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Who, then, can calculate the course of a molecule?

How do we know that the creation of worlds is not

determined by the fall of grains of sand?

Victor Hugo — Les miserables



Abstract

Granular materials are widely diffused in industry as well as in nature,

but a reliable and effective description of their motion is still at a rather

early stage of development. Among the benchmark problems of granular

dense flow, the rotating drum is one of the most challenging, yet intrigu-

ing and technologically relevant. In proper ranges of operating conditions,

granular materials inside rotating drums display a continuum motion near

their free surface. The motion of those discrete systems has been studied

both experimentally and through Discrete Element Method (DEM) numeri-

cal simulations; however, it can also be regarded as the flow of a continuum

medium, thus allowing a continuum mechanics approach.

In this thesis, we solve the continuum dynamic equations by adopting

the visco–plastic JFP constitutive model (Jop et al., Nature 441, 727–730,

2006) for the stress tensor, and study the continuous flow of dry grains inside

axially rotating cylinders through 3D Finite Volume simulations (FVM). We

investigate the effect of the ratio D/dp between the diameters of cylinder and

particles, of the aspect ratio of the cylinder AR = width/diameter, of the

angular velocity Ω, and of the slip between drum wall and particles.

Numerical results are found to quantitatively agree with experimental

results from different authors, and also catches some distinctive features of

the drum flow of granular materials, such as, e.g., the existence of axial

components of the surface velocity, or the differences of the flow fields near

the lateral wall and at the center plane, ect.

Our simulations demonstrate that the basic physics of the dense granular

flow is captured by the simple JFP model, and that continuum mechanics

can be used to get a physical insight in granular dense state phenomenology.

CFD simulations may then be of help to rationalize the broad wealth of

experimental results with these materials.
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1
Introduction

Granular materials are widely diffused in industry as well as in nature. It has

been estimated that more than 50% of sales in the world involve commodities

produced using granular materials at some stage, which makes granular me-

dia the second most used type of material in industry after water (Andreotti

et al., 2013). The fields of interest for granular materials are numerous and

their application ranges from pharmaceutical (Khalilitehrani et al., 2013) to

food industries, from geophysics to planetary science, from ores to polymers

processing (Meier et al., 2007).

Industries dealing with such materials often rely on trial and error exper-

imental protocols and on the experience gained in their particular process.

Indeed, granular materials still lack a unified theoretical framework and their

proper description is still today an edge–problem in physics (Science2005).

Those difficulties do not (only) depend on the great variety of such materi-

als, since they arise even with “model granular media”, like hard spherical

mono–disperse discrete systems in flow: granular macroscopic behaviors are

not clearly linked to particles interactions (GDR MiDi, 2004; Ottino, 2006)
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Figure 1.1: Steel beads on an inclined plane. Three regimes are si-

multaneously present: the bouncing spheres on top behave like gaseous

“molecules”; the “flowing” beads in the middle resemble usual fluids

and the jammed beads at the bottom behave like an elastic solid. From

Forterre and Pouliquen (2008).

and a clear–cut length/time scales separation might be lacking in such sys-

tems (Andreotti et al., 2013), as it seems to be suggested by (e.g.) the

observed formation of clusters with dimensions going from grain size up to

the dimension of the flow (Bonamy et al., 2002a).

Besides their industrial importance, granular materials represent an ex-

citing challenge in physics since the very first work of Coulomb, who inves-

tigated the stability of granular heap in 1773 (Andreotti et al., 2013). More

than two centuries later, Osborne Reynolds said: “I have in my hand the

first experimental model universe, a soft India rubber bag filled with small

shot”. Indeed, part of their charm comes from their ability to mimic differ-
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ent states of matter: they can act like gas, liquid, solids (see Figure 1.1) and

they can even show glassy behaviors. When sheared, granular materials can

expand, showing a rate–dependent dilatancy (Reynolds, 1885; Faqih et al.,

2006) that might depend on the inter–grain friction (Peyneau and Roux,

2008). In addition, the behaviors of a granular system can depend upon its

past history (Ottino, 2006; Kadanoff, 1999; Andreotti et al., 2013; Zheng and

Yu, 2014). The dynamics of such materials, which Jaeger et al. (1996) ad-

dressed as “unusual”, is still as elusive as when de Gennes (1999) said “ [. . . ]

even for the simplest “dry” systems, the statistical physics of grains is still in

its infancy. [. . . ] The link between mechanics, tribology, statistical physics,

surface chemistry, . . . remains to be built”.

Despite all the difficulties, some theoretical advances have been made, es-

pecially for the cases of granular solids, i.e. in the dense quasi–static regime

in which the deformations are very slow and the particles interact by pro-

longed frictional contacts (Roux and Combe, 2002), and in granular gases,

in which the flow is very rapid and dilute, and the particles interact by col-

lisions (Goldhirsch, 2003). In contrast with the solid and gaseous behaviors,

the theory for dense liquid regime, in which the material flows in a liquid–like

way, is still at a rather early stage of development.

In the absence of a solid theoretical framework for granular dense flow,

many descriptions rely on numerical simulation or on analytical simplified

models. Even if granular materials seem tailor–made for a discrete viewpoint

description, there is a great debate in literature on whether a continuum

description, especially through fluid–like dynamical equations, is feasible at

all (Haff, 1983; Kadanoff, 1999; Gollub, 2003; Depken et al., 2006; Goldenberg
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et al., 2006; Meier et al., 2007; Rycroft et al., 2009; Andreotti et al., 2013;

Zheng and Yu, 2014).

The recent contribution of Jop et al. (2006) find its place in this ongoing

debate. They proposed a constitutive equation (hereinafter the JFP model),

for the stress tensor of granular media, relying on dimensional arguments.

Such a constitutive equation has been tested on some simple geometries

and/or flow conditions, showing a remarkable agreement with experiments

(Baran et al., 2006; Forterre, 2006; Lagrée et al., 2011; Staron et al., 2012).

However, to our best knowledge, it has not yet been tested in a fully 3D

complex geometry.

1.1 Work motivation

The aim of this thesis is to apply the JFP model to the fully 3D complex

flow situation represented by the flow of dry monodisperse grains inside an

horizontal half–filled cylinder rotating about its axis, the so called rotating

drum problem, which is considered a benchmark for dense granular flow.

The thesis is organized as follows: a review of the literature is given in

Chapter 2 along with a description of the JFP model; the model equations

and their solutions are discussed in Chapter 3; in Chapter 4 some novel results

will be presented and discussed; finally, in Chapter 5, some conclusions are

drawn, and future perspectives are outlined.



2
Literature overview

2.1 Generalities on rotating cylinders

Using the words of Seiden and Thomas (2011), “The rotating drum is partic-

ularly associated with the study of dense granular flows”. Rotating cylinders

are hollow cylindrical containers filled (partially or totally) with grains and

put in rotation about their axes. The system is subjected to non–trivial

dynamics caused by a gravity–driven non–homogeneous flow (GDR MiDi,

2004), and displays a wide variety of possible behaviors and flow configura-

tions (Seiden and Thomas, 2011).

This configuration is frequently used as model for many problems, here

included mixing and/or segregation of grains, suspension or emulsion dy-

namics. The dynamics in these cases can be very complex and the systems

present peculiar segregation patterns (Metcalfe and Shattuck, 1996; Ottino

and Khakhar, 2000). Although the analysis of such dynamics is beyond the

scope of this work, it is apparent that a robust and reliable description of the

“simple” flow dynamics inside rotating cylinders would eventually be quite
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Figure 2.1: Flow configurations table by Mellmann (2001).

beneficial. In this review of the literature about granular flows inside rotat-

ing cylinder only works regarding the flow characterization will be reported,

leaving aside the vast literature on granular segregation and mixing happen-

ing in rotating cylinder (see Ottino and Khakhar, 2000, for a review of the

literature on those topics).

The rotating drum problem has its origin in the industrial problems in-

volved in processing granular materials: drying/humidifying , mixing, heat-

ing/cooling or calcining processes make often use of rotating cylinders in

order to keep the material in motion and to process it in a uniform manner.

It is then important to model such flows, and phenomenological models be-

gan soon to be published (Vàhl and Kingma, 1952; Kramers and Croockewit,

1952; Franklin and Johanson, 1955; Scott et al., 2008).

Great effort to classify the flow behavior of granular materials in rotating

cylinders was spent by Henein et al. (1983), who proposed the use of “Bed

Behavior Diagrams” to conveniently delineate the different flow behaviors.
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The most thorough systematization of the possible granular flow configura-

tions was proposed by Mellmann (2001), who identified several flow regimes,

shown in Figure 2.1, and the transitions among them by means of model

calculations.

Mellmann identified three basic form of the flow, namely the slipping mo-

tion, at low filling and low friction, where the grains do not flow and move

as a bulk; the cascading motion, at medium rotational velocities, character-

ized by the onset of a liquid–like flow; and the cataracting motion, when the

centrifugal acceleration is comparable with gravity.

The slipping motion occurs when the friction between the cylinder walls

and the grains is sufficiently low. When walls are very smooth sliding may

be observed, which is characterized by a bed constantly sliding on the wall.

With increasing wall friction, sliding turns into surging. This type of motion

is characterized by periodic alternation between adhesive and kinetic friction

of the bed on the wall. Those regimes does not involve a proper flow of the

material but a bulk motion of the entire bed.

When the friction increases, the granular bed starts to flow. When the

rotation velocity are low, the slumping flow may occur. This flow consist in

a series of successive distinct avalanches. As the rotational speed increases, a

transition to rolling flow takes place, and the discrete sequence of avalanches

evolves into a single continuous motion in the upper part of the bed. As

the rotational speed further increases, the bed surface begins to arch and

cascading sets in.

At high rotational velocities the typical arch of the cascading regimes

became so pronounced that it eventually breaks up and particles are thrown
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Figure 2.2: Sketch of the geometry and of the flow. The shaded area is

the flowing layer, h its depth; D and W are the diameter and the width

of the cylinder, Ω the rotation rate.

off into the free space of the cylinder. This regime is called cataracting. At

extremely high rotational velocities centrifuging sets in, and the granular bed

coats the whole inner surface of the cylinder and moves attached to it as a

solid.

In this thesis only the rolling and the cascading regimes will be considered.

Those non–uniform flows are characterized by the co–existence of a fixed bed

that rigidly rotates, following the cylinder, and a continuously fed flowing

layer (the shaded area in Figure 2.2), just below the free surface. Since

only half–filled cylinders will be considered, the relevant quantities for the

description of the flow are: the diameter D and the width W of the cylinder,

the rotation rate Ω, and the physical properties of the grains, like their mean

diameter dp and some other, used to describe their rheology, which will be
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discussed in Section 2.5. These parameters are usually arranged in three

dimensionless groups: the Froude number Fr, which is the ratio between the

inertia and the gravity, the diameter ratio D/dp and the aspect ratio AR.

Fr =
(ΩR)2

gR
=

Ω2R

g
,

D

dp
, AR =

W

D
. (2.1)

2.2 Review of experimental literature

Since grains are opaque, the interior of the flow can not be investigated with

optical methods. On one hand this makes the study of granular material

experimentally challenging, requiring complex procedures and apparati. On

the other hand it pushed the past works toward simple approaches, like

measuring quantities directly available to naked eyes (or to fast cameras),

such as, e.g., the flow near a transparent end wall, or the free surface of

the flowing grains. The observable available in the latter examples of “direct

measurements” are the velocity profiles along the depth of the granular phase

and on its free surface, the depth of the flowing layer (h in Figure 2.2), the

dynamic angle θ (i.e. the angle between the free surface and the horizontal

plane), and the shape of the free surface. Such measurements are usually

performed in very narrow cylinders (quasi–2D cylinders), in order to avoid

flow in the axial direction.

In order to investigate the flow inside the material a non–invasive exper-

iment has to be devised. Two approaches have been used in this sense: one

relies on the use of Magnetic Resonance Imaging (MRI) techniques (Naka-

gawa et al., 1993), which allows to capture a snapshot of the whole flow field;
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Figure 2.3: Sketch of the free–surface profile. From Rajchenbach

(1990).

another relies on the Positron Emission Particle Tracking (PEPT) (Parker

et al., 1997, 2005), which allows the tracking of individual trajectories. Those

are very complex experiments and their space and time resolutions are quite

lower than those pertaining to direct measurements (∼ 0.3s e ∼ 0.8mm for

the MRI (Nakagawa et al., 1993), ∼ 1/20s (1/250s) and ∼ 2mm (5mm) for

slow (fast) particles for PEPT (Parker et al., 1997)). Nevertheless, such ex-

periments allow for the inspection of the inside of the flow far from end walls,

while the quasi–2D approaches cannot avoid wall effects. We believe this to

be a crucial point: even if it is commonly accepted that there is a strong in-

fluence of the lateral wall on the flow (Pignatel et al., 2012; Jop et al., 2005;

Pohlman et al., 2006a; Chen et al., 2008; Dury et al., 1998; Maneval et al.,

2005), most of the experiments are in fact performed in the worst condition,

i.e. by looking at grains near a wall.

Rajchenbach (1990) performed one of the first experiments on granular

flow inside rotating cylinders from a pure–research (rather than technologi-

cal) point of view, prompted by previous works on granular avalanches (e.g.

Jaeger et al., 1989). He studied the transition between slumping and rolling
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(i.e. between separate avalanches and continuous flow) in a cylinder with

D = 19cm half–filled with particles having diameter dp = 0.3mm and ob-

served the gradual arching of the free surface, which eventually attained a

pronounced S–shape (see Figure 2.3). He linked this behavior to the in-

terplay of the centrifugal force and the gravity: while the former tends to

maintain the particles attached to the wall, the latter pushes them down into

the flowing layer; the result is that beyond a certain rotation rate Ω particles

are launched into parabolic trajectories. He also observed a quadratic de-

pendence of the rescaled dynamic angle on the angular velocity θ− θs ∝ Ω2,

θs being the angle of repose.

Orpe and Khakhar (2001) considered quasi–2D cylinders filled with three

different grains (steel, glass and sand) and studied the effect of the Froude

number Fr and dp/R on θ, h and the shape of the free surface. They found

that h/R increases with increasing Fr and dp/R. The dynamic angle θ

showed a non–linear increase with the angular velocity Ω, but it did not

scale with Fr or dp/R. The free surfaces at the wall for the various materials

were found to collapse when Fr and dp/R are held constant. The authors also

compared their results with the models by Elperin and Vikhansky (1998),

which showed good agreement for low Fr, and Khakhar et al. (1997), who

was in agreement with the data over the entire range of Fr.

Jain et al. (2002) studied the flow of glass particles inside quasi–2D ro-

tating cylinders, obtaining a linear velocity profiles in the flowing layer with

an exponential tail in the rigidly rotating part. A creep motion in jammed

grains has also been observed in heap flows by Komatsu et al. (2001). Jain

et al. (2004) also studied the influence of the interstitial fluid.
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Alexander et al. (2002) studied the surface flow of glass beads with dp =

1.6mm in rotating cylinder with the same width W = 30cm and different

diameters. They found two different scalings, for high and low velocities, for

the streamwise velocity on the free–surface at the center of the cylinder, but

they did not report any dependence on the aspect ratio.

Taberlet et al. (2003) observed experimentally what they called “super-

stable granular heap”: when the flow rate is sufficiently high and the heap

sufficiently narrow, the grains flow at considerably higher angles than the

angle of repose. They suggested a linear scaling of the “big” dynamic angle

with the ratio between the flow thickness and the width of the heap h/W .

A review of experimental data obtained by investigating the flow close

to the lateral wall can be found in GDR MiDi (2004) and Pignatel et al.

(2012). GDR MiDi (2004) reviewed the main experimental results for each

of the six configurations in which granular flows are studied. With regards

to the rotating cylinder problem, the French group analyzed data collected

from Orpe and Khakhar (2001); Bonamy et al. (2002b); Félix et al. (2007)

and from some private communications. They analyzed the rotating drum

and the heap problems in the same section, since both of them present a

flowing layer on top of a fixed bed, and found that the parameter giving the

best scaling was the dimensionless 2D flow rate Q∗, which can be expressed

in terms of our dimensionless parameters as (Pignatel et al., 2012):

Q∗ =
Q

dp
√
dpg

=
1
2
ΩR2

dp
√
dpg

=

√
2

8
Fr

1
2

(
D

dp

) 3
2

where Q = 1
2
ΩR2 is the planar flow rate of material brought up by the rigid
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Figure 2.4: Density plots of the axial velocity magnitude on the free–

surface of the flowing layer for various AR. The cylinders are drawn

to scale. Their L is the width of the cylinder, here called W . From

Pohlman et al. (2006a).

rotation in half–filled cylinders.

They found that the velocity close to the wall of quasi–2D cylinders is

linear with the depth and that the dimensionless thickness of the flowing

layer h/dp scales with
√
Q∗. This is what one would obtain by hypothesizing

a constant shear rate in the flowing layer, consistently with the linear velocity

profile, and solving the flux balance for the thickness h. This seems to be a

quite robust result, but it comes form near–wall data; in Chapter 4 we shall

discuss it further. GDR MiDi also noted a decrease in the dynamic angle θ

with increasing cylinder width, i.e. with AR, even if the aspect ratio was not

the only different parameter from one dataset to another.

Pohlman et al. (2006b) analyzed the effect of the particle surface rough-

ness on the flow inside quasi–2D cylinders, finding an increasing of the dy-
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namic angle θ with the roughness. Pohlman et al. (2006a) studied the surface

velocity on the free surface of 3D cylinders. To get rid of the optical distor-

tion of the lateral wall, the authors cut out a quarter of the cylinder and set

the camera as to film through the opening. This meant, however, that they

could acquire data only on one quarter of one whole cycle. They measured

the axial flow in dependence of the diameter and the width of the cylinders

and presented contour and density maps of the axial velocity, the latter shown

in Figure 2.4. The axial flow is directed toward the center in the upper part

of the free surface and toward the end walls in its lower part. They observed

for the first time a velocity near the wall ∼ 20% higher than that at the

center of wide cylinders, even if the particles closer to the wall were slower

due to friction (see Figure 2.5). Looking at the contours of axial velocity

the authors could deduce the range of wall effects as the distance at which

the axial flow is negligible, finding it to be of the order of the diameter of

the cylinder. This is in strong disagreement with the accepted idea that the

range of wall effects is of the order of few beads diameters (Courrech du Pont

et al., 2003; GDR MiDi, 2004; Boltenhagen, 1999; Grasselli and Herrmann,

1997), but in qualitative agreement with Dury et al. (1998) who found that,

for D/dp > 15, the range of the wall effects is 0.14D and with Chou and Lee

(2008), who reported wall effect even 57dp away from it.

Orpe and Khakhar (2007) studied the velocity profiles in a quasi–2D

cylinder. They always found a linear profile in the flowing layer which decay

exponentially in the rigidly rotating zone with a characteristic length of decay

of ∼ 4dp.

Chou and Lee (2008) analyzed the effects of the filling degree, aspect ratio
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boundary flow condition at the beginning and end of the
flowing layer as particles exit and enter the fixed bed of
material. Since the boundary flow cannot continuously grow
in width, a higher streamwise velocity occurs near the end

wall to accommodate the flux of particles entering the flow-
ing layer.

The dependence of the streamwise surface velocity profile
on the position along the flowing layer at the axial center of
the tumbler, u�x /R ,z /H=0�, is approximately parabolic for
all of the cylinder lengths, similar to previous results
�2,23,24�, as shown in Fig. 8 for both glass particle sizes.
Here, the velocity is nondimensionalized in two ways: the
top row shows velocity of �a� 1 mm particles and �b� 2 mm
particles nondimensionalized using the system level time
scale 1 /�; the scaling for the bottom row incorporates the
particle level time scale �d /g for �c� 1 mm particles and �d�
2 mm particles. With either scaling, the highest velocities
occur in the narrowest tumblers. When the velocity is scaled
by �R, the 1 mm particles reach a higher streamwise surface
velocity in the narrower tumblers than the 2 mm particles
�upper profiles in �a� and �b��. The velocity profiles for the
two particle sizes are very similar when the axial length is
large �lower profiles in �a� and �b��. The difference in the
velocity profiles for the narrowest tumblers �upper profiles�
suggests that system level time scales do not characterize the
velocity when the axial length is small. However, the particle
level scaling using �g /dR results in similar magnitudes for
the narrowest tumblers �upper profiles in �c� and �d��, though
the magnitudes for longer tumblers differ substantially
�lower profiles�. This result is not surprising given that the
axial dimension is approaching the length of a few particle
diameters for narrow tumblers.

The streamwise velocity profiles are asymmetric with re-
spect to the midlength of the flowing layer as particles con-
tinue to accelerate past this point. This acceleration beyond
the midlength of the flowing layer likely contributes to the
higher axial velocity in the downstream region of flow in
Fig. 6�b� than in the upstream region in Fig. 6�a�. Since
particles accelerate beyond the midlength of the flowing
layer, there is a shorter downstream distance available for the
particles to move back toward the end walls, thus increasing
the downstream axial flow. The maximum streamwise ve-
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Figure 2.5: The streamwise surface velocity as a function of the axial

position. From Pohlman et al. (2006a).

and angular velocity of the cylinder on the velocity of the grains. They found

a good scaling with the dimensionless flow rate Q∗. They also registered an

error in the mass balance between the grains brought up by the rotation and

those flowing down at the wall; in particular, they found that the former

is less than the latter. Coupling this evidence with the observation of a

lower velocity in the center of a cylinder with respect to that near the wall

(Maneval et al., 2005; Pohlman et al., 2006a), one might explained this with

an underestimation of the flow thickness far from the wall. This is an indirect

indication of the fact that h should increase going from the wall toward the

center of a cylinder.

Félix et al. (2007) reported a monotonically increasing scaling of the dy-

namic angle and the flow depth with the rotational velocity; they found,
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however, a wide exponent range for the power law dependency of the flow

depth on the rotational velocity, with values going from 0.17 to 0.68, depend-

ing on the ratio D/dp. The angle is also found to increase with decreasing

width, even if an appropriate parameter to collapse the data is not proposed.

It has to be noticed that the authors did not consider the width of the cylin-

der as an important parameter, so they simply reported its value, without

controlling it thoroughly.

Pignatel et al. (2012) analyzed a collection of data from literature on

quasi–2D cylinders (Orpe and Khakhar, 2001; Félix et al., 2007; Jain et al.,

2004; Khakhar et al., 1997; Jain et al., 2002). They registered a scatter of

the power law index of h/dp versus Fr as well, but found a better scaling

with
√
Q∗. The authors could not explain their data with the JFP model,

probably due to the poor estimates of its parameters or because of the very

narrow cylinders (W < 22dp).

There are few works dealing with the measurements of flow properties at

the center of a wide cylinder. As already said, this is allowed by MRI and

PEPT technologies, but it comes with a price in terms of spacial/temporal

maximum resolution. Nonetheless those techniques are currently the only

way to look at the behaviors of dry grains deep into the material.

Nakagawa et al. (1993) conducted the first experiment on dry granular

materials with a non–invasive technique. He used the Magnetic Resonance

Imaging (MRI) to study the flow of mustard seeds inside a wide rotating

cylinder. The most important result of this work is the earliest experimental

measurement of the concentration profile inside the flowing layer. The au-

thors reported density plot of both velocity and concentration in the center
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of the drum. It’s clearly visible that the flowing layer has a sensibly lower

grain concentration than the rigidly rotating part. The same authors also

applied MRI to segregation (Nakagawa, 1994; Nakagawa et al., 1997).

MRI experiment allows comparison between the center and the wall of

rotating cylinder. Yamane et al. (1998) and Dury et al. (1998) focused on

the differences between the dynamic angles at the center θc and the wall θw

of a cylinder filled with mustard seeds. They both found that the dynamic

angle was ∼ 5° higher near to the wall than at the center of the cylinder

at all the angular velocities explored, with an exponential decay of θw in

∼ 0.14D. This is the first time that the wall effect is reported to scale with

a macroscopic scale (D) instead of a microscopic one (dp).

Maneval et al. (2005) and Sanfratello et al. (2006) focused on the velocity

profiles differences between center and wall. Both reported a velocity profile

obersving the following equation in the flowing layer at both center and wall:

v(r) =


−vtop

(
1− r

h

)2

+ Ωr r < h

Ωr h < r < R

where vtop is the maximum velocity, on top of the free surface, h the depth

of the flowing layer, Ω the angular velocity and R the radius of the cylinder.

Maneval et al. (2005) reported an higher velocity at the center with respect

to that at the wall (see Figure 2.6(a)). Sanfratello et al. (2006) found the

same profile at higher angular velocities, provided that the free surface is

kept flat by a paddle to avoid the arching. They suggested that a parabolic

velocity profile might be a fundamental properties of granular flows.
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(a) (b)

Figure 2.6: Velocity profiles measured with MRI (Maneval et al., 2005)

(a) and PEPT (Ding et al., 2001) (b).

Another technique to study the flow inside an opaque material is the

PEPT. Parker et al. (1997) performed the first experiment with such tech-

nique in rotating cylinders. They used glass spheres of various diameter in a

long cylinder at 33% filling degree, obtaining the velocity field at its center.

The authors reported a non–linear velocity profiles in the flowing layer and

the distributions of angular velocity in the fixed bed. Some of the veloc-

ity distributions, beside showing the existence of some slip between grains

and cylinder, display two peaks and the authors suggest that they might

correspond to distinct layer of beads rolling over each other.

Ding et al. (2001) studied the velocity of glass beads in the rolling flow

regime with a filling degree < 50% and they focused on scaling parameters.

The velocity clearly show a more than linear profile in the flowing layer (see

Figure 2.6(b)), confirming the first observation of Parker et al. (1997).
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2.3 Review of numerical literature

The most commonly adopted numerical approach to study granular materials

is the Discrete Element Method (DEM) (Zhu et al., 2007): the granular

material is modeled as an assembly of rigid particles and the interactions

among them are explicitly considered. This technique has the advantage

to reflect the discrete nature of the medium and to access the very local

details of the flow. Nevertheless its major drawback is the relatively limited

number of particles which can be effectively handled: as an example, we

mention a very recent DEM calculation on a system made up of more than

one million particles (Longmore et al., 2013), which is an estimate of the

number of grains contained in a teaspoon full of sugar; a small lab cylinder

with a diameter of 20cm and a width of 40cm, half–filled with grains having

a diameter of 0.5mm and a void fraction of 0.5, would contain 48 million

particles. Conversely, a continuum approach would overcome this limit at

the price of loosing the fine grain–scale details of the flow.

While many numerical studies on rotating cylinders uses the DEM ap-

proach, only two attempts have been done to describe this flow as a con-

tinuum: Demagh et al. (2012) and Huang et al. (2013) both solved the

Eulerian–Eulerian formulation of the balance equations coupled with the

kinetic theory for dense flows (Vun et al., 2010). Both of them used a Finite

Volume Method for solving the model equations.

Demagh et al. (2012) focused on very low filling degree in order to identify

the scale–up rules for an industrial cement kiln.

Huang et al. (2013) performed 2D and 3D simulations of the segrega-
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tion inside rotating cylinders. They estimated the granular viscosity, to be

plugged into the final simulations, by comparing the dynamic angle obtained

in simulations with the experimental one. They found discrepancies between

2D and 3D simulations and linked them to the higher number of degrees of

freedom in the latter case. They reported a qualitative agreement between

the radial and axial segregation patterns and the experiments.

2.3.1 Discrete approaches

DEM simulations are particularly well–suited to study the influence of grain

interactions on macroscopic behaviors. There are two main approaches in

DEM simulations: soft–particle and hard–particle. The former method has

been developed by Cundall and Strack (1979) and was the first granular dy-

namics simulation technique published in literature. It basically consists in

solving the Newton’s laws of motion for each particle in the system taking

into account the interactions among them. The peculiarity of this method is

that the particles are allowed to undergo tiny deformations, and these defor-

mations are used to calculate the elastic, plastic and frictional forces between

grains. The soft–particle method is able to handle multiple contacts at the

same time: this is crucial when dealing with dense flow, since particles are

always in contact with many neighbors. The hard–particle method, instead,

does not model forces by means of particle deformation (hence the name of

the methods) but by instantaneously collisions handled one at time: this

make the method most useful for rapid collisional granular flows (Zhu et al.,

2007).
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DEM simulations have been extensively used to study the whole range

of grain–related phenomena, such as particle packing, transport properties,

heaping/piling process, hopper flow, mixing and granulation (for a review of

DEM results for particulate system see Zhu et al., 2007, 2008).

Pöschel and Buchholtz (1995) performed 2D DEM simulations with both

disks and non–circular objects with a soft–particle approach. They recovered

some of the feature of the rolling flow regime, e.g. the increase of the dynamic

angle with Ω and the typical S–shape of the free surface. Their non–spherical

grains, which are made by disks 5 disks connected by springs, also reproduced

the stick–slip behavior observed in experiments. Similarly, Buchholtz et al.

(1995) studied 2D square grains made by four triangles connected by four

elastic beams, confirming that non–spherical grains have better agreement

with experiments (e.g. those in Rajchenbach, 1990) than spherical ones.

The first quantitative agreement with experiments came with the work

of Ristow (1996). He compared the dynamic angle θ and the surface ve-

locity obtained in 2D contact dynamic simulations with the experiments by

Nakagawa et al. (1993). The author then inferred that DEM simulation are

appropriate for a detailed study of the granular flow in rotating cylinders.

Yamane et al. (1998) performed the first 3D DEM simulations of rolling

and cascading flow. They compared their results with MRI data both at the

center and at the wall, finding an excellent agreement for the dynamic angle.

They also registered a difference in the shape of the free surface, with the

experimental one being flatter than the numerical one.

Yang et al. (2003) studied the microstructure of the granular material

inside rotating drum by means of 3D DEM simulations. They found an
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excellent agreement with PEPT measurements by Parker et al. (1997) on

both dynamic angle and velocity along a line orthogonal to the free surface

at the center of the cylinder.

Those early work served mainly to assess the feasibility of DEM simula-

tion as a modeling tool for granular flow inside rotating cylinders.

Renouf et al. (2005) used the Non–Smooth Contact Dynamic Method

(Jean, 1999) to study the rheology of granular dense flow. Their 2D sim-

ulations quantitatively matched the µ(I) profiles obtained by Silbert et al.

(2001) for granular flow down a rough inclined plane with both 2D and 3D

DEM simulations.

Pohlman et al. (2006b) used particle dynamics simulations to verify their

experimental result that inter–particle friction plays a role in determining

the dynamic angle θ inside a rotating cylinder. They studied several mixture

of smooth and rough steel balls, obtaining an increasing θ with increasing

volume fraction of rough particles.

Taberlet et al. (2006) numerically studied the S–shape of the free surface.

They developed a model which accounts for the effects of the end walls,

which appear to be crucial in the determination of the free–surface shape,

and proposed a scaling parameter which allows to collapse all the interface

profiles.

Chen et al. (2008) studied the 2D velocity profiles on the free surface of

wide cylinders numerically. They observed the existence of an axial flow near

the walls directed toward the center in the upper part of the flowing layer

(upstream), and toward the lateral wall in the lower part of such layer. This

work is the numerical equivalent of what Pohlman et al. (2006a) did experi-
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mentally. The axial flow increases with the wall friction and with the flowing

length (i.e. with the diameter). The axial flow produces higher streamwise

velocities, which can be justified with conservation of mass arguments. They

also pointed out that such a flow extend for a distance of L = 0.5D from

lateral walls.

Third et al. (2010) performed 3D DEM simulations to study the tangential

velocity profiles in rotating cylinders. The authors confirmed the quadratic

profile reported by Nakagawa et al. (1997) and reported a slip at the walls

that depends on the filling degree of the cylinder. Their simulations also

showed that a slip between two layers of grains, i.e. a shear band, might

occur at low filling levels. This kind of slip is not included in the Mellmann

(2001) classification of the flow regimes.

2.4 Review of theoretical literature

Many efforts have been put forward to develop a theory for the description of

granular flows. Some authors focused on extending the existing theory for di-

luted assembly of collisional sphere, the so called kinetic theory (Goldhirsch,

2003), to dense frictional spheres (Haff, 1983; Campbell, 1990; Jenkins and

Berzi, 2010; Berzi, 2014). Another part of the scientific literature is devoted

to the development of continuum models (Meier et al., 2007) to describe

such dense flow. Since the flow is usually limited to few grains on top of

a fixed bed, many of those models are based on the assumption of shallow

flowing layer, which allows the definition of depth–averaged quantities. For

a derivation of the depth–averaged equations see Andreotti et al. (2013).
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The first attempt to link “macroscopic” rheology to “microscopic” me-

chanics was made by Bagnold (1954) for dispersions of grains in water and by

Savage (1979) for dry grains. Savage (1979) proposed a constitutive equation

for cohesionless bulk solids under conditions of rapid shear on inclined chutes

and channels. The constitutive equation describes a Coulomb material, for

which the normal and shear stresses are related, and refers the stresses to the

deformation rates in a nonlinear way, in accordance with Bagnold (1954). He

could found only a qualitative agreement with his own experiments, maybe

because of the presence of friction on the glass side walls of the flow pas-

sages, which were not included in the model. The experiments reflected the

general trends of the analysis in the shapes of both the velocity profiles and

the depth profiles in the inclined chute, and this suggests that the most

prominent effects have been included in the proposed constitutive relations.

Savage and Hutter (1989) presented, for the first time, a formal derivation

of evolutive shallow–water equations for granular material. They integrated

the mass and momentum equations along the depth of the flowing layer,

assuming a Mohr–Coulomb internal rheology and a constant Coulomb basal

friction law. They integrated the model equations with both an Eulerian

and a Lagrangian approach and compared them with results on rockslide

motion, obtaining good qualitative and fair quantitative agreement of the

propagation of the front and rear margins of the avalanche as well as the

evolution of the shape of the depth profile.

Bouchaud et al. (1994) developed a model, referred as BCRE from the

name of the authors, for the granular avalanche problem based on the dynam-

ical interchange of two populations of grains: immobile, those in the fixed
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bed, and rolling, those which participate to the avalanche. The assumption is

that the avalanche starts when a sufficiently strong perturbation trigger the

event: this include the possibility of an hysteresis. The model describes the

avalanche as an erosion–deposition process which starts at a spinodal angle,

higher than the angle of repose, at which the system becomes unstable to

an infinitesimal perturbation. They applied the model to the slow slumping

regime, i.e. when the time for an avalanche to reach the bottom of the free

surface, which is rotation independent, is much less than the time needed to

restore the spinodal angle; if those times become comparable the system will

enter the rolling regime. In such a way they could estimate the frequency

crossover value at which the transition happens for glass beads in a cylinder

with D = 0.1m, finding a value of ∼ 0.5rpm.

Boutreux et al. (1998) expanded the BCRE model to account for thick

avalanches: they assume that when an avalanche starts, the depth of the

falling layer is χ, where χ is a characteristic mesh size, typically χ ≈ 5dp.

Even starting with pretty narrow layers, avalanches rapidly reach much larger

thickness and the population of falling grains cannot be considered constant

anymore. Aradian et al. (1999) further developed this point including also

a non–constant velocity profile in the falling layer. Douady et al. (1999)

included in their BCRE–like model an explicit dependence of the free–surface

shape on the flow condition during an avalanche.

Khakhar et al. (1997) presented a continuum model of a rotating cylinder

based on a depth–averaged steady state momentum and mass balance be-

tween the flowing layer and the fixed bed on its bottom. The 1D model holds

for low angular velocities (i.e. narrow flowing layer) and flat free surfaces.
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The shear stress is taken to be a sum of the frictional and the collisional

stresses. The latter is calculated using the result of Bagnold (1954) and its

magnitude depends on an adjustable parameter, which can be calculated by

specifying the physical properties of grains, the operating conditions (filling

degree and angular velocity) and the velocity profile function in the flowing

layer (the authors did the calculations for a plug flow, a linear profile and a

Bagnold (1954) profile ). The model predicts the shape of the flowing layer

and its average velocity along the free surface.

Elperin and Vikhansky (1998) used a similar approach to develop a model

which accounts for the curvature of the free surface. Their model takes into

account only the collisional stresses and neglects the frictional stress and

assumes a Mohr–Coulomb failure criterion (shear to normal stress ratio equal

to a constant friction coefficient). The frictional forces are implemented in

the model by two adjustable parameters which depends on the friction inside

the flowing layer. Under these simplification the authors calculated analytical

solutions for the shapes of both the free surface and the flowing layer and

for the depth–averaged velocity along the free surface. Also Zik et al. (1994)

proposed a model for the free–surface shape based on the mass balance in

the approximation of thin flow.

Makse (1999) underlined the importance of considering a flux–dependent

velocity. Using the shear rate as a fitting parameter, they could match the

experimental trends by Nakagawa et al. (1993) and Khakhar et al. (1997).

The authors argued that “the predictions based on the common assumption

of a constant velocity profile of flowing grains are in error. The profiles

predicted by the theory agree with experiments only when a height–averaged
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velocity profile is taken into account”.

Ding et al. (2001) developed a model for describing the rolling flow at

the center of a rotating cylinder. The authors proposed a parabolic velocity

profile which only depends on the ratio Λ between the positions of the zero–

velocity line and of the active/passive interface, arguing that this parameter

depends only on the rheology of the material. Under those assumption they

derived a shallow–water equation to describe the flowing layer depth profile

and the mass exchange between the bed and active and the passive zones. Us-

ing this model, the same author described the transition between the rolling

and the slumping regimes in a successive work (Ding et al., 2002). They

identified the characteristic times needed to have all the grains in the system

to flow in the active layer in both regimes: by equating them they could

extract the rotation rate of the transition, which depends on the filling de-

gree, on the difference δ between the maximum and a minimum angles in

slumping regime, on the time needed by an avalanche to reach the bottom

of the flowing layer and on Λ, but not on the diameter of the rotating cylin-

der (which however is hidden in the avalanche time). Assuming half–filled

cylinders, 1° < δ < 30°, 0.7 < Λ < 0.9 (Ding et al., 2002) and avalanche time

equal to 1s, the critical rotation rate is between 0.1rpm and 1rpm.

Pohlman et al. (2006c) found that the surface velocity in the midpoint of

a 3D tumbler scales linearly with the length of the flowing layer, no matter

the geometry of the tumblers (spherical, cylindrical, . . . ) or the filling degree.

A simple model, which assumes that the axial flow is negligible, allows the

estimation of the depth–averaged velocity in the flowing layer and predicts

this scaling.
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Jenkins and Berzi (2010) extend the kinetic theory for dense flows of

identical, nearly elastic, frictionless spheres (Jenkins, 2007) to identical, very

dissipative, frictional spheres. The parameter of the model have been ex-

tracted from inclined plane experiments and the results of the model have

been tested against experimental data on confined heaps. The same authors

further extended their model to include a dilute collisional layer on top of the

dense flowing one (Berzi and Jenkins, 2011). The proposed model accounts

for wall effects by including a wall friction factor, as already done by Taber-

let et al. (2003) and Jop et al. (2005). The inclusion of a dilute layer allow

them to quantitatively model the data from Félix et al. (2007) on rotating

cylinders and to verify the dependence of the dynamic angle on the width

of the channel experimentally observed by Courrech du Pont et al. (2003).

Berzi and Jenkins (2011) concluded by observing that a local rheology can

be applied only when the whole flow is dense, i.e. when the dilute layer

thickness is negligible.

2.5 JFP model

Recently Jop et al. (2006) have proposed a continuum description of dense

granular flows, based on the local rheology approach proposed by GDR MiDi

(2004). The proposed constitutive law, which shares some similarities with

classical constitutive equation of visco–plastic fluids such as Bingham fluids,

allows a Finite Element Method (FEM) or a Finite Volume Method (FVM)

numerical simulation of granular flows.
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GDR MiDi (2004) proposed “a rheology for which stresses and shear rate

at a given location in the flow are related through a one to one relation” based

on dimensional analysis of pure shear flow. They argued that, since there

is no influence of the microscopic timescales (those at which the dissipation

occurs) on the flow properties, there are only two dimensionless parameter

that can be defined, the effective friction coefficient:

µeff =
τ

p
(2.2)

and the inertial number:

I =
γ̇dp√
p

ρp

. (2.3)

The inertial number I can be interpreted as the ratio between two time-

scales: the flow timescale 1/γ̇ and a confinement timescale dp
√
ρp/p, which

is the time needed by a grain to fall from the top of another grain to its level.

In this picture, the volume fraction φ of the grains must be a variable of the

inertial number. They further argued that, in order for a local rheology to

exists, there must be a unique relation between µeff and I.

Jop et al. (2005) extended previous studies on inclined planes (Pouliquen,

1999; Pouliquen and Forterre, 2002) to the heap case with rough side walls.

They proposed an equation for the basal friction coefficient µb (i.e. the

friction coefficient at the interface between the flowing layer and the rough

bottom surface) extending the expression for the dynamics friction coefficient
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Figure 2.7: Variation of the starting (◦) and the stopping (•) angles

as a function of the thickness h. The arrows indicate the way they are

measured: starting with a uniform layer h, θ is increased up to the point

where an avalanche occurs. After the avalanche, h has a lower value, θ

is increased again and so on. In the (h; θ) plane, the system oscillate

between the starting and stopping curves. Figure 3 in Pouliquen and

Forterre (2002).

(see eq. (4) in Pouliquen, 1999):

µb (ū, h) = µs +
µ2 − µs

h
√
ghβ

v̄dpL0

+ 1

(2.4)

where v̄/h is an average shear rate in the flowing layer and µs, µ2, L0 and β

are material parameters that can be obtained from experiments on inclined

planes. Invoking the rheological relation proposed by GDR MiDi (2004) they
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Figure 2.8: Diagram of the granular flow regimes. Figure 17 in da Cruz

et al. (2005)

finally ended up with this expression for the friction coefficient µ = µ(I):

τ

p
= µ(I) = µs +

µ2 − µs
I0
I

+ 1
. (2.5)

Granular flow on inclines is known to start at an angle higher than that

at which it stops: those angles depends on the thickness of the flowing layer

(see Figure 2.7). Equation (2.4), and then Equation (2.5) as well, comes from

the fact that the dimensionless velocity scales with the ratio h/hstop(θ). The

material parameter µs, µ2 and I0 can be obtained from the function hstop(θ).

Using Equation (2.5) with parameter values from different experiments and

including the wall friction, Jop et al. (2005) could quantitatively model the

flow in a confined granular heap and verify the “crucial role of sidewalls”, as

they state in the title of their article.

da Cruz et al. (2005) numerically confirmed the validity of the model

by means of DEM simulations. They numerically simulated a shear cell by

imposing the velocity of the upper plate and the (constant) pressure acting
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on it. They confirmed that in the limit of rigid grains the shear state is

solely determined by the inertial number: for I . 10−3 the system is in the

critical state, i.e. a state of incipient motion, very close to yielding, where the

authors observed an intermittent flow; for 10−3 . I . 10−1 the system is in

the dense flow state, which is of interest here; for I & 10−1 the system enter

the collisional state and the material start acting like a gas (see Figure 2.8).

They also confirm the two functions µ = µ(I) and φ = φ(I):

φ(I) = φmax + (φmin − φmax) I. (2.6)

The former, in particular, is reported to be dependent on the grain friction

factor, i.e. on a “microscopic” (sub–grain) quantity, as observed by GDR

MiDi (2004): particles with different roughness will have a different µ(I)

curve.

Finally, Jop et al. (2006) proposed a 3D generalization of the 1D constitu-

tive law, which explicitly relies on the assumption that the (small) variation

of the solid volume fraction can be neglected, i.e. φ = constant. The granular

material, in whatever flow configuration, can be described as a continuum

fluid having a stress tensor σ given by:

σ = −pI + τ (2.7)

τ = 2ηgrain (IID, p)D (2.8)

ηgrain (IID, p) = µ(I)
p

IID
(2.9)

where D is the rate of deformation tensor, i.e. the symmetric part of the
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Figure 2.9: Friction coefficient and volume fraction as a function

of the inertial number for 3D flows. Open circles represent inclined–

plane experiments, where µ(I) is derived from measurements of depth–

averaged velocities at different inclinations and thicknesses (GDR MiDi,

2004; Pouliquen, 1999); filled circles represent inclined–plane simulations

(Baran et al., 2006); and crosses represent plane–shear experiments (ma-

terial II, sample A), in which normal stress and volume fraction mea-

surements were obtained in 3D annular shear cells (Savage, 1984).

velocity gradient ∇u, and IID is the second invariant of D, which is a

generalized shear rate (hereinafter we will frequently abuse this notation and

write γ̇ instead of IID). This model is known as JFP model, after the names

of the authors who first proposed it (Jop, Forterre and Pouliquen). In this

framework the pressure is considered isotropic and the shear stress τ and

the rate–of–strain tensor D are co–linear, i.e. are proportional to each other

by the scalar quantity ηgrain (γ̇, p). The authors used this model to solve the

flow on a confined heap with a finite difference scheme, obtaining excellent

quantitative predictions for the free–surface velocity and the lower boundary

of the flowing layer for various flow rates and heap widths. The model was

shown to poorly describe the flow in the limit of a quasi–2D geometry, i.e.

when the heap is 16.5dp wide, as one would expect when the discrete nature

of the medium challenges the “continuum” approach.
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performed 17 simulations for a broad range of I varied from
6 × 10−4 to 0.72 by keeping the same shear rate and
changing the confining pressure [27]. The data presented in
this Letter are average values over the steady state with
standard deviations used as error bars. The values of I are
obtained from the average stress p, which fluctuates in the
steady state around the average stress. The error bars on
the values of I represent these fluctuations. Obviously, the
fluctuations increase with I, and thus the data are to be
sampled more frequently in the steady state in order to
reach meaningful statistics.
The stress state being invariant along the x direction, we

consider here only the restriction σ of the stress to the shear
plane yz. It may be expressed as [28]

σαβ ¼ nchfcαlc
βi; (1)

where nc is the number density of the contacts and the
average is taken over the contacts c with contact force
component fcα and branch vector lc

β joining the centers of
contacting particles. Note that, the contribution of particle
velocity fluctuations (hmvαvβi=V) remains very small
compared to that of contact forces in all the simulations
considered here. According to the Mohr-Coulomb model,
the effective friction coefficient during shear is given by
μ≃ q=p, where p ¼ ðσ1 þ σ2Þ=2 is the mean stress and
q ¼ ðσ1 − σ2Þ=2 is the stress deviator, and σ1 and σ2 are the
principal values on the shear plane [29].
Figure 1 displays μ and ν obtained from our simulations

and a compilation of available published numerical and
experimental data from several authors for different boun-
dary conditions as a function of I [1–5,30] [31]. We see that
our numerical data collapse well with all other data. The
effective friction coefficient increases and tends to saturate
with increasing I whereas the packing fraction declines
from 0.59 in the quasistatic state to 0.50 for our highest
values of I. Note that 0.59 corresponds to the density of a
packing of frictional spheres under continuous quasistatic
shearing, as also evidenced by experiments [32].
Relying on our numerical data, we now focus on the

stress partition in connection with the effective friction. Let
us express the average in (1) as an integral:

σαβ ¼ nc

Z Z Z
fαlβ Plfn df dldn; (2)

where Plfn is the joint probability density of forces and
branch vectors l ¼ ln projected on the shear plane. At the
lowest-order description of the microstructure, we neglect
the force-fabric correlations and split P as a product
Plfn ¼ PlðlÞPfðf ÞPnðnÞ. Integration over f and l yields:

σαβ ≃ ncl0

Z
Ω
hfαiðnÞnβPnðnÞdn; (3)

where Ω is the angular domain of integration and hf iðnÞ is
the average force as a function of n and hli ¼ l0.

The contact force on the shear plane can be decomposed
into its normal and tangential components hfniðnÞ and
hftiðnÞ, and n is parametrized by its orientation θ. The
three functions PðθÞ, hfniðθÞ, and hftiðθÞ are π periodic
and, as shown in Fig. 3, they can be well approximated by
their lowest-order Fourier expansions [20–23,33]:

PðθÞ≃ 1=πf1þ ac cos 2ðθ − θcÞg;
hfniðθÞ≃ hfnif1þ an cos 2ðθ − θnÞg;
hftiðθÞ≃ −hfniat sin 2ðθ − θtÞ; (4)

where ac, an, and at are anisotropy parameters, and θc ≃
θn ≃ θt are the corresponding privileged directions on the
shear plane, and nearly coincide with the major principal
stress direction in the steady state. Now, introducing
Eqs. (4) into the integral [Eq. (3)], and neglecting the
cross products of the anisotropy parameters, one gets the
simple relation

μ≃ 1

2
ðac þ an þ atÞ: (5)

The predicted values of μ by this equation from the
anisotropy parameters are shown in Fig. 2 together with
those obtained from the stress tensor as a function of I. We
see that Eq. (5) approximates excellently the effective
friction for all values of I. This result indicates also that
the expression Eq. (1) of the stress tensor holds correctly for
high inertia where impulsive forces prevail.
The evolution of the three anisotropies with I is plotted

in Fig. 3. Interestingly, the normal force anisotropy an
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FIG. 1 (color online). Effective friction coefficient (a) and
packing fraction (b) as a function of I. The data analyzed in
this Letter are in blue triangles. The other data are extracted from
Refs. [1–5,30]. The dashed line shows the fitting form μ ¼
μ0 þ ððμ1 − μ0Þ=ð1þ I0=IÞÞ introduced in Refs. [9,10].
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Figure 2.10: Effective friction coefficient (a) and packing fraction (b)

as a function of I. Data from (Silbert et al., 2001; da Cruz et al., 2005;

Azéma et al., 2012; Baran et al., 2006; Pouliquen, 1999; Savage, 1984),

figures from Azéma and Radjai (2014) (references in the legends has

been changed to reflect those of the current work).

It should be noticed that the viscosity goes to infinity as γ̇ tends to zero,

like it happens for visco–plastic fluids. In the limit of IID → 0 it is possible

to show that the above equations reduce to a yield criterion and that the

materials flow only if:

IIτ > µ(I)p, (2.10)

where IIτ is the second invariant of the viscous stress tensor τ .

Figure 2.9 shows experimental and numerical data on friction factor and
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volume fraction as a function of the inertial number I. It should be noticed

that, comparing Figure 2.9 and Figure 2.8, granular material in the dense flow

regime can explore only the initial part of both the diagram in Figure 2.9 (and

then the approximation φ ≈ constant should hold). A more recent collection

of those data is shown in Figure 2.10; the insets display the constant values of

both µ and φ in semi–log plots, evidencing the critical state and the transition

to the flow state (see Figure 2.8).

Admittedly, the constitutive law expressed by equations (2.7)–(2.9) still

rests on an empirical ground (Jop et al., 2005). Nonetheless, it has been

proved to accurately describe many experimental data (Pouliquen et al.,

2006).

Forterre (2006) used the 3D JFP model to perform a linear stability anal-

ysis of granular flows down inclined planes. He was able to quantitatively

reproduce the experiments by Forterre and Pouliquen (2003), in particu-

lar the cut–off frequency of the instability (i.e. the frequency above which

short wavelengths were stabilized) which could not be reproduced by previous

depth–averaged approaches. Their model contains an adjustable parameter

responsible for the damping of the short wavelengths. Gray and Edwards

(2014) incorporated the JFP model into a depth–averaged granular avalanche

model without any fitting parameter, showing an excellent agreement with

the results of Forterre and Pouliquen (2003). Very recently such a model

has been used by the same authors together with the expressions for the

friction coefficients given by Pouliquen and Forterre (2002) (equation (2.4)):

it quantitatively predicted the erosion–deposition wave flow of carborundum

particles that flow down a rough inclined chute covered with a static erodible
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layer of the same grains (Edwards and Gray, 2015). Such flow is made of a

series of steadily traveling waves which erode the static layer of particles in

front of them and deposit grains behind them, to form a layer that is again

stationary.

Lagrée et al. (2011) implemented the JFP model in an incompressible

FVM solver and studied the collapse of a column of granular material using

the Volume of Fluid approach (see Section 3.2 for a detailed explanation of

such model). The granular column collapse is another complex situation,

with a non–uniform and fully transient flow taking place. Their 2D simu-

lation were able to catch the transient evolution observed with 2D contact

dynamic discrete simulations. Another complex flow was tackled by Staron

et al. (2012) and Staron et al. (2014). They used the same software of Lagrée

et al. (2011) to study the discharge of a silo with 2D continuum simulations.

The results are in qualitative agreement with contact dynamic simulations.

2D contact dynamic simulations have also been used by Cortet et al.

(2009) to check two fundamental statements at the base of the JFP model:

(I) the proportionality between the second invariants of the stress and rate–

of–strain tensors and (II) the alignment among them. They focused on the

rotating cylinder problem and concluded that while assertion (I) can be con-

sidered valid for the whole flow, statement (II) fails significantly over the

whole range of inertial number. They further argued that the misalignment

between the two tensor might be an effect of the transient compressibility,

which is indeed considered negligible by the 3D generalization made by Jop

et al. (2006). In this regard Rycroft et al. (2009) reported that such a non–

coaxiality decreases by averaging over progressively larger time windows.
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Figure 2.11: Two snapshots of the falling column 3D flow at two

different times. Red/blue particles are the flowing/jammed ones, the

symbols indicate the degree of misalignment φ of the stress and rate–

of–strain tensors: φ < 5° crosses, 5° < φ < 10° crosses with circles,

φ > 10° solid triangles. The black solid line is the interface between the

free–falling part and the dense part of the flow. Figure from Lacaze and

Kerswell (2009).

Coaxiality is a consequence of material isotropy at the scale of a continuum

element (which has a dimension of ∼ 4÷ 5dp), so it appears that increasing

the time window increases the extent to which the liquid–like material flows

approximately like a true continuous fluid.

Lacaze and Kerswell (2009) did a similar analysis on coaxiality in tran-

sient 3D soft particle simulations of falling cylindrical piles of granular ma-

terial, comparing their results with the experiments from Lajeunesse et al.

(2004) and Lube et al. (2004). They computed the orientation of the stress
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and rate–of–strain tensors during the transient collapse of the column. The

analysis was conducted on both the flowing and “jammed” parts of the do-

main, only excluding the top free–falling zone. A typical snapshot of the

flow is shown in Figure 2.11. The author found a general alignment of the

two tensor over the entire domain, here included the jammed part (blue in

Figure 2.11). They concluded their contribution saying that “The general

applicability of viscoplastic theory found here is, frankly, a surprise given (a)

the presence of a large growing static–flowing interface, (b) the proximity of

most of the fast flow to the rough bottom boundary and (c) the existence of

a large free surface”.

Chambon et al. (2011) and Minatti and Paris (2015) implemented the

JFP model in 2D Smoothed Particle Hydrodynamic codes and were able to

quantitatively match the experimental data available for the granular column

collapse problem.

Azéma and Radjai (2014) recently connected the “macroscopic” friction

law µ(I) to the contact network and force transmission. They argued that

µ ' 1
2

(ac + an + at), where ac, an and at are parameters linked to the angu-

lar anisotropy of the mean stress on the shear plane (contact anisotropy), of

the normal force (force chain anisotropy) and of the tangential force (friction

mobilization) respectively. They also found that µ increases with I mainly

due to an increasing contact anisotropy ac. This confirms and gives fur-

ther physical insight into the dependence of the effective friction coefficient

proposed by GDR MiDi (2004) on the inter–particle frictional interactions.

The first 3D implementation of the JFP model has been done by Chauchat

and Médale (2014). They developed a Finite Element Method (FEM) model
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to compute the steady–state of dense granular flow. They pointed out two

key points to get a successful implementation: (I) the way to deal with the

tricky pressure–dependent visco–plastic rheology within an incompressible

flow solver; (II) the capability to solve efficiently such very stiff non–linear

algebraic systems. They stressed the need of a regularization of the viscosity

function both for the divergence as γ̇ → 0 and for the pressure term therein,

as it might become negative in some part of the domain. They tested three

different regularization for the viscosity plus one more developed specifically

for the µ(I) rheology, and found the latter one to perform better:

η = µ(I)
p√

γ̇2 + λ2η
, (2.11)

where λη is the regularization parameter. Regarding the pressure, they pro-

posed the following equation:

preg = p+
√
p2 + λ2p, (2.12)

where λp is the regularization parameter and preg is the pressure to be used

in the viscosity law. Despite the 3D implementation, they performed two

quasi–2D simulations, in which the computational grids have only one cell

along the depth.

Regarding the rotating drum problem, few attempts have been made

to check the validity of a local–rheology approach. Renouf et al. (2005)

showed in 2D DEM simulations that the friction law µ(I) is locally satisfied

along the profile, while Orpe and Khakhar (2007) have shown in experiments
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a reasonable agreement when the increase in friction coefficient with I is

considered, even if the coefficient of friction is found to be significantly higher

at high local flow rates (corresponding to high rotational speeds), which is

not in agreement with the model. It must be said that, owing to the non–

uniformity of the flow, a tensorial generalization should have been used to

test the local rheology in this configuration.

The JFP model seems to describe dense granular flow very well, but

Forterre and Pouliquen (2008) pointed out some limits of the approach,

mainly concerning the yield criterion. The JFP model implement the flow

threshold as a Drucker–Prager criterion, but the actual transition between

flowing and jammed grains appears more complex and seems to involve shear

bands (Jop, 2008) and hysteresis (Rajchenbach, 1990). Also the transition

to the collisional rapid flow for I > 0.3 does not seem to be captured by

the model. Eventually, jammed grains in 3D flow geometries (e.g. rotating

cylinders or heaps) undergo a creep motion with an exponentially decaying

velocity that (they claim) is not captured by the model. We will discuss

the limits of the JFP constitutive equation in Chapter 4. Some non–local

extension of the JFP model have been recently proposed to overcome some

of these limits (Pouliquen and Forterre, 2009; Sun and Sundaresan, 2011;

Kamrin and Koval, 2012; Bouzid et al., 2013; Henann and Kamrin, 2014).

To the best of our knowledge, there is not any fully 3D numerical work

which tackles a complex flow using a continuum approach.
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Materials and methods

3.1 Materials and geometries

The aim is this thesis is to investigate the flow behavior of granular materials

in horizontal axial–rotating cylinders. We conducted our numerical exper-

iments so as to investigate the effect of the three dimensionless parameter

defined in equation (2.1). We also took into account the slippage at the

cylinder walls via an additional parameter β, which is 0 in case of complete

slip and 1 in case of adherence (see section 3.2 for its definition).

We systematically investigated the effect of the three dimensionless pa-

rameters Fr = Ω2R/g, AR andD/dp (see equation (2.1) for their definitions),

for β = 0.1:

Fr =


7.0 · 10−5, 2.8 · 10−4, 1.7 · 10−3, 7.0 · 10−3,

1.6 · 10−2, 2.8 · 10−2, 6.3 · 10−2, 1.1 · 10−1;

AR = 0.05, 0.1, 0.2, 0.5, 1;

D/dp = 1000, 2500.
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Other simulations with different β values (namely β = 0.2, 0.5, 1) have been

conducted at need.

According to (Jop et al., 2005), monodisperse granular materials can be

fully characterized by the diameter dp and the density ρp of a particle, and by

the function µ(I) defined in equation 2.5, which accounts for the dissipative

nature of a granular fluid, due to the inter–particle friction.

In this thesis we mainly used the parameter values by Jop et al. (2005),

who were able to quantitatively model the flow of glass beads on a heap with

the µ(I)–rheology:

µs = tan(20°) ≈ 0.364;

µ2 = tan(33°) ≈ 0.649;

I0 = 0.279;

plus the material properties:

dp = 0.5mm;

ρp = 2450
kg

m3
.

Since the diameter of the cylinder appears in the definitions (eq. 2.1) of all

the dimensionless parameters here studied, in order to vary each parameter

independently from all the others, we fixed D = 0.5m for all the simulations.

Therefore we also performed simulations with dp = 0.2mm and, for the same

reason, the cylinders considered here have five different widths, in order to

investigate different aspect ratios. With D = 0.5m, the Froude numbers

specified above corresponds to Ω = 0.5, 1, 2.5, 5, 7.5, 10, 15, 20 rpm.
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3.2 Governing equations

In this thesis, we solve the continuum dynamic equations by adopting the

visco–plastic JFP constitutive model (Jop et al., 2006). The start point

for the derivation of the final equations are the usual mass and momentum

balance for a fluid:

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1)

∂ρu

∂t
+ ∇ · (ρuu) = −∇p+ ∇ · τ + ρg + ρa, (3.2)

where g is the gravitational force and ρa is the sum of the other body forces

acting in the system.

Since our aim is to investigate half–filled drums, our simulations must

include two phases: a “liquid” phase L (the granular material) and a gaseous

phase G, which we assumed having the physical properties of the air. In

order to do so, a multiphase model need to be choosen.

Among the different models available to describe multiphase systems, we

focused on the Volume of Fluid approach (hereinafter VoF, firstly proposed

by Hirt and Nichols, 1981). VoF model treats the two phases as a single whole

fluid (so with unique velocity and pressure fields) with physical properties

varying through space and time. It introduces a phase volume fraction α

which represent the fraction occupied by one of the phases (e.g. the liquid

phase L) in each control volume, and varies from 0 (air only) to 1 (fluid

only). The interface is postulated to be at α = 0.5. Such a model has also

been chosen by Lagrée et al. (2011) to perform their 2D simulations.
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The underlying idea of the VoF model is that the mixture can be described

as a single fluid whose physical properties depends on the position and can

be calculated as volume–weighted averages between properties of the pure

phases:

ρ = αρL + (1− α)ρG, (3.3)

η = αηL + (1− α)ηG (3.4)

The VoF method introduces then another independent variable, the vol-

ume fraction α, for which an evolutive equation is needed: the model pre-

scribes that α is simply advected through the domain:

∂α

∂t
+ ∇ · (αu) = 0 (3.5)

So far, the proposed equations are valid for any biphase fluid system. In

order to implement the JFP model, we need to define the liquid phase as

a granular phase, for which the stress tensor is given by equations (2.7)–

(2.9), and the other as a gaseous phase having the physical properties of air,

ηair = 1.48 · 10−5Pa · s and ρair = 1kg/m3. At this point, we introduce

an hypothesis: both phases are considered incompressible. For the granular

phase this comes from the assumption of neglecting the small expansion of

the granular phase due to the flow (Jop et al., 2006), for the air phase this

means that the maximum velocity is well below the speed of the sound.

Following Jop et al. (2005), we fix the volume fraction φ of the granular

phase to 0.6, which is in between the random close packing factor φ ≈ 0.63
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and the packing factor of loosest possible particles in contact (the simple

cubic configuration, having φ ≈ 0.52).

It should be noticed that φ and α are both grains volume fraction, but

they have completely different meanings: φ is the packing factor, that is

the volume fraction occupied by the solid sphere in their 3D arrangement

in the bulk; α is the volume fraction of the granular phase considered as

a whole fluid (i.e. with its voids), so with a density ρgrain = φρp, and is

used to calculate the physical properties through space and time in each

control volume: physical properties vary in time and space because of their

dependence on α.

It is possible to demonstrate that, even if the introduction of a the volume

fraction α leads to a position–dependent density field, the mass balance for

the two–phase fluid reduce to the usual expression for incompressible fluids:

∇ ·u = 0. The ingredients to get this result are the convective equation (3.5)

for the scalar α and the linearity of equation (3.3). In other words the

following two sets of equations are equivalent for constant ρL and ρG:



∂ρ

∂t
+ ∇ · (ρu) = 0

∂α

∂t
+ ∇ · (αu) = 0

ρ = αρL + (1− α)ρG

⇐⇒


∇ · u = 0

∂α

∂t
+ ∇ · (αu) = 0

ρ = αρL + (1− α)ρG

(3.6)

It must be noticed that only equation (3.3) must be rigorously linear, in

order to choose the right–hand system in equation (3.6), and that different

averaging function would be possible for the viscosity: e.g. Lagrée et al.

(2011) implemented an harmonic average for the viscosity, instead of an
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arithmetic one, by using 1/η = α/ηL + (1− α)/ηG.

The implementation of the JFP model is then straightforward: the den-

sity and the viscosity of the L–phase in equations (3.3) and (3.4) are replaced

by the expressions for granular materials:

ρ = αρgrain + (1− α)ρair, (3.7)

η = αηgrain (γ̇, p) + (1− α)ηair = η (γ̇, p) , (3.8)

where ηgrain was given in Section 2.5:

ηgrain (γ̇, p) = µ(I)
p

γ̇
(2.9)

At this stage only the term a in equation (3.2) has to be specified. To this

end, we decided to write equations (3.1) and (3.2) in a Cartesian coordinate

system fixed to the rotating cylinder, with the z–axis oriented along the axis

of the cylinder and the origin in its half–width, thus implying a rotating

gravity g(t) and cylinder walls with a zero velocity. This choice gives rise

to fictitious forces which have to be included in the a term. Defining r as

the radial position inside the cylinder, a constant rotational motion of the

cylinder about its axis gives:

a = 2ω × ṙ + ω × (ω × r) + ω̇ × r, (3.9)

where ω = (0, 0,Ω) is the angular velocity vector and the dotted quanti-

ties are time derivatives of the corresponding variables. The first two terms

in equation (3.9) are the Coriolis acceleration and the centrifugal accelera-
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tion. Since our simulations reach a constant angular velocity almost instan-

taneously (in 10−3s), the term ω̇ × r has been neglected.

In order to write down the final set of equations as they have been im-

plemented in the software used for their integration, we will proceed to some

further elaboration of the pressure and gravity terms in the momentum bal-

ance equation. First of all, we introduce here the reduced pressure:

p∗ = p− ρg · r, (3.10)

where the time dependence of the gravity is omitted for simplicity. In order

to introduce it in equation (3.2) we have to express ∇p in terms of ∇p∗.

After some straightforward math, the result is:

−∇p+ ρg = −∇p∗ − (g · r)∇ρ. (3.11)

We can then summarize the equations of motion of a biphase granular

system in a rotating reference frame as follows:

∇ · u = 0 (3.12)

∂ρu

∂t
+ ∇ · (ρuu) = −∇p∗ + ∇ ·

[
η (γ̇, p)

(
∇u+ ∇uT

)]
+

− (g · r)∇ρ+ ρ
[
2ω × u+ ω × (ω × r)

] (3.13)

∂α

∂t
+ ∇ · (αu) = 0 (3.14)

with p∗ given by equation (3.10), the density and the viscosity by equa-
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tions (3.7) and (3.8), and with the following auxiliary equations:

ηgrain (γ̇, p) =

(
µs +

µ2 − µs
I0/I + 1

)
p

γ̇
(3.15)

I =
dpγ̇√
p/ρp

(3.16)

Our flow configuration has a planar symmetry that can be used to reduce

the dimension of the computational domain. Only one half of the cylinder has

been simulated and a symmetry condition has been enforced on the central

symmetry plane z = 0: 
u · ẑ = 0

∇u · ẑ = 0

(3.17)

and

∇α · ẑ = 0 (3.18)

where ẑ is the normal to the center plane.

We used a partial slip boundary condition on the walls; in a reference

system fixed to the rotating cylinder the velocity of the wall is zero and the

BC at walls reads: 
u · nw = 0

βu+ (1− β)∇u · nw = 0

(3.19)

where nw is the normal to the boundary.

The parameter β tunes the degree of slipping at the wall: β = 1 means

complete adherence (u = 0), β = 0 means complete slip (∇u · nw = 0).
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The boundary condition for α at walls is a zero–gradient condition:

∇α · nw = 0. (3.20)

Few more words are worth about the absolute pressure p contained in

the viscosity function. p is supposed to be the compressive stress that grains

“feel” in their dense state. Jop et al. (2006) imposed p = 0 on the free–surface

boundary of their computational domain, as if the first layer of grains might

be considered “free”, actually implying a zero viscosity on top of the flowing

layer. In this thesis we adhere to the idea of compressive pressure, and put to

zero any negative pressure contribution inside the viscosity equation. In other

word, we put the viscosity to zero whenever the local pressure is negative.

Pressure is scaled with respect to the center of the cylinder, where its value

is 0.

Finally, since the viscosity diverges as γ̇ → 0, a further regularization is

needed: the approach chosen is to bound the viscosity function to a maximum

value ηmax = ρgrain100m
2

s
, which is ∼ 108 times the viscosity of water. The

accuracy of this approach is discussed in section 4.8. The need for these nor-

malizations is confirmed by Chauchat and Médale (2014), but our approach

is slightly different from their choices.

3.3 Numerical method

To integrate the above equation along with their boundary conditions, we

used the open source CFD software package OpenFOAM (Weller et al., 1998).
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OpenFOAM is structured as a library of routines, so it is highly modular,

and the source code is fully accessible and editable, so it is also very versatile.

We modified the interFoam solver, which solves the equations of motion

for a two–phases incompressible fluid with a specific version of the VoF model

(Berberović et al., 2009). In this formulation, the VoF model employs an ad-

ditional term in equation (3.14), which is non–zero only close to the interface,

and acts as a “compression term” to keep the interface sharp.

We implemented the JFP model in a standalone routine and we modi-

fied the source code of interFoam in order to implement the rotating refer-

ence frame. This basically involved the implementation of a time–dependent

gravity and the addition of a source term in the momentum equation (the

fictitious forces a).

interFoam implements the pimple algorithm, which is an algorithm for

solving transient problem. pimple is a blending of the piso (Pressure–

Implicit with Splitting of Operators, Issa et al., 1986) and the simple (Semi–

Implicit Method for Pressure Linked Equations, Patankar, 1980) algorithms:

it essentially includes one or more piso loops inside one or more outer simple

loops, all of them made at each time step. These methods belong to the broad

category of the pressure–correction methods: they are based on the deriva-

tion of a pressure equation from the continuity and momentum equations,

which enforces mass conservation (Ferziger and Periç, 2001).

The inner piso loop basically guess a velocity field from a linearized ver-

sion of the momentum equation using the velocity (for the non–linear and the

fictitious terms and for the), pressure and density fields from the last available

solution (i.e. the previous time step or the previous outer loop); then it uses
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the pressure equation to calculate a correction for the velocity field. This last

step can be repeated until corrections are negligible. The outer simple loop

allows to update the velocity field (i.e. to recalculate the velocity field with

updated density field and updated non–linear fictitious and pressure terms)

before the next inner piso loop. The number of simple iterations coincides

with the number of piso loops and to the freshly calculated velocity field,

while the number of piso iterations coincides with the number of pressure

corrections applied to the same velocity field. The pimple algorithm has

been devised to take advantage of the simple under–relaxation, and allows

for larger time steps than the pure piso algorithm. In our simulation we

performed 3 inner cycles and a number of outer cycles as to have the residual

of the solution below 10−8 for both pressure and velocity. These algorithm

can be applied regardless the actual solver for the algebraic systems gener-

ated by the discretization. In our simulations we used the solvers reported in

table 3.1. Moreover, the code allow to solve equation (3.14) with sub–steps

within each time–step, in order to better describe the material flux. We

choose to solve the volume fraction field three times per time–step.

The presence of a pressure equation determines the need of boundary

conditions for the pressure itself. This is, in our opinion, one of the major

drawbacks in using pressure–correction methods. We imposed a pressure

gradient at the walls equal to the hydrostatic one:

∇p = ρ (g · nw) , (3.21)
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SOLVER PRECONDITIONER
GAMG (Generalised

p∗
geometric–algebraic multi–grid)

PCG (Preconditioned DIC (Diagonalpcorr conjugate gradient) incomplete–Cholesky)

PBiCG (Preconditioned DILU (Diagonalu
bi–conjugate gradient) incomplete–LU)

MULES (Multidimensionalα
universal limiter for explicit solution)

Table 3.1: Solvers for each variable. pcorr is an additional variable

which stores the corrections to the flux calculated with the pressure

equation.

which, in terms of p∗, reads:

∇p∗ = −∇ρ (g · r) . (3.22)

Of course, on the symmetry plane it is:

∇p∗ · ẑ = 0. (3.23)

A thorough description of interFoam, together with few validation cases,

can be found in Deshpande et al. (2012).

3.4 Convergence tests

The discretization of the spatial domain is a key point for the overall perfor-

mance of the code. In order to minimize the number of computational cells

and to improve the interpolation order at the cell face (required by a FVM
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Figure 3.1: Sketch of the polygonal mesh for AR = 1 with a close–up

of the lateral wall and the symmetry plane.

code to calculate the flux between two adjacent cells) we generated polygonal

meshes. A sketch of such mesh can be seen in Figure 3.1.

All the simulations presented in this thesis have been conducted over the

time–span needed to complete one single cycle. As Figures 3.2 show, the sys-

tems do not attain a steady state, but they rather display a steady regime,

where small oscillations are still present. Because of that, during the pre-

liminary convergence tests, we often found the evaluation of the error at a

specified time quite inaccurate, while the trends of both local and integral

quantities was the same in average. So, in order to smooth out the oscilla-

tions, we averaged all the quantities over the last half of the cycle, where all

the simulations were in the steady regime. The error between the choosen

mesh and the finer one (∼ 4× cells) was always below the 5%.

Regarding the time step, it is adapted throughout the calculation in or-

der to match a local stability criteria based on the Courant number Co

(Berberović et al., 2009), which prescribes that a cell can not abide a volu-



3.4 Convergence tests 54

0 10 20 30 40 50 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

151260 elem.
301965 elem.
541458 elem.

D

h

t×W

D

h

t×W
0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

Co = 0.8 
Co = 0.5 
Co = 0.25 
Co = 0.1 

(a) (d)

t×W

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

151260 elem.
301965 elem.
541458 elem.

]m/s[

u

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co = 0.8
Co = 0.5
Co = 0.25
Co = 0.1

t×W

]m/s[

u

(b) (e)

0 10 20 30 40 50 60
0

10

20

30

40

151260 elem.
301965 elem.
541458 elem.

]degree[

q

t×W

]degree[

q

t×W

0 10 20 30 40 50 60
0

10

20

30

40

50

Co = 0.8
Co = 0.5 
Co = 0.25
Co = 0.1

(c) (f)

Figure 3.2: Temporal evolutions of the flow thickness (a,e), the velocity

at the midpoint of the free surface (b,d) and the inclination of the free

surface (c,f) at the center plane parametric in the number of element

of the computational grid (a-c) and the Courant number (d-f). Spatial

convergence presented for D/dp = 1000, AR = 0.2, Ω = 5rpm, temporal

convergence for D/dp = 2500, AR = 0.1, Ω = 10rpm, both having

β = 0.1.
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metric flow bigger than a certain fraction of its volume over the time step.

The local Courant number, calculated with values from the last time step, is

compared with a limit value: if anywhere in the mesh the local Co exceeds

the limit value, the time step is decreased in order to have a new local Co

below the threshold. In other words, the higher the Courant number limit,

the higher the time step allowed. In the legends of Figures 3.2 (d-f) is indeed

reported the Courant limit. A maximum time step size of 10−3s has also

been used for all the simulations.

Figures 3.2 reports the converge trials for two of our simulations, but

the convergence has been evaluated at each major changes in the parameters

(e.g., much finer grids in axial direction have been used for the no–slip cases).

The figure shows that, even if not perfectly superimposed, the simulations

with more cells or with shorter time steps show essentially the same behavior

as those with less cells and larger time steps, thus there are no more effects

linked to the degree of refinement of the spatial and temporal domain.



4
Results

4.1 Introduction

We investigated the dense granular flow of monodisperse spheres inside a

cylinder rotating about its axis at different values of angular velocity Ω,

diameter ratio D/dp, aspect ratio AR and slip parameter β. Hereinafter

only results for D/dp = 1000 will be shown, since cases with D/dp = 2500

are within the error bars of the formers. If not stated otherwise, the following

results are to be considered as having slip parameter β = 0.1. Moreover, we

will only show quantities in the fixed reference frame and we will use the

same symbols used in Chapter 3 for the cylinder–fixed reference frame.

Figures 4.1 show some of the probing lines used in the following graphs.

First of all, we will analyze data taken both at the center plane of the cylinder,

where we impose the symmetry condition, and near the end wall. Data

obtained probing the system along the red lines are referred to as radial,

since they are perpendicular to the free surface and intersect the axis of the

cylinder. Since the free surface does not generally pass through the axis of
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(a) (b)

Figure 4.1: Full view (a) and a close–up (b) of a cut of the granular

phase with the indication of the sampling lines. The semi–transparent

surfaces are the free surface and the boundary between the flowing layer

and the fixed bed.

the cylinder, the coordinate system will be r−rtop, where rtop is the intercept

of the line with the free surface; in the case of data taken at the center, rtop is

the blue sphere in Figures 4.1. In other words, the radial coordinate will be

systematically (i.e. individually during the post–process of each simulation)

shifted so as to have its origin on the free–surface of the granular phase.

Another kind of profile will be called “axial” and is the profile along

the curves identified by the intersection of a plane generated by the axis of

the cylinder and the perpendicular to the free surface (the semi–transparent

plane in Figure 4.1) and the free surface itself or the bottom of the flowing

layer (both in magenta in Figure 4.1). Actually, the curves are the projection

of the axis on the free surface or on the bottom of the flowing layer. The

abscissa in this case is the z–component of the points on the curve, divided

by the half–depth W/2 of the cylinder: z
W/2

is 0 at the center of the cylinder

and −1 at the wall.
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Figure 4.2: The free surfaces at the center of a cylinder with D/dp =

1000, AR = 0.1 and β = 0.1 (a) and with D/dp = 1000, Ω = 5rpm and

β = 0.1 (b). Thin black lines in (a) are the correspondent free surfaces

at D/dp = 2500.

4.2 Free–surface

The rolling flow regime is characterized by a flat surface of the granular

media, while the cascading regime shows a S–shaped free surface. There

is not any clear separation between the two regimes, and the transition is

gradual and smooth.

Figure 4.2 (a) shows the free surfaces for D/dp = 1000, AR = 0.1 and

β = 0.1. All the surfaces are S–shaped, but the curvature is almost zero for

low angular velocities, and increases with increasing Ω. Consistently with the

literature (see e.g. Rajchenbach, 1990), as the angular velocity is increased,

the inertia of the grains which enter the flowing layer deforms the free surface.

Figure 4.2 (b) shows that as the aspect ratio is decreased, the free surface

is brought higher by the closer walls. The slip parameter β has only a very
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weak effect on the shape of the free surface and thus is not reported.

Looking at the extreme parts of the high velocities free surfaces in Fig-

ure 4.2 (a), i.e. looking at the free surface(s) near the cylinder wall, it is

possible to see that they are almost tangent to the lateral wall of the cylin-

der in the upper part, and that they are almost perpendicular to it in the

lower part. In real experiments (see e.g. Rajchenbach, 1990) the grains comes

out of the bed with a tangential velocity (due to rotation) which makes it

continue to follow the rigid path for a little while and, at the bottom of the

free surface, it hits the lateral wall before being dragged downward. Our nu-

merical profiles somehow reflect these behaviors, although, of course, detach-

ment of individual grains from the free surface and entering the cataracting

regime cannot appear in our simulation results, which are obtained under

the assumption of constant φ.

4.3 Flowing layer thickness

The thickness of the flowing layer h has been measured as reported in Félix

et al. (2007), i.e. by measuring the distance from the free surface of the

zero–velocity point along the cylinder radius perpendicular to the interface.

Looking at Figures 4.1, h is the distance between the two magenta lines.

Figure 4.3 shows the trends of the flow depth with the angular velocity

of the cylinder both at the center plane and near the wall. The thickness

of the flowing layer measured in the center plane of the cylinder steadily

increases with increasing angular velocity throughout the explored range.

The behavior at the end wall is different: the flowing layer is not substantially
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Figure 4.3: Thickness of the flowing layer versus Ω at the center plane

(a) and near the wall (b) for D/dp = 1000 and β = 0.1. Error bars are

reported only for the most severe cases.

affected by the aspect ratio of the cylinder, and minor differences between

long (AR = 0.5, 1) and short cylinders (AR = 0.05, 0.1, 0.2) can be seen only

at very high rotation rates. This is consistent with the observation of Félix

et al. (2007) that the width of the cylinder does not affect the flow thickness

near the wall.

Figure 4.4 shows the ratio between the flow depths at the center and near

the wall for various diameters (open and full symbols) and aspect ratios. As

already said, the results for both values of D/dp are the same.

This plot demonstrates that the flowing layer can be significantly different

at the center and near the wall and that the difference depends on the rotation

rate of the cylinder and on its aspect ratio. For narrow cylinders, the depth

ratio decrease with Ω and reaches a plateau quite soon. This means that the

flowing layer depth increases both at the center and near the end wall with

the same rate. This is not the case for cylinders having AR = 1: in this

case a clear plateau is not present and the thickness ratio keeps decreasing
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Figure 4.4: Ratio between the thicknesses of the flowing layer near the

wall and at the center versus the aspect ratio for β = 0.1. Full symbols

are for D/dp = 1000, open ones are for D/dp = 2500.

with angular velocity, i.e. the thickness of the flowing layer at the center

plane increases faster that that near the wall. The different behavior might

be linked to the separation of the two boundary layers, as conjectured by

Pohlman et al. (2006a).

The fact that there are differences between the flowing layer thickness at

the center or near the wall, even in the case of noticeable slip, is also shown

in Figure 4.5. It displays a section of the flowing layers for the wider cylinder

at various angular velocities and the same data rescaled by the depth at

the center. Those curves are obtained by cutting the geometry with a plane

passing through the axis of the cylinder and perpendicular to the free surface

(see Figure 4.1).

The portions of the graphs above and below the curves represent respec-
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Figure 4.5: Axial profiles of the thickness of the flowing layer paramet-

ric in Ω (a) and a rescaled version of the same data (b) for D/dp = 1000,

AR = 1 and β = 0.1.

tively the flowing layer (the free surface is at h/D = 0) and the rigidly ro-

tating zone. Going from low to high angular velocities, both the flow depth

and wall effects increases. At high velocities, the rescaled curves tend to

superimpose, which is another representation of the flattening behaviors in

Figure 4.4.

4.3.1 AR and slip effects

Figure 4.6 shows the effect of the aspect ratio of the cylinder on the thickness

of the flowing layer. There is a qualitative difference between the behaviors

at the center plane and near the end wall. The flow layer thickness at the

center of the cylinder increases with the aspect ratio, until it seems to reach

a steady value. Near the wall, conversely, the flow depth displays a non–

monotonic behavior, with a maximum at low angular rates. For high aspect

ratios the flow depth at the wall seems to reach a plateau as well. Actually,
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Figure 4.6: Effect of the aspect ratio AR on the flow depth at the center

(left) and near the wall (rigth) of a rotating cylinder having D/dp =

1000, Ω = 5rpm and β = 0.1

the non–linear behavior is weak: this might perhaps explain the common

observation of a flowing layer independent on the width of the cylinder (see

e.g. Félix et al., 2007).

Such observation is also supported by data on wall slip effect. Even

if the slip regards the interactions between the particles and the wall, it

does not affect thickness at the wall, and the only effect is on the thickness

at the center. Figure 4.7 (a) shows the thickness of the flowing layer for

Ω = 5rpm for various aspect ratios and for two slip conditions: the maximum

slip investigated (on the left), and the complete adherence (on the right). The

flow depth at the wall is the same for all the aspect ratios, and depends only

on the slip. Figure 4.7 (b) shows how the curves vary with the wall slip: the
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Figure 4.7: Axial profiles of the thickness of the flowing layer paramet-

ric in Ω (a) and a rescaled version of the same data (b) for D/dp = 1000,

AR = 1 and β = 0.1.

higher the adherence, the lower the flow depth at the wall.

It can be concluded that the flow depth at the wall is independent on the

aspect ratio and depends only on the slippage of the boundary. Nevertheless,

the flow depth at the center of a cylinder is usually significantly different from

what can be seen through a transparent end–wall. The discrepancy rapidly

increases as the aspect ratio and the angular velocity are increased.

4.4 Dynamic angle

Figure 4.8 shows the trends of the dynamic angle with the angular velocity of

the rotating cylinder. The angles for the case with D/dp = 2500 are the same

as those shown in figure, as well as those near the wall. The only observed

difference of few degrees (∼ 2° ÷ 4°) are between the center and the wall of

the longest cylinders (AR = 0.5, 1, see Figure 4.9), which is consistent with

the MRI experiments of Yamane et al. (1998) and Dury et al. (1998).
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Figure 4.8: Dynamic angle versus Ω in cylinders having D/dp = 1000

and β = 0.1

At high Ω the angle scales as θ ∝ Ω0.65 (except for AR = 0.05, for which

a lower index is found). A less than linear power–law scaling is reported by

Pöschel and Buchholtz (1995), who found an index equal to 0.8. At lower

Ω the angles become lower than the static angle (arctan(µs)) and the curves

tend to collapse towards a single trend. It must be noticed that the last

point for AR = 0.05 is above 90°, which corresponds to a free surface tilted

beyond the vertical. Angles higher than usual have already been reported in

literature (Taberlet et al., 2003), but whether this is a physical behavior is

questionable. The reason for both those unusual behaviors might be linked

to our choice to fix the volume fraction φ = 0.6, which might prevent the

transitions to the slumping regime for low Ω and to the cataracting regime for

high Ω. Further investigation are needed to clarify whether these behavior
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Figure 4.9: Axial profile of the dynamic angle parametric in Ω in

cylinders having D/dp = 1000, AR = 1 and β = 0.1

are physically realistic or not.

Figure 4.9 shows the profiles of dynamic angles along the center–line of

the free surface in a cylinder with AR = 1 for various angular velocity. The

angle is practically constant, but a difference between the center and the wall

appears as the velocity is increased. Again, simulations with Ω = 0.5, 1rpm

show a lower dynamic angle than the static angle of repose.

This difference is also affected by the aspect ratio, as demonstrated in

Figure 4.10, which shows the dynamic angle of the free surface along the axis

for the same angular velocity but at various aspect ratios.

Curves for different wall slip values are superimposed to those shown in

Figures 4.9 and 4.10: it is apparent that the wall slip does not influence the

dynamic angle, which then appear to depends only on the angular velocity

and the aspect ratio.
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Figure 4.10: Axial profile of the dynamic angle parametric in AR in

cylinders having D/dp = 1000, Ω = 5rpm and β = 0.1

4.5 Velocity profiles

The profiles in the following two sections will be presented at different values

of the three parameters Ω, AR and β. Those parameters will be varied

starting from a common origin in the parameter space, which is Ω = 5rpm,

AR = 0.1 and β = 0.1. For example, a graph parametric in AR will be at

Ω = 5rpm and β = 0.1, while a graph parametric in β will have Ω = 5rpm

and AR = 0.1.

Figure 4.11 shows the typical radial profile obtained at the center and

near the wall of the cylinder (the abscissa of the near–wall graph has been

reversed to facilitate the comparison). It is trivial to observe an increase of

the velocity as the cylinder angular velocity is increased or comparing the
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Figure 4.11: Radial velocity profiles at center and near the wall para-

metric in Ω. Solid lines on the right refers to the center and dashed lines

on the left refer to the end wall. Thin black lines are fit of the numerical

data.

center and the wall. The important effect of the wall is on the shape of

the velocity profiles, even for a cylinder with AR = 0.1. While the profiles

near the wall are linear (dashed black lines in figure), the profiles at the

center have an increasing curvature. Solid black lines in figures represent the

Bagnold scaling (Bagnold, 1954):

U = Utop

[
1− a

(
r − rtop

) 3
2

]
(4.1)

where Utop is the velocity in rtop and a is a fitting parameter. Bagnold scaling

is nicely observed to hold for intermediate angular velocities, at the cylinder
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Figure 4.12: Radial velocity profiles at center and near the wall para-

metric in AR and β.

center.

Since typical experimental cylinders are inspected through a transparent

end wall, a linear velocity profile is a very common observation in almost

all the scientific literature, and it raised many questions on the qualitative

difference between heap flows and inclined plane flows (GDR MiDi, 2004).

A non–linear velocity profile has been observed in the center of a very long

rotating drum (AR > 50) by Parker et al. (1997) and shown in Figures 2.6.

The effect of AR is shown in Figure 4.12 (a): consistently with the liter-

ature, the velocity on the free surface increases as the aspect ratio decreases.

As expected and shown in Figure 4.12 (b), the slip influences the velocity pro-

file only near the wall: while the center is almost unaffected by the imposed

boundary condition, the velocity near the wall increases with increasing slip.

Figure 4.13 shows the axial profiles of the velocity. The profiles show a

maximum (as those in Figure 4.19) which is ∼ 5% higher than the velocity

at the center.
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Figure 4.13: Axial profiles of the velocity parametric in Ω.

4.6 Inertial number profiles

Figure 4.14 shows the computed radial profiles of the inertial number I. For

all our simulations, its value is below 0.1 everywhere in the domain except

at the surface of the grains close to the wall. The profiles at the center start

with an almost constant value and then start to decay exponentially; at a

certain point there is a sudden change in the rate of decaying (the slope of

linear parts in log–lin graph) when the viscosity normalization is applied.

Beyond that point the motion is rigid and the inertial number has dropped

well below the dense flow limit. This will be further discussed in Section 4.8.

The profiles for Ω = 0.5rpm are qualitatively different from the others,

maybe because the system is approaching the transition to the slumping

regime. However, our code failed to simulate the intermittent behavior typ-

ical of this regime.
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Figure 4.14: Radial profiles of the inertial number at center and near

the wall parametric in Ω. Solid lines on the right refers to the center

and dashed lines on the left refer to the end wall.

The wall slip and the aspect ratio do not influence the inertial number

profile to a significant extent.

4.7 Surface velocity

Figures in this section will show contours of the axial component of the free–

surface velocity. Since free surfaces are S–shaped, graphs are projections of

the free surface on a plane parallel to the axis of the cylinder, passing through

the extremes of the S shape. The vertical axis coincides with the axis of the

cylinder. This is the numerical equivalent of what Pohlman et al. (2006a)

did experimentally.

Figure 4.15 shows the contour of the axial component of the surface veloc-

ity at various angular velocity of the drum for the case D/dp = 1000, AR = 1
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(a) Ω = 0.5rpm (e) Ω = 7.5rpm

(b) Ω = 1rpm (f) Ω = 10rpm

(c) Ω = 2.5rpm (g) Ω = 15rpm

(d) Ω = 5rpm (h) Ω = 20rpm

Figure 4.15: Contours of the free–surface velocity parametric in Ω.

Velocities are divided by the one at the center of the free surface on the

center plane (ξ = z = 0). The top of the free surface is on the left and

the center plane on top.
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(a) β = 0.1 (c) β = 0.5

(b) β = 0.2 (d) no slip

Figure 4.16: Contours of the free–surface velocity parametric in β.

and β = 0.1. The coordinate ξ, which goes from the top to the bottom of the

free surface itself, is the projection of a point of the free surface on the line

connecting its extrema. The z–velocity has been divided by the total velocity

magnitude in the center of the cylinder, i.e. the points (0, 0) in the graphs

in Figure 4.15. The velocity field on the free surface is represent by arrows.

At low angular velocity, the axial component of the velocity is less than 2%

of the total; increasing Ω two areas with some axial flow start growing: the

one toward the upper part of the free surface in which the flow is directed

toward the center of the drum (warm colors in figures), and the one toward

the lower part of the free surface in which the flow is directed toward the wall

(cold colors in figures). The two parts are not symmetric: the upper one is

bigger in size, but “weaker” than the lower one. The z–extent of these two

areas are almost the same and increases with Ω.
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Increasing the adherence at the wall will increase the strength of the axial

flow, as shown in Figure 4.16. This is consistent with the observation made

by Pohlman et al. (2006a) in cylinders with roughened end–walls and with

DEM results by Chen et al. (2008)

4.8 Discussion

From results shown in the previous section, one can safely conclude that

the JFP model describe dense granular flows in a consistent manner, thus it

contains at least the basic elements of their physics. The most striking results

come when comparing our results with experiments performed in similar

operating conditions. In such a way we both demonstrate the predictive

power of continuum simulations with the JFP model and also clarify to what

extent the physics actually hidden behind experimental data can be caught

in such a way. We compare our results with those of Félix et al. (2007),

Alexander et al. (2002) and Pohlman et al. (2006a), since all of them used

glass beads in their works.

Figure 4.17 shows the dimensionless thickness of the flowing layer against

the angular velocity in a cylinder having D/dp = 1000 and AR = 0.1. The

cyan symbols from Félix et al. (2007) are the experimental flow depths at the

wall of a cylinder having D = 20cm and W = 2cm half filled with particles

having dp = 200µm. Our numerical results are parametric in the degrees of

slip; the magenta symbol represent the center of the range (reported as error

bars) into which the flow layer at the center–plane falls at all slip parameter

values. Solid lines are power laws with exponent equal to 0.37, which is the



4.8 Discussion 75

1 10

0.01

0.1

0.1
0.2
0.5
1 (No slip)
Center (mean over slip values)
Exp (Felix et al.)

D

h

[rpm]

Figure 4.17: Comparison between our numerical results and experi-

mental data by Félix et al. (2007). Numerical data regard the end wall

of the cylinder; the error bar of the magenta hexagon represents the

range of the flow depth at the center at all slip parameters. Solid lines

are guides for the eye and have the slope declared by Félix et al. for the

reported data set.

best fit declared by Félix et al. (2007) for their data.

As the wall slip is reduced, the numerical results get closer to the experi-

mental values; the simulations with no–slip BC are in quantitative agreement

with experiments. The wall slip effects saturates pretty fast: data at β = 0.5

are very close to those obtained with the adherence BC; it also has a very

weak effect on what happens to the center of the cylinder.

This is, to the best of our knowledge, the first case in which fully 3D sim-

ulations with the JFP model quantitatively predict an actual experiment.
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Figure 4.18: Comparison between our numerically predicted free–

surface velocities at the center plane of the rotating cylinder and ex-

perimental data by Alexander et al. (2002). Shaded areas represent the

95% confidence intervals of our datasets.

An astonishing agreement is obtained near the end wall, where both the JFP

model and the continuum hypothesis were considered prone to failures. The

experimental results are strongly dependent on the presence of the wall and

we also demonstrate the crucial role of the slip in determining the experimen-

tal outcome. In other words, experimental results in quasi–2D cylinders are

actually those in which 3D effects are most important. This also questions

the possibility of modeling of such flows in 2D.

Figure 4.18 shows the normalized velocity magnitude on the free surface

versus the coordinate ξ (see Figure 4.15). The symbols are the experimental

data obtained by Alexander et al. in a cylinder having D/dp = 155 and

AR = 1.2, the lines and the shaded colored areas are our numerical results

(with D/dp = 1000 and AR = 1) and estimates of their uncertainty. The
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Figure 4.19: Comparison between numerical and experimental axial

velocity profiles by (Pohlman et al., 2006a).

agreement is fair, even if both experiments and simulations show a notice-

able scattering. Numerical velocity profiles show a maximum which moves

towards the bottom of the free surface when Ω is increased; nevertheless

Alexander et al. (2002) reports flatter profiles at low angular velocities. The

agreement also demonstrates that the VoF method used here can fairly re-

produce the actual behaviors on the free surface.

Another striking result come from the prediction of another wall–dominated

experimental result. Data on the right–hand side of Figure 4.19 are the sur-

face velocity profile along the axis of the cylinder measured by Pohlman

et al. (2006a) for D/dp = 170 and various aspect ratios. Our numerical re-

sults, shown in the left–hand side of Figure 4.19, concern cylinders having

D/dp = 1000. These numbers also represent the particles which would fit
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Figure 4.20: Time evolution of the axial velocity profile for the no–slip

case. The red curve is the same as in Figure 4.19, the blue one is the

steady (averaged) profile and the magenta curve is the time evolution of

the velocity peak. The abscissa report the percentage of one complete

turn starting from the onset of the flow.

in a cylinder with unitary aspect ratio: our simulations have almost 6 times

more particles (in each direction) than the experiments.

There is a good agreement between simulations with no slip at the walls

and experiments. As the aspect ratio is increased, the monotonic profile is

lost and a peak can be observed near the wall. The peak becomes more and

more pronounced as the adherence increases.

It must be noticed that their experiment design allow them to record data

during the time needed by the cylinder to perform a quarter of a turn (from

the onset of the flow). Our numerical velocity profiles have been taken in

the same time window and are shown in Figure 4.20. Although the velocity

peak observed tends to smear out approaching the steady state, reaching a

value ∼ 5% higher than the velocity at the center (see Figure 4.13), during
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Figure 4.21: Velocity profiles, in the cylinder–fixed non–inertial ref-

erence frame, of a series of three simulations done with three different

cutoff viscosities.

the time window available to experiments the profiles are quite close to those

of Pohlman et al. (2006a).

The dependence of the peak height on adherence is consistent with the

consideration made by Pohlman et al. that the peak is an end–wall effect and

does not depend on particles size or geometry. Again, we could reproduce a

distinctive feature of the interaction between the wall and the granular fluid

thanks to the JFP model.

One of the critic point of the JFP model is that it might not predict

the exponential tail found in velocity profiles in rotating cylinders: this crit-

icality was indicated as a possible “failure” of the JFP model by model’s
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author themselves (Jop et al., 2007; Pouliquen et al., 2006; Pouliquen and

Forterre, 2009). Our simulations, however, do show such an exponential tail:

Figure 4.21 reports the velocity profiles, in the cylinder–fixed non–inertial

reference frame, of a series of three simulations done with three different

cutoff viscosities (see Section 3.2). We can infer that the exponential tail

does not depend on the chosen regularization, but is a true outcome of the

physics simulated here: 3D simulations with the JFP model do account for

the exponential tail of the velocity profile.

This is the very first time in which a quantitative agreement is obtained

for dense grains in complex flow conditions. This demonstrates that the

basic physics of the dense state is already captured by the simple JFP model

and that the continuum mechanics can be used to get a physical insight in

granular dense flow phenomena. We believe that CFD simulations with the

JFP constitutive equation could in fact shed some light on a broad wealth of

experimental results.



5
Conclusions

In this thesis we study the flow of dry, monodisperse granular materials in

half–filled rotating cylinders in rolling regime by means of numerical sim-

ulations. The granular material is modeled as a continuum fluid with the

JFP constitutive equation. We investigated the effects of the the ratio be-

tween the cylinder and particle diameter D/dp, the ratio between the width

and the diameter of the drum AR = W/D, the Froude number, which is a

dimensionless angular velocity, and the degree of slip at the walls.

Most of the works devoted to the study of dry grains inside rotating

drums focused their attention on the wall behavior of such systems (GDR

MiDi, 2004) without accounting for its presence, even if the signature of the

importance of wall effects is known to be crucial (Jop et al., 2005; Naka-

gawa et al., 1993; Parker et al., 1997). Indeed, the very first motivation of

the JFP constitutive equation was to model the heap flow of granular mate-

rial in presence of lateral walls. Nevertheless, few works are devoted to the

description of the flow in wide cylinders and even less were able to probe

granular materials inside the flowing zone, where the system is closed off to
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optical apparati. Result from these experiments did show the essential 3D

character of granular flow and the essential contribution of the walls on their

flow behavior.

We tests our in–house implementation with the experimental results of

different authors, finding a qualitatively and quantitatively agreement. We

could match the velocity of glass beads along the free surface at the center

plane of a wide drum, measured by Alexander et al. (2002), up to the angular

velocity at which the system exits the rolling regime, where we underestimate

the experiments. We also reproduced the characteristic non–linear profile

reported by Pohlman et al. (2006a): the velocity is, somewhat counterintu-

itively, higher near the end walls of the cylinder than at its center. Even

more dramatic is the fact that this agreement has been obtained during the

initial transient, when the flow initiates. We also report the importance of

the slip between the grains and the wall, which determine the height of the

near–wall peak.

Our most striking results, in our opinion, was the excellent quantitative

agreement with the experimental results of Félix et al. (2007). The authors

measured the flow thickness at the wall of quasi–2D cylinders and reported a

substantial independence of the flow thickness on the aspect ratio. We could

not only quantitatively match their results on a cylinder with AR = 0.1, but

we also observed that the wall flow depth is indeed nearly independent on

AR and described the effect of the wall slip. This astonishing agreement is

obtained on near–wall data, where not only the JFP model, but the overall

continuum approach is supposed to be most prone to fail.

Furthermore, we could also observe a peculiar characteristic of granular
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flows, i.e. the exponentially decreasing velocity tail in the fixed part of the

flow, which have been reported in literature (Komatsu et al., 2001; Pouliquen

et al., 2006; Jop et al., 2007; Pouliquen and Forterre, 2009).

On the minus side, we have not been able to capture neither the regime

transition to the slumping regime, at low angular velocities, nor the transition

to the cataracting regime, at high angular velocities, but only to get cues of

such transitions. Regarding the former transition, we observed that, when the

dynamic angle decreases below the repose angle, the system shows noticeable

oscillations in all the probed quantities. These behaviors happen at angular

velocities of the order of those theoretically predicted by Bouchaud et al.

(1994) and Ding et al. (2002). On the other hand, instead of evolving into

the cataracting regime, our simulations at high angular velocities show that

the system attains very curved S–shaped interface with high inertial number

values on the higher part of the free surface, where it is almost parallel to

the lateral surface of the cylinder. We speculate that the transition might

be triggered by a drop of the density of the system, which couldn’t happen

in our simulations since the density of the granular phase has been fixed.

Future works might focus on the implementation of a density law for the

granular material, i.e. the development of a compressible code for granular

flow simulations.

Another point which needs further investigations is the refinement of

the wall boundary conditions. Here a simple constant partial slip has been

employed, while a wide variety of behaviors have been reported for granular

materials near walls (i.e. stick–slip, Pöschel and Buchholtz, 1995; Buchholtz

et al., 1995; Fried et al., 1998). Recently Artoni et al. (2009, 2012) focused
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on how these behaviors can fit in a continuum framework and developed

a boundary condition which is somewhat close to the partial slip BC here

adopted. Implementing such new BC would be a challenging task for a future

work.

In conclusion, our simulations demonstrate that the basic physics of the

dense granular flow is captured by the simple JFP model, and that contin-

uum mechanics can be used to get a physical insight in granular dense state

phenomenology. CFD simulations may then be of help to rationalize the

broad wealth of experimental results with these materials.

In a very recent numerical work, Chauchat and Médale (2014) concluded

that “another attractive direction for industrial or geophysical applications is

to model free–surface flows, but the way to go is still long”: in this thesis we

demonstrated that we were closer to the target than Chauchat and Médale

could imagine.
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“Drop impact onto a liquid layer of finite thickness: Dynamics of the

cavity evolution,” Physical Review E, vol. 79, no. 3, p. 036306, 2009.

D. Berzi, “Extended kinetic theory applied to dense, granular, simple shear

flows,” Acta Mech, vol. 225, no. 8, pp. 2191–2198, 2014.

D. Berzi and J. T. Jenkins, “Surface flows of inelastic spheres,” Physics of

Fluids, vol. 23, no. 1, p. 013303, 2011.

P. Boltenhagen, “Boundary effects on the maximal angle of stability of a

granular packing,” European Physical Journal B: Condensed Matter and

Complex Systems, vol. 12, no. 1, pp. 75–78, 1999.

D. Bonamy, F. Daviaud, and L. Laurent, “Experimental study of granular

surface flows via a fast camera: A continuous description,” Physics of

Fluids, vol. 14, no. 5, p. 1666, 2002.

D. Bonamy, F. Daviaud, L. Laurent, M. Bonetti, and J. Bouchaud, “Multi-

scale clustering in granular surface flows,” Physical Review Letters, vol. 89,

no. 3, p. 034301, 2002.

J.-P. Bouchaud, M. E. Cates, J. Ravi Prakash, and S. F. Edwards, “A model

for the dynamics of sandpile surfaces,” Journal de Physique I, vol. 4, no. 10,

pp. 1383–1410, 1994.
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T. Pöschel and V. Buchholtz, “Complex flow of granular material in a rotat-

ing cylinder,” Chaos, Solitons & Fractals, vol. 5, no. 10, pp. 1901–1912,

1995.

O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, and M. Nicolas, “Flow of dense

granular material: towards simple constitutive laws,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2006, no. 07, p. P07020, 2006.

O. Pouliquen, “Scaling laws in granular flows down rough inclined planes,”

Physics of Fluids, vol. 11, no. 3, pp. 542–548, 1999.

O. Pouliquen and Y. Forterre, “Friction law for dense granular flows: appli-

cation to the motion of a mass down a rough inclined plane,” Journal of

Fluid Mechanics, vol. 453, pp. 133–151, 2002.

——, “A non–local rheology for dense granular flows,” Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 367, no. 1909, pp. 5091–5107, 2009.

J. Rajchenbach, “Flow in powders: From discrete avalanches to continuous

regime,” Physical Review Letters, vol. 65, no. 18, pp. 2221–2224, 1990.

M. Renouf, D. Bonamy, F. Dubois, and P. Alart, “Numerical simulation of

two–dimensional steady granular flows in rotating drum: On surface flow

rheology,” Physics of Fluids, vol. 17, no. 10, p. 103303, 2005.

O. Reynolds, “Lvii. on the dilatancy of media composed of rigid particles in

contact. with experimental illustrations,” Philosophical Magazine Series 5,

vol. 20, no. 127, pp. 469–481, 1885.



96

G. H. Ristow, “Dynamics of granular materials in a rotating drum,” Euro-

physics Letters, vol. 34, no. 4, pp. 263–268, 1996.

J.-N. Roux and G. Combe, “Quasistatic rheology and the origins of strain,”

Comptes Rendus Physique, vol. 3, no. 2, pp. 131–140, 2002.

C. H. Rycroft, K. Kamrin, and M. Z. Bazant, “Assessing continuum pos-

tulates in simulations of granular flow,” Journal of the Mechanics and

Physics of Solids, vol. 57, no. 5, pp. 828–839, 2009.

L. Sanfratello, A. Caprihan, and E. Fukushima, “Velocity depth profile of

granular matter in a horizontal rotating drum,” Granular Matter, vol. 9,

no. 1-2, pp. 1–6, 2006.

S. B. Savage and K. Hutter, “The motion of a finite mass of granular material

down a rough incline,” Journal of Fluid Mechanics, vol. 199, p. 177, 1989.

S. B. Savage, “Gravity flow of cohesionless granular materials in chutes and

channels,” Journal of Fluid Mechanics, vol. 92, no. 1, pp. 53–96, 1979.

——, “The mechanics of rapid granular flows,” Advances in Applied Mechan-

ics, vol. 24, pp. 289–366, 1984.

“What we don’t know?” Science, vol. 309, no. 5731, pp. 78–102, 2005.

D. Scott, J. Davidson, S.-Y. Lim, and R. Spurling, “Flow of granular ma-

terial through an inclined, rotating cylinder fitted with a dam,” Powder

Technology, vol. 182, no. 3, pp. 466–473, 2008.

G. Seiden and P. J. Thomas, “Complexity, segregation, and pattern forma-

tion in rotating–drum flows,” Reviews of Modern Physics, vol. 83, no. 4,

pp. 1323–1365, 2011.
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