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1. PATHOPHYSIOLOGY OF HUMAN LOWER 

URINARY TRACT  

 

 

1.1 Morphology of lower urinary tract 

The urinary tract is composed by kidneys, ureters, bladder and urethra. Kidneys and 

ureters are generally retained to be the upper part of the urinary system, while the 

remaining organs are considered to make up the lower urinary tract (LUT), that is 

located in the lower pelvis and supported by muscles and ligaments. 

The bladder can be divided into two main components: the bladder body, which is 

located above the urethral orifices, and the base, consisting of the trigone, uretero-

vesical junction, detrusor, and the anterior bladder wall (Figure 1).  

 

 

Figure 1. Schematic morphology of urinary bladder (Urinary bladder contraction and relaxation: 

physiology and pathophysiology. Andersson KE, 2004). 

 

The bladder is essentially an elastic smooth muscle organ made up by three different 

layers: a mucous membrane, defined as uro-epithelium or urothelium; a sub-urothelial 
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layer and a muscular wall, known as detrusor muscle, formed by smooth muscle cells 

arranged in outer longitudinal, middle circular and inner longitudinal layers. This 

muscle organization confers the ability on bladder to empty during the micturition, 

generating the pressure necessary to expel the urine. Indeed, detrusor muscle has to 

hold the changes in urine volume and consequently it must be able to reorganize itself 

during the filling and the emptying of the bladder and maintain the physiologic shape 

of the bladder. The normal mechanism of micturition in male is a very complicated 

process, that requires simultaneously a very strict regulation of contraction and 

relaxation of the urinary musculature and involves bladder, prostate, urethra and 

vascular system as well as interaction/communication between these anatomic 

structures and the neuro-hormonal system. Indeed, each part of the urinary tract 

muscle is subjected to a neuronal and hormonal control system and expresses specific 

receptors for the transmitters/modulators, generated locally or released from nerves. 

During filling phase of the urinary bladder, the smooth muscle cells, composing the 

urinary wall, have to relax, elongate and rearrange to accommodate the urine. On the 

other hand, during bladder emptying detrusor muscle cells are required to be 

simultaneously contracted, while urethral muscle cells uncontracted to prevent the 

increase in urine pressure and to expel it through the urethra. The physiological tone 

of the smooth detrusor muscle and bladder neck as well as the smooth and striated 

sphincters in the urethra, is regulated by central and peripheral autonomic and 

somatic neuronal system. Specifically, there are three nerve systems involved in the 

regulation of micturition cycle, which are the pudendal, pelvic and hypogastric nerves 

(Figure 2).  
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Figure 2. Central nervous system control of micturition cycle (The neural control of micturition. 

Fowler JC, 2008). 

 

To prevent involuntary bladder emptying, during the filling phase of the bladder, the 

parasympathetic innervation of detrusor is inhibited, to facilitate the accommodation 

of urine, whereas the sympathetic system, that conveys through the hypogastric nerve 

fibers plus recruitment of pudendal motor neurons to the bladder neck and urethra, is 

activated to induce muscle contraction and let take place the urine storage. This reflex 

is activated by bladder afferents fibers, which consist of myelinated (Aδ) and 

unmyelinated (C) axons. The Aδ-fibers promote bladder continence responding to 

passive distension and active contraction, whereas the physiologically C-fibers are 

insensitive to bladder filling, but under pathologic conditions they may become 

mechanosensitive, providing nociceptive afferents to inflammation, over-distention or 

irritation. 

Instead, during the voiding phase, the sympathetic efferent activity is inhibited with a 

concomitant activation of parasympathetic outflow to the bladder and urethral smooth 

muscle leading to the expulsion of urine
1
. 
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1.2 Urothelium: a passive barrier? 

The uro-epithelium, better known as urothelium, is a stratified epithelium and 

represents the interface between the lumen of urinary tract and underlying tissues; in 

particular it lines the inner parts of the renal pelvis, ureters, bladder and parts of the 

urethra. The urothelium is made up by at least three layers. The superficial or apical 

layer of the urothelium consists of large hexagonal flattened cells (25-250 µM), 

called umbrella cells, that are interconnected by tight junctions
2, 3

. The innermost 

layer of the urothelium consists of smaller basal cells that are separated from the 

suburothelial lamina propria by a basal lamina. In between the umbrella and basal 

cells there is an intermediate layer (Figure 3). 

 

 

Figure 3. Components of urinary bladder wall (Urothelial signalling. Birder L, 2013). 

 

The number of the intermediate layer varies in the species. Indeed, in the urinary 

bladder of rodents there is one intermediate layer, whereas in humans there are up to 

5 intermediate layers
4, 5

. The urothelium has a pivotal role as a permeability barrier to 

urine and several features of the umbrella cell layer contribute in maintenance of an 

intact barrier, which is a prerequisite for normal afferent signalling from the bladder. 
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These features include the presence of tight-junction proteins, such as occludins and 

claudins, in addition to multiple specialized lipids and uroplakin proteins. The 

uroplakin proteins, along with occludins and claudins, preserve the integrity of the 

urothelial barrier by preventing proteins as well as ionic and non ionic substances 

from gaining access
2, 6

. In addition, a layer of glycosaminoglycan (GAG) or mucin-

layer covers the umbrella cells and which is an antiadhesive structure against 

pathogens, carcinogens, and toxic substances in the urine
7
. GAG layer is retained to 

be vital for maintaining barrier integrity of the bladder wall. Interestingly, distension 

of the bladder wall during storage phase of micturition is concurrent to a change in 

shape of the urothelium. Furthermore, exocytosis or endocytosis mechanisms add 

membrane to the apical cell surface, thereby permitting an increase in bladder volume 

without loss of barrier function
8-10

. Several studies have demonstrated that the 

stretching induced by bladder filling activates exocytosis mechanisms in urothelium, 

involving a number of signalling molecules such as epidermal growth factor 

receptor
8, 11

. Moreover, it has been also reported that during storage of urine, 

urothelial cells exhibit a lower level of endocytotic activity, representing a protective 

mechanism against internalization of toxic compounds in the urine
12

. However, 

besides all these features appointed to this epithelial layer, the urothelium is more 

than a barrier against the bladder urine content. One significant function of the 

urothelium is to act as a mechanosensory conductor
13-15

. It has specialized sensory 

and signalling properties to engage in chemical communication with nerves in the 

bladder wall and smooth muscle. Indeed, several studies have revealed that during 

bladder filling, distension of the bladder wall stretches the urothelium
16

 inducing the 

release of a number of signalling molecules such as adenosine-5’-triphosphate (ATP), 

acetylcholine (Ach)
17

, and nitric oxide (NO)
18

. These molecules act on different 

receptor subtypes and interact within the urothelium modulating afferent neuronal 

activity and detrusor smooth muscle function. Although the urothelium maintains a 

tight barrier, several factors, like chemical or mechanical trauma and infection, can 

compromise the barrier function and damage the interface between bladder and urine. 

The lack of urothelium integrity can induce changes in function of underlying cells 
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within the bladder wall and sensory symptoms of urgency, frequency and pain during 

bladder filling and voiding. 

 

1.3 Lower Urinary Tract Symptoms (LUTS) 

The urinary bladder has two important functions: storage of urine and emptying. 

Storage of urine occurs at low pressure, which implies that the bladder relaxes during 

the filling phase, while emptying requires a coordinated contraction of the bladder 

and relaxation of the urethra. Disturbances of the storage or emptying function may 

result in lower urinary tract symptoms (LUTS).  

The European Association of Urology and American Urological Association 

guidelines define LUTS as common age-related condition in both male and female 

patients characterized by: i) storage or irritative symptoms such as daytime urinary 

frequency, urgency, nocturia incontinence and bladder pain or dysuria; ii) voiding or 

obstructive symptoms like straining, urinary hesitancy, weak stream, intermittent 

stream, and incomplete emptying; iii) post-micturition symptoms, such as post-

micturition dribbling, that affect the lower urinary tract
19-21

. Focusing on male 

population, the prevalence of these symptoms may be higher than 50% in men aged ≥ 

50 years
22

 with an expected increasing of percentage with aging
23

. For several years, 

in elderly men, LUTS have been traditionally considered to be secondary to the 

enlarging of prostatic gland, in particular to histological benign prostatic hyperplasia 

(BPH), benign prostatic obstruction (BPO) or benign prostatic enlargement (BPE). 

However, during the last decade the causal connection between the pathogenesis of 

LUTS and the prostate has come into question
24

. Indeed, recent evidence suggest that 

LUTS may be a non-sex and non-organ specific symptoms
19

 and other factors should 

be retained of same importance, despite the enlargement of prostate gland can 

contribute to the onset of LUTS. Recent evidence indicate that LUTS may be linked 

to the impairment of the prostate, bladder, kidneys or erectile function
24

. Furthermore, 

in any single person affected with LUTS it is common to recognize more than one co-

existing cause (Figure 4). This multi-factorial etiology of LUTS has led to develop 
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the viewpoint that regards the whole genito-urinary tract as a single functional unit. 

 

Figure 4. Multifactorial etiology of lower urinary tract symptoms (Guidelines on the management of 

male lower urinary tract symptoms, incl. Benign prostatic obstruction. Oelke M, 2012).  

 

1.4 LUTS secondary to BPH 

BPH is a common disease characterized by smooth muscle and epithelial cell 

proliferation within prostate transition zone, leading to a non malignant prostate gland 

enlargement
25, 26

. In male population, LUTS are often concurrent with BPH. It occurs 

with aging and the prevalence increases from 25% among men aged between 40 to 49 

years to more than 80% among 70 to 79 years
27

. Although many patients affected 

with BPH are asymptomatic, more than 50% of men in their 60s to as many as 90% 

of persons aged between 80 and 89 present lower urinary disorders
28

. In addition, 

although prostate enlargement due to BPH has been long associated with LUTS, it is 

widely recognized that it is not the exclusive cause
19, 29

, thus the pathophysiology of 

LUTS and its underlying mechanisms remain still not fully understood. Detrusor 

overactivity with its vascular supply and bladder outlet obstruction have been 

considered a key factors for the development of LUTS secondary to BPH
24, 30

. The 

classification of LUTS is partly based on the assumption that the enlarging transition 

zone of the prostate produces pressure on the urethra. This pressure represents the 
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static component of the bladder outlet obstruction and leads to a variety of voiding 

symptoms. Conversely, because of the sympathetic innervation and the high density 

of α1-adrenergic receptors in prostate, prostatic capsule, and bladder neck, the 

increased smooth muscle tone and resistance accounts for the dynamic obstruction 

and the associated storage symptoms. The development of the histological features of 

BPH is dependent on bioavailability of testosterone and its metabolite, 

dihydrotestosterone
31

. Moreover, other physiological markers i.e. 

dehydroepiandrosterone and estradiol
32

, insulin-like growth factors
33

 and 

inflammatory markers such as C-reactive protein
34-36

, as well as black race
37

, 

obesity
38

, diabetes
39

, high levels of alcohol consumption
40

 and physical inactivity
41

 

are associated with an increased risk of BPH. Nevertheless to date the mechanisms 

underlying these associations remain poorly understood.  

 

1.5 BPH/LUTS and erectile dysfunction (ED)  
 

Erectile dysfunction (ED), a common multifactorial sexual disorder associated with 

aging and a range of organic and psychogenic conditions, is characterized by the 

inability to attain and/or maintain a sufficient erection for a satisfactory sexual 

performance
42

. Epidemiological studies report that ED incidence increases with age 

and the prevalence is of 52% in men aged between 40 and 70 years
43

. Furthermore, 

several studies have documented a strong relationship between male sexual 

dysfunction and LUTS
44

. Indeed, LUTS co-exist with ED and vice versa in many 

patients, approximately 70%
45

. Moreover, there is a strong correlation independent 

from the age between the severity of LUTS and the degree of ED suggesting a causal 

relationship or, more possibly, the presence of common pathogenetic pathways
46

. 

These evidence should be taken in account managing patients with LUTS or ED. In 

this regard, the phosphodiesterase (PDE) type 5 inhibitors (PDE5-Is), the first line 

therapy for ED, are also effective in the treatment of LUTS with a synergic effect on 

both LUTS and ED, when associated with α-blockers.  

In addition to the age, the coexistence of ED with LUTS/BPH has been identified 

with several other co-morbidities such as hypertension, high cholesterol, high fasting 
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plasma glucose levels, diabetes, indicating that metabolic syndrome might play a key 

role in the pathogenesis of both ED and LUTS. Other co-morbidities are represented 

by androgen deficiency, digestive tract disorder, arthritis, heart disease/heart failure, 

depression/anxiety/sleep disorder and inflammation
47

. Moreover, potential risk 

factors for LUTS and ED include age, sedentary lifestyle, smoking and excessive 

alcohol intake, depression, cardiovascular disease, hyperlipidemia, type 2 diabetes 

mellitus, obesity, hypogonadism, prostate disorder, inflammation and genetic 

predisposition
37, 45, 48

. Currently, there are 4 pathophysiological pathways, not 

mutually exclusive, that support the relationship between LUTS and ED
29, 46, 49, 50

: i) 

impairment of NO- 3', 5'-cyclic guanosine monophosphate (cGMP) signalling in 

penis and prostate; ii) hyper-activation of RhoA-Rho-kinase (ROCK) signalling and 

endothelin-1 pathway; iii) autonomic hyperactivity; iv) pelvic atherosclerosis. These 

mechanisms can lead to reduced function of nerves and endothelium, alterations in 

smooth muscle tone, arterial insufficiency, reduced blood flow and hypoxia-related 

tissue damage, increased smooth muscle cell proliferation in prostate and bladder 

hypertrophy.  

The NO/cGMP pathway is believed to be the main signalling mechanism involved in 

the regulation of penile smooth muscle relaxation and penile erection and, moreover, 

a large number of evidence demonstrates the role of NO in the regulation of smooth 

muscle tone of bladder, prostate, and urethra. Released by nerve and endothelial cells 

in the corpora cavernosa of the penis, NO activates soluble guanylyl cyclase (sGC), 

which increases cGMP levels. Acting as a second messenger molecule, cGMP 

regulates the activity of Ca
2+

 channels as well as intracellular contractile proteins that 

affect the relaxation of corpus cavernosum smooth muscle
29, 51

. PDEs, expressed in 

the prostate and bladder, metabolize cGMP into linear 5’-GMP limiting NO 

signalling on smooth muscle. On these basis, it is possible to hypothesize the 

mechanism through PDE5-Is exert beneficial effects on LUTS during ED therapy 
52

. 

Smooth muscle tone is also regulated by ROCK pathway. Rho-kinase is activated by 

a G-protein, RhoA, thought to be coupled to excitatory α1-adrenoceptors. This 

pathway modulates the level of phosphorylation of myosin light chain II, mainly 
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through inhibition of myosin phosphatase, and contributes to a calcium-independent 

mechanism of smooth muscle contraction. An abnormal up-regulation of ROCK 

signalling increases the smooth muscle tone leading to the impairment of erectile 

function and bladder homeostasis, finally resulting in ED and LUTS
29, 51-53

. 

A deregulation of parasympathetic and sympathetic tone leads to autonomic 

hyperactivity, a component of metabolic syndrome. Various α1-adrenergic receptor 

subtypes have been identified in penile tissue, bladder and prostate, where they 

mediate smooth muscle and vascular contraction. α1-adrenergic receptor up-

regulation is known to play a crucial role in pathogenesis of LUTS by increasing 

bladder neck and prostate tone
52

. Indeed, concordant evidence coming from animal 

models of autonomic hyperactivity, reveal that sympathetic overactivity determines 

prostate hyperplasia, ED, and increase voiding frequency and detrusor overactivity
54

. 

Atherosclerosis-induced pelvic ischemia involving prostate, penis and bladder, is 

likely to be compatible with all theories mentioned above, given that it may induce 

autonomic nervous system hyperactivity, reduce NO/cGMP signalling, and up-

regulate ROCK pathway
55

. Animal models mimicking pelvic ischemia and 

hypercholesterolemia show smooth muscle alterations of the detrusor muscle and 

corpus cavernosum, stromal fibrosis, glandular cystic atrophy and increase in smooth 

muscle contractility of the prostate
56, 57

 and fibrosis in the corpora tissue. There are 

several potential mechanisms to explain these findings. Chronic ischemia is 

associated with an increased production of TGF-β1 that correlates with the severity of 

fibrosis
58

. It also impairs neurogenic relaxation in the prostate, which appears to 

involve the NO pathway, and may result in a loss of elasticity and increase in smooth 

muscle tone of the prostate
57

. The long-term presence of unfavourable vascular risk 

factor is known to have a significant impact on the genesis of ED and may also cause 

structural and functional impairment of LUT
29

. The contribution of pelvic 

arteriosclerosis as a causative factor of LUTS and ED accounts for the evidence that 

men with one or more risk factors of atherosclerosis (diabetes mellitus, hypertension, 

hyperlipidemia) are more likely to develop ED and LUTS than subjects with no risk 

factors
29, 51, 52

. More recent finding suggests the involvement of additional 
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contributing factors in the onset of LUTS, such as chronic inflammation and sex 

steroid imbalance
29

. In particular, it has been reported that testosterone deficiency 

may be a pathophysiological mechanism connecting LUTS and ED with the 

metabolic syndrome in men
51

. Decreased testosterone levels can cause LUTS through 

an impairment of smooth muscle relaxation of the prostatic urethra and bladder and 

the down-regulation of pro-erectile molecular mechanisms, such as NO/cGMP 

signalling
51, 59

.  

 

1.6 Pharmacological therapy of LUTS associated to BPH and ED 

In men affected with BPH, LUTS are mainly considered to be a consequence of 

bladder outlet obstruction, overactive bladder, or a combination of both, and the 

therapy is aimed to reduce both static and dynamic pathogenetic components
22, 24

. 

Furthermore, the common pathophysiology between LUTS and ED might potentially 

imply that drugs effective in either conditions may also have an effect on the other. 

Recent treatment guidelines for LUTS report the use, in combination or alone, of α-

blockers, 5α-reductase inhibitors (5ARIs), antimuscarinics, β3-adrenergic agonists, 

and PDE5-Is
21

, whose beneficial effects are provided through different, albeit not 

clearly understood, mechanisms of action
21

.  

1.6.1 α-blockers 

It is well known that α1-antagonists are the first choice of medication in men for 

treating moderate to severe BPH/LUTS. They are often considered the first-line drug 

treatment of male LUTS because of their rapid onset of action, good efficacy, as well 

as the low rate and severity of adverse events. Following the early use of 

phenoxybenzamine and prazosin in BPH/LUTS treatment, five types of α1-blockers 

are currently approved by Food and Drug Administration (FDA) for the treatment of 

LUTS: alfuzosin, doxazosin, tamsulosin, terazosin and silodosin. Stimulation of α1-

adrenoceptors, a class of G protein-coupled receptors located in bladder, bladder 

neck, prostate and corpus cavernosum, leads to the activation of phospholipase C 

(PLC), resulting in increased formation of inositol triphosphate (IP3) and 
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diacylglycerol (DAG). IP3 subsequently induces Ca
2+ 

release from the sarcoplasmic 

reticulum, causing the formation of Ca
2+

/calmodulin (CaM) complex. This complex 

activates myosin light chain kinase (MLCK) that in turn phosphorylates MLC 

enabling the myosin cross-bridge to bind the actin filament and allows the 

contraction. On the basis of the above mentioned mechanism, α1-blockers act by 

inhibiting sympathetic adrenergic receptor mediated contraction of the prostate 

smooth muscle cells, bladder, bladder neck and penile smooth muscle, thereby 

reducing prostate and penile tone and bladder outlet obstruction
24

. However, α2-

blockers have been studied also for ED and lower urinary disorders. Indeed, 

yohimbine, is an antagonist of pre- and post-synaptic α2-receptors. The blockade of 

post-synaptic receptors by yohimbine causes a decrease of intracellular Ca
2+ 

levels
 

resulting in relaxation of penile smooth muscle. On the other hand, the inhibition of 

pre-synaptic α2-receptors facilitates the release of NO from non-noradrenergic, non-

cholinergic transmitter nerves, which stimulates sGC to synthesize cGMP which in 

turn decreases intracellular Ca
2+ 

and relaxes penile smooth muscles
60

. Moreover, 

some evidence show that combination of α1-blockers with PDE5-Is (alfuzosin or 

doxazosin plus sildenafil) markedly improves both ED and LUTS associated with 

BPH
61, 62

 and the drug association is superior to the monotherapy. Furthermore, it has 

been reported that yohimbine, in association with sildenafil, enhances and prolongs 

the effect of sildenafil on erectile function without any additional hypotensive 

effects
63

. Available α1-antagonists have a similar efficacy, independently from 

prostate size and the aging, in patients with mild, moderate, or severe LUTS
64

. The 

efficacy is commonly reported as a percentage improvement in International Prostate 

Symptom Score (IPSS)
64

. α1-blockers are also able to improve both storage and 

voiding related symptoms. In addition, the wide distribution of α1-adrenoceptors in 

blood vessel, non-prostatic smooth muscle cells and central nervous system explains 

the common side-effects, such as orthostatic hypotension, dizziness and asthenia 

during α1-antagonists treatment.  

 

 

http://en.wikipedia.org/wiki/Receptor_antagonist
http://en.wikipedia.org/wiki/Alpha-2_adrenoceptors
http://en.wikipedia.org/wiki/Alpha-2_adrenoceptors
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1.6.2 5α-reductase inhibitors (5-ARIs) 

5α-reductase inhibitors (5-ARIs) are a class of drugs with antiandrogen effects, 

suggested primarily in the treatment of BPH and for moderate to severe LUTS
21

. 

They prevent the progression of prostate growth or reduce the volume of prostate by 

inhibiting the production of the hormone dihydrotestosterone
24

. In particular, 5-ARIs 

block the conversion of testosterone, the major androgen sex hormone, to the more 

potent dihydrotestosterone by blocking the enzyme 5α-reductase in prostatic stroma 

cells. For clinical use, there are two FDA-approved 5α-reductase inhibitors: 

finasteride and dutasteride. Finasteride inhibits the 5α-reductase type 2 isoenzyme, 

decreasing the serum dihydrotestosterone levels of 70 to 90%, whereas dutasteride 

blocks both 5α-reductase type 1 and type 2 isoforms, leading to decreases in 

dihydrotestosterone to levels that approach zero. Furthermore, they induce apoptosis 

of prostate epithelial cells leading to a reduction of 18–28% of prostate size and about 

50% of circulating prostate-specific antigen (PSA) levels after 6-12 months of 

treatment
65, 66

. The most relevant adverse effects displayed by these drugs are related 

to sexual function and include reduced libido, gynecomastia, ED, and less frequently, 

ejaculation disorders
67, 68

.  

 

1.6.3 β3-adrenergic agonists  

During the filling phase of the bladder, β3-adrenergic receptors are stimulated by 

endogenous noradrenaline to promote smooth muscle relaxation and facilitate storage 

of urine. They are highly expressed on urinary tissues such as the urothelium, 

interstitial cells, and detrusor smooth muscle, including also human corpus 

cavernosum (HCC)
69-71

. β3-adrenergic receptors belong to the family of G protein-

coupled receptors which relax detrusor smooth muscle by activation of calcium-

activated potassium channel (Maxi-K), and by the stimulation of the adenylyl cyclase 

(AC) pathway increasing 3'-5'-cyclic adenosine monophosphate (cAMP) levels which 

in turn activates protein kinase A (PKA) and inhibits intracellular Ca
2+

 release 

promoting miorelaxation. According to these evidence, mirabegron, a β3-adrenergic 

receptor agonist, has been recently approved by FDA for the therapy of overactive 

http://en.wikipedia.org/wiki/Drug
http://en.wikipedia.org/wiki/Antiandrogen
http://en.wikipedia.org/wiki/Androgen
http://en.wikipedia.org/wiki/Sex_hormone
http://en.wikipedia.org/wiki/Dihydrotestosterone
http://en.wikipedia.org/wiki/Adenosine_monophosphate
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bladder symptoms and may constitute a new therapeutic option for BPH treatment. 

Furthermore, in HCC, β3-adrenergic receptor activation elicits a relaxation of smooth 

muscle independently from NO/cGMP pathway, while their activity is related to the 

inhibition of the ROCK pathway. These observations indicate that β3-receptors may 

play a physiological role in penile erection and, therefore, could represent a 

therapeutic target for treatment of ED
69

. 

 

1.6.4 Muscarinic antagonists  

Antimuscarinic drugs are mainly suggested for the treatment of moderate to severe 

storage symptoms consequent to BPH
21

. The muscarinic receptor antagonists licensed 

for treating of overactive bladder and storage symptoms are darifenacin, fesoterodine, 

oxybutynin, propiverine, solifenacin, tolterodine, and trospium chloride. Muscarinic 

receptors are densely expressed on detrusor smooth muscle cells and other cell types, 

such as epithelial cells of the salivary and prostatic glands, urothelial cells, and nerve 

cells of the peripheral or central nervous system. Ach acting on muscarinic receptors 

type 3 (M3 receptors) distributed on detrusor muscle represents the main stimulus for 

the induction of urinary bladder voiding. In particular, M3 receptor activation causes 

PLC to generate IP3 which binds to and opens IP3 receptor located on endoplasmatic 

reticulum with a subsequent Ca
2+

 release. Ca
2+

/CaM complex is enabled and activates 

MLCK-dependent pathway inducing contraction
72

. Thus, the inhibition of these 

receptors reduces smooth muscle cell contractions and the sensory threshold of the 

bladder. Randomized controlled trials have been demonstrated that antimuscarinic 

drugs can significantly reduce urgency incontinence, daytime frequency, and 

urgency-related voiding. Moreover, low treatment compliance in patients taking 

anticholinergic drugs has been issue with reports ranging from 35% to 44% of 

patients not continuing treatment, possibly due to inadequate drug efficacy or 

intolerable side effects such as dry mouth, constipation, micturition difficulties, 

nasopharyngitis, and dizziness
73

 . 
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1.6.5 Phosphodiesterase type 5 inhibitors (PDE5-Is) 

PDE is any enzyme that breaks a phosphodiester bond. To date, 11 families of PDEs 

have been identified in mammalian tissues. Their physiological role is to hydrolize 

specifically cAMP and cGMP to their respective linear 5’-nucleoside 

monophosphates AMP and GMP. Indeed, these enzymes vary in their substrate 

specificity for cAMP and cGMP. In detail, PDE5, PDE6 and PDE9 are specific for 

cGMP; PDE4, PDE7 and PDE8 are selective for cAMP while PDE1, PDE2, PDE3, 

PDE10 and PDE11 have mixed specificity for cAMP/cGMP
74-76

 (Figure 5). 

 

 

Figure 5. Different PDE isoenzymes with their affinity for cGMP and cAMP (The role of 

phosphodiesterases in bladder pathophysiology. Rahnama’i M, 2013).  

 

PDEs distribution and functional significance vary among different tissues and cell 

type
77

. It is known that isoenzymes 1, 2, 3, 4, 5, 7, 8, 9, and 10 are expressed in the 

human prostate
78

, whereas isoenzymes 1, 3, 4, and 5 are present in the human 

detrusor
79

. Like most other PDEs, PDE5 is involved in many physiological and 

pathological processes. However, it is best known its role in catabolism of cGMP in 

smooth muscle of various organs, particularly, the penis. Since the well known role of 

PDE5 in erectile function/dysfunction, there has been an increase of interest in 
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expanding its research into other tissues, in the hope that PDE5-Is can also treat these 

tissues’ associated diseases. In particular, it seems fitting for urological researchers to 

shift their attention to diseases such as overactive bladder, urinary incontinence and 

BPH. It has been demonstrated that PDE5 is the most abundant cGMP-specific PDE 

isoform expressed in the LUT specifically in the prostate
78, 80-83

, urethra
80, 82, 84

 and 

bladder
80-82

 (Figure 6).  

 

 

Figure 6. Phosphodiesterases distribution in prostate, urethra and bladder with innervation in human 

male lower urinary tract (The role of phosphodiesterases in bladder pathophysiology. Rahnama’i M, 

2013).  

 

In this way, several studies show that PDE5-Is, widely used as first-line oral 

treatment of ED, are effective in the treatment of LUTS. Since the beneficial effects 

of PDE5-Is seem not to be totally dependent on NO/cGMP signalling, their 

mechanism of action is still unclear and under investigation
85

. Actually, three 

selective oral PDE5-Is, i.e. sildenafil, tadalafil, and vardenafil, have been licensed in 

Europe for the treatment of ED and used in clinical trials in male patients with LUTS. 
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Nevertheless, only tadalafil (5 mg once daily) has been approved for the treatment of 

BPH-associated LUTS in men with or without ED. In LUT, NO is an important non-

adrenergic, non-cholinergic neurotransmitter that acts alongside the classical 

adrenergic and cholinergic systems to regulate micturition
18, 86

. NO is thought to 

inhibit efferent neurotransmission in the urethra and to modulate afferent 

neurotransmission in the bladder, as well as related reflex pathways in the spinal 

cord
86, 87

. NO released from nerve endings and from urothelium diffuses into smooth 

muscle cells, where it induces relaxation through cGMP synthesis
88

. cGMP levels are 

depending on the balance between its synthesis mediated by sGC and its catabolism 

by PDE.  

Moreover, it is well known that NO, cAMP and cGMP have a role in control of the 

micturition process and hence, are suggested to be involved in the pathophysiology of 

storage and voiding disorders. Therefore, the inhibition of PDEs increases 

intracellular cGMP and cAMP levels leading to urinary bladder smooth muscle 

relaxation. To date, although many preclinical studies have been conducted, only 

PDE1 and PDE5 inhibitors have been tested clinically for the management of LUTS. 

Treatment with PDE1 inhibitors, such as vinpocetine, the only agent approved for 

clinical use, might improve micturition frequency in patients with overactive bladder, 

whereas inhibition of PDE5 improves LUTS in men, either with or without BPH and 

ED. Increased cGMP production mediates most of non-lytic physiologic effects of 

NO. Therefore, modulating intracellular cGMP levels has been targeted for 

pharmacologic intervention in disorders directly influenced by vascular smooth 

muscle. PDE5-Is are structurally similar to cGMP and compete with cGMP at the 

catalytic site of PDE5, causing a reduction of cGMP degradation and an increase of 

its levels (Figure 7). 
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Figure 7. Comparison between cGMP, the native substrate of PDE type 5 and a competitive inhibitor, 

sildenafil (Phosphodiesterase type 5 as a pharmacologic target in erectile dysfunction. Corbin JD, 

2002). 

 

Therefore, it has been hypothesized that PDE5-Is, by increasing intracellular cGMP 

levels in lower urinary tract, can potentially modulate sensory signals and 

microvasculature dilation, reduce smooth muscle tone of the prostate, urethra, and 

bladder
19

. Furthermore, improvements in both storage and voiding urinary symptoms 

observed with PDE5-Is may be due to the regulation of the afferent nerve activity in 

the bladder neck, prostate, and urethra. In addition, to the relaxation of smooth 

muscle cells, PDE-Is may increase the LUT perfusion, resulting in increased tissue 

oxygenation, which is impaired during LUTS/BPH disorder
19

.  

 

1.6.6 Comparison of beneficial effects among PDE5-Is 

Sildenafil. It has been reported that sildenafil monotherapy markedly improves 

quality of life (QoL) scores in men affected with both ED and LUTS
89

 and IPSS of at 

least four points in 35% of 60% of patients
89

. Moreover, LUTS scores are 

significantly improved in all 189 men affected with ED and moderate to severe LUTS 

associated to BPH
90

 under sildenafil therapy. Interestingly this improvement is 

independent from baseline body mass index (BMI) and is greater in men with severe 

LUTS than in men with moderate symptoms. Finally, men with both LUTS and ED, 

following a chronic treatment of 12 weeks with alfuzosin, α1-blocker, and/or 
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sildenafil have a significant improvement in IPSS and the most pronounced beneficial 

effect is the association of the both drugs
91

. 

Vardenafil. In a clinical study, in which a cohort of 222 men with ED and LUTS 

secondary to BPH have been enrolled, vardenafil significantly improves these 

disorders and subsequently QoL, and these improvements occurs as early as 8 weeks 

after initiation of therapy
92

. The efficacy of a single dose of vardenafil has been also 

assessed in a trial of 25 male patients with micturition disorders secondary to spinal 

cord injury, who have been also taking the anticholinergic agent oxybutynin. 

Vardenafil significantly decreases maximum detrusor pressure, improves maximum 

cystometric capacity and increased bladder volume at first detection of detrusor 

overactivity
91

. The effect of the association of vardenafil and the α1-blocker 

tamsulosin is superior to that showed by tamsulosin in monotherapy
93

.  

Tadalafil. It has been reported that a single oral dose of tadalafil exerts marked 

beneficial effects on urodynamic parameters in patients affected with neurogenic 

bladder disorder caused by soprasacral spinal cord injury
94

. A clinical study 

conducted on 281 men affected with ED and LUTS provides evidence that tadalafil is 

also affective in the therapy of LUTS secondary to BPH, even if the treatment does 

not show any significant changes in uroflowmetry findings
95

. Moreover, few trials 

have evaluated the effectiveness of PDE5-Is in combination or alone with α-blockers 

or antimuscarinic drugs. Patients affected with ED and urinary storage symptoms 

show an improvement of IPSS following a chronic treatment of 12 weeks with 5 

mg/daily of tadalafil. This benefit is equivalent to that induced by the treatment with 

the antimuscarinic agent solifenacin
96

. Furthermore, another clinical trial, in which 30 

men aged > 50 years with LUTS secondary to BPH, demonstrates that the beneficial 

effect exerted by the association of tadalafil with the α1-blocker tamsulosin is superior 

to tamsulosin treatment alone
97

. Moreover, the long-term benefits of tadalafil 

treatment have been investigated in a 1-year open-label study, which shows that the 

drug is well tolerated, and that the efficacy of this treatment is maintained
98

. On the 

basis of these overall evidence, FDA has approved the use of tadalafil 5 mg once 

daily for the treatment of LUTS secondary to BPH in men with or without ED.  
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1.7 Phosphodiesterase type 5 localization in human prostatic gland 

and urinary bladder 

1.7.1 Prostate. Several experimental studies have demonstrated that NO/cGMP 

signalling and related proteins, such as cGMP-degrading PDE5, play a key role in the 

regulation of the physiological function of the prostate, including the contractile 

activity of the smooth muscle, glandular secretion, glandular epithelial cells 

proliferation
99, 100

. In 1970, for the first time the activity of PDEs was isolated from 

human prostate gland
101

, and the expression of mRNA encrypting for PDE5 was 

confirmed by RT-qPCR
80

. However, these findings did not convey any evidence 

about the localization of this enzymatic isoform in the prostate tissue. Just later by 

immunochemistry, this cGMP specific PDE was localized in glandular areas
102

, in the 

smooth muscle of the prostatic stroma, and blood vessels
102, 103

, with a prominent 

localization in vascular tissue of human prostate, including both endothelium and 

smooth muscle cells. Furthermore, it has been shown that PDE5 is localized in close 

conjunction with its main substrate cGMP and that cGMP-dependent kinase G (PKG) 

is abundant in the musculature. Interestingly, cAMP-binding protein kinase A (PKA) 

was also found in the tissue, given that the rich innervation containing the 

neuropeptide, vasoactive intestinal polypeptide, that promotes the formation of the 

intracellular messenger cAMP
104

, involved in the regulation of muscle tension in the 

transition zone too.  

1.7.2 Urinary bladder. It is already well known that NO/cGMP pathway has a 

pivotal role in the regulation of micturition and changes in intracellular cGMP levels 

could be considered as a promising possibility to achieve a selective modulation of 

smooth musculature tone of the bladder. The first evidence concerning the presence 

of PDE5 in human detrusor dates back to 1996
79

. PDE5 was localized in smooth 

muscle wall of the bladder and also in the bladder vascular system, in particular in 

endothelium and smooth muscle layer of the vesicular-deferential arteries, involved in 

blood perfusion of the detrusor muscle. In the matter of PDE5 expression in the 

urothelium, it was found only sparse
81

. Moreover, interesting to report is the 
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comparison of PDE5 expression among detrusor, corpus cavernosum and prostate 

tissue. It has been demonstrated that the expression of mRNA encoding for PDE5 

was much higher in penile tissue and in detrusor muscle than in prostatic gland
80, 81

.  

 

1.8 Experimental evidence on smooth muscle relaxation induced by 

PDE-Is: prostate and urinary bladder 

The enhancement of intracellular cGMP levels by blocking its catabolism, for 

example with PDE5-Is, leads to a relaxation of lower urinary smooth musculature; it 

has been investigated the mechanism of this enhancement in prostate and urinary 

bladder by using in vitro tissue bath studies and applying agent such as muscarinic 

(carbachol) or adrenergic agonists (norepinephrine) to induce contraction, as well as 

NO donor (sodium nitroprusside, SNP) or PDE-Is, to stimulate the cGMP signalling.  

1.8.1 Prostate. Tissue bath studies conducted on smooth muscle of non diseased 

human prostate revealed that sildenafil and zaprinast (1 nM-10 μM) induced a dose-

dependent relaxation of the pre-contracted tissue with norepinephrine
78, 105

. However, 

the percentage of relaxation of prostatic smooth muscle induced by PDE5-Is did not 

exceed the 30%. Another experimental study performed in the same condition, 

showed that the tissue contraction was antagonized by vardenafil and tadalafil 

respectively of 35% and 52%
105

. Furthermore, it has been reported that PDE-Is are 

more effective to induce relaxation in presence of SNP, because of the synergistic 

effect coming from the enhanced tissue production of cGMP by SNP and the 

inhibition of its catabolism by PDE5-Is. In addition, PDE5-Is may also induce 

prostatic miorelaxation interfering with endothelin-1 pathway
106

. 

1.8.2 Urinary bladder. To investigate the effect of PDE5-Is on human urinary 

bladder, it is really necessary to make a difference between bladder dome and bladder 

neck musculature, because the NO/cGMP signalling pathway regulates the human 

bladder smooth musculature in different way according to the region of bladder 

considered. Indeed, different studies on square-shaped strips of human detrusor 

without urothelium did not show any significant evidence supporting a role of   
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PDE5-Is in the regulation of human bladder, given that the relaxant effect induced by 

a cumulative dose-response of zaprinast (0.01-200 μM) was less than 20%
79

. 

Contrarily, when the tissue considered was the bladder muscle dome, sildenafil 

exerted a direct relaxant effect, even if high concentration of PDE5-Is were required. 

The mechanism of sildenafil induced relaxation involves both cGMP pathway and K
+ 

channels. Besides the presence of SNP did not alter the maximum effect induced by 

sildenafil, suggesting that nitrergic pathway makes a minor contribution in sildenafil 

induced relaxation
107

.  
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2. HYDROGEN SULFIDE 

 
2.1 Hydrogen sulfide: a new gasotransmitter 

Hydrogen sulfide (H2S), along with NO and carbon monoxide (CO), is increasingly 

recognized as a member of a growing family of gasotransmitters. NO received much 

attention over the last three decades for its pivotal role in vascular homeostasis
108

 and 

extensively considered as a central endothelial-derived relaxing factor (EDRF) and a 

key regulator of cardiovascular pathophysiological responses. However, the 

importance of this signalling molecule is being re-evaluated with the most recently 

discovered gasotransmitter H2S. Once considered to simply be a environmental toxic 

gas, H2S is now believed to be an important biological mediator. It plays many 

important regulatory roles in several physiological systems; it is involved in 

regulation of vascular homeostasis, cytoprotection, neurological function, anti-

inflammation, along with modulation of cell survival responses. Here, I describe 

recent advances in the understanding of the biosynthesis, catabolism, and cell biology 

of this gas. Specifically, I focus on the effect of H2S on cell signalling processes 

involved in the human genito-urinary tract system. 

2.2 Physical and chemical features of H2S  

H2S is a colourless gas with a strong odour of rotten eggs. Chemically, H2S is the 

sulfur analogue of water molecule and can be oxidized into sulfur dioxide, sulphate 

and elemental sulfur
109

. H2S is a weak diprotic acid, characterized by pKa1 and pKa2 

values of 6.76 and >12 respectively
110

. In aqueous solution, it dissociates as follows:  

 

H2S ↔ HS
- 
+ H

+ 
↔ S

2- 
+ 2H

+
 
111

 

 

However, under physiological condition, at pH 7.4 and at mammalian body 

temperature of 37°C, one third of H2S remains not dissociated (18.5%) and two thirds 

dissociated in hydrosulfide anion (HS
-
) and H

+ 
(81.5%), as predicted by the 
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Henderson-Hasselbach equation
110

. HS
-
 may subsequently decompose to H

+
 and 

sulfide ion (S
2–

), but this reaction occurs only at high pH, thus S
2–

 does not occur in 

vivo at significant amounts
112

. Given that all these three species of sulfide are always 

present in aqueous solution, even if in different percentage, it has not been possible to 

determine which of these species is biologically active. Thus, the terminology “H2S” 

usually refers to the sum of H2S, HS
-
, and S

2-
. Similarly to NO and CO, H2S is 

characterized by high lipophilicity (its solubility in lipophilic solvents is 

approximately fivefold greater than in water), therefore it freely permeates the 

hydrophobic core of the cell plasma membranes, and rapidly diffuses into or out of 

cells
113

.  

 

2.3 Endogenous H2S biosynthesis  

H2S is constitutively produced in mammalian tissue via both enzymatic and non-

enzymatic pathways
114

. The latter pathway, less important endogenous source of H2S, 

consists of reduction of thiols, thiol-containing molecules, such as thiosulfate or 

thiocysteine, or elementar sulfur using reducing equivalents obtained from the 

oxidation of glucose
115

 (Figure 8). 

 

 

Figure 8. Non enzymatic production of endogenous H2S (Two’s company, three’s crowd: can H2S be 

the third endogenous gaseous transmitter?. Wang R, 2002).  
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Furthermore, H2S can be derived under reducing conditions from sulfane sulfur, an 

intracellular sulfur storage
116

, that occurs when H2S interacts with cysteine thiols to 

form stable persulfides. This mechanism takes place at pH of 8.4, for this reason its 

physiological relevance is not fully understood. However, the non-enzymatic pathway 

contributes just partially to endogenous H2S production
115

. Indeed, most of the 

interest has been placed on the enzymatic biosynthesis of H2S (Figure 9).  

 

 

 

Figure 9. Enzymatic biosynthesis of endogenous H2S (H2S signaling through protein sulfhydration 

and beyond. Bindu DP, 2012). 

 

H2S is endogenously produced from the substrate L-cysteine, a sulfhydryl amino acid 

derived from the diet or synthesized from methionine (Met) through the 

transsulfuration pathway
117

 by the action of three enzymes: cystathionine β-synthase 

(CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-

MST). Despite three different pathways have been identified, only two enzymes, CBS 
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and CSE, are believed to be the most important protein involved in the endogenous 

H2S generation. CBS condenses homocysteine, derived from Met, with L-serine 

generating cystathionine, which is converted to L-cysteine by CSE. This L-cysteine is 

combined with homocysteine by CBS
118-120

 or CSE leading to the production of 

cystathionine and H2S. CSE can also produce H2S and pyruvate from L-cysteine
119-

121
. A third potential H2S generating pathway is mediated by aspartate 

aminotransferase (AAT), which catalyzes the reaction of L-cysteine with keto acids 

(α-ketoglutarate) to form 3-mercaptopyruvate, which is then desulfurated by 3-MST  

to generate H2S. The sulfur group of 3-mercaptopyruvate is linked to the cysteine 

residue in the catalytic site of 3-MST (3-MST-SH) to produce a persulfide (3-MST-

SSH). The persulfide releases H2S in the presence of a reducing agent, which 

generates the corresponding disulfide (3-MST-SSR) and H2S. CBS, CSE and AAT 

require necessarily for their enzymatic activity the cofactor pyridoxal 5’-phosphate 

(PLP), which is the active form of vitamin B6, conversely to 3-MST which activity is 

zinc-dependent. Furthermore, these enzymes differ from each other for their 

intracellular compartmentalization. Indeed, AAT and 3-MST are both mitochondrial 

and cytosolic
122

, whereas CBS and CSE appear to be exclusively cytosolic
123

. The 

expression of these enzymes has been found in a number of cell types, including 

those from the liver, kidney, heart, vasculature, brain. Moreover, it has been 

characterized by multiple evidence the organ-specific expression of CBS and CSE. 

CBS is the predominant H2S-generating enzyme in nervous system and brain
124

 and it 

is also highly expressed in liver and kidney, while CSE is mainly expressed in 

vascular and non-vascular smooth muscle
125

. Concerning 3-MST, along with AAT, it 

contributes to H2S formation in both the brain
126

 and the vascular endothelium
127

. In 

addition, it has been demonstrated that CBS and CSE are secreted by endothelial cells 

and hepatocytes, circulate as members of the plasma proteome, thus existing also as 

circulating enzymes
128

.  

CSE is a protein of 405 amino acid residues and is a tetramer formed by two 

homodimers, both contributing to the active site pocket
129

. It is selectively activated 

by Ca
2+

/CaM complex in a similar way to the activation of endothelial NO synthase 
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(eNOS)
130

. The regulation of CSE is not totally understood, but there are evidence 

reporting that myeloid zinc finger 1 and specificity protein 1 have an important role 

in its basal transcriptional activity and that it can be up-regulated by bacterial 

endotoxin
131

 and NO
132

. Regarding CBS, more evidence are known about its 

regulation and they are described in details below.  

 

2.3.1 CBS: a modular protein organization. CBS catalyzes the condensation of L-

serine and homocysteine to give cystathionine and H2S
133

. In this reaction, the 

hydroxyl group of L-serine is replaced with the thiolate of homocysteine. In addition, 

CBS can also efficiently generate H2S from a combination of L-cysteine and 

homocysteine
118, 119

. In addition to H2S production, CBS has a prominent role in 

maintaining homocysteine levels in vivo. Patients with hyper-homocysteinaemia 

(HHcy) exhibit substantial cardiovascular disability
134

 due to an impairment of CBS 

activity. The gene of human CBS is localized to chromosome 21 at 21q22.3
135

. In 

human and rat, CBS exists primarily as homo-tetramer consisting of 63 kDa subunits, 

and each one comprises 551 amino acid residues
136

. CBS displays a modular 

organization in which every subunit contains the binding sites for the cofactors PLP, 

heme
137

, and S-adenosylmethionine (SAM) (Figure 10).  

 

 

Figure 10. CBS: a modular protein organization (Redox regulation and reaction mechanism of human 

cystathionine-β-synthase: a PLP-dependent hemesensor protein. Banerjee R, 2004). 

 



Hydrogen sulfide 

28 
 

In details, the NH2-terminal of CBS contains the binding site for heme followed by 

PLP binding site. The COOH-terminal of CBS contains a regulatory domain of ≈140 

amino acid residues, and confers responsiveness to SAM, that is an allosteric 

activator of the enzyme. The heme group is a redox sensor
138

 and it binds to the NH2-

terminal portion of CBS comprising about 70 amino acids, while the PLP binding 

domain is considered to be the catalytic pocket, and it is deep in the heme domain. 

The ferrous form of CBS, which forms under oxidizing conditions, is less active than 

its ferric form
139

. When CBS is in the ferrous state, CO and NO can bind the heme 

domain
140

. CO binding inhibits in a reversible way the catalytic activity of CBS
141-143

 

with higher affinity (Ki ≈5.6 µM), whereas NO is only about two percent as potent so 

that its binding probably is not physiologically relevant (Ki ≈360 µM)
140, 144

. In the 

presence of physiological reducing system, such as methionine synthase reductase 

and NADPH, the inhibition of CBS can be reverted
145

. However, the redox potential 

of Fe
3+

/Fe
2+

 couple in CBS is very low (-350 mV), thus the feasibility of CBS to be in 

oxidized form has been in question. Human CBS is activated by the allosteric 

regulator SAM
124, 146

, a major methyl donor and the precursor of S-

adenosylhomocysteine and homocysteine. Although the binding site for SAM is not 

known yet, it is retained to occur by binding to the COOH-terminal domain of CBS, 

which increases 2-fold the H2S production
118, 120

. Furthermore, it has been reported 

that the COOH-terminal portion of CBS contains tandem repeat of two “CBS 

domains”. This part appears to be an inhibitory domain as its deletion activates CBS 

of 4-fold, giving a super-activated state of the enzyme
147, 148

. In addition, the CBS 

domains have been proposed to act as energy sensors
149

. This notion is based on 

findings that AMP-activated protein kinase binds the enzyme at its CBS domains
149

.  

Recently, it has also been reported that Ca
2+

/CaM pathway is involved in the 

regulation of CBS activity
150

, given that both CBS and CaM coimmunoprecipitate. 

The binding consensus sequence for the complex Ca
2+

/CaM has been identified in 

CBS domains
150

 and enzymatic activity is suppressed by specific inhibitors of this 

complex. In the absence of interaction between the Ca
2+

/CaM complex and CBS, the 

enzymatic activity remains at basal level because the COOH-terminal may cover the 
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catalytic domain. The binding of the complex Ca
2+

/CaM to the 19 amino acid binding 

consensus sequence induces the exposure of the catalytic domain leading to CBS 

activation. 

 

2.4 Catabolism of H2S 

To date, three mechanisms have been indicated for H2S inactivation in the biological 

systems: 1) oxidation, 2) methylation and 3) scavenging by reactions with metallo-

proteins (Figure 11).  

 

 

Figure 11. Catabolism of endogenous H2S through mitochondrial oxidation, cytosolic methylation and 

binding to hemoglobin (Hydrogen sulfide- the third gas of interest for pharmacologists. Lowicka E, 

2007) 

 

However, the most important pathway identified is the oxidation, and mitochondria 

are very effective in this reaction. Endogenous H2S is quickly metabolized by 

oxidation in mitochondria to thiosulfate (S2O3
-
) which is further converted to sulfite 

(SO3
2-

) and sulfate (SO4
2-

). Oxidation of H2S to S2O3
- 
is probably a non enzymatic 

process associated with mitochondrial respiratory electron transport, although this 

reaction could be catalyzed by superoxide dismutase
151

. Furthermore, thiosulfate 

cyanide sulfurtransferase (TST) catalyzes the conversion of S2O3
- 

to SO3
2-

, 

transferring a sulfur atom from S2O3
-
 to cyanide or other acceptors

152
. SO3

2- 
in turn is 
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rapidly oxidized to SO4
2- 

by sulfite oxidase (SO). Both S2O3
- 
and SO4

2- 
are excreted in 

urine, but
 
under physiological conditions SO4

2- 
 is retained to be a major end-product 

of H2S metabolism, indeed S2O3
-
 concentration in urine is less than 1% of SO4 

2- 153
. 

However, urinary S2O3
-
 is considered to be a specific marker of whole-body H2S 

production
154

. Nevertheless, it is important to clarify that if the amount of sulfide 

exceeds the capacity of the mitochondrial enzymes to oxidize it, H2S can represent a 

poison for the enzymes
155

. Methylation is an additional metabolic pathway to 

inactivate H2S, even though less important than oxidation. Contrarily to oxidation, the 

methylation takes place mainly in the cytoplasm and it consists in the conversion of 

endogenous H2S by thiol S-methyltransferase (TMST) into methanethiol and 

dimethylsulfide, that it is also a substrate for rhodanase, leading to the generation of 

thiocyanate (SCN
-
) and SO4

2- 156
. In addition, H2S is a powerful reducing agent and is 

mainly consumed by endogenous oxidant such as peroxinitrite, superoxide and 

hydrogen peroxide in the vascular system
157-159

. Finally, H2S can be scavenged by 

methemoglobin forming sulfhemoglobin
160

 or metallo- or disulfide- containing 

molecules such as oxidized glutathione (GSSG)
161

. The interaction of hemoglobin 

with H2S requires a special attention. Hemoglobin is a common sink for CO and NO 

in forming carboxyhemoglobin and nitrosyl haemoglobin, respectively. If this sink is 

filled with one of this gas, the binding of other gases is affected and their individual 

ability to act on specific targets is altered. 

 

2.5 Mechanisms of relaxation induced by H2S 

2.5.1 H2S is a KATP channels opener 

Endogenously produced H2S exerts a host of biological effects on various targets and 

participates in the regulation of several physiological processes including 

cardiovascular, nervous, endocrine, reproductive, gastrointestinal and immune 

systems
117, 162-164

. Furthermore, deregulation of H2S production is found in many 

pathological disorders like heart failure, atherosclerosis, diabetes, hypertension, 

inflammation, sepsis, and erectile dysfunction
117, 165, 166

. H2S acts as a signalling 

molecule in physiology and disease through a variety of pathways. Early studies 
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focused on H2S involvement in the central nervous system and cardiovascular system. 

It regulates the action of N-methyl-D-aspartate (NMDA) receptors in the brain and 

the smooth muscle tone in cardiovascular system. Various studies conducted on 

cardiovascular
167

, reproductive
168

, and gastrointestinal
167

 smooth muscles have shown 

that H2S produces both direct and indirect smooth muscle relaxant effects, inhibits 

spontaneous motility or prevents chemically or electrically induced contractile 

responses. In details, H2S functions as a vasodilatator
130

. To cause vasodilatation, H2S 

hyperpolarizes the smooth muscle cells opening the ATP-sensitive K
+
 channels 

(KATP), as confirmed by sensitivity to glibenclamide or pinacidil, KATP channels 

antagonists. Recently, it has been raised the possibility that H2S induces smooth 

muscle relaxation, not only via opening KATP channels, but also by activation of 

myosin-light-chain (MLC) phosphatase induced by cGMP signalling
169

. The precise 

mechanism by which H2S induces the activation of KATP channels is not clear, but the 

hypothesis is that H2S affects protein function by S-sulfhydration. H2S is also known 

to act on a number of other ion channels. It activates the transient receptor potential 

channels (TRP) in both urinary tract and airway smooth muscle, while inhibits big 

conductance Ca
2+

-sensitive K
+
 (BKCa) channels, T-type and L- type Ca

2+ 
channels. A 

recent report points the involvement of intracellular pH changes and the Cl
-
/HCO3

-
 

exchanger in the process of H2S induced relaxation, and that vascular effect of sulfide 

is also dependent on O2 concentration. Indeed, H2S acts as a vasoconstrictor in well-

oxygenated vascular rings systems
170

. 

 

2.5.2 H2S is an endogenous PDE inhibitor  

cGMP mediates NO-stimulated vasorelaxation
171

 and its levels inside the cells are 

dependent on the balance between cGMP production and degradation, which is 

produced by sGC and degraded by PDE
171, 172

. It is well established that cGMP/PKG 

activates MLC phosphatase leading to the dephosphorylation of MLC, and 

consequently to smooth muscle relaxation. Furthermore, most of the current evidence 

indicate that H2S induce cGMP accumulation by either directly inhibiting the 
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enzymatic activity of PDE or by increasing intracellular NO bioavailability (Figure 

12).  

 

 

Figure 12. H2S is an endogenous inhibitor of PDE activity (Modulation of soluble guanylate cyclase 

for the treatment of erectile dysfunction. Lasker GF, 2013; with modification).  

 

Since H2S affects the function of heme proteins
173

, the increase of intracellular cGMP 

levels could be due to the activation of sGC, in a similar way to NO and CO. 

Nevertheless, experimental evidence do not show any activation of sGC induced by 

H2S
174

. Indeed, it has been demonstrated that H2S does not stimulate sGC, and its 

vasorelaxing effect is not inhibited by 1H-[1,2,4] oxadiazolo-[4,3-a] chinossalin-1-

one (ODQ), a sGC inhibitor
125

. Having ruled out the possibility that increased cGMP 

levels in smooth muscle cells results from sGC activation, it has been evaluated the 

contribution of H2S on PDE activity. It has been demonstrated by in vitro studies that 

low concentration (nM) of NaHS, an H2S donor, inhibits transiently PDE activity, 

increasing both cAMP and cGMP, suggesting that H2S is a non-selective PDE 

inhibitor. In addition, the incubation of cultured rat aortic smooth muscle cells with 

NaHS increased in a concentration dependent-manner cGMP levels
175

. Interestingly, 

cGMP levels were highly enhanced or attenuated following the overexpression or 

CSE gene silencing
175

. 
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H2S can inhibit the PDEs by three mechanisms which involve S-sulfhydration of 

PDE, binding to Zn
2+

, a required cofactor for its catalytic activity, and formation of 

disulfide bonds, very important for PDE activity
175

. Actually, the possibility that H2S 

affects the formation of disulfide bonds remains the only viable hypothesis to 

confirm. An additional mechanism of increasing cGMP levels has been observed in 

endothelial cells and cardiomyocytes. The exposure to NaHS activates Akt
176

, leading 

to enhanced eNOS phosphorylation on Ser1177
177-180

 and reduced phosphorylation of 

the inhibitory site Thr495
181

. In addition, it has been reported that H2S induces S-

sulfhydration of Cys443, preventing the formation of inactive monomer eNOS
182

. 

Therefore, H2S increases NO bioavailability that in turn stimulates sGC producing 

cGMP.  

 

2.6 Role of H2S in erectile function  

Penile corpus cavernosum function is depending on vasculature tone. Erection is 

reached when blood vessels or sinusoidal smooth muscle cells in the penis are relaxed 

and this relaxation is depending on local availability of NO
183

. In presence of erectile 

disorder, the PDE5-I, sildenafil, exerts its beneficial effect sustaining the local effect 

of NO by inhibiting the breakdown of cGMP. On the basis of all above mentioned 

evidence, H2S may show the same functional effect as NO in dealing with erectile 

dysfunction. Indeed, it has been reported that H2S induces relaxation of penile 

tissue
184, 185

. An earlier study shows that HCC expresses both CBS and CSE
186

. More 

specifically, muscular trabeculae and smooth muscle component expresses both 

enzymes, while peripheral nerves only CSE
187

. The blockade of CBS and CSE with 

the enzymatic inhibitor, AOAA and PPG respectively, enhances the muscle tension 

induced by electrical stimulation, suggesting the contribute of both enzymes in 

erectile function. Furthermore, the exposition of human penile tissue to NaHS, or L-

cysteine, the endogenous precursor of H2S, induces relaxation and triggers an erection 

in vivo
187

. H2S induced human erection seems to involve the activation of KATP 

channels in penile smooth muscle cells
187

. Appointed to H2S a physiological role in 
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penile function, it has come in question why CSE knocking out in mice does not 

affect the fertility
130

. It has been demonstrated that the lacking of CSE in mouse penis 

is likely compensated by the increasing of CBS expression. NaHS induce relaxation 

of penile tissue at high concentration between 100 µM and 1 mM, suggesting that it is 

less potent than NO, but on the other hand the life span of NO is much shorter than 

relative to H2S. Therefore, low potency of H2S is compensated by its long-lasting 

pro-erectile function.  

 

2.7 Role of H2S in urinary system 

Actually, H2S signalling is well characterized in many physiological processes and 

pathological conditions related to the cardiovascular and nervous system. To date, the 

role of H2S in animal and human urinary system remains poorly understood and very 

less consistent, because of the availability of conflicting evidence concerning its role 

in bladder homeostasis. However, many interesting findings regarding H2S and 

kidneys continue to be identified, suggesting a pivotal function of H2S in renal 

system. Indeed, in addition to the liver, brain, heart and skeletal muscle, kidneys are 

identified as the major source of H2S and all three enzymes are involved in normal 

renal physiology. It has been demonstrated that CBS, CSE and 3-MST are expressed 

in kidneys
188

 and they are mainly present in proximal tubules within the renal 

cortex
189-191

. In particular, it has been noted that CBS is primarily localized in the 

proximal convoluted tubule in the outer cortex, while CSE is mostly predominant in 

straight tubule in the inner cortex
131

. Moreover, a quantitative analysis shows that 

protein levels of CBS are 20-fold lower than those related to CSE, but in presence of 

sufficient substrate, CBS produce much more H2S than CSE in the kidneys
192

. 

Despite it has been thought for a long time that CBS and CSE were important in the 

metabolism of homocysteine, a role in vascular and tubular function has been 

appointed to H2S. Among tubular functions, it is known that H2S increases 

glomerular filtration rate and renal blood flow, augments urinary sodium and 

potassium excretion. These effects are mediated by induction of vasodilatation and 
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inhibition of tubular Na
+
/K

+
 ATPase activity and Na

+
/K

+
/2Cl

-
 co-transporter

193
. H2S 

is also involved in regulation of renin angiotensin system by modulating directly 

cAMP levels and indirectly ROS, affecting all hemodynamic parameters
194, 195

. All 

these findings suggest that H2S production could be induced by changes in 

physiological function. Although several studies have demonstrated that H2S therapy 

can attenuate glomerular injury
196, 197

, CBS and CSE are lacking in glomerular 

epithelial cells (GECs)
188, 198

. Given that H2S is a paracrine signalling molecule and 

characterized by high membrane permeability, its biosynthesis in proximal tubular 

epithelial cells or vascular endothelium may be enough for GECs function
196

. H2S has 

been also proposed as a modulator of the renal oxidative stress response, through both 

up-regulation of antioxidant proteins, such as Nrf2, superoxide dismutase, catalase, 

and down-regulation of enzymes responsible of ROS generation
199

. Thus, it is clear 

that a deregulation of renal H2S levels can be directly or indirectly a potential 

concurrent factor in the pathogenesis of any renal disease and represent a 

considerable pharmacological target. Indeed, decreased endogenous H2S levels, 

consequent to CBS reduction, have been associated to chronic kidney disease and 

glomerulosclerosis induced by HHcy, despite the mechanisms involved in this 

decrease are not determined yet
200

. Anyway, supplementation of H2S in mice affected 

with HHcy-associated renal damage regularizes the glomerular filtration rate and the 

mechanisms involved in its beneficial effect include suppression of superoxide 

production, increase of glutathione levels, reduction of macrophage infiltration and 

inflammation factors
200

. This mechanism is proved by a porcine model of kidney 

ischemia reperfusion in which Na2S, an H2S donor, exerts renal protective effect, 

largely through its antioxidant and anti-inflammatory actions
201

. While all above 

mentioned mechanism are related to CBS activity and its expression, the functionality 

of CSE seems to be more critical in protecting kidneys from diabetic nephropathy. 

Indeed, in a rat model of diabetes induced by streptozotocin, CSE expression and H2S 

levels are markedly reduced in renal cortex
197

. In addition to the kidneys, H2S also 

targets other organs in urinary system, such as the bladder, despite much less is 

known about its role in this organ and conflicting evidence are actually available, 
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even though coming from different animal species. Indeed, it has been showed that 

H2S constricts the detrusor muscle of rat urinary bladder through stimulation of 

capsaicin-sensitive primary afferent neurons
202

, that causes the release of tachykinins. 

H2S induced contraction can be prevented by using selective antagonists of 

tachykinin NK1 and NK2 receptor, suggesting that tachykinins are the mediators of 

excitatory effect mediated by H2S in the rat bladder. Furthermore, experimental 

studies performed on trout bladder show that both response to H2S and the potential 

mechanism of H2S action is unlike that observed in the rat. It has been reported that 

trout bladder produces H2S, which relaxes the bladder and decreases spontaneous 

contractions
203

. To date, any evidence has been reported on endogenous H2S, its 

biosynthesis and its cell signalling in human urinary system. Since this lacking in 

findings, it was very interesting to investigate the H2S signalling pathway specifically 

in urinary bladder.  
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3. AIM I 

 

The clinical efficacy of PDE5 inhibitors in the management of LUTS has been 

recently demonstrated and it has been suggested that their beneficial effects on 

voiding symptoms involves the NO/cGMP signalling pathway
99

, while their effects 

on storage symptoms remain still not well understood. However, in vitro studies 

report that sildenafil induces a direct relaxation of human detrusor smooth muscle 

through the involvement of intracellular messenger, like cGMP and cAMP, and the 

KATP, BKCa and SKCa channels-dependent signalling pathways
107

, while the 

contribution of NO seems to have a minor importance. Therefore, considering that all 

the above signalling pathways are also regulated by endogenous H2S, aim of this 

study was in primis to investigate whether the L-cysteine/H2S pathway could 

contribute to bladder function and then evaluate if the relaxing effect of sildenafil on 

human detrusor dome could involve the H2S signalling. 
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4. MATERIAL AND METHODS I 

 

4.1 Human tissue 

Bladder dome samples were obtained from 25 male patients aged between 61 and 73 

years and affected with severe LUTS secondary to BPH undergoing prostatectomy. 

All patients were aware of all procedures and gave their informed consent. All 

patients presented urodynamic obstruction and enlargement of prostatic gland (> 80 

ml). Patients who presented bladder stones, urinary infections, detrusor areflexia, a 

history of urothelial cancer, or recent (< 7 days) or frequent use of PDE5-Is for 

erectile dysfunction were kept out from the study. Tissue harvesting and all 

experimental procedures were approved by the Local Ethical Committee (Faculty of 

Medicine and Surgery, University of Naples Federico II, Naples, Italy). The samples 

were cleared of blood, adherent tissue, serosal layer and adventitia. To perform the 

following experiments full thickness bladder (detrusor plus urothelium) samples were 

used.   

 

4.2 Western blot analysis 

Bladder dome samples from 9 patients were immediately snap frozen and then 

homogenized in modified RIPA buffer (50mmol/L Tris-HCl, pH 7.4, 1% v/v Triton, 

0.25% w/v sodium deoxycholate, 150mmol/L sodium chloride, 1mmol/L EDTA, 

1mmol/L phenylmethanesulphonylfluoride, 10mg/ml aprotinin, 20mmol/L leupeptin 

and 50mmol/L sodium fluoride). 40 µg of proteins were separated on 8% sodium 

dodecyl sulphate polyacrylamide gels and transferred to a polyvinylidene fluoride 

membrane (PVDF). Membranes were blocked for 30 minutes in phosphate buffered 

saline (PBS) containing non-fat dry milk (5% w/v), followed by overnight incubation 

at 4°C with rabbit polyclonal CBS (1:500; Santa Cruz) or mouse monoclonal CSE 

(1:500; Abnova Novus Biologicals). Membranes were extensively washed in PBST 

(PBS with Tween 20 0.01% v/v) prior incubation with horseradish peroxidase 
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conjugated secondary antibody for 2 hours at RT. After incubation, membranes were 

washed and developed using Image Quant 400 (GE Healthcare, US). Rabbit anti-

GAPDH antibody was used as loading control (1:5000, Sigma-Aldrich, Milano, 

Italy). Data were expressed as the mean ± SEM. 

 

4.3 Human bladder strips: functional study 

Longitudinal human bladder strips were isolated from the sections obtained from 6 

patients. Strips were suspended in 3 mL organ chambers filled with Krebs buffer 

(115.3 mM NaCl; 4.9 mM KCl; 1.46 mM CaCl2; 1.2 mM MgSO4; 1.2 mM KH2PO4; 

25.0 mM NaHCO3, 11.1 mM glucose), maintained constantly at 37° C and 

continuously bubbled with 95% O2 and 5% CO2. The strips were connected to 

isometric transducers (Ugo Basile, Comerio, Italy), stretched until they reached a 

resting tension of 0.5 g and allowed to equilibrate for 60 min. The tension changes 

were registered and monitored by a computerized system (DataCapsule, Ugo Basile, 

Comerio, Italy). In each experiment, the tissues were first challenged with carbachol 

(1 µM; Sigma, Milan, Italy) until the contracturant responses were reproducible. On 

stable carbachol tone, a dose-response curve to an H2S donor, sodium hydrosulfide 

(NaHS, 0.1 µM to 1 mM; Sigma, Milan, Italy), the enzymatic substrate, L-cysteine, 

(0.1 µM to 1 mM; Sigma, Milan, Italy), or sildenafil (0.1 µM to 10 µM; Sigma, 

Milan, Italy) was performed. In another set of experiments, the strips were pre-treated 

for 30 min with DL-propargylglycine (PPG, 10 mM; Sigma, Milan, Italy) and/or 

aminooxyacetic acid (AOAA, 1 mM; Sigma, Milan, Italy) inhibitors of CSE and 

CBS, respectively. Data were calculated as percentage of relaxation and expressed as 

mean ± SEM.  

 

4.4 H2S measurement: methylene blue assay 

H2S production rate in human bladder tissue was measured by using Stipanuk and 

Beck assay with modifications
188

. Briefly, tissues obtained from 5 patients were 
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homogenized in a potassium phosphate buffer (PPB, 100 mM, pH 7.4) containing 

sodium orthovanadate (10 mM) and protease inhibitors. Protein concentration was 

determined by using Bradford assay (Bio-Rad Laboratories, Milano, Italy). 

Homogenates were added in a reaction mixture (total volume: 500 µl) containing 

piridoxal-5’-phosphate (2 mM, 20 µl), saline (20 µl). Distilled water (20 µL) or L-

cysteine (10 mM, 20 µl) were added to measure the H2S production in basal or 

stimulated condition. PPG 10 mM and/or AOAA 1 mM were added 5 min before 

addition of L-cysteine to inhibit respectively CSE and/or CBS activity. The reaction 

was performed in sealed tubes and initiated by transferring tubes from ice to a water 

bath at 37° C and carried out for 40 min. After incubation, zinc acetate (1% w/v, 250 

µl) was added, followed by trichloroacetic acid (10% w/v, 250 µl). Subsequently, 

N,N-dimethylphenylendiamine sulphate (20 mM/7.2 M HCl, 133 µl) and ferric 

chloride (30 mM/1.2 M HCl, 133 µl) were added, and the optical solution absorbance 

was measured at a wavelength of 650 nm. All samples were assayed in duplicate, and 

H2S concentration was calculated against a standard curve of NaHS (3.12–250 µM). 

Data were calculated as nanomoles per milligram of protein per minute and expressed 

as mean ± SEM.  

 

4.5 Sildenafil effect on H2S production in human bladder tissue 

To investigate whether sildenafil had the ability to induce H2S production in human 

bladder tissue, fresh samples obtained from 5 patients were incubated with an 

established sildenafil concentration (10 µM) for 15, 30, or 45 min or with different 

concentrations of sildenafil (1, 3, 10, and 30 µM) for 30 min, that resulted as the best 

incubation time. A pre-treatment with AOAA (1 mM) and/or PPG (10 mM), 

respectively CBS and CSE inhibitors, was carried out for 30 min before sildenafil (10 

µM, 30 min) incubation. Finally, in another set of experiments, the fresh tissues were 

treated with stable analogues of cGMP or cAMP, respectively 8-bromo-cGMP (8-Br-

cGMP, 100 µM; Tocris, UK) and dibutyryl-cAMP (d-cAMP, 100 µM; Tocris, UK) 

for 30 min. The concentration 100 µM was selected on the basis of the in vitro use 
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204
. After treatment all samples were immediately frozen and then processed for the 

methylene blue assay. To exclude the feasibility that sildenafil acted as a substrate of 

CBS and CSE, sildenafil (10 µM, 100 µM, and 1 mM) was added to the homogenates 

in place of L-cysteine for 40 min. Data were calculated as nanomoles per milligram 

of protein per minute and expressed as mean ± SEM.  

 

4.6 Statistical analysis 

Data were expressed as mean ± SEM. Statistical analysis was determined by using 

ANOVA and Bonferroni as a post hoc test. Differences were considered statistically 

significant when p value was less than 0.05. GraphPad Prism software (version 4.02, 

GraphPad Software, San Diego, CA) was used for all the statistical analysis. 
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5. RESULTS I 

 

5.1 CBS and CSE expression in human bladder and H2S levels  

CBS and CSE were both expressed in human bladder tissue as showed by Western 

blot analysis (Figure 13A). The homogenate of human tissues generated in basal 

condition detectable amounts of H2S (Figure 13B). The biosynthesis of H2S was 

markedly increased when L-cysteine was added as enzymatic substrate in tissue 

homogenates as compared to basal H2S levels (Figure 13B; p < 0.001). Furthermore, 

this increase in H2S level was significantly reverted by pre-treatment with CBS 

and/or CSE inhibitor, respectively AOAA and PPG (Figure 13B; p < 0.01 and p < 

0.001 versus L-cysteine, respectively). The replacement of L-cysteine with sildenafil 

(10 µM, 100 µM, 1 mM) during the incubation of tissue homogenates did not show 

any changes in H2S production at any concentrations, suggesting that sildenafil is not 

an enzymatic substrate of CBS and/or CSE (data not shown). 
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Figure 13. Immunoblot for CBS and CSE and enzymatic activity in human bladder dome. (A) 

Representative Western blot for CBS and CSE and relative optical densitometry (OD) in human 

bladder samples obtained from nine patients. (B) H2S production in human tissue homogenates from 

five patients under basal condition and after incubation with L-cysteine 10 mM. L-cysteine caused a 

significant increase in H2S production (***p < 0.001 vs basal), significantly reverted by CSE inhibitor 

(PPG; 10 mM) and/or CBS inhibitor (AOAA; 1 mM) (°°p < 0.01 and °°°p < 0.001, vs L-cysteine, 

respectively). Data were calculated as nanomoles per milligram of protein per minute and expressed as 

mean ± SEM. 
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5.2 H2S and sildenafil effect on detrusor reactivity 

On a stable contraction induced by carbachol (1 µM), NaHS (0.1 µM to 1 mM) or L-

cysteine (0.1 µM to 1 mM) elicited a similar concentration-dependent relaxation of 

human bladder strips (Figure 14A). Pre-treatment with PPG (10 mM) or AOAA (1 

mM) significantly inhibited L-cysteine induced relaxation (Figure 14B; p < 0.01 and 

p < 0.05, respectively). Interestingly, sildenafil caused a concentration-dependent 

relaxation of human tissues (Figure 14C) significantly reduced by blockade of CSE 

and CBS enzymes by using a combination of PPG (10 mM) and AOAA (1 mM) 

inhibitors (Figure 14C; p < 0.001). These findings suggest an involvement of H2S 

signalling in sildenafil induced relaxation of human detrusor muscle  
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Figure 14. Sodium hydrogen sulfide (NaHS), L-cysteine, or sildenafil effect on carbachol induced 

contraction of human bladder dome strips. (A) NaHS or L-cysteine caused a relaxation of human 

detrusor in a concentration-dependent way. (B) Relaxation induced by L-cysteine was significantly 

reduced by CSE inhibitor (PPG, 10 mM) or CBS inhibitor (AOAA, 1 mM) (**p < 0.01 and *p < 0.05 

vs vehicle, respectively). (C) Sildenafil caused a concentration-dependent relaxation, significantly 

reduced by the combination of CBS and CSE inhibitors (PPG 10 mM and AOAA 1mM; ***p < 0.001 

vs vehicle). Data were calculated as percentage of relaxation on carbachol induced contraction and 

expressed as mean ± SEM. Number of patients per study is equal to six. 
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5.3 H2S production induced by sildenafil treatment in human 

bladder  

Pre-incubation of human bladder samples with sildenafil (10 µM) induced an increase 

in H2S production in a time-dependent manner (Figure 15A; p < 0.001 versus 

vehicle; p < 0.01 versus 30 min or 45 min). Pre-treatment with sildenafil for 30 min 

resulted the best incubation time. Furthermore, different concentration of sildenafil 

(1, 3, 10, 30 µM) caused a significant concentration-dependent increase in H2S 

production when compared to vehicle (Figure 15B, p < 0.05 and p < 0.01 versus 

vehicle). Interestingly, the inhibition of CSE and/or CBS exerted by PPG (10 mM) 

and AOAA (1 mM) markedly reduced the increase of H2S production induced by 

sildenafil (Figure 15C; p < 0.05 and p < 0.01 versus sildenafil, 10 µM; p < 0.01 

versus vehicle). 
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Figure 15. Induction of H2S production in human bladder dome by sildenafil treatment. (A) 

Sildenafil treatment (10 µM) caused a time-dependent increase in H2S production (***p < 0.001 vs 

vehicle; **p < 0.01 vs 30 min and 45 min). (B) Sildenafil incubation for 30 min caused a 

concentration-dependent increase in H2S production compared to vehicle (*p < 0.05 and **p < 0.001). 

(C) CBS and/or CSE inhibitors (AOAA, 1mM and PPG, 10 mM) significantly inhibited the increase of 

H2S production induced by sildenafil (°p < 0.05 and °°p < 0.01 vs sildenafil 10 µM; **p < 0.01 vs 

vehicle). Data were calculated as nanomoles per milligram of protein per minute and expressed as 

mean ± SEM. Number of patients per study is equal to five. 
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5.4 H2S production induced by stable analogues of cGMP and cAMP 

in human bladder  

Pre-treatment with 8-Br-cGMP (100 µM) and d-cAMP (100 µM), two stable 

analogues of cGMP and cAMP, resulted in a significant increase of H2S production 

similar to that induced by sildenafil (Figure 16; p < 0.05 versus vehicle). 

 

 
 
Figure 16. cGMP and cAMP induced H2S production in human bladder. Incubation of 8-bromo-

cGMP (100 µM) or dibutyryl-cAMP (100 µM) for 30 min elicited a significant increase in H2S 

production, in a similar way of sildenafil (10 µM) (*p < 0.05 vs vehicle). Data were calculated as 

nanomoles per milligram of protein per minute and expressed as mean ± SEM. Number of patients per 

study is equal to five. 
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6. AIM II 
 

We previously showed that H2S is involved in human bladder homeostasis. Indeed, 

CBS and CSE are expressed in bladder and both NaHS, H2S donor, or L-cysteine, 

endogenous substrate of H2S-producing enzymes, relax full thickness bladder strips. 

In addition, the PDE5-I sildenafil and analogues of either cGMP (8-Br-cGMP) and 

cAMP (d-cAMP) trigger H2S production in bladder biopsy. This finding raises the 

feasibility that drugs such as PDE5-Is or β3-agonists may affect the H2S signalling 

pathway through the modulation of intracellular cyclic nucleotides and subsequently 

induce post-translational modification of proteins
205, 206

. Furthermore, it is widely 

accepted that urothelium contributes to bladder homeostasis and influences the 

detrusor smooth muscle tone by releasing a number of signalling molecule
207-209

. 

Thus, it was very interesting to define the molecular mechanisms by which cGMP 

and cAMP enhance the H2S production in human bladder and investigate deeply the 

H2S signalling in urothelium tissue. In particular, it has been demonstrated that CBS 

activity is regulated by post-translational modification through small ubiquitin-like 

modifier protein which is correlated with the enzyme localization in nucleus and its 

leading to a diminished activity
210, 211

. Despite post-translational activation of CBS in 

response to oxidative stress has been demonstrated
212

, the molecular mechanism(s) 

and its pertinence to H2S production are still not fully understood. Therefore, our next 

interest was to investigate whether cGMP and/or cAMP, through the involvement of 

PKG and/or PKA, could trigger CBS phosphorylation and consequently enzyme 

activation.  
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7. MATERIAL AND METHODS II 

 

7.1 Human tissue 

Full thickness bladder dome samples were obtained from patients as previously 

described in Material and Methods I. Tissue collecting and experimental procedures 

were approved by the Local Ethical Committee (School of Medicine and Surgery, 

University of Naples Federico II, via Pansini, 5; 80131, Naples, Italy). All patients 

gave their informed consent. The samples were cleared of blood, adherent tissue and 

serosal layer as well as adventitia. Urothelium and detrusor muscle were carefully 

dissected, separated and immediately frozen. 

 

7.2 RNA extraction and RT-qPCR  

Total RNA from human urothelium was extracted by using the TRIzol
®
 reagent 

(Sigma-Aldrich, Milan, Italy) according to the manufacturer’s instructions and 

quantified by spectrophotometric analysis. RNA extract was retained DNA- and 

protein-free when the ratio 260/280 nm was ≥1.7. mRNA was reverse-transcribed in 

cDNA by using iScript kit (Bio-Rad, Milan, Italy). The RT-qPCR was carried out in 

CFX384 real-time PCR detection system (Bio-Rad, Milan, Italy) with specific 

primers from SYBR
®
 Green (Bio-Rad, Milan, Italy). Samples were amplified 

simultaneously in triplicate in one-assay run with a non-template control blank for 

each primer pair to control for contamination or dimer formation. Ribosomal protein 

S16 was used as housekeeping gene to normalize the Ct values. Gene expression was 

analyzed using the 2
-ΔCt

 formula.  

 

7.3 T24 cell culture and transfection 

Human T24 cell line was cultured in Dulbecco's Modified Eagle's Medium (DMEM) 

with glutamax (Invitrogen, Carlsbad, CA, USA) supplemented with fetal bovine 
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serum 10% (FBS), L-glutamine 2 mM and penicillin-streptomycin 50 U/ml. A stable 

T24 cell line silenced for CBS, CBST24, was cultured in DMEM supplemented 

with FBS 10%, non-essential amino acids 0.1 mM (Euroclone), L-glutamine 2 mM, 

penicillin-streptomycin 50 U/ml and puromycin 0.5 g/ml (Sigma-Aldrich, Milan, 

Italy). Plasmids were transfected into T24 and CBST24 cells (2.5 x 10
6
 cells, 60 

mm-well plate) by using Lipofectamine 2000 (Invitrogen, Life Technology, Monza, 

Italy) according to the manufacturer’s instructions 
213, 214

.  

 

7.4 CBS silencing 

T24 cells were transfected with CBS short hairpin RNA (shRNA, 2 g) expressing 

vector (Santa Cruz Biotechnology, CA, USA). 1 μg/ml of puromycin (Sigma-

Aldrich) for 7 days was used to select transfected cells with shRNA and CBS 

depletion was evaluated by Western blot using anti-CBS antibody (Santa Cruz 

Biotechnology, DBA, Milan, Italy). The cell clone with lowest CBS expression was 

selected and used for further experiments. A short hairpin non-silencing construct 

was used as control. 

 

7.5 CBS site-directed mutagenesis 

The wild type (WT)-CBS cDNA was cloned into a version of the eukaryotic 

expression vector pcDNA4/HisMax C (Invitrogen, Life Technology, Monza, Italy) 

containing the hemagglutinin (HA) epitope. The constructs containing the 

substitution of single Ser with Ala, i.e. TCC/GCC mutation, were obtained by PCR 

site-directed mutagenesis using the QuickChange® Lightning Site-Directed 

Mutagenesis Kit (Agilent Technology, Agilent Technology, Milano, Italy ) and the 

WT-CBS cDNA as template as previously described 
215

. All constructs were verified 

by DNA sequencing.  
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7.6 Immunoprecipitation and Western blot 

For immunoprecipitation assay, T24 cells were starved for 16 hours and incubated 

with 100 µM of 8-Br-cGMP or d-cAMP (Tocris, UK) for 5, 15 or 30 min. Samples 

were analyzed as previously described 216, 217
. The eluted proteins were used in cell 

free kinase assay, phosphorylation assay and Western blot.  

For Western blot aliquots of immunocomplexes and protein samples (30 µg) were 

resolved by using 12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and analyzed as previously described
218, 219

. The membranes then were 

probed with anti-CBS, anti-HA (Santa Cruz Biotechnology), anti-PKA (Cell 

Signaling Technology), anti-PKG (Cell Signaling Technology), anti-CSE (Novus 

Biologicals), anti-GAPDH (Sigma Aldrich) and anti-phospho-(Ser/Thr) (anti-pS/T; 

Cell Signaling Technology). Proteins were visualized with enhanced 

chemiluminescence detection reagent according to the manufacturer's instructions 

(Pierce, Rockford, IL, USA).  

 

7.7 H2S determination: methylene blue assay 

H2S production was evaluated as described in Material and Methods I. Human 

urothelium samples were incubated with 8-Br-cGMP (100 μM; Tocris, UK) or d-

cAMP (100 μM; Tocris, UK) for 30 min. T24 cells were incubated with 8-Br-cGMP 

(100 μM) or d-cAMP (100 μM) for 5, 15 and 30 min. Treatment at 15 min was 

selected as the best time condition and used in all successive experiments in both T24 

or CBST24 cells. The selective inhibitors of PKG (KT5823, 10 µM, Tocris, UK) or 

PKA (KT5720, 10 µM, Tocris, UK) were incubated 20 min prior to challenge with 

vehicle, d-cAMP or 8-Br-cGMP. 

 

7.8 Cell free phosphorylation assay 

CBS-WT and CBS mutants immuno-complexes (HA-CBS WT, HA-CBS S32A, HA-

CBS S227A, HA-CBS S525A) were incubated at 30° C in a kinase buffer pH 7.4, 
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containing 10 mM of MgCl2, 20 mM of Tris-HCl, and 0.05 µM of PKG II (Sigma-

Aldrich, Milan, Italy). Phosphorylation reactions were started by the addition of 50 

µM ATP containing 0.5 µCi [-
32

P] ATP, carried out for 30 min and stopped by the 

addition of 10 µL of Laemmli SDS stop solution. Proteins were then resolved by 12% 

SDS-PAGE. Incorporation of 
32

P was visualized by autoradiography. 

 

7.9 Phosphorylation assay in T24 cells 

T24 cells were starved and then incubated with 10 M of PKG inhibitor (KT5823) or 

PKA inhibitor (KT5720) for 20 min and treated with or without 100 M of 8-Br-

cGMP or d-cAMP for 5, 15 or 30 min respectively. CBS was immunoprecipitated 

from protein extracts. The presence of phosphorylation in CBS protein was evaluated 

by Western blot analysis using anti-phospho-(Ser/Thr) (anti-pS/T,Cell Signaling 

Technology, DBA, Milan, Italy).  

Starved T24 cells were transiently transfected with constructs encoding for HA-CBS 

WT or mutants and treated with or without 100 M of 8-Br-cGMP for 15 min. 

Samples were collected and WT or mutant proteins were specifically precipitated by 

using antibodies against the epitope HA. Immunoprecipitated proteins were separated 

by 12% SDS–PAGE and the presence of phosphorylated CBS was analyzed by 

Western blot. 

 

7.10 Generation of specific anti-pCBS
Ser227

  

Peptide containing amino acids 225-234 (NAS
227

NPLAHYD) of CBS protein with a 

single phosphorylated site, Ser227, has been selected and used to obtain polyclonal 

antibodies, anti-pCBS
Ser227

, in rabbits (PRIMM s.r.l., Milano, Italy). This antibody 

was used for Western blot at 1:400 dilutions.  
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7.11 Statistical analysis 

Data were expressed as mean ± SEM. Statistical analysis was determined by using t 

Student’ test or ANOVA followed by Bonferroni as a post hoc test. Differences were 

considered statistically significant when p value was < 0.05.  
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8. RESULTS II 

8.1 Human tissue: CBS and CSE are expressed in urothelium and 

produce H2S  

Both CBS and CSE were expressed in human urothelium (Figure 17A) as 

demonstrated by Western blot analysis and mRNA levels of these enzymes were 

similar as showed by RT-qPCR (Figure 17B). Human urothelium homogenates 

produce detectable amount of H2S in basal condition (i.e. vehicle), that is 

significantly increased following the incubation with L-cysteine (Figure 17C, p < 

0.01).  
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Figure 17. Immunoblot and RT-qPCR for CBS and CSE and enzymatic activity in human 

urothelium. (A) Both CBS and CSE were expressed in human urothelium as demonstrated by the 

Western blot. (B) CBS and CSE mRNA levels were similar in human urothelium as determined by 

RT-qPCR. Data were calculated as ΔCt and expressed as mean ± SEM of four separate specimens. (C) 

H2S production in human urothelium under basal condition and after incubation with L-cysteine 10 

mM. Urothelium homogenate incubation with vehicle generated detectable amount of H2S, that was 

significantly increased following L-cysteine addition (**p < 0.01). H2S levels were calculated as 

nanomoles per milligram of protein/minute and expressed as mean ± SEM of five different specimens. 
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8.2 8-Br-cGMP but not d-cAMP increases H2S levels in human 

urothelium 

Incubation of human urothelium with 8-Br-cGMP, a stable analogue of cGMP, 

significantly increased H2S production as compared to vehicle (Figure 18, p < 0.05). 

This H2S induction was reverted by the pre-treatment with KT5823, a selective 

inhibitor of PKG (Figure 18, p < 0.05). Conversely, H2S levels were not modified by 

the treatment with d-cAMP, a stable analogue of cAMP. PKA blockade induced by 

the selective PKA inhibitor, KT5720, did not modify H2S levels (Figure 18). 

 

 

 

Figure 18. H2S production following incubation with 8-Br-cGMP or d-cAMP in presence and 

absence of PKG or PKA inhibitor in human urothelium. The incubation of human urothelium with 

8-Br-cGMP significantly increased H2S production compared to vehicle (*p < 0.05). This effect was 

abrogated by the pretreatment with KT5823, a selective PKG inhibitor (°p < 0.05). The stimulation 

with d-cAMP did not affect H2S production either in presence or in absence of KT5720, a selective 

PKA inhibitor. H2S levels were calculated as nanomoles per milligram of protein/minute and 

expressed as mean ± SEM of five different specimens. 
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8.3 T24 cell line: CBS and CSE are expressed in human T24 cells and 

produce H2S  

 

In order to further investigate the role of cyclic nucleotides in the regulation of H2S 

production in human urothelium, we used the human urothelial T24 cell line. 

Interestingly, T24 cells expressed CBS and CSE (Figure 19A) and generated 

detectable amount of H2S in basal condition (Figure 19B). Furthermore, the H2S 

production was significantly increased in presence of L-cysteine when compared to 

vehicle (Figure 19B, p < 0.05).  

 

 

Figure 19. Immunoblot for CBS and CSE and enzymatic activity in human T24 cell line. (A) CBS 

and CSE protein expression in T24 cells and human urothelium tissue. (B) T24 cells generated 

detectable amount of H2S in basal (vehicle) or in stimulated (L-cysteine) conditions (*p < 0.05). Data 

were calculated as nanomoles per milligram of protein/minute and expressed as mean ± SEM of six 

different experiments. 



Results II 

59 
 

8.4 8-Br-cGMP but not d-cAMP increases H2S levels in T24 cells 

As already observed in human urothelium, the incubation of T24 cells with 8-Br-

cGMP caused a significant increase in H2S production as compared to vehicle, 

reaching the highest H2S values at 15 min of treatment (Figure 20, p < 0.01 and p < 

0.05 at 15 and 30 min, respectively). As expected, pre-treatment with PKG inhibitor, 

KT5823, abolished the 8-Br-cGMP-induced H2S production (Figure 20, p < 0.001). 

Interestingly, the incubation of T24 cells with either d-cAMP or KT5720, the PKA 

inhibitor, did not affect H2S production (Figure 20).  

 

 

 

Figure 20. H2S production following incubation with 8-Br-cGMP or d-cAMP in presence and 

absence of PKG or PKA inhibitor in human T24 cells. 8-Br-cGMP incubation caused a significant 

increase in H2S production at 15 or 30 min of treatment (°°p < 0.001 and °p < 0.05 at 15 and 30 min, 

respectively). Incubation with PKG inhibitor, KT5823, prior to 8-Br-cGMP challenge, abrogated the 

H2S production (
###

p < 0.001). d-cAMP incubation for 5, 15 and 30 min in presence or in absence of 

PKA inhibitor, KT5720, did not affect H2S production. Data were calculated as nanomoles per 

milligram of protein/minute and expressed as mean ± SEM of six different experiments.  
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8.5 H2S levels in CBS silenced T24 cells (CBSΔT24) 

CBS depletion from T24 cells was carried out by transfecting shRNA specific for 

CBS. Total cell lysates from puromycin-resistant clones (clones A-F) were analyzed 

by Western blot using anti-CBS antibody. The clone F, characterized by the lowest 

CBS expression, specifically CBST24, was selected for the next experiments 

(Figure 21A). Interestingly, the H2S production observed in CBST24 cells was 

almost abolished when compared to T24 cells (Figure 21B, p < 0.05).  

 

 

Figure 21. Effect of CBS silencing on H2S production in human T24 cells. (A) Generation of 

CBST24 cells. Five puromycin resistant clones were analyzed for CBS expression by Western blot. 

Clone F was selected for the further experiments. (B) The H2S production in CBST24 was markedly 

lower when compared to control T24 cells (*p < 0.05). Data were calculated as nanomoles per 

milligram of protein/minute and expressed as mean ± SEM of four different experiments. 
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8.6 CBS phosphorylation 

To investigate whether CBS could be a substrate of phosphorylation for PKG and/or 

PKA, the enzyme was specifically immunoprecipitated from T24 cells incubated with 

8-Br-cGMP or d-cAMP in presence or absence of KT5823 or KT5720, selective PKG 

or PKA inhibitors, respectively. Incubation with 8-Br-cGMP caused an increase of 

phosphorylated form of CBS (pCBS) at 15 and 30 min of treatment (Figure 22A, p < 

0.001 and p < 0.05, respectively). The maximum effect in CBS phosphorylation was 

observed at 15 min of treatment with 8-Br-cGMP, significantly reverted by the 

inhibition of PKG with KT5823 (Figure 22A, p < 0.001 and p < 0.01 at 15 and 30 

min, respectively). Conversely, neither d-cAMP or KT5720, a PKA inhibitor, 

modified pCBS levels (Figure 22B).  
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Figure 22. CBS phosphorylation mediated by PKG in T24 cells. (A) CBS was immunoprecipitated 

from starved T24 cells treated with or without 8-Br-cGMP in presence or absence of PKG inhibitor. 

CBS phosphorylation was detected by Western blot using anti-pS/T. 8-Br-cGMP treatment caused a 

time-dependent increase of CBS phosphorylation (*p < 0.05, ***p < 0.001 vs vehicle; 
###

 p < 0.001 vs 

5 and 30 min.). PKG inhibitor (KT5823) abolished CBS phosphorylation induced by the 8-Br-cGMP 

(°°p < 0.01 and °°°p < 0.001). (B) CBS was isolated by immunoprecipitation from starved T24 cells 

treated with or without d-cAMP in presence or absence of PKA inhibitor. CBS phosphorylation was 

detected by Western blot using anti-pS/T. The treatment with d-cAMP in presence or in absence of 

PKA inhibitor, KT5720, did not cause any changes in CBS phosphorylation levels. Data were 

calculated as % of CBS phosphorylation and expressed as mean ± SEM of three separate experiments.  
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8.7 PKG and PKA expression in human T24 cells, urothelium, 

detrusor and full thickness bladder 

Previously, in Results I, we demonstrated that incubation of full thickness bladder 

samples with d-cAMP increased H2S production; the finding that c-AMP did not 

modify H2S levels either in human urothelium or in T24 cell line and did not induce 

CBS phosphorylation suggested us to investigate on PKA and PKG expression in 

human T24 cells, urothelium, detrusor and full thickness bladder. Western blot 

analysis clearly showed that PKG is widely expressed in all samples i.e. human full 

thickness bladder, urothelium and detrusor, as well as in T24 cells (Figure 23), while 

PKA is abundant in human detrusor and full thickness bladder and very weakly 

expressed in human urothelium or T24 cells (Figure 23). This finding clearly 

indicated that the lack of effect on H2S production and pCBS levels were due to the 

weak expression of PKA in urothelium as well as T24 cells.  

 

 

Figure 23. Representative Western blot of PKG and PKA in human T24 cells, urothelium, 

detrusor muscle and full thickness bladder. PKG was expressed in all samples. PKA was widely 

expressed in detrusor and full thickness bladder and weakly expressed in T24 cell line and urothelium. 

The Western blot is representative of three separate experiments.  
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8.8 PKG mediates CBS phosphorylation at Ser227 and Ser525 in a 

cell free assay 

To further characterize CBS phosphorylation, we used the GPS 2.1 software (Group-

based Prediction System, version 2.1) to identity the putative PKG phosphorylation 

sites of CBS 
220, 221

. Among the sites predicted by computational analysis, we chose 

those with the highest score e.g. Ser32, Ser227 and Ser525 (Figure 24A). To identify 

which of these predicted sites was subjected to phosphorylation by PKG, three 

constructs encoding for mutated forms of CBS, in which Ser32, Ser227 or Ser525 

were mutated in Ala namely HA-CBS S32A, HA-CBS S227A and HA-CBS S525A, 

were generated by site-directed mutagenesis and then transfected in T24 cells. After 

transfection, HA-CBS WT and mutants were specifically immunoprecipitated and 

subjected to a cell free kinase assay by using catalytically active PKG. A significant 

reduction of labelling with 
32

P of HA-CBS S227A and HA-CBS S525A but not HA-

CBS S32A proteins was observed when compared to HA-CBS WT (Figure 24B, p < 

0.001).  
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Figure 24. PKG mediated CBS phosphorylation at Ser227 and Ser525. (A) Schematic 

representation of CBS protein domains and predicted PKG phosphorylation sites by GPS 2.1 software. 

(B) HA-CBS WT or HA-CBS mutants proteins (HA-CBS S32A, HA-CBS S227A, HA-CBS S525A) 

were subjected to a cell free kinase assay, then separated by SDS–PAGE and analyzed for 

incorporation of 
32

P by autoradiography. A significant reduction of labeling with 
32

P in HA-CBS 

S227A and HA-CBS S525A proteins was observed when compared to HA-CBS WT (***p < 0.001). 

Data were calculated as % of CBS phosphorylation and expressed as mean ± SEM of three separate 

experiments.  
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8.9 PKG mediates CBS phosphorylation at Ser227 and Ser525 in T24 

cells 

To better define the role of Ser227 and Ser525 in PKG-mediated CBS 

phosphorylation, a kinase assay was performed in T24 cells. T24 cells were 

transiently transfected with HA-CBS WT and HA-CBS mutants and treated with or 

without 8-Br-cGMP. WT and mutants proteins were specifically immunoprecipitated 

and analyzed by Western blot using anti-pS/T. The activation of PKG induced by 8-

Br-cGMP treatment significantly increased CBS phosphorylation of ≈ 6 fold in T24 

cells transfected with HA-CBS WT construct as compared with the matched control 

(Figure 25, p < 0.001). Similarly, phosphorylation of HA-CBS S32A mutant was 

increased of 5 fold compared with the control (Figure 25, p < 0.001). Interestingly, 

the PKG-induced phosphorylation of HA-CBS S227A and HA-CBS S525A mutants 

was significantly reduced when compared to HA-CBS WT (Figure 25, p < 0.01).The 

phosphorylation levels of HA-CBS S227A and HA-CBS S525A mutants were still 

increased when compared to their matched control (Figure 25, p < 0.001). These 

overall results indicate that Ser227 and Ser525 are mainly involved in PKG-mediated 

CBS phosphorylation.  
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Figure 25. PKG mediated phosphorylation at Ser227 and Ser525 in T24 cell line. Proteins from 

transfected T24 cells with HA-CBS WT or HA-CBS mutants (HA-CBS S32A, HA-CBS S227A HA-

CBS S525A), treated with or without 8-Br-cGMP were specifically immunoprecipitated, then 

separated by SDS–PAGE and immunoblotted with anti-pS/T and anti-HA. The activation of PKG by 

8-Br-cGMP led to a significant increase of pCBS in cells transfected with HA-CBS WT and HA-CBS 

S32A mutant (***p < 0.001 and °°°p < 0.001). Levels of pCBS in cells tranfected with HA-CBS 

S227A and HA CBS-S525A were increased as compared to control (
###

p < 0.001 and 
§§§ 

p < 0.001). 

Levels of pCBS in HA-CBS S227A and HA-CBS S525A were significantly reduced when compared 

with HA-CBS WT (
çç

p < 0.01). Data were expressed as mean ± SEM of three different experiments. 
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8.10 The mutation of Ser227 impairs PKG-mediated increase of H2S 

production 

CBST24 cells were transiently transfected with constructs HA-CBS WT, HA-CBS 

S227A or HA-CBS S525A mutants and treated with 8-Br-cGMP or vehicle. Ectopic 

expression of HA-CBS WT or HA-CBS mutants was evaluated by Western blot using 

anti-HA (Figure 26A). The same samples were analyzed for H2S levels. HA-CBS 

WT generated detectable amount of H2S. As expected, treatment with 8-Br-cGMP 

caused a significant increase in H2S production (Figure 26B, p < 0.05). Interestingly, 

mutation of Ser227 led a significant reduction of basal H2S (p < 0.05) and 8-Br-

cGMP-mediated increase of H2S production (p < 0.001) as compared to WT (Figure 

26B). In contrast, mutation of Ser525 did not affect H2S production either in basal 

condition or following 8-Br-cGMP treatment.  
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Figure 26. Ser 227 mutation impairs PKG-induced H2S production in T24 cells. (A) Western blot 

analysis of proteins from CBST24 cells transiently transfected HA-CBS WT and HA-CBS mutants 

(HA-CBS S227A, HA-CBS S525A), treated with or without 8-Br-cGMP for 15 min. (B) Production of 

H2S from the same samples. Mutation of Ser 227 significantly reduced H2S production in basal 

condition and following incubation with 8-Br-cGMP compared with the paired WT (
#
p < 0.05 and 

###
p 

< 0.001). H2S levels were not affected by the mutation of Ser 525. Indeed, H2S levels were similar to 

those obtained from HA-CBS WT either in basal condition or upon cyclic nucleotide stimulation. 8-

Br-cGMP significantly increased H2S production in HA-CBS WT and in HA-CBS S525A compared to 

vehicle (*p < 0.05, 
§§§

p < 0.001). Data were calculated as nanomoles per milligram of protein/minute 

and expressed as mean ± SEM of three different experiments. 
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8.11 Generation and validation of a novel antibody anti-pCBS
Ser227 

 

A peptide of 10 amino acids corresponding to residues 225 through 234 of CBS 

protein including phosphorylated Ser227 was synthesized and used to obtain 

polyclonal antibodies in rabbit. Specificity of the antibody was tested by Western blot 

on lysates from human urothelium and T24 cells treated with or without 8-Br-cGMP. 

The phosphopeptide-specific CBS antibody (anti-pCBS
Ser227

) efficiently recognized 

pCBS
Ser227

 protein in human urothelium and in T24 cells treated with 8-Br-cGMP 

(Figures 27A-B). No difference in CBS expression was observed in the same 

samples incubated with the anti-CBS (Figures 27A-B) in presence or absence of 

cGMP challenge. No other proteins were detected. 

Specificity of the antibody anti-pCBS
Ser227

 was further evaluated in T24 cells 

transiently transfected with constructs HA-CBS WT or HA-CBS S227A. As showed 

in Figure 27C, the Ser227Ala mutant CBS protein was not recognized by the anti-

pCBS
Ser227

 demonstrating that this novel antibody is characterized by specificity at 

phosphorylated site Ser227.  
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Figure 27. The pCBS
Ser227

 antibody selectively recognizes the phosphorylated CBS in human 

urothelium and T24 cells. (A) Expression of CBS phosphorylated form in human urothelium tissue 

by using pCBS
Ser227

 antibody. (B) T24 cells treated with or without 8-Br-cGMP for 15 min. Protein 

extracts were analyzed by immunoblotting using anti-pCBS
Ser227

 and anti-CBS antibodies. The blot is 

representative of three separate experiments. (C) Proteins from T24 cells transiently transfected with 

plasmids expressing HA-CBS WT or HA-CBS S227A and treated with 8-Br-cGMP were specifically 

immunoprecipitated with anti-HA epitope. Immunoprecipitates were separated by SDS–PAGE and 

immunoblotted for anti-pCBS
Ser227

. Note the absence of signal in cells transfected with HA-CBS 

S227A mutant construct. Data were expressed as mean ± SEM of three separate experiments.
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9. DISCUSSION 

Recently, PDE5 inhibitors, widely used as first line treatment for erectile dysfunction, 

have been indicated also in the treatment of LUTS. Although their mechanism/s of 

action is poorly understood, their beneficial effects may be due to smooth muscle 

relaxation of prostatic gland, urethra, and bladder as well as modulation of sensory 

nerves and pelvic vasodilatation
222

. Recently, a link between H2S and PDEs has been 

reported in the current literature. Indeed, it has been shown that tadalafil, a PDE5-I, is 

cardioprotective in a model of myocardial ischemia reperfusion
223

 through the H2S 

signalling and that H2S acts itself as an endogenous inhibitor of PDE activity
175

. In 

this study, we have demonstrated that H2S pathway plays a role in bladder 

homeostasis. It was already indicated in literature that H2S has either a contracting 

effect
224

 or a relaxing effect
203

 on the bladders of different animal species. The 

novelties of this project are the findings that i) the L-cysteine/H2S pathway is present 

in the human bladder dome and contribute to bladder relaxation through endogenous 

production of H2S and ii) sildenafil relaxes human bladder strips and, at similar 

doses, causes a concentration and time-dependent increase in H2S production.  

Oger et al.
107

 demonstrated that sildenafil relaxes human bladder dome strips in a 

partially nitric oxide independent manner. Here, we have shown that sildenafil-

induced relaxation involves also H2S and its effect is significantly reduced by CBS 

and CSE inhibition. Furthermore, given that sildenafil determines the elevation of 

cGMP levels, we evaluated whether a stable analogue of cGMP could trigger similar 

effects observed with sildenafil. We reported that the increase in H2S production was 

induced by both the stable analogue of cGMP and cAMP. These data are consistent 

with previous studies showing that inhibitors of cAMP-dependent PDEs relax human 

detrusor strips
79

. A valid explanation of this finding is that sildenafil inhibits also 

PDE4, even if with ≈ 375 times lower affinity than PDE5
225

. Thus, we can 

hypothesize that the stimulation of the L-cysteine/H2S pathway is a common effect 

among all commercially available PDE5-Is. It is also well established that cGMP and 

cAMP activate PKG or PKA that in turn phosphorylates downstream proteins thereby 
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triggering signal transduction. On the basis of these results and available evidence, 

we have hypothesized that the increase in H2S production triggered by 8-Br-cGMP or 

d-cAMP involves CBS phosphorylation leading to an increased catalytic activity. In 

order to address this issue, we focused our attention on urothelium rather than on the 

whole bladder (urotheloum plus detrusor) for two different reasons: i) the important 

role played by urothelium in bladder pathophysiology
208

 and ii) the availability of a 

well characterized human urothelial T24 cell line. As first step, we investigated the 

expression of CBS and CSE in human urothelium and T24 cell line and their 

enzymatic activity. We have found that both enzymes are expressed and are 

catalytically active. Furthermore, the treatment with 8-Br-cGMP but not d-cAMP 

causes a significant increase in H2S production in both human urothelium and T24 

cells, and this effect is significantly reverted by KT5823, a selective inhibitor of 

PKG. These findings are not consistent with the previous one, given that we showed 

both cyclic nucleotides caused an increase in H2S production in whole human 

bladder. In order to clarify this issue, we hypothesized a different 

distribution/expression of PKA and PKG in human bladder. Indeed, Western blot 

analysis reveals that PKG is strongly expressed in human urothelium, detrusor muscle 

and whole bladder as well as T24 cells, while PKA is widely expressed in detrusor 

muscle, whole bladder and weakly present in urothelium and T24 cells. Confirmed 

that human urothelium and T24 cell line display similar features, we stimulated T24 

cells with 8-Br-cGMP and investigated CBS phosphorylation. Incubation of T24 cells 

with 8-Br-cGMP causes a time-dependent increase in CBS phosphorylation, reverted 

by using PKG selective inhibitor (KT5823) and by silencing T24 cells for CBS. 

Furthermore, as we expected, d-cAMP does not cause any increase in CBS 

phosphorylation in agreement with the weakly expression of PKA in T24 cells. Then, 

it was very interesting to identify the main CBS phosphorylation site of PKG. 

Through a computational approach, we identified Ser32, Ser227, and Ser525 as 

possible site of phosphorylation. Moreover through a phosphorylation assay on HA-

CBS WT and HA-CBS mutants (HA-CBS S32A, HA-CBS S227A, and HA-CBS 

S525A), we have found that the mutation of Ser227 and Ser525 but not Ser32 causes 
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a drastic reduction of CBS phosphorylation in T24 cells. Furthermore, HA-CBS 

S227A and HA-CBS S525A mutants display a significant reduced level of 

phoshorylation when treated with 8-Br-cGMP. Considering all together these results, 

it is clear that among predicted PKG-phosphorylation sites, Ser227 and Ser525 are 

experimentally validated as sites of phosphorylation by PKG.  

To assess the contribution of each phosphorylation sites on the enzymatic activity and 

on H2S production, we transfected CBST24 cells with HA-CBS S525A, HA-CBS 

S227A mutants or HA-CBS WT. Treatment of cells with 8-Br-cGMP does not induce 

any significant changes in H2S production in S227A mutant, suggesting that this site 

is responsible of CBS activation and that it can be enhanced selectively in a 

cGMP/PKG-dependent manner. Then, to confirm and validate our data we have 

generated a specific antibody, anti-pCBSSer227. It recognizes the phosphorylated 

CBS in both urothelium and T24 cell line, treated with 8-Br-cGMP. The specificity of 

our antibody is also confirmed by the finding that Ser227Ala mutant CBS protein is 

not recognized by the anti-pCBS
Ser227

. Looking at Western blot we observed an 

amount of phosphorylated CBS also in basal condition and this finding may suggest 

that the enzyme is basally activate and it could be enhanced by an increase of cGMP 

level. In conclusion, it is well known that urothelium influences the contractile state 

of detrusor smooth muscle
 
and contributes to bladder function and homeostasis by 

releasing several agents that modulate muscle contractility. Since cGMP/PKG 

dependent CBS phosphorylation occurs in human urothelium regulating H2S 

production, we suggest that CBS-derived H2S contributes to bladder homeostasis by 

modulating detrusor muscle contractility. Since sildenafil effect involves the H2S 

pathway, it is feasible that this mechanism could contribute to explain the efficacy of 

PDE-5 inhibitors in LUTS therapy. Interestingly, even though Ser525 is also 

phosphorylated in a PKG-dependent manner, mutation at this residue does not affect 

H2S production. Ser525 lies within a non-consensus CBS domain that is described as 

a regulatory region target of the allosteric modulator SAM. Thus, it is reasonable to 

postulate that phosphorylation of Ser525 may be implicated in the modulation of 

additional features of CBS protein not as yet determined. 
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10. H2S RELEASED BY ZOFENOPRIL PROMOTES 

CARDIOPROTECTION THROUGH NRF2 SIGNALLING 

 

On March 2014, as a visiting Ph.D. student I joined for one year the research group of 

Dr. David J. Lefer, Director of the Cardiovascular Center of Excellence at Louisiana 

State University Health Sciences Center, New Orleans, USA. My project focused on 

investigating the mechanisms of how ACE inhibitor-mediated cardioprotection is 

regulated by hydrogen sulfide (H2S) and nitric oxide (NO) signalling.  

 

10.1 INTRODUCTION 

 

Recently, H2S has been recognized as a physiological signalling molecule with 

cytoprotective effects in cardiovascular diseases, including myocardial ischemia and 

heart failure. H2S is produced in mammalian tissue by three enzymes: cystathionine 

γ-lyase (CSE), cystationine β-synthase (CBS) and 3-mercaptopopyruvate 

sulfurtransferase (3-MST)
162, 226

. Previous studies have been reported on the 

involvement of reactive oxygen species (ROS) as a main cause of cardiomyocyte 

injury and dealth during myocardial ischemia/reperfusion (MI/R)
227

. It has been 

demonstrated that acute injection of H2S, either prior to ischemia or at reperfusion, 

markedly ameliorates in vivo MI/R injury. Similarly, cardiac overexpression of CSE 

protects against acute MI/R injury by attenuating oxidative stress, inhibiting 

apoptosis and reducing inflammation
228, 229

. Recently, it has been demonstrated that 

H2S exerts antioxidant actions in myocardium via nuclear factor (erythroid-derived 

2)-like 2 (Nrf2) signalling. Nrf2 is a member of NF-E2 family of nuclear basic 

leucine zipper transcription factors, and regulates the gene expression of a number of 

enzymes that detoxify pro-oxidative stressors
227

. In addition, it has been reported that 

exogenous H2S improves survival after cardiac arrest and cardiopulmonary 

resuscitation in an endothelial nitric oxide synthase (eNOS)-dependent manner
180

. 
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Another recent study revealed that H2S mediates cardioprotection against MI/R injury 

by enhancing eNOS activity and increasing myocardial NO bioavailability
230

.  

Angiotensin converting enzyme inhibitors (ACEIs), initially approved only for the 

treatment of hypertension, are actually recommended also for the management of 

myocardial ischemia and left ventricular dysfunction; however, their mechanism(s) of 

cardioprotection remain poorly understood. ACEIs can be divided in three groups 

based on their chemical molecular structure: sulfhydrylate (i.e. zofenopril), 

dycarboxilate (i.e. ramipril) and phosphonate (i.e. fosinopril) compounds. Among all 

currently available data regarding the anti-ischemic effects of ACEIs, some have 

shown efficacy for all three group of compounds tested
231

. However, some have 

failed to observe any anti-ischemic actions
232

 and others have found efficacy only for 

sulfhydryl containing agents
233

. Because of these opposing findings, several 

hypotheses concerning the protective mechanism(s) of action of ACEIs have been 

proposed. In isolated heart models the anti-ischemic actions of ACEIs have been 

appointed to inhibition of cardiac angiotensin II formation
234

, increase of NO 

bioavailability induced by the inhibition of the cardiac bradykinin breakdown
235

, 

oxygen radical scavenging
236

 or altered prostaglandin production
237

. Even though 

ACEIs have been shown to reduce cardiovascular morbidity and mortality in patients 

affected with left ventricular hypertrophy, and post-myocardial infarction, their 

cardioprotection may not be entirely dependent on inhibition of angiotensin II 

production.  

Zofenopril is a sulphydryl-ACE inhibitor and a prodrug of the active compound, 

zofenoprilat. Both zofenopril and its metabolite are characterized by high 

lipophilicity, long-lasting tissue penetration, selective cardiac ACE inhibition and 

antioxidant activities resulting in robust cardioprotection
238, 239

; furthermore, they are 

effective even using only a single daily oral administration
240

. Several studies have 

investigated the effects of zofenopril in experimental models of MI/R injury. 

Zofenopril has been shown to improve cardiac contractile force, reduce lactic 

dehydrogenase (LDH) release during reperfusion and the infarct size in isolated rat 

hearts subjected to global MI/R injury
241

. It has been shown that zofenopril stimulates 



H2S released by zofenopril promotes cardioprotection through Nrf2 signalling 

77 
 

active calcium uptake through sarcoplasmatic reticulum cycling, thus enhances 

calcium handling in the cardiomyocytes, which could account for improvements in 

myocardial contractility following MI/R
242

. Moreover, the cardioprotection afforded 

by zofenopril could also be a result of the preservation of protein thiols at the end of 

ischemia due to its antioxidant properties
243

. It has become increasingly clear that 

zofenopril exerts a number of beneficial effects beyond ACE inhibition but the 

precise mechanisms remain poorly understood. Recently, experimental evidence 

suggest that zofenopril improves peripheral vascular function by potentiating H2S 

signalling and independently by ACE inhibition
244

. Furthermore, it also has been 

demonstrated that zofenoprilat, the active metabolite of zofenopril, is an H2S donor 

244
. Based on the biological effects of H2S, it can be hypothesized that the antioxidant, 

anti-inflammatory, endothelial and cardioprotective effects of zofenopril may be 

mediated through H2S and NO dependent signalling. In the present study, we 

investigated in primis the effect of a single administration of zofenopril on 

myocardial and circulating H2S bioavailability and then on NO levels in the same 

territories; we also determined the effects of zofenopril treatment on the extent of 

cardiac injury in a murine model of MI/R. Furthermore, we also investigated the 

effects of zofenopril therapy on oxidative stress and associated Nrf2 signalling.  
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10.2 MATERIAL AND METHODS 

 

10.2.1 Animals 

Male C57BL/6J mice were purchased from the Jackson Laboratory and were at 10-14 

weeks of age at the time of experiments. All the experimental protocols were 

approved by the Institute for Animal Care and Use Committee at LSUHSC and 

conformed to the Guide for the Care and use of Laboratory Animals. Mice were 

treated per oral gavage with vehicle (carboxymethylcellulose 0.02% m/v; Santa 

Cruz), or zofenopril calcium {[(1(S), 4(S)]-1(3-mercapto-2 methyl-1-oxopropyl) 4-

phenyl-thio-L-proline-S-benzoylester, 10 mg/kg; Menarini Ricerche S.p.A, Firenze, 

Italy} for 1, 8 and 24 hours. Mice were subjected to the surgical protocol for in vivo 

MI/R or sacrificed to collect heart tissue and plasma to perform molecular studies. 

 

10.2.2 Measurement of H2S 

Free H2S levels were measured in heart tissue and plasma obtained from mice treated 

with vehicle or zofenopril by gas chromatography coupled with sulfur 

chemiluminescence according to previously described methods
229

.  

 

10.2.3 Measurement of NO metabolites 

Nitrite levels in plasma and heart tissue obtained from mice treated with vehicle or 

zofenopril were quantified using HPLC methods as described previously
245

.  

 

10.2.4 RT-qPCR 

Total RNA was extracted from myocardial tissue and reverse transcribed to cDNA 

using synthesis kits from Bio-Rad. Sequence Detection System (Life Technologies) 
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was used to monitor the increase of fluorescence following PCR. PCR amplification 

was carried out using TaqMan PCR Master Mix (Life Technologies). RT-qPCR was 

used to evaluate the gene expression of H2S producing enzymes CBS, CSE and 3-

MST. 

 

10.2.5 Western blot 

 

Total extracts were prepared using myocardial tissue obtained from mice treated with 

or without zofenopril. Proteins samples were separated on Tris-HCl gel (4-20%, 

Biorad) and transferred to nitrocellulose membranes 
246

. The membranes were probed 

with the following primary antibodies at 4°C overnight: CBS (Santa Cruz), CSE 

(Abnova), 3-MST (Novus), eNOS (BD Biosciences), p-eNOS
1177

 (Abcam), p-

eNOS
495

 (Cell Signaling), GPX-1 (Santa Cruz), Trx-1 (Santa Cruz), Trx-2 (Santa 

Cruz), Nrf2 (Santa Cruz), Keap1 (Santa Cruz), and GAPDH (Santa Cruz). 

Immunoblots were then incubated with the appropriate fluorescence conjugate 

secondary antibodies and Odissey Infrared Imaging System (PCSH898) was used for 

protein visualization.  

 

10.2.6 Myocardial infarction protocol 

 

The surgical protocol for in vivo MI/R was similar to methods described 

previously
227, 245

. Male C57BL/6J mice at 10-14 weeks of age were pre-treated with 

or without zofenopril (10 mg/kg, o.g.). At 8 hours of treatment mice were subjected 

to 45 minutes of MI by occluding the left coronary artery followed by 24 hours of 

reperfusion.  
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10.2.7 Measurement of circulating cardiac troponin-I levels 

At 4 hours of reperfusion, plasma samples were collected and used to measure 

circulating troponin-I levels as an additional index of cardiac injury by using a 

mouse-specific ELISA kit (Life Diagnostics). 

 

10.2.8 Infarct size assessment 

 

After 24 hours of reperfusion, mice hearts were excised and sliced in five sections. 

All the sections were incubated in 2, 3, 5 triphenyltetrazolium chloride (TTC) buffer 

for 3 minutes at 37° C. Myocardial area at risk (AAR) per left ventricle (LV), and 

myocardial infarct size (INF) per area at risk were determined by using Image J 

software.  

 

10.2.9 MDA and AOPP measurement  

 

Biomarkers of oxidative stress in heart tissue and plasma from mice treated with or 

without zofenopril were determined by measuring malondialdehyde (MDA) and 

advanced oxidation protein products (AOPP) levels according to methods described 

previously
247

 
248

.  

 

10.2.10 Statistical analysis 

 

Data were expressed as mean ± SEM. Statistical analysis was determined by using 

Student’s unpaired, two-tailed t-test or ANOVA followed by Dunnett as a post hoc 

test. Differences were considered statistically significant when p value was < 0.05.  
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10.3 RESULTS 

 

10.3.1 A single administration of zofenopril increases H2S 

bioavailability in myocardial tissue and plasma 

 

To determine whether zofenopril has the ability to enhance H2S production, male 

C57BL/6J mice were treated per oral gavage with a single administration of vehicle 

or zofenopril for 1, 8 and 24 hours. Mice were then sacrificed and heart tissues and 

plasma were collected to evaluate H2S levels. As can be seen in Figures 28A and 

28B, zofenopril treatment resulted in a significant increase in H2S bioavailability in 

both heart tissue (p < 0.01) and plasma (p < 0.05) at 8 hours of treatment when 

compared to vehicle. Thus, we considered 8 hours of zofenopril treatment as optimal 

for all subsequent experiments.  

 

 

 

Figure 28. H2S bioavailability induced by a single dose of zofenopril. Effect of zofenopril treatment 

(10 mg/kg, o.g.) at 1, 8, 24 hours on H2S levels in mice heart tissue (A) and plasma (B). 8 hours of 

zofenopril treatment induced a significant increase in H2S levels in both myocardial tissue and plasma 

when compared to vehicle (p < 0.01 and p < 0.05, respectively). Number inside the bars denotes the 

number of animals used per each group.  
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10.3.2 A single dose of zofenopril enhances myocardial and 

circulating NO bioavailability 

Given that zofenopril significantly increased tissue and circulating H2S levels after 8 

hours of treatment, it was of interest to determine the effect of drug treatment on 

myocardial and plasma NO availability. Therefore, heart tissues and plasma samples 

obtained from mice treated with or without zofenopril at 8 hours were analyzed for 

NO metabolites (Figure 29). A significant increase in nitrite levels was observed in 

heart tissues (Figure 29A, p < 0.01) and in plasma (Figure 29B, p < 0.05) obtained 

from mice treated with zofenopril when compared to vehicle.  

 

 

 

Figure 29. Nitrite bioavailability induced by a single zofenopril administration.. Zofenopril acute 

therapy (10 mg/kg, o.g.; 8 hours) induced a significant raise of nitrite levels in both mice heart tissue 

and plasma when compared to vehicle (A, B; p < 0.01, p < 0.05 respectively). Number inside the bar 

denotes the number of animals used per group. 

 

10.3.3 A single dose of zofenopril modifies H2S producing enzymes 3-

MST gene expression 

 

Since tissue and circulating H2S were increased after 8 hours of treatment with 

zofenopril, it was interesting to evaluate the gene expression of H2S producing 

enzymes CBS, CSE and 3-MST (Figures 30A-C). Zofenopril therapy did not cause 

any change in mRNA levels of CBS (Figure 30A) and CSE (Figure 30B), while it 
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induced a significant increase in mRNA expression of cardiac H2S producing enzyme 

3-MST (Figure 30C) as compared to vehicle (p < 0.05).  

 

 

 

Figure 30. Effect of a single administration of zofenopril on myocardial H2S producing enzymes 

gene expression. Zofenopril treatment (10 mg/kg, o.g.; 8 hours) did not affect CBS (A), CSE (B) gene 

expression, while it induced a significant increase of 3-MST mRNA levels when compared to vehicle 

(C, p < 0.05). Number in the circle inside the bar denotes the number of animals used per each group. 

 

10.3.4 A single administration of zofenopril does not alter H2S 

producing enzymes CBS, CSE and 3-MST protein levels 

 

Acute administration of zofenopril at 8 hours did not result in any change in protein 

expression of cardiac H2S producing enzyme CBS, CSE, and 3-MST as compared to 

vehicle (Figures 31A-D). This finding, together with mRNA levels of CBS and CSE, 

suggests that the H2S increase observed in myocardial tissue and plasma is not 

dependent on changes in the expression of endogenous H2S producing enzymes but 

may be a result of direct H2S generation from zofenopril
244

.  
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Figure 31. Effect of a single administration of zofenopril on myocardial H2S producing enzymes 

protein expression. Immunoblot for CBS, CSE and 3-MST (A) with relative optical densitometry (B-

C). Zofenopril treatment (10 mg/kg, o.g.; 8 hours) did not cause any change in CBS (A), CSE (B) and 

3-MST (C) protein expression. Number in the circle inside the bar denotes the number of animals used 

per group. 

 

 

10.3.5 Zofenopril administration induces eNOS activation through 

Ser1177 phosphorylation  

 

Given that we observed an increase of NO derived metabolites in heart tissue and 

plasma after zofenopril treatment, we then evaluated the effect of this drug on 

myocardial eNOS, p-eNOS
1177

 and p-eNOS
495

 protein expression (Figures 32A-D). 

Acute administration of zofenopril at 8 hours induced an increase in myocardial 

eNOS phosphorylation at Ser
1177

 site (Ser
1177

 is an activation site of eNOS; Figure 

32B; p = 0.053) in absence of any difference in eNOS expression when compared to 

vehicle (Figure 32D). Furthermore zofenopril treatment did not cause any change in 

eNOS phosphorylation at the inhibitory site, Thr
495

 (Figure 32C).  
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Figure 32. Effect of zofenopril treatment on myocardial p-eNOS
1177

, p-eNOS
495

 and eNOS 

expression. (A) Immunoblot for p-eNOS
1177

, p-eNOS
495

 and eNOS with relative optical densitometry 

(B-D). Zofenopril therapy (10 mg/kg, o.g.; 8 hours) induced a marked raise in myocardial eNOS 

phophorylation at Ser1177 (B, p = 0.053), while it did not have any effect on p-eNOS
495

 (C) and eNOS 

(D) expression. Number in the circle inside the bar denotes the number of animals used per group. 

 

10.3.6 Zofenopril therapy protects against MI/R injury 

 

An induction of H2S bioavailability in heart tissue and plasma after 8 hours of 

zofenopril treatment let us to investigate on the effects of zofenopril on the extent of 

MI/R injury (Figures 33A-C). Mice were pretreated with or without zofenopril 8 

hours before 45 min of ischemia and 24 hours of reperfusion. Pretreatment of 8 hours 

with zofenopril resulted in a significant (p < 0.05) reduction in infarct size per area at 

risk (INF/AAR) measured at 24 hours of reperfusion when compared to vehicle 

(Figure 33B). Furthermore, the area at risk per left ventricle (AAR/LV) was similar 

in both groups. Moreover, circulating troponin-I levels (Figure 33C) at 4 hours of 

reperfusion were markedly reduced by pretreatment with zofenopril, as compared to 

vehicle (p < 0.01). These findings clearly indicate that zofenopril exerts 

cardioprotective effect during MI/R injury. 
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Figure 33. Cardioprotection induced by zofenopril therapy in a murine model of MI/R. (A) 

Representative section of infarcted myocardium following vehicle and zofenopril pretreatment. (B) 

Zofenopril administration (10 mg/kg, o.g.) 8 hours before MI/R reduced significantly the infarct size 

per area at risk (INF/AAR) as compared to vehicle (p < 0.05). Furthermore, circulating troponin-I 

levels at 4 hrs of reperfusion (C) were significantly diminished by zofenopril treatment (p < 0.01). 

Number in the circle inside the bar denotes the number of animals used per group 

 

10.3.7 Zofenopril induces up-regulation of total transcription factor 

Nrf2  

 

It has been demonstrated that either H2S exerts antioxidant properties through the 

activation of Nrf2 signaling and zofenopril acts itself as antioxidant. Thus, it was of 

our interest to investigate whether zofenopril treatment could modulate the expression 

of Nrf2 transcription factor and Keap1 levels, a cytosolic repressor of Nrf2 activity 

(Figures 34A-C). We found that zofenopril therapy induced a significant up-

regulation of Nrf2 as compared to vehicle (Figure 34B, p < 0.05). Furthermore, 

zofenopril treatment did not affect Keap1 levels (Figure 34C).  
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Figure 34. Induction of transcription factor Nrf2 expression induced by zofenopril treatment. 
Immunoblot for Nrf2 and Keap1 in total protein extract (A) with relative optical densitometry (B, C). 

Zofenopril therapy (10 mg/kg, o.g.; 8 hours) induced a significant upregulation of myocardial 

transcription factor Nrf2 as compared to vehicle (B, p < 0.05). Zofenopril therapy did not have any 

effect on Keap1 protein expression (C). Number in the circle inside the bar denotes the number of 

animals used per group. 

 

10.3.8 Zofenopril induces up-regulation of antioxidant proteins and 

decreases oxidative stress 

 

It was next interest to evaluate the expression of Nrf2 related downstream antioxidant 

proteins (Figures 35A-D), such as glutathione peroxidase-1 (GPX-1), thioredoxin 1 

(Trx-1) and thioredoxin 2 (Trx-2). Zofenopril therapy induced a significant up-

regulation of GPX-1 and Trx-1 as compared to vehicle (Figures 35B and 35C, p < 

0.05), while it did not alter Trx-2 expression (Figure 35D). Then, we also evaluated 

the effect of zofenopril on the biomarkers of oxidative stress in myocardial tissue and 

plasma (Figures 35E and 35F), such as malondialdehyde (MDA) and advanced 
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oxidative protein products (AOPP). We observed a significant reduction in MDA 

levels in heart tissue (Figure 35E; p < 0.05) and AOPP in plasma (Figure 35F; p < 

0.05) induced by zofenopril treatment as compared with vehicle.  

 

 

 

 

 

Figure 35. Upregulation of antioxidant proteins and reduction of biomarkers of oxidative stress 

induced by zofenopril treatment. Immunoblot for GPX-1, Trx-1 and Trx-2 (A) with relative optical 

densitometry (B-D); tissue levels of malodialdehyde (MDA) and circulating advanced oxidation 

protein product (AOPP) (E, F, respectively). Zofenopril therapy (10 mg/kg, o.g.; 8 hours) induced a 

significant upregulation of myocardial antioxidant proteins, such as GPX-1 and Trx-1 (B, C; p < 0.05). 

Zofenopril therapy did not have any effect on Trx-2 protein expression (D). A single dose of zofenopril 

caused a significant reduction of MDA and AOPP levels as compared to vehicle (E, F, p < 0.05 

respectively). Number in the circle inside the bar denotes the number of animals used per group 
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10.4 SUPPLEMENTAL RESULTS 

 

10.4.1 Zofenopril effect on H2S and NO bioavailability is dose-

dependent 

 

We investigated the effect of 8 hours of treatment with a single different dose of 

zofenopril (6 mg/kg, o.g.; 8 hours) on H2S and NO bioavailability (Figures 36A-D). 

As can be seen in Figure 36A, zofenopril at dose of 6 mg/kg did not induce any 

change in H2S levels in myocardium tissue, but it increased significantly plasma H2S 

as compared to vehicle (Figure 36B, p < 0.05). In addition, zofenopril administration 

augmented NO metabolites levels in heart tissue (Figure 36C, p < 0.01), but not in 

plasma (Figure 36D). These results clearly demonstrate that zofenopril effect on 

these signalling molecules depends on dosage.  
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Figure 36. Effect of a different dose of zofenopril on tissue and circulating H2S and NO 

bioavailability. A single administration of zofenopril (6 mg/kg, o.g.; 8 hours) did not modify H2S 

levels in myocardium (A), while it induced a significant increase in plasma H2S as compared to vehicle 

(B, p < 0.05). Zofenopril therapy showed an opposite effect on NO bioavailability in heart tissue and 

plasma. Acute zofenopril treatment induced a significant raise in myocardial nitrite as compared to 

vehicle (C, p < 0.01). This effect was not observed in plasma (D). Number in the circle inside the bar 

denotes the number of animals used per group. 

 

10.4.2 A single administration of ramipril, a dycarboxilate ACE 

inhibitor, does not have any effect on H2S and NO bioavailability 

 

It was also our interest to evaluate the effects of ramipril, a non sulfhydryl ACE 

inhibitor, on H2S levels (Figures 37A-B). Ramipril (3 mg/kg, o.g.) was administered 

8 hours before mice sacrifice. We found that ramipril therapy did not induce any 

increase in H2S bioavailability in heart and plasma compared to vehicle (Figures 37A 

and 37B). We also analyzed the effect of ramipril administration on NO levels. 
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Ramipril treatment did not cause any change in nitrite levels in both myocardial 

tissue and plasma (Figures 37C and 37D).  

 

 

 

Figure 37. Ramipril effect on tissue and circulating H2S and NO levels. A single administration of 

ramipril (3mg/kg, o.g.; 8 hours) did not modify H2S availability in heart tissue and plasma (A, B 

respectively) and NO metabolites levels in the same vascular territories (C, D respectively). Number in 

the circle inside the bar denotes the number of animals used per group. 
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10.5 DISCUSSION 

 

Zofenopril is a highly lipophilic pro-drug, converted by esterase into the active 

metabolite zofenoprilat, which is characterized by a free thiol group. A number of 

clinical studies have demonstrated that the sulfhydryl ACE inhibitor zofenopril exerts 

additional effects beyond the ACE inhibition
249, 250

. Indeed, recently it has been 

reported that zofenopril potentiates the H2S signalling through H2S release and/or via 

H2S producing enzymes induction
244

. In this study, we have investigated the 

bioavailability of myocardial and circulating H2S and NO in mice after a single 

administration of zofenopril. Furthermore, we also evaluated the effect of zofenopril 

therapy in a murine model of MI/R injury. Our findings demonstrate that a single 

administration of zofenopril increases H2S bioavailability and enhances NO levels in 

both heart tissue and plasma. The induction in H2S availability in these 

cardiovascular territories occurs mainly in an non-enzymatic manner, while the 

augmented levels of NO appear to be due to enhanced phosphorylation of eNOS at 

the Ser
1177

 site. This activation of eNOS may be a result of increased H2S following 

zofenopril treatment. Moreover, pretreatment with zofenopril before MI/R exerts 

cardioprotective effects through the reduction of the infarct size per area at risk and 

decrease of circulating troponin-I levels, an index of cardiac injury. The presence of 

the free radical scavenging sulfhydryl group in zofenoprilat molecular structure may 

be the explanation of the cardioprotective activity of zofenopril and its high potential 

in the prevention and therapy of cardiovascular diseases. During hypoxia and 

ischemia/reperfusion conditions, ROS are the main factor of cardiac tissue damage. 

Moreover, it is well known that H2S exerts antioxidant properties and promotes Nrf2 

activation and transcription of downstream antioxidant proteins related genes. 

Therefore, we evaluated whether zofenopril therapy could affect Nrf2 signalling and 

enhance tissue antioxidant defense preventing the ischemic injury. In this context, we 

have found that zofenopril treatment induces the up-regulation of the transcription 

factor Nrf2 and downstream antioxidant enzymes, such as Trx-1 and GPX1; 
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moreover, it reduces the oxidative biomarker levels of MDA in myocardial tissue and 

AOPP in plasma. These findings result very interesting when it is taken account of a 

recent evidence that demonstrate 3-MST activity requires the presence of 

thioredoxin
251

. However, further studies are necessary to investigate the role of 3-

MST in cardioprotection and to better elucidate the mechanisms by which zofenopril 

promotes Nrf2 signalling activation. Thus, our findings support the concept that 

zofenopril released H2S scavenges ROS directly and/or indirectly by activation of 

Nrf2 and subsequently increases antioxidant enzymes expression resulting in cardiac 

protection. In conclusion, it can be established that zofenopril may prevent cardiac 

injury during ischemic conditions primarily through the enhancement of 

cardiovascular antioxidant defense induced by H2S activated Nrf2 signalling.  
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11. CONCLUSION 

 

The findings reported in my PhD thesis strongly argue in favor of a role for H2S in 

lower urinary tract and cardiovascular diseases.  

Despite H2S is well recognized as an important signalling molecule in the 

cardiovascular system, it still deserves a better characterization and elucidation by 

further studies in urinary system. To date, several evidence clearly indicate a 

deregulation of L-cysteine/H2S pathway as the main cause of a number of 

cardiovascular disorders, i.e. myocardial ischemia, hypertension and heart failure 

together with the NO/cGMP pathway. On the other hand, intense research is actually 

under way to discover the association between lower H2S levels and progression of 

urinary disorder, including chronic renal failure and renal ischemia reperfusion. A 

better understanding of the roles of H2S in urinary tract can provide insights into 

potential therapeutic strategies of urinary diseases. More specifically, data available 

so far, strongly suggest that H2S may become the next potent preventive and 

therapeutic agent for counteracting and ameliorating the symptoms of renal-

associated diseases. Therefore, therapeutic interventions aimed at increasing H2S 

levels might be beneficial for patients affected with cardiovascular or genito-urinary 

disorders. On the other hand, there are evidence that suggest a negative modulation of 

L-cysteine/H2S pathway may be useful in some other pathologies such as cancer.  

In this regard, the emerging data on the biological effects of H2S support basically 

two approaches for the development of sulfide-based therapeutics: H2S-releasing 

compounds or inhibitors of CSE and/or CBS, which suppress endogenous sulfide 

formation, in those diseases associated to H2S overproduction. However, it is also 

conceivable to highlight whether modulation of endogenous H2S pathway may 

contribute to the pharmacological actions of some of the already approved drugs and 

this may support the better selection of therapeutic prescription. 

Regarding to this latter approach, we have demonstrated additional mechanisms of 

action for PDE5-Is and sulfhydryl ACE-Is, drugs already approved for treatment of 

ED and hypertension, respectively. Actually PDE5-Is are also suggested for treatment 
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of LUTS associated to BPH and/or ED, while ACE-Is for myocardial ischemia and 

heart failure.  

It has been reported that beneficial effects showed by PDE5-Is are partially dependent 

on NO/cGMP signalling, while ACE inhibition is not the exclusive mechanism by 

which ACE-Is exert cardioprotection. In this context, we have taken in account 

sildenafil, a PDE5-I and zofenopril, a sulfhydryl-ACE-I, providing a further 

explanation of their effectiveness in LUTS and myocardial ischemia, respectively. In 

particular, we have revealed that both drugs potentiate H2S signaling or via CBS 

activation (sildenafil) or acting as an H2S donor in vivo (zofenopril).  

In conclusion, these findings confirm that H2S plays an important role in maintaining 

the homeostasis in physiopathological condition and by directing endogenous H2S 

increases in production or applying exogenous H2S, we may find novel solutions for 

preventing, interfering, and treating a wide spectrum of diseases. 
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