NMR spectroscopy: a useful tool for drugs development and monitoring biological reactions

PhD Coordinator
MARIA VALERIA D’AURIA
Chiar.ma Prof.ssa

Tutor
ALFONSO CAROTENUTO
Chiar.mo Prof.

Candidate
ANTONIO LIMATOLA
OUTLINES .. 1

ABBREVIATIONS ... 2

CHAPTER 1-DEVELOPMENT AND CONFORMATIONAL ANALYSIS OF BIOACTIVE PEPTIDES
MODULATING GPCR ACTIVITY .. 3

1.1 UII/UTR SYSTEM .. 4

INTRODUCTION ... 4

1.1.1 New Insight into the Binding Mode of Peptides at Urotensin-II Receptor by Trp-
Constrained Analogues of PSU and Urantide .. 7

RESULTS ... 7

DISCUSSION ... 10

CONCLUSIONS ... 13

1.1.2 Urantide Conformation and Interaction with Urotensin-II Receptor 14

RESULTS ... 14

DISCUSSION ... 17

CONCLUSIONS ... 20

1.1.3 Lead Optimization of PSU and Urantide: Discovery of Novel Potent Ligands at
the Urotensin-II Receptor .. 21

RESULTS ... 21

DISCUSSION ... 27

CONCLUSIONS ... 30

1.1.4 An Investigation into the Origin of the Biased Agonism Associated with the
Urotensin-II Receptor Activation ... 31

RESULTS ... 31

DISCUSSION ... 36

CONCLUSIONS ... 38
1.2 NOVEL ANALGESIC PEPTIDES WITH IMPROVED ANTINOICEPTIVE PROPERTIES... 40

INTRODUCTION .. 40
RESULTS AND DISCUSSION... 42
CONCLUSIONS .. 47

1.3 GRK2 INHIBITORS .. 48

INTRODUCTION .. 48

1.3.1 SAR study and conformational analysis of novel peptides GRK2 inhibitors 51

RESULTS .. 51
DISCUSSION ... 55
CONCLUSIONS .. 57

1.3.2 Design, synthesis and efficacy of novel cyclic peptides GRK2 inhibitors 58

RESULTS .. 58
DISCUSSION ... 63
CONCLUSIONS .. 65
EXPERIMENTAL SECTION .. 67
SUPPORTING INFORMATION ... 88

CHAPTER 2 – MONITORING ALPHA-SYNUCLEIN SITE-SELECTIVE OXIDATION DAMAGE REPAIR IN MAMMALIAN CELLS BY HIGH RESOLUTION NMR SPECTROSCOPY 89

INTRODUCTION .. 90
RESULTS .. 92
DISCUSSION ... 101
CONCLUSIONS .. 102
EXPERIMENTAL SECTION .. 103
SUPPLEMENTARY DATA ... 108
REFERENCES .. 110
OUTLINES

Background of my PhD program is primarily based on the use of nuclear magnetic resonance spectroscopy (NMR) as a versatile tool that can be applied for several biological purposes.

During the early years of my PhD, I mainly used proton detection nuclear magnetic resonance techniques (¹H-NMR) for the identification and characterization of molecules that can act as potential drugs. Since, GPCRs are targeted by approximately 45% to 50% of medicinal drugs, I focused my attention on the development and conformational analysis of peptides modulating a few of these receptors bringing to different therapeutic effects.

During the last period of my PhD, I used NMR spectroscopy techniques based on ¹⁵N and/or ¹³C detection. Techniques suitable to study much larger systems as whole proteins. I applied in-cell, in extracts and in vitro NMR spectroscopy techniques to study and monitor in a qualitative and quantitative manner biological reactions that can occur on a protein into a biological environment. In particular, I studied the intracellular fate of oxidized α-synuclein molecules.
ABBREVIATIONS

Abbreviations used for amino acids and designation of peptides follow the rules of the IUPAC-IUB Commission of Biochemical Nomenclature in *J. Biol. Chem.* 1972, 247, 977-983. Amino acid symbols denote L-configuration unless indicated otherwise. The following additional abbreviations are used:

1D, 2D and 3D, one-, two- and three-dimensional; Boc, tert-butyloxycarbonyl; Bzl, benzyl; cAMP, Cyclic adenosine monophosphate; DCM, dichloromethane; DIPEA, N,N-diisopropylethyl-amine; DMF, N,N-dimethylformamide; DMSO, dimethylsulfoxide; DPC, dodecyl phosphocholine; DQF-COSY, double quantum filtered correlated spectroscopy; EL, extracellular loop; EM, energy minimization; ESI-MS, electrospray ionization-mass spectrometry; Fmoc, 9-fluorenylemethoxycarbonyl; GPCR, G-protein-coupled receptor; HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; HOBT, N-hydroxy-benzotriazole; hU-II, human Urotensin-II peptide; h-UTR, human Urotensin II receptor; IL, intracellular loop; LC, liquid chromatography; MD, molecular dynamic; Nal, Naphtylalanine; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; NOESY, nuclear Overhauser enhancement spectroscopy; Orn, Ornitine; Pen, penicillamine; POMC, proopiomelanocortin; PVDF, polivinilidenfluoruro; RMSD, root mean square deviation; ROESY, rotating-frame Overhauser effect spectroscopy; RP-HPLC, reverse phase-high performance liquid chromatography; r-UTR, rat Urotensin II receptor; SAR, Structure activity relationship; SD, standard deviation; SDS, sodium dodecylsulphate; SDS-PAGE, Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis; HMQC; Heteronuclear Multiple-Quantum Correlation, SUVs, small unilamellar vesicles; SPPS, solid phase peptide synthesis; TBS-T, Tris-Buffered Saline and Tween 20; TES, triethylsilane; TFA, trifluoroacetic acid; THF, tetrahydrofuran; Tic, tetrahydroisoquinoline; TLC, thin-layer chromatography; TM, trans-membrane domain; TOCSY, total correlated spectroscopy; Tpi, 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid; TSP, 3-(trimethylsilanyl)propionic acid; U-II, Urotensin-II peptide.
CHAPTER 1-DEVELOPMENT AND CONFORMATIONAL ANALYSIS OF BIOACTIVE PEPTIDES MODULATING GPCR ACTIVITY.
1.1 UII/UTR SYSTEM

INTRODUCTION

Urotensin-II (U-II), a somatostatin-like neuropeptide, is a cyclic peptide originally isolated in the teleost fish Gillichthys mirabilis in the 1960s. Subsequently, it has been demonstrated that U-II is also expressed in tetrapods and that its gene is located in the central nervous system (CNS). The human U-II (hU-II) consists of 11 amino acids, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH, and the whole sequence is recognized as the natural ligand of an orphan rat G-protein coupled receptor, first named GPR14. Subsequently, a human G-protein coupled receptor with 75% similarity to the orphan rat receptor was replicated and finally renamed the UT receptor by IUPHAR. The U-II precursor has proved to be widely expressed in various vertebrate species, including frogs, rats, mice, pigs, monkeys, and humans. In 2003, a paralogue of U-II, known as urotensin-related peptide (URP), was isolated in mammals. The U-II and URP genes are mostly expressed in motoneurons located in discrete brainstem nuclei and in the ventral horn of the spinal cord. U-II and URP mRNAs have also been detected, albeit in lower concentrations, in different peripheral tissues, including the pituitary, heart, spleen, thymus, pancreas, kidney, small intestine, adrenal gland, and prostate. Also, UT receptor is widely distributed in the CNS and in different organs and peripheral tissues, including cardiovascular system, kidney, bladder, prostate, and adrenal gland. This extensive expression turned out to be very important in understanding the multiple pathophysiological effects in which the hU-II/UT receptor interaction is involved, such as cardiovascular disorders (heart failure, cardiac remodelling, hypertension), smooth muscle cell proliferation, renal disease, diabetes, and tumor growth. It has recently been reported that U-II plays an important role in pulmonary hypertension, modulates erectile function through eNOS, and regulates cell proliferation in prostate cancer. Furthermore, it has been demonstrated that U-II is implicated in immune inflammatory diseases and in many effects on the CNS. Hence, hU-II analogues could be therapeutically appealing in diverse pathological disorders. The N-terminus portion of urotensin isopeptides is highly variable across animal species, whereas the C-terminal region, structurally organized in a cyclic sequence by a disulfide bridge, c[Cys-Phe-Trp-Lys-
Tyr-Cys], is well-conserved from species to species, outlining its primary role in the biological activity. In fact, the conserved C-terminal octapeptide cyclic portion of U-II [hU-II(4–11)] retains both biological and binding properties.

Hence, most of the peptides developed to date have been constructed on the basis of this sequence. Previously, we have identified two important analogues of hU-II(4–11), specifically, the superagonist 1 (P5U), H-Asp-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH, and the antagonist urantide, H-Asp-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH, which are nowadays recognized as the most potent peptide ligands at the UT receptor so far described. Interestingly, urantide has been extensively used not only as a valid tool to investigate the urotensinergic system role, but it has also been recently ascertained that urantide can protect against atherosclerosis in rats.

In the last years, extensive nuclear magnetic resonance (NMR) and computational studies on both P5U and Urantide were performed. These results allowed to formulate a hypothesis about the structural changes that determine the switching from agonist to antagonist activity. To support our hypothesis and to gain new insight into the putative active conformation of ligands at UTR, we first replaced the Trp residue, formally supposed to be involved in this activity switch, with a highly constrained analogue residue. Surprisingly, from NMR analysis of P5U and Urantide conformationally constrained analogues, we were able to get new insight into the putative active conformation of ligands at UTR, in particular we moved our attention from Trp to Tyr.

Later, we determined the solution conformation of urantide using a DPC membrane mimetic solution, instead of SDS solution used previously, and docked the obtained structure of urantide within a theoretical model of UTR. Conformational results were completely in agreement with what we found out from the constrained analogues of P5U and urantide, underlining the main role of Tyr into UTR interaction.

As part of our ongoing effort to improve the potency and stability of urotensin-II analogues and to get more information about the switching between agonist and antagonist activity, we moved our attention from Trp on Tyr. In fact, we designed and synthesized novel analogues of P5U and urantide by the replacement of Tyr residue with aromatic noncoded amino acids. We found novel analogues with improved
agonist activity compared to the parent P5U and antagonist peptides alike urantide. Furthermore, these new ligands also showed good stability.

Another question was still open. The two endogenous ligands, hUII and URP, both bind and activate UTR. Even though the two peptides share the fully conserved cyclic C-terminal hexapeptide core sequence responsible of the biological activity, they exert common as well as different effects on physiological UTR's pathways. The divergent actions can be explained by a biased agonism concept. The idea that hU-II and URP interact with UTR in a distinct manner, i.e. by selecting a specific UT conformation. The concept of biased agonism would require specific pockets/interactions within UT receptor, aimed to select distinct UTR conformations that can discriminate hU-II and URP biological activities. To investigate the origin of the divergent activities of the two endogenous ligands, we performed conformational studies on URP by solution NMR and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and a newly developed UT receptor model.
1.1.1 New Insight into the Binding Mode of Peptides at Urotensin-II Receptor by Trp-Constrained Analogues of P5U and Urantide

RESULTS

Design: Previous studies showed that hU-II analogues, which retain high affinity for UT receptor, all possess a type II’ β-hairpin backbone conformation regardless their agonist or antagonist activity, indicating that such backbone conformation is necessary for the UT recognition. The main conformational difference observed in the structures of the antagonists and the agonists was established in a different orientation of the (D/L)-Trp⁷ side chain. In particular, while in the agonists the (D/L)-Trp⁷ indole moiety is close to the Lys⁸ side chain, in the antagonists (D/L)-Trp⁷ side chain is more flexible and further from the Orn side chain. Thus, we replaced the Trp residue with a highly constrained non coded amino acid, that is, the 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (Tpi) (Figure 1), to corroborate that hypothesis. In fact, 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (Tpi), can only possess either gauche (+) or gauche (−) side chain rotamer populations since the indole moiety is cyclized to the peptide backbone N° (Figure 1).

![Figure 1: Structure of Tpi amino acid](image)

According to our pharmacophore model, this indole orientation is only compatible with the antagonist conformation since the Tpi⁷ indole moiety is kept far from the Lys⁸ side chain. Moreover, we used both L- and D-Tpi since L- and D-Trp residues are both compatible with UTR binding. Finally, Lys/Orn couple was shown to modulate the urotensin analogues activity since the Orn residue promotes antagonist activity. Hence, four analogues were designed as reported in Table 1.
Table 1. Receptor affinity and biological activity of P5U and urantide analogues of general formula:

\[
\text{H-Asp-c[Pen}^a\text{-Phe-Xaa-Yaa-Tyr-Cys]-Val-OH}
\]

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Xaa</th>
<th>Yaa</th>
<th>pK_i^a</th>
<th>pEC_{50}^b</th>
<th>pK_B^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5U</td>
<td>Trp</td>
<td>Lys</td>
<td>9.70±0.07</td>
<td>9.60±0.07</td>
<td>-</td>
</tr>
<tr>
<td>Urantide</td>
<td>DTrp</td>
<td>Orn</td>
<td>8.30±0.04</td>
<td>Inactive</td>
<td>8.30</td>
</tr>
<tr>
<td>1</td>
<td>Tpi</td>
<td>Lys</td>
<td>8.16±0.04</td>
<td>7.92±0.07</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>DTpi</td>
<td>Lys</td>
<td>8.26±0.09</td>
<td>7.68±0.17</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Tpi</td>
<td>Orn</td>
<td>7.61±0.11</td>
<td>Inactive</td>
<td>6.30</td>
</tr>
<tr>
<td>4</td>
<td>DTpi</td>
<td>Orn</td>
<td>7.43±0.13</td>
<td>Inactive</td>
<td>6.28</td>
</tr>
</tbody>
</table>

\(^a pK_i: \log K_i \quad ^b pEC_{50}: \log EC_{50} \quad ^c pK_B: \log K_B \) values are from experiments in the rat thoracic aorta. Each value in the table is mean ± s.e.m. of at least 4 determinations.

Chemistry: Peptides were synthesized and analyzed as reported in the Experimental Section. The correct molecular weight of the peptide was confirmed by mass spectrometry and amino acid analysis (Table 1 Online Supporting Information 1.1.1).

Biological Data: Receptor affinity at h-UTR and biological activity (rat aorta bioassay) of the synthesized compounds are reported in Table 1. In the same Table, P5U and urantide activities are reported for comparison. From the data, it can be inferred that peptides 1 and 2, carrying the Lys\(^7\) residue, show an agonist activity as the lead compound P5U. Compared to P5U, about 1.5 log reduction of the affinity and 2 log reduction of the activity can be observed. Conversely, peptides 3 and 4, carrying the Orn\(^7\) residue, show an antagonist activity as urantide, resulting in 1.8 log reduction of the affinity and 2 log reduction of the activity compared to the lead. Finally, the effect of the L- vs D-Tpi replacement is almost negligible both in the affinity and in the activity values. (Table 1)

NMR Analysis: A whole set of 1D and 2D NMR spectra in 200 mM aqueous solution of SDS were collected for compounds 2, and 4 which differ only for the Lys to Orn residue at position 8 but are endowed with different activity (agonist vs antagonist, respectively). Complete \(^1\)H NMR chemical shift assignments were effectively achieved for the two peptides according to the Wüthrich procedure\(^{31}\) via the usual systematic application of DQF-COSY,\(^{32,33}\) TOCSY,\(^{34}\) and NOESY experiments with the support of the
XEASY software package (Online Supporting Information 1.1.1). Peptide 2 and 4 differ from PSU and Urantide, respectively, only for the Trp8 to D-Tpi residue substitution but they show NMR parameters different from those observed in the parent peptides (Tables S1 and S2, Online Supporting Information 1.1.1). In particular for the novel peptides, the presence of a β-turn structure along residues 6-9 can be still located from NOE contacts between H\textsubscript{α}-NH\textsubscript{i+2} of D-Tpi7 and Tyr9 and between NH-NH\textsubscript{i+1} of Lys/Orn8 and Tyr9, but the flanking regions, which in the parent peptides PSU and urantide folded as a short stretch of antiparallel β-sheet, are now prevalently disordered as indicated by all the diagnostic NMR parameters (H\textsubscript{α} chemical shifts, NOE connectivities, and \(^3J_{H\alpha-HN}\) coupling constants) (Figure 2).

Considering the side chains orientations, some interchain NOE between residues DTpi9, Orn8, Tyr9 and Val11 are observed. In fact, DTpi7 aromatic Hε3 proton signal (Trp nomenclature) shows NOE contacts with Lys/Orn8 side chains. Furthermore, Tyr9 aromatic proton signals show NOE contacts with both Lys/Orn8 and Val11 side chains. In peptide 4, the last interaction was stronger than in peptide 2, indicating that the conformer allowing a close contact between Tyr9 and Val11 side chains is more populated in peptide 4 than in peptide 2.

NMR-derived constraints obtained for the analyzed peptides (Supporting Information 1.1.1) were used as the input data for a simulated annealing structure calculation. For each peptide, 20 calculated structures satisfying the NMR-derived constraints (violations smaller than 0.40 Å) were chosen (Figure 2 A-B). Both peptides 2, and 4 show a distorted type II’ β-turn structure encompassing residues 6-9 (backbone rmsd values are 0.41 and 0.37 Å, respectively). In contrast, the N- and C-terminal residues were more flexible. Considering the side chains orientation, Lys8, and Tyr9 side chains showed a large preference for \(g^*\) rotamer in peptide 2; Orn8 shows also a \(g^*\) orientation in peptide 4 while Tyr9 side chain is found both in trans and \(g^*\) conformations in this peptide. Therefore Tyr9 phenolic ring is close to Lys8 in peptide 2, and it points toward Val11 in peptide 4.
DISCUSSION

In our previous studies, we showed that hU-II analogues, which retain high affinity for UT receptor, all possess a type II′ β-hairpin backbone conformation regardless their agonist or antagonist activity, indicating that such backbone conformation is necessary for the UT recognition. The main conformational difference observed in the structures of the antagonists and the agonists was established in a different orientation of the (D/L)-Trp7 side chain. In particular, while in the agonists the (D/L)-Trp7 indole moiety were found close to the Lys/Orn8 side chain, in the antagonists (D/L)-Trp7 side chain were more flexible and further from the Lys/Orn8 side chain. To corroborate our hypothesis, in the present work, we replaced Trp9 with a highly constrained Trp analogue, the Tpi residue (Figure 1). In fact, 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (Tpi), can only possess either gauche (+) or gauche (-) side chain rotamer populations since the indole moiety is cyclized to the peptide backbone Nα (Figure 1).36 Moreover, we used both L- and D-Tpi since L- and D-Trp residues are both compatible with UTR binding. Finally, Lys/Orn couple was shown to modulate the urotensin analogues activity since the Orn residue promotes the antagonist activity.30 Hence, four analogues (1-4) were designed as reported in Table 1. Biological data
showed that Lys\(^7\) containing peptides (1 and 2) are agonists, and peptides carrying the Orn\(^7\) (3 and 4) are antagonists. All the affinities and activities are reduced of at least one order of magnitude. Furthermore, L- vs D-Tpi replacement is almost negligible both in the affinity and in the activity values. The agonist activity of peptides 1 and 2 is quite unexpected since in our model (D)Tpi side chain orientation should be compatible only with an antagonist activity. Trying to understand this apparent contradiction, we performed a conformational analysis of selected peptides by solution NMR. We chose peptides 2 and 4 which chemically differ only for the Lys to Orn substitution but the activity switches from agonist to antagonist. NMR study was performed in SDS micelle solution. The use of SDS or DPC micelle solutions to study the conformational properties of hU-II analogues is motivated on the basis of their interaction with a membrane receptor. For peptides acting as ligands of membrane receptors (such as GPCRs), the use of membrane mimetic media is suggested, hypothesizing a membrane-assisted mechanism of interactions between the peptides and their receptors.\(^37\) According to this model, the membrane surface plays a key role in facilitating the transition of the peptide from a random coil conformation adopted in the extracellular environment to a conformation that is recognized by the receptor. The increase of the local concentration of the peptide and the reduction of the rotational and translational freedom of the neuropeptide are membrane-mediated events acting as determinant steps for the conformational transition of the peptide.\(^38\) Indeed, micelle solutions are largely used for the conformation analysis of peptide hormones.\(^61-64\) In this context, we succeeded in correlating the SDS-bound conformation of hU-II analogues with their biological activity.\(^39,40,41,42\) Conformational analysis indicated that both the peptides 2, and 4 show a distorted type II' \(\beta\)turn structure encompassing residues 6-9. Therefore the turn structure peculiar of the active peptides P5U and urantide is kept in these derivatives. In contrast, the N- and C-terminal residues of peptides 2 and 4 are highly flexible losing the short antiparallel beta-sheet found in P5U and urantide. Considering the side chains orientation of “pharmacophoric” residues (i.e., D-Tpi\(^7\), Lys\(^8\), Tyr\(^9\))\(^24,25\) of peptide 2, side chains of Lys\(^8\) and Tyr\(^9\) show a large preference for \(g^-\) rotamer, hence they are spatially close while indole ring of D-Tpi\(^7\) is locked to a \(g^-\) conformation (Figure 2A). Pharmacophoric distances of peptide 2 are reported in Table 2 together with those of the reference
peptides P5U and urantide. According to the design, the distance between D-Tpi7 and Lys8 is greater than that observed in P5U. Notably, it is shorter than that observed in urantide. Unexpected residual agonist activity of peptide 2 indicates that its pharmacophoric distances still fit the agonist model although not in an ideal way. (Table 2)

<table>
<thead>
<tr>
<th>Peptide</th>
<th>D-Tpi7,b,c - Lys8 Nε</th>
<th>D-Tpi7,b,c - Tyr9</th>
<th>Lys8 Nε - Tyr9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.9</td>
<td>11.0</td>
<td>6.5</td>
</tr>
<tr>
<td>P5Ue</td>
<td>6.2</td>
<td>7.9</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>7.8</td>
<td>10.6</td>
<td>9.3</td>
</tr>
<tr>
<td>Urantidee</td>
<td>8.9</td>
<td>11.1</td>
<td>5.7</td>
</tr>
</tbody>
</table>

aReported distances were measured in the mean of 20 calculated structures. bAryl ring centroids. c Trp in P5U, D-Trp in urantide. d Orn8 in 2, and urantide.

Considering peptide 4, it was designed to fulfil the antagonist pharmacophore of UTR blocking the side chain of Trp7. Actually, distance between D-Tic7 and Orn8 is shorter than that observed in the reference antagonist urantide and is similar to the distance observed in peptide 2 (Table 2). Since these peptides are endowed with opposite activities, the distance between the positively charged nitrogen and the indole ring seems to be not relevant for the agonist/antagonist activity switching. Moreover, Tyr9 side chain is preferentially trans orientated and consequently phenol ring is far from Orn8 and the relevant pharmacophoric distance do not fit that of urantide. Tyr9 side chain orientation is mainly defined by an intense NOE with Val11 methyls. To note, this NOE could not be observed in the NOESY spectrum of urantide due to signal overlapping.29,43 Hence, the correct orientation of Tyr9 for antagonist/UTR interaction needs to be further investigated. Studies on urantide analogues containing tyrosine constrained derivatives are currently in progress.
CONCLUSIONS

In conclusion, using Trp-constrained analogues of PSU and urantide we obtained new insight on the binding mode of agonists and antagonists at the UT receptor. In particular, Lys8/Orn8 replacement is confirmed to be the key substitution for the agonist to antagonist switching. Conformationally, a type II’ β-turn structure encompassing residues 6-9 was confirmed as structural element of active compounds. Considering the three points pharmacophore model, the distance between the positively charged nitrogen and the indole ring seems to be not relevant for the agonist/antagonist activity switching. In contrast, a different orientation of the side chain of Tyr9 present in the analogues investigated in this study could be a factor that plays a crucial role in agonist/antagonist activity. In particular, the long distance between the phenol ring and the Orn8 nitrogen atom, observed in the antagonist peptide 4 is unprecedent in our studies.
1.1.2 Urantide Conformation and Interaction with Urotensin-II Receptor

RESULTS

NMR Analysis: A whole set of 1D and 2D NMR spectra in 200 mM aqueous solution of DPC were collected for Urantide. Complete 1H NMR chemical shift assignments were effectively achieved for the peptide according to the Wüthrich procedure.\(^{31}\)

A qualitative analysis of short- and medium-range nuclear Overhauser effects (NOEs), $^3J_{\text{NH-Ha}}$ coupling constants, NH exchange rates, and temperature coefficients for exchanging NH indicated that Urantide show stable secondary structure in DPC micelles (Online Supporting Information1.1.2, Table S2). In particular, NOE contacts between H$_\alpha$-NH$_{i+2}$ of D-Trp7 and Tyr9 and between NH-NH$_{i+1}$ of Orn8 and Tyr9 indicated the presence of a β-turn. This result was supported by the observation of slowly exchanging NH resonance of residue 9, and low value of the temperature coefficient for this proton ($-\Delta\Delta\delta/\Delta T < 3.0$ ppb/K). A short stretch of antiparallel β-sheet involving residues 5-6 and 10-11 is inferred from a number of long-range NOEs including H$_\alpha$-NH connectivities between residues 5, 11 and 10, 6 and a NH-NH connectivity between residues 6 and 9. All the data indicated the presence of a β-hairpin structure.

Considering the side chains orientations, Urantide shows interchain NOEs between residues D-Trp7 and Orn8, and between Phe6 and Val11. Furthermore, Tyr9 aromatic proton signals show NOE contacts with both Orn8 and Val11 side chains. The last interaction was relatively strong, indicating that the conformer bearing a close contact between Tyr9 and Val11 side chains is highly populated.

NOE-derived constraints obtained for Urantide (Table S3) were used as the input data for a simulated annealing structure calculation. 10 calculated structures satisfying the NMR-derived constraints (violations smaller than 0.40 Å) were chosen for further analysis (Figure 1). Urantide shows a type I$'$ β-hairpin structure encompassing residues 5-10 (backbone rmsd value is 0.17 Å). Considering the side chains orientation, D-Trp7 and Lys8 side chains showed a large preference for trans and g- rotamer, respectively. χ_2 dihedral angle of D-Trp7 was 125° or -70° ($\chi_2 = -67°$ in the lowest energy conformation) in accordance with strong NOEs between H$^\alpha$ and H$^{\varepsilon}$ or H5, respectively.
Finally, Tyr\(^9\) is found both in trans and g' conformations, with a prevalence of the trans rotamer. Therefore D-Trp\(^7\) indole is close to Lys\(^8\), and Tyr\(^9\) phenolic ring points toward Val\(^{11}\). Obtained conformations are in accordance with the measured \(3^J_{HN-H\alpha}\) and \(3^J_{H\alpha-H\beta}\) coupling constants (Online Supporting Information 1.1.2, Table S2).

Figure 1. Stereoview of the lowest energy conformer of urantide. Backbone is evidenced as a ribbon. Side chains of the 10 lowest energy conformers are also shown as mesh surface.

Docking Studies: The theoretical structure of the h-UT receptor was generated by homology modeling based on the crystal structure of bovine rhodopsin (PDB code 1F88)\(^44\), as described previously.\(^43\) The resulting structure represents an inactive form of the h-UT receptor with an overall conformation very similar to that of bovine rhodopsin (1.22 Å rmsd between the backbone atoms of the transmembrane domains) and to the \(\beta_2\)-adrenergic receptor (\(\beta_2\)AR, PDB code 2RH1).\(^45\) Calculations converged towards a single solution in which the lowest energy binding conformation was also belonging to the most populated cluster and remarkably stable throughout the molecular dynamic (MD) simulations. As shown in **Figure 2a**, the hypothetical binding site of Urantide is located among TM-III÷TM-VII, EL-II and EL-III. The \(\beta\)-hairpin is oriented along the receptor helical axis, with the N- and C-terminal residues pointing towards the extracellular side. The binding mode of the peptide is determined mainly by the interactions showed in **Figure 2b** and Table 2. In particular, (i) a tight charge-
reinforced hydrogen-bonding network involving the carboxylate group of Asp130 and the protonated ε-amino group of Orn\(^8\) of Urantide is established. (ii) Two hydrophobic pockets, delimited by residues listed in Table 2, host the aromatic side chains of Phe\(^6\) and D-Trp\(^7\), of Urantide. Particularly, the indole system of D-Trp\(^7\) appears to be optimally oriented for a π-stacking interaction with the aromatic indole system of Trp275. (iii) The phenolic OH of Tyr\(^9\) is at hydrogen-bonding distance with the backbone CO of Ala289. (iv) Asp\(^4\) in Urantide is involved in a hydrogen-bonding network. (v) Finally, the negatively charged C-terminal group establishes two hydrogen bonds with backbone HN of Cys123 and Cys199, and a salt bridge with the protonated guanidinium moiety of Arg189. All the aforementioned interactions resulted to be quite stable during the whole MD production run (data not shown).

Table 2. Urantide/h-UTR Interactions

<table>
<thead>
<tr>
<th>Residue*</th>
<th>Surrounding residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp(^4)</td>
<td>Ala187 (EL-II), Met188 (EL-II), Cys199 (EL-II), Arg206 (EL-II), Ala207 (EL-II)</td>
</tr>
<tr>
<td>Pen(^5)</td>
<td>Leu200 (EL-II), Ala207 (EL-II), Leu212 (TM-V), Gln278 (TM-VI)</td>
</tr>
<tr>
<td>Phe(^6)</td>
<td>Cys123 (EL-I), Val184 (TM-IV), Met188 (EL-II), Cys199 (EL-II)</td>
</tr>
<tr>
<td>D-Trp(^7)</td>
<td>Phe131 (TM-III), Met134 (TM-III), His135 (TM-III), Leu212 (TM-V), Phe216 (TM-V), Ile220 (TM-V), Trp275 (TM-VI), Gln278 (TM-VI)</td>
</tr>
<tr>
<td>Orn(^8)</td>
<td>Asp130 (TM-III), Phe274 (TM-VI), Gln278 (TM-VI), Thr301 (TM-VII), Thr304 (TM-VII)</td>
</tr>
<tr>
<td>Tyr(^9)</td>
<td>Leu288 (EL-III), Ala289 (EL-III),</td>
</tr>
<tr>
<td>Cys(^10)</td>
<td>Cys199 (EL-II), Pro287 (EL-III), Leu288 (EL-III).</td>
</tr>
<tr>
<td>Val(^11)</td>
<td>Val121 (EL-I), Cys123 (EL-I), Arg189 (EL-II), Leu198 (EL-II), Cys199 (EL-II), Leu288 (EL-III).</td>
</tr>
</tbody>
</table>

* For sake of clarity, the residue numbers of the ligands are reported as apex while those of the receptor are not.
Figure 2. (a) h-UTR model complexed with Urantide. Receptor backbones are represented in grey and labeled. (b) Urantide within the binding pocket of h-UTR. Hydrogen bonds are shown as dotted lines.

DISCUSSION

In our previous studies, we showed that all hU-II analogues, which retain high affinity for UT receptor, all possess a type II’ β-hairpin backbone conformation regardless their agonist or antagonist activity, indicating that such backbone conformation is necessary for the UT recognition. We hypothesized that the main conformational difference observed in the structures of the antagonists and the agonists was a different orientation of the (D/L)-Trp\(^7\) side chain. This hypothesis has been challenged by recent results about the activity of PSU and Urantide analogues in which the Trp\(^9\) was replaced by the highly constrained analogue Tpi (See 1.1.1) Tpi (2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid), can only possess gauche side chain rotamer
populations since the indole moiety is cyclized to the peptide backbone N^α. Nevertheless, we found derivatives showing both agonist and antagonist activity only depending on the presence of Lys (agonist) or Orn (antagonist) at position 8. Conformational analysis indicated that the main difference between agonist and antagonist 3D structure was the orientation of the Tyr9 side chain which was gauche$^-$ oriented in the agonist PSU and trans oriented in the antagonist Urantide. Consequently phenol ring is close to Lys8 or far from Orn8, respectively. Tyr9 side chain orientation is mainly defined by NOEs with Lys8/Orn8 or Val11 side chain signals. In our previous conformational study on the lead antagonist Urantide29 we found a gauche$^-$ orientation for Tyr9 side chain but, the above mentioned NOE could not be observed in its NOESY spectrum due to signal overlapping. In the cited work,43 NMR study was performed in sodium dodecylsulphate (SDS) micelle solution, which is largely used for the conformation analysis of peptide hormones.46,47,48 Here trying to avoid the overlapping problems, we repeated the conformational analysis of Urantide using another micelle solution, i.e. dodecylphosphocholine (DPC). Also DPC solutions are commonly used for peptide hormones49,50 and antimicrobial peptides studies. NMR data obtained using a DPC solution are very similar to those obtained in SDS solution, but luckily signals show a better dispersion. In particular, for Urantide the NOE between Orn8 and Val11 side chains are clearly visible. Urantide structure obtained from these NOEs (Figure 1) showed Tyr9 both in trans and gauche$^-$ conformations, with a prevalence of the trans rotamer. Therefore Tyr9 phenolic ring is close to Val11 in Urantide accordingly to the results recently found for constrained analogues (See 1.1.1). Furthermore, D-Trp7 side chain is stably in trans conformation as derived by the strong NOEs between its indole moiety and the Orn8 side chain. This was more flexible in the Urantide structure obtained in SDS. Again, signal overlapping in the NOESY spectrum acquired in the last medium can explain the observed differences.

To gain insight into the interaction mode, the new structure of Urantide was docked within a model of human Urotensin II (receptor h-UTR) that we recently built.43 The binding mode of the peptide is determined mainly by the interactions showed in Figure 2b and Table 2 and described in the Results section. The main difference, compared to the previously obtained model complex,43 is observed in the interactions of the Tyr9 side chain, as expected from the starting NMR ligand structure. A
superposition of the two models is shown in Figure S1 (Online Supporting Information 1.1.2). Tyr\(^9\) side chain points towards the third extracellular loops and forms a stable hydrogen bond with the backbone carbonyl of Ala289. In contrast, Tyr\(^9\) side chain pointed towards the intracellular side of the receptor in the old model. An intriguing difference is that the Tyr\(^9\) side chain is now highly exposed to the solvent while before it was hidden in a hydrophobic pocket. Interestingly, the Urantide/UTR complex model described here shows comparable energy to the previously obtained (Table 3) but it is in higher accordance with the current experimental data.

Table 3. Binding free energies (\(\Delta G_{AD4}\)) calculated for the energy minimized averaged complexes deriving from the MD simulations.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Ligand</th>
<th>(\Delta G_{bind})(^a)</th>
<th>Electr(^b)</th>
<th>H-Bond(^b)</th>
<th>VdW(^b)</th>
<th>Desolv(^b)</th>
<th>Tors(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h-UTR</td>
<td>Urantide</td>
<td>-22.74</td>
<td>-4.94</td>
<td>-5.35</td>
<td>-25.91</td>
<td>7.49</td>
<td>5.97</td>
</tr>
<tr>
<td>h-UTR(^c)</td>
<td>Urantide</td>
<td>-24.33</td>
<td>-4.99</td>
<td>-5.90</td>
<td>-26.50</td>
<td>7.09</td>
<td>5.97</td>
</tr>
</tbody>
</table>

\(^a\)\(\Delta G_{bind}\): free energy of binding. \(^b\)Energy terms contributing to the AutoDock4 scoring function. Electr: electrostatic; H-Bond: H-Bonding; VdW: Van der Waals; Desolv: desolvation; Tors: torsional entropy. All terms are given in kcal/mol.

Based on the binding mode of UTR/Urantide, we derived a new 3D pharmacophore model for peptide antagonists illustrated in Figure 3. Distances between Tyr phenol moiety and Trp indole or Orn \(N^\delta\) are longer than those reported previously for Urantide in SDS solution \(^{43}\) but in good accordance with those recently reported for a highly constrained analogue of the same peptide (See 1.1.1).

Figure 3. Stereoview of the pharmacophore model for peptide antagonists at UTR. The distances between the aryl ring centroids of (D)Trp\(^7\) and Tyr\(^9\), and the \(N^\delta\) of Orn\(^8\), are displayed. Distances and standard deviations are obtained from one hundred structures saved every 10 ps of the MD simulations.
CONCLUSIONS

In conclusion, we determined the solution conformation of Urantide using DPC as membrane mimetic environment and obtained a complex model of Urantide within a theoretical model of UTR. A new three points pharmacophore model has also been developed. Complex model and pharmacophore can help the next design cycle of novel peptide and small-molecule antagonists at UTR.
1.1.3 Lead Optimization of P5U and Urantide: Discovery of Novel Potent Ligands at the Urotensin-II Receptor

RESULTS

Design. A SAR study on Tyr⁹ was prompted by our recent finding that the side chain orientation of this residue influences the activity of P5U(1) and urantide constrained analogues. Hence we replaced Tyr with aromatic non-coded amino acids (Figure 1). Non-coded amino acids were chosen in an attempt to improve the serum stability. We started with bulky electron-rich aromatic moieties in compounds 2-7 or phenyl ring substituted with bulky chlorine atoms (8-11). Alternatively, electron donating hydroxyl group of the Tyr⁹ was replaced by electron withdrawing groups such as cyano (12-13) or nitro (14-15) (Table 1). Peptides were synthesized and analyzed as reported in the Experimental Section and Supporting Information (Online Supporting Information1.1.3, Tables S1 and S2).

Biological Data. Sequences, receptor binding affinity at h-UT and biological activity (rat aorta bioassay) of the designed compounds are reported in Table 1. To evaluate the
suitable features of the aromatic residue in position 9 and, in particular, the contribution of the phenolic group, we replaced Tyr\(^9\) with several aromatic uncoded amino acids \((Figure 1)\), in both sequences of P5U \((1)\) and urantide \((compounds 2-15)\).

Firstly, we used amino acids with a bulkier aromatic group, that is, \((1)\)Nal, \((2)\)Nal and Btz. The substitution of the native Tyr\(^9\) residue in P5U by a \((2)\)Nal residue \((compound 2)\), generated an analogue of similar contractile potency \((pEC_{50} 9.14±0.06, Figure S1)\) and a reduced binding affinity of 1 log unity \((pK_i 8.70±0.08)\). Similar modification in urantide sequence produced compound \(3\) with improved binding affinity when compared to urantide \((pK_i 9.14±0.08)\). Anyway, this compound retains a small residual agonist activity \((E_{\text{max}} 13±5 \%)\). Compound \(4\) \([(1)\)Nal/Tyr replacement in P5U\] showed to be an agonist less potent than P5U \((pEC_{50} 8.3±0.2, E_{\text{max}} 86±5 \%)\) although it showed good receptor affinity \((pK_i 9.40)\). The same substitution \([(1)\)Nal/Tyr replacement\] was introduced in the urantide sequence to give compound \(5\) with a partial agonist activity \((pEC_{50} 7.74±0.10, E_{\text{max}} 37±9 \%)\). In compound \(6\), we replaced Tyr\(^9\) with a residue of benzothiazolylalanine (Btz), an analogue of Trp in which the indole group is replaced by a benzothiazolyl moiety which is a highly electron-rich system. Compound \(6\) showed to be significantly \((p<0.05)\) more potent agonist compared to P5U \((pEC_{50} 10.71±0.04, E_{\text{max}} 89±16 \%)\). In parallel, compound \(7\) \((Btz^9\) derivative of urantide\) showed an increased partial agonist activity \((E_{\text{max}} 57±2 \%)\) compared to analogues \(3\) and \(5\).

Then, Tyr\(^9\) residue was replaced with some aromatic amino acids containing an isoster of phenolic group in \(\text{para}\) position. Replacing the Tyr\(^9\) residue in P5U with the amino acid \((pCl)\)Phe led to a compound with similar activity to the parent peptide. In fact, compound \(8\) showed a comparable potency in functional assay \((pEC_{50} 9.09±0.12, E_{\text{max}} 85±10 \%)\) albeit with a slight reduction in binding affinity at UT receptor \((pK_i 8.91±0.07)\). Instead, compound \(9\) resulted in a weak partial agonist \((E_{\text{max}} 13±3 \%)\) with an improved binding affinity profile \((pK_i 8.98±0.05)\).

Interestingly, replacing the Tyr\(^9\) residue with the amino acid \((3,4-\text{Cl})\)Phe generated the compound \(10\) with a high agonist activity \((pEC_{50} 10.9±0.14, p<0.05 \text{ compared to P5U}; E_{\text{max}} 102±8 \%)\) resulting it a superagonist. As expected, this compound is about 1.6 log more potent than P5U and represents the most potent peptide agonist at UT receptor discovered to date. Compound \(11\), \((3,4-\text{Cl})\)Phe\(^9\) derivative of urantide, similarly to
compound 9 resulted in a partial agonist with increased efficacy compared to the last (E_{max} 26±7 vs 13±3 %). Phenolic OH group was then replaced by electron withdrawing groups in compounds 12-15. Compound 12, in which Tyr9 was replaced with a (pCN)Phe residue resulted to be less potent as agonist compared to P5U (pEC$_{50}$ 8.97, E_{max} 79±1) and with a reduced binding affinity (pK$_B$ 8.74±0.10). Interestingly, compound 13, (pCN)Phe9 derivative of urantide, showed a behaviour as an antagonist producing a parallel rightward shift (Online Supporting Information1.1.3, Figure S2 panel A) of the agonist response curves without depressing the agonist E_{max}. Schild-plot analysis was consistent with competitive antagonism (Slope = 0.918, 95% c.l. 0.758-1.080) and a pK$_B$ value of 8.15±0.05 was calculated (Online Supporting Information1.1.3, Figure S2 panel B) comparable to that of urantide (Table 1). Finally, replacing the Tyr9 residue with the amino acid (pNO$_2$)Phe, led to compounds with similar activity compared to the respective parent peptides. In fact, compound 14 was shown to have agonist activity comparable to P5U (1) (pK$_B$ 8.75±0.05, pEC$_{50}$ 9.20±0.08, E_{max} 95±20%) and compound 15 revealed a behaviour as an antagonist comparable to urantide producing a parallel rightward shift of the agonist response curves. Also for this compound Schild-plot analysis was consistent with competitive antagonism (Slope = 0.900, 95% c.l. 0.660-1.140) and a pK$_B$ value of 8.12±0.07 was calculated (Online Supporting Information1.1.3, Figure S2 panel C, D) (Table 1).

Table 1. Receptor Affinity and Biological Activity of P5U and urantide Analogues of General Formula: H-Asp-[Pena-Phe-Xaa-Yaa-R-Cys]-Val-OH

<table>
<thead>
<tr>
<th>peptide</th>
<th>Xaa</th>
<th>Yaa</th>
<th>RF</th>
<th>pK$_i$</th>
<th>pEC$_{50}$</th>
<th>E_{max}</th>
<th>pK$_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hU-II(4-11)</td>
<td>Trp</td>
<td>Lys</td>
<td>Tyr</td>
<td>9.10 ± 0.06</td>
<td>8.50 ± 0.06</td>
<td>100</td>
<td>nd</td>
</tr>
<tr>
<td>1</td>
<td>Trp</td>
<td>Lys</td>
<td>Tyr</td>
<td>9.70 ± 0.07</td>
<td>9.4 ± 0.2</td>
<td>95 ± 7</td>
<td>nd</td>
</tr>
<tr>
<td>urantide</td>
<td>DTyr Orn</td>
<td>Tyr</td>
<td>8.30 ± 0.04</td>
<td>na</td>
<td>0.0</td>
<td>8.32 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Trp</td>
<td>Lys</td>
<td>(2)Nal</td>
<td>8.70 ± 0.08</td>
<td>9.14 ± 0.06b</td>
<td>85 ± 16</td>
<td>nd</td>
</tr>
<tr>
<td>3</td>
<td>DTyr Orn</td>
<td>(2)Nal</td>
<td>9.14 ± 0.08</td>
<td>8.42 ± 0.17</td>
<td>13 ± 5b</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Trp</td>
<td>Lys</td>
<td>(1)Nal</td>
<td>9.40 ± 0.07</td>
<td>8.3 ± 0.2</td>
<td>86 ± 5</td>
<td>nd</td>
</tr>
<tr>
<td>5</td>
<td>DTyr Orn</td>
<td>(1)Nal</td>
<td>8.19 ± 0.14</td>
<td>7.74 ± 0.10d</td>
<td>37 ± 9</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Trp</td>
<td>Lys</td>
<td>Btr</td>
<td>8.76 ± 0.11</td>
<td>10.71 ± 0.04d</td>
<td>89 ± 16</td>
<td>nd</td>
</tr>
<tr>
<td>7</td>
<td>DTyr Orn</td>
<td>Btr</td>
<td>7.89 ± 0.13</td>
<td>7.47 ± 0.11d</td>
<td>57 ± 7d</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Trp</td>
<td>Lys</td>
<td>(pCl)Phe</td>
<td>8.91 ± 0.07</td>
<td>9.09 ± 0.12d</td>
<td>85 ± 10</td>
<td>nd</td>
</tr>
<tr>
<td>9</td>
<td>DTyr Orn</td>
<td>(pCl)Phe</td>
<td>8.98 ± 0.05</td>
<td>8.57 ± 0.18</td>
<td>13 ± 3d</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Trp</td>
<td>Lys</td>
<td>(3,4-Cl)Phe</td>
<td>9.11 ± 0.06</td>
<td>10.9 ± 0.14d</td>
<td>102 ± 8</td>
<td>nd</td>
</tr>
<tr>
<td>11</td>
<td>DTyr Orn</td>
<td>(3,4-Cl)Phe</td>
<td>8.65 ± 0.09</td>
<td>7.89 ± 0.17d</td>
<td>26 ± 7d</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Trp</td>
<td>Lys</td>
<td>(pCN)Phe</td>
<td>8.74 ± 0.10</td>
<td>8.97 ± 0.15</td>
<td>79 ± 1d</td>
<td>nd</td>
</tr>
<tr>
<td>13</td>
<td>DTyr Orn</td>
<td>(pCN)Phe</td>
<td>7.92 ± 0.07</td>
<td>na</td>
<td>0.0</td>
<td>8.15 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Trp</td>
<td>Lys</td>
<td>(pNO$_2$)Phe</td>
<td>8.75 ± 0.05</td>
<td>9.20 ± 0.08d</td>
<td>95 ± 20</td>
<td>nd</td>
</tr>
<tr>
<td>15</td>
<td>DTyr Orn</td>
<td>(pNO$_2$)Phe</td>
<td>7.77 ± 0.08</td>
<td>na</td>
<td>0.0</td>
<td>8.12 ± 0.07</td>
<td></td>
</tr>
</tbody>
</table>

a Cys in hU-II and hU-II(4-11); b Binding assay with recombinant human UT receptor and radioligand [125I]Urotensin-II pKi: -log Ki; c Contractile activity in a rat aorta bioassay, pEC50: -log EC50; d percent
versus hU-II; \(^6\) pK8: log(CR-1)-log(B). Each value in the table is mean ± S.E.M. of at least 3-4 determinations. \(^7\) For hU-II, N-terminus = H-Glu-Thr-Pro-Asp. \(^8\) For the structure of unconventional amino acids see Figure 1. \(^9\) p<0.05 vs. hU-II E\(_{max}\) (Two-tail Student’s t-test for paired data). \(^1\) p<0.05 vs. PSU (ANOVA and Dunnett’s post hoc test). \(^*\) p<0.05 vs. hU-II (Two-tail Student’s t-test for paired data). n.a., not active; n.d., not determinable.

The ability of the newly discovered antagonist analogues to stimulate calcium mobilization like urantide was also evaluated. Both peptides 13 and 15 behave as partial agonist in this assay showing an increased efficacy compared to urantide. The intracellular calcium assay was performed according to the manufacturer’s protocol (DiscoveRx Corporation, Fremont, CA) described in the Experimental Section. Results are reported in Table 2.

<table>
<thead>
<tr>
<th>Code</th>
<th>Ca(^{++}) efflux efficacy in %(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 µM</td>
</tr>
<tr>
<td>Urantide</td>
<td>43.3±0.8</td>
</tr>
<tr>
<td>12</td>
<td>61.4±1.5*</td>
</tr>
<tr>
<td>14</td>
<td>56.5±0.2*</td>
</tr>
</tbody>
</table>

\(^a\)Efficacy is expressed as % of the maximum response to hU-II. Each value in the table is mean ± S.E.M. of 3 determinations. \(^*\) = p<0.05 vs. the respective value of urantide (ANOVA and Dunnett’s post hoc test

Peptides Stability: To investigate the effects of the modifications of peptides on proteolytic susceptibility, the disappearance of the intact peptides incubated in diluted serum at 37 °C was followed by RP-HPLC (Online Supporting Information1.1.3, Figure S3),\(^{51,52}\) peptides hU-II(4-11), urantide, P5U(1), 10 and 13 were assayed. Overall results, shown in Figure 2, display the course of degradation up to 36 h to highlight the differences in the profiles of the degraded peptides. After 16hs of treatment, hU-II(4-11) had a residual concentration lower than 50%, for P5U about 65%, while for other compounds it was higher than 70% of the initial concentration. After 36hs, compound 10 showed a residual concentration higher than 50%, while for P5U(1) the concentration was slightly lower (about 45%). Clearly, developed peptides are very stable in 25% FCS.
Figure 2. The resistance to enzyme degradation of hU-II(4-11), urantide, PSU(1), 10 and 13 was assessed by incubation in 25% FCS for 36 h. Residual peptide quantity, expressed as the percentage of the initial amount versus time (h), was plotted. The results represent the average of three independent experiments.

NMR Analysis: A whole set of 1D and 2D NMR spectra in 200 mM aqueous solution of SDS were collected for compounds 10, and 13. These peptides were chosen since compound 10 behaves as a superagonist compared to PSU(1) while compound 13 is a potent antagonist devoid of agonist activity in the rat aorta assay (Table 1).

Complete 1H NMR chemical shift assignments were effectively achieved for the two peptides according to the Wüthrich procedure.31 (Online Supporting Information1.1.3, Tables S3-S4). Peptide 10 differs from PSU only for the (3,4-Cl)Phe/Tyr9 substitution and peptide 13 differs from urantide only for the (pCN)Phe/Tyr9 substitution. Indeed, they show diagnostic NMR parameters (H$_\alpha$ proton chemical shifts, NOE contacts, and 3J$_{NH-Ha}$ coupling constants, NH exchange rates and temperature coefficients) all similar to those observed in the corresponding parent peptides (Online Supporting Information1.1.3, Tables S3-S6). In particular, NOE contacts between H$_\alpha$-NH$_{i+2}$ of (D)Trp7 and residue 9 and between NH-NH$_{i+1}$ of Lys(Orn)8 and residue 9 indicated the presence of a β-turn. This result was supported by the observation of slowly exchanging NH resonance of residue 9, and low value of the temperature coefficient for this proton ($-\Delta\delta/\Delta T < 3.0$ ppb/K). A short stretch of antiparallel β-sheet involving residues 5-6 and 10-11 is inferred from a number of long-range NOEs including H$_\alpha$-NH connectivities between residues 5, 11 and 10, 6 and a NH-NH connectivity between residues 6 and 9. All the data indicated the preservation, in 10 and 13, of the β-hairpin structure. As for the parent peptides, a number of NOE interactions connect (D)Trp7 with Lys(Orn)8 side chains indicating a close proximity between them (Online Supporting Information1.1.3, Figures S4-S5). (3,4-Cl)Phe side chain of peptide 10 shows
NOE contacts with Lys8 (Online Supporting Information1.1.3, Figure S4). In contrast, (pCN)Phe9 of peptide 13 has intense NOE contacts with Val11 side chain and only a weak NOE with Orn8 Hγ’s (Online Supporting Information1.1.3, Figure S5). These results point to a different orientation of residue 9 side chain in the two peptides. NMR-derived constraints obtained for the analyzed peptides (Online Supporting Information1.1.3, Tables S5 and S6) were used as the input data for a simulated annealing structure calculation. For each peptide, 20 calculated structures satisfying the NMR-derived constraints (violations smaller than 0.20 Å) were chosen (Figure 3 a-b). As shown, both the peptides 10, and 13 show a well defined type I’ β-hairpin structure encompassing residue 5-10 (backbone rmsd values are 0.36 and 0.27 Å, respectively). In contrast, the N- and C-terminal residues were more flexible.

Considering the side chains orientation, Phe6, (D)Trp7, and Orn8 χ1 angles showed a large preference for trans, trans, and g- rotamers, respectively. In urantide, dihedral angle χ2 of DTrp7 was about 125° or -70° in accordance with strong NOEs between Hα and Hε3 or Hδ1, respectively (Online Supporting Information1.1.3, Table S6). Finally, side chain of residue 9 is found preferentially in g- and in trans orientation in peptide 10 and 13, respectively.
DISCUSSION

As part of our ongoing efforts in improving the potency and stability of urotensin analogues discovered previously in our laboratories and the knowledge about their SARs, we have designed and synthesized a series of analogues of PSU (1) and urantide in which the Tyr\(^9\) residue was replaced with aromatic non-coded amino acids (Table 1). Tyr\(^9\) belongs to the WKY pharmacophoric sequence of U-II which is crucial for interaction with its receptor as demonstrated by previous studies. In fact, the replacement of W, K, and Y induces large changes in biological activity, suggesting the importance of the side chains of these residues for binding to and activating the U-II receptor.\(^{20,21,22,53,54,55,56}\) In this study the phenol moiety of PSU and urantide was
replaced with bulky electron-rich aromatic moieties in compounds 2-7 or phenyl ring substituted with bulky chlorine atoms (8-11). Alternatively, electron donating hydroxyl group of the Tyr9 was replaced by electron withdrawing groups such as cyano (12-13) or nitro (14-15). All synthesized compounds were tested for their binding affinity on h-UT-transfected CHO cells and for their contractile activity on de-endothelialized rat aortic rings (Table 1). Overall, bioactivity results (Table 1) indicate that in the PSU derivatives the substitution of Tyr9 with other aromatic-based moieties is well tolerated. In fact, all these compounds gave a rat aorta contraction of at least 70%.

These SARs are in accordance with previous results, which demonstrated that Tyr9 in hU-II or hU-II(4-11) can be replaced by various aromatic residues preserving most of the agonist activity, at least when the flexibility of Tyr9 side chain is kept. The best results in the PSU (1) derivatives were obtained replacing tyrosine by bulky Btz (6) or (3,4-Cl)Phe (10) residues significantly improving in both cases the potency of more than one log (pEC$_{50}$ = 10.71 and 10.9, respectively, p<0.05 vs. PSU) compared to PSU (pEC$_{50}$ = 9.4±0.2), and more than two logs compared to the endogenous agonist hU-II (pEC$_{50}$ = 8.50±0.06). To note that peptide 10 is the most potent UT agonist discovered to date. We and others have shown that bulky aromatic amino acids may increase the binding affinity and the biological activity of the U-II agonists through an enhancement of the hydrophobic interactions within a putative Tyr binding pocket of UT.

To the best of our knowledge and considering the urantide derivatives SAR studies on position 9 are unprecedented. Like PSU (1), urantide seems also to tolerate aromatic substitutions at position 9; as a matter of fact, all derivatives bind to UT receptor with pKi ≥ 7.77. The main result obtained in this series is the finding of two antagonists: compounds 13, and 15. Despite a slight loss of affinity, these compounds behave as pure antagonists in the rat aorta bioassay as the parent urantide. SAR data clearly indicate that small polar groups (pCN, pNO$_2$ and the original OH) are requested for pure antagonist activity. In contrast, bulky lipophilic moieties [(1)Nal, (3,4-Cl)Phe, Btz] increase the agonist activity (efficacy) of urantide derivatives.

As widely discussed elsewhere, urantide behaves as a partial agonist in a calcium mobilization assay performed in CHO cells expressing the h-UT. The same
behaviour was shown by compounds 13 and 15, i.e. pure antagonist in the aorta assay and partial agonist in a calcium mobilization assay, although with slightly higher efficacy compared to urantide (Table 2). Nevertheless, it is well known that urantide has been used by several groups as reference antagonist compound in studies of the urotensinergic system. These novel ligands can be useful to discriminate the partial agonism/antagonism effects at the UT receptor in different cell lines/tissues. Also, the availability of novel agonists and antagonists as pharmacological tools to investigate the urotensinergic system is very important since subtle pharmacokinetic differences can differentiate their effects in vivo. In this respect, stability tests were performed on peptide hU-II(4-11), P5U, urantide and derivatives 10 and 13. These studies demonstrated that urantide and peptides 10, and 13 are highly stable showing a residual concentration higher than 50% in fetal calf serum even after 36 h (Figure 2). The higher level of stability shown by urantide, P5U, 10 and 13 compared to hU-II may be tentatively ascribed to the presence of a Pen residue which can hinder the reduction of the disulfide bridge. The effect on serum stability of aromatic non-coded amino acid is variable being 10 more stable than P5U while 13 less stable than urantide.

A conformational analysis by solution NMR of the most interesting derivatives 10 and 13 was also carried out. In previous works, we showed that hU-II analogues, which retain high affinity for UT receptor, all possess a type II’ β-hairpin backbone conformation regardless their agonist or antagonist activity, indicating that such backbone conformation is necessary for the UT recognition. Indeed, such backbone conformation is observed also in the novel derivatives (Figure 3) confirming the above outcome. The main conformational difference observed in the structures of peptide 10 (agonist activity) and peptide 13 (antagonist activity) is established in a different orientation of the (3,4-Cl)Phe or (pCN)Phe side chain, respectively. In particular, while in the agonist 10 the (3,4-Cl)Phe⁹ is close to the Lys⁸ side chain (Figures 3a and S4 Online Supporting Information1.1.3), in the antagonist 13 (pCN)Phe⁹ side chain is close to the Val¹¹ side chain and far from the Orn⁸ side chain (Figures 3b and S5 Online Supporting Information1.1.3). This result is in accordance with the one obtained studying constrained analogues of P5U and urantide(See 1.1.1) and with a revision of the conformational preferences of urantide performed using DPC micelles. (See 1.1.2)
In particular, we demonstrated (See 1.1.1) that while the orientation of the Trp7 indole moiety is irrelevant for the agonist/antagonist activity switching, the Tyr9 phenol orientation influences peptide activity. To note that, signals spread of the 1H NMR resonances of both 10 and 13 is better than that observed in the spectra of the published hU-II analogues with less overlapping which led to a higher number of experimental constraints and structure reliability.

CONCLUSIONS

Analogues of P5U(1) and urantide modified at Tyr9 position were developed. Two of them, compounds 6 and 10, showed increased potency compared to the parent superagonist peptide P5U(1). Two urantide analogues, compounds 13 and 15, turned out to be pure antagonists in the rat aorta bioassay likewise parent urantide. Compounds 10 and 13 showed also a good stability in serum proteolytic assay, suggesting that these peptides may be stable enough to give them an additional opportunity in drug delivery. Furthermore, these novel analogues allowed to improve the knowledge on structure- and conformation-activity relationships on UT receptor ligands which can help in the design of improved compounds.

Ultimately, these novel ligands such as the superagonist 9 which is the most potent agonist discovered to date, could be useful pharmacological tools for *in vitro* and in particular *in vivo* studies aimed at clarifying the role played by the U-II/UT system in physiopathological conditions.
1.1.4 An Investigation into the Origin of the Biased Agonism Associated with the Urotensin-II Receptor Activation

RESULTS

Chemistry. Exact molecular weight of the peptide was proved by mass spectrometry and amino acid analysis (Online Supporting Information1.1.4, Table S1).

NMR Analysis. 1D and 2D NMR spectra were collected in water and 200 mM aqueous solution of SDS for URP. Complete 1H NMR chemical shifts assignment was accomplished according to the Wüthrich procedure31 (Online Supporting Information1.1.4, Tables S2 and S3).

Considering the spectra in water solution, many NMR parameters indicate structural flexibility (Online Supporting Information1.1.4, Table S2). For example, H_α chemical shift values are all close ($\Delta\delta<0.1$ ppm) to the corresponding ones in random coil peptides6 apart that of Lys8 (for easy comparison, peptide numbering of URP follows that of hU-II).

In contrast, NMR parameters derived from spectra acquired in SDS micelles are typical of a structured peptide (Online Supporting Information1.1.4, Table S3). Furthermore such parameters indicated that URP structure is similar to other UTR ligands previously studied by us, especially to its paralog hU-II. For comparison purpose, H_α chemical shifts of residues of hU-II constituting the cyclic moiety common to URP are also reported in Table S3 (Online Supporting Information1.1.4). In particular, NOE contacts between H_α-NH_{i+2} of Trp7 and Tyr9 and between NH-NH$_{i+1}$ of Lys8 and Tyr9 indicated the presence of a β-turn. The observation of slowly exchanging NH resonance of residue 9, and low value of the temperature coefficient for this proton ($-\Delta\delta/\Delta T < 3.0$ ppb/K) confirmed this result. A number of long-range NOEs including H_α-NH connectivities between residues 5, 11 and 10, 6 and a NH-NH connectivity between residues 6 and 9 supported the existence of a short stretch of antiparallel β-sheet involving residues 6 and 9.

Also, large values of $^3J_{\text{HN-Ha}}$ coupling constants ($^3J_{\text{HN-Ha}} > 8.0$ Hz) for residues 5, and 9-11 confirm a β-sheet structure (Online Supporting Information1.1.4, Table S3).

Overall data supported the existence of the β-hairpin structure in URP. Furthermore,
many NOE interactions between Trp7 with Lys8 side chains implied that those side chains are close. Also, Tyr9 side chain shows NOE contacts with Lys8, while Phe6 shows contacts with Val11.

Constraints derived from NMR data were used as the input for a structure calculation by simulated annealing. Structure calculations using NMR data from URP spectra acquired in water gave not converging results (backbone RMSD > 2 Å for the 10 lowest energy conformers; data not shown). Differently, using the NMR constraints from SDS micelle solution (Online Supporting Information 1.1.4, Table S4), an ensemble of well-defined structures could be obtained. In fact, the 10 lowest energy structures (Figure 2) showed a backbone RMSD of 0.34 Å and satisfied the NMR-derived constraints (violations smaller than 0.20 Å).

As shown, URP folds into a type II’ β-hairpin structure along residues 5–10. Considering the side chains orientation, Phe6, Trp7, Lys8 and Tyr9 χ_1 angles showed a high preference for g^*, trans, g^+ and g^- rotamers, respectively. URP obtained NMR structure is very similar to those of other UTR ligands previously found by us and, in particular, to that of hU-II (Figure 3).
Figure 3. Stereoview of the superposition of the lowest energy conformer of URP (color code as in Figure 2) and hU-II (carbon atoms in grey). Structures were superimposed using the backbone heavy atoms of residues 5–10.

h-UTR Model and Docking. A new three dimensional models of h-UTR were generated based on the structure of other GPCR, using the I-TASSER server. Six models of h-UTR were generated using I-TASSER server. I-TASSER output also contained top ranks of templates used for the structure prediction. The top template used is the high-resolution crystal structure of human δ-opioid receptor (h-DOR, PDB ID: 4n6h). Other templates used for threading are the crystal structure of mouse μ-opioid receptor (m-MOR, PDB ID: 4dkl) and the crystal structure of a neurotensin receptor 1 mutant (NTSR1, PDB ID: 4buo). The most important score in I-TASSER models is the confidence score (C-score), ranging from −5 to +2. The C-score is computed from the threading alignments for the estimated quality of the models. A C-score > −1.5 implies a model with a correct fold. Model 1 of h-UTR (C-score = 1.56) with higher C-scores was chosen as the best model and was considered for the analyses. The model predictions were judged using the template modelling (TM)-score and root mean-squared difference (rmsd). The TM-score is a measure of the structural similarity between the model and the native structure. A TM-score > +0.5 suggests a model with correct topology. The TM-scores of Model 1 for h-UTR was 0.93 ± 0.06 Å. The expected RMSDs was 3.0 ± 2.2 Å. Additionally, to confirm the reliability of the Model 1, the program PROCHECK was employed. All amino acids in the α-helices were found in the
favored region of the right-handed α-helix in the Ramachandran plot. There were no cis peptide bonds, and there were no bump regions in the calculated h-UTR models. The results reveal that our 3D model for h-UTR is acceptable and of high quality. Worth to note, the selected Model 1 maintain most of the molecular signatures which feature class A GPCR71. For example, in the selected model are present 24 out of the 24 inter-TM contacts of the consensus network found in the GPCR structures. A superposition of h-DOR crystal structure and h-UTR Model1 is shown in Figure S1 (Online Supporting Information1.1.4).

Docking procedures using the program HADDOCK72,73 clustered 198 structures in 2 clusters for both the complexes h-UTR/URP and h-UTR/hU-II. Statistics and energy terms are reported in Table 1. Best scored complexes of h-UTR/URP and h-UTR/hU-II are shown in Figure 4 and 5, respectively.

Table 1: Statistic and energy terms of the calculated complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>Cluster n.</th>
<th>H scorea</th>
<th>Cluster size</th>
<th>RMSDb</th>
<th>VdWc</th>
<th>Eletrd</th>
<th>Desolve</th>
</tr>
</thead>
<tbody>
<tr>
<td>h-UTR/URP</td>
<td>1</td>
<td>-130.1 ± 2.6</td>
<td>191</td>
<td>0.5 ± 0.3</td>
<td>-56.6 ± 3.9</td>
<td>-150.9 ± 21.8</td>
<td>-49.3 ± 3.5</td>
</tr>
<tr>
<td>h-UTR/URP</td>
<td>2</td>
<td>-102.1 ± 2.5</td>
<td>7</td>
<td>0.8 ± 0.0</td>
<td>-50.7 ± 2.8</td>
<td>-166.3 ± 17.7</td>
<td>-28.4 ± 7.5</td>
</tr>
<tr>
<td>h-UTR/hU-II</td>
<td>1</td>
<td>-144.2 ± 2.5</td>
<td>193</td>
<td>1.3 ± 0.0</td>
<td>-56.2 ± 6.5</td>
<td>-230.2 ± 26.2</td>
<td>-48.5 ± 2.5</td>
</tr>
<tr>
<td>h-UTR/hU-II</td>
<td>2</td>
<td>-113.4 ± 13.2</td>
<td>5</td>
<td>1.1 ± 0.0</td>
<td>-56.6 ± 4.0</td>
<td>-210.2 ± 10.4</td>
<td>-24.8 ± 9.8</td>
</tr>
</tbody>
</table>

a HADDOCK score; b RMSD from the overall lowest-energy structure; c Van der Waals energy; d Electrostatic energy; e Desolvation energy. All terms are given in Kcal/mol.
Figure 4. (a) Stereoview of h-UTR model complexed with URP. URP heavy atoms are color coded as in Figure 2. Receptor backbones are represented in azure and labeled. (b) Stereoview of URP within the binding pocket of h-UTR. Hydrogen bonds are represented with dashed lines. Labels of UTR residues involved in previous mutagenesis studies are evidenced in red. For sake of clarity here and throughout the manuscript, the residue numbers of the ligands are reported as apex while those of the receptor are not.
Figure 5. (a) Stereoview of h-UTR model complexed with hU-II. hU-II heavy atoms are color coded as in Figure 2, apart carbon atoms which are in orange. Receptor backbones are represented in azure and labeled. (b) Stereoview of hU-II within the binding pocket of h-UTR. Hydrogen bonds are represented with dashed lines. Labels of UTR residues involved in previous mutagenesis studies are evidenced in red.

DISCUSSION

U-II and URP could exert common as well as distinct actions on cell proliferation, transcriptional activity, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner i.e. selecting a specific UTR conformation (biased agonism). Biased agonism would require specific pockets/interactions within UTR, finalized to select distinct UTR conformations that may discriminate U-II and URP biological activities. It was hypothesized that a different conformation of the cyclic portion of the two peptides, β-turn in U-II vs γ-turn in URP, would cause the selection of different UTR active states, ultimately triggering a slightly different subset of signaling pathways. Hence, we first performed a conformational studies on URP by solution NMR. NMR study was performed both in water and in SDS
micelle solution. NMR-derived structures of URP in SDS solution are shown in Figure 2. Clearly, \(\beta \)-hairpin conformation of the backbone and the side chain cluster of the pharmacophoric residues Trp\(^7\), Lys\(^8\), and Tyr\(^9\), which are distinctive of UTR peptide agonists, are still observable in URP structure. Whereby, URP obtained NMR structure is very similar to those of other UTR ligands previously found by us and, in particular, to that of \(hU\)-II (Figure 3). It comes out that divergent actions of URP and \(hU\)-II cannot derive from different conformation of the ligands as hypothesized by Chatenet et al.\(^{74}\) That hypothesis was inspired by the comparison of the NMR structure of \(hU\)-II obtained by us in SDS micelle solution\(^28\) and NMR structure of URP obtained by Chatenet et al. in water solution.\(^19\) The last structure is characterized by an inverse \(\gamma \)-turn centered on the Trp-Lys-Tyr sequence as opposite to the \(\beta \)-turn hosted on the corresponding residues of \(hU\)-II. An inverse \(\gamma \)-turn centered on the Trp-Lys-Tyr is compatible with the data obtained by us in water solution, namely with a NOE contact between \(H_\alpha-NH_{i+2} \) of Trp\(^7\) and Tyr\(^9\). However, structure calculations using NMR data from URP spectra acquired in water gave not converging results (data not shown) probably due to a high structural flexibility of the peptide in plain buffer.

In order to determine whether the divergent actions of URP and \(hU\)-II derive from different interaction with the receptor, NMR derived structures of URP and \(hU\)-II were docked within a model of \(h\)-UTR built by homology using the I-Tasser online server.\(^{63,64,65}\) We have already built an \(h\)-UTR model.\(^{43}\) It was based on the rhodopsin crystal structure.\(^{44}\) The current model is based mainly on the \(h\)-DOR crystal structure.\(^{66}\) Since the last is a diffusible ligand (peptide) binding GPCR, which share higher sequence homology with \(h\)-UTR (TM sequence identities: 34.5% to \(h\)-DOR vs 21.8% to Rho), hence it can be considered a more reliable model than the previous one. In the docking procedures, we hypothesized that peptides bind in the extracellular side of the TM bundle, as observed for all the ligands of class A GPCR\(^{71}\) and confirmed by mutagenesis studies.\(^{75,76,77}\) In this context, only the side chains of residues engaged in orthosteric ligand/GPCR binding in complexes with known crystal structure were considered flexible in the docking procedure. In particular, we took in account \(h\)-DOR/naltrindole (PDB ID: 4n6h), \(m\)-MOR/\(\beta \)-funaltrexamine (PDB ID: 4dkl), and NTSR1/neurotensin (PDB ID: 4buo) complexes since they were used as templates by the unbiased homology building procedure of I-Tasser (see above). A superposition of
the putative binding site of h-UTR-model and h-DOR/naltrindole complex and is shown in Figure S2 (Online Supporting Information 1.1.4) as an example.

Best poses of complexes of h-UTR/URP and h-UTR/hU-II are shown in Figures 4 and 5, respectively. For both peptides, the predicted binding site is located among TM3/TM7, EL2, and EL3. The β-hairpin is aligned with the receptor helical axis, with the N- and C- termina pointing toward the extracellular side. Main interactions between the peptides and UTR are shown in Figure 4b for h-UTR/URP and 5b for h-UTR/hU-II. These findings are in accordance with previous mutagenesis results. In fact, many of the receptor residues, involved in the peptides binding in our model, face the binding site pocket of the UT receptor as demonstrated using the substituted-cysteine accessibility method. For some others, the replacement with a cysteine residue caused a complete loss of affinity for the ligands. All these residues are evidenced in Figures 4b-5b. Furthermore, both hU-II and URP interact with the extracellular loops (EL’s) but EL1 in accordance with experimental data. Interestingly, comparing our complex model with the peptide-bound GPCR crystal structures solved to date (NTSR1/neurotensin and CXCR4/CVX15, it can be argued that hU-II (and URP, data not shown) binds to the h-UTR in a similar fashion as neurotensin to NTSR1 and CVX15 to CXCR4 (Figure S3, Online Supporting Information 1.1.4).

While the two peptides hU-II and URP share similar interactions with the receptor concerning the cyclic region, N-terminal region of hU-II establishes large interactions with extracellular loops EL2 of h-UTR. In particular, charge reinforced hydrogen bonds between Glu¹ and Lys196 and between Asp⁴ and Arg193 are observable in hU-II/h-UTR complex (Figure 5). Those interactions cannot be present in URP/h-UTR complex. In agreement with our model, dissociation kinetics experiments revealed a putative interaction between UTR and the glutamic residue at position 1 of hU-II. Indeed, it was observed that the replacement of this residue by an alanine, i.e. [Ala¹]hU-II, caused an increase in the dissociation rate of hU-II but not URP.

CONCLUSIONS

We demonstrated that distinct pathophysiological roles for URP and hU-II are not related to different conformations of the two peptides, but they likely arise from their
different interactions with the UT receptor. Those interactions can stabilize different active conformations of UTR which, in turn, can select specific subset of secondary messengers depending on the ligand-induced adopted conformation.
1.2 NOVEL ANALGESIC PEPTIDES WITH IMPROVED ANTINOCICEPTIVE PROPERTIES

INTRODUCTION

Since the discovery of enkephalins in 197581 thousands of opioid analogs have been synthesized to understand the relationship between their conformation and bioactivity, and to improve their pharmacological profile. Leu-enkephalin and Metenkephalin are involved in many physiological processes, their roles in behavior, neuroendocrinology and pain transmission being well documented.82,83 The use of enkephalins in pain treatment has been limited by the lack of metabolic stability and bioavailability. Several chemical approaches, such as the incorporation of D-amino acids, unusual amino acids,84 cyclic moieties85 or cyclization86 of peptides have resulted in more stable enkephalin analogues. In the process of searching for new opioid analgesics with two active elements in one molecule, a dimeric enkephalin analog – biphalin, was synthesized.87 Biphalin has been found to exhibit unique properties as it is 257 and 6.7 times more potent than morphine (a reference μ-agonist) and etorphine (a ultrapotent opioid agonist), respectively, in eliciting antinociception when administrated intracerebroventricularly.88

Biphalin presents a unique structure based on two enkephalin-like branch (H- Tyr- D-Ala-Gly-Phe, 1) linked by a hydrazine moiety (Figure 1).87,89 Its noticeable bioactivity is due to the peculiar structure, which has the ability to match the topographical requirements for both μ and δ opioid receptors.90,91,92 Furthermore, this opioid octapeptide induces less physical dependence and toxicities than other opioids.93,94,95 Unfortunately, structural flexibility, scarce metabolic and chemical stability, low bioavailability, and distribution represent some of the major problems concerning the use of native opioid peptides as drugs when administered \textit{in vivo}.96 Different approaches have been explored in an effort to overcome these limits, including the use of D-amino acids, β-homoamino acids, other types of nonproteinogenic residues, cyclization, and their combinations.97,98,99,100 Particularly appealing is the cyclization of peptides, which has been demonstrated to be a useful approach for developing diagnostic and therapeutic peptidic and peptidomimetic
drugs. Cystine or penicillamine containing cyclic peptides are often obtained by substituting nonbonding residues in the linear native peptide sequence with two Cys or Pen residues, followed by oxidation of the thiol groups.101,102,103 If compared with the corresponding linear peptides, cyclic derivatives have shown a great improvement of the conformational rigidity, premising meaningful conformational studies to determining the bioactive conformation. Cyclic peptides are blocked to assume the best conformation to interact with their specific receptors, thus the loss of internal rotational entropy compared to the linear analogues upon binding should be smaller.104,105 Cyclic peptides offer advantages over linear peptides in terms of (i) stability; (ii) conformational rigidity; and (iii) suited templates for orally available small molecule.92,101,102,103 In the last decades we extensively studied several linear and cyclic biphalfin analogues,106,107,108 and in the present study, we pointed our attention to the design of two novel cyclic biphalfin-like structures, as part of our program in search for new antinociceptive agents. This work reports the synthesis, the \textit{in vitro} and \textit{in vivo} biological activity, and the conformational analysis of two novel cyclic biphalfin analogues 9 and 10 (Figure 1).

\begin{center}
\textbf{Biphalfin:} H-Tyr-D-Ala-Gly-Phe-NH-NH-Phe-Gly-D-Ala-Tyr-H
\end{center}

\begin{center}
9: H-Tyr-D-Pen-Gly-Phe-NH-NH-Phe-Gly-D-Pen-Tyr-H \\
\hspace{1cm} S \quad S
\end{center}

\begin{center}
10: H-Tyr-L-Pen-Gly-Phe-NH-NH-Phe-Gly-L-Pen-Tyr-H \\
\hspace{1cm} S \quad S
\end{center}

\textbf{Figure 1.} Structures of biphalfin and derivatives 9 and 10.
RESULTS AND DISCUSSION

We initiated this research with the aim to optimize the previous reported first cyclic model of biphalin containing a disulfide bridge. Since advantages of using penicillamine residues in place of cysteine were already shown, especially in the field of DPDPE and its derivatives,101,109,110,111 the original design of cyclic biphalin analogues was modified accordingly. Thus, two novel cyclic biphalin analogues (9 and 10) were developed (Figure 1), and their in vitro biological activities were tested. The analgesic activity of the most active model 9 was further investigated by in vivo studies. The cyclic final products 9 and 10 were synthesized starting from the previously reported tetrapeptide 2-TFA-(H-Gly-Phe-NH–2) by symmetrically coupling the remaining two amino acids (See Scheme 1).95 It is worth noting that no protecting group was adopted for the side chain of the penicillamine residues, since the thiol groups were stable in the condition of the reactions.

Cyclization was obtained by the oxidation of the thiol group of the D-Pen or L-Pen residues by a treatment of the peptides 3 and 4 with a mixture of MeOH/I\textsubscript{2}. The resultant cyclic intermediate products 5 and 6 were deprotected in standard conditions by TFA/DCM and used for the next coupling without further purification to give the final Boc-protected products 7 and 8. Products 9 and 10 were purified as TFA salts.

To determine the affinity to the \(\mu\)-opioid receptor (MOR),112,113 the \(\delta\)-opioid receptor (DOR), and to the \(\kappa\)-opioid receptor (KOR) of compounds 9 and 10, tritiated
opioid peptides DAMGO(\[^3\text{H}\]Ile\(^{5,6}\)-deltorphin II, and U69593 (selective agonists for MOR, DOR, and KOR, respectively) were used. K\textsubscript{i} values are shown in Table 1 (binding curves are shown in Figure S1, Online Supporting Information). Analogue 9 has a very good µ and δ opioid receptor affinity, showing comparable K\textsubscript{i} values with respect to biphalin for MOR (K\textsubscript{i} = 1.9 nM), DOR (K\textsubscript{i} = 5.2nM), and KOR (K\textsubscript{i} = 260 nM). Analogue 10 shows very low affinity for all opioid receptors.

Table 1. Binding affinity and in vitro bioactivity for compounds 9 and 10.

<table>
<thead>
<tr>
<th>comp</th>
<th>Binding Affinity,(^a) K\textsubscript{i}(nM)(^b)</th>
<th>δ</th>
<th>µ</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td>1.8 ± 0.5</td>
<td>1.0 ± 0.1</td>
<td>5.7 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>Bph</td>
<td>15 ± 2.3</td>
<td>2.6 ± 0.7</td>
<td>283.1 ± 182.3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.2 ± 0.5</td>
<td>1.9 ± 0.2</td>
<td>257.6 ± 25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>amb.</td>
<td>amb.</td>
<td>amb.</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Displacement of \[^3\text{H}\]Ile\(^{5,6}\)deltorphin II (δ-ligand), \[^3\text{H}\]DAMGO (μ-ligand) and \[^3\text{H}\]U69593 (κ-ligand) from binding sites on rat brain membrane. \(^b\) ± S.E.M. \(^c\) The control was the appropriate opioid receptor specific ligand. amb.: ambiguous fitting, since the compound can inhibit specific receptor binding significantly only in the highest concentration.

Isolated tissue based functional assays were also performed on guinea pig ileum/longitudinal muscle myenteric plexus (GPI) and mouse vas deferens (MVD) (Table 2).\(^{114,115,116}\) While compound 9 was potent in inhibiting muscle contraction both in MVD (expressing DOR) and in GPI (expressing MOR) assays, analogue 10 showed activity only in the micromolar range. These data are coherent with those obtained from the binding assays. The ability of 9 and 10 to stimulate the activation of G-proteins associated with the opioid receptors has been evaluated by \[^{35}\text{S}\]GTP\textsubscript{γ}S binding assay (Table 2-3 and Figure S2, Online Supporting Information).\(^{117,118,119,120}\)

Analogue 9 has a similar µ and δ opioid receptor activation profile as specific opioid ligands (DAMGO and Ile\(^{5,6}\) deltorphin II), unlike the κ opioid receptor. Furthermore, compound 9 has a significantly higher efficacy than biphalin in activating MOR. Interestingly, its efficacy (E\textsubscript{max}) on MOR is also higher than that of the cyclic Cys derivatives.\(^{106,107,108}\) According to other in vitro assays, compound 10 shows a lower activity for all receptors. Overall in vitro results clearly suggest that D-residues in position 2,2’ are crucial for opioid receptor affinity, which is in accordance with our previous SAR.\(^{106,107,108}\) Thus, ligand 10, which possesses a disulfide bridge between L -
penicillamines displays a remarkable loss of activity when compared to 9 and biphalin, displaying reduced binding affinities for DOR and MOR, as well as for all the functional activities in the \([^{35}S]GTP\gamma S\) binding and the functional assays.

Table 2. \([^{35}S]GTP\gamma S\) binding (G-protein activation) assays.

<table>
<thead>
<tr>
<th>comp</th>
<th>(E_{\text{max}}) (%)</th>
<th>(EC_{50}) (nM)</th>
<th>(E_{\text{max}}) (%)</th>
<th>(EC_{50}) (nM)</th>
<th>(E_{\text{max}}) (%)</th>
<th>(EC_{50}) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td>142.6 ± 1.4</td>
<td>7.7 ± 1.9</td>
<td>465.2 ± 7.7</td>
<td>81 ± 12</td>
<td>202 ± 3.3</td>
<td>7.7 ± 1.8</td>
</tr>
<tr>
<td>Bph</td>
<td>219.6 ± 5.7</td>
<td>90.5 ± 25</td>
<td>178.2 ± 3.6</td>
<td>12 ± 4.6</td>
<td>108.9 ± 4.1</td>
<td>amb.</td>
</tr>
<tr>
<td>9</td>
<td>149.5 ± 2.3</td>
<td>7.1 ± 1.7</td>
<td>474.5 ± 4.1</td>
<td>76.2 ± 7.4</td>
<td>126.8 ± 4.4</td>
<td>480 ± 385</td>
</tr>
<tr>
<td>10</td>
<td>142.6 ± 2.8</td>
<td>360 ± 121</td>
<td>162.2 ± 3.2</td>
<td>230 ± 82</td>
<td>124.5 ± 2.7</td>
<td>205.1 ± 137</td>
</tr>
</tbody>
</table>

\(^a\) Net total bound/basal binding x 100 ± S.E.M. \(^b\) ± S.E.M.

Table 3. \([^{35}S]GTP\gamma S\) functional assays.

<table>
<thead>
<tr>
<th>comp</th>
<th>Bioassay, (IC_{50}) (nM)</th>
<th>MVD (δ)</th>
<th>GPI (μ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bph</td>
<td>27 ± 15 (^e)</td>
<td>8.8 ± 0.3 (^e)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.2 ± 0.8</td>
<td>21 ± 4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>21% at 1 mM</td>
<td>4% at 1 mM</td>
<td></td>
</tr>
</tbody>
</table>

\(^e\) Data according to Ref.\(^{107,108,109}\). amb.: ambiguous fitting, since the compound did not stimulate the receptor above basal activity significantly.

Product 9 was also tested in vivo for its antinociceptive activity. In the “hot plate” and “tail flick” tests, analogue 9 produced about 95% of the MPE 15 min after i.c.v. administration. The maximum effect was obtained 15–30 min after drug injection, and minimal decrease was observed for the next 30 min in both in vivo models (Figure 2). Product 9 showed an activity several times higher than morphine after i.c.v. administration. Following i.v. administration (“hot plate” and “tail-flick” tests), compound 9 displayed a greater and longer lasting antinociceptive effect than biphalin, thus suggesting a likely improvement of the pharmacokinetic parameters if compared to biphalin, in accordance with the cyclization strategy.\(^{121,122}\) Also, the increased efficacy of 9 at the MOR with respect to biphalin should play a role in this antinociceptive effect. For detailed experimental procedures\(^{123,124}\) and Online Supporting Information1.2. The bioactivity of 9 is still lower than morphine following
i.v. administration probably due to a reduced blood–brain barrier penetration of \textit{9} compared to morphine.

\textbf{Figure 2.} Antinociceptive results, reported as maximum possible effect (MPE), of Hot Plate and Tail-Flick \textit{in vivo} bioassays for compound \textit{9}, biphalin and morphine sulphate. Compounds were injected i.c.v. (A&B) at a dose of 0.1 nmol/rat, and systemic i.v. administration (C&D) at a dose of 1500 nmol/Kg. The data represent the mean ± S.E.M. Statistical significance was assumed for \(P<0.05\). *\(P<0.05\) and ***\(P<0.001\) vs vehicle-treated animals; \(P<0.05\) and **\(P<0.01\) vs biphalin-treated animals. N=8-10.

To explain the activity differences between \textit{9} and \textit{10}, a conformational analysis of the two analogues was carried out by solution NMR (\textit{Online Supporting Information1.2}, \textit{Tables S1 – S5}). Dodecylphosphocoline (DPC) micelle solution was used to mimic a membrane environment considering that opioid peptides interact with membrane receptors. \textit{41,49} Using the NMR data as input, structure calculations by restrained simulated annealing gave the conformers shown in \textit{Figure 3}. More details are reported in the \textit{Supporting Information}. Both peptides \textit{9} and \textit{10} show a well-defined structure encompassing residues 1–4 (backbone root-mean-square deviation values are 0.27 and 0.21 Å, respectively). A \(\gamma\)–turn centered on Gly3 is seen in peptide \textit{9} (\textit{Figure 3A-B} and \textit{Table S5}, \textit{Online Supporting Information1.2}). As expected from the NOE cross-peaks between the aromatic rings and the methyl groups of D-Pen2 (\textit{Figure S3}, \textit{Online Supporting Information1.2}), a sandwich-like \(\pi\)-CH3–\(\pi\) geometry of the signal sequence of the peptides was observed. Peptide \textit{9} has similar activity profile of the linear parent biphalin (MOR and DOR agonist) and different from DPDPE, which
inspired the D-Pen–D-Pen bridge (selective DOR agonist).101 To explain peptide 9’s lack of μ/δ selectivity, we considered the distances between pharmacophoric points obtained by restrained molecular dynamics (Online Figure S4, \textit{Online Supporting Information}1.2). Indeed, these distances are compatible with both μ and δ opioid receptors.125,126 In fact, considering μ -selective peptides, the distances between the aromatic rings of Tyr1 and Phe4 should be in the range 10–13 Å,125 while the range characteristic for peptide and nonpeptide δ–selective compounds is about 7 Å. We found this distance ranging between 6 and 12 Å in peptide 9 (Online Figure S4C, Supporting Information) thus fitting both the pharmacophores. In contrast, κ-receptor agonists require a shorter Tyr1 and Phe4 distance (about 5 Å) and a g– orientation of the Tyr1 side chain.127 Those criteria are both unsatisfied by peptide 9. Finally, the inactivity of peptide 10 can be tentatively explained by a comparison of the peptide structures (\textit{Figure 3C}). As observed, while the three pharmacophoric points (i.e., terminal amino group, center of the Tyr phenol, and center of the Phe phenyl ring) overlap very efficiently, the backbone atoms of residues 2–4 are not overlapping and the palindromic fragments (residues 1′–4′) point in opposite directions. Those non fitting regions probably form incompatible interactions with the receptors in the case of peptide 10 thus accounting for its lack of activity.
Figure 3. Superposition of the ten lowest energy conformers of 9 (A), 10 (B). Structure models were superimposed using the backbone heavy atoms of residues 1-4. Heavy atoms have different colors (carbon: green, nitrogen: blue, oxygen: red, sulfur: yellow). Hydrogen atoms are hidden for a better view. (C) Superposition of peptides 9 (green) and 10 (yellow) using the three pharmacophoric points, i.e. terminal amino group (Nterm), center of the Tyr phenol (Y) and center of the Phe phenyl ring (F).

CONCLUSIONS

In conclusion, we have successfully developed two novel cyclic biphalin analogues. Compound 9, containing a D–Pen residue at position 2,2’, showed improved *in vitro* and *in vivo* activity compared to biphalin. According to previous SARs, compound 10, containing L-Pen, was virtually inactive. Conformational analysis pointed to a different 3D structure of the two analogues explaining their activity profiles. Further studies on the promising novel compound 9 using additional animal models are currently underway.
1.3 GRK2 INHIBITORS

INTRODUCTION

The G protein-coupled receptor kinase family (GRKs) constitutes a group of seven protein kinases that specifically recognize and phosphorylate agonist-activated G protein coupled receptors (GPCRs). GRKs-mediated receptor phosphorylation triggers the binding of arrestin proteins that uncouple receptors from G proteins leading to rapid desensitization. As a result of β-arrestin binding, phosphorylated receptors are also targeted for clathrin-mediated endocytosis, a process that classically serves to re-sensitize and recycle receptors back to the plasma membrane. In addition, both arrestins and GRKs participate in signal propagation, cooperating in the assembly of macromolecular complexes in the receptor environment and interacting with different components of signal transduction. The seven mammalian GRKs family can be divided into three subfamilies based on sequence and functional similarity: visual GRK subfamily (GRK1 and GRK7), the β-adrenergic receptor kinase (GRK2/GRK3), and the GRK4 subfamily (GRK4, GRK5 and GRK6). All GRKs share a common topological structure that includes an N-terminal regulator of G protein signalling homology domain (RH), a central kinase catalytic domain, and a C-terminal region containing a pleckstrin homology domain (PH). The best-characterized member of this family is the ubiquitously expressed GRK2, also known as β-adrenergic receptor kinase 1 (β-ARK1). In the past 20 years, GRK2 emerges as a key node in signal transduction pathway playing a major role in the agonist-specific desensitization of several metabolism-related GPCRs, including the β-adrenergic, melanocortin, endothelin, and glucose-dependent insulinotropic polypeptide receptors. GRK2 can also phosphorylate other membrane receptors as well as non receptor substrates acting as effector in the regulation of diverse cellular functions from cardiovascular and immune cell functionality to migration and cell cycle progression. Furthermore, GRK2 may also contribute to modulate cell responses in a phosphorylation-independent manner thank to its ability to interact with a plethora of proteins involved in signaling and trafficking. All these functional interactions predicts that alterations in GRK2
levels and/or activity may have important effects in human disease,136,145 as those reported in several relevant cardiovascular,146,147,148,149,150,151 inflammatory,152 or cancer pathologies.136,153 In particular, GRK2 plays a major role in the agonist-specific desensitization of β-adrenergic receptors (βAR), and therefore in the signal transduction pathway of physiological relevance in the cardiovascular system136,138,154. Alterations in GRK2 levels and/or activity may have important effects in several cardiovascular pathologies, such as myocardial ischemia, hypertrophy, and hypertension, in which it is up regulated155,156,157,158. In heart failure (HF), the relationship with increased cardiac GRK2 protein levels has been established in animal models and in patients149,159,160,161,162. These data underline the importance of GRK2 levels as a marker of predisposition to cardiac dysfunction163,164 and support the idea that GRK2 offers a potential therapeutic target136,165,166. In fact, the inhibition of GRK2 activity by overexpression of GRK2ct (also termed β-ARKct), a construct that inhibits endogenous GRK2, has provided a successful approach for restoring cardiac function in mouse models with heart failure167. Nevertheless, β-ARKct failed to deliver to the clinical scenario due to its dimension (≈ 200 aminoacids) and its need of genetic tools to express in the target tissue (adenovirus). Other inhibitors of GRK2 activity are currently available, even if they are characterized by low sensitivity and specificity168,169,170,171. Strategies to selectively inhibit the GRK2 activity have been attempted using shorter peptides172,173,174 or RNA aptamers175. Myristyl or lauryl glycine derivatives of short peptides, such as KRX-683\textsubscript{107} and KRX-683\textsubscript{124} (Table 1), proved to be potent inhibitors of the kinase and possess hypoglycemic effect in animal models of Type 2 diabetes.174 The peptide fragments of these compounds closely resemble the catalytic fragment 383-390 KLLRGHSP of GRK2 (1). Several crystallographic and mutational studies, have pointed to HJ-αG residues as being involved in substrate binding and in binding to upstream activators.172,173 Based on these findings, this fragment and, more concretely, compounds 2 and 3 appeared to be valuable starting points for the development of novel specific and more potent GRK2 inhibitors (Table 1).

First, by Ala-scan analysis and conformational study by NMR we described the structure-activity relationship (SAR) of peptides 2 and 3.
Furthermore, these compounds 2 and 3 were valuable starting points for the development of novel cyclic peptides GRK2 inhibitors. In fact, conformational analysis of peptides 2 and 3 clearly indicated that their structures are very similar to the X-ray structure of the fragment encompassing the HJ loop of the GRK2, indicating that the isolated peptide could keep the 3D structure of the protein segment. Based on these results, we designed, synthesized, and evaluated the GRK2 inhibitor activities of a small libraries of cyclic peptides. In addition, we discussed the biological effects of GRK2 inhibition on β adrenergic receptor signaling for the most potent derivative characterized in this work.

Table 1. Different peptide fragments considered in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRX-683_{107}</td>
<td>G L L R r H S</td>
</tr>
<tr>
<td>KRX-683_{124}</td>
<td>G L L R r H S I</td>
</tr>
<tr>
<td>383-390 HJ loop</td>
<td>K L L R G H S P</td>
</tr>
<tr>
<td>2</td>
<td>G L L R r H S</td>
</tr>
<tr>
<td>3</td>
<td>G L L R r H S I</td>
</tr>
</tbody>
</table>
1.3.1 SAR study and conformational analysis of novel peptides GRK2 inhibitors

RESULTS

Synthesis and biological activity. In a first classical approach, a series of L-Ala-substituted analogues of peptides 2 and 3, were synthesized in order to evaluate the amino acid side chains involved in the interaction with the target molecule (4-16, Table 2). To verify the effect of chirality, the D-Arg at position 5 was also replaced by D-Ala (17 and 18). Peptides 2-18 were synthesized by standard 9-fluorenylmethoxy carbonyl (Fmoc) chemistry using an appropriate orthogonal protection strategy. The effectiveness of these peptides to inhibit GRK2 kinase activity was assessed by in vitro assay using GRK2 purified protein and the G protein–coupled receptor rod outer segments (ROS) as a substrate (Table 2) in presence of [γ-32P]-adenosine triphosphate (ATP). Peptide 2 causes a 47.6±5.5% inhibition of GRK2 activity on ROS; within the sequence of 2, the amino acids Leu2, Leu3, and D-Arg5 are relevant for the inhibitory properties of the reference peptide. Also C-terminal residues proved to be important, since Ala replacement of His6 and Ser7 led to about three and two-fold reduction of the inhibitor activity. As in the original sequence the amino acid in position 5 is a D-enantiomer (D-Arg), we also substitute this amino acid with a D-Ala (peptide 17) in order to discern the real role of molecular orientation from the effects of the amino acid side chain on the inhibitory activity. We found that indeed, substitution with a neutral D amino acid such as alanine maintained the inhibitory properties of the resulting peptide 17 (55.5±4.7%). A similar approach was assessed for peptide 3. First of all, 3 causes a 49.6±6.3% decrease in GRK2 activity. Ala substitution in position Leu2, Leu3 and Arg4 (peptides 10, 11, and 12) does not change the inhibitory property of the parent peptide 2. On the contrary, changes of residues D-Arg5, His6, Ser7, and Ile8 lead to compounds (13, 14, 15, and 16) that are devoid of inhibitory activity. Similarly to peptide 2, the reinstallation of D- chirality in residue 5 restores the inhibitory properties of resulting peptide 18 on GRK2 (63.2±9.7%) which showed the highest GRK2 inhibition potency of the series.
To test the specificity of the peptides for GRK2 rather than for the substrate, we also repeated the same experiment using as substrate Myelin Basic Protein (MBP). With this substrate, we observed a similar inhibition pattern as for ROS (Table 2).

Next, to verify whether these peptides selectively inhibit GRK2, we repeated the activity assay substituting GRK5 to GRK2 purified protein. GRK2 selective inhibition is suggested by the evidence that all peptides don’t affect GRK5 kinase activity on rhodopsin or MBP phosphorylation levels (Table 2).

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>Inhibition (%±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>GLLrHS</td>
<td>47.6±5.5</td>
</tr>
<tr>
<td>4</td>
<td>GALrHS</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>GLArHS</td>
<td><5</td>
</tr>
<tr>
<td>6</td>
<td>GLLaHS</td>
<td>42.2±9.7</td>
</tr>
<tr>
<td>7</td>
<td>GLLAHS</td>
<td><5</td>
</tr>
<tr>
<td>8</td>
<td>GLLrAS</td>
<td>13.5±6.4</td>
</tr>
<tr>
<td>9</td>
<td>GLLrHA</td>
<td>22.3±5.4</td>
</tr>
<tr>
<td>3</td>
<td>GLLrHSI</td>
<td>49.6±6.3</td>
</tr>
<tr>
<td>10</td>
<td>GALrHSI</td>
<td>45.7±12.3</td>
</tr>
<tr>
<td>11</td>
<td>GLArHSI</td>
<td>46.6±12.3</td>
</tr>
<tr>
<td>12</td>
<td>GLLrHSI</td>
<td>45.7±6.2</td>
</tr>
<tr>
<td>13</td>
<td>GLLaHSI</td>
<td><5</td>
</tr>
<tr>
<td>14</td>
<td>GLLaASI</td>
<td><5</td>
</tr>
<tr>
<td>15</td>
<td>GLLrHAi</td>
<td><5</td>
</tr>
<tr>
<td>16</td>
<td>GLLrHSA</td>
<td><5</td>
</tr>
<tr>
<td>17</td>
<td>GLLaHS</td>
<td>55.5±4.7</td>
</tr>
<tr>
<td>18</td>
<td>GLLrHSI</td>
<td>63.2±9.7</td>
</tr>
</tbody>
</table>

*a*Data represent mean values (±SD) of three independent determinations. *b*GRK2 purified protein activity (50 ng) was tested on rod outer segments (ROS) in presence or absence of 1μM inhibitors. *c*GRK2 purified protein activity (50 ng) was tested on Myelin Basic Protein (MBP) in presence or absence of 1μM inhibitors.

To verify the effectiveness of GRK2 inhibition in a cellular contest, we tested the effects of GRK2 inhibitors in cells on the cyclic adenosine monophosphate (cAMP) production. In Hek293 cells stably overexpressing the β₂ adrenergic receptor (β₂AR), 139
incubation with compounds 2, 3, and 18 resulted in a slight increment of basal and βAR stimulated cAMP production in HEK-293 cells (Figure 1). Interestingly, the lead compound 2 results to be the most effective in this assay.

![Figure 1. cAMP production in HEK293](image)

Figure 1. cAMP production in HEK-293 cells treated with 2, 3 and 18 as determined by enzyme immunoassay. ISO: Isoproterenol. Each data point represents the mean±SEM of 3 independent experiments; * = p<0.0001 vs Ctr; # = p<0.01 vs Iso.

NMR Analysis of selected peptides. NMR analysis of peptides 2, 3, 17, and 18 was performed in water and dodecylphosphocholine (DPC) micelle solutions. Almost complete 1H NMR chemical shift assignments (**Online Supporting Information 1.3.1, Tables S1-S8**) were achieved according to the Wüthrich procedure. Considering the spectra in water solution, all NMR parameters indicated structural flexibility (**Online Supporting Information 1.3.1, Tables S1-S4**). For example, no standard α-helix or β-sheet structure from Hα CSI (chemical shift index) values and no unambiguous medium- or long-range backbone NOE connectivities were found in the NOESY spectrum of the peptides. Only strong $d_{\alpha N}(i, i+1)$ NOEs, which are generally observed in random structures, appeared along the entire length of the peptides. In contrast, several NMR parameters indicate that peptides are better structured in dodecylphosphocholine (DPC) solution and that they share very similar conformations. In particular, Hα resonances (**Online Supporting Information 1.3.1, Tables S5-S8**), and many NOE signals clearly point to a folded structure encompassing the N-terminal residues (1-5) and extended conformation of residues 6-8 (6-7 for 2 and 17). Non-trivial medium range NOE interactions, among which $d_{\alpha N}(i, i+2)$ 1-3, 2-4, 3-5, $d_{\alpha N}(i, i+2)$
2-4, and $d_{\alpha N}(i, i+3)$ 1-4, are observed pointing to a turn-helical structure along residues 1-5. Low temperature coefficient of the backbone amide proton of residue 4 (-$\Delta \delta/\Delta T \sim 4$ ppb/K) confirms this hypothesis. C-terminal region is in extended conformation as indicated by the strong $d_{\alpha N}(i, i+1)$ NOEs and large $^3J_{HN-Ha}$ coupling constants. Finally, NOE contacts between Arg4 and His6 side chains indicate that these are spatially close.

NOE distance restraints obtained for peptide 18 in DPC micelles (Online Supporting Information 1.3.1, Table S9) were used as the input data for a simulated annealing structure calculation using the program DYANA. Superposition of the 10 lowest energy conformers of 18 is shown in Figure 2. The root mean square deviation (RMSD) to the average structure for backbone heavy atoms is 0.31 Å. Since a β-turn may be defined as four consecutive non-helical residues that have a $C_\alpha(i)-C_\alpha(i+3)$ distance < 7 Å, two β-turns that involve Gly1 to Arg4 and Leu2 to D-Ala5, can be identified.

The first β-turn structure is stabilized by a hydrogen bond between the carbonyl oxygen of Gly1 and the amide hydrogen of Arg4. Residues 6 and 7 are in extended conformations, residue 8 is more flexible. The side chain are also well defined, the RMSD for all heavy atoms is 0.74 Å. The side chains of Arg4 and His6 are close and form a positively charged hydrophilic surface while Leu2 and Leu3 side chains establish a hydrophobic surface pointing in the opposite direction. Interestingly, the sequential $d_{\alpha N}(i, i+1)$ NOEs between Leu2-Leu3, and Leu3-Arg4 indicative of extended/random conformations are consistently violated by the turn structures (violations of about 0.20 Å). It can be hypothesized the existence of a conformational equilibrium between the turns and less defined structures for these peptides.
DISCUSSION

In the present study, we performed a SAR study and a NMR conformational analysis of peptides 2 and 3 which are able to selectively inhibit GRK2.17a Ala-scan results (Table 2) indicated that, while C-terminal residues are important for the activity of both peptides, N-terminal residues Leu2 and Leu3 are important only for the shorter peptide 2. Since the conformational preferences in solution of the two peptides are very similar, a possible explanation of the different SAR observed is that hydrophobic interaction of residues Leu2 and Leu3 with the target are borrowed by Ile8 in peptide 3 (Ile8 is lacking in peptide 2). Arg4 side chain is of little importance for the activity of both the peptides, in contrast, replacement of Arg5 with Ala completely abolishes the inhibitory activity. Since in the original sequence, the amino acid in position 5 is a D-enantiomer, D-Arg5 was substituted by D-Ala, in order to discern the real role of molecular orientation from the effects of the amino acid side chain on the inhibitory activity. We found that substitution with a neutral D amino acid such as alanine does not change the inhibitory properties of the peptides 2 and 3, thus suggesting an important role for the chirality of aminoacid 5 rather than for the side chain. Interestingly, both side chains of Arg4 and D-Arg5 can be replaced by a neutral amino
acid when the chirality is retained. Indeed, peptide 18 (D-Ala derivative of peptide 3) showed the highest GRK2 inhibition potency of the series. These peptides retain specificity for the GRK2 since they were equally effective on GRK2 using two different substrates. Also, they keep selectivity since they are ineffective in inhibition GRK5 activity on the same substrates.

Peptide 2, 3, 18 ability to increment basal and βAR stimulated cAMP production in HEK-293 cells is consistent with their effective inhibition of GRK2 (Figure 1). However, the low entity of those increments is likely due to the difficulty of the peptides to cross the cell membrane. The slight higher activity of peptide 3 compared to 2 roughly parallels its higher GRK2 inhibition potency. Differently, slight higher activity of peptide 3 compared to 18 would indicate that, even if D-Arg5 is dispensable for GRK2 interaction (Table 2), it can improve the permeating properties of the peptide. NMR analysis of peptides 2, 3, 17, and 18 was performed in water and DPC micelle solutions. The last is a membrane mimetic medium and was chosen since GRK2 phosphorylation of GPCRs occurs close to the plasma membrane. Peptides conformational preferences are similar since they have similar diagnostic NMR parameters. Peptides structures in DPC micelles are characterized by two β-turns that involve Gly1 to Arg4 and Leu2 to D-Ala5 (or D-Arg5), followed by a short extended region encompassing residues 6 and 7 (Figure 2). The NMR structures of the peptides in DPC are very similar to the X-ray structure of the fragment encompassing the HJ loop of the GRK2 (pdb entry 3CIK) which, indeed, was the starting point for the design of the peptides 12 and 3.

Figure 3 shows the superposition of the NMR structure of 18 with that of the fragment 383-390 of the GRK2. Equivalent backbone atoms of 18 and GRK2 superimpose to an RMSD of 1.00 Å. It can be also observed the good overlapping of the unchanged side chains which occupies similar space regions. Therefore, the isolated peptide keeps the 3D structure of the protein segment and likely competes with the activation functions of this loop.

This result could explain the selectivity observed for these peptides toward GRK2 compared to GRK5. In fact, GRK5 HJ loop corresponding sequence is MIEGQS (CLUSTAL Omega alignment; www.e-bi.ac.uk/Tools/msa/clustalo) which compared to the GRK2 sequence LLRGHS has, inter alia, a very different chargecontent (-1 vs. +1/+2)
CONCLUSIONS

GRK2 is involved in the regulation of many pivotal cell functions, and is therefore a key player in human health and disease, such as in determinate pathological cardiovascular processes as heart failure. Hence, modulation of its activity could be exploited with therapeutic purposes. The present study describes the synthesis, SAR study and conformational analysis of two HJ-loop derived peptides which are able to selectively inhibit GRK2. Starting from peptides 2 and 3, previously described, this study: i) found the (in)dispensable residues which can be replaced in an attempt to improve peptide properties (GRK2 interaction, membrane permeation); ii) determined their conformational preferences which can help the design of novel peptides and peptidomimetics with enhanced conformational stability.
1.3.2 Design, synthesis and efficacy of novel cyclic peptides
GRK2 inhibitors

RESULTS

Design. As stated above (see 1.3.1), peptides 2 and 3 selectively inhibit GRK2 in vitro. Their NMR solution conformations are very similar to the crystal structure of the fragment encompassing the HJ loop of the GRK2 (pdb entry 3CIK, Figure 1). Hence, it can be hypothesized that the active conformation of the peptides resemble the HJ loop crystal structure. Accordingly, the stabilization of the peptide 3D structure by, for example, the cyclization of these linear compounds can be considered as a valid approach to the identification of more potent, (stable and selective) compounds. As evident from Figure 1, N- and C-terminal sides of the loop fragment are relatively close (~5 Å), hence we first carried out a head-to-tail cyclization of peptides 2 and 3 leading to peptides 4 and 5, respectively (Table 2).

The design of a second group of cyclic peptides is based on the consideration that, in the GRK2 crystal structure, the amino group of K383 side chain points towards the Ser389 side chain (Figure 1). Hence, the stabilization of the peptide structure was also sought through a side chain-to-side chain cyclization approach. The cyclic peptides 6 and 7 (Table 2) were synthesized from linear peptides which contain the original residue Lys383 of GRK2 instead of Gly1 and an Asp residue in place of Ser7 residue. These two residues are linked by a side chain amide bond. For comparative purpose the analogues 8 and 9, containing the original Gly387 residue at the position 5, were also synthesized and tested for their activity to inhibit GRK2.

Figure 1. Stereoview of the crystal structure of the fragment 383-390 of GRK2 (1, pdb entry 3CIK). Heavy atoms are shown with different colours (carbon, green; nitrogen, blue; oxygen, red). Hydrogen atoms are not shown for clarity. Cyclization strategies are shown as dotted lines.
Synthesis. Head-to-tail cyclic peptides (4 and 5) were prepared on acid-labile 2Cl-Trt resin by solid-phase synthesis of linear peptide sequences, using the Fmoc protection strategy, followed by cyclization and side-chain deprotection in solution. The preparation of cyclic peptides, 6-9, through a side-chain-to-side-chain cyclization, was carried out after removal of the Allyl/Alloc protection according to strategy reported by Grieco et al. 180

<table>
<thead>
<tr>
<th>Com.</th>
<th>Sequence</th>
<th>Inhibitiona</th>
<th>HPLC</th>
<th>ESI-MS (M+H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>GLLRrHS</td>
<td>47.6±5.5</td>
<td>< 5</td>
<td>1.70</td>
</tr>
<tr>
<td>3</td>
<td>GLLRrHSI</td>
<td>49.6±6.3</td>
<td>< 5</td>
<td>1.72</td>
</tr>
<tr>
<td>4</td>
<td>[GLLRrHS]</td>
<td>47.8±6.0</td>
<td>< 5</td>
<td>1.70</td>
</tr>
<tr>
<td>5</td>
<td>[GLLRrHSI]</td>
<td>37.2±10.7</td>
<td>< 5</td>
<td>1.85</td>
</tr>
<tr>
<td>6</td>
<td>[KLLRrHD]</td>
<td>36.3±4.4</td>
<td>< 5</td>
<td>1.72</td>
</tr>
<tr>
<td>7</td>
<td>[KLLRrHDI]</td>
<td>55.3±4.6</td>
<td>< 5</td>
<td>1.75</td>
</tr>
<tr>
<td>8</td>
<td>[KLLRGHD]</td>
<td>47.2±4.5</td>
<td>< 5</td>
<td>1.76</td>
</tr>
<tr>
<td>9</td>
<td>[KLLRGHDI]</td>
<td>33.7±7.8</td>
<td>< 5</td>
<td>1.78</td>
</tr>
</tbody>
</table>

aData represent mean values (±SD) of three independent determinations. bGRK2 and GRK5 purified proteins activity (50 ng) were tested on rod outer segments (ROS) in presence or absence of 1 nM inhibitors. k’=[(peptide retention time solvent retention time)/ solvent retention time]. cAlready reported in reference 139

Biological activity. The effectiveness of these peptides to inhibit the GRK2 kinase activity was assessed by in vitro rhodopsin phosphorylation assay and visualized by autoradiography of dried gels (Figure S1, Online Supporting Information 1.3.2). Peptides with cyclic modifications retain the ability to inhibit GRK2, although in some cases (such as peptides 5, 6 and 9) they lose some efficacy compared to the original peptides (Table 2). In particular, C-terminal Ile residue caused different effects depending on the peptide structure. In fact, in linear peptides the inhibitory activity was not affected by the C-terminal Ile (peptide 2 vs. peptide 3). In cyclic peptides, C-terminal Ile can both increase (peptide 6 vs. peptide 7) and decrease (peptide 4 vs. peptide 5 and peptide 8 vs. peptide 9) the inhibitory activity. Overall, lactam cyclic peptide 7 is the most active to inhibit GRK2 gaining about 10% of activity compared to the parent peptide 3. In addition, the dose response curves for the most potent compounds 3 and 7, at concentration range from 10⁻³ to 10⁻⁹M, confirm the ability of
these compounds to inhibit GRK2-mediated ROS phosphorylation in dose-dependent manner (Figure S2, Online Supporting Information 1.3.2). Calculated IC₅₀'s were 3.4±0.3 10⁻⁷M (peptide 3) and 1.2±0.6 10⁻⁷M (peptide 7) confirming a slightly higher potency of the latter. Next, to verify whether these peptides selectively inhibit GRK2, we repeated the activity assay substituting GRK5 to GRK2 purified protein (Table 2). GRK2 selective inhibition is suggested by the evidence that all peptides don’t affect GRK5 kinase activity on rhodopsin phosphorylation levels. To confirm the effectiveness of GRK2 inhibition in a cellular setup, we tested the effects of GRK2 inhibitors in cells on beta adrenergic receptors density in HEK-293 cells stably over-expressing the β2 adrenergic receptor (β2AR).³³⁰ In HEK-293 cells, incubation with compound 3 or the cyclic peptide 7 (1µM) results in the increase in β2AR density, consistent with an effective inhibition of GRK2 (Figure 2A). Accordingly, basal and βAR stimulated cAMP production in HEK-293 cells was significantly affected by peptide 7 (Figure 2B). Interestingly, peptide 7 results to be more effective than the lead compound 3 in both assays.

Figure 2. A) β₂-adrenergic receptors density in HEK-293 cells treated with peptides 3 and 7 (1 µM for 1 h). Each data point represents the mean±SEM of 3 independent experiments; * p-value ≤ 0.05. B) cAMP production in HEK-293 cells treated with 3 and 7 as determined by cAMP immunoassay. ISO: Isoproterenol, 0.1 µM. Each data point represents the mean±SEM of 3 independent experiments; ** p<0.0001 vs Ctr; # p<0.01 vs ISO.

Previous experiments on intact cells indicate that peptides 3 and 7 are able to penetrate cell membrane. To demonstrate this point, we measured the internalization of both fluorescently labelled peptides (Fl-3 and Fl-7, respectively). As observed in Figure 3A and B, both peptides are able to cross cell membrane with the linear compound Fl-3 incorporated to cells more effectively than compound Fl-7.
NMR Analysis of cyclic peptide 7. NMR analysis of peptide 7 was performed in water and DPC micelle solutions. Almost complete 1H NMR chemical shift assignments (Online Supporting Information 1.3.2, Tables S1-S2) were achieved according to the
Wüthrich procedure.31 Considering the spectra in water solution, all NMR parameters indicated structural flexibility (\textit{Online Supporting Information 1.3.2, Table S1}). For example, no standard α-helix or β-sheet structure from H_a CSI (chemical shift index) values177, and no unambiguous medium- or long-range backbone NOE connectivities were found in the NOESY spectrum of the peptides. Only strong $d_{\text{an}}(i, i+1)$ NOEs, which are generally observed in random structures, appeared along the entire length of the peptides. In contrast, several NMR parameters indicate that peptides are better structured in DPC solution and that they share very similar conformations. In particular, H_a resonances (\textit{Online Supporting Information 1.3.2, Table S2}), and many NOE signals (\textit{Online Supporting Information 1.3.2, Table S3}) clearly point to a folded structure encompassing the N-terminal residues (1-5) and extended conformation of residues 6-8. Non-trivial medium range NOE interactions, among which $d_{\text{an}}(i, i+2)$ 1-3, 2-4, 3-5, $d_{\text{nn}}(i, i+2)$ 2-4, and $d_{\text{an}}(i, i+3)$ 1-4, are observed pointing to a turn-helical structure along residues 1-5. Low temperature coefficient of the backbone amide proton of residue 4 ($-\Delta\delta/\Delta T \sim 4$ ppb/K) confirms this hypothesis. C-terminal region is in extended conformation as indicated by the strong $d_{\text{an}}(i, i+1)$ NOEs and large $^3J_{\text{HN-Ha}}$ coupling constants. Finally, NOE contacts between Arg^4 and His^6 side chains indicate that these are spatially close.

NOE distance restraints obtained for peptide 7 in DPC micelles were used as the input data for a simulated annealing structure calculation using the program DYANA.178 Superposition of the 10 lowest energy conformers of 7 is shown in \textit{Figure 4}. The mean RMSD to the average structure for backbone heavy atoms is 0.20 Å. Since a β-turn may be defined as four consecutive non-helical residues that have a $C_\alpha(i)-C_\alpha(i+3)$ distance < 7 Å, two β-turns that involve Gly^1 to Arg^4 and Leu^2 to D-Ala^5, can be identified.

The first β-turn structure is stabilized by a hydrogen bond between the carbonyl oxygen of Lys^1 and the amide hydrogen of Arg^4. Residues 6 and 7 are in extended conformations, residue 8 is more flexible. The side chain are also well defined, the RMSD for all heavy atoms is 0.74 Å. The side chains of Arg^4 and His^6 are close and form a positively charged hydrophilic surface while Leu^2 and Leu^3 side chains establish a hydrophobic surface pointing in the opposite direction.
DISCUSSION

The aim of the present study was the design of new analogues of peptides 2, and 3, potent and selective inhibitors of GRK2. (See 1.3.1) Peptides 2 and 3 are the not acylated derivatives of compounds KRX-683\textsubscript{107} and KRX-683\textsubscript{124}, respectively (Table 1), in turn derived from the fragment 383-390 of the HJ loop of GRK2 (1, Table 1). Conformational similarity of these peptide to the protein fragment within the crystal structure of GRK2179, prompted us to design novel analogues of peptides 2 and 3 based on head-to-tail and side chain-to-side chain cyclization, according to the HJ loop structure (Figure 1). Hence, the lactam were introduced as a conformational constraint to stabilize the putative 3D active conformation. The utility of backbone or side chain cyclization has been well established in peptides, and it has been demonstrated to increase biological activity and selectivity since they are usually more stable in metabolism than the parent linear molecules.181 In this context, lactam bridges are preferable over disulfide ones due to their chemical stability.182

All cyclic peptides retain the ability to inhibit GRK2 (Table 2) demonstrating the validity of the design strategy. Potency fluctuations were observed upon the insertion of Ile\textsubscript{8} in cyclic analogues. Probably, conformational restraints imposed by the cyclization also affect exocyclic Ile residue spatial orientation which, in turn, influences the inhibitory activity. Cyclic peptide 7 is the most active in the GRK2 inhibition
overcoming of about 10% its precursor (peptide 3). Interestingly, peptides also retain selectivity towards GRK2 since they don’t affect GRK5 kinase activity on rhodopsin levels. To bring our observation to a biological setup, we tested the effects of GRK2 inhibitors in cells on the beta adrenergic receptors density. Indeed, it is known that GRK2 inhibition can change the affinity state of the beta adrenergic receptor by preventing desensitization183, furthermore recent evidences suggest that also the total number of β adrenergic receptors is under the control of GRK2 activity184, thus indicating that the kinase also control downregulation, the major and most effective mechanism of regulation of βAR signaling. Interestingly, peptide 7 results to be more effective than the lead compound 3 to increase β2AR density (Figure 2A). Similar results are obtained in cAMP production studies. In fact, 7 increases both basal and β2AR stimulated cAMP production in cells (Figure 2B). These results are particularly important since they indicated these peptides are able to penetrate the cell membrane by itself without the need of acylation (as for KRX-683\textsubscript{124}), conjugation with cell penetrating peptides, etc. To confirm this important suggestion, we measured the internalization of both fluorescently labelled peptides (Fl3 and Fl7, respectively). As observed in Figure 3A and B, both peptides cross cell membrane in an effective manner. Probably, peptide 7 highest potency in the inhibition of GRK2 kinase activity is the predominant factor determining the observed significant increase of β2 adrenergic receptor density and cAMP production.

Promising compound 7 was also investigated for its conformational preferences. NMR analysis of peptide 7 was performed in water and DPC micelle solutions. It is well-known that water is the best medium to be used for the structural study of peptides. Unfortunately it favors the prevailing of disordered and flexible conformations so that the building of a 3D model is often precluded. Mixtures made up of water and organic solvents are the most used media to produce environmental constraints. In particular, alcohols and fluoro alcohols are known to stabilize peptide secondary structures185. Micelle solutions are membrane mimetic environments and are largely used for conformational studies of peptide hormones and antimicrobial peptides186. In this case, a micellar solution of DPC was chosen since GRK2 phosphorylation of GPCRs occurs close to the plasma membrane. Peptide 7 structure in DPC micelles is characterized by two β-turns that involve Gly\textsubscript{1} to Arg4 and Leu2 to D-Arg5, followed by
a short extended region encompassing residues 6 and 7 (*Figure 5*). Compared to the linear parent peptides (*see 1.3.1*), compound 7 shows a lower conformational flexibility (in fact, the backbone heavy atoms RMSD decreases from 0.31 to 0.20 Å, compared to the linear analogue).

More interestingly, the NMR structures of peptide 7 is very similar to the crystal structure of the fragment encompassing the HJ loop of the GRK2 (pdb entry 3CIK). *Figure 5* shows the superposition of the NMR structure of 7 with that of the fragment 383-390 of the GRK2. Equivalent backbone atoms of 7 and GRK2 superimpose to an RMSD of 0.17 Å. It can be also observed the good overlapping of the unchanged side chains which occupies similar space regions. Also, Ile\(^8\) side chain is well overlapped with that of Pro\(^{390}\), supporting the positive contribution of this residue on peptide activity. Therefore, the isolated peptide keeps the 3D structure of the protein segment and likely competes with the activation functions of this loop.*\(^{172,173}\)

Figure 5. Stereoview of 7 lowest energy conformer (green) and fragment 383-390 of GRK2 (1, yellow, pdb entry 3CIK). The structures are superimposed using the backbone heavy atoms.

CONCLUSIONS

GRK2 is involved in the regulation of many pivotal cell functions, and is therefore a key player in human health and disease, such as in determinate pathological cardiovascular processes as heart failure. Hence, modulation of its activity could be exploited with therapeutic purposes. The present study describes the design, synthesis, and biological evaluation of a series of cyclic peptides which are able to selectively inhibit GRK2. In particular, cyclic peptide 7 demonstrated to increase the
inhibitory potency of the linear parent 3. Our results showed that 7 also increased, more effectively than 3, the density of β adrenergic receptors and the βAR stimulated cAMP production in cardiac cells, further confirming the GRK2 control on regulation of βAR signalling. These findings confirm that conformational-based chemical modification of the linear fragment encompassing the HJ loop of the GRK2 is an effective approach to identify structures able to modulate GRK2 activity through inhibition. Further in vivo experiments aimed to verify the potentiality of this peptide in the cardiovascular system as well as the preparation of novel more potent and selective peptide and peptidomimetic derivatives are in progress.
EXPERIMENTAL SECTION

CHEMISTRY

Synthesis of hU-II analogues. Nα-Fmoc-protected amino acids, HBTU and HOBt were purchased from Inbios (Naples, Italy). Wang resin was purchased from Advanced ChemTech (Louisville, KY). Protected Pen was purchased from Bachem (Basel, Switzerland). Peptide synthesis solvents, reagents, as well as CH₃CN for HPLC were reagent grade and were acquired from commercial sources and used without further purification unless otherwise noted. All synthesized compounds showed a purity >98% as determined by analytical RP-HPLC.

The synthesis of hU-II analogues was performed in a stepwise fashion via the solid-phase method.⁴² The first amino acid Nα-Fmoc-Val-OH was coupled to Wang resin (0.5 g, 0.7 mmol NH₂/g) in presence of DMAP.⁴³ The following protected amino acids were then added stepwise:

- Nα-Fmoc-Cys(Trt)-OH, Nα-Fmoc-Tyr(OrtBu)-OH, Nα-Fmoc-Yaa(Nɛ-Boc)-OH (Yaa: Lys, Orn), Nα-Fmoc-Xaa(Nin-Boc)-OH (Xaa: Tpi, D-Tpi), Nα-Fmoc-Phe-OH, Nα-Fmoc-Pen(Trt)-OH and Nα-Fmoc-Asp(Trt)-OH; for the Trp7-Costrained analogues of P5U and Urantide (See 1.1.1).
- Nα-Fmoc-Cys(Trt)-OH, Nα-Fmoc-Tyr(tBu)-OH, Nα-Fmoc-Orn(Nɛ-Boc)-OH, Nα-Fmoc-DTrp(Nin-Boc)-OH, Nα-Fmoc-Phe-OH, Nα-Fmoc-Cys(Trt)-OH and Nα-Fmoc-Ala-OH; for the URP peptide.; for Urantide (See 1.1.2).
- Nα-Fmoc-Cys(Trt)-OH, Nα-Fmoc-R-OH, [R = NaI(1), NaI(2), Bt, (pCl)Phe, (3,4-Cl)Phe, (pCN)Phe, (pNO₂)Phe], Nα-Fmoc-Yaa(Ni/ɛ-Boc)-OH (Yaa: Lys, Orn), Nα-Fmoc-Xaa(Nin-Boc)-OH (Xaa: Trp, DTrp), Nα-Fmoc-Phe-OH, Nα-Fmoc-Pen(Trt)-OH and Nα-Fmoc-Asp(OrtBu)-OH; for the Tyr9 modified analogues of P5U and Urantide (See 1.1.3).
- Nα-Fmoc-Cys(Trt)-OH, Nα-Fmoc-Tyr(tBu)-OH, Nα-Fmoc-Lys(Nɛ-Boc)-OH, Nα-Fmoc-Trp(Nin-Boc)-OH, Nα-Fmoc-Phe-OH, Nα-Fmoc-Cys(Trt)-OH and Nα-Fmoc-Ala-OH; for the URP peptide (See 1.1.4).
Each coupling reaction was accomplished using a 3-fold excess of amino acid with HBTU and HOBt in the presence of DIEA. The Nα-Fmoc protecting groups were removed by treating the protected peptide resin with a 25% solution of piperidine in DMF, (1x5 min and 1x20 min). The peptide resin was washed three times with DMF and the next coupling step was initiated in a stepwise manner. All reactions were performed under an Ar atmosphere. The peptide resin was washed with DCM (3x), DMF (3x) and DCM (4x), and the deprotection protocol was repeated after each coupling step. The N-terminal Fmoc group was removed as described above and the peptide was released from the resin with TFA/Et\textsubscript{3}SiH/H\textsubscript{2}O 90:5:5 for 3 h. The resin was removed by filtration and the crude peptide was recovered by precipitation with cold anhydrous ethyl ether to give a white powder which was purified by RP-HPLC on a semi-preparative C18-bonded silica column (Phenomenex, Jupiter 4\textmu Proteo 90Å, 1.0 x 25 cm) using a gradient of CH\textsubscript{3}CN in 0.1% aqueous TFA (from 10 to 90% in 40 min) at a flow rate of 5.0 mL/min. The product was obtained by lyophilization of the appropriate fractions after removal of the CH\textsubscript{3}CN by rotary evaporation. Analytical RP-HPLC indicated for all synthesized compounds a purity >98% and the correct molecular weights were confirmed by LC/ESI-MS (6110 Quadrupole, Agilent Technologies). The quantitative amino acid analysis was performed using an Applied Biosystems model 420A (Table A and B, Supporting Information).

General Method of Oxidation and Cyclization. The peptides were oxidized by the syringe pump method previously reported.187 The linear peptide (300-500 mg) was dissolved in 40 ml of H\textsubscript{2}O/acetonitrile/methanol 2:1:1, and nitrogen gas was passed through the solution for 20 min. Five milliliters of saturated ammonium acetate solution were added, and the pH was taken to 8.5 with NH\textsubscript{4}OH. The peptide solution was then added at room temperature via syringe pump to a stirred oxidant solution. The oxidant solution was prepared as follows: 2 equiv of potassium ferricyanide were dissolved in 800 ml of H\textsubscript{2}O/acetonitrile/methanol 2:1:1. To this solution was added 100 ml of saturated ammonium acetate, and the pH was then taken to 8.5 with NH\textsubscript{4}OH. The peptide solution was added at such a rate that approximately 10 mg of peptide were delivered per hour per liter of the oxidant. After the addition of peptide was complete, the reaction mixture was stirred for an additional 5-6 h and then taken to pH 3.5 with glacial acetic acid. Amberlite IRA-68 (Cl - form) was added to remove the
iron ions and the solution stirred for 20 min and then filtered. The solution was concentrated using a rotary evaporator at 30°C and then lyophilized. The material thus obtained was dissolved in glacial acetic acid, filtered to remove inorganic salts, and relyophilized. The crude cyclic peptides were purified by preparative HPLC on the system described above, using a gradient of 0.1% aqueous TFA for 20 min, then 0-20% acetonitrile in 5 min, followed by 20-60% acetonitrile in 40 min, all at 5 ml/min. Again the peptides eluted near organic/0.1% aqueous TFA 1:1. The purity of the cyclic peptides was checked by analytical HPLC (Phenomenex Luna 5μ, 100 Å, 150x4.6 mm), using a Shimadzu SPD 10AVP with detection at 230 and 254 nm and by TLC in four solvent systems in silica gel with detection by UV light, iodine vapours, and ninhydrin. The analytical data of the compounds synthesized are given in the Supporting Information.

Analgesic Peptides Synthesis: All products were synthesized in solution using the EDC/HOBt/DIPEA coupling method. The Nα terminal Boc-protected peptides were all deprotected by a mixture of TFA in DCM 1:1 at r.t. The intermediate TFA salts were used for subsequent reactions without further purification. Boc protected intermediate products were purified by silica gel column chromatography, or in case of scarcely soluble products, the purification was performed by trituration in EtOAc. The disulfide bond formation was achieved oxidizing the intermediates by I₂ in MeOH for 3h at room temperature. Final products were purified by RP-HPLC using a Waters XBridge™ Prep BEH130 C₁₈, 5.0 μm, 250 mm x 10 mm column at a flow rate of 1 mL/min on a Waters Binary pump 1525, using as eluent a linear gradient of H₂O/acetonitrile 0.1 % TFA starting from 5 % acetonitrile to 90 % acetonitrile in 45 min. The purity of the Nα-Boc-protected products was confirmed by NMR analysis on a Varian VXR 300 MHz instrument and mass spectrometry ESI-HRMS (Thermo Finnigan). The purity of all final TFA salts 2 was confirmed by NMR analysis, ESI-HRMS and by analytical RP-HPLC (C₁₈-bonded 4.6 x 150 mm) at a flow rate of 1 mL/min using as eluent a gradient of H₂O/acetonitrile 0.1% TFA ranging from 5% acetonitrile to 95 % acetonitrile in 50 min, and was found to be ≥ 95%.

(Online Supporting Information 1.2, S2-5)
Synthesis of GRK2 inhibitor Peptides. The synthesis of GRK2 analogues was performed according to the solid phase approach using standard Fmoc methodology in a manual reaction vessel. \(^{170}\) N\(^\alpha\)-Fmoc-protected amino acids, Rinkamide-resin, HO\text{Bt}, HBTU, DIEA, Piperidine and Trifluoroacetic acid were purchased from Iris Biotech (Germany). Peptide synthesis solvents, reagents, as well as CH\(_3\)CN for HPLC were reagent grade and were acquired from commercial sources and used without further purification unless otherwise noted. The first amino acid, N\(^\alpha\)Fmoc-Xaa-OH (Xaa = Ile, Ser(tBu), Asp(tBu)), was linked on to the Rink resin (100–200 mesh, 1% DVB, 0.75 mmol/g) previously deprotected by a 25% piperidine solution in DMF for 30 min.

The following protected amino acids were then added stepwise: N\(^\alpha\)-Fmoc-His(N\(_{\text{im}}\)trityl(Trt))-OH, N\(^\alpha\)-Fmoc-DArg(Pbf)-OH (or N\(^\alpha\)-Fmoc-DAla-OH) N\(^\alpha\)-Fmoc-Arg(Pbf)-OH, N\(^\alpha\)-Fmoc-Leu-OH, N\(^\alpha\)-Fmoc-Gly-OH. Each coupling reaction was accomplished using a 3-fold excess of amino acid with HBTU and HO\text{Bt} in the presence of DIPEA (6 eq.). The N\(^\alpha\)-Fmoc protecting groups was removed by treating the protected peptide resin with a 25% solution of piperidine in DMF (1x 5 min and 1x 25 min). The peptide resin was washed three times with DMF, and the next coupling step was initiated in a stepwise manner. The peptide resin was washed with DCM (3×), DMF (3×), and DCM (3×), and the deprotection protocol was repeated after each coupling step.

In addition, after each step of deprotection and after each coupling step, Kaiser test was performed to confirm the complete removal of the Fmoc protecting group, respectively, and to verify that complete coupling has occurred on all the free amines on the resin.

The N-terminal Fmoc group was removed as described above, and the peptide was released from the resin with TFA/ iPr\(_3\)SiH /H\(_2\)O (90:5:5) for 3 h. The resin was removed by filtration, and the crude peptide was recovered by precipitation with cold anhydrous ethyl ether to give a white powder and then lyophilized.

Synthesis of Head-to-tail cyclic peptides (4 and 5). The title peptides were synthesized using a 2-chlorotriyl chloride resin. The first N\(^\alpha\)-Fmoc amino acid (0.6–1.2 equiv relative to the resin for 2-chlorotriyl resin) and DIPEA (4 equiv relative to amino acid) were dissolved in dry dichloromethane (DCM) (approx. 10 mL per gram of resin) containing, if necessary, a small amount of dry DMF (enough to facilitate dissolution of
the acid). This was added to the resin and stirred for 30–120 min. After stirring, the resin was washed with 3×DCM/MeOH/ DIPEA (17:2:1), 3×DCM, 2×DMF and 2×DCM. Other Nα-Fmoc amino acids (4 equiv.) were sequentially coupled as previously described. The final cleavage with AcOH/MeOH/DCM (1:1:8) resulted in protected peptides.

General procedure for cyclization: A solution of the linear protected peptide (0.03 mmol) in DMF (6.5 mL) was added at room temperature to a reaction flask containing a solution of N-hydroxybenzotriazole (HOBt) (3 equiv, 12 mg, 0.09 mmol), HBTU (3 equiv, 34 mg, 0.09 mmol) and DIPEA (5 equiv, 0.26 mL, 1.5 mmol) in DMF (1 mL). The mixture was stirred for 24 h at room temperature and monitored by TLC. The mixture was concentrated under reduced pressure, and the residue was dissolved in ethyl acetate (AcOEt). The organic phase was washed twice with 5% aqueous sodium bicarbonate (NaHCO\textsubscript{3}), dried over sodium sulfate (Na\textsubscript{2}SO\textsubscript{4}), and filtered. The solvent was removed by reduced pressure to give the final crude protected peptide.

Synthesis of Lactam Analogues (6, 7, 8, and 9). The corresponding linear peptides were synthetized as described above and the amino acids Nα-Fmoc-Asp(Allyl)-OH and Nα-Fmoc-Lys(Alloc)-OH were used as lactam precursors.180 After linear assembly, the Nα-Alloc and the Allyl groups were removed according to the following procedure: 200 mg of peptide resin was washed with dichloromethane (DCM) under Ar and a solution of PhSiH\textsubscript{3} (24 equiv) in 2 mL of DCM was added. Subsequently a solution of Pd(PPh\textsubscript{3})\textsubscript{4} (0.25 equiv) in 6 mL of DCM was added and the reaction was allowed to proceed under Ar for 30 min. The peptide resin was washed with DCM (3x), DMF (3x) and DCM (4x), and the deprotection protocol was repeated (3x). The macrocyclic lactam ring formation was mediated by addition of HBTU (6 equiv), HOBt (6 equiv) and DIPEA (12 equiv) for 2 h.180 The process was repeated if necessary (Kaiser test used to monitor completion). The N-terminal Fmoc group was removed and the peptide was released from the resin as described above.

Side-chain deprotection. The protected cyclopeptide (0.02 mmol) was treated with 10 mL of a solution of TFA/triisopropylsilane (TIS)/H\textsubscript{2}O 95:2.5:2.5 at room temperature. After 24 h, the reaction mixture was evaporated in vacuo, and the residue was washed with diethyl ether (Et\textsubscript{2}O) and concentrated in vacuo, yielding the side chain-deprotected cyclopeptide as a trifluoroacetate salt (quant.).
Synthesis of labeled peptides (Fl-3, Fl-7). Amino-terminal labeling of peptides with 5(6)-carboxyfluorescein was performed. The corresponding peptides were synthetized as described above. Fmoc-deprotected, resin-bound peptides were reacted with 3 eq of 5(6)-carboxyfluorescein, N,N'-diisopropyl carbodiimide, and 1-hydroxybenzotriazol, each in DMF for 16 h in 10-ml syringes on a shaker at RT. Reactions were stopped by washing the resins three times each with DMF, methanol, dichloromethane, and diethyl ether. Completeness of amine acylation was confirmed using the Kaiser test.

Purification and characterization. All crude peptides were purified by RP-HPLC on a semipreparative C18-bonded silica column (Phenomenex, Jupiter, 250×10mm) using a Shimadzu SPD 10A UV/VIS detector, with detection at 210 and 254 nm. The column was perfused at a flow rate of 3 ml/min with solvent A (10%, v/v, water in 0.1% aqueous TFA), and a linear gradient from 10 to 90% of solvent B (80%, v/v, acetonitrile in 0.1% aqueous TFA) over 40 min was adopted for peptide elution. Analytical purity and retention time (t_R, Table 2) of each peptide were determined using HPLC conditions in the above solvent system (solvents A and B) programmed at a flow rate of 1 mL/min using a linear gradient from 10 to 90% B over 25 min, fitted with C-18 column Phenomenex, Juppter C-18 column (250× 4,60 mm; 5µ).

All analogues showed >97% purity when monitored at 215 nm. Homogeneous fractions, as established using analytical HPLC, were pooled and lyophilized.

Peptides molecular weights were determined by ESI mass spectrometry. ESI-MS analysis in positive ion mode, were made using a Finnigan LCQ ion trap instrument, manufactured by Thermo Finnigan (San Jose, CA, USA), equipped with the Excalibur software for processing the data acquired. The sample was dissolved in a mixture of water and methanol (50/50) and injected directly into the electrospray source, using a syringe pump, which maintains constant flow at 5 µl/min. The temperature of the capillary was set at 220 °C.

NMR METHODS AND STRUCTURAL CALCULATION

Materials for NMR. 99.9% ²H₂O were obtained from Aldrich (Milwaukee, USA), 98% SDS-d25 and DPC-d38 were obtained from Cambridge Isotope Laboratories, Inc. (Andover, USA), [((2,2,3,3-tetradeterio-3-(trimethylsilanyl)]propionic acid (TSP) from MSD Isotopes (Montreal, Canada).
NMR Spectroscopy. The samples for NMR spectroscopy were prepared by dissolving the appropriate amount of peptide in 0.45 ml of 1H$_2$O (pH 5.5), 0.05 ml of 2H$_2$O to obtain a concentration 1-2 mM of peptide, and when occurring 200 mM of SDS-d_{25} and DPC-d_{38}. NH exchange studies were performed dissolving peptides in 0.50 ml of 2H$_2$O and 200 mM of SDS-d_{25} or DPC-d_{38}. NMR spectra were recorded on a Varian INOVA 700 MHz spectrometer equipped with a z-gradient 5 mm triple-resonance probe head. The spectra were calibrated relative to TSP (0.00 ppm) as internal standard. One-dimensional (1D) NMR spectra were recorded in the Fourier mode with quadrature detection. The water signal was suppressed by The water signal was suppressed by gradient echo 188 2D DQF-COSY, 32,33 TOCSY, 34 and NOESY 35 spectra were recorded in the phase-sensitive mode using the method from States. 189 Data block sizes were 2048 addresses in t_2 and 512 equidistant t_1 values. Before Fourier transformation, the time domain data matrices were multiplied by shifted \sin^2 functions in both dimensions. A mixing time of 70 ms was used for the TOCSY experiments. NOESY experiments were run with mixing times in the range of 150-300 ms. The qualitative and quantitative analyses of DQF-COSY, TOCSY, and NOESY spectra, were obtained using the interactive program package XEASY. 35 $J_{\text{HN-Ha}}$ coupling constants were obtained from 1D 1H NMR and 2D DQF-COSY spectra. All the spectra were recorded at a temperature of 25 °C, while for the temperature coefficients of the amide proton chemical shifts were calculated from 1D 1H NMR and 2D TOCSY experiments performed at different temperatures in the range 25°-40 °C by means of linear regression.

Structural Determinations. The NOE-based distance restraints were obtained from NOESY spectra collected with a mixing time of 200 ms. The NOE cross peaks were integrated with the XEASY program and were converted into upper distance bounds using the CALIBA program incorporated into the program package DYANA. 178 Cross peaks which were overlapped more than 50% were treated as weak restraints in the DYANA calculation. In a first step only NOE derived constraints (Supporting Information) were considered in the annealing procedures. For each examined peptide, an ensemble of 200 structures was generated with the simulated annealing of the program DYANA. An error-tolerant target function (tf-type=3) was used to account
for the peptide intrinsic flexibility. All the non standard amino acid (i.e. Pen, DPen, Tpi, DTpi, DTrp, Orn, (pCN)Phe and (3,4-Cl)Phe residues) were added to DYANA residue library using MOLMOL. From these structures we could univocally determine the hydrogen bond atom acceptors corresponding to the slowly exchanging NH’s previously determined for each peptide. In presence of H-bonds, in a second DYANA run these hydrogen bonds were explicitly added as upper and lower limit constraints together with the NOE derived upper limit constraints (Supporting Information). The second annealing procedure produced 200 conformations from which 50 structures were chosen, whose interprotonic distances best fitted NOE derived distances, and then refined through successive steps of restrained and unrestrained EM calculations using the Discover algorithm (Accelrys, San Diego, CA) and the consistent valence force field (CVFF). The final structures were analyzed using the InsightII program (Accelrys, San Diego, CA). Graphical representation were carried out with the InsightII program (Accelrys, San Diego, CA). RMS deviation analysis between energy minimized structures were carried out with the program MOLMOL.

DOCKING PROCEDURES.

The new version of the docking program AutoDock4 (AD4), as implemented through the graphical user interface called AutoDockTools (ADT), was used to rigid docking of the Urantide NMR lowest energy structure and a theoretical structure of the h-UT receptor recently described. Urantide and the receptor structure were converted to AD4 format files using ADT generating automatically all other atom values. The docking area was centered around the putative binding site. A set of grids of 60 Å × 60 Å × 60 Å with 0.375 Å spacing was calculated around the docking area for the ligand atom types using AutoGrid4. For each ligand, 100 separate docking calculations were performed. Each docking calculation consisted of 10 million energy evaluations using the Lamarckian genetic algorithm local search (GALS) method. The GALS method evaluates a population of possible docking solutions and propagates the most successful individuals from each generation into the subsequent generation of possible solutions. A low-frequency local search according to the method of Solis and Wets is applied to docking trials to ensure that the final solution represents a local minimum. All dockings described in this paper
were performed with a population size of 250, and 300 rounds of Solis and Wets local search were applied with a probability of 0.06. A mutation rate of 0.02 and a crossover rate of 0.8 were used to generate new docking trials for subsequent generations, and the best individual from each generation was propagated over the next generation. The docking results from each of the 100 calculations were clustered on the basis of root-mean square deviation (rmsd) (solutions differing by less than 2.0 Å) between the Cartesian coordinates of the atoms and were ranked on the basis of free energy of binding (ΔGAD4). Because AD4 does not perform any structural optimization and energy minimization of the complexes found, a molecular mechanics/energy minimization (MM/EM) approach was applied to refine the AD4 output. Refinement of the complexes were achieved by in vacuo energy minimization with the Discover algorithm (ε = 1) using the steepest descent and conjugate gradient methods until a rmsd of 0.05 kcal/mol per Å was reached. Calculations converged towards a single solution in which the lowest energy (ΔGAD4) binding conformation was also belonging to the most populated cluster (focc=85/100). This conformation was chosen as starting point for subsequent 1 ns MD simulations (time step = 1 fs, T = 300 K) using the Discover algorithm (Accelrys, San Diego, CA) and the consistent valence force field (CVFF)191. The backbone coordinates of the TM helices were fixed during the MD simulations because, without environmental constraints (i.e. lipid bilayer and water solution), they can move away from each other and can lose their helical structure. MD trajectory was analyzed by means of the Analysis module of InsightII package. Complex picture was rendered employing the UCSF Chimera software193. Rescoring of the ligand/receptor models according to the AD4 scoring function was attained using a script provided within the MGLTools software package (http://mgltools.scripps.edu/).
For comparative purpose, also the best scored NMR structure of hU-II28 was docked to the same h-UTR model. Only the distance between Nε of Lys8 and carboxyl oxygens of Asp130 on TM3 was used as a restraint (2.7±1 Å) in the docking studies since the last residue is generally regarded as the ligand recognition site.64

Considering the receptor, only the side chains of residues engaged in orthosteric ligand/GPCR binding in the complexes used as templates by I-Tasser (PDB ID’s: 4n6h, 4dkl, 4bpu; see Results section) were considered flexible in the docking procedure (active residue: W116, L126, F127, D130, F131, M134, V184, M188, H208, L212, F274, W275, W277, Q278, Y305). Instead, all peptide’s atoms were held frozen (passive residue).

Refinement of each pose was achieved by in vacuo energy minimization with the Discover algorithm using the steepest descent and conjugate gradient methods until a RMSD of 0.05 kcal/mol per Å was reached. The backbone atoms of the TM and IL domains of the h-UTR were held in their position; the ligand and EL’s were free to relax. Molecular graphics images of the complexes were produced using the UCSF Chimera package.193
BIOLOGICAL ASSAYS

1.1-Peptides UTII analogues

Organ Bath Experiments. The experimental procedures employed in this study were approved by Institutional Animal Care and Use Committee and carried out in accordance with the legislation of Italian authorities (D.L. 116 27/01/1992), which complies with European Community guidelines (CEE Directive 86/609) for the care and use of experimental animals.

Male albino rats (Wistar strain, 275–350 g; Harlan Laboratories, UD, Italy) were euthanized by cervical dislocation, under ether anesthesia. The thoracic aorta was cleared of surrounding tissue and excised from the aortic arch to the diaphragm. From each vessel, a helically cut strip was prepared, and then it was cut into two parallel strips. The endothelium was removed by gently rubbing the vessel intimal surface with a cotton-tip applicator; the effectiveness of this maneuver was assessed by the loss of relaxation response to acetylcholine (1 µM) in noradrenaline (1 µM) precontracted preparations. All preparations were placed in 5 ml organ baths filled with normal Krebs solution of the following composition (mmol/l): NaCl 119; NaHCO₃ 25; KH₂PO₄ 1.2; MgSO₄ 1.5; CaCl₂ 2.5; KCl 4.7 and glucose 11, warmed at 37 °C and oxygenated with 95% O₂, 5% CO₂. The tissues were connected to isotonic force transducers (Ugo Basile, VA, Italy) under a constant load of 5 mN and motor activity was digitally recorded by an Octal Bridge Amplifier connected to PowerLab/8sp hardware system and analyzed using the Chart 4.2 software (ADInstruments Ltd, Oxford, UK). After 60 min equilibration, tissue responsiveness was assessed by the addition of 1 µM noradrenaline followed by a further equilibration of 60 min.

To assess the agonist activity cumulative concentration-response curves to hU-II and to the agonist peptide under examination were constructed in paired aortic strips and responses obtained were normalized towards the control hU-II maximal contractile effect (E_{max}).

To assess the antagonist activity concentration–response curves to hU-II were constructed cumulatively in paired aortic strips. One strip was pretreated with vehicle (DMSO; 1-3 µl/ml) and used as a control, while the other strip was pretreated with the
antagonist peptide under examination and, after a 30-min incubation period, \(hU-II \) was administered cumulatively to both preparations.

In each preparation only one cumulative concentration-response curve to \(hU-II \) was carried out and only one concentration of antagonist was tested. Concentration-response curves were analyzed by sigmoidal nonlinear regression fit using the GraphPad Prism 4.0 program (San Diego, CA, U.S.A.) to determine the molar concentration of the agonist producing the 50% (EC\(_{50}\)) of its maximal effect. Agonist activity of all compounds was expressed as pEC\(_{50}\) (−log EC\(_{50}\)). The antagonist potency was expressed in terms of pK\(_B\) estimated as the mean of the individual values obtained with the Gaddum equation: pK\(_B\) = log(CR−1)−log[B] were CR is the concentration-ratio calculated from equieffective concentrations of agonist (EC\(_{50}\)) obtained in the presence and in the absence of antagonist and B is the used antagonist concentration.\(^{194,195,196}\)

Competitive antagonism was checked by the Schild regression analysis by plotting the estimates of log(CR−1) against log[B] to determine the slopes of linear regression: a plot with linear regression line and slope not significantly different from unity was considered as proof of competitive antagonism.\(^{194,195,196}\)

Results were compared for significant differences using two-tail Student’s t-test for paired data or one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc test. A \(p \) value < 0.05 was considered statistically significant.

Binding experiments. All experiments were performed on membranes obtained from stable CHO-K1 cells expressing the recombinant human UT receptor (ES-440-M, lots 564-915-A and 613-577-A, Perkin Elmer, Boston, MA, USA). Assay conditions were: TRIS-buffer (20mM, pH 7.4 at 37°C) added with MgCl\(_2\) (5mM) and 0.5% BSA. Final assay volume was 0.1 ml, containing 1 or 20 µg membrane proteins depending on the lot of provided membranes. The radioligand used for competition experiments was \[^{125}\text{I}]\text{Urotensin II} \) (specific activity 2200 Ci/mmol; NEX379, Perkin Elmer) in the range 0.07–1.4 nM (as recommended by the lot of provided membranes). Non-specific binding was determined in the presence of 1 µM of unlabelled \(hU-II \), and ranged between 10–20% of total binding. Competing ligands were tested in a wide range of concentrations (1 pM – 10 µM). The incubation period (120 min at 37°C) was terminated by rapid filtration through UniFilter-96 plates (Packard Instrument
Company), pre-soaked for at least 2 h in BSA 0.5%, and using a MicroMate 96 Cell Harvester (Packard Instrument Company). The filters were then washed 4 times with 0.2 ml aliquots of Tris-HCl buffer (20mM, pH 7.4, 4°C). Filters were dried and soaked in Microscint 40 (50 µl in each well, Packard Instrument Company), and bound radioactivity was counted by a TopCount Microplate Scintillation Counter (Packard Instrument Company). Determinations were performed in duplicate. All binding data were fitted by using GraphPad Prism 4.0 in order to determine the equilibrium dissociation constant (K_d) from homologous competition experiments, the ligand concentration inhibiting the radioligand binding of the 50% (IC$_{50}$) from heterologous competition experiments. K_i values were calculated from IC$_{50}$ using the Cheng-Prusoff equation ($K_i = IC_{50}/(1 + [radioligand]/K_d)$) according to the concentration and K_d of the radioligand.194,195,196 In each experimental section one homologous competition curve to urotensin-II was run and the calculated K_d and the used radioligand concentration were used for the determination of ligand K_i values. The determine K_d value was 2.23 nM (1.09 – 3.38 nM, 95% c.l., n = 5, each experiment performed in duplicate).

Intracellular Calcium Assay: The intracellular calcium assay was performed by DiscoveRx (Fremont, CA, USA) using a HitHunter Calcium No Wash Plus Assay Kit from DiscoveRx Inc. (Fremont, CA) and UT-CHO–K1 cells transfected with the cDNA encoding UT-II human receptor.

Twenty four hours prior to assay cells were seeded at 10000 cells per well of a 384-well plate (Greiner, black optical poly-D-lysine coated) in 20 µl cell plating reagent 2 (DiscoveRx) and incubated overnight at 37°C. Cells were loaded with Calcium No WashPLUS kit (DiscoveRx) for 45 minutes at 37°C + 15 minutes at room temperature in the presence of probenecid (5 mM).197 Compound addition and calcium mobilization were monitored on a FLIPR TETRA (Molecular Devices, Sunnyvale, CA).

Serum peptides stability: Peptide stabilities were assayed in diluted serum as previously described.198,199 25% fetal calf serum was centrifuged at 13,000 rpm for 10 min to remove lipids and the supernatant was collected and incubated at 37 °C for at least 15 min. The assay was initiated upon the addition of peptides to the serum for a final peptide concentration of 80 µM. 80 µL aliquots of the incubations were taken for the following time points: 0, 4, 16, 20, 24, 36 h. The aliquots were mixed with 40 µL of
15% trichloroacetic acid (TCA) and incubated at 2 °C for at least 15 min to precipitate serum proteins. The supernatant was collected for each sample after centrifugation at 13,000 rpm for 10 min. These assays were performed in triplicate. Reverse phase high performance liquid chromatography (RP-HPLC) was carried out on an Agilent Technologies 1200 series HPLC equipped with UV detector using a C18 column from ThermoFisher (Milan, Italy). Gradient elution was performed at 25°C (monitoring at 210 nm) in a gradient starting with buffer A (0.1 % TFA in water) and applying buffer B (0.1 % TFA in acetonitrile) from 5 to 70 % in 15 min (Online Supporting Information 1.1.3, Figure S1).

1.2 Analgesic Peptides

Chemicals Tris-HCl, EGTA, NaCl, MgCl$_2$·6 H$_2$O, GDP, the GTP analogue GTPγS, and the κ opioid receptor specific agonist U69593 were purchased from Sigma-Aldrich (St. Louis, MO, USA). The radiolabelled GTP analogue, $[^{35}S]$GTPγS (specific activity: >1000 Ci/mmol) was purchased from the Isotope Institute Ltd. (Budapest, Hungary). The μ opioid receptor specific enkephalin analogue Tyr-D-Ala- Gly-(NMe)Phe-Gly-ol (DAMGO) was obtained from Bachem Holding AG (Bubendorf, Switzerland). The modified δ opioid receptor specific deltorphin II derivative, Ile5,6deltorphin II was synthesized and tritiated ($[^3]$H$Ile^{5,6}$deltorphin II; specific activity: 28 Ci/mmol) in the Isotope Laboratory of BRC (Szeged, Hungary) together with the tritiated DAMGO ($[^3]$HDAMGO; specific activity: 41 Ci/mmol). Tritiated $[^3]$H$U69593$, specific activity: 43,7 Ci/mmol) was purchased from PerkinElmer (Waltham, USA). The opioid antagonist naloxone was kindly provided by the company Endo Laboratories DuPont de Nemours (Wilmington, DE, USA). All applied receptor ligands were stored in 1 mM stock solution at -20 °C.

Animals. Male Wistar rats (250–300g body weight) were housed in the local animal house of the Biological Research Center (BRC, Szeged, Hungary) in groups of 4 or 8 animals and were maintained on a 12:12 hour of light/dark cycle. The animals were handled in accordance with the European Communities Council Directives (86/609/ECC) and the Hungarian Act for the Protection of Animals in Research (XXVIII.tv. 32.§).
Rat brain membrane preparations. Rats were decapitated and the brain was quickly removed, and homogenized on ice in 50 mM Tris-HCl buffer (pH 7.4) with a Teflon-glass homogenizer. The homogenate was centrifuged at 40,000 x g for 20 min at 4 °C and the pellet was re-suspended in fresh buffer and incubated for 30 min at 37 °C. This centrifugation step was repeated, and the final pellet was resuspended in 50 mM Tris-HCl buffer (pH 7.4) containing 0.32 M sucrose and stored at -80 °C until use.

Cell culture and cell membrane preparations. Chinese hamster ovary cells (CHO) overexpressing the appropriate opioid receptors, such as mouse δ and human κ and μ opioid receptors were provided by Dr. Zvi Vogel (Rehovot, Israel). The cells were grown in Dulbecco’s modified Eagle’s medium and in α-minimum essential medium, respectively. Both media were supplemented with 10% fetal calf serum, 2 mM glutamine, 100 IU/ml penicillin, 100 mg/ml streptomycin, 25 mg/ml fungizone and 0.5 mg/ml geneticin. Cells were kept in culture at 37 °C in a humidified atmosphere consisting of 5% CO₂ and 95% air. Membranes were prepared from subconfluent cultures. Cells were rinsed three times with 10 ml PBS and removed with 50 mM Tris–HCl pH 7.4, 1 mM EGTA, 1 mM EDTA and 0.1 mM PMSF buffer and homogenized for 15 s with a polytron homogenizer in an ice-bath. Homogenates were centrifuged two times at 18,000 g for 20 min. The final pellet was resuspended in the above buffer and stored in aliquots at -80 °C until use.

Competition binding experiments. Aliquots of frozen rat brain membranes were first centrifuged (40000 x g, 20 min, 4 °C) to remove sucrose and the pellets were suspended in 50 mM Tris-HCl buffer (pH 7.4). Membranes were incubated with gentle shaking with the appropriate incubation conditions depending on the opioid radioligand ([³H]DAMGO: 35 °C for 60 min; [³H]Ile⁵,⁶deltorphin II: 35 °C for 35 min; [³H]U69593 at 30 °C for 60 min) in a final volume of 1 ml. The incubation mixture also contained 10⁻¹⁰ – 10⁻⁵ M concentration interval of unlabeled compound 9 and 10 together with DAMGO or Ile⁵,⁶deltorphin II or U69593 for control together with ~ 1 nM of the appropriate tritiated opioid receptor specific ligand. Total binding was measured in the presence of radioligand, in the absence of the competitor ligands. The non-specific binding was determined in the presence of 10 μM unlabeled naloxone. The
reaction was terminated by rapid filtration under vacuum (Brandel M24R Cell Harvester), and washed three times with 5 ml ice-cold 50 mM Tris-HCl (pH 7.4) buffer through Whatman GF/C ([³H]DAMGO and [³H]Ile⁵,6-deltorphin II) or GF/B glass fiber filters ([³H]U69593 the filter was also pretreated in 3% polyethyleneimine for 60 min to reduce non-specific binding) (Online Supporting Information1.2, Figure S1). The radioactivity of the filters was detected in UltimaGold™ MV aqueous scintillation cocktail with Packard Tricarb 2300TR liquid scintillation counter. The competition binding assays were performed in duplicate and repeated at least three times.

Functional [³⁵S]GTPγS binding assays. The G-protein activation of the opioid receptors were measured in functional [³⁵S]GTPγS binding experiments, which monitors the nucleotide exchange process of the Gα-protein using a non-hydrolysable radiolabeled GTP analog, ³⁵S]GTPγS in the presence of increasing concentrations of the observed ligand (Online Supporting Information1.2, Figure S2). The assays were performed as previously described, with slight modifications. Membrane fractions of CHO cell lines overexpressed with the corresponding opioid receptors were incubated in a final volume of 1 ml at 30°C for 60 min in Tris-EGTA buffer (pH 7.4; 50 mM Tris-HCl, 1 mM EGTA, 3 mM MgCl₂, 100 mM NaCl). [³⁵S]GTPγS (20 MBq/0.05 cm³) was added in 0.05 nM concentrations together with compounds 9 and 10 and DAMGO, Ile⁵,6deltorphin II, U69593 biphalin for control in increasing concentrations (10⁻¹⁰ – 10⁻⁵ M). Total binding (T) was measured in the absence of the ligands, non-specific binding (NS) was determined in the presence of 10 µM unlabeled GTPγS and subtracted from total binding. The difference (T–NS) represents basal activity. Bound and free [³⁵S]GTPγS were separated by vacuum filtration through Whatman GF/B filters with Brandel M24R Cell harvester. Filters were washed three times with 5 ml ice-cold buffer (pH 7.4), and the radioactivity of the dried filters was detected in UltimaGold™ MV scintillation cocktail with Packard Tricarb 2300TR liquid scintillation counter. The [³⁵S]GTPγS binding experiments were performed in triplicates and repeated at least three times.

Data analysis. Experimental data were presented as means ± S.E.M. and were fitted using nonlinear regression with the curve fitting program, GraphPad Prism 5.0
(GraphPad Prism Software Inc., San Diego, CA). During the competition binding assays the ‘One-site competition’ fitting equation was applied to determine the inhibition constant \((K_i)\). The inhibition of the specifically bound tritiated opioid receptor specific ligand was given in percentage, the total specific binding and the non-specific binding was defined as 100% and 0% respectively. In the \(^{35}\text{S}\)GTP\(\gamma\)S binding assays the ‘Sigmoid dose-response’ fitting was used to establish the maximal stimulation or efficacy \((E_{\text{max}})\) of the receptor, and the potency \((\text{EC}_{50})\) of the stimulator ligand. The receptor stimulation was given as percent of the specific \(^{35}\text{S}\)GTP\(\gamma\)S binding observed over the basal activity, which was 59 settled as 100%. In case of three or more data sets One-way ANOVA with Bonferroni’s Multiple Comparison post hoc test was performed to determine the significance level, using GraphPad Prism 5.0. Significance was accepted at the \(P < 0.05\) level.

GPI and MVD in vitro bioassays Electrically induced smooth muscle contractions of mouse vas deferens and strips of guinea pig ileum longitudinal muscle myenteric plexus were used. Tissues came from male ICR mice weighing 25-30 g and from male Hartley guinea pigs weighing 150-400 g. The tissues were first tied to gold chains with suture silk, suspended in 20 mL baths containing 37 °C oxygenated (95% \(\text{O}_2\), 5% \(\text{CO}_2\)), Krebs bicarbonate solution (magnesium-free for the MVD), and allowed to equilibrate for 15 min. Tissues were then stretched to optimal length previously determined to be 1 g tension, allowed to equilibrate for 15 min. The tissues were stimulated transmurally between platinum plate electrodes at 0.1 Hz, 0.4 ms pulses (2.0 ms pulses for MVD) at supramaximal voltage. Endomorphin-2 and analogues 9 e 10 at five to seven different concentrations were added to the baths in 20-60 mL volumes to produce cumulative dose-response curves. Percent inhibition was calculated by using an average contraction height for 1 min preceding the addition of the peptide divided by contraction height 3 min after the exposure to the peptide. \(\text{IC}_{50}\) values are the mean of not less than four separate assays. \(\text{IC}_{50}\) estimates and their associated standard errors were determined by fitting the mean data to the Hill equation using a computerized least-squares method.
In vivo Nociception Test.

Animals. Male CD-1 mice (Harlan, Italy) weighing 25-30 g were used for all experiments. Mice were housed for at least 1 week before experimental sessions in colony cages (7 mice in each cage) under standard light (light on from 7.00 a.m. to 7.00 p.m.), temperature (21 ± 1 °C), relative humidity (60 ± 10%) with food and water available *ad libitum*. The experiments conformed to the guidelines for pain research with laboratory animals. The research protocol was approved by the Service for Biotechnology and Animal Welfare of the Istituto Superiore di Sanità and authorized by the Italian Ministry of Health, according to Legislative Decree 116/92, which implemented the European Directive 86/609/EEC on laboratory animal protection in Italy. Animal welfare was routinely checked by veterinarians from the Service for Biotechnology and Animal Welfare.

Drugs and treatment procedure. DMSO was purchased from Merck (Italy). Morphine Sulphate was purchased from SALARS (Italy). On each test day, morphine or peptide solutions were freshly prepared using DMSO: 0.9 % saline 1:5 v/v. These solutions were injected at a volume of 5 μL/mouse for intracerebroventricular (i.c.v.) and 5 mL/Kg for intravenous (i.v.) administrations.

Surgery for i.c.v. injections. For i.c.v. injections, mice were lightly anesthetized with isoflurane, and an incision was made in the scalp. Injections were performed using a 10 μl Hamilton microsyringe at a point 2-mm caudal and 2-mm lateral from the bregma at a depth of 3 mm in a volume of 5 μL.

Surgery for i.v. injections. For i.v. injections, mice were lightly anesthetized with isoflurane, gentle constrained by using a glove and intravenous injection performed directly into the tail vein using a 500 μl Hamilton syringe equipped with a 30 gauge needle in a volume of 5 ml/kg.

Hot plate and tail flick tests. Thermal nociception (hot plate test) was assessed with a commercially available apparatus consisting of a metal plate 25x25 cm (Ugo Basile, Italy) heated to a constant temperature of 55.0 ± 0.1° C, on which a plastic cylinder (20 cm diameter, 18 cm high) was placed. The time of latency (s) was recorded from the
moment the animal was placed in the cylinder on the hot plate until it licked its paws or jumped; the cut-off time was 60 s. The baseline was calculated as mean of three readings recorded before testing at intervals of 15 min. The time course of latency was then determined at 15, 30, 45, 60, 90 and 120 min after compound treatment (for i.v. administration until to 180 min). The tail-flick latency was obtained using a commercial unit (Ugo Basile, Italy), consisting of an infrared radiant light source (100 W, 15 V bulb) focused onto a photocell utilizing an aluminium parabolic mirror. During the trials the mice were gently hand-restrained with a glove. Radiant heat was focused 3-4 cm from the tip of the tail, and the latency (s) of the tail withdrawal recorded. The measurement was interrupted if the latency exceeded the cut off time (15 s at 15 V). Also in this case, the baseline was calculated as mean of three readings recorded before testing at intervals of 15 min and the time course of latency determined at 15, 30, 45, 60, 90 and 120 min after treatment (for i.v. administration until to 180 min). In both the hot plate and tail flick tests, data were expressed as time course of the percentage of maximum effect (%MPE) = (post drug latency – baseline latency) / (cut-off time – baseline latency) x 100.

Data analysis and statistics. Experimental data were expressed as mean ± S.E.M. The significance among groups was evaluated with the analysis of variance (two-way ANOVA test) followed by Bonferroni’s post-hoc comparisons using the statistical software SPSS. Statistical significance was assumed at $P<0.05$ (*$P<0.05$; **$P<0.005$)
1.3-Peptides GRK2 Inhibitors

GRK Activity in Rhodopsin Phosphorylation Assays. To evaluate the effect of all synthesized peptides on GRK2 activity we assessed GRK2 or GRK5 purified proteins by light-dependent phosphorylation of rhodopsin-enriched rod outer segment membranes (ROS) using [γ-32P]-ATP as previously described. Briefly, 50 ng of active GRK2 or GRK5 were incubated with ROS membranes in presence or absence of inhibitor peptides in reaction buffer (25 µl) containing 10 mM MgCl₂, 20 mM Tris-Cl, 2 mM EDTA, 5 mM EGTA, and 0.1 mM ATP and 10 μCi of [32P]γ-ATP. After incubation with white light for 15 minutes at room temperature, the reaction was quenched with ice-cold lysis buffer and centrifuged for 15 minutes at 13000g. The pelleted material was resuspended in 35 µL protein gel loading dye, electrophorosed and resolved on SDSPAGE 4-12% gradient (Invitrogen), stained with Coomassie blue, destained, vacuum dried, and exposed for autoradiography. Phosphorylated rhodopsin was visualized by autoradiography of dried gels and quantified using a PhosphorImager (Molecular Dynamics). Alternatively, the ROS pellet was washed twice in ice-cold lysis buffer to remove the unbound [γ32P]-ATP and then resuspended in 100 µL of buffer and the level of [γ32P]-ATP incorporation into ROS was determined by liquid scintillation counter.

β-Adrenoreceptor Radioligand Binding. Cultured Hembriogenic Kidney cells overexpressing β₂ adrenergic receptor (β₂-HEK-293) were treated with peptides 3 and 7 1 μM for one hour. Membrane fraction were prepared by homogenization of whole cell in ice-cold buffer (25 mM Tris-HCl (pH 7.5), 5 mM EDTA, 5 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 2 μg/ml each leupeptin and aprotinin) as previously described [34]. Total βAR density was determined by incubating 60 μg of sarcolemmal membranes with a saturating concentration of [125I]cyanopindolol and 20 µmol/L alprenolol to define nonspecific binding. Assays were conducted at 37 °C for 60 minutes and then filtered over GF/C glass fiber filters (Whatman) that were washed and counted in a gamma counter. All values are presented as mean ± SEM of three independent experiments. One-way ANOVA was performed to compare the different groups. A significance level of $P<0.05$ was assumed for all statistical evaluations.
Statistics were computed with GraphPad Prism Software (GraphPad Software Inc., version 4, San Diego, CA, USA).

cAMP synthesis. β₂-HEK-293 were plated in 96-well plates (10,000 cells/well) and serum starved overnight. Cells were incubated in a fresh medium in the presence of 3 and 7 peptides 1 μM for one hour and then stimulated with β adrenergic receptor agonist Isoproterenol 0.1 μM for 15 min. The cAMP quantification was evaluated by enzyme immunoassay, using an EIA commercial kit (RPN 2255 GE Healthcare Biosciences AB, Uppsala, Sweden). The cAMP content present in HEK-293 cell was expressed in fmoles per well. All values are presented as mean ± SEM of three independent experiments. One-way ANOVA was performed to compare the different groups. A significance level of \(P<0.05\) was assumed for all statistical evaluations.

Statistics were computed with GraphPad Prism Software (GraphPad Software Inc., version 4, San Diego, CA, USA).

Internalization studies. β₂-HEK-293 overexpressing human β₂AR cells were plated in 4-well ibidi plate (10,000 cells/well) and serum starved overnight. The cells were then incubated with fluorescently labelled peptides (Fl-3 and Fl-7) 1 μM for 60 min at 37 °C. After washing twice with PBS cell images were taken by using an Eclipse E1000 Fluorescence Microscope (Nikon) and acquired by using Sigma Scan Pro software (Jandel). Images were optimized for contrast in Adobe PhotoShop, but no further manipulations were made.

Alternatively HEK-293 cells were plated in 24-well plates (20,000 cells/well) and serum starved overnight. The cells were then incubated with fluorescently labelled peptides (Fl-3 and Fl-7) at the concentration of 10 and 1 μM for 60 min at 37 °C. The fluorescence incorporation was quantified on a Tecan Genios plate reader with a 485 nm excitation filter and a 510 nm emission filter using a gain setting of 1.0. The background signal from cells untrated was subtracted. All values are presented as mean ± SEM of three independent experiments. One-way ANOVA was performed to compare the different groups. A significance level of \(P<0.05\) was assumed for all statistical evaluations. Statistics were computed with GraphPad Prism Software (GraphPad Software Inc., version 4, San Diego, CA, USA)
SUPPORTING INFORMATION

1.1.1 “New Insight into the Binding Mode of Peptides at Urotensin-II Receptor by Trp-Constrained Analogues of P5U and Urantide” Supplementary data can be found at

1.1.2 “Urantide Conformation and Interaction with Urotensin-II" Receptor” Supplementary data can be found at:

1.1.3 “Lead Optimization of P5U and Urantide: Discovery of Novel Potent Ligands at the Urotensin-II Receptor” Supplementary data can be found at:

http://pubs.acs.org/doi/suppl/10.1021/jm500218x

1.1.4 “An Investigation into the Origin of the Biased Agonism Associated with the Urotensin-II Receptor Activation” Supplementary data can be found at:

1.2 “Novel Analgesic Peptides With Improved Antinociceptive Properties”

Supplementary data can be found at:

http://pubs.acs.org/doi/suppl/10.1021/ml500241n

1.3.1 “SAR study and conformational analysis of novel peptides GRK2 inhibitors”

Supplementary data can be found at:

1.3.2 “Design, synthesis and efficacy of novel cyclic peptides GRK2 inhibitors”

Supplementary data can be found at: http://dx.doi.org/10.1016/j.ejmech.2013.08.039

Furthermore, all the supporting information are available on email request at antonio.limatola@unina.it
CHAPTER 2 – MONITORING ALPHA-SYNUCLEIN SITE-SELECTIVE OXIDATION DAMAGE REPAIR IN MAMMALIAN CELLS BY HIGH RESOLUTION NMR SPECTROSCOPY
INTRODUCTION

Lewy body diseases (LBDs) are a heterogeneous group of disorders that include Parkinson’s disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB).201 Together, these diseases affect over 5 million people worldwide. LBDs are often referred to as synucleinopathies because α-Syn has been identified as the major component of Lewy bodies and Lewy neurites, the characteristic proteinaceous deposits that are the hallmarks of PD.

An increasing body of evidence from animal models as well as data from genetic, biochemical and biophysical studies support the hypothesis that the processes of α-Syn oligomerization202,203 and fibril formation204,205 have central roles in the pathogenesis of PD and other synucleinopathies.206

Nevertheless, the molecular mechanisms by which α-Syn aggregation contributes to neurodegeneration, the nature of the toxic forms of α-Syn and the cellular pathways that are affected by α-Syn remain largely unknown.

Structure of α-synuclein

α-Syn is an intrinsically disordered protein, but can adopt a number of different conformational states depending on conditions and cofactors. α-Syn is a 14 kDa protein (140 amino acids; pI ~ 4.7) characterized by an amphipathic lysine-rich amino terminus, which has a crucial role in modulating its interactions with membranes207,208 and a disordered, acidic carboxy-terminal tail, which has been implicated in regulating its nuclear localization and interactions with metals, small molecules and proteins.209,210 The central region of α-Syn was first purified from amyloid plaques in patients with Alzheimer’s disease (AD)211,212 It contains a highly hydrophobic motif that comprises 35 amino acid residues (Figure 1A) and is known as the non-amyloid-β component of AD amyloid plaques (NAC).212,212,213,214 The NAC region is indispensable for α-Syn aggregation; the deletion of large segments within this motif greatly diminished α-Syn oligomerization and fibrillogenesis \textit{in vitro}214,215 and in cell-based assays.216 Studies by several groups using different biophysical methods (i.e., NMR, light scattering and circular dichroism) consistently showed that α-Syn purified from
Chapter 2

Escherichia coli under native or denaturing conditions exists predominantly as stable unfolded monomers.212,217,218 It is well established that \(\alpha \)-Syn adopts an \(\alpha \)-helical conformation upon binding to synthetic or biological membranes \textit{in vitro} (Figure 1B). However, very little is known about the conformational state (or states) of \(\alpha \)-Syn in the different compartments of living cells. Several factors, including oxidative stress, post-translational modifications,205 proteolysis,219 and binding to fatty acids, phospholipids220 or metal ion, were shown to induce and/or modulate \(\alpha \)-Syn structure and oligomerization.

\textbf{Figure 1.} \(\alpha \)-Syn sequence characterized by an amphipathic lysine-rich amino terminus (1-60), NAC region (61-95) and acidic carboxy-terminal tail (96-140) (A). Conformational states of \(\alpha \)-Syn (B).

\textbf{Oxidized \(\alpha \)-synuclein in Parkinson’s disease.}

The relationship between oxidative stress and brain damage induced by Syn aggregation has been firmly established by several lines of work. In fact, supporting this hypotheses, \(\alpha \)-Syn deposited in LBs from PD patients contain oxidative modifications, such as nitrated tyrosines and oxidized methionines. In particular methionine sidechains are susceptible to oxidation to sulfoxide and ultimately sulfone. All four methionines in \(\alpha \)-Syn (Met-1, Met-5, Met-116, and Met-127) are highly susceptible to oxidation by intracellular reactive oxygen species (ROS) such as \(\text{H}_2\text{O}_2 \), \(\text{O}_2^- \), \(\text{OH}^- \), chloramines or peroxinitrite.221,222 It has been shown that Met oxidation promotes
the formation of intermediate oligomeric species of α-Syn in vitro and these species presented different degrees of toxicity when added to cultured models cells.223,224,225,226 Furthermore, PC12 cells overexpressing α-Syn and treated with rotenone (an inhibitor of mitochondrial complex I able to induce an oxidative stress by ROS production) accumulate methionine oxidized α-Syn molecules227 and primary dopaminergic cells treated with the same compound, show increased formation of α-Syn intracellular inclusion.228,229 Additionally, a wide variety of physiologically relevant interactions between α-Syn and copper ions or lipidic membranes results in sulfoxidation of Met1 and Met5 residues,220 while dopamine promotes sulfoxide formation at Met 127.225

Reportedly, methionine-oxidized α-Syn has decreased affinity for biological membranes, and is poorly degraded by 20S proteasome \textit{in vitro} and in live cells.230 Furthermore, recent \textit{in vitro} and \textit{in vivo} studies established a link between oxidative stress, methionine oxidation and increased levels of Ser 129 phosphorylation (a pathological hallmark of in vivo α-Syn deposits in PD patients).231 Altogether, these evidences suggested that oxidation of Met residues in α-Syn is involved in intracellular α-Syn aggregation and neuronal cell death.

RESULTS

Methionine oxidation influence α-Syn alpha-helical propensity and membrane binding

First, we analyzed the structural consequences of Met oxidation in α-Syn. To get the Met oxidized α-Syn molecules, we pre-incubated 15N-isotopically enriched protein with 4% H\textsubscript{2}O\textsubscript{2} for 1 hour at room temperature as previously reported.232 This treatment result in the oxidation of all Met residues to corresponding sulfoxide species, without induction of any other modification on the protein(\textit{Figure S1-A, Supplementary data}). In all of our experiments we used the N-terminally acetylated protein form that corresponds to the native state of α-Syn.233 After removal of excess H\textsubscript{2}O\textsubscript{2} by size exclusion chromatography (SEC), we confirmed full oxidation of Met
residues by $^1\text{H}^{15}\text{N}$ HMQC experiments and we compared the biophysical properties of oxidized and reduced α-Syn. Circular dichroism (CD), dynamic light scattering (DLS) and SEC experiments showed no major structural rearrangements of α-Syn overall conformation (Figure S1-B, Supplementary data). Next we performed an NMR analysis of both α-Syn species. A comparison of reduced and oxidized α-Syn spectra revealed large chemical shifts perturbations for all the four methionine residues (Figure 2-A). In particular, for Met116 and Met127 we detected two well-resolved cross-peaks for these groups reflecting the formation of a racemic mixture of the R and S methionine sulfoxide diastereoisomers. Although we could not assign each resonance to a particular absolute configuration of the sulphur atom, it was interesting to note that this feature was much less prominent for Met1 and Met5, indicating that different local conformational properties or neighboring amino acids induce different changes in chemical environment for R and S methionine sulfoxide at the N- and C- terminal regions. The $^1\text{H}^{15}\text{N}$ MWCS analysis of oxidized and reduced α-Syn revealed that chemical shifts changes at the N-terminus are more widespread than those at the C-terminus where only the vicinity of the oxidized residues experience significant chemical shifts changes (Figure 2-B,C). This observation suggests that local conformational rearrangements occur upon Met oxidation around position 1 and 5. To study these features in more detail we analyzed C-alfa secondary chemical shifts for reduced and oxidized α-Syn, respectively. Secondary chemical shifts are widely used to determine secondary structure content in proteins and peptides as deviations of the observed values from consensus random coil shifts are indicative of secondary structure. Indeed, positive or negative deviations in Cα are indicative of alpha-helical or beta-strand organization. It was recently shown that α-Syn has a propensity to adopt an alpha-helical secondary structure (up to 30%) in the first 15 residues. Interestingly, in Met-oxidized AS this propensity decreased substantially, resulting in a highly disordered region (Figure 2 C). To investigate whether Met oxidation can also modulate the membrane-binding features of α-syn, we tested the binding to small unilamellar vesicles (SUVs) made from polar pig-brain lipids. SUVs are useful lipidic models of synaptic vesicles, to which α-Syn molecules bind in vivo. As reported, membrane-bound α-Syn adopts different helical topologies, going from horse-shoe to
extended alpha-helical conformations in the first 100 residues. Common to all these conformations is the absence of membrane interactions of C-terminal α-syn residues 100-140.

Figure 2. Reduced and oxidized α-Syn SOFAST-HMQC spectra (A). The 1H-15N MWCS analysis of oxidized and reduced α-Syn (B). C-alfa secondary chemical shifts for reduced and oxidized α-Syn, whole sequence (upper) and first 15 residues (bottom), respectively (C).

We prepared SUVs from polar pig-brain lipids and we verified that they were monodisperse with a size distribution around ~60 nm by DLS (Figure 3 A). Next, we titrated SUVs to 15N isotope-labeled α-Syn reaching a 400-fold lipid:protein molar excess. NMR spectra revealed backbone amide line broadening of the first 100 amino acid residues, characteristic for α-Syn-membrane interactions. Interestingly, when we repeated these experiments using Met oxidized α-Syn we detected a decreased affinity of oxidized versus reduced α-Syn (Figure 3 A-B). This differential binding to
SUVs is likely related with the decrease alpha helical propensity observed in oxidized \(\alpha \)-Syn.

Figure 3. Top left: overlapping of 2D \(^1\)H-\(^{15}\)N HMQC spectra of N-terminally acetylated, but otherwise unmodified \(\alpha \)-syn (black) and \(\alpha \)-syn in the presence of 400-fold excess SUVs (green). Top right: Overlapping N-terminally acetylated and oxidized \(\alpha \)-syn (azure) and oxi-\(\alpha \)-syn in the presence of 400-fold excess SUVs (green). (A). Residue-resolved plot of signal intensity ratios upon addition of SUVs to reduce and oxidized \(\alpha \)-syn (400:1). Characteristic line-broadening of N-terminal \(\alpha \)-syn residues (~1-100) is indicated Note that increased line broadening is observed for fully oxidized forms of the protein (B).
In-cell NMR of Met oxidized α-Syn

We followed an established electroporation protocol to introduce fully oxidized 15N uniformly labeled α-Syn into the cytosol of non-neuronal (A2780, ovarian cancer, human) and neuronal (RSN3, dopaminergic neuron, rat) cell lines. Figure 4 shows the 2D 1H-15N SOFAST-HMQC spectra of fully oxidized (cyan, 5 uM) and reduced (black, 5 uM) α-Syn in vitro and inside A2780 (Figure 4-A on the left) and RSN3 (Figure 4-B on the right) cells. We also acquired NMR spectra of the supernatants of the cell slurries after the 2D experiments were finished (data not show). These spectra were completely empty confirming that the protein did not leaked out of the cells and that the signal obtained in the in-cell samples arises from intracellular α-Syn.

The 2D 1H-15N SOFAST-HMQC in-cell spectra of oxidized α-Syn showed well resolved peaks with limited dispersion of 1HN chemical shifts indicating that the protein remains intrinsically disordered inside mammalian cells. As reported recently, the chemical shifts values of Leu8 of α-Syn constitute an excellent probe for monitoring the oxidation states of Met1 and Met5. Other useful residues are those of Met1 and Met5 themselves, Asp2 and Lys6. For the C-terminal Methionines, Met127/Ser129 and Asp115/Met116 can be used to monitor M116 and M127 oxidation, respectively. The comparison of the In-cell spectra of oxidized α-Syn with reference spectra of reduced and oxidized forms of the protein clearly showed that Met1 and Met5 residues were fully reduced inside A2780 and RSN3 cells (Figure 4). This becomes evident if we compare the positions of the above mentioned residues with reference spectra of reduced and oxidized α-Syn. In RSN3 cells the signal to noise ratios obtained prevented an accurate analysis, however, the spectra were more clear after we performed lysis of the In-cell NMR samples (Figure S2, Supplementary data). Surprisingly, Met residues at positions 116 and 127 remained fully oxidized in A2780 cells. This feature was also observed in RSN3 cells but in this case we detected a small amount of reduced Met127, evidenced by the change of chemical shift position of S129 (Figure 4 and Figure S2, Supplementary data).
Figure 4. Overlapping of 1H-15N SOFAST-HMQC spectra of fully oxidized (cyan, 5 uM) and reduced (black, 5 uM) α-Syn in vitro and inside A2780 (red) (A) and RSN3 (B) cells, respectively.

Because of the highly crowded regions where reduced and oxidized C-terminal Met residues show up in the 2D 1H-15N SOFAST HMQC spectra we decided to prepare 15N/13C Met-only labeled α-Syn. The In-cell NMR experiment of the Met-only labeled α-Syn clearly confirmed that the reduction occurs in the N-terminal methionine residues. (Figure 5)

Figure 5 Overlapping of 1H-15N SOFAST-HMQC spectra of fully oxidized (cyan, 5 uM) and reduced (black, 5 uM) in vitro and inside A2780 cells 15N/13C Met-only labeled α-Syn.
Monitoring α-Syn methionine repair in mammalian cell extracts by real time NMR.

Due to the cell recovery step after the electroporation procedure and long acquisition of the In-cell NMR spectra we were not able to characterize the reduction process in a time resolved fashion by NMR. To overcome this problem we added oxidized α-Syn to mammalian cell extracts. Mammalian cell extracts are less crowded and more homogenous than the cytosol of a cell and allow recording 1H-15N correlations within minutes. Initially, we added fully oxidized 15N uniformly labeled and 15N/13C Met-only labeled α-Syn (25μM) in a A2780 cell extract (10mg/ml total protein concentration) supplemented with 20mM DTT as electron source and we immediately recorded 1H-15N HMQC spectra continuously for a period of 12hs (Figure 6A-B). The labels o/o; o/r and r/r in the different panels refer to the oxidation state (reduced or oxidized) of Met1 and Met5, respectively. By integrating the signal of the differently oxidized α-Syn species, we were able to delineate the reduction kinetic. Our results showed that Met5 was the most efficiently reduced residue (Figure 6C), followed by Met 1. We did not detected any resonances for α-Syn where Met1 was reduced and and Met5 was still oxidized (r/o) indicating that the reduction of Met1 occurs only after Met 5 was reduced or that the reduction of Met 5 is much faster than in our experimental conditions. A similar analysis performed on Met116 and Met127 revealed that these residues are not significantly repaired, in full agreement with our previous in-cell NMR results.

We repeated these experiments with RCNS3 and other neuronal and non-neuronal mammalian cell extracts (FigureS3, Supplementary data). The results showed the same hierarchy of reduction in all cell extract assayed.
Figure 6. RT-NMR observations of fully oxidized 15N uniformly labeled and 15N/13C Met-only labeled α-Syn (25uM) repair in a A2780 cell extract (10mg/ml) total protein concentration (A-B). α-Syn methionines repair reduction kinetic in the same extract. Upper chart, N-terminal M1 and M5 reduction kinetic (o/o, balck; o/r, red; and r/r brownish-yellow) and lower chart, C-terminal M127 (dark-gray) and M116 (green).

Methionine sulfoxide reductase (MSR) enzymes target Met oxidized α-Syn.

Next, we try to identify the cellular components responsible for reducing Met residues in our In-cell NMR and extract samples. It was recently shown that a specific family of enzymes, called methionine sulfoxide reductase (MSRs), is able to catalyze the reduction of Met sulfoxides to the normal Met sidechain. In human, the MSR family is mainly divided in two sub-groups: MSRA, which selectively repair MetO-R diastereoisomer and MSRB that reduce the MetO-S diastereoisomer. In particular, it was shown that MSRA can reduce oxidized α-Syn and its overexpression protects cultured neuronal cells from oxidative insults elicited by rotenone. These enzymes catalyze the removal of the oxygen from the sulphur atom of a Met residue at the expense of their oxidation and further regeneration by the NADPH dependent thioredoxin (TRX)/thioredoxing reductase (TRXR) system. Accordingly, we
investigated if MSRA and other members of MSR family were present in the cells we used for our experiments by inmunobloting techniques. We detected all the players of the MSR/TRX/TRXR system (Figure 7 A-B). In addition, we repeated the repair kinetics in the presence of increasing concentration of DMSO, a known inhibitor MSRs.250,251 Our results showed that the repair of Met5 was impaired by DMSO in a concentration dependent fashion. Finally, incubation of fully oxidized α-Syn with DTT alone or an extract that was preboiled or DEPC treated to destroy any enzymatic activity resulted in non repair (Figure 7 C-D). Altogether, these results strongly suggest that oxidized Met 1 and 5 residues in our cell and extract experiments are reduced by the MSR enzymes.

Figure 7. The MSRs/TRX)/TRXR system (A), Western blots of endogenous MSRs(A,B1,B2,B3A isoforms) and TRX in lysates of cultured mammalian A2780, and RCSN-3 cells (B) MetOxiS repair kinetics in the presence of increasing concentration of DMSO (C) Overlapping of 1H-15N SOFAST-HMQC spectra of oxidized (cyan) and after the incubation of fully oxidized α-Syn with DTT alone on the left, and after the incubation of fully oxidized α-Syn into an extract that was preboiled or DEPC treated to destroy (D)
DISCUSSION

We applied novel In cell, in extracts and in vitro NMR spectroscopy techniques to study the intracellular fate of oxidized α-Syn molecules. In particular, from our in vitro experiments on methionine oxidized and reduced α-Syn samples, we showed that oxidation doesn’t induce large conformational rearrangements of α-Syn, however, it affects the local conformation of the oxidized regions, especially at the N-terminus, even compromising the membrane binding ability of α-Syn.

Although, using in cell and in extract RT-NMR spectroscopy, first we were able to prove in all the used cell lines that the N-terminal Methionine are completely repaired in several cell lines, proving how cells are able to repair a damage that could compromise the protein structural functionality inside themselves, and second the C terminal Met116 and Met127 are not significantly repaired. Both evidences point out that might be the C-terminal region involved into the link between the pathological aggregation and oxidative stress, in particular it could represent an explanation to the known correlation between oxidative stress and increased S129 phosphorylation levels. In fact S129-phosphorylated is a pathological hallmark of PD. This PTM is abundantly (90%) found in Lewy-body inclusions of Parkinson’s disease patients, whereas the soluble protein is barely modified (less than 4%), which supports a possible link between α-syn S129 phosphorylation, protein aggregation and PD pathogenesis.

Evidences showed crosstalk between S129 phosphorylation and other PTMs in the neighboring residues. In particular, it was recently demostrated that Y125 phosphorylation constitutes a necessary priming event for the efficient modification of S129 by Casein Kinase1.

In addiction some studies also showed how in nature is it possible a crosstalk between phosphorylation and Met oxidation in the neighboring residues. For example, site-specific oxidation of Met in calmodulin was shown to affect its structure, and thus its interaction with Ca2+/calmodulin-dependent protein kinase II and subsequent downstream signaling. All the proteins containing these phosphorylation sites which
include a vicinal Met residue can potentially function as redox sensors capable of transducing input from ROS signalling to regulation of phosphorylation.

Especially for α-Syn, S129 phosphorylation on non-aggregated protein form represents a balance between kinase and phosphatase activities. Under physiological conditions, phosphatases probably outweighing kinases activity, keeping a low cellular concentration of S129 α-Syn. Since, C-terminal Methionines (above all M127) are not so far from S129, an oxidative stress could induce a-syn methionine oxidation, and consequently the not repaired C-terminus methionines may shift the equilibrium toward the preservation of S129 phosphorylation. This could be explained from the fact that Met oxidation causes a shift from hydrophobic to hydrophilic in nature, and would thus likely disrupt enzyme recognition.257

CONCLUSIONS

In summary, here is showed that NMR spectroscopy is able to show how methionine-oxidized a-syn in different cell lines undergoes site-selective repair by endogenous enzymes. In oxidized α-Syn, Met5 is the preferred substrate, followed by Met1, whereas C-terminal Met116 and Met127 are likely to remain oxidized. These results indicate that cellular oxidative modifications in the form of Met-sulfoxides at the C-terminal region of α-Syn, it might contribute the abnormal accumulation of S129 α-Syn and into the consequent formation of the toxic aggregates present in PD patients. These knowledge represent a step forwards for understanding the molecular basis of synucleinopathies and it could represent a starting point for developing tools to diagnose and monitor the progression of these diseases, and assessing the effectiveness of preventive and therapeutic strategies.
EXPERIMENTAL SECTION

Protein and reagents. 15N isotopically enriched, N-terminally acetylated AS was obtained by co-expressing the wild-type AS plasmid (pT-T7) and the plasmid harboring the yeast NatB acetylase complex258 in *E. Coli* BL21 (DE3) Express. The transfected bacteria were grown in M9 minimal media supplemented with 15N NH$_4$Cl (Sigma) and/or 13C uniformly labeled D-glucose (Sigma) until an OD$_{600}$ of 0.6 and induced with 1 mM IPTG (Roth). Overexpression was performed overnight at 30°C. For 15N/13C Met-only labeled species we supplemented the M9 minimal media with natural abundance NH$_4$Cl and D-glucose 0.3 mM of 13C$_5$, 15N labeled L-methionine (Isotec, 608106) as previously reported.259 Proteins were purified as previously described260,261 and their purity was evaluated by SDS-PAGE. N-terminal acetylation was complete in all samples as determined by 1H-15N SOFAST-HMQC experiments. Methionine oxidized AS samples were prepared by incubating 500 μM AS with 4% H$_2$O$_2$ (Sigma)232 for 2 hours and subsequent purification by size-exclusion chromatography to remove the H$_2$O$_2$ excess. Complete elimination of peroxide was additionally verified using a colorimetric detection assay (Enzo Life Sciences). We confirmed exhaustive methionine oxidation by 2D 1H-15N SOFAST-HMQC experiments. AS samples were dissolved in 20 mM phosphate buffer, pH 7.0, 150 mM NaCl and 10% D$_2$O (i.e. NMR buffer) and their concentrations were determined spectrophotometrically by absorption measurements at 274 nm ($\varepsilon = 5600 \text{ M}^{-1}\text{cm}^{-1}$).

Circular dichroism (CD). CD measurements were performed with a Jasco J-720 spectropolarimeter at 25°C on 10 μM AS samples dissolved in NMR buffer at pH 7.0. Far-UV CD spectra were collected using a 0.1 cm path-length cuvette. 8 scans were averaged and blank (buffer) spectra were subtracted from the spectra to calculate the ellipticity values (mdeg).

Size exclusion chromatography (SEC). For SEC experiments 200 μl, 500 μM of AS samples were injected into a Superdex 75 analytical column (GE Healthcare) connected to an AKTA purifier FPLC machine (GE Healthcare). To obtain the SEC profiles the absorbance at 280 nm was plotted as a function of the eluted volume. In all cases elution volumes were set to zero at injection.
Dynamic light scattering (DLS). DLS was performed on a Malvern Zetasizer Nano machine operating at a laser wavelength of 633 nm at 25°C in 3x3 mm cuvettes and 50 mM AS samples dissolved in NMR buffer. Hydrodynamic radii were calculated based on volume weighted analyses of scattered light, using the Malvern DTS software.

Preparation small unilamellar vesicles (SUVs). SUVs were prepared using naturally occurring pig brain lipids. Lyophilized pig brain polar lipid extract was bought from Avanti Polar Lipids (Alabaster, USA) and SUVs were prepared in NMR buffer by freeze-thaw and sonication as previously described. Initial stock solutions were adjusted to 20 mM considering the total lipid input. Average vesicles sizes of 60 nm were determined by dynamic light scattering (DLS).

NMR spectroscopy. Assignment of reduced and fully Met-oxidized AcAS was performed on 500 μM protein samples dissolved in NMR buffer at pH 7.0. We recorded 1H-15N SOFAST-HMQC experiments and triple resonance HNCACB and CBCACONH (Bruker standard pulse sequences) at 15°C on a 750 MHz Bruker Avance spectrometer, equipped with a cryogenically cooled triple resonance 1H(13C/15N) TCI probe. Parameters used were 1024 (1H) and 256 (15N) complex points for a SW of 16 ppm (1H) and 26 ppm (15N) and 16 scans for 2D 1H-15N SOFAST-HMQC experiments. For 3D HNCACB and CBCACONH experiment we used 1024 (1H), 72 (15N) and 96 (13C) complex points for a SW of 16 ppm (1H), 26 ppm (15N) and 70 ppm (13C) and 16 scans. Pulse sequences and its parameters were used as described previously. NMR spectra were zero-filled to 4-times the number of real points and processed using a sine window function and baseline correction for all dimensions. Backbone assignments were performed with CARA (Computer-Aided Resonance Assignment, Institute for Molecular Biology and Biophysics, Zürich Switzerland). NMR spectra of SUV-bound protein samples were performed on 50 μM protein samples at 30°C to improve signal to noise ratios.

In-cell NMR spectra were acquired on 600 MHz and 900 MHz Bruker Avance spectrometers, equipped with cryogenically cooled triple resonance 1H(13C/15N) TCI probes. All In-cell spectra were performed at 10°C. Parameters used for 2D 1H-15N SOFAST-HMQC In-cell spectra were 1024 (1H) and 256 (15N) complex points, 128 scans.
and 60 ms of recycling delay for A2780 In-cell samples and 1024 (\(^1\)H) and 128 (\(^{15}\)N) complex points, 2K scans and 60 ms of recycling delay for RCSN3 In-cell samples. SW used were 16 ppm (\(^1\)H) and 26 ppm (\(^{15}\)N) for \(^{15}\)N uniformly labeled oxidized AS and 16 ppm (\(^1\)H) and 14 ppm (\(^{15}\)N) for \(^{15}\)N/\(^{13}\)C Met-only labeled samples. 1D \(^1\)H-\(^{15}\)N SOFAST-HMQC spectra were acquired in the same conditions but using 4K scans. Spectra were processed by zero-filling to 4-times the number of real points and by employing sine-modulated window functions in all dimensions.

Time-resolved NMR spectra of reduction kinetics were recorded on 600 MHz and 750 MHz Bruker Avance spectrometers, equipped with cryogenically cooled triple resonance \(^1\)H/(\(^{13}\)C/\(^{15}\)N) TCI probes, on Met-oxidized AS samples in NMR buffer at pH 7.0. 1D and 2D \(^1\)H-\(^{15}\)N SOFAST-HMQC experiments were recorded at 25\(^\circ\) C. All time-resolved 2D NMR spectra were recorded with 1024 (\(^1\)H) and 128 (\(^{15}\)N) complex points, 96 scans and a recycling delay of 60 ms (~20 minutes acquisition time). Spectra were processed by zero-filling to 4-times the number of real points and by employing sine-modulated window functions in all dimensions. To delineate Met-sulfoxide reduction rates, we measured cross-peak intensities and/or signal volumes of unambiguously assigned, well-resolved NMR cross-peaks reporting on the individual oxidation states of Met1, Met5, Met116 and Met127 in the different time-resolved NMR spectra, as reported previously.\(^{241}\) These were Met1, Asp2, Met5, Lys6, Gly7 and Leu8 for M1 and M5; Asp115 and Met116 for Met116 and Met127 and Ser129 for Met127. Acquisition, processing and visualization of NMR spectra were performed with TOPSPIN 3.1 (Bruker) and SPARKY\(^{263}\) Weighted chemical shift differences were obtained as previously described.\(^{264}\) Secondary shift values were calculated as the differences between the measured \(\alpha \) chemical shifts and the empirical random coil values reported by Wishart et al.\(^{265}\) 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) was employed for chemical shift referencing. NMR signal intensity ratios (\(I/I_0 \)) were determined for ~110 unambiguously assigned, non-overlapped cross-peaks of oxidized and reduced AS by quantifying their intensity in the presence (\(I \)) or absence (\(I_0 \)) of SUVs. Error bars in the time-resolved reaction profiles represent the relative experimental noise of the individual NMR signals used to calculate the site-specific oxidation states.
Fitting of kinetic of repair curves. Time course of Met reduction were fitted by an exponential increase or decay and plotted using GraphPad Prism 5.0. Error bars in the time-resolved reaction profiles represent the relative experimental noise of the individual NMR signals used to calculate the site-specific oxidation states.

In-cell NMR sample preparation. Briefly, A2780 and RCSN-3 cells were grown at 37°C, 5% CO₂, in T175 culture flasks with RPMI (Millipore, FG1215) and DMEM-HAM’s F-12 (Biochrom, FG4815), respectively, supplemented with 10% fetal bovine serum (Biochrom, S0615) until 80% confluence was reached. For each in-cell NMR sample we collected 50-100x10⁶ cells by mild trypsin treatment (Biochrom, L2153) and resuspended them in 2 ml electroporation buffer (100 mM sodium phosphate, 15 mM Hepes, 5 mM KCl, 15 mM MgCl₂, 2 mM ATP, 2 mM reduced glutathione, pH 7.0) containing 500 μM of fully oxidized AS uniformly labeled with 1⁵N or in a 1⁵N/¹³C Met-only labeled form. The suspension was aliquoted in 100 ul fractions and electroporated using an Amaxa nucleofector device (Lonza) according to the manufacturer’s instructions. Cells were replated in 15 cm culture dishes and placed in the incubator for 4 hs for their recovery. After that dishes were washed 3X with pre-warmed PBS to discard death cells, collected by mild tripsin treatment, washed 2X with the corresponding pre-warmed growth media to remove excess of trypsin and resuspended in pH stable Leiwobitz (Gibco, 31415-029) media supplemented with 10% D₂O. Then, cells were gently transferred to the NMR for spectra acquisition.

Preparation of cell lysates. Cells grown at 37°C, 5% CO₂, in T175 culture flasks until ~ 80% confluence, detached by trypsin treatment, washed twice with PBS and resuspended in NMR buffer containing 1X protease inhibitors (complete EDTA-free, Roche). Cells were centrifuged for 5 min. at 1000 rpm and the supernatant was discarded. The wet cell pellet was lyzed by 5 rounds of freeze-thaw using a dry ice/ethanol bath, after which the soluble fractions were obtained by a 10 min spin at 16,000 g at 4 °C. Full lysis was confirmed by tripan blue staining and cell count and protein concentrations were determined using a Bradford assay (Bio-Rad). Extracts were used immediately after preparation or aliquoted and snap-frozen in liquid nitrogen and stored at -80°C until further use. Freeze-thaw cycles were avoided in order to preserve enzymatic activities. Samples for Western Blotting were boiled for
15 minutes in 1X Laemmli buffer (Bio-Rad). Mammalian cell lines were: A2780 (human, ovarian, Sigma-Aldrich), B65 (rat, neuroblastoma, Sigma Aldrich), SH-SY5Y (human, neuroblastoma, provided by Jan Bieschke, MDC-Berlin), RCSN-3 (rat, substantia nigra, Pablo Caviedes, University of Chile), SK-N-SH (human, neuroblastoma, Sigma-Aldrich) and Hela (human, cervical cancer, Sigma).

Reduction assays. For reduction reactions, extracts were adjusted to 10 mg/ml total protein concentration in NMR buffer and supplemented with 20 mM DTT Applichem). Reactions were carried out in duplicates at 25° C by spiking 25 μM of uniformly 15N or 15N/13C Met-only labeled AS into the different cell lysates and immediately starting the NMR experiments. For some experiments we added increasing amounts of deuterated DMSO (Euriso-top) before starting acquisitions. In all cases total reaction volumes were 150 ul. Reactions were performed inside 3 mm Shigemi tubes.

Western blots. Samples were separated by SDS-PAGE using 4-20% gradient gels (Bio-Rad) and transferred onto PVDF membranes. Blots were blocked in 5% milk in TBS-T for 1 hour at room temperature, before incubating them overnight at 4° C with the following primary antibodies: anti-MSRA (1:1000, Abcam, ab16803), anti-MSRB1 (1:200, Abcam, ab66061), anti-MSRB2 (1:500, Abcam, ab101513), anti-MSRB3 (1:500, Abcam, ab88731) anti-TRX (1:1000, Abcam, ab86255), anti TRXreduct (1:500, Abcam, ab16847) or anti-β-Actin (1:5000, Abcam, ab6276). Membranes were incubated with HRP secondary antibodies for 1 hr. at room temperature and probed using SuperSignal West Pico chemiluminescent substrate (Thermo Scientific). Luminescence was detected using a Bio-Rad Molecular Imager and ImageLab software.
SUPPLEMENTARY DATA

Figure S1. The treatment with 4% H$_2$O$_2$ for 1 hour at room temperature results in the oxidation of all Met residues to corresponding sulfoxide species (A). Biophysical properties of oxidized and reduced α-Syn. Circular dichroism (CD), dynamic light scattering (DLS) and SEC experiments.

Figure S2. Lysate spectra of the in-cell NMR samples (Fig 4). Overlapping of 1H-15N SOFAST-HMQC spectra of fully oxidized (cyan, 5 uM) and reduced (black, 5 uM) α-Syn in vitro and in extract A2780 (red) (A) and RSN3 (B) cells, respectively.
Figure S3. RT-NMR: α-Syn methionine repair reduction kinetic in different cell extracts. The total protein concentration was 10mg/ml, for all the extracts used.
REFERENCES

References

References

References

References

References

References

82 Kieffer, B. L.; Evans, C. J., Opioid receptors: from binding sites to visible molecules in vivo. *In Neuropharmacology*, 2009; 56 (1), 205-12.

References

90 Portoghese, P. S. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes *J. Med. Chem.* 2001, 44, 2259-2269. (b) (c)

119
References

115 Colucci, M.; Mastriota, M.; Maione, F.; Di Giannuario, A.; Mascolo, N.; Palmery, M.; Severini, C.; Perretti, M.; Pieretti, S. Guinea pig ileum motility stimulation elicited by N-formyl-Met-Leu-Phe (fMLF) involves neurotransmitters and prostanoid. Peptides 2011, 32, 266-271

References

Harris, C. A.; Chuang, T. T.; Scorer, C. A. Expression of GRK2 is increased in the left ventricles of cardiomyopathic hamsters. *Basic Res Cardiol* **2001**, *96*, 364-368

Takeda Pharmaceuticals Company Limited, S. Ikeda, M. Kaneko, S. Fujiwara, Cardiotonic agents comprising GRK inhibitor, World patent WO2007034846

References

196 Cheng, Y.; Prusoff, W.H. Relationship Between the Inhibition Constant (Ki) and the Concentration of Inhibitor which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

127
References

Schanda, P.; Kupce, E.; Brutscher, B., SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. *J Biomol*, 2005, 33 (4), 199-211

References

263 Goddard TD, Kneller DG. Sparky 3 (San Francisco: University of California). **2002**
