
Facoltà di Ingegneria

Dottorato di Ricerca in Ingegneria Informatica ed Automatica
XXVII Ciclo

Dipartimento di Ingegneria Elettronica e delle Tecnologie dell’Informazione

Dynamic management of real-time

multimedia services in SDN-enabled cloud

infrastructures

Tobia Castaldi

Ph.D. Thesis

Tutors Coordinator
Prof. Simon Pietro Romano Prof. Francesco Garofalo

March 2015

Abstract

This thesis has been carried out in the field of Computer Networks and has
been conducted in collaboration with my colleague Lorenzo Miniero.

We have looked after a challenging and popular application family over
the Internet, namely Real-time Multimedia Applications. The proliferation
of new network technologies that characterizes the last years has led to the
birth of a variegated set of new complex services on top of the Internet.
The network, which in its early days was mainly aimed at distributing static
contents, is rapidly evolving toward a paradigm based on dynamic or even
real time information. One of the most appealing services is the stream-
ing of real time multimedia contents over the Internet. In this context, the
most challenging goal for operators is to provide users with services that are
comparable in terms of perceived quality to the traditional TV broadcasting
system. At the time of this writing the whole portfolio of real time multime-
dia streaming services is characterized by some common issues. First of all
the need for users to install third party software or plugins for web browsers
in order to be able to reproduce multimedia streams. It’s worth noting that
different services rely upon different software solutions and in most of the
cases they are not inter-operable. Furthermore, existing streaming services
are afflicted by high transmission delay. This fact can be very annoying when
users are provided with a feedback channel to interact with the source of the
streaming. For example, if during a webinar (online seminar) participants
can interact with the current speaker, even a few seconds delay could cause
misunderstandings and slow down the progress of the event. As another
example, it must be said that one of the most common use cases when it
comes to streaming is the broadcast of sport events. In this case, someone in
the neighbourhood watching the same event on television could rejoice and
scream, hence spoiling the surprise for a scored goal.

To cope with such issues, we have worked on a novel architecture aimed to
provide a web-based real-time multimedia streaming service capable to serve
a very large number of users. The framework we propose leverages techniques
that have been successfully exploited in Content Delivery Networks (CDN)

iii

at the application level and in the field of the so called Software Defined
Networking (SDN) for what concerns the underlying network infrastructure.
Our platform envisages the cloud-based deployment of several elements co-
operating to deliver the service to end users. More specifically, the server
side of our architecture is based on an overlay network of application level
components configured to create a self-organized tree topology. Each node
of the tree plays one of the following roles: (i) root (ii) relay (iii) leaf. The
source of the stream, i.e. the broadcaster, sends multimedia flows to the root
node which transcodes them in order to generate different quality replicas
of the original flows. When new users try to access the stream (by sim-
ply opening a web page) they are directed by the framework to one of the
leaves of the tree depending on the overall status of the network and/or on
particular client side constraints (type of device, available bandwidth, etc.).
A distributed algorithm is used to provide the root node with information
about the overall load status of the network and to allow it to dynamically
manage the content distribution chain (by adding or removing nodes). As
for the real time requirement, communication among broadcaster, internal
nodes and final users relies entirely upon the upcoming WebRTC/RtcWeb
(Real-Time Communication in Web-browsers) technology, which guarantees
pure web based access to multimedia streams, as well as support for real time
delivery of multimedia contents.

In the second part of the thesis, we focus on SDN enabled networks, once
again basing our work on a study of current architectural and performance
challenges. The acronym SDN stands for Software Defined Networks and
it represents an innovative approach to networking, attempting to keep the
pace of the substantial diffusion and utilization we are experiencing in the
latest years. By developing an application on the top of an SDN, a network
administrator can obtain a substantial degree of scalability and reconfigura-
tion that they would not be able to reach in any other way. We hence pro-
pose a framework for the performance optimization of the above mentioned
streaming platform, as well as for the simplification of its management and
administration.

The thesis is structured as follows. Section 1 helps position our work by
providing useful information about the reference context, as well as about
the motivations behind our contribution. At the end of the section a high
level design of the project is presented as well. An overview of the main
technologies we based our project on is presented in Section 2. High level
implementation details are illustrated in Section 3 whereas in Section 4 we
deal with a class of technologies allowing to optimize the monitoring and
control of the architecture thanks to the design and implementation of low
level components presented respectively in Section 5 and Section 6. Section 7

iv

presents a functional testing campaign we carried out to validate the proto-
type we realized and to demonstrate how the system is able to satisfy all the
requirements identified during the design phase.

Finally, section 8 provides some concluding remarks, together with infor-
mation about our future work.

Contents

Abstract ii

1 Streaming of real-time contents over the Internet 1
1.1 General background . 1

1.1.1 Real-time streaming protocols 3
1.1.2 Live streaming: open issues 4

1.2 SOLEIL: Streaming Of Large scale Events over Internet cLouds 5
1.2.1 System requirements 5
1.2.2 Overall architecture . 6
1.2.3 Aggregation of real-time statistics 9
1.2.4 Migration of system’s nodes 10

2 High level enabling technologies 11
2.1 CDN: Content Delivery Network 11

2.1.1 Content selection . 16
2.1.2 Content outsourcing 16
2.1.3 Server selection . 17
2.1.4 Dynamic content management 18
2.1.5 Handling multimedia contents 19

2.2 Virtualization . 19
2.2.1 Virtualization types . 21
2.2.2 Hypervisor types . 24
2.2.3 Live Migration . 26
2.2.4 Available technologies 30

2.3 Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 34
2.3.1 Real-time Transport Protocol (RTP) 37
2.3.2 Real-time Transport Control Protocol (RTCP) 39

2.4 Scalable Video Coding . 41
2.5 The Gstreamer framework . 42

2.5.1 GStreamer foundations 43

CONTENTS vi

2.5.2 Communication and events 45

3 Application level main components 47
3.1 SOLEIL management and monitoring protocol 47

3.1.1 Types of message . 49
3.1.2 Statistic aggregation algorithm 49

3.2 Overlay network’s architectural elements 58
3.2.1 Relay node . 58
3.2.2 Master node . 60
3.2.3 Source node and Leaf node 61

4 Low level enabling technologies 65
4.1 Internet: state of the art . 65

4.1.1 Benefits of network customizations 67
4.2 Software Defined Networks . 69

4.2.1 SDN: network enhancement 72
4.3 OpenFlow . 75

4.3.1 Flows and flow tables 75
4.3.2 Overall architecture . 79

5 SOLEIL low level network design 82
5.1 Nodes architecture . 82
5.2 Low level network design . 85

5.2.1 Bridging mode . 86
5.2.2 Overlay and low level networks configuration 88
5.2.3 Path, flows and role based tree 89

5.3 Automatic configuration of the low level tree topology 94
5.4 Migration of SOLEIL nodes 98

6 System implementation 101
6.1 Virtualization environment and network emulation 101
6.2 Disk sharing . 104

6.2.1 ISCSI components and SOLEIL setup 104
6.3 Openvswitch . 106

6.3.1 Bridges and connections 108
6.3.2 Openvswitch architecture 109
6.3.3 Openvswitch traffic patterns 110
6.3.4 SOLEIL Openvswitch setup 112

6.4 The Controller element . 113
6.4.1 Floodlight . 113
6.4.2 SOLEIL controller setup 115

CONTENTS vii

6.5 Management application . 117
6.5.1 Existing modules and APIs 117
6.5.2 System set up and management: top-down guided tour 119
6.5.3 Path tab and plugin system 124

7 Functional testing 129
7.1 Testing environment and testbed setup 129

7.1.1 Setup of system’s nodes 131
7.1.2 Guest setup . 132
7.1.3 Network Setup . 134

7.2 Sink or Swim selective forwarding technique 135
7.3 Testing flow . 136
7.4 Migration use case . 141

8 Conclusions and Future Work 143

Chapter 1

Streaming of real-time contents
over the Internet

In this section we will deal with a very common application scenario in the

wide panorama of real-time multimedia services, namely the streaming of

multimedia contents over the Internet. We will provide a general background

of this kind of service and then we will focus on a specific use case envisaging

the real time transmission of live generated contents. Some information will

be given about adopted technical solutions and open issues affecting the most

common commercial products. At the end of this section we will present,

from an high level point of view, our idea for the realization of an innovative

framework supporting, in general, real-time applications deployed in cloud

environments. The platform has been designed and realized having in mind

specifically the aforementioned streaming service use case which represents

the main objective of our doctoral research activity and that, for this reason,

it will be the fil rouge that will guide the reader across the entire document.

1.1 General background

The Internet is more and more frequently used as an infrastructure for trans-

mitting real-time data and for providing geographically distributed users with

advanced tools for mutual interaction and communication. Real-time multi-

media communication is one of the killer application of the modern Internet

General background 2

indeed. It imposes a number of stringent requirements to the underlying net-

work infrastructure. First of all, the intrinsic multimedia nature of a com-

munication session (which in its most general form involves a combination of

audio, video, instant messaging, desktop sharing, etc.) requires coping with

complex management issues. Second, the real-time requirement of network-

based interactions demands a high level of Quality of Service (QoS). Within

this general context, one of the most appealing services is the streaming of

real-time multimedia contents. The term streaming indicates that one or

more media (audio, video, etc.) are constantly received by and presented

to an end-user while being delivered by a provider. With reference to the

streaming of audio/video flows, we can distinguish two main categories of

contents to be streamed: a stored video file or a live video flow generated

using an acquisition device like a webcam.

As for the transmission mechanism of a stored video file two possible

paradigms have to be considered, namely, (i)the download mode and (ii) the

streaming mode. In the download mode, the end-user downloads the entire

file and, only at end of this process, is able to play out its video content.

Obviously, the full file transfer lead to very long delay before the user can

start the play out phase.

By adopting the streaming mode, instead, the video can be played out

as soon as just a minimum fraction of the whole file has been received and

the client has enough data to decode the first part of the video content. The

video streaming scenario typically presents bandwidth, delay and packet loss

requirements that are very ambitious to be respected due to the best-effort

nature of the Internet. In fact, the network does not offer any quality of

service (QoS) guarantees to the streaming process thus designing mechanisms

and protocols for this kind of service poses several challenges.

For instance, a multicast [26] based delivery of a stream would be a very

efficient way to transfer data to multiple destinations. The main drawback of

this technique is it requires the underlaying network infrastructure supports

this kind of technology and, for this reason, nowadays it is exploited mainly

General background 3

when the involved producer and receivers of the flow are limited in the con-

text of the same Local Area Network (LAN). Nevertheless, some classes of

applications have tried to obtain the great advantages introduced by multi-

cast transmission moving the techniques adopted at the network level to the

application level of the protocols stack realizing the so called application layer

multicast-over-unicast [16]). In an overlay or end-system multicast approach

participating peers organize themselves into an overlay topology for data de-

livery. Each edge in this topology corresponds to a unicast path between two

end-systems or peers in the underlying Internet. All multicast-related func-

tionalities are implemented at the peers instead of at routers, and the goal

of the multicast protocol is to construct and maintain an efficient overlay for

data transmission.

1.1.1 Real-time streaming protocols

As for the control and media delivery functions, the main standardization

bodies, like the Internet Engineering Task Force (IETF) [19] and the Third

Generation Partnership Project (3GPP) [11], have defined a wide set of pro-

tocols that can be exploited for the purpose. Among them, the Real-time

Streaming Protocol (RTSP) [55] were specifically designed to stream media

over networks. The protocol can be used for establishing and controlling

media sessions between end points and to facilitate real-time control of play-

back of the media stream received from the server (e.g., pause, stop, start,

etc.). The protocol is not responsible for the transmission of data itself and

this task is in the most of the cases demanded to dedicated protocols like the

Real-time Transport Protocol (RTP) [56]. The Real Time Messaging Proto-

col (RTMP) [41] can be considered the proprietary equivalent of the RTSP.

It was initially a proprietary protocol developed by Macromedia for stream-

ing audio, video and data over the Internet, between a Flash player and a

server. An incomplete version of the specification of the protocol has been

lately released for public use.

Another approach that seems to incorporate both the advantages of using

General background 4

a standard web protocol and the ability to be used for streaming even live con-

tent is the adaptive bitrate streaming. HTTP adaptive bitrate streaming [60]

is based on HTTP progressive download of a sequence of small HTTP-based

file segments, each segment containing a short interval of playback time of

the main content.

1.1.2 Live streaming: open issues

As we anticipated, the most extreme form of streaming is live streaming,

namely the delivery of live contents over the Internet. This scenario requires

a form of source device (e.g. a web cam, an audio acquisition interface, screen

capture software, etc.), an encoder to digitize the content, a media publisher,

and a content delivery network to distribute and deliver the content to end

users. In this field, the most challenging goal for service providers is to pro-

vide users with a perceived quality of service comparable to the one obtained

by means of the traditional TV broadcasting system. At the time of this

writing the whole portfolio of Internet-based, real time multimedia stream-

ing services (e.g., Twitch.tv [27], YouTube Live [44], Ustream [30], etc.), in

spite of being able to offer the service to a wide audience of end users, is char-

acterized by some common issues. First of all the need for users to install

third party software or plugins for web browsers in order to be able to play-

out multimedia streams. It’s worth noting that different services rely upon

different proprietary software solutions and in most of the cases they are not

inter-operable. Furthermore, existing streaming services are afflicted by high

transmission delay. This fact can be very annoying when users are provided

with a feedback channel to interact with the source of the streaming. For

example, if during a webinar (an online live seminar) remote participants

can interact with the current speaker, even a few seconds delay could cause

misunderstandings and slow down the progress of the event. As another ex-

ample, it must be said that one of the most common use cases when it comes

to streaming is the broadcast of sport events. In this case, someone in the

neighborhood watching the same event on television could joy and screams

SOLEIL: Streaming Of Large scale Events over Internet cLouds 5

spoiling the surprise for the decisive actions of a match.

1.2 SOLEIL: Streaming Of Large scale Events

over Internet cLouds

As we said existing solutions in the field of live streaming are able to serve

a potentially huge number of end users by using CDN-like server side ar-

chitectures but they are all afflicted by two main drawbacks: i) need for

proprietary software installations (ad-hoc applications or web browser plug-

ins) in order to access the service ii) high transmission delays. To cope with

such issues, we have worked on a novel architecture aimed to provide an ex-

tremely large number of users with a fully web-based access to a real-time

multimedia streaming service.

1.2.1 System requirements

The framework we propose still leverages techniques that have been suc-

cessfully exploited in the context of the Content Delivery Networks (CDN)

at the application level but also rely upon the benefits introduced by the

so called Software Defined Networking (SDN) for what concerns the under-

lying network infrastructure. The system has to respect several functional

requirements:

• Scalability. The performance of the system has not to be affected by

the number of clients accessing the service. In the specific case of a

streaming application, this means that the elements characterizing the

delivered stream (quality, delay, jitter, etc.) has to be coherent to the

imposed service level imposed by the system administrator no matter

how many clients are currently connected to the system;

• Reconfiguration. The infrastructure design should allow a certain de-

gree of flexibility in order to react to peculiar operational scenarios.

SOLEIL: Streaming Of Large scale Events over Internet cLouds 6

In the context of a streaming application, for instance, a high num-

ber of users willing to access the service could be localized in the same

geographic area. In this case, the infrastructure should be able to au-

tomatically reconfigure itself in order to properly serve the requests;

• Fault tolerance. As a specific reconfiguration use case, we can include

the reaction to network problems affecting the system infrastructure.

In case of network congestion, for instance, the infrastructure should

be able to reconfigure itself in order to avoid or at least minimize the

service donwntime;

• User-friendly interface. The system administrator should be able to

manage the overall infrastructure by means of a simple web based ad-

ministration application, no matter they are aware or not of the under-

lying technology and of implementation details;

• Customization and monitoring. By means of the same application, ad-

ministrators should also be able to customize the infrastructure behav-

ior and to monitor its current state (CPU load and memory utilization

of each component, number of exchanged packets, packet loss informa-

tion, etc.);

• Security. All involved communications should be properly encrypted.

Only authorized users should be able to interact with the system.

1.2.2 Overall architecture

The server side of the platform is composed by several elements cooperating

to deliver the final service (this approach naturally lends itself to a cloud-

based deployment). Our architecture is based on overlay network whose

nodes create a self-organized tree topology. Analyzing the high level perspec-

tive of the system depicted in Figure 1.1, we can distinguish three different

types of components:

SOLEIL: Streaming Of Large scale Events over Internet cLouds 7

• The root node, namely the first node of the tree. This element receives

the live content by the source of the stream and inject it into the

system. This will be the point of the system in which the original

media streams will be adapted and converted into different formats and

resolutions in order to cope with different client-side requirements (type

of device used for accessing the service, bandwidth availability and so

on). The root node will be also in charge of the management of the

entire system. In fact, as will be detailed in the following, this node will

receive statistic information about load and bandwidth consumption

from the other nodes of the tree and it will be able to react properly

in case of problems;

• Relay node, it’s the role assigned to internal nodes of the tree. A relay

node simply act as a bridge toward other nodes of the system in order

to increase scalability of the overall system. Nevertheless, this kind

of node will be crucial for both balancing the load of the system and

for aggregating statistic information to send to the root node. The

number of relay nodes is dynamic and depends on the number of end

users willing to access the service in a specific instant of time. New

nodes can dynamically be added to the tree in order to increase the

scalability of the system. Vice versa, in order to save resources, a

node can be switched off in case a large number of users (previously

connected to the stream) disconnect and leave the system;

• Leaf node, the last node of the tree, the one end user will connect to

in order to receive the live stream. This node represent the so-called

last-mile of the overall architecture and it has to allow final users to

access the service in a easy and standard way by means of a pure web

interface.

It is worth noting that, in order this kind of architecture could work prop-

erly, communication among broadcaster, internal nodes and final users has

to relay entirely upon a very fast communication channels. Our idea is to re-

SOLEIL: Streaming Of Large scale Events over Internet cLouds 8

Figure 1.1: SOLEIL: High level architecture

alize these channels by exploiting the standard Real-Time Transport Protocol

(RTP). Several reasons motivated us to adopt the RTP, first of all it’s one

of the most widely adopted protocols within the context of standards-based

Voice over IP (VoIP) applications. Furthermore, it can be used in conjunc-

tion with the RTP Control Protocol (RTCP) [54] which allows to monitor

transmission statistics and quality of service (QoS) information. Last but not

least, RTP is the underlying technology of the upcoming WebRTC/RtcWeb

(Real-Time Communication in Web-browsers) [32] standard, which guaran-

tees pure web based access to multimedia streams. As we said the root node

can generate different ‘copies’of the original source in order to provide users

with limited resources with an adapted version of the media stream. One

possible option is the adoption of Scalable Video Coding (SVC) [57] tech-

niques. The objective of the SVC standardization activity has indeed been

to enable the encoding of a high-quality video bitstream that contains one

or more subset bitstreams that can themselves be decoded with a complex-

ity and reconstruction quality similar to that achieved using the whole data.

One of the most important aspects of our architecture is the monitoring and

management of the overlay network in charge of providing the service. As

SOLEIL: Streaming Of Large scale Events over Internet cLouds 9

anticipated this task will be realized by collecting and aggregating statistic

information, as will be explained in the following section.

1.2.3 Aggregation of real-time statistics

In order to let the source node properly monitor and manage the whole

infrastructure, we need an ad-hoc protocol based on the information about

the quality of service provided by each end user by means of the RTCP

protocol. In fact the RTCP protocol is natively designed for supporting one-

to-one communication. In this context, if a peer of the communication is

experiencing some network problems (packet loss, delay, etc.), it can send to

the other peer a report about the quality of the received media flow and ask

it to adjust the transmission rate in order to solve that issue and to prevent

further problems in the near future. However, in our scenario several clients

can be connected to the same leaf node and each client can obviously access

the node from a different location and it can use connections characterized

by heterogeneous network conditions. Consequently, the statistic information

sent by each client can be very discrepant from each others. If we thought to

adapt the transmission rate of each node on the base of the rough information

sent by end users we would risk to degrade the quality of the delivered stream

for all the users served by the same sub-tree of the topology even though only

one of those users is accessing the service through a poor Internet connection.

For this reason we need to introduce a mechanism that allows the system to

understand whether the problem is common to most of the users or only to

a few of them. The general idea is to aggregate statistical information in

each node and to transmit the aggregate to the immediately upper node of

the topology. The receiving node (a relay node), in turn, assigns a weight to

each statistic based on the number of end users served by the subtree that

has sent the information and forwards the statistic to its direct predecessor

in the topology. This process is iterated in order to reach the root node.

This kind of information allows to properly monitor the overall status

of the system. Once an alert about the status of a subtree or of a single

SOLEIL: Streaming Of Large scale Events over Internet cLouds 10

node of the system arises, the root node can investigate, by means of direct

messages, the specific load condition of that part of the system and, in case

the problem persists, can act on the current topology by adding, removing

or migrating nodes or even an entire subtree.

1.2.4 Migration of system’s nodes

End users access the service by contacting a web based front end which

redirects each client to the best leaf node according to configurable policies

(e.g. current load of the system, user’s geographic location, type of stream

the user want access to, etc.). Due to the dynamic nature of the service the

architecture provide support for, one or more of the selected leaf nodes can

be overloaded by client connections or even be completely unused. In such

a situation the system could decide that a migration of that node is needed

in order to optimize the consumption of resources of the overall architecture

and to serve client requests granting a satisfying level of Quality of Service.

The migration, in fact, can be executed in order to move an overloaded node

toward a new location able to provide both higher computational power and

wider bandwidth resources. The migration process can be a very difficult

operation in the context of our complex infrastructure since the node to be

migrated is contributing to delivering the service. The system has to be able

to achieve this task avoiding service interruptions and minimizing annoying

side-effects for the end users.

Chapter 2

High level enabling
technologies

2.1 CDN: Content Delivery Network

A Content Delivery Network (CDN) [62] is a large distributed system of

servers deployed in multiple data centers across the Internet in order to pro-

vide heterogeneous contents to end-users with high availability and high per-

formance. Nowadays CDNs contribute to host and distribute a large fraction

of Internet contents, including web objects, multimedia files and applications.

Content and service providers pay CDN operators to host and deliver their

contents to the final customers for both granting them high level of QoS and

for offloading their own server side infrastructure. In addition, CDNs pro-

vide the content provider a degree of protection from Denial of Service (DOS)

attacks by using their large distributed server infrastructure to cope with ma-

licious client requests.

In Figure 2.1 is represented the standard client-server paradigm used to

serve content to end users. This approach can lead to unpredictable content

delivery delay especially if an high number of requests have to be served at

same time. In fact, the Internet is a network characterized by a best effort

quality of service level and this fact makes it very difficult to guarantee well

defined performance degree. Furthermore, the load on the Internet and the

richness of its content continue to grow and any increase in available network

CDN: Content Delivery Network 12

Figure 2.1: The centraliazed client-server paradigm

bandwidth and server capacity will continue to be overwhelmed.

To cope with such issues the aforementioned paradigm has been replaced

by the approach depicted in Figure 2.2. The general idea behind a CDN en-

visages the contents are replicated on multiple servers hosting the business

logic needed to optimize the delivery to end users. This results in an in-

tegrated overlay using multiple technologies (i.e. web caching, server-load

balancing and request routing) to augment service availability and to reduce

delivery delay.

In the following we will quickly present the aforementioned techniques

in order to give the reader an overall idea of the foundations of the CDN

approach:

• Web caches (or HTTP caches) temporary store copies of popular con-

tent on servers that have the greatest demand for the object requested.

CDN: Content Delivery Network 13

Figure 2.2: Content Delivery Network general architecture

CDN: Content Delivery Network 14

These shared network appliances reduce bandwidth usage, server load,

and perceived lag;

• Server-load balancing is used to share traffic among a number of servers

or web caches. A single virtual name is assigned to a front-end element

which is in charge of redirecting requests to one of the real web servers

composing the back-end portion of the infrastructure. This technique

has the advantage of balancing load, improving scalability and provid-

ing increased reliability by redistributing, for example, the load of a

crashed server. A load balancing system performs in fact check opera-

tions in order to vault the health status of each server over time;

• A Request routing system directs client requests to the best serving

node in a distributed system. Clients’ requests can be redirected for

instance to the closest server or to the one with the most capacity in

that moment. A variety of algorithms are used to route the request

including Global Server Load Balancing, DNS-based request routing,

Dynamic metafile generation, HTML rewriting and anycasting.

In [42] are illustrated the main building blocks of CDNs (see Fig. 2.3).

Fundamental building blocks are those devoted to distribution and replica-

tion of contents and the one devoted to request redirection. The distribution

and replication module is the interface between the CDN operator and the

content provider. It deals with three main issues:

• Server placement, i.e., strategies for the positioning of replica servers;

• Content selection, i.e., strategies for choosing the contents that have to

be replicated on surrogates;

• Content outsourcing, i.e., algorithms for the replication of contents on

replica servers.

The redirection block on the other hand is the interface between the CDN

and the final user. It handles users’ request and their redirection towards the

CDN’s surrogates containing the requested contents.

CDN: Content Delivery Network 15

Figure 2.3: CDN building blocks

Other conceptual blocks are related to monitoring and accounting func-

tionality. The monitoring is responsible of controlling CDN resources’ state

(servers’ workload, network workload, and so on). The accounting module

controls how contents belonging to each CP client overload the CDN network

by looking at parameters such as the traffic generated by a given replicated

web site.

Since their birth in the 90s, CDNs have been facing several challenges due

to the evolution of the usage patterns of the Internet and new architectural

modules have been added besides the aforementioned basic ones. They deal

with:

• Dynamic content distribution, i.e., the replication of contents that have

to be generated ad-hoc according to the received request;

• Dynamic resource deployment, in order to accomplish overload condi-

tions and flash crowd;

• Users’ mobility support;

• Multimedia streaming support.

CDN: Content Delivery Network 16

2.1.1 Content selection

When designing the CDN replication policy for a certain CP’s site, there are

two main alternatives:

• performing a full-site replication: in this case, the whole site is repli-

cated on CDN surrogates;

• performing a partial-site replication: here, only a subset of objects is

replicated.

Partial-site strategies are preferred since more scalable when dealing with lots

of bulky objects. However, a further complexity resides behind. Indeed, a

proper content selection criterion has to be identified and applied. Typically,

web objects are clustered according to a certain similarity metrics that can

be based for example on object’s popularity, number of incoming hyperlinks,

or the reduction in the access latency that could be obtained by replicating

the considered object.

2.1.2 Content outsourcing

Content outsourcing strategies can be push-based or pull-based.

Push-based mechanisms envision content pre-fetching on CDN surrogates,

i.e., the replication is performed in a pro-active manner without waiting for

final users’ requests. Strategies of such a kind are usually strictly intercon-

nected with partial-site replication policies of content selection. Push-based

outsourcing is not exploited in commercial CDNs since it can be effectively

applied only if the spatial and temporal distribution of users’ request can be

known a-priori. That hypotesis is very interesting but at the moment it is

also very hard that it can be satisfied in practice.

Pull-based strategies, on the other hand, replicate contents on a surrogate

server only after a ‘miss event’. A miss event happens when a request reaches

a server that does not hold the requested content. They can be further

divided in ‘cooperative’ and ‘non-cooperative’ solutions.

CDN: Content Delivery Network 17

Non-cooperative pull-based strategies correspond to conventional caching.

Only contents already requested by users are replicated on surrogate servers.

This policy realizes a user-driven automatic content replication on the CDN.

This solution is the simplest one and is often employed in commercial CDNs

as Akamai [38].

Cooperative pull-based solutions are different only in the management of

the miss event: the missing content is requested to the other cooperating

CDN servers rather than to the origin server, by this way reducing the load

on the origin server and possibly enhance time performances.

2.1.3 Server selection

A server selection algorithm is used for selecting the surrogate server to which

redirect a certain request among those that can satisfy that request. Server

selection algorithms can be divided in (i) server-side and client-side and in

(ii) single-server and multiple-server .

There are two algorithm families of server-side algorithm:

• adaptive: they do not take into account server load, but apply static

policies. A typical example is a round-robin strategy.

• non-adaptive: they consider some information in the selection process,

such as server load, the user proximity, and the like. Akamai adopts

algorithm of such a kind.

Client-side algorithms envision the user selects the preferred replicas among

the available ones. The CDN operator provides a list of information associ-

ated with the available replicas and the user can use this information in the

selection process.

In single-server strategies, the content is taken from a single selected

server, while in multiple-server the content is divided into multiple blocks and

each block resides on a different server. Single-server strategies are preferred

in case of non-bulky contents; in this last case, which is typical for multimedia

contents, the object can be split among different replicas.

CDN: Content Delivery Network 18

2.1.4 Dynamic content management

A web application generating dynamic contents is developed into different

levels:

• front-end: the interface with the final user, i.e., the web page dynami-

cally generated;

• application: the level responsible of generating the web page on the

basis of the application logic;

• back-end: the database level containing data exploited by the applica-

tion logic;

• user-profile: the database level containing user profiles enabling the

contents personalization.

The replication on CDNs of sites of that kind can be performed at different

levels. Replication at the first level corresponds to static contents replica-

tions, which is the one considered up to now. The replication of the ap-

plication level can be useless if the bottleneck is the access to the database

maintained by the origin server. Database replication can be performed in

three ways: (i) context-blind caching, (ii) context-aware caching, (iii) full-

replication. The full replication is quite onerous if it has to be performed on

several surrogates dispersed across the network. Content-blind caching mem-

orizes on replicas only the content resulting from previously issued requests

and it is the typical commercial option. In the context-aware caching strate-

gies, surrogates have a database which is populated in a pro-active manner

through a partial replication of the original database. The pro-active replica-

tion is driven by the surrogate users’ access patterns. Even if more flexible,

such an approach calls for a centralized control for the distribution of the

requests among the multiple copies of the database and for the coordinated

query execution. This strategy is typically employed for user profiles replica-

tion, since they are accessed from a single surrogate at a time in a localized

manner.

Virtualization 19

2.1.5 Handling multimedia contents

CDNs evolve in time to better support multimedia streaming applications.

Multimedia contents of bulky dimensions are typically divided into sub-parts,

both in time domain and quality domains, when progressive encoding algo-

rithms are applied. The full replication of such file on surrogate servers can

be inefficient, since it generates a lot of traffic on the network and since users

can be interested only in limited portions of the content. Typically, a CDN

solution for the distribution of multimedia contents is a two level architec-

ture. At the higher level, there is the transport of the content between the

origin server and the surrogate server by means of typical file transfer pro-

tocols. At the lower level, there is the transport of the content between the

surrogate server and the final user via RTP, controlled in case through pro-

tocols such as RTSP (Real Time Streaming Protocol) that enable the final

user to perform typical VCR commands. The preferred content outsourcing

strategy is a non-cooperative pull-based approach where surrogates possibly

pre-fetch part of the contents that will be requested by the user to the aim

of avoiding undesired interruptions during the reproduction. Live streaming

(also known as webcasting) is more challenging on the architectural design

plane. Live contents can not be pre-fetched on surrogates and the content

distribution must be performed in real-time. When CDNs are largely ex-

panded across the globe, webcasting of popular contents can really stress the

content distribution network and the origin server.

2.2 Virtualization

In this section we will give an overview about virtualization technologies.

We will first try to define what it exactly is, and then we will introduce

different virtualization techniques. Finally, we will focus on most common

disk sharing systems, which are crucial for some aspects of our project as will

be explained in Section 2.2.3. Interested readers can find more exhaustive

information in [34] and [48].

Virtualization 20

When talking about virtualization most of the people immediately think

to modern virtualization software, like VMWare [52] or VirtualBox [47].

Actually, virtualization is a much older technology widely adopted since the

early 90s. In fact, as an example of virtualization we can cite the virtual

memory, an abstraction that makes a generic program to think of having the

entire memory available for exclusive use, or the logical unit division of an

hard disk, which makes the user think of having two or more hard disks, even

tough actually only one physical device is available. During last years this

technology evolved, so that nowadays virtualization can be defined as the

process of creating a virtual version of a device or resource. Resources can

range from plain memory to an entire server with its own operating system

and peripherals.

Benefits of virtualization

Even though in the literature we can find several examples illustrating the

benefits of virtualizing memory and hard disks, very little explanation is given

about the advantages of virtualization an entire operating system. The most

common (and often only) exemplification envisages the system testing before

its deploying in production environments.

There are three main reasons:

• Partitioning: this is the ability to run multiple instances of an opera-

tive system or application on the same physical host. Modern x86-based

processors are designed so that just one operative system and applica-

tion can be run at one time. This would make so that even little data

centers had to run multiple servers, leading to a highly inefficient re-

source utilization. In short, thanks to virtualization, it is possible to

attain up to 80% of efficiency from a node;

• Isolation: each virtual machine is in fact isolated from the other VMs

running on the same machine and from the host, too. This means

that any crash or virus relating to a single VM is contained in the

Virtualization 21

software process the VM itself belongs to. In other words, the fact that

a virtualized server is experiencing problems does not affect the physical

node itself and any other virtual machine contained in it. At most, it

may have influence on other VMs that are currently communicating

with the crashed/infected one, but the problem can be solved with

much more ease than if the problem interested the entire host;

• Encapsulation: unlike a real server, a VM is just a plain file. This

means that if, for example, the VM should be infected by some viruses,

a simple deletion of the infected file would solve the problem. And if,

like always happens, the system administrator has some backup copy

of the VM itself, the entire server could be up again in a very short

time, like if nothing actually had happened. For the same reason, a

new server installation is simply a file copy, so that it is possible to set

up an entire complex system with very little effort.

2.2.1 Virtualization types

A preliminary distinction can be done between hardware and software virtu-

alization. Specifically, just the first one identifies an actual virtual machine

running an operating system with its related applications, while the second

one is just about a particular ways to emulate a certain kind of environment

or improve certain parameter. In the following, we will use the expression

guest operating system (or simply guest) to refer to an OS instance installed

on a virtual machine.

Hardware based virtualization

This is the most common type of virtualization and it refers to the creation of

virtual (as opposed to concrete) versions of computers and operating systems.

Hardware virtualization has many advantages because controlling virtual ma-

chines is much easier than controlling a physical server. This technique con-

sists in abstracting underlying physical resources like processor, memory, etc.

and in providing the guest OS with a virtual machine equipped with its own

Virtualization 22

virtualized resources.The guest OS is completely unaware of being virtual-

ized and cannot tell the difference between virtualized and real hardware.

At its origins, the software that controlled virtualization was called a ‘con-

trol program’, but the terms ‘hypervisor’or ‘virtual machine monitor’are now

preferred

According to the amount of virtualized resources presented to the guest,

we can distinguish among different sub-families of hardware virtualization.

We can considers at least three different types of hardware based virtualiza-

tion: full, partial and paravirtualization:

• With reference to Figure 2.4 we can see how with full hardware vir-

tualization all resources are virtualized and the guest system can run

unmodified with its own kernel. This kind of technique is the most

powerful and efficient one, but in the case of x86 processors, it requires

specific extensions in order to work properly. VMWare is an example

of this kind of virtualization;

• The partial virtualization (Figure 2.4) technique let to virtualize just

a subset of the original hardware. An example of it is virtual memory;

• Paravirtualization consists in abstracting the whole underlying hard-

ware as an API(Application Programming Interface) similar to the orig-

inal one. This API, acting as a proxy, will forward every system call

the corresponding OS functions. Of course, in this case, the guest OS

has to be aware of being virtualized and so cannot be run as it is (like

it happens adopting full hardware virtualization), but requires some

customization. Xen servers implement this kind of hardware virtual-

ization.

Software based virtualization

Software based virtualization includes technologies aimed at delivering some

kind of service that would not be possible by using a specific host operating

system. We can distinguish between two types of software techniques:

Virtualization 23

Figure 2.4: Full Hardware Virtualization

Figure 2.5: Paravirtualization

Virtualization 24

• Application Virtualization Family. This technology creates an addi-

tional layer between a specific application and the operating system in

order to obtain compatibility and portability for the application. The

most common and widespread examples of application virtualization

are the Java Virtual Machine, present in almost every operating sys-

tem, and Wine, which allows running programs compiled for Windows

architectures using a Linux box;

• Desktop Virtualization. It is usually adopted inside terminals and is

based on decoupling the logical view of the Desktop from the underlying

physical host. In this way, each user connecting to the terminal has the

illusion of having an entire peronal computer available for exclusive use.

Examples of desktop virtualization software are the Virtual Desktop

Infrastructure (VDI).

2.2.2 Hypervisor types

As already mentioned, a hypervisor is a software that allows to create and

run virtual machines. As a hypervisor usually provides the administrators

means to monitor the status of the VMs it hosts, it is also called Virtual

Machine Monitor (VMM). In [45] hypervisors are classified in the following

two families:

• Type I hypervisor (Figure 2.6). This is also known as native or bare

metal because it directly sits on the hardware. This configuration al-

lows virtual machines to attain best performances, as no intermediate

layer is present. The hypervisor has to perform scheduling and resource

allocation for all VMs. Examples of this type are VMWare ESX/ESXI,

Citrix Xen Server [2] and Microsoft Hyper-V [4].

• Type II hypervisor(Figure 2.7). Also known as hosted hypervisor. This

kind of hypervisor runs as an application inside the hosting OS. In

this case, scheduling and resources allocation is performed by the host,

Virtualization 25

Figure 2.6: Type I hypervisor

Figure 2.7: Type II hypervisor

making this type of hypervisor less complex compared to type I. An

example of this type is the VMWare Workstation.

However, the distinction between these two types is not necessarily clear

and so a third category can be defined:

• Hybrid hypervisor. Also identified as HVM (Hybrid Virtual Machine),

this type is used when neither type I nor type II are supported by

the processor. In this case, privileged instructions are interpreted by a

software and they usually require the guest OSes to have specific drivers

installed to support this process. For example, Linux’s Kernel-based

Virtual Machine (KVM) and FreeBSD’s bhyve are kernel modules that

effectively convert the host operating system to a type-1 hypervisor.

Virtualization 26

Figure 2.8: Live Migration

2.2.3 Live Migration

As live migration [22] is an important mechanism both for our project and

for cloud computing in general, we will here describe this feature offered by

most of the hypervisors.

Migration(Figure 2.8), also known as teleport, consists in moving a virtual

machine from an hypervisor to another. If this operation is performed while

the guest virtual machine is up and running, the migration can be defined

live. In this case the process itself becomes very complex, because after

migration the guest system status is required to be consistent to its previous

state. Most implementations require the system administrator to specify the

maximum downtime admitted, namely the amount of time the server can stay

down during the process without dramatically affect the quality of service

perceived by end users. This process allows to optimize the workload of an

infrastructure by moving a virtual machine from a hypervisor to another,

if required. For example, it is possible to move a virtual server to a more

powerful hypervisor in case the server it is currently running upon is receiving

too many requests and the hosting node cannot handle such working load.

Another theoretical example is related to the possibility of moving one or

Virtualization 27

more VMs on an hypervisor located in the geographic region from which

come most of the requests. This mechanism is also called WAN migration

or migration over distance and for now just a few implementations exist

because, as we will explain, in this case some critical issues have to be taken

into account.

Migration techniques

Two main migration techniques are available, specifically: pre-copy and post-

copy memory migration. These two techniques differ in the way memory

pages are copied from the source to the destination hypervisor.

• Adopting the pre-copy memory migration, the source hypervisor starts

copying the memory pages of a VM to the destination while the VM

keeps working. This phase is called warming up. Once the copy if over

(all memory pages has been copied) the process checks for any memory

pages that were dirtied by the guest after the copy, and sends memory

differences to the target hypervisor. This is done until differences are

not significant enough to allow to shut down the source VM for a spe-

cific time needed to finalize the memory copy. Afterwards, the VM is

booted on the destination hypervisor. The user can specify a timeout

for the copy operation so to have the VM down for a period of time not

exceeding the maximum downtime allowed. Note that if the specified

value is too low and/or the memory is dirtied at a higher frequency,

the process may never converge;

• A post-copy memory migration is simpler than the pre-copy one but

it’s more affected by failure events. It simply shuts down the source

VM and transfers a minimum subset of the CPU and the memory state

to the destination host. After this operation, the VM is immediately

booted up at its destination while, concurrently, the process copies the

remaining pages from the source to the destination host. If a yet-to-be

copied page is requested during the process, this event is marked as

Virtualization 28

page fault and an exception is sent to the source hypervisor, trigger-

ing in such a way the immediate transfer of the missing page. Some

algorithms are implemented to send pages close to the missing one, as

it is very likely that another page fault could occur for those pages.

However, if faults happen at a too high frequency, the performance of

applications running on the guest VM can be dramatically compro-

mised.

Note that, due to their nature, in case the destination crashed during the

process, using the first technique it is still possible to recover the VM we are

trying to migrate, whereas in the second case the status of the VM will be

permanently lost.

Migration over distance

As we anticipated, we will in this section give some information about this

approach, as it is important to understand why we do not actively support

this kind of migration in our infrastructure. Migration over distance, or WAN

migration, consists in migrating a guest to a geographically far hypervisor.

This would be an appealing feature since it opens up a window of oppor-

tunities in the context of several practical use cases. Nevertheless, most of

current orchestration frameworks just limit migration within a datacenter or

between hypervisors very close to each other. This fact can be explained by

two main considerations:

• The migration process, in case of a pre-copy memory migration, may

never converge. We saw how the finalization is done just if memory

differences are little enough to grant an acceptable downtime, however

due to Internet latency the copy could be processed so slowly that pages

will always be dirtied on the source hypervisor. This problem can be

solved by increasing the network band or by using a post-copy memory

migration technique (but, for the exposed reasons, it could fail as well

due to the overhead);

Virtualization 29

Figure 2.9: Hyper-V long distance migration

• I/O operations from/to storage devices connected through the Internet

are not efficient enough. Dealing migration in fact, we just focused our

attention on system memory copy and we didn’t consider the copy of

persistent memory. The reason is that a mass storage can consist of

several terabytes of data and so, being the copy not an option, it is

usually shared among hypervisors by adopting a so-called disk sharing

technique.

Furthermore, this kind of migration is actually being studied by researches

and companies which see in it a challenge and/or a way to make profits.

An attempt of long distance migration has been done by Microsoft with its

Hyper-V technology [63]. Specifically, a migration between 200 Km distant

sites has been done, involving New York and Philadelphia data centers, but

Figure 2.9 shows how many components have been involved and let us un-

derstand how this process can be complex.

In fact, to allow this kind of migration a consistent copy of storages is

maintained through periodic updates, so that the migrated VM will not end

up using a far distant hard disk cluster, but a local copy of it. Second,

Virtualization 30

dedicated high-speed connections are required to keep disk consistence and

to allow the migration process itself. More detailed information about long

distance migration can be found in [4].

2.2.4 Available technologies

Virtualization technologies

In this section we provide the reader with an overview of the most widespread

and powerful virtualization technologies pointing our attention to the specific

solutions we decided to rely upon for the implementation of our architecture.

We can distinguish two big families of product:

• Open source solutions

– KVM [3]. It stands for Kernel Based Virtual Machine and it is

a solution implemented for Linux systems on x86 platforms. It

requires specific processor extensions to work, like Intel VT-x or

AMD-V, and it is implemented as a kernel module. Starting from

Linux kernel version 2.6.20, it is officially included in almost every

distribution. In order to make an user program communicate with

the hypervisor, it supplies an interface /dev/kvm;

– Qemu[8]. It is often used with KVM, as the user space program

interacting with the hypervisor. Qemu, by itself, is just an emula-

tor, but when used together with KVM it becomes a virtualization

tool. Thanks to Qemu, it is possible to create virtual networks or

virtual devices to use with virtualized guests

– Xen[2]. Xen is an example of virtualization tool that makes use

of paravirtualization. It is sometimes considered as a bare metal

hypervisor, as it provides its own layer sitting directly on the

hardware, and allows the execution of modified guests. It also

can run unmodified operating systems by making use of hardware

extensions, when present;

Virtualization 31

– VirtualBox [7]. It is structurally very similar to KVM, because it

is implemented as a kernel module as well. However, it also pro-

vides its own user space software and, unlike KVM, it is available

for Windows and OSX too, being the most portable open source

solution. Moreover, it allows the user to pause/resume a guest at

will and to take snapshots, so to provide a form of backup. Similar

to Qemu, it allows emulation of hardware and network devices.

• Proprietary solutions

– VMWare [12]. It is one of the most active virtualization software

companies. It provides both type I and type II hypervisors, re-

spectively VMWare ESXi Server and VMWare workstation. It

makes use of a technique called binary translation. Using this

technique, a guest system directly sits on the hardware, and when

privileged instructions are called they are redirected to the hy-

pervisor and emulated. This approach had a lot of success when

introduced because, at that time, no processor extensions were

present to support full hardware virtualization;

– Microsoft [4]. Microsoft focused on the type I approach with its

Hyper-V technology. Hyper-V can come with Windows Server

distributions or as a standalone product. In order to support

isolation, it requires to distribute guests in isolated partitions of

the host environment and that at least one guest has a running

instance of Windows Server, in order to provide user with man-

agement capabilities;

– Apple [1]. Like VMWare, it provides two types of hypervisors un-

der the form of Parallels Server and Parallels Workstation prod-

ucts. Being a proprietary technology, very limited details are avail-

able about its implementation. Anyway, their distinctive trait is

the full virtualization of the Graphics Processing Unit(GPU).

Virtualization 32

Disk Sharing technologies

As we said, the migration process requires source and destination hypervisors

could share the same external storage device. For this reason, it is impor-

tant to describe the most widely adopted techniques in this field. We can

distinguish between two main approaches: Network Attached Storage(NAS)

and Storage Area Network(SAN).

The main feature of Network Attached Storage technology (whose archi-

tecture is summarized in Figure 2.10) is that it is a file-level data storage,

providing access to its files by means of network file sharing protocols such as

Network File System (NFS) [37], Server Message Block (SMB), Apple Filing

Protocol(AFP), etc. It is usually implemented as a server with its own oper-

ating system (typically a Linux distribution) and it provides an abstraction

of physical disk storages through the aforementioned file sharing protocols.

This kind of storages mechanism can sometimes be organized by some sort

of redundancy configuration such as Redundant Array of Independent Disks

(RAID) that combines multiple disk drive components into a logical unit in

order to improve the overall performance of the system.

Since a NAS system provides by its own nature an abstraction of the file

system, no additional effort is required to the client operating system, whose

only requirement is to contact the device and communicate by means of an

appropriate network protocol.

Common NAS implementations, however, provide multiple file sharing

protocols so to improve their accessibility performance. The weakness of

this technology is just that, providing a file system abstraction, it could

be not efficient enough for some classes of applications. For this reason,

this technology is mainly adopted in environment not affected by delay and

latency, for example in Local Area Networks.

Storage Area Network main feature consists in the ability to provide a

low-level block device interface, with no file abstraction. As the name itself

suggests, it is a dedicated network, although physical storages are not directly

accessible. About this aspect, while NAS makes use of a server in order to

Virtualization 33

Figure 2.10: Example of NAS infrastructure

share data with clients, SAN can be either a server or a dedicated piece

of hardware. This is because the resource sharing is realized at block level

and so there could be no need for complex applications handling data. As

a drawback, for the same reason, client operating systems are required to

implement their own file system management mechanism.

Fiber Channel and ISCSI are two well known disk sharing techniques

making use of the SAN paradigm:

• Fiber channel is a high-speed network technology that can reach up to

16 Gigabit per second rates. Its name is due to the fact that its first

implementations ran on optical fiber. Nowadays, it can run on an elec-

trical interface as well. Fiber channel assures the best performances,

although it is very expensive because of the dedicated hardware it re-

quires;

• ISCSI (Internet Small Computer System Interface), on the other hand,

directly runs on IP with no need for dedicated hardware and, for this

reason, has become more and more popular.

Interested readers can find further details in [10].

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 34

Figure 2.11: The WebRTC Trapezoid

2.3 Web Real-Time Communication (WebRTC)

and Real-Time Communication in WEB-

browsers (RTCWeb)

WebRTC/RTCWeb is a joint standardization effort conducted by the World

Wide Web Consortium (W3C) and the Internet Engineering Task Force

(IETF). This brand new technology supports browser-to-browser applica-

tions for voice calling, video chat, and P2P file sharing without the need

of either internal or external plugins. The standardization goal is to de-

fine a standard API that enables a web application running on any device,

through the secure access to the input peripherals (such as webcams and mi-

crophones), to send and receive real-time media and data in a peer-to-peer

fashion between the browsers. In fact WebRTC extends the common client-

server approach adopted by the web application and introduces a peer-to-peer

communication paradigm between the browsers. The most general WebRTC

architectural model (see Figure 2.11) is based on the SIP Trapezoid [51].

In the this model both browsers are running a WebRTC application,

downloaded from a different Web Server. A Peer Connection configures the

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 35

Figure 2.12: A WebRTC application in the browser

media path to flow directly between browsers without any intervening servers.

Signaling goes over HTTP or WebSockets, via Web Servers that can modify,

translate or manage signals as needed. It is worth noting that the signaling

between browser and server is not standardized in WebRTC as it is considered

to be part of the application. The two web servers can communicate using

a standard signaling protocol such as Session Initiation Protocol (SIP) or

Jingle [33]. Otherwise, they can use a proprietary signaling protocol. A

WebRTC application is a web application typically written in a mix of HTML

and JavaScript (Figure 2.12).

The application interacts with web browsers by means of the standard

WebRTC API which allows to properly exploit and control the Real-Time

browser functions. The WebRTC API also provides a wide set of functions,

like connection establishment and management, media negotiation and con-

trol, firewall and NAT (Network Address Translation) [61] traversal.

The API is being designed around the following three main concepts:

• PeerConnection, it represents an association with a remote peer in the

context of a browser-to-browser communication. Usually the remote

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 36

side of a PeerConnection is another instance of the same JavaScript

application.

Communications are set up and manged via a signaling channel pro-

vided by scripting code in the page via the web server. Once a peer

connection is established, media streams (locally associated with ad

hoc defined MediaStream objects) can be sent directly to the remote

Browser. The peer-connection mechanism uses the Interactive Con-

nectivity Establishment (ICE) [49] protocol together with the Session

Traversal Utilities for NAT (STUN) [50] and Traversal Using Relays

around NAT (TURN) [35] servers to let UDP-based media streams

traverse NAT elements and firewalls. Using ICE provides also a secu-

rity measure, as it prevents untrusted web pages and applications from

sending data to hosts that are not expecting to receive them;

• MediaStream is an abstraction of an actual stream of audio/video data.

It allows to actually manage and act on the stream, namely display-

ing the stream’s content, recording it, or sending it to a remote peer.

A MediaStream object may be used to represent a stream that either

comes from (remote stream) or is sent to (local stream) a remote node.

A LocalMediaStream represents a media stream from a local media-

capture device (e.g., webcam, microphone etc.). To create and use a

local stream the web application must request access from user through

the getUserMedia() function. The application specifies the type of

media (audio and/or video) to which it requires access. The browser

interface presents the user the option to grant or deny access to the

corresponding devices. In any case, once the application is done, the

browser has to release the resources. Media-plane signaling is achieved

by means of out-of-band mechanisms between the peers of the com-

munication. Secure Real-time Transport Protocol (SRTP) is used to

carry the media data while the RTP Control Protocol (RTCP) infor-

mation are used to monitor transmission statistics associated with data

streams. Datagram Transport Layer Security (DTLS) is used for SRTP

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 37

Figure 2.13: The WebRTC protocol stack

key and association management;

• The DataChannel is a communication channel designed to provide a

generic transport service allowing web browsers to exchange generic

data (not limited to audio and video) in a bidirectional peer-to-peer

fashion. The standardization work within the IETF has reached a

general consensus on the usage of the Stream Control Transmission

Protocol (SCTP) [59] encapsulated in DTLS to handle non-media data

types.

Figure 2.12 shows the WebRTC protocol stack.

2.3.1 Real-time Transport Protocol (RTP)

The Real-time Transport Protocol (RTP), provides end-to-end delivery ser-

vices for data with real-time characteristics, such as interactive audio and

video. Those services include payload type identification, sequence number-

ing, timestamping and delivery monitoring. Applications typically run RTP

on top of the User Datagram Protocol (UDP) to make use of its multiplex-

ing and checksum services. Both protocols contribute parts of the transport

protocol functionality. However, RTP may be used with other suitable un-

derlying network or transport protocols. RTP supports data transfer to mul-

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 38

Figure 2.14: Real-time Transport Protocol header

tiple destinations using multicast distribution if provided by the underlying

network.

The protocol, whose header is depicted in Figure 2.14, provides facilities

for jitter compensation and detection of out of sequence arrival in data, which

are common during transmissions on an IP network. Note that RTP itself

does not provide any mechanism to ensure timely delivery or provide other

quality-of-service guarantees, but relies on lower-layer services to achieve

this task. It does not guarantee delivery or prevent out-of-order delivery, nor

does it assume that the underlying network is reliable and delivers packets

in sequence. Nevertheless, the sequence numbers included in RTP allow the

receiver to reconstruct the sender’s packet sequence. Furthermore, sequence

numbers might also be used to determine the proper location of a packet, for

example in video decoding, without necessarily decoding packets in sequence.

The Secure Real-time Transport Protocol (SRTP) [18] defines a profile of

RTP intended to provide encryption, message authentication and integrity,

and replay protection to the RTP data in both unicast and multicast appli-

cations.

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 39

2.3.2 Real-time Transport Control Protocol (RTCP)

The RTP specification also describes the RTP Control Protocol (RTCP)

which provides out-of-band statistics and control information for an RTP

session. It works in association to RTP for delivering and packaging of mul-

timedia data, but does not transport any media data itself. In fact, the only

function of RTCP is to provide feedback on the Quality of Service (QoS) in

media distribution by periodically sending statistics information to partici-

pants in a streaming multimedia session.

RTCP provides basic functions expected to be implemented in all RTP

sessions:

• The primary function of the protocol is to gather and trasmit to the

other peer of the communication statistics on quality aspects of the me-

dia delivery. Such information may be used by the source for adapting

the flow rate or even changing the media encoding in order to prevent

congestions and faults;

• RTCP also provides canonical end-point identifiers (CNAME) to all

session participants. This is a key fnction because, although a source

identifier (SSRC) of an RTP stream is unique, the instantaneous bind-

ing of source identifiers to end-points may change during a session. Us-

ing the CNAME the application can univocally identify the end-points

of the sessions;

• Provisioning of session control functions. RTCP is a convenient means

to reach all session participants, whereas RTP itself is not. RTP is only

transmitted by a media source.

The protocol natively envisages several types of messages: sender report,

receiver report, source description and goodbye. In addition, the protocol can

be extended thus allowing application-specific RTCP packets.

• The Sender Report (SR) message is sent periodically by the active peer

in an communications session and it reports transmission and recep-

Web Real-Time Communication (WebRTC) and Real-Time
Communication in WEB-browsers (RTCWeb) 40

Figure 2.15: Example of Receiver Report message

tion statistics for all RTP packets sent during that period of time. The

sender report includes an absolute timestamp that allows the receiver to

synchronize RTP messages. This information is particularly important

when both audio and video are transmitted simultaneously, because au-

dio and video streams use independent relative timestamps and thanks

to the RTCP timestamp they can be synchronized from the receiver;

• The Receiver Report (RR) is sent by the passive peer of the session and

informs the other parties of the communication session its perceived

quality of service;

• Source DEScription (SDES) is the message used for sending the afore-

mentioned CNAME information to the other parties of the sessions.

This message can be used to send user-level information (e.g. e-mail

address or phone number of the user sending the media flow);

• The Goodbye (BYE) message is used to announce that a peer is leaving

the session.

Figure 2.15 depicts an example of RR message.

Scalable Video Coding 41

2.4 Scalable Video Coding

In this section we will briefly introduce the Scalable Video Coding [57] process

since it can very helpful to the realization of our application logic, specifi-

cally such a kind of technique could represent a standard and easy way for

creating the different copies of the original video stream to be delivered to

end users in order to cope with their heterogeneous capabilities and network

conditions (see Section 1.2.2). A Scalable Video Coding technique allows in-

deed the encoding of a high-quality video bitstream by creating two or more

subset bitstreams that can themselves be decoded with a complexity and

reconstruction quality similar to that achieved using the existing standard

codecs (i.e. H.264 [65] or VP8 [17]). The subset bitstreams can be obtained

by the original one by dropping packets. From a practical standpoint, the

coded flow can be seen as a basic bitstream which allow to decode a the video

with a minimum quality and a set of further layers used to add quality and

enrich the amount of data the decoder can use to reconstruct the video and

present it to the final user. Multiple techniques can be used, individually or

in combination, for deriving different scaled version of the same video flow.

They are based on the spatial and temporal redundancy properties of a video

flow and they lead to the following modalities:

• —Spatial scalability. In this scenario video is coded at multiple spatial

resolutions, i.e. different picture sizes. In the decoding process of the

high resolution images can be used data contained in the low resolutions

ones;

• Temporal scalability. This technique allows to dynamically change the

number of frames sent per second (frame rate). The motion compen-

sation dependencies are structured so that complete pictures (i.e. their

associated packets) can be dropped from the bitstream without com-

promise the decoding process;

• SNR/Quality scalability. In this case the video is coded using a single

spatial resolution but multiple quality degrees. Again, data and de-

The Gstreamer framework 42

Figure 2.16: Representation of different types of scalability

coded samples of lower qualities can be used to predict data or samples

of higher qualities.

The aforementioned concept are exemplified in Figure 2.16

2.5 The Gstreamer framework

In this section we will briefly introduce GStreamer [64], the foundation we

used to implement the high level streaming application chosen as the main use

case of this work. GStreamer is a framework for creating streaming media

applications, its fundamental core element is based on the video pipeline

abstraction presented at Oregon Graduate Institute[29]. In this context a

pipeline consists of a chain of processing elements arranged so that the output

of each element is the input of the next one. Such a kind of architecture

makes it possible to write any type of streaming multimedia applications

and to handle audio or video or both. Nevertheless, the framework allow

to process any kind of data flow. The pipeline design is made to have little

overhead above what the applied filters induce. This makes GStreamer a

good framework for designing our audio/video streaming application which

puts high demands on latency. The tool is based on a core function which

The Gstreamer framework 43

Figure 2.17: GStreamer architecture overview

can be enriched by means of plugins. The core provides data flow and media

type handling/negotiation functions and an API to write applications using

the various provided plugins.

Figure 2.17 shows an overview of the GStreamer architecture. As we can

see the framework provides:

• A core providing a pipeline architecture;

• An API for multimedia applications;

• Entry points for both 3rd party and built-in plugins;

• Mechanisms for media type handling and negotiation;

• A set of tools to easily create and manage an application.

2.5.1 GStreamer foundations

The GStreamer multimedia framework is built around the following basic

concepts:

The Gstreamer framework 44

Figure 2.18: Source element with multiple output pads

Figure 2.19: Bin of elements

• Element. It is the most important class of objects in GStreamer. It’is

in fact possible to create a chain of elements linked together and let

data flow in the proper way through this chain. An element is in

charge of just one the following specific function (i) reading of data

from a file (ii) decoding of this data (iii) outputting this data to a

sound card. A pipeline can be created by chaining together several

such elements. A graphical representation of a GStreamer element is

depicted in Figure 2.18;

• Pads are element’s input and output points used to connect them to

other elements. From an high level perspective, a pad can be viewed

as a ‘plug’ or ‘port’ on an element where links can be established with

other elements, and through which data can flow to or from those ele-

ments. Pads have specific data handling capabilities: a pad can restrict

the type of data that flows through it. Links are only allowed between

two pads when the allowed data types of the two pads are compatible.

Data types are negotiated between pads using a process called caps ne-

gotiation. Data types are described as a GstCaps. Figure 2.18 shows

an example of element with one input end two output pads ;

The Gstreamer framework 45

Figure 2.20: Example of pipeline for a basic audio player

• A bin is a container for a set of elements. Since bins are subclasses

of elements themselves, a bin can mostly be controlled as if it were an

element, in such way decreasing the overall application complexity. It is

possible, for instance, to change state to all elements in a bin by acting

on the state of the bin itself. A bin is represented as in Figure 2.19;

• A pipeline is a top-level bin. It provides a bus for the application and

manages the synchronization for its children. Setting the PLAYING

state on the pipeline triggers the starting of data flow and media pro-

cessing. Once started, pipelines will run in a separate thread until they

are stopped or the end of the data stream is reached. A pipeline is com-

posed by a chain of elements and can be represented as in Figure 2.20

2.5.2 Communication and events

The framework provides several mechanisms for communication and data

exchange between the application and the pipeline. With reference to Fig-

ure 2.21 we can distinguish:

• Buffer objects, represented by the blue arrows in the figure, used to

pass streaming data between elements in the pipeline ;

• An event object (red arrows) instead used for sending generic informa-

tion between elements and from the application to elements;

The Gstreamer framework 46

Figure 2.21: GStreamer components’ communication mechanism

• Messages (orange arrows) which are objects posted by elements on the

pipeline’s message bus, where they will be held for be collected by the

application and they usually are used to transmit information such as

errors, tags, state changes, buffering state, redirects etc. from elements

to the application in a thread-safe way;

• Queries (green arrows) allowing applications to request information to

the pipeline in a synchronous way. Elements can also use queries to

request information from their peer elements.

Basing on the lesson learned by the architectural solutions analyzed and

presented in the first part of this section and taking advantage of the ben-

efits achievable by exploiting the tools and technologies introduced in the

second part, we started to cope with the realization of our architecture. As

a first step we devoted our efforts to the realization of the different compo-

nents needed to realize a distributed and dynamically configurable stream-

ing application able to provide users with media flows with an extremely low

transmission delay. The design and implementation of such components will

be presented in the next session.

Chapter 3

Application level main
components

As it has been detailed in Section 2.5, we decided to adopt live streaming as

the main use case of our research activity and we opted for building a pro-

totype application on top of the Gstreamer framework. In this chapter we

will present the design and implementation of the various bricks composing

the streaming delivery chain and, in order to let the reader better under-

stand how these elements have been deployed and executed on the SOLEIL

infrastructure, we will point out the mapping of each application level com-

ponent on the underlying tree topology elements. Since the system has to

allow proper mechanisms to let the various nodes can join, leave and send

messages to each other we also had to take care of this aspects in every ele-

ment. For this purpose we designed and implemented an ad hoc protocol in

charge of both management and monitoring functions. It will be the object

of the first section of this chapter.

3.1 SOLEIL management and monitoring pro-

tocol

As we anticipated in Section 1.2, in order to add to the system automatic

monitoring and management functionalities an ad hoc protocol is needed.

In fact, since in our scenario several clients access the service by means of

SOLEIL management and monitoring protocol 48

the same ‘system access point’(i.e. one of the leaf node) and each client

connection is characterized by its own specific network condition, it is not

possible to simply rely on the native QoS monitoring and statistic function-

alities provided by the RTCP protocol in order to adjust the transmission

rate. Furthermore, we need specific tools to manage the streaming mecha-

nism and the reconfiguration of the system topology. The SOLEIL Protocol

is based on the eXtensible Markup Language (XML) [21] hence it can be eas-

ily extended and encapsulated into XML-compliant protocols (e.g. HTTP,

XMPP, etc.). A generic protocol message has the following general structure:

<message type="MESSAGE-NAME" time="TIMESTAMP" to="
DESTINATION-NODE"

from="SOURCE-NODE">
<...>

MESSAGE BODY
</...>

</message>

The message attributes define the following properties of the message:

• type defines the format of the XML message body;

• time contains a timestamp information describing the instant in time

in which the message has been sent, defined as the number of seconds

that have elapsed since the Epoch time (00 : 00 : 00 Coordinated Uni-

versal Time (UTC), Thursday, 1 January 1970);

• to and from contain respectively the id of the destination and of the

source of the message. Some special characters are reserved and used

to identify the following entities of the system:

ˆ is used to identify the root node and can be a value both, for

the from and to attributes, not simultaneously of course;

* is used to identify all nodes in the network and can be used as a

value for the attribute to in order to send broadcast messages;

SOLEIL management and monitoring protocol 49

Once a message is receive by one of the nodes its to field is checked in

order to understand how the message has to be handled, according to the

flow diagram depicted in Figure 3.1.

3.1.1 Types of message

The protocol envisages the exchange of different types of messages. We can

group these messages by their high level function:

• Nodes management: HELLO, BYE, CHILDSUPDATE, ERROR, KILL,

PING, PONG, REDIRECT;

• Streammanagement: PIPEDEF, PIPEDEFINFO, PLAYPIPELINE,

STOPPIPELINE, REMOVEPIPELINE, ROUTEPIPELINE;

• System monitoring and statistic aggregation: STATS, REQFULLSTATS,

FULLSTATS.

For example, is a new node enter the network, it can presenting itself to

the other nodes of the network by sending to the ROOT node an HELLO

message containing the IP addresses and the ports of its server and client

components:

<message type="hello" to="ˆ" time="1367231998886">
<info>

<name>gstreamer_Notebook-PC_14982</name>
<minaServerAddress host="

143.225.229.199" port="14982"/>
<minaClientAddress host="

143.225.229.134" port="12054"/>
<pipelines/>

</info>
</message>

3.1.2 Statistic aggregation algorithm

As we said, the system has to be able to collect RTCP statistic and monitor-

ing information and to aggregate them in order to properly deal with specific

SOLEIL management and monitoring protocol 50

Figure 3.1: SOLEIL Protocol: messages handling flow diagram

SOLEIL management and monitoring protocol 51

constraints imposed by the overall architecture (see Section 1.2. This kind

of information allows to properly monitor the overall status of the system

and to react to critic load conditions by either temporarily scaling the qual-

ity of the delivered stream or migrating an overloaded node of the tree in

order to increase its power (both in terms of computational resources and

bandwidth availability). For this reason, we need to provide the entity in

charge of monitoring the system both information about the overall status

of the entire topology and tools to query specific nodes about their current

load and resource consumption status in a proactive way.

This goal is obtained by means of explicit messages provided by the

SOLEIL Protocol. Specifically, the aforementioned protocol messages have

the following meanings and structures:

• A STATS message is sent by each node to its direct predecessor and

contains information about the status of the different streams handled

by the sender node. The message can in fact contain one or more

children, namely the statsContainer tag, containing the following

statistical information:

– startTime is a temporal information indicating the end of the

interval of time during which the statistic information have been

collected;

– endTime is a temporal information indicating the end of the in-

terval of time during which the statistic information have been

collected;

– numOfChildren is the number of children of the sender node;

– id contains an identification of the stream;

– statArray contains an array of statistic information. In our

current implementation of the protocol the conveyed information

are CPU load, inter-arrival jitter and cumulative packet lost. Ob-

viously more detailed information can be added in the future by

extending the protocol

SOLEIL management and monitoring protocol 52

An example of STATS message is reported in the following:

<messagetype="stats" time="1368548879868">
<statsContainers>

<statsContainer>
<startTime>1368548254</startTime

>
<endTime>1368548879</endTime>
<numOfChildren>3</numOfChildren>
<id>1234567</id>
<statArray>
<DBValue>

<name>injitter</name>
<value>255.3</value>

</DBValue>
<DBValue>

<name>cumpktlost</name>
<value>12</value>

</DBValue>
</statArray>

</statsContainer>
<statsContainer>

<startTime>1368548254</startTime
>

<endTime>1368548879</endTime>
<numOfChildren>3</numOfChildren>
<id>1234568</id>
<statArray>
<DBValue>

<name>injitter</name>
<value>240.2</value>

</DBValue>
<DBValue>

<name>cumpktlost</name>
<value>8</value>

</DBValue>
</statArray>

</statsContainer>
</statsContainers>

</message>

SOLEIL management and monitoring protocol 53

• a REQFULLSTATS message is used by the ROOT node to ask a node

to send information about the streams it is handling. More in detail,

the ROOT node can specify a pipeid field to identify the stream it is

interested in. The to and from attributes allow to properly address

the message to the right node of the architecture. The time field allows

to trace and sort multiple requests received by the ROOT node. An

example of REQFULLSTATS message is reported in the following:

<message to="gstreamer_U36SD_52846" from="ˆ" type=
"reqfullstats" time="1368548950349">

<pipeid>1234567</pipeid>
</message>

• a FULLSTATS message can then be used by the destination node to

reply to the REQFULLSTATS request. This message is addressed by

means of the to and from attributes. The time field has to be set

using the time value read from the request message, thus allowing

the ROOT node to properly associate requests and responses. The

body of the message is formatted according to the aforementioned

statsContainer syntax. An example of FULLSTATS message is

reported in the following:

<message to="ˆ" from="gstreamer_U36SD_52846" type=
"fullstats" time="1368548950391">

<xmlDb>
<statsContainer>
<startTime>1368548254</startTime

>
<endTime>1368548879</endTime>
<numOfChildren>3</numOfChildren>
<id>1234568</id>
<statArray>
<DBValue>

<name>injitter</name>
<value>240.2</value>

</DBValue>
<DBValue>

<name>cumpktlost</name>

SOLEIL management and monitoring protocol 54

<value>8</value>
</DBValue>
</statArray>

</statsContainer>
</xmlDb>
<endTime>1368548238</endTime>

</message>

In Figure 3.2 is schematized the typical interaction among the main com-

ponents of the network. As we can see, a generic Leaf node elaborates and

sends its statistic information to its direct predecessor (a Relay node). This

node, in turn, creates its own aggregate statistic information according to an

algorithm that will be detailed in the following, and sends it to the ROOT

node. At this point, the ROOT node, figuring out an overload condition can

afflict the Leaf node, can decide to analyze more in detail the potentially

critic situation by requesting the actual statistic to that node. The Leaf

current statistic information are sent by means of a FULLSTATS message.

The aggregation of statistic information is performed by each internal

node of the network in order to provide the ROOT node with an overview of

the overall status of the system. Each node receives the statistic information

from its direct child nodes by means of a RTCP ReceiverReport message.

The node hence calculates the statistic to send to its direct predecessor in

the tree topology by assigning to the received statistics a weight depending

to the number of heirs of each sender node. Figure 3.3 can help to better

understand this process. As we can see, the node A has 3 direct child nodes

and 6 total descendants. So, the nodes will assign weight 4 to the statistic

information received by the node B and weight 1 to the statistic information

received by both the node C and the node D.

The node will then compute its own global statistic by using the following

formula:

s(xi) =
N

n=1(s(xn)∗p(xn))N
n=1 p(xn)

where p(xn) = weight associated to statistic xn = number of descendants.

SOLEIL management and monitoring protocol 55

Figure 3.2: SOLEIL protocol: typical messages exchange path

SOLEIL management and monitoring protocol 56

Figure 3.3: Example of SOLEIL topology

SOLEIL management and monitoring protocol 57

Figure 3.4: SOLEIL aggregate statistic flowing toward the ROOT node

Figure 3.5: SOLEIL: example of REQFULLSTAT request and FULLSTATS response

Overlay network’s architectural elements 58

As we announced, we will in the next sessions present the structure of

the high level components of the SOLEIL system. We will show the main

components of a generic node of the network and we will delve into details

regarding the specific roles they have to play according to business logic

described in Section 1.2.

3.2 Overlay network’s architectural elements

3.2.1 Relay node

Internal nodes of the tree are called relay nodes and are in charge of dis-

patching the media flows to other nodes of the system in order to increase

the overall scalability. The number of relay nodes is dynamic and depends

on the number of end users willing to access the service in a specific instant

of time. New nodes can dynamically be added to the tree in order to increase

the scalability of the system. Vice versa, in order to save resources, a node

can be switched off in case a large number of users (previously connected to

the stream) disconnect and leave the system. This kind of node will be then

crucial for both balancing the load of the system and for aggregating RTCP

Receiver Report statistic information to send to the root node. Each internal

node has to manage connection to other nodes (both at a higher and lower

level in the tree topology) and to provide methods to exchange and forward

SOLEIL Protocol messages with this nodes and with the root node.

The logical architecture of an internal node is depicted in Figure 3.6. Two

logical components can be distinguished, the pipeline handler and the session

manager:

• Session manager. This component is in charge of handling connections

and SOLEIL Protocol messages. The node has to be able to receive

and send message from and to both a directly connected relay node

and the root node (in order to receive a REQFULLSTATS request and

replay with a FULLSTATS message. A Message Handler element will

provide applicative level handling and routing function in order to for-

Overlay network’s architectural elements 59

Figure 3.6: Internal node logical architecture

ward messages to the edge nodes of the topology. Last but not least,

dedicated elements will collect statistic information coming from both

other node (the aggregate statistics) and from the RTP connections the

node is involved in;

• Pipeline handler. This is the component of the node which actually

handles the media flows. It receives the RTP packets from the root

node or from another relay node handles them on order to apply the

business logic enforced by the master node and dispatch them to other

relay or leaf nodes. This part of the node will also collect statistic

information from the RTCP sessions it handles and will send them to

the element which elaborates and aggregates them.

It is worth noting that the aforementioned functions are available on root

an leaf nodes as well. In fact, from an architectural point of view, they can

be seen as relay nodes with further functionalities that will be presented in

the following sections.

Overlay network’s architectural elements 60

Figure 3.7: Root node logical architecture

3.2.2 Master node

As we explained in Section 1.2.2, the root or master node is the first node

of the tree topology. From an application level point of view this is the

entry point of the media streams, namely the place where they are adapted

and converted into different formats and resolutions in order to cope with

different client-side requirements.

The root node will be also in charge of the management of the entire

system. In fact, as will be detailed in the following, this node will receive

statistic information about load and bandwidth consumption from the other

nodes of the tree and it will be able to react properly in case of problems.

As it is shown in Figure 3.7, in this node are logically concentrated crucial

functions of the system:

• Platform administration. In this node is located the administration and

control of the entire system. The root node receives information about

the status of other node and allows the administrator to control and

modify the system itself by means of a web interface. It also embeds

automatic monitoring and control functions;

• Topology management. All nodes willing to enter the network have to

interact with the root node by means of the aforementioned SOLEIL

protocol. The root will be the glue fixing together all other nodes and

the brain controlling them in order to optimize the resource consump-

tion and the load balancing.

Overlay network’s architectural elements 61

• Application management. The Client Manager is the part of the system

in charge of serve clients’ requests. Its two main functions allow to

decide to which leaf node a new client has to be connected and to

ensure the client itself receives the proper media flow.

3.2.3 Source node and Leaf node

Leaf node, the last node of the tree, the one end user will connect to in order

to receive the live stream. This node represent the so-called last-mile of the

overall architecture and it has to allow final users to access the service in a

easy and standard way by means of a pure web interface. In order to fit such

a requirements we decided to rely upon the innovative WebRTC technology

introduced in Section 2.3. As we explained, WebRTC has been natively

conceived to allow communication by means of a pure web browser (i.e., no

needing to install any additional extension or plugin) in peer-to-peer, one-

to-one scenarios. In order to adapt such paradigm to our slightly different

use case, we had to realize a server side component implementing the role

of a WebRTC peer at server side. This component, called Janus, plays the

role of the leaf node of the SOLEIL architecture. Even though this specific

component has been designed and realized by our colleague Lorenzo Miniero

in the context of his doctoral research activity, it will be briefly presented

in the following section since it represents a key component of the overall

system.

The Janus WebRTC gateway

Janus is a WebRTC Gateway [15] conceived to be a general purpose one. As

such, it doesn’t provide any functionality per se other than implementing the

means to set up aWebRTCmedia communication with a browser, exchanging

JSON [20] messages with it, and relaying RTP/RTCP and messages between

browsers and the server-side application logic they’re attached to.

Since the beginning, the Janus architecture has been conceived as modu-

lar. Specifically, it has been designed as a core with a specific set of responsi-

Overlay network’s architectural elements 62

Figure 3.8: Janus modular architecture

bilities, and pluggable modules to provide specific features, namely support

for legacy technologies and protocols. We were motivated in following this

approach from our former experiences within the IETF MEDIACTRL Work-

ing Group [14] . This WG was devoted to the definition of a standard way to

implement an effective communication among Application Servers handling

application logic, and Media Servers enforcing the related media manipula-

tion tasks. Communication relied on so called control packages, allowing the

usage of a generic protocol to drive the communication between an applica-

tion and one or more packages providing specific functionality in a pluggable

way.

Considering the effective approach fostered by MEDIACTRL, we chose

to follow a similar path for Janus as well, with a core handling the high level

communication with users (sessions and handles management, WebRTC-

related protocols) and server-side plugins to provide specific functionality

in a way that is transparent to WebRTC itself, and as such independent

from the web application. An overview of the architecture and the related

interactions is depicted in Figure 3.8.

As we conceived it, the core is mostly responsible for three things: i)

Overlay network’s architectural elements 63

managing application sessions with users through a REST-ful API; ii) imple-

menting the WebRTC communication with the same users, by taking care

of the whole WebRTC lifecycle (negotiation, establishment and management

of PeerConnections); iii) attaching users to plugins, in order to allow them

to exchange messages (based on a per-plugin ad-hoc protocol) and more im-

portantly media (relaying plain RTP/RTCP). This allows plugins to easily

communicate with WebRTC users, as most, if not all, of the complications

associated with the WebRTC stack are masked by the gateway core. All plu-

gins need to do is implementing the related plugin API to set up a specific

session with users that want to take advantage of their features, and get pre-

pared to receive and/or send RTP packets and related RTCP messages, in

case of need.

In order to suit the Janus gateway to our specific use case, a streaming

plugin has been realized as well. The streaming plugin allows WebRTC peers

to watch/listen to pre-recorded files or live media generated by another tool.

Specifically, the plugin currently supports three different types of streams:

1. on-demand streaming of pre-recorded media files (different streaming

context for each peer);

2. live streaming of pre-recorded media files (shared streaming context for

all peers attached to the stream);

3. live streaming of media generated by another tool (shared streaming

context for all peers attached to the stream).

For what concerns types 1. and 2., the only pre-recorded media files that the

plugin currently supports are raw PCM mu-law and a-law files: support for

other additional widespread formats will be added in the future. For what

concerns type 3., instead, the plugin is configured to listen on a couple of

ports for RTP: this means that the plugin is implemented to receive RTP

(and related RTCP messages as well) on those ports and relay them to all

peers attached to that stream. Any tool that can generate audio/video RTP

streams and specify a destination is good for the purpose, e.g., GStreamer,

Overlay network’s architectural elements 64

FFmpeg1, LibAV 2. This makes it really easy to capture and encode what-

ever desired using one’s own favorite tool, and then have it transparently

broadcast via WebRTC using Janus.

As it is obvious, this plugins allows us to exactly implement the scenario

we had imagined during the design phase of our project.

Once we realized the business logic needed to realize both the mecha-

nisms for creating the distributed delivery tree and the overhead streaming

application, we devoted our efforts to the design and implementation of the

underlaying enabling network components. We in fact identified and deeply

analyzed a class of innovative network technologies that allows to highly im-

prove the performance and management flexibility of our system. The next

chapter will be therefore devoted to the presentation of architecture and pro-

tocols envisaged by this new approach to the networking known as Software

Defined Networking(SDN).

1http://www.ffmpeg.org/
2http://libav.org/

Chapter 4

Low level enabling technologies

The acronym SDN stands for Software Defined Networks [39] and it rep-

resents an innovative approach to networks, attempting to keep pace with

their great diffusion and utilization we are experiencing in latest years. By

developing an application on the top of an SDN, a network administrator

can obtain a substantial degree of scalability and reconfiguration that they

would not be able to reach in any other way. In order to better introduce this

revolutionary way of seeing network management, we will first give a brief

overview of how actual networking is achieved, with special regard to rout-

ing and forwarding functions. We will then expose problems and limitations

of this old approach and explain how SDN solves them without affecting

existing systems. Finally, we will present OpenFlow [36], a protocol that en-

ables SDN on a network by decoupling the forwarding and the data plane

components of a switch.

4.1 Internet: state of the art

Even though a lot of network protocols were developed in the years, the mod-

ern Internet makes use of the IP, a datagram based, connectionless protocol.

Basic elements of the Internet architecture are routers. These are fairly com-

plex network devices that, once received a datagram, forward it to the next

router according to precise rules based on the source and destination IP ad-

dresses. Those particular rules are very simple and are essentially based on

Internet: state of the art 66

Figure 4.1: Router forwarding table

shortest path algorithms. This means that, once received a packet, a router

will try to send it to the next router which is on the shortest path to the

destination. To be more precise, there are variations based on the political

authority that a router has toward other routers but, putting that aside, the

rules are not overall very complex themselves.

To take its decisions in the shortest time possible, a router has a table,

called forwarding table, containing associations between a generic address

and the interface to whom send it to. This table is constantly updated by

automated routing algorithms, making sure that the network view is always

consistent and the path is always the one at minimum cost (for example, in

case certain links were to go down). This approach has three basic flaws:

1. It is absolute and too simple. Just a few metrics are used to commutate

to the next router on the path, and these metrics are mainly focused

on the distance;

2. It is essentially static. It does not allow to easily change a route toward

an host;

3. It is automated and not customizable. A network administrator cannot

Internet: state of the art 67

Figure 4.2: Dynamic routing

impose their own rules on an Internet router, nor decide the path their

packets will take. Once a packet is sent to the Internet, it will obey to

the Internet rules;

Reasons why these constraints are present should be clear: the Internet

is public, so metrics and routing rules have to be as more general as possible.

4.1.1 Benefits of network customizations

The approach we just explained was acceptable when the Internet was not

very complex, when just a few network based applications existed. Let us

briefly analyze, using a couple of practical examples taken from the presenta-

tion of the Ofertie Project [5], the reasons for which network administrators

are interested in altering the logic behind the Internet routing rules. We will

examine this matter in depth when we will present the benefits introduced

by the SDN architecture.

Flexibility

In Figure 4.2 we can see the path taken by the set of packets generated by the

client side of a gaming application (marked in green) toward its related server.

In the actual Internet, if a link becomes congested (the red link marked in

Internet: state of the art 68

Figure 4.3: Flow differentiation

the figure), packets will keep following the pre-defined path. Of course, some

congestion control operations should be adopted anyway for certain routers

belonging to an Internet Service Provider’s autonomous system, but the real

problem is that you cannot be sure if they are actually enforced, nor you

can decide the routers crossed by the new path. You also have no way to

predict when routing tables will be updated and, even so, the alteration is

very limited.

Being able to alter the network not only means to be able to avoid con-

gestions by using alternative paths (like the one marked yellow in the figure)

at the chosen moment, but also to freely choose which routers will be ac-

tually used in the new route, by implementing custom application-suited

algorithms.

Flow differentiation and traffic prioritization

Having again in mind gaming applications, we could think to differentiate

flows, as shown in Figure 4.3. The green path represents an high-priority,

high-speed path, while the red one is a normal path. This differentiation

would allow an administrator to deploy different traffic plans, so providing

the users who are paying for the service with better network performances

Software Defined Networks 69

Figure 4.4: Quality of Service

than the ones granted to users accessing it for free. In the actual Internet

this is obviously not possible, as routing decisions are made solely based on

source/destination IP addresses: when an Internet router receives a packet,

it has no extra information than the level 3 header (i.e. no information about

the traffic owner), and as its software is single-purpose and does not allow

for any sort of customization, it does not give relevance to other fields. Some

ISPs can actually do something about flow differentiation, but obviously the

number of devices on which they are allowed to act upon is very limited.

Quality of Service

In relation to flow differentiation, a network administrator could be interested

in implementing different policies of QoS. In Figure 4.4 we can see different

QoSs according to the type of network they can be applied to.

4.2 Software Defined Networks

As stated in the introduction of this chapter (Section 4.2), SDN is an in-

novative networking approach aimed to give network administrators flexible

tools to design, build and manage networks under dynamic and fast-paced

environments.

Software Defined Networks 70

Figure 4.5: SDN Architecture

The basic trait of SDN consists in decoupling the part of a switch that

handles decisions, called control plane, from the part that just refers to the

forwarding table and forwards a packet on a specific port, named data plane.

Thus, an SDN-compliant switch will have a forwarding table as well, updated

by following external directives from external entities.

The entity in charge of instructing an SDN-based switch is named con-

troller, and it is basically a software component that, on a side, interacts

directly with one or more switches through a well-defined protocol (at the

moment of writing, OpenFlow) and, on the other side, checks requests from

business applications.

Specifically, as shown in Figure 4.5, an SDN controller has two interfaces:

• A SouthBound API, used by the OpenFlow protocol to communicate

with SDN switches;

• A NorthBound API, used for interactions with business applications.

Most controllers implement this API as a REST service, but different

implementations on different programming languages can also be found.

It’s worth noting that two different types of switches are shown:

Software Defined Networks 71

Figure 4.6: SDN General Architecture

• Normal switches indicate real hardware devices, optimized for SDN.

They allow achieving the highest performances but, as SDN is still

young, they are still rare;

• Virtual switches indicate software implementations of SDN switches.

These are the most common ones and allow every kind of device to

become an SDN switch, so not only routers but common PCs and

servers as well

Just to clarify, we have to mention that SDN allows more than just one

controller to be part of the controller tier and that, in the future, new proto-

cols like OpenFlow could be used for the communication between controller

and switches. This leads to the more generic schematization depicted in

Figure 4.6.

Here we can observe more than one controller, and more than one North-

Bound API. Just one API is shown as SouthBound, as the protocol between

a controller and a switch, no matter the controller uses OpenFlow or not,

should be unique. The motivations behind this choice are explained in the

following section.

Software Defined Networks 72

4.2.1 SDN: network enhancement

In this section we will give an overview of what are the benefits of the SDN

approach and what can be achieved by decoupling the control and data plane.

In order to put the focus on the concepts on which an SDN network is built

upon rather than on implementation details, we will refer to the schematiza-

tion of an SDN network shown in Figure 4.5, in which just one controller has

envisaged. We will also consider OpenFlow as the controller-switch protocol.

First of all, this kind of approach offers a centralized management and

control on different network devices. One of the most problematic tasks for

both a network administrator and a programmer is interaction with different

vendors’ switches. In the network of a big company, indeed, it is very un-

common to find only one kind of switch so, in a real-world scenario, multiple

devices and software are involved. As each switch has different software mod-

ules making use of different protocols, management is often complex and re-

quires the implementation of different communication mechanisms.This prob-

lem can be solved if all the switches in the network implemented OpenFlow

as communication protocol. Switch vendors can differentiate their switches

by many features but as long as their device implement the OpenFlow pro-

tocol they can be controlled by the controller in an easy and standard way.

In fact, being the controller a single management point, all maintenance and

control operations are hugely simplified. Some readers at this point could ex-

press their doubt that the OpenFlow controller can represent a single point

of failure. It certainly can. Actually, as the controller’s only task is to just

occasionally instruct switches, its failure will not be as catastrophic as it

may appear. Moreover, in case of a component crash, be it a switch or the

controller itself, it will be much easier to find its related fault(s) by just

examining the controller logs.

Second, SDN offers an abstraction of the underlying network. This point

directly relates to the previous paragraph, where we exposed the general

benefits of network customization. All the operations we introduced, like al-

tering traffic patterns or offering to users specific QoS levels, are hindered

Software Defined Networks 73

by the number and the complexity of the low level devices, which have to

be contacted in order to achieve the expected result. Furthermore, since

other technologies could already be in place, it’s very important to interact

with them as well. In such a situation, an high-level operation like traffic

orchestration, is mixed with low-level operations, like communication with

switches. By exploiting the aforementioned NorthBound APIs of an SDN

controller the real network is abstracted from the business application. This

feature makes programmers’ job easier as well, because they just have to learn

one API for all switches no matter of the internal structure of the switches

nor of software changes or updates. It is not uncommon for administrators

to keep older versions of network devices software, as an update could, in

the worst case scenario, disrupt an entire service and affect interactions with

other existent apparatus. With SDN and OpenFlow, software updates have

a very limited impact: vendors will have to simply make sure that a new

switch update does not alter the OpenFlow protocol part, whereas network

administrators will keep on dialoging with the switches. Figure 4.7 shows

a practical example of what we are talking about. We can note how dif-

ferent kinds of business applications, cloud-based or not, interact with the

underlying network just by contacting the NorthBound API. Also note how

the OpenFlow network can coexist, setting a very simple configuration, with

other generic virtual network software components.

The last important benefit we have to talk about is related to the pre-

vious section as well, and it is about the agility and scalability that SDN

brings to the network. Let us start by pointing out that the assertion that

the actual Internet is static is clearly in contrast with the dynamic nature of

modern server applications and services. Nowadays, most servers are virtu-

alized and almost all applications running on such VMs interact with each

other using various communication protocols, so they need to be properly

configured. We illustrate virtualization in-depth in 2.2, as its understanding

is required to fully comprehend our application. However, what we want to

make clear here is that while in the past a server application typically ex-

Software Defined Networks 74

Figure 4.7: Overview of SDN’s provided abstraction

changed data just with clients, applications have now to work toether and

communicate with each other in order to provide the final service. In ad-

dition, being each server virtual, this can be migrated from a location to

another. Motivations behind migration can be multiple, but this is mainly

done with the purpose of optimize and rebalance servers workload. Neverthe-

less, this operation, which includes simpler cases as boot up/shut down, has

to be done trying to avoid long period of service downtime. Finally, given

their constant interaction and increase in number, we have to admit that

a static configuration of the network could not be enough anymore to as-

sure fast data exchanging among modern and complex applications. Just to

give an example, Google computing nodes, in order to maintain consistency

among the Internet and their internal databases (representing the source for

user searches), have to periodically exchange data on the order of petabytes.

To allow this mass of data to flow, an hyper scalable network infrastructure

is needed. In fact this type of network cannot be statically configured, as a

single change would involve a not negligible downtime to reconfigure. With

SDN, again, a controller can act as a single management point and imple-

ment ad-hoc algorithms to dynamically alter the network. As the controller

can see the state of all the network switches, it is aware of their changes and

so, properly configuring them, can manage any network change in a consis-

OpenFlow 75

tent way. For example, switches can be instructed to change destination of a

traffic flow in case the recipient changed its location or was shut down, thus

solving the migration problem.

4.3 OpenFlow

OpenFlow [36] is, at the moment, the SDN-defined controller-switch protocol

and is supported by all known SDN switches implementations. Given its

importance we will spend this paragraph to explain it in detail.

In order to implement the SDN architecture, OpenFlow introduces the

concept of flow. In telecommunications, a flow is a very generic term and rep-

resents an amount of data exchanged by two or more end-points which can be

identified or categorized in some way. For example, a TCP communication

can be identified as a flow because it is easy to recognize TCP packets between

two hosts by just looking at the couples <source IP address, source

TCP port>, destination IP address, destination TCP port>.

Anyway, for the same reason, you could distinguish HTTP flows by restrict-

ing the flow to the destination port 80. Or you could just stop to layer 3

and identify a flow as data exchanged by a specific couple <source IP

address>, <destination IP address>. So, to clarify this point, in

the following section will be explained how OpenFlow actually manages the

flows.

4.3.1 Flows and flow tables

A flow is composed by two parts:

• A matching rule;

• An action to be executed on a packet belonging to the matched flow.

A matching rule is what is used by OpenFlow to univocally identify a

flow and also the way for the end user to set the specification degree suited

OpenFlow 76

Figure 4.8: Openflow’s matching fields

for their application. The Figure 4.8 shows all the current packet fields

supported for the identification of a generic flow.

Most common parts of layer 4 and layer 3 headers, in addition to some

VLAN fields and an OpenFlow specific one that works as an ingress port (the

specific switch port a certain packet was actually received on), are supported

for the identification of a generic flow. The action field can be composed by

a single action or by multiple actions to be executed in a specific order. In

the OpenFlow specification, many actions are defined and, as the standard

keeps evolving, new actions can be introduced. We will in the following give

just some examples of applicable actions:

• Output action, probably the most common action, consists in for-

warding a packet to a specific output port or to another flow table.

The specifications allowes the use of some wildcards representing, for

example, ‘all ports’, ‘all ports but the port on which the packet was

received’, ‘forward to controller’;

• Set action can alter a packet source/destination address or port. It

cannot exists on its own, but requires that at least one output action

has been specified;

• Drop action. Simply drops a packet;

• Enqueue action to store packets in a switch queue for further pro-

cessing.

Flows are organized in flow tables. Each row of a table is called flow

rule and it represents a rule to be applied by a switch for a specific flow. A

OpenFlow 77

Figure 4.9: Openflow’s tables

Figure 4.10: Openflow’s group table fields

switch can have multiple flow tables so to be able to implement more complex

behavior through further processing the same packet, as shown in Figure 4.9.

An extra table, called group table, can be present. This table allowes to

group entries and gives OpenFlow more forwarding methods, like ‘select’and

‘all’, and let it to apply a bucket of actionsto flows belonging to a specific

group. Let us briefly explain each field of this table (shown in Figure 4.8).

• Group Identifier is a 32-bit unsigned integer identifying the group;

• Group Type is a semantic information to indicate which bucket will

be executed, and can assume the following values:

All. All of the buckets, this value can be used for broadcasting

purpose;

Select. Selection of just one bucket, usually implemented by

a dynamic algorithm. For example, it can select the output on the

currently least congested port;

OpenFlow 78

Indirect. Executes a defined bucket. This group supports only

a single bucket. Allows multiple flow entries or groups to point to a

common group identifier, supporting faster, more efficient convergence

(e.g. next hops for IP forwarding);

Fast failover. Executes the first live bucket. Each action

bucket is associated with a specific port and/or group that controls

its liveness. The buckets are evaluated in the order defined by the

group, and the first bucket which is associated with a live port/group

is selected. This group type enables the switch to change forwarding

without requiring a round trip to the controller. If no buckets are

live, packets are dropped. This group type must implement a liveness

mechanism.

• Counters is a field updated when packets are processed by a group;

• Action Buckets is an ordered list of action buckets, where each

action bucket contains a set of actions to execute and associated pa-

rameters.

It’s worth nothing that each rule can have some utility fields, including:

• Timers indicating the time validity of a rule. Specifically:

Idle Timer, also known as soft timer, defines a temporary win-

dow during wich the rule is valid. If at least a matching packet is

received during this wondows the timeout is reset, otherwise the rule

is deleted;

Hard timer. This is a fix timeout, no matter how many packets

matching the rule are received, after a fixed period of time the rule will

be deleted.

• Counters. They are used to keep trace of various statistics (number,

type and so on) related to packets and are updated when they are

processed;

OpenFlow 79

4.3.2 Overall architecture

The protocol specification currently envisages two different types of Open-

Flow switches:

• Dedicated OpenFlow switches, which just implement the OpenFlow

protocol;

• OpenFlow enabled switches, traditional layer 2 or layer 3 switches sup-

porting the OpenFlow protocol.

The first type of switch can just be used if an OpenFlow controller is

present in the network. The second one instead can act as a traditional

layer 2/3 switches but, in case a controller is activated in the network, it can

change its behavior halting the normal operational mode and starting waiting

for flow rules enforcement. Eventhough the latter is the most common and

flexible type of SDN compliant switch, they both exhibit the same internal

structure (Figure 4.8):

• One or more OpenFlow tables used to process incoming flows;

• A secure channel to communicate with the controller.

Let us now explain the interactions between a switch and a controller.

When a controller is connected to a switch the latter stops acting as a normal

switch and starts referring to internal tables which will be, initially, empty.

When a packet with no matching rule is received, the switch contacts the

controller asking for a flow rule and the packets is enqueued (providing there

is enough available space). The controller replies with a flow rule to apply

to that packet. The switch updates its flow table and processes the packet.

This mechanism is summarized in Figure 4.12.

It’s worth noting that, once a flow rule has been installed on the switch,

every packet matching that rule will be automatically processed so limiting

the overhead (due to the interaction with the controller) just to the first

step. For this reason, most of OpenFlow switches implement the flow table

OpenFlow 80

Figure 4.11: Openflow’s switch architecture

Figure 4.12: Openflow: protocol logic

OpenFlow 81

in hardware, differently from the secure channel part, which is software-

based. The fact that the forwarding part is done in hardware means that the

efficiency of a switch, provided a flow rules exists, will be about on the same

order of a traditional layer 3 switch.

Also note that a network administrator can create complex flow rules

by composing several of the available protocol fields and parameters. This

implies that very specific rules can be enforced. Obviously this degree of free-

dom lead to an increase of the overhead due to different interactions between

switch and controller. A more generic rule, instead, could dramatically re-

duce the number of interactions but it could not be specific enough to enforce

the control required by the application level business logic.

In conclusion, the OpenFlow protocol provides network administrators

with huge freedom and flexibility in how the network is used, operated, and

sold. The software that governs the network can be written by enterprises

and service providers using ordinary software environments so promoting

rapid services introduction through customization.

Chapter 5

SOLEIL low level network
design

As already stated in the previous chapters, the SOLEIL system has been

conceived to be deployed on a cloud infrastructure in order to exploit the huge

advantages this technology introduces in terms of flexibility and scalability.

Furthermore, in order to have full control on the way the streams of data

flow from the source (the broadcater) to several destinations, we decided to

rely on the novel Software Defined Network approach for what concerns the

enabling underlying network infrastructure. In this section we present our

design of the SOLEIL low level network describing the internal structure of

each key component and motivating architectural choices.

5.1 Nodes architecture

Starting from assumptions and functional requirements introduced in the

previous chapters, it’s quite natural to define the general architecture of a

generic node of the SOLEIL architecture. As it is shown in Figure 5.1, each

node is composed by two main elements:

• An OpenFlow switch;

• An Hypervisor in charge of hosting and handling one or more Virtual

Machines ;

Nodes architecture 83

Figure 5.1: SOLEIL: generic node architecture

Figure 5.2: SDN nodes deployment

As we said, the hypervisor is needed in order to deploy our architecture

in a cloud environment. The need for an OpenFlow switch attachment point

is motivated by the assumption that in each node can reside multiple VMs

and, from an architectural point of view, these VMs can be seen as real

hosts. Each host can deliver a different type of service (i.e. both different

streams and different formats of the same stream) and, in order to allow the

proper high level differentiation and forwarding of media packets, the related

media flows need to be intercepted and handled in the right way. In order

to better explain the need for an OpenFlow switch in each node, it’s worth

noting that the SDN specification doesn’t impose that every single router

in a network topology has to be OpenFlow-enabled. For this reason, several

different standard routers, could be on the path between two SDN nodes in

a network (see Figure 5.2).

Nodes architecture 84

Figure 5.3: SDN nodes deployment in a real world scenario

This means that, in the most generic case, the hypervisor could be at-

tached to a not-SDN switch. Even in this case, if each VM had a unique IP

address the flow rules could still be established by imposing a proper match-

ing rule (i.e. checking the source addresses of each packet). However, in

most of the cases the hypervisor itself is on a LAN environment, and ac-

cess the Internet via a NAT element. In such cases, the source field of each

data packet originated by different VMs behind the NAT is replaced with the

same IP address (the NAT public IP address) when leaving the LAN limits,

thus causing the aforementioned differentiation technique to be useless. So,

in order to correctly handle the traffic originated by each virtual machine,

we impose the first hop crossed by the traffic is an OpenFlow node.

Standing these considerations, the previous general schematizations can

be integrated as in Figure 5.3.

It’s worth noting that the mechanism allowing an OpenFlow switches to

discover each other and communicate over the Internet is an implementation

depending detail and, for this reason, we can give it for granted. Just for

the sake of clarity, we can say that in most implementations of OpenFlow

switches this task is achieved by means of application level tunneling/encap-

sulation (Generic routing encapsulation - GRE [25]).

Low level network design 85

Figure 5.4: Logical link abstraction

5.2 Low level network design

Before starting the description of the SOLEIL low level design, we want here

to specify that, from this moment on, we will use the term ‘link’ to refer to

its meaning of logical connection between two OpenFlow switches, no matter

other non-OpenFlow switches or network devices are present in the middle

(Figure 5.4).

Given the agility and scalability requirements that characterize our sys-

tem, we decided to adopt a hierarchical topology, more specifically a tree.

Due to the absence of circuits, this topology allows for very simple routing

and management algorithms, as just one path connecting two nodes exists.

However, being just one path also means that, in case of failures, some nodes

will not be reachable, conflicting with the fault tolerance requirement. For

this reason, the system administrator can specify a set of redundancy links

among switches, so that in case a switch chases, an alternative path will be

found.

In Figure 5.5 is depicted an example of alternative paths between layer 2

and layer 3 switches. If a failure occurs on a specific link (the one connect-

ing 2-2 to 3-2 in this case), an alternative path is available, making use of

the switch 2-1. Obviously, this fall-back feature is not always granted as it

depends on which specific redundancy links are actually present. It is worth

noting that the choice of inserting or not redundancy links among network

Low level network design 86

Figure 5.5: Redundancy links among OpenFlow switches

components is very specific and depends on the application level logic of the

system. For this reason we decided to leave the to the system administrator.

For the same reason, the creation of the whole topology, including for exam-

ple the number of levels of the tree and how each node is connected to the

others can be defined by the administrator during the service set-up phase.

As will be explained in details in the following sections, once the user com-

pletes the system configuration, automatic routines will be executed in order

to cope with possible human errors and to optimize the topology creation

itself.

5.2.1 Bridging mode

As already stated, in a cloud environment virtual hosts should be considered

functionally equivalent to physical machines. Although any virtualization

technology allows the hypervisor to act as a NAT element and to hide the

VMs to the external world, this is not feasible in our scenario. What is

instead very helpful to realize our high level logic is the so-called bridge mode

which allows to directly attach the virtual machines to the external network.

This operational mode is very simple: even though there is just one network

adapter on the physical host, the hypervisor creates several virtual bridging

interfaces, one for each virtual machine, which actually just redirect the

traffic to the Network Interface (NIC). Figure 5.6 gives an overview of the

operational mode just introduced.

Low level network design 87

Figure 5.6: Bridge mode example

Figure 5.7: Bridge mode in a global scenario

Analyzing the figure, it can be noted how a specific host is not aware

whether it’s connected to real or virtual network adapter. Figure 5.6 also let

us note that, for the same reason, both real and virtual hosts result connected

to the same logic network. Some problem can arise when moving our point

of view from a local to a global perspective.

In the global scenario depicted in Figure 5.7, in fact, each switch is used

by VMs belonging to different LANs. In this case we have a critical address-

ing issue since the two LANs adopt different addressing spaces. In such a

situation in fact, since by means of a tunneling mechanism between switches

Low level network design 88

the private local addresses can travel through the Internet the VMs running

in different LANs environment are cannot communicate in a transparent way.

This specific problem could be avoided imposing that all the subnets used

the same private subnet addressing space. Unfortunately, this option is not

always feasible since the physical infrastructures hosting the VMs could be

used by other processes with their own specific network requirements. More-

over, this would not solve IP conflicts as, among dozens of LANs (each one

regulated by their own DHCP server) it is likely to assign the same IP ad-

dress to two or more VMs. Last but not least, another problem has to be

taken into account in case a node migration is needed. In this case, in fact,

in order to successfully complete the migration process, a change of address

for the migrated VM could be needed, leading to an additional overhead due

to reconfiguration operations on that node.

5.2.2 Overlay and low level networks configuration

To cope with such issues, we opted for an overlay network architecture. As

hosts are virtual, it seems just appropriate to make the network they are

plugged in virtual as well. This approach solves every problem exposed so

far. Figure 5.8 shows how virtual machines have the illusion of belonging to

the same network, a 10.x.x.x/8, even though host nodes reside on different

local networks. The fact VMs belong to the same network means that, for

any application running on them, there is no need to worry about network

details like addresses translations and port forwarding. This makes guest

cooperation immediate, a very desirable requirement on a cloud computing

infrastructure.

The only aspect we have to take particular car of is addressing. At the

very early stage of our work, we had thought of just assigning static ad-

dresses to the VMs, as the fact that VM network is a virtual network meant

that just VMs could see each other. Anyway, this approach is not optimal as

it is needed to store somewhere current associations. Moreover, each time a

virtual machine is plugged in, it is necessary to interact with its OS in order

Low level network design 89

Figure 5.8: Example of overlay network configuration

to set the static IP and properly configure application network parameters.

For this reason, we decided to use a Dynamic Host Configuration Protocol

(DHCP) [23] server for the overlay network as well, so to introduce the dy-

namicity needed in this particular operational environment. So, in order for

our system to work correctly, we set as mandatory the installation of a DHCP

server on the root node of the tree. This constraint ensure the DHCP server

is always reachable by new nodes entering the overlay.

5.2.3 Path, flows and role based tree

In Section 4.2 we stated that when a controller is present into an SDN enabled

network, the traffic has to be explicitly allowed by flow rules. This means

that just creating connections between switches does not automatically make

a stream flow. We decided to build our network logic around this concept

and we adopted the following rules for the delivery of the service: in order to

make a stream flow from the root to a leaf, the end user willing to access it

Low level network design 90

Figure 5.9: Role-based tree

has to explicitly ask for it. In our logic, we will define a path as a sequence

of switches and links starting from the root and reaching a leaf. Each switch

crossed by the path has to be instructed (by installing a proper flow rule)

about the way it has to handle data packets. In other words, a path can be

defined as such only if it exists in the system a flow rule allowing packets to

travel across a well defined set of switches. Adopting the same notation used

for the high-level architectural components, we can distinguish three types

of nodes:

• Root node;

• Relay node;

• Leaf node;

A VM present on one of these nodes will become respectively a root, a

relay or a leaf VM. In the aforementioned system set-up phase, the adminis-

trator is asked to mark a node with one of these roles thus defining a so-called

role-based tree (see Figure 5.9).

According to the node type and depending on whether a VM belonging

to the overlay network is present or not, the flow installation procedure will

slightly change. Specifically, if a node is marked as root or does not host

a VM, an application packet has to be sent straight forward to the next

Low level network design 91

Figure 5.10: Differentiation of flow rules on different nodes of the network

hop. In fact, if the node is the root node of the low level tree, the only

received packets will just come from the root VM. in case a VM is present

on a relay node, packets will have to be forwarded first to the VM and then,

from the VM, to the next hop, as exemplified in Figure 5.10. Note that

by ‘packets’ we are here referring exclusively to application related packets.

Management packets (like DHCP or ARP) are not contemplated by this

forwarding algorithm.

Physical and Virtual network interaction

As we explained in the previous section, the introduction of the overlay net-

work solves the addressing problem, but it does not fully explain how a

generic client can interact with a VM running on it. Figure 5.11 shows a

generic OpenFlow switch interfaces in a typical real world scenario. We can

distinguish two different interfaces:

• An interface to the overlay network (i.e. the 10.0.0.x/8 IP network);

• An interface to the real network (i.e. the 192.168.1.0/24 IP network.

Our idea is to exploit the overlay network as a delivery network, so that

any application level flow will travel across its nodes toward its final destina-

tion. During their travel packets will touch several switches on the physical

network and VMs on the overlay network, but from the final user point of

view the overlay network can be seen as black-box. In this architecture in

fact, each OpenFlow switch is in charge of translating network addresses to

Low level network design 92

Figure 5.11: Interconnection between overlay and physical network

make possible for packets to travel in a transparent way over the two dif-

ferent networks. This, as we will explain in the following, will be done by

applying proper flow rules on the OpenFlow switches.

Physical and Virtual network isolation

The last considerations allow us to introduce two additional functional re-

quirements our architecture has to assure:

1. Control messages and external traffic have to be treated in a different

way respect to overlay network traffic. Only packets generated by the

components of our application level have to be able to flow through the

overlay network. The external traffic from other hosts or traffic used for

infrastructure management (flow rules installation procedures, bridge

creation commands, etc.) should be confined to the physical network;

2. The overlay DHCP server has to answer only to requests from hosts

belonging to the overaly network. In other words, the DHCP server

has to be isolated from other hosts belonging to the same underlying

physical network.

As the plug of an OpenFlow controller makes the network isolated, the

readers could think that these requirements are already respected as any

interaction would have to be explicitly enforced by flow rules. That is true

Low level network design 93

Figure 5.12: VLAN configuration example

as long as a controller is present in the network, but the problem could

arise in case that component crashes or is simply shut down, especially if

the OpenFlow switches are implemented to act as normal layer 2 devices

when no controller is present. We found the solution to this problem thanks

to the adoption of Virtual LANs (VLANs) [43], a mechanism implemented

by almost every switchable to isolate specific segments of a LAN, leading

to the creation of multiple virtual networks on the same physical network.

This mechanism is implemented by means of tags, plain numbers identifying

segments belonging to the same virtual network. In particular, segments can

be identified as:

• Tag ports. Segments connecting an host to a switch;

• Trunks. Segments connecting switches. A trunk specifies a list of

VLAN tags it is allowed to pass traffic from/to.

Figure 5.12 shows an example of VLAN configuration.

VM1 and VM3 have tag 1 thus belonging to the same VLAN, while VM2

and VM4 are tagged respectively 2 and 3. The link connecting the switches

is a trunk for VLANs 1 and 2 so just VM1, VM3 and VM2 traffic can flow on

this link, while VM4 has to find another way. Once on the rightmost switch,

just VM1 traffic can reach VM3 because of them being on the same VLAN,

while packets from VM4 will not be visible by VM3. So, we have been able

to cope with the aforementioned issue, just marking overlay network links

with a specific VLAN tag. This completely solves our problem as:

Automatic configuration of the low level tree topology 94

Figure 5.13: Administrator system high level configuration

• When a controller is present, VLAN tags are ignored and the isolation

is enforced by flow rules;

• When there is no controller, isolation is still guaranteed by the VLAN

mechanism.

5.3 Automatic configuration of the low level

tree topology

As it will be detailed in Section 6.5.2, the creation and configuration of

the tree topology which allows to deliver the service to end users can be

defined by the system administrator by means of a web panel designed and

created ad-hoc. As we anticipated, automatic routines are executed by the

system in order to cope with possible human errors and to optimize the

topology creation process itself. In this section we present the algorithm we

implemented to achieve this complex task. The system administration can

exploit graphic tools to draw and configure the nodes to be deployed. The

outcome of this operation is an high level definition of the system components

that can be schematized as in Figure 5.13.

Automatic configuration of the low level tree topology 95

Figure 5.14: Tree minimization algorithm

With reference to the figure, we can note the administrator wants to cre-

ate a distribution network composed by eleven nodes. The administrator can

assign a specific role to each node in order to deploy the overlay network ac-

cording to the peculiar features of the SOLEIL architecture. Furthermore,

it’s possible draw connection links among nodes (having the possibility to

specify redundancy links that can be used in case of problems, as it has been

explained in Section 5.2). In order the system can find the minimum tree by

starting from this user level description of the topology we opted to rely on a

consolidated minimization algorithm, namely the Kruskal’s Minimum Span-

ning Tree algorithm, combined with some application logic, as it is shown in

Figure 5.14.

In fact, the algorithm in its original form is obviously unaware of the role-

based nature of the SOLEIL tree and, by just giving it a generic topology, we

would have no guarantees that the role of a certain node is respected when

computing the minimum tree. Moreover, as we anticipated, the user could

have made errors (e.g. relay nodes either not connected to any leaf or to

the root node) during the topology definition phase. For this reason, before

feeding the algorithm with the topology, the system removes any dangling

Automatic configuration of the low level tree topology 96

Figure 5.15: Tree topology creation: pruning of dandling branches

branches, which are branches ending with a relay or a node whose role was

not set, attaining the new configuration shown in Figure 5.15.

Then, to make sure that the computed tree is the one the user wanted,

we appropriately set link weights according to the type of its endpoints. In

particular, each node is associated to a weight value according to the following

mapping:

• Root: 0

• Relay:1

• Leaf: 2

and a link weight is set calculating the sum of the values associated to

the endpoints the link connects (see Figure 5.16).

Finally, we give this topology to the real algorithm. According to how the

Kruskal’s algorithm is implemented [46], this process will get us the minimum

tree respecting SOLEIL roles (Figure 5.17).

Only links which belong to the tree will be actually translated into actual

tunnels, because they are the only links needed for our traffic to flow. Redun-

dant links will be stored and used whenever necessary. We decided to store

Automatic configuration of the low level tree topology 97

Figure 5.16: Weights assigned to nodes and links

Figure 5.17: Computed optimal tree topology

Migration of SOLEIL nodes 98

the tree topology by using an XML representation, as the high level frame-

work we use for the system administration panel natively provides methods

to parse a topology object stored into a file. This feature allows to save and

reuse an already computed topology in case the system is shut down and

restarted. Of course, the overall status of the system could change while the

system is down. For this reason before accepting a previously stored topol-

ogy, a check is performed on the proposed topology. If no specific problems

occur, the stored topology can be reused as it is, otherwise some reconfigu-

ration operations are to be performed by the system administrator.

As we already mentioned, one of the most important feature our archi-

tecture provides is the ability of automatically react to both overload and

over-provisioning conditions by migrating nodes or even entire subtree of the

overlay network. The mechanism we decided to adopt in order to minimize

the service downtime and consequently to maximize the quality of service

perceived by end users is detailed in the following section.

5.4 Migration of SOLEIL nodes

Migrating a VM from a hypervisor to another can be a very difficult oper-

ation in the context of our complex infrastructure. This is especially true

when the node to be migrated is contributing to delivering the service be-

ing on the path between the source node and a final client or even another

VM. In such a situation, in fact, by migrating the VM the communication

(and the service delivery) could be interrupted. The previous consideration

let us understand how complex can be migrating a node in different use case

scenarios, because of the several variables to be taken into the account. Nev-

ertheless, the operational constraints we just presented can be relaxed if we

assume the high level application can tolerate some packet loss and/or is able

to implement some sort of ACK-based mechanism to ask for the retransmis-

sion of lost packets. This condition is widely satisfied as streaming protocols,

although typically built on UDP, always take into account the possibility of

losing some packets and, in some cases, allow to ask for retransmission. As

Migration of SOLEIL nodes 99

Figure 5.18: Relay node workload

a more strict constraint, we impose is to allow to migrate only leaf VMs.

This constraint directly derives from intrinsic nature of the overall architec-

ture design. In fact, if we think to the roles the different nodes of the tree

play in the overall architecture we find out that the load on a generic relay

VM is quite constant. Figure 5.18 help us to better understand this con-

cept: in case the number of clients interested to a specific stream increases,

the only VMs affected by this event would be the leaf VMs directly serving

those requests.

This can be furthermore explained by the consideration that since the

delivered resource is in our case represented by just a single stream, a generic

relay VM has to handle just packets belonging to that single stream, no

matter of the number of clients asking for it to the leaf node. Even in case we

decided to add a multi-stream support, due to the architecture hierarchical

design, it is very unlikely that a relay VM could be so much stressed to need

to be migrated. In any case, even in such a circumstance, the problem could

be avoided (or even prevented) by introducing a new tree layer when a certain

load threshold is passed, avoiding in this way the overhead introduced by the

migration process.

Intuitively, the side-effects introduced by the migration process, could

be easily solved if we were able to move the VMs without disconnecting

them by the network. This is the concept on the base of the so-called LIve

Migration of SOLEIL nodes 100

Migration of Ensembles (LIME) approach whose details are explained in

[24]. This approach illustrates in detail what the best way to perform this

operation is, by preliminarily cloning the network instead of just moving it.

This approach leads to the best performances as the VM, once migrated, can

start its services immediately, as packets are already flowing to the node’s

new location.

For this reason, when a node migration is needed, we adopt the following

algorithm:

1. First of all the system checks whether or not the VM to be migrated is

on the path is contributing to providing the stream to end users;

2. If this is the case, the system checks whether or not the destination

switch which the VM has to be attached to is on the path of the same

stream (i.e. the system checks if the new switch is already reached by

packets belonging to the same media stream);

In the first case (stream packets already reach the switch) nothing

special is needed and the system is ready to migrate the node;

In the other case, the system computes the path needed to reach

the node like the VM were already been moved to the new location and

installs flow rules on the corresponding switches in order to implement

the route;

3. At this point the migration process can start.

It’s worth noting that, during the migration process, packets will be repli-

cated on the two paths (or cloned, if we want to use the term envisaged by

the LIME approach). Once migration is successfully completed, the old path

can be removed. Migrated VM will receive data right away it is waked up

because the packets were already flowing to the new location during the mi-

gration process. This mechanism allows to minimize latency, downtime and

packet loss.

Chapter 6

System implementation

The last period of the doctoral activity this document is related to has been

devoted to the realization of a prototype implementation of the architec-

ture we described in the previous sections. In this chapter we will hence

present, motivating our choices, a set of components that helped us to de-

ploy the platform on single testbed machine emulating a distributed network

environment.

6.1 Virtualization environment and network

emulation

In the previous chapters we introduced some virtualization solutions and

briefly described their main features. We based our implementation of the

virtualization environment on the Kernel-based Virtual Machine (KVM)

framework and used the Quick Emulator (Qemu) for the network emula-

tion component.

The main motivations behind the choice of KVM as the foundation of our

implemantation can be found its an open source nature. Thanks to this rea-

son the KVM framework is already present in almost any Linux distribution.

Having a platform completely based on open-source components is indeed a

very appealing feature for the academic nature of our project paving the way

to the possibility to release the product of our work as an open-source plat-

Virtualization environment and network emulation 102

form as well. Furthermore, the fact that KVM it is natively included in many

Linux distributions makes the deployment of our infrastructure on existing

servers faster and easier. As a drawback we have to say that KVM exists

for Linux hosts only but, standing the server side nature of the architecture

we conceived, this can be smoothly considered a minor issue. A more tech-

nical reason that guided our choice can instead be related to the hardware

requirements introduced by the migration process envisaged by our system

in case critical situations occur. In this case, in fact, the node to migrate

could be migrated. for example, from a host machine equipped with an In-

tel processor to a new node based on an AMD architecture. Such kind of

issues can be easily coped with KVM provides an environment very robust

to hardware heterogeneity and extremely tolerant when it comes to migra-

tion. Furthermore the module natively supports full hardware virtualization

that, as we said in Section 5.2, is required to the guest to act as a real ma-

chine. KVM is also supported by OpenStack, our first-choice cloud platform

for a real world working deployment of the SOLEIL system.

As KVM is just for the virtualization part, we used Qemu to emulate the

network and storages components of our testbed. Qemu was chosen as it is

the de facto user-level application for KVM. Figure 6.1 shows an overview of

the KVM/Qemu architecture.

It is worth noting that, network emulation is needed to implement the

overlay network we talked about in the previous chapter (we will present our

OpenFlow-based implementation of such a network) while storage emulation

is required to make available to multiple VMs a shared ISCSI disk as a local

disk in order to facilitate and speed up the migration process.

Even though the couple KVM and Qemu seems to perfectly suit our re-

quirements, we decided to furthermore abstract our implementation by the

underlying technology by using the Libvirt component[9]. Libvirt, whose

architecture is depicted in Figure 6.2, is neither a virtualization nor an emu-

lation technology. It is a universal API developed by the RedHat Corporation

that allows applications to interface with a lot of different virtualization solu-

Virtualization environment and network emulation 103

Figure 6.1: Virtualization environment overview: KVM and Qemu

Figure 6.2: The Libvirt API

Disk sharing 104

tions, also providing monitoring tools, to check both guests and hosts status.

It is implemented as a daemon and, although its core is written in C, bindings

exist for almost every programming language. The main reason behind the

adoption of this further layer can be found in this very high-level API which

provide a very flexible and easy to use access point to perform a variegated

set of complex operations. Moreover, as we anticipated, should we ever need

to change the underlying virtualization technology, we can reuse exactly the

same application no needing to modify the code at all. Last but not least,

Libvirt is also used by Openstack, so we can apply similar considerations as

for KVM.

6.2 Disk sharing

As we anticipated, in order to be able to migrate a VM, a disk sharing tech-

nology is needed. We also identified ISCSI as the most suitable type of SAN

and block-level disk-sharing technique. The first motivation leading us to

choose this kind of technology is related to the better performances achiev-

able by adopting a block-level technique. Furthermore, we didn’t want to be

limited to use a specific hardware infrastructure like required, for example,

by the FiberChannel solution. Additionally, our infrastructure is designed to

be run on the Internet and ISCSI is specifically designed for this purpose.

6.2.1 ISCSI components and SOLEIL setup

An ISCSI architecture, represented in Figure 6.3 is composed by two ele-

ments: (i) a target and (ii) an initiator. The target is a server holding real

disk resources. These resources can be either existing disks or image files, or

even complex disks structures such as RAID.

The target abstracts them as one or more disk resources and presents

them to the outside world with an ISCSI Qualified Name (IQN). A IQN is a

dotted separated string composed by the following elements:

• An iqn prefix;

Disk sharing 105

Figure 6.3: The ISCSI architecture

Openvswitch 106

• a Date formatted according to the yyyy-mm notation and represent-

ing the year and month in which the authority took ownership of the

domain;

• The reverse domain name of the authority.

The IQN can end with a :targetName, identifying a particular target.

An example of IQN is:

iqn.2014-02.com.example:storage.disk2.sys1.xyz

the virtual storage can be accessed by using the IQN clients, called initia-

tors. How the storage has to be seen by the outside is decided by the target

itself. If multiple disks have to be abstracted as they were just a unique disk,

a common configuration envisages to identify each single physical disk as a

Logical Unit Number (LUN) of a unique virtual disk. This is the configu-

ration we used for our implementation as well, where physical resources, in

this case, are VM image files.

We then properly created the virtual HDs for the VMs we wanted to

deploy on our testbed and then indicated them as LUNs of a specific ISCSI

target. In order to allow the dynamic creation of a VM the virtual disks

created have been over provisioned. In our testbed in fact, we deployed 5

VMs and 6 virtual disks so to be able to boot up a new VM if needed.

Once created the VMs we devoted our effort to the implementation of the

SDN-enabled infrastructure. We relayed on the Openvswitch implementation

of an Openflow switch.

6.3 Openvswitch

Openvswitch [40] is a software implementation of an OpenFlow switch and it

is, at the moment of writing, the only one to seem mature enough to be used

in a real project. It is released under the Apache 2.0 license (open source)

and is available for all Linux distributions as a kernel module. In particular,

from kernel versions 3.3+, it is already included as part of the kernel and

Openvswitch 107

Figure 6.4: Openvswitch overview

most of distributions provide user space utilities. Moreover, it is supported

by KVM, thus allowing us to connect it to the overlay system’s VMs without

any additional workaround. Efforts are being devoted to port this same

implementation on hardware chipsets so to obtain a dedicated OpenFlow

device. This fact would grant not only higher speeds, but the integration

with bare metal hypervisors that, as we stated in Section 2.2.2, run directly

on top of existing hardware.

In Figure 6.4 are highlighted its features. It’s worth noting that they all fit

perfectly into our project making this component the ideal candidate for our

prototype implementation. About security, Openvswitch provides extensions

to be used along with TLS and it natively envisages VLAN support, which

is a needed feature to keep the overlay and the real network isolated.

The monitoring aspect don’t need further explanation: SOLEIL has to

provide the administer the means to monitor the state of the network. Open-

vswitch supports multiple monitoring protocols, and as it is very adaptable,

it also allows to export network monitoring data to external applications

without any data conversion, in most cases. Finally, it supports OpenFlow,

Openvswitch 108

of course, but implements its own standard management protocol as well

(Open vSwitch Database Management Protocol [6]). By management proto-

col we mean that Openvswitch provides the user a way to interact with its

internal structure, thus allowing to create switches, ports and links between

switches. This feature has nothing to do with OpenFlow, but it is needed

as, according to the project requirements, we need to provide the system

administrator a way to create networks by connecting switches.

6.3.1 Bridges and connections

As we explained in Section 5.2.1 a fundamental aspect of the overlay-physical

network interconnection is related to the ability of configure the VMs to oper-

ate in the so called bridged mode. Openvswitch allows the creation of multiple

bridge interfaces. In particular, in the Openvswitch syntax, a bridge is a vir-

tual switch instance on which is possible to create new network interfaces

or attach existing ones. Attachment points are called ports. Thanks to this

feature an Openvswitch instance can have multiple bridges, and each one of

them can have multiple ports. Bridges are normally isolated, but they can be

connected by ports to form an extended network. In particular, connections

between bridges can be local or remote:

• Local connections represent links between two bridges belonging to the

same Openvswitch instance. Relative attachment points are also called

patch ports ;

• Remote connections join together remote switches. They are imple-

mented with tunneling protocols, the user can choose between GRE

and VLANx. Thanks to tunnels, it is possible to connect two LANs

across the Internet, making their hosts communicate by using local IPs.

Of course, it is necessary to ensure that local IPs respect the constraints

imposed in LAN environments (i.e. same subnetwork, two hosts cannot

have the same IP).

Openvswitch 109

Figure 6.5: Openvswitch architecture

Remote connections have been massive used in our implementation in or-

der to create the overlay network on top of the underlying SDN-enabled real

network. In order to better explain our implementation of the network it is

worth presenting the key components of the Openvswitch internal architec-

ture .

6.3.2 Openvswitch architecture

The Figure 6.5 give us an high level perspective of the internal architecture

of Openvswitch (further details can be found in [53]). The Vswitchd mod-

ule highlighted in the figure is a daemon directly interfacing with the kernel

module, taking instructions by user applications and communicating them

to the module to actually be executed. It is also the element implementing

the OpenFlow protocol and logic, directly talking to the controller. Open-

vswitch data (i.e., bridges, ports and connections) are stored in a database by

using a json notation. The database is directly managed by a server called

OvsdbServer. Users can directly interface to this server by using remote

calls, according to the already mentioned JSON-RPC control protocol [6].

The Openvswitch bundle also provides user space scripts to perform these

Openvswitch 110

operations.

6.3.3 Openvswitch traffic patterns

Openvswitch rely upon the Linux network stack implementation. This means

that even though the user thinks that Openvswitch is a bridge on its own,

behind the scenes the kernel module just forwards Openvswitch traffic to the

OS. [58] gives a good overview of all possible traffic patterns, so we will here

just make present a summary of what is directly related to our infrastructure

implementation. As we said, it is possible to attach real interfaces to an

existing bridge or to create virtual interfaces as well (like in the case of a VM

plugged on an existing bridge).

Imagine to have a host equipped with two NICs, eth0 and eth1, and

an Openvswitch bridge to which a VM is attached by means of a virtual

interface vnet0. The bridge is also connected to another remote bridge via

a GRE tunnel, whose port is called gre0. We will analyze two cases of

interest. To simplify the example, we will suppose no controller presence

so that Openvswitch acts as a simple layer 2 switch, thus broadcasting any

packet it receives to all its active ports.

• Case 1, eth0 is attached to the bridge. The Opevswitch is configured

as in the following listing:

Bridge "br0"
Port "br0"

Interface "br0"
type: internal

Port "vnet0"
Interface "vnet0"

Port "eth0"
Interface "eth0"

Port "gre0"
Interface "gre0"

type: gre
options: {remote_ip="192.168.1.100"}

Openvswitch 111

In this case, the eth0 interface is isolated, because it belongs to the

bridge. VMs can communicate to the external world, as they are at-

tached to the bridge as well. Their packets are forwarded to eth0

(and to other interfaces as well). From the Linux host perspective this

means that any sent packet will be passed to eth1, the only visible

interface. In case the eth1 is not available, the host could not commu-

nicate with the external world. Such kind of problem can be solved by

exploiting the internal interface whose is assigned the bridge name (i.e.

br0. This interface, in fact, directly connects the host to the bridge

and it is present in the network interface list as it was a real interface.

By specifying the br0 interface as the default gateway, the host can

inject its packets into the switch that, acting as a layer 2 one, would

forward them to every interface, thus including eth0.

• Case 2, eth0 is not attached to the bridge. In this case the Open-

vswitch is configured as in the following:

Bridge "br0"
Port "br0"

Interface "br0"
type: internal

Port "vnet0"
Interface "vnet0"

Port "gre0"
Interface "gre0"

type: gre
options: {remote_ip="192.168.1.100"}

In this scenario, the host keeps to work as usual. VMs cannot interface

to the external network because the eth0 interface is not attached to

the bridge. However, a GRE tunnel port is present, so the traffic can

flow at least to next switch. What is interesting is that GRE tunnel

traffic implicitly flows through a NIC, specifically the one acting as

gateway for packets directed to 192.168.1.x/24 network, the remote IP

specified.

Openvswitch 112

Figure 6.6: Openvswitch setup

6.3.4 SOLEIL Openvswitch setup

In order to implement the isolation between the overlay and the physical

network introduced in Section 5.2.3, we relied on the Openvswitch capability

of creating multiple bridges. Our setup, shown in Figure 6.6, is based on the

second configuration example (case 2) we presented in the previous section.

We also specified br0 internal interface as default gateway in order to allow

create the GRE tunnel enabling the communication with external network

through the eth0, otherwise not reachable.

With reference to Figure 6.6, we can note that each node has two local

bridges, br0 and br1, connected by means of patch ports. While br0

has a working NIC attached (eth0) and can exchange packets with the

external network, br1 is isolated, and the GRE tunnels are its only way to

communicate with external components. Opting for this setup allow us to

separate the traffic generated by our application from all the other traffic

generated or directed to the VM. Bridges br1 are the only ones belonging

to the overlay network and, for this reason, they are also the only ones

connected to the OpenFlow controller. In this way we make sure to examine

The Controller element 113

and handle just packets regarding our application, drastically reducing the

overhead. Patch ports will be used on the leaf nodes of the distribution tree,

when a packet will need to jump from the overlay network to the physical

network in order to be delivered to the end user. Just in this specific case, a

special flow rule will be applied, allowing that packet to flow across the patch

port, thus arriving to the bridge br0 and then reaching the eth0 interface.

It’s worth noting that links belonging to the overlay network, vnet0 and

GRE tunnels, are all marked as belonging to the same VLAN so that, in

case the controller is not present in the network, virtual traffic will not affect

the underlying physical network. There is no need to also mark patch ports,

as this traffic will never reach them. This setup, commonly known as isolated

bridge, is widely used in production environments.

6.4 The Controller element

As usual, we based our implementation of the Controller element envisaged

by the SDN architecture by modifying a robust and flexible open source

software, namely Floodlight

6.4.1 Floodlight

Floodlight [13] is an Apache licensed Java-based OpenFlow controller, sup-

ported by an active community of developers including a number of engi-

neers from Big Switch Networks, one of the leader companies in the field of

Software-Defined Networking . Although its open source nature, it was na-

tively designed to work in production environments and to grant very high

performance levels and to be able to interaction with both OpenFlow and

some non Openflow enabled networks. Moreover, it is fully extensible thanks

to a plugin based architecture. This specific feature paved the ground for the

implementation of the controller role in the SOLEIL architecture.

The Controller element 114

Figure 6.7: Floodlight architecture

Floodlight internal architecture

Figure 6.7 shows the modular architecture of the Floodlight implementation.

For the sake of clarity, it implement both the OpenFlow controller role and a

wide set of applications built on top of it. Applications can be distinguished

in module and REST-based applications. The two kinds of elements differs

mainly for their location in the overall architecture. In fact, while module

applications reside inside the Floodlight controller core and they can make

use of its plugin system, REST-based ones are external components and just

communicate with the controller by means of REST calls. Module applica-

tions are more powerful, as they can make use of every Floodlight feature by

directly interfacing with its components. Anyway, REST APIs are a way to

easily interact with the controller and are preferred when no specific internal

feature is required. Existing module applications, indeed, already provide

basic functionalities like, for example, flow pushing.

The Controller element 115

6.4.2 SOLEIL controller setup

We implemented our own Floodlight module to perform the management op-

erations needed to implement our application logic. We tried to limit them

as much as possible, because putting too much logic into Floodlight would

mean tying the overall system to this specific implementation. Nevertheless,

in order to increase the overall system performance we opted to implement

some classes of function exploiting the tools provided by Floodlight. The first

one class is related to the exchange and handling of ARP, DHCP and ICMP

packet. VMs need in fact to frequently exchange this kind of packets and so

ad-hoc flow rules have to be installed in order the packets can reach their

destination (it’s worth remembering that, in presence of a controller, the net-

work we configured is isolated). If we thought to create in a proactive way

a new rule every time a VM is booted up it would be highly inefficient and

it would lead to an unreasonable increase of the rule tables on the switches

even in case no one of those packets is directed to the brand new VM. For

this reason we implemented our plugin for simply waiting for these packets

to be requested and reactively install flow rules to allow the proper commu-

nications, when needed. An idle timeout on the rule will allow to delete the

rule in case of inactivity. The second class of traffic we decided to handle by

means of the Floodlight plugin concerns the notification of network events,

like for example the attachment/detachment of a VM or the fall of a link,

to the management system. In fact, implementing a polling system directly

on the management application, would have generated useless overhead and

traffic on the network.

Our communication protocol makes use of the Observer design pattern

and can be summarized as in the following steps:

• The management application asks the controller to be notified of events

and communicates it the callback URL it wants to be contacted at for

receiving events;

• Each time a significant event happens, the plugin sends an HTTP

The Controller element 116

Figure 6.8: SOLEIL notification system

POST request to the specified URL containing data about that partic-

ular event.

This solution, schematized in Figure 6.8, decouples the management ap-

plication from the plugin as the latter does not need to contain any static

reference to the first.

Data is a JSON formatted text string containing a type indicating the

element the event is related to (this field can assume one of the values in the

set switch, link or VM), a subtype (add, delete) and specific details

which vary according to the event class (for example, in the case of a switch,

they will contain its IP and DPID).

In order to implement our module, we used the following Floodlight plu-

gins:

• TopologyListener plugin, which implements an event system notifying

about changes to the topology. We registered our module as a listener

for this plugin;

Management application 117

• TopologyManager plugin, which provided means to find specific nodes

or switches inside the topology, along with some embedded algorithms

to compute the shortest path. We used these methods to compute

paths between nodes, so to create proper flow rules to handle ARP,

DHCP and ICMP packets and to install them on those specific switches.

6.5 Management application

We developed the component controlling the system as a Java application

could in such way rely on several existing frameworks and libraries. Specif-

ically, we implemented the management application of the SOLEIL system

as a web application based on the Servlets paradigm and deployed it on the

Apache Tomcat servlet container. Servlets are a very powerful mean to im-

plement session and authentication mechanisms. Moreover, their security

model has proven, through years, to be very solid. In fact, as each servlet

runs inside a Java Virtual Machine, any crash, malicious or not, is contained

inside of the VM sendbox, thus not affecting the underlying physical host.

6.5.1 Existing modules and APIs

In the following we will present the main Java APIs we adopted to realize

our implementation specifying some custom improvement and modifications

needed to fit the requirements of our architecture.

Libvirt 0.5 mod

As we already explained in 6.1, Libvirt provides bindings for almost each pro-

gramming language. However, since the binding functionality are developed

as separate branches of the main project it can happen they are not promptly

updated once the corresponding technology evolves. The Libvirt Java bind-

ing had exactly this issue and in its current version don’t implement some key

monitoring function bindings. In addition, the code architecture resulted not

optimized requiring to the developer to write an improper number of line of

Management application 118

Figure 6.9: Example of extension of native Libvirt binding function

code even to perform very simple operations. Standing these considerations,

we decided to customize the library introducing the missing bindings in the

existing code and reorganizing the overall code structure exploiting the inher-

itance properties of the Java language to extend and enrich existing classes

application logic. In this way, we can use new powerful classes while the old

ones are still available, granting in this way backward compatibility with old

applications. As en example in Figure 6.9 is shown a UML diagram of our

NetHypervisorConnection and HypervisorConnection classes de-

sign and their relationship with the old existing classes.

As you can see, the original Connection, Network and Domain classes

were kept as they were, but only to be either subclassed or used y our brand

new implementation. In particular, the HypervisorConnection class

represents a connection to a particular hypervisor and it inherits the methods

to migrate a specific VM directly from the Domain class. NetHypervisorConnection

is a further abstraction identifying a hypervisor connection whose VMs are

bound to a particular network, in our case the overlay network. Starting or

creating a VM with this class will automatically attach it to the aforemen-

tioned network, drastically reducing the code complexity.

Management application 119

Opendaylight-Ovsdb library mod

In order for our management application to e able to create links between two

Openvswitches, we needed a Java implementation of the Opevswitch Data

Base (OVSDB) management protocol (see Section 6.3). We based our imple-

mentation on the one developed by theOpendaylight group. Opendaylight[31]

is a collaborative SDN project providing, among others, a Java-based imple-

mentation of an OpenFlow controller coming whit a rich set of plugins and

extensions. One of them, in particular, enable the interaction with a remote

OVSDB. We still preferred Floodlight mainly because of its high perfor-

mances and mature development status so we decided to start working on

this plugin to create a stand-alone library version of it by removing all the

dependencies from the controller part thus taking just the protocol imple-

mentation component. For the sake of completeness we have to say that, at

the time of this writing, the opendaylight-ovsdb group is developing their own

standalone version of the library.

6.5.2 System set up and management: top-down guided
tour

As it should be clear at this point, the management application is the core of

the whole system and, for this reason, it is very complex to clearly explain its

structure. Nevertheless, as we already presented the most of the components

and technologies underlying the front end provided to the administrator, our

job will be much easier. In order to provide the reader with a description as

close as possible to the administrator user experience, we will in the following

present the application according to its GUI organization. The web interface

is in fact divided in tabs associated to the different functionality it provides.

The presentation of the application will then comply to this graphical orga-

nization and we will in the following introduce separately functionalities it

offers along with some implementation details.

The user interface of the SOLEIL management application is a mix of

HTML and JavaScript controls (based on the JQuery and JQuery UI li-

Management application 120

Figure 6.10: SOLEIL management application: the settings tab

braries) while the backend, as we already mentioned, is implemented in Java,

through the servlets approach. All the exchanged messages are formatted as

JSON objects and embedded in the body of HTTP requests/responses.

Settings panel

The entry point of the application is represented in Figure 6.11.

This panel allows the administrator to add hypervisors and ISCSI tar-

gets to the SOLEIL database. Floodlight controller IP address and port

can be specified as well. In the following we will refer to these configura-

tions as runtime properties. Since their status can change while the sys-

tem is running, the user can dynamically edit them accessing the Settings

tab. As the underlying technology, we implemented the database exploiting

SQLite, a software library implementing a server less, self-contained, zero-

configuration database. We opted for this implementation because of its sim-

plicity, as our tables, and interactions among them, are really essential and

we didn’t want to increase the overall system complexity by adopting more

structured database solutions. Nevertheless, database details are wrapped by

a Database class whose methods allow the abstraction of any interaction

with the database itself. The actual communication with the database is re-

Management application 121

Figure 6.11: SOLEIL management application: dashboard tab

alized by means of Java DataBase Connectivity (JDBC) [28], an API for the

Java programming language that defines how a client may access a database

and furthermore abstract the business logic by the underlying database. A

Database class instance is initialized at the system startup and it is used

as a singleton by the other class of the project. Some static properties of the

system (e.g., threshold values used to decide if an hypervisor is overloaded)

are stored in an external XML file loaded by the application during the start

up phase and can be modified by the users before starting the system or even

at runtime.

Dashboard panel

The Dashboard is aimed to give the user an overview of the network nodes.

With reference to Figure 6.11 network nodes are represented just for what

concerns the hypervisor part (a different tab is instead devoted to the network

configuration of the system)

A list of registered hypervisors is shown, offline ones are marked gray

Management application 122

while online ones can be marked with different colors according to their

current CPU percentage usage, specifically:

• Green if CPU usage is < WARNING THRESHOLD;

• Orange if WARNING THRESHOLD < CPU usage < DANGER THRESHOLD;

• Red if CPU usage is > DANGER THRESHOLD.

Thresholds are set by the user as static property in the aforementioned

XML property file. Ajax requests are periodically done to keep the view

updated. By expanding a hypervisor row, the user gets a list of the virtual

machines on that hypervisor and can start, stop and delete them. It is also

possible to create a new VM, by specifying the ISCSI target to use as virtual

HD instance. Note that VMs belonging to any application built on top of our

system must be created by using this web interface. The creation process, in

fact, will make sure to properly configure the virtual machine by plugging it

on the overlay network and by assigning it an available virtual HD.

A VPMConnectionManager class instance (Figure 6.12) is shared by the

existing servlets via Servlet Context and can be used to provide client with

hypervisors related data. This class contains references to registered hy-

pervisor connections and it is initialized by using data stored inside the

SQLite database. It also registers for DB events by implementing a cus-

tom DatabaseListener interface. In such a way, every time a new hypervisor

is added or removed to the database, the internal connection list can be up-

dated. A background Task checks the state of the connections and notify the

Connection Manager if something changes.

As the HypervisorConnection class directly inherits from the Libvirt

Connection class, it has means to obtain the % CPU utilization of a Vm,

so the GetHypervisors servlet, once obtained a list of active connections from

the manager, can obtain this information by simply invoking the API. About

VM management (create, start, delete, etc.) we use Libvirt methods as well

to perform these operations, combined with our Database to keep the LUN

Management application 123

Figure 6.12: The Connection Manager component

allocation status for an ISCSI target consistent. Libvirt, in fact, cannot know

if a generic virtual HD is used by a VM belonging to another hypervisor,

as every hypervisor has a local view of allocated resources. So, each time a

creation request is received, the database is queried to find an available LUN.

If a LUN is available, the VM is created and a success message is sent back

to the client. In the other case, client will be notified of the impossibility of

creating the VM.

Network panel

As we anticipated in Section 5.3, the network tab allows the administrator

to connect switches in order to create a tree network topology of the overlay

network. The user can also specify a set of redundancy links to be used in case

of crashes of network elements. In order to allow users to draw the topology

in a fast and easy way, we made use of an external library called mxGraph,

available as an academic and a professional licensed product. It consists of a

JavaScript client-side library allowing topology drawing inside web browser,

and a server-side component designed to receive and process the graphs sent

by the client. In Section 5.3 we explained our delivery network is based on

the concept of role-based tree. This means the user has to explicitly assign

to every node a specific role. As we can see in Figure 6.13, the network tab

Management application 124

Figure 6.13: SOLEIL management application: network tab

show every switch currently attached to the controller. This elements can

be used by the administrator to create the tree topology which will allow

the service delivery to end users. I’s worth noting that, being a node both

a hypervisor and a switch, the graphical elements in the figures represent

hypervisors as well and in fact, by hovering the mouse on a generic device, a

list of installed VMs will appear.

In order to create a connection between nodes, the administrator can

simply drag the mouse from a switch to another, while to assign the role to

one of the nodes he can right click the node and chose the proper value by

a context menu. We decided to let the user draw a generic topology, be it a

tree or not, anyway when the send tree button is pressed the server side

algorithm presented in Section 5.3 will take care of founding the minimum

topology respecting the roles assigned by the administrator. Unused links

will be identified and saved as redundancy connections to be used in case of

problems. About the network topology representation, we decided to store

it in an XML file, as mxGraph already provides methods to parse a topology

object reading it by this kind of file.

6.5.3 Path tab and plugin system

Once the topology has been created, the user can establish a path connecting

the root and the leaf nodes by means of the tool provided by the path tab

Management application 125

Figure 6.14: SOLEIL management application: path tab

(Figure 6.14).

Selecting a root node, the user is allowed to chose a destination leaf. Any

possible path connecting the two nodes will be shown on the topology. In

order to create a path the user is also required to chose an external IP address

corresponding to the entry point from the physical network on the leaf node.

This field is required in order to make the packets belonging to the flow to

jump from the overlay to the physical network.

On the back-end side, a DefaultVPMPathManager class instance is

shared among servlets instances. This class holds information about ex-

isting paths and application-related flow rules currently installed on them.

By application-related we mean that, as we explained, the flows related to

DHCP, ARP and ICMP protocols will not be included in this category.

When a new path is asked to be built, the servlet directly contacts the

DefaultVPMPathManager, which will install specific flow rules on selected

switches along the path (or return any existing one). The rules are composed

by a basic and a specific part.

The basic part implements the behavior we presented in Section 5.2.3:

• If the switch is a root node or a a plain relay switch (namely not having

any VM on it) the packets are sent to the next switch on the path;

Management application 126

Figure 6.15: Path Manager diagram

• If the switch is a relay with a VM on it, two flow rules will be installed

to forward this packet to the VM

to forward any packet from the VM to the next hop

These rules will thus allow to pass packets to relay VMs where the appli-

cation level will use the packet to implement the high level business logic.

The specific part is taken by an external JSON file during the initializa-

tion phase. This file, configurable by the user, contains specific matches for

the flow rules, like source IP address, source MAC address, TCP source port

and so on. By just using the basic part, indeed, it is not possible to fully

identify a generic flow, so we need to add the specific matching rule to prop-

erly forward different flows. The name we assigned to the class in charge of

implementing this logic (whose diagram is depicted in Figure 6.15), namely

DefaultVPMPathManager, reflect the fact that this is our own implemen-

tation of the VPMPathManager interface.

We chose this design pattern to allow the creation of different PathManager

class siuted for other use cases. In our designed scenario, in fact, a generic

resource such as a live stream has to flow from a root node to a leaf node,

elaborated by any VM present on a switch. There could be applications in

which this behavior is not the best or needs to be made more complex. To

Management application 127

Figure 6.16: SOLEIL management application: migration tab

address these kind of scenarios, we adopted this full customizable design pat-

tern. Specifically, a path manager instance field contained in the XML

property file, allows the users to specify their the implementation class they

want to be used. Furthermore, a VPMEventListener servlet is designed

to accept POST requests from the SDN controller module. These requests,

as we already explained, contain updates about the network and VM status

and can be forwarded the DefaultVPMPathManager in order to act on

the system by modifying flow rules or even invalidate them. For example,

if a VM is shut down the flow rule on that switch would have to change to

make packets directly jump to the next hop, to avoid to send packets to a

dead VM.

Migration Tab

This is the section of the administration panel reserved to the migration of

system’s nodes. The frontend panel is depicted in Figure 6.16.

Since we imposed that only leaf nodes were allowed to be migrated, this

panel shows only this kind of nodes. In order to schedule a migration oper-

ation, the user can simply drag and drop the desired VM from the source to

the destination hypervisor. This simple operation is converted in a complex

set of server side operations, as we explained in Section 5.4. Libvirt APIs

are used to perform migration process itself, while the PathManager is in

charge of implementing the network cloning algorithm inspired to the LIME

migration approach detailed in Section 5.4. With reference to Figure 6.17,

Management application 128

Figure 6.17: Migration process class diagram

we can point out that a specific servlet (GetMigrationProgress) can be

periodically polled by the client side to obtain updated information about

the status of a specific migration operation.

Chapter 7

Functional testing

In this section we will present the result of a functional testing campaign in-

volving both the streaming application and the real-time content distribution

system. After presenting the testing environment, we will describe the demo

scenario and we present an overview of the final results. It’s worth clarify

that, since the system is still in an prototype state and the available testbed

is composed by a single micro server (see details below), we decided to con-

duct only functional tests. Quantitative analysis, involving throughput and

latency measurements, will be the objective of our future work.

7.1 Testing environment and testbed setup

The testbed we realized for the testing campaign objective of this section is

realized using a portable HP Proliant N54L 708245− 425 micro server with

the following configuration:

• CPU: AMD Turion II Neo N54L dual core processor

• RAM: 8 GB

• Network: 2 network interface cards

• Hard disk: 2 HDs, 80 and 160 GB respectively

In order to achieve the best performances, we installed a bare metal hy-

pervisor, VMWare vSphere ESXi 5.5, to simulate physical hosts through

Testing environment and testbed setup 130

Figure 7.1: Testbed overview

VMs. Not providing any local user interface, this hypervisor can only be

remote controlled by its dedicated client software. This client-server archi-

tecture, which is common to most type I hypervisors, is necessary to make

the virtualization as more efficient as possible.

Figure 7.1 shows an overview of our testbed we realized.

We set up the two hard disks to be shared by the virtual machines ac-

cording to the following configuration:

• 160 GB are shared across VMs and used to simulate their virtual hard

disks;

• 80 GB are allocated to a specific VM with a raw device mapping tech-

nique. As this VM will represent our ISCSI target, it needs dedicated

storage.

We deployed five virtual machines (named platino0 - platino4) with

the following configuration:

• 1 GB RAM

• 20 GB Hard Disk

Testing environment and testbed setup 131

The platino0 machine is designed to be an ISCSI target and it mounts

a dedicated 160 GB HD as an external peripheral.

The testbed includes an additional VM mounting an open source fire-

wall (pfSense), which provides NAT and DHCP functions as well. This VM

creates a 192.168.1.x/24 LAN while providing external access through its

physical WAN interface. A second NIC, not displayed in figure, is also al-

located to pfSense. This NIC is connected to an external router in order to

become part of the virtualized LAN as well, along with any physical host

currently attached to it.

Thanks to this configuration we are able to implement complex scenarios

involving multiple external devices as clients of the emulated server infras-

tructure.

7.1.1 Setup of system’s nodes

Each virtualized node is a VMs equipped with an Ubuntu server 13.10 (Saucy

Salamander) operating system. This distribution has minimum requirements

and already come with all the software we need in our testing scenarios. Two

bridges, br0 and br1, are set up according to the description presented in

Section 6.3.3. In order to create the overlay network in the context of the

Qemu instance, the following XML configuration is passed to the libvirt API :

<network>
<name>test-network</name>
<forward mode="bridge"/>
<bridge name"br1"/>
<virtualport type="openvswitch"/>
<portgroup name="vlan-00" default="yes">

<vlan>
<tag id="2"/>

</vlan>
</portgroup>

</network>

This step is automatically passed to the libvirt API by our management

application every time a new VM is created and booted up.

Testing environment and testbed setup 132

Figure 7.2: ISCSI Target and Initiator

‘test-network’is the name we assigned to our network, br1 is the overlay

network bridge and the id=2 is the used to identify the VLAN used to

connect the different components of the overlay network.

Each node is thus configured to mount the ISCSI target situated on

platino0, so 5 LUNs, each one representing an already configured VM,

will be available (as shown in Figure 7.2).

7.1.2 Guest setup

This is an extract of the XML file that has been used as the template for

creating new virtual machines:

<domain type="kvm">
<name>VPM-Streaming</name>
<uuid>2476b3d2-4ccf-4ca9-46d1-f6610ff55529</uuid>
<memory unit="KiB">524288</memory>

Testing environment and testbed setup 133

...
<devices>

<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type="block" device="disk">

<driver name="qemu" type="raw" cache="none
"/>

<source dev="/dev/disk/by-path/ip
-192.168.1.100:3260-iscsi-iqn.2014-04.
it.comics.vpm:streaming-lun-4"/>

<target dev="vda" bus="virtio"/>
<address type="pci" domain="0x0000" bus="0

x00" slot="0x05" function="0x0"/>
</disk>
<interface type="network">

<mac address="52:54:00:d3:4c:c2"/>
<source network="ovs-network" portgroup="

vlan-stream"/>
<address type="pci" domain="0x0000" bus="0

x00" slot="0x03" function="0x0"/>
</interface>

...
</devices>
</domain>

Part of this file is automatically configured by system when a new VM

is created. For example, the UUID is randomly chosen and the network

attribute is added each time the virtual machine is booted up as well.

The VMs come with Ubuntu server 13.10 OS installed as well. As we ex-

plained in Section 3 the streaming application is built on top of the Gstreamer

technology. In our specific use case, the application is used to create a live

stream of a sample .mov video file. Two bash scripts have been created for

the purpose, the first one to be used on the streaming VM:

#!/bin/sh
#
FILE=$1
DESTINATION=$2
PORT=$3
gst-launch-1.0 -v filesrc location=$FILE \ ! decodebin

! x264enc ! rtph264pay ! udpsink host=$DESTINATION

Testing environment and testbed setup 134

Figure 7.3: Creation of the network topology

\ port=$PORT sync=false

the second one installed on both internal and leaf nodes:

#!/bin/sh
#
PORT_IN=$1
DESTINATION=$2
PORT_OUT=$3
VIDEO_CAPS="application/x-rtp, media=(string)video,

clock-rate=(int)90000, encoding-name=(string)H264"
RELAY_SINK="udpsink host=$DESTINATION port=$PORT_OUT
ts-offset=0 name=vrtpsink sync=false"
LATENCY=200
gst-launch-1.0 -v udpsrc caps=$VIDEO_CAPS port=

$PORT_IN ! $RELAY_SINK

The latter script is used on the leaf VMs too, as they act as relays between

the overlay network and the physical network.

7.1.3 Network Setup

By using the management application web GUI, we configured the topology

shown in Figure 7.3.

With reference to the figure, it is possible to note we defined some redun-

dancy links (represented by the blue lines). Furthermore, we assigned roles

Sink or Swim selective forwarding technique 135

to the nodes. Two leaves are specified, one directly connected to the root

node (platino2), the other connected via a relay node. Being platino2

the root node of the tree, as we explained in it is mandatory to install on it

a DHCP server. We used the Ubuntu default DHCP daemon (dhcpd), with

the following network specification:

subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.2 10.0.0.254;

}

This server sits on the br1 internal interface, whose static address is

10.0.0.1 and is marked by VLAN with tag=2. In this way, it acts as a

default DHCP server for our overlay network assigning addresses belonging

to the 10.0.0.x/24 subnet. The VLAN tag assures it will not be any conflict

with an existing server running to the physical network.

7.2 Sink or Swim selective forwarding tech-

nique

In order to test the several mechanisms and components involved in the

overall complex asrchitecture, we decided to exploit the streaming application

to create an audio video flow to send in broadcast to the distributed delivery

network (i.e. by using the 10.0.0.255 as destination address). Under normal

circumstances, this would imply the flooding of the entire network and would

make the relay nodes just useless steps on the root-destination path, because

the stream would just naturally flow to every switch ignoring any halfway

entity. For our testing purposes this is just ideal, because without explicitly

applying flow rules on the network components we expect these packets would

not be delivered at all. In fact, what we the system implements is a logic that

we called sink or swim, which can be described by the following definitions:

• Sink. In case no flow rules associated to a stream is present in the flow

table of a switch, the corresponding packets will be dropped and the

flow will be stopped at this hop;

Testing flow 136

Figure 7.4: Sink and swim technique example

• Swim. In case a flow rule is present the corresponding output action

will be applied letting the flow travel only across the proper interfaces

(even though the packets contain a broadcast destination address).

In Figure 7.4 is shown a graphical representation of the aforementioned

selective forwarding technique.

Once realized the aforementioned testbed setup and applied the config-

urations exposed in the previous sections, we could start the actual testing

phase.

7.3 Testing flow

First of all, we booted up the virtual machines and made sure they had been

assigned an IP address letting them to be part of the overlay network. We

tested the reachability of the machines by means of ICMP ping messages.

The success of this test also confirmed us that our Floodlight module were

working correctly, as automatic reactive rules for DHCP, ARP and ICMP

were successfully installed on the network. As for the proactive rules, in the

setup phase we needed to specify our custom extended part as a JSON file:

"vpm-extend-match": {

Testing flow 137

"dataLayerType": "0x0800",
"networkTypeOfService": 0,
"transportDestination": 0,
"dataLayerVirtualLanPriorityCodePoint": 0,
"transportSource": 0,
"networkSource": "0.0.0.0",
"dataLayerDestination": "00:00:00:00:00:00",
"networkSourceMaskLen": 0,
"dataLayerVirtualLan": -1, "networkDestination":

"10.0.0.255",
"networkProtocol": 0,
"networkDestinationMaskLen": 32,
"dataLayerSource": "00:00:00:00:00:00",

}

As our scenario envisages a very simple application, we had to simply

customize the destination IP address (i.e. the 10.0.0.255 broadcast address)

and the ether-type field (0x800 = IPv4), relying on default values for

all the other fields. Such a king of configuration allows to capture every

broadcast IPv4 packet, in other words all the packets sent by our streaming

application. As a first testing scenario we decided to boot only VMs installed

on the root and leaf nodes of the topology. This means that relay nodes act as

a ‘pass-through’elements, by just sending packets to the next hop in the path

according to the mechanism described in Section 5.2.3. We hence started a

stream and, after verifying that no external user could receive it, we activated

a path toward a leaf node, specifying 192.168.1.181 as external destination

IP address (see Figure 7.5).

This is an extract of the pass-through rule automatically installed on the

relay switches:

"data": [
...
{
...
"type": "FLOW_MOD",
"hardTimeout": 0,
"lengthU": 80,

Testing flow 138

Figure 7.5: First testing scenario involving only root and leaf nodes

"version": 1,
"cookie": 45035996524483576,
"priority": 100,
"name": "RTP_PASSTHROUGH000082f26af6154a",
"idleTimeout": 0,
"length": 80,
"command": 0,
"match": {

"wildcards": 3162095,
"dataLayerType": "0x0800",
...
"networkDestination": "10.0.0.255",
"inputPort": 0

},
"actions": [

{
"port": 13,
"maxLength": 32767,
"length": 8,
"type": "OUTPUT",
"lengthU": 8
}

],
...

Testing flow 139

}

It’s quite clear that this configuration simply recall the aforementioned

extended one, the variable network related information (e.g., the port num-

bers) are inserted automatically by the system.

Since a leaf node hosts a VM too, we had to apply two different rules:

(i) the first for sending packets to the VM and (ii) the other for forwarding

them from the VM to the next hop (i.e. the real network).

"data": [
...
{
...
"type": "FLOW_MOD",
"priority": 100,
"name": "RTP_TOVNETS000082f26af6154a",
...
,
"actions": [

{ "port": 3,
"maxLength": 32767,
"length": 8, "type": "OUTPUT",
"lengthU": 8
}

],
{
...
"type": "FLOW_MOD",
"name": "RTP_FROMVNET7_0000725b2dc51546", "

ingress-port": "3",
...
,
"actions": [

{
"networkAddress": "192.168.1.181",
"length": 8,
"type": "SET_NW_DST",
"lengthU": 8
},

Testing flow 140

Figure 7.6: Simulated live stream received by the destination

{
"port": 4,
"maxLength": 32767,
"length": 8,
"type": "OUTPUT",
"lengthU": 8
}

],
}...

}]

It’s worth noting how the ingress-port field of the second rule corresponds

to the output field of the first rule action set, representing the port that the

VM is attached to. Furthermore, it is important to highlight the action

field in the last flow rule, used to impose the rewriting of the destination

IP address using the 192.168.1.181 value before sending the packet to the

physical network.

Adopting this configuration, we can verify that the stream is correctly

received by the host 192.168.1.181, as is represented in Figure 7.6.

As a second use case, we involved relay VMs in the delivery process, in

order to verify the efficiency of the system to reconfigure the flow rules and

to verify the Notification System worked properly as well. In fact, booting

the relay VM up generates an add VM event and triggers an alert message

Migration use case 141

Figure 7.7: The add VM event sent to the event listener servlet

for the system monitoring module, as demonstrated by the Wireshark trace

shown in Figure 7.7.

We also verified that the system had successfully changed the flow rules

installed on the involved relay nodes. The result of this second test use case

was more than satisfactory, in fact the system applied the correct config-

uration on every node of the topology allowing the stream were delivered

properly to the destination. It’s worth noting that on the relay node was

applied exactly the same configuration applied to leaf node except for the

recipient address translation action, of course.

7.4 Migration use case

As for the test of the migration capability provided by the system, we tried to

migrate the VM situated on the rightmost leaf of the topology (see Figure 7.3)

to the rightmost one, while the node to migrate were contributing to deliver

the streaming service to an end user. We used the graphical tool provided

by the administration application introduced in Section 6.5.3 and shown in

Figure 7.8.

The migration mechanism worked properly and, looking at the involved

switch flows, we noticed that flows were not present anymore on the right

path and a new path, toward the new leaf, had been automatically created.

We repeated this test again, but this time paths were specified for both

leaves. Results were the same: when migration completed, the left path

Migration use case 142

Figure 7.8: Administration panel: the migration tool

Figure 7.9: Packet loss effect on a video during the VM migration process

disappeared, while right path was left untouched. About downtime, it was

estimated, mediating results on 100 migration attempts involving the same

video source, to be about 2 seconds. This result is perfectly reasonable in

the context of a live streaming application especially if the migration grant

a better overall quality of experience for the end users. In fact, only during

the 2 seconds need to the physical migration of th VM, the user experienced

some frame loss leading to just insignificant side-effects in the video played

out (as it’s shown in Figure 7.9) but without any interruption of the service.

Chapter 8

Conclusions and Future Work

In this thesis we present a comprehensive study on architectures devoted to

support real-time multimedia applications over the Internet. Our contribu-

tion includes, functional requirements evaluation, design and implementation

tasks, as well as the definition of new protocols and algorithms for system

monitoring, control and network optimization.

More specifically our efforts have been devoted to designing and imple-

menting a novel architecture aimed to support the aforementioned class of

applications, with special regard to the streaming of real-time, live gener-

ated, multimedia contents use case. In this context, the most challenging

goal for operators is to provide users with services that are comparable, in

terms of perceived quality, to the traditional TV broadcasting system. As

it has been explained, at the time of this writing the whole portfolio of real

time multimedia streaming services is characterized by some common issues.

First of all the need for users to install third party software or plugins for web

browsers in order to be able to playout multimedia streams. Furthermore,

existing streaming services are afflicted by high transmission delay. This fact

can be very annoying when users are provided with a feedback channel to

interact with the source of the streaming or when the type of event to be

streamed etails real world social interferences. In case of sport events, for ex-

ample, someone in the neighbourhood watching the same event on television

could spoil the surprise for the crucial actions of the match by screaming and

144

joying highly in advance.

To cope with such issues, we have presented a novel architecture aimed to

provide a web-based real-time multimedia streaming service capable to serve

a very large number of users. The framework we propose, called SOLEIL

(Streaming Of Large scale Events over Internet cLouds), copes with the

scalability requirement leveraging techniques that have been successfully ex-

ploited in the Content Delivery Networks (CDN), Cloud Computing and

Virtualization fields. Our platform, in fact, envisages the deployment in a

cloud environment of several elements cooperating to deliver the service to

end users. More specifically, the server side of our architecture is based on

an overlay network of virtual machines configured to create a self-organized

tree topology. Each node of the tree plays one of the following roles: (i) root

(ii) relay (iii) leaf. The source of the stream, i.e. the broadcaster, sends mul-

timedia flows to the root node which trans-codes them in order to generate

different quality replicas of the original flows. When a new user try to access

the stream (by simply opening a web page) it is directed by the framework

to one of the leaves of the tree depending on the overall status of the net-

work and/or on particular client side constraints (type of device, available

bandwidth, etc.).

System administrators can exploit graphic tools to draw and configure

the nodes to be deployed, can assign them a specific role and draw connec-

tion links among nodes. In order the system could find the minimum tree

by starting from this user level description of the topology, we relied on a

consolidated minimization algorithm, namely the Kruskal’s Minimum Span-

ning Tree algorithm, combined with some application logic needed to cope

with possible human errors and to respect the role based nature of the dis-

tribution tree. In particular, dangling nodes are removed and a weight is

associated to each node (on the base of its role) and to every link (summing

the weights of the nodes it connects). According to how the Kruskal’s al-

gorithm is implemented, this process guarantees the minimum tree respects

SOLEIL roles.

145

A distributed algorithm is used to provide the root node with information

about the overall load status of the network and to allow it to dynamically

manage the content distribution chain (by adding, removing or even migrat-

ing nodes). For this reason, we needed to provide the entity in charge of

monitoring the system both information about the overall status of the en-

tire topology and tools to query specific nodes about their current load and

resource consumption status in a proactive way. This goal has been obtained

by means of a protocol we designed for the purpose an we called SOLEIL Pro-

tocol. By using SOLEIL protocol messages, each node receives the statistic

information from its direct child nodes by means of a RTCP ReceiverReport

message and calculates an aggregate statistic to send to its direct predecessor

in the tree topology by assigning to the received statistics a weight depend-

ing to the number of heirs of each sender node. This kind of information

allows to properly monitor the overall status of the system. Once an alert

about the status of a subtree or of a single node of the system arises, the root

node can investigate, by means of direct messages, the specific load condition

of that part of the system.

As for the real time requirement, communication among broadcaster, in-

ternal nodes and final users relies entirely upon the upcomingWebRTC/RtcWeb

(Real-Time Communication in Web-browsers) technology, which guarantees

pure web based access to multimedia streams, as well as support for real

time delivery of multimedia contents. The general architecture of the plat-

form has been furthermore optimized by relying on the innovation introduced

by the so-called SDN technologies. The acronym SDN stands for Software

Defined Networks and it represents an innovative approach to networking,

attempting to keep pace with their great diffusion and utilization we are ex-

periencing in latest years. By developing an application on the top of an

SDN, a network administrator can obtain a substantial degree of scalabil-

ity and reconfiguration that they would not be able to reach in any other

way. We have hence proposed a framework for the performance optimization

of the above mentioned streaming platform, as well as for the simplification

146

of its management and administration functions. Specifically, SDN network

support has allowed to apply proper forwarding rules to packets belonging to

specific media flows and to control and modify such rules in a programmatic

way directly from the high level application business logic. SDN has also led

significant simplification and performance improvement to the node migra-

tion process letting us to implement an ad-hoc migration mechanisms based

on the so called LIve Migration of Ensembles (LIME) approach. In fact,

when a node migration is needed, the system checks whether or not the des-

tination branch of the tree is already reached by the same flow crossing the

node to migrate. If this is not the case, during the migration process, packets

are replicated on the two paths (or cloned, if we want to use the term envis-

aged by the LIME approach). Once migration is successfully completed, the

old path is removed. Migrated VM receive data right away it is waked up

because the packets were already flowing to the new location during the mi-

gration process. This mechanism allows to minimize latency, downtime and

packet loss. A prototype implementation of the system has been realized in

a emulated network environment and used for realizing a functional testing

campaign. Every functionality of the platform has been successfully tested

so paving the way to the system industrialization and commercialization.

List of Figures

1.1 SOLEIL: High level architecture 8

2.1 The centraliazed client-server paradigm 12
2.2 Content Delivery Network general architecture 13
2.3 CDN building blocks . 15
2.4 Full Hardware Virtualization 23
2.5 Paravirtualization . 23
2.6 Type I hypervisor . 25
2.7 Type II hypervisor . 25
2.8 Live Migration . 26
2.9 Hyper-V long distance migration 29
2.10 Example of NAS infrastructure 33
2.11 The WebRTC Trapezoid . 34
2.12 A WebRTC application in the browser 35
2.13 The WebRTC protocol stack 37
2.14 Real-time Transport Protocol header 38
2.15 Example of Receiver Report message 40
2.16 Representation of different types of scalability 42
2.17 GStreamer architecture overview 43
2.18 Source element with multiple output pads 44
2.19 Bin of elements . 44
2.20 Example of pipeline for a basic audio player 45
2.21 GStreamer components’ communication mechanism 46

3.1 SOLEIL Protocol: messages handling flow diagram 50
3.2 SOLEIL protocol: typical messages exchange path 55
3.3 Example of SOLEIL topology 56
3.4 SOLEIL aggregate statistic flowing toward the ROOT node . . 57
3.5 SOLEIL: example of REQFULLSTAT request and FULLSTATS

response . 57
3.6 Internal node logical architecture 59

LIST OF FIGURES 148

3.7 Root node logical architecture 60
3.8 Janus modular architecture 62

4.1 Router forwarding table . 66
4.2 Dynamic routing . 67
4.3 Flow differentiation . 68
4.4 Quality of Service . 69
4.5 SDN Architecture . 70
4.6 SDN General Architecture . 71
4.7 Overview of SDN’s provided abstraction 74
4.8 Openflow’s matching fields . 76
4.9 Openflow’s tables . 77
4.10 Openflow’s group table fields 77
4.11 Openflow’s switch architecture 80
4.12 Openflow: protocol logic . 80

5.1 SOLEIL: generic node architecture 83
5.2 SDN nodes deployment . 83
5.3 SDN nodes deployment in a real world scenario 84
5.4 Logical link abstraction . 85
5.5 Redundancy links among OpenFlow switches 86
5.6 Bridge mode example . 87
5.7 Bridge mode in a global scenario 87
5.8 Example of overlay network configuration 89
5.9 Role-based tree . 90
5.10 Differentiation of flow rules on different nodes of the network . 91
5.11 Interconnection between overlay and physical network 92
5.12 VLAN configuration example 93
5.13 Administrator system high level configuration 94
5.14 Tree minimization algorithm 95
5.15 Tree topology creation: pruning of dandling branches 96
5.16 Weights assigned to nodes and links 97
5.17 Computed optimal tree topology 97
5.18 Relay node workload . 99

6.1 Virtualization environment overview: KVM and Qemu 103
6.2 The Libvirt API . 103
6.3 The ISCSI architecture . 105
6.4 Openvswitch overview . 107
6.5 Openvswitch architecture . 109
6.6 Openvswitch setup . 112

LIST OF FIGURES 149

6.7 Floodlight architecture . 114
6.8 SOLEIL notification system 116
6.9 Example of extension of native Libvirt binding function 118
6.10 SOLEIL management application: the settings tab 120
6.11 SOLEIL management application: dashboard tab 121
6.12 The Connection Manager component 123
6.13 SOLEIL management application: network tab 124
6.14 SOLEIL management application: path tab 125
6.15 Path Manager diagram . 126
6.16 SOLEIL management application: migration tab 127
6.17 Migration process class diagram 128

7.1 Testbed overview . 130
7.2 ISCSI Target and Initiator . 132
7.3 Creation of the network topology 134
7.4 Sink and swim technique example 136
7.5 First testing scenario involving only root and leaf nodes 138
7.6 Simulated live stream received by the destination 140
7.7 The add VM event sent to the event listener servlet 141
7.8 Administration panel: the migration tool 142
7.9 Packet loss effect on a video during the VM migration process 142

Bibliography

[1] Apple corporation. parallels desktop.
http://store.apple.com/it/product/HD445ZM.

[2] Citrix. xen server. http://www.citrix.com/products/xenserver/overview.html.

[3] Kernel based virtual machine. http://www.linux-kvm.org/.

[4] Microsoft corporation. hyper-v. http://technet.microsoft.com/it-
it/windowsserver/dd448604.aspx.

[5] Openflow experiment in real-time internet edutainment.
http://www.ofertie.org/.

[6] Openvswitch. the openvswitch database managment protocol.
http://tools.ietf.org/html/rfc7047.

[7] Oracle corporation. virtualbox virtualization technlogy.
https://www.virtualbox.org/.

[8] Qemu. open source machine emulator and virtualizer.
http://wiki.qemu.org/.

[9] Redhat corporation: Libvirt, the virtualization api. http://libvirt.org/.

[10] Snia. nas and iscsi technology overview. http://www.snia.org/.

[11] Third generation partnership project. http://www.3gpp.org/.

[12] Vmware. virtualization technlogies. http://www.vmware.com/.

[13] Floodlight. http://floodlight.openflowhub.org/, 2011.

[14] Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero, and Si-
mon Pietro Romano. Separation of Responsibilities between Applica-
tion Servers and Media Servers in NGNs: A Practical Approach. In
Next Generation Teletraffic and Wired/Wireless Advanced Networking,
pages 199–211. Springer, 2008.

BIBLIOGRAPHY 151

[15] Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero, and Si-
mon Pietro Romano. On the seamless interaction between webrtc
browsers and sip-based conferencing systems. Communications Mag-
azine, IEEE, 51(4):42–47, 2013.

[16] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy.
Scalable application layer multicast, volume 32. ACM, 2002.

[17] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical overview of vp8,
an open source video codec for the web. In ICME, pages 1–6. Citeseer,
2011.

[18] Mark Baugher, D McGrew, M Naslund, E Carrara, and Karl Norrman.
The secure real-time transport protocol (srtp), 2004.

[19] Scott Bradner. The internet engineering task force. 1999.

[20] Tim Bray. The javascript object notation (json) data interchange format.
2014.

[21] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible markup language (xml). World Wide
Web Consortium Recommendation REC-xml-19980210. http://www.
w3. org/TR/1998/REC-xml-19980210, page 16, 1998.

[22] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation-Volume 2, pages 273–
286. USENIX Association, 2005.

[23] Ralph Droms. Dynamic host configuration protocol. 1997.

[24] Eric,Arora,Dushyvant,Perez,Botero,Diego, Rexford, Jennifer Keller.
Live Migration Of An Entire Network (and its hosts). Technical re-
port, 2012.

[25] Stan Hanks, David Meyer, Dino Farinacci, and Paul Traina. Generic
routing encapsulation (gre). 2000.

[26] Lawrence Harte. Introduction to data multicasting. Althos Publishing,
2008.

[27] T Hoff. Gone fishin’: Justin. tv’s live video broadcasting architecture.
High Scalability blog, 2012.

BIBLIOGRAPHY 152

[28] API Java and SQL Send. Java database connectivity.

[29] Jie Huang, Andrew P. Black, Jonathan Walpole, Calton Pu. Infopipes
an Abstraction for Information Flow. Computer Science Faculty Publi-
cations and Presentations, 2001.

[30] Yao Lin, Jizhong Han, Jinjun Gao, and Xubin He. ustream: a user-level
stream protocol over infiniband. In Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference on, pages 65–71. IEEE,
2009.

[31] Linux Foundation Operative Project. Opendaylight Project.
http://www.opendaylight.org/.

[32] Salvatore Loreto and Simon Pietro Romano. Real-time communications
in the web: Issues, achievements, and ongoing standardization efforts.
IEEE Internet Computing, 16(5):68–73, 2012.

[33] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean
Egan, and Joe Hildebrand. Xep-0166: Jingle. XMPP Standards Foun-
dation, 2009.

[34] Granberg Opshal Jan Magnus. Open Source Virtualization. PhD thesis,
University of Oslo, 05 2013.

[35] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. Traversal
using relays around nat (turn): Relay extensions to session traversal
utilities for nat (stun). Internet Request for Comments, 2010.

[36] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[37] Bill Nowicki. Nfs: Network file system protocol specification. 1989.

[38] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. The akamai
network: a platform for high-performance internet applications. ACM
SIGOPS Operating Systems Review, 44(3):2–19, 2010.

[39] Open Networking Foundation. SDN Whitepaper.
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf, April 2012.

BIBLIOGRAPHY 153

[40] OpenVSwitch. Production Quality, Multilayer Open Virtual Switch.
http://openvswitch.org/.

[41] H Parmar and M Thornburg. Adobe’s real time messaging protocol,
2014.

[42] Andrea Passarella. A survey on content-centric technologies for the
current internet: Cdn and p2p solutions. Computer Communications,
35(1):1–32, 2012.

[43] David Passmore and John Freeman. The virtual lan technology report.
3COM White Paper, 1996.

[44] Fabio Picconi and Laurent Massoulié. Is there a future for mesh-based
live video streaming? In Peer-to-Peer Computing, 2008. P2P’08. Eighth
International Conference on, pages 289–298. IEEE, 2008.

[45] Popek, Gerald J.; Goldberg, Robert P. Formal requirements for virtu-
alizable third generation architectures. Communications of the ACM,
17(7):412–421, 05 1974.

[46] Robert E. Tarjan. Data structures and network algorithms, 1983.

[47] Alfonso V Romero. VirtualBox 3.1: Beginner’s Guide. Packt Publishing
Ltd, 2010.

[48] Robert Rose. Survey of system virtualization techniques. 2004.

[49] Jonathan Rosenberg and Ari Keranen. Interactive connectivity estab-
lishment (ice): A protocol for network address translator (nat) traversal
for offer/answer protocols. 2013.

[50] Jonathan Rosenberg, Rohan Mahy, Philip Matthews, and Dan Wing.
Session traversal utilities for nat (stun). Technical report, RFC 5389
(Proposed Standard), 2008.

[51] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan
Johnston, Jon Peterson, Robert Sparks, Mark Handley, Eve Schooler,
et al. Sip: session initiation protocol, 2002.

[52] Mendel Rosenblum. Vmware’s virtual platform. In Proceedings of hot
chips, volume 1999, pages 185–196, 1999.

[53] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and An-
drew W Moore. Oflops: An open framework for openflow switch evalu-
ation. In Passive and Active Measurement, pages 85–95. Springer, 2012.

BIBLIOGRAPHY 154

[54] Henning Schulzrinne. Rtp: A transport protocol for real-time applica-
tions. 1996.

[55] Henning Schulzrinne. Real time streaming protocol (rtsp). 1998.

[56] Henning Schulzrinne, S Casner, R Frederick, and Van Jacobson. Real-
time transport protocol. RFC1899, 1996.

[57] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the
scalable video coding extension of the h. 264/avc standard. Circuits and
Systems for Video Technology, IEEE Transactions on, 17(9):1103–1120,
2007.

[58] Scott Lowe. Examining Openvswitch traffic patterns.
http://blog.scottlowe.org/2013/05/15/examining-open-vswitch-traffic-
patterns/, 05 2013.

[59] Randall Stewart. Stream control transmission protocol. 2007.

[60] Thomas Stockhammer. Dynamic adaptive streaming over http–: stan-
dards and design principles. In Proceedings of the second annual ACM
conference on Multimedia systems, pages 133–144. ACM, 2011.

[61] George Tsirtsis. Network address translation-protocol translation (nat-
pt). Network, 2000.

[62] Athena Vakali and George Pallis. Content delivery networks: Status
and trends. Internet Computing, IEEE, 7(6):68–74, 2003.

[63] Anthony Velte and Toby Velte. Microsoft virtualization with Hyper-V.
McGraw-Hill, Inc., 2009.

[64] W. Taymans, S. Baker, A. Wingo, R. Bultje, and S. Kost. Gstreamer
application development manual. Technical report, 2001.

[65] Stephan Wenger. H. 264/avc over ip. Circuits and Systems for Video
Technology, IEEE Transactions on, 13(7):645–656, 2003.

	Abstract
	Streaming of real-time contents over the Internet
	General background
	Real-time streaming protocols
	Live streaming: open issues

	SOLEIL: Streaming Of Large scale Events over Internet cLouds
	System requirements
	Overall architecture
	Aggregation of real-time statistics
	Migration of system's nodes

	High level enabling technologies
	CDN: Content Delivery Network
	Content selection
	Content outsourcing
	Server selection
	Dynamic content management
	Handling multimedia contents

	Virtualization
	Virtualization types
	Hypervisor types
	Live Migration
	Available technologies

	Web Real-Time Communication (WebRTC) and Real-Time Communication in WEB-browsers (RTCWeb)
	Real-time Transport Protocol (RTP)
	Real-time Transport Control Protocol (RTCP)

	Scalable Video Coding
	The Gstreamer framework
	GStreamer foundations
	Communication and events

	Application level main components
	SOLEIL management and monitoring protocol
	Types of message
	Statistic aggregation algorithm

	Overlay network's architectural elements
	Relay node
	Master node
	Source node and Leaf node

	Low level enabling technologies
	Internet: state of the art
	Benefits of network customizations

	Software Defined Networks
	SDN: network enhancement

	OpenFlow
	Flows and flow tables
	Overall architecture

	SOLEIL low level network design
	Nodes architecture
	Low level network design
	Bridging mode
	Overlay and low level networks configuration
	Path, flows and role based tree

	Automatic configuration of the low level tree topology
	Migration of SOLEIL nodes

	System implementation
	Virtualization environment and network emulation
	Disk sharing
	ISCSI components and SOLEIL setup

	Openvswitch
	Bridges and connections
	Openvswitch architecture
	Openvswitch traffic patterns
	SOLEIL Openvswitch setup

	The Controller element
	Floodlight
	SOLEIL controller setup

	Management application
	Existing modules and APIs
	System set up and management: top-down guided tour
	Path tab and plugin system

	Functional testing
	Testing environment and testbed setup
	Setup of system's nodes
	Guest setup
	Network Setup

	Sink or Swim selective forwarding technique
	Testing flow
	Migration use case

	Conclusions and Future Work

