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CHAPTER I 

Celiac Disease 

 

Coeliac disease (CD) is a systemic immune-mediated disorder elicited by gluten in 

genetically susceptible individuals. All patients with CD have a variable combination of 

gluten-dependent clinical manifestations, specific autoantibodies (anti-tissue 

transglutaminase/anti-endomysium), HLA-DQ2 and/or DQ8 haplotypes and different 

degrees of enteropathy, including severe villous atrophy, intraepithelial lymphocytes 

infiltration and crypt hyperplasia. These features are used  to classify CD using the 

Modified Marsh Classification (Oberhuber) (1). 

CD is considered a disease that involves both acquired and innate cell mediated immunity 

(2).  

The gluten peptides, after crossing the epithelium into the lamina propria, are deamidated 

by tissue transglutaminase and then presented by DQ2+ or DQ8+ antigen-presenting cells 

to pathogenic CD4+ T cells (3,4). Once activated, the CD4+ T cells drive a T-helper-cell 

type 1 response that leads to the development of coeliac lesions. Activated gluten-reactive 

CD4+ T-cells produce high levels of pro-inflammatory cytokines, thus inducing a T-

helper-cell–type-(Th)1 pattern dominated by interferon gamma (IFN-γ). Th-1 cytokines 

promote inflammatory effects including fibroblast or lamina propria mononuclear cell 

(LPMC) secretion of matrix metalloproteinases (MMPs), which are responsible for 

degradation of extracellular matrix and basement membrane, and increased cytotoxicity of 

intraepithelial lymphocytes (IELs) or natural killer (NK) T cells. These latter facilitate the 

apoptotic death of enterocytes by the Fas/Fas ligand (FasL) system, or interleukin 15 (IL-

15)(5). IL-15, produced mainly by monocytes/macrophages, dendritic and epithelial cells, 

is a pro-inflammatory cytokine involved both in adaptive and in innate immunity. Memory 
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CD4+ and CD8+ T cells, NKT, NK, and TCRγ/δ+ cells expand following stimulation with 

IL-15 (6). Furthermore, IL-15 is also a potent growth factor for the intraepithelial 

lymphocytes (IEL) (7), whose density is significantly increased in CD, representing its 

hallmark. IL-15 is highly expressed not only in lamina propria cells but also in the 

intestinal epithelium of untreated CD patients and in patients with refractory celiac sprue, a 

premalignant condition, characterized by a massive IEL infiltration in particular of 

abnormal TCRγ/δ+ cells (8). The finding that in CD IL-15 is not secreted but bound to 

enterocyte cellular membrane, strengthened the hypothesis that IL-15 produced by 

epithelial cells, could be the main factor orchestrating the selective expansion of IEL, 

particularly TCRγ/δ+ and CD8 + TCR α/β+ lymphocytes bearing the CD94 NK receptor 

(9,10). It is noteworthy to mention that, in normal condition, intestinal TCRγ/δ+ cells 

recognize stress-inducible, MHC Class I-like molecules MICA and MICB, expressed on 

damaged epithelial cells (11). MICA and MICB proteins interacting with NKG2D receptor 

expressed on TCRγ/δ+ and NK cells, are found to activate innate cytotoxic and cytokine 

production responses. By contrast, the MICA ligation of NKG2D on CD8 + TCR α/β+ 

enhances the adaptive, antigen-specific cell-mediated responses (12). Importantly, a very 

recent study indicate that MICA molecules are strongly expressed on epithelial cells of CD 

patients with acute disease and upregulated both in the epithelium and LP of treated 

following gliadin peptide challenge (13). Also in this case IL-15 seems to play a crucial 

role. These studies pinpoint the fundamental role of innate immune response in the damage 

of intestinal mucosal tissues in CD, primarily due to the cytolysis of epithelial layer 

mediated by MICA/NKG2D activated IEL (13) 

Interferon alfa (IFN-α) released by activated dendritic cells perpetuates the inflammatory 

reaction by inducing CD4+ T cells to produce IFN-γ. Additionally, through the production 

of Th-2 cytokines, activated CD4+ T-cells drive the activation and clonal expansion of B 



5 
 

cells, which differentiate into plasma cells and produce antigliadin and anti-tTG 

antibodies(14). By interacting with the extracellular membrane-bound tTG (mtTG), tTG-

autoantibody deposits in the basement-membrane region might induce enterocyte 

cytoskeleton changes with actin redistribution and consequent epithelial damage (5). 

 

 

 

 

   Figure 1. Mechanisms of mucosal damage in coeliac disease 
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1. The role of undigested gluten peptides 

 

The term gluten mainly refers to wheat storage proteins. It is an extremely heterogeneous 

mixture of proteins, which are classified as gliadins and glutenins. Gliadins are monomeric 

proteins that are subdivided into α/β-, γ-, and ω-fractions according to their electrophoretic 

profile. Glutenins are present as polymeric complexes that are comprised of two subunit 

types, the high molecular weight and the low molecular weight subunits (15-16). A 

common feature of gluten proteins is the presence of a high level of proline and glutamine 

residues, which renders gluten highly resistant to proteolytic degradation in the 

gastrointestinal tract.(17,18). Consequently, the released peptides can cross the gut 

epithelial barrier and reach the lamina propria of the intestinal mucosa, triggering two 

immunological pathways: the adaptive and the innate immune responses (19).  

Tissue transglutaminase (TG2), a Ca++ dependent enzyme, catalyzes both in vivo 

(epithelial brush border and subepithelial TG2) and in vitro the de-amidation of specific 

glutamine residues to glutamic acid, and enhances stimulatory capacity of gliadin-derived 

peptides by strengthening the binding to the HLA-DQ2/8 grooves (20). Recent studies 

have identified in the sequence motifs QXP the glutamine residues which are preferentially 

substrate of TG2-mediated deamidation. This represents an important tool for the 

prediction of toxic gliadin peptides (21). Although there are at least 50 T cell stimulatory 

epitopes in gluten proteins, a unique 33-mer peptide is the more immunogenic since it 

harbors six in part overlapping epitopes; moreover, it is resistant to the enzymatic 

degradation by gastric, pancreatic and brush border peptidase (22). It might reach in an 

intact and stimulatory form the immune districts of intestinal mucosa (22,23); furthermore, 

the 33-mer peptide does not require further processing in APC for T cell stimulation as it 

binds to DQ2 molecules with a pH profile that promotes extracellular binding (24).  
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The A-gliadin 33-mer have been reported to stimulate CD4+ T lymphocytes selectively 

isolated from small intestinal mucosa of CD patients (22,25,26,27). Importantly, T cell 

lines and clones from intestinal mucosa of CD patients recognize gliadin-derived peptides 

in the context of the disease-associated HLA-DQ2 and -DQ8 restriction molecules. By 

contrast, no evidence of T-mediated reactivity against dietary gliadin has been reported in 

normal, non-celiac mucosa (28,29). Moreover, it has been shown that gliadin-specific T 

lymphocytes from CD intestinal mucosa are mainly of Th1/Th0 phenotype and release, 

following gliadin recognition, prevalently pro-inflammatory cytokines, dominated by γ-

interferon (28,30,31). γ-Interferon-dependent signaling pathways have been found to be 

enhanced in CD. Signal transducer and activator of transcription 1 (STAT1) (32) and 

interferon regulating factor 1 (IRF1) have both been found more expressed in untreated CD 

and in treated CD mucosa in vitro challenged with gliadin (33).  

CD8+ T lymphocytes recognize peptides of 8–12 aminoacid length in the context of HLA 

Class-I molecules. Peptides interact with HLA-Class-I molecules through specific 

aminoacid and in determined positions known as binding motifs which vary depending on 

the type of HLA Class-I molecules (34). On the basis of the capacity of a panel of gliadin 

peptides to bind HLA-A2.1 molecules, we recently identified a peptide, mapping the 123–

132 position of A-gliadin (A-gliadin 123–132, pA2) which is selectively recognized by 

CD8+ T lymphocytes from HLA-A2.1-positive celiac patients (35). This peptide induced 

γ-interferon production and cytotoxic activity by peripheral blood mononuclear cells from 

treated CD patients.  

More recently, attention has been directed to the possible involvement of innate immune 

mechanisms in CD (36,37). 

In particular, Maiuri et al. (37) showed that the synthetic peptide α-gliadin 31–43 

(LGQQQPFPPQQPY) is able to upregulate the expressions of interleukin (IL)-15, of the 
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enzyme cyclooxygenase-2 (COX-2) and of the cell activation markers CD25 and CD83 on 

LP macrophages, monocytes, and dentritic cells, without stimulating CD4+ T-cells.  

Barone et al. investigated the early events of celiac disease and in particular the interaction 

between gliadin peptides and intestinal epithelial cells. They found that the gliadin toxic 

peptide (P31-43) delays endocytic vesicle maturation and consequently reduces epidermal 

growth factor receptor (EGFR) degradation and prolongs EGFR activation, which in turn 

results in increased cell proliferation and actin modifications in celiac crypt enterocytes 

and in various cells lines (38). P31-43 enters CaCo-2 cells and intestinal enterocytes, 

interacts with early endocytic vesicles (39,40), reduces their motility and delays their 

maturation to late endosomes (39). Taken together, this information points toward an effect 

of certain gliadin peptides, i.e., P31-43, on endocytic function and indicates epidermal 

growth factor (EGF) signalling as one of the major pathways in the celiac intestine. 

In the 2011 Barone et al. (41) showed that P31-43 induces at least two main effects by 

altering the trafficking of cell vesicular compartments. This leads to overexpression of the 

trans-presented IL-15/IL5R alpha complex, an activator of innate immunity, and, due to 

cooperation of IL-15 and EGFR, the proliferation of crypt enterocytes with consequent 

remodelling of the CD mucosa. 
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1.1 Alanine-scanning P31-43 

 

Alanine-scanning mutagenesis is a simple and widely used technique in the determination 

of the catalytic or functional role of protein residues. Alanine is the substitution residue of 

choice since it eliminates the side chain beyond the β carbon and yet does not alter the 

main-chain conformation (as can glycine or proline) nor does it impose extreme 

electrostatic or steric effects.  

In order to gain insight on the structural details that make  P31-43 able to activate innate 

immunity mechanisms,  in  this study we analyzed  and compared the structural and 

biological properties of P31-43 peptide with those of its Ala-scanning mutants(Figure 2). 

We focused on identification of the critical amino acid residues of P31-43 that have a toxic 

functions. 
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Figure 2. Alanine scanning mutants of P31-43 

 

The conformational behaviors of the peptides were defined by considering both 

chromatographic and NMR spectroscopic data.  

HPLC profiles of P31-43 and almost all its Ala-mutants show two partially resolved peaks 

(Figure 3). We assumed that this atypical behavior was most likely a consequence of 

isomerization of two conformers, which is the result of the slow cis-trans isomerization of 

one of the four proline residues occurring in the sequences. For different peptides, it has 

been demonstrated that two adjacent prolines may cause the presence of slow 

interconverting cis–trans isomers with respect to the amide bond in solution.(42,43). The 

partial rotational hindrance around the Pro–Pro bond may explain the slow mutual 

conformational interconversion that causes peak splitting during HPLC analysis. Mutation 

of each residue in the synthetic peptide resulted in a unique single peak (Figure 3).  Based 

on the chromatographic behaviors of the peptide analogues, it was deduced that the 

Xaa_Pro bond with exceptionally low rate of isomerization (ms) is contained in the trait 

FP8P9, and particularly involves P8.  
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Figure 3. HPLC profiles of P31-43 and three of its alanine scanning mutants  

 

NMR analyses in water confirmed the presence of multiple conformers with inter-

conversion rates from slow to fast. For P31-43, Ala6 and Ala7 analogues, spectral 

overlapping hindered to confidently identify all the components of the molecular 

ensembles.  

 

Ala6 

Ala7 

Ala8 
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Figure 4. NMR analyses of P31-43(A), Ala6(B), Ala7(C) 

 

However, the structure characterized by P6,P8,P9,P12 in trans configuration was probably 

the most represented in solution (Figure 5). 

 

C 
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Figure 5. Structure representation of P31-43 in solution 
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1.2 Effects of Ala-mutant on cell culture CaCo2 

 

 

EGFR signaling to the nuclei, to induce proliferation, is well characterized (44,45). Upon 

EGF linking to the EGFR, a signaling cascade starts, that involves sequential 

phosphorylation of downstream effectors such as ERK. The MAPK-ERK 1–2, like all 

mitogen-activated-kinases (MAPKs), is one of the essential signaling molecules that 

convert environmental inputs into influences on a plethora of cellular programs, including 

proliferation (46). Moreover, most of the MAPK, including ERK, are stress sensors that 

can be activated by different inputs (47). Only phosphorylated ERK can transduce to the 

nuclei, where it can start trans-activation of several genes that can induce cell proliferation 

and other biological effects (48,49).  

To date gliadin peptides and in particular P31-43 are able to enhance proliferation of celiac 

enterocytes in a EGFR/ERK dependent way and to delay the trafficking and degradation of 

EGFR at the epithelial level, suggesting a role of EGFR activation in CD, particularly in 

determining the crypts hyperplasia and the tissue remodelling of the CD intestine (38). 

Moreover P31-43 is also able to reduce TEER in CaCo2 layers. 

In this study we have tested the Ala-mutants of P31-43 to identification the critical amino 

acid residues of P31-43 that can induced tissue damage. 

We used cell culture CaCo2 and we evaluated ERK phosphorylation and TEER.  

Interesting, eleven of thirteen Ala mutant are able to increase ERK phosphorylation similar 

to P31-43, but two peptide, Ala6 and Ala7, not induced this increase (Figure 5). 

We tested Ala6 and Ala7 and one, Ala13, that have the same effect on ERK 

phosphorylation like P31-43, on a CaCo2 monolayer, to investigate their effects on 

intestinal integrity.  Interesting Ala 13 is able to reduce TEER of caco2 layers like to P31-

43, instead two Ala-mutant, Ala6 and Ala7 are similar to the untreated. 
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Figure 6. Western blot analysis revealed that P3143 increase phosphorylation of ERK 

compared two Ala-mutant, Ala6 and Ala7. 

 

 

 

Figure 7. P31-43 is able to reduce TEER of caco2 layers, instead two Ala-mutant, Ala6 and 

Ala7 are similar to the untreated 
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P31-43 

Ala13 

Ala6 

Ala7 



17 
 

Conclusive remarks 

 

 

Gluten is a complex mixture of polypeptides. The main immunogenic peptides of gluten 

belong to a family of closely related proline and glutamine-rich proteins called prolamines 

(15% proline and 35% glutamine residues). CD is triggered by peptides that result from the 

fragmentation of prolamines, and are not digested by human proteases because the high 

proline and glutamine content prevents complete proteolysis by gastric and pancreatic 

enzymes, and long oligopeptides that are toxic to coeliac sprue patients build up in the small 

intestine.In vitro and in vivo studies have demonstrated that a 25-mer, P31-43,  peptide from 

gliadin is not digestible by gastric, pancreatic, and intestinal brush-border membrane 

endoproteases. This and other peptides have been identified as the principal contributors to 

gluten immunotoxicity.  

It has been demonstrated that P31-43 is able to increase ERK phosphorylation and to 

decrease TEER on CaCo2 cells. In the present study we performed Alanin-scanning of P31-

43 and tested its mutant on CaCo2 cells. 

We observed  that Ala mutant of P31-43, in particular, Ala 6 and Ala 7 peptides, not induced 

this toxic effects on CaCo2 cells. We also observed that the replacement of amino acid 

residues in position 6 and 7 induces a conformational change of the peptides, as showed by 

HPLC profiles. The absence of toxic activity of the latter may depend both on the 

conformational change or the specific amino acid residues. Further experiments are needed 

to test the harmless of these  two peptides using other biological  system as the system of 

organ culture. If confirmed these data could lead to search grains in which this amino acid 

changes are still present and they could be tested in celiac patient. 
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2. Autoimmunity in potential CD patient 

 

 

Gluten is able to induce the production of autoantibodies that can be found in the serum of 

CD patients and that have, from a diagnostic viewpoint, a very high sensitivity and 

specificity (50). These autoantibodies recognize an endomysial antigen known today as 

transglutaminase 2 (TG2) (51). It is also well known that in CD patients anti-TG2 

autoantibodies are produced at intestinal level (52), and can be deposited on the 

extracellular TG2 in the mucosa of small intestine (53), even before passing into 

circulation and being measurable in serum. These deposits are localized below the 

basement membrane, along the villous and crypt and around mucosal vessels (53). In our 

paediatric population, deposits of immunoglobulin (Ig)A anti-TG2 are present in 96% of 

coeliac patients with overt disease (54). Patients with serum positivity for anti-TG2 and 

normal duodenal mucosa, or with slight signs of inflammation, are defined today as 

potential coeliac patients (55). In this group of patients intestinal deposits of IgA anti-TG2 

are found less often (54,56). However, their presence is relevant, as it has been associated 

with the risk of developing frank villous atrophy (56). Several studies have reported that 

when specimens of duodenal mucosa are cultured for 24–48 h in medium alone and with 

peptic–tryptic digest of gliadin (PTG) (57,58)  or with peptide 31–43 (P31–43) (58,59) , 

there is a production of anti-endomysial antibodies in organ culture supernatants in CD 

patients, but not in controls. 

More recently, similar data have been obtained measuring IgA anti-TG2 antibodies in 

supernatants of cultured biopsies from CD patients untreated and on a gluten-free diet (60-

62). This test has been proposed for diagnostic purposes, particularly in patients with 

normal mucosa. However, in this regard the information on potential CD patients is poor 

and scanty. 
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The aim of our work was to investigate the presence of anti-TG2 intestinal antibodies in 

patients with potential CD, and identify the most suitable detection test for this purpose. 

We compared two assays: the search for intestinal deposits of IgA anti-TG2 and 

measurement of the same antibodies in the supernatants after organ culture of duodenal 

biopsies. We detected mucosal deposits of anti-TG2 antibodies in 68% of potential CD 

patients, confirming our previous findings (54) ; at the same time, we showed in the same 

patients that a higher number (96%) secreted these antibodies into culture supernatants. 

The titres of secreted anti-TG2 antibodies of potential CD patients were lower than those 

observed in active CD patients and correlated significantly with serum titres. It is likely 

that a correlation exists between intestinal antibody titres and severity of mucosal damage. 

In our hands, the assay showed a sensitivity and specificity of 97·5% and 92·3%, 

respectively, differing from the search of mucosal deposits that showed sensitivity and 

specificity of 77·5% and 80%, respectively, in the same population.  Our data also showed 

that gliadin peptides do not influence intestinal anti-TG2 antibody production in patients 

with active CD and, as expected, in control subjects.Moreover, the intensity of mucosal 

deposits seemed to increase in potential CD patients in response to culture with gliadin 

peptides, while in the majority of patients the titres of secreted autoantibodies did not show 

a substantial increase.We have demonstrated that to detect intestinal anti-TG2 antibodies, 

the sensitivity and specificity of the anti-TG2 supernatant are higher than those of mucosal 

deposits. This test could prove useful in clinical practice to predict evolution to mucosal 

atrophy in potential coeliac patients and to identify patients with gluten sensitivity who 

lack CD-associated serum autoantibodies. 

These data have been published as Article on Clinical Experimental Immunology, for 

the manuscript see below. 
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3. Immunoregulatory pathway in potential CD patient 

 

The characteristic features of CD histology have always been considered to be a villous 

atrophy, crypt cell hyperplasia, and increased number of intraepithelial lymphocytes (IELs) 

(63). However, more recently, it has become increasingly evident that CD is not restricted 

to severe gluten-dependent enteropathy. Since 1993, Ferguson et al. (64) proposed the 

expression of potential CD to indicate subjects with a normal, or almost normal jejunal 

mucosa, but with immunological abnormalities similar to those found in celiac patients 

(64). Recently, this condition has been redefined and related to people with a normal small 

intestinal mucosa who are at increased risk to developing CD, as indicated by positive CD 

serology (65). 

Although the pathogenesis of CD remains not fully unraveled, it is known that gluten 

peptides are deamidated by tissue transglutaminase and presented by HLA-DQ2+ or HLA-

DQ8+ antigen-presenting cells to lamina propria CD4+ T cells (65,66). Upon activation, 

the lamina propria CD4+ cells polarize along the T helper 1 (Th1)-type pathway, as 

substantiated by their ability to produce large amounts of interferon γ (IFNγ), the main 

cytokine of Th1 response (67,68). In untreated celiac mucosa, the production of IFNγ is 

massively increased and its secretion can be observed in organ cultures from CD patients 

on a gluten-free diet, and in lamina propria derived T-cell clones upon stimulation with 

gliadin peptides (68-70). However, beside the adaptive immunity, the innate immune 

response is necessary for the phenotypic expression and pathologic changes characteristic 

of CD (71). Interleukin-15 (IL-15), a potent pro-inflammatory cytokine upregulated in the 

intestinal epithelium of CD, is thought to have pleiotropic function at the interface between 

innate and adaptive immunity (72,73). 
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At the same time, an enhanced expression of anti-inflammatory cytokines, such as IL-10, 

has also been observed in CD. In fact, in untreated CD patients the levels of IL-10 are 

higher, but the ratio IL-10/IFNγ is significantly lower in comparison with inflamed non-

celiac, control, and treated CD mucosa (74,75). Interestingly, the number of CD4+CD25+ 

T regulatory cells that express the forkhead box P3 transcription factor (Foxp3+) 

(Foxp3+Tregs) is significantly increased in the small intestinal mucosa with active CD 

(76,77). Furthermore, our recent studies have revealed that in active CD Foxp3+Tregs are 

functionally active, but their suppressive capacity might be impaired by pro-inflammatory 

cytokines, such as IL-15 (77). 

Also potential CD shows markers of enhanced inflammatory reactions as shown by the 

high level of IFNγ mRNA and densities of tumor necrosis factor-α-positive cells in the 

lamina propria (78); at the same time, in this condition the number of FoxP3-expressing 

cells is higher (79). 

Evidence suggests that CD develops gradually from normal villous architecture with only 

an epithelial lymphocytosis, through partial to total villous atrophy. The innate and 

adaptive mucosal systems are tightly controlled by various regulatory circuits, and it is 

possible that defects in such mechanisms could have a role in this dynamic process of 

mucosal damage in CD. In this respect, we think that potential CD represents an early 

stage of disease, and accordingly a good condition to clarify the early immunological 

events implicated in the onset of CD. For this purpose, initially we investigated in 

duodenal biopsies from potential CD subjects the state of immunological activation, with 

analysis of cytokines involved in both innate and adaptive immune responses, such as IL-

15 and IFNγ. Thereafter, to clarify the role of immunoregulatory mechanisms, we 

evaluated the expression of anti-inflammatory cytokines and the number of Foxp3+Tregs. 
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Finally, we evaluated the functional capacity of intestinal Foxp3+Tregs, obtained from 

potential CD patients and the role of IL-15 on their suppressive function. 

We provide evidence that in potential CD, despite the absence of mucosal damage, there 

are clear signs of infl ammation; in particular, our data suggest that in duodenal mucosa of 

these patients, T cells seem to be activated and diff erentiating toward a Th 1 pattern. 

Indeed, IL-2 RNA expression is increased in the mucosa of potential CD when compared 

with controls and active celiacs, confirming our previous data (80). Also, IFN γ -RNA 

expression, as well as the percentage of IFN γ + CD4 + cells, is significantly increased. 

Interestingly, IFN γ levels correlate with IEL infiltration, in agreement with previous data 

showing that the majority of IFN γ is produced in the epithelium (75)  

Our data suggest that regulatory mechanisms have a crucial role to downregulate the 

inflammation in early phase of CD. We have shown that in this condition there are two 

factors that maintain the suppressive action of Foxp3 + Treg: they are the high IL-10 

expression and a low sensitivity to pro-inflammatory stimuli, such as IL-15. 

These data have been published as Article on The American Journal of Gastrenterology, 

for the manuscript see below. 
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4. Correlation between levels of anti-TG2 and mucosal damage degree 

 

Coeliac disease (CD) is characterized by highly specific autoantibodies directed against 

transglutaminase 2 (TG2) (51). It is now well known that serum levels of anti-TG2 

correlate with intestinal damage (81,82). This finding has been considered in the recently 

revised European Society for Paediatric Gastroenterology Hepatology and Nutrition 

(ESPGHAN) criteria, and used to avoid biopsies in symptomatic patients with high titres of 

anti-TG2 (83). CD-specific autoantibodies disappear from serum after the beginning of a 

gluten-free diet (GFD) (84). 

Anti-TG2 antibodies are found both in blood and small intestine, where they are produced, 

and have been shown to co-localize with extracellular TG2 in the active phase of the 

disease (53). In recent decades several techniques have been used to reveal intestinal 

production of anti-TG2 antibodies, such as measurement in faeces (85) or duodenal juice 

(86), or in supernatants of cultured biopsies (59,60,62), the detection of mucosal deposits 

(53) or of plasma cells secreting them (87) and their expression by phage display library of 

RNA coding (52). Some assays were considered unreliable as diagnostic tests (88); others, 

even if with high diagnostic sensitivity and specificity, too demanding to be performed 

routinely (52). 

We have demonstrated that the measurement of antibodies released into culture 

supernatants is more sensitive than detection of their deposits to assess intestinal 

production of anti-TG2 in patients with potential CD (89). Picarelli et al. have shown 

recently that the organ culture system is a useful tool to assist the histology in diagnosing 

CD, mainly in cases without villous atrophy or in seronegative patients (90). Concerning 

patients on a gluten-free diet (GFD), the same authors showed that anti-endomysium 

(EMA) was not found in supernatants of biopsy samples cultured with medium alone, but 

was detected when biopsy samples from the same patients were treated with gliadin 
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peptides (91). Furthermore, Maki et al. (92) showed that, in the organ culture system 

conducted with biopsies of treated CD patients, gliadin induced secretion of autoantibodies 

into culture supernatants, reduced epithelial cell height and increased the density of lamina 

propria CD25+ cells. However, these changes could be demonstrated only in biopsies from 

CD patients who had recently started a GFD, in when the small-intestinal mucosal TG2-

specific IgA autoantibody deposits were still present. 

 

It is well known that the disappearance of serum anti-TG2 is observed progressively after 

the beginning of a GFD. It has been considered a useful tool to evaluate the diet 

compliance, although it is not yet clear if it is helpful to assess complete histological 

recovery (93). 

The aims of our study were to correlate, in coeliac patients, the titres of intestinal 

antibodies and the degree of mucosal damage and to investigate the effect of GFD on their 

intestinal production.  

We showed that the intestinal production of these autoantibodies correlated with mucosal 

lesion degree only in active CD. Potential CD patients with Marsh 0 mucosa produced 

titres of intestinal anti-TG2 antibodies comparable to those with Marsh 1. Moreover, in this 

potential coeliac population intestinal anti-TG2 titres correlated with an increased number 

of CD25+ mononuclear cells in lamina propria, a proven marker of mucosa inflammation 

(94). 

Studies on the follow-up of CD patients on GFD (95) have shown that titres of circulating 

anti-TG2 antibodies decreased significantly during the first 12 months of the diet and then 

disappeared in the next 12 months. The disappearance of serum CD-specific autoantibodies 

was correlated with GFD compliance, but not always associated with the total recovery of 

small intestinal mucosa (93). Our data appear to show that the early disappearance of 
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circulating specific CD autoantibodies, following a strict GFD, does not mean the end of 

their intestinal production. After the disappearance from serum, anti-TG2 antibodies as 

deposits would disappear slowly from the intestine, and only after a long period of GFD, 

small intestinal mucosa would cease to produce them. 

Finally, our data show that in vitro 24-h PTG stimulation was not able to induce a 

statistically significant increase of antibody secretion in short-term GFD CD patients as 

well 

as in patients on long-term GFD. 

These data have been published as Article on Clinical Experimental Immunology , for the 

manuscript see below. 
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CHAPTER II 

“Food Allergy” 

1. Diagnosing and Treating Food Allergy 

 

Food allergy (FA) is a major health issue in western societies affecting between 5 and 10 % 

of young children (96). During the last decade in the United States pediatric FA diagnosis 

rates increased by 18%, however it has not been determined whether these findings are 

related to increased awareness and reporting. In any case, the use of specific medical 

diagnostic codes for FA does represent a real increase of the disease (97). It has been 

estimated that FA, in the United States alone, accounts for 30,000 emergency room visits 

and 150 deaths per year (98). In Italy, the number of hospital admissions due to food-

induced anaphylaxis doubled in the last 5 years (99). 

Food allergies can be broadly divided into IgE (type I hypersensitivity)- and non-IgE 

(usually type IV hypersensitivity)-mediated diseases; or mixed, involving other 

immunoglobulins, immune complexes and/or cell-mediated mechanisms. These differ in 

clinical presentation, diagnostic testing, and prognosis (100). IgE-mediated reactions are 

characterized by an acute onset of symptoms generally within 2 h after ingestion of or 

exposure to food. IgE-mediated reactions to food typically involve the skin, gastrointestinal 

tract, and respiratory tract and may include systemic reactions (anaphylactic shock). Non-

IgE-mediated immunological reactions (e.g., cell-mediated) include food–protein-induced 

enterocolitis, proctocolitis, and enteropathy syndromes. These conditions primarily affect 

infants or young children who present with abdominal complaints, such as vomiting, 

abdominal cramps, diarrhea, and occasionally blood in the stool and failure to thrive or poor 

weight gain. Examples of FA co-morbidities with mixed IgE- and non-IgE-mediated causes 

include eosinophilic gastrointestinal diseases and atopic dermatitis (101). 
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Oral food challenge still represents the gold standard for the diagnosis of FA in order to 

avoid unjustified diets. When the food considered for the challenge is still part of the 

patient’s diet, a strict elimination diet should be prescribed for at least 2 weeks before the 

OFC. The OFC is done by feeding gradually increasing amounts of the suspected food under 

observation by a physician over a period of hours, protracted for days when no immediate 

reaction occurs. 

Because the procedure carries a small risk of anaphylaxis, it should be conducted in a 

supervised medical setting where resuscitation equipment is available. The main problems of 

OFC are related to the wide variety of symptoms possibly related to immunological 

mechanism of FA that lead to difficulties in the interpretation of results and to the optimal 

timing and dosage of this procedure. A rather complex, double-blind placebo- controlled 

food challenge (DBPCFC), routinely used in research, is recommended in clinical settings 

only when patients report entirely subjective symptoms; whereas an open OFC without 

placebo is commonly used in children under the age of 3 years and when objective 

symptoms are present (102-104). Unfortunately, the diagnosis of FA is frequently 

incomplete, incorrect, or self-reported, and a correct diagnostic work-up, confirmed by OFC, 

seems to be adopted in only a minority of cases (105). 

Although numerous therapeutic treatment options are currently being investigated, dietary 

avoidance remains the primary treatment for FA (106). Inadequate nutritional status, growth, 

and dietary intakes have been demonstrated in children with FA (107). Altered growth status 

may be due to potential loss of nutrients caused by continued allergic inflammation and/or 

abnormal intestinal permeability caused by noncompliance with the diet, unbalanced diet 

and additional undiagnosed FA or inappropriate substitute foods (107). This highlights the 

need to make every effort to optimize nutrition because inadequate nutrient intake may 

worsen the risk of lower growth rates in this population. The elimination diet should be 
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considered carefully depending on: mechanism of FA; symptoms; nutritional status; and 

concomitant factors like food aversive behavior. A properly managed, well-balanced 

elimination diet prescribed with the help of certified dietitians, can lead to resolution of 

symptoms while maintaining or even optimizing nutritional status.  

Recent data strongly suggest that gut microbiota is important for oral tolerance development 

(108). Administration of the probiotic Lactobacillus rhamnosus GG (LGG) to food-allergic 

children (age\2 years, challenge-proven and affected by mild-to-moderate eczema) improved 

the eczema score significantly (108). Studies in infants with eczema who received formulas 

supplemented with LGG showed benefits in decreasing gastrointestinal symptoms (109). For 

instance, after a challenge study in infants allergic to cow’s milk proteins, fecal IgA levels 

were detected to be higher, and TNF-a levels were lower in the LGG applied group 

compared to the placebo (108). Nermes et al. (110) showed a significant decrease in IgA- 

and IgM-secreting cells in infants with atopic dermatitis treated with extensively hydrolyzed 

casein formula (eHCF) supplemented with LGG, suggesting that this particular probiotic is 

able to enhance gut barrier function and accelerate immunological maturation in infants with 

FA.  

Correct diagnosis of FA is crucial to ensure appropriate patient care. The essential criterion 

is a clear response to elimination diet, and other diagnostic tests are secondary to this. OFC 

plays a crucial role in the diagnostic approach to a child with suspected FA, but it is largely 

underutilized. 

Potential responsible factors contributing to the lack of a correct diagnostic work-up in the 

vast majority of cases could be numerous, and include lack of training on the procedure, 

increased reliability on screening methods, extensive time needed, fear of risk, and 

suboptimal fee reimbursement. A comprehensive nutrition assessment with appropriate 

intervention is warranted in all children with FAs to meet nutrient needs and optimize 
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growth. Frequently an elimination diet is absolutely necessary to prevent potentially life-

threatening food allergic reactions. 

These data have been published as Article on Current Pediatric Opinion , for the manuscript 

see below. 
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2. Potential beneficial effects of butyrate against food allergy 

 

Food allergy rates in children have rapidly increased with significant direct medical costs for 

the health care system and even larger costs for families with a food-allergic child. during 

the last decade, we observed a changing pattern in CMA with an increased prevalence, 

severity of clinical manifestations and risk of persistence until later ages in Western 

countries (111). Over the last twenty years rates of potentially life threatening reactions to 

food (anaphylaxis) have steadily risen in the developed world (99). For all these reasons, 

there is a strong need to develop effective strategies to stimulate oral tolerance acquisition 

and maintenance. The possible causes of food allergy become the target of intense scrutiny 

in recent years(112). Increasing evidence underline the importance of gut microbiome in the 

development of allergic diseases. It has been demonstrated that in early life the gut 

microbiome influence immune development, balance of Treg cells and bacterial metabolites 

which may increase the risk of food allergy. The colonizing bacteria originate mainly from 

the mother‘s gut and vaginal tract (113). After delivery, breast feeding continues to enhance 

the original inoculum by the introduction of specific lactic acid bacteria, Bifidobacteria and 

other bacteria from the mother‘s skin. These bacteria set the basis for intestinal microflora 

development and modulation. An imbalance in the compositional configuration of the gut 

microbiota, dysbiosis, alters the host-microbiota homeostasis, which is a requisite for the 

development and function of immune cells in the gut associated lymphoid tissue. The 

importance of this reciprocal regulation of the microbiota and immune system culminates in 

early infancy, when the balance between homeostasis and inflammation programs later 

disease risk. In particular, early exposure to commensal bacteria plays a crucial role in 

Th1/Th2 polarization and proper immune regulatory mechanisms. Regulatory T cells 
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(Tregs), that express the transcription factor Foxp3, are also critical for the induction and the 

maintenance of food oral tolerance and for the regulation of intestinal inflammation.  

Short chain fatty acids (SCFAs) such as propionate, acetate and butyrate are gut microbiota 

derived bacterial fermentation products that selectively expand Tregs in the large intestine 

(114). These SCFAs stimulate the expansion and immune suppressive properties of Tregs, 

such as the production of IL-10 (115). Among the SCFAs, butyrate has received particular 

attention for its multiple beneficial effects from the intestinal tracts to the peripheral tissues. 

The mechanisms of action of butyrate are multiple and involve also an epigenetic regulation 

of gene expression through the inhibition of histone deacetylase. In particular, the inhibition 

of histone deacetylase 9 and 6 increases Foxp3 gene expression, as well as the production 

and suppressive function of Tregs(116). The identification of bacterial metabolites, that 

affect host immunity, may be an interesting strategy to prevent and/or to treat food allergy 

and promote human health. 

These data have been published as Article on the book Butyrate: Food Sources, Functions 

and Health Benefits , for the manuscript see below. 



65 
 

 



66 
 

 



67 
 

 



68 
 

 

 



69 
 

 



70 
 

 



71 
 

 



72 
 

 



73 
 

 



74 
 

 



75 
 

2. An animal model to explore the mechanism of action elicited by 

Extensivly Hydrolized Casein Formula on cow’s milk allergy 

 

During the last decade, we observed a changing pattern in CMA with an increased 

prevalence, severity of clinical manifestations and risk of persistence until later ages in 

Western countries (111). In Italy, CMA is responsible for 42% of food-induced anaphylaxis 

in the pediatric population (99). For all these reasons, there is a strong need to develop 

effective strategies to stimulate oral tolerance acquisition and maintenance. 

Extensively hydrolyzed casein formula (EHCF) has been proposed for prevention and 

treatment of CMA. For infants with CMA, we have previously demonstrated that eHCF 

induces a faster oral tolerance acquisition if compared with other dietetic choices 

(hydrolyzed rice formula, soy formula and amino acid based formula) and that this effect is 

up-regulated by the addition of the probiotic Lactobacillus rhamnosus GG (LGG, 

Nutramigen LGG) (117-118). The exact mechanism of these effects are still largely 

unknown. Preliminary evidences suggested a possible immunoregulatory role elicited by 

small peptides derived from bovine casein (119-120).  

I aimed to investigate the mechanisms elicited by Extensivly Hydrolized Casein Formula 

(EHCF) and EHCF plus LGG in stimulating oral tolerance. To do this we used a well-

established animal model of CMA using a major antigenic peptide from bovine milk, beta-

lactoglobulin (BLG) (121). Two consecutive research phases were performed to explore the 

mechanism of action elicited by EHCF and EHCF plus LGG on CMA prevention and 

treatment. 
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3.1 Animal model in food allergy    

 

Animals models are being used to understand of IgE-mediated disease and to determine the 

allergenicity of novel proteins. Several animal models have provided important information 

for understanding some of the mechanisms of allergenicity. Examples of animal models 

include the mouse, rat, guinea pig, and dog. As in humans, animal models have an innate 

tendency to develop tolerance to the myriad of proteins ingested, and it is difficult to 

generate valid food allergy models. A number of methods have been introduced to bypass 

the state of tolerance and initiate a food hypersensitivity that reflects human IgE-mediated 

food allergy. 

The degree of sensitization should take into consideration the concentration of the allergen 

(high doses are known to induce tolerance); the allergen should be taken in context with the 

food source; the route (feeding and/or gavage are the recommended avenues) and duration 

of allergen exposure. And the age of the animal. 

Other considerations include the genetic predisposition (high and low IgE responders), the 

use of adjuvants and the isotype specificity response. In addition the allergenicity profile 

should be comparable to what exists in the human response to different allergens, for 

example, anaphylactic episodes induced by peanut allergens to oral/pharyngeal symptoms 

elicited by fruit and vegetable allergens in the oral allergy syndrome. The simple production 

of IgE and binding of IgE to relevant proteins should be considered insufficient without 

evidence of histamine release using in vitro tests to support cross linking of IgE to bound 

mast cells and basophils.The mouse model is the most representative in literature. Inbred 

strains of mice have been characterized as being either high or low IgE-responder animals 

for both inhalant and food allergens. 
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As in humans, two separate events are required: the first event is a sensitization phase and, 

in the case of mice, the production of two anaphylactic antibodies, IgE and IgG1; the second 

phase is characterized as the allergic challenge following re-exposure to the allergen at the 

site of the response. In both inhalant and ingestant sensitizations, short-term daily exposures 

over a period of days or long-term exposure once a week over several weeks have been 

shown to induce allergen-specific IgE/IgG1. Differences in strain MHCs have been 

suggested as a likely reason for differences in mouse models' responses to different 

allergens, which may parallel a genetic predisposition in humans. 

Cow's milk allergy (CMA) is a major cause of a transient food hypersensitivity in children. 

It involves the skin, respiratory tract, and gastrointestinal tract and can lead to systemic 

anaphylactic shock. In a study by Li et al. (122),6 several strategies were used to overcome 

oral tolerance in a mouse model and induce IgE-mediated cow's milk hypersensitivity. 

Three-week-old C3H/HeJ female mice were sensitized intragastrically with cow's milk plus 

cholera toxin as an adjuvant and were boosted five times at weekly intervals. Six weeks after 

the initial sensitization dose, mice were fasted and intragastrically challenged with two doses 

of CM 30 minutes apart. Hypersensitivity responses were assessed based on symptom 

scores, vascular leakage, plasma histamine release, PCA, serum antibody titers, skin testing, 

and histological examination. Symptom scores were identified by independent observation 

of the physical features. 

The model exhibited characteristics of IgE-mediated cow's milk-induced food allergy. 

Elevated allergen-specific IgE levels were shown to be associated with systemic 

anaphylaxis, whereas levels of IgG1 were not; PCA reactions induced by serum from 

sensitized mice were eliminated by heating; and significant plasma histamine from mast cell 

degranulation was in evidence, all of which are important features of IgE-mediated food 

allergy. Serum casein levels after oral challenge were consistent with intestinal permeability 
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studies and histologic examination revealed changes in both the GI and respiratory systems. 

The model was regarded to be useful for evaluating mucosal and systemic 

immunopathogenic mechanisms involved in IgE-mediated cow's milk allergy. 

Mice could prove valuable with respect to strain and allergen specificity in which related 

reactions may provoke information on the genetic basis of food allergen sensitization.  

 

 

3.2  Extensivly Hydrolized Casein Formula (EHCF) and  

EHCF plus LGG in stimulating oral tolerance 

 

The bioactive peptides generally contain 3–20 amino acids. The C- or N-terminal fragments 

are crucial for their activities. Activities are shown on the digestive system, the immune 

system, the cardiovascular system, the nervous system and body defense. Many of the 

bioactive peptides are derived from milk proteins. Examples are β-casomorphin (opiate 

activity), casein macro peptide (stimulation of release of CCK), β-casein fragments 

(angiotensin-I-converting enzyme inhibition), casein phosphopeptides (enhancement of 

mineral absorption), α-lactalbumin fragments (immune stimulation) and a wide range of 

antimicrobial peptides derived from caseins and whey proteins (123). Recently was report 

the identification of a peptide from yoghurts with promising potential for intestinal health: 

the sequence (94-123) of bovine β-casein. This peptide, composed of 30 amino acid 

residues, maintains intestinal homoeostasis through production of the secreted mucin MUC2 

and of the transmembrane-associated mucin MUC4 (124).  

Intestinal goblet cells are highly polarized secretory cells that reside throughout the length of 

the small and large intestine. They are responsible for production of the protective mucus 

coat by releasing the secreted mucin MUC2, a high-molecular-weight glycoprotein that is 
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stored within granules in their apical compartment. Mucus lubricates the intestinal surface, 

limits passage of luminal molecules into the mucosa, functions as a dynamic defensive 

barrier against enteric pathogens and acts as a substrate and a niche which the commensal 

flora can colonize (125). 

Probiotic bacteria are proposed to benefit human health mainly by our general mechanisms 

of action. First of all, probiotics can clearly exclude or inhibit pathogens, either through 

direct action or through influence on the commensal microbiota (126). Certain probiotic 

strains have the capacity of to enhance the epithelial barrier function by modulating 

signaling pathways, such as nuclear factor-B (NF-kB), Akt and mitogen- activated protein 

kinase (MAPK)- dependent pathways, which lead to for example the induction of 

mucus(127), or increased tight junction functioning (128). Moreover, most probiotic strains 

can also modulate host immune responses, exerting strain-specific local and systemic 

effects(129). Many of the interactions between probiotic bacteria and intestinal epithelial 

and immune cells are thought to be mediated by molecular structures, known as microbe- 

associated molecular patterns (MAMPs), which can be recognized through specific pattern 

recognition receptors (PRRs) such as Toll-like receptors (TLRs) (130) 

Lactobacillus GG is known to modulate immune functions via various pathways, including 

those involving enterocytes, monocytes, mast-cells, dendritic cells, and regulatory T cells. 

Lactobacillus GG may alters the generation of cytokines involved in IgE-mediated CMA, 

and thereby can positively modulate the major pathways involved in CMA 

pathogenesis(131).  
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3.3  CMA Prevention 

 

 

The design of the experiments is reported in Figure 8. Briefly, two weeks prior to 

sensitization period, mice were given three different experimental diets: control solid “milk-

free” pellet diet (Harlan Laboratories, Udine, Italy); EHCF (Nutramigen, Mead Johnson 

Nutrition, Evansville, IN, USA); or EHCF+LGG (Nutramigen LGG 1, Mead Johnson 

Nutrition, Evansville, IN, USA). The composition of the three experimental diets is 

presented in Table 1. After 14 days, mice were sensitized orally using a blunt needle on day 

0, 7, 14, 21, 28 with 20 mg of beta-lactoglobulin (BLG) (Sigma-Aldrich, Steinheim, 

Germany) homogenized in PBS (0.2 ml) mixed with 10 µg cholera toxin (CT) as adjuvant. 

One week after the last sensitization (day 28), acute allergic skin response was assessed and 

after 24 h, mice were challenged by gavage with BLG to determine anaphylaxis score and 

rectal temperature. On next day mice were sacrificed, blood samples were collected, and 

spleens were aseptically excised, lysed and cryopreserved. 

 

 

 

 

 

 

 

 

 

Figure 8 . To explore the effects of EHCF and EHCF plus LGG in CMA prevention 
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BLG-sensitized mice showed a significant higher acute allergic skin response and 

anaphylactic symptom score, as compared to control animals. All these effects were 

significantly reduced by pre-treatment with EHCF or with EHCF+ LGG, but the presence of 

LGG induced a more pronounced effect on acute allergic response (Figure 9). Similarly, 

BLG sensitized animals showed a significant increase in anti-BLG IgE serum level, IL-4 

production by spleen lysates, and intestinal permeability, compared to control animals. 

These effects were significantly inhibited by EHCF. The presence of LGG induced a more 

pronounced effect on all these variables (Figure 9). 
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Figure 9 . EHCF and EHCF plus LGG prevent the allergic response to the cow’s milk 

protein β-lactoglobulin (BLG) in a murine model of food allergy (A) acute allergic ear 

swelling response (B) anaphylactic symptom scores  (C) BLG-specific IgE (D) IL-4 from 

spleen lysates (E) intestinal permeability to plasma DX-4000 FITC. (B), independent 

samples t-test; (A-C-D-E): Mann-Whitney U Test; *p<0.01; **p<0.05. 

 

 

3.4 CMA treatment 

 

The design of the experiments is reported in Figure 10. Briefly, mice were sensitized orally, 

using a blunt needle on day 0, 7, 14, 21, 28 to 20 mg of BLG homogenized in PBS (0.2 ml) 

mixed with 10 µg CT as  adjuvant. After last sensitization mice were given three different 

experimental diet: control solid “milk-free” pellet diet; EHCF; or EHCF+LGG. The weight 

of the mice was monitored weekly. At the end of the 4-week treatment with different diets, 

acute allergic skin response was assessed and after 24 h mice were challenged by gavage 

with BLG to determine anaphylaxis score and rectal temperature. On next day mice were 

sacrificed, blood samples were collected, and spleens were aseptically excised, lysed and 

cryopreserved.  
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Figure 10 . To explore the effects of EHCF and EHCF plus LGG in the treatment of CMA 

 

 

Treatment with EHCF was able to significantly reduce acute allergic skin response and 

anaphylactic symptom score as compared to control animals. The presence of LGG induced 

a more pronounced effect on acute allergic response (Figure 11). Dietary treatment with 

EHCF induced a significantly reduction of anti-BLG IgE serum level, IL-4 production by 

spleen lysates and intestinal permeability increase (Figure11). 
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Figure 11 . EHCF and EHCF plus LGG reduce the allergic response to the cow’s milk 

protein β-lactoglobulin (BLG) in a murine model of food allergy (A) acute allergic ear 

swelling response (B) anaphylactic symptom scores  (C) BLG-specific IgE  (D) IL-4 from 

spleen lysates (E) intestinal permeability to plasma DX-4000 FITC. (B), independent 

samples t-test; (A-C-D-E): Mann-Whitney U Test; *p<0.01; **p<0.05 
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Conclusive remarks 

 

 

We obtained an effective oral BLG sensitization in C3H/HeOuJ mice characterized a skin 

reaction, occurrence of severe allergy-related symptoms, body temperature reduction, 

associated with an increased IL-4 and anti-BLG specific IgE production. These results 

resembled what previously obtained by others. (132-133). In addition, a significant increase 

in intestinal permeability was demonstrated. An increase of gut permeability is a common 

feature in patient affect by food allergy (Kirsi M. Järvinen, M 2014). Intestinal permeability 

has been considered a crucial factor in the oral tolerance mechanism.  These features were 

used in our study as biomarkers to explore the effects of a dietary intervention with EHCF 

alone or in combination with LGG. 

Our results show that EHCF, at least in part through a modulation of  IL-4 and anti-BLG 

specific IgE production, is able to prevent oral BLG sensitization. As demonstrated by a 

significant decrease in acute allergic skin response, anaphylactic symptoms, and body 

temperature and intestinal permeability modification. These findings are in line with those 

previously reported in clinical studies demonstrating an allergy preventive effect elicited by 

extensively hydrolysed casein formulae (134-135). EHCF has been proposed as appropriate 

alternative to breast milk for allergy prevention in infants at risk. (136-139). 

Similar effects were obtained in mice treated with EHCF after sensitization with BLG. In 

those mice we observed a decrease in IL-4 and anti-BLG specific IgE that lead a reduction 

in anaphylactic reactions and restoring of intestinal permeability. These findings support the 

EHCF efficacy previously demonstrated in clinical studies that considered this formulae the 

first choice to treat patients affect by CMA (140-142). These result was reinforced with 
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demonstrated that EHCF induces a faster oral tolerance acquisition if compared with other 

dietary intervention. (118). 

All these date provide evidences on a immunoregulatory effect elicited by EHCF that could 

be due to the presence of immunoregulatory peptides derived from casein hydrolysis. Both 

suppressive and enhancing effects on immune variables have been found in studies 

investigating casein-derived peptides (120). These date suggest that the oral ingestion of the 

casein phosphopeptide preparation may reduce allergic symptoms in animals through 

suppression of absorption of allergens from the intestinal tract, suppression of IgE formation 

specific to allergens and/or inhibition of binding of allergens to their IgE on mast cells. One 

of the best characterized immunomodulatory peptide derived from bovine milk caseins is 

casein phosphopeptide from β-CN (f1-28) that has been show a mitogenic activity on mouse 

spleen and rabbit Peyer’s patch cells and stimulated their IgA production(143). Moreover, it 

was able to reduced allergic symptoms mediated by IgE in NC/Jic Jcl mice treated with 

ovalbumin. The author have also demonstrated that the spleen cells of mice given a peptide-

added diet produced lower IL-4 than those of control diet (144).  

Recently a β-CN (f 184–202) peptide has been shown to be NFκB inhibitory peptide(123) 

while the peptide (94-123) of bovine β-casein from yoghurt has been reported to maintain 

intestinal homoeostasis through production of the secreted mucin MUC2 and of the 

transmembrane-associated mucin MUC4.(124). Mucus lubricates the intestinal surface, 

limits passage of luminal molecules into the mucosa, functions as a dynamic defensive 

barrier against enteric pathogens and acts as a substrate and a niche which the commensal 

flora can colonize (125) and it could be another of the putative mechanism of the positive 

effects of EHCF as demonstrated by our result of a protective effect on intestinal 

permeability. 
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In the two experimental phases of this study the effect of EHCF was reinforced by the 

addition of the probiotic Lactobacillus rhamnosus GG. This date further supported clinical 

evidences showing a more potent activity elicited by EHCF LGG on CMA-related 

symptoms and gut inflammation [28], and on oral tolerance acquisition which resulted in a 

higher rate of acquisition of tolerance after 12 months of treatment[7,8]. Probiotics have 

been reported to modulate immune response and their supplementation has been proposed as 

a preventive intervention (145). LGG is known to modulate immune functions via various 

pathways, including those involving enterocytes, monocytes, mast-cells, dendritic cells, and 

regulatory T cells (146). In particular LGG has been able to suppress Th2 responses such as 

reduced hypersensitivity scores and lowered serum CMP-specific IgG1 and promote Th1 

responses by causing elevated IFN-γ and CMP-specific IgG2a levels in mice that were 

sensitized with the whole CMP (147). In cell culture of CaCo2 has been demonstrated that 

LGG is also able to suppress TNF-α-induced NF-κB activation as evidenced by maintenance 

of epithelial barrier integrity against pro-inflammatory cytokine stimuli and by a reduction in 

the secretion of specific chemokines induced by activation of this signal transduction 

pathway (148). Finally, it has been recently demonstrated that daily supplements of LGG 

resulted in a dramatic shift in the composition of the intestinal microbial community with a 

large increase in the number of taxa previously associated with a decreased risk for the 

development of allergy and atopy (149) and taxa with the potential to produce butyrate 

(150).  

We cannot exclude that even components included in the formulae used in the study could 

lead contributed to immune effects evidences in both experimental phases. Among this the 

polyunsaturated fatty acids (PUFA) that has been demonstrated are able to reduce the 

incidence of food allergy and IgE-associated eczema in children at risk for atopy (151). 

Moreover, dietary supplementation with PUFA largely reduce ovalbumin allergy in mice 
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(152) and prevent oral sensitization to the cow’s milk protein through  the induction of 

functional Treg (153) 

In conclusion the result of this study demonstrated an immunoregulatory activity elicited by 

EHCF that is able to efficiently contour act several mechanisms involving in CMA 

pathologies. According to previous clinical trials the presence of LGG is able to up-regulate 

the magnitude of these effects. 
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Technologies 

 

HPLC Analysis 

HPLC of the synthetic peptide was performed using a reverse-phase column (2.0 mm i.d. × 

250 mm, C18, 5 μm; Phenomenex, Hesperia, CA) with a flow rate of 0.2 mL/min on an 

Agilent 1100 modular system with an integrated diode array detector (Palo Alto, CA). 

Solvent A was 0.1% trifluoroacetic acid (TFA) (v/v) in water; solvent B was 0.1% TFA in 

acetonitrile. A 60 min gradient of 5–60% buffer B was used. The chromatographic 

separation of the peptide was performed at ambient (25 °C), low (∼4 °C), and high (50 °C) 

temperatures, using a thermostatic column holder or chilling the column in an ice-cold bath. 

 

Cell culture and treatments  

Caco-2 cells were cultivated in Dulbecco Modified Eagle’s Medium DMEM, (GIBCO) 10% 

FCS (GIBCO), 100 units/ml penicillin-streptomycin (GIBCO), 1 mM glutamine. LPS-free 

P31-43 and its synthetic mutants (Inbios, .95% purity, MALDI-toff analysis as expected) 

were obtained by Ultrasart-D20 (Sartorius AG, Goettingen, Germany) filtration. LPS levels 

were below detection (,0.20 EU/mg), assessed by commercial QCL-1000 kit (Cambrex 

Corporation, New Jersey USA). P31–43 sequence: LGQQQPFPPQQPY and its ala mutants 

were used at 500 mg/ml and the caco2 cells were stimulated for 30min. 

  

Immunoprecipitation and immunoblotting 

Cell lysates were prepared as described previously(154) and the phosphorylated form of Erk 

 [p-Erk] was detected using anti-p-Erk E-4 mouse monoclonal antibody (Clone E4 Santa 

Cruz). Total Erk was detected using Erk rabbit polyclonal antibody anti-Erk K23 (clone 

K23, Santa.Cruz).  

Briefly, 2 micrograms of anti p-Erk E-4 immunoprecipitating mouse monoclonal antibody 

(clone 528,Santa Cruz) were added to 1 milligram of cell lysates in 500 micro litres of lysis 

buffer kept for 2 h at 4°C with gently rocking. Thirty micro litres of 1:1 protein-A agarose 

(Pierce) was added and the mixture was rocked gently for 1 h at 4°C, before centrifugation 

at 12 000 g for 5 min at 4°C. The immunoprecipitate was washed three times with 500 ml of 

lysis buffer. Proteins were separated by SDS-PAGE and immunoblotted with anti-

phosphotyrosine (p-Tyr) mouse monoclonal antibody (clone 4G10 from UBI) or anti-EGFR 

rabbit polyclonal antibody (clone 1005, Santa Cruz). Electrophoresis and immunoblotting 
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were all performed as described elsewhere (154). Densitometric analysis was performed as 

follows. Band intensity was evaluated by integrating all the pixels of the band without the 

background, calculated as the average of the pixels surrounding the band. Phosphorylation 

increments (Pi) were calculated from the ratio of phosphorylated (P) and unphosphorylated 

(UP) bands in treated (t) and untreated cells (ut) as follows: Pi=(Pt/UPt)/(Put/UPut). 

 

Data bank analysis 

Swissprot, Trembl and InterPro data banks were searched for sequences matching peptide 

P31–43, by using Blast and FastA. Sequence alignment was performed by using ClustalW 

and visualised by PrettyPlot from the EMBOSS suite. 

 

Statistical analysis 

Statistical analysis was performed where appropriate by employing Student’s t-Test; 

asterisks mark results whereP,0.05. 

 

 

Acute allergic skin response, anaphylaxis symptom score and body temperature 

Acute allergic skin response was evaluated by ear thickness measurement determined in 

duplicate using a digital micrometer (Mitutoyo, Lainate, Milano) 1 hour after intradermal 

injection of 0.5μg of BLG in the ear pinnae. The ear swelling was calculated by correcting 

the allergen-induced ear thickness with the basal ear thickness. The delta ear swelling was 

expressed as μm. 

Within one hour following the oral BLG challenge (50 mg in PBS by gavage), anaphylaxis 

was assessed by measuring changes in body temperature and recording symptoms score. 

Rectal temperature was measured before and 60 min after oral challenge. Hypersensitivity 

symptoms were scored by an investigator blind to the study group assignment, as previously 

described (121): 0 = no symptom; 1 = scratching and rubbing around the nose and head; 2 = 

reduced activity; 3 = activity after prodding and puffiness around the eyes and mouth; 4 = no 

activity after prodding, labored respiration, and cyanosis around the mouth and the tail; and 

5 = death. 

 

Serum BLG-specific IgE 

Blood samples obtained by intracardiac puncture from mice were collected into serum 

separator tubes. The serum portion was separated by centrifugation at 10,000 x g for 5 min 
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at 20 ºC. Serum samples were then aliquoted into Eppendorf tubes and stored at -20 ºC until 

being analyzed. BLG-specific serum IgE were detected by ELISA. Briefly, 96-well plates 

were coated with 100 μg/mL of BLG in 0.1 mol/L Na-bicarbonate/carbonate coating buffer 

(pH 9.6). After overnight incubation at 4 °C, plates were washed 3 times with 150 μl of PBS 

plus 0.05% Tween-20 (PBS-T) and blocked with 100 μl of 2% BSA in PBS-T for 2 h at 37 

°C. Subsequently, the plates were washed 3 times and 100 μl of serially undiluted serum 

samples were added to the wells and incubated at 37 °C for 90 min. Plates were then washed 

3 times, and 100 μL of horseradish peroxidase (HRP) conjugated anti-mouse antibodies 

were added to each well. The plates were again incubated at 37°C for another 60 min and 

washed 3 times. Then, 100 μl of TBS were added to each well and 15 min were allowed for 

the development of colorimetric reactions. Absorbance were read at a wavelength of 450 nm 

in a microplate reader.  

 

Interleukin 4 in spleen lysates 

Spleen lysates were obtained as previously described (155). Briefly, individual spleens were 

placed in Eppendorf tubes containing 0.5 ml of lysate buffer. The spleen cells were lysed 

and homogenized by sonication for 30 s on ice. Supernatants were collected after 

centrifugation at 17,500 g for 10 min at 4 ºC and stored at -20ºC. Interleukin-4 (IL-4) from 

spleen lysates were analyzed by commercially available ELISA kits following the 

manufacturer’s protocol.  

 

Intestinal permeability in vivo 

From each study group of the two experimental phases (prevention and treatment) three 

animals were used to investigate intestinal permeability, as previously described (156). 

Briefly, mice were fasted for 6 h and then gavaged with 4,000 Da FITC-labeled dextran 

diluted in water (TdB Consultancy AB, Uppsala, Sweden) (500 mg/kg, 125 mg/ml). After 2 

h, blood (500 μl) was collected from intracardiac puncture and centrifuged (3,000 rpm for 15 

min at RT), and FITC-dextran concentration in plasma was determined by 

spectrophotometry (excitation wavelength 485 nm; emission wavelength 535 nm; HTS-7000 

Plus-plate-reader; Perkin Elmer, Wellesley, Massachusetts, USA),  

 

Statistical analysis 

For categorical variables, the χ2 test and Fisher’s exact test were used. Results were reported 

as means and 95% confidence interval (CI) and as median and interquartile range 
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(minimum-maximum) due to non-parametric distribution (established by the Kolmogorov 

test). The level of significance for all statistical tests was 2-sided, p<0.05. SPSS 16.0 for 

Windows software (SPSS Inc, Chicago, Ill., USA) was used for data analyses. 
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