
Doctoral Thesis

Architectures and Algorithms for
Resource Management in Virtualized

Cloud Data Centers

Author:

Antonio Marotta

Supervisor:

Prof. Stefano Avallone

Co-advisor:

Prof. Giorgio Ventre

Coordinator:

Prof. Franco Garofalo

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Electric Engineering and Information Technologies

March 2015

Department or School Web Site URL Here (include http://)

UNIVERSITY OF NAPLES FEDERICO II

Abstract

Computer Science

Department of Electric Engineering and Information Technologies

Doctor of Philosophy

Architectures and Algorithms for Resource Management in Virtualized

Cloud Data Centers

by Antonio Marotta

Cloud Computing has raised a great interest over the last years as it represents an en-

abling technology for flexible and ubiquitous access over the network to a set of shared

computing resources. Cloud paradigm leverages the instruments of the virtualization

technique, such as the VM Live Migration, which can be exploited in order to achieve

multiple objectives. For instance, it could be used for hardware maintenance purposes

or to avoid over-load and under-load in the resources utilization. Another typical use of

the VM migration is the consolidation of the workload into a smaller number of physical

hosts: this is one of the techniques aimed at increasing the energy efficiency of the IT

infrastructure, which represents the motivation behind the birth of the Green Comput-

ing. However, despite all the advantages that come from the application of the cloud

paradigm, there is some reluctance in its adoption for mission critical infrastructures

because of the security pitfalls it still exhibits, as well as the lack of mechanisms in-

tended at increasing isolation and protection from internal and external threats. This

thesis is intended at exploring both the described aspects: on one hand, an architecture

for enhancing security of a virtualized critical infrastructure is designed and provided

with a mitigation strategy based on the Software Defined Networking approach and live

migration. On the other hand, migrations are used to propose two VM consolidation

strategies with the objective of minimizing the overall infrastructure power consumption.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Contents

Abstract i

Contents i

List of Figures v

List of Tables vi

Abbreviations viii

1 Cloud Computing: Opportunities and Challenges 1

1.1 Virtualization Technique and its Impact on Computer Systems 1

1.1.1 Server Virtualization . 3

1.1.2 Storage Virtualization . 5

1.1.3 Network Virtualization . 6

1.2 Recent Evolutions of the Computing Paradigm 7

1.2.1 Cluster Computing . 8

1.2.2 Grid Computing . 10

1.2.3 Cloud Computing . 11

1.3 Cloud Computing Technology . 14

1.3.1 Possible Classifications . 14

1.3.2 Reference Architecture . 16

1.3.3 Cloud Benefits and Risks . 18

1.4 Cloud Computing Security Threats . 20

1.5 Green Computing . 25

1.5.1 Power Consumption in Data Centers and Energy Efficient Metrics 26

1.5.2 Energy Efficient Techniques . 28

1.6 VM Live Migration . 30

1.7 Cloud Computing and Mission-Critical Infrastructures 31

2 A Cloud Platforms Assessment for Mission-Critical Infrastructures 34

2.1 Context and Motivations . 34

2.2 IaaS Platforms Performance Evaluation 36

2.3 Platforms Under Evaluation . 38

2.3.1 OpenStack . 38

2.3.2 OpenNebula . 41

2.4 Functional Assessment . 43

ii

Contents iii

2.5 Provisioning and Scheduling Time . 45

2.5.1 Analysis of the Provisioning Time 46

2.5.2 CPU and RAM Stress . 47

2.5.3 Virtual Machine Deployment . 48

2.6 Experimental Evaluation . 50

2.6.1 Configuration Parameters . 50

2.6.2 Experimental Scenarios . 52

2.6.3 Results . 53

2.6.3.1 VM Provisioning Time 53

2.6.3.2 VM Scheduling Time . 55

2.6.3.3 CPU and RAM Stress . 56

2.6.3.4 Analysis of the Results 57

3 A Cloud Based Architecture for the Security of Mission-Critical In-
frastructures 59

3.1 Context and Motivations . 59

3.2 A Case Study: a Real Air Traffic Control System 61

3.2.1 The Area Control Center . 62

3.3 The Proposed Architecture . 65

3.3.1 Software Defined Networking . 66

3.3.2 OpenFlow-based Security Architectures 68

3.4 The Components of the Architecture . 70

3.4.1 OpenvSwitch . 72

3.4.2 The OpenFlow Controller: Floodlight 74

3.4.2.1 Learning Switch . 75

3.4.2.2 Flow Reconciliation . 78

3.4.2.3 VxLAN . 80

3.4.3 Network Emulator: CORE . 81

3.4.4 A Network Intrusion Detection System 82

3.4.5 The Mitigation Server and the Alarm Handler 83

3.4.6 The VM Migration Tracker . 85

3.5 A Proof of Concept of the Architecture 86

3.5.1 The SecRAM Methodology . 86

3.5.1.1 Application of the Methodology 89

3.5.1.2 Vulnerability Analysis and Threat Scenario 92

3.6 Experimental Evaluation . 93

3.6.1 A Threat Scenario . 93

3.6.2 Testbed Set-Up . 94

3.6.3 Evaluation Parameters and Results 95

4 Algorithms for Energy-Efficient Cloud Resources Management 98

4.1 Context and Motivations . 98

4.2 The VMs Allocation Problem . 100

4.2.1 Problem Formulation and Model 102

4.2.1.1 Greedy Techniques for On-line and Off-line Allocation . . 103

4.3 A Generalization of the Problem . 106

4.3.1 Related Work . 106

Contents iv

4.4 Power Efficient VMs Consolidation Problem 108

4.4.1 Server Power Modeling . 109

4.5 A Mixed Integer Linear Model . 110

4.6 A Simulated Annealing based Algorithm for Power-Efficient VMs Con-
solidation . 113

4.6.1 Desirability of a VM Migration . 113

4.6.2 Heuristic Description . 115

4.6.2.1 A Simple Example . 118

4.7 Data Centers Network Energy Efficiency 120

4.7.1 Related Work . 121

4.7.2 A Cross-Layer Power Efficient Resource Management Problem . . 122

4.7.2.1 Switch Power Consumption 125

4.7.3 Problem Model . 126

4.7.4 The Combined Heuristic . 129

4.8 Experimental Evaluation . 132

4.8.1 Parameters . 132

4.8.2 Algorithms . 133

4.8.2.1 First Fit Decreasing Consolidation 133

4.8.2.2 Sercon . 133

4.8.3 Results . 134

5 Conclusions 141

Acknowledgements 146

List of Figures

1.1 Cloud Reference Architecture . 16

2.1 OpenStack Services . 38

2.2 OpenNebula Architecture . 42

2.3 Provisioning Times Results . 54

2.4 Scheduling Times Results . 55

2.5 Stress Results . 57

3.1 ATC Areas . 62

3.2 ATC System . 63

3.3 Architecture Layers . 66

3.4 Architecture Components . 71

3.5 OpenvSwitch Core Components . 72

3.6 OpenvSwitch Bridge . 74

3.7 OpenFlow Controllers Evaluation . 75

3.8 Port Down Interactions . 79

3.9 VXLAN Encapsulation . 81

3.10 SecRAM Methodology . 87

3.11 Impact Areas . 88

3.12 Primary Asset Evaluation . 90

3.13 Threat Scenarios Evaluation . 91

3.14 Likelihood Computation . 91

3.15 Supporting Asset Evaluation . 92

3.16 Vulnerabilities Distribution . 93

3.17 Emulator Topology . 94

3.18 Attack Results . 96

3.19 Results Variability . 96

3.20 VM Downtime Variability . 97

4.1 Possible Approaches . 101

4.2 Possible combinations . 112

4.3 Desirability Functions . 114

4.4 Power Deltas . 115

4.5 Topology . 125

4.6 Results . 135

4.7 Results By Allocation Policies . 136

4.8 Times Comparison . 137

4.9 Algorithms Comparison . 139

v

List of Tables

2.1 Storage Technologies Support . 44

2.2 Features . 44

2.3 Fixed Parameters . 51

2.4 VM Flavor . 51

2.5 Variable Parameters . 51

2.6 VM Allocation . 51

3.1 A Flow Table Row . 67

4.1 Model Parameters . 110

4.2 Problem Model . 111

4.3 Example PHs Parameters . 119

4.4 Example VMs Parameters . 119

4.5 Extended Model Parameters . 124

4.6 Input and Output Variables . 127

4.7 Combined Problem Model . 128

4.8 Servers Experimental Values . 134

4.9 VMs Experimental Values . 134

4.10 Optimal Solution Comparison . 138

4.11 Mean Values . 140

vi

List of Algorithms

1 First Fit . 104

2 Best Fit . 105

3 First-Fit Decreasing . 105

4 Simulated Annealing based Consolidation 117

5 Simulated Annealing based Consolidation Cont.d 118

6 Cost-Aware Minimum Path . 130

vii

Abbreviations

VM Virtual Machine

VMM Virtual Machine Monitor

LVM Logical Volume Manager

VLAN Virtual Local Area Network

ATM Air Traffic Management

GRE General Routing Encapsulation

LAN Local Area Network

HAC High Availability Cluster

HTC High Throughput Cluster

HPC High Performance Cluster

SaaS Service as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

API Application Programming Interface

NIST National Institute of Security and Technologies

SLA Service Level Agreement

SOA Service Oriented Architecture

DCIM Data Center Infrastructure Management

DCiE Data Center Infrastructure Effectiveness

PuE Power usage Effectiveness

DCeP Data Center Energy Practitioner

CuE Carbon usage Effectiveness

DCPM Data Center Predictive Modeling

ATC Air Traffic Control

MILP Mixed Integer Programming Model

viii

Abbreviations ix

EC2 Elastic Services

OS Operating System

NFS Network File System

KPI Key Performance Indicator

CII Critical Iinformation Infrastructure

ICT Information and Communication Technologies

ACC Area Control Centre

MPLS Multi Protocol Label Switching

SDN Software Defined Networking

TLS Transport Layer Security

OVSDB OpenvSwitch DataBase

LLDP Logical Link Discovery Protocol

VXLAN Virtual eXtensible Local Area Network

VTEP Virtual Tunnel EndPoint

CORE Common Open Reserach Emulator

NIDS Network Intrusion Detection System

SESAR Single European Sky

SecRAM OpenvSwitch

IA Impact Area

DVS Dynamic Voltage Scaling

BPP Bin Packing Problem

SSAP Static Sserver Allocation Problem

FFD First Fit Decreasing

NPE Network Power Effectiveness

PoE Power on Ethernet

Chapter 1

Cloud Computing: Opportunities

and Challenges

1.1 Virtualization Technique and its Impact on Computer

Systems

Critical services are increasingly relying on heterogeneous multiple applications and

resources in order to satisfy a growing and multidisciplinary demand. With the objective

of providing users with distributed and very intensive applications, one of the most

promising and efficient techniques to consolidate system’s utilization on one hand, and

to lower power, electricity charges and space costs in data centers on the other, is

without any doubts the virtualization [1]. This concept was introduced in the 1960s

by IBM: a Virtual Machine (VM) was intended as an exact software reproduction of a

real machine and all of its subsystems. In the next two decades the costs of hardware

decreased and, consequently, the interest in the virtualization mechanisms became very

poor. The first technical definition of VM was provided in an article by Gerald J. Popek

and Robert P. Goldberg in 1974 [2], through the introduction of the concept of Virtual

Machine Monitor (VMM). This is defined as the execution environment for multiple

VMs, characterized by a set of properties to satisfy:

• Equivalence ensures an execution environment which is substantially identical to

the real machine’s one for the VM applications.

1

Chapter 1. Cloud Computing: Opportunities and Challenges 2

• Efficiency guarantees a high efficiency in the execution of the VM programs. When

possible, the VMM must allow the direct execution of the VM application in-

structions: unprivileged instructions should be executed by hardware without the

involvement of the VMM.

• Control of resources ensures the stability and security of the entire system. The

VMM should be provided with full control of the hardware resources: the VM

applications and the operating system should not access them in a privileged way.

The advent of Personal Computing and the need to execute specific applications on

different hardware platforms and operating systems were the motivations of the ad-

vancements in the virtualization field. The tangible benefits of virtualization consist in

simplifying the provisioning of IT resources and applications, in addition to the simplic-

ity users can install, configure and access them with. One of the primary purposes of

all the various forms of virtualization is to make the utilization of system resources very

efficient. During the years it has been proven that, by committing hardware and IT

equipment to dedicate applications, the resulting resources utilization is under a cost-

effective threshold. Hence, the chance to share the same physical resources amongst

several VMs has become very popular. Among the types of virtualization there are:

• Process Level Virtualization which consists in the virtualization of individ-

ual application processes. It allows the deployment of applications through the

execution of a VM for each process without changing the host OS;

• System Level Virtualization is the technique that enables the emulation of a

full real physical system with all its devices, such as CPU, memory, disk, network

interfaces and so on;

• Operating System Level Virtualization uses the host OS kernel to instantiate

user space dedicated to the management of multiple guest OSes, without the need

for a hypervisor;

• Resource Virtualization enables a guest OS to use specific resources of a host

system.

Chapter 1. Cloud Computing: Opportunities and Challenges 3

1.1.1 Server Virtualization

As described in the previous section, the System Level Virtualization allows a perfect

reproduction of a real entire physical system. The idea behind this technique is to share

the same resources among different users that can create their own VMs. This kind of

virtualization is also referred to as Server Virtualization: a software version of physical

resources is exposed to VMs. The main actors of the server virtualization are:

• Host OS (kernel), namely is the operating system which is installed on a computer

system and can access the physical resources through its kernel. This is the core

part of the OS and it is responsible for providing the running processes with secured

and controlled access to physical resources, through a hardware abstraction, also

known as Hardware Abstraction Layer. This layer lowers the complexity, since it

consists in an uniform interface to the underlying physical resources;

• Guest OS, which is an operating system running in a virtual environment offered

by a VM: it has access (through its kernel) to hardware resources which are dy-

namically allocated by the hypervisor or a host OS depending on the virtualization

technique that is used;

• Virtual Machine which is the virtualized representation of a physical machine;

• Hypervisor or Virtual Machine Monitor, the basic component which provides

the software layer that allows the abstraction of physical hardware resources. This

component allows to execute, monitor and manage a huge number of different op-

erating systems or instances of the same OS that can coexist on the same hardware

components.

The advantages coming from the system level virtualization are:

• isolation, which ensures that a guest OS crash does not have any effect on the

other VMs running on the physical nodes and on the host OS;

• resource consolidation, for packing the workload in a smaller number of physical

machines;

• hardware abstraction, that enables the execution of incompatible or legacy appli-

cations without the need to change the hardware platform;

Chapter 1. Cloud Computing: Opportunities and Challenges 4

• resources migration, that offers the possibility of transferring a running VM be-

tween two physical hosts in order, for example, to ensure host maintenance without

interrupting active applications.

The most important component of the system level virtualization is the hypervisor that,

as explained before, allows to execute different VMs on the same system. Hypervisors

are grouped into two main categories:

• Type 1 - native or bare metal

Native hypervisors are designed to directly control and monitor the hardware re-

sources of the physical node and the guest OS. The virtualization capabilities are

integrated in the node’s architecture, in order to offer a lightweight operating sys-

tem which is created above its hardware. For this kind of hypervisor it is needed

to provide the VMM with all the necessary drivers to interact with the devices.

• Type 2 - hosted

This type of hypervisor is designed to interact with the installed host OS; hence,

it consists in a distinct software layer, which is added as a typical application and

it does not replace the OS which is installed on the physical node. A hosted VMM

operates in user space and access the hardware resources via the system calls of

the host OS.

The second type of hypervisor is characterized by the drivers compatibility and easiness

with regards to the installation, since it relies on the host OS for device management

and other services (such as scheduling for instance). Anyway the hosted hypervisors

show lower performances then the native ones.

According to the access mode to the physical resources and the interactions between the

VM and the VMM, the system level virtualization can be categorized as:

• Full Virtualization: the VMs use the same interface or, in other words, the same

instructions set of the physical architecture;

• Para Virtualization: the VMM presents a different interface from the one offered

by the hardware architecture. This is a technique that allows the hypervisor to

provide the VM with an optimized version of the hardware physical resources.

Chapter 1. Cloud Computing: Opportunities and Challenges 5

Therefore it requires modifications for the guest OS running in the VM, which

consist in the optimization of specific system calls and the involvement of the

hypervisor in the execution of critical system calls. These latter are exclusively

managed and executed by the hypervisor which performs on behalf of the guest

OS.

• Emulation, which consists in the ability to execute programs, which were com-

piled for a certain instructions set, on a computer system equipped with a different

set. Each instruction is emulated for allowing operating systems with different ar-

chitectures to run them without modifications. Emulation techniques offer the

advantage of interoperability among heterogeneous environments; on the other

hand, they are also affected by efficiency and performance implications.

The main difference between the two approaches lies in the exposition of the optimized

hardware resources to the VM. Para Virtualization, however, reduces flexibility, due to

the fact that the guest OS needs adaptation. Therefore this techniques is applicable

only to operating systems that support it, thus limiting the compatibility.

1.1.2 Storage Virtualization

The storage virtualization has the objective of overcoming the heterogeneity of storage

systems and to provide applications with a single point of access to shared memorization

resources. Storage virtualization allows to reduce the traditional separation between an

application or a service and the underlying storage systems. Through virtualization the

storage can reside anywhere and on any type of devices and they can be also replicated for

dependability purposes. For example, systems can have access to a shared storage that is

somewhere in the network. This approach lowers the number of storage devices which is

needed and the amount of power consumption: as a direct consequence, the operational

and administrative costs for back up and archival storage can be drastically reduced.

With storage virtualization technologies, it is possible to use software tools in order

to create an optimized and logically centralized view of the storage environment that

aggregates components, such as disks, controllers and storage networks. This elements

can be efficiently shared among the various applications. The storage virtualization

offers several advantages, such as high availability, fail-over and disaster recovery. There

Chapter 1. Cloud Computing: Opportunities and Challenges 6

are three types of storage virtualization, implemented according to the infrastructural

level:

• Host-based virtualization is implemented through the Logical Volume Manager

(LVM), which groups more physical volumes to provide applications with a larger

and flexible pool of storage.

• Network-based is used to virtualize storage through a network connection that will

be used by users in order to access it through a specific protocol.

• Controller-based virtualization enables the flexible management of the storage ar-

ray system of a company. This type of virtualization can extend all the features

of the controller to external memory devices. Data can be migrated and the repli-

cation can take place between different storage devices.

1.1.3 Network Virtualization

Network Virtualization is a technology layer that allows to create one or more virtual

networks from a single physical network: they can be characterized by an independent

topology from of the underlying physical one. Technologies that have been used to

implement network virtualization are:

• Virtual Local Area Networks (VLANs) allow a group of computers, which are

connected to a LAN switch, to be isolated at the layer 2 of the ISO/OSI stack, by

creating different and separated logical groups.

• Active and programmable networks are physical networks on which there is the

possibility to run code with the aim of programming the behaviour of the devices.

• Asynchronous Transfer Mode (ATM) networks represented for a long time an im-

portant aspect of the network virtualization, namely, the connection virtualization.

The ATM virtual circuits are paths that provide isolation of shared connecting re-

sources, through the reservation of ATM nodes along specific routes.

A virtual logical topology, which is created above the physical one, is also referred to

as Overlay Network. The nodes of an overlay network are connected through virtual

Chapter 1. Cloud Computing: Opportunities and Challenges 7

links that correspond to paths in the underlying network. This type of logical networks

is usually implemented at the application level: overlay networks have no geographical

restrictions and are flexible and adaptable to changes.

Several organizations are adopting network virtualization based technologies in order

to meld the data-link and IP approaches. The motivation is to be found in the typical

data link technologies scaling issues: the approach of creating virtual L2 networks across

IP networks is often referred to as L2 over L3 and it represents an abstraction layer

between the physical and virtual networks. Network customers may access as many level

2 networks as they like, while the underlying physical networking is run, for instance,

on multiple data networks, connected across layer 3 networks. This technique tries to

combine the benefits coming from the two layers: the scalability, the fast convergence

times and the bandwidth allocation of L3 technologies and the simplicity in the con-

figuration of L2 networks. L2 over L3 is obtained through encapsulation techniques,

such as General Routing Encapsulation (GRE), Virtual eXtensible Virtual LAN, or by

using OpenFlow. In an OpenFlow network, switches do not use traditional L2 or L3

protocols to determine the traversed links. Instead, an OpenFlow controller configures

the switches, by creating forwarding paths and programming the switches’ hardware

tables. The controller has full knowledge of the physical and virtual network topology

and orchestrates the provisioning of all the virtual networks across the complete set of

connected OpenFlow-enabled devices.

1.2 Recent Evolutions of the Computing Paradigm

The Information Technology field has been experiencing major changes over the past four

decades: the introduction of the corporate mainframes allowed the business to reduce the

number of employees, needed for manual processing of transactions. The era of Personal

Computing has provided users with the capability of directly managing their activities,

thanks to the availability of data and applications on their personal computers. This

reduced the time to access a single and centralized computation resource and it gave the

chance to work in a parallel way. Finally the era of Network Computing has improved

the level of transparency of the information between multiple groups within a company

and it has allowed the exchange of data between companies. Each of these revolutions

has brought new economies of scale: for example, personal computing had the effect

Chapter 1. Cloud Computing: Opportunities and Challenges 8

to lower the cost to bear for a single transaction; the network computing increased the

number of users able to access computing resources and, in general, the business value,

by also bringing down the cost of the network bandwidth.

1.2.1 Cluster Computing

Cluster computing can be defined as an inter-connection of stand-alone computers work-

ing together as a single, integrated computing resource [3]. One of the first and most

famous example of cluster was ARCnet [4], a system developed by DataPoint in 1977

as a high-speed local area network (LAN). This cluster system had the objective of sup-

porting not only the parallel computing, but also the possibility to share peripherals.

In 1983, Digital Equipment Corporation developed a cluster solution, known as VAX-

cluster [5], that consisted in a collection of multiple computers connected via a serial

link. The main purpose of this cluster solution was to provide operators with the access

to the computing and memorization resources as if they were a single system. In those

years the development of Unix-based workstations in companies and universities was

increasing more and more, while the estimated resources usage during the day was very

low. Both the academic and industrial fields were experimenting the need of a middle-

ware capable of hiding the heterogeneity of the hardware resources and exploiting the

available interconnected computing resources in order to solve complex problems. In

this context new technologies were born, such as, Parallel Virtual Machine and Mes-

sage Passing Interface, with the aim of supporting the development of cluster-oriented

applications which are independent from the underlying physical architectures. In the

1990s the cluster-based solutions became very popular and they were massively used for

realizing systems demanding for high availability. The possible classification is in terms

of:

• the structure, which can be homogeneous or heterogeneous (from the hardware

and/or operating systems view);

• the installation (e.g. glass-house, campus etc.);

• the supported application type

Chapter 1. Cloud Computing: Opportunities and Challenges 9

– High Availability Clusters (HAC), which are characterized by the redundancy

of the components in order to avoid a single point of failure. Depending on

their behaviour in case of fault, they can be distinguished in:

∗ Active-Passive, if during normal operations at least one node (more gen-

erally a component of the infrastructure) is in a passive state (standby).

If the active node undergoes a failure, the standby one becomes active,

taking over the master in delivering the service;

∗ Active-Active, if all the nodes are active and perform tasks related to the

same service. If a node is a fault state, the remaining active nodes take

over it. The main advantage lies in a better load distribution between

the nodes of the infrastructure, without resources wastage. Anyway, on

the other side, the management of the nodes is not transparent to the

applications that need to deal with the access to shared resources (e.g.

memory areas).

A high availability cluster is called shared nothing if each node has a dedicated

storage: the advantage is that there is no required mechanism for accessing the

storage system and, as a consequence, no protocol overhead. The bottleneck

is represented by higher costs for the storage resources, because they are not

distributed and optimally used. The other possibility is shared all, where all

the nodes have access to a shared storage, that can be organized in different

way and accessed through several protocols.

– High Throughput Clusters/ High Performance Clusters (HTC/HPC) are com-

puting systems aimed at testing and running large parallel-processing codes,

visualization and scientific applications. HPC systems allows to execute a

single instance of parallel software over many processors, while HTC systems

ensure the execution of multiple independent software instances on multiple

processors at the same time.

– Load Balancing Clusters are used to scale up the performance of server-based

applications, such as a Web or mail server, by distributing client’s requests

across multiple servers. Load balancers are entities receiving incoming re-

quests and dispatching them to a specific server according to a chosen policy

(e.g round robin, least connection, load-based and so on).

Chapter 1. Cloud Computing: Opportunities and Challenges 10

1.2.2 Grid Computing

The term Grid was coined in the 1990s: it denoted a distributed computing infrastruc-

ture for advanced science and engineering applications [6]. During the years it has rapidly

involved multiple applicative domains, ranging from advanced networking to artificial

intelligence. The reason behind the constitution of a grid-based infrastructure is the

need for solving a real and very complex scientific problem, though coordinated resource

sharing and collaborative problem-solving. A Grid can defined as a stack of hardware

and software layers, intended at offering a dependable, consistent and non-expensive

access to very powerful computing resources for requesting users. Grid Computing is an

approach to build computational infrastructures which are is endowed with:

• a distributed access coordination function, thanks to which users are granted the

possibility to use resources for a specified time interval;

• open-source and general-purpose protocols, APIs and libraries;

• mechanisms to assure a contracted level of quality to users that require it.

Grid Computing was born with the objective to share very expensive resources, such

as data, network devices and CPU in a Virtual Organization. This is the combination

of different institutions, research centers and/or individuals which often have a unique

goal and define a common set of sharing rules. Such an organization is formed with the

intention of creating a collaboration, in which computing resources can be geographically

distributed and accessed. One of the benefits of the grid is, indeed, the exploitation of

under-utilized resources by means of a dynamic combination of nodes and applications.

Users can access the shared infrastructure through a set of clear rules. The key point of

grids lies in the ability to renegotiate the way the organization can share resources. There

is a clear need for policies and access mechanisms: for instance, authentication must be

deployed in combination with authorization in order to verify if the user accessing a

specific resource has enough permissions.

One of the de facto standards for Grid Computing implementation is the Globus Toolkit

[7], which defines protocols and the middleware layer to guarantee a controlled access to

the resources which are shared in a VO. The tasks which are addressed by Globus involve

resources discovery, provisioning, management, security and jobs scheduling. The grid

stack consists can be considered according to five layers:

Chapter 1. Cloud Computing: Opportunities and Challenges 11

• the fabric layer, which defines the access modes to different types of resources,

among which there can be compute, storage, networking devices etc.;

• the connectivity layer, which consists in the core communication and authentica-

tion protocols. For example, the Grid Security Infrastructure [8] provides every

grid transaction with a desired security level;

• the resource layer, which is made of protocols for the publication, discovery, negoti-

ation, monitoring and accounting of the operations on shared resources. The Grid

Resource Access and Management [9] is the protocol that assures the scheduling of

computing resources to users and it is also used for monitoring and control tasks;

• the collective layer, which is used to monitor the interactions with a well-defined

set of resources and for the discovery service of VO resources;

• the application layer, which is characterized by any user application which is de-

ployed by using the low-layers protocols and APIs.

Grids are characterized by a geographical distribution of devices and a great amount of

available data: this enables the realization of complex experiments which would result

in very high costs for the single organization. Grid and Cloud computing paradigms

basically share the same underlying concept which is, the Utility Computing, namely a

service provisioning model through which computing resources are used by a customer

as needed. This has the objective of maximizing the utilization and bringing down the

relative costs. Anyway the two approaches are quite different in terms of their purposes

and resources distribution.

1.2.3 Cloud Computing

Cloud Computing is a model for enabling flexible and ubiquitous network access to a

pool of shared computing resources. A plenty of different definitions of this paradigm

exists:

• the Focus Group defines it as a model that provides users with the convenient, on

demand and network-based access to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage element, applications and services) which

Chapter 1. Cloud Computing: Opportunities and Challenges 12

can be made available and released with a minimum management effort and/or

interaction with a service provider [10];

• Cloud computing is a paradigm to provide services that are delivered and consumed

on demand, at any time, via an access network, by exploiting any connected device

that uses this technology.

The term cloud can be used if the paradigm which consumer can access different type

of resources through is characterized by all these properties [11]:

• On-demand and self-service

Users can automatically acquire resources according to their needs at any moment.

All the available resources can be requested and used when users or applications

require.

• Resource pooling

Cloud providers manage pooled infrastructure resources which are ready for use

in order to serve multiple users. They are dynamically allocated or re-allocated on

the basis of customer’s demand. Computing resources are shared among multiple

users but they are granted with a multi-tenant isolation for security purposes.

The resources pool is accessed with a full independence from the location, so

that the customer does not know the physical or geographical location of the

resources. Examples of pooled resources can include storage, optical disks, network

bandwidth and VMs.

• Rapid elasticity

Resources need to be acquired and released in an elastic way, in order to achieve

scalability in relation to the service demand. The user is provided with the illusion

of being able to access unlimited resources. There must be the possibility of

acquiring resources through a fast and automatic mechanism and to release them

when they are not needed any more.

• Measured service

The resources requested by a customer should be measurable according to a set of

quantitative parameters in order for the cloud system to control and optimize their

use through continuous measurement of performance indicators. The measures

Chapter 1. Cloud Computing: Opportunities and Challenges 13

should be available to the users via APIs for transparency purposes and for allowing

rapid modification of QoS requests. Besides these measures are useful to the

provider in order to realize accounting and billing if there is an economic deal.

• Broad network access

The customer must be able to access resources through a broadband network

and with standard mechanisms that enable their use from heterogeneous clients

(smart-phones, tablet, laptop, workstation etc.).

As introduced in the previous section cloud service provisioning model shows some dif-

ferences in relation to Grid Computing: this latter has the objective of sharing resource

to solve very complex and computational expensive problems, while cloud is a way to

provide a full stack for network-based application development, testing and deployment.

Therefore, in the grid paradigm the focus is on the processes to share and schedule the

utilization of resources for different users; cloud is fundamentally distinguished by the

establishment of a pay-per-user relation between a customer and a provider. Besides

grids are non-commercial and publicly founded by multiple domains, while, instead,

cloud offerings are often commercial and single-domain.

Cloud Computing nowadays has involved concepts coming from very disparate cultural

fields and people are using such a technology by mingling aspects from different back-

grounds and cultures such as technological, economic, socio-logic and legal environments.

This underlines the great success cloud has been acquiring during the last years. This

paradigm is able to improve the efficiency level, as it allows to bring down the necessary

costs for the purchase and maintenance of computing resources. Cloud Computing pro-

duces elasticity since it gives the chance to exploit the capabilities of shared IT resources

through the network. Thanks to these properties, customers can avoid the risk of over-

provisioning resources when there is not a clear formalization of the capacity and the

demand. Cloud technology is, therefore, a great innovation opportunity for companies

and also for the research field.

Chapter 1. Cloud Computing: Opportunities and Challenges 14

1.3 Cloud Computing Technology

1.3.1 Possible Classifications

Cloud infrastructures can be classified concerning the service and the deployment model

they implement. From the service model perspective, they are classified depending

on the abstraction level of the resources which are used by the final user. The basic

classification involves three different layers:

• Software as a Service (SaaS) is the delivery of application-layer services which are

accessible regardless of the location and the type of used devices. If there is a

commercial deal, the customer pays the license or rent the application which is

managed and orchestrated by the provider. SaaS provides a self-contained operat-

ing environment which is used to deliver the entire user experience, including the

content, its presentation and the business logic. The customer should be able to

use cloud-based services from any kind of devices: he has the illusion to access the

environment anywhere, anytime, anyhow. Examples of SaaS are GMail, Google

Apps, Youtube, Flickr, Facebook, LinkedIn and Picasa.

• Platform as a Service (PaaS) is the delivery of basic development services such

as operating systems, middleware, languages, database technologies and the run-

time environments necessary to build and run applications. In the PaaS model,

the consumer is given the ability to deploy applications on cloud infrastructures,

by using programming languages, libraries, services and tools supported by the

provider. As for the SaaS model, the consumer does not handle the underlying

cloud infrastructure but he has control over installed applications and configura-

tion settings of the host environment. Examples are Google’s Application Engine,

Microsoft Azure, Salesforce and AWS Beanstalk.

• Infrastructure as a Service (IaaS) is the delivery of infrastructure resources related

to processing power, storage, network and other basic elements. This layer is also

known as Resource Cloud, since it represents the lowest level of abstraction. The

aim of the IaaS Cloud paradigm is to provide IT resources as services which are

delivered through the network, by hiding in such a way the sophistication of the

underlying infrastructure and by guaranteeing their dynamic allocation based on

Chapter 1. Cloud Computing: Opportunities and Challenges 15

the current load. The customer is charged in a pay-per-use basis, depending on the

type of infrastructural resource he has requested. IaaS provides a set of Application

Programming Interfaces (APIs) which allow the management and other forms of

interactions with the infrastructure. Examples are Amazon EC2, Amazon S3,

Rackspace Cloud Servers and Flexiscale.

This basic classification has been extended and it has assumed very different granu-

larities, according to the specific service which is offered through the cloud paradigm.

Hence, if any service (X) is offered by means of an universal access, in a scalable and

elastic way and in a pay-as-you-go basis, it is possible to use the term XaaS.

The other classification is based on the deployment or implementation model:

• Private Cloud, in which the cloud infrastructure is used exclusively by the organi-

zation who holds it. This type of cloud infrastructure is ideal for companies and

organizations that must comply with a series of regulations and which desire to

efficiently manage their resources.

• Public Cloud, in which the cloud infrastructure is accessible via the network and

it is property of the organization that offers the cloud services. This type of

infrastructure is ideal for companies and organizations which choose to hit a new

market section or decide to outsource ICT technologies.

• Hybrid Cloud, in which the cloud infrastructure is regarded as a composition of two

or more deployment models that coexist within the same organization. This type

of deployment is ideal, for example, to e-commerce sites: in order to accommodate

the traffic fluctuations, a public cloud platform can be used for flexible order

processing. However, it is necessary to respect privacy and security for online

transactions: this is more controllable in a private cloud.

• Community Cloud is used by a specific community of consumers belonging to an

organization which is concerned with security requirements, policy and compliance

considerations. It may be owned or managed directly by the organization, by a

third party or by a combination of them. Community clouds are often created as

a federation of private clouds.

Chapter 1. Cloud Computing: Opportunities and Challenges 16

1.3.2 Reference Architecture

The cloud layer stack can be graphically illustrated thanks to the reference model which

has been proposed by the National Institute of Standards and Technologies [12]. It

consists in a representation of the cloud definition and properties and it is a generic

architecture that does not refer to a particular technological solution. As shown in

Figure 1.1, a set of functions and activities are defined with regards to the development

of a cloud solution.

Figure 1.1: Cloud Reference Architecture

This architecture enables the understanding of the relationships among all the elements

of a cloud infrastructure to the aim of identifying the role of each element and the

responsibilities. The institute has identified five key roles in the cloud:

• the Cloud Consumer is the entity that wants to use a cloud enabled service. It

can be an individual or organization, which establishes an economic relationship

with a provider;

• the Cloud Provider is basically who provides the cloud based services and is respon-

sible for managing all the infrastructure for service delivery. Among the activities

under its supervision there are:

– Service deployment;

– Service orchestration;

Chapter 1. Cloud Computing: Opportunities and Challenges 17

– Cloud services management;

– Security and privacy.

For SaaS, the provider is in charge of the management of the software platform

which users are able to access through the cloud. In the case of PaaS, the provider

has full access to the tools that allow service deployment in the cloud but it has

no vision of low-level underlying physical infrastructure. In the IaaS the vision is

completely different because the provider has to handle all the physical resources

and OSes. Cloud providers usually have a service catalogue which the customer can

select one or more services from. The relationship between provider and consumer

is often sanctioned by a sort of Service Level Agreement (SLA) contract that

regards the quality of service for the system performance;

• the Cloud Auditor is responsible for monitoring and verifying cloud services. It

provides an independent and third-party opinion on the quality of service offered

by the provider. The evaluation of a cloud auditor can be in terms of performance,

security and availability. The focus is on how to monitor the services and to identify

quantitative metrics for different kinds of measured properties;

• the Cloud Broker negotiates the needs of the consumer with the provider, in order

to overcome problems, such as the management complexity and the heterogeneity

of services. The broker offers in particular:

– service intermediation, which is the process in which the broker interfaces

with the cloud provider, instead of the consumer, to enrich the service offered

by the provider and add some capabilities. For instance, the broker could add

security technologies that were not initially contemplated by the provider;

– service aggregation, thanks to which the cloud broker may aggregate multiple

services offered by the provider by creating a logical single access point;

– service arbitrage, which is similar to aggregation, with the difference that

services are dynamically added when the customer needs them;

• the Cloud Carrier is the entity that guarantees the use of services via a secured and

stable network connection. It interacts with the provider to provision connectivity

to services that will be offered to clients. This role is usually covered by network

operators or telecommunication agencies, that have to deals with the management

Chapter 1. Cloud Computing: Opportunities and Challenges 18

of the network devices in order to ensure a set of SLA requirements between a

provider and consumer.

A possible scenario involves the interaction between a consumer and a provider that

may be mediated by a cloud broker. The consumer can request a particular service

the broker can actually deliver as a composition of multiple services offered by different

providers or by an individual provider. Otherwise the interaction between the provider

and the consumer can be direct without any broker. When the consumer decides to

rely on a cloud provider, it establishes a SLA contract. In turn, the provider decides to

sign a contract with a carrier to ensure a specific quality of service. The auditor is the

entity that has to make sure everything that has been agreed between a consumer and

a provider is actually respected.

1.3.3 Cloud Benefits and Risks

Cloud enables the ubiquitous, convenient and on demand network access to a shared set

of configurable computing resources, which can be quickly acquired and released with

minimal effort and interaction with the service provider. Cloud model allows organi-

zations to bring down the costs for capital investment (CapEx, capital expenditures),

required to purchase computer systems, communication systems (servers, storage sys-

tems, routers and so on) and the operational cost (due for example to generators and

air conditioning systems). In addition to these costs, companies also face the OpEx,

namely the operating expenses, required to manage products, systems or business activ-

ities. Cloud can lower the ingress barriers for small organizations and start-up, by also

creating new professional figures, such as the cloud architect.

As explained before, the relationship between a provider and a consumer is charac-

terized by a SLA contract: the service and the resources are delivered and measured

in terms of appropriate indicators, the so-called key performance indicators. Among

them there are the temporal indicators, which involve, for example, the service response

time, the throughput, the latency of transactions and so on. The cost indicators deal

with CapEx and OpEx, and with the consolidation of IT resources; finally the quality

indicators measure user’s satisfaction and the perceived quality of experience. They

basically indicate how much the user appreciates the interface of the services and the

interactions with them. When an economic deal is established between a provider and

Chapter 1. Cloud Computing: Opportunities and Challenges 19

a consumer, there is often no possibility to renegotiate agreed SLA parameters. The

definition of a contract with a provider is not something immediate: services are usually

offered in composition with multiple providers, and it is not very simple to negotiate

SLAs with multiple providers. Another problem is also linked to the penalties and the

legal protection, when some of the parameters are not respected. A technical issue lies

in the mechanisms for monitoring SLA-oriented parameters like, for example, the ones

regarding security. Besides cloud services do not often offer a full transparency to the

final user.

When approaching cloud solutions, one of the main concerns should be the risk of lock-in:

services that promote data portability, open formats and standards should be preferred,

in order to facilitate the transition from one provider to another one. There is the need to

adopt international standards to ensure a switching off among different providers. The

technological evolution of cloud has been so rapid, that most of the existing providers

built their own services relying on ad-hoc protocol and/or APIs. Therefore companies

are often tightly coupled with a non standard solution and, therefore, they are unlikely

to migrate to another provider that may offer better service conditions. In that case

there is also a risk for the customer’s activities if the provider goes out of business. In

the cloud standardization activities there are different organizations working to the same

objective. Three macro-areas have been identified:

• General

This area includes activities aimed at developing and defining cloud taxonomy,

use cases and service requirements. Since cloud involves a wide range of technical

and business elements, it is crucial to define standard technical terms in order to

promote standardization.

• Cloud configuration management

This area includes the standardization process for the implementation technolo-

gies, the architecture, the APIs and security. Cloud APIs are basilar to allow

interoperability between different environments and vendors: developers can ben-

efit from web servers standards and the Service Oriented Architecture (SOA) when

designing functional and management aspects. For instance, the Cloud Security

Alliance is defining the best practices in thirteen areas, which are related to cloud

governance and management.

Chapter 1. Cloud Computing: Opportunities and Challenges 20

• Inter Cloud Federation

This area is intended at the definition of standard interactions needed for the fed-

eration of cloud solutions. To this aim communication protocols between different

cloud providers are necessary. The inter-cloud federation is, in fact, the intercon-

nection of two or more cloud service providers that can work together in order to

balance the traffic load and to offer more scalable computing power.

The deployment model should be selected with the awareness that moving from private

clouds to public ones, the control on data is gradually lost. It is possible that some infor-

mation may require special security measures due to their nature (e.g. health, genetic,

financial data). In such cases, due to risks like potential loss or unauthorized access,

consumers should carefully decide if it is better to use cloud services or to maintain

in-house processing of such data types. Besides customers should know whether data

will remain in the physical availability of the provider, or if the service is designed on

technologies provided by a third-party provider. As an example, a cloud application

cab be offered by a SaaS provider which uses a storage service offered by a third party

company. Another risk is related to data persistence policies: the cloud service provider

needs to specify the timing for data persistence and the techniques used to delete user’s

information in the contract clauses.

In conclusions, the analysis of Cloud Computing solutions should be conducted by tak-

ing into consideration several factors, benefits and risks: an economic analysis can also

be useful to compare the cost reduction with the adoption of a cloud solution against

the on premise approach. The cloud paradigm also leads to energy savings which result

in a reduction of costs. The trade-off to be investigated lies in the economic benefit and

the achievable service level, in terms of reliability and performance, which can not be

easily measurable and transparent to the consumer.

1.4 Cloud Computing Security Threats

Besides the classical computer systems security issues, cloud is characterized by known

and well-studied threats [13] involving different areas, such as:

Chapter 1. Cloud Computing: Opportunities and Challenges 21

• Organizational risks and policy, among which there are the lack of governance and

lock-in. Data and applications portability must be integrated in the risk man-

agement process. An organization could decide to change cloud provider because

of an unacceptable increase in the costs at contract renewal or a decrease in the

service quality. Besides a provider can cease business operations or just close some

services.

• Legal risks which relate to the compliance to national laws, regulations and cer-

tifications, the lack of audit mechanisms and data protection. For example, the

customer should be aware, in the case of public clouds, if the provider transfers

sensitive data on servers located in countries that do not have the same privacy

standards or copyright laws. The provider should clarify be the used protection

measures and how they are managed. The problem is exacerbated by the use

of federated clouds and the exchange of data between data centers in different

countries.

• Technological risks which were identified by the Cloud Security Alliance [14]:

– Data leakage

Unauthorized access to sensitive data stored in the cloud can lead to threats

like data modifications or disclosure. The management of authentication

and authorization mechanisms is crucial, in the sense that sensitive resources

should be protected from unauthorized users. When the user entrusts his

data to the cloud, he is not aware of their location and the way they will be

treated. Data leakage can also arise due to vulnerabilities in the cloud APIs,

which users can access data through. Remedies could lie in strong access

control, encryption and protection of the data integrity and effective key

generation. Another practical solution to this type of problems can be found

in the application of advanced encryption techniques, such as the one based

on attributes: the decision of which users can decipher a text, is taken on the

basis of attributes and policies associated with both the text and the user.

Also data persistence must be addressed: when a contract between a provider

and a customer ends, data must be effectively and completely destroyed.

Hence, techniques for locating data in the cloud and erasing/destroying them

when needed should be available.

Chapter 1. Cloud Computing: Opportunities and Challenges 22

– Data loss

Data stored in the cloud can be lost due to different reasons, not only because

of malicious attacks. Any accidental deletion by the cloud service provider or

a physical catastrophe could lead to the permanent loss of customer’s data.

If a customer encrypts data before uploading it to the cloud and then loses

the encryption keys, data can be lost. Remedies for this threat is a strong

key management and procedures for data back-up and replication.

– Account or service hijacking

Attacks methods involve phishing, fraud, and software vulnerabilities ex-

ploitation. The attacker has the aim of intercepting credentials in order to be

able to eavesdrop sensitive transactions and manipulate data. Providers can

leverage strong two-factors authentication techniques and deploy proactive

monitoring to detect unauthorized activities.

– Insecure interfaces and APIs

Cloud interfaces provide the user with the ability to orchestrate, provision and

manage all the implemented services. They constitute the unique entry point

for users to interact with the platform: if the exposed APIs are vulnerable,

there may arise several security threats, such as: clear text authentication,

anonymous access, reusable token and weak access controls. Security and

availability of the cloud services rely upon the security of these basic APIs.

This risk can be lowered thanks to better authentication and authorization

mechanisms. Service interfaces must be designed to protect the consumer

from malicious attacks by applying authentication, access control, encryption

and monitoring.

– Denial of Service

This attack aims at inhibiting legitimate cloud users’ access to data and/or

applications. The objective is to make resources unavailable, by stressing

system resources such as processor power, memory, disk space or network

bandwidth. DoS attacks take advantage of vulnerabilities in the applica-

tions, databases, or other cloud resources. When there is such an attack, the

consumer faces a service outage, and a higher computing power, that in some

cases translates in huge costs.

Chapter 1. Cloud Computing: Opportunities and Challenges 23

– Malicious insiders

The convergence of different IT services under a single management domain

causes the increase of this kind of threat. The provider does not specify how

employees will have access to physical assets and there is a partial lack of

transparency in the monitoring activities. The nature of Cloud Computing

makes the realization of incident notification and re-mediation very difficult:

monitoring alerts, incident indicators coming from intrusion detection systems

and firewalls, in addition to the sources that need to be monitored can increase

exponentially in a cloud environment. There is the need for an incident

response strategy, namely the Security Information and Event Management,

that is able to identify the source of the issue and to notify the event. If

possible the system should also mitigate the effects of the alarm. Other

remedies involve the specification of strict requirements on human resources

as part of legal contracts and the guarantee of full transparency for the client.

– Insider attacks

Although the great possibilities that come along with the application of the

cloud paradigm, new security challenges related to the virtualization tech-

nique must also be taken into account. Before even securing the running

VM and the customer data, it is needed to be sure about the integrity of

the virtual image which is about to be spawned in the cloud infrastructure.

If an insider attacker gets access to the location where the VM images are

stored, he has the chance to modify the way VMs will behave according to his

malicious intention. This is proposed in [15] where an architecture for image

access control, filtering, maintenance and scanning is proposed. The access

control layer is responsible for granting access to a VM image: each image

has an owner that can decide to provide a third party with a permission

grant. The filtering module is useful to extract sensitive information from

the VMs, while the tracking mechanism allows to record all the operations

which were executed in the VM. Finally the image repository can be peri-

odically scanned to verify if there are vulnerabilities after their publication

with the aim of finding malicious software. Another important task is the

verification of the guest VMs integrity and the behaviour of the components

Chapter 1. Cloud Computing: Opportunities and Challenges 24

of the platform. This is aimed at monitoring the activities in the cloud plat-

form in order to detect unusual actions, while granting full transparency to

the virtual guests [16]. The proposed architecture is able to monitor running

VMs in a non-intrusive manner: it is basically designed as a lightweight mid-

dleware between kernel and hypervisor to guarantee full transparency to the

VM. Sensitive data structures are monitored in order to identify malicious at-

tempts of modifying the way the VM will behave, by periodically computing

a checksum on the data to protect.

– Abuse and nefarious use of Cloud Computing

The providers offer the illusion of unlimited compute, network, and storage

capacity to final users. Some commercial providers even offer free limited

trial periods. By exploiting anonymity, spammers, malicious code authors,

and other criminals can be able to access computing resource to conduct their

activities. Typical attacks can be key cracking, distributed denial of service,

bot-nets and so on.

– Unknown risk profile

Many organizations adopt cloud technologies with the promise of cost re-

ductions, operational efficiency and improved security. On the other hand,

indeed, if organizations do not really understand risks and operational re-

sponsibilities, such as incident response, encryption and security monitoring,

they can incur into different issues. The monitoring of SLA performance in-

dicators should be clear and software should be automatically scanned and

patched for vulnerabilities.

– Shared technology issues

Cloud vendors deliver their services in a scalable way, by sharing computing

resources, network bandwidth and so on. Sometimes the underlying compo-

nents of the infrastructure are not designed to offer a good level of isolation.

The hypervisor mediates access between a guest OS and the physical re-

sources. However, also hypervisors exhibit vulnerabilities that enable, for

example, an operating system to gain inappropriate control levels on the un-

derlying platform. A defence strategy involving compute, storage and network

security enforcement is needed.

Chapter 1. Cloud Computing: Opportunities and Challenges 25

Cloud security issues may assume different emphasis with respect to the service model

and the cloud deployment scheme. As an example, private cloud is characterized by

fewer security issues in comparison to public clouds. Here, indeed, network and data are

stored and managed by third parties and off premises. In a private cloud environment,

security mechanisms used for the physical network can be replicated in the virtualized

environment and fall are under the control of the company itself. However, severe issues

hold for both the deployment models: insider attacks can come from legitimate users. In

addition to this, all the deployments and the business models inherits the vulnerabilities

and threats typical of the virtualization technology.

1.5 Green Computing

The computing paradigms described in section 1.2 have been marked by a growing

awareness of the green concern, as shown by the birth of Green Computing. Cloud

paradigm was also characterized by the introduction of this aspects, as proven by the aim

of melding the elastic resources provisioning with the energy efficiency. The motivations

of the increasing interest lie in the fact that data centers are experiencing the need to

drastically reduce the energy consumption. This is a double-face issue: the first one

is related to an environmental concern and coincides with the arising problem of CO2

emissions. The second one essentially deals with economic reasons: it was estimated

that the total energy bill for data centers doubles every five years. The importance

of the green problem was also stressed by the U.S. Environmental Protection Agency

report [17]: it has found out that the daily power consumption of a typical data center

is equivalent to the monthly power consumption of thousands of homes. The principal

sources of energy consumption are:

• servers and storage which account for 50%;

• the room cooling system (34%);

• networking (7%);

• conversion (7%) and lightning (2%).

Chapter 1. Cloud Computing: Opportunities and Challenges 26

A definition of Green Computing can be found in [18]:

it is defined as the study and practice of designing, manufacturing, using and dispos-

ing of computers, servers, and associated subsystems, such as monitors, printers, stor-

age devices, and networking and communications systems efficiently and effectively with

minimal or no impact on the environment.

The awareness in the data centers energy consumption has become the main purpose

of this new computing model. The focus is on how to lower power consumption costs

and, on the other side, to maximize the system’s efficiency. This objectives need to be

pursued during the initial phase of the system design, in order to use techniques and

models which increase the green benefits. This process imposes new challenges to the

system engineers: the design of the architecture must involve green aspects regarding

the interactions among the system components, the network devices and the software

stack. The main focus of green techniques is the measurement of the system energy cost,

and its relation with the power consumption model of the hardware components. They

strictly depend upon the overall power consumption models, which are often inaccurate

for complex computer systems: in these cases, the energy-aware decisions can reveal

as sub-optimal. Methods to evaluate the power consumption of a generic system can

regard direct hardware measurements, theory computing and simulators.

1.5.1 Power Consumption in Data Centers and Energy Efficient Met-

rics

Data center typical infrastructure has been distinguished by a revolution which was fos-

tered by the success of new computing paradigms and network topologies. Data centers

are aimed at hosting and managing a set of different types of hardware resources, in or-

der to provide services and applications. The classic architecture of data centers follows

the so-called three tier paradigm, which is characterized by a collection of servers at the

bottom level, which are grouped into racks. Each rack is equipped with a Top of Rack

switch, that is often replicated in order to increase the reliability of communications. In

the upper level, one or more aggregate switches are in turn connected to core switches.

The traditional tree hierarchy based architectures are being extended for overcoming the

typical scalability limits and increasing the network throughput. Among the objectives

which are often pursued by data center owners we can mention, on one side, the reduc-

tion of the operational costs, manual maintenance and the carbon emissions, and on the

Chapter 1. Cloud Computing: Opportunities and Challenges 27

other one, the increase of the devices lifetime. Some of these purposes are addressed by

the Data Center Infrastructure Management (DCIM) layer, which tends to include all

the assets and physical resources in the traditional management procedures, such as IT

asset life-cycle management and facilities monitoring. Among data center typical assets,

there are critical equipments (also known as IT equipments), which are necessary to the

service delivery and non critical equipments which are essential to the correct operation

of the first category of devices (e.g. power units, cooling equipment and generators).

Both the equipment types are very energy demanding and they can be characterized

by inefficiency: regarding the IT devices, reasons of a poor energy efficiency can be

found in the utilization of old servers and power supply units that consume too much

power, or in the unbalanced ratio between the physical resources and the actual needs.

In particular, the second aspect has been the main motivation behind the massive ap-

plication of the virtualization technique: it can increase energy efficiency, which is often

expressed as the ratio Gbps
Watt and refers to the achieved energy saving to satisfy a deter-

mined computational load. Due to the complexity of the data center infrastructure, the

energy efficiency cannot be independent from the input workload and the environmental

conditions. The evolution of the DCIM has promoted the birth of many associated data

center performance management and measurement metrics, such as the:

• Data Centre Infrastructure Effectiveness (DCiE), which is defined as the fraction

of the IT equipment power supply and the total data center power:

DCiE =
IT Equipment Power

Total Facility Power
(1.1)

where the total facility power is the measured one at the incoming data center

meter, while the IT equipment power is the one consumed by IT resources. For

instance a DCiE of 0.60 indicates that the 60% of the total incoming power is used

for non critical equipment (cooling and power utility), while only 40% is involved

in the real computational processing;

• Power Usage Effectiveness (PuE) [19], that is a measure of the efficiency through

which a data center uses energy, or in other words, how much energy is used by

the computing equipment (in contrast to cooling and other overheads). It is the

inverse of the DCiE:

PuE =
1

DCiE
(1.2)

Chapter 1. Cloud Computing: Opportunities and Challenges 28

PuE has an ideal value of 1.0, which implies that all the used energy goes to the

IT equipment;

• Data Center Energy Practitioner (DCeP) [20], that is a measure of the productivity

of the data center, in contrast to the PuE and DCiE that do not take into account

the useful work. This is intended in terms of effective tasks of the data center,

such as transactions per second. This metric is defined as:

DCeP =
Useful Work

Total Required Energy to produce the work
(1.3)

• Carbon Usage Effectiveness (CuE) [21], which is a green sustainability metric

defined as:

CuE =
Total CO2 emissions caused by Total Data Center Energy

IT Equipment Energy
(1.4)

where the denominator is the same value as the numerator of the PuE metric and

the numerator is the total carbon emissions caused by total data center energy.

The CuE unit is kilograms of CO2 over kilowatt-hour (kWh);

• Data Center Predictive Model (DCPM), which is the ability to forecast the per-

formance of a data center in the future, e.g. its energy use, energy efficiency or

cost.

1.5.2 Energy Efficient Techniques

The application of energy-aware techniques can offer multiple benefits in terms of en-

vironmental protection and costs reduction. A computer system is a clear example of

different subsystems that interact among them: it can be characterized by energy state

changes, which energy-aware decisions can rely on, in order to reduce the overall power

consumption. To this aim, plenty of information is needed, such as application run-time

data and monitored power consumption states of the sub-components. Energy reducing

strategies can be designed according to the way systems and applications respond to

state changes and by adjusting the behaviour of the subcomponents. One approach is

to directly control the power-saving aspects of some components when an under-utilized

threshold is activated: a system may hibernate components such as CPU and RAM or

Chapter 1. Cloud Computing: Opportunities and Challenges 29

lower the voltage by reducing performances. Applications can take advantage of moni-

tored power consumption states by applying energy-efficient policies. There are different

research papers which introduce energy-awareness management tasks in the operating

system, hardware abstraction and resource allocation [22]. Energy-efficiency has also

interested networking architecture and protocols design. This task is also referred to as

Green Networking : the usual approaches deal with techniques for dynamically adapting

network devices processing capabilities and available bandwidth to meet traffic load and

services requirements, or standby-wake-up modes [23].

By focusing on IT equipments, among the strategies that can help to achieve a high

energy efficiency there are:

• identification of old-fashioned servers which reduce the overall efficiency and are

not used for any crucial activity anymore;

• migration to more efficient resources. For instance by using blade servers, the

benefits arising from their deployment are related to:

– a single power supply for all the blades;

– less heat generation in comparison to traditional servers thanks to shared

cooling and power;

– a reduced cost for the network devices and wiring, since the blade provides a

bus (or more buses) which all the servers can send network traffic to;

• the use of multi-core processors which allow a better energy consumption thanks

to the introduction of power states;

• energy-proportional computing, whose aim is to use servers at a threshold close

to the maximum capacity. Several works in literature point out that the ac-

tual servers’ utilization is under a cost-effective percentage. Some techniques

address this problem by leveraging the introduction in modern CPUs of the so-

called P-states (performance states), which allow clock rate reduction and T-

states(throttling states), a technique that automatically adjusts the frequency of

a microprocessor. With the enabled p-states, the power consumption can be re-

duced at low workload and, the more states are used, the more this techniques can

achieve efficiency.

Chapter 1. Cloud Computing: Opportunities and Challenges 30

Among the planned strategies for increasing energy efficiency, data centers are massively

exploring the virtualization and its consolidation advantages to face the IT equipments

under-utilization. This mechanism allows to create isolated virtual environments: it

allows to drastically reduce the number of used servers and to avoid the commitment of

a single server to a dedicated activity. The task scheduling decisions can be also based

on green aspects: for example, it is possible to specify policies, in order to consolidate

the workload on a subset of more efficient servers, or by realizing a load balancing of

the requests across physical hosts.

1.6 VM Live Migration

Virtualization-enabled techniques, such as VM Live Migration, can help in obtaining

energy efficiency. For instance, migration can be used to centralize the computational

load in data centers, which are endowed with a better cooling system or placed areas

with low temperatures or countries with low electricity prices. Migration algorithms can

also be used to consolidate workload in data centers with high renewable power.

Live migration is a facility implemented by all the hypervisors which enables the transfer

of a running virtual machine from a source host to a destination one, assuming a shared

storage for the VM images, with almost negligible downtime for the applications. The

first one is the so-called “pre-copy” phase, during which the VM still runs on the

source server, while its memory is iteratively copied to the destination. The algorithm

is divided in “rounds”, that are the intervals of time needed to transfer a determined

number of memory pages. In the first round all the RAM memory of the VM is copied to

the destination site: during this transfer, some memory pages could have been written

by the running applications. That is why other rounds are necessary to complete the

live migration process. The second stage is called “pre-copy termination” phase: the

iterative copy can be stopped when a condition is met, such as the number of maximum

iterations, the amount of memory already copied or the number of pages that were

written in the previous round. The third step is the “stop-and-copy” phase, which

implies the suspension of the VM at the source host, in order to send the last dirty pages

over the network and to resume its execution at the target site. VM live migration can

be evaluated according to different parameters:

Chapter 1. Cloud Computing: Opportunities and Challenges 31

• the migration time, that is the time required by the three-phase algorithm for

copying the VM memory and its state from source to destination;

• the down-time, which refers to the time needed to perform the stop-and-copy stage

and represents the interval of time in which the VM is not up;

• the energy overhead due to the network transfer of the VM related data.

1.7 Cloud Computing and Mission-Critical Infrastructures

Over the last years, IT technologies are increasingly becoming widespread thanks to the

availability of bandwidth and the decreasing hardware costs. This is proved by the fact

that applications from disparate domains are relying on digital services provided through

IT technologies. In addition to this, digital transformation is causing the traditional busi-

ness models and processes to be renewed, due to the success of cutting-edge paradigms,

fostering ubiquitous and low-cost computing. IT-enabled processes and services are ex-

tremely linked to everyday lives: the infrastructures delivering mission critical services

are assuming a great importance in the security hardening, because their failures trans-

late in loss of money, unfulfilled crucial activities and, often, in human lives hazards.

Within the expanding scope of mission-critical applications and the fulfilment of their

expected service level requirements, companies are increasingly facing the problem of

adopting new paradigms, in order to execute them in a cost-effective way, without the

need to increase data center resources expenditures. With the technological progress,

mission critical systems cannot be isolated anymore and they should be be part of agile,

flexible and low-cost platforms. They are also characterized by arising security threats,

for which an holistic cyber-security approach is needed. On one hand new technologies

are often characterized by a great number of benefits in terms of cost-effectiveness and,

on the other, they may emphasize the risk of sensitive data loss and, as a consequence,

they can have a disruptive impact on mission-critical functions. Several organizations

are adopting virtualization and cloud technologies, with the aim of reducing power con-

sumption and increasing the overall resources efficiency. Anyway when it comes to the

application of virtualization technologies to mission critical applications, service levels,

business continuity plans and and risk management strategies must be carefully taken

into account.

Chapter 1. Cloud Computing: Opportunities and Challenges 32

This thesis aimed at exploring the two described aspects of the cloud paradigm: on

one hand, with the proposal of a cloud based architecture for enhancing the infras-

tructural security and, on the other, by investigating new energy-efficient models and

algorithms. As a mission critical infrastructure, a real an Air Traffic Control (ATC)

system was considered and deployed on a cloud platform. The investigation started

with the selection of a well-suited cloud IaaS platform for such a system: by having in

mind the requirements, the nature of critical infrastructures and the key performance

indicators of cloud services, some evaluation parameters were identified. After analysing

the identified parameters, an experimental evaluation of two cloud open-source projects

was performed in Chapter 2. Since the dependability requirements of mission criti-

cal systems demands for automatic disaster and recovery mechanisms, the possibility of

exploiting them in a cloud-based infrastructure was investigated. To the aim of giving

a response to the need for security mechanisms, in Chapter 3, an architecture for a

multi-layer security is discussed and properly designed. It is provided with a mitigation

strategy that leverages, on one hand, virtualization-based mechanisms, such as the VM

Live Migration, and on the other, a Software Defined Networking approach to guarantee

dynamic network reconfiguration.

The green enabling techniques the thesis focus on is also based on the VM migration:

this is used to increase the overall cost-efficiency and the resources utilization. One

of the techniques proposed in literature for improving resource utilization in a cloud-

based system is the VMs Consolidation Problem, which consists in finding, given the

current allocation, the minimum set of migrations, defining a new allocation scheme,

with the objective of minimizing the number of used servers. The problem was extended

in Chapter 4 to take into account the different efficiency models of the servers. Con-

sidered a set of VMs, given the current allocation, the amount of resource available at

each server and the one requested by the VMs and the power consumption model of

the servers, the problem consists in finding the set of migrations defining a new set of

active nodes that minimizes the linear combination of the power consumption of the

resulting active servers and the number of migrations. The problem was also formulated

through a Mixed Integer Programming Model (MILP), in order to have an idea of the

optimal solution, and a Simulated Annealing based heuristic was also proposed not to

limit the scalability of the resolution. The algorithm is based on a simple idea, which

consists in the measurement of the VM live migration effectiveness: in order to have a

Chapter 1. Cloud Computing: Opportunities and Challenges 33

balance between the nodes consolidation and the overall power consumption, the com-

puted value takes into account the convenience of migrating a VM from the source node,

the willingness of the destination one for accepting the VM and the difference in the

power consumption after the VM migration to the new node. Anyway, since the typical

data center power consumption cannot exclude networking devices, the network topol-

ogy was also introduced in the proposed model with the objective of achieving a trade-off

between different objectives. These are the minimization of the power consumption of

the used servers, the network power consumption and the number of migrations. Each

one of these objectives can be emphasised by using different weights in order to give

more importance to one of them. An optimization model for this second problem was

proposed, besides a heuristic to solve it in a reasonable time was properly implemented.

Chapter 2

A Cloud Platforms Assessment

for Mission-Critical

Infrastructures

2.1 Context and Motivations

Critical infrastructures are more and more linked to everyday life: they basically con-

sist in different subsystems that interact with each other with the aim of accomplishing

sensitive services. The complexity of such infrastructures is managed through plenty of

computer systems and their life-cycle from design to implementation is often handled

through human routine maintenance procedures. Therefore the administrators of com-

plex systems are starving for technologies enabling automatic processes for configuring

a huge number of nodes. Nowadays cloud paradigm has become a key technology, which

both academia and industry focus their research interests on. Industrial experiences

show that the IaaS cloud layer can be exploited to create virtualized testbeds realizing

critical services, with the objective to reproduce real operational environments in house.

When dealing with real production systems, virtualization can enable several benefits

in terms of:

• the chance to reproduce real world scenarios aimed at performing distributed test-

ing campaigns. In order for the system to be operational, a very exhaustive exper-

imental campaign is needed to guarantee that every single requirement is met with

34

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 35

the expected level. Industry can leverage a distributed and virtualized testbed to

bring down the costs needed to realize the testing campaigns;

• the availability of automatic procedures to implement backup or disaster and re-

covery of the entire testbed. Cloud platform are increasingly adopting mechanisms

to provide the user with recovery mechanisms, since service disruption in a cloud

platform can be very common;

• the possibility to configure and manage the testbed components and their version-

ing through automatic mechanisms.

The mission-critical infrastructure that was used as use case is a real Air Traffic Control

(ATC) system: for such an application, Cloud Computing is a cutting-edge technology

for setting up an Extended Enterprise Private platform, with the purpose of geographi-

cally connecting distributed ATC centers for dependability reasons, e.g., by realizing a

fail-over configuration among centers in order to increase the overall system availability.

ATC systems are very demanding from the requirements point of view and software-

intensive. In order to virtualize such a system, a cloud platform is needed to guarantee:

• the reproducibility of complex hardware configurations, which should achieve per-

formances as nearest as possible to the one obtainable in the operational situations.

This is very important, for example, for the network configuration. The different

nodes can be provided with different different dependability techniques: as an ex-

ample, all the links in the network can be in a redundant configuration, namely

bonding, to dynamically respond to network outages;

• a minimum impact on the applications, which are very resources demanding. To

this aim, the requirements needed by the cloud applications show be very minimal

with regards to the CPU and RAM specifications;

• low resources provisioning time in order to realize fast fail-over techniques and

disaster and recovery techniques with the minimum service disruption.

That is the motivation why an initial scouting phase was conducted and a group of

key features was established in order to restrict the number of IaaS platforms to com-

pare. The objective of this stage was to identify the project meeting the described

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 36

requirements. Afterwards the selected projects were compared by taking into account

the resources stress and the resources provisioning time. In particular the technical key

requirements that were taken into account for the scouting process are:

• full open-source license;

• the support for KVM [24] technology;

• the support for OpenvSwitch [25] technology for handling the creation of the virtual

network interfaces;

• a strong community and then

– bug reporting;

– continuous software maintenance;

– updating process and new releases;

• fully downloadable packages without limitations;

• industrial support and existing experiences.

2.2 IaaS Platforms Performance Evaluation

The evaluation of Cloud Computing IaaS platforms is not a simple task, due to the fact

that the available projects are intrinsically different. In most works of the literature, only

functional and qualitative characteristics are often considered as discriminating factors.

Among them there are customizability, security and network-related issues. Semploski

et al. [26] provide a critical comparison between three open-source projects that offer

Infrastructure-as-a-Service, namely OpenNebula, Eucalyptus [27] and Nimbus [28]. The

authors present the mechanisms needed of the spawning of a new VM and the differences

between them and a raw level comparison according to the provided features. In [29] a

process for implementing a custom benchmark, useful to understand the performance of

various cloud IaaS offerings (in a pay-per-use model), is presented. The authors face the

lack of precise indicators to assess the performance of the same VM running on different

platforms and the inapplicability of hardware benchmarking. They show the results of

the proposed benchmarking suite of applications by considering two instance types (a

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 37

cheap and an expensive configuration) and some factors, such as the data-center location

and the provided performance level both in a short-term and a long term utilization. In

[30] a performance comparison between Eucalyptus and OpenNebula is conducted. The

workload consists of the software packages needed to run a web application very similar

to Wikipedia [31] web service and a benchmarking application which emulates an online

stock system. They attempted to compare the platforms in terms of:

• provisioning time of VMs;

• elapsed time of batch processing;

• throughput of web transactions;

by considering several configurations differing for the location of VMs images (local disk

or NFS storage) and their allocation type (using dense or sparse files). The experiments

prove that the best results for the three parameters are not always achieved with the

same configuration.

In [32], the authors argue that classical benchmarking techniques, like TPC-W, are

not suitable for the characteristics of the cloud platforms, which lie in scalability, pay-

per-use model and fault tolerance. For the purpose of addressing the lack of a standard

benchmarking technique for Cloud Computing, they suggest their static metrics to assess

the dynamism and the elasticity which are typical of the cloud paradigm. Ming et al.

[33] propose an analysis of the VM start time, which they consider as the time needed

to find an allocation for the virtual appliance and to copy, boot and configure all the

required resources. The authors compare the start time of three different cloud providers

(Rackspace [34], Amazon EC2 [35] and Microsoft Azure [36]). The experiments aim at

evaluating how the start time is influenced by different parameters, such as the date

and time, the size of the image, the virtual hardware template and the data center

location. They demonstrate in their findings that the start time is linearly dependent

with the OS size and it is also related to the instance type, while it is quite constant

when requesting a pool of virtual resources. VMmark [37] is a benchmark to assess the

stress load of the physical nodes’ resources, such as RAM, CPU utilization and I/O load,

by deploying a set of VMs on top of VMware [38] technology. Also Casazza et al. [39],

in their vConsolidate project, suggest a benchmarking for evaluating the performance

of different workloads consolidated in cloud hosting servers.

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 38

2.3 Platforms Under Evaluation

Starting from the requirements described in section 2.1, the following evaluation was

restricted to two different projects, namely OpenNebula and OpenStack. Two testbeds

with the same hardware specifications ware installed and properly configured, with the

purpose of performing an experimental evaluation of these platforms. In the next section

some key features and the structure of the considered platforms are briefly explained.

2.3.1 OpenStack

OpenStack is an open IaaS platform, whose objective is to offer a collection of different

services which can be deployed in a fully distributed and scalable fashion. It started as

a project under the name of OpenStack Austin in 2010 and it has been characterized

by different releases (the latest stable one is called Juno and it is the tenth one). Open-

Stack offers a number of services which exchange messages through an asynchronous

communication, among which there are:

Figure 2.1: OpenStack Services

• OpenStack Compute (Nova) is the main service that allows to initialize a set

of virtual instances and it is responsible for the network configuration for each

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 39

instance. Nova is the service that manages the entire life-cycle of the instances

within the cloud infrastructure. It is completely agnostic to the type of hypervisor

that provides the virtualization services and it interacts with it via the exposed

APIs. Among the subcomponents of Nova, there are:

– Nova-API, namely the interface to the outside world which is the only way

users have to interact with the cloud infrastructure. This service also allows

to manage virtual appliances from Amazon, by using the Elastic Cloud (EC2)

APIs. This component is designed as a RESTful web server and it commu-

nicates with the other components of the infrastructure via a message queue

based protocol. In particular asynchronous request-response calls are used

and callbacks are used as a trigger, which is activated when the output for a

specific request is available.

– Nova-Compute is the service which handles all the life-cycle of a virtual ap-

pliance, by interacting with the configured hypervisor.

– Nova-Network is responsible for the configuration of the virtual network of

the VMs: it allocates IP addresses and creates networks according to the

chosen types, such as flat networks, VLAN based networks and so on.

– Nova-scheduler acts as a dispatcher of the Nova-API calls for the creation

of a VM. The scheduler chooses a compute server from a pool of available

resources through an algorithm which is based on configurable parameters.

• OpenStack Object Storage (Swift) is the service used to store objects ensuring

redundancy and fail-over features. An object is a storage entity with meta-data

that represents and describes it. When a file is loaded in the object storage, it is

not subjected to either encryption or compression. Swift allows to store, retrieve

files, back up data or as an archive for developing applications that require the

integration with a storage system. Among the functions implemented by Swift

there are:

– secure storage for a large number of objects;

– redundancy;

– data container (applications and VM images);

– scalability e backup;

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 40

Among the Swift components, there is the container that manages a list of objects

that are stored in a particular structure. This can be seen as a folder as in a

filesystem, although the difference lies in the fact that the containers can not be

nested. A container needs to be created before starting uploading any file. The

object component has the responsibility to store, search and delete objects. The

Proxy is the node the consumers interact with by using the exposed APIs. The

proxy receives requests to upload files, change meta-data or create containers.

The Ring contains information about the physical location of the objects stored

in Swift. Finally the Account is the server that manages the list of containers.

• OpenStack Image Service (Glance) is the service that allows to store, search

and obtain original VM images. It can be used in combination with the Object

Storage to stock images or it can use a special interface with the Amazon storage

solution, namely S3. In particular Glance can use as storage for the images:

– the local filesystem (default);

– OpenStack Object Store;

– S3 storage;

– HTTP (read-only).

• OpenStack Volume (Cinder) is the service which handles the creation of addi-

tional volume partitions, which can be created on the fly and dynamically exposed

to the VMs through the iSCSI [40] protocol. Volumes are allocated as block stor-

age resources that can be attached to instances as a secondary storage or they

can be used as the root storage to boot instances. A snapshot is intended as a

read-only point in time copy of a volume, that can be created from one that is

currently in use. A volume is requested via Cinder, which creates a logical volume

into a particular group. This volume is then attached to an instance by creating

a unique iSCSI session with the compute node.

• Dashboard (Horizon) provides users with a web-based platform to access and

manage all the implemented services. It can be used to manage instances, mount

volumes for instances, create a key pair, manipulate containers and so on. Among

the features available through Horizon there are:

– Instance Management: create or terminate instance, view console logs and

connect through VNC etc.;

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 41

– Access and Security Management: create security groups, manage key-pairs,

assign floating IPs, etc.;

– Image Management: edit or delete images;

– Manage users, quotas and usage for project;.

– User Management: create user, assign roles, etc.;

– Volume Management: creating volumes and snapshots;

– Object Store Manipulation: create, delete containers and objects.

• Keystone provides authentication and authorization procedures based on policies

for all the OpenStack services. Authentication determines if a given request is

actually coming from the user who requested the service, along with the provided

account information. There are two types of authentication: the first one is based

on the account (username-password), the other is based on token. Authorization

is the process through which an authenticated user can be granted the access to a

particular service. This service also handles the user management functionalities

by keeping track of users and what they are permitted to do. A user can be assigned

different roles in different tenants, which can be thought of as a project, group

or organization. Keystone provides a token and a service catalogue containing

information about the endpoints of the services a user is authorized to access to.

• Network (Neutron) is the service which handles the creation of a network for

the virtual appliances and it can be used as a substitute for Nova-network service.

The structure of Neutron is very modular, since it enables to use a specific plugin

which defines the interface with a networking driver (e.g. Linux Bridge).

2.3.2 OpenNebula

OpenNebula (One) was born as a research project in 2005 with the main purpose of

designing and implementing an efficient and scalable management platform for VMs on

large-scale distributed infrastructures. The One platform assumes that the underlying

physical infrastructure is built up in line with the classical cluster-like architecture,

where the basic components are: front-end, hosts and datastores. The front-end node is

where the platform installation has been accomplished: it is responsible for the execution

of the centralized services (monitoring and management, scheduling, web interface and

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 42

Figure 2.2: OpenNebula Architecture

so on). Hosts are the hypervisor-enabled nodes providing the resources needed by the

running VMs, while datastores are the storage areas holding the VM disk images. The

last versions of OpenNebula have been integrated with a series of applications which

are oriented to the automation of configuration tasks and the resources scaling. These

applications make the adoption of such a platform very attractive for large testbeds when

there is the need to create on-demand testing scenarios, consisting in a large number of

virtualized systems that interact through different networks. These applications, called

respectively OneFlow and OneGate, are included in the latest available version. Among

the advanced features offered by the platform, there are also:

• the implementation of High Availability (HA) architectures that deal with events

of faults occurring on the VMs, on the host nodes or the front-end;

• the ability to aggregate heterogeneous cluster with each other, as well as the ability

to create, in a physical data center, a virtual data center associated to particular

security policies and different QoS levels.

The OpenNebula architecture is characterized by the installation of a single software

module on a node that takes the name of manager, which also hosts the web interface

for managing the features offered by the platform and for defining, instantiating and

monitoring virtualized resources. The other nodes are the so-called hosts, which are

running the VMs: on these hosts there is not any installed software module, even if they

have to be properly configured to be included in an OpenNebula cluster. For the creation

of a VM, OpenNebula uses a template-based approach, that makes it more flexible when

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 43

configuring virtual resources: in particular it is possible to specify parameters and low-

level instructions to the hypervisor in a specific section of the template. Regarding the

management of the storage areas, OpenNebula divides them into three main categories:

• System Datastore, that contains the images of the disks associated with the VMs

running on the nodes. These images may be, for example, whole OS copy or simple

file system links.

• Images Datastore, which is designed to contain the original images used to create

the disks representing the running VMs. This datastore can be of different types

in relation to the underlying technology:

– file-system, used to store images in a file format. The images are loaded into

a shared directory mounted on the cluster hosts;

– Logical Volume Manager, to store images using LVM volumes instead of file

formats;

– specific storage solutions, such as GlusterFS, Ceph, or VMFS (VMware spe-

cific);

• Files Datastore, which can store files useful, for instance, in the context section of

a VM template.

For each datastore different transfer mechanisms can be used: this allows one host to

simultaneously access storage areas managed with different transfer modes. Among

them there is, for instance, the shared mode, thanks to which the datastore is exported

as a shared file system to hosts (e.g. via NFS). Otherwise images can be copied into the

hosts’ datastore via ssh.

2.4 Functional Assessment

In order to realize a functional assessment of the two platforms, the discriminating

factors which were taken into account are related to the the reproduction of the real

system and the design of recovery strategies among distributed data centers. Therefore,

these parameters were considered:

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 44

• the support for distributed storage technologies, needed for WAN-optimized data

replication;

• federation capabilities for the management of multiple data centers, which are

geographically distributed;

• VM configuration flexibility;

• network configuration flexibility;

• easiness of installation.

OpenNebula and OpenStack have quite the same capabilities in terms of storage and

virtualization technologies support, as shown in Table 2.1.

Table 2.1: Storage Technologies Support

Storage NFS GlusterFS CEPH iSCSI VMFS

OpenStack Yes Yes Yes Yes Yes

OpenStack Yes Yes Yes Yes Yes

Table 2.2: Features

OpenNebula OpenStack

Installation moderate complex

VM/Network customization high moderate

Federation capability zones cells (exp. authentication)

Anyway they are quite different when dealing with virtual resources configuration as

proved by Table 2.2. OpenNebula platform is simpler to install and configure, since it is

characterized by a monolithic structure, while OpenStack requires the installation and

configuration for each of the described services. This aspect emphasizes the complexity

of this platform that increasingly tends to increase. On the other hand, OpenStack

is characterized by a large community: this is an important feature when supporting

and bug reporting activities are needed. It also offers a range of additional interesting

services, which are, however, out-of-scope with respect to the porting of an ATC system

on a virtualization platform.

The flexibility and simplicity in the VMs and virtual networks configuration based on

the use of templates rather than plug-in settings represented a very important factor

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 45

for the considered use-case. Besides, the ability to exploit features offered by low-level

hypervisor configuration parameters gave the chance to overcome some issues, such as

VMs graphics peculiar characteristics.

2.5 Provisioning and Scheduling Time

SMICloud [41] is a framework based on the publicly available service measurement in-

dexes for comparing and ranking cloud providers according to the service level agreed

with the client and the perceived QoS. The framework receives the client’s requests

along with the application deployment requirements. By monitoring the performance of

the cloud services, it is able to compute the ranking factors for all the providers which

are listed in a service catalogue. The Cloud Service Measurement Index Consortium

[42] has identified a set of business oriented key performance indicators (KPIs) that can

be exploited in order to compare all the cloud services (IaaS, PaaS, SaaS, etc.). The

framework includes both critical business and technical features and it has a hierarchical

structure: in the top level, there are seven categories, each with a certain number of

attributes. For the experimental evaluation of the platforms, a specific category, namely

the agility, was taken into account. The elasticity is among the attributes included in the

this category and it is crucial to the performance analysis of the cloud platforms: it can

be interpreted as the ability of a service to adapt itself to the changes and the require-

ments issued by the applicant. It is also attached to the scalability of the service, that

is a measure of the increase in its performances when additional resources are granted

to the system. By having in mind the characteristics of the IaaS cloud paradigm and

its application in the context of mission critical infrastructures, the elasticity attribute

was evaluated in terms of the provisioning time. In general, the provisioning interval

can be described as the time needed to activate or deactivate a generic resource. More

in details, the provisioning time can be viewed as a service response time: it is the time

interval starting with the request for a specific service and ending with its availability.

In this case, the service consists in the creation of a VM in the cloud platform, according

to a well-known hardware template. Thus, it is possible to consider an average response

time for the creation of the virtual appliance as follows:

1

N

N∑
k=1

Tk (2.1)

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 46

where, considered N subsequent requests of the same VM, TK stands for the time between

the client’s request and the instant in which the resource is considered in an active status

by the monitoring process of the platform. This is a state in which the VM disk was

copied in the instances folder and its creation ended successfully, even if the VM is still

in the booting phase, so it is not ready to serve the first user’s request.

2.5.1 Analysis of the Provisioning Time

The time needed to deploy VM k can be divided in three different terms, as explained

in the following formula:

Tk = T r
k + T s

k + T e
k (2.2)

where

1. T r
k takes into account the issue of the creation request by using the APIs of the

platforms and instant in which the command starts to be processed.

2. T s
k is the time it takes for the platforms to select one of the available physical hosts

with enough resources to host VM k. This time is dependent on the complexity of

the scheduling algorithm implemented by the platform and on the number of the

configured compute hosts.

3. T e
k embodies the processing time including all the tasks necessary to spawn and

configure the VM. It can vary according to the type of storage which has been

chosen for holding the VM images: all the IaaS platforms allow to use different

kinds of storage solutions. It has been proved in [30] that different configurations,

such as local storage or NFS, can lead to diverse provisioning times. This factor

is also influenced by the network configuration of the virtual appliance.

In order to obtain the provisioning and the scheduling times a Java-based application

was developed and deployed on the controller node. Basically, the application exploits

the APIs of the platform to perform the following tasks:

• constructing one of the virtual hardware flavors which were taken into considera-

tion, according to a binary string that represents all the configuration parameters;

• requesting a new VM with the selected service offering;

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 47

• obtaining the status of the deployed VM;

• computing the time between the issue of the creation request and the ready status

response.

2.5.2 CPU and RAM Stress

In order to compare the resources stress of the considered cloud platforms, the CPU and

RAM utilization of the compute hosts, hosting the maximum number of VMs, each one

executing the stress command [43], were evaluated. As first step, the number of VMs

with the same virtual hardware template that can be instantiated on a single physical

host, without over-provisioning CPU and RAM, was investigated. The possibility to

over-provision the available resources can be enabled or disabled in the configuration

parameters of the platforms. The objective was to reach a 100% CPU utilization on each

VM, by balancing between user/system and I/O processes. The stress utility allows to

specify the kind of stressing operation through some parameters, such as:

• cpu, which describes the number of forked processes executing a sqrt() command

(user level);

• vm, the number of forked processes executing malloc()/free() commands (system

level);

– vm-bytes is the number of bytes, expressed in MB, which every vm worker

has to allocate;

• hdd, the number of forked processes executing a write() command (I/O level);

– vm-keep specifies to re-dirty memory, instead of freeing and reallocating it.

A combination of the three parameters was used with the purpose of achieving a 0%

time in which CPU is idle and a trade-off between user, system and I/O CPU utilization,

by setting these parameters:

• cpu 1;

• vm 1 and vm-bytes 350M;

• hdd 500 and vm-keep.

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 48

2.5.3 Virtual Machine Deployment

OpenStack

Regarding the elaboration time for the VM deployment, OpenStack only gives the chance

to create ephemeral virtual instances, which means that the VM image no longer exists

after the user deletes it. As a consequence, it is possible to create multiple VMs from

the same image. The only way to obtain persistent images is to spawn an image from a

volume previously created through the block service (Cinder). When the user creates a

new VM from an image stored in the Glance repository for the first time, the deployment

deals with these steps:

• request handling;

• virtual network configuration;

• image creation, which in turn is divided into the following sub-steps:

1. the image is copied from the repository to a directory (called base) of the

VMs datastore;

2. this image is then converted from its original format to raw;

3. the image is copied again obtaining a different version for each requested

flavor (this can be referred to as “flavor image”);

4. the image is resized using qemu-img resize according to the specifications of

the requested flavor;

5. the filesystem of the image is checked and resized to the specific filesystem;

6. an instance disk is finally created through qemu-img create by specifying

qcow2 as output format.

When the user needs a secondary (ephemeral) disk for the VM, the additional steps

concern the creation of a disk which is formatted according to a particular filesystem

and then attached to the VM. All the subsequent requests of VMs with the same image

and flavor are not affected by steps from 1 to 5. Instead, when creating a VM with the

same image but a different flavor, only steps 1 and 2 are skipped.

Prior to create the VM, the scheduler needs to know where to allocate it. OpenStack

uses the scheduler to select a host where to spawn the new VM. The cloud administrator

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 49

can decide to deploy a specific type of scheduler by choosing among different policies,

such as:

• filter (the default one), which defines a number of filters the compute nodes have

to satisfy and computes a ranking score for each of them;

• chance, which chooses random one of the available hosts with enough resources;

• simple, which adopts a spread first policy, by selecting the least loaded node (it is

no longer supported in the newer versions of OpenStack).

OpenNebula

OpenNebula creates and handles two datastores, which stand for the storage areas hold-

ing the VM disks. The original VM images are registered in a datastore, which is referred

to as images datastore, whereas those related to the running VMs are stored into the

system datastore. OpenNebula does offer the possibility to create a persistent image:

by creating a VM with a persistent disk, every modification of the instance is preserved

even if it is destroyed. Obviously, only one VM at a time can be created starting from a

persistent image. Non-persistent images, instead, are deleted when the VM is cancelled.

OpenNebula entrusts part of the VM creation to a centralized Transfer Manager which

is pre-configured with various scripts, among which one of them is executed according

to the chosen storage model (NFS shared in our case). This component is in charge

of handling the transfer of an image between a source (the front-end) and a destina-

tion (a compute host). In particular the actions executed by the TM when creating a

non-persistent/persistent image are:

• clone (non-persistent), which creates an exact copy of a disk from the images

datastore to the system datastore of the target host;

• ln (persistent), which creates a symbolic link in the target system datastore that

points to the source image.

When a deployment request for a non-persistent VM arrives to the TM, a clone script is

executed: it copies the selected image it in the system datastore of the target host. On

the other hand, if the user requests a VM with a persistent image, a ln script is executed

and a VM root disk is created as symbolic link pointing to the original image.

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 50

In both the cases, after the VM disk is created, the virtual guest is deployed by using

virsh. The second step deals with the network configuration which basically consists in:

• adding a new port to the virtual switch;

• defining a treatment for the packets that pass through this port by establishing

two flows in the virtual switch.

As argued before, the other factor that can influence the provisioning time is the schedul-

ing algorithm. In OpenNebula f pre-defined scheduling policies are available, such as

packing, striping and load-aware, in addition to the opportunity of specifying customized

rank expressions. In the investigation, the packing policy, offered by the platform was

used: it allows to use the whole available CPU and RAM of each physical host. The plat-

form also defines a configurable time value (scheduling interval) between two scheduling

actions, fixed by default to 30 seconds. This parameter was set to 1s in order to minimize

the whole idle time during consecutive allocations of VMs.

2.6 Experimental Evaluation

2.6.1 Configuration Parameters

Before setting up our experimental campaign, the parameters involved in the creation of

a virtual machine were tuned, in order to evaluate their influence on the provisioning and

scheduling time measures. This allowed to neglect the variability of some parameters and

to set a specific combination of values. In particular these parameters were considered:

• the server load, as concerns the number of VMs already instantiated on the host;

• over-provisioning, that indicates if the amount of RAM and CPU physical resources

can be virtually exceeded;

• the virtual machine image:

1. type (qcow2 and raw);

2. size;

3. persistence;

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 51

• the scheduling algorithm;

• the instance type, also referred to as “flavor” or virtual machine template, through

which the user can assign:

1. the number of vCPUs (expressed as CPU slots);

2. the amount of RAM (expressed in MB);

3. an optional ephemeral secondary storage;

4. the number of virtual network interfaces.

Table 2.3: Fixed Parameters

Host Load Scheduling Algorithm OverProvisioning

No VM Fill First Scheduler Disabled

Table 2.4: VM Flavor

VM Instance Type

vCPU RAM(MB) vNIC

1 512 1

Table 2.5: Variable Parameters

Secondary Storage

Yes/No

Table 2.6: VM Allocation

VM Allocation

OpenNebula OpenStack

Persistent Non-Persistent 1st Allocation 2nd Allocation

The first experiments showed no appreciable variation in the results due to the server

load, the over-provisioning option and the VM flavor, so they were considered as fixed.

The picked values are shown in table 2.3. Since the aim was to obtain the relevance of the

basic steps of the elaboration time (T e
k) on the provisioning interval, the variability of the

time measures due to different sizes and formats of the VM image was not investigated.

The dependence of the provisioning time on these parameters was well studied in [30]

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 52

and [33]. The variability analysis of the copy of the image was of poor interest in the

experimental evaluation: the provisioning time, indeed, is obviously affected by the copy

of the image, which is in turn dependent on the network load of the switch connecting

the clustered nodes and the NFS storage server. For this reason in the experimental

campaign, only one case was considered, which involves the copy of the image, by fixing

the size and the format.

2.6.2 Experimental Scenarios

As explained in the previous sections, the two platforms are intrinsically different when

spawning a new VM. When a user requests a VM with a non-persistent image in Open-

Nebula, the deployment basically consists in copying the original image into the target

system datastore and creating the VM by using virsh. On the other hand, the first time

a user deploys a VM in OpenStack, a full copy of the image stored in the Glance back-

end is needed; then the image is converted and resized according to the flavor, created

using qemu-img and spawned. In this perspective the time it takes to have a running

VM can be comparable with the deployment of a non-persistent image in OpenNebula.

Instead, if the VM is deployed starting from a persistent image in OpenNebula, a sym-

bolic link to the original image is generated (without copying it). In OpenStack, after

the first creation of a VM, all the subsequent requests for the same image does not

involve its copy. Here is why the provisioning time in the latter case can be compared to

the one achieved with the deployment of a persistent image in OpenNebula. By having

this analysis in mind, three different cases were taken into account in the investigation:

1. case 1 involves the deployment of a persistent qcow2 image with a virtual disk size

of 1.7 GB (effective size of 8.0 GB) in OpenNebula without a secondary disk and

the allocation subsequent to the first one of the same VM type in OpenStack;

2. case 2 differs from case 1 because of adding a secondary ephemeral disk to the

instance;

3. case 3 deals with the creation of a non-persistent image without a secondary disk

in OpenNebula and the first allocation of such a VM in OpenStack.

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 53

2.6.3 Results

2.6.3.1 VM Provisioning Time

As remarked by figure 2.3(a), the creation of an additional ephemeral disk does not have

a significant impact on the provisioning time in both the platforms. Therefore, in the

analysis of the remaining case, the presence of the secondary disk was neglected. In the

first considered case (the deployment of a VM with a persistent image in OpenNebula

and the second creation of the same VM in OpenStack) OpenNebula outperforms Open-

Stack: for the latter, the mean provisioning time is about 42% longer (1,85 seconds).

By default, OpenStack gives the chance of injecting metadata and an asymmetric key

(for SSH password-less access) into the VM: anyway in our analysis this possibility was

avoided and no firewall for the VMs was used. In figure 2.3(c) the variability of the

obtained measures is illustrated: OpenStack has more stable results compared to Open-

Nebula, and this is due to a greater impact of the hosts monitoring process. The deep

analysis of the logs of the platforms allowed to obtain the principal contributions of the

provisioning time. As shown in figure 2.3(e), four factors were identified: the time to

issue the VM request, the communication overhead in the platform, the scheduling time

and the creation of the VM. In both the platforms the creation of the VM accounts for

about 80% of the entire time and the presence of different modules in OpenStack also

allowed to recognize a 12% additional overhead, which is related to the communication

with the scheduler and the compute module. Nevertheless, the time it takes for Open-

Stack to spawn a new VM is longer with respect to OpenNebula and it is the reason

why the influence in percentage terms of the VM deployment tasks (figure 2.3(f)) was

investigated. OpenStack requires about 39% of the whole time for handling the VM cre-

ation and interacting with the other services, such as Glance and Quantum to manage

the image and to get network-related information respectively. The management of the

virtual networking (basically OpenvSwitch and tun/tap drivers) and the virtualization

drivers accounts for about 30%, just as the creation of the VM image. OpenNebula, on

the contrary, shows a simpler internal architecture and employs fewer commands for the

management of the network and virtualization drivers. Anyway it should be observed

that it was not possible to estimate the additional overhead in the OpenNebula plat-

form, because of the smaller amount of data which can be deduced from the logs. The

greatest impact on the provisioning time is related to the interaction with KVM and

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 54

(a) Cases I-II (b) Case III

(c) Cases I-II (d) Case III

(e) Provisioning Components CASE
I

(f) VM Creation CASE I

(g) Provisioning Components CASE
III

(h) VM Creation CASE III

Figure 2.3: Provisioning Times Results

OpenvSwitch drivers and the execution of the VM deployment script.

Figures 2.3(b), 2.3(d) and 2.3(g) show the provisioning times of the third case, which

deals with the creation of a non-persistent virtual appliance in OpenNebula and the

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 55

first allocation of the same VM in OpenStack. The time needed for the creation of the

instance are prominently different for the two platforms: the time it takes for OpenStack

almost doubles the one achieved in OpenNebula (2.3(h)). This time takes into account

the copy of the whole image, which is executed between two directories, both exported

via NFS protocol. Anyway the time required by OpenStack is double because the image,

which is qcow2, is converted to raw and this conversion demands for about 20 seconds

additional time.

2.6.3.2 VM Scheduling Time

In figure 2.4 the mean values for the scheduling times in both the platforms are presented:

the scheduling algorithm implemented by OpenNebula is affected by slightly longer times

with respect to OpenStack.

Figure 2.4: Scheduling Times Results

Nevertheless these results were expected by comparing the complexity of the algorithms

which are implemented by the two platforms. The OpenStack scheduling algorithm

consists in two stages: the first one has the goal of selecting hosts according to the filters

specified in the Nova configuration file. RAM and CPU filters were configured with an

“allocation ratio” of 1.0, in order to disable over-provisioning. Afterwards, all the hosts

that did not pass the filtering phase are excluded from the final decision. In the second

phase there is a weighting process of all the filtered hosts according to the specified cost

functions. The default one returns the amount of free RAM of the host and has a weight,

which represents the behaviour of the algorithm (fill-first 1.0 or spread-first -1.0). So

for each cost function, every host obtains a score and the final ranking is calculated as

follows:

ranki =
∑
j

wjsij ∀i (2.3)

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 56

where sij is the score of node i related to cost function j and wj is the weight of the j-th

function. Besides the default cost function, another one for CPU slots usage was also

included in order to choose a target with the largest combined utilization of CPU and

RAM.

OpenNebula uses a match making scheduler which implements the rank scheduling pol-

icy. The allocation decision is taken after these steps:

• VM filtering, in which the VMs that request more storage than the available

amount are filtered out and assume a pending state;

• host filtering, during which the servers that do not meet VM requirements or do

not have enough resources (CPU and RAM) are filtered;

• hosts ranking, that is the evaluation of the remaining hosts, using a ranking score

policy obtained through the information periodically collected by the monitor

driver.

Regarding the ranking factors, OpenNebula allows to configure the policy, by using a

predefined or a custom one. The packing policy was chosen: it has the objective of

minimizing VMs fragmentation and the number of active nodes, by selecting the node

with more VMs running on it. Anyway it should be pointed out that the scheduling time

accounts on the provisioning interval for about 2,78% in OpenStack and about 7,15% in

OpenNebula.

2.6.3.3 CPU and RAM Stress

The experiments aimed at evaluating the impact in terms of CPU and RAM utilization

when stressing the two platforms. The maximum number of VMs was deployed and the

linux stress command was used on each of them, by applying the parameters explained

before and a duration interval set to 300 seconds. In figure 2.5(a), it can be noticed

that, during almost all the stress time, the level of CPU utilization remains quite stable

for both the platforms, even if the mean percentage achieved by OpenNebula is 97,45%,

while for OpenStack it is slightly inferior, by settling on 93,2%. Figure 2.5(b) exhibits,

instead, the occupation of RAM (in MB) after the allocation of 8 virtual machines and

during the stress test. The graph compares two (almost consecutive) stress tests: in the

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 57

(a) CPU Stress

(b) RAM Stress

Figure 2.5: Stress Results

OpenNebula case, during the stress, the curves mostly overlap and they are characterized

by a mean value of 4895 MB. OpenStack experiments shows a higher RAM occupation

(5694 MB as mean value) and the second test exhibits a 10% increment in the pick RAM

occupation value with respect to the first experiment.

2.6.3.4 Analysis of the Results

The functional assessment was intended at verifying which platform has more flexibility

in the creation of virtual resources. It has been pointed out that OpenNebula gives the

chance to easily configure VM characteristics by using a very modular template. This

was of great help when creating VMs for legacy nodes characterized by specific hardware

or graphics features. Besides in OpenNebula is much more simpler to create a persistent

VM image which was the best fit option to the considered use case; OpenStack only

allows to request ephemeral VMs by default, even if it has a procedure for making the

image persistent. The results achieved for the evaluation of the provisioning time also

indicate that OpenNebula is a very promising project, even if the results are not to be

Chapter 2. A Cloud Platforms Assessment for Mission-Critical Infrastructures 58

granted for exhaustive. Anyway, by analysing the results of the assessment, OpenNebula

platform was chosen as preferred cloud platform.

Chapter 3

A Cloud Based Architecture for

the Security of Mission-Critical

Infrastructures

3.1 Context and Motivations

The development of the industrialized countries is the result of the advanced services

they are able to offer to their citizens by means of complex infrastructure, whose failure

in terms of partial or total unavailability could have a catastrophic impact on both the

economic field and on human lives. Critical Information Infrastructures (CIIs) are inter-

twined in many modern human activities such as communications, health, tourism and

finance, and they rely on computer-based systems to exchange, aggregate and extract

significant amounts of sensitive data. As a result, the act of preserving CIIs availability,

integrity and confidentiality has a great impact on our lives: the unavailability of a given

CII, due to accidents or malicious attacks, can affect the life of a nation. Transportation

systems, electricity supply chain, telecommunications and military infrastructures are

just some examples of such kind of critical systems. The political and economic relevance

these infrastructures have achieved during the years makes them particularly vulnerable

to failures due to unintentional, for instance natural disasters or technical problems, or

intentional failures, such as malicious events or terrorist attacks. Next to recent comput-

ing evolutions, critical business services are characterized by an increasing digitalization

59

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 60

process. As a consequence, mission critical systems are no longer isolated and demand

for flexible, agile and low-cost platforms to deliver their services, satisfy customer’s ex-

perience and improve cyber-security. Nevertheless the obvious benefits coming from the

application of the cloud paradigm, one of the main obstacles in the deployment of legacy

critical infrastructures in the cloud is the lack of dependability assurance and solutions to

increase the protection against external and internal threats. The security issues of the

cloud paradigm can be considered at different levels: at the IaaS layer, users should be

protected from each other when using the same cloud platform. Indeed, the mechanism

that allows to obtain the first level of isolation and protection among users leveraging

shared resources is the virtualization. However, not all types of virtualization allow to

obtain an adequate protection level: network, for example, can be a potential vulnera-

bility, in the sense that, if the virtual network is not properly set up and secured, the risk

of providing potential attackers with the access to sensitive data becomes very probable.

Several proposed approaches use an holistic approach in order to improve security in

relation to different infrastructural layers, such as data, application and network layers.

The nature of mission and safety critical applications really stresses out the lack of

robust security solutions and the need for automatic disaster and recovery procedures.

This is the reason why an architecture for implementing security mechanisms at different

layers in a cloud environment was properly designed and implemented. The main idea

is to provide this architecture with agile mitigation strategies in the event of attacks,

by leveraging from one side virtualization mechanisms, such as the migration of virtual

resources, and on the other, the dynamic reconfiguration made possible by the Software

Defined Networking approach. By considering the same case study that was introduced

in Chapter 2, a security risk evaluation methodology was applied. The starting point

was the identification of the distribution of the system’s vulnerabilities over the assets;

then, the evaluation of the likelihood and the impact of the built threat scenario in

terms of confidentiality, integrity and availability were computed. The threat scenario

is intended as the exploitation of multiple vulnerabilities over the assets, along with the

attacker’s required skills to launch the attack. The threat scenario was used as proof

of concept of the designed architecture in order to verify the attack detection and the

mitigation strategy.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 61

3.2 A Case Study: a Real Air Traffic Control System

An Air Traffic Control (ATC) system is a mission, business and safety critical infras-

tructure: it can be defined as mission critical, because a threat in the system could lead

to a failure in the accomplishment of the mission, which coincides in this case with the

flight from a source airport to a destination one. It is business critical since a failure in

the system produces a huge loss of money, because people should be refunded if a flight

does not reach its destination or it is cancelled. Finally a problem in the infrastructure

could have effects on human lives: for instance, if the collision between two routes is not

correctly detected, a very potential disaster could occur. The Air Traffic Management

(ATM) systems represent a suitable example of complex System of Systems: they consist

in a large number of heterogeneous hardware and software components that are typically

spread over different ATC centres within a single country. A national Information and

Communication Technology (ICT) Service Provider is usually responsible for guarantee-

ing confidentiality, integrity and availability (CIA) of the ATM data exchanged across

a wide area network (WAN); whereas the Air National Service Provider is responsible

for both safety and security of ATM functionalities (as foreseen in the regulation EC

1035/2011 [44]). To improve the robustness of the whole ATM system against possi-

ble damages, such kinds of systems are often built up in redundant configuration over

a distributed infrastructure. ATC systems are very demanding and software-intensive:

they are safety critical, highly distributed and hard real time. Among the dimensional

architectural requirements of this type of systems there are:

• ultra-high availability (6 nines);

• high performance;

• modifiability;

• scalability;

• usability.

In the ATC field, ATC centers belonging to the same system are often deployed over

different cities in a given country, either for fault tolerance purposes and remote connec-

tion needs at country level. ATC Units provide the all the traffic control related services

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 62

Figure 3.1: ATC Areas

and they also responsible for Flight Information and Alerting Services to pilots. In order

to protect air traffic flows operating between airports, it is established a Control Zone,

which can be defined as a volume of controlled airspace which extends from the surface

of an airport to a specified upper limit. In particular, as shown in Figure 3.1, there are:

• the Tower, which consists in the air traffic zone which is part of the airspace

surrounding an aerodrome. The control service of that area is in charge of admin-

istrating and assuring security to all the ground movements and to the traffic in

the immediate proximity of an aerodrome;

• the Approach Control, which is the facility responsible for the control service in a

bigger air volume which is interested by take-off and landing procedures;

• more control zones are part of a control area, which is a more extended volume of

controlled airspace. The Area Control Centre (ACC) is the facility responsible for

the control service of that volume. After take-off, ACC has the task of ensuring

the proper distance and separation both vertically and horizontally among aircrafts

and to ensure the criteria of fluency and safety. When approaching the destination

airport, the ACC gives back control to the flight control tower of the airport itself

or if there is a fly over, the control is passed to another neighbouring ACC.

3.2.1 The Area Control Center

The Area Control Center (ACC) is the main operative center in an ATC system. ACC

is the infrastructure responsible for controlling flights in a particular volume of airspace

at high altitudes between approach and departure airports. From the hardware per-

spective, the ACC system is composed by a set of cooperating computers (central units)

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 63

hosting the applications dealing with surveillance and flight data (for detecting any con-

flicts) and with auxiliary information (useful for recording services). Central units are

also connected to other external systems for transmission and reception of ATC signif-

icant information. Consoles operating as controllers workstations are connected to the

central units, as shown in Figure 3.2.

Figure 3.2: ATC System

The system is characterized by different subsystems which interact with each other and

also with other external data sources, such as weather, radar stations, external coordi-

nation units and satellites. The function performed by the system is the management

of the life-cycle of flight plans: it has to undertake all the necessary actions to ensure

flight safety during the cruise phase. All the nodes belonging to the various subsystems

can communicate with each other via different VLANs in order to exchange application

related messages. Each component is equipped with:

• a middleware module that deals with the configuration of the entire system. In fact

every node has to be aligned with the main system’s database and it is needed to

verify if the component is correctly working. The middleware is not to be intended

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 64

as a separate component, because it is inherent to every single node, or in other

words, it is intrinsically part of the software installed on it;

• a supervisor module that:

– handles the role of each node. Indeed, every component is replicated and can

assume one of two roles, namely master or slave, in order to increase the total

availability of the overall system;

– is in charge of properly initializing the software components of the node itself;

– coordinates a service for the transmission and reception of messages through

different VLANs using the UDP protocol. Each application can declare a

certain set of ports which it desires to receive messages from, by following the

typical publisher-subscribe pattern.

The ATC system can be divided in four fundamental macro-components:

• Radar and Surveillance Data Processing, namely the components that receive raw

data from radars and process them according to a common standard, by creating a

unique mixed data, the so-called system track. Basically these nodes compute the

routes the planes are currently following: the system tracks represent the input to

other macro-blocks, which handle the graphical view.

• Operational display, which consists in all the nodes responsible for displaying infor-

mation and defining a graphical interface to the human operators. They basically

represent the support for the human operator that can take decisions on the basis

of the graphical visualization of the air traffic data, such as radar tracks, flight list,

alarms and weather information.

• Flight Plan Processing, namely the nodes that deal with the management of the

flight plan, characterized by a set of operations, such as insert, edit and delete.

The macro-area also involves components which are responsible for the long or

short term detection of emergency situations. The components can predict, detect

and prevent hazards like, for example, situations in which aircraft tracks are not

separated by a minimum threshold or flying below a certain altitude, or if they are

infringing a protected air volume. They are also capable of detecting deviations

of the current system track from the computed and expected one, namely the

trajectory prediction.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 65

• Control and Recording, namely the components that are in charge of recording all

the information passing through the network which are related to the air traffic

control procedures. In particular they have a double function: besides recording

and realizing a back-up of the data, they are also used for playback. Indeed

the recorded flight information can be replayed in order to reproduce old traffic

scenarios or for fast view data reproduction.

3.3 The Proposed Architecture

The selection of the cloud platform, discussed in the previous chapter, was the pre-

liminary step for the implementation of the testbed and the design of an architecture

characterized by attack mitigation strategies. The architecture is provided with a mech-

anism that leverages the dynamic nature of the Software Defined Networking paradigm

on one hand, and the use of a virtualization-based technique to protect virtual appli-

ances, namely the VM Live Migration. This mechanism can be exploited when one

of the virtual nodes is compromised and a malicious activity is detected, in order to

mitigate the effect of the attack. Since the objective is to provide different levels of

security, the proposed architecture has to be analysed considering three different layers,

as shown in figure 3.3. Cloud layer shows two data centers that are geographically con-

nected through a private backbone network. Each data center has its own IaaS layer

and there is a node that is responsible for the management of the overall architecture.

Moreover, in order to further increase network security in the connection between the

distributed data-centers, a mechanism that splits packets into parts and then redirects

them to disjoint paths is used, so that an intruder is not able to reconstruct the flowing

traffic. This is done by using a traffic engineering mechanism based on the MultiProtocol

Label Switching (MPLS) technology [45]. The confidentiality is guaranteed because if a

malicious user is able to intercept the traffic between two nodes of the network passing

through different paths, he should be aware of the splitting mechanism in order to re-

construct the original message from the parts he has collected. The mechanism is able

to ensure the confidentiality, without the overhead due to the classical cryptography.

In the virtualization layer, the view is independent from a particular platform imple-

mented in one of two data centers. Each physical machine is hosting a virtual switch to

which all interfaces of the VMs are connected. All the traffic the VMs are exchanging

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 66

Figure 3.3: Architecture Layers

is checked and compared with some well known malicious traffic patterns, in order to

identify possible attacks. A possible threat is detected by means of a “Network Intru-

sion Detection System”: when a malicious pattern is recognized, an alarm is generated.

After the system has identified the type of alarm, the best countermeasure is chosen on

the basis of the level of the attack severity. A mitigation strategy can be triggered in

the case of an attack against a node: the attacked machine is migrated in another cloud

platform, hosted in a second data center, in order to make sure that the attacker is no

longer able to access to the VM. Anyway after the successful migration of the node to

the new location, there is the need to let legitimate VMs reach the migrated virtual

appliance, by properly and dynamically reconfiguring the network flows.

3.3.1 Software Defined Networking

The reconfiguration mechanism described in the previous section is realized thanks to the

Software Defined Networking (SDN) paradigm: it has rapidly changed the perspective of

doing network research, by giving the chance to easily design and test new network pro-

tocols or forwarding algorithms. This paradigm is based on a sharp distinction between

the infrastructure layer, composed by network devices, and the control layer where the

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 67

network intelligence is deployed, namely the Controller. Network devices are no longer

close boxes, but they become programmable and their behaviour is logically central-

ized through a global view of the network. One of the most successful implementation

of this paradigm is OpenFlow, which is basically the interface between the two layers.

It allows to control and define traffic management strategies to be performed by the

switches in the infrastructure. The data-path of an OpenFlow switch consists in a “flow

table” which keeps track of the flows traversing it. A flow is identified through a match

in the OpenFlow terminology, which is a set of network packet related fields. Each of

them can be set to a specific value or just wild-carded, in order to create different flow

granularities. Every row of the flow table is the association of a match with a particular

action (or group of actions): all the possible actions are defined by the protocol specifi-

cations. They represent the way packets matching with a particular flow will be treated.

An action can be also composite: as an example, a switch can insert a VLAN tag in

the packet and then decide to forward it through a specific output port. An OpenFlow

switch consists in one or more flow tables and a group-table. Within the flow table,

flows are cached for fast transmission. More in details the structure of a row is like this:

• match fields, defining the key used to search for a flow to be associated with an

incoming packet;

• counters, which represent the number of packets that are associated with a given

flow. There are counters for each table, flow, and port number of the queue;

• instructions, which are used to modify the actions list.

Match Fields Counters Instructions

Table 3.1: A Flow Table Row

The OpenFlow switch processes the incoming packets through a pipeline consisting in

one or more flow tables. In the presence of a pipeline, each table is numbered starting

from zero: for incoming packets, the switch tries to find a compatible entry in the first

table. If the search is successful, then:

• the counters are updated;

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 68

• the instructions associated with the flow are executed. An instruction could simply

pass the packet to the second table in the pipeline. More complex instructions can

add some actions to the set, or write meta-data in the packet that can be used

as matching fields in the next tables of the pipeline. If there is no instruction

to process the packet the next table, then the pipeline is blocked and the related

action set is executed.

If there are overlapping flows and a packet matches more entries in a table, the row with

the highest value of priority is chosen. When you have a table-miss, it means there is no

compatible flow and the behaviour depends on the configuration of the flow table: the

switch can send the packet to the controller or simply drop the packet.

OpenFlow is also attracting a great interest in cloud platforms as a leading technology

for implementing Networking as a Service. The need to virtualize networks has become

the main focus of the cloud community: being the hypervisor the heart of the server

virtualization, it is needed to find networking solutions which allow to reach the same

level of abstraction with physical network resources. Indeed, OpenFlow can be used to

guarantee the programmability of the virtual networking layer. The application of this

dynamic approach also enables the deployment of security policies and their enforcement

at the edge of the network. New applications can be designed on the controller to

apply security policies when a packet generated by a malicious VM matches a learned

dangerous traffic pattern.

3.3.2 OpenFlow-based Security Architectures

The dynamic nature of cloud enabled systems makes the traditional security solutions

inefficient, raising the need to find new approaches for protecting the network infrastruc-

ture from different kind of attacks. OpenFlow can be considered as a enabling technology

for the dynamic application of security policies in the network at a low cost. Some re-

cent works exploit the potential of OpenFlow-based platforms to implement security

techniques. In [46], the authors argue that the SDN paradigm can make the implemen-

tation of traffic anomaly detection easier by using the well-known NOX [47] OpenFlow

controller in SOHO (small office/home office) networks. They implement four different

anomaly detection algorithms as applications on the controller and show that they are

able to work at line rate without affecting the home-network related traffic. The results

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 69

point out the programmability of the SDN, in the sense that it allows to implement

line-rate detection of network vulnerabilities exploitation and also risk mitigation: once

the anomaly is detected, a fast reaction can be spread all over the network. Braga et al.

[48] face a known security problem, which is the Distributed Denial of Service. Their

proposal aims at minimizing the overhead due to the extraction of network features used

in the detection process. They built an application on top of a NOX controller which

consists in three different modules:

1. the Flow Collector which is in charge of periodically requesting flows to the Open-

Flow switches through the secure channel;

2. the Flow Extractor which is able to obtain the features involved in the classification

of normal/malicious traffic;

3. the Classifier that receives the features selected by the extractor module and uses a

self-organizing map (an unsupervised classifier) to detect potential DDoS attacks.

The work shows the great flexibility of implementing a detector by using a standard

interface (the OpenFlow protocol) to obtain information about flows in the network.

Results underline that the detection and false alarm rates are close to the other ap-

proaches, but at the same time it is assured a low overhead rate. This is due to the fact

that this approach does not have to collect every packet directed to the victim node to

obtain the information needed by the classification process. Wang et al. [49] suggest a

flexible security management architecture for large-scale production networks to over-

come the drawbacks of the existing static solutions, by considering the peculiarities of

data center networks. The main aims of such an architecture are:

• service insertion, which means the possibility of introducing new network services

without efforts (such as protocol identification or a load balancer);

• scalability: to accomplish the need of avoiding a single point of failure, the goal

is to assure that introducing more security elements, it is possible to maintain

wire-speed performance and to increase reliability of the system.

The proposed architecture is composed by a central control component which has the

view of the global state of the network and of the designed security policies; besides one

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 70

or more security elements which are responsible for detecting anomalies in the traffic

patterns. The controller knows which traffic flows (according to the global policies) have

to be redirected to a determined security element by simply installing rules in the flow

tables of the edge switch. If the security element raises an alarm after the detection

process, it can send a message to the controller, which instructs the edge switch to drop

all the packets that match the malicious flow. This method represents a powerful way of

deciding which security boxes need to be activated in order to implement different secu-

rity mechanisms or even other services, such as load balancing. However, a distributed

architecture requires a deep analysis to verify that the introduced latency (caused by the

presence of the security elements) does not affect user experience. The last interesting

work about OpenFlow-based security solutions can be found in [50]. A NetServ node

can be considered as a programmable node which can allow to design and implement

various network services and different types of devices, such as a router or a switch. It

can obviously use OpenFlow as data plane: the switch can be connected to NetServ

nodes which represent processing units. In the proposed experiment, the authors use

a flow-based intrusion detection, instead of a deep packet inspection technique. It is a

two steps process: the first one, namely flow exporting, consists in creating flows from

observed traffic. The second one, namely flow collection, keeps memory of the flows for

the subsequent monitoring phase.

3.4 The Components of the Architecture

In Figure 3.4, all the components and their interactions are graphically described. The

cloud platform is provided with the capability of reconfiguring itself to mitigate the

effects of a raised security alert.

The traffic produced by VMs is sniffed with the objective of finding malicious patterns:

when there is a match with a specific rule, the intrusion detection agent sends an alert

through a Transport Layer Security (TLS) based socket to a Mitigation Server. Upon

the reception of an alarm, the control is entrusted to the Alarm Handler, which is in

charge of parsing the information which are contained in the alert, in order classify the

severity level of the attack. On the basis of the classification, the Alarm Handler can

adopt a specific countermeasure with the aim of mitigating the effects of the attack.

Therefore a mitigation and recovery strategy for the involved nodes is triggered. It

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 71

Figure 3.4: Architecture Components

consists in dynamically activating a hot migration of the virtual guest under attack in

a remote data center belonging to the same cloud infrastructure, by interacting with

the cloud platform manager. The information about the VM migration is handled by

the Migration Tracker, which keeps track about the migration process and detects the

endpoints of the tunnel to automatically create in the virtual switches of the cloud

hosts. In fact, once the migration process is terminated, it is needed is to guarantee the

location transparency of the virtual appliance, so that a legitimate machine can access

the services hosted on the attacked node, without being aware of the migration process.

The virtual switches are connected to an OpenFlow controller, named Floodlight, which

is in charge of populating the switches’ flow tables according to the activated modules.

Floodlight is also responsible for the flow reconfiguration when a migration due to a

security event occurs. All the components communicate through a secure channel, by

realizing a mutual authentication. On one side, the server sends its own certificate which

is determined from the key-store: this typically stores the identity information about a

subject, namely the certificate along with its private key and the certificate chain. On

the other side, the client verifies if this certificate can be trusted: if the server’s certificate

or the one of its Certificate Authority are found in the trust-store, then the server is

authenticated. The trust-store holds the certificates of trusted Certifying Authorities.

If the client authentication is also enabled at server side, the server requests for client’s

certificate: hence, he sends its own certificate which is found from its key-store. The

server mutually verifies if the client’s certificate can be trusted. If so then the client is

authenticated and the mutual authentication took place.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 72

3.4.1 OpenvSwitch

The virtual switches are based on OpenvSwitch, which is a multilayer, open-source,

Apache 2.0 licensed technology designed to run in extremely distributed environments,

as well as commercial products. Among the features it supports, there are:

• Link Aggregation Control Protocol, which allows to aggregate different physical

ports in order to obtain one logical channel;

• Bidirectional Forwarding Detection, which is a network protocol providing low-

overhead detection of faults even on physical media that do not support failure

detection, such as Ethernet or virtual circuits;

• Spanning Tree Protocol, used to determine redundant routes by using L2 tech-

nologies;

• Network Interface Cards bonding configuration for source-MAC load balancing

and active backup;

• OpenFlow protocol support and QoS traffic policing;

• tunnelling protocols, such as VXLAN, IPsec and GRE.

OpenvSwitch is fully supported by almost all cloud platforms. It consists in a kernel

module and a series of utilities in the user space. The core components, as shown in

figure 3.5, are:

Figure 3.5: OpenvSwitch Core Components

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 73

• ovsdb-server, namely the database that holds switch-level configurations, such as

bridges, interfaces, tunnel definitions and controller addresses. All the configura-

tion is stored on disk and survives a reboot. This component speaks the Open-

vSwitch Database Management Protocol (OVSDB), that is an OpenFlow config-

uration protocol, designed to manage OpenvSwitch implementations. There is

also a very high-level interface for retrieving all the configuration data from the

database.

• ovs-vswitched is the core component in the system that communicates to:

– the outside world using OpenFlow;

– the ovsdb-server using the OVSDB protocol;

– the kernel module over netlink;

– the system through netdevabstract interface.

It supports multiple independent bridges and provides a packet classifier with

efficient flow lookup. This core component is responsible for implementing mirror-

ing, bonding, and VLANs through modifications of the same flow table exposed

through OpenFlow. Besides it checks flow counters to handle flow expiration and

stats.

The classical linux bridge uses a very simple forwarding mechanism which is based on

matching MAC addresses of the hosts. All the operations needed to forward packets

are done in the kernel space. OpenvSwitch uses a different forwarding schema that is

derived from the SDN paradigm: the decision on how to treat packets is taken in the

user space. Hence, the first packet of a flow is processed by ovs-vswitched in the user

space, while all the subsequent packets match the cached flows in the kernel module

for fast transmission. The kernel module is, indeed, the component that implements

switching and tunnelling actions. If a packet is comparable to a flow, the virtual switch

simply executes the related actions and updates statistics, otherwise the packet is sent

to the user-space. For the virtual networking, in the cloud platform a virtual switch is

configured and connected to a physical interface: this was properly set-up to forward

VLAN-tagged traffic. All the virtual NICs are plugged into the virtual switch, in order

to enable the communication of different VMs over distributed physical nodes. The

structure of a virtual switch is shown in Figure 3.6.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 74

Figure 3.6: OpenvSwitch Bridge

Among the different alternative approaches for the networking mechanism used by the

cloud platforms, OpenvSwitch shows a great flexibility and several interesting features.

For instance, it enables the implementation of bonding, in order to guarantee redundancy

over network links. OVS is also equipped with utilities for control and monitoring of

the exchanged data, as well as QoS rules to meet specific requirements. Since OVS also

speaks the OpenFlow protocol, the forwarding decisions can be externally taken by a

controller.

3.4.2 The OpenFlow Controller: Floodlight

OpenFlow switches are basically dummy network devices which are programmed by an

external controller in charge of implementing the policies which packets are forwarded

through. The selection of an open-source solution among several available OpenFlow

controllers was based on a performance comparison, which was accomplished through

OFlops [51], namely OpenFlow Operations Per Second. This latter is composed by two

software packages:

• OFlops, a particular controller that allows to benchmark multiple features of the

switches;

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 75

• Cbench (Controller benchmarker), that generates packet-in events for the con-

troller by emulating switches’ connections. It is able to calculate the maximum

packet-in message generation rate, the delay between packet arrival and packet-in

event and the processing delay.

Figure 3.7: OpenFlow Controllers Evaluation

In Table 3.7, the results in terms of Flow-mod messages per second are shown: this mes-

sage is used by the controller to install, modify or delete a flow in the switch flow table.

In the comparison, only open-source controllers were taken into account, in addition to

other features, such as the customization of the controller modules, the availability of

RESTful APIs and the development support. From the evaluation process, Floodlight,

a Java event-based Controller, released under the Apache license, was selected. It is

developed by an open community and it is also characterized by the availability of a

huge collection of applications built on top of it. The controller is endowed with very

powerful APIs, which represent the interface for developing applications by leveraging

Floodlight supported features. The API server is available at port 8080 of the con-

troller. Any application, written in any language, is able to retrieve information or just

to take advantages of the services, by sending HTTP REST commands to the controller.

There is also a graphical dashboard which allows to have a global view of the network,

switches state and flow tables. Floodlight has an extremely modular structure: the dif-

ferent applications can be activated by loading the appropriate module in the properties

file.

3.4.2.1 Learning Switch

One of the controller’s basic applications is the one which defines the behaviour of the

switch data path: when a packet arrives to an OpenFlow switch and it does not match

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 76

any of the flows in the table, a OFPacketIn message is generated and sent to Floodlight.

The Learning Switch application is in charge of handling this message, by registering

itself as a listener for this type of OF messages. It basically reproduces the way switches

learn the correspondence between ports and MAC addresses. The OpenFlow packet-in

message received by the controller contains the packet that the switch was not able to

handle and the reason why the message was generated by the switch. In this particular

case, the reason is a table miss for the packet. Hence, given the the packet source

and destination MAC addresses, if the source one is unicast, the controller holds the

correspondence between the source MAC address and the port which the message arrived

from, in relation to the switch that sent the packet-in message. In this way, the controller

knows which output port should be used to send packets destined to that specific MAC

address. Besides, if for the same switch Floodlight has learned a mapping between the

destination MAC and an output port, the information to instruct that switch on how to

treat the packet is available. In order to do this, a flow table entry which matches on the

source and destination MAC, the data-link type (the protocol type in the next header)

and the IP source and destination addresses is created. This is realized by creating an

OFMatch object: this consists in the set of fields which the mapping between a packet

and a flow is based on. OpenFlow uses a 32-bit wild-cards field and Floodlight has a

convenience API that allows to easily construct a wild-card bit-mask. By starting with

all wild-carded bits, it is possible to set the appropriate meaningful bits, by specifying

the desired fields and specific values. As an example, a match based on IP source and

destination masks is created like this:

• match.setNetworkSource(IPv4.toIPv4Address(“192.168.12.0”))

• match.setNetworkDestination(IPv4.toIPv4Address(“10.0.10.0”))

• match.setWildcards(Wildcards.FULL.withNwSrcMask(24).withNwDstMask(8))

The first step is needed to specify the IP net-mask and, then, it is possible to set the

appropriate wild-card bits on the match, so that only parts of the IP addresses of the

incoming packets will be matched.

The controller uses a Flow Mod message, to create a new flow in the switch flow table.

The next time a packet matches the previously created rule, the switch will be able to

directly execute the actions that are associated to that flow. This protocol message can

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 77

assume different semantics: it can be used to edit the switch flow table, by using one of

these options:

• ADD, for inserting a new flow in the table with the specified match and action set;

• MODIFY, for changing the action set associated to a particular match;

• DELETE, for erasing a flow by indicating the match.

In order to install flows, the controller sends a message to the switch by using the first

option. Besides, a reverse flow for the incoming packets is also built and another Flow

Mod message is sent to the switch. On the other side, if for that switch a mapping

between the destination MAC address and an output port has not been learned yet, the

controller will force the switch to flood the packet.

The learning switch application was modified in order to enable VLAN based communi-

cation among the VMs controlled by OpenNebula. Therefore the controller has to check

if the packet source and destination MACs are known by the OpenNebula manager. If

so, Floodlight needs to understand it the attachment points, which the MAC addresses

are associated to, belong to the same OpenFlow switch. If this condition holds, it means

that the packet is exchanged between two VMs that are controlled by the same OF

switch and the action set associated to the match will contain only one action, that is:

• OFActionOutput, which forces the switch to send the packet through the output

port which was retrieved from the learning table associated to that switch.

Otherwise, the communication is between two VMs which are on different nodes, and

since the virtual networking is based on the VLAN technology, it is needed to get the

VLAN identifier. This can be done by using the OpenNebula APIs: it is possible to get

the virtual network which the MAC addresses belong to and to query for the VLAN tag.

When the controller knows all the information, an action set is created: it contains two

actions, that are:

• an OFActionVirtualLanIdentifier, which is used to insert a VLAN tag in the packet;

• OFActionOutput for forwarding the packets towards the obtained port.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 78

For the reverse flows all the match fields are simply in reverse order and, in case of

VLAN based communication, an OFActionStripVirtualLanIdentifier action is used to

strip the VLAN tag from the packet, before sending it to the destination port.

3.4.2.2 Flow Reconciliation

Flows need to be reconfigured when certain events occur, such as a link or port that goes

down, by triggering a notification to the controller. Also in the event of VM migrations,

the flows adjustment is handled by a specific module which needs to be enabled on the

controller, namely the Flow Reconciliation. This is an application which is activated

when a notification with a PORT DOWN event is sent by a switch: it means that

a port was deleted from that switch because, for example, a VM is migrated and its

attachment points are deleted from the source switch and added to the destination one.

This application is used to delete invalid flows across a network when a port or a link goes

down. It was extended in order to respond to a migration which is issued by the Alarm

Handler due to a security alarm. The controller first verifies if it has received a message

from the Alarm Handler: if there was no such event, the application simply deletes the

invalid flows in the switch that represents the source of the port down notification and

also in all the neighbouring switches, potentially caching flows towards the problematic

port. The controller knows all the links among the switches which were established

in the topology through a specific application, namely the Link Discovery Service. It

uses the Logical Link Discovery Protocol (LLDP) to detect links among the switches:

a LLDP packet has a fixed source MAC and the broadcast address as destination one.

The controller can detect two different types of links, namely “direct” or “broadcast”: a

direct link is established if a LLDP packet is forwarded through one port and the same

packet is received on another port: this means the two ports are directly connected. A

broadcast link is detected if a broadcast packet is sent out through a port and received

on another. The creation of this link means that there is another L2 switch between the

ports which is not controlled by Floodlight. The invalid flows, pointing to the downed

port are queried by using an OpenFlow protocol message called OFStatisticsRequest

and setting as request type FLOW. The request that will be sent to the OF switch is

OFFlowStatisticsRequest : this object has to be populated with a match that, in this case,

will have all wild-carded fields, except the output port. After the controller has obtained

the problematic flows, it creates a map data structure that stores the ingress port of

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 79

the invalid flows and the list of matches with actions that forward packets towards the

downed port, as shown in Figure 3.8. The invalid flows are deleted from the base switch

that generated the notification: this is accomplished by using a Flow Mod OpenFlow

message, in which the DELETE command, a wild-carded match and the deleted port

as output port are specified.

Figure 3.8: Port Down Interactions

All the topology links are scanned in order to obtain the potential switches storing flows

towards the invalidated port. By analysing a link, if its destination port is equal to

the previously stored port in the map structure, a neighbour switch has been found,

or in other words a connection between the base switch and another one was detected.

Therefore another map structure is created for keeping track of the link source port

(the output port for the neighbouring switch) and the matches that were previously

determined. The controller now holds a list of neighbour switches that need to be

controlled for invalid flows to be reconfigured. For each of them the flows towards the

output port (the key of the map) are requested and compared with the stored matches.

If there is a correspondence, the matches are saved together with the input ports. For

each of the matches, the controller knows the current switch, whose flow table needs to

be modified because there are flows directed to the deleted port, but the information

about the new location of the VM is also needed. This data can be retrieved by another

Floodlight component, which listens from port change events. When an ADD event

occurs, this means that a new port was added in a switch that generated the notification.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 80

When the controller listener receives a security message and there is such a change in a

switch, the data-path identifier of the device is registered and the port is registered in a

list. The controller now can obtain the information about the new switch that handles

the ports of the migrated virtual machine. Since the VM has migrated in another data-

center which is connected through a L3 network to the original one the flows are modified

in order to be redirected to VXLAN tunnels. The components which is responsible for

keeping track of the VM-ports to tunnel endpoints is the Migration Tracker. At this

point the flows towards the migrated VM can be modified on the neighbour switch, by

using the OpenFlow message type Flow Mod.

3.4.2.3 VxLAN

In order to ensure the continuity of data-link communication through a wide area net-

work, the reachability of the VM is handled by means of a tunnelling technology, namely

Virtual eXtensible Local Area Network (VXLAN). It is an encapsulation technology to

forward L2 traffic over a L3 network, that creates an overlay network which is called

VXLAN segment. In this overlay network, VMs can communicate even if they are con-

nected through a geographical network as if they were in a LAN. Only VMs belonging

to the same overlay segment can interact and each segment is identified through a 24-

bit identifier, namely the VXLAN Network Identifier. Hence, there is the possibility

to create up to 16 million VXLAN segments in the same domain. The encapsulation

tunnel is created between two Virtual Tunnel Endpoints (VTEPs): they are responsi-

ble for creating the additional header containing the segment identifier and realizing

and MAC-in-UDP encapsulation. The endpoints of the tunnel are collocated within

the hypervisor on the server that hosts the VMs. Anyway, a VTEP can also be on a

physical switch or server and it could be implemented in software or hardware. When

considering VMs unicast communication, a VM, that wants to communicate over L2

with another one hosted by a different server, sends a MAC frame to the destination.

If the two VMs are connected through a VXLAN segment, the tunnel endpoint obtains

the identifier of the overlay network the VMs belong to and it verifies if the destination

MAC is associated to the same segment. If so, the switch needs to know which is the

endpoint controlling the destination MAC. The original packet is then encapsulated: an

outer header comprising the endpoint’s MAC and IP, along with the VXLAN header

are added, as in Figure 3.9. The frame is then forwarded by the source endpoint, and

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 81

Figure 3.9: VXLAN Encapsulation

on the other side, the tunnel destination checks for the validity of the VXLAN segment

identifier and if there is a VM matching the packet’s inner destination MAC address.

The frame is, then, de-encapsulated and forwarded to the VM which is completely un-

aware about the encapsulation. Besides the destination endpoint is also able to learn the

mapping between the inner source MAC, which belongs to the source VM, and the outer

IP address, which belongs to the endpoint controlling that VM. OpenvSwitch supports

UDP encapsulation, even if there is no implemented control plane: this one is in charge

of defining the correspondence MAC-to-VTEP, or in other words, between VMs and the

endpoints that manage them. VXLAN solves this problem via IP Multicast: a source

VM that wants to communicate with another one sends an ARP request in broadcast

to the IP multicast address associated with the VNI. In this way all the other endpoints

will learn the correspondence between the source VM MAC address and the one of the

endpoint. In the proposed architecture, OpenvSwitch is used to dynamically create

tunnels VXLAN and the OpenFlow Controller to handle the VM-to-VTEP association.

3.4.3 Network Emulator: CORE

The geographical connection between the two data centers is emulated through Com-

mon Open Emulator Research (CORE), an efficient and scalable network virtualization

environment. Core allows to emulate a virtual network, which can also be connected

to physical network devices. Core is able to emulate a wide area network with specific

characteristics, such as bandwidth, delay and packet loss rate. There are two basic com-

ponents: a python daemon which is responsible for emulating virtual network nodes by

using virtualization and processing packet manipulation and a graphical interface. The

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 82

emulator has a very modular architecture, since the nodes can also be created from other

external network simulators and emulators. A network node is a very lightweight VM,

which can be created by using either Linux network name-space virtualization (namely

Linux containers) and Linux Ethernet bridging, or FreeBSD jails. The emulation sce-

nario can be created through the graphical interface or by means of Python scripting.

The interface enables to draw nodes and network devices which will be emulated once

the scenario is executed; on the other hand, a script can be written to configure the

scenario by importing CORE Python modules. After executing the emulation, the user

can interact with the nodes and check for statistics. Among the components that can

be created in an emulated network there are:

• Links.

• Network-layer virtual nodes, such as router which runs Quagga [52] to forward

packets; host which stands for an emulated server machine and PRouter that

represents a physical router.

• Links-layer nodes, such as hub that forwards incoming packets to every connected

node; switch that forwards incoming packets to attached hosts using a MAC based

hash table; RJ45, thanks to which emulated nodes can be linked to real physical

machine interfaces in order for real networks to be connected to the emulation

scenario; finally tunnel, that allows to connect more than one emulation scenario

by using the GRE protocol.

3.4.4 A Network Intrusion Detection System

Snort [53] is a packet sniffer and logger that can be used as a lightweight network intru-

sion detection system (NIDS), which is able to perform well-known patterns matching

and to detect different kinds of attacks, such as buffer overflows, port scans, common

gateway interface attacks and so on. Snort is able to decode the application related

data of a packet, in order to recognize hostile activities that can be characterized by

unique detection fingerprints. Snort consists in three main subcomponents, namely the

packet decoder, the detection engine and the logging and alerting subsystem. The de-

code engine is organized in different subroutines which are related to all the protocols

of the stack, starting from the data link layer and ending with the application one. The

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 83

detection engine is in charge of recognizing traffic patterns that fit with the pre-loaded

rules. Snort is extremely extensible, in the sense that it allows a full customization of

the rules. A rule follows a very simple syntax; as as example, a rule can be like this:

alert tcp any any → HOME NET 80 (flags: S; msg: ”TCP SYN Flood”; flow:

stateless; threshold: type both, track by src, count 1000, seconds 10; sid:10001; rev:1;)

The first field represents the action to undertake when traffic matches that rule: the

available actions are pass, log, or alert. If a pass action is specified, the packet is simply

dropped. The administrator has the ability of to enabling different logging and alerting

modes. Logging is useful, for instance, to store information about the packets that

generated the alarm in a human-readable format or in a binary one, with the aim of

helping the data analysis. Alerts are a notification of the event that can be sent to the

syslog, unix-sockets or just written in a textual file. The other fields are: protocol, the

source network and port, the operator that specifies the direction of the traffic and the

destination network and port. In the example rule an alert is generated when a packet

coming from any source address and port is directed to a host in the home network

specified in the configuration file on the port 80, with the flag SYN active. The message

is just a textual string that will be written in the alert. The threshold filter represents

the motivation why the alarm is raised: the type both alerts once per time interval after

c occurrences of the event and then ignores any additional events during the interval.

The occurrence rate can be tracked either by source or destination IP address. Count

represents the number of matching rule events over a time interval of s seconds that will

cause the alert generation. The sid keyword is an unique identifier for the rule that can

be exploited by the plugin to simply recognize it; instead rev is used for the identification

of the rule revision.

3.4.5 The Mitigation Server and the Alarm Handler

The Mitigation Server listens on a secure channel to receive alarm messages generated

by the Network Intrusion Detection System. Snort is configured to generate alerts which

are sent to a unix socket. This latter is programmed to send a specific message to the

Mitigation Server, that contains:

• a textual information about the alarm, that allows to select a countermeasure;

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 84

• the transport protocol, the source and destination IP addresses and the source and

destination ports of the packets that generated the alarm;

• an attack classification field;

• a time-stamp, which refers to the time the alert was generated and can be used to

distinguish among different attempts to launch the same kind of attack.

The message is sent over a secure TLS channel to the server: upon the reception of this

message, the Mitigation Server gives the control to the Alarm Handler. This component

is in charge of:

• parsing the message to extract all the information needed to identify the VM under

attack. This is done by using the exposed cloud APIs: in particular, given the

IP address of the virtual appliance, it is possible to retrieve low-level information

from the IaaS platform, such as:

– the VM name and identifier;

– the VM network interfaces and MACs;

– the physical node hosting the VM and the cluster id where the server is

located.

The OpenNebula APIs expose a huge number of XML-RPC based methods: in

order to be able to use them, as first step it is needed to set up the authoriza-

tion string and the endpoint, which represents where the OpenNebula API server

is deployed. At this point, it is possible to create an object representation, that

can be a pooled resource (e.g. HostPool) or a single element (e.g. VirtualNet-

work). OpenNebula APIs give the chance to use an object representation for all

the physical and virtual resources, such as servers, VMs, networks and so on,

and to perform different actions on them. The method info is used to access the

information contained within the queried objects, by exploiting their attributes;

• determining the new cluster, that is the new data-center where the VM will be

migrated. The Alarm Handler then uses an algorithm to select the physical server,

characterized by the highest combination of used resources (considering CPU and

RAM), which can host the migrating VM;

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 85

• sends a non-blocking message to Floodlight to report a security event that will be

managed by enabling the migration of the attacked virtual resource;

• interacting with the Migration Tracker in order to inform this component about

the migrating VM and the data which was retrieved from the cloud platform;

• setting the migration status as “in process”;

• triggering the live migration of the attacked machine by using the appropriate API

of the cloud platform;

• blocking the source of the attack by setting a rule to discard all packets coming

from the IP of the attacker using the APIs of Floodlight;

• logs the event;

• blocking itself to to receive a massage determining the end of the migration by

Floodlight: this is used to indicate a successful migration and the reconciliation of

the network flows.

3.4.6 The VM Migration Tracker

This component is in charge of requesting the creation of VXLAN based tunnels between

the switches having flows towards the migrated machine and the switch on the new

hosting server. Every OpenFlow switch is identified through a datapath identifier that

can be queried through the APIs exposed by Floodlight: after obtained all the switches’

identifiers, for each of them it is possible to request all the cached flows with a match

containing the MAC(s) of the virtual appliance that is about to be migrated. It is

possible to build an OpenFlow message which corresponds to statistics request: if the

switches do contain flows, the tracker knows the switches holding flows towards the

migrating VM. For these switches the Migration Tracker needs to verify if a VTEP, or

in other words, a tunnel endpoint exists: for convenience it coincides with the base switch

where the port notification was sent. Hence the component needs to verify if a VXLAN

tunnel among the endpoints that connect the servers in the distributed data centers

was already set-up: this information is stored in a database table, where for each of the

created tunnels there are the endpoints addresses, the tunnel identifier and the key. If

there is no installed tunnel, a new one has to be created: the components sends messages

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 86

to the corresponding endpoints over the secure channel, with the objective of ordering

the creation in the virtual switch of a VXLAN port with the obtained information.

Otherwise a tunnel has already been set up and the related data is retrieved from the

database: the tracker just interacts with Floodlight for informing it about the endpoints

and the tunnel identifier.

3.5 A Proof of Concept of the Architecture

3.5.1 The SecRAM Methodology

The virtualized testbed allowed to realize a vulnerability assessment that was useful to:

• apply a methodology for the identification of the risks on the operational assets of

the ATM system;

• build a real threat scenario with the identified vulnerabilities;

• test the mitigation strategy of the cloud based architecture when the threat is

identified.

Regarding the first two points, due to the lack of shared risk assessment methodologies

in the ATM community, the Single European Sky ATM Research (SESAR) [54] defined a

new methodology, namely the ATM Security Risk Assessment Methodology (SecRAM)

[55]. It represents the foundation for the application of cost-effective, proportionate

and reliable security measures within each part of an ATM system. The methodology

consists in three stages as shown in Figure 3.10, namely the risk identification, the risk

evaluation and finally the risk treatment.

• The risk identification is the process of finding, listing and characterizing elements

of risk. It consists in identifying and evaluating the assets to be protected (namely

Primary and Supporting Assets) and in building the threat scenario defined as a

combination of a threat over a supporting asset within the considered environment.

• The risk evaluation is the process of assigning values to the likelihood and impacts

of a risk.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 87

Figure 3.10: SecRAM Methodology

• The risk treatment is the process of selecting and implementing measures to modify

risk.

Primary assets are the intangible functions, processes, activities, information and ser-

vices which need to be protected; supporting assets are entities which contain or en-

capsulate the primary assets. As an example, if a primary asset consists in sensitive

information then the supporting asset could be the hard disk on which the information

resides. Supporting assets have vulnerabilities that are exploitable by threats aiming at

impairing primary assets. After having identified them, all the primary assets can be

linked with at least one supporting asset and vice-versa.

For each primary asset, it is needed to identify the required level of confidentiality

(C), integrity (I) and availability (A). This evaluation is represented through a number

ranging from 1 to 5: the impact is evaluated in terms of loss of each of the security

requirements, for each of the primary assets on every impact area (IA). All the impact

areas characterizing an ATC system are described in Table 3.11.

As said before, supporting assets are the system components which have vulnerabilities

that are exploitable, with the aim of impairing the primary assets. The risk evaluation

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 88

Figure 3.11: Impact Areas

is based on the computation of the impact and the likelihood of a threat scenario. This

one is built by identifying:

• for each supporting asset the relevant threats;

• for each threat the targeted criteria (confidentiality, integrity and availability).

A threat scenario has a specific likelihood of occurrence and will have a specific impact

(depending on the target criteria).

Finally, the risk treatment consists in one of these decisions for the threat scenario:

• Accept (or tolerate) the risk, which means that no further action is needed. The

risk level is considered low enough to be accepted.

• Reduce (or treat) the risk to a new level through the selection of controls so that

the residual risk can be reassessed as being acceptable.

• Avoid (or terminate) the risk, which means that if the risk is considered too high

and the counter-measures to reduce it too onerous, then the project can decide to

withdraw the activity or change its nature so that the risk is not present anymore.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 89

• Transfer the risk, which means that the project decides that the risk should be

transferred to another party that can effectively manage it. Once the risk treat-

ment plan has been defined, residual risks need to be determined. This involves an

update or re-iteration of the risk assessment, taking into account the expected ef-

fects of the proposed risk treatment. After this important activity (risk treatment),

it is needed to consider the acceptance of the risk. In fact, the risk treatment plan

is fundamental to assess the risk in order to meet the acceptance criteria.

3.5.1.1 Application of the Methodology

The methodology was applied to one of the test-bed components, namely the one re-

sponsible of receiving radar tracks from multiple sources and mixing them thanks to a

correlation service. The information that comes from this correlation process is given as

output to the presentation subsystem.

Risk Identification

The first step of the risk identification is to list and evaluate the primary and supporting

assets. By taking into account the nature of the component, the application of the

methodology was carried out with the most critical supporting and primary assets,

which are respectively:

• PA1: surveillance data;

• PA2: correlation service;

• SA: correlation manager.

The choice fell on the component itself as a secondary asset, since it has a fundamental

functionality in the system; instead, the primary assets are the surveillance data and

the correlation service. Their security pitfalls could bring to:

• excessive workload for the Air Traffic Control Officer;

• a wrong correlation process and subsequently to an erroneous procedure of the

ATC controller, with catastrophic impacts.

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 90

For every primary asset, the impact level in terms of loss of confidentiality, integrity and

availability on each of the security impact areas (shown in are shown in Table 3.11) was

assessed. The results of the impact assessment are shown in Table 3.12.

Figure 3.12: Primary Asset Evaluation

For every impact area a value ranging from 1 (no impact) to 5 (catastrophic impact)

is used to specify the impact severity: the overall impact is defined as the maximum

impact level among all the areas. Next to the overall impact value, an effect for each of

the security principles is also given. The next step is the identification of vulnerabilities,

namely the security breaches, that can be exploited with an interest related to different

impact areas. One or more vulnerabilities can be exploited by a threat scenario, that

is defined as a combination of an attacker and his resources, motivation and objectives.

As explained before, only supporting assets have vulnerabilities exploitable by threats.

In this phase for each previously identified supporting asset, it is needed to recognize

relevant threats, and for each one the targeted criteria (C, I, A). The threat scenarios

were obtained from a preliminary vulnerability assessment, whose results are collected

in the next section. The considered threats are:

• Malware;

• Eavesdropping;

• Unauthorized access;

• Corruption of data;

• Deleting data;

• Human error;

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 91

• Denial of service;

• Fraudulent copying of software.

The overall link between primary and supporting assets, the relevant threats for the

supporting asset and their impact on each criteria is shown in 3.13.

Figure 3.13: Threat Scenarios Evaluation

The threat scenario evaluation represents the last step for the risk identification: the

impact on the CIA criteria that is caused by the threat exploitation on the supporting

asset is evaluated. The risk evaluation consists in obtaining the impact and the likelihood

of occurrence for each of the threat scenarios taken into account. The threat scenario

impact is obtained from Table 3.13, by selecting the maximum impact of the target

criteria. This value is the so-called “inherited impact”. The “likelihood” is, instead the

evaluation of the chance of a threat scenario occurring: it is computed by considering the

existing security countermeasures and the security controls. It can be a value ranging

from 1 to 5: its meaning is explained in 3.14(a).

(a) Likelihood Significance (b) Likelihood Values

Figure 3.14: Likelihood Computation

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 92

Figure 3.15: Supporting Asset Evaluation

In order to accomplish this evaluation, some features were taken into account, such as

the time and skills required to prepare the attack, the knowledge of the attack target

and, finally, the time window in which the target needs to be available as explained in

Table 3.14(b). The risk evaluation process is shown in 3.15.

3.5.1.2 Vulnerability Analysis and Threat Scenario

Since the SecRAM methodology does provide vulnerability analysis, there was a prelimi-

nary aimed at identifying the vulnerabilities affecting the entire system and, particularly,

the considered supporting. The recognised vulnerabilities were useful to build a threat

scenario, representing the trigger for the mitigation strategy. Hence, the first step was

the vulnerability analysis through a penetration testing tool with the objective of finding

eventual security breaches. After launching the vulnerability scanning process, all the

found vulnerabilities were collected. The inherent possible threats were built the per-

centage of their occurrences in the overall system was computed. Figure 3.16 shows the

results. One or more of these vulnerabilities can be exploited to create a threat scenario.

For example if a remote login service is in execution on the machine that consists in the

supporting asset, an attacker could use a brute force attack to guess the credentials used

to access it, by accomplishing an unauthorized access (a threat impacting integrity and

confidentiality). This could lead to delete data, with impact on service availability, or to

fraudulent copy of software, with impact on integrity and confidentiality. In particular

we exploit two main vulnerabilities to build a threat scenario which is described in the

next paragraph, namely:

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 93

Figure 3.16: Vulnerabilities Distribution

• unsecured access control;

• implementation flaw.

3.6 Experimental Evaluation

3.6.1 A Threat Scenario

An attack could be represented as a graph, in which all the steps needed by an in-

truder to achieve a malicious goal on a system are illustrated. In [56], an algorithm for

automatically generating attack graphs is presented: this can be useful to the system

administrator to decide which set of countermeasures could be undertaken to protect it.

The attack scenario that was built can be described as a multi-stage graph: the starting

point for an attacker is the local access to the network the targeted component is con-

nected to. The attacker could gain information about the machine from the network, by

simply using a network scanning tool. Collected data can regard the nodes’ host-names,

their operating systems, open ports, known running applications and so on. The scan

process could be used, for example, to find out that the target node has a secure shell

application listening on port 22. The attacker now knows all the information needed to

perform a classical attack, such as a password guessing, with the objective of gaining

unprivileged access to the machine. If the attacker is able to obtain unprivileged access,

this could be exploited to collect application-oriented information. For instance, given

the identified component, the attacker could be interested in impairing the supporting

asset functionality. In order to do this, the attacker is willing to learn the ports the

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 94

application expects to receive raw radar data from to launch a Denial of Service attack.

The node is flooded with a huge amount of data with the aim of saturating the machine’s

resources and making it unavailable.

This attack is exploited by generating UDP-based traffic towards the discovered ports

both without a semantic meaning for the application and legitimate traffic. The ma-

chine under attack was also monitored in terms of resources consumed by every single

process. By stressing the application with legitimate radar tracks which were re-played

at different rates, it is possible to verify that the application is provided with a pool

overflow recovery procedure. In the case of attacks with meaningless data, the service

representing the interface between the component and the local networks generates an

exception. By monitoring the resources held by the application and the network traffic

with an intrusion detection system, an alarm can be issued as combination of the critical

CPU and RAM utilization and an alert generated by the detector. When the alarm is

risen an opportunistic mitigation strategy can be activated.

3.6.2 Testbed Set-Up

The experimental test-bed was created by exploiting one OpenNebula Controller and

four different compute nodes: two of of these servers belong to a data center and the

remaining ones are in a second data center.

Figure 3.17: Emulator Topology

The connection between the two data centers is emulated through a simple scenario

which is shown in Figure 3.17. For the sake of simplicity, the network topology is built

up with three routers. The same number of RJ45 components is used: they are employed

to connect the emulated routers to the physical machine’s real interfaces. This latter

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 95

is where the emulator was properly installed and configured. All the links between the

routers are set to a limited bandwidth, which is 100 Mbps; besides the other parameters

that were chosen are a 0% packet loss and no extra delay.

3.6.3 Evaluation Parameters and Results

The built threat scenario was used for an experimental campaign aimed at verifying

the correctness of the functionalities of the overall architecture and at obtaining some

quantitative parameters. The considered parameters are:

• Attack reaction time, that represents the system’s latency, or in other words, the

overall response time to realize the attack mitigation. It is the period of time

between the receipt of the alarm and the conclusion of the mitigation strategy.

This time interval takes into account various components, such as the time re-

quired to implement all the sub-operations that take place before executing the

VM migration, and the time needed to migrate the VM;

• Flow reconciliation time defined as time to modify flows towards the target VM.

This parameter can be considered as the time necessary to re-conciliate the flows

(one incoming and the other outgoing) related to a VM with a single network

interface.

Regarding the VM live migration, the authors in [57] [58] presented a possible model

for evaluating all the parameters characterizing VM live migration. The traffic volume

generated by the migration, denoted with Vmig, can be decomposed in the amount of

traffic of each iteration. Therefore, by supposing that the algorithm terminates after N

rounds, the traffic volume is:

Vmig =

n∑
i=0

Vmig,i (3.1)

and

Vmig,i =

Vmem if i = 0

d · l · ti−1 for all rounds i 6≡ 0

(3.2)

where Vmem is the RAM memory of the VM, d is the application dirtying rate, in other

words, the memory usage pattern of the VMs applications, l is the page dimension and

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 96

ti−1 is the duration of the last round. The total migration time, given the migration

volume and the available network bandwidth, is:

Tmig =
Vmig

b
(3.3)

Instead the downtime implies the suspension of the execution of the VM, so that the

VMM is finally able to transmit the left-over dirty pages over a network with bandwidth

b.

Tdown =
d · l · tn

b
(3.4)

Figure 3.18: Attack Results

(a) Total Attack Reaction Time (b) Flow Reconciliation Time

Figure 3.19: Results Variability

The results were obtained by launching ten DoS attacks against a VM with 1 virtual

CPU and 2GB of RAM and by computing the described parameters. In Figure 3.18 the

Chapter 3. A Cloud Based Architecture for Mission-Critical Infrastructures 97

Figure 3.20: VM Downtime Variability

results for the different attacks against the same VM are shown: the red bars indicate

the total response time of the system which is in a range between 33.986s and 35.95s,

with a mean value of 34.71. The VM downtime, or in other words, the time interval in

which the VM is not up, is between 1.65s and a worst case of 2.15s, with a mean value

of 1.86s. The time needed by the reconciliation module to reconfigure network flows is

in a range bewteen 102ms and 320ms. The variability of the results is shown in the box

plots in figures 3.19 and 3.20. Obviously the greatest variability is related to the overall

attack reaction time, which depends on several components interacting among them to

realize the mitigation strategy. Anyway the variability is slightly greater than 1 second.

Chapter 4

Algorithms for Energy-Efficient

Cloud Resources Management

4.1 Context and Motivations

The cost-efficiency of a cloud provider depends on its ability to over-subscribe capacity

by leveraging the smoothing effect without degrading the quality of service [59]. This

citation embodies one of the main objectives in cloud-based data centers that is the

attempt to find the right compromise between power consumption and the perceived

quality of service, which has to be as nearest as possible to the end-user’s expected one.

With the advent of virtualization and Cloud Computing, one of the main goal to obtain

has become the assurance of a high resources utilization which can also results in a

high level of energy-efficiency. The objective of introducing energy-awareness in the IT

resources management of virtualized data center has been pursued by plenty of research

papers in the scientific community. A great number of techniques have been proposed

to increase the energy efficiency of different types of systems in relation to disparate

scopes, such as:

1. Hardware

Most recent CPUs offer the capability of dynamically changing the supply voltage

at a cost of a performance degradation: this technique is also known as Dynamic

Voltage Scaling (DVS). The dynamic scaling of the frequency/voltage is often ap-

plied to servers which are characterized by an unbalanced resources utilization, by

98

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 99

lowering the supply voltage at a cost of a performance degradation. This technique

allows to achieve a trade off between power consumption and processing. In [60] a

joint dynamic voltage scaling for processors and communication links is presented.

The authors define an algorithm for real-time applications that computes an ef-

ficient routing of communication events by determining a task allocation among

heterogeneous processors and communication links, with the objective of maxi-

mizing energy savings on one hand, and meeting all real-time constraints on the

other.

2. Application

By examining some inherent characteristics of the applications and the produced

workloads, it is possible to design schedulers with the ability of achieving a good

energy reduction. Application-oriented scheduling choices can be triggered not

only for energy savings, but also for security or resiliency reasons: for instance,

replicated nodes belonging to the same system are likely to be deployed over two

different physical nodes. Scheduling decisions can be taken in combination with

hardware characteristics, like in [61], where a new approach to meld intra and

inter-task voltage scheduling is discussed in order to achieve energy savings in

hard real-time systems with uncertain task execution time. The authors compute

the optimal voltage scheduling by considering multiple concurrent tasks with the

earliest deadline first policy on an ideal processor with an unlimited frequencies set.

The solution is then adapted to a finite range of frequencies and finally improved

by taking into account energy overheads of frequency switching for scheduling and

energy reduction.

3. Network

Scheduling and allocation decisions can be also taken with the aim of minimizing

the utilization of network bandwidth and devices. As an example, it is convenient

to allocate VMs exchanging a great amount of traffic among them on physical

servers which are hosted in the same rack, since the traffic is not sent to the

physical switches. This is useful for minimizing the communication overhead over

the network: this idea is taken into account in [62]. Network related efforts to

reduce the power consumption (which accounts for around 20% of the total in big

data centers [63]) can imply different approaches [64]:

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 100

• re-engineering of the internal design and architecture of the network devices,

in order to lower the complexity and introduce more energy-efficient tech-

nologies. These can consist in new silicon circuits, memory technologies, like

Ternary Content-Addressable Memory used for packet processing engines,

and novel technologies for network links (e.g. pure optical switching archi-

tectures);

• dynamic adaptation of the scheduling processing of the devices or link band-

width to the traffic load. This can be achieved by performing dynamic voltage

scaling and idle logic by handling the dynamic trade-off between packet rout-

ing and power consumption;

• sleeping/standby techniques which are used to detect unused devices ele-

ments, such as ports that can assume a stand-by mode, and by waking up

them only when needed.

Also in the cloud paradigm, there is a growing interest in the green aspect: the com-

bination of the elastic resource utilization and the cost-efficiency is also referred to as

Green Cloud Computing. Cloud big players, for example, are investigating the possibil-

ity to introduce green oriented scheduling choices in the VMs allocation task, in order

to always select the most efficient server for a new request. In this chapter, the VM

consolidation problem is analysed and two different models for power efficient resources

management are presented, in addition to a promising heuristic to solve them.

4.2 The VMs Allocation Problem

The problem of packing a number of VMs into a set of physical nodes has its origins in

the multidimensional, multiple-choice, multi-constrained Bin Packing Problem (BPP)

[65]. The problem is multidimensional because the item (the VM) needs to be packed in

a physical node according to the available capacity of different resources. For the VM

allocation problem, the dimensions can be the CPU utilization, expressed in MHz or in

cores, RAM memory and network bandwidth. The possibility to have multiple choices

is due to the fact that a single VM can be allocated to more than one physical node

(bin); finally this choice could be subject to different constraints. The original problem

is formulated like this:

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 101

Given a set of bins with a certain capacity and a number of items, each characterized by

a well-known size, the objective of the problem is to find the mapping between items and

bins which minimizes the number of used bins, without overloading the available capacity

of the bins.

It is well-known that the basic bin packing problem is NP-hard. The problem can be

easily extended to the specific case of the VMs allocation to the physical nodes.

Figure 4.1: Possible Approaches

As shown in figure 4.1, the classification of the VMs placement problem can be considered

according to two different versions: in the on-line algorithms, the problem consists in

finding an allocation for incoming VMs as soon as one request arrives. Hence, the online

algorithms just process one VM at a time. In the on-line version, the aim is to take a

good decision without being conscious about the future requests and by only analysing

the current load. This is the usual approach in the Infrastructure-as-a-Service (IaaS)

platforms, whose objective is to satisfy a client’s request as soon as possible. All the

scheduling algorithms used in the most common IaaS platforms uses an on-line version

which can achieve different objectives defined through policies. Online algorithms cannot

guarantee the optimal solution, since the main issue is that they cannot guess when the

input will end (how many items will be packed into the bins). The simplest way to find a

solution for the online version of the problem is to rely on greedy algorithms, which have

the property of quickly converge to a good solution, by making a locally optimal choice

at each step. This is basically derived from the substructure of the optimal solution

of a problem, which generally consists in the combination of the optimal solutions of

its sub-problems. In the off-line version, instead, the list of VMs and their resource

demands are well-known inputs for the algorithm. Obviously the off-line algorithm can

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 102

find a better solution than the on-line ones because the algorithm has the view of all the

items to pack. This allows to take allocation decisions which can easily reach a smarter

solution.

4.2.1 Problem Formulation and Model

The VMs allocation problem is often referred to as Static Server Allocation Problem

(SSAP), as found in [66]. The formulation takes into consideration m services, n servers

and k different resources, such as CPU cores, RAM memory units and bandwidth usage.

Let us suppose that each service requires a certain amount of resource k, while every

server has a total amount of that resource and it is characterized by an activation cost

(for example the amount of money to pay for every hourly usage). The activation of a

server is denoted with the decision variable yi, which holds 1 if the server is executing at

least one service. The cost for activating it is ci. If the service j is hosted by the server

i, the variable xij holds the value 1, otherwise it is set to 0. The objective is to find an

allocation for each service by minimizing the total cost due to the active servers and by

not exceeding the amount of required resources.

min f =

n∑
i

ci · yi (4.1)

The constraints are expressed like this:

• each service should be hosted by at most one server;

n∑
i

xij = 1 ∀j (4.2)

• all the services running on each server should not use more resources than the

available ones;
m∑
j

rjk · xij ≤ sik · yi ∀i ∀k (4.3)

where rjk is the amount of resource k required by the service j and sik is the

amount offered by server i.

Other typical constraints of the problems can be:

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 103

1. the number of services on a particular node i or a subset of nodes should not

exceed a certain threshold;
m∑
j

xij ≤ ni (4.4)

2. a subset of service S must be allocated to different servers for specific reasons (e.g.

for resiliency replicated services should be on different physical nodes);

∑
j∈S

xij ≤ 1 ∀i (4.5)

3. a subset of servers R should be used for the allocation of a particular service or

group of services J (for instance for security reasons).

∑
i∈R

xij = 1 ∀j ∈ J (4.6)

The problem is static because there is the assumption that every service use a constant

amount of each resource during all its life-time, or in other words, it has a stable work-

load. A generalization of the problem is the SSAP with variable workload, in which time

is another dimension. Time is divided in intervals t, t ∈ [0...τ]: this set is also known

as planning period. In that case the amount of resource k requested by the service j is

related to the time interval t. Hence, the budget constraints becomes:

m∑
j

rjkt · xij ≤ sik · yi ∀i ∀k ∀t ∈ [0...τ] (4.7)

4.2.1.1 Greedy Techniques for On-line and Off-line Allocation

As explained in section 4.2, the on-line version of the BBP is often faced with simple

greedy techniques which do not guarantee to find the optimal solution, but they have

the nice property of rapidly finding a very good solution. Examples of algorithms for

the online bin packing problem are:

• First-Fit, which is a very straightforward greedy approximation algorithm. For each

new item, the allocation policy consists in sequentially scanning all the available bins

in order to pack the item in the first bin which has enough capacity to host it. If no

bin is found, it opens a new bin and puts the item within it. It is simple to show this

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 104

algorithm achieves an approximation factor of 2, or in other words, the number of

bins used by this algorithm is no more than twice the optimal number of bins. This

is due to the fact that two bins cannot be at most half full: such a possibility implies

that, at some point, one bin was at most half full and a new one was used to pack an

item of size at most V
2 , where V is the size of the bins. But since the first one has at

least a space of V
2 , the algorithm will not open a new bin for any item whose size is at

most V
2 . Only after the bin fills with more than V

2 or if an item larger than V
2 arrives,

the algorithm may open a new bin. The algorithm pseudo-code for the first-fit VM

allocation algorithm is shown in 1.

Algorithm 1 First Fit

Input: nodes list, VM
Output: allocated, node
Set allocated to false
Get nodes list size
for each node in nodes list do

Get current node
if VM requested CPU ≤ current node available CPU AND VM requested

RAM ≤ current node available RAM then
Allocate VM on current node
Set allocated to true

end if
if allocated is true then

Return the node where the VM was allocated
else

Return an error
end if

end for

• Best-Fit allocates a new item by scanning all the bins and packing it in the one with

the tightest capacity needed to allocate it. Therefore the selected bin will be the

fullest after packing the new item. The performance of the best fit policy is the same

as the first-fit. The pseudo-code for the Best-Fit VM allocation algorithm is shown in

2.

• Next-Fit uses a simpler allocation policy: if the item fits in the bin where the last

item was packed, use it; otherwise a new bin is used. The approximation factor is

the same as First-Fit: by considering the optimal solution for packing a number Y of

items in a set of B bins, it was demonstrated that the Next-Fit algorithm never uses

more than 2 ·B bins.

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 105

Algorithm 2 Best Fit

Input: nodes list, VM
Output: allocated, node
Set boolean allocated to false
Get nodes list size
Get the first node
Set the minimum amount of CPU and RAM to the values of the remaining CPU and
RAM of the first node
Set current node to the first one
for each node starting from 2 to node list size do

Get current node
Get the remaining CPU and RAM of the current node
if the current CPU ≤ minimum CPU AND current RAM ≤ minimum RAM AND

the allocation of the VM to the current node is possible then
Set allocated to true
Update current node
Update minimum CPU and RAM

end if
end for
if allocated is true then

Allocate the VM to the selected node
Return the node where the VM was allocated

else
Return an error

end if

The off-line algorithms can find better solutions, since they have a complete view of all

the items: hence, it is possible to sort the item list in increasing or decreasing order and

then apply the first fit or best fit policy.

Algorithm 3 First-Fit Decreasing

Input: list nodes, list vms
Output: mapping
Order the VMs list in decreasing size of requesting CPU and RAM
for each VM in the sorted list do

Get the current VM
Call first fit (VM, list nodes)
Udpate mapping

end for

The best-fit decreasing and first-fit decreasing strategies are among the simplest heuristic

algorithms for solving the bin packing problem. It was demonstrated that they use no

more than 11
9 · OPT + 1 bins (where OPT is the number of bins given by the optimal

solution). The simpler of these, the First Fit Decreasing (FFD) strategy, sorts the items

in decreasing order of their sizes, and then it inserts each item into the first bin in the

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 106

list with sufficient remaining space. The pseudo-code for the first-fit decreasing VM

allocation algorithm is shown in 3.

4.3 A Generalization of the Problem

An additional VMs placement problem is however enabled by the live migration mecha-

nism implemented by common hypervisors. Indeed, the fact that VMs are created and

destroyed on demand and the resources they request may change over time might lead to

an inefficient utilization of resources, especially from the power consumption viewpoint.

In virtualized data centers, it could be convenient to consolidate the infrastructure in

order to keep the allocation of VMs up-to-date and to minimize the number of active

servers. Thus, the live migration mechanism can be employed to reallocate some VMs

on different physical hosts, in order to optimize the resource utilization. Hence a new

version of the VM placement problem, which considers the current allocation of VMs

and determines the set of migrations to perform with the aim of minimizing the number

of active nodes. This is a task which can be triggered every interval of time or by events:

in the first case, one of the issues is to choose the right compromise between the time

the consolidation needs to be activated and the server usage pattern. A long period can

lead to sub-optimal allocation and overloading situations, while a too short one can lead

to a huge number of useless migrations. Other techniques fall in the reactive category:

in this case the algorithm is executed when a threshold condition for the utilization of

the server’s resources is met.

4.3.1 Related Work

A huge number of papers deal with the problem of reducing the typical energy con-

sumption of a cloud-based data center, by either approaching the allocation problem

and/or the consolidation one. Enacloud [67] is an on-line framework for VM allocation

and consolidation in cloud environments which is activated when an event occurs, such

as workload arrive, departure and resize. The idea behind the proposed recursive al-

gorithm is that small VM workloads are more likely to be inserted into left gaps. The

objective is to avoid that the allocation of a new workload leads to open a new box.

That is why the algorithm attempts to allocate the packed workloads which are smaller

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 107

than the requested one with it. In [68] two exact algorithms aimed at energy-aware

VMs allocation and consolidation are presented. They are combined in order to reach

a common objective that is the minimization of the data center energy consumption.

The authors propose an Integer Linear Programming model for the allocation problem

which is solved through an extension of the best-fit heuristic. The VMs are ordered

in decreasing order of energy consumption and the algorithm tries to allocate the most

energy demanding VMs first. Besides, a model for the exact migration algorithm is also

built with the goal of maximizing the number of idle servers in the infrastructure. Then

the two approaches are merged together: the exact migration model is solved when two

or more VMs are destroyed. Anyway the authors face the migration problem through a

linear solver, thus limiting the scalability of their approach.

Also Beloglazov et al. [69] split the problem of energy-aware allocation into two parts:

new VM requests are allocated through a modification of the best-fit decreasing heuris-

tic; then the obtained allocation scheme is optimized thanks to two thresholds that

signal under-loading or overloading situations. The first threshold is used to implement

green consolidation, while the second one is employed to reduce hot spots in the utiliza-

tion of the resources of the servers. The algorithm is aimed at minimizing the number

of migrations, by selecting as migrating VM the one that can reduce the utilization of

resources in order to avoid overload. If the host utilization falls under a low threshold,

the algorithm aims at migrating all of its VMs in order to switch it off. The paper only

considers CPU as the most impacting resource for energy consumption and a threshold

based approach for consolidation may not be suitable for a very dynamic environment.

In [70], the authors focus on consolidation: given an allocation scheme, the problem is

to generate a mapping which guarantees not only the minimum number of used servers,

but also the smallest set of migrations. Their framework is based on the idea of real-

locating a group of VMs only if their migrations are useful to switch off some of the

servers, otherwise no migration is activated. The rationale behind the algorithm is to

associate both the VM and the physical node with a bi-dimensional score based on CPU

and memory utilization. Anyway they only considered the static resource utilization of

both the VMs and the servers and no energy consumption parameter.

The work in [71] presents an ILP model to solve the problem of reallocating VMs over

predefined intervals of time, by also taking into account the migration overhead. The

authors show some experimental results based on a real data set, considering VMs with

stable workload applications, and they point out the percentage of energy reduction

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 108

(between 45% and 55%) and for different values of migration overhead both at source

and destination sites. Anyway the proposed problem is solved directly using the ILP

model, thus limiting the scalability of the approach. A heuristic for large scale problems

is only left as future work. Xiao et al. [72], face the problem of detecting and solving

the underload and overload of servers while assuring the benefits of green cloud com-

puting. The work also introduces a technique to estimate the future resource needs of

virtual machines and the skewness which is a measure of the unevenness in the usage of

different types of resources. The consolidation algorithms are triggered according to the

server’s temperature: it represents a way to evaluate overload or underload situations in

the utilization of a combination of resources. The hot spot mitigation is triggered when

the temperature is higher then a warm threshold, while the consolidation is used if the

server has a temperature below the green computing threshold.

The paper in [73] introduces a technique to perform dynamic virtual machine consoli-

dation in a completely distributed fashion, based on a peer-to-peer network of physical

machines by constructing a neighbourhood for each node. This avoids a single point of

failure and improves the scalability of the system. The authors also proposes a consol-

idation algorithm which relies on ant colony optimization, a probabilistic technique for

solving computational problems, and they compare it with other well-known algorithms

in terms of packing efficiency and number of triggered migrations. Also this work does

not take into account the different characteristics of the physical server, such as their

energy efficiency.

4.4 Power Efficient VMs Consolidation Problem

Here a new version of the VMs re-allocation problem is proposed, namely the Power

Efficient VMs Consolidation. Suppose that the cloud environment consists in a set

J of ntot physical machines, of which only a subset (Jo
act ⊆ J) is active before the

consolidation, as they are hosting at least one VM. Each server j is characterized by

an initial power consumption before the consolidation, P o
j . We tackle the following

problem:

Considered a set of m VMs, given the current allocation of each VM to a physical node,

the amount of resource available at each server, the amount of resource requested by

the VMs, the power consumption model of the server, the problem consists in finding

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 109

the set Mig of migrations defining a new set of active nodes JN
act, that minimizes the

linear combination of the power consumption of the resulting active servers (PN
j) and

the number of migrations:

f = α ·
∑

j∈JN
act
PN
act∑

j∈Jo
act
P o
act

+ β · |Mig|
m

(4.8)

by guaranteeing that the resources used at each physical server do not exceed the avail-

able amount when migrating a VM.

4.4.1 Server Power Modeling

In [74] and [75] the energy consumption of a physical machine is defined as the power

consumption due to the utilization of its resources over time. Let us consider P resources

and Q tasks that request a certain amount of each resource, the overall utilization of a

specific resource can be computed as:

Uq =
P−1∑
p=0

uqp (4.9)

where uqp is the utilization of the resource p issued by the task q. Therefore the total

utilization over all the considered resources is:

Utot =

Q−1∑
q=0

Uq (4.10)

Several papers in literature showed the most impacting resource on power consumption

is the CPU; then, if this simplification is taken into account, the power consumption of

a server j can be defined as:

Pj(t) = Pidle,j + (Pmax,j − Pidle,j) · Ucpu,j(t) (4.11)

where Ucpu,j is a value between 0 and 1. Basically the power consumption consists in

two factors: the first one is the “static component” (Pidle,j), that is the consumption

due to the elementary physical components (transistors), while the second one is strictly

dependent from the utilization of the macro-systems of the host (RAM, CPU, network

interfaces and so on).

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 110

4.5 A Mixed Integer Linear Model

The consolidation problem can be modelled through a Mixed Integer Linear Program-

ming (MILP) model, whose parameters are presented in Table 4.1. The overall model

is shown in Table 4.2.

Input parametes:

xojk holds 1 if the VM k is allocated to node j before the

consolidation

sij is the amount of resource i available at node j

rik is the amount of resource i needed to allocate VM k

η is a value between 0 and 1 that takes into account the overhead
for migrating any VM

Pidle,j is the idle power consumption of node j

Pmax,j is the maximum power consumption of node j

Decision variables:

yj is 1 if node j is active after the consolidation, 0 otherwise

Pyj is the current power consumption of node j after the
consolidation

z<−jk is 1 if VM k migrates towards node j, 0 otherwise

z−>jk is 1 if VM k migrates from node j, 0 otherwise

xNjk is 1 if VM k is allocated to node j after the consolidation,

0 otherwise

Table 4.1: Model Parameters

Each server is associated with a binary decision variable yj , j ∈ [1..n], which holds 1 if

the server is active and 0 otherwise. We consider m VMs, identified with the subscript

k, ranging from 1 to m. A migration of a VM k from a node j is represented with

the binary decision variable z−>jk , while if it is migrating to j, the variable z<−jk is used.

The objective (4.8) to minimize the linear combination of the new overall power con-

sumption and the number of migrations necessary to the consolidation can be expressed

as in (4.12). Two variables that indicate one single VM migration is used and that is

why there is a division by two in the count of the number of migrations. The overall

power consumption and the number of migrations are normalized, in order to obtain

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 111

comparable values.

The MILP Model:

minf = α ·
∑n

j=1 yj · Pyj∑n
j=1 Pinit,yj

+ β ·
∑n

j=1

∑m
k=1

z−>
jk +z<−

jk

2

m
(4.12)

s.t.

Pyj = Pidle,j + (Pmax,j − Pidle,j) ·
∑m

k=1 x
N
jk · rik

sij
i = CPU (4.13)

n∑
j=1

xNjk = 1 ∀k (4.14)

yj ≤
m∑
k=1

xNjk ∀j (4.15)

yj ≥ xNjk ∀j,∀k (4.16)

m∑
k=1

((rik · xojk) + (rik · z<−jk)− (rik · z−>jk)) ≤ η · (sij · yj)

∀j,∀i
(4.17)

xojk − z−>jk ≥ 0 ∀j,∀k (4.18)

xNjk + z−>jk ≤ 1 ∀j,∀k (4.19)

xojk − xNjk − z−>jk ≤ 0 ∀j,∀k (4.20)

xNjk − z<−jk ≥ 0 ∀j,∀k (4.21)

xojk + z<−jk ≤ 1 ∀j,∀k (4.22)

−xojk + xNjk − z<−jk ≤ 0 ∀j,∀k (4.23)

Table 4.2: Problem Model

We normalize the power consumption to the sum of the initial powers of the active

servers before the consolidation, and the number of migrations to the number of VMs.

It is assumed that every node can have a different known power consumption model.

Therefore the power consumption can be computed through eq. (4.13). The binary

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 112

decision variable xNjk represents the allocation of the VM k to the node j after the con-

solidation, while instead, xojk is the current mapping. After the consolidation process,

by looking at the new allocation, each VM should be allocated to at most one physical

server. This constraint is assured in the equalities (4.14). Besides, every physical node is

considered active if, and only if, at least one VM is running on it (4.15-9). Then we have

the so-called budget constraint: for each server j and for every considered resource i,

the amount of resources held by the old assignment and the resources needed or freed by

the VMs migrating, should not exceed the maximum available amount (4.17). The pa-

rameter η (between 0 and 1) is used to take into consideration the additional migration

overhead. If a VM k is migrated from j, z−>jk is equal to one:

xojk xNjk z−>jk acceptable

0 0 0 yes

0 0 1 no

0 1 0 yes

0 1 1 no

1 0 0 no

1 0 1 yes

1 1 0 yes

1 1 1 no

(a) Possible Combinations for z−>
jk

xojk xNjk z<−jk acceptable

0 0 0 yes

0 0 1 no

0 1 0 no

0 1 1 yes

1 0 0 yes

1 0 1 no

1 1 0 yes

1 1 1 no

(b) Possible Combinations for z<−
jk

Figure 4.2: Possible combinations

z−>jk = 1 => xojk = 1 AND xNjk = 0 (4.24)

this necessarily implies that k was allocated to j before the consolidation (xojk = 1), and

in the new mapping it is not assigned to j anymore (xNjk = 0). Instead, if VM k is not

migrated from the server j (z−>jk is equal to 0), it is possible that it was allocated to j

before the consolidation and, afterwards, it is still assigned to it, or it was not allocated

to j. Anyway in this case, if z−>jk = 0, it cannot happen that xojk = 1 and xNjk = 0. All

the possible combinations and the acceptable ones are shown in Table 4.2(a) and (b).

By considering the other variable, z<−jk :

z<−jk = 1 => xojk = 0 AND xNjk = 1 (4.25)

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 113

if k migrates to y, this implies that the VM was not allocated to the node before

the consolidation, and afterwards it is assigned to it. The constraints that assure the

avoidance of unacceptable combinations are 4.18-12-13. The two decision variables that

define the old and new allocation should be consistent also if you are taking into account

the migration of k towards j (4.21-15-16).

4.6 A Simulated Annealing based Algorithm for Power-

Efficient VMs Consolidation

4.6.1 Desirability of a VM Migration

The formulated model has the objective to minimize the linear combination of the power

consumption of the active servers normalized to the total initial power and the number

of migration normalized to the number of VMs, as it follows:

min f = α ·
∑

j∈JN
act
Pj

total init power
+ β · num migs

num VMs
(4.26)

where Pj is the power consumption of the active server j after the consolidation, the de-

nominator in the first ratio is the overall consumption of the initial nodes and num migs

is the number of migrations needed to perform the consolidation. Since the saving in

terms of power is permanent in contrast to the temporary consumption due to a live-

migration, there are two weights in (4.12), α and β, which stress out the relative im-

portance between the number of hibernated hosts and the number of VM re-allocations.

The algorithm is based on a very simple idea: since the aim is to have a balance between

the consolidation of the nodes and the overall power consumption, in order to evaluate

the possible migrations, a value that is defined as the ‘‘desirability” of migrating a VM

k from the node j to another server h is taken into account. This value is computed as:

Dk
jh =

Dj(uj) +Dh(uh)

2
+4P (4.27)

where the first parameter is the arithmetic mean of the convenience of migrating the

VM k from the node j and the willingness of the node h of accepting the VM; the

second one represents the difference in the power consumption after the migration of

the VM to the new node. A migration of a VM from a source node is convenient

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 114

when the server has a low resources utilization, or in other words, it could be a good

candidate to be consolidated. A migration to a specific node should be leveraged when

the destination has a medium or high utilization, as long as it can accept new VMs

without being overloaded. We obtain the desirability values for the source and the

destination through two functions that express the attractiveness of the VM move, given

the resource utilization. The two functions are chosen such that the migration of the

VM has a high total desirability if the utilization of j is low and the one of h is medium:

this means it could lead to consolidate a new server. Then, it is possible to evaluate

a VM migration from a source to a destination, by computing the desirability for the

nodes as it follows:

Dsrc(u) = e−a·(u)
3

(4.28)

Ddst(u) = b · e−c·(u−1/2)2 (4.29)

(a) Source Node (b) Destination Node

Figure 4.3: Desirability Functions

For the source node, we use a sigmoidal-like shaped function, in order to have high

values when the utilization is low and vice-versa; the graph is shown in Figure 4.3(a).

For the destination node, instead, we use a sort of gaussian function (4.3)(b) which has

this property: if the destination has a medium or high utilization, the desirability of the

move is high; on the contrary the migration is discouraged. The resource utilization is

computed as the medium utilization over the considered resources (CPU and RAM). The

power difference produced by the migration, 4P , is computed by taking into account

the power model for each of the physical servers: here, we assume that all the nodes can

be characterized by a different power consumption and therefore they can have different

levels of energy efficiency. Thus, given the old and new power consumption both at the

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 115

source and the destination nodes, the power delta is defined as:

4P =
|P old

src − Pnew
src |

Pnew
dst − P old

dst

(4.30)

Basically, among all the possible migrations, we do not consider the most attractive ones

based solely on the resource utilization and the deriving desirability values, but also the

ones producing the smaller increase in the power consumption.

Figure 4.4: Power Deltas

This is explained in figure 4.4, where three linear power models of just as many nodes,

are drawn: by considering the new resource utilization after accepting the migrating VM,

the new values of power are computed. The power deltas are obtained as the difference

between the new and the old value of the power consumption. So, when considering

a migration, the reduction of power consumption should be as large as possible at the

source node (the numerator in the equation 4.30), while the increase at the destination

should be as small as possible (the denominator in 4.30), in order to always select the

most energy-efficient servers.

4.6.2 Heuristic Description

The algorithm is basically derived from the meta-heuristic Simulated Annealing, an

optimization technique capable of finding a good approximation to the global optimum

of a given function in a large search space. This is a meta-heuristic because it is inspired

by nature behaviour: the annealing in metallurgy is a technique involving heating and

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 116

controlled cooling of a material to increase the size of its crystals and reduce their

defects. The algorithm accepts as input parameters the current allocation, the list

of VMs with their static requirements for RAM and CPU, the active nodes with the

remaining amounts of each resource, the initial value of temperature and a cooling factor

for decreasing the temperature. As output, it computes the list of migrations with its

size, the number of consolidated nodes and the overall power. The algorithm sets the

initial value of the objective function, given by the sum of the power consumption of all

the active nodes. As long as the temperature is greater than a certain low threshold, in

the two for cycles the value of desirability for every possible VM re-allocation (assumed

that this migration was not accepted before, or it was refused or it undoes a previous

migration) is computed according to (4.27) (lines 3-15). If there is no possible migration

the main cycle is broken. Then the evaluated migrations are ordered in decreasing order;

the best valued re-allocation is chosen and triggered (lines 16-20). The allocation is then

updated accordingly: if the source node was consolidated (it has no VMs running on

it), it is erased from the list of active nodes and the consolidation is indicated through a

boolean variable. The number of migrations is increased by one and the new value of the

objective function is obtained according to (4.12) (lines 21-27). If it is the first iteration,

the migration is unconditionally accepted; if the source node was not consolidated then

the variable unsuccessful is increased by one. Otherwise the difference between the new

value of objective function and the old one is computed. If this difference is negative

or the source node was consolidated, it means that we had an improvement for the

objective function. There is also need to take into account the case in which power was

increased due to the migration, but a node was switched off thanks to it. Therefore the

migration is accepted and the variable unsuccessful, which takes into account the number

of migrations that were accepted by probability and that gave no improvements to the

objective function, is set to zero. If the difference is positive, we can accept a worsening

in the value of the objective function. This is the typical approach of the Simulated

Annealing to avoid a local minimum. The degradation is acceptable with a certain

probability, having this property: it is a decreasing function of the difference between

the new and the old values of the objective function, and also of the temperature. This

parameter is chosen so that it is sufficiently high to assure great values of probability at

the beginning of the algorithm. But then the temperature is decreased more and more

because of a cooling factor, and also due to the number of accepted migrations thanks

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 117

Algorithm 4 Simulated Annealing based Consolidation

Input: current mapping, vms, active nodes, initial temp, cooling
Output: mig list, cons nodes, overall power
Set the current objective function according to eq. 4.26
while Probability is greater than a threshold do

Set the boolean consolidated parameter to false
for Each VM i do

Get VM hosting node
for Each physical node j do

if VM i hosting node is different from node j AND allocation of VM i
to j is possible then
if If the migration is not an already accepted one OR a reverse one OR

a refused one then
Evaluate the desirability of the migration and store it

end if
end if

end for
end for
if There is no possible migration then

Break while cycle
end if
Order migrations in desirability decreasing order
Select the migration corresponding to the greatest value of desirability
Perform the migration and adjust the allocation accordingly
if Source node has no other VMs then

Remove it from the active nodes list
Set the boolean consolidated parameter to true

end if
Increase mig list size by 1
Compute the new objective function value according to eq 4.26
if This is the first iteration then

Accept the migration
if consolidated==false then

Increase unsuccessful by 1
end if

else
Compute the difference between new and current objective function values
if The difference is less than 0 OR consolidated==true then

Accept the migration
Unsuccessful = 0

else
Update the current temperature
Evaluate the probability of acceptance
if The migration was accepted by probability then

Increase acc by prob by 1
Increase unsuccessful by 1

end if
end if

end if

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 118

Algorithm 5 Simulated Annealing based Consolidation Cont.d

if The migration was accepted then
Update the current objective function value with the new one
Add the migration in the list

else
Undo the migration
Save the migration in the list of refused migrations

end if
if unsuccessful is greater than 0 then

Remove the last unsuccessful migrations from the list
end if

end while

to the probability, according to this law:

temp = temp · cooling · (1− acc by prob

num vms
) (4.31)

The acceptance probability is obtained through this function:

prob = e
(− delta

temp
)

(4.32)

where delta is the difference between the values of the objective function. The outcome

of the evaluation of the probability is obtained through the roulette method. If the

evaluation is positive, the variables acc by prob and unsuccessful are increased by one

(lines 28-46). In the end, if the migration was accepted, the current value of function is

substituted with the new one and the migration is inserted into the list. Otherwise the

migration is undone and it is inserted into the list of refused migrations. If the algorithm

terminates and the variable unsuccessful is greater than 0, it is possible to delete the

last unsuccessful migrations from the list, since they were accepted by probability, but

they are not convenient to the minimization of the objective function (lines 47-57).

4.6.2.1 A Simple Example

To explain how the algorithm works in practice, suppose to have the following scenario.

Let us consider two physical servers, s1 and s2. For convenience decimal values are used

for the CPU and RAM parameters of both the physical servers and the VMs and we

define this kind of conversion: a value of 0.1 for CPU means 1 core, while 0.1 for RAM

is equal to 512 MB basic memory unit. For the sake of simplicity, linear power models

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 119

which are proposed in a cloud simulator, namely SimCloud [76], are used. The authors

define the linear model as a vector, in which the first parameter is the consumption

of the server when it is fully utilized, while the second is the percentage of max power,

defining the static component. Given the utilization, the power consumption is basically

computed with equation (4.11). The values of CPU, RAM and the power models for

servers and VMs are shown in Tables 4.3 and 4.4 respectively.

Table 4.3: Example PHs Parameters

Host
CPU
spec

RAM
spec

Power
Model

s1 1.2 (12 cores) 2.8 (14336 MB) (170 W, 0.3)

s2 2.0 (20 cores) 3.0 (15360 MB) (270 W, 0.3)

Table 4.4: Example VMs Parameters

Virtual
Machine

CPU
spec

RAM
spec

m1 0.5 (5 cores) 0.4 (2048 MB)

m2 0.3 (3 cores) 0.3 (1536 MB)

m3 0.2 (2 cores) 0.3 (1536 MB)

For the proposed use case, no over-provisioning between the virtual and the physical re-

sources and a stable workload for the VMs are considered. For the desirability functions,

these parameters are chosen: a = 6, b = 0.85 and c = 20. Instead the weights α and β in

the objective function are set to 0.9 and 0.1 respectively. Considered a mapping between

the VMs and the servers, map = (s1,m1), (s2,m2), (s2,m3), the node s1 has a power

consumption of 100.98W, while s2 128.25W. The allocation scheme can be obviously

consolidated: an aggressive consolidation algorithm could choose to migrate m1 to s2,

thus freeing one node with only one migration, by achieving a total power consumption

of 175.50W. According to our algorithm, we evaluate every single possible migration,

thanks to the desirability functions and the power deltas:

m1 : s1− > s2 des = 0.53 delta = 1.06

m2 : s2− > s1 des = 0.63 delta = 0.95

m3 : s2− > s1 des = 0.63 delta = 0.99

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 120

The most efficient migration is m3 : s2− > s1, with a total desirability of 1.62. The

current value of objective function is equal to 1 multiplied by α (0.9). By triggering the

selected migration, we obtain a new value of 0.934 and, since it is the first iteration,

the migration is accepted. In the second iteration the best rated migration is m2 :

s2− > s1, with a total desirability of 1.81. This migration leads to an objective function

of 0.655: since we had a reduction of 0.279 (and a node was consolidated), the migration

is accepted. As there is not any further possible migration, the algorithm stops with 1

consolidated node, 2 migrations and a total power consumption of 149.77W. Therefore

with an additional migration, we were able to save 25.73W.

4.7 Data Centers Network Energy Efficiency

Big data centers which provide cloud enabled services and applications are characterized

by an increasing demand of bandwidth with a resulting need for network power aware-

ness. Classical network infrastructures are based on the old tree hierarchy of switches

and redundant paths among them. Over the last years, they have become not sustainable

for cloud players and new architectures have been proposed with the aim of increasing

network efficiency. This latter is traditionally expressed in terms of parameters such as

network throughput, equipment capital expenditure (CapEx), network diameter and so

on. However, the typical evaluation of the network efficiency has been also revolution-

ized, by stressing out the importance of the power consumption of the network devices.

In [77], a new parameter is taken under examination, namely the Network Power Ef-

fectiveness (NPE), which can be defined as the ratio between the aggregate network

throughput and the total network power consumption. This value can be expressed in

bps per Watt and it clearly reflects the trade-off between throughput and power con-

sumption. Along with novel network architectures, new techniques for increasing energy

efficiency are also emerging; among them, we can find:

• Power over Ethernet (PoE), which is a technology of ad-hoc systems with a cable

that can provide both data connection and electrical power. PoE can bring many

advantages, such as time and cost savings for installing electrical power cables,

and flexibility, since elements which can be powered through this technique (as

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 121

an example wireless access points) can be located wherever they are needed and

easily re-positioned, if required.

• Sleep on Idle and Wake on Arrival, which are implemented in commercial switches

and allow to put network interfaces (or the entire switch) in sleep-mode when

there is no traffic flowing, and to wake-up a link, only when a packet arrives.

Research papers argue that the traffic load in regular data centers is very day-time

dependent: in [78], it is shown that the average link utilization in the connections

to the aggregate switches is only 8% of the capacity for 95% of the time, while in

the core layer the utilization is between 20% and 40%. Therefore it is possible to

rely on these techniques to dynamically switch-off under-utilized network devices

and links. Also protocols can benefit from energy efficiency: for instance, the

IEEE 802az [79] standard is aimed at achieving energy reduction in the Ethernet

based communications, by activating a link only when real data are sent. When

there is no effective data transmissions, the standard uses a signalling protocol in

order to save energy: the sender can flag that there is no transmission through

the low power idle and the link can become idle. The sender can periodically

use some signals, so that the link does not remain quiescent for too long without

a refresh. Finally, when the transmitter wishes to re-activate the link, it sends

normal signals.

• Power aware routing and rate adaptation, which introduce power consumption

awareness in the devices responsible for routing functionalities. Rate adaptation

is useful to adapt the port transmission rate to the traffic load. Anyway, since

networking devices are not energy proportional, in the sense that the energy is

not proportional to the load, this techniques cannot achieve a sensible energy

reduction. Results in [80] show that network devices overhead is 85% of the total

power consumption of a fully active one.

4.7.1 Related Work

The paper [77] proposes an interesting study of the network power effectiveness of the

most common data centers architectures. The authors evaluate the network power

consumption, by applying both the classical and power-aware routing algorithms to well-

known topologies. Besides they assess the impacts on the results of different parameters,

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 122

such as the topology size, load, traffic patterns and so on. VMFlow [81] proposes a

Network Aware VM Placement problem formulation, which is solved though a greedy

heuristic. This latter considers one single traffic demand at a time and jointly computes

a VM placement and a path for the flow with the objective of minimizing the total

network power. The algorithm selects a traffic demand from a decreasing ordered list

and an allocation is determined among the servers that have enough resources to host

the source and destination VMs. After the allocation, the algorithm computes the path

that causes the minimum increase of energy consumption. The objective is to guarantee

the highest number of VM allocations and, consequently, of traffic demands satisfaction.

The authors in [82] proposes a network power manager that is able to switch-off unused

switches and/or links and to route traffic flows over the active networking elements.

Anyway they do only focus on the networking power efficiency, without taking into

account the possibility of VMs replacement enabled by live migration. The authors use

heuristic to locally determine the power state of each switch and link. The paper [83]

presents a formulation for the flow assignment problem in a data center network; besides

an evaluation of the path consolidation algorithms, based on the characteristics of the

topology, is shown. Given the total power consumption over the network elements in a

time frame, the problem is formulated as a classical Multi-Commodity Flow Problem,

with the aim of minimizing the consumption derived from the used switches. The paper

[84] presents a network-aware power manager, which is able to optimize VMs placement,

by also minimizing the total power consumption, deriving from the used switches and

links needed to satisfy the traffic demands. The authors formulate a combinatorial

optimization problem, in which they do not take into account different power models for

the servers and switches nor the number of migrations in the objective function. Since

the deriving problem is NP hard, they decompose it into three well-known problems: one

is used for solving traffic aware VM grouping (Balanced Minimum K-Cut), the second

is for the VM group to rack mapping (Quadratic Assignment Problem) and the third

for VMs traffic flow routing (Multi-Commodity Flow Problem).

4.7.2 A Cross-Layer Power Efficient Resource Management Problem

The typical total data center power consumption cannot exclude networking devices,

such as switches and routers. The proposed model for the consolidation problem is

here extended in order to take management decisions within a virtualized data center

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 123

with the objective of achieving a trade-off between different objectives, such as the

minimization of the used servers, the total network power consumption or the number

of migrations. Each one of these objectives can be emphasised by using different weights

in order to give more importance to one of them. The new problem also takes into

account the network topology and the VMs traffic demands. The Cross-Layer Power

Efficient Resource Management Problem is defined as it follows:

Given a set of physical servers J , each one packed in a specific rack, a subset of J

indicating which servers are active (Jo
act) in the sense that they host at least one VM

before the consolidation, the current power consumption of each server P o
j , the current

allocation of a set of m VMs to the physical nodes, a set of switches connected among

them in a particular topology, along with their initial power consumption Psoact, a set

of gateways which are connected to a virtual sink representing Internet, the matrix of

traffic demands, the connectivity matrix and the capacity one (expressed in Mbps), the

objective is to find the set of migrations Mig, defining a new set of active nodes JN
act and

a new set of active switches SN
act, that minimizes the linear combination of the power

consumption of the resulting active servers and switches and the number of necessary

migrations:

f = α ·
∑

j∈JN
act
PN
act∑

j∈Jo
act
P o
act

+ β · |Mig|
m

+ γ ·
∑

s∈SN
act
PsNact∑

s∈So
act
Psoact

(4.33)

by satisfying all the traffic demands of the VMs, by not exceeding the available resource

amount at each server and by not overcoming the available capacity of the links.

A simple example topology where there are 5 switches, 2 gateways, 8 physical hosts, 2

racks and 14 VMs is depicted in Figure 4.5. In this simple topology each rack has only

a bidirectional link towards one switch and each switch in one level is connected to all

the other switches in the upper one. All the parameters of the problem are explained in

table 4.5. The set of nodes V is just the union between the switches, the gateways, the

racks and the virtual sink. This latter is considered as a “special” VM, the (k + 1)th,

which belongs by default to the v − th node in the topology. The association of each

VM to a node (a rack or the virtual sink) is defined through two matrix, namely X and

W , where the first one defines which server the VM is allocated to, while the second

indicates the topology node the server is associated to. The VMs traffic demands are

expressed with a matrix D with dimension Kx(K + 1): each VM can forward traffic

towards the virtual sink or another VM. Given a traffic demand, dk,l, the source of the

flow is the rack, in which the server hosting VM k is packed, while the destination can be

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 124

Parameters:

Input:

K set of VMs k = 1...K

J set of physical servers j = 1...J

Jo
act set of active servers before the consolidation ⊆ J
Xo current allocation between VMs and active servers KxJo

act

P o
j power consumption of the active servers before the consolidation

S set of switches s = 1...S

So
act set of active switches before the consolidation ⊆ S
P o
s power consumption of active switches before the consolidation

Ps,idle set of idle power consumption of the switches s = 1...S

G set of gateways g = 1...G

R set of racks r = 1...R

t virtual sink representing Internet

V set of nodes G ∪ S ∪R ∪ t
W represents the allocation of each server to a node in the topology

(J + 1)xV

C connectivity matrix V xV

B links capacity matrix V xV

D VMs traffic demands matrix Kx(K + 1)

Output:

XN new allocation between VMs and servers after the consolidation
KxJN

act

JN
act set of active servers after the consolidation ⊆ J
PN
j power consumption of the active servers after the consolidation

SN
act set of active switches after the consolidation ⊆ S
PN
s power consumption of the active switches after the consolidation

F k,l
v,u traffic flow between VM k and l on the link between node v and u

F tot
v,u total traffic flow between on the link between node v and u

Hk,l
v,u is true if the link u-v is used for the traffic between VM k and l

Htot
v,u is true if the link u-v is active

Table 4.5: Extended Model Parameters

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 125

Figure 4.5: Topology

either the rack in which VM l is allocated or the virtual sink if l = t. Each link between

two nodes is represented through a value 1 in the connectivity matrix C, which has a

null diagonal and a dimension V xV , where V is the cardinality of the nodes set. A link

is also associated with a maximum capacity defined by the matrix B. Each gateway is

connected to the virtual sink, which correspond to the external Internet.

4.7.2.1 Switch Power Consumption

A switch is characterized by a chassis, namely the frame for mounting its circuit compo-

nents and containing a certain number of line cards which provide the network interfaces.

The power consumption of the switch [85] can be defined as:

P = Pch + ncards · Pcards +

max∑
r=1

nrp · P r
p · up (4.34)

where Pch is the chassis power consumption, ncards is the number of line cards, P cards is

their the power consumption, nratep is the number of ports operating at a specified rate,

P rate
p is their power consumption and, finally, up is the utilization of the port p. This

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 126

one can be defined as:

up =
1

TCp
·
∫ t+T

t
Bp(t) dt. (4.35)

where T is the observation time period, Cp is the capacity of the port and Bp(t) is its

instantaneous throughput at a determined rate. For the sake of simplicity, the power

consumption of the switch is computed as:

P = P tot +
∑

port∈Qact

Pport (4.36)

where P tot incorporates the first two addends of equation 4.34, Pport is the power con-

sumption of each active port (Qact is the set of active ports).

4.7.3 Problem Model

The model is characterized by the input and decision variables explained in Table 4.6,

besides the ones of Table 4.1, while the overall model is shown in Table 4.7. The

constraints of the consolidation problem defined in Section 4.5 are not reported for the

sake of brevity, but they are also contemplated in this new model. The model aims at

minimizing the linear combination of three parameters:

• the power consumption of the active servers after the consolidation over the initial

one (the total power due to the current allocation);

• the number of migrations over the number of VMs;

• the power consumption of the active switches after the consolidation over the initial

one;

The first constraint (4.38) simply computes the switch power consumption as explained

in eq. (4.36). The constraints (4.39) is the so-called flow conservation constraint: by

considering each node and by looking at the traffic demand between k1 and k2, if the

node coincides with the rack which the VM k1 is associated to, the difference between

the entering flow and the exiting one should be equal to the opposite of the demand

itself, since the traffic is generated at the source. In this case the difference between

the two sums in the second term of (4.39) is equal to -1. For each intermediate node,

this difference should be equal to zero, because all the flows that enter the node should

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 127

Input variables:

Pidle,s is the constant power consumption of the switch s due to the
chassis and the line cards

Ps,v is the constant power consumption of the link connecting the
switch s to the node v

dk1,k2 is the traffic demand in Mbps between VM k1 and VM k2
(or t)

cv1,v2 is equal to 1 is there is a link between v1 and v2, 0 otherwise

bv1,v2 is equal to the capacity (in Mbps) of the link between v1
and v2

xj,k is equal to 1 if the VM k is allocated to the server j, 0
otherwise

wj,v is equal to 1 if the server j is allocated to the node v, 0
otherwise

Decision variables:

as is equal to 1 if the switch s is active, 0 otherwise

fk1,k2v1,v2 is the flow amount of traffic (in Mbps) between VM k1 and
VM k2 (or t) on the link connecting v1 and v2

Fv1,v2 is the total flow amount of traffic (in Mbps) on the link
connecting v1 and v2

hk1,k2v1,v2 is equal to 1 if there is traffic (in Mbps) between VM k1
and VM k2 (or t) on the link connecting v1 and v2

Hv1,v2 is equal to 1 if the link connecting v1 and v2 is active (if there
is any traffic passing through it)

Pfinal,s is the final power consumption of the switch s

Table 4.6: Input and Output Variables

also be completely forwarded through it. For the intermediate nodes, the difference in

the sums of second term of (4.39) is equal to 0. If the node is the destination of the

flow, namely the rack which the VM k2 belongs to or the virtual sink t, the difference

in the entering and exiting flows should be equal to the amount of the traffic demand.

In this third case, the difference in the sums of second term of (4.39) is equal to 1.

The constraint (4.40) is the indivisible flow constraint: if the flow between k1 and k2

enters an intermediate node v1, it has to be forwarded completely through one exiting

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 128

The MILP Model for the combined problem:

minf = α ·
∑n

j=1 yj · Pyj∑n
j=1 Pinit,yj

+ β ·
∑n

j=1

∑m
k=1

z−>
jk +z<−

jk

2

m
+ γ ·

∑S
s=1 as · Pfinal,s∑S

s=1 Pinit,s

(4.37)

s.t.

Pfinal,s = Pidle,s +
∑
v

(Hs,v · Ps,v) ∀s (4.38)

∑
v2

fk1,k2v2,v1 · cv2,v1 −
∑
v2

fk1,k2v1,v2 · cv1,v2 =

dk1,k2 · (
∑
j

xj,k2 · wj,v1 −
∑
j

xj,k1 · wj,v1)

∀k1, k2 ∀v1

(4.39)

∑
v2

hk1,k2v2,v1 −
∑
v2

hk1,k2v1,v2 = 0 ∀v1 : v1 = intermediate ∀k1, k2 (4.40)

fk1,k2v1,v2 ≤ bv1,v2 · h
k1,k2
v1,v2 ∀v1, v2 ∀k1, k2 (4.41)

fk1,k2v1,v2 ≥ 0 ∀v1, v2 ∀k1, k2 (4.42)

hk1,k2v1,v2 ≤ f
k1,k2
v1,v2 · cv1,v2 ∀v1, v2 ∀k1, k2 (4.43)

Fv1,v2 =
∑
k1,k2

(fk1,k2v1,v2 + fk1,k2v2,v1) ∀v1, v2 (4.44)

Fv1,v2 ≤ bv1,v2 ∀v1, v2 (4.45)

Hv1,v2 ≤
∑
k1,k2

hk1,k2v1,v2 ∀v1, v2 (4.46)

Hv1,v2 ≥ hk1,k2v1,v2 ∀v1, v2 ∀k1, k2 (4.47)

as ≤
∑
v2

Hs,v2 +
∑
v1

Hv1,s ∀s (4.48)

as ≥ Hv1,s ∀s ∀v1 (4.49)

as ≥ Hs,v2 ∀s ∀v2 (4.50)

Table 4.7: Combined Problem Model

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 129

link. This means that the traffic flows cannot be split in the network. This is true for

the source and destination nodes (both have one connecting link). The inequalities in

(4.41) indicate that if a link is not used for transporting the flow between k1 and k2,

the variable fk1,k2v1,v2 , should be zero. If the link is used for forwarding the flow between

k1 and k2, the capacity of that link should not be exceeded. Besides every flow on each

link should be not negative (4.42). If the flow of two VMs on a specific link is equal to

zero or there is no connection between the nodes, hk1,k2v1,v2 should be equal to zero. This

is expressed by the constraint in (4.43). The equalities in (4.44) simply computes for

each link the total flow which is forwarded along it. The inequalities in (4.45) represent

the network budget constraint: for each link between two nodes, by summing all the

flows passing through it, the resulting amount of traffic should not exceed the total link

capacity. An active link is expressed through the constraint (4.46-47): if there is at least

one flow forwarded through the link, it should be active; otherwise if there is no traffic

on that link, it should be considered as idle. The same kind of constraint is also applied

to the switches (4.48-49-50): if all of its links are idle, the switch can be shut off; on the

contrary, if one of the ports is active, the switch should be active.

4.7.4 The Combined Heuristic

Given the current allocation of the VMs to the servers, the initial solution for the flow-

routing problem is obtained through a modified version of the Dijkstra algorithm, whose

pseudo-code is shown in 6. Let us consider a list of nodes, a traffic flow between a source

and a destination, the links capacity matrix, the cost of each link and the connectivity

matrix: it is needed to compute a minimum cost path between the source and the

destination nodes. Each link between a switch s and v is characterized by a cost which

can be linked to the power consumption as:

cost(s, v) = P (s) + P (v) + P (s, v) (4.51)

Therefore the cost for using that link is the cost for activating the switch s and v (their

idle power consumption) and the power consumed by sending traffic over the link s-v.

At the end of the algorithm, very node i in the topology will be associated with two

labels:

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 130

• f(i), which indicates the total cost of the path, or in other words, is the sum of

the costs of the links on the path to node i;

• J(i), which denotes the node that precedes i in the minimum cost path.

Algorithm 6 Cost-Aware Minimum Path

Input: source, destination, flow, nodes list, conn matrix, costs matrix, capac-
ity matrix
Output: path
T = all the nodes ∈ nodes list
S = ∅
for i=0 to size of T do

node = T.get(i)
if node == source then

f.put(source, 0)
prec.put(source, 0);

else
if source and node are connected and there is enough capacity between them

to accommodate flow then
f.put(node, costs[source][node])
pred.put(node,source)

else
f.put(node, ∞);

end if
end if

end for
for i ∈ T do

Find j in T such as f(j) = min f(i) and i ∈ T
Remove j from T
Add j in S
for k=0 to size of T do

current = T.get(k)
if j and current are connected AND the capacity between them is enough to

accommodate flow AND f.get(curr) ≥ f.get(j) + costs[j][current] then
f.put(current, f.get(j)+costs[j][current]);
pred.put(current, j);

end if
end for

end for
path = Reconstruct path(source, destination, prec)

There are two different sets, S and T , that contains the nodes that were labelled and the

ones without labels respectively. The set T is initially set all the nodes in the list, while

S is the empty set. For every node belonging to T , if the current one coincides with

the source, the label representing the cost to reach it is set to zero, like its predecessor.

Otherwise if the source and the current node are connected and there is enough capacity

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 131

to accommodate the flow, the predecessor of the node becomes the source and the f

label is just the cost between the source and that node. If the previous cases do not

hold, the current node cannot be reached from the source, and the cost is set to infinite.

Then for each node in T , the algorithm finds the one holding the minimum value of

f label: this node, j, is removed from T and added to S. Given the node j, for each

remaining one in T , if j and the current one (k) are connected, the capacity is sufficient

to forward the flow and the cost to get to k is greater than the cost to reach j in addition

to the cost between j and k, then the cost and predecessor labels of k are updated. At

the end, the algorithm simply reconstructs the total path, by looking at the predecessor

of each node.

The heuristic uses the cost-aware minimum path algorithm to identify the best power

consuming paths for all the traffic demands. The algorithm, then, evaluates the desir-

ability of each possible VM migration. When considering a migration, it is needed to

verify if the re-positioning causes the VM to move from one rack to another. In that

case, indeed, the paths for the traffic flows of the migrating VM must be updated. The

desirability takes into account a value which represents a reconfiguration cost, in order

to encourage not only the migrations which result in better resource utilization and

power consumption, but also the ones have a minimum disruption over the paths that

were established through the Dijkstra algorithm. The cost is set to the inverse of the

number of flows the VM exchanges with other VMs that need a path re-computation.

Instead, if the VM migrates from one server to another within the same rack, none of its

established paths needs to be recalculated: hence, the cost is set to zero. The migration

with the highest value of desirability is triggered: if this re-positioning cause the update

of some paths, all the resources held by the old path are released and the cost-aware

minimum path algorithm is used again. The impact on the total network consumption

is part of the objective function: the migration is accepted with the same probability

law that was introduced in Section 4.6.2; if it is refused the original path is restored.

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 132

4.8 Experimental Evaluation

4.8.1 Parameters

The consolidation algorithms can be evaluated by considering different parameters. Since

the objective is to minimize the number of used server, they can be compared in terms

of active servers or, equally, the number of consolidated servers, that can be expressed

as it follows:

cons servers = initiat active servers− new active servers (4.52)

Besides the other parameters that can be taken into account are the number of migrations

needed to consolidate the servers, the total power consumption due to the active servers

after the consolidation and the total network power consumption. In [70] a metric was

also introduced for evaluating how effective the migrations are: this is the migration

efficiency, which can be defined as:

me =
cons servers

migs
· 100 (4.53)

This value represents how much every single VM migration contributes in percentage

to the objective of releasing one node. For example, a migration efficiency of 100%

indicates that every single migration leads to one hibernated node; instead an efficiency

of 30% means that each migration is useful to consolidate a 30% of a single server.

Another discriminating parameter for the comparison is the packing efficiency, which

is a measure of how much the algorithm was able to consolidate the servers and it is

defined as it follows:

pe =
cons servers

initial active servers
(4.54)

Another group of indicators is related to the resources utilization. It is possible to

compute the average CPU utilization, which is the ratio of used CPU to the total

available amount, the average RAM utilization, namely the ratio of used RAM to the

total available one and the average VMs per server.

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 133

4.8.2 Algorithms

4.8.2.1 First Fit Decreasing Consolidation

This algorithm [70] is an adaptation of the first-fit decreasing policy which is applied

in order to compute the list of migrations needed to consolidate as many servers as

possible. The algorithm is based on a simple idea: every VM is associated to a value

representing the linear combination of the resources which are needed by the virtual

appliance, compared to the total available ones. This value represents how much amount

of resources the VM is requesting. The algorithm computes a value, namely α, which is

the ratio between the total amount of CPU which is requested by all the VMs and the

sum between the overall requested CPU and RAM, as it follows:

α =

∑
k∈K rcpuk∑

k∈K(rcpuk + rmem
k)

(4.55)

where rcpuk and rramk are respectively the CPU and the RAM required by the VM k.

The score of a VM, that is a value representing the quantity of required resources, is

calculated as it follows:

scorek = α · rcpuk + (1− α) · rcpuk (4.56)

The list of VMs is ordered by descending score, in order to consider more expensive VMs

at the beginning. Then the algorithm checks if each VM can be migrated to each physical

server: if the migration is possible, it is performed and another VM is taken from the

list. The algorithm computes the number of used servers, the number of migrations and

the released nodes.

4.8.2.2 Sercon

The idea behind Sercon [70] is to take into account a group of migrations if, and only if,

they lead to a server consolidation, otherwise they are rejected. The algorithm uses the

same concepts introduced in previous section: both the VMs and the physical nodes are

ordered by using the score, which represents how much a server is loaded, or how many

resources a VM needs. After obtaining the scores, the nodes are ordered by decreasing

values and the least loaded one is chosen as a candidate for the consolidation. Given

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 134

this node, for each of its allocated VMs, the score is also evaluated: the VMs are then

ordered, so that the first one is the most expensive in terms of requesting resources.

The algorithm tries to reallocate every VMs on the selected node, with the objective of

hibernating it. If each VM can be migrated away from the node, the list of migrations

is updated accordingly; otherwise if any of the migrations is not possible, all the VM

moves are discarded and the subsequent node in the list is taken into consideration as a

new candidate for the consolidation attempt. If the node was consolidated the variable

indicating the unsuccessful attempts is set to zero; otherwise it is incremented by one.

The algorithm stops if the unsuccessful attempts are greater than the maximum number

which is given as input or if the migration efficiency is greater than an input threshold.

4.8.3 Results

The consolidation algorithm was implemented in Java, by creating a simulator for the

data center resources and it was compared with First Fit Decreasing Consolidation and

Sercon. The values for CPU, RAM and power models of the servers are randomly taken

from the sets of values specified in tables 4.8 and 4.9, for servers and VMs respectively.

Table 4.8: Servers Experimental Values

CPU cores 4, 6, 8, 12, 16, 18, 20, 24, 32

RAM (GB) 2, 4, 6, 8, 10, 12, 16, 20, 32

Power (idle %) 0.2, 0.3, 0.4

Power (max W) 160, 180, 190, 220, 240, 260, 270, 280, 290

Table 4.9: VMs Experimental Values

CPU cores 1, 2, 3, 4, 5, 6, 7, 8

RAM (GB) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Given the number of physical servers and VMs, the initial allocation is computed through

an algorithm that selects for every VM a random node: if it has enough resources, the

VM gets allocated on it. This is why, by considering an initial number of servers, only

a subset of them will be actually active. For active nodes, it is meant servers hosting

at least one VM. In Figure 4.6(a), the x axis shows the number of active nodes before

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 135

(a) Active Nodes - Power Consumption

(b) Active Nodes - Migrations

Figure 4.6: Results

the consolidation and the number of VMs. There are two y axes: the one on the left

represents the number of active nodes after the consolidation (the bars), while the one

on the right shows the overall achieved power consumption (the dotted lines). Figure

4.6(b), instead, shows on the right y axis the number of migrations needed to perform the

consolidation. It turns out that the proposed heuristic is able to always guarantee the

minimum number of active servers and also the lowest overall power consumption. More

in details, the proposed algorithm is able to obtain a reduction between 27% and 37%

in the number of active nodes, and between 31% and 44% in the power consumption,

in comparison to FFD. Instead, by comparing it with Sercon, a reduction in a range

of 9%-17% for the number of active nodes and of 14%-24% for the power consumption

was obtained. Some experiments were also performed with other allocation algorithms

used for creating a mapping scheme, namely best-fit and first-fit. Figure 4.7 represents

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 136

Figure 4.7: Results By Allocation Policies

in each column the number of consolidated nodes, the number of migrations and the

power consumption achieved by running the consolidation algorithms for each of the

cited allocation policies (random, best and first). For the experiment a number of 400

initial used servers was used (302 active before the consolidation for random-fit, 249 for

best-fit and 149 for first-fit) and 500 VMs. The graphs in the first row show the number

of consolidated nodes: by applying the best-fit and first-fit policies, the consolidated

nodes are fewer than the number achieved with the random allocation, but the proposed

algorithm still outperforms the other two. Regarding the migration efficiency Sercon

achieves values in a range between 67% and 78%, FFD between 23% and 36%, while the

proposed algorithm between 61% and 73%. The values achieved by Sercon are slightly

higher due to the fact that, by average, it produces less migrations because it does

not consider the server’s power consumption. The packing efficiency is better (range

between 1.64 and 2.40) for the proposed algorithm because it can pack a bigger number

of VMs in a smaller set of servers. Sercon, instead, achieves a packing efficiency in a

range between 1.39 and 2.01, while FFD between 0.82 and 2.35.

The VM consolidation problem was also solved through IBM CPLEX [86], in order to

quantify the distance from the optimum solution. By considering one instance of the

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 137

problem I, the quality of the solution produced by the heuristic is computed as:

gap =
|OPT (I)−HEU(I)|

OPT (I)
· 100 (4.57)

where OPT (I) is the optimum solution for the instance and HEU(I) is the one obtained

through the heuristic algorithm.

Figure 4.8: Times Comparison

In order to limit the processing time of the CPLEX optimizer, a relative tolerance

of 0,01% was employed by using two CPLEX parameters, namely epagap and epgap.

They are used to instruct the optimizer to stop the execution as soon as it has found a

feasible integer solution proved to be within one percent of the optimal one. In Figure

4.8, a comparison in terms of gap (expressed in percentage) between the value of the

objective function obtained by the heuristic and the optimal one is showed. Besides in

the same graph also the execution times are considered. In the figure, there are two

axes: the one on the left denotes the gap, whose values are represented through bars,

and on the right axis the execution times are showed. From the figure, it is possible to

underline how CPLEX execution times begin to exponentially explode from the eighth

x-coordinate. The values shows that the worsening of the heuristic objective function

values are included in a range between 0.6% and 7%, while the execution time reduction

is within 47,13% and 83,53%. The exact results (for a limited data set) in terms of the

values of the objective function, the active servers after the consolidation, the number

of VMs migrations and the total servers power consumption are shown in Table 4.10.

The consolidation algorithm was also extended in order to solve the problem that was

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 138

Table 4.10: Optimal Solution Comparison

init PHs - active
PHs - VMs

OPT
active

SA
active

OPT
Migs

SA
Migs

OPT
Power

SA
Power

300-216-400 53 54 221 217 10542.75W 10659.95W

400-286-500 68 74 288 284 13362.57W 13821.92W

500-344-600 89 99 348 331 17712.99W 18590.54W

600-419-700 102 109 424 416 21034.57W 21751.23W

700-478-800 120 133 498 470 23661.33W 24587.97W

defined in section 4.7. In Figure 4.9, the original consolidation algorithm is compared

with the cross-layer heuristic. The network topology is characterized by the number of

hierarchy levels, the number of switches at each level and the number of racks. The set

of parameters that where considered is:

• cooling factor = 0.9999 and initial temp = 0.01;

• num servers = 150 and num VMs = 300;

• num nodes level = {15, 10, 6, 6, 3, 1}, levels = 6 and racks = 15;

In the graphs, the number of active nodes, the number of migrations and the total server

consumption are compared for the basic consolidation algorithm (that does not takes

into account the network power consumption), by using α = 0.9 and β = 0.1 and the

combined heuristic, by setting:

• α = 0.05 and β = 0.05 and γ = 0.90

• α = 0.90 and β = 0.05 and γ = 0.05

In the first case γ is set to 0.90, therefore in the objective function the network power

consumption assumes more importance over the other two objectives. The second set of

parameters is characterized by a higher value of α, in order to promote the minimization

of the servers power consumption.

By considering the number of active servers, the top-left graph shows that the original

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 139

Figure 4.9: Algorithms Comparison

consolidation algorithm and the cross-layer heuristic that gives more importance to the

server consolidation achieve quite the same results, as proved by the fact that the lines

almost overlap. They also have a mean value of 61 active servers after the consolidation,

while the cross-layer algorithm with a higher γ value has a mean of 65 active nodes.

These results reflect also in the bottom-left graph, which is related to the servers’ total

consumption: the lowest mean power consumption is achieved by the original consoli-

dation algorithm. With regard to the number of migrations, the algorithm that always

achieves the minimum number is the cross-layer heuristic with a higher γ value. The

bottom-right graph is related to the network power consumption: in this case only the

two different versions of the cross-layer algorithm are compared because the original

one does not take into account the network topology. As expected, when the weight

associated to the network power consumption (γ) is higher, the algorithm assures the

minimum power consumption. The mean values for the three cases are shown in Table

4.11. By looking at the mean results, despite a 7% worsening in the number of active

servers compared to the other two cases, the cross-layer algorithm with a higher γ value

Chapter 4. Algorithms for Energy-Efficient Cloud Resources Management 140

achieves a better result in the number of migrations (26% fewer migrations in compar-

ison to the original algorithm, and 40% if considering the other case). Besides it also

assures a 10% reduction in the network power consumption.

Table 4.11: Mean Values

Average
active
servers

Average
migrations

Average
servers
power

Average
net power

Non Combined 61 158 12547W -

Combined α = 0.05 65 117 12861W 16260W

Combined α = 0.90 61 196 12527W 18026W

Chapter 5

Conclusions

Computing paradigms have been experiencing several changes over the past four decades:

each computing paradigm revolution was the reason behind new economies of scale. For

example, Personal Computing gave the chance to avoid the delay in the access to a single

workstation and to make transactions parallel, while Network Computing increased the

number of users able to exploit distributed computing resources. The increasing complex

nature of scientific problems was the reason for the need of a cluster middleware capa-

ble of hiding the heterogeneity of the hardware resources, in order to use the available

interconnected computing resources as if they were one single centralized resource. An

additional computing evolution was guided by the massive geographical distribution of

very powerful computing resources. Here, the focus is on the software layers that allow a

coordinated mechanism for resource sharing and collaborative problem-solving. This is

the inspiration behind the birth of Grid Computing. Modern computing paradigms are

extremely linked to the Utility Computing : the underlying concept is a service provision-

ing model that allows users to exploit a computing resource when needed and according

to the specified requirements, with the objective of maximizing the utilization and bring-

ing down the costs. In particular, Cloud Computing is able to provide the customer with

a generic service which is offered through an universal access, in a scalable and elastic

way and in a pay-as-you-go basis. Cloud explosion has been also fostered by the success

of the virtualization techniques that enable the consolidation of the system’s utilization,

the reduction of the computing power, electricity charges and space costs in data centers

and a heterogeneous execution environment. New technologies are also distinguished by

a growing green awareness. The power consumption of a typical data center is becoming

141

Conclusions 142

more and more a concern in terms of a double-face motivation: the first one is related

to an environmental problem and coincides with the arising CO2 emissions; the second

one is related to the costs a company needs to face for the electricity consumption. The

combination of the cloud typical elastic resources provisioning and the energy efficiency

encouraged by Green Computing is explored in lots of new mechanisms and techniques

developed with the aim of providing the system with a lower power consumption.

Next to these recent evolutions, critical business services are characterized by an in-

creasing digitalization, together with higher expected levels of quality and unbearable

costs for unavailability and downtime. Critical Information Infrastructures (CIIs) are

fundamental in many modern human activities such as communications, health, tourism

and finance: they rely on computer-based systems to exchange, aggregate and extract

significant amounts of sensitive data. Mission critical systems are no longer isolated and

they demand for flexible, agile and low-cost platforms to deliver their services, satisfy

customer’s experience and improve cyber-security. In fact, the political and economic

relevance of these infrastructures makes them particularly vulnerable to failures due to

intentional failures, such as malicious events or terrorist attacks. The application of a

cutting-edge technology, like Cloud Computing, to complex and mission critical infras-

tructures can lead to lots of operational benefits, even if there is still some reluctance

in its adoption in critical industry. On one hand, a private cloud based solution can be

employed, for example, to reproduce real world scenarios with the aim of performing

distributed testing campaigns, or to create automatic procedures for backup mecha-

nisms. On the other, the problems that arise with the virtualization of these systems,

demanding for very strict requirements, is that there is no enough guarantee of the

same dependability levels which can be achieved in the real operational environments.

Another issue of the cloud paradigm is that it is difficult to assure a required level of

availability: this is basically due to the lack of validation techniques for cloud services

and infrastructure assessment. For example this is true when considering the fact that

virtualization adds a layer which can be prone to different failure modes. Also data store

consistency assume a central role if you consider a cloud infrastructure that is shared

among different data centers and there is a failure in the master one. These directions

probably represent the research efforts that will give a certain answer to the applicabil-

ity of the cloud technology to such sensitive infrastructures. Besides, the virtualization

layer may cause new issues, related to other possible attack surfaces. These threats

potentially make the risk of providing potential attackers with the access to sensitive

Conclusions 143

data very probable. The nature of mission and safety critical applications really stresses

out the lack of robust security solutions and the need for automatic recovery strategies.

This thesis investigated the two described directions, by adopting a private cloud solution

for the implementation of a mission critical infrastructure and by leveraging virtualiza-

tion techniques for designing power efficient resources management strategies. The case

study that was considered deals with a real world Area Control Center, an Air Traffic

Control system, for which missing dependability and security targets would result in

human and financial losses. The center represents the facility responsible for the control

service of an airspace volume which extends from the surface of the airport to a specified

upper limit. The investigation started from the practical installation, experimentation

and configuration of different cloud solutions, with the aim of building a suitable Ex-

tended Private Enterprise Cloud platform for the considered case scenario. The first

objective was the identification of application-specific requirements for the cloud plat-

form: they consist in the reproducibility of real hardware configurations, a minimum

impact on the applications and a low resources provisioning time. These requirements

assume a great importance in the realization of fast fail-over techniques by guaranteeing

a minimum service disruption. Cloud services can be ranked according to different key

performance indicators: by considering the nature of critical services and the need for

recovery mechanisms, two parameters useful for measuring the elasticity attribute were

taken into consideration. This property can be interpreted as the ability of a service to

adapt itself to the changes and the requirements issued by the applicant. The evalua-

tion was based on the provisioning time and the scheduling time: the first one is the

time needed to activate or deactivate a generic resource. More in details, if the resource

consists in a VM, it can be defined as the time interval needed by the platform to spawn

and make a VM available to the user. The second one is the time needed to make a

decision on where to allocate a new VM and it can be considered as one of the param-

eters of the provisioning time. The assessment was restricted to two open-source cloud

projects, namely OpenStack and OpenNebula, which were the best responding ones to

the specified requirements. After having identified the cases in which the creation of a

VM in one platform is comparable to the other, the impact of the different parameters

involved in the definition of a VM template on the provisioning time was evaluated. Be-

sides an experimental campaign for comparing the two platforms was carried out. The

results show that, despite the great success of OpenStack, OpenNebula offer slightly

Conclusions 144

better values in terms of provisioning time. In the evaluation, another aim was to iden-

tify the significant contributions and their percentage impact on the provisioning time:

it turns out that OpenStack has a non-negligible overhead due to the communication

between the various services. Besides the management interface with the hypervisor

drivers and with the virtual network module has the greatest impact. The results on

the scheduling times show, instead, that the time related to the choice of a physical host

has a little percentage impact for both the platforms. OpenNebula exhibits a slightly

higher scheduling time because of a greater complexity in the implemented scheduling

algorithm. The selection of the platform was the starting point for the implementation

of a multi-layers enhancing security architecture. The idea was to provide this architec-

ture with agile mitigation strategies in case of attacks, by exploiting from one side the

virtualization potentialities, such as the Live Migration of virtual resources, and on the

other one, the dynamic reconfiguration, made possible thanks to the Software Defined

Networking approach. After identified the components of the architecture, a vulnera-

bility assessment of the real ATM scenario was performed as a proof of concept, and a

well-known risk evaluation methodology was applied on the ATM system’s operational

assets. This was a preliminary step to build a real threat scenario, which laverages the

identified vulnerabilities and was used as a trigger for the realized mitigation strategy.

VM Live Migration was also exploited to extend of the so-called VMs Consolidation

Problem, which is used to achieve energy consumption savings in virtualized environ-

ments. Since VMs are created and destroyed on demand and the resources they request

may change over time might, the resources utilization can be very inefficient especially

from the power consumption viewpoint. It is convenient to consolidate the infrastruc-

ture in order to keep the allocation of VMs up-to-date and to minimize the number

of active servers, by using the live migration mechanism. Two models for obtaining a

consolidation decision that achieves the minimization of the linear combination of the

consumption of the used servers, the number of migrations and the network power con-

sumption are proposed, by using the Mixed Integer Linear Programming. The problems

are faced by using a Simulated Annealing based heuristic, which is based on a very

simple idea: since the aim is to have a balance between the consolidation of the nodes

and the overall power consumption, in order to evaluate the possible migrations, a value

that is defined as the “desirability” of migrating a VM from a source node to a des-

tination one is taken into account. This value consists in the arithmetic mean of the

Conclusions 145

convenience of migrating the VM from the source and the willingness of the destination

one of accepting the VM, plus the difference in the power consumption after the migra-

tion of the VM to the new node. The algorithm was implemented, by creating a data

center resource simulator and its evaluation compared to other algorithms found in the

literature.

Acknowledgements

The conclusion of a three-years PhD is an achievement characterized by proud and joy.

The potential of life often lies in the chance we are given to prove ourselves that we

are able to defeat our weaknesses and to grow as person, as worker, as world citizen.

The PhD was an amazing occasion to learn methods, techniques and models used in

the scientific research but also to apply them in industry real use cases. I was blessed

with the opportunity of meeting people from all over the world, share ideas, get in touch

with very different minds: this was very inspiring to my personal growth. For this very

important goal, I want to truly thank my advisor, prof. Stefano Avallone, who believed

in me, by offering me the chance to leverage this very professional enhancing experience.

His competence, technical and personal advices have meant a lot to me and have helped

me in the scientific results I have been able to achieve during the last three years. His

passion to work was very stimulating and it was a source of new stimulus to push my

limits. I want to also thank my co-advisor, prof. Giorgio Ventre, which was a solid

reference point during all the PhD period. I also want to thank three people I had

the chance to work with. A thank is dedicated to Vittorio Manetti, which I personally

admire for his passion in research, his clarity and his availability. His very inspiring

ideas were a great helping hand for my activities and his advices were always very wise.

I also want to thank Luigi Battaglia, who was the person which I learned more from in

terms of technical stuff: he has been always present for helping me and I have been so

lucky to work with a very prepared and experienced person. The last (but not least)

thank goes to Gabriella Carrozza: her deep dedication and passion for work should be a

model for every person. She is not afraid of taking new risks and challenges and I want

to thank her for her creativity: it was a root for new ideas and new research directions.

Obviously a truly thank is also devoted to my parents and my sister: all their sacrifices

gave me the opportunity of reaching this very important title.

146

Bibliography

[1] A.A. Semnanian, J. Pham, B. Englert, and Xiaolong Wu. Virtualization technology

and its impact on computer hardware architecture. In Information Technology:

New Generations (ITNG), 2011 Eighth International Conference on, pages 719–

724, April 2011. doi: 10.1109/ITNG.2011.127.

[2] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable

third generation architectures. Commun. ACM, 17(7):412–421, July 1974. ISSN

0001-0782. doi: 10.1145/361011.361073. URL http://doi.acm.org/10.1145/

361011.361073.

[3] Chee Shin Yeo, Rajkumar Buyya, Hossein Pourreza, Rasit Eskicioglu, Peter Gra-

ham, and Frank Sommers. Cluster computing: High-performance, high-availability,

and high-throughput processing on a network of computers. In Handbook of Nature-

Inspired and Innovative Computing: Integrating Classical Models with Emerging

Technologies, chapter 16, pages 521–551, 2006.

[4] D. Provan. Transmitting IP traffic over ARCNET networks. RFC 1201 (Standard),

February 1991. URL http://www.ietf.org/rfc/rfc1201.txt.

[5] O.C. Ibe, R.C. Howe, and K.S. Trivedi. Approximate availability analysis of vax-

cluster systems. Reliability, IEEE Transactions on, 38(1):146–152, Apr 1989. ISSN

0018-9529. doi: 10.1109/24.24588.

[6] I. Foster. The anatomy of the grid: enabling scalable virtual organizations. In

Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM Interna-

tional Symposium on, pages 6–7, 2001. doi: 10.1109/CCGRID.2001.923162.

[7] Ian T. Foster. Globus toolkit version 4: Software for service-oriented systems. J.

Comput. Sci. Technol., 21(4):513–520, 2006.

[8] Globus toolkit version 4 grid security infrastructure: A standards perspective the

globus security team 1, 2004.

[9] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.

International Journal of Supercomputer Applications, 11:115–128, 1996.

147

http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://www.ietf.org/rfc/rfc1201.txt

Bibliography 148

[10] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud com-

puting. Technical report, Gaithersburg, MD, United States, 2011.

[11] Nick Antonopoulos and Lee Gillam. Cloud Computing: Principles, Systems and

Applications. Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN

1849962405, 9781849962407.

[12] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and

Dawn Leaf. NIST Cloud Computing Reference Architecture: Recommendations

of the National Institute of Standards and Technology (Special Publication 500-

292). CreateSpace Independent Publishing Platform, USA, 2012. ISBN 1478168021,

9781478168027.

[13] Rohit Bhadauria and Sugata Sanyal. Article: Survey on security issues in cloud

computing and associated mitigation techniques. International Journal of Computer

Applications, 47(18):47–66, June 2012. Full text available.

[14] Cloud Security Alliance. Top threats to cloud computing v1.0, March 2010.

[15] G.S. Bindra, P.K. Singh, K.K. Kandwal, and S. Khanna. Cloud security: Analysis

and risk management of vm images. In Information and Automation (ICIA), 2012

International Conference on, pages 646–651, June 2012. doi: 10.1109/ICInfA.2012.

6246757.

[16] Flavio Lombardi and Roberto Di Pietro. Secure virtualization for cloud computing.

J. Netw. Comput. Appl., 34(4):1113–1122, July 2011. ISSN 1084-8045. doi: 10.1016/

j.jnca.2010.06.008. URL http://dx.doi.org/10.1016/j.jnca.2010.06.008.

[17] U.S. Environmental Protection Agency. Report to congress on server and data

center energy efficiency public law 109-431, 2007.

[18] Qilin Li and Mingtian Zhou. The survey and future evolution of green computing.

In Green Computing and Communications (GreenCom), 2011 IEEE/ACM Interna-

tional Conference on, pages 230–233, Aug 2011. doi: 10.1109/GreenCom.2011.47.

[19] E. Jaureguialzo. Pue: The green grid metric for evaluating the energy efficiency in

dc (data center). measurement method using the power demand. In Telecommuni-

cations Energy Conference (INTELEC), 2011 IEEE 33rd International, pages 1–8,

Oct 2011. doi: 10.1109/INTLEC.2011.6099718.

[20] The Green Grid. A framework for data center energy productivity, .

[21] The Green Grid. Carbon usage effectiveness (cue): A green grid data center sus-

tainability metric, .

http://dx.doi.org/10.1016/j.jnca.2010.06.008

Bibliography 149

[22] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosystem: Man-

aging energy as a first class operating system resource. SIGARCH Comput. Archit.

News, 30(5):123–132, October 2002. ISSN 0163-5964. doi: 10.1145/635506.605411.

URL http://doi.acm.org/10.1145/635506.605411.

[23] R. Bolla, R. Bruschi, Franco Davoli, and F. Cucchietti. Energy efficiency in the

future internet: A survey of existing approaches and trends in energy-aware fixed

network infrastructures. Communications Surveys Tutorials, IEEE, 13(2):223–244,

Second 2011. ISSN 1553-877X. doi: 10.1109/SURV.2011.071410.00073.

[24] Avi Kivity. kvm: the Linux virtual machine monitor. In OLS ’07: The 2007 Ottawa

Linux Symposium, pages 225–230, July 2007.

[25] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and Scott

Shenker. e.a.: Extending networking into the virtualization layer. In In: 8th ACM

Workshop on Hot Topics inNetworks (HotNets-VIII).New YorkCity,NY(October

2009.

[26] P. Sempolinski and D. Thain. A comparison and critique of eucalyptus, opennebula

and nimbus. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE

Second International Conference on, pages 417–426, 2010. doi: 10.1109/CloudCom.

2010.42.

[27] Eucaliptus web site. URL http://www.eucalyptus.com/.

[28] Nimbus web site. URL http://www.nimbusproject.org/.

[29] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann. What are you paying

for? performance benchmarking for infrastructure-as-a-service offerings. In Cloud

Computing (CLOUD), 2011 IEEE International Conference on, pages 484–491,

2011. doi: 10.1109/CLOUD.2011.80.

[30] Y. Ueda and T. Nakatani. Performance variations of two open-source cloud plat-

forms. In Workload Characterization (IISWC), 2010 IEEE International Sympo-

sium on, pages 1–10, 2010. doi: 10.1109/IISWC.2010.5650280.

[31] Wikipedia web site. URL http://en.wikipedia.org/wiki/Main_Page.

[32] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is the

weather tomorrow?: towards a benchmark for the cloud. In Proceedings of the

Second International Workshop on Testing Database Systems, DBTest ’09, pages

9:1–9:6, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-706-6. doi: 10.1145/

1594156.1594168.

http://doi.acm.org/10.1145/635506.605411
http://www.eucalyptus.com/
http://www.nimbusproject.org/
http://en.wikipedia.org/wiki/Main_Page

Bibliography 150

[33] Ming Mao and M. Humphrey. A performance study on the vm startup time in the

cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference

on, pages 423–430, 2012. doi: 10.1109/CLOUD.2012.103.

[34] Rackspace web site. URL http://www.rackspace.com/.

[35] Amazon ec2 web site. URL http://aws.amazon.com/ec2/.

[36] Microsoft azure web site. URL http://www.windowsazure.com/.

[37] P. Smith L. Roderick E. Zamost V. Makhija, B. Herndon and J. Anderson. VMmark:

A scalable benchmark for virtualized systems. Technical report, VMware Inc, CA,

September 2006.

[38] Wmware virtualization web site. URL http://www.vmware.com/.

[39] Jeffrey P. Casazza, Michael Greenfield, and Kan Shi. Redefining server performance

characterization for virtualization benchmarking. Intel Technology Journal, 10(3):

243–251, August 2006. ISSN 1535-766X. doi: http://dx.doi.org/10.1535/itj.1003.

[40] S. Aiken, D. Grunwald, A.R. Pleszkun, and J. Willeke. A performance analysis of

the iscsi protocol. In Mass Storage Systems and Technologies, 2003. (MSST 2003).

Proceedings. 20th IEEE/11th NASA Goddard Conference on, pages 123–134, April

2003. doi: 10.1109/MASS.2003.1194849.

[41] S.K. Garg, S. Versteeg, and R. Buyya. Smicloud: A framework for comparing and

ranking cloud services. In Utility and Cloud Computing (UCC), 2011 Fourth IEEE

International Conference on, pages 210–218, 2011. doi: 10.1109/UCC.2011.36.

[42] The cloud service measurement index consortium. URL http://csmic.org/.

[43] Stress utility repository for centos. URL http://www.stresslinux.org/sl/.

[44] Commission implementing regulation (eu) no 1035/2011, official journal of the eu-

ropean union, 2011.

[45] Stefano Avallone, V. Manetti, M. Mariano, and S.P. Romano. A splitting infras-

tructure for load balancing and security in an mpls network. In Testbeds and Re-

search Infrastructure for the Development of Networks and Communities, 2007.

TridentCom 2007. 3rd International Conference on, pages 1–6, May 2007. doi:

10.1109/TRIDENTCOM.2007.4444681.

[46] SyedAkbar Mehdi, Junaid Khalid, and SyedAli Khayam. Revisiting traffic anomaly

detection using software defined networking. In Robin Sommer, Davide Balzarotti,

and Gregor Maier, editors, Recent Advances in Intrusion Detection, volume 6961

http://www.rackspace.com/
http://aws.amazon.com/ec2/
http://www.windowsazure.com/
http://www.vmware.com/
http://csmic.org/
http://www.stresslinux.org/sl/

Bibliography 151

of Lecture Notes in Computer Science, pages 161–180. Springer Berlin Heidelberg,

2011. ISBN 978-3-642-23643-3. doi: 10.1007/978-3-642-23644-0 9. URL http:

//dx.doi.org/10.1007/978-3-642-23644-0_9.

[47] Nox web site. URL http://www.noxrepo.org/.

[48] R. Braga, E. Mota, and A. Passito. Lightweight ddos flooding attack detection using

nox/openflow. In Local Computer Networks (LCN), 2010 IEEE 35th Conference

on, pages 408–415, Oct 2010. doi: 10.1109/LCN.2010.5735752.

[49] Kai Wang, Yaxuan Qi, Baohua Yang, Yibo Xue, and Jun Li. Livesec: Towards

effective security management in large-scale production networks. In Proceedings of

the 2012 32Nd International Conference on Distributed Computing Systems Work-

shops, ICDCSW ’12, pages 451–460, Washington, DC, USA, 2012. IEEE Com-

puter Society. ISBN 978-0-7695-4686-5. doi: 10.1109/ICDCSW.2012.87. URL

http://dx.doi.org/10.1109/ICDCSW.2012.87.

[50] E. Maccherani, M. Femminella, J.W. Lee, R. Francescangeli, J. Janak, G. Reali,

and H. Schulzrinne. Extending the netserv autonomic management capabilities

using openflow. In Network Operations and Management Symposium (NOMS),

2012 IEEE, pages 582–585, April 2012. doi: 10.1109/NOMS.2012.6211961.

[51] Oflops: User manual. URL http://archive.openflow.org/wk/images/3/3e/

Manual.pdf.

[52] P. Jakma and D. Lamparter. Introduction to the quagga routing suite. Net-

work, IEEE, 28(2):42–48, March 2014. ISSN 0890-8044. doi: 10.1109/MNET.

2014.6786612.

[53] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings

of the 13th USENIX Conference on System Administration, LISA ’99, pages 229–

238, Berkeley, CA, USA, 1999. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1039834.1039864.

[54] Esar official web site:. URL http://www.sesarju.eu/.

[55] Sesar atm security risk assessment methodology, sesar wp16.2 – atm security, 2003.

[56] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In Computer

Security Foundations Workshop, 2002. Proceedings. 15th IEEE, pages 49–63, 2002.

doi: 10.1109/CSFW.2002.1021806.

[57] Anja Strunk. Costs of Virtual Machine Live Migration: A Survey. 2012 IEEE Eighth

World Congress on Services, pages 323–329, June 2012. doi: 10.1109/SERVICES.

2012.23.

http://dx.doi.org/10.1007/978-3-642-23644-0_9
http://dx.doi.org/10.1007/978-3-642-23644-0_9
http://www.noxrepo.org/
http://dx.doi.org/10.1109/ICDCSW.2012.87
http://archive.openflow.org/wk/images/3/3e/Manual.pdf
http://archive.openflow.org/wk/images/3/3e/Manual.pdf
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://www.sesarju.eu/

Bibliography 152

[58] Haikun Liu, Cheng-zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao. Performance

and Energy Modeling for Live Migration of Virtual Machines. pages 171–181.

[59] D. Breitgand and A. Epstein. Improving consolidation of virtual machines with

risk-aware bandwidth oversubscription in compute clouds. In INFOCOM, 2012

Proceedings IEEE, pages 2861–2865, 2012. doi: 10.1109/INFCOM.2012.6195716.

[60] Jiong Luo, N.K. Jha, and Li-Shiuan Peh. Simultaneous dynamic voltage scaling

of processors and communication links in real-time distributed embedded systems.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 15(4):427–

437, April 2007. ISSN 1063-8210. doi: 10.1109/TVLSI.2007.893660.

[61] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. Dynamic voltage scaling for

multitasking real-time systems with uncertain execution time. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 27(8):1467–1478,

2008. ISSN 0278-0070. doi: 10.1109/TCAD.2008.925778.

[62] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra. Starling: Minimizing

communication overhead in virtualized computing platforms using decentralized

affinity-aware migration. In Parallel Processing (ICPP), 2010 39th International

Conference on, pages 228–237, 2010. doi: 10.1109/ICPP.2010.30.

[63] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The cost of

a cloud: Research problems in data center networks. SIGCOMM Comput. Commun.

Rev., 39(1):68–73, December 2008. ISSN 0146-4833. doi: 10.1145/1496091.1496103.

URL http://doi.acm.org/10.1145/1496091.1496103.

[64] R. Bolla, R. Bruschi, Franco Davoli, and F. Cucchietti. Energy efficiency in the

future internet: A survey of existing approaches and trends in energy-aware fixed

network infrastructures. Communications Surveys Tutorials, IEEE, 13(2):223–244,

Second 2011. ISSN 1553-877X. doi: 10.1109/SURV.2011.071410.00073.

[65] L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM

Journal of Research and Development, 21(5):443–448, 1977. ISSN 0018-8646. doi:

10.1147/rd.215.0443.

[66] Benjamin Speitkamp and Martin Bichler. A mathematical programming approach

for server consolidation problems in virtualized data centers. IEEE Trans. Serv.

Comput., 3(4):266–278, October 2010. ISSN 1939-1374. doi: 10.1109/TSC.2010.25.

URL http://dx.doi.org/10.1109/TSC.2010.25.

http://doi.acm.org/10.1145/1496091.1496103
http://dx.doi.org/10.1109/TSC.2010.25

Bibliography 153

[67] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong. Ena-

Cloud: An Energy-Saving Application Live Placement Approach for Cloud Com-

puting Environments. 2009 IEEE International Conference on Cloud Computing,

pages 17–24, 2009. doi: 10.1109/CLOUD.2009.72.

[68] Chaima Ghribi, Makhlouf Hadji, and Djamal Zeghlache. Energy Efficient VM

Scheduling for Cloud Data Centers: Exact Allocation and Migration Algorithms.

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-

puting, pages 671–678, May 2013. doi: 10.1109/CCGrid.2013.89.

[69] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource

allocation heuristics for efficient management of data centers for Cloud computing.

Future Generation Computer Systems, 28(5):755–768, May 2012. ISSN 0167739X.

doi: 10.1016/j.future.2011.04.017.

[70] Aziz Murtazaev and Sangyoon Oh. Sercon: Server Consolidation Algorithm using

Live Migration of Virtual Machines for Green Computing. IETE Technical Review,

28(3):212, 2011. ISSN 0256-4602. doi: 10.4103/0256-4602.81230.

[71] T. Setzer and a. Wolke. Virtual machine re-assignment considering migration over-

head. 2012 IEEE Network Operations and Management Symposium, pages 631–634,

April 2012. doi: 10.1109/NOMS.2012.6211973.

[72] Zhen Xiao, Senior Member, Weijia Song, and Qi Chen. Dynamic Resource Alloca-

tion Using Virtual Machines for Cloud Computing Environment. 24(6):1107–1117,

2013.

[73] E. Feller, C. Morin, and A. Esnault. A case for fully decentralized dynamic vm

consolidation in clouds. In Cloud Computing Technology and Science (CloudCom),

2012 IEEE 4th International Conference on, pages 26–33, 2012. doi: 10.1109/

CloudCom.2012.6427585.

[74] Young Choon Lee and Albert Y. Zomaya. Energy efficient utilization of resources

in cloud computing systems. The Journal of Supercomputing, (2):268–280, March

2012. ISSN 0920-8542. doi: 10.1007/s11227-010-0421-3.

[75] Nguyen Quang-Hung, Pham Dac Nien, Nguyen Hoai Nam, Nguyen Huynh Tuong,

and Nam Thoai. A Genetic Algorithm for Power-Aware Virtual Machine Allocation

in Private Cloud. ICT-EurAsia’13, LNCS 7804:183–191, February 2013.

[76] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms

and adaptive heuristics for energy and performance efficient dynamic consolidation

of virtual machines in cloud data centers. Concurr. Comput. : Pract. Exper., 24

Bibliography 154

(13):1397–1420, September 2012. ISSN 1532-0626. doi: 10.1002/cpe.1867. URL

http://dx.doi.org/10.1002/cpe.1867.

[77] Y. Shang, D. Li, M. Xu, and J. Zhu. On the network power effectiveness of data

center architectures. Computers, IEEE Transactions on, PP(99):1–1, 2015. ISSN

0018-9340. doi: 10.1109/TC.2015.2389808.

[78] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding

data center traffic characteristics. SIGCOMM Comput. Commun. Rev., 40(1):92–

99, January 2010. ISSN 0146-4833. doi: 10.1145/1672308.1672325. URL http:

//doi.acm.org/10.1145/1672308.1672325.

[79] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J.A.

Maestro. Ieee 802.3az: the road to energy efficient ethernet. Communications

Magazine, IEEE, 48(11):50–56, November 2010. ISSN 0163-6804. doi: 10.1109/

MCOM.2010.5621967.

[80] A.P. Bianzino, C. Chaudet, F. Larroca, D. Rossi, and J. Rougier. Energy-aware

routing: A reality check. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE,

pages 1422–1427, Dec 2010. doi: 10.1109/GLOCOMW.2010.5700172.

[81] Vijay Mann, Avinash Kumar, Partha Dutta, and Shivkumar Kalyanaraman. Vm-

flow: Leveraging vm mobility to reduce network power costs in data centers. In

Proceedings of the 10th International IFIP TC 6 Conference on Networking - Vol-

ume Part I, NETWORKING’11, pages 198–211, Berlin, Heidelberg, 2011. Springer-

Verlag. ISBN 978-3-642-20756-3. URL http://dl.acm.org/citation.cfm?id=

2008780.2008800.

[82] Maruti Gupta and Suresh Singh. Greening of the internet. In Proceedings of the

2003 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, SIGCOMM ’03, pages 19–26, New York, NY, USA,

2003. ACM. ISBN 1-58113-735-4. doi: 10.1145/863955.863959. URL http://doi.

acm.org/10.1145/863955.863959.

[83] M.A. Adnan and R. Gupta. Path consolidation for dynamic right-sizing of data

center networks. In Cloud Computing (CLOUD), 2013 IEEE Sixth International

Conference on, pages 581–588, June 2013. doi: 10.1109/CLOUD.2013.106.

[84] Weiwei Fang, Xiangmin Liang, Shengxin Li, Luca Chiaraviglio, and Naixue Xiong.

Vmplanner: Optimizing virtual machine placement and traffic flow routing to

reduce network power costs in cloud data centers. Comput. Netw., 57(1):179–

196, January 2013. ISSN 1389-1286. doi: 10.1016/j.comnet.2012.09.008. URL

http://dx.doi.org/10.1016/j.comnet.2012.09.008.

http://dx.doi.org/10.1002/cpe.1867
http://doi.acm.org/10.1145/1672308.1672325
http://doi.acm.org/10.1145/1672308.1672325
http://dl.acm.org/citation.cfm?id=2008780.2008800
http://dl.acm.org/citation.cfm?id=2008780.2008800
http://doi.acm.org/10.1145/863955.863959
http://doi.acm.org/10.1145/863955.863959
http://dx.doi.org/10.1016/j.comnet.2012.09.008

Bibliography 155

[85] Dejene Boru, Dzmitry Kliazovich, Fabrizio Granelli, Pascal Bouvry, and AlbertY.

Zomaya. Energy-efficient data replication in cloud computing datacenters. Cluster

Computing, 18(1):385–402, 2015. ISSN 1386-7857. doi: 10.1007/s10586-014-0404-x.

URL http://dx.doi.org/10.1007/s10586-014-0404-x.

[86] Ibm cplex. URL http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/.

http://dx.doi.org/10.1007/s10586-014-0404-x
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Cloud Computing: Opportunities and Challenges
	1.1 Virtualization Technique and its Impact on Computer Systems
	1.1.1 Server Virtualization
	1.1.2 Storage Virtualization
	1.1.3 Network Virtualization

	1.2 Recent Evolutions of the Computing Paradigm
	1.2.1 Cluster Computing
	1.2.2 Grid Computing
	1.2.3 Cloud Computing

	1.3 Cloud Computing Technology
	1.3.1 Possible Classifications
	1.3.2 Reference Architecture
	1.3.3 Cloud Benefits and Risks

	1.4 Cloud Computing Security Threats
	1.5 Green Computing
	1.5.1 Power Consumption in Data Centers and Energy Efficient Metrics
	1.5.2 Energy Efficient Techniques

	1.6 VM Live Migration
	1.7 Cloud Computing and Mission-Critical Infrastructures

	2 A Cloud Platforms Assessment for Mission-Critical Infrastructures
	2.1 Context and Motivations
	2.2 IaaS Platforms Performance Evaluation
	2.3 Platforms Under Evaluation
	2.3.1 OpenStack
	2.3.2 OpenNebula

	2.4 Functional Assessment
	2.5 Provisioning and Scheduling Time
	2.5.1 Analysis of the Provisioning Time
	2.5.2 CPU and RAM Stress
	2.5.3 Virtual Machine Deployment

	2.6 Experimental Evaluation
	2.6.1 Configuration Parameters
	2.6.2 Experimental Scenarios
	2.6.3 Results
	2.6.3.1 VM Provisioning Time
	2.6.3.2 VM Scheduling Time
	2.6.3.3 CPU and RAM Stress
	2.6.3.4 Analysis of the Results

	3 A Cloud Based Architecture for the Security of Mission-Critical Infrastructures
	3.1 Context and Motivations
	3.2 A Case Study: a Real Air Traffic Control System
	3.2.1 The Area Control Center

	3.3 The Proposed Architecture
	3.3.1 Software Defined Networking
	3.3.2 OpenFlow-based Security Architectures

	3.4 The Components of the Architecture
	3.4.1 OpenvSwitch
	3.4.2 The OpenFlow Controller: Floodlight
	3.4.2.1 Learning Switch
	3.4.2.2 Flow Reconciliation
	3.4.2.3 VxLAN

	3.4.3 Network Emulator: CORE
	3.4.4 A Network Intrusion Detection System
	3.4.5 The Mitigation Server and the Alarm Handler
	3.4.6 The VM Migration Tracker

	3.5 A Proof of Concept of the Architecture
	3.5.1 The SecRAM Methodology
	3.5.1.1 Application of the Methodology
	3.5.1.2 Vulnerability Analysis and Threat Scenario

	3.6 Experimental Evaluation
	3.6.1 A Threat Scenario
	3.6.2 Testbed Set-Up
	3.6.3 Evaluation Parameters and Results

	4 Algorithms for Energy-Efficient Cloud Resources Management
	4.1 Context and Motivations
	4.2 The VMs Allocation Problem
	4.2.1 Problem Formulation and Model
	4.2.1.1 Greedy Techniques for On-line and Off-line Allocation

	4.3 A Generalization of the Problem
	4.3.1 Related Work

	4.4 Power Efficient VMs Consolidation Problem
	4.4.1 Server Power Modeling

	4.5 A Mixed Integer Linear Model
	4.6 A Simulated Annealing based Algorithm for Power-Efficient VMs Consolidation
	4.6.1 Desirability of a VM Migration
	4.6.2 Heuristic Description
	4.6.2.1 A Simple Example

	4.7 Data Centers Network Energy Efficiency
	4.7.1 Related Work
	4.7.2 A Cross-Layer Power Efficient Resource Management Problem
	4.7.2.1 Switch Power Consumption

	4.7.3 Problem Model
	4.7.4 The Combined Heuristic

	4.8 Experimental Evaluation
	4.8.1 Parameters
	4.8.2 Algorithms
	4.8.2.1 First Fit Decreasing Consolidation
	4.8.2.2 Sercon

	4.8.3 Results

	5 Conclusions
	Acknowledgements

