion or flow control being

Improving the QoE: NACKs and retransmissions 109

Figure 5.14: Packet loss on a viewer: local impact

involved; as a result, though, this can also lead to RTP packets being lost in

transmission, especially in case of congestion, and this packet loss, happening

on an unreliable channel, is by default unaccounted for.

This is not entirely an undesirable feature, especially when the main

target is making sure the media packets get to the other side as fast as

possible. In particular, this is less of an issue as far as audio is concerned,

since in that case the audio artifacts or holes are in general more acceptable

from a user experience point of view. Things get more complicated when

video is involved, though, since video is a visual medium which makes issues

that may arise much more evident. Specifically, packet loss on a video stream

can easily lead to more or less serious problems in the rendering, ranging from

simple artifacts in the video playout to complete freezes of the video image,

e.g., whenever the packet loss affects important packets like those carrying

key frames. Since the main purpose of Janus as a leaf node in SOLEIL is

providing a good quality monodirectional stream in real-time, such issues are

less tolerable than when they happen, for instance, in a regular video call.

As such, some mechanism to cope with this packet loss in a timely way, that

is without introducing too much latency, and possibly without affecting the

experience for other users, can be desireable.

Improving the QoE: NACKs and retransmissions 110

Figure 5.15: Packet loss on a broadcaster: global impact

Besides, the same issue may have either a local or a global impact, de-

pending on where this is happening. In fact, if everything’s fine within the

SOLEIL infrastructures and all packets are available down to the leaf node,

a lost packet between such a node and one of the viewers indicates a problem

that may affect a specific path, and as such is probably only limited to that

users and a few more. Other viewers may or may not be affected by packet

loss, which means that in this case the impact of the issue is local and more

manageable, as depicted in Figure 5.14. On the other hand, if the leaf node

is being used to allow a WebRTC user to actively broadcast a stream through

SOLEIL, packet loss may be happening there as well. In this case, a packet

being lost between the broadcaster and the leaf node would have a much

greater impact on the overall experience, as the same loss would be propa-

gated within the whole SOLEIL infrastructure, as depicted in Figure 5.15,

and as thus affect the user experience of all viewers, no matter where they’re

attached.

That said, this problem is indeed known by the IETF community, and

was addressed within the framework of the standardisation efforts. Specifi-

cally, the IETF community worked on some feedback mechanism that would

allow a user to notify their peer about specific packets being lost in trans-

mission: this way, the peer could decide whether or not to retransmit some

Improving the QoE: NACKs and retransmissions 111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=2P FMT PT Length

SSRC of packet sender

SSRC of media source

 Common
Header

Feedback Control Information (FCI)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 5.16: Common Packet Format for RTCP Feedback Messages

or all of the lost packets, in order to allow the affected user to have access

to the missing pieces of information before rendering the streams. Consider-

ing the existence of an RTCP control channel coupled with RTP sessions, it

made perfect sense to design this feedback mechanism as part of the RTCP

messaging. In particular, a new feedback message called Negative Acknowl-

edgment (NACK) [23] was specified for the purpose as an extension to the

generic feedback mechanics defined in RTCP. More in detail, the generic se-

mantics for RTCP feedback messages are depicted in Figure 5.16, while how

this is customised with respect to the Feedback Control Information (FCI)

for NACKs is illustrated in Figure 5.17 instead.

As depicted in Figure 5.16, All RTCP feecback messages basically share

the same pieces of information: apart from the common RTCP header, they

need to provide the synchronization source identifiers (SSRC) of both the

originator of the packet (who in the session is sending this feedback) and the

media source that this piece of feedback information is related to. This allows

the recipient of the feedback to be aware the message is meant for them, and

that they should act on it if needed. Of course, considering SSRCs are

involved, they should be handled accordingly in case a manipulation of those

is involved, as specified in 3.4.1. These feedack messages are then specialised

Improving the QoE: NACKs and retransmissions 112

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PID BLP
2

One or
more

Figure 5.17: Syntax for the Generic NACK message

in function of the PT and FMT information in the header: according to their

values, the FCI assumes a different meaning and can have a different syntax.

This allows for an easy and effective way to extend feedback messages by

envisaging an opaque payload.

This is exactly what is done with respect to the specialization of feedback

messages for NACKs. Specifically, whenever PT equals to 205 (the value of

RTCPFB, which stands for generic feedback on the transport layer) and FMT

equals to 1 (the unique identifier for NACKs), then the FCI assumes a specific

meaning and the NACK syntax is used to interpret the payload. The specific

syntax of NACKs is depicted in Figure 5.17. Each word is composed of two

different parts: (i) a Packet ID (PID) that is used to specify a lost packet by

its sequence number, and (ii) a bitmask of the following lost packets (BLP)

using the PID as a base. This allows for a synthetic report of multiple lost

packets in an easy way. Considering that more packets than those a single

PID and BLP couple may represent, more words can be part of the same

FCI: the length in the common header would be updated accordingly.

This feedback mechanism was exactly what was needed within Janus to

handle the packet losses affecting the user experience, especially considering

NACKs are part of the recommendations within the WebRTC specification.

As such, we implemented support for the reception of NACK feedback from

clients, in order to retransmit lost packets for them as needed. Such retrans-

missions were implemented following the related specification [52], which

describes an RTP Retransmission Payload specifically designed for this pur-

pose. At the same time, we implemented support for the generation of NACK

feedback as well: this allowed us to detect packet loss from a broadcaster,

and promptly react by asking for a retransmission of the missed packets.

This way, the retransmitted packets could be injected in the SOLEIL archi-

A further instrument for the QoE: Simulcast 113

tecture, and as a consequence prevent the global impact they might have on

users.

5.3 A further instrument for the QoE: Simul-

cast

The enhancements implemented as described in Section 5.2 did indeed im-

prove the performance and user experiences, as we could verify in our updated

experimental campaign. At the expenses of a slightly increased bandwidth

consumption, that is to be expected as a result of some retransmissions tak-

ing place, the experience for users in terms of video artifacts or freezes was

greatly improved thanks to the redundant information made available by the

leaf node.

That said, we did indeed notice that, while NACKs did indeed help in

coping with the packet loss issue, there were a few cases were they actually

made things worse, rather than better. This was the case for viewers on par-

ticularly slow or ill-performing networks. The experience for these viewers,

who were trying to access a stream whose bandwidth exceeded the through-

put they could handle on their networks, inevitably resulted in a considerable

packet loss. In this case, trying to cope with packet loss with NACKs and re-

transmissions actually made things worse, as the insufficient bandwidth for

the stream was further clogged by the retransmitted packets, which most of

the times were lost as well. Eventually, this resulted in a completely broken

experience for those viewers, as it was a situation from where they could not

recover without doing something other than NACK the lost packets. This

scenario is depicted in Figure 5.18 where a simplified view of a SOLEIL ar-

chitecture hightlights the difficulties of one of the viewers in getting a high

resolution stream being originated by a broadcaster.

There are, in principle, different ways to cope with this situation. One of

those could be to inform the broadcaster of such difficulties for one or more

viewers, and instruct it to lower the bitrate of the encoding in order to limit

A further instrument for the QoE: Simulcast 114

Figure 5.18: Too many retransmissions: making things worse

it to the point of it being more easily accessible to users in problematic net-

works. While this could be an effective solution, this is often not a desireable

approach for several reasons. In fact, as discussed when first introducing the

SOLEIL architecture, the stream made available by a brooadcaster is actu-

ally shared among all of the interested viewers, according to its descent as a

“waterfall” through all the relay nodes and down to the leaf nodes making

it eventually available to viewers themselves. This means that reducing the

bitrate on the encoder reduces the perceived quality not only for those view-

ers who could not cope with the previous bitrate, and would as such benefit

from such an operation, but also for those who were not experiencing issues

at all, who may very well be the majority of the audience. As such, this ap-

proach is usually not taken into account, or when it is, it is actually enforced

only up to a certain threshold that is considered the minimum acceptable

quality for a stream.

A different solution that is typically considered is to dedicate a separate

encoder for the flawed viewer, e.g., to reduce the bitrate just for the viewer

that is experiencing issues. This does indeed address the concern previously

stated about the shared nature of the encoding in the broadcaster, as in this

case the viewers who were not experiencing issues will not be affected and will

keep on receiving the higher quality stream, while the user in a problematic

network will receive an ad-hoc, lower quality and bitrate stream instead, e.g.,

be something they’ll be able to receive and display without issues. That said,

such an approach assumes that transcoding can take place somewhere in the

A further instrument for the QoE: Simulcast 115

network, e.g., in the SOLEIL architecture in one of the nodes. Anyway, this

was explicitly ruled out by design when the SOLEIL architecture was first

devised for a couple of important reasons. In fact, while transcoding allows

for a per-viewer content adaptation which can in some cases be desirable,

it also adds a considerable latency, as the stream can not just be relayed

but needs to be processed instead. Besides, transcoding is a quite heavy

operation, CPU-wise, and can definitely affect scalability whenever multiple

viewers need the same kind of care from the platform. As such, this solution

is not viable either, and we chose not to pursue it within our framework.

After studying the possible alternatives and evaluating pros and cons of

each, we eventually came to the conclusion that we’d have to rely on a solu-

tion that basically constituted a middle ground among those described above.

Specifically, we decided to rely on an approach called Simulcasting to address

the issue in a scalable way. This approach still works under the assumption

that different versions of the same stream are available, e.g., a higher and

a lower quality version of the same feed, which just as in the previous so-

lutions allows viewers which are experiencing problems to switch to a more

apt stream than the one they’re receiving. The difference is that these dif-

ferent versions are all originated at the broadcaster side, and no transcoding

or shared decrease of quality is envisioned in any part of the platform: it’s

the broadcaster that, in the capture and encoding process, generates differ-

ent versions of the same stream at different bitrates and qualities, and injects

them all within the SOLEIL infrastructure. This may or may not be done in

response to problems in a specific viewer instance: most of the times it’s not,

and is provisioned in advance, which means much less versions of the same

streams are needed with respect to the pure transcoding approach. From a

SOLEIL perspective everything works exactly as before: in fact, these differ-

ent versions of the stream are basically treated in a completely opaque way as

different streams, which means they can be propagated among the relaying

infrastructure separately from each other. From an application perspective,

instead, these streams can be related to each other, meaning that each viewer

A further instrument for the QoE: Simulcast 116

Figure 5.19: Simulcast: multiple versions of the same stream

can dynamically choose to switch among the available streams, whether vol-

untarily (e.g., because the user specifically requested a higher/lower quality

version) or not (e.g., it’s the leaf node that, in function of the feedback re-

ceived, decides that a viewer must be switched to a different version of the

stream automatically). This approach is depicted in Figure 5.19, which is

basically the following step to the issue identified in Figure 5.18: the broad-

caster makes available an alternative, lower bitrate version of the same live

event; this alternative version is notified to both the leaf nodes and the

viewers, and the viewer on the problematic network is switched to the lower

quality version of the stream, which does not result in the unrecoverable

packet loss anymore.

Chapter 6

Conclusions and next steps

The work carried out during the last three years as Ph.D. Student has been fo-

cused on large-scale multimedia streaming over next-generation IP networks.

The ultimate goal was to design an architecture having high scalability re-

quirements, dynamic “deployability” and web-access in mind, while taking

into account the outcome of the standardisation efforts conducted by the

World Wide Web Consortium and the Internet Engineering Task Force.

This lead my Ph.D. Student colleague Tobia Castaldi and I to design

an architecture that would address all those requirements, which we called

SOLEIL, as in Streaming Of Large scale Events over Internet cLouds and in-

troduced in Chapter 2. Then, as part of our respective doctoral activities,

we started working on separate aspects of the architecture, in order to even-

tually merge those efforts in a unified platform that would implement the

scenarios we envisaged during the design process.

In particular, while Tobia Castaldi devoted himself to the cloud-based

challenges of the platform, and in particular on the deployability and dynamic

reorganization of a SOLEIL network, I focused on the real-time multimedia

aspects, that is the distribution of flows among the involved nodes and, more

specifically, the delivery of these streams to end-users. As for the former,

I identified the required separation of responsibilities among the different

nodes that could constitute a SOLEIL network. The latter, instead, saw the

design and realization of a gateway component, called Janus, that could act

118

both as a “translator” between different technologies, namely SOLEIL and

WebRTC, and as a “last mile” that end-users could refer to in order to access

the flows made available in a SOLEIL instance. Both these activities lead me

to study and contribute to the standardisation efforts within the IETF, in

particular within the context of the Media Server Control (MEDIACTRL),

Sip Traversal Required for Applications to Work (STRAW) and Real-Time

Communication in WEB-browsers (RTCWEB) working groups. While the

standardisation activities, with special attention to WebRTC and to their

impact on legacy infrastructures, were discussed in Chapter 3, the actual

implementation of the “last mile” and the Janus framework was described in

detail in Chapter 4.

All the design and implementation efforts were eventually evaluated through

a comprehensive experimental campaign, aimed to assess both the functional

requirements and the performance of the Janus component. This experimen-

tal campaign, described in Chapter 5, convinced us that the efforts we had

devoted to this process had been well addressed, and that the milestones we

wanted to tackle had been successfully reached.

At this stage, only one last step remains within this research effort, that

is actually merging the successful results both my colleague Tobia Castaldi

and I reached within our respective responsibility areas as part of a wider

research activity. This will eventually allow us to focus on an important

aspect of this activity, that is the industrialization of these efforts.

As to this last aspect, it’s worthwile to mention that part of the activities

I conducted during my doctoral efforts has already been subject to industrial-

ization, and has proven quite fruitful also from a strictly commercial point of

view. In fact, as anticipated in Chapter 4, while the main target of the design

process was indeed to provide the means for a successful WebRTC translator

that could implement multimedia streaming, Janus was actually conceived as

a general-purpose WebRTC gateway. This lead us to the definition of a com-

pletely modular architecture, composed of a core and multiple, extensible,

plugins implementing the actual application logic. The motivation for this

119

Figure 6.1: Combining different Janus plugins: Social TV

came from our willingness to design something that could be easily extended

and enhanced in a modular way in the future, without having to re-design

or re-write any part from scratch, thus separating the aspects strictly re-

lated to the WebRTC interactions from those related to legacy technologies

or applicative considerations.

This choice proved much more successful than we initially thought, as

even during my doctoral activities on SOLEIL several opportunities pre-

sented to start working on related multimedia research efforts that were not

strictly related to multimedia streaming. Figure 6.1. and Figure 6.2 sketch a

couple of scenarios that can, for instance, be implemented by means of Janus

and some of its plugins available out-of-the-box, combined in a creative way.

As a matter of fact, these research efforts also turned into actual con-

sulting activities within the framework of my involvement in the Meetecho

spinoff. The huge flexibility provided by Janus and its modular architec-

ture, in fact, allowed us to address multimedia scenarios and applications

we didn’t even think of when first working on the framework. For instance,

as part of our consulting activities we have already helped several compa-

nies and developers implement, with the help of Janus and existing or new

120

Figure 6.2: Combining different Janus plugins: Screensharing with Q&A

plugins, web conferencing scenarios, collaboration platforms in the broader

sense, e-learning and webinar frameworks, Social TV applications and even

scenarios that belong to the Internet of Things (IoT) and Home Automation

ecosystem.

At the same time, Janus has also proved a quite valuable instrument to

third party developers and researchers. As anticipated, in fact, we released

Janus as a completely open source component, which allowed implementors

from all over the world to take advantage of its functionality and sometimes

even contribute back to the project with feedback, fixes and new ideas.

An interesting example of this can be found in the “Jumping Janus” ef-

fort. As part of a WebRTC contest called WebRTCfest1 and sponsored by

Parrot, a company specialised in building drones, a challenge was issued

among implementors to write an application that could take control over a

Parrot drone over WebRTC. Tim Panton and Neil Stratford, two well known

implementors within the real-time multimedia world, chose Janus as the foun-

1http://webrtcfest.com/

121

Figure 6.3: The Jumping Janus: overall architecture

dation to build their implementation2. The resulting architecture, depicted

in Figure 6.3, saw Janus as an intermediary between WebRTC endpoints (in

this case, a browser) and the non-WebRTC framework the Parrot drone was

based upon. In order to do so, they implemented a new plugin that would

implement the ARSDK API to interact with the drone programmatically,

and took advantage of the data channel and streaming functionality made

available by Janus itself.

The efforts eventually lead to a working prototype, a demo of which was

publicly made available as a video on YouTube (see Figure 6.4). This pro-

totype effectively allowed browser users to watch a live video as captured by

2https://babyis60.wordpress.com/2015/02/04/the-jumping-janus/

122

Figure 6.4: The Jumping Janus: live demo

the drone itself, and to control the drone using virtual commands to make

it move around a room or even jump. The result was so popular and suc-

cessful that the authors did indeed win the contest, something that, besides

making us proud for the part Janus had taken in it, furtherly convinced us

of the validity of our efforts.

Such an application, while not really useful per se if not to showcase the

possibilities of WebRTC-based drone scenarios, is a perfect example of the

incredible flexibility made available by Janus, a flexibility we aim to take

advantage of in even more challenging research activities in the near future.

Bibliography

[1] D. Wu, S. Member, Y. T. Hou, W. Zhu, Y. qin Zhang, J. M. Peha, and
S. Member, “Streaming video over the internet: approaches and direc-
tions,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 11, pp. 282–300, 2001.

[2] H. Parmar and H. Thornburgh, “Adobe’s Real Time Messaging Proto-
col,” tech. rep., December 2012.

[3] Microsoft, “Smooth Streaming Protocol,” tech. rep., May 2014.

[4] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE Multimedia, 2001.

[5] “Web Real-Time Communications Working Group Charter (W3C).”
http://www.w3.org/2011/04/webrtc-charter.html.

[6] “Real-Time Communication in WEB-browsers (IETF).”
http://tools.ietf.org/wg/rtcweb/charters.

[7] H. Schulzrinne, S. Casner, and R. F. et al., “RTP: A Transport Protocol
for Real-Time Applications,” RFC 3550, RFC Editor, July 2003.

[8] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Proto-
col (RTSP),” RFC 2326, RFC Editor, April 1998.

[9] V. Novotny and D. Komosny, “Large-scale rtcp feedback optimization,”
Journal of Networks,Vol. 3, No. 3, March 2008.

[10] M. Baugher, D. McGrew, and M. N. et al., “The Secure Real-time Trans-
port Protocol (SRTP),” RFC 3711, RFC Editor, March 2004.

[11] C. Holmberg, S. Hakansson, and G. Eriksson, “Web Real-Time Commu-
nication Use Cases and Requirements,” RFC 7478, RFC Editor, March
2015.

BIBLIOGRAPHY 124

[12] J. Rosenberg, H. Schulzrinne, and G. C. et al., “SIP: Session Initiation
Protocol,” RFC 3261, RFC Editor, June 2002.

[13] J. Rosenberg and H. Schulzrinne, “An Offer/Answer Model with the Ses-
sion Description Protocol (SDP),” RFC 3264, RFC Editor, June 2002.

[14] J. Rosenberg and C. Jennings, “RTCWeb Offer/Answer Protocol
(ROAP),” Internet-Draft draft-jennings-rtcweb-signalling-00, IETF Sec-
retariat, Oct. 2011.

[15] J. Uberti and C. Jennings, “Javascript Session Establishment Protocol,”
Internet-Draft draft-ietf-rtcweb-jsep-07, IETF Secretariat, Feb. 2014.

[16] P. Srisuresh and K. Evegang, “Traditional IP Network Address Trans-
lator (Traditional NAT),” RFC 3002, RFC Editor, January 2001.

[17] J. Rosenberg, R. Mahy, and P. M. et al, “Session Traversal Utilities for
NAT (STUN),” RFC 5389, RFC Editor, October 2008.

[18] J. Rosenberg, R. Mahy, and P. Matthews, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN),” RFC 5766, RFC Editor, April 2010.

[19] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Proto-
col for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” RFC 5245, RFC Editor, April 2010.

[20] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “NTRULO: A
Tunneling Architecture for Multimedia Conferencing over IP,” in Lec-
ture Notes in Computer Science - 10th International Conference on
Next Generation Teletraffic and Wired/Wireless Advanced Networking
(NEW2AN 2010), Springer-Verlag, August 2010.

[21] X. Chen, S. G. Murillo, and L. M. et al., “WebSocket Protocol as a
Transport for Traversal Using Relays around NAT (TURN),” Internet-
Draft draft-chenxin-behave-turn-websocket-01, IETF Secretariat, Sept.
2013.

[22] C. Perkins, M. Westerlund, and J. Ott, “Web Real-Time Communi-
cation (WebRTC): Media Transport and Use of RTP,” Internet-Draft
draft-ietf-rtcweb-rtp-usage-17, IETF Secretariat, Apr. 2014.

[23] J. Ott, S. Wenger, and N. S. et al., “Extended RTP Profile for Real-time
Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF),”
RFC 4585, RFC Editor, July 2006.

BIBLIOGRAPHY 125

[24] S. Wenger, U. Changra, and M. W. et al., “Codec Control Messages in
the RTP Audio-Visual Profile with Feedback (AVPF),” RFC 5104, RFC
Editor, February 2008.

[25] H. Alvestrand, “RTCP message for Receiver Estimated Maximum
Bitrate,” Internet-Draft draft-alvestrand-rmcat-remb-03, IETF Secre-
tariat, Oct. 2013.

[26] L. Miniero, V. Pascual, and S. G. Murillo, “Guidelines to support RTCP
end-to-end in Back-to-Back User Agents (B2BUAs),” Internet-Draft
draft-ietf-straw-b2bua-rtcp-05, IETF Secretariat, Mar. 2015.

[27] F. Andreasen, M. Baugher, and D. Wing, “Session Description Proto-
col (SDP) Security Descriptions for Media Streams,” RFC 4568, RFC
Editor, July 2006.

[28] D. McGrew and E. Rescorla, “Datagram Transport Layer Security
(DTLS) Extension to Establish Keys for the Secure Real-time Trans-
port Protocol (SRTP),” RFC 5764, RFC Editor, May 2010.

[29] J. Valin, K. Vos, and T. Terriberry, “Definition of the Opus Audio
Codec,” RFC 6716, RFC Editor, September 2012.

[30] J. Bankoski, J. Koleszar, and L. Q. et al., “VP8 Data Format and De-
coding Guide,” RFC 6386, RFC Editor, November 2011.

[31] E. Ivov, E. Rescorla, and J. Uberti, “Trickle ICE: Incremental Provi-
sioning of Candidates for the Interactive Connectivity Establishment
(ICE) Protocol,” Internet-Draft draft-ietf-mmusic-trickle-ice-01, IETF
Secretariat, Feb. 2014.

[32] C. Perkins and M. Westerlund, “Multiplexing RTP Data and Control
Packets on a Single Port,” RFC 5761, RFC Editor, April 2010.

[33] C. Holmberg, H. Alvestrand, and C. Jennings, “Negotiating Media
Multiplexing Using the Session Description Protocol (SDP),” Internet-
Draft draft-ietf-mmusic-sdp-bundle-negotiation-08, IETF Secretariat,
Apr. 2014.

[34] R. Jesup, S. Loreto, and M. Tuexen, “WebRTC Data Chan-
nels,” Internet-Draft draft-ietf-rtcweb-data-channel-11, IETF Secre-
tariat, June 2014.

[35] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, RFC
Editor, September 2007.

BIBLIOGRAPHY 126

[36] A. Amirante, T. Castaldi, L. Miniero, R. Presta, and S. P. Romano,
“Standard multimedia conferencing in the wild: the meetecho architec-
ture,” Multimedia Tools and Applications, Springer, September 2011.

[37] A. Amirante, A. Buono, T. Castaldi, L. Miniero, and S. P. Romano,
“Centralized Conferencing in the IP Multimedia Subsystem: from the-
ory to practice,” Journal of Communications Software and Systems
(JCOMSS), vol. 4, pp. 80–90, March 2008.

[38] A. Amirante, T. Castaldi, L. Miniero, and S. Romano, “On the seam-
less interaction between webrtc browsers and sip-based conferencing sys-
tems,” Communications Magazine, IEEE, vol. 51, no. 4, pp. 42–47, 2013.

[39] E. Ivov, H. Kaplan, and D. Wing, “Latching: Hosted NAT Traversal
(HNT) for Media in Real-Time Communication,” RFC 7362, RFC Edi-
tor, September 2014.

[40] T. Melanchuk, “An Architectural Framework for Media Server Control,”
RFC 5567, RFC Editor, June 2009.

[41] C. Boulton, T. Melanchuk, and S. McGlashan, “Media Control Channel
Framework,” RFC 6230, RFC Editor, May 2011.

[42] C. Boulton, T. Melanchuk, and S. McGlashan, “An Interactive Voice
Response (IVR) Control Package for the Media Control Channel Frame-
work,” RFC 6231, RFC Editor, May 2011.

[43] C. Boulton, T. Melanchuk, and S. McGlashan, “A Mixer Control Pack-
age for the Media Control Channel Framework,” RFC 6505, RFC Editor,
March 2012.

[44] A. Amirante, T. Castaldi, L. Miniero, and S. Romano, “Media Con-
trol Channel Framework (CFW) Call Flow Examples,” RFC 7058, RFC
Editor, November 2013.

[45] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Separation
of Responsibilities between Application Servers and Media Servers in
NGNs: A Practical Approach,” in Lecture Notes in Computer Sci-
ence - 8th International Conference on Next Generation Teletraffic
and Wired/Wireless Advanced Networking (NEW2AN 2008), vol. 5174,
pp. 199–211, Springer-Verlag, 2008.

[46] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, Protocol in-
teractions among User Agents, Application Servers and Media Servers:

BIBLIOGRAPHY 127

standardization efforts and open issues, vol. Intelligent Multimedia Tech-
nologies for Networking Applications: Techniques and Tools. IGI Global,
2012.

[47] C. Boulton, L. Miniero, and G. Munson, “Media Resource Brokering,”
RFC 6917, RFC Editor, April 2013.

[48] L. Miniero, “Improving the scalability of real-time multimedia applica-
tions using brokering of media resources.” InfQ 2013, June 13-14, 2013,
Sorrento, Italy, June 2013.

[49] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Janus: a gen-
eral purpose WebRTC gateway,” in Proceedings of the 7th International
Conference on Principles, Systems and Applications of IP Telecommu-
nications (IPTComm), Chicago, USA, October 2014.

[50] “Selenium Framework.” http://docs.seleniumhq.org/.

[51] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Performance
analysis of the Janus WebRTC gateway,” in All-Web real-time Systems
(AWeS 2015), Bordeaux, France, April 2015.

[52] J. Rey, D. Leon, and A. M. et al., “RTP Retransmission Payload For-
mat,” RFC 4588, RFC Editor, July 2006.

	Acknowledgments
	Introduction
	SOLEIL: design and architecture
	Streaming as an application
	Large-scale Streaming as a new use case
	Streaming Of Large scale Events over Internet cLouds
	The root node
	The relay node
	The leaf node
	The master node

	Managing the tree: the SOLEIL protocol
	Injecting new flows in SOLEIL
	Handling new subscriptions

	Within SOLEIL: relaying the media
	At the edge of the topology: the ``last mile''

	WebRTC media components
	The WebRTC Protocol Suite
	Signalling and Negotiation
	Session Description Protocol (SDP)
	Javascript Session Establishment Protocol (JSEP)

	Connection Establishment and NAT/Firewall Traversal
	Session Traversal Utilities for NAT (STUN)
	Traversal Using Relays around NAT (TURN)
	Interactive Connectivity Establishment (ICE)
	An open area for research: TURN over WebSockets

	Media Transport and Control
	Real-Time Transport Protocol (RTP)
	Real-Time Transport Control Protocol (RTCP)

	Security Extensions
	Datagram Transport Layer Security (DTLS)

	Codecs
	Audio codecs: G.711 and Opus
	Video codecs: VP8 and/or H.264

	Advanced Functionality
	Trickle ICE
	RTCP Muxing
	BUNDLE
	Data Channels

	First WebRTC integration: Meetecho as a ``real'' use case

	Janus: a general purpose WebRTC gateway
	A gateway? Why?
	A programmable approach: MEDIACTRL
	The MEDIACTRL architecture
	Control Packages and Extensibility
	Media Resource Brokering

	Janus: a general purpose WebRTC gateway
	A modular architecture
	The Plugins interface
	Interacting with the gateway: multi-transport API

	Janus as the ``last mile'': the Streaming plugin

	Experimentation and Measurements
	Design of the experimentation campaign
	Testing the videoroom plugin
	Testing the audiobridge plugin
	Testing the SIP plugin
	Testing the streaming plugin
	A real-world scenario: multi-point audio conference

	Improving the QoE: NACKs and retransmissions
	A further instrument for the QoE: Simulcast

	Conclusions and next steps
	Bibliography

